

SOFTWARE SYSTEM RELIABILITY AND SECURITY

NATO Security through Science Series

This Series presents the results of scientific meetings supported under the NATO Programme for

Security through Science (STS).

Meetings supported by the NATO STS Programme are in security-related priority areas of

Defence Against Terrorism or Countering Other Threats to Security. The types of meeting

supported are generally “Advanced Study Institutes” and “Advanced Research Workshops”. The

NATO STS Series collects together the results of these meetings. The meetings are co-organized

by scientists from NATO countries and scientists from NATO’s “Partner” or “Mediterranean

Dialogue” countries. The observations and recommendations made at the meetings, as well as

the contents of the volumes in the Series, reflect those of participants and contributors only; they

should not necessarily be regarded as reflecting NATO views or policy.

Advanced Study Institutes (ASI) are high-level tutorial courses to convey the latest

developments in a subject to an advanced-level audience.

Advanced Research Workshops (ARW) are expert meetings where an intense but informal

exchange of views at the frontiers of a subject aims at identifying directions for future action.

Following a transformation of the programme in 2004 the Series has been re-named and re-

organised. Recent volumes on topics not related to security, which result from meetings

supported under the programme earlier, may be found in the NATO Science Series.

The Series is published by IOS Press, Amsterdam, and Springer Science and Business Media,

Dordrecht, in conjunction with the NATO Public Diplomacy Division.

Sub-Series

A. Chemistry and Biology Springer Science and Business Media

B. Physics and Biophysics Springer Science and Business Media

C. Environmental Security Springer Science and Business Media

D. Information and Communication Security IOS Press

E. Human and Societal Dynamics IOS Press

http://www.nato.int/science

http://www.springer.com

http://www.iospress.nl

Sub-Series D: Information and Communication Security – Vol. 9 ISSN: 1574-5589

Software System Reliability and

Security

Edited by

Manfred Broy

Technische Universität München, Germany

Johannes Grünbauer

Technische Universität München, Germany

and

Tony Hoare

Microsoft Research, UK

Amsterdam • Berlin • Oxford • Tokyo • Washington, DC

Published in cooperation with NATO Public Diplomacy Division

Proceedings of the NATO Advanced Research Institute on Software System Reliability

and Security

Marktoberdorf, Germany

1–13 August 2006

© 2007 IOS Press.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means, without prior written permission from the publisher.

ISBN 978-1-58603-731-4

Library of Congress Control Number: 2007922976

Publisher

IOS Press

Nieuwe Hemweg 6B

1013 BG Amsterdam

Netherlands

fax: +31 20 687 0019

e-mail: order@iospress.nl

Distributor in the UK and Ireland Distributor in the USA and Canada

Gazelle Books Services Ltd. IOS Press, Inc.

White Cross Mills 4502 Rachael Manor Drive

Hightown Fairfax, VA 22032

Lancaster LA1 4XS USA

United Kingdom fax: +1 703 323 3668

fax: +44 1524 63232 e-mail: iosbooks@iospress.com

e-mail: sales@gazellebooks.co.uk

LEGAL NOTICE

The publisher is not responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

Preface

Today almost every complex technical system used in industry, science, commerce and
communication is more or less interfaced with software and software systems. This dic-
tates that most information exchange is closely related to software and computer systems.
The consequence of this wide distribution of software is a high dependency on its func-
tioning and quality. Because of this dependency and distribution, making information
systems safe, reliable, as well as secure and protecting information against all kinds of
attack is an essential research topic, particularly in computer science.

Scientific foundations have been developed for programming and building computer
systems. These foundations cover a broad spectrum of issues and work with formal mod-
els and description techniques in order to support a deep and precise understanding and
managing of a system’s properties and interplay. In addition, software engineering has
many additional applications, ranging from telecommunications to embedded systems.
For example software engineering has now become essential in automotive and aircraft
industry, and has been intergral in furthering computer networks distributed over wide-
area networks. A vast proportion of information exchange is influenced by computer sys-
tems and information security is important for reliable and secure software and computer
systems.

Information security covers the protection of information against unauthorized dis-
closure, transfer, modification, and destruction, whether accidentally or intentionally. At-
tacks against computer systems can cause considerable economic and physical damage.
Quality of life in general and of individual citizens, and the effectiveness of the economy
critically depends on our ability to build software in a transparent and efficient way. Fur-
thermore, we must be able to enhance the software development process systematically
in order to ensure safety, security and reliability. This, in turn, requires very high soft-
ware reliability, i. e., an extremely high confidence in the ability of the software to per-
form flawlessly. The foundations of software technology provide models that enable us
to capture application domains and their requirements, but also to understand the struc-
ture and working of software systems, software architectures and programs. New devel-
opments must pay due diligence to the importance of security-related aspects, and align
current methods and techniques to information security, integrity, and system reliability.
However, based on the specific needs in applications of software technology, models and
formal methods must serve the needs and the quality of advanced software engineering
methods, especially taking into account security aspects in Information Technology.

As a consequence of the wide distribution of software and software infrastructure, in-
formation security depends on the quality and excellent understanding of its functioning.
Only when this functionality is guaranteed as safe, customers, and information are pro-
tected against adversarial attacks. Thus, to make communication and computation secure
against catastrophic failure and malicious interference, it is essential to build secure soft-
ware systems and methods for their development. Such development is difficult, mainly
because of the conflict between development costs and verifiable correctness.

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

v

In the summer of 2006, a group of internationally renowned researchers in computer
science met and lectured on the topics described above. The articles in this book describe
the state-of-the-art ideas on how to meet these challenges in software engineering.

Rajeev Alur describes the foundations of model checking of programs with finite
data and stack-based control flow. Manfred Broy introduces an abstract theory for sys-
tems, components, composition, architectures, interfaces, and compatibility. In his article
he applies this theory to object orientation and elaborates on the application of that theory
covering notions for a formal model of objects, classes, components, and architectures as
well as those of interfaces of classes and components and their specification. Ernie Co-
hen explains how to use ordinary program invariants to prove properties of cryptographic
protocols.

Networked computer systems face a range of threats from hostile parties on the net-
work leading to violations of design goals such as confidentiality, privacy, authentication,
access control, and availability. The purpose of Andrew Gordon’s article is to introduce
an approach to this problem based on process calculi. Transactions are the essential com-
ponents of electronic business systems, and their safety and security are of increasing
concern. Tony Hoare presents a theoretical model of compensable transactions, showing
how long running transactions may be correctly composed out of shorter ones. Orna
Kupferman presents on “Applications of Automata-Theory in Formal Verification”. In
this automata-theoretic approach to verification, she reduces questions about programs
and their specifications to questions about automata.

In a distributed system with no central management such as the Internet, security
requires a knowledge about who can be trusted for each step in establishing it, and why.
Butler W. Lampson explains the “speaks for” relation between principals describing how
authority is delegated. Axel van Lamsweerde contributes model-based requirements engi-
neering. Models for agents, operations, obstacles to goals, and security threats are intro-
duced and a model building with the KAOS method is presented. Wolfgang Paul outlines
a correctness proof for a distributed real time system – for the first time in a single place
– from the gate level to the computational model of a CASE tool.

Amir Pnueli describes an approach for the synthesis of (hardware and software) de-
signs from LTL specifications. This approach is based on modelling the synthesis prob-
lem which is similar to the problem of finding a winning strategy in a two-person game.
K. Venkatesh Prasad introduces the notion of a “mobile networked embedded system”,
in which a mobile entity is composed of internally and externally networked software
components. He discusses the challenges related to designing a mobile networked embed-
ded system with regards to security, privacy, usability, and reliability. Finally, Wolfram
Schulte explains the “Spec# Approach”, which provides method contracts in the form of
pre- and post-conditions as well as object invariants. He describes the design of Spec#’s
state-of-the-art program verifier for object-oriented programs.

The contributions in this volume have emerged from lectures of the 27th Interna-
tional Summer School on Software System Reliability and Security, held at Marktober-
dorf from August 1 to August 13, 2006. More than 100 participants from 28 countries at-
tended, including students, lecturers and staff. The Summer School provided two weeks
of learning, discussion and development of new ideas, and was a fruitful event, at both
the professional and social level.

vi

We would like to thank all lecturers, staff, and hosts in Marktoberdorf. In particu-
lar special thanks goes to our secretaries Dr. Katharina Spies, Silke Müller, and Sonja
Werner for their great and gentle support.

The Marktoberdorf Summer School was arranged as an Advanced Study Institute of
the NATO Security Through Science Programme with support from the town and county
of Marktoberdorf and the Deutscher Akademischer Austausch Dienst (DAAD). We thank
all authorities involved.

THE EDITORS

vii

viii

ix

Contents

Preface v

Logics and Automata for Software Model-Checking 1

Rajeev Alur and Swarat Chaudhuri

Specifying, Relating and Composing Object Oriented Interfaces, Components

and Architectures 22

Manfred Broy

Using Invariants to Reason About Cryptographic Protocols 73

Ernie Cohen

Verified Interoperable Implementations of Security Protocols 87

Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon and

Stephen Tse

Compensable Transactions 116

Tony Hoare

Automata on Infinite Words and Their Applications in Formal Verification 135

Orna Kupferman

Practical Principles for Computer Security 151

Butler Lampson

Engineering Requirements for System Reliability and Security 196

Axel van Lamsweerde

Pervasive Verification of Distributed Real-Time Systems 239

Steffen Knapp and Wolfgang Paul

Verification and Synthesis of Reactive Programs 298

Amir Pnueli

Security, Privacy, Usability and Reliability (SPUR) in Mobile Networked

Embedded Systems: The Case of Modern Automobiles 341

K. Venkatesh Prasad and T.J. Giuli

A Verifying Compiler for a Multi-Threaded Object-Oriented Language 351

K. Rustan, M. Leino and Wolfram Schulte

Author Index 417

This page intentionally left blank

Logics and Automata for Software
Model-Checking 1

Rajeev ALUR and Swarat CHAUDHURI

University of Pennsylvania

Abstract. While model-checking of pushdown models is by now an established
technique in software verification, temporal logics and automata traditionally used
in this area are unattractive on two counts. First, logics and automata traditionally
used in model-checking cannot express requirements such as pre/post-conditions
that are basic to software analysis. Second, unlike in the finite-state world, where
the μ-calculus has a symbolic model-checking algorithm and serves as an “assem-
bly language” of temporal logics, there is no unified formalism to model-check lin-
ear and branching requirements on pushdown models. In this survey, we discuss a
recently-proposed re-phrasing of the model-checking problem for pushdown mod-
els that addresses these issues. The key idea is to view a program as a generator of
structures known as nested words and nested trees (respectively in the linear and
branching-time cases) as opposed to words and trees. Automata and temporal logics
accepting languages of these structures are now defined, and linear and branching
time model-checking phrased as language inclusion and membership problems for
these languages. We discuss two of these formalisms—automata on nested words
and a fixpoint calculus on nested trees—in detail. While these formalisms allow
a new frontier of program specifications, their model-checking problem has the
same worst-case complexity as their traditional analogs, and can be solved sym-
bolically using a fixpoint computation that generalizes, and includes as a special
case, “summary”-based computations traditionally used in interprocedural program
analysis.

Keywords. Temporal and fixpoint logics, Automata, Software model-checking,
Verification, Program analysis

1. Introduction

Because of concerted research over the last twenty-five years, model-checking of reac-
tive systems is now well-understood theoretically as well as applied in practice. The the-
ories of temporal logics and automata have played a foundational role in this area. For
example, in linear-time model-checking, we are interested in questions such as: “do all
traces of a protocol satisfy a certain safety property?” This question is phrased language-
theoretically as: is the set of all possible system traces included in the language of safe
behaviors? In the world of finite-state reactive programs, both these languages are ω-
regular [22]. On the other hand, in branching-time model-checking, the specification de-

1This research was partially supported by ARO URI award DAAD19-01-1-0473 and NSF award CPA
0541149.

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

1

fines an ω-regular language of trees, and the model-checking problem is to determine if
the tree unfolding of the system belongs to this language [17].

Verification of software is a different ball-game. Software written in a modern pro-
gramming language has many features such as the stack, the heap, and concurrent exe-
cution. Reasoning about these features in any automated manner is a challenge—finding
ways to model-check them is far harder. The approach that software model-checking
takes [10] is that of data abstraction: finitely approximate the data in the program, but
model the semantics of procedure calls and returns precisely. The chosen abstractions
are, thus, pushdown models or finite-state machines equipped with a pushdown stack
(variants such as recursive state machines [1] and boolean programs [9] have also been
considered). Such a machine is now viewed as a generator of traces or trees modeling
program executions or the program unfolding.

There are, of course, deviations from the classical setting: since pushdown mod-
els have unbounded stacks and therefore infinitely many configurations, answering
these queries requires infinite-state model-checking. Many positive results are known
in this area—for instance, model-checking the μ-calculus, often called the “assembly
language for temporal logics,” is decidable on sequential pushdown models [24,12].
However, many attractive computational properties that hold in the finite-state world
are lost. For instance, consider the reachability property: “a state satisfying a proposi-
tion p is reachable from the current state,” expressible in the μ-calculus by a formula
ϕ = μX.(p ∨ 〈〉X). In finite-state model checking, ϕ not only states a property, but
syntactically encodes a symbolic fixpoint computation: start with the states satisfying p,
add states that can reach the previous states in one step, then two steps, and so on. This
is the reason why hardware model-checkers like SMV translate a specification given in
a simpler logic into the μ-calculus, which is now used as a directive for fixpoint com-
putation. Known model-checking algorithms for the μ-calculus on pushdown models,
however, are complex and do not follow from the semantics of the formula. In partic-
ular, they cannot capture the natural, “summarization”-based fixpoint computations for
interprocedural software analysis that have been known for years [19,21].

Another issue with directly applying classical temporal specifications in this con-
text is expressiveness. Traditional logics and automata used in model-checking define
regular languages of words and trees, and cannot argue about the balanced-parenthesis
structure of calls and returns. Suppose we are now interested in local reachability rather
than reachability: “a state satisfying p is reachable in the same procedural context (i.e.,
before control returns from the current context, and not within the scope of new contexts
transitively spawned from this context via calls).” This property cannot be captured by
regular languages of words or trees. Other requirements include Hoare-Floyd-style pre-
conditions and postconditions [16] (“if p holds at a procedure call, then q holds on re-
turn”), interface contracts used in real-life specification languages such as JML [11] and
SAL [14], stack-sensitive access control requirements arising in software security [23],
and interprocedural dataflow analysis [18].

While checking pushdown requirements on pushdown models is undecidable in
general, individual static analysis techniques are available for all the above appli-
cations. There are practical static checkers for interface specification languages and
stack inspection-type properties, and interprocedural dataflow analysis [19] can compute
dataflow information involving local variables. Their foundations, unfortunately, are not
properly understood. What class of languages do these properties correspond to? Can

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking2

we offer the programmer flexible, decidable temporal logics or automata to write these
requirements? These are not merely academic questions. A key practical attraction of
model-checking is that a programmer, once offered a temporal specification language,
can tailor a program’s requirements without getting lost in implementation details. A
logic as above would extend this paradigm to interprocedural reasoning. Adding syn-
tactic sugar to it, one could obtain domain-specific applications—for example, one can
conceive of a language for module contracts or security policies built on top of such a
formalism.

In this paper, we summarize some recent work on software model-checking [4,6,7,2,
3] that offers more insights into these issues by re-phrasing the model-checking problem
for sequential pushdown models. In classical linear-time model-checking, the problem is
to determine whether the set of linear behaviors of a program abstraction is included in
the set of behaviors satisfying the specification. In branching-time model-checking, the
question is whether the tree unfolding of the program belongs to the language of trees
satisfying the requirement. In other words, a program model is viewed as a generator of a
word or tree structure. In the new approach, programs are modeled by pushdown models
called nested state machines, whose executions and unfoldings are given by graphs called
nested words and nested trees. More precisely, a nested word is obtained by augmenting
a word with a set of extra edges, known as jump-edges, that connect a position where
a call happens to its matching return. As calls and returns in program executions are
properly nested, jump-edges never cross. To get a nested tree, we add a set of jump-
edges to a tree. As a call may have a number of matching returns along the different
paths from it, a node may now have multiple outgoing jump-edges. Temporal logics and
finite-state automata accepting languages of nested words and trees are now defined. The
linear-time model-checking question then becomes: is the set of nested words modeling
executions of a program included in the set of nested words accepted by the specification
formula/automaton? For branching-time model-checking, we ask: does the nested tree
generated by a program belong to a specified language of nested trees? It turns out that
this tweak makes a major difference computationally as well as in expressiveness.

Let us first see what an automaton on nested words (NWA) [6,7] would look like.
Recall that in a finite automaton, the state of the automaton at a position depends on
the state and the input symbol at the preceding position. In a nested word, a “return”
position has two incoming edges—one from the preceding time point, and one from the
“matching call.” Accordingly, the state of an NWA may depend on the states of the au-
tomaton at both these points. To see how this would help, consider the local reachability
property. Consider an automaton following a program execution, and suppose it is in a
state q that states that a target state has not yet been seen. Now suppose it encounters
a procedure call. A finite automaton on words would follow the execution into the new
procedural context and eventually “forget” the current state. However, an NWA can re-
trieve the state q once the execution returns from this call, and continue to search only
the current context. Properties such as this can also be expressed using temporal logics
on nested words [4,13], though we will not discuss the latter in detail in this survey.

For branching-time model-checking, we use a fixpoint calculus called NT-μ [2]. The
variables of the calculus evaluate not over sets of states, but rather over sets of substruc-
tures that capture summaries of computations in the “current” program block. The fix-
point operators in the logic then compute fixpoints of summaries. For a node s of a nested
tree representing a call, consider the tree rooted at s such that the leaves correspond to

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 3

exits from the current context. In order to be able to relate paths in this subtree to the
trees rooted at the leaves, we allow marking of the leaves: a 1-ary summary is specified
by the root s and a subset U of the leaves of the subtree rooted at s. Each formula of the
logic is evaluated over such a summary. The central construct of the logic corresponds
to concatenation of call trees: the formula 〈call〉ϕ{ψ} holds at a summary 〈s, U〉 if the
node s represents a “call” to a new context starting with node t, there exists a summary
〈t, V 〉 satisfying ϕ, and for each leaf v that belongs to V , the subtree 〈v, U〉 satisfies ψ.
Intuitively, a formula 〈call 〉ϕ{ψ} asserts a constraint ϕ on the new context, and requires
ψ to hold at a designated set of return points of this context. To state local reachability,
we would ask, using the formula ϕ, that control returns to the current context, and, using
ψ, that the local reachability property holds at some return point. While this requirement
seems self-referential, it may be captured using a fixpoint formula.

It turns out that NWAs and NT-μ have numerous attractive properties. For instance,
NWAs have similar closure properties such as regular languages, easily solvable decision
problems, Myhill-Nerode-style characterizations, etc. NT-μ can express all properties
expressible in the μ-calculus or using NWAs, and has a characterization in terms of
automata on nested trees [3]. In this survey, we focus more on the computational aspects
as applicable to program verification, in particular the model-checking problem for NT-
μ. The reason is that NT-μ can capture both linear and branching requirements and,
in spite of its expressiveness, can be model-checked efficiently. In fact, the complexity
of its model-checking problem on pushdown models (EXPTIME-complete) is the same
as that of far weaker logics such as CTL or the alternation-free μ-calculus. Moreover,
just as formulas of the μ-calculus syntactically encode a terminating, symbolic fixpoint
computation on finite-state systems, formulas of NT-μ describe a directly implementable
symbolic model-checking algorithm. In fact, this fixpoint computation generalizes the
kind of summary computation traditionally known in interprocedural program analysis,
so that, just like the μ-calculus in case of finite-state programs, NT-μ can arguably be
used as an “assembly language” for interprocedural computations.

The structure of this paper is as follows. In Sec. 2, we define nested words and trees,
and introduce nested state machines as abstractions of structured programs. In Sec. 3, we
define specifications on nested structures, studying NWAs and NT-μ in some detail. In
Sec. 4, we discuss in detail the symbolic model-checking algorithm for NT-μ.

2. Models

A typical approach to software model-checking uses data abstraction, where the
data in a structured program is abstracted using a finite set of boolean variables that stand
for predicates on the data-space [8,15]. The resulting models have finite-state but stack-
based control flow. In this section, we define nested state machines, one such model. The
behaviors of these machines are modeled by nested words and trees, the structures on
which our specifications are interpreted.

As a running example, in the rest of this paper, we use the recursive procedure foo.
The procedure may read or write a global variable x or perform an action think, has non-
deterministic choice, and can call itself recursively. Actions of the program are marked
by labels L1–L5 for easy reference. We will abstract this program and its behaviors, and
subsequently specify it using temporal logics and automata.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking4

2.1. Nested words

Nested words form a class of directed acyclic graphs suitable for abstracting executions
of structured programs. In this application, a nested word carries information about a
sequence of program states as well as the nesting of procedure calls and returns during
the execution. This is done by adding to a word a set of extra edges, known as jump-
edges, connecting positions where calls happen to their matching returns. Because of the
balanced-parentheses semantics of calls and returns, jump-edges are properly nested.

Formally, let Σ be a finite alphabet. Let a finite word w of length n over Σ be a map
w : {0, 1, . . . , n − 1} → Σ, and an infinite word be a map w : N → Σ. We sometimes
view a word as a graph with positions as nodes, and edges (i, j) connecting successive
positions i, j. A nested word over Σ is a pair W = (w, ↪→), where w is a finite or infinite
word over Σ, and ↪→ ⊆ N × (N ∪ ∞) is a set of jump-edges. A position i in a nested
word such that i ↪→ ∞ or i ↪→ j for some j is called a call position, and a position j
such that i ↪→ j for some i is called return position). The remaining positions are said
to be local. The idea is that if a jump-edge (i, j) exists, then position j is the matching
return of a call at position i; a jump-edge (i,∞) implies that there is a call at position i
that never returns. The jump-edge relation must satisfy the following conditions:

1. if i ↪→ j, then i < j − 1 (in other words, a jump-edge is a non-trivial forward
jump in the word);

2. for each i, there is at most one x ∈ N ∪ {∞} such that i ↪→ x or x ↪→ i (a call
either never returns or has a unique matching return, and a return has a unique
matching call);

3. if i ↪→ j and i′ ↪→ j′ and i < i′, then either j < i′ or j′ < j (jump-edges are
properly nested);

4. if i ↪→ ∞, then for all calls i′ < i, either i′ ↪→ ∞ or i′ ↪→ j for some j < i (if a
call never returns, neither do the calls that are on the stack when it is invoked).

If i ↪→ j, then we call i the jump-predecessor of j and j the jump-successor of i. Let an
edge (i, i + 1) in w be called a call and return edge respectively if i is a call and (i + 1)
is a return, and let all other edges be called local.

Let us now turn to our running example. We will model an execution by a nested
word over an alphabet Σ. The choice of Σ depends on the desired level of detail—we
pick the symbols wr , rd , en , ex , tk , and end , respectively encoding write(x), read(x), a
procedure call leading to a beginning of a new context, the return point once a context
ends, the statement think, and the statement return. Now consider the execution where foo
calls itself twice recursively, then executes think, then returns once, then loops infinitely.
The word encoding this execution is w = wr .en .wr .en.wr .tk .rd .ex .(rd)ω. A prefix of
the nested word is shown in Fig. 1-(a). The jump-edges are dashed, and call, return and
local positions are drawn in different styles. Note the jump-edge capturing the call that
never returns.

Now we show a way to encode a nested word using a word. Let us fix a set of tags
I = {call , ret , loc}. The tagged word Tag(W) of a nested word W = (w, ↪→) over Σ is
obtained by labeling the edges in w with tags indicating their types. Formally, Tag(W)
is a pair (w, η), where η is a map labeling each edge (i, i+1) such that η(i, i+1) equals
call if i is a call, ret if (i + 1) is a return, and loc otherwise. Note that this word is
well-defined because jump-edges represent non-trivial forward leaps.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 5

...

...

...

...

...

call returnlocal

en

en

en

en

ex

ex

exex

rd

rd

rd

rd

rd

wr

wr

wr

wr

wr

wr

tk

tk

tk

tk

∞
∞

end

end

end

end

end

(a) (b)s1

s2

s3

s4

s5

s6

s7

s8

s9

Figure 1. (a) A nested word (b) A nested tree

While modeling a program execution, a tagged word defines the sequence of types
(call, return or local) of actions in this execution. We note that the construction of
Tag(W) requires us to know the jump-edge relation ↪→. More interestingly, the jump-
edges in W are completely captured by the tagged word (w, η) of W , so that we can
reconstruct a nested word from its tagged word. To see why, call a word β ∈ I∗

balanced if it is of the form β := ββ | call .β.ret | loc, and define a relation
↪→′⊆ N × N as: for all i < j − 1, i ↪→′ j iff i is the greatest integer such that the word
η(i, i + 1).η(i + 1, i + 2) . . . η(j − 1, j) is balanced. It is easily verified that ↪→′=↪→.

Let us denote the set of (finite and infinite) nested words over Σ as NW (Σ). A
language of nested words over Σ is a subset of NW (Σ).

2.2. Nested trees

While nested words are suitable for linear-time reasoning, nested trees are necessary
to specify branching requirements. Such a structure is obtained by adding jump-edges
to an infinite tree whose paths encode all possible executions of the program. As for
nested words, jump-edges in nested trees do not cross, and calls and returns are defined
respectively as sources and targets of jump-edges. In addition, since a procedure call
may not return along all possible program paths, a call-node s may have jump-successors
along some, but not all, paths from it. If this is the case, we add a jump-edge from s to a
special node ∞.

Formally, let T = (S, r,→) be an unordered infinite tree with node set S, root r and

edge relation → ⊆ S × S. Let
+

−→ denote the transitive (but not reflexive) closure of the
edge relation, and let a (finite or infinite) path in T from node s1 be a (finite or infinite)
sequence π = s1s2 . . . sn . . . over S, where n ≥ 2 and si → si+1 for all 1 ≤ i.

A nested tree is a directed acyclic graph (T, ↪→), where ↪→ ⊆ T × (T ∪∞) is a set
of jump-edges. A node s such that s ↪→ t or s ↪→ ∞ (similarly t ↪→ s) for some t is a
call (return) node; the remaining nodes are said to be local. The intuition is that if s ↪→ t,
then a call at s returns at t; if s ↪→ ∞, then there exists a path from s along which the
call at s never returns. We note that the sets of call, return and local nodes are disjoint.
The jump-edges must satisfy:

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking6

1. if s ↪→ t, then s
+
−→ t, and we do not have s → t (in other words, jump-edges

represent non-trivial forward jumps);

2. if s ↪→ t and s ↪→ t′, then neither t
+

−→ t′ nor t′
+

−→ t (this captures the intuition
that a call-node has at most one matching return along every path from it);

3. if s ↪→ t and s′ ↪→ t, then s = s′ (every return node has a unique matching call);
4. for every call node s, one of the following holds: (a) on every path from s, there

is a node t such that s ↪→ t, and (b) s ↪→ ∞ (a call either returns along all paths,
or does not);

5. if there is a path π such that for nodes s, t, s′, t′ lying on π we have s
+
−→ s′,

s ↪→ t, and s′ ↪→ t′, then either t
+

−→ s′ or t′
+
−→ t (jump-edges along a path do

not cross);
6. for every pair of call-nodes s, s′ on a path π such that s

+
−→ s′, if there is no node

t on π such that s′ ↪→ t, then a node t′ on π can satisfy s ↪→ t′ only if t′
+
−→ s′

(if a call does not return, neither do the calls pending when it was invoked).

For an alphabet Σ, a Σ-labeled nested tree is a structure T = (T, ↪→, λ), where
(T, ↪→) is a nested tree with node set S, and λ : S → Σ is a node-labeling function. All
nested trees in this paper are Σ-labeled.

Fig. 1-(b) shows a part of the tree unfolding of our example. Note that some of
the maximal paths are finite—these capture terminating executions of the program—and
some are not. Note in particular how a call may return along some paths from it, and yet
not on some others. A path in the nested tree that takes a jump-edge whenever possible
is interpreted as a local path through a procedure.

If s ↪→ t, then s is the jump-predecessor of t and t the jump-successor of s. Edges
from a call node and to a return node are known as call and return edges; the remaining
edges are local. The fact that an edge (s, t) exists and is a call, return or local edge is

denoted by s
call
−→ t, s

ret
−→ t, or s

loc
−→ t. For a nested tree T = (T, ↪→, λ) with edge

set E, the tagged tree of T is the node and edge-labeled tree Tag(T) = (T, λ, η : E →

{call , ret , loc}), where η(s, t) = a iff s
a

−→ t.
A few observations: first, the sets of call, return and local edges define a partition

of the set of tree edges. Second, if s
ret
−→ s1 and s

ret
−→ s2 for distinct s1 and s2, then

s1 and s2 have the same jump-predecessor. Third, the jump-edges in a nested tree are
completely captured by the edge labeling in the corresponding structured tree, so that we
can reconstruct a nested tree T from Tag(T).

Let NT (Σ) be the set of Σ-labeled nested trees. A language of nested trees is a
subset of NT (Σ).

2.3. Nested state machines

Now we define our program abstractions: nested state machines (NSMs). Like push-
down system and recursive state machines [1], NSMs are suitable for precisely modeling
changes to the program stack due to procedure calls and returns. The main difference is
that the semantics of an NSM is defined using nested structures rather than a stack and a
configuration graph.

Let AP be a fixed set of atomic propositions, and let us set Σ = 2AP as an alphabet
of observables. A nested state machine(NSM) is a tupleM=〈V,vin, κ,Δloc,Δcall ,Δret〉,

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 7

where V is a finite set of states, vin ∈ V is the initial state, the map κ : V → Σ la-
bels each state with what is observable at it, and Δloc ⊆ V × V , Δcall ⊆ V × V , and
Δret ⊆ V × V × V are respectively the local, call, and return transition relations.

A transition is said to be from state v if it is of the form (v, v′) or (v, v′, v′′), for

some v′, v′′ ∈ V . If (v, v′) ∈ Δloc for some v, v′ ∈ V , then we write v
loc
−→ v′; if

(v, v′) ∈ Δcall , we write v
call
−→ v′; if (v, v′, v′′) ∈ Δret , we write (v, v′)

ret
−→ v′′.

Intuitively, while modeling a program by an NSM, a transition (v, v′) in Δcall models
a procedure call that pushes the current state on the stack, and a transition (v, v′) in
Δloc models a local action (a move that does not modify the stack). In a return transition
(v, v′, v′′), the states v and v′′ are respectively the current and target states, and v′ is the
state from which the last “unmatched" call-move was made. The intuition is that v′ is on
top of the stack right before the return-move, which pops it off the stack.

Let us now abstract our example program into a nested state machine Mfoo . The
abstraction simply captures control flow in the program, and consequently, has states
v1, v2, v3, v4, and v5 corresponding to lines L1, L2, L3, L4, and L5. We also have a state
v′2 to which control returns after the call at L2 is completed. Now, let us have proposi-
tions rd , wr , tk , en , ex , and end that hold respectively iff the current state represents a
read, write, think statement, procedure call, return point after a call, and return instruc-
tion. More precisely, κ(v1) = {wr}, κ(v2) = {en}, κ(v′2) = {ex}, κ(v3) = {tk},
κ(v4) = {rd}, and κ(v5) = {end} (for easier reading, we will, from now on, abbreviate
singletons such as {rd} just as rd).

The transition relations of Mfoo are given by:

• Δcall = {(v2, v1)}
• Δloc = {(v1, v2), (v1, v3), (v

′
2, v4), (v

′
2, v5), (v3, v4), (v3, v5), (v4, v4), (v4, v5)},

and
• Δret = {(v5, v2, v

′
2)}.

Linear-time semantics The linear-time semantics of a nested state machine M =
〈V, vin , κ, Δloc, Δcall , Δret〉 is given by a language L(M) of traces; this is a lan-
guage of nested words over the alphabet 2AP . First consider the language LV (M) of
nested executions of M, comprising nested words over the alphabet V of states. A
nested word W = (w, ↪→) is in LV (M) iff the tagged word (w, η) of W is such that

w(0) = vin , and for all i ≥ 0, (1) if η(i, i+1) ∈ {call , loc}, then w(i)
η(i,i+1)
−→ w(i+1);

and (2) if η(i, i + 1) = ret , then there is a j such that j ↪→ (i + 1) and we have

(w(i), w(j))
ret
−→ w(i + 1). Now, a trace produced by an execution is the sequence of

observables it corresponds to. Accordingly, the trace language L(M) of M is defined as
{(w′, ↪→) : for some (w, ↪→) ∈ LV (M) and all i ≥ 0, w′(i) = κ(wi)}. For example,
the nested word in Fig. 1-(a) belongs to the trace language of Mfoo .

Branching-time semantics The branching-time semantics of M is defined via a 2AP -
labeled tree T (M), known as the unfolding of M. For branching-time semantics to be
well-defined, an NSM must satisfy an additional condition: every transition from a state
v is of the same type (call, return, or local). The idea is to not allow the same node to be
a call along one path and, say, a return along another. Note that this is the case in NSMs
whose states model statements in programs.

Now consider the V -labeled nested tree T V (M) = (T, ↪→, λ), known as the execu-
tion tree, that is the unique nested tree satisfying the following conditions:

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking8

1. if r is the root of T , then λ(r) = vin ;
2. every node s has precisely one child t for every distinct transition in M from

λ(s);
3. for every pair of nodes s and t, if s

a
−→ t, for a ∈ {call , loc}, in the tagged tree

of this nested tree, then we have λ(s)
a

−→ λ(t) in M;

4. for every s, t, if s
ret
−→ t in the tagged tree, then there is a node t′ such that t′ ↪→ t

and (λ(s), λ(t′))
ret
−→ λ(t) in M.

Note that this definition is possible as we assume transitions from the same state of M
to be of the same type. Now we have T (M) = (T, ↪→, λ′), where λ′(s) = κ(λ(s)) for
all nodes s. For example, the nested tree in Fig. 1-(b) is the unfolding of Mfoo .

3. Specifications

In this section, we define automata and a fixpoint logic on nested words and trees, and
explore their applications to program specification. Automata on nested words are useful
for linear-time model-checking, where the question is: “is the language of nested traces
of the abstraction (an NSM) included in the language of nested words allowed by the
specification?” In the branching-time case, model checking question is: “is the unfolding
of the NSM a member of the set of nested trees allowed by the specification?” Our
hypothesis is these altered views of the model-checking problem are better suited to
software verification.

3.1. Automata on nested words

We start with finite automata on nested words [7,6]. A nested Büchi word automaton
(NWA) over an alphabet Σ is a tuple A = 〈Q, Σ, qin , δloc, δcall , δret , G〉, where Q is a
set of states Q, qin is the initial state, and δloc ⊆ Q × Σ × Q, δcall ⊆ Q × Σ × Q,
and δret ⊆ Q × Q × Σ × Q are the local, call and return transition relations. The Büchi
acceptance condition G ⊆ Q is a set of accepting states. If (q, σ, q′) ∈ δloc for some

q, q′ ∈ Q and σ ∈ Σ, then we write q
loc,σ
−→ q′; if (q, σ, q′) ∈ δcall , we write q

call,σ
−→ q′; if

(q, q′, σ, q′′) ∈ δret , we write (q, q′)
ret,σ
−→ q′′.

The automaton A starts in the initial state, and reads a nested word from left to
right. At a call or local position, the current state is determined by the state and the input
symbol (in case of traces of NSMs, the observable) at the previous position, while at a
return position, the current state can additionally depend on the state of the run just before
processing the symbol at the jump-predecessor. Formally, a run ρ of the automaton A
over a nested word W = (σ1σ2 . . . , ↪→) is an infinite sequence q0, q1, q2, . . . over Q
such that q0 = qin , and:

• for all i ≥ 0, if i is a call position of W , then (qi, σi, qi+1) ∈ δcall ;
• for all i ≥ 0, if i is a local position, then (qi, σi, qi+1) ∈ δloc ;
• for i ≥ 2, if i is a return position with jump-predecessor j, then (qi−1, qj−1,σi, qi)∈

δret .

The automaton A accepts a finite nested word W if it has a run q0, q1, q2, . . . qn over
W such that qn ∈ G. An infinite nested word is accepted if there is a run q0, q1, q2, . . .

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 9

where a state q ∈ G is visited infinitely often. The language L(A) of a nested-word
automaton A is the set of nested words it accepts.

A language L of nested words over Σ is regular if there exists a nested-word au-
tomaton A over Σ such that L = L(A). Observe that if L is a regular language of words
over Σ, then {(w, ↪→) | w ∈ L} is a regular language of nested words. Conversely, if
L is a regular language of nested words, then {w | (w, ↪→) ∈ L for some ↪→} is a
context-free language of words, but need not be regular.

Let us now see an example of how NWAs may be used for specification. Consider
the following property to be tested on our running example: “in every execution of the
program, every occurrence of write(x) is followed (not necessarily immediately) by an
occurrence of read(x).” This property can be expressed by a finite-state, Büchi word
automaton. As before, we have Σ = {wr , rd , en, ex , tk , end}. The automaton S has
states q1 and q2; the initial state is q1. The automaton has transitions q1

wr
−→ q2, q2

wr
−→

q2, q2
rd
−→ q1, and q1

rd
−→ q1 (on all input symbols other that wr and rd , S stays at the

state from which the transition fires). The idea is that at the state q2, S expects to see
a read some time in the future. Now, we have a single Büchi accepting state q1, which
means the automaton cannot get stuck in state q2, thus accepting precisely the set of
traces satisfying our requirement.

However, consider the property: “in every execution of the program, every occur-
rence of write(x) is followed (not necessarily immediately) by an occurrence of read(x)
in the same procedural context (i.e., before control returns from the current context, and
not within the scope of new contexts transitively spawned from this context via calls).” A
finite-state word automaton cannot state this requirement, not being able to reason about
the balanced-parentheses structure of calls and returns. On the other hand, this property
can be expressed simply by a NWA A with states q1, q2 and qe—here, q2 is the state
where A expects to see a read action in the same context at some point in the future, qe

is an error state, and q1 is the state where there is no requirement for the current context.
The initial state is q1. As for transitions:

• we have q1
loc,wr
−→ q2, q1

loc,rd
−→ q1, q2

loc,rd
−→ q1, and q2

loc,wr
−→ q2 (these transitions

are for the same reason as in S);

• we have q1
call,en
−→ q1 and q2

call,en
−→ q1 (as the requirement only relates reads and

writes in the same context, we need to “reset” the state when a new context starts
due to a call);

• for q′ ∈ {q1, q2}, we have (q1, q
′)

ret,end
−→ q′ (suppose we have reached the end

of a context. So long as there is no requirement pending within this context, we
must, on return, restore the state to where it was before the call. Of course, this
transition is only fired in contexts that are not at the top-level.) We also have, for

q′ ∈ {q1, q2}, (q2, q
′)

ret,end
−→ qe (in other words, it is an error to end a context

before fulfilling a pending requirement).

• Also, for q′ ∈ {q1, q2}, we have q′
loc,tk
−→ q′ and q′

loc,ex
−→ q′.

The single Büchi accepting state, as before, is q1.
More “realistic” requirements that may be stated using automata on nested words

include:

• Pre/post-conditions: Consider partial and total correctness requirements based on
pre/post-conditions, which show up in Hoare-Floyd-style program verification as

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking10

well as in modern interface specification languages such JML [11] and SAL [14].
Partial correctness for a procedure A asserts that if precondition Pre is satisfied
when A is called, then if A terminates, postcondition Post holds upon return.
Total correctness, additionally, requires A to terminate. If program executions are
modeled using nested words, these properties are just assertions involving the
current state and jump-successors, and can be easily stated using automata on
nested words.

• Access control: Specifications such as “in all executions of a proggram, a proce-
dure A can access a database only if all the frames on the stack have high privi-
lege” are useful in software security and are partially enforced at runtime in pro-
gramming languages such as Java. Such “stack inspection” properties cannot be
stated using traditional temporal logics and automata on words. It can be shown,
however, that they are easily stated using nested word languages.

• Boundedness: Using nested word languages, we can state requirements such as
“the height of the stack is bounded by k along all executions,” useful to ensure
that there is no stack overflow. Another requirement of this type: “every call in
every program execution eventually returns.”

We will now list a few properties of regular languages of nested words. The details
may be found in the original papers [7,6,5].

• The class of regular languages of nested words is (effectively) closed under union,
intersection, complementation, and projection.

• Language membership, inclusion, and emptiness are decidable.
• Automata on finite nested words can be determinized.
• Automata on finite nested words can be characterized using Myhill-Nerode-style

congruences, and a subclass of these may be reduced to a unique minimum form.
• Automata on finite or infinite nested words are expressively equivalent to monadic

second order logic (MSO) augmented with a binary “jump” predicate capturing
the jump-edge relation in nested words. This generalizes the equivalence of regu-
lar word languages and the logic S1S.

An alternative way to specify linear-time behaviors of nested executions of programs
is to use temporal logics on nested words. First consider the logic CARET [4], which may
be viewed as an extension of LTL on nested words. Like LTL, this logic has formulas
such as ©ϕ (the property ϕ holds at the next time point), �ϕ (ϕ holds at every point in
the present and future), and ♦ϕ (ϕ holds eventually). The formulas are evaluated as LTL
formulas on the word w in a nested word W = (w, ↪→). In addition, CARET defines the
notion of an “abstract successor” in a nested word—the abstract successor of a call posi-
tion is its jump-successor, and that of a return or local position is its successor—and has
formulas such as ©aϕ (the property ϕ holds at the abstract successor) and ♦aϕ (ϕ holds
at some future point in the current context). The full syntax and semantics may be found
in the original reference. For a concrete example, consider the property we specified
earlier using nested word automata. In CARET, this specification is given by a formula
ϕ = �(wr ⇒ ♦ard), which is interpreted as “every write is followed (not necessarily
immediately) by a read in the same context,” and asserted at the initial program state.
So far as model-checking goes, every CARET specification may be compiled into an
equivalent (and, at worst, exponentially larger) Büchi NWA, so that the model-checking
problem for CARET reduces to that for NWAs.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 11

More recently, the linear-time μ-calculus has been extended to nested word mod-
els [13]. This logic has modalities © and ©a, which assert requirements respectively
at the successor and abstract successor of a position, and, in addition, has set-valued
variables x and fixpoint formulas such as μX.ϕ(X). We will not go into the details in
this paper, but recall that a property “a position satisfying rd is reached eventually” can
be stated in the linear-time μ-calculus as ϕ = μX.(rd ∨ ©X) (the notation is stan-
dard and hence not defined in detail). A property “rd is reached eventually in the cur-
rent context” is expressed in the linear-time μ-calculus on nested words by the formula
ϕ = μX.(rd ∨©aX). It turns out that this logic has a number of attractive properties—
for example, it is expressively equivalent to MSO-logic interpreted on nested words, and
collapses to its alternation-free fragment on finite nested words. Like CARET, formulas
in this logic can also be compiled into equivalent NWAs.

3.2. A fixpoint calculus on nested trees

Now we introduce a fixpoint calculus, known as NT-μ, for nested trees [2]. This logic
may be viewed as an analog of the modal μ-calculus for nested trees. Recall that a μ-
calculus formula is interpreted at a state s of a program, or, equivalently, on the full sub-
tree rooted at a node corresponding to s in the program’s tree unfolding. NT-μ is inter-
preted on substructures of nested trees wholly contained within “procedural” contexts;
such a structure models the branching behavior of a program from a state s to each exit
point of its context. Also, to demand different temporal requirements at different exits,
we introduce a coloring of these exits—intuitively, an exit gets color i if it is to satisfy
the i-th requirement.

Formally, let a node t of T be called a matching exit of a node s if there is an s′ such

that s′
+
−→ s and s′ ↪→ t, and there are no s′′, t′′ such that s′

+
−→ s′′

+
−→ s

+
−→ t′′,

and s′′ ↪→ t′′. Intuitively, a matching exit of s is the first “unmatched” return along some
path from s—for instance, in Fig. 1-(a), the node s8 is the single matching exit of the
nodes s5, s6, and s7. Let the set of matching exits of s be denoted by ME (s). For a
non-negative integer k, a summary s in T is a tuple 〈s, U1, U2, . . . , Uk〉, where s is a
node, k ≥ 0, and U1, U2, . . . , Uk ⊆ ME (s) (such a summary is said to be rooted at s).
The set of summaries in a nested tree T is denoted by SummT . Note that such colored
summaries are defined for all s, not just “entry” nodes of procedures.

In addition to being interpreted over summaries, the logic NT-μ, can distinguish
between call, return and local edges in a nested tree via modalities such as 〈call 〉, 〈ret〉,
and 〈loc〉. Also, an NT-μ formula can enforce different “return conditions” at differently
colored returns by passing subformulas as “parameters” to call modalities. Let AP be
a finite set of atomic propositions, Var be a finite set of variables, and R1, R2, . . . be a
countable, ordered set of markers. For p ∈ AP , X ∈ Var , and m ≥ 0, formulas ϕ of
NT-μ are defined by:

ϕ, ψi := p | ¬p | X | 〈ret〉(Ri) | [ret](Ri) | ϕ ∨ ϕ | ϕ ∧ ϕ | μX.ϕ | νX.ϕ |
〈call 〉(ϕ){ψ1, ψ2, ..., ψm} | [call](ϕ){ψ1, ψ2, ..., ψm} | 〈loc〉 ϕ | [loc] ϕ.

Intuitively, the markers Ri in a formula are bound by 〈call〉 and [call] modalities,
and variables X are bound by fixpoint quantifiers μX and νX . The set of free variables
is defined in the usual way. Also, we require our call -formulas to bind all the markers
in their scope—for example, formulas such as ϕ = 〈call 〉(p ∧ 〈ret〉R1){q} ∧ 〈ret〉R1

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking12

(c)(b)(a)

s1

s2

color 1 color 1

color 2
color 2

s

s
′

r1 r2r2

s
′

s

foo

P1

P2

P ′
1

P ′
2

Figure 2. (a) Local modalities (b) Call modalities (c) Matching contexts.

are not permitted. A formula that satisfies this criterion is called closed if it has no free
variables. The arity of a formula ϕ is the maximum m such that ϕ has a subformula
〈call 〉ϕ′{ψ1, . . . , ψm} or [call]ϕ′{ψ1, . . . , ψm}. Also, we define the constants tt and ff

in the standard way.
Like in the μ-calculus, formulas in NT-μ encode sets, in this case sets of summaries.

Also like in the μ-calculus, modalities and boolean and fixed-point operators allow us to
encode computations on these sets.

To understand the semantics of local (e.g. 〈loc〉) modalities in NT-μ, consider a node
s in a nested tree with a local edge to a node s′. Note that ME (s′) ⊆ ME (s), and
consider two summaries s and s

′ rooted respectively at s and s′. Now look at Fig. 2-a.
Note that the substructure Ts′ captured by the summary s

′ “hangs”’ from the substructure
for s by a local edge; additionally, (1) every leaf of Ts′ is a leaf of Ts, and (2) such a leaf
gets the same color in s and s

′. A formula 〈loc〉ϕ asserted at s requires some s
′ as above

to satisfy ϕ.
Succession along call edges is more complex, because along such an edge, a new

context gets defined. Suppose we have s
call
−→ s′, and let there be no other edges from

s. Consider the summary s = 〈s, {s1}, {s2, s3}〉, and suppose we want to assert a 2-
parameter call formula 〈call 〉ϕ′{p1, p2} at s. This requires us to consider a 2-colored
summary of the context starting at s′, where matching returns of s′ satisfying p1 and p2

are respectively marked by colors 1 and 2. Our formula requires that s
′ satisfies ϕ′. In

general, we could have formulas of the form ϕ = 〈call 〉ϕ′{ψ1, ψ2, . . . , ψk}, where ψi

are arbitrary NT-μ formulas. We find that the above requires a split of the nested tree Ts

for summary s in the way shown in Fig. 2-b. The root of this tree must have a call -edge
to the root of the tree for s

′, which must satisfy ϕ. At each leaf of Ts′ colored i, we must
be able to concatenate a summary tree Ts′′ satisfying ψi such that (1) every leaf in Ts′′

is a leaf of Ts, and (2) each such leaf gets the same set of colors in Ts and Ts′′ .
The return modalities are used to assert that we return at a point colored i. As the

binding of these colors to requirements gets fixed at a context calling the current context,
the ret -modalities let us relate a path in the latter with the continuation of a path in the
former. For instance, in Fig. 2-c, where the rectangle abstracts the part of a program
unfolding within the body of a procedure foo, the marking of return points s1 and s2 by
colors 1 and 2 is visible inside foo as well as at the call site of foo. This lets us match
paths P1 and P2 inside foo respectively with paths P ′

1 and P ′
2 in the calling procedure.

This lets NT-μ capture the pushdown structure of branching-time runs of a procedural
program.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 13

Let us now describe the semantics of NT-μ formally. An NT-μ formula ϕ is inter-
preted in an environment that interprets variables in Free(ϕ) as sets of summaries in a
nested tree T . Formally, an environment is a map E : Free(ϕ) → 2SummT

. Let us write
[[ϕ]]TE to denote the set of summaries in T satisfying ϕ in environment E (usually T

will be understood from the context, and we will simply write [[ϕ]]E). For a summary
s = 〈s, U1, U2, . . . , Uk〉, where s ∈ S and Ui ⊆ ME(s) for all i, s satisfies ϕ, i.e.,
s ∈ [[ϕ]]E , iff one of the following holds:

• ϕ = p ∈ AP and p ∈ λ(s)
• ϕ = ¬p for some p ∈ AP , and p /∈ λ(s)
• ϕ = X , and s ∈ E(X)
• ϕ = ϕ1 ∨ ϕ2 such that s ∈ [[ϕ1]]E or s ∈ [[ϕ2]]E
• ϕ = ϕ1 ∧ ϕ2 such that s ∈ [[ϕ1]]E and s ∈ [[ϕ2]]E

• ϕ = 〈call 〉ϕ′{ψ1, ψ2, ..., ψm}, and there is a t ∈ S such that (1) s
call
−→ t, and (2)

the summary t = 〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t) ∩
{s′ : 〈s′, U1 ∩ ME (s′), . . . , Uk ∩ ME (s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

• ϕ = [call] ϕ′{ψ1, ψ2, ..., ψm}, and for all t ∈ S such that s
call
−→ t, the summary

t = 〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t) ∩ {s′ : 〈s′, U1 ∩
ME (s′), . . . , Uk ∩ ME(s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

• ϕ = 〈loc〉 ϕ′, and there is a t ∈ S such that s
loc
−→ t and the summary t =

〈t, V1, V2, . . . , Vk〉, where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E

• ϕ = [loc] ϕ′, and for all t ∈ S such that s
loc
−→ t, the summary t =

〈t, V1, V2, . . . , Vk〉, where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E

• ϕ = 〈ret〉 Ri, and there is a t ∈ S such that s
ret
−→ t and t ∈ Ui

• ϕ = [ret] Ri, and for all t ∈ S such that s
ret
−→ t, we have t ∈ Ui

• ϕ = μX.ϕ′, and s ∈ S for all S ⊆ SummT satisfying [[ϕ′]]E[X:=S] ⊆ S

• ϕ = νX.ϕ′, and there is some S ⊆ SummT such that (1) S ⊆ [[ϕ′]]E[X:=S] and
(2) s ∈ S.

Here E [X := S] is the environment E ′ such that (1) E ′(X) = S, and (2) E ′(Y) = E(Y)
for all variables Y �= X . We say a node s satisfies a formula ϕ if the 0-colored summary
〈s〉 satisfies ϕ. A nested tree T rooted at s0 is said satisfy ϕ if s0 satisfies ϕ (we denote
this by T |= ϕ). The language of ϕ, denoted by L(ϕ), is the set of nested trees satisfying
ϕ.

While formulas such as ¬ϕ (negation of ϕ) are not directly given by the syntax of
NT-μ, we can show that closed formulas of NT-μ are closed under negation. Also, note
that the semantics of closed NT-μ formulas is independent of the environment. Also,
the semantics of such a formula ϕ does not depend on current color assignments; in
other words, a summary s = 〈s, U1, . . . , Uk〉 satisfies a closed formula iff 〈s〉 satisfies ϕ.
Consequently, when ϕ is closed, we can infer that “node s satisfies ϕ” from “summary
s satisfies ϕ.” Finally, every NT-μ formula ϕ(X) with a free variable X can be viewed
as a map ϕ(X) : 2SummT

→ 2SummT

defined as follows: for all environments E and all
summary sets S ⊆ SummT , ϕ(X)(S) = [[ϕ(X)]]E[X:=S]. It is not hard to verify that
this map is monotonic, and that therefore, by the Tarski-Knaster theorem, its least and
greatest fixed points exist. The formulas μX.ϕ(X) and νX.ϕ(X) respectively evaluate
to these two sets. This means the set of summaries satisfying μX.ϕ(X), for instance, lies
in the sequence of summary sets ∅, ϕ(∅), ϕ(ϕ(∅)),

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking14

Just as the μ-calculus can encode linear-time logics such as LTL as well as
branching-time logics such as CTL, NT-μ can capture linear and branching properties on
nested trees. Let us now specify our example program using a couple of requirements.
Consider the simple property Reach asserted at the initial state of the program: “the in-
struction read(x) is reachable from the current node.” Let us continue to use the atomic
propositions rd , wr , etc. that we have been using through the paper. This property may
be stated in the μ-calculus as ϕReach = (μX.rd ∨ 〈〉X) (the notation is standard—for
instance, 〈〉ϕ holds at a node iff ϕ holds at a node reached by some edge). However, let
us try to define it using NT-μ.

First consider a nontrivial witness π for Reach that starts with an edge s
call
−→ s′.

There are two possibilities: (1) a node satisfying rd is reached in the new context or a
context called transitively from it, and (2) a matching return s′′ of s′ is reached, and at
s′′, Reach is once again satisfied.

To deal with case (2), we mark a matching return that leads to rd by color 1. Let
X store the set of summaries of form 〈s′′〉, where s′′ satisfies Reach . Then we want the
summary 〈s,ME (s)〉 to satisfy 〈call 〉ϕ′{X}, where ϕ′ states that s′ can reach one of its
matching returns of color 1. In case (1), there is no return requirement (we do not need
the original call to return), and we simply assert 〈call〉X{}.

Before we get to ϕ′, note that the formula 〈loc〉X captures the case when π starts
with a local transition. Combining the two cases, the formula we want is ϕReach =
μX.(rd ∨ 〈loc〉X ∨ 〈call 〉X{} ∨ 〈call 〉ϕ′{X}).

Now observe that ϕ′ also expresses reachability, except (1) its target needs to satisfy
〈ret〉R1, and (2) this target needs to lie in the same procedural context as s′. It is easy to
verify that: ϕ′ = μY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call 〉Y {Y }).

Let us now suppose we are interested in local reachability: “a node satisfying rd

is reached in the current context.” This property cannot be expressed by finite-state au-
tomata on words or trees, and hence cannot be captured by the μ-calculus. However,
we note that the property ϕ′ is very similar in spirit to this property. While we can-
not merely substitute rd for 〈ret〉R1 in ϕ′ to express local reachability of rd , a for-
mula for this property is easily obtained by restricting the formula for reachability:
ϕLocalReach = μX.(rd ∨ 〈loc〉X ∨ 〈call 〉ϕ′{X}).

Note that the highlight of this approach to specification is the way we split a program
unfolding along procedure boundaries, specify these “pieces” modularly, and plug the
summary specifications so obtained into their call sites. This “interprocedural” reasoning
distinguishes it from logics such as the μ-calculus that would reason only about global
runs of the program.

Also, there is a significant difference in the way fixpoints are computed in NT-μ and
the μ-calculus. Consider the fixpoint computation for the μ-calculus formula μX.(rd ∨
〈〉X) that expresses reachability of a node satisfying rd . The semantics of this formula
is given by a set SX of nodes which is computed iteratively. At the end of the i-th step,
SX comprises nodes that have a path with at most (i− 1) transitions to a node satisfying
rd . Contrast this with the evaluation of the outer fixpoint in the NT-μ formula ϕReach .
Assume that ϕ′ (intuitively, the set of “jumps” from calls to returns”) has already been
evaluated, and consider the set SX of summaries for ϕReach . At the end of the i-th phase,
this set contains all s = 〈s〉 such that s has a path consisting of (i − 1) call and loc-
transitions to a node satisfying rd . However, because of the subformula 〈call 〉ϕ′{X}, it
also includes all s where s reaches rd via a path of at most (i − 1) local and “jump”

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 15

transitions. Note how return edges are considered only as part of summaries plugged into
the computation.

More details about specification using NT-μ may be found in the original refer-
ence [2]. Here we list some other requirements expressible in NT-μ:

• Any closed μ-calculus formula, as well as any property expressible in CARET or
automata on nested words, may be expressed in NT-μ. Consequently, NT-μ can
express pre/post-conditions on procedures, access control requirements involving
the stack, and requirements on the height of the stack, as well as traditional linear
and branching-time requirements.

• Interprocedural dataflow requirements: It is well-known that many classic
dataflow analysis problems, such as determining whether an expression is very
busy, can be reduced to the problem of finding the set of program points where
a certain μ-calculus property holds [20]. However, the μ-calculus is unable to
state that an expression is very busy at a program point if it has local as well as
global variables and we are interested in interprocedural paths—the reason is that
dataflow involving global variables follows a program execution through proce-
dure calls, while dataflow for local variables “jumps” across procedure calls, and
the μ-calculus cannot track them both at the same time. On the other hand, the
ability of NT-μ to assert requirements along jump-edges as well as tree edges lets
it express such requirements.

We end this discussion by listing some known mathematical properties of NT-μ.

• Generalizing the notion of bisimulation on trees, we may define bisimulation re-
lations on nested trees [2]. Then two nested trees satisfy the same set of closed
NT-μ formulas iff they are bisimilar.

• The satisfiability problem for NT-μ is undecidable [2].
• Just as the modal μ-calculus is expressively equivalent to alternating parity tree

automata, NT-μ has an automata-theoretic characterization. Generalizing au-
tomata on nested words, we can define automata on nested trees; generalizing fur-
ther, we can define alternating parity automata on nested trees. It turns out that
every closed formula of NT-μ has a polynomial translation to such an automaton
accepting the same set of nested trees, and vice versa [3].

4. Model-checking

In this section, we show how to model-check specifications on nested structures gener-
ated by NSMs. Our chosen specification language in this section is the logic NT-μ—the
reason is that it can express linear as well as branching-time temporal specifications, and
lends itself to iterative, symbolic model-checking. Appealingly, this algorithm follows
directly from the operational semantics of the logic and has the same complexity (EXP-
TIME) as the best algorithms for model-checking CTL or the alternation-free μ-calculus
over similar abstractions.

For a specification given by a (closed) NT-μ formula ϕ and an NSM M abstracting
a program, the model-checking problem is to determine if T (M) satisfies ϕ. It is also
useful to define the model-checking problem for NWAs: here, a problem instance com-
prises an NSM M abstracting a program, and an NWA A¬ accepting the nested words

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking16

that model program executions that are not acceptable. The model-checking problem in
this case is whether any of the possible program traces are “bad”, i.e., if L(M)∩L(A¬)
is non-empty. Of course, instead of phrasing the problem this way, we could have also
let the instance consist of an NSM and a specification automaton A′, in which case we
would have to check if L(M) ∩ L(A′) is non-empty. However, complementation of A′,
while possible, is costly, and this approach would not be practical.

Now, intersection of the languages of two NWAs is done by a product construc-
tion [6]. The model-checking problem thus boils down to checking the emptiness of a
Büchi NWA A. Let us now view A as an NSM where a state is marked by a proposition
g iff it is a Büchi accepting state. An NWA on infinite nested words is then non-empty iff
there are infinitely many occurrences of g along some path in the unfolding of A, a re-
quirement can be expressed as a fixpoint formula in the μ-calculus, and hence NT-μ. To
determine that an NWA on finite nested words is non-empty, we merely need to ensure
that a node satisfying g is reachable in this unfolding—an NT-μ formula for this property
is as in the example in Sec. 3.2.

We will now show how to do NT-μ model-checking for an NSM M with vertex
set V and an NT-μ formula ϕ. Consider a node s in the nested tree T V (M). The set
ME (s), as well as the return-formulas that hold at a summary s rooted at s, depend on
states at call nodes on the path from the root to s. However, we observe that the history
of call-nodes up to s is relevant to a formula only because they may be consulted by
return-nodes in the future, and no formula interpreted at s can probe “beyond” the nodes
in ME (s). Thus, so far as satisfaction of a formula goes, we are only interested in the
last “pending” call-node; in fact, the state of the automaton at this node is all that we
need to record about the past.

Let us now try to formalize this intuition. First we define the unmatched call-
ancestor Anc(s) of a node s in a nested tree T . Consider the tagged tree of T , and recall
the definition of a balanced word over tags (given in Sec. 2.1). If t = Anc(s), then we

require that t
call
−→ t′ for some node t′ such that in the tagged tree of T , there is a path

from t′ to s the edge labels along which concatenate to form a balanced word. Note that
every node in a nested tree has at most one unmatched call-ancestor. If a node s does not
have such an ancestor, we set Anc(s) =⊥.

Now consider two k-colored summaries s = 〈s, U1, U2, . . . , Uk〉 and s
′ =

〈s′, U ′
1, U

′
2, . . . , U

′
k〉 in the unfolding T V (M) = (T, ↪→, λ) of the NSM M, and let

Anc(s) = t and Anc(s′) = t′, where t, t′ can be nodes or the symbol ⊥ (note that if we
have Anc(s) =⊥, then ME (s) = ∅, so that Ui = ∅ for all i).

Now we say s and s
′ are NSM-equivalent (written as s ≡ s

′) if:

• λ(s) = λ(s′);
• either t = t′ =⊥, or λ(t) = λ(t′);
• for each 1 ≤ i ≤ k, there is a bijection Ωi : Ui → U ′

i such that for all u ∈ Ui, we
have λ(u) = λ(Ωi(u)).

It is easily seen that the relation ≡ is an equivalence. We can also prove that any two
NSM-equivalent summaries s and s

′ satisfy the same set of closed NT-μ formulas.
Now note that the number of equivalence classes that ≡ induces on the set of

summaries is bounded! Each such equivalence class may be represented by a tuple
〈v, v′, V1, . . . , Vk〉, where v ∈ V , v′ ∈ V ∪ {⊥}, and Vi ⊆ V for all i—for the class
of the summary s above, for instance, we have λ(s) = v and λ(Ui) = Vi; we also have

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 17

λ(t) = v′ in case t �=⊥, and v′ =⊥ otherwise. Let us call such a tuple a bounded sum-
mary. The idea behind the model-checking algorithm of NT-μ is that for any formula
ϕ, we can maintain, symbolically, the set of bounded summaries that satisfy it. Once
this set is computed, we can compute the set of bounded summaries for formulas de-
fined inductively in terms of ϕ. This computation follows directly from the semantics
of the formula; for instance, the set for the formula 〈loc〉ϕ contains all bounded sum-

maries 〈v, v′, V1, . . . , Vk〉 such that for some v′′ ∈ V , we have v
loc
−→ v′′, and, letting V ′′

i

comprise the elements of Vi that are reachable from v′′, 〈v′′, v′, V ′′
1 , . . . , V ′′

k 〉 satisfies ϕ.
Let us now define bounded summaries formally. Consider any state u in an NSM

M with state set V . A state u′ is said to be the unmatched call-ancestor state of state
u if there is a node s labeled u in T V (M) such that u′ is the label of the unmatched
call-ancestor of s (we have a predicate AncV (u′, u) that holds iff this is true). Note that
a state may have multiple unmatched call-ancestor states. If there is a node s labeled u
in T V (M) such that Anc(s) =⊥, we set AncV (⊥, u).

A state v is a matching exit state for a pair (u, u′), where AncV (u′, u), if there are
nodes s, s′, t in T V (M) such that t ∈ ME (s), s′ is the unmatched call-ancestor of s,
and labels of s, s′, and t are u, u′, and v respectively (a pair (u,⊥) has no matching exit
state).

The modeling intuition is that from a program state modeled by NSM state u and a
stack with a single frame modeled by the state u′, control may reach a u′′ in the same

context, and then return at the state v via a transition (u′′, u′)
ret
−→ v. Using well-known

techniques for pushdown models [1], we can compute, given a state u, the set of u′ such
that AncV (u′, u), and for every member u′ of the latter, the set MES (u, u′) of matching
exit states for (u, u′), in time polynomial in the size of M.

Now, let n be the arity of the formula ϕ in whose model-checking problem we
are interested. A bounded summary is a tuple 〈u, u′, V1, . . . , Vk〉, where 0 ≤ k ≤ n,
AncV (u′, u) and for all i, we have Vi ⊆ MES (u, u′). The set of all bounded summaries
in M is denoted by BS .

Let ESL : Free(ϕ) → 2BS be an environment mapping free variables in ϕ to
sets of bounded summaries, and let E∅ denote the empty environment. We define a map
Eval (ϕ, ESL) assigning a set of bounded summaries to a NT-μ formula ϕ:

• If ϕ = p, for p ∈ AP , then Eval (ϕ, ESL) consists of all bounded summaries
〈u, u′, V1, . . . , Vk〉 such that p ∈ κ(u) and k ≤ n.

• If ϕ = ¬p, for p ∈ AP , then Eval (ϕ, ESL) consists of all bounded summaries
〈u, u′, V1, V2, . . . , Vk〉 such that p /∈ κ(u) and k ≤ n.

• If ϕ = X , for X ∈ Var , then Eval (ϕ, ESL) = ESL(X).
• If ϕ = ϕ1 ∨ ϕ2 then Eval(ϕ, ESL) = Eval (ϕ1, ESL) ∪ Eval (ϕ2, ESL).
• If ϕ = ϕ1 ∧ ϕ2 then Eval(ϕ, ESL) = Eval (ϕ1, ESL) ∩ Eval (ϕ2, ESL).
• If ϕ = 〈call 〉 ϕ′{ψ1, ..., ψm}, then Eval (ϕ, ESL) consists of all bounded sum-

maries 〈u, u′, V1, . . . , Vk〉 such that for some transition u
call
−→ u′′ of M, we

have a bounded summary 〈u′′, u′′, V ′
1 , V ′

2 , ..., V ′
m〉 ∈ Eval (ϕ′, ESL), and for all

v ∈ V ′
i , where i = 1, . . . , m, we have 〈v, u′, V ′′

1 , . . . , V ′′
k 〉 ∈ Eval (ψi, ESL),

where V ′′
j = Vj ∩ MES (v, u′) for all j ≤ k.

• If ϕ = [call] ϕ′{ψ1, ..., ψm}, then Eval (ϕ, ESL) consists of all bounded sum-

maries 〈u, u′, V1, . . . , Vk〉 such that for all u′′ such that there is a transition u
call
−→

u′′ in M, we have a bounded summary 〈u′′, u′′, V ′
1 , V ′

2 , ..., V ′
m〉 ∈ Eval (ϕ′, ESL),

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking18

and for all v ∈ V ′
i , where i = 1, . . . , m, we have 〈v, u′, V ′′

1 , . . . , V ′′
k 〉 ∈

Eval (ψi, ESL), where V ′′
j = Vj ∩ MES (v, u′) for all j ≤ k.

• If ϕ = 〈loc〉 ϕ′, then Eval (ϕ, ESL) consists of all bounded summaries

〈u, u′, V1 . . . , Vk〉 such that for some v such that there is a transition u
loc
−→ v, we

have 〈v, u′, V1 ∩MES (v, u′), . . . , Vk ∩MES (v, u′)〉 ∈ Eval (ϕ′, ESL).
• If ϕ = 〈loc〉 ϕ′, then Eval (ϕ, ESL) consists of all bounded summaries

〈u, u′, V1 . . . , Vk〉 such that for some v such that there is a transition u
loc
−→ v, we

have 〈v, u′, V1 ∩MES (v, u′), . . . , Vk ∩MES (v, u′)〉 ∈ Eval (ϕ′, ESL).
• If ϕ = 〈ret〉 Ri, then Eval (ϕ, ESL) consists of all bounded summaries

〈u, u′, V1, . . . , Vk〉 such that (1) Vi = {u′′}, (2) M has a transition (u, u′)
ret
−→

u′′, and (3) for all j �= i, Vj = ∅.
• If ϕ = 〈ret〉 Ri, then Eval (ϕ, ESL) consists of all bounded summaries

〈u, u′, V1, . . . , Vk〉 such that for all transitions of the form (u, u′)
ret
−→ u′′, we

have (1) Vi = {u′′}, and (2) for all j �= i, Vj = ∅.
• If ϕ = μX.ϕ′, then Eval (ϕ, ESL) = FixPoint (X, ϕ′, ESL[X := ∅]).
• If ϕ = νX.ϕ′, then Eval(ϕ, ESL) = FixPoint (X, ϕ′, ESL [X := BS]).

Here FixPoint (X, ϕ, ESL) is a fixpoint computation function that uses the formula ϕ as
a monotone map between subsets of BS , and iterates over variable X . This computation
is as in Algorithm 1:

Algorithm 1 Calculate FixPoint (X, ϕ, ESL)

X ′ ← Eval (ϕ, ESL)
if X ′ = ESL(X) then

return X ′

else
return FixPoint (X, ϕ′, ESL[X := X ′])

end if

Now we can easily show that for an NSM M with initial state vin and a closed NT-μ
formula ϕ, T (M) satisfies ϕ if and only if 〈vin〉 ∈ Eval (ϕ, E∅), and that Eval (ϕ, E∅) is
inductively computable. To understand this more concretely, let us see how this model-
checking algorithm runs on our running example. Consider the NSM abstraction Mfoo

in Sec. 2.3, and suppose we want to check if a write action is locally reachable from the
initial state. The NT-μ property specifying this requirement is ϕ = μX.(wr ∨ 〈loc〉X ∨
〈call 〉ϕ′{X}), where ϕ′ = μY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call 〉Y {Y }).

We show how to compute the set of bounded summaries satisfying ϕ′—the
computation for ϕ is very similar. After the first iteration of the fixpoint com-
putation that builds this set, we obtain the set S1 = {{〈v5, v2, {v′2}〉} (the set
of summaries satisfying 〈ret〉R1). After the second step, we obtain S2 = S1 ∪
{〈v′2, v2, {v′2}〉, 〈v3, v2, {v′2}〉, 〈v4, v2, {v′2}〉}, and the next set computed is S3 =
S2 ∪ {〈v1, v2, {v′2}〉}. Note that in these two steps, we only use local edges in the NSM.
Now, however, we have found a bounded summary starting at the “entry state” of the
procedure foo, which may be plugged into the recursive call to foo. More precisely, we
have (v2, v1) ∈ Δcall , 〈v1, v2, {v′2}〉 ∈ S3, and 〈v′2, v2, {v′2}〉 ∈ S3, so that we may now
construct S4 = S3 ∪ 〈v2, v2, {v

′
2}〉. This ends the fixpoint computation, so that S4 is the

set of summaries satisfying ϕ′.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 19

Let us now analyze the complexity of this algorithm. Let NV be the number of
states in M, and let n be the arity of the formula in question. Then the total number of
bounded summaries in M that we need to consider is bounded by N = N2

V 2NV n. Let us
now assume that union or intersection of two sets of summaries, as well as membership
queries on such sets, take linear time. It is easy to see that the time needed to evaluate a
non-fixpoint formula ϕ of arity n ≤ |ϕ| is bounded by O(N2|ϕ|Nv) (the most expensive
modality is 〈call 〉ϕ′{ψ1, . . . , ψn}, where we have to match an “inner” summary satisfy-
ing ϕ′ as well as n “outer” summaries satisfying the ψi-s). For a fixpoint formula ϕ with
one fixpoint variable, we may need N such evaluations, so that the total time required
to evaluate Eval (ϕ, E∅) is O(N3|ϕ|NV). For a formula ϕ of alternation depth d, this
evaluation takes time O(N3dNd

V |ϕ|), i.e., exponential in the sizes of M as well as ϕ.
It is known that model-checking alternating reachability specifications on a push-

down model is EXPTIME-hard [24]. It is not hard to generate a NT-μ formula ϕ from
a μ-calculus formula f expressing such a property such that (1) the size of ϕ is lin-
ear in the size of f , and (2) M satisfies ϕ if and only if M satisfies f . It follows that
model-checking a closed NT-μ formula ϕ on an NSM M is EXPTIME-hard. Combin-
ing, we conclude that model-checking a NT-μ formula ϕ on an NSM M is EXPTIME-
complete. Better bounds may be obtained if the formula has a certain restricted form.
For instance, it can be shown that for linear time (Büchi or reachability) requirements,
model-checking takes time polynomial in the number of states of M. The reason is that
in this case, it suffices to only consider bounded summaries of the form 〈v, v′, {v′′}〉,
which are polynomial in number. The fixpoint computation stays the same.

Note that our decision procedure is very different from known methods for
branching-time model-checking of pushdown models [24,12]. The latter are not really
implementable; our algorithm, being symbolic in nature, seems to be a step in the direc-
tion of practicality. An open question here is how to represent sets of bounded summaries
symbolically. Also, note that our algorithm directly implements the operational seman-
tics of NT-μ formulas over bounded summaries. In this regard NT-μ resembles the modal
μ-calculus, whose formulas encode fixpoint computations over sets; to model-check μ-
calculus formulas, we merely need to perform these computations. Unsurprisingly, our
procedure is very similar to classical symbolic model-checking for the μ-calculus.

References

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis of recursive
state machines. ACM Transactions on Programming Languages and Systems, 27(4):786–818, 2005.

[2] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global program flows. In
Proceedings of the 33rd Annual ACM Symposium on Principles of Programming Languages, 2006.

[3] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In Computer-Aided Verification,
CAV’06, 2006.

[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns. In TACAS’04:
Tenth International Conference on Tools and Algorithms for the Construction and Analysis of Software,
LNCS 2988, pages 467–481. Springer, 2004.

[5] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly pushdown languages.
In Automata, Languages and Programming: Proceedings of the 32nd ICALP, LNCS 3580, pages 1102–
1114. Springer, 2005.

[6] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th ACM Symposium
on Theory of Computing, pages 202–211, 2004.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking20

[7] R. Alur and P. Madhusudan. Adding nesting structure to words. In Developments in Language Theory,
2006.

[8] T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate abstraction of C pro-
grams. In SIGPLAN Conference on Programming Language Design and Implementation, pages 203–
213, 2001.

[9] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN 2000
Workshop on Model Checking of Software, LNCS 1885, pages 113–130. Springer, 2000.

[10] T. Ball and S. Rajamani. The SLAM toolkit. In Computer Aided Verification, 13th International Con-
ference, 2001.

[11] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, R. Leino, and E. Poll. An overview of
JML tools and applications. In Proceedings of the 8th International Workshop on Formal Methods for
Industrial Critical Systems, pages 75–89, 2003.

[12] O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite sequential processes.
Theoretical Computer Science, 221:251–270, 1999.

[13] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques
and applications. Draft, Available at http://www.grappa.univ-lille3.fr/tata/, 2002.

[14] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for buffer overflows in the large. In ICSE,
pages 232–241, 2006.

[15] T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer. Temporal-safety proofs
for systems code. In CAV 02: Proc. of 14th Conf. on Computer Aided Verification, LNCS 2404, pages
526–538. Springer, 2002.

[16] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

[17] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312–360, 2000.

[18] T. Reps. Program analysis via graph reachability. Information and Software Technology, 40(11-12):701–
726, 1998.

[19] T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In
Proceedings of the ACM Symposium on Principles of Programming Languages, pages 49–61, 1995.

[20] D.A. Schmidt. Data flow analysis is model checking of abstract interpretations. In Proceedings of the
25th Annual ACM Symposium on Principles of Programming Languages, pages 68–78, 1998.

[21] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis, chapter 7, pages 189–
234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[22] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Pro-
ceedings of the First IEEE Symposium on Logic in Computer Science, pages 332–344, 1986.

[23] D. S. Wallach and E. W. Felten. Understanding Java stack inspection. In IEEE Symp. on Security and
Privacy, pages 52–63, 1998.

[24] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation,
164(2):234–263, 2001.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 21

Specifying, Relating and Composing
Object Oriented Interfaces, Components

and Architectures 1

Manfred BROY

Institut für Informatik, Technische Universität München
D-80290 München Germany, broy@in.tum.de
http://wwwbroy.informatik.tu-muenchen.de

Abstract. We introduce an abstract theory for systems, components, composition,
architectures, interfaces, and compatibility. We apply this theory to object orienta-
tion and work out an instance of that theory that covers these notions in terms of a
formal model of objects, classes, components, and architectures as well as of inter-
faces of classes and components and their specification. We define and analyze, in
particular, interfaces for object oriented software systems and their architectures.
We deal with "design by contract" as well as "specification by contract" and ana-
lyze their limitations. We show how to specify these interfaces by logical formulas
in the style of specification by contract, by state machines and also by interaction
diagrams. We treat composition given a formal definition of class composition and
analyze semantic complications. We discuss, in particular, how we can extend con-
cepts from object orientation towards components and more sophisticated ways to
handle interfaces and hierarchical architectures. Our approach is based on the con-
cept of states, state assertions, and state machines. A pragmatic goal is to explore
simple and tractable ways to describe interfaces.

1. Motivation

Software development is today, without any doubts, one of the most difficult and signifi-
cant tasks in the engineering of complex systems. Modern software systems typically are
deployed and distributed on large networks; they are dynamic, and accessed concurrently
via a couple of independent user interfaces. They are based on software infrastructures
such as operating systems and middleware, which offers the communication services of
object request brokers.

To master complexity in the development process large software systems are typ-
ically built in terms of architectures in a modular fashion and hierarchically structured
into components. These components are grouped together into software architectures.
These ideas of structuring software go back to "structured programming" according to
Dijkstra, Hoare, Dahl, Wirth, and, in particular, to Parnas (see [16]). We apply their ideas
to object oriented systems. We start our discussion in terms of the idea of assertions and

1This work was done in cooperation with and was partially sponsored by sd&m AG.

Software System Reliability and Security
M. Broy et al. (Eds.)

IOS Press, 2007
© 2007 IOS Press. All rights reserved.

22

"design by contract" to specify methods. We then show shortcomings and limitations of
design by contract specifications and explore ways to overcome those.

Basically, we treat the following basic concepts to specify the behaviour of classes
and objects following the idea of interfaces:

• Predicates on the interaction between the objects, classes, and components in
terms of streams of invocations and return messages

∗ Message sequence charts (interaction charts)

• State based specifications

∗ Pre/post assertion specifications
∗ State machines

In the following we discuss these approaches, their advantages as well as their limita-
tions. We underline and illustrate our discussions by characteristic examples.

In this paper we try to develop a formal approach to modular interface specification
of classes and components and their composition. We deal with the following issues and
concepts

• methods and their specification by contract
• classes (with simple "one-way" export interfaces) and their specification by

∗ contract
∗ state machines
∗ stream processing functions

• a modular view of classes taking also into account methods of classes that are
used (in forwarded method invocations) leading to import/export interfaces.

This modular view is badly needed when trying to compose classes to large more com-
plex systems. The architectural decomposition and the systematic integration needs in-
terface specifications.

We introduce and discuss the concept of components, which are generalizations of
classes that have several export/import interfaces. Our basic ideas read as follows:

• A basic class is a simple form of a component with only one export interface.
• A generalization yields families of classes with interfaces with export and import

parts.
• A component is a generalization of a class; it features several interfaces with

export and import parts.
• The composition of components is realized by matching their export/import inter-

faces.
• Export/import interfaces are mandatory to deal with composition of components.
• Export/import interfaces introduce a number of severe complications

∗ Simple pre/post specifications of method calls do no longer work. Method calls
are carried out by a sequence of forwarded calls and returns, in general.

∗ We have to make call stacks explicit to handle return messages of forwarded
calls effectively.

• In the composition of components that are represented by state machines we ob-
tain state machines that have internal state transitions.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 23

In the following we discuss all these problems, concepts, and demonstrate all the men-
tioned complications and obstacles by examples in detail and show solutions. Through-
out the paper we do not treat inheritance, at all.

2. Interfaces and Compatibility: A Theory of Substitutability, Modularity, and
Observability

In this section we fix the essential notions of abstraction, interface and architecture. We
describe the essentials of a basic theory (see also [6]).

2.1. Syntactic Framework

We assume some syntax to describe components and architectures. This means that we
have a syntactic notion of components. Let LC be the formal language of components.
Every syntactic element c ∈ LC represents a component. For our purposes, it does not
matter whether we describe components by logics (as in [3]), graphical languages (like
UML) or by textual languages (like programming languages such as Java or C# or by
architecture description languages).

In addition, we assume a syntactic composition operator. It is a partial operation on
components that allows us to compose two components:

⊗: LC × LC → LC written in infix notation

Here "partial" means that not for every pair c1, c2 ∈ LC of components the operation
yields a well-defined result. Only if two components c1, c2 fit together with respect to
their syntactic properties (their "syntactic interfaces" given by the types of their shared
variables, their messages or method calls) their composition is meaningful. For every
pair c1, c2 ∈ LC of components, c1 ⊗ c2 is called composed component, if for c1 and c2
their composition is defined.

In order to deal with the partiality of composition we assume a relation

�:℘(LC) →

�(C) holds for a set of components C ⊆ LC if their composition is well-defined. So
if and only if �({c1, c2}) holds for components c1, c2 ∈ LC (for simplicity we ignore
here the case c1 = c2 and assume that c1 �= c2 holds) we get that c1 ⊗ c2 yields a
well-defined result (we assume that c ⊗ c is not well-defined; in fact, this is not a real
restriction, since we may assume that all components have at least different names).

For finite sets of components {c1, ..., ck} ⊆ LC with �({c1, ..., ck}) we define
composition as follows

∏
{c1, ..., ck} = c1 ⊗ ... ⊗ ck

This notation is justified by assuming that the operator ⊗ is commutative and associative.
Whenever for a set of components C ⊆ LC the proposition �(C) holds, the term

∏
C

is called an architecture with components from C.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces24

Using the operation ⊗ we get a hierarchical concept of components – composing
two components yields a component, again. In fact, every architecture represents again
a component. A more restricted concept is obtained, if

∏
C is not seen as a component

again. Then hierarchical design is not supported. However, such a restriction is not sub-
stantial – at least in theory. Given two (disjoint) sets of components C1, C2 ⊆ LC we
easily define

∏
C1 ⊗ ∏

C2 by
∏

(C1 ∪ C2). We loose the hierarchy, however, this way.
To keep our framework simple, we only introduced the concept of components here

but not that of connectors as found in some architecture description languages. Connec-
tors are easily subsumed by modelling them as special versions of components.

A system is a component with specific properties. We assume that in the set of all
components a subset L S ⊆ LC is given that characterizes comprehensive self-contained
systems.

2.2. Semantic Framework: Substitutability and Compatibility

When dealing with specifications and behaviours we are in particular interested in an
essential semantic relation for components namely substitutability (see [22,15]).

Definition. Substitutability and Compatibility
A component c1 is called substitutable for a component c2 if the following holds: in
every system that is syntactically correct and in which c2 occurs as a component we can
replace the component c2 by c1 and this results in a system that is again syntactically
correct and the observable behaviour it shows is identical to (or a refinement of) the
observable behaviour of the original system. In this case we also say that component c1
is compatible to (or refined by) component c2. �

This definition is informal, since it does not provide a formal model of observable
behaviour. The concept of substitutability is closely related to that of interface specifica-
tions, as we will show in more detail below. Each interface specification has to charac-
terize the set of components that can be used as replacements for the specified compo-
nent. Thus an interface specification for a component defines a set of compatible com-
ponents. We will discuss whether an interface specification can be seen as an "abstract"
component.

The essential concept that formalizes substitutability is observability. Looking at
an entity from the outside we can observe certain actions and events triggering state
changes. By such observations we filter out the relevant information about systems. If
we restrict the concept of observations we obtain a more abstract view.

2.3. Observability and Compatibility

We give a more formal approach to observability in the following sections. We distin-
guish syntactic and semantic issues.

2.3.1. Syntactic Compatibility

Our concept of syntactic composability formalized by the predicate � introduces the
idea of syntactic compatibility of components. Given two components c1, c2 ∈ LC ,
the component c2 is called syntactically compatible to c1, if we can use component c2
whenever we use c1 without running into syntactic errors.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 25

To formalize this, we introduce a relation

 ⊆ LC × LC

with the following definition for components c1, c2 ∈ LC

c1
 c2 ⇔ ∀C ⊆ LC\{c1, c2}:�(C ∪ {c1}) ⇒ �(C ∪ {c2})

The proposition c1
 c2 expresses that whenever component c1 can be used as a com-
ponent in a system (leading to a syntactically correct system), c2 can be used instead,
too. Of course, the system that we obtain by replacing component c2 for c1 may show
a different behaviour. We only require that the resulting systems be syntactically well
formed.

Syntactic substitutability induces an equivalence relation

∼ ⊆ LC × LC

on the set of components that corresponds to the idea of mutually syntactically substi-
tutability. This relation is easily defined as follows:

c1 ∼ c2 ⇔ (c1
 c2 ∧ c2
 c1)

and called syntactic equivalence.

2.3.2. Observable Equivalence

After having introduced a basic syntactic framework of components and architectures,
we develop a more semantic view onto components. This cannot be done without a pre-
cise semantic perspective. We introduce such a concept only for systems, to begin with,
by assuming that we have some idea of observations at least about systems, which are
elements in the set LS.

To formalize observable equivalence we are interested in the question, under which
conditions two systems are observably equivalent. Syntactic equivalence was introduced
above. Observable equivalence is modelled by an equivalence relation on systems.

∼= ⊆ L S × L S

The equivalence relation expresses by the proposition s1 ∼= s2 that two systems s1, s2 ∈
L S are observably and thus semantically equivalent.

We can also be more concrete and introduce a concept of observation explicitly. Let
OBS be the set of observations about a system and

Obs:L S → O BS

be the functions that maps systems onto observations. We assume:

s1 ∼= s2 ⇔ Obs(s1) ∼= Obs(s2)

for all systems s1, s2 ∈ L S.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces26

Theoretically and practically, there are of course many options to define observabil-
ity and observable equivalence. In the end, observability has to be related to the usersŠ
expectations and views onto a system making explicit which observations about a system
are relevant for the users. Practically, what is a good notion of observation for systems
seems often obvious. In principle, however, we may include also non-functional aspects
into observability such as reaction time or consumed resources. In the following, we are
interested exclusively in observability in terms of functional ("behavioural") properties.

2.3.3. Refinement

Another way to introduce observability is to introduce a partial order � on systems that
defines observability such s1 � s2 expresses that all observations about s2 or also obser-
vations about s1. On components we introduce the relation of semantic substitutability
for components. We call this relation refinement and denote it by the relation

� ⊆ LC × LC

The relation � is assumed to be transitive and reflexive. Semantic substitutability for
components has to be and can be directly related to observable equivalence of systems.
In fact, we could define the relation � formally based on the observability relation ∼=.
We rather keep the two relations independent to begin with and show, how they are and
must be related then.

2.4. Compositionality and Modularity

Refinement for components has to be consistent with composition. This is called com-
positionality. With the introduced concepts we can formally define compositionality of
refinement � with respect to the observability relation ∼=.

Definition. Compositionality and modularity
The relation � is called compositional (or modular) with respect to the relation of ob-
servable equivalence ∼=, if for all components c1, c2 ∈ LC we have:

c1 � c2 ⇒ ∀C ⊆ LC\{c1, c2}, s ∈ L S:
�(C ∪ {c1})∧ s ∼= ∏

(C ∪ {c1}) ⇒ �(C ∪ {c2})∧ s ∼= ∏
(C ∪ {c2}) �

This definition expresses that if c1 � c2 holds we can replace in any system s that uses
the component c1 the component c1 by c2 and get an observably equivalent system.

2.4.1. Denotational Semantics

The core idea of denotational semantics is the definition of the meaning of a program-
ming language in terms of mathematical denotations. Let us denote by MD the set of
mathematical denotations. The mapping

β: LC → M D

maps components onto their denotations (that are mathematical representations of the
meaning of the system, component, or program). Moreover we assume a form of com-
position on the set MD of denotations

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 27

∗ : M D × M D → M D written in infix notation

which is again a partial operation. The key property and idea of denotational semantics
is captured by the following equation for c1, c2 ∈ LC with �({c1, c2}) :

β(c1 ⊗ c2) = β(c1) ∗ β(c2)

This is called compositionality and is the core concept of denotational semantics.
Given a concept of observations, we call the denotational semantics represented by

the mapping β consistent with the observation, if there is a mapping

α : M D → O BS

where for all s ∈ L S:

α(β(s)) = Obs(s)

In other words, we require that we can obtain the observations about a system from its
denotation – the denotational semantics carries enough information to derive all obser-
vations from it.

2.4.2. Full Abstractness of Denotational Semantics

A consistent and compositional denotational semantics is easy to provide: take for the
set of denotations MD simply the syntactic set LC of components, for β the identity and
for ∗ the operation ⊗. Then α is easily represented by Obs and we have all the required
properties.

However, this merely syntactic construction is not what we are looking for. Abstrac-
tion is what we are interested in. We are interested in a more abstract denotational seman-
tics. A denotational semantics represented by β is called fully abstract, if it is consistent,
compositional and if there does not exist a more abstract denotational semantics that is
consistent and compositional, too.

Given two denotational semantics

β1:LC → M D1

β2:LC → M D2

we call β2 as least as abstract than β1, if there is a mapping

γ :M D1 → M D2

such that for all components c ∈ LC :

γ (β1(c)) = β2(c)

This means that there may be components c1, c2 ∈ LC such that we have

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces28

β1(c1) �= β1(c2) ∧ β2(c1) = β2(c2)

and moreover

β1(c1) = β1(c2) ⇒ β2(c1) = β2(c2)

for all c1, c2 ∈ LC .

2.4.3. Full Abstractness of Refinement

By refinement � we can extend the relation ∼= from systems to components c1, c2 ∈
LC\L S by the definition

c1 ∼= c2 ⇔ (c1 � c2 ∧ c2 � c1)

This defines what it means that two components and two systems are observably equiv-
alent. For systems c1, c2 ∈ L S, the formula is a straightforward theorem.

We expect that observable equivalence implies syntactic equivalence

c1 ∼= c2 ⇒ c1 ∼ c2

If the relation � is compositional, then for all components c1, c2, c3, c4 ∈ LC we have

�({c1, c2}) ∧ c1 ∼= c3 ∧ c2 ∼= c4 ⇒ �({c3, c4}) ∧ c1 ⊗ c2 ∼= c3 ⊗ c4

In this case we call the relation ∼= compositional, too, and we speak of a modular theory
of components and architectures.

Refinement and substitutability is, of course, related to inheritance. Actually, refine-
ment is the semantically more appropriate idea of inheritance – a relation, which in object
oriented languages, where inheritance is often just code reuse, is not always guaranteed.

Finally we consider the notion of what it means that refinement is fully abstract.

Definition. Full abstractness
The relation � is called fully abstract for the observability equivalence relation ∼=, if for
all components c1, c2 ∈ LC we have

c1 � c2 ⇐ [∀C ⊆ LC\{c1, c2}, s ∈ L S:�(C ∪ {c1}) ∧ s ∼= ∏
(C ∪ {c1}) ⇒

�(C ∪ {c2}) ∧ s ∼= ∏
(C ∪ {c2})] �

Full abstractness means that the refinement relation on components is the most ab-
stract relation that guarantees modularity for the chosen concept of observability onto
systems.

There is a way to introduce refinement � based on the observability relation ∼= such
that it is always fully abstract. This is achieved by taking the following formula as a
definition of refinement:

c1 � c2 ⇔ [∀C ⊆ LC\{c1, c2}, s ∈ L S:�(C ∪ {c1}) ∧ s ∼= ∏
(C ∪ {c1}) ⇒

�(C ∪ {c1}) ∧ s ∼= ∏
(C ∪ {c2})]

If we introduce � independently, then full abstractness is not guaranteed. If � is fully

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 29

abstract and compositional, however, this formula obviously holds and we have then also
for all components c1 and c2 the validity of the following formula:

c1 ∼= c2 ⇔ [∀C ⊆ LC\{c1, c2}, s ∈ L S:
(�(C ∪ {c1}) ∧ s ∼= ∏

(C ∪ {c1})) ⇔ (�(C ∪ {c2}) ∧ s ∼= ∏
(C ∪ {c2}))]

The relations ∼= and � are called fully abstract, if for all components c1, c2 ∈ LC we
have

[∀c ∈ LC :�({c1, c}) ⇒ c1 ⊗ c ∼= c2 ⊗ c] ⇒ c1 ∼= c2

and respectively

[∀c ∈ LC :�({c1, c}) ⇒ �({c1, c}) ∧ c1 ⊗ c � c2 ⊗ c] ⇒ c1 � c2

Full abstractness is an essential methodologically concept, since it only allows us to
replace a component by any of its refinements.

2.5. Component and System Interfaces and Specifications

For practical purposes it is difficult to work with an abstract notion of refinement and ob-
servable equivalence. It is better and from a methodological point of view more interest-
ing to introduce explicitly the concept of syntactic and semantic interfaces that character-
ize sets of components that can be used for a certain system. Interfaces are specifications
of components.

2.5.1. Interface Specification

The notion of a syntactic interface is straightforward. A syntactic interface defines a set
of components. Formally, an interface specification is nothing but a predicate of the form

F:LC →

that is closed under the syntactic substitutability relation
. It characterizes a set of com-
ponents. Actually, then for all components c1, c2 ∈ LC we have

F(c1) ∧ c1
 c2 ⇒ F(c2)

In other words, a syntactic interface F characterizes a set of components such that with
every components that is syntactically fine with respect to F all its valid syntactic re-
placements do also fulfil F.

Formally, a semantic interface is a predicate

F:LC →

that is closed under the semantic substitutability relation �. Then for all components
c1, c2 ∈ LC we assume

F(c1) ∧ c1 � c2 ⇒ F(c2)

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces30

In other words, a semantic interface F characterizes a set of components such that with
every component that is semantically correct with respect to F all its valid refinements
do also fulfil F.

A semantic interface F characterizes, in general, a set of components. Sometimes
there is a concrete representation of a semantic interface by a component c ∈ LC such
that for all components c′ ∈ LC we have

F(c′) ⇔ c � c′

Then F is called a concrete interface, otherwise an abstract interface.
Logical implication induces a refinement relation on interfaces. This way notions

such as compositionality or full abstractness carry over to interfaces.
A consequent methodological step is to consider abstract interface specifications

as non-operational components, too. Then in architectures specifications and realized
components can be freely combined. We work that out in the following section.

2.5.2. Composing Specifications

There is, in the general case, not a one-to-one correspondence between specifications
and components. More precisely, not every interface specification is concrete, in general.
A specification may be fulfilled by many components and a component may fulfil many
specifications. Nevertheless, we may be interested to "lift" the notion of composition and
refinement to specifications. Let CS denote the set of all specifications. To do that we
introduce ("extend") the composition operations to specifications

⊗: C S × C S → C S infix

where for specifications p1, p2 ∈ C S we get (whenever p1 ⊗ p2 is well-defined)

(p1 ⊗ p2)(c) ≡ ∃c1, c2 ∈ LC :c = c1 ⊗ c2 ∧ p1(c1) ∧ p2(c2)

In other words we mimic the notion of compositions at the language level at the specifi-
cation level. The same applies for refinement:

(p2 ⇒ p1) ⇔ ∀c, c′ ∈ LC :p2.(c) ∧ c � c′ ⇒ p1.(c′)

These notions of composition and refinement are properly reflected at the level of speci-
fications.

2.6. Architectures

Systems architectures are given by sets of components and a description, how these are
composed such that the composition is well-defined. Architectures are given by terms of
compositions of components.

Architecture specifications consist of interface specifications of the set of compo-
nents (of abstract or concrete components) and a description, how these are composed
where we require that the composition is well-defined. From a more practical point of
view, we introduce names for the interface specifications that represent components and
additional information "how" the composition connects the components.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 31

2.7. Final Remarks on the Theory

An instance of the theory that offers all the concepts introduced so far and fulfils all
the given rules can be found in the approach Focus (see [3]). In contrast, such a fully
worked-out theory does not exist so far for object orientation.

What we have described in this section is essential for a theory and methodology for
the specification and modular design of architectures and their components. Of course,
the theory alone is not enough for doing engineering. Obviously, we need, in addition, a
useful syntax to represent interface specifications and architectures. The theory, however,
provides a theoretical framework that gives hints which properties an approach with a
concrete syntax has to fulfil.

A challenge is, however, to work out an explicit denotational semantics for a given
language, with all the relations introduced as well as a concrete syntax for writing inter-
face specifications.

3. Components and Interfaces in Object Orientation

In this section we study the object oriented programming paradigm. We introduce the
essential syntactic and semantic notions of method, method specification, interface, and
class and finally that of a component. We analyze ideas of design by contract (see [12]).

We introduce the notion of a method, interface, class and component based on the
idea of design by contract, on state machines, and that of a data stream and components
interacting by exchanging streams of data. Throughout this paper we work with only
a few basic notations for state machines and data streams. On this basis we discuss a
semantic theory for object orientation.

3.1. Methods and Invocation/Return Messages

In this section we show an approach to interfaces and components based on ideas used
in object oriented software development.

3.1.1. Types and Methods

We work with interfaces that refer to the concept of data types. We deal with variable
types and constant types. A constant type is basically a set of data values.

Definition. Types A type is either a constant type or a variable type. Constant types are
basically sets of data values. An identifier with constant type denotes a value of that set. A
variable type is denoted by Var T where T is a constant type. An identifier with variable
type denotes a variable (in object orientation called an attribute) that has assigned a value
of the set of elements of type T. Every class name is also a type. �

A method in object orientation consists syntactically of its method header and its
method body. Since we are not interested in the design of algorithms as done in program-
ming in the small in this paper and thus not in the particular code forming the method
body we just deal with syntactic method headers in the following. We assume a special
set Object of object identifiers. Object identifiers are typed. Their types are represented
by their class names.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces32

Definition. Method header
A method header has the syntactic form (for simplicity we only consider the special
case, where the method has one constant and one variable as formal parameters, the
generalisation of our notions to many parameters is straightforward)

method m (w : WT, v : Var VT)

where w and v are identifiers for parameters and WT as well as Var VT are their types.
Identifiers with constant types carry input and those with variable types serve for output
(carry results).

The set of method invocations INVOC(m) for the method m is defined by the fol-
lowing equation:

INVOC(m) = { m(c1, c2, w, v, v’): w ∈ WT, v, v’ ∈ VT, c1, c2 ∈ Object}

where the phrase d ∈ T expresses that d is a value of type T and m(b1, b2, w, v, v’)
denotes a tuple of values. Here c1 denotes the caller and c2 the callee of the method
invocation. �

For simplicity we do not distinguish between input parameters, transient parameters,
and result parameters. Transient parameters carry both input and output for the method
invocation. Also for simplicity, we do not consider the question, whether the callee is
an object of the appropriate type – more precisely an object of a class that exports the
method m, but take that for granted.

In specification by contract we treat method invocations as atomic state changes.
Later we treat method invocations as sequences of state changes, starting with the method
invocation and ending with its corresponding method return message. In the later case,
method invocations are represented by two messages.

3.1.2. Specification by Contract

A method can be specified by contract as long as we can understand it as a definition of
an atomic state change. To do that, we have to refer to the states of an object or more
precisely to the states of an object oriented system before and after the invocation of a
method.

Definition. States and their Attributes
The states of the objects of a class are determined by the valuations of the attributes of
that class. An attribute is a typed identifier. An attribute set V is a set of the form

V = {a1 : T1, ... , an : Tn}

where a1, ..., an are (distinct) identifiers and T1, ..., Tn are their types. A valuation of the
attribute set V is a mapping

σ : V → U D

where UD is the universe of data values. Of course, we assume for each valuation σ that
for each attribute a the value σ(a) has the type given to the attribute. σ is also called a
state of V. By �(V) we denote the set of all states for V. �

Given the concept of a state of attributes and objects we now define what it means
to write a specification by contract for a method.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 33

Definition. Specification by contract for a Method
Let V = {a : T} be an attribute set (for simplicity of notation we consider again only the
simple case with just one attribute – the generalization to n attributes is quite straightfor-
ward). A specification by contract for a method with header

method m (w : WT, v : Var VT)

in a class with attribute set V is given by the scheme

method m (w : WT, v : Var VT)
pre P(a, w, v)
post Q(a, w, v, a′, v ′)

In this scheme

P(a, w, v)

and

Q(a, w, v, a′, v ′)

denote predicates – more precisely, formulas in predicate logic called assertions which
contain the identifiers a, w, v and a, w, v, a′, v ′ as their free variables. We assume that
each "primed" variable a′, v ′ denotes the value of that variable in the state after the ter-
mination of the invocation. �

If

P(a, w, v) ⇒ ∃a′, v ′:Q(a, w, v, a′, v ′)

does not hold then we can enhance the precondition by

P(a, w, v) ∧ ∃a′, v ′:Q(a, w, v, a′, v ′)

We give a first simple example for a specification by contract. We choose a method from
a class defining lists. We consider the class of lists later and we select only one method
here. To deal with lists we have to have a mathematical definition of the data structure of
sequences underlying the idea of a list. For that purpose we use the following algebraic
specification as a basis defining the types of our examples:

SPEC SEQ =
{ based_on BOOL,

type Seq α,
〈〉 : Seq α, "empty sequence"
〈_〉 : α → Seq α, Mixfix "one-element sequence"
◦ : Seq α, Seq α → Seq α, Infix "concatenation"
iseseq : Seq α → Bool,
first, last : Seq α → α,
head, rest : Seq α → Seq α,

index: α, Seq α → Nat,

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces34

length: Seq α → Nat,
ith : Nat, Seq α → α,
drop : α, Seq α → Seq α,
cut: Seq α, Nat, Nat → Seq α

Seq α generated_by 〈〉, 〈_〉,◦ ,

iseseq(〈〉) = true,
iseseq(〈a〉) = false,
iseseq(x◦y) = and(iseseq(x), iseseq(y)),

length(〈〉) = 0,
length(〈 a 〉) = 1,
length(x◦y) = length(x) + length(y),

ith(1, 〈 a 〉◦y) = a,
ith(n+1, 〈 a 〉◦y) = ith(n, y),

index(a, 〈〉) = 0,
index(a, 〈a〉) = 1,
a �= b ⇒ index(a, 〈b〉◦x) = if index(a, x) = 0 then 0 else 1 + index(a, x) fi

drop(a, 〈a〉◦x) = x,
a �= b ⇒ drop(a, 〈b〉◦x) = 〈b〉◦drop(a, x),

cut(s, i, 0) = 〈〉
cut(s, 0, j+1) = 〈 f irst (s)〉◦ cut(rest(s), 0, j)),
cut(s, i+1, j+1) = cut(rest(s), i, j),

x◦〈〉 = x = 〈〉◦x ,
(x◦y) ◦ z = x ◦ (y◦z),

first(〈a〉◦x) = a,
last(x◦〈a〉) = a,
head(〈a〉◦x) = 〈a〉,
rest(〈a〉◦x) = x

}

We do not go deeper into details of the algebraic specification of data structures
but rather refer to [23]. Throughout this paper we use algebraic specification only as an
auxiliary technique to specify the data types which we refer to in specifications of class
behaviours.

Example. Specification by contract (see [12])
The following section gives a syntactic interface of the class List. We consider only one
method here and assume only one attribute

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 35

v : Var Seq Data

We give the following example of specification by contract for a method that gets access
("reads") the ith element of sequence v:

method get (i : Nat, r : Var Data);
pre 1 ≤ i ≤ length(v)
post r ′ = i th(i, v) ∧ v ′ = v

It is essential to write also v’ = v to express that the attribute v is not changed by the
execution of the method invocation. �

It is important to emphasize that the specification by contract approach requires
knowledge about the local state structure, determined by the attribute names and their
types, of the respective class and object.

In our post-conditions we use a simple notational convention: to avoid a lot of as-
sertions of the form a′ = a, which state that attribute a is not changed, we assume that
an attribute a (or a variable parameter) is not changed, i.e. that a′ = a holds in the
post-condition, if the identifier a’ does not occur syntactically in the post-condition.

3.2. Simple Export Interfaces

We start with interfaces of conventional classes, which we call pure export classes and
resp. export interfaces. An object oriented export interface is described simply by a col-
lection of (exported) class names and the methods offered by them. The description of
a syntactic class interface obviously is simple. It is the collection of a set of syntactic
method headers for each of the classes. Nothing is said about behavioural aspects.

Of course, we gain more flexibility, if we consider also sets of objects as part of
the interface. Since we are rather interested in foundational issues, we do not do that.
Nevertheless, the approach can schematically be extended into this direction.

3.2.1. Simple Object Oriented Interfaces

We start with interfaces of conventional classes which we call "export". An "export"
object oriented interface consists simply of a set of class names and of a collection of
methods M (more precisely a set of methods for each class). For simplicity, we do not
capture in our formalism which of the class names offers which methods, which of course
could be easily formalized, too. A simple class defines and provides only such interfaces.

Example. Syntactic List interfaces
The syntactic interface of the example class List is given by the following set of methods:

interface SynList {
method add (x : Data);
method size (s : Nat);
method get (i : Nat, r : Var Data);
method contains (x : Data, r : Var Bool);
method indexOf (x : Data, r : Var Nat);
method remove (x : Data);

}

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces36

This example defines just a syntactic interface by listing a set of method headers. It
specifies nothing, however, about the effects or behaviour of these methods. �

The description of a syntactic class interface obviously is simple. It is the collection
of a set of syntactic method headers. Nothing is said about behavioural aspects.

Definition. Syntactic export interface
A syntactic export interface consists of a name (the interface name) and a set of class
names (used as types) and for the class names the set M of method headers. We assume
for simplicity that all methods have different names, since we do not want to deal with
overloading. We also assume that each method is related to a class. By

INVOC(M) =
⋃

m∈M

INVOC(m)

we denote the set of all possible invocations of methods that are in the syntactic export
interface M. �

In the following we discuss semantic, behavioural notions of such interfaces. Such infor-
mation is needed if we plan to use the classes without wanting to look at their code.

3.2.2. Specification by Contract for Methods in Export Interfaces

In this section we show how to express specifications of classes by contract. It is essen-
tially based on specifying methods by contract as introduced above.

Definition. State transition assertion
Given a set of attributes V = {a : T} a state transition assertion is an assertion of the form

R(a, a′)

that restricts the state changes and also the set of reachable states. If the primed attribute
a′ does not occur in the assertion, we speak of a state assertion (and also of an invariant
for a class), otherwise of a state transition assertion. �

We use state transition assertions and state assertions to provide behavioural speci-
fications for classes in addition to the assertions given for the individual methods in the
specification by contract.

Now we give the definition of the specification of a class by contract.

Definition. Specification of classes by contract
For a syntactic interface consisting of a set of method headers a specification by contract
is given by a set of typed attributes defining the class state and a specification by contract
for each of its methods.
In addition, a state invariant may be given by the construct

invariant Inv(a)

that expresses that every reachable state fulfils Q. In addition, a state transition assertion
may be given by the construct

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 37

invariant R(a, a’)

restricting the state changes to those which lead from state a to state a’ with R(a, a′).
Finally, a state assertion

init P(a)

may be given defining the initial properties. Every invariant Q(a) restricts also the set of
initial states.

An invariant R for an export interface expresses that each method call fulfils R. This
means that R(a, a′) holds for every invocation where a is the attribute value of the state
before and a’ is the attribute values of the state after the invocation.

Example. State transition invariant
For the attribute a the relation a′ = a +1 used as an invariant expresses that each method
invocation increases the value of a by one. �

There are two essentially different ways to interpret invariants in specifications by con-
tract for classes. One way is to require that each method respects the invariant. The
other sees in the invariant an additional specification ("constraint") for each method. We
choose the second alternative.

In our case we add each invariant given by the condition Inv and for every method
to its precondition P and to its post-condition Q. This way we get for the modified pre-
condition

P(a, w, v) ∧ Inv(a)

and the modified post-condition where we add each transition invariant

Q(a, w, v, a′, v ′) ∧ R(a, a′) ∧ Inv(a′)

In the reminder of this paper, invariants are seen as implicit parts of the initial state as-
sertions, all preconditions and all post-conditions. This saves some notational overhead.

For the class List it is rather straightforward to provide a specification by contract
based on the algebraic specification of sequences.

Example. List interfaces
An interface for the class List is given by the following set of messages. We use the
attribute v : Var Seq Data. The specification by contract for the interface List reads as
follows:

interface List {

v : Var Seq Data;
initial v = 〈〉;

method add (d : Data);
pre true
post v ′ = v◦〈d〉
method size (Var s : Nat);

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces38

pre true
post s′ = length(v) ∧ v ′ = v

method get (i : Nat, r : Var Data);
pre 1 ≤ i ≤ length(v)
post r ′ = i th(i, v) ∧ v ′ = v

method contains (d : Data, r : Var Bool);
pre true
post r ′ = (index(d, v) > 0) ∧ v ′ = v

method indexOf (d : Data, r : Var Nat);
pre index(d, v) > 0
post r ′ = index(d, v) ∧ v ′ = v

method remove (d : Data);
pre index(d, v) > 0
post v’ = drop(d, v)

}
Invariants restrict the set of reachable states. In this example we do not have to formulate
an invariant, since every state in the state space can be reached. However, we can easily
switch to a version with a specification that shows an interesting invariant. Assume we
introduce a further attribute

le : Var Nat

into the class List which stores the length of the sequence represented by attribute v.
Then obviously we always assume the following assertion to hold

invariant le = length(v)

We may add this equation as an invariant to the class. By our interpretation of invariants
this implies for our contracts for the methods that every method that changes v changes
the attribute le accordingly. �

A specification by contract treats an export interface as a state transition system.
Thus the specification defines, essentially, a state machine by restricting the state space
and the state changes by the specification by contract.

Example. Cell
We give another simple example of a class defining a storage cell.

Class Cell =
{ c: Var Data | {void}

initial c = void

method store (d: Data)
pre c = void
post c’ = d

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 39

method read (v: Var Data)
pre c �= void
post c′ = c ∧ v ′ = c

method delete ()
pre c �= void
post c’ = void

}
This defines the interface of a simple memory cell. Again there is no nontrivial invariant
involved since all states are reachable. �

One way of looking at the objects of a pure export class is to see them as state
machines. This view is explained in more detail in the following section.

3.2.3. Export Interfaces described by State Machines

The specification by contract takes an atomic state transition view. Every method invo-
cation results in an atomic state transition. The pre- and post-conditions characterize the
states under which such an invocation can take place to guarantee a certain property of
the generated state. In this section we show that this way essentially a state machine is
defined (see also [15]).

Definition. Class state machine for an export interface
Given an export interface with an attribute set and a set of methods M the associated state
transition function is a partial function of the form

�:�(V) × INVOC(M) → (�(V) ∪ {⊥})

Here for m ∈ INVOC(M) and s, s′ ∈ �(V) the equation �(s, m) = s′ expresses that in
state s the method invocation m is enabled and leads to the state s′ (note that m includes
the results of the invocation – thus if m is not enabled in state s it may simply mean that
the results indicated in m of the method invocation cannot occur). If �(s, m) does not
have a defined result, this means that the method invocation m is not enabled in state s.
�(s, m) = ⊥ expresses that the method invocation does not terminate. In addition, we
assume a set of initial states I� ⊆ �(V). �

In the definition above we have defined deterministic state machines. In general, we
have to deal with nondeterministic state machines of the form:

�:�(V) × INVOC(M) → ℘(�(V) ∪ {⊥})

The state machine associated with a class is easily defined via its specification by con-
tract.

Given a method invocation m(c1, c2, w, v, v ′) for method m with precondition
P(a, w, v) and post-condition Q(a, w, v, a′, v ′), we get (if the call terminates) a speci-
fication of a state transition function as follows:

�(σ, m) = {σ ′:P(σ (a), w, v) ∧ Q(σ (a), w, v, σ ′(a), v ′)}

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces40

Figure 1. State transition diagram that describes the state machine of a List

By σ(a) we denote the value of the attribute a in state σ(a). The state transition diagram
in Fig. 1 shows only a slightly different way to represent the information by a specifica-
tion by contract. It is a simple version of a state transition diagram with only one control
state. Since the set �(V) is in general infinite, it is quite common in practice to pick a
finite abstraction of �(V), implying a description of � as presented in Fig. 1.

Perhaps more appropriate than the diagram is in this case a table as shown below.

Precondition Method Invocation Post-condition

add(d) v ′ = v◦〈d〉
size(s) v ′ = v ∧ s′ = length(v)

1 ≤ i ≤ length(v) get(i, r) v ′ = v ∧ r ′ = i th(i, v)

contains(d, r) v ′ = v ∧ r ′ = (index(d, v) > 0)

index(d, v) > 0 indexOf(d, r) v ′ = v ∧ r ′ = index(d, v)

index(d, v) > 0 remove(d) v ′ = drop(d, v)

Some heuristic for picking the abstraction may be to group equal transitions or to split
complex transition relations into smaller ones on different states.

The difference between a state transition diagram specification of a class and a spec-
ification by contract is mainly a methodological one. In the first case we consider the
states and define which method calls are possible in each state and to which successor
state they lead. In the second case we specify for each method in which states they may
be invoked leading to which successor states. Formally this can be seen just as two ways
of specifying the state transition relation: For each state σ ∈ �(v) we define

�σ :(INVOC(M) → ℘(�(V)))

For each method m ∈ INVOC(M) we define

�m :(�(V) → ℘(�(V))

We get for m ∈ M and c ∈ INVOC(m):

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 41

Figure 2. State Transition Diagram for the Interface of the Cell

�σ (c) = �(σ, c)

and

�m(σ) = �(σ, c)

We also may use tables as already shown above to define the behaviour of classes as
well as state transition diagrams, which actually are just a graphical representation of the
tables.

Example. Memory Cell
The memory cell is specified by contract easily as shown in the previous section. This
defines the interface of a simple memory cell. Here there is no nontrivial invariant in-
volved since all states are reachable. It is easy to provide a state transition description for
the state machine modelling a cell as it is shown in Fig. 2. �

Export interfaces are simple to specify, since they can be modelled by atomic state
changes.

3.2.4. Reachable States

For a state machine given by a set of initial states � ⊆ �(V) and a state transition
function

� :�(V) × INVOC(M) → (�(V) ∪ { ⊥ })

we define the set of reachable states �R ⊆ � (V) as the least set that fulfils the following
formulas:

�0 ⊆ �R

σ ∈ �R ⇒ � (σ, c) ∈ �R

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces42

Every predicate

p:� (V) → B

with

p (σ) ⇒ σ ∈ �R

is called an invariant. Every predicate with

p (σ) ⇒ p (� (σ, c))

is called stable. Note that not every invariant is stable and not every stable predicate is
an invariant. If for a stable predicate p we have

σ ∈ �0 ⇒ p (σ)

then p is an invariant. This is the key idea how to prove that a predicate q is an invari-
ant: find a stable predicate p that implies q and holds for the initial states. Since every
export interface specification defines a state machine the concept of stable and invariant
predicates carries immediately over to classes.

3.2.5. Closed View of Export Interfaces: Systems

By classes with export interfaces we get a closed view onto object-oriented systems. Two
systems with export-only interfaces cannot be composed in a nontrivial way since all we
can do with these systems is to call their methods. The systems never "call back" but
simply respond by a return message. We speak of closed systems. Therefore we may
conclude that such classes describe systems, but not general components.

For such closed system we get a simple concept of observability. What we can ob-
serve is the sequences of method calls, and, in particular, whether method calls terminate
and which results they produce.

4. Limitations of Export Interfaces and Specification by Contract

So far our view onto class interfaces is simple. Every method invocation corresponds
to one atomic state change. This simplicity goes away if we are interested modeling
forwarded method calls explicitly.

4.1. Forwarded Method Invocations

To be able to compose two components in a way that they cooperate they have to ex-
change information. The only sensible way to do this in conventional object orientation
is by mutual method invocation. The possibilities to allow for such forwarded calls and
to compose components on this basis are discussed in the following.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 43

Figure 3. Message sequence chart for the method get

The specification of export-only interfaces is particularly simple since it can rely on
a simple control flow. By each method invocation exactly one state transition is executed.
The control is transferred to the component and returned at once. A method invocation
is understood as an atomic action that corresponds to a possible huge state change this
way. This is also called the synchronous view for method invocations. This makes the
execution model extremely simple - too simple for the component world.

The simplicity of this situation changes significantly if we allow and consider addi-
tional invocations of methods (especially of methods of other classes that are not in the
export interface) during the execution of methods. We speak of forwarded method calls.
This way we get a considerably more complex execution model. A method invocation
can be seen as an atomic state change then, only if we comprise also state changes for
the objects affected by the forwarded method invocations in this state change. As a con-
sequence the method invocations change not only the local attributes of the called object,
but also those of other objects, in the general case also of objects that do not belong to
classes in the considered sub-system.

In this section we consider the semantic consequences of further invocations of
methods during the execution of method calls. We study families of classes (and their ob-
jects) that encapsulated states of which are changed by a method invocation by forwarded
method calls.

4.2. Interactive Method Invocation Illustrated by MSCs

In this section we do not understand method calls as events that result in atomic huge
state changes for all the objects affected by forwarded message calls, but consider the
addressed class and object in isolation. A message sequence chart is a good way of
representing an instance of the interaction behaviour of an interactive method invocation

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces44

and illustrates forwarded method invocation. An example for a method get is shown in
Fig. 3.

Here we simplify the representation of the method invocation messages and the re-
turn messages in diagrams. We do not list the identifier of the object in the invocations
explicitly. The message return(d) stands for a return message with the return variable r
with r = d. We can give or even generate a message sequence chart for each of the state
transitions, however, the number of message sequence charts can be very high - even
infinite. We study the situation of forwarded method invocations in a more systematic
way in the following section.

4.3. A Motivating Example for Forwarded Method Invocations

In this section we study a more involved example of a list implementation where lists are
realized by a family of pointer structures. This example serves us to discuss problems of
forwarded method calls.

Example. Lists interfaces for pointer classes
A syntactic interface of the class List is given by the class LinkedList and the following
set of methods. Here we do no longer use the attribute

v : Var Seq Data

but each object encapsulates only one element of the sequence as well as links to the
objects carrying the other elements.

The implementation - now given for illustration purposes by explicit program code
and not by a specification - reads as follows:

Class LinkedList

{ vd: Var Data
lr: Var LinkedList
le: Var Nat
initial: le = 0 ∧ vd = Nil ∧ lr = Nil
invariant: le > 0 ⇔ lr �= Nil

method add (d : Data):
if le = 0 then vd := d; le := 1; create.LinkedList(lr)

else le := le+1; lr.add(d) fi

method size (s : Var Nat):
s := le

method get (i : Nat, r : Var Data):
if i = 1 then r := vd else lr.get(i-1, r) fi

method contains (d : Data, r : Var Bool):
if le = 0 then r := false else if vd = d then r := true

else lr.contains(d, r) fi fi

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 45

method indexOf (x : Data, r : Var Nat):
if vd = d then r := 1 else lr.indexOf(d, r); r := r+1 fi

method remove (d : Data):
if vd = d then if le > 1then lr.get(1, vd); lr.remove(vd), le := le-1

else le := 0; vd := Nil
fi

else le := le-1; lr.remove(d)
fi

}

However, this example is not elegant. To improve it we could rather choose perhaps
a different set of methods, perhaps private methods, to provide a more elegant version of
this class. We are not interested in such more elegant versions here, however. Moreover,
the method remove is - as it is implemented - not efficient, since, when invoked, it goes
down the complete list. A more efficient version is obtained as follows:

method remove (d : Data):
if vd = d then if le > 1 then lr.get(1, vd); lr.assignrest(lr), le := le-1

else le := 0; lr := Nil
fi

else le := le-1; lr.remove(d)
fi

method assignrest (r : Var LinkedList):
r := lr

This change leads, however, a step deeper into programming with pointers. We are inter-
ested in the principle problems of specifying the behaviour of interfaces with forwarded
method invocations and not in pointer structures, which pose additional problems. A dif-
ficult issue, in fact, is to give a specification by contract for that class according to the
forwarded method invocations. Actually, to give an appropriate comprehensive invariant
is already difficult. Actually the invariant should express that the links form a chain of el-
ements of length le without cycles. This can only be expressed informally by introducing
sophisticated operators as shown below(see [17]). �

The class LinkedList is compatible to the class List and vice versa. Therefore they
provide the same interfaces. However, this is not captured at all in the specification by
contract. Actually the class LinkedList fulfils the specification by contract for the class
List as shown above, however, now the state consists not just of the attributes of the
respective object that represents a sequence, but the sequence is represented by a linked
list of several objects.

To deal with this problem we see two options. Either we try to express the contract
specifications at the level of the object data structures. Then we need a notation that
allows us to express properties of the linked structure of the object data model in terms of
the attributes of referenced objects (see [17]). Another technique is to abstract from that
concrete object state into a sequence and then talk about the sequence in the contracts as
before. This way we collect several objects into one state.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces46

Example. Specification by contract for the pointer class List
Given an object b of type LinkedList we can calculate the sequence represented by b by
the following function:

Fct absseq (b : LinkedList) Seq Data:
if b.le = 0 then 〈〉 else 〈b.vd〉 ◦ absseq(b.lr) fi

Here we use the notation b.a to refer to attribute a in the of the object b. This function
calculates for every object of type LinkedList, which is not cyclic, a sequence that is rep-
resented by the linked list. If the LinkedList is cyclic the computation does not terminate
and the value of the function call is not defined.

Given this function we easily write a specification by contract. The specification
by contract reads as shown below. Here we write self to refer to the respective object
identifier:

Class LinkedList1 {
vd : Var Data
lr : Var List
le : Var Nat
initial : le = 0 ∧ lr = 0
invariant: le > 0 => lr �= Nil

method add (d : Data):
pre true
post absseq(self’) = absseq(self) ◦ 〈 d 〉

method size (Var s : Nat):
pre true
post s’ = length(absseq(self)) ∧ absseq(self’) = absseq(self)

method get (i : Nat, r : Var Data):
pre 1 ≥ i ≥ length(absseq(self))
post r’ = ith(i, absseq(self)) ∧ absseq(self’) = absseq(self)

method contains (d : Data, r : Var Bool): pre true
post r’ = (index(d, absseq(self)) > 0) ∧ absseq(self’) = absseq(self)

method indexOf (d : Data, r : Var Nat);
pre index(d, absseq(self)) > 0
post r’ = index(d, absseq(self)) ∧ absseq(self’) = absseq(self)

method remove (d : Data);
pre index(d, absseq(self)) > 0
post absseq(self’) = drop(d, absseq(self))

}

In fact, this example specification looks again not elegant. Our notation is not clean.
In fact, it is not "referentially transparent". Actually, the value denoted by self is not

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 47

changed in any of the methods. Therefore writing self’ does not make sense. We use this
notation, however, to express that we calculate the sequence absseq(self’) in the state
after the method invocation. �

This example provides a specification of lists, too. In fact, the observable interface
behaviour of List and LinkedList are identical although the specifications by contract
look quite differently. The proof that both classes have the same interface based on the
specification by contract techniques needs a sophisticated theory.

5. Open View: Components with Export and Import

In this section we develop a concept of a component for object orientation. A component
is a syntactic unit that can be composed.

5.1. Methods, Invocations and Return Messages

In this section we introduce an approach to interfaces and components for classes and
forwarded method invocations. In specification by contract we treat method invocations
as atomic state changes. Now we treat method invocations as sequences of state changes,
starting with the method invocation message and ending with the corresponding method
return message. In the latter case, the asynchronous case, method invocations correspond
to two messages.

Definition. In- and Out-Messages for a method header
A method invocation consists of two interactions of messages called the method invo-
cation message and the return message. Given a method header (for explanations see
above)

method m (w : WT, v : Var VT)

the corresponding set of invocation messages is defined by the following equation

SINVOC(m) = m(b1, b2, w, v): w ∈ WT, v ∈ VT, b1, b2 ∈ Object

Here we treat variables as call-by-value-return parameters. The v represents the value of
the variable parameter before the call. The return message has the type (where v’ is the
value of the variable after the execution of the method invocation)

RINVOC(m) = return_m(b1, b2, v’): v’ ∈ VT, b1, b2 ∈ Object

With each method we associate this way two types of messages, the invocation message
and the return message. �

Given a set of methods M we define the sets of invocation and return messages as
follows:

SINVOC(M) =
⋃

m∈M

SINVOC(m)

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces48

Figure 4. Graphical representation of an export/import interface

RINVOC(M) =
⋃

m∈M

RINVOC(m)

This way we denote the set of all possible invocations of methods that are in the set of
methods M.

5.2. Export/Import Interfaces

In object orientation, a class uses other classes via their methods as sub-services to offer
its interface behaviour. Thus a class on one hand offers methods to its environment called
an export method and on the other hand invokes methods of other classes called import
methods. We speak of the exported methods and the imported methods of a class. This
idea of exported and imported methods is captured by import/export interfaces.

In the following we deal with issues related to the import and export of interfaces in
more detail.

5.2.1. Syntax of Export/Import Interfaces

In the case of forwarded calls we deal with classes dealing with two kinds of methods,
imported and exported ones. This should be explicitly reflected in the syntactic and se-
mantic interface of object oriented systems. Every interface specification with an explicit
import part and an explicit export part defines a so-called export/import interface.

Definition. Syntactic export/import interface
A syntactic export/import interface consists of two syntactic "export" interfaces repre-
sented by two sets of class names, sets of method headers associated with each class
name, which define the set of export and the set of import methods. Methods in the
set of export methods can be called from the environment, import methods are methods
provided by the environment and can be called by the component. �

For simplicity, we assume that all methods and classes in the export and import
interfaces have different names, since we do not want to deal with overloading. More-
over, we do not treat explicitly in the following the exported types (class names). Given
an export/import interface of a component c we denote by EX(c) its export interface
and by IM(c) its import interfaces, both being simple export interfaces. A syntactic ex-
port/import interface can easily be described graphically as it is shown in Fig. 4.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 49

A class in object oriented programming, in general, delegates parts of the execution
to other classes via forwarded method invocations and therefore in general has an ex-
port/import interface in spite of the fact that the idea of explicit imported interfaces is
surprisingly not supported by most of the conventional object oriented techniques. Often
the import interface is kept implicit for classes and not mentioned at all in the syntactic
interface description.

Now we give a first example of an export/import interface and its specification by a
state machine.

Example. Accountmanager
We consider a simple class Accountmanager that is an account manager. It is based on
the following three types:

Person the type of individuals that may own accounts
Account the type of accounts (a class)
Amount the type of numbers representing amounts of money

For the class Accountmanager we consider only one export method and one import
method. It uses a function f

Fct f = (x: Person) Account

that relates persons to their account numbers.

Class Accountmanager =
{...

export method credit = (x: Person, y: Var Amount, z: Var Account)
...

import method balance = (y: Var Amount)
}

The account manager calls the method balance of object b, which is a manager of the
money in the account. But for finding out the credit for other persons the credit has to be
determined by issuing back calls. Therefore the proper state machine looks as shown in
Fig. 5 which gives such a state machine with input and output for the account manager.
In this diagram we write on the arcs, which represent state transitions,

{A} m1 / m2 {B}

to express that this transition is executed if the assertion A holds and the message m1 is
received (as input); as an effect of this transition the message m2 is send (produced as
output) and the state change described by the state transition assertion B takes place.

Note that the state machine requires additional attributes that are not the attributes
that we use in the class Accountmanager such as

b: Var Object
p: Var Person

to store the actual parameters of the call while waiting for the result of the forwarded
call. They can be seen as examples of simple representations of the call stack. �

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces50

Figure 5. Graphical representation of an export/import interface

The example shows also a property more explicitly that is implicit in classes. An
object cannot be revisited by method calls (in this case of method invocations of message
credit) before the call is finished (if we assume that objects are like monitors). If we do
not like this rule, we have to provide another state machine. This will be discussed in
more detail below.

The example also shows that there are cases where the call stack is part of the state
space of the state machine associated with a class. At the level of object-oriented code
this call stack is implicit. When writing specifications, we have to make the call stack
explicit.

5.2.2. Control Flow, Forwarded Calls, Back-Calls, and the Call Stack

When dealing with export/import interfaces we have to deal with call-backs, in general.
In other words, a method invocation for object b may lead to a forwarded call that in turn
may lead to invocation of methods of object b. We speak of a call-back. For forwarded
calls and possible call-backs, we need additional state attributes in the local state of the
interface to be able to find the correct continuation for returned invocations (in the sense
of the return addresses for subroutine calls and for storing the parameters).

In the general case, we have to work with a full call stack. The call stack is the clas-
sical way to manage nested procedure calls or method invocations. Every time a proce-
dure or method is called, the parameters and the return address are pushed onto the call
stack. This way the call stack has to deal with control (such as return addresses) as well
as data aspects (such as parameter values) of pending calls. The call stack determines the
continuation after the return of a forwarded call and provides the local state information
providing the values of the parameters of the call under execution.

5.2.3. Modelling Export/Import Interfaces by I/O State Machines

In this section we demonstrate how to describe the behaviour of export/import interfaces
by state machines with input and output. Since we have a set of in- and out-messages
related to each of the method headers, this easily generalizes to class interfaces.

Definition. In- and Out-Messages of a syntactic class interface
Let c be a syntactic export/import interface with set EX(c) of export class names and
their methods and the set IM(c) of import class names and methods. It defines a set In(c)
of ingoing messages

In(c) = SINVOC(EX(c)) ∪ RINVOC(IM(c))

and of a set of outgoing messages Out(c) specified by

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 51

Out(c) = SINVOC(IM(c)) ∪ RINVOC(EX(c)) �

Since we have a set of in- and out-messages related to each of the method headers
of an export/import interface, we construct a state machine that describes the behaviour
of the export/import interface. It uses the invocation messages in the export interface and
the return messages in the import interface as input and the invocation messages in the
import interface and the return messages in the export interface as output.

Definition. Export/import state machine
Given an interface c with an attribute set V and a set of methods, the associated state
machine has the form (here we work with a total function)

� : State × In(c) → ((State × Out(c)) ∪ {⊥})

Here for m ∈ In(IF) the equation �(s, m) = ⊥ expresses that the method invocation does
not terminate. The state space State is defined by the equation

State = �(V) × CTS

Here CTS is the control state space. Its members can be understood as represen-
tations of the control stack. Since we do not want to go deeper into the very technical
discussion of control stacks, we do not further specify CTS. Of course, we assume that a
set of initial states IState ⊆ State is given. �

A convenient way to describe I/O state machines is a state transition diagram. In the
case of asynchronous models of method invocations we work with state machines with
input and output called Mealy machines.

It is not difficult to go - in the case of export-only interfaces - from such a given
Mealy machine

� : State × In(IF) → ((State × Out(IF)) ∪ {⊥})

to the kind of state machines

�’: �(V) × INVOC(M) → (�(V) ∪ ⊥)

we have introduced for export-only interfaces. In the case of export-only interfaces the
only output messages that exist are return messages. Each transition of the state machine

(s’, y) = �(s, x)

determines a transition

z’ = �(z, c)

and vice versa. From

(s’, y) = �(s, x)

we easily construct the data states z, z’ ∈ �(V) from the states s and s’ since in this case
the control stack is trivial. The message c ∈ INVOC(M) with c = m(b1, b2, w, v, v’) with
z’ = �(z, c) is determined by x = m(b1, b2, w, v), y = m(b1, b2, v’).

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces52

5.2.4. Closed View of Export/Import Interfaces: Systems

By classes with export/import interfaces we can get a closed view onto object oriented
systems. This means that we consider a method invocation as one state change that
changes the attribute of the called object and all attributes changed by further forwarded
method calls.

For the closed view we may again use the specification by contract idea. However,
then we have to refer in the assertions of methods to the attributes of other objects that
are updated by forwarded calls.

5.2.5. Specification by Contract for Export/Import Interfaces

In the general case of export/import interfaces we have to deal with forwarded calls and
back-calls. As demonstrated this enforces to make the call stack explicit part of the state
space - also in the case of specification by contract.

In the general case of specification by contract for export/import interfaces asser-
tions have not only to refer to the call stack, but also to attributes of objects in their
environment. We demonstrate that again by our example of the account manager.

Example. Account manager (continued)
We consider again the simple class Accountmanager. The account manager calls the
method balance of an object b, which is a manager of the money in the account. But
perhaps this call changes the attributes of object b.

Class Accountmanager
{ Fct f = (x : Person) Account:...

method credit = (x : Person, y : Var Amount, z : Var Account):
f(x).balance(y); z:= f(x)

}
Class Account
{ a, d : Var Nat; a denotes the state of the account, d what is bound by credit

invariant a ≥ d;

method balance = (y : Var Amount)
if a-d ≥ y then d := d+y
else if a = d then y := 0

else y := a-d; d := a
fi fi

}

In this example a call of the method credit leads to a call of balance, which may change
the attribute d. The specification by contract for the method credit reads as follows:

method credit = (x : Person, y : Var Amount, z : Var Account):
pre f(x) �= nil
post z’ = f(x)
∧ f(x).d’ = f(x).d+y’

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 53

∧ (f(x).a-f(x).d ≥ y ⇒ y’ = y)
∧ (f(x).a-f(x).d ≤ y ⇒ y’ = f(x).a-f(x).d)

This shows that we have to refer to attributes of the object f(x) in the method credit. Here
we use again the notation b.a to refer to attribute a of the object b. �

In the specification by contract we do not actually refer to the export/import inter-
face, in fact. We do not express that method balance is called to change the attributes of
the object f(x). However, we may specify balance in the import specification by contract
and then refer to this specification in the assertions for credit:

Example. Account manager (continued)
We consider again the simple class Accountmanager. The specification by contract of the
export/import interface reads as follows:

Class Accountmanager =
{...
export

method credit = (x: Person, y: Var Amount, z : Var Account):
pre f(x) �= nil
post z’ = f(x)
∧ post(f(x).balance(y))

...
import

method balance = (y: Var Amount):
pre true
post d’ = d+y’
∧ (a-d ≥ y ⇒ y’ = y)
∧ (a-d ≤ y ⇒ y’ = a-d)

}

Here post(b.m(y)) stands for the post-condition of the method m modified by replacing
all local attribute identifiers such as a by the global identifiers b.a. �

The example looks fine but it does not show an additional difficulty: Often several
forwarded calls are executed in specific local states. The order in which the forwarded
methods are called and in which local states introduces another difficulty here. This prob-
lem can be solved, but makes the specification more execution specific and much more
incomprehensible.

5.2.6. Observability for Export/Import Interfaces

For an interface with export and import it makes an essential difference how a system is
seen from the import/export point of view either making the import explicit or keeping
it implicit. For a useful interface description for architectures, we have to make the im-
port explicit. This leads to different idea of observability. Now we observe sequences of
alternating input and output actions as well as the termination of method invocations.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces54

Actually we have now two ways of non-termination. In one case an input message
m in a state s may not lead to an output message. This is indicated by �(s, m) = ⊥.
Moreover, a method invocation will lead to an infinite sequence of in- and out-messages
under certain reactions of the environment.

In this model of observability using I/O state machines we can even do a step in
the direction of concurrency using interleaving. Assume, we send a method invocation
message to a component that triggers an invocation of an import method representing a
forwarded method call. Then a sequential execution the next input message could only be
another invocation message (triggered by a back-call) or the return message to the pre-
vious call. But nothing prevents us from giving an arbitrary invocation message (which
cannot be distinguished from a back-call) and thus to handle interleaved independent
method invocations. We only have to place return messages at the right places in the
input streams (see later). Thus we get a restricted form of concurrency.

5.2.7. Concurrency and Multi-Threading

So far we have mainly considered sequential control flow without concurrency. In more
technical terms we did only consider executions of one thread. This kept our execution
model rather simple. In large distributed systems a more complex model is mandatory.
There are several threads executed concurrently. Then it is no longer valid that a method
invocation leads to a sequence of method invocations and return messages that is com-
pleted before the next method invocation takes place. New method invocations from other
threads may arrive before a method invocation sequence is completed. Several method
invocations are executed, in general, in an interleaving mode.

Decomposing a method call into two complementary message exchanges, the invo-
cation call and the return, which is done to be able to have open specifications of compo-
nents and classes gives an interesting additional option: now we may (or may not) accept
further method invocations before a method call has been completely executed - before it
has sent back its return message. This forces us to freely introduce interleavings of calls
and to introduce language constructs that allow us to avoid them in cases where calls
should be completed before further calls are processed (mutual exclusion).

As a result of concurrency and multi-threading we get interleaving of single threaded
invocation sequences. This leads also to issues of synchronization to be able to control
the interleaving. Note that now the invocation stack has to be replaced by an individual
stack for each thread.

5.2.8. Control Flow in Export/Import Interfaces

The specification of export/import interfaces gets more involved than that of simple in-
terfaces since in this case we can rely no longer on the simple control flow of method
invocations in terms of atomic state changes. By each method invocation a sequence
of state transitions is executed alternating between those invocations changing the local
state of the considered interface and those triggering state changes in the environment
and producing return messages or even further invocations of messages for the consid-
ered interface (so called call backs).

The control is then transferred several times back to the environment and returned
from the environment several times while executing a method invocation. This control
flow transfer corresponds to a sequence of method invocations and method return mes-
sages. This sequence has a specific structure as shown by the following BNF form:

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 55

SeqMIR ::= EMI { IMI {SeqMIR}∗ IMR }∗ EMR

Here EMI denotes the set of invocations of export methods, IMI denotes the set of invoca-
tions of import methods, EMR denotes the set of return messages of export methods and
IMR denotes the set of return messages of export methods. SeqMIR denotes the set of
sequences of invocation and return messages that may occur in principle (syntactically)
as results of method invocation of export methods.

Due to application specific logical constraints the set of actually occurring sequences
of method invocation messages and return messages is a subset of SeqMIR. This subset
specifies the invocation protocol. The formula above simply says that sequences of in-
vocation and return messages always start with an invocation of an export method and
always ends with the corresponding return message. If there is a sequence between these
two messages, this sequence starts with an invocation of an import method and always
ends with the corresponding return message. The sequence between these messages can
again be a sequence of invocation sequences for export methods.

Since invocation sequences always have this regularity, each return message can be
related uniquely to its corresponding invocation message and vice versa. Note, the gram-
mar describing the language SeqMIR and the language itself is a Chomsky-2-language
(context-free language) and thus needs a stack to parse it. This corresponds to the call
stack existing for each thread at run time.

5.3. Relating Export/Import Interfaces: Design and Refinement

As we have demonstrated, for object oriented interfaces in its most general form with
call forwarding and call-backs we have to make the call stacks explicit and refer to the
local attributes of the environment in the assertions when working with specification by
contract. This makes specification by contract more difficult and less modular. In the fol-
lowing we introduce a refinement relation for classes and objects in terms of specification
by contract. It provides an answer to our principle of substitutability and compatibility.

5.3.1. Design By Contract

In this section we briefly outline the key idea of design by contract. We explain how to
connect specification by contract to implementations. We deal with export/import inter-
faces.

We explain the general idea of an implementation in terms of design by contract
based on a specification by contract for an export/import interface specification. Given
specifications by contract for both the import and the export interface (we assume for
simplicity that all invariants are included explicitly in the pre- and post-conditions) we
construct a "verified" implementation as follows. We give code for every method in the
export part and prove that the code fulfils the pre- and post-condition specification as
given by the contracts. In the proof we may use for all forwarded calls the pre- and post-
condition from their design by contract assertions. The proof can be, for instance, done
by annotating the code using Hoare logic (see [8]).

Example. Account manager (continued) We consider again the simple class Account-
manager. The account manager calls the method balance of an object b, which is a man-
ager of the money in the account. We do not give the proof.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces56

Class Accountmanager
{ Fct f = (x : Person) Account: ...
export

method credit = (x : Person, y : Var Amount, z : Var Account):
pre f(x) �= nil
post z’ = f(x)
∧ f(x).d’ = f(x).d+y’
∧ (f(x).a-f(x).d ≥ y ⇒ y’ = y)
∧ (f(x).a-f(x).d ≤ y ⇒ y’ = f(x).a-f(x).d)
body f(x).balance(y); z:= f(x)

}
import

a, d : Var Nat;

invariant a ≥ d;

method balance = (y : Var Amount):
pre true
post d’ = d+y’
∧ (a-d ≥ y ⇒ y’ = y)
∧ (a-d ≤ y ⇒ y’ = a-d)

}

The proof that the body of the method credit is correct with respect to the pre/post-
condition is quite straightforward using the pre/post-condition of the method balance.

�

A design by contract including a proof for a component with export and import methods
reads as follows:

Step 1: Specify: Specification by contract (SbC): We give SbCs for all methods
Step 2: Design: Component implementation

• We provide a body for each exported method
• Only method calls are allowed in the bodys that are either in the export or import

parts (no calls of "undeclared" methods)
• The body is required to fulfil the pre/postconditions

Step 3: Verify: Component verification

• Verify the pre/post-conditions for each implementation of an export method
• We refer to the SbCs for the imported (and the exported) methods use in nested

calls in the bodies when proving the correctness of each exported method w.r.t. its
pre/postconditon

An interface specification is called correctly implemented if for every export method a
body ("code") is given with an assertion proof along the lines described above.

There is some similarity to Lamport’s TLA (see [10]) where systems are modelled
by

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 57

• The set of actions a system can do
• The set of actions the environment can do
• Actions are represented by relations on states
• Fairness/lifeness properties by temporal logic on system runs
• Difference: actions are atomic - method calls are not

We may, in addition, structure the export and import part into (see chapter 6)

• a set of pairs of export and import signatures that are sub-signatures of the overall
export and import interfaces

• This pairs may be called sub-interfaces
• This leads in the direction of connectors

Given export/import components ci with i = 1, 2, and export signature EX(ci) and import
signature IM(ci) we assume that R({c1, c2}) holds, if there are no name conflicts. Then
export signature EX and import IM of the result of the composition c1 ⊗ c2 is defined by

EX(c1 ⊗ c2) = (EX(c1)\IM(c2)) ∪ (EX(c2)\IM(c1))
IM(c1 ⊗ c2) = (IM(c1)\EX(c2)) ∪ (IM(c2)\EX(c1))

The composed component c = c1 ⊗ c2

• exports what is exported by one of the components and not imported by the other
one and

• imports what is imported by one of the component and not exported by the other
one.

• Methods that imported by one component and exported by the other one are bound
this way and made local

Actually we get local (hidden) methods that way, we ignore that to keep notation simple.

5.3.2. Verification of composed components

Let all definitions be as before and assume given SbC for all methods. For proving the
correctness of composition we prove

• for each exported method m with pre-condition Pex and post-condition Qex

• that is bound by some imported method m with pre-condition Pim and post-
condition Qim such that

Pim ⇒ Pex Qex ⇒ Qim

This gives the general pattern for the d Design by contract for the export/import case:

Step S: Specify system: Export only SbC
Step A:Develop the architecture

Step AD: Design architecture: List components and their export/import methods
Step AS: Specify architecture: Give Export/Import SbC for all components
Step AV: Verify architecture: Show that for the exported method calls the
specification be contracts can be proved.

Step I: Component implementation
Step ID: Design: We provide a body for each exported method

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces58

Only calls are allowed that are either in the export or import parts
(no calls of "undeclared" methods)
Step IS: Specification taken from architecture: The body is supposed to fulfil
the pre/post-conditions
Step IV: Component verification: SbCs for imported methods are used when
proving the correctness of each exported method for its pre/postconditon

Step G:Component composition - integration: correctness for free

This gives a general scheme how to proceed in design by contract and to keep component
implementation and verification and architecture verification independent.

5.3.3. Refinement

In this section we discuss a notion of refinement that fulfils the idea of substitutability.
Given two interfaces described by specifications by contract, we relate them by re-

lating their states and their pre- and post-condition.

Definition. Refinement
Let two export/import interfaces IF1 and IF2 be given, specified by contract. Let V1 and
V2 be their attribute sets. We call IF2 a refinement of IF1 if the following conditions
hold:

• EX(IF1) ⊆ EX(IF2) and IM(IF2) ⊆ IM(IF1); this means that the refined interface
offers more methods and uses less.

• There exists a function 	: �(V2) → �(V1) called state mapping such that

∗ For the specified invariants I1 and I2 (and in analogy for the initial state asser-
tions) of the interfaces we require for all σ1 ∈ �(V1), σ2 ∈ �(V2):

I 1(σ1) ⇒ ∃σ2 ∈ �(V 2):ρ(σ2) = σ1 ∧ I 2(σ2)

I 2(σ2) ⇒ I 1(ρ(σ2))

∗ For all methods m in EX(IF1) (let P1 and Q1 be the pre- and post-conditions
of m in IF1 and P2 and Q2 be the pre- and post conditions of m in IF2) we
require:

P1(ρ(σ2)) ∧ I 2(σ2) ⇒ P2(σ2)

Q2(σ2) ∧ I 2(σ2) ⇒ Q1(ρ(σ2))

∗ For all methods m in IM(IF2) (let P1 and Q1 be the pre- and post-conditions of
m in IF1 and P2 and Q2 be the pre- and post conditions of m in IF2) we require:

I 2(σ2) ∧ P2(σ2) ⇒ P1(ρ(σ2))

Q1(ρ(σ2)) ∧ I 2(σ2) ⇒ Q2(σ2) �

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 59

These formulas mimic the situation where we replace an implementation with interface
IF1 by an implementation with interface IF2. Doing so, we assume that in the implemen-
tation of IF2 (and also in that of IF1) we call imported methods. Every time we call an
imported method in the implementation of IF2 we assume when calling it that the pre-
and post-conditions according to the import specifications hold. This is done in state, say
σ2. Seen in terms of the original program, this is as if the method is called in state ρ(σ2).
The refinement condition then guarantees that also the original precondition P1(ρ(σ2))
holds. After the call Q1(ρ(σ2)) can be assumed; by the refinement condition we can as-
sume that the assertion Q2(σ2) holds. If we add methods that respect the invariants to
the export part of an interface we get a refinement. The definition shows a way to prove
refinement relations between interfaces. In this case, since the specification by contract
captures all the effects of calls of exported methods, this relation is most relevant. For
imported methods the refinement relation is mainly of interest in cases where implemen-
tations exist and we want to make sure that these also work in the refined case if we call
the imported functions of the interface IF1 instead of those of the interface of IF1.

Refinement is helpful in a number of situations to relate interfaces and components.
It supports the stepwise introduction of more and more specific properties.

6. Towards a Theory of Components and Architectures in Object Orientation

In this chapter we discuss where we are with our theory of components and architectures
in object orientation. In this section we relate the introduced notion of object orienta-
tion to those of the theory introduced in section 3. We discuss the state of the art and
methodological challenges.

6.1.1. What is a Component in Object Orientation

In object orientation an obvious first choice for the notion of a component is a class. Ac-
tually one can argue that rather objects should be considered components. We, however,
prefer to see components as building blocks at design time in contrast to objects that are
rather building blocks at runtime. So, for our purpose, classes or compounds of classes
are an obvious choice. But is a class really a good choice for the notion of a component?

Obviously classes have a lot of properties addressing the idea of components. There
is a notion of interface, state encapsulation, and information hiding for classes as we
would expect it for components. There are, at least, two arguments, however, throwing
some doubts on the idea that classes may be good candidates for components:

• Classes are too small. Actually, of course, one may argue that we can write very
large classes. But then we get unstructured huge entities. For components we
need larger building blocks with additional hierarchical structuring concepts (the
threads of Java are a much too low level concept).

• The concept of concurrency is not support by conventional classes.
• There is no tractable interface specification technique for classes with export and

import.

This shows that classes, although they provide concepts close to what we need for com-
ponents, fail to address necessary requirements for the notion of components.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces60

6.1.2. What is Composition in Object Orientation

There is no widely accepted concept of composition in object orientation. Nevertheless,
it is not so difficult to define a concept for composition in object orientation. Given two
classes with export and import methods (where import methods are related to objects of
certain classes), we can compose them in a way, where classes may mutually call meth-
ods in their import signature that are in the export signature of the other class. We speak
of internal calls. For simplicity, we ignore any problems that may arise with inheritance
and method overloading where methods may be called for classes with names that do not
occur in the export of the class or methods. So we concentrate on the method names and
ignore any aliasing.

We start with the definition, when two classes can be defined. Given classes ci with
i = 1, 2, and export signature EX(ci) and import signature IM(ci) we define that � ({c1,
c2}) holds, if there are no name conflicts. Then export signature EX and import IM of
the result of the composition c1 ⊗ c2 is defined by

E X (c1 ⊗ c2) = (E X (c1) \ I M(c2)) ∪ (E X (c2) \ I M(c1))

I M(c1 ⊗ c2) = (I M(c1) \ E X (c2)) ∪ (I M(c2) \ E X (c1))

In other words, in the composed class c = c1 ⊗ c2 exports what is exported by one of
the classes and not imported by the other one and imports what is imported by one of its
component classes and not exported by the other one.

Next we consider the semantic composition of the two state machines associated
with the classes or interfaces ci (i = 1, 2):

�i :Statei × I n(ci) → (Statei × Out (ci)) ∪ {⊥}
Now we define the composed state machine

�:State × I n(c) → (State × Out (c)) ∪ {⊥}
as follows

State = State1 × State2

and for x ∈ In(c) and (s1, s2) ∈ State1 × State2 we define:

x ∈ I n(c1) ∧ (s
′
1, y) = �1(s1, x) ⇒ y ∈ I n(c2) ⇒ �((s1, s2), x) = �((s

′
1, s2), y)

∧ y �∈ I n(c2) ⇒ �((s1, s2), x) = ((s
′
1, s2), y)

x ∈ I n(c1) ∧ �1(s1, x) =⊥⇒ �((s1, s2), x) =⊥
In other words, we give the input to that state machine to which the input fits. If the
output is in the input of the other state machine, we do another state transformation. If
this is done forever, then the state transition does not terminate, and thus �(s1, s2), x) =
⊥ . In analogy we define the case where the input goes to the second component:

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 61

x ∈ I n(c2) ∧ (s
′
2, y) = �2(s2, x) ⇒ y ∈ I n(c1) ⇒ �((s1, s2), x) = �((s1, s

′
2), y)

∧ y �∈ I n(c2) ⇒ �((s1, s2), x) = ((s1, s
′
2), y)

x ∈ I n(c2) ∧ �2(s2, x) =⊥⇒ �((s1, s2), x) =⊥
This gives a recursive definition for the state transition function � for the composed
component. This way we define

� = �1 ‖ �2

Actually, this way of definition results in a classical least fixpoint characterization
of the composed transition relation �

6.1.3. What is a System in Object Orientation

A system in object orientation in terms of our theory is a class or a set of classes (perhaps
a composed one) with an empty import signature. A system nevertheless can actually be
composed with a component in an interesting way. Consider a system s with the export
set EX(s) and import set IM(s) = ∅ and a component c with EX(s) ⊆ IM(c). Then the
term c ⊗ s describes a composed system where s is used as a local sub-system. For two
systems composition degrades to the union of the signatures.

6.1.4. Intermediate Conclusion

We have defined a first step of an instance of a theory of components, interfaces, and
composition in object orientation. What we presented is certainly not sufficient for prac-
tical purposes. However, it gives a first idea what can be achieved and shows the limita-
tions of existing approaches and unsolved problems.

Perhaps, it is worthwhile to draw a bottom line for what we have achieved by our
theory and also to draw some conclusions:

• We defined a concept of component in OO as a generalization of the concept of
a class: a component is a set of classes and their visible methods, divided into
export, import and internal (hidden) ones.

• We described a model for this concept of components, namely state machines
with input and output.

• We introduced composition for this concept of components.
• But we pay a (too) high price: we have to make the call stack explicit in the state

space of the machine, in general.

There seems to be only one way out: introducing an explicit notion of a component,
defining a wrapper for a set of classes and the methods (being the components in object
orientation as we have introduced them), and connecting them by asynchronous message
passing.

6.2. Components in Object Orientation

Based on the idea of export/import interfaces we define the general notion of a compo-
nent. Following ideas of architectures where each component is connected over a num-

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces62

Figure 6. Component with three individual export/import interfaces

ber of separate interfaces to components we generalize now export/import interfaces to
object-oriented components where a component has a collection of export/import inter-
faces.

Multiple export/import interfaces have proven to be useful when specifying systems
top down, since in this case distinct functionalities may be assigned to a single compo-
nent without specifying how these tasks are accomplished. Multi-threaded components
are helpful when specifying systems with certain response time requirements and mul-
tiple users / neighbour systems or when separating complex computation (e.g. search,
simulation, remote access) from control interfaces (e.g. GUI). As a consequence, a con-
ventional class as found in object orientation is a special case of a component which is
only single-threaded and has only one export/import interface.

Definition. Syntactic component interface
A syntactic component interface consists of a set syntactic export/import interfaces. �

A component with a set of syntactic export/import interfaces can easily be described
graphically as shown in Fig. 6.

We can take an arbitrary export/import interface and turn it into a component by par-
titioning it into a set of sub-interfaces. On the other hand we always can turn a component
into an export/import interface by taking the union over all import interfaces forming
one huge import interface and also taking the union over all export interfaces forming
one huge export interface. In other words the separation into a number of export/import
interfaces provides additional structure but does not lead to more complex models of be-
haviour.
We now give a first, moderately complex example of a component and its specification.

Example. Authorization
We base our specification on a data model for the authorization component. We can do
this by an algebraic specification as it was shown for sequences. Since the axioms are

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 63

Figure 7. Component Authorization

rather straightforward, we skip them.

SPEC AUTH =
{ based_on BOOL, User, Action

sort Auth,

eauth : Auth, "Empty authorization"
addAct : Action, Auth → Auth, "new action"
addUse : User, Auth → Auth "new user"
addAuth : User, Action, Auth → Auth

knownUse : User, Auth → Bool,
knownAct : Action, Auth → Bool
isAuth : User, Action, Auth → Bool

delAct : Action, Auth → Auth, "del action"
delUse : User, Auth → Auth "del user"
delAuth : User, Action, Auth → Auth

Auth generated_by eauth, addAct, addUse, addAuth
Axioms

...
}

The design by contract for the component based on this specification is directly
based on this specification and reads as follows (example due to [19]):

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces64

Component Authorization {

a : Var Auth

interface AuthorizationOracle
{
export
method mayPerform (x : User, y : Action, r : Var Bool)

pre knownUse(x, a) ∧ knownAct(y, a)
post r’ = isAuth(x, y, a)

}

interface AuthorizationAdmin
{
export
method existUser(x : User, r : Var Bool)

pre true
post r’ = knownUse(x, a)

method addUser(x : User)
pre true
post a’ = addUse(x, a)

method removeUser(x : User)
pre true
post a’ = delUse(x, a)

method existAction(v : Action, r : Var Bool)
pre true
post r’ = knownAct(x, a)

method addAction(y : Action)
pre true
post a’ = addAct(x, a)

method removeAction(y : Action)
pre true
post a’ = delAct(x, a)

method allow(x : User, y : Action, r : Var Bool)
pre knownUse(x, a) ∧ knownAct(y, a)
post a’ = addAuth(x, y, a) ∧ r’ = not isAuth(x, y, a)

method disallow(x : User, y : Action, r : Var Bool)
pre true
post a’ = delAuth(x, y, a) ∧ r’ = isAuth(x, y, a)

method getAllowedActions(x : User, actionlist : Var List)
pre true
post act ∈ actionlist ⇔ knownAct(act, a)

method getAllowedUsers(y : Action, userlist : Var List)
pre true
post user ∈ userlist ⇔ knownUse(user, a)

}}

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 65

A graphical representation of the component Authorization is shown in Fig. 7. In this
case we work only with an attribute that is global to all interfaces of the component. It is
not a problem to introduce attributes that are local to the interfaces. Formally this is just
a restricted use of general attributes. �

The specification by contract of a component is like that of an export/import inter-
face as long as we do not consider the structure of forwarded calls and back-calls. The
specification expresses that the component works properly and has the indicated effects
as long as the environment provides the imported methods as specified. If there is a more
complicated situation due to forwarded invocations and back-calls we have to work with
the more involved specification techniques such as state machines as discussed above.

In the next section we show how to relate interfaces of components to compose the
components.

6.3. Interface Abstraction by Functions on Streams

So far we have modelled interfaces by state machines. Actually, the state space is thus
part of the interface model. At the end there are several state machines modelling in-
terfaces that are observably equivalent, but use different state spaces. One way to relate
these state machines are simulations in terms of relations between the state spaces that
relate states (or sets of states) with the same traces of pairs of input output in the state
transitions. Another possibility is the definition of a mapping that assigns an explicit de-
notation for a state machine for each state in terms of a function on sequences also called
streams. This function is called interface abstraction. It is specified as follows: given a
state machine.

�:State × I n (c) → (State × Out (c)) ∪ {⊥}
we specify a function

α�:State → (
I n (c)∗ → Out (c)∗

)

by (let x ∈ I n (c)∗;by 〈i〉∧x we denote the concatenation of a one element sequence 〈i〉
with the stream x)

(σ ,, O) = � (σ, i) ⇒ α�(σ)
(〈i〉∧ x

) = 〈o〉∧ α�(σ ,) (x)

� (σ, i) = ⊥ ⇒ α�(σ)
(〈i〉∧ x

) = 〈〉
Obviously α�(σ) is prefix monotonic. α�(σ) is the abstract interface for the state
machine(�, i), which is the state machine with the initial state �. Two classes c1 and
c2 are observably equivalent, if and only if their state machines(�1, σ1) and (�2, σ2)
fulfil the equation

α�1 (σ1) = α�2 (σ2)

This definition is rather abstract. However, we get a quite concrete idea of a specification
following this idea by specifying equations.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces66

Figure 8. Message sequence chart for the Accountmanager

Example. Account manager (continued)
We reconsider the simple (class Accountmanager). We define the associated function α
by one equation:

α
(〈credit (e, sel f, x, y, z)〉∧ 〈return_balance (sel f, other, w)〉∧ x

) =

〈balance (sel f, f (x), y))〉∧ 〈return_credit (e, sel f, x, w, f (x))〉∧ α(x)

In this case the specification fairly simple due to the simple structure of the class. In
particular, the problem of making the stack explicit disappears.

Note that the sequence chart in Fig. 8 has according to [4] exactly the meaning of
the formula above. �

The example shows a line of specifications of export/import interfaces. A better-tuned
syntax - for instance special tables - is needed, of course, to make it into a useful tech-
nique. Representing object/class behaviours by functions on streams we can use all the
specification techniques available for stream process functions (see [3]).

6.4. Interface Projection

We may hide some export and import methods in an interface. This is a way to get
simplified versions of a component and simplified views on interfaces. Assume we have
a huge component with many interfaces. A large state machine can, in principle, give a
precise description of the behaviour of the component in a state based approach. Such a
comprehensive behaviour may be rather complex and difficult to understand. Often we
are interested in the behaviour of a component with respect to an isolated interface. More

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 67

precisely, we assume that all transitions with methods that are not part of that interface
are internal and nondeterministic. Given a state machine

�:State × I n (c) → (State × Out (c)) ∪ {⊥}

we define the interface projection to the sub-interface c, as follows.We define the nonde-
terministic state machine (let c,, be the export/import interface with EX(c,,) = IM(c\c,)
and IM(c,,) = EX(c\c,)).

�′′:State × I n (c,,) → ℘ (State × Out (c,,))

specified by the transition function, that may respond to every call with arbitrary return
messages and arbitrary back calls. The machine is highly nondeterministic. We only as-
sume for the machine that it follows the proper scheme of calls and returns (only returns
occur for calls that have been issues). Now we define the projection

�′:State × I n(c′) → ℘((State × Out (c′)) ∪ { ⊥ }

by

�′ = � ‖ �′′

This definition puts arbitrary input and output on the hidden methods. The idea of hidden
state transition proves to be useful also elsewhere. Interface projections are refined by
the original interface.

7. Composition

In this chapter we finally deal with the composition of components. We are interested in
composing two or more components into a composed component. We do that by con-
necting their interfaces. Due to the typical graphical descriptions of object orientation by
diagrams most object oriented methodologies do not consider the composition of classes
at all. In this section we show how to compose classes by connecting their interfaces.

One reason for ignoring composition by most of the approaches to object orientation
has to do with the fact that imported methods are kept implicit and the behaviour is not
described by an open component architecture. Only if we make export/import of methods
explicit and use modular specifications, composition is turned into an interesting concept.

7.1. Connecting Interfaces

In this section we study the composition of components by connecting some of their
interfaces. This means that we bind imported methods of one component with exported
methods of the other one.

In general, we cannot obtain a pure input/output oriented description of a composed
system in a straightforward way from the state machines describing the sub-systems that
are composed. The reason is that some unbounded chain of method invocations may take

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces68

Figure 9. Component composition by connection

place between the subsystems within the composed system. This corresponds to state
transitions without input or output.

In the following we give a general approach to composing components. In particular,
we show how to incorporate all the local state changes.

7.1.1. Syntactic Connection via Interfaces

To give a syntactic notion of component composition we define the matching of ex-
port/import interfaces.

Definition. Syntactic Matching export/import interfaces
Given an export/import interface F we call an interface F’ matching with F, if IM(F’) ⊆
EX(F) and IM(F) ⊆ EX(F’). �

If we have two components CA and CB such that CA has an interface CAI that
matches the interface CBI of CB, then we can connect the components via these two
interfaces.

Definition. Composing two components via matching interfaces
Given two components CA and CB such that CA has an interface CAI that matches
the interface CBI, then we can connect these into component denoted by CA[CAI ↔
CAI]CB. This component has the union of the sets of interfaces of CA and CB as its
interface except CAI and CBI. �

Fig. 9 shows the composition of the two components by connecting the matching in-
terfaces. In fact, this definition of composition by connecting interfaces is only syntactic
and rather straightforward.

7.1.2. Composing a State Machine from Two by Interface Connection

If we consider two components CA and CB such that CA has an interface CAI that
matches the interface CBI of component CB, then we can connect these. Assume both

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 69

components are described by state machines. Let the objects a1 and b2 of CA and CB
resp. be given by state machines with state spaces �(V1) and �(V2). Let us compose a1
and b2 by connecting their interfaces CAI and CAB. We get a state machine with state
space �(V1 ∪ V2).

Fig. 9 shows the composition of components. The construction of the composed state
machine is as shown before. More difficult is the derivation of the specification or the
design by contract specification for the new state machine out of the given specifications
of the original state machines or the original design by contract specification.

The difficulty here is as follows. If we connect the two interfaces there may be a stat-
ically unbounded number of method invocations going on between the two components
over the connected interface in terms of forwarded method calls and back calls. We speak
of "internal chatter". These method invocations correspond to internal state changes af-
ter the composition. We need in the general case an invocation stack as part of the state
of the new component to be able to determine where to continue after return messages
arrive. If we have introduced such a stack as shown in section 5.2, we get internal state
transitions that we would like to get rid of. Moreover, we have to characterize the gener-
ated states as required in the post-condition while the generated state may be the result
of many method invocations going back and forth between the two components.

In technical terms each method invocation at the connected interface results in a
state transition in which something is pushed onto the stack and each return results in a
state transition where something is popped from the stack.

7.2. Other Forms of Composition

Given a syntactic notion of component in object orientation and a notion of composi-
tion the semantically interesting issue is how to model and express composition at the
semantic level.

7.2.1. Composition and Semantic Models for Components

We have considered three concepts for representing the meaning of components inde-
pendent of code: specification by contract, state machines, and functions of streams of
invocation messages.

We have explicitly defined composition for state machines representing behaviours
of nondeterministic components. Another idea would be to introduce composition for
stream processing functions representing behaviours of nondeterministic components. In
fact, this can be defined along the lines of [3].

We do not work out and show this composition explicitly. We only remark that this
can be done in a way such that interface abstraction and composition form commuting
diagrams - in other words, interface abstraction is a homomorphism for composition on
state machines to composition on stream processing functions.

Note that giving a composition in terms of design by contract interface specifications
is a more difficult problem. The key problem is to find the pre- and post conditions of the
composed component.

7.2.2. Inheritance

We did not consider, inheritance, at all. There are several reasons for that. First of all,
inheritance is mainly interesting for either discussing the type structure of the types that

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces70

correspond to classes or, at the code level, for dealing with its effects to inherited code.
This allows for methodologically unclean methods such as overwriting of method code
in inherited methods.

Another issue of inheritance is the clean description of the type structure (see, for
instance, [5]). We are not interested in the type structure in this paper.

The effects of inheritance on the notion of observability, is, however, of some rel-
evance for our theme. An interesting question is, whether inheritance can be seen as a
form of composition. In fact, assuming multiple inheritance, where a class can inherit
attributes and methods, we may speak of a kind of composition. On one hand, this is se-
mantically not very interesting, as long as this way unions of families of disjoint attribute
and method sets are formed. If, however, this way methods are added that allow for new
state changes, for instance, then old invariants may become invalid. This poses questions
for the specification by contract in the presence of inheritance.

More interesting, however, is the effect of inheritance for observability. By inheri-
tance we get an additional concept of observability that allows us, in principle, to observe
all the implementation details of a class - details that should be protected by information
hiding.

8. Concluding Remarks

Object orientation is a popular programming paradigm that is used quite a lot in prac-
tical projects. As we have demonstrated, the methodology for object orientation is still
insufficient and incomplete. We demonstrated the limitations and shortcomings of cur-
rent approaches. Some may be due to the chosen specification concepts. Others are in-
herent to object orientation and part of this paradigm. We introduced a general notion of
component, but still a tractable specification method is not available.

There are a number of directions of research to overcome the described difficulties.
One step could be to introduce an explicit notion of component into object oriented
languages with a different composition paradigm - such as for instance asynchronous
message exchange between components, which encapsulate a family of classes, which
cooperate locally by method invocation. Then components form the architecture, which
can be hierarchically structured, while the class concepts inside the components represent
a detailed design.

Another step would go into a more interaction oriented direction where the cooper-
ation between classes and their objects is specified in terms of method invocation proto-
cols along the lines of assertions on streams as used in FOCUS (see [3]).

Acknowledgement

It is a pleasure to thank Andreas Rausch, Bernhard Rumpe and Siedersleben for discus-
sions and feedback on topics of this paper. Thanks go also to Andreas Bauer und Tobias
Hain for reading drafts.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 71

References

[1] M. Barnett, R. DeLine, B. Jacobs, M. Fähndrich, K. R. M. Leino, W. Schulte, H. Venter: The Spec#
programming system: Challenges and directions. Position paper at VSTTE 2005

[2] M. Broy, C. Hofmann, I. Krüger, M Schmidt: A Graphical Description Technique for Communication
in Software Architectures. In: Joint 1997 Asia Pacific Software Engineering Conference and Interna-
tional Computer Science Conference (APSEC’97/ICSC’97)

[3] M. Broy, K. Stølen: Specification and Development of Interactive Systems: FOCUS on Streams, In-
terfaces, and Refinement. Springer 2001

[4] M. Broy: The Semantic and Methodological Essence of Message Sequence Charts. Science of Com-
puter Programming, SCP 54:2-3, 2004, 213-256

[5] M. Broy, M. V. Cengarle, B. Rumpe; Semantics of UML. Towards a System Model for UML. The
Structural Data Model, Technische Universität München, Institut für Informatik, Report TUM-IO612,
Juni 06

[6] L. de Alfaro, Th. A. Henzinger. Interface-based design. In Engineering Theories of Software-intensive
Systems (M. Broy, J. Grünbauer, D. Harel, and C.A.R. Hoare, eds.), NATO Science Series: Mathe-
matics, Physics, and Chemistry, Vol. 195, Springer, 2005, pp. 83-104

[7] D. Herzberg, M. Broy: Modeling layered distributed communication systems. Formal Aspects of
Computing 17:1, May 2005, 1-18

[8] C.A.R. Hoare: An Axiomatic Basis for Computer Programming. Comm. ACM 12, 576-583 (1969)
[9] I. Krüger, R. Grosu, P. Scholz, M. Broy: From MSCs to statecharts. In: Proceedings of DIPES’98,

Kluwer, 1999
[10] L. Lamport: Specifying Systems: The TLA+ Language and Tools for Harware and Software Engi-

neers. Addison-Wesley Professional 2002
[11] G. T. Leavens, K. R. M. Leino, P. Müller: Specification and verification challenges for sequential

object-oriented programs. TR 06-14, Dept. CS, Iowa State University, 2006
[12] Bertrand Meyer: Object-Oriented Software Construction, Prentice Hall, 1988
[13] Bertrand Meyer: Applying "Design by Contract ", in Computer (IEEE), 25, 10, October 1992, pages

40-51
[14] P. Müller, A. Poetzsch-Heffter: Modular Specification and Verification Techniques for Object-

Oriented Software Components. In: Leavens, G. T. and Sitaraman, M. ed., Foundations of
Component-Based Systems. Cambridge University Press 2000

[15] Oscar Nierstrasz: ECOOP’93 - Object-Oriented Programming, 7th European Conference, Kaiser-
slautern, Germany, Jul 26-30, 1993, Proceedings Springer 1993

[16] D. Parnas: On the criteria to be used to decompose systems into modules. Comm. ACM 15, 1972,
1053-1058

[17] A. Poetzsch-Heffter: Specification and Verification of Object-Oriented ProgramS. Habilitation thesis,
Technical University of Munich, Available, January, 1997

[18] B. Selic, G. Gullekson. P.T. Ward: Real-time Objectoriented Modeling. Wiley, New York 1994
[19] J. Siedersleben: Moderne Software-Architektur. Umsichtig planen, robust bauen mit Quasar. Dpunkt

Verlag, August 2004
[20] M. Spivey: Understanding Z - A Specification Language and Its Formal Semantics. Cambridge Tracts

in Theoretical Computer Science 3, Cambridge University Press 1988
[21] G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language for Object-Oriented Develop-

ment, Version 1.0, RATIONAL Software Cooperation
[22] P. Wegner, S.B. Zdonik: Inheritance as an Incremental Modification Mechanism or What Like Is and

Isn’t Like. In Proceedings ECOOP’88, ed. S. Gjessing and K. Nygaard, Lecture Notes in Computer
Science 322, Springer-Verlag, Oslo, Aug. 15-17, 1988, 55-77

[23] M. Wirsing, P. Pepper, H. Partsch, W. Dosch, M. Broy: On hierarchies of abstract data types. Technis-
che Universität München, Institut für Informatik, TUM-18007, May 1980. Revidierte Fassung: Acta
Informatica 20, 1983, 1-33

[24] P. Zave, M. Jackson: Four dark corners of requirements engineering. ACM Transactions on Software
Engineering and Methodology, January 1997

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces72

Using Invariants to Reason About
Cryptographic Protocols

Ernie COHEN

Microsoft Corporation, Redmond, USA

Abstract. This tutorial describes how to reason about cryptographic protocols in
perfect cryptography models using ordinary program invariants.

1. Introduction

If there is a lesson to be learned from the last 30 years of concurrent programming re-
search, it is that the most effective way to prove safety properties of most concurrent
programs is to use global invariants, and that improvements to concurrent programming
reasoning methodology come from finding better ways to structure these invariants.

A good example is the analysis of cryptographic protocols in perfect cryptography
models. For many years, the research community virtually ignored invariance reasoning,
wandering through dead-ends such as special-purpose epistemic logics. When hitherto
undiscovered bugs finally drove the community back to operational models, the first in-
variance proofs were initially difficult, requiring complex, recursive invariants that were
specific to the particular property being proved[6,5]. A major simplification came with
the discovery of a new invariant structure that simultaneously took into account the whole
system state[2].

In this tutorial, we present a simple way to use ordinary program invariants to reason
about cryptographic protocols. Of course, few readers need to do such reasoning. We
present the tutorial because there is a tendency nowadays to thing of invariants as big,
unstructured set of states that should be generated by finite-state exploration. In fact, a
suitable invariant structure is the key to effective reasoning in any new program domain.

2. Cryptographic Protocols

Cryptographic protocols can be viewed as distributed programs with three distinguishing
features:

• they are designed to operate in a hostile communication environment, where
an adversary with certain computational abilities controls the communication
medium;

• they make essential use of secrets, typically created through random number gen-
eration;

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

73

• they use encryption to hide these secrets from the adversary, while revealing them
to appropriate participants.

As an example, we’ll take what has become a standard benchmark in the field, the
Needham-Schroeder-Lowe public key1 authentication protocol [4]:

A→B: {A, Na}k(B)

B→A: {B, Na, Nb}k(A)

A→B: {Nb}k(B)

Following traditional protocol notation, tuples are enclosed in curly braces and sub-
scripting denotes encryption. Here, A and B represent names of principals (protocol par-
ticipants), and Na and Nb represent nonces (freshly generated random numbers), gener-
ated by A and B, respectively.

The steps above describe a typical sequence of messages sent in a single protocol
session. There can be any number of such sessions going on at the same time. The pur-
pose of this protocol is to allow A and B to securely exchange nonces (typically to be
used to generate a shared secret key for subsequent communication). In the first step,
A generates a nonce Na , tuples it together with his name, encrypts the tuple under B’s
public key, and sends the message to B. When B receives the message, he decrypts it,
generates his own nonce Nb, tuples it together with his name and Na , encrypts the tu-
ple under A’s public key, and sends the message back to A. When A receives the reply,
he decrypts the message, checks that the Na value agrees with the value he sent in his
first message, and sends the Nb value from the message back to B, encrypted under B’s
public key. When B receives this message, he checks that the Nb value agrees with the
value he sent in the second step, and accepts the protocol as finished.

This protocol is designed to operate in parallel with an adversary that can copy,
delete, reorder, or redirect any messages. In addition, he can form new messages by
encrypting messages that he has seen under keys that he has seen, and can decrypt a
message he has seen if he has also seen a suitable decryption key. The properties we
would like to prove for the protocol are

• if A completes the third protocol step successfully, then either B has completed
the second protocol step with corresponding values for A, Na and Nb, or one of
A or B is compromised (i.e., his private key is available to the adversary);

• if B accepts the protocol as completed, then either A has completed the third
protocol step with corresponding values for B, Na , and Nb, or one of A or B is
compromised.

Other properties, such as the conditions under which Na and Nb remain secret, are
proved in the course of establishing suitable invariants for the NSL protocol.

3. Modeling the Protocol

In order to reason about the protocol above, we must first translate it into a transition sys-
tem. This means we have to model both the state space and the transition relation. Mod-

1In fact, we formulate the protocol so that the type of key used is irrelevant to the correctness proof.

E. Cohen / Using Invariants to Reason About Cryptographic Protocols74

eling the transition relation means modeling both the actions of the protocol participants
and the actions of the adversary.

3.1. Encryption

Consider first the situation where B has received the first message sent by A. We want
to make sure that the values for A and Na he obtains by decrypting the message agree
with the values used to generate the message. The usual way to allow such reasoning is
to assume that encryption is injective in all of its arguments. Similarly, we would expect
normally that principals do not share public keys. We can formalize these as axioms on
the message space; we refer to these axioms jointly as “injectivity”:

{ �X}Y = {�U}V ⇒ �X = �U ∧ Y = V

k(X) = k(Y) ⇒ X = Y

When writing formulas, ordinary identifiers starting with uppercase letters (such as Y
and V above) are variables ranging over messages (the data values manipulated by prin-
cipals and sent between principals); variables written with vector notation (such as �X
and �U above) range over tuples of message values. Both kinds of variables are implicitly
universally quantified when they appear free in a formula. We consider two tuples to be
equal if they have equal length and corresponding components are equal.

We need to model when the adversary can decrypt an encrypted message. This de-
pends on the kind of cryptography used for the encryption. To handle many flavors of
cryptography at once, we represent the relation between encryption and decryption keys
with a binary relation d(X, Y); intuitively, d(X, Y) (“X decrypts for Y ”) means that
messages encrypted under key Y can be decrypted with key X . For example, we could
define symmetric keys, key pairs, and cryptographic hash functions with the axioms

sk(X) ⇔ (∀Y : d(Y, X) ⇔ X = Y)

kp(X, Y) ⇔ X �= Y ∧ (∀Z : (d(Z, X) ⇔ Z = Y) ∧ (d(Z, Y) ⇔ Z = X))

hash(X) ⇔ (∀Y : ¬d(Y, X))

These say that (1) a key is symmetric if it is the only key that decrypts for itself, (2) a
pair of keys is a key pair if the two keys are the only keys that decrypt for each other, and
(3) encryptions under a cryptographic hash function cannot be decrypted.

We say that a message is atomic if it is not in the range of encryption:

atom(X) ⇔ (∀�Y , Z : X �= {�Y }Z)

We distinguish atoms because some operations (like random nonce generation) should
not produce encryptions.

3.2. The State Space

As usual, the state of a distributed system can be obtained by composing the state of the
principals along with the state of the communication medium.

The usual way to model the communication state of a distributed program is with
a queue of messages between each pair of communicating principals. However, because

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 75

the adversary controls all message delivery, there is little point in keeping track of what
order messages were sent (since the adversary can reorder messages), how many times
a sent message was sent (since the adversary can duplicate or delete messages), or even
where a message was sent from/to (since the adversary can move messages between
channels). This means that the relevant communication state is given by the set of all
messages that have ever been sent (by anybody). We can represent this state by a single
state predicate pub(X) (“X is published”). Thus, sending a message is just publishing
it, and receiving a message is just checking that it has been published.

Next, consider the state of the adversary. The adversary can construct new messages
from the messages that he has seen or constructed. Rather than trying to track these sepa-
rately, we might as well assume that the adversary has seen every published message, and
that he publishes every message that he constructs. Thus, the adversary simply constructs
new messages from previously published messages, and publishes the results.

Finally, consider the state of a principal. The obvious model is a set of protocol
sessions, each recording the history of the session. However, this approach has some
drawbacks; many protocols include actions that are not conveniently associated with a
single protocol session (for example, generating a long-term key to be shared between
two principals), or have a structure that is not conveniently broken up into sessions. So
instead, we just record what protocol actions have been executed, without trying to group
the actions into sessions. (We are on safe ground in doing this, because we could always
introduce additional session identifiers into the individual protocol actions.) Formally
speaking, we introduce a history predicate for each protocol action; the arguments to
each predicate capture the relevant state of the principal performing the action.

For example, in the NSL protocol, we can record instances of the first protocol ac-
tion with a predicate p0(A,Na, B); for any messages A,Na , and B, this predicate is true
iff principal A has executed the first protocol step, intending to communicate with B, and
generating nonce value Na . Similarly, we can record instances of the second and third
steps with state predicates p1(A, B,Na,Nb) and p2(A, B,Na,Nb). Finally, we can
record B accepting the final protocol message with a state predicate p3(A, B,Na,Nb).

The state of the whole system is given by the values assigned to the state predicates
pub,p0,p1,p2, and p3. By the “value” of a state predicate, we mean an interpretation in
the usual sense of logic, i.e. a state assigns to each state predicate a set of tuples for which
the predicate is true.

Since state predicates record history, they are monotonically weakening during pro-
tocol execution. (Published messages are never unpublished, executed protocol steps are
never unexecuted.) We say a formula is positive iff state predicates appear in the formula
only with positive polarity (i.e., governed by an even number of negations). It follows
that every positive formula is stable - if it holds in a state, it also holds in all subsequent
states. This property simplifies program reasoning considerably.

3.3. Actions

We specify the transitions of the model with actions of the form

guard −→ terms

where guard is a formula and terms is a list of state predicates applied to terms. This
action is executed by nondeterministically choosing an arbitrary message value for each

E. Cohen / Using Invariants to Reason About Cryptographic Protocols76

free variable in the action, such that guard is true in the current state, and adding a
minimal set of tuples to the interpretations of the state predicates to make each of the
formulas of terms true. For example, the action

pub(A) ∧ pub(B) ∧ atom(Na) −→ p0(A, B,Na)

is executed by choosing arbitrary values for A, B and Na such that A and B are pub-
lished and Na is an atom, and adding the corresponding (A, B,Na) tuple to p0.

3.4. Adversary Actions

The adversary can

• publish a new random nonce (adversary nonce generation);
• tuple together a number of published messages, encrypt them under a published

key, and publish the result (adversary encryption);
• publish �X , if { �X}Y is published and there is a published key that decrypts for Y

(adversary decryption).

Consider first random nonce generation. The NSL protocol suggests two require-
ments:

• No random nonce value should be generated more than once. Otherwise, the ad-
versary might luckily generate some nonce that was being kept as a secret, and
use it to compromise the protocol just as if he knew the secret. In other words, the
newly generated value must be fresh.

• Randomly generated nonces should not collide with encryptions. Otherwise, the
adversary could break the protocol by just randomly generating the second pro-
tocol message, fooling A into thinking that B had executed his first step. In other
words, the newly generated value must be atomic.

We can define freshness as follows. A fresh value should not coincide with a nonce value
that has been generated either for Na in the first protocol step or for Nb in the second
step, nor should a fresh value be published. (This latter requirement guarantees that it
doesn’t collide with nonces previously generated by the adversary.) In other words, we
should have the properties

fresh(X) ⇒¬p0(A, B, X)(1)

fresh(X) ⇒¬p1(A, B,Na, X)(2)

fresh(X) ⇒¬pub(X)(3)

(Note that freshness will normally be state dependent, but is not stable.) We can then
specify adversary nonce generation with the action

fresh(X) ∧ atom(X) −→ pub(X)

Adversary encryption translates directly to

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 77

pub(�X) ∧ pub(Y) −→ pub({ �X}Y)

Here, as below, pub(�X) means that every component of the tuple X is published.
Define dk(X) (“X is a decryptable key”) iff some published key decrypts for X:

dk(X) ⇔ (∃ Y : d(Y, X) ∧ pub(X))

We can then model adversary decryption with the action

pub({ �X}Y) ∧ dk(Y) −→ pub(�X)

3.5. Protocol Actions

Finally, we turn to formalizing the actions of the protocol itself. To save writing the same
message terms over and over, let’s define some macros:

m0 = {A,Na}k(B)

m1 = {B,Na,Nb}k(A)

m2 = {Nb}k(B)

The obvious way to formalize the first step is with the action

fresh(Na) ∧ atom(Na) −→ p0(A, B,Na), pub(m0)

However, this does not constrain A in any way. For example, we could choose for A
a value that contains some arbitrary secret, which would obviously break the protocol.
So we must constrain A (at least) to not leak any new information. The simplest way to
make sure that a piece of data cannot leak information is to make sure that it is already
published:

fresh(Na) ∧ atom(Na) ∧ pub(A) −→ p0(A, B,Na), pub(m0)

For the second step, we have to constrain B (since it was not constrained in the first
step). As expected, we model the receipt of m0 by checking that it is published:

pub(m0) ∧ fresh(Nb) ∧ atom(Nb) ∧ pub(B) −→ p1(A, B,Na,Nb), pub(m1)

For the third step, A has to check that we’ve already started a “session” with appropriate
values for B, and Na; similarly, before finishing the protocol, B must check that the Nb
value he receives corresponds to the value he sent in the second step:

p0(A, B,Na) ∧ pub(m1) −→ p2(A, B,Na,Nb), pub(m2)
p1(A, B,Na,Nb) ∧ pub(m2) −→ p3(A, B,Na,Nb)

E. Cohen / Using Invariants to Reason About Cryptographic Protocols78

As it turns out, we almost always use state predicates with the exact arguments given
above. To reduce unnecessary writing, we use the convention that whenever one of the
state predicates p0. . . p3 appears with no arguments, it implicitly applies to the default
sequence of arguments given above. (To take care of cases where we want a history
predicate applied to a second set of arguments, p0′ abbreviates p0(A′, B′,Na ′), and
similarly for the other history predicates.) Thus, we can rewrite the whole model more
succinctly as follows:

fresh(X) ∧ atom(X) −→ pub(X)

pub(�X) ∧ pub(Y) −→ pub({ �X}Y)

pub({ �X}Y) ∧ dk(Y) −→ pub(�X)
fresh(Na) ∧ atom(Na) ∧ pub(A) −→ p0, pub(m0)
pub(m0) ∧ fresh(Nb) ∧ atom(Nb) ∧ pub(B) −→ p1, pub(m1)
p0 ∧ pub(m1) −→ p2, pub(m2)
p1 ∧ pub(m2) −→ p3

While this kind of abbreviation is not terribly important for a toy protocol like this
one, real protocols often have state predicates with many arguments, making explicit
parameter lists painful and error prone. (A more sophisticated renaming scheme can be
found in [2].)

Note that there are no explicit actions for publishing the principal names. We can
think of principal names (as well as other public data values) as simply being generated
by adversary nonce generation.

4. Structural Invariants

Before attacking the protocol proper, we consider two kinds of invariants common to all
such protocols.

4.1. Unicity Invariants

Recall that we require that nonces are fresh when they are generated, but that freshness
is not stable. Therefore, we need to capture the essence of fresh nonce generation with
invariants. Intuitively, the properties we want are that

• Two different p0 steps cannot generate the same Na nonce.
• Two different p1 steps cannot generate the same Nb nonce.
• The same nonce cannot be generated as both an Na nonce and an Nb nonce.

Note that these depend only on which protocol steps generate fresh nonces, not on any
particular properties of the protocol itself.2 We can formalize these properties as the
following invariants:

2In a tool, instead of writing the definition of fresh atoms in the guard of an action, we would build fresh
nonce generation into the syntax, so that these lemmas could be generated automatically.

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 79

p0 ∧ p0′ ∧ Na = Na ′ ⇒ A = A′ ∧ B = B′

p1 ∧ p1′ ∧ Nb = Nb′ ⇒ A = A′ ∧ B = B′ ∧ Na = Na ′

p0 ∧ p1′ ⇒ Na �= Nb′

We refer to these invariants generically as “unicity”. To see that these are invariants, no-
tice that they hold in the initial state, since the left-hand sides are false (since all history
predicates are initially false). The first two protocol steps preserve these properties be-
cause of the freshness conjuncts in the guards. These last two steps and the adversary
steps preserve these because they do not modify p0 or p1.

In practice, we use the following (equivalent) formulation of unicity. Suppose f and
g are formulas, and v is a list of variables that does not include Na . Then

f ∧ p0 ∧ (∃ v, A, B : p0 ∧ g) ⇒ f ∧ p0 ∧ (∃ v : g)

is an invariant of the system. In other words, if we have p0 as a conjunct both inside and
outside of an existential quantification, and the quantified variables do not include Na ,
we can remove A and B from the list of existentially quantified variables. Similarly, if v
does not include Nb,

f ∧ p1 ∧ (∃ v, A, B,Na : p1 ∧ g) ⇒ f ∧ p1 ∧ (∃ v : g)

is also an invariant of the system.

4.2. Guard Invariants

If we remove the freshness conjuncts from the protocol transitions, the history predi-
cate updated by each transition implies its corresponding guard. That is, we have the
invariants

p0 ⇒ atom(Na) ∧ pub(A)

p1 ⇒ atom(Nb) ∧ pub(B) ∧ pub(m0)

p2 ⇒ p0 ∧ pub(m1)

p3 ⇒ p1 ∧ pub(m2)

For every binding of the free variables, of these formulas is an invariant. To see why,
note that each formula holds initially, because all history predicates are initially false.
An implication can be falsified only by a step that truthifies the hypothesis or falsifies
the consequent. The only transitions that truthify the hypotheses simultaneously check
that the consequent holds, and no step falsifies the consequent (because the consequent
is positive, hence stable). Note that we have to remove the freshness conjuncts because
freshness is not stable.

We reference these invariants with the hints p0, p1, etc.

E. Cohen / Using Invariants to Reason About Cryptographic Protocols80

5. The secrecy invariant

The invariants so far do not constrain the messages that can be published; they could be
satisfied even if all messages were published. Since messages are the only way a principal
can learn about the states of other principals, we need an invariant that constrains the
conditions under which messages can be published.

The obvious way to write such an invariant is in the form

pub(X) ⇒ ok(X)

where ok(X) is a disjunction of cases, one for each way that a message can be published.
However, there is a problem with this approach, because of the adversary decryption
case; this case would produce a disjunct of the form

∨ (∃ Y : pub({X}Y) ∧ dk(Y))

Regardless of any other disjunctions, this would allow the possibility that all messages
are published (as long as some key is decryptable). This would make the secrecy invariant
practically useless.

Thus, we must find an indirect way to eliminate the adversary decryption case from
the secrecy invariant. Of course, we can’t simply ignore the adversary decryption action,
because the set of cases must be closed under all actions. Instead, we add additional
disjuncts to the definition of ok to make ok closed under adversary decryption.

So let’s construct the disjuncts of ok(X) for NSL:

• For each protocol step that publishes a message, there is a case corresponding
to the published message; in each case, we know that the corresponding history
predicate also holds (since it is truthified when the message is published):

∨ (∃ A,Na,Nb : X = m0 ∧ p0)

∨ (∃ A, B,Na,Nb : X = m1 ∧ p1)

∨ (∃ A,Na,Nb : X = m2 ∧ p2)

• There is a case for a message that arose through adversary encryption (of any ar-
ity); in this case, we know that the components of the message and the encryption
key are already published:

∨ (∃ �Y , Z : X = {�Y }Z ∧ pub(�Y) ∧ pub(Z))

• There is a case for adversary nonce generation; in this case, we know that the
generated nonce is not generated by one of the ordinary protocol steps. Defining

junk(X) ⇔ atom(X)∧(∀A, B,Na,Nb : (p0 ⇒ X �= Na)∧(p1 ⇒ X �= Nb))

we have a case

∨ junk(X)

These cases cover all of the actions except for adversary decryption. To close the
set of cases under adversary decryption, we need to consider what new cases can be
generated from each of the message cases we have already.

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 81

Obviously, decryption cannot produce a new case from those cases that produce
atoms (by the definition of atonicity). Moreover, decryption of a message produced under
the adversary encryption case doesn’t produce anything new, because all of the tupled
messages were already published. Thus, we need only consider adversary decryption
of messages published from honest protocol actions. These actions may result in the
publication of previously unpublished nonce values.

Looking at the protocol, it seems that Na or Nb nonces should be revealed only if
dk(k(A)) ∨ dk(k(B)). (Heuristically, this is because k(A) and k(B) are the only keys
that guard the exposure of messages that mention A and B.) Thus, our last two cases are

∨ X = Na ∧ p0 ∧ (dk(k(A)) ∨ dk(k(B)))

∨ X = Nb ∧ p1 ∧ (dk(k(A)) ∨ dk(k(B)))

Putting all of this together, we define ok(X) by

ok(X) ⇔ (∃ A, B,Na,Nb, �Y , Z :

∨ (X = m0 ∧ p0)

∨ (X = m1 ∧ p1)

∨ (X = m2 ∧ p2)

∨ (X = {�Y }Z ∧ pub(�Y) ∧ pub(Z))

∨ junk(X)

∨ (X = Na ∧ p0 ∧ (dk(k(A)) ∨ dk(k(B))))

∨ (X = Nb ∧ p1 ∧ (dk(k(A)) ∨ dk(k(B)))))

Note that we haven’t yet proved that the secrecy invariant is actually an invariant.

5.1. Consequences of the Secrecy Invariant

Using the secrecy invariant, we can conclude information about the state from publica-
tion of a message. For example, if pub(m0), then m0 must match one of the cases in the
secrecy invariant. By atomicity and injectivity, the only cases that can be matched are
the p0 case and the adversary encryption case. (Similarly for the other message forms.)
Hence, by injectivity, we have the consequences

pub(m0) ⇒ p0 ∨ (pub(k(B)) ∧ pub(A) ∧ pub(B))

pub(m1) ⇒ p1 ∨ (pub(k(A)) ∧ pub(B) ∧ pub(Na) ∧ pub(Nb))

pub(m2) ⇒ (∃ A,Na : p2) ∨ (pub(k(B)) ∧ pub(Nb))

We reference these consequences by the hints “m0”, “m1”, and “m2”, respectively.
Similarly, thanks to the unicity invariants and the secrecy invariant, we have the

consequences

E. Cohen / Using Invariants to Reason About Cryptographic Protocols82

p0 ∧ pub(Na) ⇒ dk(k(A)) ∨ dk(k(B))

p1 ∧ pub(Nb) ⇒ dk(k(A)) ∨ dk(k(B))

We reference these consequences with the hints “Na” and “Nb”, respectively.
We repeat that these are mere consequences of the secrecy invariant; they are guar-

anteed to hold only in states where we know the secrecy invariant holds.

5.2. Checking the Secrecy Invariant

The secrecy invariant trivially holds in the initial state, since initially no messages are
published. Because the definition of ok is positive, ok messages remain ok. Thus, to
show that the secrecy invariant is an invariant, it suffices to show that messages are ok
on the step before they are published. The only transition for which this is nontrivial is
adversary decryption. Because atoms cannot be decrypted, the proof obligations are as
follows (all assuming the secrecy invariant):

p0 ∧ dk(k(B)) ⇒ ok(A)
p0 ∧ dk(k(B)) ⇒ ok(Na)
p1 ∧ dk(k(A)) ⇒ ok(B)
p1 ∧ dk(k(A)) ⇒ ok(Na)
p1 ∧ dk(k(A)) ⇒ ok(Nb)
p2 ∧ dk(k(B)) ⇒ ok(Nb)

We can discharge these obligations as follows (the hint ok references the definition
of ok):

p0 ∧ dk(k(B)) ⇒ {p0 }
pub(A) ⇒ {inv}
ok(A)

p0 ∧ dk(k(B)) ⇒ {ok}
ok(Na)

p1 ∧ dk(k(A)) ⇒ {p1 }
pub(B) ⇒ {inv}
ok(B)

p1 ∧ dk(k(A)) ⇒ {p1 }
pub(m0) ∧ dk(k(A)) ⇒ {m0 }
(p0 ∨ pub(Na)) ∧ dk(k(A)) ⇒ {logic}
(p0 ∧ dk(k(A))) ∨ pub(Na) ⇒ {ok }
ok(Na) ∨ pub(Na) ⇒ {inv }
ok(Na)

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 83

p1 ∧ dk(k(A)) ⇒ {ok}
ok(Nb)

p2 ∧ dk(k(B)) ⇒ {p2 }
pub(m1) ∧ dk(k(B)) ⇒ {m1 }
(p1 ∨ pub(Nb)) ∧ dk(k(B)) ⇒ {logic}
(p1 ∧ dk(k(B))) ∨ pub(Nb) ⇒ {ok }
ok(Nb) ∨ pub(Nb) ⇒ {inv }
ok(Nb)

This concludes the proof that the secrecy invariant is, in fact, an invariant of the
transition system.

6. Proving Authentication Properties

Now that we have established the secrecy invariant is an invariant, we can prove other in-
variant properties of the protocol by ordinary logical reasoning from the secrecy, unicity,
and guard invariants. This is because we have intentionally chosen to make the secrecy
invariant as strong as possible.

Here are proofs of the authentication properties for the NSL protocol. The first the-
orem says that, if A completes his final step, then either A or B is compromised, or B

has completed his first step, with the same values for A,B,Na and Nb:

p2 ⇒ {p2 }
p0 ∧ pub(m1) ⇒ {m1 }
p0 ∧ (p1 ∨ pub(Na)) ⇒ {logic}
(p0 ∧ pub(Na)) ∨ p1 ⇒ {Na }
dk(k(A)) ∨ dk(k(B)) ∨ p1

The second theorem says that, if B completes his final step, then either A or B is
compromised, or A has completed his final step, with the same values for A,B,Na and
Nb:

p3 ⇒ {p3 }
p1 ∧ pub(m2) ⇒ {m2}
p1 ∧ ((∃ A,Na : p2) ∨ pub(Nb))

Notice that the term we want in the conclusion (namely, p2) appears, but enclosed in an
existential quantification. Note, however, that we have p1 outside of the quantification,
and the quantification does not quantify over Nb. Therefore, if we can get p1 as a con-
junct inside the quantification, we can strip away the quantification of A and Na , using
the unicity lemma for Nb. This motivates the following continuation of the proof, where
we expand out the cases under which p2 can arise:

E. Cohen / Using Invariants to Reason About Cryptographic Protocols84

p1 ∧ ((∃ A,Na : p2) ∨ pub(Nb)) ⇒ {p2 }
p1 ∧ ((∃ A,Na : p2 ∧ pub(m1)) ∨ pub(Nb)) ⇒ {m1 }
p1 ∧ ((∃ A,Na : p2 ∧ (p1 ∨ pub(Nb))) ∨ pub(Nb)) ⇒ {logic }
p1 ∧ ((∃ A,Na : p2 ∧ p1) ∨ pub(Nb)) ⇒ {logic }
(p1 ∧ pub(Nb)) ∨ (p1 ∧ (∃ A,Na : p2 ∧ p1)) ⇒ {Nb unicity}
(p1 ∧ pub(Nb)) ∨ (p1 ∧ p2) ⇒ {Nb }
dk(k(A)) ∨ dk(k(B)) ∨ p2

7. Exercises

1. Show that the NSL protocol still works without the assumption that k is injective.
2. Remove B from m1 and try to prove the resulting protocol correct. Where does

the proof get stuck? Can you find a counterexample that shows the new protocol
is broken?

3. Replace the keying function with new protocol actions that generate pub-
lic/private key pairs for principals, publishing the public key. Show that the re-
sulting protocol is still correct.

4. Model the compromise of principals explicitly, by introducing a new state pred-
icate that tracks which principals have been compromised. Add suitable actions
to model the compromise of a principal and to release his information to the
adversary. If necessary, reformulate and prove the safety properties of the new
protocol.

5. Add to NSL an action that receives an arbitrary message and simply republishes
it. Try to treat it like the other protocol actions (i.e., generate corresponding guard
and message lemmas, and add a corresponding case to the secrecy invariant).
Does this action affect your ability to reason about the protocol? Can you modify
your method to prove the protocol correct?

6. Add to NSL an adversary action that permutes the component order of encrypted
2-tuples. Prove the resulting protocol correct.

7. Model and verify a protocol with two levels of encryption. How does the proof
structure change?

8. Model and verify a “repeated authentication” protocol, such as Kao-Chow.
9. How would you model a key K with a pair of decryption keys both decryption

keys are required to decrypt messages encrypted under K?
10. Try to design your own crypto protocol, specify it, and prove it correct.
11. [Research] Modify the methodology here to work with more realistic protocol

models. For example, model and reason about any of the following:

• Vernam encryption (bitwise exclusive-or)
• bitwise concatenation and projection
• encryption that is injective with respect to the key and with respect to the

encrypted message, but not necessarily both together.

Some guidance for these can be found in [3].
12. [Research] Construct a simple protocol for unidirectional secret communication,

and use simulation relations to prove that it simulates a protocol where the ad-
versary sees nothing but noise. (See [1] for a process-algebraic solution to this
challenge.)

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 85

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In Proceedings of
the Fourth ACM Conference on Computer and Communications Security, pages 36–47, 1997.

[2] E. Cohen. First-order verification of cryptographic protocols. Journal of Computer Security, 11(2):189–
216, May 2003.

[3] E. Cohen. Taps: The last few slides. In FASec 2002: Formal Aspects of Security, volume 2629 of LNCS,
pages 183–190. Springer, 2003.

[4] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and
Algorithms for Construction and Analysis of Systems, pages 147–166, 1996.

[5] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming, 26(2):113–131,
February 1996.

[6] L. Paulson. The inductive approach to verifying cryptographic protocols. JCS, 6:85–128, 1998.

E. Cohen / Using Invariants to Reason About Cryptographic Protocols86

Verified Interoperable Implementations of
Security Protocols

Karthikeyan BHARGAVAN a, Cédric FOURNET a, Andrew D. GORDON a, and
Stephen TSE b

a Microsoft Research
b University of Pennsylvania

Abstract. We present an architecture and tools for verifying implementations of
security protocols. Our implementations can run with both concrete and symbolic
implementations of cryptographic algorithms. The concrete implementation is for
production and interoperability testing. The symbolic implementation is for debug-
ging and formal verification. We develop our approach for protocols written in F#,
a dialect of ML, and verify them by compilation to ProVerif, a resolution-based the-
orem prover for cryptographic protocols. We establish the correctness of this com-
pilation scheme, and we illustrate our approach with protocols for Web Services
security.

Keywords. Security protocols, verification, process calculi

1. Introduction

The design and implementation of code involving cryptography remains dangerously
difficult. The problem is to verify that an active attacker, possibly with access to some
cryptographic keys but unable to guess other secrets, cannot thwart security goals such as
authentication and secrecy [35]; it has motivated a serious research effort on the formal
analysis of cryptographic protocols, starting with Dolev and Yao [18] and eventually
leading to effective verification tools. Hence, it is now feasible to verify abstract models
of protocols against demanding threat models.

Still, as with many formal methods, a gap remains between protocol models and
their implementations. Distilling a cryptographic model is delicate and time consuming,
so that verified protocols tend to be short and to abstract many potentially troublesome
details of implementation code. At best, the model and its implementation are related
during tedious manual code reviews. Even if, at some point, the model faithfully covers
the details of the protocol, it is hard to keep it synchronized with code as it is deployed
and used. Hence, despite verification of the abstract model, security flaws may appear in
its implementation.

Our thesis is that to verify production code of security protocols against realistic
threat models is an achievable research goal. The present paper advances in this direc-
tion by contributing a new approach to deriving automatically verifiable models from
code. We demonstrate its application, if not to production code, at least to code constitut-

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

87

ing a working reference implementation—one suitable for interoperability testing with
efficient production systems but itself optimized for clarity not performance.

Our prototype tools analyze cryptographic protocols written in F# [41], a dialect of
ML. F# is a good fit for our purposes: it has a simple formal semantics; its datatypes offer
a convenient way of programming operations on XML, important for our motivating
application area, web services security. Semantically, F# is not so far from languages like
Java or C#, and we expect our techniques could be adapted to such languages. We run F#
programs on the Common Language Runtime (CLR), and rely on the .NET Framework
libraries for networking and cryptographic functions.

The diagram above describes our new language-based approach, which derives ver-
ifiable models from executable code. We prefer not to tackle the converse problem, turn-
ing a formal model into code, as, though feasible, it amounts to language design and
implementation, which generally is harder and takes more engineering effort than model
extraction from an existing language. Besides, modern programming environments pro-
vide better tool support for writing code than for writing models.

We strive to share most of the code, syntactically and semantically, between the
implementation and its model. Our approach is modular, as illustrated by the diagram:
we write application code defining protocols against restrictive typed interfaces defining
the services exposed by the underlying cryptographic, networking, and other libraries.
Further, we write distinct versions of library code only for a few core interfaces, such as
those featuring cryptographic algorithms. For example, cryptographic operations are on
an abstract type bytes. We provide dual concrete and symbolic implementations of each
operation. For instance, the concrete implementation of bytes is simply as byte arrays,
subject to actual cryptographic transforms provided by the .NET Framework. On the
other hand, the symbolic implementation defines bytes as algebraic expressions subject
to abstract rewriting in the style of Dolev and Yao, and assumed to be a safe abstraction
of the concrete implementation.

We formalize the active attacker as an arbitrary program in our source language, able
to call interfaces defined by the application code and also the libraries for cryptography
and networking. Our verification goals are to show secrecy and authentication properties
in the face of all such attackers. Accordingly, we can adapt our threat model by design-
ing suitable interfaces for the benefit of the attacker. The application code implements
functions for each role in the protocol, so the attacker can create multiple instances of,

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols88

say, initiators and responders, as well as monitor and send network traffic and, in some
models, create new principals and compromise some of their credentials.

Given dual implementations for some libraries, we can compile and execute pro-
grams both concretely and symbolically. This supports the following tasks:

(1) To obtain a reference implementation, we execute application code against con-
crete libraries. We use the reference implementation for interoperability testing
with some other available, black-box implementation. Experimental testing is es-
sential to confirm that the protocol code is functionally correct, and complete for
at least a few basic scenarios. (Otherwise, it is surprisingly easy to end up with a
model that does not support some problematic features.)

(2) To obtain a symbolic prototype, we execute the same application code against
symbolic libraries. This allows basic testing and debugging, especially for the
expected message formats. Though this guarantees neither wire format interop-
erability nor any security properties, it is pragmatically useful during the initial
stages of code development.

(3) To perform formal verification, we run our model extraction tool, called fs2pv, to
derive a detailed formal model from the application code and symbolic libraries.
Our models are in a variant of the pi calculus [32,1] accepted by ProVerif [15,14].
ProVerif compiles our models to logical clauses and runs a resolution semi-
algorithm to prove properties automatically. In case a security property fails,
ProVerif can often construct an explicit attack [4].

The fs2pv/ProVerif tool chain is applicable in principle to a broad range of crypto-
graphic protocols, but our motivating examples are those based on the WS-Security [34]
standard for securing SOAP [25] messages sent to and from XML web services. WS-
Security prescribes how to sign and encrypt parts of SOAP messages. WSE [30] is an
implementation of security protocols based on WS-Security. Previous analyses of pi cal-
culus models extracted from WSE by hand have uncovered attacks [9,11], but there has
been no previous attempt to check conformance between these models and code automat-
ically. To test the viability of our new approach, we have developed a series of reference
implementations of simple web services protocols. They are both tested to be interopera-
ble with WSE and verified via our tool chain. The research challenge in developing these
implementations is to confront at once the difficulty of processing standard wire formats,
such as WS-Security, and the difficulty of extracting verifiable models from code.

Our model extraction tool, fs2pv, accepts an expressive first-order subset of F# we
dub F, with primitives for communications and concurrency. It has a simple formal se-
mantics facilitating model extraction, but disallows higher-order functions and some im-
perative features. The application code and the symbolic libraries must be within F, but
the concrete libraries are in unrestricted F#, with calls to the platform libraries. Formally,
we define the attacker to be an arbitrary F program well formed with respect to a re-
strictive attacker interface implemented by the application code. The attacker can only
interact with the application code via this interface, which is supplied explicitly to the
model extraction tool along with the application code. Although we compile to the pi
calculus for verification, the properties proved can be understood independently of the pi
calculus. We prove theorems to justify that verification with ProVerif implies properties
of source programs defined in terms of F. The principal difficulty in the proofs arises
from relating the attacker models at the two levels.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 89

Since security properties within the Dolev-Yao model are undecidable, and we rely
on an automatic verifier, there is correct code within F that fails to verify. A cost of
our method, then, is that we must adopt a programming discipline within F suitable
for automatic verification. For example, we avoid certain uses of recursion. The initial
performance results for our prototype tools are encouraging, as much of the performance
is determined by the concrete libraries; nonetheless, there is a tension between efficiency
of execution and feasibility of verification. To aid the latter, fs2pv chooses between a
range of potential semantics for each F function definition (based on abstractions, rewrite
rules, relations, and processes).

Our method relies on explicit interfaces describing low-level cryptographic and
communication libraries, and on some embedded specifications describing the intended
security properties. Model extraction directly analyzes application code using these in-
terfaces plus the code of the symbolic libraries, while ignoring the code of the concrete
libraries. Hence, our method can discover bugs in the application code, but not in the
trusted concrete libraries.

At present, we have assessed our method only on new code written by ourselves in
this style. Many existing protocol implementations rely on well defined interfaces pro-
viding cryptographic and other services, so we expect our method will adapt to existing
code bases, but this remains future work.

In general, the derivation of security models from code amounts to translating the
security-critical parts of the code and safely abstracting the rest. Given an arbitrary pro-
gram, this task can hardly be automated—some help from the programmer is needed, at
least to assert the intended security properties. Further work may discover how to com-
pute safe abstractions directly from the code of concrete libraries. For now, we claim
the benefit of symbolic verification of a reference implementation is worth the cost of
adding some security assertions in application code and adopting a programming disci-
pline compatible with verification.

In summary, our main contributions are as follows:

(1) An architecture and language semantics to support extraction of verifiable formal
models from implementation code of security protocols.

(2) A prototype model extractor fs2pv that translates from F to ProVerif. This tool is
one of the first to extract verifiable models from working protocol implementa-
tions. Moreover, to the best of our knowledge, it is the first to extract models from
code that uses a standard message format (WS-Security) and hence interoperates
with other implementations (WSE).

(3) Theorems justifying model extraction: low-level properties proved by ProVerif
of a model extracted by fs2pv imply high-level properties expressed in terms of
F.

(4) Reference implementations of some typical web services security protocols and
mechanisms, both formally verified and tested for interoperability. Our imple-
mentation is modular, so that most code is expressed in reusable libraries that
give a formal semantics to informal web services security specifications.

Section 2 informally introduces many ideas of the paper in the context of a simple
message authentication protocol. Section 3 defines our source language, F, as a subset of
F#, and formalizes our desired security properties. Section 4 outlines our techniques for
model extraction, and states our main theorems. Section 5 summarizes our experience in
writing and verifying code for web services security protocols. Section 6 concludes.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols90

An abridged version [12] of this paper appears in a conference proceedings. A com-
panion report [13] provides additional technical details, including definitions for the tar-
get (pi calculus) language, the formal translation, and all proofs.

2. A Simple Message Authentication Protocol

We illustrate our method on a very simple, ad hoc protocol example. Section 5 discusses
more involved examples.

The protocol Our example protocol has two roles, a client that sends a message, and a
server that receives it. For the sake of simplicity, we assume that there is only one prin-
cipal A acting as a client, and only one principal B acting as a server. (Further examples
support arbitrarily many principals in each role.)

Our goal here is that the server authenticate the message, even in the presence of an
active attacker. To this end, we rely on a password-based message authentication code
(MAC). The protocol consists of a single message:

A → B : HMACSHA1{nonce}[pwdA | text] |
RSAEncrypt{pkB}[nonce] | text

The client acting for principal A sends a single message text to the server acting for B.
The client and server share A’s password pwdA, and the client knows B’s public key
pkB. To authenticate the message text, the client uses the one-way keyed hash algorithm
HMAC-SHA1 to bind the message with pwdA and a freshly generated value nonce. Since
the password is likely to be a weak secret, that is, a secret with low entropy, it may be
vulnerable to offline dictionary attacks if the MAC, the message text, and the nonce are
all known. To protect the password from such guessing attacks, the client encrypts the
nonce with pkB.

Application code Given interfaces Crypto, Net, and Prins defining cryptographic prim-
itives, communication operations, and access to a database of principal identities, our
verifiable application code is a module that implements the following typed interface.

pkB: rsa key
client: str →unit
server: unit →unit

The value pkB is the public encryption key for the server. Calling client with a string
parameter should send a single message to the server, while calling server creates an
instance of the server role that awaits a single message.

In F#, str →unit is the type of functions from the type str, which is an abstract type of
strings defined by the Crypto interface, to the empty tuple type unit. The Crypto interface
also provides the abstract type rsa key of RSA keys.

The exported functions client and server rely on the following functions to manipu-
late messages.

let mac nonce password text =
Crypto.hmacsha1 nonce

(concat (utf8 password) (utf8 text))

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 91

let make text pk password =
let nonce = mkNonce() in
(mac nonce password text,
Crypto.rsa encrypt pk nonce, text)

let verify (m,en,text) sk password =
let nonce = Crypto.rsa decrypt sk en in
if not (m = mac nonce password text)
then failwith "bad MAC"

The first function, mac, takes three arguments—a nonce, a shared password, and
the message text—and computes their joint cryptographic hash using some implemen-
tation of the HMAC-SHA1 algorithm provided by the cryptographic library. As usual
in dialects of ML, types may be left implicit in code, but they are nonetheless verified
by the compiler; mac has type bytes →str →str →bytes. The functions concat and utf8
provided by Crypto perform concatenation of byte arrays and an encoding of strings into
byte arrays.

The two other functions define message processing, for senders and receivers, re-
spectively. Function make creates a message: it generates a fresh nonce, computes the
MAC, and also encrypts the nonce under the public key pk of the intended receiver, using
the rsa encrypt algorithm. The resulting message is a triple comprising the MAC, the en-
crypted nonce, and the text. Function verify performs the converse steps: it decrypts the
nonce using the private key skd, recomputes the MAC and, if the resulting value differs
from the received MAC, throws an exception (using the failwith primitive).

Although fairly high-level, our code includes enough details to be executable, such
as the details of particular algorithms, and the necessary utf8 conversions from strings
(for password and text) to byte arrays.

In the following code defining protocol roles, we rely on events to express in-
tended security properties. Events roughly correspond to assertions used for debug-
ging purposes, and they have no effect on the program execution. Here, we define two
kinds of events, Send(text) to mark the intent to send a message with content text, and
Accept(text) to mark the acceptance of text as genuine. Accordingly, client uses a primi-
tive function log to log an event of the first kind before sending the message, and server
logs an event of the second kind after verifying the message. Hence, if our protocol is cor-
rect, we expect every Accept(text) event to be preceded by a matching Send(text) event.
Such a correspondence between events is a common way of specifying authentication.

The client code relies on the network address of the server, the shared password, and
the server’s public key:

let address = S "http://server.com/pwdmac"
let pwdA = Prins.getPassword(S "A")
let pkB = Prins.getPublicKey(S "B")

type Ev = Send of str | Accept of str

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols92

let client text =
log(Send(text));
Net.send address (marshall (make text pkB pwdA))

Here, the function getPassword retrieves A’s password from the password database, and
getPublicKey extracts B’s public key from the local X.509 certificate database. The func-
tion S is defined by Crypto; the expression S "A", for example, is an abstract string rep-
resenting the literal "A". The function client then runs the protocol for sending text; it
builds the message, then uses Net.send, a networking function that posts the message as
an HTTP request to address.

Symmetrically, the function server attempts to receive a single message by accepting
a message and verifying its content, using B’s private key for decryption.

let skB = Prins.getPrivateKey(S "B")
let server () =

let m,en,text = unmarshall (Net.accept address) in
verify (m,en,text) skB pwdA; log(Accept(text))

The functions marshall and unmarshall serialize and deserialize the message triple—
the MAC, the encrypted nonce, and the text—as a string, used here as a simple wire
format. (We present an example of the resulting message below.) These functions are
also part of the verified application code; we omit their details.

Concrete and symbolic libraries The application code listed above makes use of a
Crypto library for cryptographic operations, a Net library for network operations, and
a Prins library offering access to a principal database. The concrete implementations of
these libraries are F# modules containing functions that are wrappers around the corre-
sponding platform (.NET) cryptographic and network operations.

To obtain a complete symbolic model of the program, we also develop symbolic
implementations of these libraries as F# modules with the same interfaces. These sym-
bolic libraries are within the restricted subset F we define in the next section, and rely on
a small module Pi defining name creation, channel-based communication, and concur-
rency in the style of the pi calculus. Functions Pi.send and Pi.recv allow message passing
on channels, functions Pi.name and Pi.chan generate fresh names and channels, and a
function Pi.fork runs its function argument in parallel. The members of Pi are primitive
in the semantics of F. The Pi module is called from the symbolic libraries during sym-
bolic evaluation and formal verification; it is not called directly from application code
and plays no part in the concrete implementation.

The listings above show the two implementations of the Crypto interface. The con-
crete implementation defines bytes as primitive arrays of bytes, and essentially forwards
all calls to standard cryptographic libraries of the .NET platform. In contrast, the sym-
bolic implementation defines bytes as an algebraic datatype, with symbolic constructors
and pattern matching for representing cryptographic primitives. This internal represen-
tation is accessible only in this library implementation. For instance, hmacsha1 is im-
plemented as a function that builds an HmacSha1(k,x) term; since no inverse function is
provided, this abstractly defines a perfect, collision-free one-way function. More inter-
estingly, RSA public key encryptions are represented by RsaEncrypt terms, decomposed

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 93

module Crypto // concrete code in F#
open System.Security.Cryptography
type bytes = byte[]
type rsa key = RSA of RSAParameters
...
let rng = new RNGCryptoServiceProvider ()
let mkNonce () =

let x = Bytearray.make 16 in
rng.GetBytes x; x

...
let hmacsha1 k x =

new HMACSHA1(k).ComputeHash x
...
let rsa = new RSACryptoServiceProvider()
let rsa keygen () = ...
let rsa pub (RSA r) = ...
let rsa encrypt (RSA r) (v:bytes) = ...
let rsa decrypt (RSA r) (v:bytes) =

rsa.ImportParameters(r);
rsa.Decrypt(v,false)

module Crypto // symbolic code in F
type bytes =
| Name of Pi.name
| HmacSha1 of bytes ∗ bytes
| RsaKey of rsa key
| RsaEncrypt of rsa key ∗ bytes
...

and rsa key = PK of bytes | SK of bytes
...
let freshbytes label = Name (Pi.name label)
let mkNonce () = freshbytes "nonce"
...
let hmacsha1 k x = HmacSha1(k,x)
...
let rsa keygen () = SK (freshbytes "rsa")
let rsa pub (SK(s)) = PK(s)
let rsa encrypt s t = RsaEncrypt(s,t)
let rsa decrypt (SK(s)) e = match e with
| RsaEncrypt(pke,t) when pke = PK(s) → t
| → failwith "rsa_decrypt failed"

only by a function rsa decrypt that can verify that the valid decryption key is provided
along with the encrypted term.

Similarly, the concrete implementation of Net contains functions, such as send and
accept, that call into the platform’s HTTP library (System.Net.WebRequest), whereas the
symbolic implementation of these functions simply enqueues and dequeues messages
from a shared buffer implemented with the Pi module as a channel. We outline the sym-
bolic implementation of Net below.

module Net // symbolic code in F
...
let httpchan = Pi.chan()
let send address msg =

Pi.send httpchan (address,msg)
let accept address =

let (addr,msg) = Pi.recv httpchan in
if addr = address then msg else ...

The function send adds a message to the channel httpchan and the function accept
removes a message from the channel.

In this introductory example, we have a fixed population of two principals, so the
values for A’s password and B’s key pair can simply be retrieved from the third interface
Prins: the concrete implementation of Prins binds them to constants; its symbolic imple-
mentation binds them to fixed names generated by calling Pi.name. In general, a concrete
implementation would retrieve keys from the operating system key store, or prompt the
user for a password. The symbolic version implements a database of passwords and keys
using a channel kept hidden from the attacker.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols94

Next, we describe how to build both a concrete reference implementation and a
symbolic prototype, in the sense of Section 1.

Concrete execution To test that the protocol runs correctly, we run the F# compiler
on the F application code, the concrete F# implementations of Crypto, Net, and Prins,
together with the following top-level F# code to obtain a single executable, say run.
Depending on its command line argument, this executable runs in client or server mode:

do match Sys.argv.(1) with
| "client"→client (S Sys.argv.(2))
| "server"→server ()
| →printf "Usage: run client txt\n";

printf " or: run server\n"

The library function call Sys.argv.(n) returns the nth argument on the command
line. As an example, we can execute the command run client Hi on some machine, ex-
ecute run server on some other machine that listens on address, and observe the proto-
col run to completion. This run of the protocol involves our concrete implementation
of (HTTP-based) communications sending and receiving the encoded string “FADCIz-
ZhW3XmgUABgRJj1KjnWy...”.

Symbolic execution To experiment with the protocol code symbolically, we run the F#
compiler on the F application code, the symbolic F implementations of Crypto, Net, and
Prins, and the F# implementation of the Pi interface, together with the following top-level
F code, that conveniently runs instances of the client and of the server within a single
executable.

do Pi.fork (fun()→ client (S "Hi"))
do server ()

The communicated message prints as follows

HMACSHA1{nonce3}[pwd1 | ’Hi’] |
RSAEncrypt{PK(rsa secret2)}[nonce3] | ’Hi’

where pwd1, rsa secret2, and nonce3 are the symbolic names freshly generated by the Pi
module. This message trace reveals the structure of the abstract byte arrays in the com-
municated message, and hence is more useful for debugging than the concrete message
trace. We have found it useful to test application code by symbolic execution (and even
symbolic debugging) before testing them concretely on a network.

Modelling the opponent We introduce our language-based threat model for protocols
developed in F. (Section 3 describes the formal details.)

Let S be the F program that consists of the application code plus the symbolic li-
braries. The program S, which largely consists of code shared with the concrete imple-
mentation, constitutes our formal model of the protocol.

Let O be any F program that is well formed with respect to the interface exported by
the application code (in this case, the value pkB and the functions client and server), plus
the interfaces Crypto and Net. By well formed, we mean that O only uses external values

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 95

and calls external functions explicitly listed in these interfaces. Moreover, O can call
all the operations in the Pi interface, as these are primitives available to all F programs.
We take the program O to represent a potential attacker on the formal model S of the
protocol, a counterpart to an active attacker on a concrete implementation. (Treating an
attacker as an arbitrary F program develops the idea of an attacker being an arbitrary
parallel process, as in the spi calculus [2].)

Giving O access to the Crypto and Net interfaces, but not Prins, corresponds to
the Dolev-Yao [18] model of an attacker able to perform symbolic cryptography, and
monitor and send network traffic, but unable to access principals’ credentials directly.
In particular, Net.send enables the attacker to send any message to the server while
Net.accept enables the attacker to intercept any message sent to the server. The functions
Crypto.rsa encrypt and Crypto.rsa decrypt enable encryption and decryption with keys
known to the attacker; Crypto.rsa keygen and Crypto.mkNonce enable the generation of
fresh keys and nonces; Crypto.hmacsha1 enables MAC computation.

Giving O access to client and server allows it to create arbitrarily many instances of
protocol roles, while access to pkB lets O encrypt messages for the server. (We can enrich
the interface to give the opponent access to the secret credentials of some principals,
and to allow the generation of arbitrarily many principal identities.) Since pwdA, skB,
and log are not included in the attacker interface, the attacker has no direct access to the
protocol secrets and cannot log events directly.

Formal verification aims to establish secrecy and authentication properties for all
programs S O assembled from the given system S and any attacker program O.

In particular, the message authentication property of our example protocol is ex-
pressed as correspondences [42] between events logged by code within S. For all O, we
want that in every run of S O, every Accept event is preceded by a corresponding Send
event. In our syntax (based on that of ProVerif), we express this correspondence assertion
as:

ev:Accept(x) ⇒ ev:Send(x)

Formal verification We can check correspondences at runtime during any particular
symbolic run of the program; the more ambitious goal of formal verification is to prove
them for all possible runs and attackers. To do so, we run our model extractor fs2pv on
the F application code, the symbolic F implementations of Crypto, Net, and Prins, and
the attacker interface as described above. The result is a pi calculus script with embedded
correspondence assertions suitable for verification with ProVerif. In the simplest case, F
functions compile to pi calculus processes, while the attacker interface determines which
names are published to the pi calculus attacker. For our protocol, ProVerif immediately
succeeds.

Conversely, consider for instance a variant of the protocol where the MAC compu-
tation does not actually depend on the text of the message—essentially transforming the
MAC into a session cookie:

let mac nonce password text = hmacsha1 nonce
(concat (utf8 password) (utf8 (S "cookie")))

For the resulting script, ProVerif automatically finds and reports an active attack,
whereby the attacker intercepts the client message and substitutes any text for the client’s

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols96

text in the message. Experimentally, we can confirm the attack found in the analysis, by
writing in F an instance of the attacker program O that exploits our interface. Here, the
attack may be written:

do fork(fun()→ client (S "Hi"));
let (nonce, mac,) = unmarshall (Net.accept address) in
fork(fun()→ server());
Net.send address (marshall (nonce, mac, S "Foo"))

This code first starts an instance of the client, intercepts its message, starts an in-
stance of the server, and forwards an amended message to it. Experimentally, we observe
that the attack succeeds, both concretely and symbolically. At the end of those runs, two
events Send "Hi" and Accept "Foo" have been emitted, and our authentication query
fails. Once the attack is identified and the protocol corrected, this attacker code may be
added to the test suite for the protocol.

In addition to authentication, we verify secrecy properties for our example protocol.
Via ProVerif [15], we can query whether a protocol allows an attacker to guess a weak
secret and then verify the guess—if so, the attacker can mount an offline guessing attack.
In the case of our protocol, ProVerif shows the password is protected against offline
guessing attacks. Conversely, if we consider a variant of the protocol that passes the
nonce in the clear, we find an attack that can also be written as a concrete F program.

3. Formalizing a Subset of F#

This section defines the untyped subset F of F# in which we write application code
and symbolic libraries. We specify the syntax of F, describe its informal and formal
semantics, and define security properties.

The language F consists of: a first-order functional core; algebraic datatypes with
pattern-matching (such as the type bytes in the symbolic implementation of Crypto); a
few concurrency primitives in the style of the pi calculus; and a simple type-free module
system with which we formalize the attacker model introduced in the previous section.
(Although we do not rely on type safety in the formal definition, F programs can be
typechecked by the F# compiler.)

Syntax and Informal Semantics of F In the syntax below, � ranges over first-order func-
tions (such as freshBytes or hmacsha1 in Crypto) and f ranges over datatype construc-
tors (such as Name or Hmacsha1 in the type bytes in Crypto). Functions and construc-
tors are either primitive, or introduced by function or datatype declarations. The primi-
tives include the communication functions Pi.send, Pi.recv, and Pi.name described in the
previous section. The concurrency operator Pi.fork is a higher-order function; we build
Pi.fork into the syntax of F. In F, we treat Pi.chan as a synonym for Pi.name; they have
different types but both create fresh atomic names. We omit the “Pi.” prefix for brevity.

Syntax of F:

x,y,z variable
a,b name
f constructor (uncurried)

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 97

� function (curried)
true, false, tuplen n ≥ 0 primitive constructors
name,send, recv, log, failwith primitive functions
M,N ::= value

x variable
a name
f (M1, . . . ,Mn) constructor application

e ::= expression
M value
� M1 . . . Mn function application
fork(fun()→e) fork a parallel thread
match M with(| Mi → ei)

i∈1..n pattern match
let x = e1 in e2 sequential evaluation

d ::= declaration
type s = (| fi of si1∗. . .∗simi)

i∈1..n datatype declaration
let x = e value declaration
let � x1 . . .xn = e n > 0 function declaration

S ::= d1 · · ·dn system: list of declarations

We rely on the following syntactic conventions. For any phrase of syntax φ , we write
fv(φ) and fn(φ) for the sets of variables and names occurring free in φ . To facilitate the
translation from F to the pi calculus, we assume each function � is a pi calculus name,
so that, for example, fn(� M1 . . . Mn) = {�}∪ fn(M1)∪ ·· ·∪ fn(Mn). A phrase of syntax
φ is closed iff fv(φ) = ∅. We identify phrases of syntax up to consistent renaming of
bound variables and names; that is, φ = φ ′ means that φ and φ ′ are the same up to
such renaming. Let σ range over ground substitutions {M1/x1, . . . ,Mn/xn} of values for
variables, where fv(Mi) = ∅.

A system S is a sequence of declarations. We write the list S as ∅ when it is empty. A
datatype declaration introduces a new type and its constructors (much like a union type
with tags in C); the type expressions s, si j are ignored in F. A value declaration let x = e
triggers the evaluation of expression e and binds the result to x. A function declaration
let � x1 . . .xn = e defines function � with formal parameters x1 . . .xn and function body e.
These functions may be recursive.

A value M is a variable, a name, or a constructor application. Names model chan-
nels, keys, and nonces. Names can only be introduced during evaluation by calling the
primitive name. Source programs contain no free names. Expressions denote potentially
concurrent computations that return values. Primitive functions mostly represent com-
munication and concurrency: name() returns a freshly generated name; send M N sends
N on the channel M; recv M returns the next value received on channel M; log M logs
the event M; failwith M represents a thrown exception; and fork(fun()→e) evaluates e
in parallel. (We need not model exception handling in F as we rely on exceptions only to
represent fatal errors.) If � has a declaration, the application � M1 . . . Mn invokes the body
of the declaration with actual parameters M1, . . . , Mn. A match M with(| Mi → ei)

i∈1..n

runs ei for the least i such that pattern Mi matches the value M; if the pattern Mi contains
variables, they are bound in ei by matching with M. If there are two or more occurrences
of a variable in a pattern, matching must bind each to the same value. (Strictly speaking,
F# forbids patterns with multiple occurrences of the same variable. Still, the effect of

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols98

any such pattern in F can be had in F# by renaming all but one of the occurrences and
adding one or more equality constraints via a when clause.) Finally, let x = e1 in e2 first
evaluates e1 to a value M, then evaluates e2{M/x}, that is, the outcome of substituting
M for each free occurrence of x in e2.

In addition to the core syntax of F, we recover useful syntax supported by F# as
follows. The first three rules allow expressions to be written in places where only values
are allowed by the core syntax; these rules only apply when the left-hand side is not
within the core syntax.

Derived Expressions:

f (e1, . . . ,en)
�
= let x1 = e1 in . . . let xn = en in f (x1, . . . ,xn) xi fresh

� e1 . . . en
�
= let x1 = e1 in . . . let xn = en in � x1 . . . xn xi fresh

match e0 with(| Mi → ei)
i∈1..n �

= let x0 = e0 in match x0 with(| Mi → ei)
i∈1..n x0 fresh

f
�
= f () where constructor f has arity 0

(e1, . . . ,en)
�
= tuplen(e1, . . . ,en) where n ≥ 0

if e then e1 else e2
�
= match e with | true → e1 | false → e2

e1 = e2
�
= match (e1,e2) with | (x,x) → true | (x,y) → false

e1;e2
�
= let x = e1 in e2 where x /∈ fv(e2)

Operational Semantics of F Next, we formalize the operational semantics of F and the
idea of safety with respect to a query. Let a configuration, C, be a multiset of running sys-
tems and logged events. We write C |C′ for the composition of configurations C and C′.
To formalize that configurations are multisets, we identify configurations up to a struc-
tural equivalence relation, C ≡C′, that includes laws of associativity and commutativity
for composition. It also includes a law C | ∅ ≡C to allow deletion of an empty sequence
of declarations, ∅.

Syntax of F Configurations, and Structural Equivalence:

C ::= S | event M | (C |C′)

C2 ≡C1 ⇒C1 ≡C2 C1 |C2 ≡C2 |C1

C1 ≡C2,C2 ≡C3 ⇒C1 ≡C3 C1 | (C2 |C3) ≡ (C1 |C2) |C3

C1 ≡C2 ⇒C1 |C ≡C2 |C C | ∅ ≡C

The following rules define a small-step reduction semantics on configurations.

Reduction Rules: C →C′ where C and C′ are closed

C1 →C2 if C1 ≡C′
1, C′

1 →C′
2, C′

2 ≡C2

C0 | d S →C0 | S if d is a datatype declaration
C0 | d S →C0 | d | S if d is a function declaration, S �= ∅

C0 | let x = M S →C0 | S{M/x}
C0 | let x = � M1 . . . Mn S →C0 | let x = e{M1/x1, . . . ,Mn/xn} S

if C0 = C1 | let � x1 . . .xn = e
C0 | let x = name () S →C0 | S{a/x} if a /∈ fn(C0,S)

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 99

C0 | let x1 = send M N S1 | let x2 = recv M S2 →C0 | S1{()/x1} | S2{N/x2}
C0 | let x = log M S →C0 | event M | S{()/x}
C0 | let x = fork(fun()→e) S →C0 | let x = e | S{()/x}
C0 | let x = match M with (| Mi → ei)

i∈1..n S →C0 | let x = e1σ S if M = M1σ
C0 | let x = match M with (| Mi → ei)

i∈1..n S
→C0 | let x = match M with (| Mi → ei)

i∈2..n S if ¬∃σ . M = M1σ
C0 | let x = (let y = e1 in e2) S →C0 | let y = e1 let x = e2 S y /∈ fv(S)

The first rule allows configurations to be rearranged up to C ≡C′ when calculating a
reduction. The second simply discards a top-level datatype declaration in a system; types
have no effect at runtime. The third forks a top-level function declaration d as a separate
system consisting just of d; this system is itself insert, but it can be called from other
systems running in parallel. The remaining rules apply to a top-level value declaration
let x = e, for some e, running in a context including a configuration C0, and specify
how the expression e evaluates in that context. These rules formalize the description of
expression evaluation given earlier in this section.

The only primitive function not to appear in a reduction rule is failwith; applications
of the form failwith M are simply stuck (although in F# they raise an exception).

A Simple Example We consider an example system S10 representing transmission of a
single encrypted message from an initiator to a responder. The system S10 consists of a
sequence of ten declarations, which we define below.

S10
�
= dEv dCipher denc ddec dnet dkey dinit dresp du1 du2

The first two declarations are of types: a type of events (as in Section 2) and a type
of symmetric-key authenticated encryptions (a much simplified version of the type bytes
from Section 2).

dEv
�
= type Ev = Send of string | Accept of string

dCipher
�
= type Cipher = Enc of string ∗ string

Next, we declare an encryption function enc and a decryption function dec. (The
latter includes a pattern (Enc(p,z),z) containing two occurrences of the same variable. As
mentioned above, such patterns are allowed in F but not literally in F#, although we can
achieve the same effect in F# by writing (Enc(p,z),z’) when z=z’.)

denc
�
= let enc x y = Enc(x,y)

ddec
�
= let dec x y = match (x,y) with | (Enc(p,z),z) →p

The next four declarations generate names for a shared network channel (net) in-
tended to be public, and a shared symmetric key (key) intended to be known only to the
initiator and responder, and define the initiator and responder role as functions init and
resp. The initiator logs a Send event, creates an encryption, and sends it on the network
channel. The responder receives a message, decrypts it, and, if the decryption succeeds,
logs an Accept event.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols100

dnet
�
= let net = name()

dkey
�
= let key = name()

dinit
�
= let init x = log (Send(x)); let c = enc x key in send net c

dresp
�
= let resp () = let m = recv net in let x = dec m key in log (Accept(x))

The final two declarations simply fork a single instance of the initiator role and a
single instance of the responder role.

du1
�
= let u1 = fork(fun() → init "msg1")

du2
�
= let u2 = fork(fun() → resp ())

To illustrate the rules of the formal semantics, we calculate a reduction sequence in
which an encryption of "msg1" flows from the initiator to the responder. We eliminate
empty systems with the equation C | ∅ ≡C. We begin the calculation with the following
steps: the two type declarations are discarded, and the first two function declarations are
forked as separate systems.

S10 → dCipher denc ddec dnet dkey dinit dresp du1 du2

→ denc ddec dnet dkey dinit dresp du1 du2

→ denc | ddec dnet dkey dinit dresp du1 du2

→ denc | ddec | dnet dkey dinit dresp du1 du2

The next part of the computation generates fresh, distinct names n and k and binds
them to the variables net and key, respectively. The following abbreviations record the
outcome of substituting these names for the variables in init and resp.

dn
init

�
= dinit{n/net} dn k

init
�
= dn

init{k/key}

dn
resp

�
= dresp{n/net} dn k

resp
�
= dn

resp{k/key}

We have the following reductions in which n and k are generated, and the initiator
and responder functions are forked as separate systems.

denc | ddec | dnet dkey dinit dresp du1 du2

→ denc | ddec | dkey dn
init dn

resp du1 du2

→ denc | ddec | dn k
init dn k

resp du1 du2

→ denc | ddec | dn k
init | dn k

resp du1 du2

→ denc | ddec | dn k
init | dn k

resp | du1 du2

In the next segment of the computation, we fork instances of the initiator and re-
sponder as separate threads. As a shorthand, let C0 = denc | ddec | dn k

init | dn k
resp.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 101

denc | ddec | dn k
init | dn k

resp | du1 du2

= C0 | let u1 = fork(fun() → init "msg1") let u2 = fork(fun() → resp ())

→ C0 | let u1 = init "msg1" | let u2 = fork(fun() → resp ())

→ C0 | let u1 = init "msg1" | let u2 = resp ()

The initiator logs a Send event and prepares to send the encrypted message on the
channel n. Let C1 = C0 | let u2 = resp ().

C0 | let u1 = init "msg1" | let u2 = resp ()

→ C1 | let u1 = (log (Send("msg1")); let c=enc "msg1"k in send n c)

→ C1 | let u3 = log (Send("msg1")) let u1=(let c=enc "msg1"k in send n c)

→ C1 | event Send("msg1") | let u1=(let c=enc "msg1"k in send n c)

→ C1 | event Send("msg1") | let c=enc "msg1"k let u1=send n c

→ C1 | event Send("msg1") | let c=Enc("msg1",k) let u1=send n c

→ C1 | event Send("msg1") | let u1=send n (Enc("msg1",k))

Next, we consider reductions of the responder let u2 = resp (). In fact, it could
have reduced in parallel with some of the reductions shown above; we are not here
attempting to show all possible interleavings. As a further abbreviation, let C2 = C0 |
event Send("msg1") | let u1=send n (Enc("msg1",k)).

C1 | event Send("msg1") | let u1=send n (Enc("msg1",k))

= C2 | let u2 = resp ()

→ C2 | let u2 = (let m = recv n in let x = dec m k in log (Accept(x)))

→ C2 | let m = recv n let u2 = (let x = dec m k in log (Accept(x)))

At this point, the encrypted message can pass between the sender and the receiver.
We end the calculation with the following steps. Let C3 = C0 | event Send("msg1").

C2 | let m = recv n let u2 = (let x = dec m k in log (Accept(x)))

= C3 | let u2 = (let x = dec (Enc("msg1",k)) k in log (Accept(x)))

→ C3 | let x = dec (Enc("msg1",k)) k let u2 = log (Accept(x)))

→ C3 | let x = match (Enc("msg1",k),k) with | (Enc(p,z),z) →p
let u2 = log (Accept(x)))

→ C3 | let x = "msg1"let u2 = log (Accept(x)))

→ C3 | let u2 = log (Accept("msg1")))

→ C3 | event Accept("msg1")

In summary, we have calculated the following sequence of reductions.

S10 →+ dend |dec| dn k
init | dn k

resp | event Send("msg1") | event Accept("msg1")

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols102

Formation Judgments for Expressions and Systems We use system interfaces to control
the capabilities of the opponent. An interface, I, records the set of values, constructors,
and functions imported or exported by a system. Since our verification method does not
depend on types, F interfaces omit type structure and track only the distinction between
values, constructors, and functions, plus the arity of constructors and functions.

Interfaces:

μ ::= x:val | f :ctor n | �:fun n mention: value, constructor, or function
I ::= μ1, . . . ,μn interface (unordered sequence)

For example, let Prim be the following interface, which describes the F primitives,
where m is an arbitrary maximum width of tuples.

true: ctor 0, false: ctor 0, (tuplei: ctor i)i∈1..m,
failwith: fun 1, log: fun 1, Pi.name: fun 1, Pi.chan: fun 1,
Pi.send: fun 2, Pi.recv: fun 1, Pi.fork: fun 1

As another example, let Ipub be the following interface, which enumerates the func-
tions exported by the symbolic libraries together with the application code for the exam-
ple protocol in Section 2.

Net.send: fun 2, Net.accept: fun 1,
Crypto.S: fun 1, Crypto.iS: fun 1,
Crypto.base64: fun 1, Crypto.ibase64: fun 1,
Crypto.utf8: fun 1, Crypto.iutf8: fun 1,
Crypto.concat: fun 2, Crypto.iconcat: fun 1,
Crypto.mkNonce: fun 1, Crypto.mkPassword: fun 1,
Crypto.rsa keygen: fun 1, Crypto.rsa pub: fun 1,
Crypto.rsa encrypt: fun 2, Crypto.rsa decrypt: fun 2,
Crypto.hmacsha1: fun 2,
pkB: val, client: fun 1, server: fun 1

To define when a system exports an interface, we introduce inductively-defined for-
mation judgments for expressions and systems. Let dom(I) be the set of variables, con-
structors, and functions mentioned in I. We write I � � to mean that the interface I men-
tions no value, constructor, or function twice, that is, there is no split I = I′, I′′ with
dom(I′)∩dom(I′′) �= ∅. We write I � μ to mean that I � � and moreover μ is a member
of I, that is, I = I′,μ for some I’.

The formation judgment I � S : I′ means S refers only to external values, construc-
tors, and functions listed in I, and provides declarations for the values, constructors, and
functions listed in I′. The formation judgment I � e means that all occurrences of vari-
ables in e are bound and all occurrences of constructors and functions in e have the cor-
rect arity. We define these judgments inductively via the rules in the following table.
In the rule for match, we write fv(Mi):val as a shorthand for x1:val, . . . ,xn:val where
{x1, . . . ,xn} = fv(Mi).

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 103

Formation Rules for F:

I � x:val

I � x

I � f :ctor n I � Mi ∀i ∈ 1..n

I � f (M1, . . . ,Mn)

I � �:fun n I � Mi ∀i ∈ 1..n

I � � M1 . . . Mn

I � e

I � fork(fun()→e)

I � e1 I,x:val � e2

I � let x = e1 in e2

I � M I, fv(Mi):val � Mi fn(Mi) = ∅

I, fv(Mi):val � ei ∀i ∈ 1..n

I � match M with (| Mi → ei)
i∈1..n

I � �
I � ∅ : ∅

Is = (fi:ctor ni)
i∈1..n I, Is � S : I′

I � type s = (| fi of si1 ∗ · · · ∗ sini)
i∈1..n S : Is, I′

I � e I,x:val � S : I′

I � let x = e S : x:val, I′
I, �:fun n,x1:val, . . . ,xn:val � e I, �:fun n � S : I′

I � let � x1 . . .xn = e S : �:fun n, I′

These formation rules are an abstraction of the typing rules of F# for the fragment
we consider. They are enforced by the F# compiler during typechecking.

Recall the system S10 = dEv dCipher denc ddec dnet dkey dinit dresp du1 du2 and the
interface Prim given earlier. We can derive that Prim � S10 : I10, where I10 is the interface:

Send: ctor 1, Accept: ctor 1, Enc: ctor 2, enc: fun 2, dec: fun 2,
net: val, key: val, init: fun 1, resp: fun 1, u1: val, u2: val

Event-Based Security Properties of F We express authentication and other properties
in terms of event-based queries. The general form of a query is ev:E ⇒ ev:B1 ∨ ·· · ∨
ev:Bn, which means that every reachable configuration containing an event matching the
pattern E also contains an event matching one of the Bi patterns.

Queries and Safety:

A query q is written ev:E ⇒ ev:B1 ∨·· ·∨ ev:Bn

for values E, B1, . . . , Bn containing no free names.
Let σ stand for a substitution {M1/x1, . . . ,Mn/xn}.
Let C |= query ev:E ⇒ ev:B1 ∨·· ·∨ ev:Bn if and only if

whenever C ≡ event Eσ |C′, we have C′ ≡ event Biσ |C′′ for some i ∈ 1..n.
Let C →∗≡ C′ if and only if either C ≡C′ or C →∗ C′.
Let S be safe for q if and only if C |= q whenever S →∗≡ C.

For example, a system is safe for query ev:Accept(x)⇒ ev:Send(x) from Section 2 if
every reachable configuration containing event Accept(M) also contains event Send(M).
Our example system S10 satisfies this property. For example, let C10 be any one of
the configurations shown earlier such that S10 →∗ C10. We can easily see that C10 |=
ev:Accept(x) ⇒ ev:Send(x), since an Accept event only occurs in the final configuration,
which includes a matching Send event.

We define a robust safety property, that is, safety in the presence of an opponent. To
avoid vacuous failures, we forbid the opponent from logging events. If I is an interface,
an I-opponent is a system O that depends only on I and Prim, but not log.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols104

Formal Threat Model: Opponents and Robust Safety

Let S :: Ipub iff Prim � S : Ipub, Ipriv for some Ipriv.
Let O be an I-opponent iff Prim\log, I � O : I′ for some I′.
Let S be robustly safe for q and I iff S :: I and S O is safe for q for all I-opponents O.

Hence, setting a verification problem for a system S essentially amounts to selecting
the subset Ipub of its interface that is made available to the opponent.

Consider again our small example S10, its interface I10, and the query q =
ev:Accept(x) ⇒ ev:Send(x) given earlier. We already noted that S10 is safe for q and that
Prim � S10 : I10, but S10 is not robustly safe for q and I10. The interface I10 exposes too
much to the opponent, and hence does not reflect our intended threat model. For exam-
ple, the secret key is included in I10, allowing the following opponent O1 to intercept the
encrypted message, and replace it with another.

O1
�
= let u1 = recv net let u2 = send net (enc("bogus",key))

Moreover, the constructor Enc exposed in I10 allows the following opponent O2 to
use pattern matching to discover the secret key, and hence to send a bogus message.

O2
�
= let u = match recv net with Enc(m,k) →send net (enc("bogus",k))

The concrete counterpart to this symbolic attack is the ability to extract the encryp-
tion key from any ciphertext, a major failure of a cryptosystem. Since this possibility is
not normally included in the threat model for protocols, we would not normally export
encryption constructors, such as Enc, to the symbolic opponent.

For either O1 or O2 we can calculate the following computation, which ends in a
configuration that does not satisfy the query q.

S10 Oi →+ denc | ddec | dn k
init | dn k

resp | event Send("msg1") | event Accept("bogus")

On the other hand, S10 is robustly safe for q and the following interface that reflects
our intended threat model. The interface does not expose the secret key to the attacker,
and by not exporting the constructor Enc prevents the attacker from extracting keys from
ciphertexts. It does allow the attacker to initiate protocol roles, to send and receive net-
work traffic, and to encrypt and decrypt messages.

enc: fun 2, dec: fun 2, net: val, init: fun 1, resp: fun 1

For the example protocol in Section 2, let S be the system that consists of application
code and symbolic libraries. We have that S :: Ipub, where Ipub is the example interface
given earlier in this section. Our verification problem is to show that S is robustly safe
for ev:Accept(x) ⇒ ev:Send(x) and Ipub.

4. Mapping F# to a Verifiable Model

We target the script language of ProVerif for verification purposes. ProVerif can establish
correspondence and secrecy properties for protocols expressed in a variant of the pi cal-

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 105

culus, whose syntax and semantics are detailed in our technical report. In this calculus,
active attackers are represented as arbitrary processes that run in parallel, communicate
with the protocol on free channels, and perform symbolic computations. Given a script
that defines the protocol, the capabilities of the attacker, and some target query, ProVerif
generates logical clauses then uses a resolution-based semi-algorithm. When ProVerif
completes successfully, the script is robustly safe for the target query, that is, the query
holds against all (pi calculus) attackers; otherwise, ProVerif attempts to reconstruct an
attack trace. ProVerif may also diverge, or fail, as can be expected since query verifica-
tion in the pi calculus is not decidable. (ProVerif is known to terminate for the special
class of tagged protocols [16]. However, the protocols in our main application area of
web services rarely fall in this class.) ProVerif is a good match for our purposes, as it
offers both general soundness theorems and an effective implementation. Pragmatically,
we also rely on previous positive experience in generating large verification scripts for
ProVerif. In principle, however, we may benefit from any other verification tool.

To obtain a ProVerif script, we translate F programs to pi calculus processes and
rewrite rules. To help ProVerif succeed, we use a flexible combination of several transla-
tions. To validate our usage of ProVerif, we also formally relate arbitrary attackers in the
pi calculus to those expressible in F.

At its core, our translation maps functions to processes using the classic call-by-
value encoding from lambda calculus to pi calculus [31]. For instance, we may translate
the mac function declaration of Section 2

let mac nonce pwd text =
Crypto.hmacsha1 nonce (concat (utf8 pwd) (utf8 text))

into the process

!in(mac, (nonce,pwd,text,k));
out(k,Hmacsha1(nonce,Concat(Utf8(pwd),Utf8(text))))

This process is a replicated input on channel mac; each message on mac carries the
functional arguments (nonce,pwd,text) as well as a continuation channel k. When the
function completes, it sends back a message that carries its result on channel k. Similarly,
we translate the server function declaration of Section 2 into:

!in(server, (arg,kR));
new kX; out(accept, (address,kX)); in(kX,xml);
new kM; out(unmarshall, (xml,kM)); in(kM,(m,en,text));
new kV; out(verify, ((m,en,text),sk,pwd,kV)); in(kV,());
event Ev(Accept(text));
out(kR, ())

This process first calls function accept as follows: it generates a fresh continuation
channel kX; it sends a message that carries the argument address and kX on channel
accept; and it receives the function result xml on channel kX. The process then similarly
calls the functions unmarshall and verify. If both calls succeed, the process finally logs
the event Accept(text) and returns an (empty) result on kR.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols106

Our pi calculus includes the same term algebra—values built from variables, names,
and constructors—as F, so values are unchanged by the translation. Moreover, our pi cal-
culus includes term destructors defined by rewrite rules on the term algebra, and when-
ever possible after inlining, our implementation maps simple functions to destructors.
For instance, we actually translate the mac function declaration into the native ProVerif
reduction:

reduc mac(nonce,pwd,text) =
HmacSha1(nonce,Concat(Utf8(pwd),Utf8(text)))

Both formulations of mac are equivalent, but the latter is more efficient. On the other
hand, complex functions with side-effects, recursion, or non-determinism are translated
as processes. Our tool also supports a third potential translation for mac, into a ProVerif
predicate declaration; predicates are more efficient than processes and more expressive
than reductions. Our translation first performs aggressive inlining of F functions, con-
stant propagation, and similar optimizations. It then globally picks the best applicable
formulation for each reachable function, while eliminating dead code.

Finally, the translation gives to the pi calculus context the capabilities available to
attackers in F. For example, the channel httpchan representing network communication
is exported to the context in an initialization message. More interestingly, every public
function coded as a process is made available on an exported channel.

For instance, the server function is available to the attacker; accordingly, we generate
the process:

!in(serverPUB, (arg,kR)); out(server, (arg,kR))

This enables the attacker to trigger instances of the server using the public channel
serverPUB. Conversely, the private channel server is used only by the translation, so that
the attacker cannot intercept local function calls.

Formally, we define translations for expressions e, declarations d, and systems S.
The translation E [[e]](x,P) is a process that binds variable x to the value of e and then
runs process P. The translations S [[d]](P) and S [[S]](P) are processes that elaborate d
and S, and then run process P. At the top level, the translation [[S :: Ipub]] is a ProVerif
script that includes constructor definitions for the datatypes in S and defines a process
that elaborates S and then exports Ipub. Details of these translations are in the technical
report.

Our main correctness result is the following.

Theorem 1 (Reflection of Robust Safety) If S :: Ipub and [[S :: Ipub]] is robustly safe for q,
then S is robustly safe for q and Ipub.

In the statement of the theorem, S is the series of modules that define our system;
Ipub is a selection of the values, constructors, and functions declared in S that are made
available to the attacker; q is our target security query; and [[S :: Ipub]] is the ProVerif script
obtained from S and Ipub.

The proof of Theorem 1 appears in our technical report; it relies on an operational
correspondence between reductions on F configurations and reductions in the pi calculus.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 107

We implement our translation as a command line tool fs2pv that intercepts code after
the F# compiler front-end. The tool takes as input a series of module implementations
defining S and module interfaces bounding the attacker’s capabilities, much like Ipub.
The tool relies on the typing discipline of F# (which is stronger than the scope discipline
of F) to enforce that S :: Ipub. It then generates the script [[S :: Ipub]] and runs ProVerif. If
ProVerif completes successfully, it follows that [[S :: Ipub]] is robustly safe for q. Hence,
by Theorem 1, we conclude that S is robustly safe for q and Ipub.

As a simple example, recall the system S and its interface Ipub, as stated at the end
of Section 3. Our tool runs successfully on this input, proving that S is robustly safe for
the query ev:Accept(x) ⇒ ev:Send(x) and Ipub.

5. Verification of Interoperable Code

To validate our approach experimentally, we implemented a series of cryptographic pro-
tocols and verified their security against demanding threat models.

Tables 1 and 2 summarize our results for these protocols. For each protocol, Table 1
gives the program size for the implementation (in lines of F# code, excluding interfaces
and code for shared libraries), the number of messages exchanged, and the size of each
message, measured both in bytes for concrete runs and in number of constructors for
symbolic runs. Table 2 concerns verification; it gives the number of queries and the kinds
of security properties they express. A secrecy query requires that a password (pwd) or key
(key) be protected; a weak-secrecy query further requires that a weak secret (weak pwd)
be protected from a guessing attack. An authentication query requires that a message
content (msg), its sender (sender), or the whole exchange (session) be authentic. Some
queries can be verified even in the presence of attackers that control some corrupted
principals, thereby getting access to their keys and passwords. Not all queries hold for all
protocols; in fact some queries are designed to test the boundaries of the attacker model
and are meant to fail during verification. Finally, the table gives the size of the logical
model generated by ProVerif (the number of logical clauses) and its total running time to
verify all queries for the protocol.

For example, consider the simple authentication protocol of Section 2, named
Password-based MAC in the tables; its implementation has 38 lines of specific code;
ProVerif takes less than one second to verify the message authentication query and to
verify that the protocol protects the password from guessing attacks. A variant of our
implementation for this protocol (second row of Tables 1 and 2) produces the same mes-
sage, but is more modular and relies on more realistic libraries; it supports distributed
runs and enables the verification of queries against active attackers that may selectively
corrupt some principals and get access to their keys and passwords.

As a benchmark, we wrote a program for the four message Otway-Rees key estab-
lishment protocol [36], with two additional messages after key establishment to probe
the secrecy of message payloads encrypted with this key. To complete a concrete, dis-
tributed implementation, we had to code detailed message formats, left ambiguous in
the description of the protocol. In the process, we inadvertently enabled a typing attack,
immediately found by verification. We experimented with a series of 16 authentication
and secrecy queries; their verification takes a few minutes.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols108

Protocol Implementation

LOCs messages bytes symbols

Password-based MAC 38 1 208 16

Password-based MAC variant 75 1 238 21

Otway-Rees 148 4 74; 140; 134; 68 24; 40; 20; 11

WS password-based signing 85 1 3835 394

WS X.509 signing 85 1 4650 389

WS password-based MAC 85 1 6206 486

WS request-response 149 2 6206; 3187 486; 542
Table 1. Summary of example protocols

Protocol Security Goals Verification

queries secrecy authentication insiders clauses time

Password-based MAC 4 weak pwd msg no 69 0.8s

Password-based MAC variant 5 pwd msg, sender yes 213 2.2s

Otway-Rees 16 key msg, sender yes 155 1m50s

WS password-based signing 5 no msg, sender yes 456 5.3 s

WS X.509 signing 5 no msg, sender yes 460 2.6 s

WS password-based MAC 3 weak pwd msg, sender no 436 10.9s

WS request-response 15 no session yes 503 44m45s

Table 2. Verification Results

A Library for Web Services Security As a larger, more challenging case study, we im-
plemented and verified several web services security protocols.

Web services are applications that exchange XML messages conforming to the
SOAP standard [25]. To secure these exchanges, messages may include a security header,
defined in the WS-Security standard [34], that contains signatures, ciphertexts, and a
range of security elements, such as tokens that identify particular principals. Hence, each
secure web service implements a security protocol by composing mechanisms defined in
WS-Security. Previous analyses of such WS-Security protocols established correctness
theorems [23,9,7,27,28] and uncovered attacks [9,11]. However, these analyses operated
on models of protocols and not on their implementations. In the rest of this section, we
present the first verification results for the security of interoperable web services imple-
mentations.

First, we develop a library in F that implements the formats and mechanisms of
the web services messaging and security specifications. Like WSE [30], our library is a
partial implementation of these specifications; we selected features based on the need to
interoperate with protocols implemented by WSE. Our library provides several modules:

• Soap implements the SOAP formats for requests, responses, and faults, and their
exchange via HTTP.

• Wsaddressing implements the WS-Addressing [17] header formats, for message
routing and correlation.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 109

• Xmldsig and Xmlenc implement the standards for XML digital signature [20] and
XML encryption [19], which provide flexible formats for selectively signing and
encrypting parts of an XML document.

• Wssecurity implements the WS-Security header format and common security to-
kens, such as username tokens, encrypted keys, and X.509 certificates.

These modules rely on the Crypto module for cryptographic functions and a new Xml
module (with dual symbolic and concrete implementations) for raw XML manipulation.

Applications written with this library produce and consume SOAP messages that
conform to the web services specifications. Such applications can interoperate with other
conformant web services, such as those that use WSE.

The requirement to produce concrete, interoperable, and verifiable code is quite de-
manding, but it yields very precise executable models for the informal WS-Security spec-
ifications, more detailed than any available in the literature. For verifiability, we adopt a
programming discipline that reduces the flexibility of message formats wherever possi-
ble. In particular, we fix the order of headers in a message and limit the number of head-
ers that can be signed. We avoid higher-order functions (such as List.map) and recursion
over lists and XML, and instead inline these functions by hand.

The library consists of 1200 lines of F code. We can quickly write security protocols
using this library, such as an authentication protocol that uses a password or an X.509
certificate to generate an XML digital signature (protocols WS Password-based signing
and WS X.509 signing in Tables 1 and 2). Only 85 additional lines of code need to be
written to implement these protocols; their verification takes a few seconds.

A Simple Authentication Protocol over WS-Security As a case study, we used our web
services library to implement an existing password-based authentication protocol (WS
password-based MAC) taken from the WSE samples. The protocol is quite similar to
Password-based MAC, except that the message is now a standards-compliant XML doc-
ument. This message is sent as the body of a SOAP envelope that includes a WS-Security
security header that contains a username token, representing the client’s identity, and an
X.509 token, representing the server’s identity. The username token includes a freshly
generated nonce used, along with a shared password, to derive a key for message au-
thentication. This nonce is protected by encrypting the entire username token with the
server’s public key, using XML encryption. The message is authenticated by an XML
digital signature that includes a cryptographic keyed hash of the body using a key derived
from the username token.

In earlier work [11], we wrote a non-executable formal model for this protocol and
analyzed it with ProVerif. Here, we extract the model directly from a full-fledged im-
plementation. Moreover, we encode a more realistic threat model that enables the at-
tacker to gain access to some passwords and keys. In particular, the Prins module has
two additional functions in its interface: leakPassword and leakPrivateKey.

The leakPassword function is defined as follows:

let leakPassword (u:str) =
let pwd = getPassword u in log Leak(u); pwd

When the attacker calls leakPassword for a principal u, the function extracts the
password for u from the database and returns it to the attacker; but before leaking the

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols110

password, the function logs an event Leak(u) recording that the principal u has been
compromised.

We implement the client and server roles using our library, with slightly different
Send and Accept events from the ones in Section 2. To enable sender authentication, the
client logs Send(u,m), where u is the principal that sends the XML message m. Similarly,
on receiving the message, the server logs Accept(u,m). The datatype of events and the
authentication query becomes

type Ev = Send of str∗item
| Accept of str∗item
| Leak of str

q = ev:Accept(u,m) ⇒ ev:Send(u,m) ∨ ev:Leak(u)

where item is the datatype of XML elements. The query q asks that the server authen-
ticate the message m and the sending principal u, unless u has been leaked. Let W be
the system that consists of the client and server code, the symbolic libraries (Crypto,
Net, Prins, and Xml), and the web services library. Let Ipub be the interface of Section 3
extended with the item datatype. Using fs2pv and ProVerif, we prove that W is robustly
safe for q and Ipub. The verification of message and sender authentication takes only a
few seconds. As with Password-based MAC, we also prove that the password is protected
even if it is a weak secret.

We experimentally checked that our concrete implementation complies with the web
services specifications: we can run our client with a WSE server, and conversely access
our server from a WSE client. Many details of our model would have been difficult to
determine from the specifications alone, without interoperability testing. The resulting
messages exchanged by the concrete execution are around 6 kilobytes in size, while the
symbolic execution of the protocol generates messages with 486 symbols. The perfor-
mance of our concrete implementation is comparable to WSE, which is not surprising
here, since the execution time is dominated by XML processing and communication.

We also implemented and verified an extension of the protocol described above,
where the server, upon accepting the request message, sends back a response message
signed with the private key associated with its X.509 certificate. For this two message
protocol, the security goals are authentication of the request and the response, as well
as correlation between the messages. Correlation relies on a mechanism called signature
confirmation (described in a draft revision of WS-Security), where the response echoes
and signs the password-based signature value of the request. The protocol is named WS
request-response in the tables; ProVerif establishes all our authentication and correla-
tion goals, but takes almost 45 minutes for the analysis. Elsewhere [10], we describe
the design and architecture of the library used for this and other web services security
protocols.

Our protocol implementation can also be used as part of a larger web application,
while still benefiting from our results. The client functions can be exported as a library
invoked by applications written in any language running on the CLR, such as C# or
Visual Basic. Similarly, the server functions can be embedded in the security stack of
a web server that checks all incoming messages for conformance to the protocol before
handing over the message body to a web application written in any language. In both
cases, assuming the application code does not have access to secret passwords or keys,
the security results transparently apply.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 111

6. Conclusions

We describe an architecture and programming model for security protocols. For produc-
tion use, protocol code runs against concrete cryptography and low-level networking li-
braries. For initial development, the same code runs against symbolic cryptography and
intra-process communication libraries. For verification, much of the code translates to
a low-level pi calculus model for analysis against a Dolev-Yao attacker. The attacker
can be understood and customized in source-level terms as an arbitrary program running
against an interface exported by the protocol code.

Our prototype implementation is the first, we believe, to extract verifiable models
from code implementing standard security protocols, and hence able to interoperate with
other implementations. Our prototype has many limitations; still, we conclude that it
significantly reduces the gap between symbolic models of cryptographic protocols and
their implementations.

Limits of our model As usual, formal security guarantees hold only within the bound-
aries of the model being considered. Automated model extraction, such as ours, enables
the formal verification of large, detailed models closely related to implementations. In
our experience, such models are more likely to encompass security flaws than those fo-
cusing on protocols in isolation. Independently of our work, modelling can be refined in
various directions. Certified compilers and runtime environments can give strong guar-
antees that program executions comply with their formal semantics; in our setting, they
may help bridge the gap between the semantics of F and a low-level model of its native-
code execution, dealing for instance with memory safety.

Our approach also crucially relies on the soundness of symbolic cryptography with
regards to one implementation of concrete cryptography, which is far from obvious. Prag-
matically, our modelling of symbolic cryptography is flexible enough to accommodate
many known weaknesses of cryptographic algorithms (introducing for instance symbolic
cryptographic functions “for the attacker only”). There is a lot of interesting research on
reconciling symbolic cryptography with more precise computational models [3,6]. Still,
for the time being, these models do not support automated analyses on the scale needed
for our protocols.

Related work The ideas of modelling protocol roles as functions and modelling an ac-
tive attacker as an arbitrary functional context appear earlier in Sumii and Pierce’s stud-
ies of cryptographic protocols within a lambda calculus [39,40]. Unlike our functional
language, which has state and concurrency, their calculus cannot directly capture linear-
ity properties (such as replay detection via nonces), as its only imperative feature is name
generation. Several systems [37,33,29,38] operate in the reverse direction, and generate
runnable code from abstract models of cryptographic protocols in formalisms such as
strand spaces, CAPSL, and the spi calculus. These systems need to augment the under-
lying formalisms to express implementation details that are ignored in proofs, such as
message sizes and error handlers. Going further in the direction of growing a formalism
into a programming language, Guttman, Herzog, Ramsdell, and Sniffen [26] propose a
new programming language CPPL for writing security protocols; CPPL combines fea-
tures for communication and cryptography with a trust management engine for logically-
defined authorization checks. CPPL programs can be verified using strand space tech-
niques, although there is no automatic support for this at present. A limitation of all of

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols112

these systems is that they do not implement standard message formats and hence do not
interoperate with other implementations. In terms of engineering effort, it seems easier
to achieve interoperability by starting from an existing general purpose language such as
F# than by developing a new compiler.

Giambiagi and Dam [22] take a different approach to showing the conformance of
implementation to model. They neither translate model to code, nor code to model. In-
stead, they assume both are provided by the programmer, and develop a theory to show
that the information flows allowed by the implementation of a cryptographic protocol
are none other than those allowed by the abstract model of the protocol. They treat the
abstract protocol as a specification for the implementation, and implicitly assume cor-
rectness of the abstract protocol.

Askarov and Sabelfeld [5] report a substantial distributed implementation within the
Jif security-typed language of a cryptographic protocol for online poker without a trusted
third party. Their goal is to prevent some insecure information flows by typing. They do
not derive a formal model of the protocol from their code.

There are only a few works on compiling implementation files for cryptographic
protocols to formal models. Bhargavan, Fournet, and Gordon [8] translate the policy files
for web services to the TulaFale modelling language [11], for verification by compilation
to ProVerif. This translation can detect protocol errors in policy settings, but applies to
configuration files rather than executable source code. Other symbolic modelling [23,9,
7,27,28] of web services security protocols has uncovered a range of potential attacks,
but has no formal connection to source code. Goubault-Larrecq and Parrennes [24] are
the first to derive a Dolev-Yao model from implementation code written in C. Their tool
Csur performs an interprocedural points-to analysis on C code to yield Horn clauses
suitable for input to a resolution prover. They demonstrate Csur on code implementing
the initiator role of the Needham-Schroeder public-key protocol.

There is also recent research on verifying implementations of cryptographic algo-
rithms, as opposed to protocols. For instance, Cryptol [21] is a language-based approach
to verifying implementations of algorithms such as AES.

Acknowledgements James Margetson and Don Syme helped us enormously with using
and adapting the F# compiler. Tony Hoare and David Langworthy suggested improve-
ments to the presentation.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th ACM Sympo-
sium on Principles of Programming Languages (POPL’01), pages 104–115, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and
Computation, 148:1–70, 1999.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[4] X. Allamigeon and B. Blanchet. Reconstruction of attacks against cryptographic protocols. In 18th
IEEE Computer Security Foundations Workshop (CSFW’05), pages 140–154, 2005.

[5] A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic protocols:
A case study. In 10th European Symposium on Research in Computer Security (ESORICS’05), volume
3679 of LNCS, pages 197–221. Springer, 2005.

[6] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations.
In Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS’03),
pages 220–230. ACM Press, 2003.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 113

[7] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Secure sessions for web services. In 2004 ACM
Workshop on Secure Web Services (SWS), pages 11–22, Oct. 2004.

[8] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying policy-based security for web services. In 11th
ACM Conference on Computer and Communications Security (CCS’04), pages 268–277, Oct. 2004.

[9] K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services authentication. Theoretical
Comput. Sci., 340(1):102–153, June 2005.

[10] K. Bhargavan, C. Fournet, and A. D. Gordon. Verified reference implementations of ws-security proto-
cols. In 3rd International Workshop on Web Services and Formal Methods (WS-FM 2006), volume 4184
of LNCS, pages 88–106. Springer, 2006.

[11] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. TulaFale: A security tool for web services. In
International Symposium on Formal Methods for Components and Objects (FMCO’03), volume 3188
of LNCS, pages 197–222. Springer, 2004.

[12] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementations of security
protocols. In 19th IEEE Computer Security Foundations Workshop (CSFW’06), pages 139–152, 2006.

[13] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementations of security
protocols. Technical Report MSR–TR–2006–46, Microsoft Research, 2006.

[14] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th IEEE Computer
Security Foundations Workshop (CSFW’01), pages 82–96, 2001.

[15] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for security
protocols. In 20th IEEE Symposium on Logic in Computer Science (LICS’05), pages 331–340, 2005.

[16] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces termination.
Theoretical Computer Science, 333(1-2):67–90, 2005.

[17] D. Box, F. Curbera, et al. Web Services Addressing (WS-Addressing), Aug. 2004. W3C Member Sub-
mission.

[18] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, IT–29(2):198–208, 1983.

[19] D. Eastlake, J. Reagle, et al. XML Encryption Syntax and Processing, 2002. W3C Recommendation.
[20] D. Eastlake, J. Reagle, D. Solo, et al. XML-Signature Syntax and Processing, 2002. W3C Recommen-

dation.
[21] Galois Connections. Cryptol Reference Manual, 2005.
[22] P. Giambiagi and M. Dam. On the secure implementation of security protocols. Science of Computer

Programming, 50:73–99, 2004.
[23] A. D. Gordon and R. Pucella. Validating a web service security abstraction by typing. In 2002 ACM

workshop on XML Security, pages 18–29, 2002.
[24] J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In 6th Inter-

national Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’05), volume
3385 of LNCS, pages 363–379. Springer, 2005.

[25] M. Gudgin et al. SOAP Version 1.2, 2003. W3C Recommendation.
[26] J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T. Sniffen. Programming cryptographic protocols.

In Trusted Global Computing (TGC’05), volume 3705 of LNCS, pages 116–145. Springer, 2005.
[27] E. Kleiner and A. W. Roscoe. Web services security: A preliminary study using Casper and FDR. In

Automated Reasoning for Security Protocol Analysis (ARSPA 04), 2004.
[28] E. Kleiner and A. W. Roscoe. On the relationship between web services security and traditional proto-

cols. In Mathematical Foundations of Programming Semantics (MFPS XXI), 2005.
[29] S. Lukell, C. Veldman, and A. C. M. Hutchison. Automated attack analysis and code generation in a

multi-dimensional security protocol engineering framework. In Southern African Telecommunication
Networks and Applications Conference (SATNAC), 2003.

[30] Microsoft Corporation. Web Services Enhancements (WSE) 2.0, 2004. At http://msdn.
microsoft.com/webservices/building/wse/default.aspx.

[31] R. Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–141, 1992.
[32] R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.
[33] F. Muller and J. Millen. Cryptographic protocol generation from CAPSL. Technical Report SRI–CSL–

01–07, SRI, 2001.
[34] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. OASIS Web Services Security: SOAP Message

Security 1.0 (WS-Security 2004), Mar. 2004. OASIS Standard 200401.
[35] R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols114

Commun. ACM, 21(12):993–999, 1978.
[36] D. Otway and O. Rees. Efficient and timely mutual authentication. Operation Systems Review, 21(1):8–

10, 1987.
[37] A. Perrig, D. Song, and D. Phan. AGVI – automatic generation, verification, and implementation of

security protocols. In 13th Conference on Computer Aided Verification (CAV), LNCS, pages 241–245.
Springer, 2001.

[38] D. Pozza, R. Sisto, and L. Durante. Spi2Java: automatic cryptographic protocol Java code generation
from spi calculus. In 18th International Conference on Advanced Information Networking and Applica-
tions (AINA 2004), volume 1, pages 400–405, 2004.

[39] E. Sumii and B. C. Pierce. Logical relations for encryption. In 14th IEEE Computer Security Founda-
tions Workshop (CSFW’01), pages 256–269, 2001.

[40] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. In 31st ACM Symposium on Principles
of Programming Languages (POPL’04), pages 161–172, 2004.

[41] D. Syme. F#, 2005. Project website at http://research.microsoft.com/fsharp/.
[42] T. Woo and S. Lam. A semantic model for authentication protocols. In IEEE Computer Society Sympo-

sium on Research in Security and Privacy, pages 178–194, 1993.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 115

Compensable transactions

Tony HOARE
Microsoft Research, Cambridge, England

Abstract. The concept of a compensable transaction has been embodied in modern
business workflow languages like BPEL. This article uses the concept of a box-
structured Petri net to formalise the definition of a compensable transaction. The
standard definitions of structured program connectives are extended to construct
longer-running transactions out of shorter fine-grain ones. Floyd-type assertions
on the arcs of the net specify the intended properties of the transaction and of its
component programs. The correctness of the whole transaction can therefore be
proved by simple local reasoning.

1. Introduction

A compensable transaction can be formed from a pair of programs: one that performs
an action and another that performs a compensation for that action if and when required.
The forward action is a conventional atomic transaction: it may fail before completion,
but before failure it guarantees to restore (an acceptable approximation of) the initial state
of the machine, and of the relevant parts of the real world. A compensable transaction
has an additional property: after successful completion of the forward action, a failure of
the next following transaction may trigger a call of the compensation, which will undo
the effects of the forward action, as far as possible. Thus the longer transaction (this one
together with the next one) is atomic, in the sense that it never stops half way through, and
that its failure is adequately equivalent to doing nothing. In the (hopefully rare) case that
a transaction can neither succeed nor restore its initial conditions, an explicit exception
must be thrown.

The availability of a suitable compensation gives freedom to the forward action to
exercise an effect on the real world, in the expectation that the compensation can ef-
fectively undo it later, if necessary. For example, a compensation may issue apologies,
cancel reservations, make penalty payments, etc. Thus compensable transactions do not
have to be independent (in the sense of ACID); and their durability is obviously condi-
tional on the non-occurrence of the compensation, which undoes them. Because all our
transactions are compensable, in this article we will often omit the qualification.

We will define a number of ways of composing transactions into larger structures,
which are also compensable transactions. Transaction declarations can even be nested.
This enables the concept of a transaction to be re-used at many levels of granularity, rang-
ing perhaps from a few microseconds to several months – twelve orders of magnitude.
Of course, transactions will only be useful if failure is rare, and the longer transactions
must have much rarer failures.

The main composition method for a long-running transaction is sequential composi-
tion of an ordered sequence of shorter transactions. Any action of the sequence may fail,

Software System Reliability and Security
M. Broy et al. (Eds.)

IOS Press, 2007
© 2007 IOS Press. All rights reserved.

116

and this triggers the compensations of the previously completed transactions, executed
in the reverse order of finishing. A sequential transaction succeeds only if and when all
its component transactions have succeeded.

In the second mode of composition, the transactions in a sequence are treated as
alternatives: they are tried one after another until the first one succeeds. Failure of any
action of the sequence triggers the forward action of the next transaction in the sequence.
The sequence fails only if and when all its component transactions have failed.

In some cases (hopefully even rarer than failure), a transaction reaches a state in
which it can neither succeed nor fail back to an acceptable approximation of its original
starting state. The only recourse is to throw an exception. A catch clause is provided to
field the exception, and attempt to rectify the situation.

The last composition method defined in this article introduces concurrent execution
both of the forward actions and of the backward actions. Completion depends on com-
pletion of all the concurrent components. They can all succeed, or they can all fail; any
other combination leads to a throw.

2. The Petri box model of execution

A compensable transaction is a program fragment with several entry points and several
exits. It is therefore conveniently modelled as a conventional program flowchart, or more
generally as a Petri net. A flowchart for an ordinary sequential program is a directed
graph: its nodes contain programmed actions (assignments, tests, input, output, . . . as in
your favourite language), and its arrows allow passage of a single control token through
the network from the node at its tail to the node at its head. We imagine that the token
carries with it a value consisting of the entire state of the computer, together with the
state of that part of the world with which the computer interacts. The value of the token
is updated by execution of the program held at each node that it passes through. For a
sequential program, there is always exactly one token in the whole net, so there is never
any possibility that two tokens may arrive at an action before it is complete.

In section 6, we introduce concurrency by means of a Petri net transition, which
splits the token into separate tokens, one for each component thread. It may be regarded
as carrying that part of the machine resources which is owned by the thread, and com-
munication channels with those parts of the real world for which it is responsible. The
split token is merged again by another transition when all the threads are complete. The
restriction to a single token therefore applies within each thread.

A structured flowchart is one in which some of its parts are enclosed in boxes. The
fragment of a flowchart inside a box is called a block. The perimeter of a box represents
an abstraction of the block that it contains. Arrows crossing the perimeter are either
entries or exits from the box. We require the boxes to be either disjoint or properly nested
within each other. That is why we call it a structured flowchart, though we relax the
common restriction that each box has only one entry and one exit arrow. The boxes are
used only as a conceptual aid in planning and programming a transaction, and in defining
a calculus for proving their correctness. In the actual execution of the transaction, they
are completely ignored.

We will give conventional names to the entry points and exit points of the arrows
crossing the perimeter of the box. The names will be used to specify how blocks are com-

T. Hoare / Compensable Transactions 117

posed into larger blocks by connecting the exits of one box to the entries of another, and
enclosing the result in yet another box. This clearly preserves the disjointness constraint
for a box-structured net.

One of the arrows entering the box will be designated as the start arrow. That is
where the token first enters the box. The execution of the block is modelled by the move-
ment of the token along the internal arrows between the nodes of the graph that are inside
the box. The token then can leave the box by one of its exit points, generally chosen by
the program inside the box. The token can then re-enter the box again through one of
the other entry points that it is ready to accept it. The pattern of entering and leaving the
block may be repeated many times.

In our formal definition of a compensable transaction, we will include a behavioural
constraint, specifying more or less precisely the order in which entry and exit points can
be activated. The behavioural constraint will often be expressed as a regular expression,
whose language defines all permissible sequences of entry and exit events which may be
observed and sequentially recorded.

We will introduce non-determinism into our flowchart by means of the Petri net
place. A place is drawn as a small circle (Figure 1) with no associated action. It may
have many incoming arrows and many outgoing arrows. The place is entered by a token
arriving along any one of its entries. The next action (known as a firing) of the place is to
emit the token just once, along any one of its exit arrows. The token arriving at the exit
of the place may have originated at any one of its entries. The strict alternation of entries
and exits of a place may be formally described by the regular expression

(l + m + n); (r + s + t)

where l, m, n name the entries of the place, and r, s, t name the exits.
Technical note: in general, a Petri net place is capable of storing a token. In our

restricted calculus this capability is exploited only once (in section 6). In fact, we may
regard a token as passing instantaneously (as a single event) through any sequence of
consecutive states. Of course, a regular expression cannot model this simultaneity.

If the place has only a single exit arrow, it acts as a normal fan-in, and has the same
function as in a conventional flowchart. If there are many exits, the place acts as a fan-
out. The choice of exit arrow on each occasion of entry is usually determined by the
current readiness of the block at the head of the exit arrow to accept entry of the token.
But if more than one block is ready, the choice is non-deterministic, in the usual sense of
don’t-care or demonic non-determinism. It is the programmer’s responsibility to ensure
that all choices are correct; and the implementation may choose any alternative according
to any criterion whatsoever, because it is known that correctness will not be affected. For
example, efficiency and responsiveness are among the more desirable of the permissible
criteria.

We follow Floyd’s suggestion that the arrows in a flowchart should be annotated
with assertions. Assertions are descriptions of the state of the world (including the state
of the machine), and the programmer intends that they should be true of the world value
carried by the control token, whenever it passes along the annotated arrow. An assertion
on an arrow which enters a box serves as a precondition for the block, and it is the
responsibility of the surrounding flowchart to make it true before transmitting the token
to that entry. An assertion on an exit arrow from the box serves as a postcondition, and

T. Hoare / Compensable Transactions118

Correctness condition: L ∨ M ∨ N ⇒ R ∧ S ∧ T
Behaviour: (l + m + n); (r + s + t)

Figure 1. A Petri net place

it is the responsibility of the block itself to make it true before transmitting the token
through that exit.

The correctness of the composed flowchart may be determined locally in the usual
way, by considering the assertions on each arrow and on each place. For an arrow which
connects a single exit point to a single entry (usually on another box), the exit assertion
of the box at the tail of the arrow must logically imply the entry assertion of the box at its
head. For a place, the rule is a natural extension of this. A place is correct if the assertion
on each one of its entry arrows logically implies every one of the assertions at the heads of
its exit arrows. In other words, the verification condition for a place is that the disjunction
of all the tail assertions implies the conjunction of all the head assertions (see Figure 1,
where the upper case letters stand for the arrows annotated by the corresponding lower
case letter). Thus overall correctness of the entire flowchart can be proved in a modular
fashion, just one arrow or place or action at a time.

Correctness condition: L ∨ M ∨ N ⇒ R ∧ S ∧ T
Behaviour: (l + m + n); (r + s + t)

Figure 2. The same place as Figure 1

The intention of drawing a box of a structured flowchart is that the details of the
flowchart inside the box should be irrelevant to the rest of the flowchart that lies outside
the box. From the outside, you only need to know three items: (1) the names of the entry
and exit points; these are used to specify how the box is connected into its environment
(2) the assertions on the arrows that enter and leave the box; and (3) the constraints that
govern the order of entry and exit events, by which the token enters and leaves the box
along the arrows that cross the perimeter. If two boxes have the same assertions and the
same set of behaviours, we define them to be semantically equivalent.

This rule of equivalence may be applied to just a single place. As a result, any com-
plete collection of linked Petri net places, in which all the entries are connected to all

T. Hoare / Compensable Transactions 119

the exits, can be replaced by a single place, – one that has all the same entries and the
exits, but the internal arrows areeliminated. Figure 2 therefore has the same semantics as
Figure 1.

3. Definition of a transaction

A compensable transaction is a special kind of box in a Petri net. It is defined as a
box whose names, behaviour and assertions satisfy a given set of constraints. The first
constraint is a naming constraint. A transaction box has two entry points named start and
failback, and three exit points named finish, fail and throw. The intended function of each
of these points is indicated by its name, and will be more precisely described by the other
constraints. When a transaction is represented as a box, we introduce the convention that
these entries and exits should be distributed around the perimeter as shown in Figure 3.
As a result, our diagrams will usually omit the names, since the identity of each arrow is
indicated by its relative position on the perimeter of the box.

Figure 3. Entry and exit names

A more significant part of the formal definition of a transaction is a behavioural
constraint, constraining the order in which the token is allowed to enter and exit the
block at each entry and exit point. The constraint is conveniently defined by a regular
expression:

start ; (finish ; failback)* ; (fail + throw + finish)

This expression stipulates that the first activation of the transaction is triggered by
entry of the token at the start point. The last de-activation of the transaction is when the
token leaves at any one of the three exit points. In between these two events, the trans-
action may engage in any number of intermediate exits and entries. On each iteration, it
finishes successfully, but is later required to compensate by a failback entry, triggered by
failure of the following sequentially composed transaction. The number of occurrences
of finish followed by failback is not limited, and may even be zero. Typical complete
behaviours of a transaction are:

T. Hoare / Compensable Transactions120

start, finish
start, finish, failback, fail
start, finish, failback, finish
start, finish, failback, finish, failback, throw

The final constraint in the definition of a transaction governs the assertions on its
entry and exit points. This constraint expresses the primary and most essential property of
a transaction: that if it fails, it has already returned the world to a state that is sufficiently
close to the original initial state.

Sufficient closeness might be defined in many ways, but we give the weakest reason-
able definition. Our simple requirement is that on failure the world has been returned to a
state which again satisfies the initial precondition of the transaction. More precisely, the
assertion on the fail exit, must be the same original precondition that labels the start en-
try point. Similarly, on failback the transaction may assume that the postcondition that it
previously established on finishing is again valid. These standard assertional constraints
are indicated by the annotations in Figure 3. There is no constraint on the assertion E
labelling the throw exit.

Many of the constructions of our calculus of transactions can be applied to transac-
tions which satisfy weaker or stronger assertional constraints than the standard described
above. For example, a transaction may be exactly compensable if on failure it returns
to exactly the original state (where obviously the state of the world must be defined to
exclude such observations as the real time clock). A weaker constraint is that the post-
condition of failure is merely implied by the precondition. Finally, there is the possibility
that the transaction has no assertional constraint at all. We will not further consider these
variations.

In drawing diagrams with many boxes, the assertions on the arrows will often be
omitted. It is assumed that in concrete examples they will be restored in any way that sat-
isfies the intended assertional constraint, and also satisfies the local correctness criterion
for assertions, which apply to all arrows and all places.

That concludes our semantic definition of the concept of a transaction. The flowchart
gives an operational semantics, describing how the transactions are executed. The as-
sertions give an axiomatic semantics, describing how the transactions are specified and
proved correct. The interpretation of a flowchart makes it fairly obvious that the opera-
tional and the axiomatic definitions are in close accord.

4. A Calculus of Transactions

In this section we will define a small calculus for design and implementation of trans-
actions. They are built up by applying the operators that we define to smaller by build-
ing them from smaller component transactions. The ultimate components are ordinary
fragments of sequential program. Our semantic definitions will mainly use the picto-
rial representation shown in Figure 3. But for the sake of completeness, here is a more
conventional syntax.

T. Hoare / Compensable Transactions 121

<transaction> ::= <composed transaction> | <primitive transaction>
<primitive transaction> ::= succeed | fail | throw | <transaction declaration>
<transaction declaration> ::= [<forward action> comp compensation>]
<forward action> ::= <ordinary program>
<compensation> ::= <ordinary program>
<composed transaction> ::= <sequential composition> |

<alternative composition> | <exception block> | <non-deterministic choice>
<sequential composition>::= <transaction> ; <transaction>
<alternative composition> ::= <transaction> else <transaction>
<exception block> ::= <transaction> catch <transaction>
<non-deterministic choice> ::= <transaction> or <transaction>

The shortest primitive transactions are those that do nothing. There are three ways
of doing nothing: by succeeding, by failing, or by throwing. Definitions for these trans-
actions are given diagrammatically in Figure 4, where the small unconnected arrows will
never be activated. The leftmost example does nothing but succeed, and this can obvi-
ously be compensated by doing nothing again. The other two examples do nothing but
fail or throw. These will never be called upon to compensate.

Figure 4. Primitive Transactions

Longer running transactions are constructed by composing smaller ones in sequence,
or as alternatives, or as a non-deterministic choice, or by try/catch clauses. In all cases,
the result of the composition of compensable transactions will also be a compensable
transaction. The semantics of each construction will be explained diagrammatically as
a box that encloses the boxes representing the components. Some of the exit arrows of
each component box will be connected to some of the entry arrows of the other com-
ponent box, and thereby become internal arrows that can be ignored from outside. En-
tries and exits on the surrounding box are connected to remaining exits and entries of the
component boxes, often ones that share the same name. Where necessary, places may be
introduced to deal with fan-in and fan-out.

The basic primitive fine-grained transaction is declared by specifying two sections
of normal sequential code (Figure 5). The first of them T performs the required action
as control passes from the start on the left to the finish on the right. The second section
of code U specifies how the action should be compensated as control passes back from
the failback on the right to the fail on the left. Either the action or the compensation
can throw, on detecting that neither progress nor compensation is possible. The fan-in

T. Hoare / Compensable Transactions122

of the throw arrow indicates that it is not known from the outside which of the two
components has actually performed the throw. This fan-in of throws is common to most
of the operators defined below, and will sometimes be omitted from the diagrams

Figure 5. Transaction Declaration: [T comp U]

The first definition of the constructions for non-primitive transactions will be se-
quential composition, which is shown in Figure 6. The outer block denoting the whole
composition starts with the start of the first component block T. The finish of this block
triggers the start of the second component block U. The finish of the second block fin-
ishes the whole sequential composition. A similar story can be told of the backward-
going failure path, which performs the two compensations in the reverse order to the
forward operations. This is what makes the composed transaction compensable in the
same way as its components are. Furthermore, the sequential composition will satisfy
the behavioural constraint for transactions, simply because its components do so.

There should be assertions on each of the arrows. However, the permitted patterns for
these assertions are completely determined by the correctness principle for flowcharts,
so there is no need to mention them explicitly.

Figure 6. Sequential Composition: T ; U

T. Hoare / Compensable Transactions 123

This definition of sequential composition is associative and has succeed as its unit.
A simple proof of associativity is obtained by drawing the diagram for a sequential com-
position with three components, and adding an extra box, either around the two left
operands or around the two right operands. It is easy to see that this represents the two
different bracketings of the associative law. The flowchart itself remains the same in both
cases.

The definition of sequential composition states that failure of any component trans-
action of the sequence will propagate inexorably to the left, until everything that has ever
been done since the beginning of time has been undone. This is not always desirable.
The else operator shown in Figure 7 gives a way of halting the stream of failures and
compensations. It reverses again the direction of travel of the token, and tries a different
way of achieving the same eventual goal.

At most one of these alternatives will actually take effect. The first of them is tried
first. If it fails (having compensated of course), the second one is started. If this now
succeeds, control is passed to the following transaction, so that it too may try again. As
a result, the finish exit of the whole composition may be activated twice, or even more
often if either of the alternatives itself finishes many times.

Note the fan-in at the finish exit: from the outside it is impossible to distinguish
which alternative has succeeded on each occasion. Note also the fan-out of the failback
arrow. In spite of this fan-out, the else construction is deterministic. When failback oc-
curs, control may pass to the failback of either of the alternatives. The selection of desti-
nation will always be determined by the behavioural constraint on the component boxes.
As a result, control will pass to the alternative that has most recently finished, which is
obviously the right one to perform the appropriate compensation.

Figure 7. Alternative Composition: T else U

In the uncertain world in which computers operate, especially in the vicinity of peo-
ple, it is quite possible that a transaction that has failed once may succeed when it is
simply tried again. But clearly the programmer should control how often to repeat the
attempt. For example, suppose it is known that the transaction U is strictly compensable.
Then the transaction

(succeed else succeed else succeed) ; U

T. Hoare / Compensable Transactions124

merely causes U to be repeated up to three times – that is, up to three times more
often than this transaction itself is repeated by its own predecessors.

The else operator is associative with unit fail. The proof is no more difficult than
that for sequential composition.

Because of its deterministic order of execution, the else command is asymmetric.
Sometimes the programmer does not care which choice is made, and it is acceptable to
delegate the choice to the implementation. For this reason, we introduce an or construc-
tor, which is symmetric but non-deterministic. Its pictorial definition is very regular, but
too cluttered to be worth drawing explicitly. Each entry of the outer box fans out to the
like-named entry of both inner boxes. Each exit from the outer box fans in from the like-
named exits of the two inner boxes. The non-determinism is introduced by the fan-out of
the start arrow, which leads to two entries that are both ready to accept the token. After
the start, the behavioural constraint ensures that the rejected alternative will never obtain
the token. Note that the fail arrow of the whole box fans in from the fail arrows of both
its operands. This shows that the whole box may fail if either of its two operands fails.
In this respect, non-determinism differs from (and is worse than) the else construction,
which guarantees to recover from any single failure.

There is yet a third form of choice between alternatives, which plays the role of the
external choice in a process algebra. It is denoted by [] in CSP or + in CCS. External
choice is slightly more deterministic than or, and a bit less deterministic than else. Like
or it is symmetric. Like else it recovers from any single failure. It is defined by means of
an else, where the order of trying the operands is non-deterministic.

T [] U = (T else U) or (U else T)

A picture of this operator would have to contain two copies of each of the operands;
it is not worth drawing. A conventional equational definition is to be preferred.

This construction T [] U

• fails if both U and T fail
• does U if T fails
• does T if U fails
• chooses non-deterministically if neither fails
• may throw if either T or U can do so.

A catch is similar to an else in providing an alternative way of achieving the same
goal. The difference is that the first operand does not necessarily restore its initial state,
and that the second operand is triggered by a throw exit instead of a fail exit from the
first operand. A throw is appropriate when the first operand has been unable either to
restore the initial state or to finish successfully. The catching clause is intended to behave
like the first operand should have done: either to complete the compensation and fail,
or to succeed in the normal way, or else to throw again to some yet more distant catch.
Note that the catching clause does not satisfy the assertional constraint for a compensable
transaction, because the assertion at its start is not the same as the assertion at its fail
exit.

T. Hoare / Compensable Transactions 125

5. Nested Transactions

We have described in the previous section how a primitive transaction can be declared by
specifying a forward action together with its compensation. In the elementary case, both
of these are ordinary sequential programs. In this section we will also allow the forward
action to be itself a long-running transaction (which we call the child transaction), nested
inside a larger parent transaction declaration, as shown in Figure 8. As before, the com-
pensation U of the parent transaction is an ordinary sequential program, and is triggered
from the failback entry of the parent transaction. As a result, the failback entry of the
child transaction T is never activated. As a result, when the parent transaction is com-
plete, an implementation can discard the accumulated child compensations, and recover
the stack frames and other declared resources of the child transactions.

Nested transactions can be useful as follows. When a long sequence of transactions
all succeed, they build up a long sequence of compensations to be executed (in reverse
order) in the event of subsequent failure. However, at a certain stage there may be some
much better way of achieving the compensation, as it were in a single big step right
back to the beginning, rather than in the sequence of small steps accumulated by the
child transactions. The new single-step compensation is declared as the compensation
for the parent transaction. An example can be taken from a word processing program,
where each child transaction deals with a single keystroke, and undoes it when required
to compensate. However, when the parent document is complete, any subsequent failure
will be compensated by restoring the previous version of the whole document.

Figure 8. Nested Transaction Declaration

When the child transactions have all finished, their failback entries will never subse-
quently be activated, because (when necessary) the parent compensation is called instead.
As a result, at the finish of the parent transaction an implementation can simply discard
the accumulated child compensations, and recover the stack frames that they occupied.

In addition to stack frames, there may be other resources which need to be released
by the child transactions on completion of the parent transaction. In the case of failure,
the compensation can do this. But if all the child transactions succeed, we need another

T. Hoare / Compensable Transactions126

mechanism. To provide this requires a significant extension to our definition of a transac-
tion. We add to every transaction (the child transactions as well as the parent) a new en-
try point called finally, placed between the start and the fail, and a new exit point called
complete, placed between the finish and the failback. The nestable transaction declara-
tion therefore takes a third operand, a completion action; it is entered by the finally entry
and exited by the complete exit.

When transactions (parents or children) are composed sequentially, their comple-
tions are also composed sequentially, like their compensations, by connecting the com-
plete exit of the left operand to the finally entry of the right operand. So the connecting
arrows between completions go from left to right, and the completions are executed in
the same order as the forward actions, rather than in the reverse order.

Figure 9. Nesting with Completion: [T finally V comp U]

In Figure 9, the child transaction is denoted T , the parent compensation is U, and the
parent completion is V. The child transaction also has a finally entry and a complete exit,
and a completion action, which is not shown explicitly in the diagram. In the case that
the child is not a transaction, an ordinary sequential program can be artificially made into
a transaction by adding a completion action that does nothing. In that case, the definition
of a nested transaction becomes equivalent to that of an un-nested one.

When the whole child transaction has finished, the completions accumulated by the
child transactions are triggered. That is indicated in Figure 9 by the transverse arrow from
the finally exit of the child transactions T to the new finally entry of the child transactions
themselves. It executes the completion actions of all the children, in the same order as
the execution of forward actions of the children.

T. Hoare / Compensable Transactions 127

Another benefit of the introduction of completion actions is to implement the lazy
update design pattern. Each child makes a generally accessible note of the update that it
is responsible for performing, but lazily does not perform the update until all the child
transactions of the same parent have successfully finished. On seeing the note, the for-
ward action of each subsequent child takes account of the notes left by all previously
executed children, and behaves as if the updates postponed by all previous children had
already occurred. But on completion of the parent transaction, the real updates are actu-
ally performed by the completion code provided by each component child transaction.
As a result, the rest of the world will never know how lazy the transaction has been. The
completion codes will be executed in the same sequence as the forward actions of the
children. Compensations for lazy transactions tend to be rather simple, since all that is
required is to throw away the notes on the actions that should have been performed but
have not yet been.

Introduction of the new finally entry and complete exit for completion actions re-
quires an extension to the definition of the behavioural constraint on transactions. Note
that a completion is not allowed to fail, though it may still throw.

start ; X

where

X = fail + throw + (finish ; (finally ; (complete + throw) + failback ; X))

The definition of sequential composition and other operators needs to be adapted to
accommodate the addition of new entry and exit points for the completion actions. The
adaptations are fairly obvious, and we leave them to the interested reader.

The nesting of transactions may seem unpleasantly complex, but the concept of nest-
ing is essential to deal with the wide range of granularity at which the concept of atom-
icity can be applied. Many kinds of transaction will last a few microseconds, whereas
others may last a few months.

6. Concurrency

The Petri net place has provided a mechanism for fan-in and fan-out of the arrows of a
flowchart. Each activation (firing) of the place involves the entry of a single token along
a single one of the entry arrow, and the exit of the same token along any one of its exit
arrows. As a result, a place always maintains the number of tokens in the net – in our
treatment so far, there has only been just one token.

Introduction and elimination of tokens from the net is the purpose of the other prim-
itive element of a Petri net, the transition. This too provides a form of fan-in and fan-out,
but its behavioural rule is conjunctive rather than disjunctive, universal rather than exis-
tential. Each firing of a transition requires the entry of a token on all of its entry arrows,
and the emission of a token on all of its exit arrows. The notation used for transitions is
shown in Figure 10.

If there is only one entry to a transition, it acts as a fan-out: its firing will increase
the number of tokens travelling simultaneously in the network. This could certainly lead
to confusion if one of the tokens ever meets another at the same place. By allowing only
limited and well-structured forms of composition, our calculus will confine each token to
a disjoint region of the net, and ensure that tokens meet only at the entry to a transition,

T. Hoare / Compensable Transactions128

Correctness condition: L & M & N ⇒ R & S & T
Behaviour: (l||m||n); (r ||s||t)

Figure 10. Petri net transition

which is what is intended. Often, such a meeting place is a fan-in; it has only one exit, so
that it reduces the number of tokens in the system.

It is possible to think of all the entry and exit events for a transition as occurring
simultaneously. However, in representing this simultaneous behaviour as a regular ex-
pression, it is common to use a total ordering of events, in which any causal event occurs
before its effect. Furthermore, arbitrary interleaving is commonly used to record sequen-
tially events that occur simultaneously. The regular expression (P || Q) will stand for the
set of all interleavings of a string from P with a string from Q . Thus the behavioural
constraint on a transition in Figure 10 is that the arrival in any order of a token on all of
the entry arrows will trigger the emission of a token on each and every one of the exit
arrows, again in any order.

The correctness of a transition obviously requires that all the assertions on all the
exit arrows must be valid at the time of firing. In this respect, the transition is like a
place. It differs from a place in the precondition that all the assertions on the entry arrows
may be assumed to be true when the transition fires. Thus the correctness condition on
a transition is that the conjunction of all the entry assertions must logically imply the
conjunction of all the exit assertions. In general, there is a possibility that the conjunction
will be inconsistent; but we will design our calculus carefully to avoid this risk.

The semantics of the Petri net transition is given in terms of its correctness condition
and its behaviour. Thus it satisfies the same equivalence criterion as the place: any acyclic
network of pure transitions (in which every external exit is reachable from every external
entry) is equivalent to a single transition with exactly the same external entry and exit
arrows, but omitting the internal arrows.

We will explain the concept of well-structured concurrency first in the context of
ordinary programs, which have only a single entry and a single exit arrow. Concurrent
composition of two such programs is made to satisfy the same constraint, as shown in
Figure 11. This shows how two sections of code T and U will start simultaneously and
proceed concurrently until they have both finished. Only then does the concurrent com-
bination finish.

It is evident from the diagram (and from the structured property of boxes) that the
only meeting point of the two tokens generated by the fan-out transition on the left will
be at the final fan-in transition on the right, where they are merged. The diagram can
easily be adapted to deal with three or more threads. But this is not necessary, because

T. Hoare / Compensable Transactions 129

Figure 11. Parallel composition: T || U

the rules of equivalence for transitions ensure that concurrent composition is both an
associative and a commutative operator.

The proof of correctness of concurrent threads should be modular in the same way as
proof of correctness of all the other forms of composition. In order to make this possible,
some disjointness constraints must be placed on the actions of the individual threads.
The simplest constraint is that no thread can access any variable updated by some other
concurrent thread. This same constraint must also be applied to the assertions used to
prove correctness of each thread. The token which travels within a thread can be regarded
as carrying the variables and owned by that thread, together with their values.

In simple cases, the constraint on disjointness can be enforced by a compile-time
check on the global variables accessed by a thread. But in general, the use of indirect
addressing (for example, in an object-oriented program) will make it necessary to prove
disjointness by including some notion of ownership into the assertion language. Sepa-
ration logic provides an elegant and flexible means of expressing disjointness of own-
ership, and establishing it by means of proof. However, we will not pursue this issue
further here.

The disjointness constraint is effective in ensuring consistency of the final asser-
tions of the threads when they all terminate together. It also avoids race conditions at
run time, and so prevents any form of unwanted interference between the activities of
the threads. However, it also rules out any form of beneficial interaction or cooperation
between them. In particular, it rules out any sharing of internal storage or communication
channels. A safe relaxation of this restriction is provided by atomic regions (or critical
sections). This is defined as a section of code inside a thread, which is allowed to access
and update a shared resource. The implementation must guarantee (for example by an
exclusion semaphore) that only one thread at a time can be executing inside an atomic re-
gion, so race conditions are still avoided. The overall effect of multiple threads updating
the shared resource includes an arbitrary interleaving of the execution of their complete
atomic regions.

The Petri net formalisation of an atomic region models a shared resource as a token,
which may be regarded as carrying the current state and value of the resource. At the
beginning of an atomic region, a thread acquires ownership of this token in order to
access and update the shared resource; and at the end of the region the shared resource is

T. Hoare / Compensable Transactions130

released. Of course, execution of the region also requires the normal sequential token of
the thread that contains it.

An atomic region is defined (Figure 12) as a sort of inverse of concurrent composi-
tion, with a fan-in at the beginning and a fan-out at the end. For simplicity, we assume
that there is only a single shared resource, consisting of everything except the private
resources of the currently active individual threads. In most practical applications, many
separate resources will need to be declared, but we shall not deal with that complexity
here.

Figure 12. Atomic Region: atomic[T]

The definition of an atomic region requires the introduction of another entry and an-
other exit into the standard repertoire. The entry carries the suggestive name acquire , and
the exit is called release. The new entries and exits require extension of the behavioural
constraint, by inserting (acquire;release)* between every entry and the next following
exit. The definition of all the operators of our calculus must also be extended: but this
is very simple, because in each diagram defining an operator, all the acquire entries are
connected via a fan-out place, and all the release exits are connected via a fan-in place.

The declaration of a sharable resource is shown in Figure 13. The token that repre-
sents a resource is created by means of a transition fan-out. The block T contains all the
multiple threads that are going to share the resource. When all of them have finished, the
token is therefore merged again. The assertion R is known as the resource invariant: it
must be true at the beginning of T and at the end of every atomic region within T. Con-
versely, R may be assumed true at the end of the whole block T , and at the beginning of
every atomic region within it. Note that in this diagram the place is expected to store the
token between successive executions of the atomic regions.

The explicit statement of a resource invariant permits a very necessary relaxation of
the restriction that the assertions used within the threads of T may not refer to the values
of the variables of the shared resource, for fear that they are subject to concurrent update
by concurrent threads. The relaxed restriction states that all of the assertions private to
a thread (initial, internal or final) may mention the values of the shared resource, but
only in a way that is tolerant of interference. This means that the local assertions of each

T. Hoare / Compensable Transactions 131

Figure 13. Resource Declaration: resource R in T

thread must also be an invariant of every atomic region that may be invoked by the other
threads.

A direct application of this proof rule would require proof of each thread to know
all the internal assertions in every other thread – a serious violation of the principal of
locality of proof. A stronger but more modular condition is that each thread must prove
locally that all its assertions are invariant of any section of code X that leaves R invariant.
The details of the formalisation will not be elaborated here.

The definition of concurrent composition given in Figure 11 applies to fragments
of ordinary program with a single entry and a single exit. Our final task is to apply the
same idea to compensable transactions, with many more entries and exits. The basic
definition of concurrency of transactions introduces a transition to fan out each entry of
the concurrent block to the two (or more) like-named entries of the components; and
similarly, it introduces a transition to fan in the like-named exits of the components to
relevant exit of the whole composition (Figure 14). This means that the compensations
of concurrent transactions will also be executed concurrently in the same way as their
forward actions.

This scheme works well, provided that both components agree on which exit to
activate on each occasion – either they both finish, or they both fail, or they both throw.
The availability of a shared resource enables them to negotiate an agreement as required.
However, if they fail to do so, the result is deadlock, and no further action is possible. It
may be a good idea to complicate the definition of concurrency of transactions to avoid
this unfortunate possibility automatically, by doing something sensible in each case. Four
additional transitions are needed to implement the necessary logic.

1. if one component T finishes and U fails, these two exits are fanned in by a tran-
sition, whose exit leads to the failback of the successful T.

2. Similarly, if U finishes and T fails, the failback of U is invoked.
3. In the case that T performs a throw but U does not, the whole construction must

throw. This involves connecting U’s finish and fail exits via a place to a transition
that joins it with the throw exit of T.

4. A similar treatment deals with the case that U performs a throw.

Figure 15 shows the network controlling activation of the throw exit of [T || U]. It
is easy to calculate that the correctness condition of the network is

T. Hoare / Compensable Transactions132

Figure 14. [T || U] as a transaction

Figure 15. Network for throw

(T.finish ∨ T.fail) ∧ T.throw ∨ T.throw ∧ U.throw ∨ U.throw ∧ (U.fail ∨ U.finish)

7. Conclusion

This paper gives a simple account using Petri nets of long-running transactions with
compensations. The account is also quite formal, in the sense that the nets for any trans-

T. Hoare / Compensable Transactions 133

action composed solely by the principles described can actually be drawn, programmed
and executed by computer. The assertions on the arrows give guidance on how to design
correctness into a system of transactions from the earliest stage. The correctness princi-
ple for places and transitions serves as an axiomatic semantics, and shows how to prove
the correctness of a complete flowchart in a modular way, by proving the correctness
of each component and each connecting arrow separately. Thus we have given a unified
treatment of both an operational and an axiomatic semantics for compensable, compos-
able and nestable transactions. Simple cases of concurrency can also be treated, but more
work, both theoretical and experimental, is needed to deal with more general cases.

The more surprising ideas in this article are (1) use of the precondition of a transac-
tion as the criterion of adequacy of an approximation to the initial state that the compen-
sation should reach (there are many more complicated ways of doing this); and (2) the
suggestion of separation logic as an appropriate language for annotating the transitions
of a concurrent Petri net.

The deficiencies of this article are numerous and obvious. There are no transition
rules, no deductive systems, no algebraic axioms, no denotational semantic functions, no
proofs, no examples and no references. There is far more work still to be done by anyone
sufficiently interested in the subject.

Acknowledgements

The ideas and presentation of this paper have been greatly improved by the helpful com-
ments of:

Michael Butler, Ernie Cohen, Tim Harris, Niels Lohman, Jay Misra, Eliot Moss,
Matthew Parkinson, Simon Peyton Jones, Viktor Vafeiadis.

T. Hoare / Compensable Transactions134

Automata on Infinite Words and Their
Applications in Formal Verification

Orna KUPFERMAN

School of Computer Science and Engineering, Hebrew University,
Jerusalem 91904, Israel

Abstract. In formal verification, we check the correctness of a system with respect
to a desired property by checking whether a mathematical model of the system sat-
isfies a specification that formally expresses the property. In the automata-theoretic
approach to formal verification, we model both the system and the specification
by automata. Questions about systems and their specifications are then reduced to
questions about automata. The goal of this course is to teach the basics of automata
on infinite words and their applications in formal verification.

Keywords. Automata on infinite words, Formal verification.

Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key
to the solution of several fundamental decision problems in mathematics and logic
[Büc62,McN66,Rab69]. Today, automata on infinite objects are used for specification
and verification of nonterminating programs [Kur94,VW94]. The idea is simple: when a
system is defined with respect to a finite set P of propositions, each of the system’s states
can be associated with a set of propositions that hold in this state. Then, each of the sys-
tem’s computations induces an infinite word over the alphabet 2P , and the system itself
induces a language of infinite words over this alphabet. This language can be defined
by an automaton. Similarly, a specification for a system, which describes all the allowed
computations, can be viewed as a language of infinite words over 2P , and can therefore
be defined by an automaton. In the automata-theoretic approach to verification, we re-
duce questions about systems and their specifications to questions about automata. More
specifically, questions such as satisfiability of specifications and correctness of systems
with respect to their specifications are reduced to questions such as nonemptiness and
language containment. The automata-theoretic approach separates the logical and the
combinatorial aspects of reasoning about systems. The translation of specifications to au-
tomata handles the logic and shifts all the combinatorial difficulties to automata-theoretic
problems. We will define automata on infinite words, study some of their properties, and
see how they are used in formal verification.

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

135

1. The temporal logic LTL

The logic LTL is a linear temporal logic [Pnu77]. Formulas of LTL are constructed from
a set AP of atomic propositions using the usual Boolean operators and the temporal
operators X (“next time”) and U (“until”). Formally, an LTL formula over AP is defined
as follows:

• true, false, or p, for p ∈ AP .
• ¬ψ1, ψ1 ∧ ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are LTL formulas.

We define the semantics of LTL with respect to an infinite computation π =
σ0, σ1, σ2, . . ., where for every j ≥ 0, the set σj ⊆ AP is the set of atomic propositions
that hold in the j-th position of π. We denote the suffix σj , σj+1, . . . of π by πj . We use
π |= ψ to indicate that an LTL formula ψ holds in the computation π. The relation |= is
inductively defined as follows:

• For all π, we have that π |= true and π �|= false.
• For an atomic proposition p ∈ AP , we have that π |= p iff p ∈ σ0.
• π |= ¬ψ1 iff π �|= ψ1.
• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.
• π |= Xψ1 iff π1 |= ψ1.
• π |= ψ1Uψ2 iff there exists k ≥ 0 such that πk |= ψ2 and πi |= ψ1 for all

0 ≤ i < k.

We denote the size of an LTL formula ϕ by |ϕ| and we use the following abbrevia-
tions in writing formulas:

• ∨,→, and ↔, interpreted in the usual way.
• Fψ = trueUψ (“eventually”, and the “F” comes from “Future”).
• Gψ = ¬F¬ψ (“always”, and the “G” comes from “Globally”).

Example 1.1 We specify in LTL some properties that one may wish a mutual exclusion
algorithm to satisfy.

• The mutual exclusion property states that two processes are never simultaneously
in their critical sections. If ci is an atomic proposition that hold when process i
is in its critical section, then the LTL formula ψi,j

me = G(¬ci ∨ ¬cj) expresses
mutual exclusion between processes i and j. Note that the formula ¬F (ci ∧ cj)
is equivalent to ψi,j

me.
• The finite waiting property for process i states that if process i tries to access

its critical section, it will eventually access it. If for each process i, the atomic
proposition ti holds when process i tries to enter the critical section, then the LTL
formula ψi

fw = G(ti → Fci) expresses finite waiting for process i. Note that
the semantics of the operator U (and therefore also the one of F) includes the
present in the future. Thus, the requirement to have ci eventually is satisfied if the
process i is already in the critical section when it tries. A different specification is
G(ti → XFci), in which the access of the critical section has to be in the strict
future.

We interpret LTL formulas also with respect to Kripke structures, which may gener-
ate many computations. Formally, a Kripke structure is K = 〈AP, W, R, W0, L〉, where

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification136

W is a set of states, R ⊆ W × W is a total transition relation (that is, for every w ∈ W ,
there is at least one w′ such that R(w, w′), the set W0 ⊆ W is a set of initial states, and
L : W → 2AP maps each state to the sets of atomic propositions that hold in it. A path
of K is an infinite sequence w0, w1, . . . such that w0 ∈ W0 and for all i ≥ 0 we have
R(wi, wi+1). Every path w0, w1, . . . of K induces the computation L(w0), L(w1), . . . of
K .

The model-checking problem for LTL is to determine, given an LTL formula ψ and
a Kripke structure K , whether all the computations of K satisfy ψ [CE81,QS81,LP85,
VW94].

2. Büchi word automata

We can view Kripke structures as generators of languages over the alphabet 2AP . We can
also view properties as descriptions of languages over this alphabet.

Example 2.1 The properties specified by LTL formulas in Example 1.1, corresponds to
the following languages over the alphabet 2AP .

• The language Li,j
me that corresponds to mutual exclusion contains all computations

having no occurrences of letters containing both ci and cj . Formally,

Li,j
me = {σ0 · σ1 · · · : for all l ≥ 0, we have ci /∈ σl ∨ cj /∈ σl}.

• The language Li
fw that corresponds to finite waiting for process i contains all

computations in which every occurrence of a letter containing ti is followed by
an occurrence of a letter containing ci.

Li
fw = {σ0 ·σ1 · · · : for all l ≥ 0, if ti ∈ σl, then there is k ≥ l with ci ∈ σk)}.

We describe and reason about languages of infinite words using automata on infinite
words. Let Σ be a finite alphabet. A Büchi word automaton is A = 〈Σ, Q, δ, Q0, α〉,
where Σ is the input alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a transition
function, Q0 ⊆ Q is a set of initial states, and α ⊆ Q is a set of accepting states. Since
A may have several initial states and since the transition function may specify many
possible transitions for each state and letter, A may be nondeterministic. If |Q0| = 1
and δ is such that for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| ≤ 1, then A is a
deterministic automaton. We use NBW and DBW as abbreviations for nondeterministic
Büchi word automata and deterministic Büchi word automata, respectively.

Given an input word w = σ0 ·σ1 · · · in Σω, a run of A on w is a function r : IN → Q
where r(0) ∈ Q0 and for every i ≥ 0, we have r(i + 1) ∈ δ(r(i), σi); i.e., the run starts
in one of the initial states and obeys the transition function. Note that a nondeterministic
automaton can have many runs on w. In contrast, a deterministic automaton has a single
run on w. For a run r, let inf(r) denote the set of states that r visits infinitely often. That
is,

inf(r) = {q ∈ Q : r(i) = q for infinitely many i ≥ 0}.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 137

As Q is finite, it is guaranteed that inf(r) �= ∅. The run r is accepting iff inf(r)∩α �= ∅.
That is, iff there exists a state in α that r visits infinitely often. A run that is not accepting
is rejecting. An automaton A accepts an input word w iff there exists an accepting run of
A on w. The language of A, denoted L(A), is the set of words that A accepts.

Example 2.2 In Figure 1 we describe two Büchi automata. The alphabet of both au-
tomata is {a, b}. The automaton A1, which is deterministic, accepts exactly all words
with infinitely many a’s. The automatonA2 complements it and accepts exactly all words
with finitely many a’s.

ab

b

a
a, b

b

b
A1 A2

Figure 1. An example of nondeterministic Büchi automata.

The Büchi acceptance condition suggests one way to refer to inf(r) in order to
determine whether the run r is accepting. More acceptance conditions are defined in the
literature. Below we define a generalization of the Büchi condition. A generalized Büchi
automaton is A = 〈Σ, Q, δ, Q0, α〉, where Σ, Q, δ, and Q0 are as in Büchi automata,
and the acceptance condition α ⊆ 2Q consists of sets αi ⊆ Q. A run r of A with
α = {α1, α2, . . . , αk} is accepting iff inf(r) ∩ αi �= ∅ for all 1 ≤ i ≤ k. That is, r
is accepting if every set in α is visited infinitely often. We refer to k as the index of the
generalized Büchi automaton.

In Question 4, you will prove that generalized Büchi automata are not more expres-
sive than Büchi automata: given a nondeterministic generalized Büchi automaton with
n states and index k, it is possible to construct an equivalent Büchi automaton with nk
states.

3. Properties of Büchi Automata

It is easy to see that büchi automata are closed under union. Below we prove closure
under intersection.

Theorem 3.1 [Cho74] Given Büchi automata A1 and A2, we can construct a Büchi
automaton A such that L(A) = L(A1) ∩ L(A2).

Proof: Let A1 = (Σ, Q1, Q
0
1, δ1, α1) and A2 = (Σ, Q2, Q

0
2, δ2, α2). We define A =

〈Σ, Q, Q0, δ, α〉, where

• Q = Q1 × Q2 × {1, 2},
• Q0 = Q0

1 × Q0
2 × {1},

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification138

• δ(〈s, t, i〉, a) = δi(s, a) × δ2(t, a) × {j}, where i = j unless i = 1 and s ∈ α1,
in which case j = 2, or i = 2 and t ∈ α2, in which case j = 1, and

• α = α1 × Q2 × {1}.

The automaton A has two copies of the product of A1 and A2. When executing a
run, if we are in the first copy (the second copy), and we visit an accepting state of A1

(A2), we move to the other copy. The accepting condition requires to go infinitely often
through α1 × Q2 × {1}, i.e., to visit infinitely often accepting states of A1 in the first
copy. Since we can return to the first copy only after having visited an accepting state of
A2 on the second copy, both copies visit accepting states infinitely often.

We now turn to study the expressive power of nondeterministic vs. deterministic
Büchi automata. Recall that in the case of finite words, automata can be determinized,
thus nondeterministic automata on finite words are not more expressive than determinis-
tic automata on finite words. We now show that this is not the case for the infinite-word
setting.

Theorem 3.2 [Lan69] Deterministic Büchi automata are strictly less expressive than
nondeterministic Büchi automata.

Proof: Consider the language L = (a + b)∗bω, (i.e., L consists of all infinite words
in which a occurs only finitely many times). As shown in Example 2.2, the language
L is recognizable by a nondeterministic Büchi automata. We now show that L is not
recognizable by a deterministic Büchi automaton. Assume by way of contradiction that
L = L(A), for a deterministic A = ({a, b}, Q, {q0}, δ, α). Recall that δ can be viewed
as a partial mapping from Q × {a, b}∗ to Q.

Consider the infinite word w0 = bω. Clearly, w0 is accepted by A, so A has an
accepting run on w0. Thus, w0 has a finite prefix u0 such that δ(q0, u0) ∈ α. Consider
now the infinite word w1 = u0abω. Clearly, w1 is also accepted by A, so A has an
accepting run on w1. Thus, w1 has a finite prefix u0bu1 such that δ(q0, u0au1) ∈ α. In a
similar way we can continue to find finite words ui such that δ(q0, u0au1a . . . aui) ∈ α.
Since Q is finite, there are i, j, where 0 ≤ i < j, such that δ(q0, u0au1a . . . aui) =
δ(q0, u0au1a . . . auia . . . auj). It follows that A has an accepting run on

u0au1a . . . aui(aui+1 . . . uj−1auj)
ω.

But the latter word has infinitely many occurrences of a, so it is not in L.

The complement of an NBW A is an NBW A′ such that L(A′) = Σω \ L(A).
In the case of finite words, we complement automata by determinizing them and then
dualizing the acceptance condition (that is, defining the set of accepting states to be
Q \ α). While it is possible to complement a DBW (but not by dualization, see Question
5), Theorem 3.2 implies we cannot use such a complementation as an intermediate step
in general NBW complementation. We will get back to the complementation problem
for NBW in Section 7.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 139

4. From LTL to NBW

Given an LTL formula ψ, we construct a generalized Büchi word automaton Aψ such
that Aψ accepts exactly all the computations that satisfy ψ. The construction was first
suggested by Vardi and Wolper in 1986.

For an LTL formula ψ, the closure of ψ, denoted cl(ψ), is the set of ψ’s subformulas
and their negation (¬¬ψ is identified with ψ). Formally, cl(ψ) is the smallest set of
formulas that satisfy the following.

• ψ ∈ cl(ψ).
• If ψ1 ∈ cl(ψ) then ¬ψ1 ∈ cl(ψ).
• If ¬ψ1 ∈ cl(ψ) then ψ1 ∈ cl(ψ).
• If ψ1 ∧ ψ2 ∈ cl(ψ) then ψ1 ∈ cl(ψ) and ψ2 ∈ cl(ψ).
• If Xψ1 ∈ cl(ψ) then ψ1 ∈ cl(ψ).
• If ψ1Uψ2 ∈ cl(ψ) then ψ1 ∈ cl(ψ) and ψ2 ∈ cl(ψ).

For example, cl(p ∧ ((Xp)Uq)) is

{p ∧ ((Xp)Uq),¬(p ∧ ((Xp)Uq)), p,¬p, (Xp)Uq,¬((Xp)Uq), Xp,¬Xp, q,¬q}.

Theorem 4.1 [VW94] Given an LTL formula ψ, we can construct an NBW Aψ such that
L(Aψ) is exactly the set of words satisfying ψ and the size of Aψ is exponential in the
length of ψ.

Proof: We define Aψ = 〈2AP , Q, δ, Q0, α〉, where

• We say that a set S ⊆ cl(ψ) is good in cl(ψ) if S is a maximal set of formu-
las in cl(ψ) that does not have propositional inconsistency. Thus, S satisfies the
following conditions.

1. For all ψ1 ∈ cl(ψ), we have ψ1 ∈ S iff ¬ψ1 �∈ S, and
2. For all ψ1 ∧ ψ2 ∈ cl(ψ), we have ψ1 ∧ ψ2 ∈ S iff ψ1 ∈ S and ψ2 ∈ S.

The state space Q ⊆ 2cl(ψ) is the set of all the good sets in cl(ψ).
• Let S and S′ be two good sets in cl(ψ), and let σ ⊆ AP be a letter. Then S′ ∈

δ(S, σ) if the following hold.

1. σ = S ∩ AP ,
2. For all Xψ1 ∈ cl(ψ), we have Xψ1 ∈ S iff ψ1 ∈ S′, and
3. For all ψ1Uψ2 ∈ cl(ψ), we have ψ1Uψ2 ∈ S iff either ψ2 ∈ S or both ψ1 ∈ S

and ψ1Uψ2 ∈ S′.

Note that the last condition also means that for all ¬(ψ1Uψ2) ∈ cl(ψ), we have
that ¬(ψ1Uψ2) ∈ S iff ¬ψ2 ∈ S and either ¬ψ1 ∈ S or ¬(ψ1Uψ2) ∈ S′.

• Q0 ⊆ Q is the set of all states S ∈ Q for which ψ ∈ S.
• Every formula ψ1Uψ2 contributes to α the set

αψ1Uψ2 = {S ∈ Q : ψ2 ∈ S or ¬(ψ1Uψ2) ∈ S}.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification140

5. Alternating Automata on Infinite Words

In Section 2 we defined Büchi automata and mentioned that automata on infinite words
can be classified according to the type of acceptance condition. Another way to classify
an automaton on infinite words is by the type of its branching mode. In a deterministic
automaton, the transition function δ maps a pair of a state and a letter into a single state.
The intuition is that when the automaton is in state q and it reads a letter σ, then the
automaton moves to state δ(q, σ), from which it should accept the suffix of the word.
When the branching mode is existential, the automaton is nondeterministic and δ maps
q and σ into a set of states. In the existential mode, the automaton should accept the
suffix of the word from one of the states in the set. Accordingly, a word is accepted
by a nondeterministic automaton if the automaton has some accepting run on it. We
have met deterministic and nondeterministic automata in Section 2. In this section we
meet more sophisticated branching modes. The universal branching mode is dual to the
existential one. Thus, as there, δ maps q and σ into a set of states, yet the automaton
should accept the suffix of the word from all of the states in the set. Accordingly, a word
is accepted by a universal automaton if all the runs of the automaton on the word are
accepting. In alternating automata [CKS81], both existential and universal modes are
allowed, and the transitions are given as Boolean formulas over the set of states. For
example, δ(q, σ) = q1 ∨ (q2 ∧ q3) means that the automaton should accept the suffix of
the word either from state q1 or from both states q2 and q3. We now define alternating
automata formally and see how they can serve as an intermediate step in the translation
of LTL to nondeterministic Büchi automata.

For a given set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨), where we also allow the
formulas true and false. For Y ⊆ X , we say that Y satisfies a formula θ ∈ B+(X)
iff the truth assignment that assigns true to the members of Y and assigns false to the
members of X \ Y satisfies θ. For example, the sets {q1, q3} and {q2, q3} both satisfy
the formula (q1 ∨ q2) ∧ q3, while the set {q1, q2} does not satisfy this formula.

Consider an automaton A = 〈Σ, Q, Q0, δ, α〉. For a word w = σ0 · σ1 · · · and an
index i ≥ 0, let wi = σi · σi+1 · · · be the suffix of w that starts in position i. We can
represent δ using B+(Q). For example, a transition δ(q, σ) = {q1, q2, q3} of a nondeter-
ministic automaton A can be written as δ(q, σ) = q1∨q2∨q3. If A is universal, the tran-
sition can be written as δ(q, σ) = q1 ∧ q2 ∧ q3. While transitions of nondeterministic and
universal automata correspond to disjunctions and conjunctions, respectively, transitions
of alternating automata can be arbitrary formulas in B+(Q). We can have, for instance,
a transition δ(q, σ) = (q1 ∧ q2) ∨ (q3 ∧ q4), meaning that the automaton accepts a suffix
wi of w from state q, if it accepts wi+1 from both q1 and q2 or from both q3 and q4. Such
a transition combines existential and universal choices.

Formally, an alternating automaton on infinite words is a tupleA = 〈Σ, Q, qin, δ, α〉,
where Σ, Q, qin, and α are as in nondeterministic automata (for technical simplicity we
assume that the set of initial states is a singleton), and δ : Q×Σ → B+(Q) is a transition
function. While a run of a nondeterministic automaton is an infinite sequence of states, a
run of an alternating automaton is a tree r : Tr → Q for some Tr ⊆ IN∗. Formally, a tree
is a (finite or infinite) nonempty prefix-closed set T ⊆ IN∗. The elements of T are called
nodes, and the empty word ε is the root of T . For every x ∈ T , the nodes x · c ∈ T where
c ∈ IN are the children of x. A node with no children is a leaf . We sometimes refer to the

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 141

length |x| of x as its level in the tree. A path π of a tree T is a set π ⊆ T such that ε ∈ π
and for every x ∈ π, either x is a leaf, or there exists a unique c ∈ IN such that x · c ∈ π.
Given a finite set Σ, a Σ-labeled tree is a pair 〈T, V 〉 where T is a tree and V : T → Σ
maps each node of T to a letter in Σ. A run of A on an infinite word w = σ0 · σ1 · · · is a
Q-labeled tree 〈Tr, r〉 such that the following hold:

• r(ε) = qin.
• Let x ∈ Tr with r(x) = q and δ(q, σ|x|) = θ. There is a (possibly empty) set

S = {q1, . . . , qk} such that S satisfies θ and for all 1 ≤ c ≤ k, we have x · c ∈ Tr

and r(x · c) = qc.

For example, if δ(qin, σ0) = (q1 ∨ q2) ∧ (q3 ∨ q4), then possible runs of A on w have
a root labeled qin, have one node in level 1 labeled q1 or q2, and have another node in
level 1 labeled q3 or q4. Note that if θ = true, then x need not have children. This is
the reason why Tr may have leaves. Also, since there exists no set S as required for
θ = false, we cannot have a run that takes a transition with θ = false.

A run 〈Tr, r〉 is accepting iff all its infinite paths, which are labeled by words in
Qω, satisfy the acceptance condition. A word w is accepted iff there exists an accepting
run on it. Note that while conjunctions in the transition function of A are reflected in
branches of 〈Tr, r〉, disjunctions are reflected in the fact we can have many runs on the
same word. The language of A, denoted L(A), is the set of infinite words that A accepts.
We use ABW to abbreviate alternating Büchi automata on infinite words.

6. From LTL to NBW via alternating Büchi automata

In this section we show an alternative translation of LTL to NBW. The translation goes
via alternating automata: we first translate the LTL formula to an ABW, and then translate
the ABW to an an NBW. Using alternating automata as an intermediate step was first
suggested in the branching framework, for the translation of branching temporal logics
to tree automata [KVW00]. There, the use of alternating automata enables an efficient
automata-based solution to the model checking problem. In the linear framework, an
advantage of the intermediate alternating automaton is the ability to apply optimization
algorithms on both the intermediate ABW and the final NBW [Fri03,FW02,GKSV03].

For simplicity, we assume that LTL formulas are in positive normal form, where
negation is applied only to atomic propositions. Having no negation, we should have
both ∧ and ∨, and have the temporal operator G in addition to X and U .

Theorem 6.1 [KVW00] Given an LTL formula ψ in positive normal form, we can con-
struct an ABW Aψ such that L(Aψ) is exactly the set of words satisfying ψ and the size
of Aψ is linear in the length of ψ.

Proof: We define Aψ = 〈2AP , cl(ψ), δ, ψ, α〉, as follows. The set α of accepting states
consists of all the G-formulas in cl(ψ); that is, formulas of the form Gϕ2. The transition
function δ is defined, for all σ ∈ 2AP , as follows.

• δ(p, σ) = true if p ∈ σ.
• δ(p, σ) = false if p �∈ σ.
• δ(¬p, σ) = true if p �∈ σ.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification142

• δ(¬p, σ) = false if p ∈ σ.
• δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ).
• δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ).
• δ(Xϕ2, σ) = ϕ2.
• δ(ϕ1Uϕ2, σ) = δ(ϕ2, σ) ∨ (δ(ϕ1, σ) ∧ ϕ1Uϕ2).
• δ(Gϕ2, σ) = δ(ϕ2, σ) ∧ Gϕ2.

Intuitively, Aψ follows the structure of the formula, and uses the acceptance condi-
tion α to guarantee that eventualities of U -formulas are eventually satisfied.

In order to complete the translation of LTL to NBW, we need to remove alternation
from Aψ :

Theorem 6.2 [MH84] Let A be an alternating Büchi automaton. There is a nondeter-
ministic Büchi automaton A′, with exponentially many states, such that L(A′) = L(A).

Proof: The automaton A′ guesses a run of A. At a given point of a run of A′, it keeps
in its memory a whole level of the run tree of A. As it reads the next input letter, it
guesses the next level of the run tree of A. In order to make sure that every infinite path
visits states in α infinitely often, A′ keeps track of states that “owe” a visit to α. Let
A = 〈Σ, Q, qin, δ, α〉. Then A′ = 〈Σ, 2Q × 2Q, 〈{qin}, ∅〉, δ′, 2Q × {∅}〉, where δ′ is
defined, for all 〈S, O〉 ∈ 2Q × 2Q and σ ∈ Σ, as follows.

• If O �= ∅, then δ′(〈S, O〉, σ) =

{〈S′, O′ \ α〉 | S′ satisfies
∧
q∈S

δ(q, σ), O′ ⊆ S′, and O′ satisfies
∧
q∈O

δ(q, σ)}.

• If O = ∅, then δ′(〈S, O〉, σ) =

{〈S′, S′ \ α〉 | S′ satisfies
∧
q∈S

δ(q, σ)}.

In [MSS86], Muller et al. introduce alternating weak automata. In a weak automa-
ton, the acceptance condition is α ⊆ Q and there exists a partition of Q into disjoint sets,
Qi, such that for each set Qi, either Qi ⊆ α, in which case Qi is an accepting set, or
Qi ∩α = ∅, in which case Qi is a rejecting set. In addition, there exists a partial order ≤
on the collection of the Qi’s such that for every q ∈ Qi and q′ ∈ Qj for which q′ occurs
in δ(q, σ, k), for some σ ∈ Σ and k ∈ D, we have Qj ≤ Qi. Thus, transitions from a
state in Qi lead to states in either the same Qi or a lower one. It follows that every infinite
path of a run of a weak automaton ultimately gets “trapped” within some Qi. The path
then satisfies the acceptance condition if and only if Qi is an accepting set. Note that this
corresponds to the Büchi acceptance condition. Indeed, a run visits infinitely many states
in α iff it gets trapped in an accepting set.

The automaton Aψ defined in the proof of Theorem 6.1 is weak. To see this, con-
sider the partition of Q into disjoint sets in which each formula ϕ ∈ cl(ψ) constitutes

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 143

a (singleton) set {ϕ} in the partition. The partial order between the sets is then defined
by {ϕ1} ≤ {ϕ2} iff ϕ1 ∈ cl(ϕ2). Since each transition of the automaton from a state
ϕ leads to states associated with formulas in cl(ϕ), the weakness conditions hold. In
particular, each set is either contained in α or disjoint from α.

As pointed out in [GO01], the fact Aψ is weak (in fact, it is very weak – the sets
Qi in the partition are singletons) enables a simpler removal of alternation than the one
described in Theorem 6.2. In general, the construction we presented in Theorem 4.1 and
the one that follows from the combination of Theorems 6.1 and 6.2 are very basic ones.
Due to the heavy use of the construction in practice, numerous improvements have been
suggested, cf. [GPVW95,SB00,GO01,Fri03].

7. Complementation of Büchi automata

In Section 3, we saw that NBW are closed under union and intersection. In this section
we prove their closure under complementation.

The complementation problem for nondeterministic word automata has numerous
applications in formal verification. In particular, the language-containment problem, to
which many verification problems is reduced, involves complementation. For automata
on finite words, which correspond to safety properties, complementation involves deter-
minization. The 2n blow-up that is caused by the subset construction is justified by a tight
lower bound. For Büchi automata on infinite words, which are required for the model-
ing of liveness properties, optimal complementation constructions are quite complicated,
as the subset construction is not sufficient. Efforts to develop simple complementation
constructions for nondeterministic automata started early in the 60s, motivated by deci-
sion problems of second-order logics. Büchi suggested a complementation construction
for nondeterministic Büchi automata that involved a complicated combinatorial argu-
ment and a doubly-exponential blow-up in the state space [Büc62]. Thus, complement-
ing an automaton with n states resulted in an automaton with 22O(n)

states. In [SVW87],
Sistla et al. suggested an improved construction, with only 2O(n2) states, which is still,
however, not optimal. Only in [Saf88], Safra introduced a determinization construction,
which also enabled a 2O(n log n) complementation construction, matching a lower bound
described by Michel [Mic88].

In this section we describe a complementation construction that avoids Safra’s deter-
minization. The construction, described in [KV01], uses instead intermediate universal
co-Büchi automata and alternating weak automata. Here, we describe the construction
without the intermediate automata, and go directly to a complementary NBW. The idea
behind the construction is to assign ranks to nodes in a directed acyclic graph that em-
bodies all the runs of the NBW. The idea can be applied also to richer types of acceptance
conditions [KV05].

Let A = 〈Σ, Q, qin, δ, α〉 be a nondeterministic Büchi automaton with |Q| = n, and
let w = σ0 · σ1· be a word in Σω. We define an infinite DAG G that embodies all the
possible runs of A on w. Formally, G = 〈V, E〉, where

• V ⊆ Q × IN is the union
⋃

l≥0(Ql × {l}), where Q0 = {qin} and Ql+1 =⋃
q∈Ql

δ(q, σl).
• E ⊆

⋃
l≥0(Ql × {l}) × (Ql+1 × {l + 1}) is such that E(〈q, l〉, 〈q′, l + 1〉) iff

q′ ∈ δ(q, σl).

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification144

We refer to G as the run DAG of A on w. We say that a vertex 〈q′, l′〉 is a successor
of a vertex 〈q, l〉 iff E(〈q, l〉, 〈q′, l′〉). We say that 〈q′, l′〉 is reachable from 〈q, l〉 iff there
exists a sequence 〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of successive vertices such that 〈q, l〉 =
〈q0, l0〉, and there exists i ≥ 0 such that 〈q′, l′〉 = 〈qi, li〉. Finally, we say that a vertex
〈q, l〉 is an α-vertex iff q ∈ α. It is easy to see that A accepts w iff G has a path with
infinitely many α-vertices. Indeed, such a path corresponds to an accepting run of A on
w.

A ranking for G is a function f : V → [2n] that satisfies the following two condi-
tions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q �∈ α.
2. For all edges 〈〈q, l〉, 〈q′, l′〉〉 ∈ E, we have f(〈q′, l′〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex in G a rank in [2n] so that the ranks along
paths decreased monotonically, and α-vertices get only even ranks. Note that each path
in G eventually gets trapped in some rank. We say that the ranking f is an odd ranking
if all the paths of G eventually get trapped in an odd rank. Formally, f is odd iff for all
paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in G, there is j ≥ 0 such that f(〈qj , j〉) is odd, and for
all i ≥ 1, we have f(〈qj+i, j + i〉) = f(〈qj , j〉).

Lemma 7.1 A rejects w iff there is an odd ranking for G.

Proof: We first claim that if there is an odd ranking for G, then A rejects w. To see this,
recall that in an odd ranking, every path in G eventually gets trapped in an odd rank.
Hence, as α-vertices get only even ranks, it follows that all the paths of G, and thus all
the possible runs of A on w, visit α only finitely often.

Assume now that A rejects w. We describe an odd ranking for G. We say that a
vertex 〈q, l〉 is finite in a (possibly finite) DAG G′ ⊆ G iff only finitely many vertices
in G′ are reachable from 〈q, l〉. The vertex 〈q, l〉 is α-free in G′ iff all the vertices in
G′ that are reachable from 〈q, l〉 are not α-vertices. Note that, in particular, an α-free
vertex is not an α-vertex. We define an infinite sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of DAGs
inductively as follows.

• G0 = G.
• G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}.
• G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is α-free in G2i+1}.

Consider the function f : V → IN where

f(〈q, l〉) =

[
2i If 〈q, l〉 is finite in G2i.
2i + 1 If 〈q, l〉 is α-free in G2i+1.

Recall that A rejects w. Thus, each path in G has only finitely many α-vertices. It is
shown in [KV01] that for every i ≥ 0, the transition from G2i+1 to G2i+2 involves the
removal of an infinite path from G2i+1. Intuitively, it follows from the fact that as long
as G2i+1 is not empty, it contains a at least one α-free vertex, from which an infinite
path of α-free vertices start. Since the width of G0 is bounded by n, it follows that
the width of G2i is at most n − i. Hence, G2n is finite, and G2n+1 is empty. Thus, f
above maps the vertices in V to [2n]. We claim further that f is an odd ranking. First,
since an α-free vertex cannot be an α-vertex and f(〈q, l〉) is odd only for α-free vertices

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 145

〈q, l〉, the first condition for f being a ranking holds. Second, as argued in [KV01],
for every two vertices 〈q, l〉 and 〈q′, l′〉 in G, if 〈q′, l′〉 is reachable from 〈q, l〉, then
f(〈q′, l′〉) ≤ f(〈q, l〉). In particular, this holds for 〈q′, l′〉 that is a successor of 〈q, l〉.
Hence, the second condition for ranking holds too. Finally, as argued in [KV01] for every
infinite path in G, there exists a vertex 〈q, l〉 with an odd rank such that all the vertices
〈q′, l′〉 in the path that are reachable from 〈q, l〉 have f(〈q′, l′〉) = f(〈q, l〉). Hence, f is
an odd ranking.

By Lemma 7.1, an automaton A′ that complements A can proceed on an input word
w by guessing an odd ranking for the run DAG of A on w. We now define such an
automaton A′ formally. We first need some definitions and notations.

A level ranking for A and w is a function g : Q → [2n] ∪ {⊥}, such that if g(q)
is odd, then q �∈ α. Let R be the set of all level rankings. For two level rankings g and
g′, we say that g′ covers g if for all q and q′ in Q, if g(q) ≥ 0 and q′ ∈ δ(q, σ), then
0 ≤ g′(q′) ≤ g(q).

We define A′ = 〈Σ,R× 2Q, q′in, δ′,R× {∅}〉, where

• q′in = 〈gin, ∅〉, where gin(qin) = 2n and gin(q) = ⊥ for all q �= qin. Thus, the
odd ranking that A′ guesses maps the root 〈qin, 0〉 of the run DAG to 2n.

• For a state 〈g, P 〉 ∈ R×2Q and a letter σ ∈ Σ, we define δ′(〈g, P 〉, σ) as follows.
◦ If P �= ∅, then

δ′(〈g, P 〉, σ) = {〈g′, P ′〉 : g′ covers g, and

◦ If P = ∅, then

δ′(〈g, P 〉, σ) = {〈g′, P ′〉 : g′ covers g, and P ′ = {q′ : g′(q′) is even}}.

Thus, when A′ reads the l’th letter in the input, for l ≥ 1, it guesses the level
ranking for level l in the run DAG. This level ranking should cover the level rank-
ing of level l−1. In addition, in the P component, A′ keeps track of states whose
corresponding vertices in the DAG have even ranks. Paths that traverse such ver-
tices should eventually reach a vertex with an odd rank. When all the paths of
the DAG have visited a vertex with an odd rank, the set P becomes empty, and is
initiated by new obligations for visits in odd ranks according to the current level
ranking. The acceptance condition R × {∅} then checks that there are infinitely
many levels in which all the obligations have been fulfilled.

8. Exercises

Question 1

For each pair ϕ1; ϕ2 of formulas below, decide which of the following hold (note that
possibly both a and b hold, or none of them):

a. ϕ1 → ϕ2.

P ′ = {q′ : there is q ∈ P such that q′ ∈ δ(q, σ) and g′(q′) is even}}.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification146

b. ϕ1 ← ϕ2.

When the an implication does not hold, describe a counter example (when a does not
hold, describe a model for ϕ1 that does not satisfy ϕ2, and when b does not hold, describe
a model for ϕ2 that does not satisfy ϕ1).

1. Gp ; ¬FX¬p
2. G(p ∨ q) ; Gp ∨ Gq
3. G(p ∧ q) ; Gp ∧ Gq
4. qUp ; q ∧ XqUp
5. pU(qUr) ; (pUq)Ur
6. p ∧ Xq ; pUq ∧ qUp

Question 2

Describe nondeterministic Büchi automata for the following properties.

1. F (p ∧ Xp).
2. FG(p ∨ Xp).
3. Gp → Gq.
4. GFp → GFq.

Question 3

Prove or give a counter example:

1. Every nondeterministic Büchi automaton A has an equivalent nondeterministic
Büchi automaton A′ with a single initial state.

2. Every nondeterministic Büchi automaton A has an equivalent nondeterministic
Büchi automaton A′ with a single accepting state.

Question 4

Given a generalized Büchi automaton with n states and index k, construct an equivalent
Büchi automaton with nk states.

Question 5

Given a deterministic Büchi automaton A = 〈Σ, Q, δ, q0, α〉 with n states, describe a
nondeterministic Büchi automaton A′ with O(n) states such that L(A′) = Σω \ L(A).

Hint: the NBW A′ uses its nondeterminism in order to guess when the run of A
stops visiting α.

Question 6

Consider a nondeterministic word automaton A. Let L∗(A) be the language of A when
regarded as an automaton on finite words, and let Lω(A) be the language of A when
regarded as a Büchi automaton. Prove or give a counter example:

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 147

1. Lω(A) = lim(L∗(A)).
2. Lω(A) = lim(L∗(A)) iff there is some deterministic Büchi automaton that rec-

ognizes Lω(A).

Question 7

In a co-Büchi word automaton, the acceptance condition is a set α ⊆ Q and a run r is
accepting iff it visits α only finitely often; that is inf(r) ∩ α = ∅.

1. Prove that a language L is recognizable by a deterministic Büchi automaton iff
Σω \ L is recognizable by a deterministic co-Büchi automaton.

2. Given a nondeterministic co-Büchi automaton A = 〈Σ, Q, δ, Q0, α〉, define a
deterministic co-Büchi automaton A′ = 〈Σ, Q′, δ′, q′0, α

′〉 equivalent to A.
Hint: Q′ = 2Q × 2Q, and all the reachable states 〈S, P 〉 in Q′ are such that
P ⊆ S. The acceptance condition α′ = 2Q × {∅}.

3. Let L = {w : w has infinitely many a’s } ⊆ {a, b}ω. Can L be recognized by a
nondeterministic co-Büchi word automaton? Justify your answer.

Question 8

In this question we prove an exponential lower bound on the translation of LTL to non-
deterministic Büchi automata. Let AP = {p, q}. For n ≥ 1, we define the language Ln

over the alphabet 2AP as follows.

Ln = {{{p}, {q}, ∅, }∗ ·∅·w ·∅·{{p}, {q}, ∅, }∗·{p, q}·w ·{p, q}ω : w ∈ {{p}, {q}}n}.

Thus, a word is in Ln iff the word between the first and second {p, q} is of length n, it
is composed of letters in {{p}, {q}} only, and it has appeared between ∅’s somewhere
before the first {p, q}. In addition, the second {p, q} starts an infinite tail of {p, q}’s.

1. Describe two words in L3 and two words not in L3.
2. Prove that the smallest nondeterministic Büchi automaton that recognizes Ln has

at least 2n states.
3. Specify Ln with an LTL formula of length quadratic in n.

Question 9

Consider the translation of an LTL formula ψ to nondeterministic Büchi automata Aψ

we saw in class. Recall that AS
ψ (that is, Aψ with initial state S ⊆ cl(ψ)) accepts exactly

these words in (2AP)ω that satisfy exactly all the formulas in S.

1. Construct the automaton for ψ = F (p ∧ Xp). Note you are asked to construct
exactly the automaton we saw in class (which may not be the minimal automaton
for ψ).

2. Describe a linear-time procedure for complementing the automaton Aψ (for an
arbitrary ψ).

3. Which of the following statements are correct? (prove or give a counter example)

(a) For every LTL formula ψ, if there is a deterministic Büchi automaton for ψ,
then Aψ is deterministic.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification148

(b) For every LTL formula ψ and a word w ∈ (2AP)ω such that w |= ψ, there is
a single run of Aψ that accepts w.

Question 10

Describe an ABW with O(n) states for the language Ln = {w ·w ·#ω : w ∈ (0+1)n}.

Question 11

For a word w ∈ Σω, let suff (w) = {y : x · y = w, for some x ∈ Σ∗}. Note that suff (w)
contains w and ε. For a language L ⊆ Σω, let suff _limit(L) = {w : suff (w) ⊆ L}.
Thus, suff _limit(L) contains exactly all words w such that all the suffixes of w are in L.

Given an NBW A = 〈Σ, Q, δ, Q0, α〉, describe an ABW A′ with the same state
space Q such that L(A′) = suff _limit(L(A)). Prove the correctness of the construction
formally.

References

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. International
Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12, Stanford, 1962. Stan-
ford University Press.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using branch-
ing time temporal logic. In Proc. Workshop on Logic of Programs, volume 131 of Lecture Notes
in Computer Science, pages 52–71. Springer-Verlag, 1981.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of Computer and
System Sciences, 8:117–141, 1974.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for
Computing Machinery, 28(1):114–133, January 1981.

[Fri03] C. Fritz. Constructing Büchi automata from linear temporal logic using simulation relations for
alternating b§chi automata. In Proc. 8th Intl. Conference on Implementation and Application of
Automata, number 2759 in Lecture Notes in Computer Science, pages 35–48. Springer-Verlag,
2003.

[FW02] C. Fritz and T. Wilke. State space reductions for alternating Büchi automata: Quotienting by
simulation equivalences. In Proc. 22th Conference on the Foundations of Software Technology
and Theoretical Computer Science, volume 2556 of Lecture Notes in Computer Science, pages
157–169, December 2002.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing nondeterministic
Büchi automata. In 12th Advanced Research Working Conference on Correct Hardware Design
and Verification Methods, volume 2860 of Lecture Notes in Computer Science, pages 96–110.
Springer-Verlag, 2003.

[GO01] P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. In Computer Aided Verifica-
tion, Proc. 13th International Conference, volume 2102 of Lecture Notes in Computer Science,
pages 53–65. Springer-Verlag, 2001.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In P. Dembiski and M. Sredniawa, editors, Protocol Specification, Testing, and
Verification, pages 3–18. Chapman & Hall, August 1995.

[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

[KV01] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Trans. on
Computational Logic, 2(2):408–429, July 2001.

[KV05] O. Kupferman and M.Y. Vardi. Complementation constructions for nondeterministic automata on
infinite words. In Proc. 11th International Conf. on Tools and Algorithms for The Construction

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 149

and Analysis of Systems, volume 3440 of Lecture Notes in Computer Science, pages 206–221.
Springer-Verlag, 2005.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312–360, March 2000.

[Lan69] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory, 3:376–384,
1969.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear
specification. In Proc. 12th ACM Symp. on Principles of Programming Languages, pages 97–
107, New Orleans, January 1985.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521–530, 1966.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer
Science, 32:321–330, 1984.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,
1988.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory of the
tree and its complexity. In Proc. 13th International Colloquium on Automata, Languages and
Programming, volume 226 of Lecture Notes in Computer Science, pages 275 – 283. Springer-
Verlag, 1986.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on Foundation of Computer
Science, pages 46–57, 1977.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc.
5th International Symp. on Programming, volume 137 of Lecture Notes in Computer Science,
pages 337–351. Springer-Verlag, 1981.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of
the AMS, 141:1–35, 1969.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 319–327, White Plains, October 1988.

[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Computer Aided
Verification, Proc. 12th International Conference, volume 1855 of Lecture Notes in Computer
Science, pages 248–263. Springer-Verlag, 2000.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science, 49:217–237, 1987.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation,
115(1):1–37, November 1994.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification150

Practical Principles for Computer Security
Butler LAMPSON1

Microsoft Research
Marktoberdorf, 2006

What do we want from secure computer systems? Here is a reasonable goal:
Computers are as secure as real world systems, and people believe it.

Most real world systems are not very secure by the absolute standard suggested above.
It’s easy to break into someone’s house. In fact, in many places people don’t even bother
to lock their houses, although in Manhattan they may use two or three locks on the front
door. It’s fairly easy to steal something from a store. You need very little technology to
forge a credit card, and it’s quite safe to use a forged card at least a few times.

Real security is about punishment, not about locks;
about accountability, not access control

Why do people live with such poor security in real world systems? The reason is that
real world security is not about perfect defenses against determined attackers. Instead,
it’s about

• value,
• locks, and
• punishment.

The bad guys balance the value of what they gain against the risk of punishment,
which is the cost of punishment times the probability of getting punished. The main thing
that makes real world systems sufficiently secure is that bad guys who do break in are
caught and punished often enough to make a life of crime unattractive. The purpose of
locks is not to provide absolute security, but to prevent casual intrusion by raising the
threshold for a break-in.

Security is about risk management
Well, what’s wrong with perfect defenses? The answer is simple: they cost too much.
There is a good way to protect personal belongings against determined attackers: put
them in a safe deposit box. After 100 years of experience, banks have learned how to
use steel and concrete, time locks, alarms, and multiple keys to make these boxes quite
secure. But they are both expensive and inconvenient. As a result, people use them only
for things that are seldom needed and either expensive or hard to replace.

Practical security balances the cost of protection and the risk of loss, which is the
cost of recovering from a loss times its probability. Usually the probability is fairly small
(because the risk of punishment is high enough), and therefore the risk of loss is also
small. When the risk is less than the cost of recovering, it’s better to accept it as a cost of
doing business (or a cost of daily living) than to pay for better security. People and credit
card companies make these decisions every day.

1My colleagues Martin Abadi, Carl Ellison, Charlie Kaufman, and Paul Leach made many suggestions for
improvement and clarification. Some of these ideas originated in the Taos authentication system ([4], [6])

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

151

With computers, on the other hand, security is only a matter of software, which is
cheap to manufacture, never wears out, and can’t be attacked with drills or explosives.
This makes it easy to drift into thinking that computer security can be perfect, or nearly
so. The fact that work on computer security has been dominated by the needs of national
security has made this problem worse. In this context the stakes are much higher and
there are no police or courts available to punish attackers, so it’s more important not
to make mistakes. Furthermore, computer security has been regarded as an offshoot of
communication security, which is based on cryptography. Since cryptography can be
nearly perfect, it’s natural to think that computer security can be as well.

What’s wrong with this reasoning? It ignores two critical facts:

• Secure systems are complicated, hence imperfect.
• Security gets in the way of other things you want.

The end result should not be surprising. We don’t have "real" security that guarantees
to stop bad things from happening, and the main reason is that people don’t buy it. They
don’t buy it because the danger is small, and because security is a pain.

• Since the danger is small, people prefer to buy features. A secure system has
fewer features because it has to be implemented correctly. This means that it takes
more time to build, so naturally it lacks the latest features.

• Security is a pain because it stops you from doing things, and you have to do work
to authenticate yourself and to set it up.

A secondary reason we don’t have "real" security is that systems are complicated,
and therefore both the code and the setup have bugs that an attacker can exploit. This is
the reason that gets all the attention, but it is not the heart of the problem.

1. Implementing security

The job of computer security is to defend against vulnerabilities. These take three main
forms:
1) Bad (buggy or hostile) programs.
2) Bad (careless or hostile) agents, either programs or people, giving bad instructions to
good but gullible programs.
3) Bad agents tapping or spoofing communications.
Case (2) can be cascaded through several levels of gullible agents. Clearly agents that
might get instructions from bad agents must be prudent, or even paranoid, rather than
gullible.
Broadly speaking, there are five defensive strategies:
4) Coarse: Isolate—keep everybody out. It provides the best security, but it keeps you
from using information or services from others, and from providing them to others. This
is impractical for all but a few applications.
5) Medium: Exclude—keep the bad guys out. It’s all right for programs inside this de-
fense to be gullible. Code signing and firewalls do this.
6) Fine: Restrict—Let the bad guys in, but keep them from doing damage. Sandboxing
does this, whether the traditional kind provided by an operating system process, or the
modern kind in a Java virtual machine. Sandboxing typically involves access control on

B. Lampson / Practical Principles for Computer Security152

resources to define the holes in the sandbox. Programs accessible from the sandbox must
be paranoid; it’s hard to get this right.
7) Recover—Undo the damage. Backup systems and restore points are examples. This
doesn’t help with secrecy, but it helps a lot with integrity and availability.
8) Punish—Catch the bad guys and prosecute them. Auditing and police do this.

ObjectGuardRequestPrincipal

Audit logPolicy

Channel

Authenticate Authorize

Isolation boundary

Execution environment

Host (CLR, kernel, hardware, VMM, ...)

Figure 1. Access control model

The well-known access control model shown in Figure 1 provides the framework
for these strategies. In this model, a guard controls the access of requests for service to
valued resources, which are usually encapsulated in objects. The guard’s job is to decide
whether the source of the request, called a principal, is allowed to do the operation on the
object. To decide, it uses two kinds of information: authentication information from the
left, which identifies the principal who made the request, and authorization information
from the right, which says who is allowed to do what to the object. There are many ways
to make this division. The reason for separating the guard from the object is to keep it
simple.

Of course security still depends on the object to implement its methods correctly.
For instance, if a file’s read method changes its data, or the write method fails to debit
the quota, or either one touches data in other files, the system is insecure in spite of the
guard.

Another model is sometimes used when secrecy in the face of bad programs is a pri-
mary concern: the information flow control model shown in Figure 2 [5]. This is roughly
a dual of the access control model, in which the guard decides whether information can
flow to a principal.

In either model, there are three basic mechanisms for implementing security. To-
gether, they form the gold standard for security (since they all begin with Au):

B. Lampson / Practical Principles for Computer Security 153

Reference
monitor

Principal

Sink

Information

GuardSource Transmit

Audit
Log

Send

Figure 2. Information flow model

• Authenticating principals, answering the question "Who said that?" or "Who is
getting that information?". Usually principals are people, but they may also be
groups, machines, or programs.

• Authorizing access, answering the question "Who is trusted to do which opera-
tions on this object?".

• Auditing the decisions of the guard, so that later it’s possible to figure out what
happened and why.

2. Access control

Figure 1 shows the overall model for access control. It says that principals make requests
on objects; this is the basic paradigm of object-oriented programming or of services.
The job of security is to decide whether a particular request is allowed; this is done by
the guard, which needs to know who is making the request (the principal), what the
request is, and what the target of the request is (the object). The guard is often called
the relying party, since it relies on the information in the request and in policy to make
its decision. Because all trust is local, the guard has the final say about how to interpret
all the incoming information. For the guard to do its job it needs to see every request on
the object; to ensure this the object is protected by an isolation boundary that blocks all
access to the object except over a channel that passes through the guard. There are many
ways to implement principals, requests, objects and isolation, but this abstraction works
for all of them.

The model has three primary elements:

1. Isolation: This constrains the attacker to enter the protected execution environ-
ment via access-controlled channels.

2. Access Control: Access control is broken down into authentication, authoriza-
tion, and auditing.

3. Policy and User Model: Access control policy is set by human beings—
sometimes trained, sometimes not.

This paper addresses one piece of the security model: access control. It gives an
overview that extends from setting authentication policy through authenticating a request

B. Lampson / Practical Principles for Computer Security154

to the mechanics of checking access. It then discusses the major elements of authentica-
tion and authorization in turn.

2.1. What is access control

Every action that requires a security decision, whether it is a user command, a system
call, or the processing of a message from the net, is represented in the model of as a
request from a principal over a channel. Each request must pass through a guard or
relying party that makes an access control decision. That decision consists of a series of
steps:

1. Do direct authentication, which establishes the principal directly making the re-
quest. The most common example of this is verifying a cryptographic signature
on a message; in this case the principal is the cryptographic key that verifies the
signature. Another example is accepting input from the keyboard, which is the
principal directly making the request.2

2. (optionally) Associate one or more other principals with the principal of step 1.
These could be groups or attributes.

3. Do authorization, which determines whether any of these principals is allowed to
have the request fulfilled on that object.

The boundary between authentication and authorization, however, is not clear. Dif-
ferent experts draw it in different places. It is also not particularly relevant, since it makes
little sense to do one without the other.

3. Examples: Logon and cross-organization access control

This section gives two examples to introduce the basic ideas of access control.

3.1. Example: User and network logon

Figure 3 shows the basic elements of authentication and how they are used to log on a
user, access a resource, and then do a network logon to another host. Note the distinc-
tion between the elements that are part of a single host and external token sources such
as domain controllers and STS’s. For concreteness, the figure describes the process of
authenticating a user as logon to Windows, that is, as creating a Windows session that
can speak for the user; in Windows a SID is a 128-bit binary identifier for a principal.
However, exactly the same mechanisms can be used to log onto an application such as
SQL Server, or to authenticate a single message, so it covers these cases equally well.

The numbers in the figure label the steps of the logon, which are as follows:

1. The user provides some input for logon (for example, user name and password).
2. The logon agent sends a logon validation request with the input (or something

derived from it) to the domain controller (labeled "token source" in the figure),
3. which replies with the user’s SID and a session key if logon succeeded, and an

error if it didn’t.

2See the appendix for a sketch of what you need to know about cryptography.

B. Lampson / Practical Principles for Computer Security 155

p

Figure 3. Core logon example

4. The token source provides the user’s SID,
5. and uses it to provide the group SIDs.
6. The trust root says that the token source should be trusted to logon anyone, so
7. all the SIDs go into the NT token,
8. and the session key is saved in the transient key store.
9. When the process accesses some local resource the NT token is checked against

the ACL, and with luck the access is granted.
10. When the process wants to access a remote resource, the NT token
11. and the session key are needed
12. to ask the token source to
13. issue a token that can be sent out
14. to the remote host,
15. which receives it (back on the left side of the figure) and does a net logon.

3.2. Example: Cross-organization access control

A distributed system may involve systems (and people) that belong to different organi-
zations and are managed differently. To do access control cleanly in such a system (as
opposed to the local systems that are well supported by Windows domains, as in the
previous example) we need a way to treat uniformly all the information that contributes
to the decision to grant or deny access. Consider the following example, illustrated in
Figure 4.

B. Lampson / Practical Principles for Computer Security156

says

Spectra

ACL

KSSL

says

says

Alice’s
smart card

Alice’s login
system

Spectra

web page

KloginKAlice

Alice@Intel Atom@Microsoft

MicrosoftIntel

Figure 4. Speaks-for example

Alice at Intel is part of a team working on a joint Intel-Microsoft project called
Atom. She logs in to her Intel workstation, using a smart card to authenticate herself, and
connects using SSL to a project web page called Spectra at Microsoft. The web page
grants her access because:

1. The request comes over an SSL connection secured with a connection key KSSL

created using the Diffie-Hellman key exchange protocol.
2. To authenticate the SSL connection, Alice’s workstation uses its temporary logon

key Klogon to sign a statement certifying that requests secured by the connection
key KSSL come from the logon session.3

3. At logon time, Alice’s smart card uses her key KAlice certifies that requests
signed by the logon session key Klogon come from Alice.

4. Intel certifies that KAlice is the key for Alice@Intel.com.4

5. Microsoft’s group database says that Alice@Intel.com is in the Atom group.
6. The ACL on the Spectra page says that Atom has read/write access.

In the figure, Alice’s requests to Spectra travel over the SSL channel (represented by
the fat arrow), which is secured by the key KSSL. In contrast, the reasoning about trust
that allows Spectra to conclude that it should grant the requests runs clockwise around
the circle of double arrows; note that requests never travel on this path.

From this example we can see that many different kinds of information contribute
to the access control decision:

• Authenticated session keys

3Saying that the workstation signs with the public key Klogon means that it encrypts with the corresponding
private key. Through the magic of public-key cryptography, anyone who knows the public key can verify this
signature. This is not the only way to authenticate an SSL connection, but it is the simplest to explain.

4Intel can do this with an X.509 certificate, or by responding to a query "Is KAlice the key for Al-
ice@Intel.com?", or in some other secure way.

B. Lampson / Practical Principles for Computer Security 157

• User passwords or public keys
• Delegations from one system to another
• Group memberships
• ACL entries.

We want to do a number of things with this information:

• Keep track of how secure channels are authenticated, whether by passwords,
smart cards, or systems.

• Make it secure for Microsoft to accept Intel’s authentication of Alice.
• Handle delegation of authority to a system, for example, Alice’s logon system.
• Handle authorization via ACLs like the one on the Spectra page.
• Record the reasons for an access control decision so that it can be audited later.

4. Basic concepts

This section describes the basic concepts, informally but in considerable detail: princi-
pals and identifiers; speaks-for and trust; tokens; paths, security domains, attributes, and
groups; global identifiers; how to choose identifiers and names, and freshness or consis-
tency. Sections 5 and 6 describe the components of the architecture and how they use
these concepts.

4.1. Principals and identifiers

A principal is the source of a request in the model of ; it is the answer to the questions:

• "Who made this request?" (authentication)
• "Who is trusted for this request?" (authorization-for example, who is on the ACL)

We say that the principal says the request, as in P says do read report.doc. In addition
to saying requests, principals can also say speaks-for statements or claims, as explained
in section 4.2.

Principals are not only people and devices. Executable code is a principal. An in-
put/output channel and a cryptographic signing key are principals. So are groups such as
Microsoft-FTE and attributes such as age=32. We treat all these uniformly because they
can all be answers to the question "Who is trusted for this request?". Furthermore, if we
interpret the question "Who made this request?" broadly, they can all be answers to this
question as well: a request can be made directly only by a channel or key, but it can be
made indirectly by a person (or device) that controls the key, or by a group that such a
person is a member of.

It turns out to be convenient to treat objects or resources as principals too, even
though they don’t make requests.

Principals can be either simple or compound. Simple principals are denoted by iden-
tifiers, which are strings. Intuitively, identifiers are labels used for people, computers
and other devices, applications, attributes, channels, resources, etc., or groups of these.5

Compound principals are explained in section 5.8.

5Programs usually can deal only with identifiers, not with the real-world principals that they denote. In this
paper we will ignore this distinction for the most part.

B. Lampson / Practical Principles for Computer Security158

Channels are special because they are the only direct principals: a computer can tell
directly that a request comes from a channel, without any other information. Thus any
authentication of a request must start with a channel. A cryptographic signing key is the
most important kind of channel.

An identifier is a string; often the string encodes a path, as explained below. The
string can be meaningful (to humans), or it can be meaningless; for example, it can
encode a binary number (Occasionally an identifier is something that is meaningful, but
not as a string of characters, such as a picture.). This distinction is important because
access control policy must be expressed in terms of meaningful identifiers so that people
can understand it, and also because people care about the meanings of a meaningful
identifier such as coke.com, but no one cares about the bit pattern of a binary identifier.
Of course there are gray areas in this taxonomy; a name such as davcdata.exe is not
meaningful to most people, and a phone number might be very meaningful. But the
taxonomy is useful none the less.

Meaningless identifiers in turn can be direct or not. This leads to a three-way classi-
fication of identifiers:

• name: an identifier that is meaningful to humans.
• ID: a meaningless identifier that is not direct. In this taxonomy an identifier such

as xpz5914@hotmail.com is probably an ID, not a name, since it probably isn’t
meaningful.

• direct: a meaningless identifier that identifies a channel. There are three kinds of
direct identifiers:

∗ key: a cryptographic key (most simply, a public key) that can verify a signature
on a request. We view a signing key as a channel, and say that messages signed
by the key arrive on the channel named by that key.6

∗ hash: a cryptographic collision-free hash of data (code, other files, keys, etc.):
different data is guaranteed to have different hashes. A hash H can say X if
a suitable encoding of "This data says X" appears in the data of which H is
the hash. For code we usually hash a manifest that includes the hash of each
member file. This has the same collision-free property as a hash of the contents
of all the files.

∗ handle: an identifier provided by the host for some channel, such as the key-
board (Strictly speaking, the wire from the keyboard.) or a pipe.

An identifier can be a path, which is a sequence of strings, just like a path name
for a file such as C:\program files\Adobe\Acrobat6. It can be encoded as a single string
using some syntactic convention. There are a number of different syntactic conventions
for representing a path as a single string; the file name example uses "\" as a separator.
The canonical form is left-to-right with / as the separator. A path can be rooted in a key,
such as KV erisign/andy@intel.com (or KV erisign/com/intel/andy in the canonical form
for paths); such a path is called fully qualified. A path not rooted in a key is rooted in self,
the local environment interpreting the identifier; it is like a relative file name because its
meaning depends on the context.

6For a symmetric key we can use a hash of it as the public name of the channel, though of course this is not
enough to verify a signature.

B. Lampson / Practical Principles for Computer Security 159

4.2. Speaks-for and trust

Authentication must start with a channel, for example, with a cryptographic signature
key. But it must end up with access control policy, which has to be expressed in terms of
names so that people can understand it. To bridge the gap between channels and names
we uses the notion of "speaks-for". We say that a channel speaks for a user, for example,
if we trust that every request that arrives on the channel comes from the user, in other
words, if the channel is trusted to speak for the user.

But the notion of speaks-for is much more general than this, as the example of sec-
tion 3 illustrates. What is the common element in all the steps of the example and all the
different kinds of information? There is a chain of trust running from the request at one
end to the Spectra resource at the other. A link of this chain has the form

"Principal P speaks for principal Q about statements in set R"
For example, KSSL speaks for KAlice about everything, and Atom@Microsoft

speaks for Spectra about read and write. We write "about R" as shorthand for "about
statements in set R". Often P is called the subject and R is called the rights.
The idea of "P speaks for Q about R" is that

if P says something about R, then Q says it too
That is, P is trusted as much as Q, at least for statements in R. Put another way, Q
takes responsibility for anything that P says about R. A third way: P is a more powerful
principal than Q (at least with respect to R) since P’s statements are taken at least as
seriously as Q’s (and perhaps more seriously). Thus P has all of Q’s authority about R.

The notion of principal is very general, encompassing any entity that we can imagine
making statements or being trusted. Secure channels, people, groups, attributes, systems,
program images, and resource objects are all principals. The notion of speaks-for is also
very general; some examples are:

Binding a key to a user name.
Binding a program hash to a name for the program.
Allowing an authority to certify a set of names.
Making a user a member of a group.
Assigning a principal an attribute.
Granting a principal access to a resource by putting it on the resource’s ACL.

The idea of "about R" is that R is some way of describing a set of things that P (and
therefore Q) might say. You can think of R as a pattern or predicate that characterizes
this set of statements, or you can think of it as some rights that P can exercise as much
as Q can. In the example of section 3, R is "all statements" except for step (5), where it is
"read and write requests". It’s up to the guard of the object that gets the request to figure
out whether the request is in R, so the interpretation of R’s encoding can be local to the
object. For example, we could refine "read and write requests" to "read and write requests
for files whose names match /users/lampson/security/*.doc". In most ACEs today, R is
encoded as a bit vector of permissions, and you can’t say anything as complicated as the
previous sentence.

We can write this P ⇒R Q for short, or just P ⇒ Q without any subscript if R is "all
statements". With this notation the chain for the example is:

KSSL ⇒ Klogon ⇒ KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w Spectra
A single speaks-for fact such as KAlice ⇒ Alice@Intel is called a claim. The principal
on the left is the subject.

B. Lampson / Practical Principles for Computer Security160

The way to think about it is that ⇒ is "greater than or equal": the more powerful
principal goes on the left, and the less powerful one on the right. So role=architect ⇒
Slava means that everyone in the architect role has all the power that Slava has. This
is unlikely to be what you want. The other way, Slava ⇒ role=architect, means that
Slava has all the power that the architect role has. This is a reasonable way to state the
implications for security of making Slava an architect.

Figure 4 shows how the chain of trust is related to the various principals. Note that
the "speaks for" arrows are quite independent of the flow of bytes: trust flows clockwise
around the loop, but no data traverses this path. The example shows that claims can
abstract from a wide variety of real-world facts:

• A key can speak for a person (KAlice ⇒ Alice@Intel) or for a naming authority
(KIntel ⇒ Intel.com).

• A person can speak for a group (Alice@Intel ⇒ Atom@Microsoft).
• A person or group can speak for a resource, usually by being on the ACL of the

resource (Atom@Microsoft ⇒r/w Spectra). We say that Spectra makes this claim
by putting Atom on its ACL.

4.2.1. Establishing claims: Delegation

How does a claim get established? It can be built in; such facts appear in the trust root,
discussed in section 5.1. Or it can be derived from other claims, or from statements made
by principals, according to a few simple rules:

(S1) Speaks-for is transitive: if P ⇒ Q and Q ⇒ R then P ⇒ R.
(S2) A principal speaks for any path rooted in itself: P ⇒ P/N. This is just

like a file system, where a directory controls its contents. Section 4.1
discusses paths.

(S3) Principals are trusted to delegate their authority, privileges, rights, etc.:
if Q says P ⇒ Q then P ⇒ Q. (There are restricted forms of speaks-for
where this rule doesn’t hold.)

From the definition of ⇒, if Q’ says P ⇒ Q and Q’ ⇒ Q then Q says P ⇒ Q, and it
follows from (S3) that P ⇒ Q. So a principal is trusted to delegate the authority of any
principal it speaks for, not just its own authority. Frequently a delegation is restricted so
that the delegate P speaks for Q only for requests (this is the usual interpretation of an
X.509 end-entity certificate, for example, or membership in a group) or only for further
delegation (an X.509 CA certificate, or GROUP_ADD/REMOVE_MEMBER permission
on the ACL for a group).

4.2.2. Validity period

A claim usually has a validity period, which is an interval of real time during which it is
valid. When applying the rules to derive a claim from other claims and tokens, intersect
their validity periods to get the validity period of the derived claim. This ensures that the
derived claim is only valid when all of the inputs to its derivation are valid. A claim can
be the result of a query to some authority A. For example, if the result of a query "Is
P in group G" to a database of group memberships is "Yes", that is an encoding of the
claim P ⇒ G. The validity period of such a statement is often just the instant at which
the response is made, although the queryer might choose to cache it and believe it for a
longer time.

B. Lampson / Practical Principles for Computer Security 161

4.3. Tokens

A claim made by a principal is called a token (not to be confused with a user authentica-
tion token such as a SecurID device). Many tokens are called certificates, but this paper
uses the more general term except when discussing X.509 certificates specifically. The
rule (S3) tells you whether or not to believe a token; section 4.5 on global identifiers
gives the most important example of this.

Examples of tokens:

1. X.509 certificate [KI says KS ⇒ name, (optionally KI says name ⇒ attribute)]
2. Authenticode certificate [KV says H(code) ⇒ publisher/program]
3. Group memberships [KD says SU ⇒ SG]
4. Signed SAML attribute assertion [KI says name ⇒ attribute]
5. ISO REL (XrML) license

where KI is the issuer key, KS is the subject key, "name" is the certified name, KV is
Verisign’s key, H(code) is the hash value of the code being signed, "publisher" is the
name of the code’s publisher, KD is the key of the domain controller, SU is the SID of
the user and SG is the SID of the group of which the user is a member. XrML tokens can
do all of these things, and more besides.

A token can be signed in several different ways, which don’t change the meaning of
a token to its intended recipient, but do affect how difficult it is to forward:

• A token signed by a public key, like a X.509 certificate, can be forwarded to
anyone without the cooperation of the third party. From a security point of view
it is like a broadcast.

• A token signed by a symmetric key, like a Kerberos ticket, can be returned to its
sender for forwarding to anyone with whom the sender shares a symmetric key.

• A token that is just sent on an authenticated channel cannot be forwarded, since
there’s no way to prove to anyone that the sender said it.

In a token the principals on both sides of the ⇒ must be represented by identifiers,
and it’s important for these identifiers to be unambiguous. A fully qualified identifier (one
that starts with a key or hash) is unambiguous. Other identifiers depend on the context,
that is, on some convention between the issuer and the consumer of the token.

Like a claim, a token usually has a validity period; see section 4.2.2. For example, a
Kerberos token is typically valid for eight hours.

A token is the most common way for a principal to communicate a claim to others,
but it is not the only way. You can ask a principal A "Do you say P ⇒ Q?" or "What
principal does P speak for?" and get back "A says ’yes’" or "A says ’Q’". Such a state-
ment only makes sense as a response to the original query; to be secure it must not only
be signed by (some principal that speaks for) A, but also be bound securely to the query
(for example, by a secure RPC protocol), so that an adversary can’t later supply it as the
re-sponse to some other query.

4.4. Organizing principals

There are several common ways to impose structure on principals in addition to the path
identifiers introduced in section 4.1: security domains, attributes, and groups.

B. Lampson / Practical Principles for Computer Security162

4.4.1. Security domains

A security domain is a collection of principals (users, groups, computers, servers and
other resources) to which a particular set of policies apply, or in other words, that have
common management. Usually we will just say "domain". It normally comprises:

• A key KD.
• A namespace based on that key.
• A trust root—a set of claims of the form Kj1 ∧ Kj2 . . .⇒ identifier-pattern
• ACLs for the trust root and the accounts, which define the administrators of the

domain.
• A set of accounts—statements of the form KD says Ki ⇒ KD/N for principals

with names in its namespace.
• A set of resources and policies for those resources

The essential property of paths is that namespaces with different roots are indepen-
dent, just as different file system volumes are independent. In fact, namespaces with dif-
ferent prefixes are independent, just as file system directories with different names are in-
dependent. This means that anybody with a public key K can create a namespace rooted
in that key. Such a namespace is the most important part of a security domain. Because
of (S2), K speaks for the domain. Because of (S3), if you know K−1 you can delegate
authority over any part of the domain, and since K is public, anyone can verify these
delegations. This means that authentication can happen independent of association with
any domain controller. Of course, you can also rely on a third party such as a domain
controller to do it for you, and this is necessary if K is a symmetric key.

For example, an application such as SQL Server can create its own domain of ob-
jects, IDs, names and authorities that has no elements in common with the Windows
domain of objects, IDs, names and authorities for the machine on which SQL Server is
running. However, the SQL Server can use part or all the Windows security domain if
that is desired. That use is controlled by policy, in the form of trust root contents and
issued tokens.

Here are some other examples of operating in multiple security domains:

1. A user takes a work laptop home and connects to the home network, which has
no connection to the work security domain.

2. A consultant has a laptop that is used in working with two competing companies.
For each company, the consultant has a virtual machine with its own virtual disk.
Each of those virtual machines joins the Windows domain of its respective com-
pany. The host OS, however, is managed by the consultant and has its own local
domain.

Sometimes we distinguish between resource domains and account domains, depend-
ing on whether the domain mostly contains resources or objects, or mostly contains users
or subjects.

Domains can be nested. A child domain has its own management, but can also be
managed by its parent.

4.4.2. Attributes

An attribute such as age=32 is a special kind of path, and thus is a principal like any
other. This one has two components, the name age and the value 32; they are separated

B. Lampson / Practical Principles for Computer Security 163

by "=" rather than "/" to emphasize the idea that 32 is a value for the attribute name
age, but this is purely syntactic. 7 The claim Paul ⇒ age=32 expresses the fact that
Paul has the attribute age=32. Like any path, an attribute should be global if it is to be
passed between machines: Koasis/age=32. However, unlike file names or people, we
expect that most attributes with the same name in many different namespaces will have
the same intended meaning in all of them. A claim can translate the attribute from one
namespace to another. For example, WA/dmv/age ⇒ NY/rmv/age means that New York
trusts WA/dmv for the age attribute. Translation can involve intermediaries: WA/dmv/age
⇒ US/age and US/age ⇒ NY/rmv/age means that New York trusts US for age, and US
in turn trusts Washington (presumably US trusts lots of other states as well, but these
claims don’t say anything about that). Locally, of course, it’s fine to use age=32; it’s a
local name, and if you want to translate US/age=32 to age=32 you need a trust root entry
US/age ⇒ age. In fact, from the point of view of trust age=32 is just like a nickname.
The difference is that we expect lots of translations, because we expect lots of principals
to agree about the meaning of age, whereas we don’t expect wide agreement about the
meaning of Bob.

Because of the broad scope of many attribute names such as age, the name of an
attribute can change as it is expressed in different languages and even different scripts.
Therefore it is often necessary to use an ID rather than a name for the attribute in policy.
For example, an X.509 object identifier or OID is such an ID. Sections 4.5 and 4.6 discuss
the implications of this; what they say applies to attributes as well.

A Boolean-valued attribute (one with a value that is true or false), such as over21,
defines a group; we normally write it that way rather than as over21=true. The next
section discusses groups.

4.4.3. Groups and conditions

A condition is a Boolean expression over attribute names and values, such as "microsoft-
.com/division == ’sales’ & microsoft.com/region == ’NW’". A condition is a principal; every
principal that speaks for attributes whose values cause the expression to evaluate "true"
speaks for the condition. In the preceding example, every Microsoft employee in the
northwest sales region would speak for it.

For use in conditions, identifiers are considered to be Boolean-valued attributes that
evaluate true for the principals that speak for them. Hence the condition paul@micro-
soft.com | carl@microsoft.com is true for paul@microsoft.com and carl@microsoft.com.
It is also true for the key K if K => paul@microsoft.com.

In addition, there are special attributes, such as time, that may be used in conditions;
every principal is considered to speak for them. For example, "time >= 0900 & time <=
1500 & shift == ’day’ & jobtitle == ’operator’" would be true for all day-shift operators
between 9am and 5pm.

If C is a condition, and a principal P has attributes whose values cause C to evaluate
true, then we write:

P ⇒ C

7Sometimes people call age=32 an "attribute-value" or an "attribute-value pair", and call age an "attribute".
This is perfectly good English; it might even be better English than calling age=32 an attribute. But it is con-
fusing to have both meanings for "attribute" floating around. In this paper, "attribute" means the pair age=32,
and age is the attribute name. Sometimes we say "the age attribute", meaning an attribute whose name is age.

B. Lampson / Practical Principles for Computer Security164

We can give a condition an identifier (a name or an ID) by saying that the condition
speaks for the identifier:

C ⇒ identifier
We call such an identifier a group. 8 A group is thus a principal with zero or more other
principals that speak for it. If a principal speaks for the group, we say that it is a member
of the group. Today’s groups are defined by a condition that is just the "or" of a list of
members. In such a case, it’s possible to provide a complete list of all the group members,
but this is not always true. The distinction is important for a principal with the authority
to define members, but it is invisible to access control, which only cares about a requestor
P presenting a claim P ⇒ G and G ⇒ resource being on the ACL.

Such an authority will only issue such a claim if it:

• Has access to a complete list of the group members (such as Paul, Carl, Charlie),
and P is in it, or

• Has access to a partial list of the group members and P is on its partial list; there
may be several such lists, each accessible to a different issuer, or

• Knows that P satisfies the condition that defines the group (such as age>=21).

The question of who is trusted to assert P ⇒ G, that is, who can define the members
of a group, is part of authorization.

4.5. Global identifiers

To avoid confusion, identifiers communicated between computer systems should be
global. If a set of systems doesn’t communicate with the rest of the world, they only
need to agree among each other. However, when these systems suddenly do need to share
identifiers (perhaps because they merge with another set of systems), collisions of iden-
tifiers can occur, requiring a massive renaming of entities. To avoid such problems, all
identifiers that might travel between computers should be global, except perhaps names
intended to communicate to a human being.

An identifier is global if everyone agrees on its meaning, that is, when presented with
a request and some supporting evidence, everyone either agrees on whether the identifier
is the principal that made the request or doesn’t know. A key or hash is automatically
global; cryptography makes it so. Other identifiers are paths (perhaps of length one).

A path rooted in a key, such as Kintel/andy@intel.com, is called fully qualified. Such
identifiers are global, because Kintel is global, and according to rule (S2) above it can
say what other keys can speak for identifiers rooted in itself. For example, Kintel can
establish that Andy’s key Kandy speaks for the name Kintel/andy@intel.com, by signing
a certificate (token):

(C1) Kintel says Kandy ⇒ Kintel/andy@intel.com
Paths not rooted in keys are rooted in self, the local environment interpreting the identi-
fier. They are not global and therefore should not be sent outside the local environment.

We would like to treat an identifier like andy@intel.com (or /com/intel/andy in the
canonical form) as global, even though it is not rooted in a key, because we want to
keep keys out of most policy. This is a conventionally global identifier: we make it very
likely that almost everybody agrees about what speaks for it, by making it very likely

8This is not the only meaning of ’group’ in English, in computing, or in security, but it is the usual meaning
and the one we adopt.

B. Lampson / Practical Principles for Computer Security 165

that everyone agrees that Kandy ⇒ andy@intel.com. We do that by getting the same
agreement that Kintel ⇒ intel.com; then everyone will accept Kintel’s certificate (C1).
Of course this is the same problem, and we can solve it in the same way: agree that
Kverisign ⇒ com, and get a certificate

(C2) Kverisign says Kintel ⇒ intel.com
This recursion has to stop somewhere, and it stops in a special part of the security policy
called the trust root, where some of these facts are built in. The essential idea is:

Provided their trust roots agree and they have the same tokens, two parties
will agree on what keys speak for a conventionally global identifier.

One case in which the parties might disagree is while a key is being rolled over or re-
placed, but only if they have different tokens—one has heard about the key change and
the other one hasn’t.

Section 5.1 discusses the trust root in detail, and section 5.1.1 explains how to make
it likely that two trust roots agree.

Although any kind of path could be a conventionally global identifier, the ones that
people cares most about are DNS names (see section 4.7). Email names are important
too, but they usually don’t require special attention because there’s a single DNS name
that authenticates a given email name.

4.6. Choosing identifiers for access policy

There are three conflicting requirements on identifiers:

• Meaningful (to humans): When security policy such as group definitions, access
control lists, etc is displayed to humans, identifiers must be meaningful, since
people must be able to understand the policy. Only names are meaningful. An-
other consequence is that only names are controversial: no one cares what bit pat-
tern your public key has, or what domain ID your SID uses, but people do care
who controls microsoft.com or mit.edu.

• Long-lived: The identifier doesn’t need to change when encryption keys or names
change. This is desirable, because much security policy is long-lived: the identi-
fier may appear on ACLs for objects that last for decades, and that are scattered
over the internet or written on DVDs. Neither names nor direct identifiers can be
guaranteed to be long-lived, since people get married, join a new organization,
or otherwise change their minds about names, and keys can be compromised and
need to change.

• Direct: some identifiers must be direct, since only direct identifiers can actually
make requests. Direct identifiers are neither meaningful nor long-lived.9

The following table summarizes the choices:
Property Meaningful Long-lived Direct

Identifier type
Name Yes no no
ID No possibly no
Direct (keys, etc.) No no yes

9The hash of some data is long-lived in the sense that it won’t change. However, the hashes that are important
for access control are hashes of code, and the hash of code that you care about changes frequently, because of
patches and new versions. So in practice a hash has a much shorter lifetime than many keys.

B. Lampson / Practical Principles for Computer Security166

We can distinguish three main places where an identifier may appear:

• As the direct source of a request, where it must be direct, since all the machine
directly knows about the source of a request is the channel it arrives on.

• In the user’s view of access control policy, where it must be meaningful, in other
words, a name.

• In access control policy stored in the system, where it’s desirable for it to be long-
lived, but it could have none of these properties as long as there is extra machinery
to make up the lack.

As peer-to-peer operation grows—both personal P2P and corporate P2P—identifiers
for principals will show up in access control policy far and wide. An identifier might
be on ACLs on machines and DVDs all over the world, with no record of where those
machines are. It might also be in tokens such as XrML licenses, SAML or XACML to-
kens, certificates in various forms, etc., which are another way to express access con-
trol policy. These signed statements can be carried anywhere, can be backed up, can be
transferred from one machine to another. Again, there is no requirement that each such
statement have its location registered in any central place. Hence it’s often desirable for
the identifiers in access control policy to be long-lived.

Since no identifiers satisfy all the requirements, there have to be ways of mapping
among them:

• When a request or a token comes in, it can only be authenticated as coming from
a direct principal, that is, a channel C, so there must be a mapping C ⇒ P to a
stored principal.

• When a user wants to examine or edit policy they need to see a meaningful prin-
cipal M, so there must be mappings in both directions M ⇒ P and P ⇒ M.

Any kind of identifier can appear in stored access control policy. As we have seen,
however, it’s often important for stored identifiers to be long lived, so that the policy
doesn’t have to change when the identifiers change. It’s therefore advantageous to use
a particular kind of ID called a SID for stored policy, because SIDs are carefully con-
structed to be long-lived; see section 4.7. There has to be a reliable correspondence be-
tween SIDs and names so that policy can be read and written by people, but this corre-
spondence can change with time. There also has to be a reliable SID↔key correspon-
dence so that requests can get access. 10

The preferred approach to keys is complementary to this one: the only long-term
place to store keys should be the trust root (see section 5.1), which contains facts about
principals that are installed manually and accepted on faith in reasoning about authenti-
cation.

10Preferring names would also work, and it would be simpler since there would be no need for the
SID↔name correspondence, but it leads to inconvenience when a name changes, and to insecurity when a
name is reused.

Preferring keys seems appealing at first, since although it needs a key↔name correspondence, it doesn’t
need anything else. Unfortunately, it’s insecure when a key is compromised, unless the key in policy is no
longer treated as a direct identifier but rather as something that can be mapped reliably to a key that is currently
valid. Doing this makes it harder to handle than a SID. Since you can’t tell by looking at it whether a key has
been compromised, you have to do this work every time.

B. Lampson / Practical Principles for Computer Security 167

4.6.1. Anonymity

Sometimes people want to avoid using the same identifier for all their interactions with
the world, because they want to preserve their anonymity. A variation on this is that they
don’t want their actions at one web site, for example, to be correlated with their actions
at another site; this kind of correlation is called tracking.

Since there is no shortage of encryption keys or identifiers, it’s easy for a computer
to generate as many identifiers for me as I want, for example, a different one for every
web site I interact with. The computer can keep track of which identifier to use at which
site. If you are really paranoid, you can use a different identifier each time you go to the
same site.

In many case, this by itself is sufficient. Sometimes, however, a web site or other
party may want to know something about me: that I am over 18, or have a decent
credit rating, or whatever. For this purpose a mutually trusted third party such as Live
or Consumer Reports can authenticate one of my identifiers, certifying, for example,
Kbwl−amazon ⇒ over18. The protocol for this is simple: I authenticate to Live, I give
Kbwl−amazon to Live and ask for a certificate, and I get back Klive says Kbwl−amazon ⇒
over18.

4.7. SIDs

SIDs contain a 96 bit domain identifier plus a 32 bit relative identifier within the domain.
Thus the structure is D/R. To distinguish SIDs from other identifiers we prefix SID, so the
full identifier is SID/D/R, but we will usually omit the SID/ prefix here. Roughly speak-
ing, D corresponds to something like microsoft.com, and R to blampson or the server red-
msg-70, so D/R corresponds to blampson@microsoft.com or red-msg-70.microsoft.com.

These SIDs have the following useful properties:

1. They are not meaningful to humans, unlike names. No one will care which num-
bers are assigned to which domains or which principals.

2. They are not direct identifiers, as keys are, so that policy expressed in terms of
SIDs remains the same when keys change. Only the SID↔key correspondence
needs to change.

3. There are plenty of them, so they don’t have to be rationed (except to prevent
denial of service attacks on ID services that map SIDs to keys).

4. They are (two part) paths D/R, so that a key that speaks for a domain D can speak
for lots of SIDs in that domain.

Because of (1) and (2) a SID is a long-lived identifier that is suitable for long-lived
policy such as ACLs.

Since there are plenty of domain identifiers, you can get a new one just by choosing
a 96 bit random number; this is reasonable because one D is as good as another. The
chance of an accidental collision is very small (once every 8,000 years if there are a thou-
sand new domains per second); we consider collisions caused by malice shortly. Some
domains will have only a few SIDs (that is, a few values of R for one D), for example,
a domain for a person, family, or small organization. But most SIDs will probably be in
large domains belonging to corporations or to Internet services such as Live or Yahoo.

As we saw in the previous section, we need to know K ⇒ D/R so that we can au-
thenticate a statement signed by K as coming from D/R. We also need to know name ⇒

B. Lampson / Practical Principles for Computer Security168

D/R and D/R ⇒ name so that users can read and change policy that is stored in terms
of SIDs. These mappings could be strictly local if the local administrator takes respon-
sibility for setting up and maintaining them, but in general it will come from someone
who speaks for D/R (for example, someone who speaks for D) or for name (for example,
microsoft.com if name is billg@microsoft.com).

Note that joining a Windows domain is quite different from learning KD ⇒ D.
A machine can only be joined to one domain, and a domain joined machine trusts its
domain controller for any SID, and also for various management functions. A machine
or session can know about lots of domains, and it trusts each one only for its own SIDs.

4.7.1. Domain ID service

To simplify the handling of domain key changes and malicious (as opposed to accidental)
conflicts for domain identifiers, it’s desirable to have one or more domain ID services,
which are intended to issue tokens KDR says KD ⇒ D. Then instead of having a trust
root entry for each D that you encounter, you only need one that says KDR ⇒ SID/*
for each ID service that you want to trust. For greater security, you could configure your
trust root with n domain ID services and a requirement that k of them agree on KD ⇒
D before it is believed; see section 5.1.2 for more on this. As with other kinds of trust
root entries, an entry KD ⇒ D for a specific domain takes precedence, or disagreement
is referred to the administrator; see section 5.1. For this to work well, there should not be
too many ID services and the scope of each one should be wide.

The domain ID service can work as a simple web service with no human operator in-
volvement only because what it records has no intrinsic value. The ID service is designed
specifically and only to meet the needs of authentication. It offers only one public query:
"Is KD ⇒ D a registered claim?" 11 It is intentionally not a general purpose directory.
It is intentionally limited never to become a general purpose directory. Nothing stops
people from making more general directories, but those are not domain ID services.

In addition to the query, there is one operation for registering new values of D. The
input parameters are D, a public key KD, and an optional password PW encrypted by
KDR that can be used for resetting KD. The request is signed by K−1

D . There is no other
authentication. In particular, there is no linkage to any PII or to any other information
that would require human operators at the domain ID service. After success, KD ⇒ D is
a registered claim.

Windows domains today implement a highly simplified version of this scheme, since
a domain joined machine trusts its domain controller for any SID.

4.8. Names

The purpose of a name is to be meaningful to a human. Most useful names are
paths, and the preferred (conventionally) global names are DNS and email names
such as research.microsoft.com or billg@microsoft.com. As we did with SIDs, to dis-
tinguish DNS names from other identifiers we prefix DNS, so the full identifier is
DNS/com/microsoft/research, but we will usually omit the DNS/ prefix here and use the
standard DNS syntax.

11Or perhaps "What are the keys that speak for D?"

B. Lampson / Practical Principles for Computer Security 169

The crucial security questions about a name are what real world entity it identifies,
and what key or SID speaks for it. To answer the second question, you consult the trust
root, together with any tokens that are relevant. Thus the trust root might contain

KV erisign ⇒ DNS/*; Kbillg ⇒ billg@microsoft.com
Here the second name is written in its conventional email form; as a canonical path

name it would be DNS/com/microsoft/email/billg. The rule for trust roots (see section 5.1)
is that the more specific entry governs, so that what Verisign or Microsoft have to say
about billg@microsoft.com will be ignored.

Today’s X.509 trust roots usually grant a certificate authority such as Verisign au-
thority over all DNS names; that is what the KV erisign ⇒ DNS/* claim in the example
says. Although there are ways to limit the names that such a key can speak for, today
they are obscure. Such limits are of fundamental importance, and need to be easy to set
and understand.

Adding an entry for a name to the trust root must be a human decision, so the pro-
cedure by which the human decides that it’s the right thing to do, called a ceremony,
must be carefully designed. A ceremony is like a network protocol but includes human
components as well as computers.

4.9. Freshness

Secure communication requires more than assurance that a message came from a known
source; it also requires freshness, a guarantee that the message is sufficiently recent.
Without freshness, a bad guy can make trouble by replaying old messages, which might
well be misinterpreted in the current context. For example, consider a request to a service
to write a check for $10,000. Replaying this request should not result in a second check.
Or consider a request that asks "Does key K speak for microsoft.com?" and expects a
yes or no answer. If a previous request that asked "Does key Kmicrosoft speak for mi-
crosoft.com?" got a "yes" answer, it should not be possible to replay this answer and get
the requester to accept it as the answer to the later request.

There are many ways to ensure freshness. In a request-response protocol like the
second example above, you tag the request with a sequence number and demand the same
sequence number in the response. Such a tag is called a nonce or challenge. To ensure
that an incoming message is fresh, in particular that it was generated since you chose a
nonce, you insist that it contain some evidence that the sender received that nonce.

The essential property of a nonce is that it is not reused; nonces may be ordered,
but this is usually unimportant. If you want to prevent the responder from precomputing
the response, a nonce must be unpredictable; frequently this is not a requirement. Often
there are two layers of freshness. For example, a sequence of requests might be carried
on a channel that is secured with a fresh key. Then the nonces need only be unique within
that sequence, since a different sequence of requests will be secured with a different key.
In this example the sequence numbers on the messages don’t need to be unpredictable.

To ensure that a key is fresh, generate it by hashing some data that includes a newly
generated random number. For two party two-way communication, each party should
generate its own random number to be included in the hashed data; this gives each party
assurance of freshness, and also ensures a good key even if one of the parties is not good
at generating random numbers.

For broadcast communication such as a certificate signed with a public key, nonces
don’t work because the receivers don’t send anything to the broadcaster beforehand.

B. Lampson / Practical Principles for Computer Security170

Instead, we usually rely on a timestamp in the certificate for freshness. The validity
period in a token is an example of such a timestamp. You might also want to use a
timestamp to avoid a round trip, for instance when sending email. It’s not as conclusive
as a nonce because of clock skew (and perhaps because it’s predictable).

4.9.1. Consistency vs. availability

Availability and consistency: choose one

There is a fundamental tradeoff between consistency (or freshness) and availability.
A is consistent with B if A’s view of B’s state agrees with B’s actual state. 12 The only
way to ensure this is for A to hold a lock on B’s state, but this means that A has to
communicate with B to acquire the lock, and after that B can’t change its state until A
releases the lock. This is usually unacceptable in a distributed system because it hurts
availability too much: if A and B can’t communicate, one of them is going to be stuck. 13

The alternative is for A to settle for a view of B’s state at some time in the past; often
this is cached information. Now there is a tradeoff among freshness (how far in the past?),
availability, and performance (how often does A check for changes in B’s state?). This
tradeoff is fundamental; no cleverness in the implementation can avoid it. The choice is
between acting on old (perhaps cached) information, and getting stuck when you can’t
communicate. This is a management decision and it must be exposed to management
control. At least two parameters must be settable by the relying party (perhaps taking
account of hints in the token):

1. How old data can be and still be acted on (the tradeoff between freshness and
availability).

2. How frequently data should be refreshed (the tradeoff between freshness and
performance).

The way to get the freshest information is for A to ask B for its state right now. This
still doesn’t guarantee perfect consistency, since B’s state can change between the time
that B sends its reply and the time that A receives and acts on it, but it’s the best you can
do for consistency without a lock. The way to get the greatest availability and the least
communication cost is for A to act on any view it has of B’s state, no matter how old.

This issue shows up most often for authentication in the validity period of a token. A
short validity period means that the token is fresh, but also that new tokens must be issued
and distributed frequently. A long validity period means that once you have the token
you’re good to go, but the token’s issuer might have changed its mind about the claims in
it. Note that there’s nothing to stop a relying party from using a different validity period
from the one in the token.

4.9.2. Revoking claims

If you have issued a token and you want to cancel it, is there any alternative to letting
the validity period expire? Well, yes and no. Yes, because you may be able to revoke the

12More precisely, the view is some function v of B’s state sB , and A knows v(spast
B), where spast

B is some
past value of sB . A is consistent with B if v(spast

B) = v(sB).
13Sometimes a special kind of lock called a lease is acceptable; this is a lock that times out. A lease prevents

its issuer from changing the state until either the leaseholder releases it, or the lease times out. People usually
don’t use leases for security information, but they could.

B. Lampson / Practical Principles for Computer Security 171

token. No, because the revocation is just another kind of token, with a shorter validity
period.

The idea behind revocation is that you need two tokens to justify a claim: the origi-
nal token Tk that is "issuer says subject ⇒ . . . as long as revoker confirms", and another
confirmation token "revoker says Tk is still valid" that has a much shorter validity pe-
riod than Tk. This is better than simply issuing Tk with a short validity period because
the revoker is optimized for issuing confirmation tokens cheaply, quickly, and with high
availability. It can’t grant any access by itself, and it doesn’t need any detailed informa-
tion about the principals involved. Its database consists simply of tokens revoked by their
issuers. When queried about Tk, it checks that database and issues a confirmation token
if the database doesn’t say that Tk is revoked.

To add an entry to the revoker’s database, the original issuer writes a token "issuer
says the token identified by TkId has been revoked" and sends it to the revoker. TkId
could be a hash of the original token or a serial number embedded in the original token.
The revoker puts (issuer, TkId) in its database. Since issuers can only revoke their own
tokens, the revoker doesn’t need to know anything about the issuers (unless it wants them
to pay). The only harm the revoker can do is to revoke tokens without instructions, that
is, mount a denial of service attack.

Because it is much simpler than most issuers and because it can’t grant any access
by itself, the revoker can afford to issue confirmation tokens with short validity periods,
and it can be replicated for high availability. It’s important to understand, however, that
this is a difference of degree and not of kind. The tradeoffs described in section 4.9.1 still
apply; only the parameters are different. For systems that are expected to be connected
to the Internet, it’s reasonable to use a validity period of a few minutes (or the length
of a session, if that is greater). Policy might say that if you can’t contact a revoker, you
should accept the token anyway.

There are several schemes for revocation. The original X.509 standard specifies a
method called a Certificate Revocation List (CRL), but this has fallen out of favor. The
revocation scheme usually used for X.509 certificates is the Internet standard OCSP; see
[3].

5. Authentication

This section describes the core components of authentication, highlighted in Figure 5:
the trust root, token sources, and the speaks-for engine. Then it touches briefly on other
components: user logon, device and app authentication, compound principals, and capa-
bilities.

Access control is based on checking that the principal making a request is autho-
rized to access the resource, in other words, that the principal speaks for the resource.
This check typically involves a trust chain like the one in the example of section 3.2:

KSSL ⇒ Klogon ⇒ KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w Spectra
Where do these claims come from? They can be known, (that is, built in), or they

can be deduced from other claims or from tokens, which are claims made by known
principals. The trust root holds the built in claims, token sources supply tokens, and the
speaks-for engine makes the deductions. Thus these components are the core of authen-
tication:

B. Lampson / Practical Principles for Computer Security172

Figure 5. Core authentication components (see section 3.1 for a walk-through)

1. The trust root holds claims that we know, such as KV erisign ⇒ Verisign. All
trust is local, so the trust root is the basis of all trust.

2. Token sources provide claims that others say, such as KV erisign says KAmazon

⇒ Amazon.
3. The speaks-for engine consumes claims and tokens to deduce other things we

may need to know, such as what tokens to believe, nested group memberships,
impersonation, etc.

5.1. Trust root

All trust is local.

The trust root is a local store, protected from tampering, that holds things that a
system (a machine, a session, an application) knows to be true. Everything that a system
knows about authentication is based on facts held in its trust root. The trust root needs
to be tamper-resistant because attackers who can modify it can assign themselves all the
power of any principal allowed on the system.

The trust root is a set of claims (speaks-for facts) that say what keys (or other identi-
fiers) are trusted and what identifiers (names, SIDs) they can speak for. Typical trust root
entries are:

B. Lampson / Practical Principles for Computer Security 173

KD ⇒ SID/D key KD speaks for domain identifier D
KMicrosoft ⇒ microsoft.com key KMicrosoft speaks for the name microsoft.com
KV erisign ⇒ DNS/* the key KV erisign speaks for any DNS name
KDR ⇒ SID/* key KDR speaks for all domain identifiers

Because all trust is local, the trust root is local, and it must be set up manually. It
must also be protected, like any other local store whose integrity is important. Because
manual setup is expensive and error-prone, a trust root usually delegates a lot of authority
to some third party such as a domain controller or certificate authority. The third claim
example above, KV erisign ⇒ DNS/*, is such a delegation. It says that Verisign’s key is
trusted for any DNS name. Another example of such a delegation is the first one above,
KD ⇒ SID/D, which delegates authority over the domain identifier D to the key KD.

All trust is partial.

For convenience people tend to delegate a great deal of authority in the trust root.
For example:

• A domain-joined machine trusts its domain controller for any SID.
• Most trust root entries for X.509 certificate authorities trust the authority for any

DNS name.
• Today Microsoft Update is trusted by default to change entries in a Windows

X.509 trust root.

This is not necessary, however. In a speaks-for claim, a delegation can be as specific
as desired. Existing encodings of claims are not completely general, but for example,
name constraints in a X.509 certificate can either allow or forbid any set of subtrees of
the DNS or email namespace.

A very convenient way of limiting the authority of the delegation in the trust root is
the rule that "most specific wins". According to this rule, a trust root with the two entries

KV erisign ⇒ DNS/*; KMS ⇒ microsoft.com
means that KV erisign speaks for every DNS name except those that start with mi-
crosoft.com. It may also be desirable to find out what key KV erisign says speaks for
microsoft.com, and notify an administrator if that key is different from KMS .

5.1.1. Agreeing on conventionally global identifiers

As we saw in section 4.5, we would like to use names such as microsoft.com as global
identifiers. Since this name doesn’t start with a key and therefore is not fully qualified,
however, and since all trust is local, this can only be done by convention. There is nothing
except convention to stop two different trust roots from trusting two different keys to
speak for microsoft.com, or from delegating authority over *.com to two different third
parties that have different ideas about what PKI speaks for microsoft.com.

Our goal is that "normal" trust roots should agree on conventionally global identifiers
(SIDs and DNS names). We can’t force them to agree, but we can encourage them to
consult friends, neighbors and recognized authorities, and to compare their contents and
notify administrators of any disagreements.

As long as trust roots delegate authority to the same third parties they will agree.
If they delegate to two different third parties that agree, the trust roots will also agree.

B. Lampson / Practical Principles for Computer Security174

So it is desirable to systematically detect and report cases where recognized authorities
disagree.

5.1.2. Replacing keys

The cryptographic mechanisms used in distributed authentication merely take the place,
in the digital world, of human authentication processes. These are not just human-scale
scenarios performed faster and more accurately, however; they are scenarios that are too
complex for unaided humans. Therefore it’s important that human intervention be needed
as seldom as possible.

It’s simple to roll over a cryptographic key automatically, which is fortunate since
good cryptographic hygiene demands that this be done at regular intervals. The owner
of the old key simply signs a token Kold says Knew ⇒ Kold. Both keys will be valid
for some period of time. The main use of these tokens is to persuade each authority that
issued a certificate for Kold to issue an equivalent certificate for Knew.

When a cryptographic key is stolen or otherwise compromised, or the corresponding
secret key is lost, things are not so simple. If the key is compromised but not lost, often
the first step is to revoke it with a revocation certificate Kold says "Kold is no longer
valid"; by a slight extension of (S3), everyone believes this. See section 4.9.2.

The lost or compromised key must now be replaced with a new key. That replace-
ment process requires authentication. In the simplest case, there is an authority responsi-
ble for asserting that the key speaks for a SID or name, for example, a trust root (the base
case), Verisign or a domain ID service. This authority must have a suitable ceremony for
replacing the key. Here are five examples of such a ceremony:

• You sign a replacement request with a backup key.
• You visit the bank in person.
• You give your mother’s maiden name.
• You call up your associates in a P2P system on the phone and tell them to change

their trust roots.
• Microsoft takes out full page ads in every major newspaper announcing that the

Microsoft Update key has been compromised and explaining what you should do
to update the trust root of your Windows systems.

5.2. Token sources

Recall that a token is a signed claim (speaks-for statement): issuer says P ⇒ Q. In
today’s Windows, the sources of tokens are highly specialized to particular protocols. For
example, a domain controller provides Kerberos tokens, and the SSL protocols obtain
server and client certificates. Any entity that obeys a suitable protocol (like the STS
protocol for Web Services) can be a source of tokens.

The same host may get tokens from many sources, and any kind of token source can
be local, remote, or both. In addition to coming from domain controllers, protocols such
as SSL and IPSec, and Web Services Security Token Services, tokens can come from
public key certificate authorities, from peer machines, from searches over web pages or
online databases that contain tokens, from Personal Trusted Devices such as smart cards
or (trusted) cellphones, and from many other places. In corporate scenarios most if not
all tokens will probably come from the corporate authentication authority, but in P2P

B. Lampson / Practical Principles for Computer Security 175

scenarios they will often come from peer machines as well as from services such as Live.
This means that a standard Windows machine needs to be a token source.

The simplest kind of token to manage is signed by a key, and therefore can be stored
anywhere since its security depends only on the signature and not on where it is stored.
If the token is signed by a public key, anyone can verify it. However, a token can also be
signed by a symmetric key, and in this case it usually must come from a trusted online
source that shares the symmetric key with the recipient of the token.

5.3. Speaks-for engine

The job of the speaks-for engine is to derive conclusions about what principals are
trusted, starting from claims and adding information derived from tokens. The starting
claims are:

• The ones in the trust root.
• If you are checking access to a resource that has an ACL, the claims in the ACL.

Recall that we view an ACL entry as a claim of the form SID ⇒permissions

resource.

Today this reasoning is done in a variety of different places. For example, in Win-
dows:

• Logon, both interactive and network, derives the groups and privileges that a user
speaks for; this is called group expansion. Part of this work is done in the host,
part in the domain controller.

• X.509 certificate chain validation, which is used to authenticate SSL connections,
for example, derives the name that a public key speaks for. In Windows it also
does group expansion and optionally maps a certified name to a local account.

• AccessCheck uses an NT token, which asserts that a thread speaks for every SID
in a set, and an access control list, which asserts that every SID in a set speaks for
a resource, to check that a thread making a request has the necessary access (that
is, speaks for) the resource.

• A Web Services STS takes authentication tokens supplied as input and a query,
and produces new tokens that match the query. It can do this in any way it likes,
but in many cases it has a database that encodes a set of claims (for example,
associating keys with users or users with attributes), and the tokens it produces
are just the ones that the speaks-for engine would produce from those claims and
the inputs.

Although some or all of these specialized reasoning engines may survive for reasons
of performance or expediency, or because they implement specialized restrictions, every
conclusion about trust should be derived from a set of input claims and tokens using a
few simple rules.

The implementation of this tenet is a speaks-for engine, a piece of code that takes
a set of claims and tokens as input and produces all of the claims that follow from this
input. More practically, it produces all of the claims that match some query. In general,
the query defines a set of claims. For example, for an access to a resource, the query is
"Does this request speak for this resource about this operation". For group expansion, the
query is "What are all the groups that this principal speaks for".

B. Lampson / Practical Principles for Computer Security176

The speaks-for engine produces one or more chains of trust demonstrating that prin-
cipal P speaks for resource T about access R. For example, in section 3 we saw how to
demonstrate that KSSL ⇒r/w Spectra by deriving the chain of trust

KSSL ⇒ Klogon ⇒ KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w Spectra
Each link in this chain corresponds to a claim, either already in the trust root or derived
from a token. For example, we derive KAlice ⇒ Alice@Intel.com from the token KIntel

says KAlice ⇒ Alice@Intel.com, using the claim KIntel ⇒ Intel.com. This fact comes
either from the trust root or from another token KV erisign says KIntel ⇒ Intel.com,
using the claim KV erisign ⇒ *.com. So the main chain of trust has auxiliary chains
hanging off it to justify the use of tokens. The entire structure forms a proof tree for the
conclusion KSSL ⇒r/w Spectra.

When P is a set of SIDs in an NT token, R is a permission expressed in the bit mask
form used in Windows and Unix ACLs and T has an ACL, this is a very simple, very
efficient computational proof.

The full speaks-for calculus extends the flexibility and power of this statement. P
can be a principal other than SIDs. T can be the name of a resource or a named group of
resources. Rights R can be expressed as names and as named groups of rights. A principal
P can delegate to Q its right R to T by the token P says Q ⇒R T (if P has the right to do
this).

For example, what can be delegated in an X.509 certificate chain is the permission
to speak for some portion of the namespace for which the chain’s root key can speak.
This does not include the ability to define groups, for example, because group definition
is outside the X.509 certificate scope. For that, one can use another encoding of a speaks-
for statement (perhaps in SAML, XACML or ISO REL). From the speaks-for engine
deduction we can establish that some key (bound to an ID by X.509) speaks for some
group (defined by the other encoding—e.g., SAML), and establish that without having
to teach SAML to understand X.509 or teach X.509 to understand SAML.

5.4. Additional components

Figure 6 shows all the components of authentication. They are (starting in the lower
left corner of the figure and roughly tracing the arrows in the figure, which follow the
walkthrough in section 3.1; * marks components already discussed):

1. User Logon Agent: a module that is responsible for gathering authentication
information from human users.

2. Logon (in): a module that takes logon requests (currently user, network, batch
or service), interacts with token sources, and collects the principals that the user
speaks for.

3. Token Sources (User Authentication): a source, whether local or remote, such
as the Kerberos KDC or an STS, that verifies a logon and provides SIDs or other
identifiers to represent the logged-on principal.

4. *Token Sources (Claims (groups), Token issue): a source of group and attribute
information. This information may either be obtained over a secure channel, or
issued as a token.

5. Translator: a dispatcher and a collection of components, each of which verifies
the signature on a token and translates that token into an internal claim.

B. Lampson / Practical Principles for Computer Security 177

Figure 6. Authentication: The full story

6. App Manifest: a data structure that completely specifies an application (listing
the modules of the application and the hash of each module).

7. TPM: hardware support for strong verification of application manifests and of
the entire stack on which the application runs.

8. App Logon: code that compares an application being loaded into a process
against the manifest for that application and, when the two agree, assigns an ap-
propriate SID to that process.

9. *Speaks-for Engine: the module that derives claims according to the speaks-for
calculus—of primary use in authorization but used in authentication to deduce
group memberships.

10. NT Token: the existing Windows NT Token—of which there is at least one per
session—containing a collection of SIDs identifying the system on which the
logon initiated, the user, groups to which this process belongs and the application
ID of the process application. In other applications of the architecture this will
be a general security context, that is, a principal. Authentication verifies that the
user and app speak for this principal.

11. Other claim sources: token or claim sources that do not fit the model of Token
Sources—tokens or claims can come from anywhere.

12. Cert / claim cache: a local cache of certificates or claims (in general, tokens)—in
either external or internal form.

13. *Trust root: a protected store of speaks-for statements representing things that
this session knows.

B. Lampson / Practical Principles for Computer Security178

14. Transient key store: a protected and confidential store of cryptographic keys
(symmetric keys and private keys) by which this session authenticates (proves)
itself to remote entities.

15. Logon (out): the module with which this session authenticates (proves) itself to
a remote entity, including both protocols for authentication with negotiation and
the user interface that allows a human operator to decide what information to
release to the remote system (the CardSpace Identity Selector).

5.5. User agent and logon

User logon (often called interactive logon) does two things:

• It authenticates the user to the host, giving the host evidence that the user is typing
on the keyboard and viewing the screen.

• It optionally also makes it possible for the host to convince others that it is acting
on behalf of the user without any more user interaction. This process of convinc-
ing others is called network logon.

There are many subtleties in user authentication that are beyond the scope of this
paper. Here are the steps of user authentication in its most straightforward form:

1. The user agent in the host collects some evidence that it interacted with the user,
called credentials: a nonce signed by a key or password, biometric samples (the
output of a biometric reader: measurements of fingerprints, irises, or whatever), a
one time password, etc.. Modularity here is for the data collection, which is likely
to depend on the type of evidence, and often on the particular hardware device
that provides it.

2. It passes this evidence to logon along with the user name.
3. Logon sends the evidence, together with a temporary logon session key Klogon,

over a secure channel to a user authentication service that understands this kind
of evidence; the service may be local, like the Windows SAM (Security Accounts
Manager), or may be remote (as in the figure) like a domain controller. Modular-
ity here is for the protocol used to communicate with the service. 14

4. The authentication service evaluates the evidence, and if it is convinced it returns
"yes, this evidence speaks for this user name".

5. In addition, to support single sign-on it returns tokens authority says Klogon ⇒
user name and authority says Klogon ⇒ user SID. It may also return additional
information such as Klogon ⇒ authentication method or Klogon ⇒ logon loca-
tion.

Single sign-on works by translating the user’s interactive authentication to crypto-
graphic authentication. Logon generates a cryptographic key pair for the user’s logon

14You might think that one protocol could work for any kind of authentication factor. There are two reasons
for using different protocols. One is purely historical: existing services used particular protocols. The other
is that some protocols, such as Kerberos, depend on the fact that the workstation has a key that it can use to
communicate secrets to the service. In Kerberos, for example, the user’s password is the source for such a
key. Biometric samples don’t work. Other protocols, such as SSL, create a secure channel to the service and
authenticate it starting with nothing but a trust root entry for a generic authority such as Verisign. As far as
I know, SSL secure channel setup together with conventions for finding the service to use, encapsulating the
evidence, and allowing for interaction between the user and the service would be a universal protocol.

B. Lampson / Practical Principles for Computer Security 179

session. The new key Klogon is certified by a more permanent key (on the user’s smart-
card, in the computer’s hardware security module, sealed by a password, from a domain
controller, or whatever): Kpermanent says Klogon ⇒ user. It is then used for that one
logon session. Since today there are protocols that insist on secret key such as Kerberos,
and others that use public key such as SSL, logon should certify one of each.

5.6. Device authentication

Device authentication is more subtle than you think. As much as possible, computers and
other digital devices should authenticate to each other cryptographically with tokens of
the form K says As we have seen, for these to be useful the key K must speak for
some meaningful name. This section explains how such names get established, using the
example of very simple devices such as a light switch or a thermostat. More powerful
devices with better I/O, such as PCs, can use the same ideas, but they can be much more
chatty.

It is a fundamental fact of cryptographic security that keys must be established ini-
tially by some out of band mechanism. There are several ways to do this, but two of them
seem practical and are unencumbered by intellectual property restrictions: a pre-assigned
meaningful name and a key ferry. This section describes both of them.

You might think that this is a lot of bother over nothing, but consider that lots of
wireless microphones and even cameras are likely to be installed in bedrooms in apart-
ments. Some neighbors will certainly be strongly motivated to eavesdrop on these de-
vices. Because the wireless channel is a broadcast channel, the neighbor can mount a
"man-in-the-middle" attack that intercepts the messages passing between the device and
your computer, and pretends to be the device to the computer and the computer to the
device.

5.6.1. Device authentication by name

For device authentication, the simplest such mechanism is for the manufacturer to install
a key K−1 in the device, give it a name dn, and provide a certificate manufacturer says
K ⇒ dn, for example, Honeywell says K ⇒ thermo524XN12.Honeywell.com. In this
example the out of band channel is a piece of paper with the name thermo524XN12
printed on it that comes in the box with the thermostat. After installing the thermostat
in the living room, the user goes to a computer, asks it to look around for a new device,
reads the name off the screen, compares it with the name on the paper, and assigns the
thermostat a meaningful name such as LivingRoomThermostat. Of course a hash of the
device’s key would do instead of a name, but it may be less meaningful to the user (not
that 524XN12 is very meaningful). This protocol only authenticates the device to the
computer, not the other way around, but now the computer can "capture" the device by
sending it a "only listen to this key" message.

In many important cases this assignment needs to be done only once, even though
many different people and computers will interact with the device. For example, a net-
worked projector installed in Microsoft conference room 27/1145 might be given the
name projector.27-1145.microsoft.com by the IT department that installs it. When you
walk into the conference room and ask your laptop to look around for available projec-
tors, seeing one that can authenticate with that name should be good enough security

B. Lampson / Practical Principles for Computer Security180

for almost anyone. Because this name is very meaningful, authenticating to it is just like
authenticating to any other service such as a remote file system.

In many other important cases this assignment only needs to be done very rarely
because the device belongs to one computer, which is the device’s exclusive user until
the computer is replaced. This is typical for an I/O device such as a scanner or keyboard.

5.6.2. Device authentication by key ferry

There are three disadvantages to pre-assigned names that might make you want to use a
different scheme:

• You might lose the piece of paper, in which case the device becomes useless.
• You might not trust the manufacturer to assign the name correctly and uniquely.
• You might not trust the user to compare the displayed name with the printed one

correctly (or at all, since users like to just click OK)

The alternative to a pre-assigned name as an out of band channel is some sort of
physical contact. What makes this problem different from peer-to-peer user authentica-
tion is that the device may have very little I/O, and does not have an owner that you can
talk to. There are various ways to solve this problem, but the simplest one that doesn’t
assume a cable or other direct physical connection is a "key ferry". This is a special gad-
get that can communicate with both host and device using channels that are physically
secure. This communication can be quite minimal: upload a key from host into ferry at
one end; download the key out of ferry into device at the other end. The simplest ferry
would plug into USB on the host and the device.

5.7. App ID

This section explains how to authenticate applications. While it’s also important to un-
derstand how apps are isolated so that it makes sense to hold an app responsible for its
requests, this out of scope here.

The basic idea is that apps are principals just like users:

• An app is registered in a domain, with an AppSID and a name. This domain is
typically the publisher’s domain.

• An app is authenticated by the hash of a binary image, just as a user is authenti-
cated by a key.

• When a host makes a new execution environment (process, app domain, etc.) and
loads a binary image into it, the new environment gets the hash of the image (and
everything that the hash speaks for) as its ID.

• User, machine, and app identifiers can all appear on ACLs or as group members.

Also like users, apps can be put into groups, but this is even more important for
apps than it is for users because groups are the tool for managing multiple versions of
apps. Like any group membership, the fact that an app is a member of the group can
be recorded in AD, or it can be represented in a certificate that is digitally signed by
an appropriate authority. Like groups containing users, groups containing apps can nest
to make management easier. For example, the GoodApps group might have members
GoodOffice, GoodAcrobat, etc.

B. Lampson / Practical Principles for Computer Security 181

AppSIDs are probably assigned from the same space as user, group, and machine
SIDs, though frequently the AppSIDs are from a "foreign" domain, that of the software
publisher (e.g. Microsoft). The assignment is encoded in a signed certificate (usually
in the manifest) that associates the binary image with an AppSID and a name in the
publisher’s domain.

AppSIDs can also be assigned locally by a domain or machine administrator. This
must always be done for locally generated applications, and can be done for third party
applications (where the AppSID is assigned as part of some approval process). The ap-
plication is identified by a hash just as in the published case. The local administrator can
sign a manifest just like the publisher, or can define a group locally or in AD.

ACLs list the users, machines, and applications that are allowed to access the
resource. Sensitive resources might only be accessible through applications in the
GoodApps group. Specialized resources might only be accessible to specific applications
(plus things like backup and restore utilities).

5.7.1. AppSIDs and versions

A certificate for an app is a signed statement that says something like "hash 743829 ⇒
MS/Word12.3.1, s-msft-word12.3.1. Applications contain many files; a manifest is a data
structure that defines the entire contents of the application. The manifest includes hashes
of all the component files, and it’s the hash of the manifest that defines the app.

The manifest can reference system components that are not distributed with the app
(e.g. system .dlls). Such a component is considered to be part the platform on which the
app is running, not part of the app; see section 5.7.2, and it is referred to by a name, which
need not change if the component is patched. There are many complications having to
do with side-by-side execution that are not relevant here; it’s the platform’s job to ensure
that the name gets bound appropriately for both security and compatibility. In this respect
an app treats a platform component just like a kernel call.

The way this is normally encoded is that the publisher includes the principals that
the app speaks for (such as MS/Word12.3.1, s-msft-word12.3.1) in the manifest, and then
simply signs the hash of the manifest. This is just a useful coding trick. Of course, the
signer of the manifest (or other app certificate) must be authoritative for the domain of
the SID and for the name, just as for any other speaks-for statement.

If the system trusts its file store, it can verify the manifest at install time and cache it.
This also covers cases where installation includes updates to registry settings and such.

There may be good reasons not to change AppSIDs with each small version change
such as a patch. Changing the AppSID requires updating all policy that references it.
Some admins will want to do so; others will not. An admin can avoid having to update
lots of policy by adding a level of indirection, defining a group and putting the AppSID
for each new version into the group; this gives the admin complete control. Publishers can
make the admin’s life easier by including multiple AppSIDs in a manifest. For example,
the manifest for a version of Word might say that it is Word, Word12, and Word12SP2
as well as Word12.3.1. In SP3, the first two SIDs remain the same. Then Contoso ITG
can say MS/Word12, MS/Word11.7.3 ⇒ Contoso/GoodWord. Since all trust is local, the
structure of the name space for an app is in the end up to the administrator of the machine
that runs it. The job of a publisher like Microsoft is to provide some versions and names
that are useful to lots of customers, not to meet every conceivable need.

B. Lampson / Practical Principles for Computer Security182

5.7.2. The AppID stack

The only assertions an app can make directly are ones encoded in its manifest. When the
app is running it depends on its host environment to provide the isolation that is needed
for an app identity to make any sense. Typically the host environment is itself hosted, so
the entire app identity is actually a stack:

StockChart
IE 7.0.1
Vista + patch44325
Viridian hypervisor + patch7654
MachineSID

At the bottom, the machine gets its identity from a key it holds. Ideally this key is pro-
tected by the TPM.

We could describe the identity of the app by hashing together the hashes of all the
things below it on the stack, just as we hashed all the files of the app together in the
manifest. This is probably not a good idea, however, because if there are ten versions
of each level in the stack there will be 100,000 different versions—hard to manage. It’s
better to manage each level separately.

Access control of course sees the whole stack. Taking account of plausible group
memberships, an ACL might say GoodApp on GoodOS on GoodMachine gets access,
where "on" here is an informal operator that makes a single principal out of an app
running on a host. This makes it easy for the administrator to decide independently which
apps, which OS’s, and which machines are good. Going further, the administrator might
define GoodApp on GoodOS on GoodMachine ⇒ GoodStuff and just put GoodStuff on
ACLs.

Note that the policy for what stacks are acceptable might come from the app rather
than user or administrator. The main example of this is DRM, in which some remote
service that the app calls, such as the license server, demands some kind of evidence
that it is running on a suitably secure hardware and OS. The app’s manifest might even
declare its requirements, but of course an untrustworthy host could ignore them, so the
license server has to check the evidence itself. 15

When a running program loads some new code into itself (a dll, a macro, etc.), it has
a number of options about the appID of the resulting execution environment. It can:

1. Use the new code’s appID to decide not to load it at all.
2. Trust the code and keep the same AppID the host had before. This is typically

what happens at an extensibility point, or in general when an app calls LoadLi-
brary.

3. Downgrade its own AppID to reflect less trust in the new code.
4. Sandbox the new code and add another level to the stack. Of course the credibility

of the resulting AppID is only as good as the isolation of the sandbox.

ACL entries on the operation of loading code can express this choice. Note that when
an app calls CreateProcess, for example, it is not loading new code into itself, but asking
its host OS to create a sibling execution environment, and it’s the host’s job to assign the

15The app itself could also demand properties from its host, but since the host has complete control over the
app, this demand could not be enforced very securely. Ideally the evidence for the license server is a chain of
certificates rooted in the hardware TPM’s key.

B. Lampson / Practical Principles for Computer Security 183

appID for the new process, which might have different, even greater rights that the app
that called CreateProcess.

5.8. Compound principals

Simple principals that appear in access control policy are usually human beings, devices
or applications. In many cases, two or three of these will actually provide proof (authen-
ticate a request). Today only one principal typically provides proof—either a human be-
ing or a computer system. Multiple proofs of origin can be used to strengthen security.
One important example of this is combining a user identifier and an appID. There are
two main ways this can be done:

1. Protected subsystem: access is granted only to the combination of two princi-
pals, not to either of them alone—for example, opening of a file for backup can
be allowed to a registered backup operator, but only when that operator is also
running a registered backup application.

2. Restricted Process: the desired access is granted only if each of the two or more
principals qualify for that access individually 16 —for example, an applet down-
loaded from a web page at xyz.com might be allowed to access things on xyz.com
but not on the user’s local machine, and the user running that applet might have
access only to objects that the user and the applet both can access.

These two ways of combining principals correspond to and and or. The principal
billg and HeadTrax is billg running the HeadTrax protected subsystem; Windows doesn’t
currently have a way to add such an appID to a security context. The principal billg or
MyDoom is billg running the MyDoom virus; in Windows today this is a billg process with
a MyDoom restricted token.

A Windows security context (or NT token) is a set of SIDs that defines a principal:
the and of all those SIDs. This principal can exercise all the power that any of those SIDs
can exercise. Thus when a security context makes a request, the interpretation is that each
of the SIDs independently makes that request; if any of them is on the resource’s ACL,
the request is granted. So security context says request is SID1 says request and SID2
says request . . . , which is another way of saying that security context = SID1 and SID2
and

There are other uses for compound principals made with and. Financial institutions
often demand what they call dual control: two principals have to make a request in order
for it to get access to an object such as a bank account. In speaks-for terms, this is P1 and
P2 ⇒ object. The method for making long-term keys fault-tolerant described in section
5.1.2 is another example of this, which generalized and to k-of-n.

There are also other uses for compound principals made with or. In fact, an ACL is
such a principal. It says that (ACE1 or . . . or ACEn) ⇒ object.

5.9. Capabilities

A capability for an object is a claim that some principal speaks for the object immedi-
ately, without any indirection. A familiar example in operating systems is a file descrip-

16This kind of access is provided today in Windows by the restricted token, in which one has effectively two
NTtokens, one for the user’s principals and one for a service ID. AccessCheck is called with each of those
tokens and the Boolean results of those calls are then anded.

B. Lampson / Practical Principles for Computer Security184

tor or file handle for an open file. When a process opens the file, the OS checks that it
speaks for some principal on the file’s ACL, and then creates a handle for the open file.
The handle encodes the claim that the process speaks directly for reads and writes of
the file, without any further checking; this claim is encoded in the OS data structure for
the handle. A capability is thus a summary of a trust chain. Usually it has a quite lim-
ited period of validity, in order to avoid the need to revoke it if the trust chain becomes
invalid.

For a capability to work without a common host such as an OS, it must be in a token
of the form object says P ⇒ object that the object issues after evaluating a trust chain.
Later P can make a request along with this token, and the object will grant access without
having to examine the whole chain. Such a token doesn’t have to be secret, since it only
grants authority to P.

6. Authorization

The main problem with authorization is management. Products usually have enough raw
functionality to express the customer’s intent, but there is so much detail to master that
ordinary mortals are overwhelmed. The administrator (or user) needs a way to build a
model of the system that drastically reduces the number of items they need to configure.
The model needs to not only handle enterprise level security, but also "scale down" to
small businesses and homes where there is no professional IT administrator, to peer-to-
peer systems, and to mobile platforms and small devices.

Authorization also needs to be feasible to implement. It needs to scale up to the
Internet, avoiding algorithms and data structures that only work for intranet-sized sys-
tems or that depend on having a single management authority for the whole system. Ev-
erything that works locally should work on the Internet. Authorization needs to support
least privilege, by taking account of application as well as user identity, so that trusted
apps can get more privileges and untrusted ones fewer; this must work even though apps
come in many versions and are extensible. And it needs to be efficient: fast in the com-
mon case and reasonable in complex cases, even in a large system; it needs to identify
problem cases so that people setting policy can avoid them.

6.1. Overview

The underlying semantics of authorization is the notion of "speaks-for": there is a chain
of principals, starting with the principal making a request (typically a channel on which
the request is transmitted or an encryption key that signs the request) and ending with
the resource. For example:

Ksession ⇒ KPaul ⇒ Paul@microsoft.com ⇒ Zeno@microsoft.com
⇒ http://winsecurity/sites/strategy

We call the part of this chain closer to the user "authentication", and the part closer to
the resource "authorization". This division is somewhat arbitrary, since there is no sharp
dividing line.

In order to make authorization more manageable, you can build a model that collects
resources into scopes and defines roles, each with a set of predefined permissions to
execute operations on the resources in the scope. In addition, you can build a template

B. Lampson / Practical Principles for Computer Security 185

for a scope and its roles, and then instantiate the template multiple times for different
collections of resources that have the same pattern of authorization policy. Figure 7 is an
overview that shows the main steps in specifying and checking authorization.

5. Check Access

4. Acquire Groups /
Attributes

3. Synchronize Policy

2. Build Instances

1. Define Templates

Policy
Context

Role
Templates

Scope
Templates

Roles Scopes

Principal

Groups /
AttributesToken

Source

ACL
Security
Context AccessCheck

Login

Resource ACLs/
Groups/Attributes

Developer /
IT Architect

Admin

Service

M
od

el
Im

pl
em

en
ta

tio
n

Repository

Figure 7. Authentication architecture overview.

This model-based access control (MBAC) organizes resources into scopes and prin-
cipals making requests into roles.

1. The developer or IT architect defines templates for scopes and roles that can be
used repeatedly in similar situations.

2. The administrator or owner makes instances of these templates, groups resources
into scopes, and assigns principals to roles.

The remainder of the picture shows how to implement the policy that the model defines.

3. The system compiles or synchronizes the model’s policy into groups, claims, and
ACLs on resources used to do access checks efficiently. When a service starts it
acquires its own identity and resource groups, along with those of its enclosing
execution environments (OS, device, etc.)

4. The user logs in to a service and acquires groups and claims from the directory
or STS to add to the identifiers she already has. The system combines these with
resource manager claims and service trust policy to obtain a set of principals that
the service thinks the user speaks for.

5. Finally, the set of principals is checked against the ACL for the resource the user
is trying to access.

The templates and instances are part of MBAC. The acquisition and access check are
part of implementation. The model and implementation are connected when the policy
is synchronized.

B. Lampson / Practical Principles for Computer Security186

sondra

project

dev pm

emerald

project

dev pm

amber
Scopes

Roles

Users Scope
Part

Scope

PartOperation
(Permission)

Service

User

Model Instance Physical

Role Group Principal

Figure 8. The admin sees two scopes, emerald and amber; both are instances of a project repository tem-
plate. A project has two roles, dev and pm. Sondra is a dev for emerald and a pm for amber.

6.2. Model-Based Access Control (MBAC)

The idea of MBAC is to make authorization policy accessible to ordinary mortals; think
of it as Excel for authorization. The main customer pain point is that security manage-
ment is too hard. There are thousands of security knobs (individual ACLs, privileges,
resource names, etc.) on each computer, and in a large installation there are thousands
of computers. No human can keep that number of separate objects in mind. The model
conceals the complexity of the underlying implementation from users and administrators
(though they can dive down into individual groups and ACLs if they really need to).

MBAC shines when complex policies apply to multiple objects. It reduces repetitive
manual effort by the administrator, and makes it easy to find out what the policy is after
a long history of incremental changes. Our examples are necessarily contrived, since
something simple enough to put in this paper is simple enough to do manually. So use
your imagination to see how the reduction in administrative work is actually substantial
for real world scenarios.

Figure 8 shows the administrator’s view of a model for part of a system-two project
repositories that are scopes for resources, one for the emerald project and one for the
amber project. Each project has two roles: one for PMs and one for devs. When deploying
a project repository you create a group for each role, containing the users who are in that
role for that project. Thus a scope is a collection of resources, and a role is a collection
of principals.

This is a simple model-the admin just puts a user, such a Sondra, into the correct
group, and all the permissions and memberships are created as a consequence. The actual
situation might be messier, as Figure 9 shows. Administering this manually would be
quite difficult, but with MBAC the administrator doesn’t have to worry about the mess
when configuring authorization policy.

Someone has to worry, of course, and that person is the designer of the template,
typically a developer or an IT architect. Figure 10 shows the SharePoint template and
the emerald.specs scope that is an instance of it. Such a leaf scope corresponds to an

B. Lampson / Practical Principles for Computer Security 187

Figure 9. Manual administration gets messy

Figure 10. A template and an instance emerald.specs for sharepoint; Sondra is a viewer.

instance of a service along with (a subset of) its resources. The developer of the service,
in addition to coding the service, creates a scope template that defines the roles for the
service. A role determines the permissions for a user in that role. Each role is tailored to
enable a user to perform some task—like being a teller, or an HR benefits clerk, or in this
example, a contributor or viewer of documents on a SharePoint server. A viewer can read
documents; a contributor can edit documents, and also is a viewer (this is an example of
role nesting). These predefined roles determine the combination of permissions that get
tested, to make sure that they correctly enable the desired tasks. Thus the developer or IT
architect is responsible for all the details of authorization policy within the scope. From
the point of view of the administrator, all the ACLs are immutable.

The administrator instantiates the scope template to create a scope. The same tem-
plate can be used to create many scopes. Figure 10 shows one of these, in which the

B. Lampson / Practical Principles for Computer Security188

contributor and viewer roles have the same permissions for the SharePoint resource in
the scope that the corresponding role templates had in the template. The administrator
has put Sondra into the viewer role for the emerald.specs scope. Each scope precisely
mirrors the scope template and has the resources, roles, and permissions defined in the
template, just as each instance of a class in an object oriented programming language
precisely mirrors the class definition.

An IT architect can create higher level templates. In Figure 11 SharePoint is used
to create the project repository we described earlier. The project has two subparts, called
specs and source. The PM role is assigned to the contributor role in the specs server,
and the viewer role in the source server. A part’s roles constitute the interface that it
exports to containing scopes. The smallest parts are actual services such as SharePoint;
composite parts such as project contain subparts. The architect can nest these as deeply
as necessary. We expect that there will be a market for templates that are useful to more
than one organization.

Figure 11. Build bigger parts from smaller ones. The specs and source scope templates are SharePoint
scope templates that are parts of the outer project scope template, and the inner contributor and viewer role
templates are populated from the outer pm and dev ones.

Because the IT architect defines this for all project repositories, all the admin has to do is
instantiate the model; she no longer needs to understand all of the details. Two instances
of the project template called emerald and amber would get us back to Figure 8.

6.3. The model and the real world

This section explains how the model is connected to the code and data in the real world
that it is modeling. Although usually we ignore the distinction between the model and
the real world, in this section we need to be clear about it, so we call the real world thing
that corresponds to an object in the model its entity.

The goal is to keep the model and the real world synchronized, so that changes in
entities (and especially creation of new entities) are reflected in the model, and the access
control policy set by the model is reflected in its entities. There are three basic issues in
synchronization:

B. Lampson / Practical Principles for Computer Security 189

1. Naming: An object in the model and its entity in the real world are not necessarily
named in the same way.

2. Delay: An object and its entity are supposed to be in sync, but there may be some
delay.

3. Aggregation: When entities change, how are the changes aggregated for notify-
ing the model.

6.3.1. Naming: Paths and handles

Objects are named by paths: sequences of field names and queries (for selecting an ob-
ject from a set-valued field). Entities are named by handles, which are opaque from the
viewpoint of the model. The handle must have enough information to enable secure com-
munication with the root entity.

Because paths and handles are different in general, there has to be a way to map
between them. In particular, if the model wants to refer to an object’s entity, it needs the
entity’s handle. Similarly, if an entity wants to refer to its object, it needs the object’s
path. We take the view that MBAC should work without any changes to entities, as long
as they have some sort of interface that is adequate for implementing the get, set, and
enum methods described below. Thus the model needs to keep track of each object’s
handle, which it can do by storing it as part of the object.

In some cases a path may itself be a suitable handle. For example, the model for a
file system has objects that correspond to directories and files with isomorphic names.
Thus a directory object do has a set-valued contents field whose elements are the files
and directories in do, each with a name field. So a file with pathname a\b corresponds
to the object whose path is contents?{.name="a"}.contents?{.name="b"}. As this example
illustrates, a path may include queries, and hence to use a path as a handle the entities
have to be able to understand a query well enough to follow a path. The simplest kind of
query has the form [.name = "foo"], where name is a primary key, and this shouldn’t be
too hard for an entity.

6.3.2. The model is in charge

The model can read, and perhaps change, the abstract fields of an entity that correspond
to fields of the model by invoking the get and set methods of a corresponding object:
obj.get(f) allows the model to read the value of field f in the entity, and obj.set(f, value)
allows the model to set the access control policy of the entity. If f is an object, get returns
a handle to that object; see below. If a field is a large set, these methods are not suitable,
so set fields have a different method: obj.enum(f, i) returns a handle to the ith element of
the set, or nil if it has fewer elements (along with a generation number that increases every
time something happens to change the object numbering). To change the membership of
the set you use operations on the containing scope, such as create. Using these APIs a
model can fully explore its entity (as long as the entity isn’t changing too fast), learn the
handles of all the entities, fill in all the fields of the model, and tell the entity the values
of any fields that are determined by the model (normally roles).

In order to use MBAC, an entity must implement these APIs. It may also need to
implement query and assign APIs to deal efficiently with large sets of objects. To reflect
changes to the entity in the model more efficiently than by polling we may also want a
change log. Entries in this log are (h, f) pairs, meaning that field f of entity h has changed.

B. Lampson / Practical Principles for Computer Security190

6.3.3. Notification and aggregation

With these APIs the only way for the model to find out about changes in the entities is to
do a crawl, that is, read out the entire state again with get and enum. This seem imprac-
tical for models of any size, so it’s necessary to have some kind of change notification.
Notification has three issues:

1. It has to be extremely reliable, since if any changes are missed the model’s state
will diverge from reality, and the only way to get it back in sync is do to a crawl.

2. The entity’s name space is handles, so it can only report changes in terms of
handles. These have to be mapped to paths.

3. It might be desirable to aggregate all the notifications below some point in the
tree.

6.4. Scale Up

Current OS authorization mechanisms can scale quite well to enterprises (one Windows
AD installation exists that holds 6 million users, for example). They need some work,
however, if they are to scale to the Internet, both because things can get much bigger
on the Internet, and because there’s no single management authority that is universally
trusted.

There are some basic features of access control that are important for scaling up:

1. All authentication and authorization statements (speaks-for statements) can be
represented in three different ways:

• They can be stored locally (for example, in the trust root).
• They can be held in a database on the network (for example, active directory)

and delivered over a secure authenticated connection.
• They can be expressed in a digitally signed certificate (for example, X.509 or

SAML tokens), which can be stored and forwarded among the various parties
in the transaction.

The first and third ways permit offline operation and offload of online services
(caching). The third way means that claims can be transmitted via untrusted par-
ties.

2. All principal identifiers that are passed from one system to another are globally
unique. This means that there’s no ambiguity about the meaning of an identifier.

3. Any system or domain can make use of statements from any other domain. It is
trust policy, rather than domain boundaries, that distinguishes friend from foe.

4. There is an unavoidable tradeoff among freshness, availability, and performance.
If you want the latest information about whether a key is revoked, for example,
you cannot proceed if the source of that information is unavailable, and you must
pay for the communication to get it. This tradeoff should be controlled by policy,
rather than being baked in. For example, here are two possible policies for key
revocation:

• Fail without a fresh OCSP for every access.
• If OCSP isn’t available, treat all cached statements as valid for some period.

B. Lampson / Practical Principles for Computer Security 191

Neither one is unconditionally better than the other; it’s a matter for administra-
tors’ judgment to choose the appropriate one.

In addition to these general principles, there are two topics that require special at-
tention in scaling to the Internet:

• Trust in attribute claims made by other authorities.
• Handling groups, because both the number of groups that a principal belongs to

and the total size of a group can become extremely large.

6.4.1. Scale Up: Attribute Claims

An attribute differs from a group in two ways:

• It can have a value associated with it, for example, birthdate.
• There may not be a single authority responsible for its definition. For example,

birthdates may be certified by any one of 50 state driver’s license issuing author-
ities.

For scaling up, only the second point is important. The first one is handled by con-
ditions.

It is a system’s trust policy that handles attributes from other authorities. For ex-
ample, consider using a driver’s license from another state to verify date of birth at a
bar in New York. It’s convenient for states to agree on the string name of this property.
Oasis.org is a standards organization, and we will use oasis.org/birthdate as the standard
name.

The first step is for the bar’s trust policy to say what the primary authority is for this
property:

KNY ⇒ oasis.org/birthdate
Then the primary authority says which other sources to trust:

KNY says KWA/oasis.org/birthdate ⇒ oasis.org/birthdate
This says that New York believes Washington about birth dates. If they have a broader
agreement, New York might believe Minnesota about all properties defined by oasis.

KNY says KMN /oasis.org/* ⇒ oasis.org/*
Name translation can be done, too. Suppose Illinois doesn’t adopt the oasis name:

KNY says KIL/DOB ⇒ oasis.org/birthdate

6.4.2. Scale Up: Group Claims

Group membership is a scaling problem today, at least in large organizations. The reason
is that a user can be a member of lots of groups, and a group can have lots of members.
Today Windows manages this problem in two ways:

• By distinguishing client and resource groups (also called domain global and do-
main local groups in Windows), and imposing restrictions on how they can be
used.

• By allowing only administrators to define groups used for security.

Figure 12 illustrates the problem. Imagine that ACM creates a group of corporate
subscribers to its online digital library. There are 1000 corporate members, each with 10-
1,000,000 employees, for a total of millions of individual members. Furthermore, every

B. Lampson / Practical Principles for Computer Security192

Figure 12. Corporate subscribers can access CACM online. The arrows are group membership.

Microsoft employee may implicitly be a member of thousands of such groups, since
Microsoft subscribes to lots of services. Thus a client may be in too many groups to list,
and a resource may define a group with too many members to list.

In addition, there may be a privacy problem: the client may not want to disclose all
its group memberships, and the server may not want to disclose all the groups that it’s
using for access control.

This is the group expansion, or path discovery, problem. The solution that Windows
adopts today, and that we generalize, is to distinguish two kinds of groups:

• Client groups (also called push groups), which the client is responsible for assert-
ing when it contacts the resource. An individual identifier is a special case of a
client group. Thus in Figure 12, the client groups are green: billg, FTE-Redmond6,
and MicrosoftFTE. A requestor’s client groups are thus known to all resources
(subject to privacy constraints), but there can only be a limited number of them.

• Resource groups (also called pull groups), which the resource is responsible for
keeping track of and expanding as far as client group members. In Figure 12 the
resource groups are blue: ACMCorpSubs and CACMAccess. The resource thus
knows all the client groups that are members, but there can be only a limited
number of them.

A client group can only have other client groups as members. This means that there
can be only one transition from green to blue in the figure. The client asserts all its client
group memberships, and the resource expands its resource groups to the first level of
client groups. Consequently, if there is any path from the client to the resource, what the
client presents and what the resource knows will intersect and the resource will know it
should grant access.

Client groups are a generalization of today’s domain global groups in AD. Unlike
domain global groups, client groups can have members from other domains, but the
client must know all the client groups it belongs to so that it can assert them, because the
resource won’t try to expand client groups.

B. Lampson / Practical Principles for Computer Security 193

Resource groups are a generalization of today’s domain local groups in AD. Unlike
domain local groups, resource groups can be listed on the ACL of any resource so long
as the resource has permission to read the group membership. It’s the resource adminis-
trator’s job to limit the total size of the group, measured in first-level client groups. The
resource may cache the membership of third party resource groups.

An added complication is that today Windows eagerly discovers all the resource
groups in a domain a client belongs to when the client connects to any resource in the
domain. This makes subsequent access checks efficient, and the protocols allow the client
and the resource to negotiate at connection time, but if the domain is big (for example,
if it contains lots of big file servers) there might be too many resource groups. To handle
this, resources may use smaller resource scopes than an entire domain — for example, a
service.

To sum up, the way to handle large-scale group expansion is by distinguishing client
and resource groups. This extends what Windows does today in five ways:

1. The client and resource can negotiate what group memberships (or other at-
tributes) are needed.

2. Both client and resource can query selected third parties for groups.
3. Both client and resource can cache third party groups. The client must do this,

since it must assert all its client groups.
4. The resource can use a smaller scope to limit the number of resource groups that

get discovered when the client connects.
5. The client can be configured to know which groups the resource requires.

References

[1] Abadi and Needham, Prudent engineering practice for cryptographic protocols. IEEE Trans. Soft-
ware Engineering 22, 1 (Jan 1996), 2-15, dlib.computer.org/ts/books/ts1996/pdf/ e0006.pdf or
gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-25.html

[2] Internet X.509 Public Key Infrastructure: Certificate and Certificate Revocation List (CRL) Profile, RFC
3280, http://www.ietf.org/rfc/rfc3280.txt

[3] Internet X.509 Public Key Infrastructure: Online Certificate Status Protocol - OCSP, RFC 2560,
http://www.ietf.org/rfc/rfc2560.txt

[4] Lampson et al, Authentication in distributed systems: Theory and practice. ACM Trans. Computer Systems
10, 4 (Nov. 1992), pp 265-310, www.acm.org/pubs/citations/ journals/tocs/1992-10-4/p265-lampson

[5] Myers and Liskov, A decentralized model for information flow control, Proc. 16th ACM
Symp. Operating Systems Principles, Saint-Malo, Oct. 1997, 129-142, www.acm.org/
pubs/citations/proceedings/ops/268998/p129-myers

[6] Wobber et al., Authentication in the Taos operating system. ACM Trans. Computer Systems 12, 1 (Feb.
1994), pp 3-32, www.acm.org/pubs/citations/journals/tocs/1994-12-1/p3-wobber

A. Basic facts about cryptography

Distributed computer security depends heavily on cryptography, since that is the only
practical way to secure communication between two machines that are not in the same
room. You can describe cryptography at two levels:

• Concrete: how to manipulate the bits
• Abstract: what the operations are and what properties they have

B. Lampson / Practical Principles for Computer Security194

This section explains abstract cryptography; you can take it on faith that there are
concrete ways to implement the abstraction, and that only experts need to know the
details.

Cryptography depends on keys. The essential idea is that if you don’t know the key,
you can’t do X, for various values of X. The key is the only thing that is secret; everything
about the algorithms and protocols is public. There are two basic kinds of cryptography:
public key (for example, RSA or elliptic curve) and symmetric (for example, RC4, DES,
or AES). In public key (sometimes called asymmetric) cryptography, keys come in pairs,
a public key K and a secret key K−1. The public key is public, and the secret key is the
only thing that is kept secret. In symmetric crypto there is only one key, so K = K−1.

Cryptography is useful for two things: signing and sealing. Signing provides in-
tegrity: an assurance that signed data hasn’t changed since it was signed. Sealing pro-
vides secrecy: only the intended recipients can learn any of the bits of the original data
even if anyone can see all the bits of the sealed data.

For signing, the primitives are Sign(K−1, data), which returns a signature, and Ver-
ify(K, data, signature), which returns true if and only if signature = Sign(K−1, data). The
essential property is that to make a signature that verifies with K requires knowing K−1,
so if you verify a signature, you know it was made by someone that knew K−1. With
public key, you can verify without being able to sign, and everyone can know K, so the
signature is like a network broadcast. With symmetric crypto, anyone who can verify can
also sign, since K = K−1, so the signature is basically from one signer to one verifier, and
there’s no way for the verifier to prove just from the signature that the signature came
from the signer rather than from the verifier itself.

For sealing, the primitives are Seal(K, data), which returns sealed data, and Un-
seal(K−1, sealedData), which returns data if and only if sealedData = Seal(K, data).
The essential property is that you can’t learn any bits of data (other than its length) from
sealedData unless you know K−1. With public key, anyone can seal data with K (since
K is public) so that only one party can unseal it; thus lots of people can send different
secrets to the same place. With symmetric crypto, the sealing is basically from one sealer
to one unsealer.

There’s a trick that uses public key sealing to get the effect of a signature in one
important case; it’s the usual way of using a certificate to authenticate an SSL session.
Suppose you have made up a symmetric key K (usually a session key) and you want to
know K ⇒ P, That is, any messages signed with K that you don’t sign yourself come
from another party P. Suppose you have a certificate for P, that is, you know KP ⇒ P.
This means that only P knows K−1. The usual way to authenticate K is to get a signed
statement KP says K ⇒ P from P. Instead, you can compute SK = Seal(KP , K) and
send it to P in the clear. Only P can unseal SK, so only P (and you) can know K.

B. Lampson / Practical Principles for Computer Security 195

Engineering Requirements for System
Reliability and Security

Axel van LAMSWEERDE
Université catholique de Louvain

B-1348 Louvain-la-Neuve
avl@info.ucl.ac.be

Abstract. Requirements engineering (RE) is concerned with the elicitation of the
objectives to be achieved by the system-to-be, the operationalization of such ob-
jectives into specifications of requirements and assumptions, the assignment of re-
sponsibilities for those specifications to agents such as humans, devices and soft-
ware, and the evolution of such requirements over time and across system families.
Getting high-quality requirements is difficult and critical. Poor requirements were
recurrently recognized to be the major cause of system failures. The consequences
of such failures may be especially harmful in mission-critical systems.
This paper overviews a systematic, goal-oriented approach to requirements engi-
neering for high-assurance systems. The target of this approach is a complete, con-
sistent, adequate, and structured set of software requirements and environment as-
sumptions. The approach is model-based and partly relies on the use of formal
methods when and where needed for RE-specific tasks, notably, goal refinement
and operationalization, analysis of hazards and threats, conflict management, and
synthesis of behavior models.

Keywords. Requirements engineering, goal refinement, hazard analysis, threat
analysis, inconsistency management, model synthesis from scenarios, agent
modeling.

1. Introduction

Requirements engineering (RE) embodies a wide range of concerns. The objectives to be
achieved by the system-to-be must be elicited and analyzed within some organizational
or physical context. Such objectives must be operationalized into specifications of ser-
vices, constraints, and assumptions. The responsibilities for such specifications need to
be assigned among the humans, devices, and software forming the system. Requirements
emerge from this process as prescriptive assertions on the software-to-be, formulated in
the vocabulary of the environment.

The requirements problem has been with us for a long time. Poor requirements were
recurrently recognized to be the major cause of project cost overruns, delivery delays,
failure to meet expectations, or severe degradations in the environment controlled by
the software. In their early empirical study, Bell and Thayer observed that inadequate,
inconsistent, incomplete, or ambiguous requirements are numerous and have a critical
impact on the quality of the resulting software [Bel76]. Boehm estimated that the late
correction of requirements errors could cost up to 200 times as much as correction during

Software System Reliability and Security
M. Broy et al. (Eds.)

IOS Press, 2007
© 2007 IOS Press. All rights reserved.

196

requirements engineering [Boe81]. In his landmark paper on the essence and accidents
of software engineering, Brooks stated that "the hardest single part of building a sofware
system is deciding precisely what to build (. . .) the most important function that the
software builder performs for the client is the iterative extraction and refinement of the
product requirements" [Bro87]. In her study of software errors in NASA’s Voyager and
Galileo programs, Lutz reported that the primary cause of safety-related faults was errors
in functional and interface requirements [Lut93]. More recent studies have confirmed the
requirements problem on a much larger scale. A survey over 8000 projects undertaken by
350 US companies revealed that one third of the projects were never completed and one
half succeeded only partially, that is, with partial functionalities, major cost overruns,
and significant delays. When asked about the causes of such failure executive managers
identifed poor requirements as the major source of problems [Sta95]. On the European
side, a survey over 3800 organizations in 17 countries similarly concluded that most
of the perceived software problems are in the area of requirements specification and
requirements management [ESI96].

Requirements engineering is an intrinsically difficult task:

• it covers a wide spectrum of concerns ranging from high-level, strategic objectives
to detailed, technical requirements;

• it involves two systems: the system-as-is and the system-to-be - both including
software and environment components;

• it involves stakeholders having diverse, partial, and often conflicting concerns;
• it requires hazardous or malicious behaviors in the environment to be anticipated

in order to guarantee requirements completeness and system robustness;
• it requires the evaluation of numerous alternative options: alternative refinements

of objectives, alternative assignments of responsibilities, alternative resolutions
of conflicts, alternative countermeasures to threats, etc.

The RE process must therefore be supported by systematic methods. To be effective
a RE method should meet the following requirements.

• The method should be goal-oriented in order to ensure that the requirements meet
the system’s objectives -including security and safety objectives.

• It should be incremental and support early analysis of partial models - the later er-
rors such as omissions, inadequacies, inconsistencies, and imprecisions are found,
the more costly their repair is.

• The method should be constructive in order to provide analyst guidance and en-
sure high-quality requirements by construction.

• It should be model-based to support abstraction from details and specification
structuring. The model should integrate the multiple system facets and support a
variety of analyses.

• The method should mix declarative and operational styles of specification as
needed.

• It should be formal when and where needed, and lightweight for usability in prac-
tical situations.

This paper overviews a RE method addressing these objectives. The method, known
as KAOS, has been developed and refined for more than fifteen years of research, tool
development, and experience in multiple industrial projects. (KAOS stands for "Keep All

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 197

Objectives Satisfied".) The details on the modeling notations, model building method,
and model analysis techniques can be found in [Lam07].

Section 2 introduces a modeling framework that integrates multiple views of the
system-to-be: goals and their refinements; hazards and threats to safety and security
goals, respectively; conceptual objects which the goals refer to, together with their inter-
relationships; operations to ensure that the goals are satisfied; agents responsible for the
goals, their behaviors, and interaction scenarios. Section 3 outlines how such a multi-
view model can be constructed in a systematic way.

Critical model components should be formalized to enable formal reasoning about
them. Section 4 briefly reviews some basics of real-time linear temporal logic for speci-
fying goals, domain properties, hazards, and threats; goal-structured pre- and postcondi-
tions for specifying operations; and specification patterns for lightweight specification.

The next sections then discuss various formal reasoning techniques to support the
following RE-specific tasks:

• refine goals and check the correctness of refinements (Section 5);
• operationalize fine-grained goals into operations and check the correctness of

such operationalizations (Section 6);
• analyze safety hazards by generating obstacles to goal satisfaction and resolving

them (Section 7);
• analyze security threats by generating malicious plans to break security goals, and

countermeasures to address these (Section 8);
• analyze conflicts among stakeholder goals, and resolve them (Section 9);
• generate system behavior models inductively from interaction scenarios and goal

specifications (Section 10).

2. A multi-view modeling framework for requirements engineering

The multiple facets of the target system are captured through complementary models:

• a goal model interrelates all intentional aspects;
• an object model defines the structural aspects;
• an agent model defines the system components, their interfaces and responsibili-

ties;
• an operation model defines the functional services in relation with the system

goals;
• a behavior model captures agent behaviors in terms of interaction scenarios and

parallel state machines;
• obstacle and threat models capture unexpected ways of breaking system goals, in-

cluding security goals, through incidental or malicious behaviors of environment
agents.

We briefly review these models sucessively.

2.1. Modeling system goals

A goal is a prescriptive statement of intent [Dar93], [Lam00a]. It expresses some objec-
tive to be achieved by the system. The latter comprises the software and its environment.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security198

For example, "train doors shall be closed while the train is moving" is a goal requiring
some cooperation among the software train controller and train sensors and actuators.

Unlike goals, domain properties are descriptive statements about the environment,
for example, "a train is moving iff its physical speed is non-null".

Goals are defined at different levels of abstraction. Higher-level goals capture global,
business-specific objectives, e.g., "50% increase of transportation capacity". Lower-
level goals capture local, technical objectives, e.g., "train acceleration commanded every
3 secs".

There are different types of goals. Functional goals prescribe intended behaviors
declaratively, e.g., "passengers transported to their destination". They are used for build-
ing operational models such as use cases, state machines, and the like. Quality goals
(sometimes called "non-functional goals") refer to non-functional concerns such as se-
curity, safety, accuracy, usability, performance, cost, or interoperability, in terms of
application-specific concepts. Some of the quality goals are softgoals; they cannot be es-
tablished in clear-cut sense. Softgoals capture preferred behaviors; they are used to com-
pare alternative options [Myl92], [Chu00]. Non-soft goals prescribe sets of admissible
behaviors.

Goal satisfaction requires agent cooperation. For example, the high-level goal "safe
train transportation" requires the cooperation of agents such as the software train con-
troller, the train tracking system, the train driver, passengers, etc. An agent is an active
system component responsible for goal achievement. Agents refer to roles rather than
individuals.

The finer-grained a goal is, the fewer agents are required for its satisfaction. A
requirement is a goal assigned to a single agent in the software-to-be. For example,
"doorState = ’closed’ while measured speed is non-zero" is a requirement on the train
controller. An expectation is a goal assigned to a single agent in the software environ-
ment. For example, "passengers exit train when doors are open at their destination" is an
expectation. Expectations are sometimes called assumptions; unlike requirements they
cannot be enforced by the software-to-be.

One important, often neglected part of the requirements engineer’s job is to provide
satisfaction arguments [Lam00a], [Ham01]. These take the form

R, E, D � G,
meaning "in view of properties D of the domain, the requirements R satisfy goal G under
expectations E".

Goals provide a criterion for requirements completeness and pertinence [Yue87].
Let REQ, EXPECT, and DOM denote a set of requirements, expectations, and domain
properties, respectively.

A requirements set REQ is complete if for all identified goals G:
{REQ, EXPECT, Dom} � G

A requirement r in REQ is pertinent if for some identified goal G:
r is used in a satisfaction argument {REQ, EXPECT, Dom} � G

Note thus that requirements completeness and pertinence is relative to known do-
main properties and the identified goals and expectations.

A goal model shows contribution links among goals. It is represented by an
AND/OR refinement graph whose nodes represent goals and edges represent AND/OR
refinement links. In this graph, a goal G is AND-refined into subgoals G1, G2, . . . , Gn
iff satisfying G1, G2, . . . , Gn contributes to satisfying G. (A more precise definition is

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 199

given in Section 5.) The set {G1, G2, . . . , Gn} is called refinement of G. A goal G is
OR-refined into refinements R1, R2, . . . , Rm iff satisfying the subgoals of Ri is one alter-
native to satisfying G (1 ≤ i ≤ m). Ri is called an alternative for G. Fig. 1 shows a goal
model fragment for our train control system.

Figure 1. Portion of a goal graph in a train control system [Lam07]

Goal models are built using a variety of elicitation techniques. Preliminary goals are
identified by analyzing the problems and deficiencies in the system-as-is, and by search-
ing intentional and prescriptive keywords in available raw material and interview tran-
scripts. More abstract, coarse-grained goals are then obtained bottom-up by asking WHY
questions about available goals and operational material such as scenarios [Jar98]. In par-
allel, more concrete, fine-grained goals are obtained top-down by asking HOW questions
about available goals. Goals are also derived by use of refinement patterns (see Section
5), by resolution of obstacles (see Section 7), and by exploration of countermeasures to
security threats (see Section 8).

In this model elaboration process, goal refinement terminates when fine-grained sub-
goals are obtained that can be assigned as requirements or expectations to software or
environment agents, respectively [Dar93]. Goal abstraction terminates when the system
boundary is reached, that is, the more abstract supergoals cannot be satisfied under the
sole responsibility of the agents forming the system.

The nodes in a goal model are decorated by annotations to characterize the corre-
sponding goal - such as its precise definition, an optional formal specification of the goal
in a real-time temporal logic (see Section 4), the goal’s priority level, etc.

2.2. Modeling system objects

The object model provides a structural view of the target system. A conceptual object is a
thing of interest in the system whose instances can be distinctly identified, share similar
features, and have a specific behavior from state to state. An object is modeled as an
entity, association, or event dependent on whether it is an autonomous, subordinate, or
instantaneous object, respectively. The object model is represented by an operation-free,
design-independent UML class diagram.

Such diagram can be systematically derived from the goal model [Lam00a]. Each
goal formulation is analyzed to extract the entities, associations, and attributes the goal

A. van Lamsweerde / Engineering Requirements for System Reliability and Security200

refers to. For example, a goal "avoid multiple trains on the same block" gives rise to
"Train" and "Block" entities and an "On" association. The goal "train speed shall not
exceed the speed limit of the block which the train is on" gives rise to a "speedLimit"
attribute of "Block", etc.

Contrarily to what is is often confessed in the UML literature, no "hocus pocus" is
required here to obtain a "good" object model; goal-directed construction guarantees a
complete and pertinent object model.

Figure 2. Modeling objects referred to by goals [Lam07]

Fig. 2 illustrates an object model fragment for our train control system. The nodes
in an object model are decorated by annotations to characterize the corresponding object
- such as its precise definition, domain properties associated with the object (that can be
optionally specified in real-time temporal logic), etc.

2.3. Modeling system agents

The agent model defines the responsibilities and interfaces of the various agents. As
introduced before, an agent is a software, device, or human component of the system
that plays some specific role in goal satisfaction. It controls behaviors by performing
operations (see Section 2.4). Agents run concurrently with each other.

An agent is modelled by responsibility links to goals and by monitoring/control links
to object attributes and/or associations from the object model. Monitoring/control links
capture the agent’s interface through the state variables it monitors and controls in its

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 201

own environment [Par95]. A state variable is an attribute or association of some object.
Each state variable is controlled by a single agent.

An agent responsible for some goal must restrict system behaviors [Fea87]. The goal
must be realizable by the agent [Let02a]. A goal G is realizable by agent ag iff :

• (intuitively:) given ag’s monitoring & control capabilities it is possible for ag
alone to satisfy G without more restrictions than required by G;

• (more formally:) there exists a transition system TSag = (Init, Next) on
the state variables monitored and controlled by ag such that RUN(TSag) =
HISTORIES(G), that is, the set of agent runs equals the set of behaviors pre-
scribed by the goal.

There can be multiple causes for goal unrealizability, namely, (a) lack of monitora-
bility of variables to be evaluated in the goal formulation, (b) lack of controllability of
the variables constrained by the goal, (c) need to evaluate variables in future states, (d)
conditional goal unsatisfiability, or (e) reference to a target condition to be achieved in
unbounded future. This taxonomy of unrealizability problems gives rise to goal refine-
ment tactics for resolving unrealizability [Let02a]. The latter are encoded as refinement
patterns (see Section 5).

In an agent model, OR-assignment links allow us to represent alternative assign-
ments of the same goal to different agents. Alternative software-environment boundaries
can thereby be captured and assessed with respect to softgoals [Chu00] so as to select a
"best" responsibility assignment.

Responsibility assignments also provide a basis for simple forms of load analysis.
Fig. 3 shows the responsibilities of an overloaded air traffic controller. This view was
generated from a corresponding agent model using a query/visualization tool on the
model database.

Figure 3. Load analysis [Lam07]

2.4. Modeling system operations

The operation model provides a functional view of the target system in terms of the
services to be provided.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security202

An operation Op is a relation: Op ⊆ InputState × OutputState. It must opera-
tionalize some underlying goals from the goal model; this entails a proof obligation (see
Section 6).

Operation applications yield state transitions and corresponding events. They are
atomic; an input state is mapped to a state at next smallest time unit. (Operations with
duration are represented through start/end events.) They can be concurrent with others.

In an operation model, operations are connected to goals via operationalization links,
to objects via input/output links, and to agents via performance links. UML use case
models can easily be generated from such models.

Each operation in an operation model is specified by a pair of conditions (DomPre,
DomPost) where:

• DomPre is a descriptive condition that fully characterizes the class of input states
of the operation in the domain,

• DomPost is a descriptive condition that fully characterizes the class of output
states of the operation in the domain.

An operationalization of a goal G into operation Op is further specified by a triple
of conditions (ReqPre, ReqTrig, ReqPost) where:

• ReqPre is a prescriptive necessary condition on Op’s input states to ensure G;
• ReqTrig is a prescriptive sufficient condition on Op’s input states to ensure G; it

requires immediate application of Op provided DomPre holds;
• ReqPost is a prescriptive condition on Op’s output states to ensure G.

As an operation may contribute to multiple goals, it can have multiple required pre-
conditions, trigger conditions, and/or postconditions. The global precondition for the op-
eration to be applied is

Pre = DomPre ∧
∧
i

ReqPrei

The global postcondition when the operation is applied is

Post = DomPost ∧
∧
j

ReqPostj

The global trigger condition forcing the operation to be applied is

Trig =
∨
k

ReqTrigk

The specifier must always ensure the following consistency rule:
∨
k

ReqTrigk ∧ DomPre ⇒
∧
i

ReqPrei

In our train control example, the operation for opening train doors might be specified
as follows:

Operation OpenDoors
Def Operation controlling the opening of all train doors
Input Train, Output Train/DoorsState

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 203

DomPre The train doors are closed
DomPost The train doors are open
ReqPre For DoorsClosedWhileNonZeroSpeed

The train’s measured speed is 0
ReqPre For SafeEntry&Exit

The train is at some platform
ReqTrig For NoDelayToPassengers

The train has just stopped

A corresponding formal version can optionally be specified as well (see Section 5).
The distinction between domain and required conditions is important. Unlike in most
specification languages, we are not confusing descriptions and prescriptions. Prescrip-
tions may be assessed, negotiated, and replaced by alternatives; descriptions may not.
Moreover, traceability between operations and their underlying goals is thereby sup-
ported.

2.5. Modeling obstacles to goals

The goals identified in the early stages of the RE process are often too ideal. They are
likely to be violated due to unexpected or malicious agent behaviors. For system robust-
ness and requirements completeness, it is essential to detect and resolve such "overopti-
mism" at RE time - especially in the case of mission-critical systems.

An obstacle O to goal G is a goal violation precondition satisfying the three follow-
ing conditions:

1. O, Dom |= ¬ G obstruction
2. Dom �|= ¬ O domain consistency
3. There exists a behavior E of the environment of the set of agents in charge of G

such that E |= O feasibility

Hazards and threats are obstacles obstructing safety and security goals, respectively.
An obstacle model is a set of goal-anchored fault trees where each fault tree is an

AND/OR refinement tree showing how the goal can be violated. The root of the tree is
the goal negation; the leaves are elementary obstruction conditions that are consistent
with the domain and satisfiable by the environment.

Obstacle resolution then consists in overcoming the sub-obstacles through various
resolution tactics such as goal weakening, goal substitution, agent substitution, obsta-
cle mitigation, and so forth [Lam00b]. Such resolution yields new or deidealized goals,
resulting in a more complete set of requirements for a more robust system.

Fig. 4 shows an obstacle OR-refinement tree showing how the goal "train stopped if
signal set to ’stop’" could be broken. The new goal of regularly sending out responsive-
ness checks to train drivers emerges there as a resolution to the sub-obstacle in the mid-
dle. The leaf obstacles in Fig. 4 occurred in various reported train accidents (see ACM’s
Risks forum.)

2.6. Modeling security threats

Threat models are augmented obstacle models where:

A. van Lamsweerde / Engineering Requirements for System Reliability and Security204

Figure 4. Portion of an obstacle model with new goal as resolution [Lam07]

• the root goal negation refers to a security goal,
• the obstacles are malicious obstacles (called threats),
• the refinement graph is extended with the attacker’s anti-goals,
• the refinement terminates when leaf conditions are reached that can be monitored

and controlled by the attacker.

Such models can be built systematically [Lam04a], and even automatically under
certain restrictions [Jan06], see Section 8. They provide the basis for enriching the goal
model with countermeasures to the identified threats.

2.7. Modeling agent behaviors

The agent behaviors are modelled by interaction scenarios at instance level and by par-
allel state machines at class level.

A scenario is a historical sequence of interaction events among agent instances. It
illustrates some way of achieving a goal G; the scenario is a sub-history in the set of
admissible behaviors prescribed by G. An interaction event corresponds to an application
of some operation by a source agent, notified to a target agent.

Scenarios can be positive or negative. A positive scenario is an example of desired
behavior. A negative scenario is a counterexample showing some undesired behavior. A
scenario may be composed of sub-scenarios, called episodes, which may be common to
multiple scenarios.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 205

Scenarios are represented by simple message sequence charts (MSCs), see Fig. 5.
Such diagrams capture a partial order on interaction events and, along each agent’s time-
line, a total order on events.

Scenarios and goals have complementary benefits. Scenarios provide a concrete,
narrative way of eliciting requirements from examples and counterexamples. They also
give us acceptance test data for free. On the downside, they are inherently partial and
raise a coverage problem similar to test cases. They lead to a combinatorial explosion
of traces for good coverage. They often entail premature choices such as unnecessary
sequencing of events or decisions on the software-environment boundary. Last but not
least, they keep the underlying requirements implicit. Scenarios are therefore useful for
requirements elicitation and validation whereas goals are required for declarative reason-
ing (see sections below). Moreover, goal specifications can be inductively synthesized
from scenario examples and counterexamples using learning algorithms [Lam98b].

Figure 5. Positive and negative scenarios [Lam07]

At class level, the system’s behavior is modelled as a parallel composition of agent
behaviors. Each agent is behaviorally modeled by a labelled transition system (LTS),
see [Mag06]. Agents thereby behave asynchronously but synchronize on shared events.
Fig. 6 shows a LTS model that covers all possible event traces for train controllers in
the system. Note that the event trace along the train controller’s timeline in the positive
scenario in Fig. 5 is covered by a path in the LTS model in Fig. 6.

LTS models have a simple, compositional semantics. They are executable for
model animation [Mag00]. They support a variety of analyses including model checking
[Gia03]. On the downside, they are hard to build and understand. Section 10 will outline
a technique for synthesizing them inductively and interactively from scenarios and goals
([Dam05], [Dam06]).

3. Building the entire system model: a systematic method

In a model-based requirements engineering process, the various system views outlined
in the previous section can be elaborated and integrated in a systematic way through the
following general steps.

1. Domain analysis. Build a goal model for the current system-as-is through WHY
and HOW questions on available material. (Section 5 outlines techniques to sup-
port this step.) In parallel, elicit scenarios of doing things in the system-as-is as
illustrations of behaviors prescribed by goals.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security206

Figure 6. LTS model for train controllers [Lam07]

2. Domain analysis. Derive an object model for the system-as-is from this goal
model.

3. System-to-be analysis. Replay Step 1 for the system-to-be: based on elicited ma-
terial about the experienced problems with the system-as-is and emerging oppor-
tunities, update and expand the previous goal model. The upper levels of the goal
model often remain unchanged as organization-wide business objectives tend to
be fairly stable. New, specific features of the system-to-be are developed along
OR-branches in the goal graph as alternative ways of meeting the same higher-
level goals in view of the elicited problems and opportunities. (Section 5 outlines
techniques to support this step.) In parallel, explore new scenarios of doing things
in the system-to-be as illustrations of behaviors prescribed by new goals.

4. System-to-be analysis. Replay Step 2 for the system-to-be: update and expand
the previous object model from the new version of the goal model. The basic
concepts from the application domain often remain unchanged.

5. Obstacle and threat analysis. In parallel with Steps 1-4, build obstacle and threat
models, and explore resolutions to enrich and update the goal model. (Sections 7
and 8 outline techniques to support this step.)

6. Conflict analysis. In parallel with Steps 1-5, detect conflicts among goals and ex-
plore resolutions to enrich and update the goal model. (Section 9 outlines tech-
niques to support this step.)

7. Responsibility analysis. Explore alternative assignments of leaf goals to system
agents, select best alternatives based on non-functional goals from the goal model
[Chu00], and build an agent model.

8. Goal operationalization. Build an operation model ensuring that all leaf goals
from the goal model are satisfied. (Section 6 outlines techniques to support this
step.)

9. Behavior analysis. Build a behavior model for the system as parallel composi-
tion of behavior models for each component. Animate this model for adequacy
checking and feeback from stakeholders [Tra04]. (Section 10 presents techniques
to support this step.)

The above steps are ordered by data dependencies. They are often intertwined, with
backtracking to previous steps. In particular, behavior models are sometimes built earlier
in the process, for understanding the system-as-is and for earlier animation of portions
of the system-to-be. See [Dar93], [Lam00a], [Lam07] for heuristics, justifications, and

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 207

illustrations of each step above. Industrial experience with this method is reported in
[Lam04b].

4. Formal specification of goals, domain properties, and operations

The approach presented here is a "two-button" one where the formal analysis button is
pressed only when and where needed. The button pressed by default is the semi-formal
one, where the modeler is using the graphical notations and supporting tools to elabo-
rate her models, perform static semantics checks on them through queries on the model
database, generate HTML files for model browsing, generate UML use cases and other
derived diagrams, and generate the requirements document [Obj04].

Formal analysis of critical aspects in the models require a formal specification lan-
guage for the goals, domain properties attached to objects, and pre- and postconditions
on the operations. A linear real-time temporal logic (RT-LTL) is used for the goals, do-
main properties, and required trigger conditions (for the latter conditions, with past op-
erators only). A simple state-based, Z-like language is used for the domain and required
pre- and postconditions.
The main temporal operators used are the following standard ones:

◦ P: P holds in the next state
� P: P holds in every future state
P W N: P holds in every future state unless N holds
� P: P holds in some future state
�≤T P: P holds in every future state up to T time units
�≤T P: P holds within T time units
P ⇒ Q for � (P → Q)

The counterpart over past states is provided by past, "blackened" operators, e.g.,
• P: P holds in the previous state
@ P • (¬ P) ∧ P

These formulas are interpreted as usual over historical sequences H of states, e.g.,
(H, i) |= � P iff (H, j) |= P for all j ≥ i
(H, i) |= �≤T P iff (H, j) |= P for some j ≥ i with dist (i,j) ≤ T

The ◦ /• operators refer to the next/previous state within the smallest time unit. They are
often used for expressing immediate obligations.
Here are some examples of formal specifications.

Goal Maintain [DoorsClosedWhileNonZeroSpeed]
FormalSpec ∀ tr: Train

tr.MeasuredSpeed �= 0 ⇒ tr. DoorsState = ’closed’
Goal Achieve [FastJourney]

FormalSpec ∀ tr: Train, bl: Block
On (tr, bl) ⇒ �≤T On (tr, next(bl))

In goal specifications, the keywords prefixing goal names are used to indicate temporal
specification patterns ([Dar93], [Dwy99]) - e.g., Achieve [P] indicates a pattern �≤T

P on a target predicate P; Avoid [P] indicates a pattern �¬ P; and so forth. Such pat-
terns help writing the specification from informal prescriptive statements. They prove
convenient for non-expert specifiers to use elementary temporal logic without knowing
it.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security208

The operation of controlling the opening of train doors is formally specified as fol-
lows:

Operation OpenDoors
Input tr: Train; Output tr: Train/DoorsState
DomPre tr. DoorsState = ’closed’
DomPost tr. DoorsState = ’open’
ReqPre for DoorsClosedWhileNonZeroSpeed : tr.MeasuredSpeed = 0
ReqPre for SafeEntry&Exit : (∃ pl: Platform) At (tr, pl)
ReqTrig For NoDelayToPassengers: @(tr.MeasuredSpeed = 0)

The system’s semantic picture is as follows. The global state of the system at some
time position is the aggregation of the local states of all its agents at that time position.
The local state of an agent at some time position is the aggregation of the states, at that
time position, of all the state variables the agent controls. (Such variables are attributes
and/or associations from the object model, see Section 2.3.) The state of a variable at
some time position is a mapping from its name to its value at that time position. The
system evolves synchronously from system state to system state, where the time distance
between successive states is the smallest time unit defined in the RT-LTL language. (This
time unit may be chosen arbitrarily small.)

A system’s state transition is caused by the application, by some agents, of appli-
cable operations they may or must perform on the state variables they control. As in-
troduced in Section 2.4, operations are atomic; an operation applied in the current state
maps the corresponding agent’s state to the next state one smallest time unit later. As
multiple trigger conditions may become true in the same state, the corresponding op-
erations must fire simultaneously. We thus have true concurrency here; a system’s state
transition is composed of parallel transitions on local states. An interleaving semantics
is not possible in view of the obligations expressed by trigger conditions.

The system’s non-determinism arises from the non-deterministic behavior of its
agents. While an agent must perform an operation when one of the operation’s trigger
conditions becomes true, the agent has the freedom to perform an operation or not when
its required preconditions are all true. Such non-determinism, while suitable at a more
abstract level for declarative reasoning, must in general be removed when the specifica-
tion is translated into a more operational language (e.g., for specification animation or
other checks on the operational version) [Del03], [Tra04]. A choice must then be made
between an eager or lazy behavior scheme for each operation performed by the agent. In
the eager behavior scheme, the agent performs the operation as soon as it can, that is,
as soon as all required preconditions are true. This corresponds to a maximal progress
property. In the lazy behavior scheme, the agent performs the operation when it is really
obliged to do so, that is, when one of its required trigger conditions becomes true.

A system’s behavior is then defined by a temporal sequence of system state tran-
sitions. The system satisfies a non-soft goal if the set of all its possible behaviors is
included in the set of behaviors prescribed by the RT-LTL specification of the goal.

As opposed to generative semantics of operational languages such as Statecharts or
VDM, where every state transition is forbidden except the ones explicitly required by
the specification, we have a pruning semantics here: every state transition is allowed
except the ones explicitly forbidden by the specification. With a generative semantics,
operations are viewed as generating the set of admissible behaviors of the system; these

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 209

cover the only possible transitions. As a consequence, generative semantics have a built-
in assumption that nothing changes except when an operation specification explicitly
requires it; the specifier is relieved from explicitly specifying what does not change -
in other words, a generative semantics avoids the frame problem [Bor93]. Such built-in
frame assumption, however, makes it difficult to support incremental reasoning about
partial models [Jac95]. With a pruning semantics (like in Z, LARCH, or other temporal
logic-based formalisms), the specification prunes the set of admissible system behaviors.
Incremental elaboration and reasoning through composition of partial models is then
made possible. The price to pay is the need for handling the frame problem. In our
case, we introduce two built-in axioms within our semantics to relieve the specifier from
explicitly stating everything that does not change.

Frame axiom 1: Any state variable not declared in the output clause of the specifi-
cation of an operation is left unchanged by any application of this operation.

This frame axiom is enforced by requiring the DomPost and ReqPost conditions of
an operation to refer only to those state variables which are explicitly declared in the
output clause of the operation (in a way similar to LARCH).

Frame axiom 2: Every state transition that satisfies the domain pre- and postcondi-
tions of an operation corresponds to an application of this operation:

for any operation op:
DomPre (op) ∧◦ DomPost (op) ⇒ Performed (op)

5. Checking goal refinements

A first kind of RE-specific model verification consists in checking that the refinements
of non-soft goals in the goal model are correct and complete. Such checking is important
as missing subgoals result in incomplete requirements.

We first need a more precise definition of what it means for a goal refinement to be
correct.
A set of goals {G1, ..., Gn} correctly refines a goal G in a domain theory Dom iff

{G1, . . . , Gn, Dom} |= G completeness
{G1, . . . , Gn, Dom} �|= false consistency
{∧j �=i Gj , Dom} �|= G for each i ∈ [1..n] minimality

Several approaches can be followed to verify the correctness of a goal refinement.

Approach 1: Theorem proving. We might use a temporal logic theorem prover - such
as STeP, for example [Man96]. This is obviously a heavyweight approach requiring the
assistance of an expert user. Moreover we get no real clue in case the verification fails.

Approach 2: Formal refinement patterns. A more lightweight and constructive ap-
proach consists in using formal patterns to check, complete, or explore refinements
([Dar96], [Let02a]). The idea is to build a catalogue of common refinement patterns that
encode refinement tactics. The patterns in the catalogue are proved formally correct once
for all, e.g., using the STeP theorem prover. They are then reused in matching situations
through instantiation of their meta-variables. Fig. 7 shows two frequent refinement pat-

A. van Lamsweerde / Engineering Requirements for System Reliability and Security210

Figure 7. Formal refinement patterns

terns. The first pattern encodes the tactics of introducing an intermediate milestone goal
whereas the second pattern encodes a standard case analysis pattern.

Fig. 8 illustrates the use of the case-driven pattern from Fig.7 in a situation where
a refinement of the parent goal Achieve[TrainProgress] into the two left sub-
goals Achieve[ProgressWhenGo] and Achieve[SignalSetToGo] is being
checked. An incomplete refinement is detected by pattern matching. The match reveals
the missing subgoal, indicated by a dashed line in the instantiated refinement, namely,
that the train must be waiting on its current block until it moves to the next block.

Figure 8. Pointing out missing subgoal through pattern instantiation [Lam07]

Refinement patterns support a constructive approach to refinement correctness.
When a goal is being partially refined, we can retrieve all matching patterns from the
catalogue and thereby explore alternative ways of completing the partial refinement
[Dar96]. Fig. 9 illustrates that point. Three alternative subgoals appear as possible re-
sponse to the refinement query on the left-hand side. Once instantiated the three returned
alternatives should be assessed with respect to the application’s non-functional goals to
select the one that meets them best ([Chu00], [Let04]).

Another benefit of refinement patterns is the formal correctness proof of the in-
stantiated refinement that we get for free. Each pattern in the catalogue is proved once

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 211

Figure 9. Generating alternative refinements [Lam07]

for all. For example, the proof of the case-driven pattern in Fig. 7 looks like this:
1. C ⇒ � D Hyp
2. C ∧ D ⇒ � T Hyp
3. C ⇒ C W T Hyp
4. C ⇒ (C U T) ∨� C 3, def of Unless
5. C ⇒ � T ∨� C 4, def of Until
6. C ⇒ � D ∧ (� T ∨� C) 1, 5, strengthen consequent
7. C ⇒ (� D ∧� T) ∨ (� D ∧� C) 6, distribution
8. C ⇒ (� D ∧� T) ∨�(D ∧ C) 7, trivial lemma
9. C ⇒ (� D ∧� T) ∨�� T 8, 2, strengthen consequent
10. C ⇒ (� D ∧� T) ∨� T 9,�-idempotence
11. C ⇒ � T 10, absorption

Instead of having to redo such tedious proofs at every goal refinement when we
build the goal model for the application, we get a proof when using a pattern just by
instantiating the generic proof accordingly.

Figure 10. "Introduce accuracy subgoal" pattern

Some of the refinements in the pattern catalogue might be seen as high-level RT-
LTL inference rules. Others are specifically aimed at refining goals towards subgoals that
are realizable as defined in Section 2.3. They introduce finer-grained subgoals to resolve
unrealizability problems [Let02a]. Fig. 10 shows one such pattern. The root goal G there

A. van Lamsweerde / Engineering Requirements for System Reliability and Security212

involves a condition p(m) on a variable m unmonitorable by the agent candidate for re-
sponsibility assignment. To resolve this unmonitorability, a monitorable "image" vari-
able im and condition q(im) are introduced under the constraint that they must accurately
reflect their unmonitorable counterpart.

Figure 11. Using the "Introduce accuracy subgoal" pattern

Fig. 11 illustrates the use of this pattern on our running example. This example also
suggests how such patterns are helpful for producing agent assignments as well.

Figure 12. Roundtrip use of a bounded SAT solver for checking goal refinements

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 213

Approach 3: Bounded SAT solver. Beside using a theorem prover or a catalogue of
formal refinement patterns, we can also make a roundtrip use of a bounded SAT solver.
In view of the above definition of correct refinement of goal G into subgoals G1, . . . , Gn,
we would like to know whether the temporal logic formula

G1 ∧ . . . ∧ Gn ∧ Dom ∧ ¬G
is satisfiable and, if so, find a historical sequence of states satisfying it.

To achieve this, we can build a front-end that (a) asks the user to instantiate the
above formula to selected object instances, in order to obtain a propositional formula, (b)
translates the result into the input format required by the SAT solver, (c) asks the user
to determine a maximal length to bound counterexample traces, (d) runs the SAT solver,
and (e) translates the output back to the level of abstraction of the input model.

Fig. 12 shows the result produced by the FAUST tool [Pon04] on the incomplete
refinement suggested in Fig. 8. The counterexample generated on the right lower window
is a scenario showing the train getting back to the previous block thereby suggesting the
missing subgoal of the train waiting on its current block until the signal is set to "go".

Such use of a bounded SAT solver allows partial goal models to be checked and
debugged incrementally as the model is being built. The major payoff resides in the
counterexample traces that may suggest missing subgoals. A bounded universe, however,
makes it possible to show the presence of bugs in a goal model, not their absence.

6. Deriving goal operationalizations

Another kind of RE-specific model verification consists in checking the correctness of
operationalizations of goals from the goal model into specifications of operations from
the operation model. Such checking is important too; we must make sure that the opera-
tional specifications meet the intentional ones.

To perform such checks formally we first need a temporal logic semantics for op-
erations [Let02b]. Such semantics is easily provided from the definition of pre-, post-,
and trigger conditions in Section 2.4 and the semantic considerations in Section 4. Let
op denote an operation from the operation model, and let

[| op(in, out)|] =def DomPre (op) ∧◦ DomPost(op)
The semantics of required pre-, trigger-, and postconditions is then:

If R ∈ ReqPre(op) then
[| R |] =def (∀ �) ([| op |] ⇒ R)

If R ∈ ReqTrig (op) then
[| R |] =def (∀ �) (R ∧ DomPre(op) ⇒ [| op |])

If R ∈ ReqPost(op) then
[| R |] =def (∀ �) ([| op |] ⇒ ◦ R)

Next we need a more precise definition of what it means for a goal to be correctly
operationalized into operational specifications.

A set of required conditions R1, . . . , Rn on operations from the operation model
correctly operationalizes a goal G iff

[| R1 |] ∧ . . .∧ [| Rn |] |= G completeness
[| R1 |] ∧ . . .∧ [| Rn |] �|= false consistency
G |= [| R1 |] ∧ . . .∧ [| Rn |] minimality

A. van Lamsweerde / Engineering Requirements for System Reliability and Security214

Every operationalization defines a proof obligation. Several approaches can be fol-
lowed to verify the correctness of a goal operationalization.

Approach 1: Bounded SAT solver. Like for checking goal refinements, we can make a
roundtrip use of a bounded SAT solver. We would now like to know whether the tempo-
ral logic formula

[| R1 |] ∧ . . .∧ [| Rn |] ∧ Dom ∧¬ G
is satisfiable and, if so, find a historical sequence of states satisfying it. The FAUST
toolset proceeds similarly to check bounded operationalizations and generate counterex-
ample traces [Pon04].

Approach 2: Formal operationalization patterns [Let02b]. The principle is similar to
goal refinement patterns. A catalogue of operationalization patterns is built and formally
proved correct (e.g., using the STeP theorem prover). The patterns cover common goal
specification patterns [Dwy99], e.g., Achieve goals of form C ⇒ �≤ dT or C ⇒ ◦T , and
Maintain goals of form C ⇒ T , C ⇒ � T , C ⇒ T W N , or T ⇒ •C. The patterns
are then reused in matching situations through instantiation of their meta-variables. Fig.
13 shows a pattern for operationalizing Immediate Achieve goals. If we apply it to the
following safety goal on train signals:

∀ b: Block
[(∃ tr: Train) On (tr, b)] ⇒ ◦¬ GO (b)

we obtain two operations, SetSignalToStop(b) and SetSignalToGo(b), say, with trig-
ger condition (∃ tr: Train) On (tr, b) on the operation SetSignalToStop(b) and a required
precondition ¬ (∃ tr: Train) On (tr, b) on the operation SetSignalToGo(b).

Figure 13. Operationalization pattern for Immediate Achieve goals

7. Obstacle analysis for mission-critical systems

Obstacle models were introduced in Section 2.5 as a means for anticipating what could go
wrong in an overideal system. Goal completeness is increased through countermeasures
to obstacles. This section overviews how obstacle analysis can be made further formal,
in particular, through a calculus for generating obstacles from goals [Lam00b].

An overall procedure for obstacle analysis looks like this:
for every leaf goal in the goal refinement graph (requirement or expectation):

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 215

(a) identify as many obstacles to it as possible;

(b) assess their feasibility, likelihood, and severity;

(c) resolve the feasible ones according to their likelihood and severity.

Our focus here will be on steps (a) and (c). We discuss them successively.

7.1. Generating obstacles abductively from goal specifications

For a goal G, we are looking for feasible conditions O such that:
{O, Dom} � ¬ G
Dom �� ¬ O

(see Section 2.5). We may proceed as follows :
- negate G;

- find as many AND/OR refinements of ¬ G as possible in view of properties in Dom,

- until obstruction preconditions are reached that are satisfiable by the environment of the set

of agents assigned to G.

This amounts to constructing a goal-anchored fault-tree [Lev95] in a systematic
way. To proceed more formally we need more precise definitions first.

A set of obstacles O1, ..., On is a correct refinement of some obstacle O in a domain
theory Dom iff

{O1, . . . , On, Dom} |= O refinement completeness
{O1, . . . , On, Dom} �|= false domain consistency
{
∧

j �=i Oj , Dom} �|= O for each i ∈ [1..n] minimality

A set of obstacles O1, . . . , On to some goal G is domain-complete iff
{¬O1, . . . ,¬On, Dom} |= G

Note that the notion of obstacle completeness is relative to what we know about the
domain.

The obstacle trees we want to build should produce correct refinements of the goal
negation; the leaf goals must be satisfiable by the environment of the set of agents as-
signed to the goal and should, ideally, form a domain-complete set of obstacles.

To generate such obstacles abductively from the goal negation and the set of known
domain properties, we may follow two approaches [Lam00b].

Approach 1 : Regression of the goal negation through the domain theory. This
amounts to calculating preconditions for deriving ¬G from Dom. Assuming domain
properties to take the general form A ⇒ C, the procedure is as follows:

Initial step:

take O := ¬ G

Inductive step:

let A ⇒ C be the domain property selected,

with C matching some L in O whose occurrences are all positive in O [Man92]

then μ := mgu (L, C) (mgu: most general unifier)

O := O [L / A . μ]

Every iteration of the inductive step produces finer sub-obstacles. This technique is a
counterpart, for declarative statements, of Dijkstra’s precondition calculus [Dij76]. A
variant of it has been used for long in AI planning [Wal77].

A. van Lamsweerde / Engineering Requirements for System Reliability and Security216

Let us illustrate this calculus on the generation of a well-known obstacle that caused
a major accident during aircraft landing at Warsaw airport [Lad95].

We provide some context first. One goal for control of landing states (in simplified
form):

MovingOnRunway ⇒ ◦ ReverseThrustEnabled

As the autopilot software cannot monitor the variable MovingOnRunway, we apply the
"Introduce Accuracy Subgoal" refinement pattern in Fig. 10 to produce the following
subgoals:

MovingOnRunway ⇔ WheelsState = ’turning’

WheelsState = ’turning’ ⇒ ◦ ReverseThrustEnabled

The second subgoal is a requirement on the autopilot software. The first subgoal is refined
in the following assertions:

MovingOnRunway ⇔ WheelsTurning

WheelsTurning ⇔ WheelsState = ’turning’

The second assertion is an expectation on the wheel sensor. The first assertion states two
assumptions made about the domain. The first says:

MovingOnRunway ⇒ WheelsTurning

Let us try to break this assumption for obstacle analysis. We start by negating it:
� MovingOnRunway ∧¬ WheelsTurning

We refine this negation by regressing it through the domain. We look for, or elicit, domain
properties that are necessary conditions for the target condition WheelsTurning in the
assumption we want to obstruct. We might find, in particular,

WheelsTurning ⇒ WheelsOut,

WheelsTurning ⇒ ¬ WheelsBroken,

WheelsTurning ⇒ ¬ Aquaplaning, etc.

Let us select the third domain property, equivalent to its contraposition:
Aquaplaning ⇒ ¬ WheelsTurning

The consequent of this implication unifies with one of the conjuncts in the negated as-
sumption above. We may therefore regress that negated assumption backwards through
this domain property which yields the following subobstacle obstructing the target as-
sumption:

� MovingOnRunway ∧ Aquaplaning

The generated obstacle is satisfiable by the environment (in this case, mother Nature). It
was indeed satisfied during the Warsaw crash.

As the above derivation suggests, obstacle analysis may be used to elicit unknown
domain properties as well.

Approach 2 : Formal obstruction patterns. We can again build a catalogue of common
goal obstruction patterns, prove each of them, and reuse them by instantiation in match-
ing situations [Lam00b]. Fig. 14 shows a very common obstruction pattern. The pattern
encodes a single regression step. The above derivation can thus be seen as an application
of this pattern as well.

Once generated, the obstacles need to be assessed for feasibility, likelihood and
severity. For feasibility, a SAT solver might be used to check that the obstacle assertion
is satisfiable by the environment. For likelihood and severity, standard risk management
techniques should be used.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 217

Figure 14. Goal obstruction pattern

7.2. Resolving obstacles

The generated obstacles, if feasible and likely, must be resolved through countermea-
sures. Resolution may be undertaken at requirements engineering time or deferred to
system runtime through obstacle monitoring [Fea98]. For resolution at RE time, we
may (a) explore alternative resolutions by application of model transformation operators
[Lam00b], and then (b) select a "best" resolution based on the likelihood and severity of
the obstacle, and on other non-functional goals from the goal model [Chu00].

Model transformation operators encode various resolution tactics such as the fol-
lowing.

• Goal substitution: Consider alternative refinements of the parent goal to avoid the
obstruction of a child goal - e.g., replace the obstructed subgoal MotorReversed-

IffWheelsTurning by the goal MotorReversedIffPlaneWeightSensed.
• Agent substitution: Consider alternative responsibility assignments for the ob-

structed goal - e.g., replace the agent OnBoardTrainController, assigned to some
obstructed safety-critical goal in the train control system, by the agent VitalSta-

tionComputer.
• Goal weakening: Weaken the goal formulation - e.g., weaken the goal SectorTraf-

ficControllerOnDuty in an air traffic control system into the goal SectorTrafficCon-

trollerOnDutyOrWarningToNextSector.
• Goal restoration: Enforce the target condition in the obstructed goal when the

obstacle occurs - e.g., generate an alarm to the pilot in case the obstacle Wheel-

sNotOut occurs.
• Obstacle prevention: Introduce a new Avoid goal, to be refined in turn, in order to

prevent the obstacle from occurring - e.g., introduce in the goal model a new goal
Avoid[TrainAccelerationCommandCorrupted].

• Obstacle mitigation: Tolerate the obstacle but mitigate its effects - e.g., introduce
a new goal Avoid[TrainCollisionWhenOutDatedTrainInfo].

A. van Lamsweerde / Engineering Requirements for System Reliability and Security218

8. Threat analysis for security-critical systems

As introduced in Section 2.6, threats are malicious obstacles obstructing security goals.
Threat analysis consists in identifying threats to the system and resolving them through
countermeasures. It involves an anti-model, that is, a dual model of threats to the system
model. Such model shows how security goals can be obstructed by linking negated goals
to the attacker’s malicious goals, called anti-goals, and capabilities.

The attacker’s capabilities are captured by two sets of conditions that the attacker
can monitor and control, respectively. These capabilities define the interface between the
attacker and its own environment, including the threatened software-to-be. The properties
of the attacker’s environment includes the properties of the software-to-be, including
monitorable vulnerabilities to be exploited for anti-goal achievement.

The attacker is a system agent who knows (a) the application’s goal model (b) all de-
scriptive domain properties used to build it, and (c) the operation model. In the tradition
of the Most Powerful Attacker model used in cryptographic protocol analysis ([Kem94],
[Low96], [Cla00]), we assume a Most Knowledgeable Attacker (MKA) that knows ev-
erything about the application model being attacked. Worst-case analysis of threats is
required to ensure the completeness of the set of countermeasures to them. The MKA
assumption is trivially satisfied here as the attacker at RE time is the application mod-
eller looking for missing countermeasures. Such MKA model also implies that the at-
tacker has no need to dynamically increase its knowledge through observation of system
behaviors in response to attacker’s stimuli - he has that knowledge already.

An overall procedure for threat analysis looks like this:
1. Build threat graphs rooted on antigoals:

(a) Get initial anti-goals as roots;
(b) Identify classes of attackers wishing these, and their capabilities;
(c) For each root anti-goal and attacker class:

build an anti-goal refinement graph as a proof that the root anti-goal
can be satisfied in view of the attacker’s knowledge and capabilities;
refinement terminates when leaf conditions are reached that meet the
attacker’s capabilities.

2. Derive new security goals as countermeasures to counter anti-goals from threat
graphs.

We first review the types of security goals that might be threatened by an anti-model
together with their specification patterns. Next we will overview and illustrate the various
steps of the above procedure. Our main focus will be on formal support for steps (a) and
(c).

8.1. Specification patterns for security goals

Security goals prescribe different types of protection of system assets. Numerous tax-
onomies of security properties are available from the literature - see, e.g., [Kem03]. We
can formally specify property classes to define corresponding specification patterns on
meta-variables. Instantiating these meta-variables to application-specific, sensitive ob-
jects provides candidate security goals for our system, to be refined in the goal model
and to be obstructed in an anti-goal model [Lam04a].

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 219

For example, the specification pattern for confidentiality goals defines confidential-
ity in a generic way as follows:

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]
FormalSpec ∀ ag: Agent, ob: Object

¬ Authorized(ag, ob.Info) ⇒ ¬ KnowsVag (ob.Info)

To specify security goals, our real-time linear temporal logic is augmented with
epistemic constructs [Fag95]. In particular, the operator KnowsVag is defined on state
variables as follows:

KnowsVag(v) ≡ ∃ x : Knowsag(x=v) ("knows value")
Knowsag(P) ≡ Beliefag(P) ∧ P ("knows property")

The operational semantics of the epistemic operator Beliefag(P) is: "P is among the prop-
erties stored in the local memory of agent ag". Domain-specific axioms must make it pre-
cise under which conditions property P does appear and disappear in the agent’s mem-
ory. An agent thus knows a property if that property is found in its local memory and it
is indeed the case that the property holds.

In the above pattern for confidentiality goals, the Authorized predicate is a generic
predicate to be instantiated through a domain-specific definition. For example, for web
banking services we would certainly consider the instantiation Object/Account while
searching through the object model for sensitive information to be protected. We might
then introduce the following instantiating definition:

∀ ag: Agent, acc: Account
Authorized (ag, acc) ≡ Owner (ag, acc) ∨ Proxy (ag, acc) ∨ Manager (ag, acc)

Sensitive information about accounts includes the objects Acc# and PIN. The latter are
defined in the object model as entities composing the aggregated entity Account and
linked through a Matching association.

Instantiating the Confidentiality specification pattern to this sensitive information
yields the following confidentiality goal as candidate for inclusion in the goal model for
web banking services:

Goal Avoid [AccountNumber&PinKnownByUnauthorized]
FormalSpec ∀ p: Person, acc: Account

¬ (Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc))
⇒ ¬ [KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)]

Other patterns may be defined for specifying and eliciting application-specific
instantiations of privacy, integrity, availability, authentication, accountability, or non-
repudiation goals, e.g.,

Goal Maintain [PrivateInfoKnownOnlyIfAuthorizedByOwner]
FormalSpec ∀ ag, ag’: Agent, ob: Object

KnowsVag (ob.Info) ∧ OwnedBy (ob.Info, ag’) ∧ ag �= ag’
⇒ AuthorizedBy (ag, ob.Info, ag’)

Goal Maintain [ObjectInfoChangeOnlyIfCorrectAndAuthorized]
FormalSpec ∀ ag: Agent, ob: Object, v : Value

ob.Info = v ∧◦ (ob.Info �= v) ∧ UnderControl (ob.Info, ag)
⇒ Authorized (ag, ob.Info) ∧◦ Integrity (ob.Info)

A. van Lamsweerde / Engineering Requirements for System Reliability and Security220

Goal Achieve [ObjectInfoUsableWhenNeededAndAuthorized]
FormalSpec ∀ ag: Agent, ob: Object, v : Value

[Needs (ag, ob.Info) ∧ Authorized (ag, ob.Info)] ⇒ �≤d Using (ag, ob.Info)

Specifications of application-specific security goals are thus obtained from such pat-
terns by (a) instantiating meta-classes such as Object, Agent, and generic attributes such
as Info, to application-specific sensitive classes, attributes and associations in the object
model; and (b) specializing predicates such as Authorized, UnderControl, Integrity, or Us-
ing through substitution by application-specific definitions.

The specification patterns can be diversified through variants capturing different se-
curity options. For confidentiality goals, for example, we may consider variants along
two dimensions: (a) the degree of approximate knowledge to be kept confidential - exact
value of a state variable, or lower/upper bound, or order of magnitude, or any property
about the value; and (b) the timing according to which that knowledge should be kept
confidential - confidential now, or confidential until some expiration date, or confidential
unless/until condition, or confidential forever [Del05].

8.2. Identifying initial anti-goals and attackers

Preliminary anti-goals must be identified as root threats to be refined in threat graphs.
One obvious option is to browse the goal model systematically in order to determine
whether there are any goal negations that could be wished by malicious agents.

For example, while browsing the goal model for an online shopping system we might
stop on the goal stating that every purchased item must have been paid within two days
before being sent:

ItemSentToBuyer ⇒ �≤2d ItemPaidToSeller
(The goal is specified propositionally for simplicity.) The goal negation is:

� (ItemSentToBuyer ∧¬�≤2d ItemPaidToSeller)
This goal is obviously going to be wished by a number of malicious shoppers. We should
therefore consider it among the root anti-goals for threat graph building.

We can also directly obtain root anti-goals by negating security goal patterns instan-
tiated to application-specific sensitive objects. For example, the negation of the instan-
tiated confidentiality goal Avoid [AccountNumber&PinKnownByUnauthorized] for web
banking services yields another initial anti-goal:

AntiGoal Achieve [AccountNumber&PinKnownByUnauthorized]
FormalSpec �∃ p: Person, acc: Account

¬ [Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc)]
∧ KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

The identification of attacker classes is obviously intertwined with the identification
of initial anti-goals; the negation of an application-specific goal raises the question of
who might benefit from it. We may also use attacker taxonomies available from the
literature to identify attackers.

For example, by asking who could benefit from the anti-goal Achieve [Account-
Number&PinKnownByUnauthorized] we could elicit agent classes such as Thief, Hacker,
BankQualityAssuranceTeam, etc.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 221

8.3. Building threat graphs

For each initial anti-goal and attacker class identified, we need to build an anti-goal
refinement/abstraction graph as a basis for exploring countermeasures.

We can do this informally, like for any goal model, by asking WHY questions to
identify parent anti-goals, and HOW questions to identify child anti-goals.

When the goals, domain properties, and anti-goals are specified formally we can use
the regression technique presented in Section 7. The difference now is that the anti-goal
regression should be applied not only to domain properties but also to requirements and
expectations as the attacker should exploit these as well. We will thereby obtain anti-goal
preconditions to be satisfied by the attacked software and its environment.

Whatever technique is used, the anti-goal refinement along a branch stops as soon as
we obtain a precondition which is monitorable or controllable according to the attacker’s
capabilities.

Let us illustrate the construction of a threat graph for web banking services using a
mix of informal and formal techniques.

We take a Thief agent, for example. Starting from the above anti-goal Achieve [Ac-
countNumber&PinKnownByUnauthorized], we obtain through WHY questions a parent
anti-goal Achieve[PaymentMediumKnownByThief] and a grand-parent anti-goal Achieve
[MoneyStolenFromBankAccounts], see Fig. 15. The milestone refinement pattern in
Fig. 7 produces two other subgoals of the parent anti-goal Achieve [PaymentMedium-
KnownByThief], namely, Achieve [ThiefKnowsWhichBank] and Achieve [ThiefKnowsAc-
countStructure].

Let us focus on the derivation of refinements for the anti-goal Achieve [AccountNum-
ber&PinKnownByUnauthorized]. Looking at the formal specification of this anti-goal, ob-
tained earlier as negation of an instantiated confidentiality goal pattern, we ask ourselves
"what are sufficient conditions in the domain for someone unauthorized to know both
the number and PIN of an account simultaneously?". We may also use the symmetry of
the association Matching between account numbers and PINs in the object model and its
multiplicity [1..1, 1..N]. As a result we find in Dom, or elicit, two symmetrical domain
properties:

∀ p: Person, acc: Account
¬ [Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc)] ∧ KnowsVp (acc.Acc#)

∧ (∃ x: PIN) (Found (p, x) ∧ Matching (x, acc.Acc#))
⇒ KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

¬ [Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc)] ∧ KnowsVp (acc.PIN)
∧ (∃ y: Acc#) (Found (p, y) ∧ Matching (acc.PIN, y))
⇒ KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

Now we may regress the anti-goal Achieve[AccountNumber&PinKnownByUnauthorized]
through each of these domain properties to obtain two sub-goals as alternative precondi-
tions for achieving this anti-goal. We thereby obtain an OR-refinement of that anti-goal
into two alternative, symmetrical anti-subgoals, namely,

AntiGoal Achieve [AccountKnown&MatchingPinFound]
FormalSpec �∃ p: Person, acc: Account

¬ [Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc)]
∧ KnowsVp (acc.Acc#)
∧ (∃ x: PIN) [Found (p, x) ∧ Matching (x, acc.Acc#)]

A. van Lamsweerde / Engineering Requirements for System Reliability and Security222

AntiGoal Achieve [PinKnown&MatchingAccountFound]
FormalSpec �∃ p: Person, acc: Account

¬ [Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc)]
∧ KnowsVp (acc.PIN)
∧ (∃ y: Acc#) [Found (p, y) ∧ Matching (acc.PIN, y)]

Figure 15. Threat graph fragment for web banking services [Lam04a]

The refinement process goes on until reaching terminal conditions that are either
realizable anti-requirements in view of the attacker’s capabilities or observable vulnera-
bilities of the attacker’s environment (including the target software). Fig. 15 shows the
threat graph obtained.

The derived anti-requirements on the Thief agent are, in the alternative refinement
shown in Fig. 15,

AccountNumberCheckedForPinMatch,
CheckIteratedOnOtherAccountNumbersIfNoMatch

These anti-requirements are realizable under the anti-domain property RepeatableAcc#-

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 223

CheckFromPin, stating that the attacker can iterate on account numbers to check whether
they match some fixed 4-digit number.

The threat graph in Fig. 15 with this alternative branch corresponds to a real attack
reported in [Dos00]. Along the other alternative, not fully elaborated in Fig. 15, we reach
symmetrical leaf goals

PinCheckedForAccountNumberMatch,
CheckIteratedOnOtherPinsIfNoMatch,
RepeatablePinCheckFrom Acc#

The two first subgoals are realizable anti-requirements whereas the third condition is a
vulnerability precluded by banking systems. This alternative is thus not realizable.

Recent efforts have been devoted to synthesizing threat graphs fully automatically
and efficiently [Jan06]. Based on a BDD representation of the initial anti-goal, the tech-
nique consists in generating a proof showing that this anti-goal is realizable in view of
the attacker’s knowledge and capabilities. The proof amounts to a hierarchical plan for
satisfying the anti-goal. The hierarchical levels in this plan are determined systemati-
cally by incrementally weakening powerful virtual macro-agents until the capabilities of
the real attacker agent are reached. The weakening consists in removing macro-agent
capabilities by following the anti-goal’s BDD state-variable ordering.

8.4. Deriving countermeasures

Based on the threat graphs built for each initial anti-goal, we may obtain new security
goals by application of the resolution operators reviewed in Section 7.

In security-critical systems the operator Avoid[X] is frequently used, where X is in-
stantiated to an anti-goal or a vulnerability. For example, in our web banking system, we
would certainly take the following goals as new goals to be refined:

Avoid [RepeatableAcc#CheckFromPin]
Avoid [RepeatablePinCheckFrom Acc#]

Resolution operators can be further specialized to malicious obstacles; in particular,
the two following tactics should be considered for countermeasures:

• Make vulnerability condition unmonitorable by attackers.
• Make anti-requirement uncontrollable by attackers.

The alternative countermeasures obtained through such resolution operators must be
refined in turn along alternative OR-branches of the updated goal model. Such alterna-
tives must be assessed to keep some "best" one in view of the other non-functional goals
[Chu00] and the conflicts they often introduce with other goals in the goal model (see
next section). A new threat analysis cycle may need to be undertaken for these new goals.

The threat analysis method reported in this section was applied in the European
SAFEE project to model and analyze on-board terrorist threats against civil aircrafts,
and explore corresponding countermeasures. A goal model with derived countermea-
sures was used as a basis for elaborating the requirements for an on-board threat detec-
tion/reaction system.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security224

9. Conflict analysis

Requirements engineers are faced with numerous conflicts while elaborating system
goals, requirements, and expectations. Conflicts arise from multiple viewpoints among
different stakeholders [Fin94], or from different categories of functional and non-
functional goals that are potentially conflicting - for example, safety goals tend to be con-
flicting with performance goals. Security goal categories are especially involved in po-
tential conflicts. For example, "maintain agent anonymity" is potentially conflicting with
"achieve agent accountability"; "password-based authentication" is potentially conflict-
ing with "application usability"; "encrypted transaction" is potentially conflicting with
"efficient transaction"; and so forth.

Managing interactions among goals, requirements, and expectations is a core busi-
ness in the RE process [Rob03]. Such interactions much more often amount to poten-
tial conflicts, rather than logical inconsistencies where one stakeholder says "I want P"
whereas another says "I want ¬ P". The notion of potential conflict is captured through
the following definition.

Goals G1, . . . , Gn are divergent within a domain Dom iff there exists a boundary
condition B such that the following conditions hold:

1. {Dom, B,
∧

1≤i≤n Gi} |= false potential conflict
2. For each i: {Dom, B,

∧
j �=i Gj} �|= false minimality

3. There exists a behavior E of the environment of
the set of agents in charge of G1, . . . , Gn such that
E |= O

feasibility

The boundary condition captures a particular combination of circumstances which makes
the goals G1, . . . , Gn conflicting if conjoined to it (see conditions (1) and (2)). Note that
a conflict is a particular case of divergence in which B = true. Also note that the mini-
mality condition precludes the trivial boundary condition B = false; it stipulates in par-
ticular that the boundary condition must be consistent with the domain theory Dom. The
boundary condition must also be satisfiable by the environment of the agents involved in
the satisfaction of the divergent goals.

Conflict management consists in detecting conflicts among goals, generating alter-
native resolutions of the detected conflicts, and selecting a best resolution ([Lam98a],
[Rob03]). We briefly review these steps successively for the more general notion of di-
vergence.

9.1. Detecting divergences

Similarly to obstacles, we may detect divergences among goals by regression or by use
of conflict patterns [Lam98a].

Approach 1: Regression. The technique is based on the observation that the first con-
dition for divergence is equivalent to:

{Dom, B,
∧

j �=i Gj } |= ¬Gi

We may thus formally derive the boundary condition B as precondition for one of the
negated goals ¬Gi, chaining backwards through an augmented theory {Dom,

∧
j �=i Gj}.

The regession procedure is similar to the one given in Section 7.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 225

Let us illustrate how a divergence can thereby be detected between two typical se-
curity goals, taken from a real situation [Lam98a]. Consider the electronic reviewing
process for a scientific journal, with the following two security goals:

Goal Maintain [ReviewerAnonymity]
FormalSpec ∀ r: Reviewer, p: Paper, a: Author, rep: Report

Reviews (r, p, rep) ∧ AuthorOf (a, p) ⇒ �¬ KnowsVa (Reviews[r,p,rep])

Goal Maintain [ReviewIntegrity]
FormalSpec ∀ r: Reviewer, p: Paper, a: Author, rep, rep’: Report

AuthorOf (a, p) ∧ Gets (a, rep, p, r) ⇒ Reviews (r, p, rep’) ∧ rep’ = rep

In this specification, the object Reviews[r,p,rep] designates a ternary association captur-
ing a reviewer r having produced a referee report rep for paper p. The predicate Re-
views(r,p,rep) expresses that an instance of this association exists in the current state. The
predicate Gets(a,rep,p,r) expresses that author a has the report rep by reviewer r for his
paper p. The KnowsV predicate is the epistemic construct introduced in Section 8.

The above goals are not logically inconsistent. However, let us see whether they are
potentially conflicting. We take the goal Maintain[ReviewerAnonymity] for the initializa-
tion step of the regression procedure. Its negation is:

�∃ r: Reviewer, p: Paper, a: Author, rep: Report (NG)
Reviews(r,p,rep) ∧ AuthorOf(a,p) ∧� KnowsVa(Reviews[r,p,rep])

Regressing (NG) through the ReviewIntegrity goal, whose consequent can be simplified
to Reviews(r,p,rep) by term rewriting, yields:

�∃ r: Reviewer, p: Paper, a: Author, rep: Report (NG1)
AuthorOf (a,p) ∧ Gets (a, rep, p, r) ∧� KnowsVa(Reviews[r,p,rep])

Let us assume that the domain theory contains the following sufficient conditions for
identifiability of reviewers (the outer universal quantifiers are left implicit for simplic-
ity):

Gets (a, rep, p, r) ∧ Identifiable (r, rep) ⇒ � KnowsVa(Reviews[r,p,rep]) (D1)
Reviews (r, p, rep) ∧ SignedBy (rep, r) ⇒ Identifiable (r, rep) (D2)
Reviews (r, p, rep) ∧ French (r)∧¬∃ r’�= r: (D3)

[Expert (r’, p) ∧ French (r’)] ⇒ Identifiable (r, rep)

In these property specifications, the predicate Identifiable(r,rep) means that the identity
of reviewer r can be determined from the content of report rep. Properties (D2) and (D3)
provide explicit sufficient conditions for this. The predicate SignedBy(rep,r) means that
report rep contains the signature of reviewer r. The predicate Expert(r,p) means that re-
viewer r is a well-known expert in the domain of paper p. Property (D3) states that a
French reviewer notably known as being the only French expert in the area of the paper
is identifiable (as she makes typical French errors of English usage).

The third conjunct in (NG1) unifies with the consequent in (D1); the regression
yields, after corresponding substitutions of variables:

A. van Lamsweerde / Engineering Requirements for System Reliability and Security226

�∃ r: Reviewer, p: Paper, a: Author, rep: Report
AuthorOf (a, p) ∧ Gets (a, rep, p, r) ∧ Identifiable (r, rep)

The last subformula in this formula unifies with the consequent in (D3); the regression
yields:

�∃ r: Reviewer, p: Paper, a: Author, rep: Report (B)
AuthorOf (a, p) ∧ Gets (a, rep, p, r) ∧ Reviews (r, p, rep)
∧ French(r) ∧¬∃ r’ �= r: [Expert (r’, p) ∧ French (r’)]

This condition is satisfiable through a report produced by a French reviewer who is the
only well-known French expert in the domain of the paper, and sent unaltered to the
author (as variable rep is the same in the Reviews and Gets predicates). We thus formally
derived a boundary condition making the divergent goals Maintain[ReviewerAnonymity]
and Maintain[ReviewIntegrity] logically inconsistent.

The space of derivable boundary conditions can be explored by backtracking on
each applied property to select another applicable one. After having selected (D3), we
could select (D2) to derive another boundary condition:

�∃ r: Reviewer, p: Paper, a: Author, rep: Report (B’)
AuthorOf(a, p) ∧ Gets(a, rep, p, r) ∧ Reviews(r, p, rep) ∧ SignedBy(rep, r)

which captures the situation of an author receiving the same report as the one produced
by the reviewer with signature information found in it.

Approach 2: Formal conflict patterns. Alternatively we may sometimes shortcut such
derivations by instantiating common patterns of divergence among goals that highlight
generic boundary conditions. Fig. 16 shows one such pattern that occurs frequently in
practice.

Figure 16. Achieve-Avoid divergence pattern

9.2. Resolving divergences

The principle here again is to generate alternative resolutions through resolution opera-
tors and then to compare them in order to select a best resolution. Here is a sample of
conflict resolution operators.

• Avoid boundary condition: A new goal is introduced which takes the form:
�¬ B.

• Restore divergent goals: A new goal is introduced which takes the form:
B ⇒ �

∧
1≤i≤n Gi

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 227

• Anticipate conflict: This strategy can be applied when some persistent condition
P can be found such that, in some context C, we inevitably get into a conflict after
some time if the condition P has persisted over a too long period:

C ∧�≤d P ⇔ �≤d ¬
∧

1≤i≤n Gi

In such a case we may introduce the following new goal to avoid the conflict by
anticipation:

C ∧ P ⇒ �≤d ¬ P
• Weaken the formulation of one of the divergent goals.
• Specialize the target objects concerned by the divergent goals so that the latter

now refer to non-overlapping specializations.
• Etc. [Rob03].

In our journal reviewing example, we might resolve the detected divergence by
avoiding the boundary condition (that is, not asking a French reviewer in case she is the
only French expert in the domain of the paper), or by weakening a divergent goal (e.g.,
weakening the integrity requirement to allow for correction of typical French errors of
English usage).

Conflicts should be carefully considered in safety-critical systems too. An interest-
ing example comes from a document describing some of the requirements for the San
Francisco Bay Area Rapid Transit System (BART). One goal stated that the speed com-
manded to trains may not be "too high", because otherwise it forces the distance between
trains to be too high (for safety reasons). Another goal stated that the commanded speed
may not be "too low", because otherwise it may force accelerations felt uncomfortable
by passengers. These goals are more precisely specified as follows:

Goal Maintain [CmdedSpeedCloseToPhysicalSpeed]
FormalSpec ∀ tr: Train

tr.AccCM ≥ 0 ⇒ tr.SpeedCM ≤ tr.Speed + f(distance-to-obstacle)
Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]

FormalSpec ∀ tr: Train
tr.AccCM ≥ 0 ⇒ tr.SpeedCM > tr.Speed + 7

The boundary condition for making these goals logically inconsistent is easily derived:
� (∃ tr: Train) (tr.AccCM ≥ 0 ∧ f(dist-to-obstacle) ≤ 7)

The selected resolution operator should be goal weakening; we should keep the safety
goal as it is and weaken the convenience goal in order to remove the divergence by cov-
ering the boundary condition:

Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]
FormalSpec ∀ tr: Train

tr.AccCM ≥ 0 ⇒ tr.SpeedCM > tr.Speed + 7 ∨ f(dist-to-obstacle) ≤ 7

10. Synthesizing behavior models from scenarios and goals

Goals, scenarios, and state machines form a win-win partnership for system modeling
and analysis.

• Goal models support various forms of early, declarative, and incremental reason-
ing, as seen in the previous section. On the downside, goals are sometimes felt

A. van Lamsweerde / Engineering Requirements for System Reliability and Security228

too abstract by stakeholders. They cover classes of intended behaviors but such
behaviors are left implicit. Goals may also be hard to elicit and make fully precise
in the first place.

• Scenarios support a concrete, narrative expression style, as discussed in Section
2.7. They are easily accessible to stakeholders. On the downside, scenarios cover
few behaviors of specific instances. They leave intended system properties im-
plicit.

• State machines provide visual abstractions of explicit behaviors for any agent in-
stance in some corresponding class (see Section 2.7). They can be composed se-
quentially and in parallel, and are executable for requirements validation through
animation. They can be verified against declarative properties. State machines
also provide a good basis for code generation. On the downside, state machines
are too operational in the early stages of requirements elaboration. Their con-
struction may be quite hard.

Those complementary strengths and limitations call for an approach integrating
goal, scenario, and state machine models where portions of one model are synthesized
from portions of the other models.

Recent efforts were made along this line. For example, a labelled transition system
(LTS) model can be synthesized from message sequence charts (MSC) taken as positive
examples of system behavior [Uch03]. MSC specifications can be translated into state-
charts [Kru98]. UML state diagrams can be generated from sequence diagrams capturing
positive scenarios ([Whi00], [Mak01]). Goal specifications in linear temporal logic can
also be inferred inductively from MSC scenarios taken as positive or negative examples
[Lam98b]. These various techniques all require additional input information beside sce-
narios, namely, a high-level message sequence chart showing how MSC scenarios are
to be flowcharted [Uch03]; pre- and post-conditions of interactions, expressed on global
state variables ([Lam98b], [Whi00]); local MSC conditions [Kru98]; or state machine
traces local to some specific agent [Mak01]. Such additional input information may be
hard to get from stakeholders, and may need to be refactored in non-trivial ways in case
new positive or negative scenario examples are provided later in the requirements/design
engineering process [Let05].

State machine models can be synthesized inductively from positive and negative
scenarios without requiring such additional input information [Dam05]. Let us have a
closer look at how this synthesis technique works. We start with some background first.

As introduced in Section 2.7, a positive scenario illustrates some desired system be-
havior. A negative scenario captures a behavior that may not occur. It is captured by a
pair (p, e) where p is a positive MSC, called precondition, and e is a prohibited subse-
quent event. The meaning is that once the admissible MSC precondition has occurred,
the prohibited event may not label the next interaction among the corresponding agents.

Fig. 17 shows a collection of input scenarios for state machine synthesis. The upper
right scenario is a negative one. The intuitive, end-user semantics of two consecutive
events along a MSC timeline is that the first is directly followed by the second. The
actual semantics of MSCs is defined in terms of LTS and parallel composition [Uch03].
A MSC timeline defines a unique finite LTS execution that captures a corresponding
agent behavior. Similarly, the semantics of an entire MSC is defined in terms of the LTS
modeling the entire system. MSCs define executions of the parallel composition of each
agent LTS.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 229

Figure 17. Input scenarios for a train system

For goal injection in the synthesis process, we take a fluent-based variant of LTL
where the atomic assertions are explicitly defined in terms of the events making them
true and false, respectively [Gia03]. A fluent Fl is a proposition defined by a set InitFl

of initiating events, a set TermFl of terminating events, and an initial value InitiallyFl

that can be true or false. The sets of initiating and terminating events must be disjoint.
A fluent definition takes the form:

fluent Fl = <InitFl, TermFl> initially InitiallyFl

In our train example, the fluents DoorsClosed and Moving are defined as follows:

fluent DoorsClosed = <{close doors}, {open doors, emergency open}> initially true

fluent Moving = <{start}, {stop, emergency stop}> initially false

A fluent Fl holds at some time if either of the following conditions holds:
(a) Fl holds initially and no terminating event has yet occurred;
(b) some initiating event has occurred and no terminating event has occurred since

then.
LTS synthesis proceeds in two steps [Dam05]. First, the input scenarios are gener-

alized into a LTS for the entire system, called system LTS. This LTS is then projected on
each agent using standard automaton transformation algorithms [Hop79].

The system LTS covers all positive scenarios and excludes all negative ones. It is
obtained by an interactive extension of a grammar induction algorithm known as RPNI
[Onc92]. Grammar induction aims at learning a language from a set of positive and
negative strings defined on a specific alphabet. The alphabet here is the set of event labels;
the strings are provided by positive and negative scenarios.

RPNI first computes an initial LTS solution, called Prefix Tree Acceptor (PTA). The
PTA is a deterministic LTS built from the input scenarios; each scenario is a branch in the
tree that ends with a "white" state, for a positive scenario, or a "black" state, for a negative
one. As in the other aforementioned synthesis approaches, scenarios are assumed to start
in the same system state.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security230

Fig. 18 shows the PTA computed from the scenarios in Fig. 17. A black state is an
error state for the system. A path leading to a black state is said to be rejected by the
LTS; a path leading to a white state is said to be accepted by the LTS. By construction,
the PTA accepts all positive input scenarios while rejecting all negative ones.

Figure 18. PTA built from the scenarios in Fig. 17

Behavior generalization from the PTA is achieved by a generate-and-test algorithm
that performs an exhaustive search for equivalent state pairs to merge them into equiv-
alence classes. Two states are considered equivalent if they have no incompatible con-
tinuation, that is, there is no subsequent event sequence accepted by one and rejected by
the other.

At each generate-and-test cycle, RPNI considers merging a state q in the current
solution with a state q’ of lower rank. Merging a state pair (q,q’) may require further
merging of subsequent state pairs to obtain a deterministic solution; shared continuations
of q and q’ are folded up by such further merges. When this would end up in merging
black and white states, the merging of (q,q’) is discarded, and RPNI continues with the
next candidate pair. (See [Dam05] for details.)

Fig.19 shows the system LTS computed by the synthesizer for our train example,
with the following partition into equivalence classes:

π = { {0,3,6,10,16}, {1,14,15}, {2,7,13}, {4}, {5}, {8}, {9}, {11,12} }

Figure 19. Synthesized system LTS for the train example

The equivalence relation used by this inductive algorithm shows the important role
played by negative scenarios to avoid merging non-equivalent system states and derive
correct generalizations. RPNI is guaranteed to find the correct system LTS when the
input sample is rich enough [Onc92]; two distinct system states must be distinguished
in the PTA by at least one continuation accepted from one and rejected from the other.
When the input sample has no enough negative scenarios, RPNI tends to compute a poor
generalization by merging non-equivalent system states.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 231

To overcome this problem, the LTS synthesizer extends RPNI in two directions:

• Blue Fringe search: The search is made heuristic through an evaluation function
that favors states sharing common continuations as first candidates for merging
[Lan98].

• Interactive search: The synthesis process is made interactive through scenario
questions asked by the synthesizer whenever a merged state gets new outgoing
transitions [Dam05].

Figure 20. Scenario question generated during synthesis

To answer a scenario question, the user has just to accept or reject the new MSC
scenario generated by the synthesizer. The answer results in confirming or discarding
the current candidate state merge. Scenario questions provide a natural way of eliciting
further positive and negative scenarios to enrich the scenario sample. Fig.20 shows a
scenario question that can be rephrased as follows: "if the train starts and a passenger
presses the alarm button, may the controller then open the doors in emergency and close
the doors afterwards?". This scenario should be rejected as the train may not move with
open doors.

There is a price to pay with this technique though. While interaction takes place in
terms of simple end-user scenarios, and scenarios only, the number of scenario questions
may sometimes become large for interaction-intensive applications with complex com-
posite states - as experienced when applying the technique to non-trivial web applica-
tions.

This LTS synthesis technique was therefore recently extended to reduce the number
of scenario questions significantly and produce a LTS model consistent with knowledge
about the domain and about the goals of the target system [Dam06]. The general idea
is to constrain the induction process in order to prune the inductive search space and,
accordingly, the set of scenario questions. The constraints include:

a) state assertions generated along agent timelines;
b) LTS models of external components the system interacts with;
c) safety properties that capture system goals or domain properties.

Let us have a closer look at optimizations (a) and (c).

A. van Lamsweerde / Engineering Requirements for System Reliability and Security232

Propagating fluents. Fluent definitions provide simple and natural domain descrip-
tions to constrain induction. For example, the definition

fluent DoorsClosed = <{close doors}, {open doors, emergency open}> initially true
describes train door states as being either closed or open, and describes which event is
responsible for which state change. To constrain the induction process, we compute the
value of every fluent at each PTA state by symbolic execution. The PTA states are then
decorated with the conjunction of such values. The pruning rule for constraining induc-
tion is to avoid merging inconsistent states, that is, states whose decoration has at least
one fluent with different values. The specific equivalence relation here is thus the set of
state pairs where both states have the same value for every fluent. The decoration of the
merged state is simply inherited from the states being merged.

To compute PTA node decorations by symbolic execution, we use a simplified ver-
sion of an algorithm described in [Dam05] to propagate fluent definitions forwards along
paths of the PTA tree.

Fig.21 shows the result of propagating the values of fluent DoorsClosed, according
to its above definition, along the PTA shown in Fig.18.

Figure 21. Propagating fluent values along a PTA (dc is a shorthand for DoorsClosed)

Injecting goals and domain properties in the synthesis process. For goals or domain
properties that can be formalized as safety properties, we may generate a property tester
[Gia03], that is, a LTS extended with an error state such that every path leading to the
error state violates the property. Consider, for example, the goal:

DoorsClosedWhileMoving = �(Moving → DoorsClosed)
Fig.22 shows the tester LTS for this property (the error state is the black one). Any event
sequence leading to the error state from the initial state corresponds to an undesired sys-
tem behavior. In particular, the event sequence <start, open> corresponds to the
initial negative scenario in Fig.17. As seen in Fig.22, the tester provides many more neg-
ative scenarios. Property testers can in fact provide potentially infinite classes of negative
scenarios.

To constrain the induction process further, the PTA and the tester are traversed
jointly in order to decorate each PTA state with the corresponding tester state. Fig. 23
shows the PTA decorated using the tester in Fig.22. The pruning rule for constraining
the induction process is now to avoid merging states decorated with distinct states of the
property tester. Two states will be considered for merging if they have the same property
tester state.

This pruning technique has the additional benefit of ensuring that the synthesized
system LTS satisfies the considered goal or domain property. A tester for a safety prop-

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 233

Figure 22. Tester LTS for the goal DoorsClosedWhileMoving

Figure 23. PTA decorated using the tester LTS from Fig. 22

erty is a canonical automaton, that is, minimal and deterministic [Gia03]. A bijection
thus exists between states and continuations [Hop79]. In other words, two states are dis-
tinct if and only if there is at least one continuation to distinguish them. In the particular
case of the tester LTS, two states are distinct if and only if they do not have the same set
of continuations leading to the error state.

The question remains as to where these goals and domain properties are coming
from. There are complementary answers to this:

• we can pick them up in the goal model, when they are available;
• we can get them systematically by asking the end-user the reason why a scenario

is rejected as counterexample;
• we can infer some of them automatically by inductive inference from scenarios

([Lam98b], [Dam06]). In this case, the inferred property has to be validated by
the user. If it turns to be inadequate, the user is asked to provide a counterexample
scenario which will enrich the scenario collection.

11. Conclusion

It is important to verify that software applications implement their specifications cor-
rectly. However, do these specifications meet the software requirements (including non-
functional ones)? Do these requirements meet the system’s goals, and under realistic
assumptions? Are these goals, requirements, and assumptions complete, adequate, and

A. van Lamsweerde / Engineering Requirements for System Reliability and Security234

consistent? These are critical, though still largely unexplored questions with many chal-
lenging issues for formal methods.

Rich models are essential to support the requirements engineering (RE) process.
Such models must address multiple perspectives such as intentional, structural, responsi-
bility, operational, and behavioral perspectives. They must cover the entire system, com-
prising both the software and its environment - made of humans, devices, other software,
mother Nature, attackers, attackees, etc. They should also cover the current system-as-
is, the system-to-be, and future evolutions. In our framework, such coverage is achieved
through alternative subtrees in the goal AND/OR graph. Rich RE models should make al-
ternative options explicit - such as alternative goal refinements, alternative agent assign-
ments, alternative conflict resolutions, or alternative countermeasures to threats. They
should support a seamless transition from high-level concerns to operational require-
ments.

Building such models is hard and critical. We should therefore be guided by methods
that are systematic, incremental, supporting the analysis of partial models, and flexible
to accommodate both top-down and bottom-up elaborations.

Goal-based reasoning is pivotal for model building and requirements elaboration,
exploration and evaluation of alternatives, conflict management, anticipation of inciden-
tal or malicious behaviors, and optimization of behavior model synthesis.

Goal completeness is a key issue. It can be achieved through multiple means such
as refinement checking to find out missing subgoals, obstacle and threat analysis to find
countermeasure goals, or requirements animation [Tra04].

Declarative specifications play an important role in the RE process - in particular,
for communicating with stakeholders and decision makers, for early reasoning about
models, and for optimizing model synthesis.

In order to engineer highly reliable and secure systems, it is essential to start think-
ing methodically about these aspects as early as possible, that is, at requirements engi-
neering time. We must be pessimistic from the beginning about the software and about
its environment and anticipate all kinds of hazards, threats, and conflicts.

By discussing a variety of early analysis of RE models we hope we have been con-
vincing on the benefits of a "multi-button" framework where semi-formal techniques are
used for modeling, navigation, and traceability whereas formal techniques are used, when
and where needed, for precise, incremental reasoning on mission-critical model portions.
As suggested in this overview paper, goal-oriented models offer lots of opportunities for
formal methods.

Acknowledgement. Many of the ideas presented in this paper were developed over the
years jointly with Robert Darimont, Emmanuel Letier, Christophe Damas, Anne Dar-
denne, Renaud De Landtsheer, David Janssens, Bernard Lambeau, Philippe Massonet,
Christophe Ponsard, André Rifaut, Hung Tran Van, and Steve Fickas and his group at the
University of Oregon. Warmest thanks to them all!

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 235

References

[Bel76] T.E. Bell and T.A. Thayer, "Software Requirements: Are They Really a Problem?", Proc. ICSE-2:
2nd Intrnational Conference on Software Enginering, San Francisco, 1976, 61-68.

[Boe81] B.W. Boehm, Software Engineering Economics. Prentice-Hall, 1981.
[Bor93] A. Borgida, J. Mylopoulos and R. Reiter, "And Nothing Else Changes: The Frame Problem in Pro-

cedure Specifications", Proc. ICSE’93 - 15th International Conference on Software Engineering, Balti-
more, May 1993

[Bro87] F.P. Brooks "No Silver Bullet: Essence and Accidents of Software Engineering". IEEE Computer,
Vol. 20 No. 4, April 1987, pp. 10-19.

[Chu00] L. Chung, B. Nixon, E. Yu and J. Mylopoulos, Non-functional requirements in software engineering.
Kluwer Academic, Boston, 2000.

[Cla00] E.M. Clarke, S. Jha, and W. Marrero, "Verifying Security Protocols with Brutus", ACM Trans. Soft-
ware Engineering and Methodology Vol. 9 No. 4, October 2000, 443-487.

[Dam05] C. Damas, B. Lambeau, P. Dupont and A. van Lamsweerde, "Generating Annotated Behavior Mod-
els from End-User Scenarios", IEEE Transactions on Software Engineering, Special Issue on Interaction
and State-based Modeling, Vol. 31, No. 12, December 2005, 1056-1073.

[Dam06] C. Damas, B. Lambeau, and A. van Lamsweerde, "Scenarios, Goals, and State Machines: a Win-
Win Partnership for Model Synthesis", 14th ACM International Symp. on the Foundations of Software
Engineering, Portland (OR), Nov. 2006.

[Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas, "Goal-Directed Requirements Acquisition", Sci-
ence of Computer Programming, Vol. 20, 1993, 3-50.

[Dar96] R. Darimont and A. van Lamsweerde, Formal Refinement Patterns for Goal-Driven Requirements
Elaboration. Proceedings FSE-4 - Fourth ACM Conference on the Foundations of Software Engineering,
San Francisco, October 1996, 179-190.

[Del03] R. De Landtsheer, E. Letier and A. van Lamsweerde, "Deriving Tabular Event-Based Specifications
from Goal-Oriented Requirements Models", Requirements Engineering Journal Vol.9 No. 2, 104-120.

[Del05] R. De Landtsheer and A. van Lamsweerde, "Reasoning About Confidentiality at Requirements En-
gineering Time", Proc. ESEC/FSE’05, Lisbon, Portugal, Sept. 2005.

[Dij76] E.W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.
[Dos00] A. dos Santos, G. Vigna, and R. Kemmerer, "Security Testing of the Online Banking Service of a

Large International Bank", Proc. 1st Workshop on Security and Privacy in E-Commerce, Nov. 2000.
[Dwy99] M.B. Dwyer, G.S. Avrunin and J.C. Corbett, "Patterns in Property Specifications for Finite-State

Verification", Proc. ICSE-99: 21th Intl. Conference on Software Enginering, Los Angeles, 411-420.
[ESI96] European Software Institute, "European User Survey Analysis", Report USV_EUR 2.1, ESPITI

Project, January 1996.
[Fag95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press, 1995.
[Fea87] M. Feather, "Language Support for the Specification and Development of Composite Systems",

ACM Trans. on Programming Languages and Systems 9(2), Apr. 87, 198-234.
[Fea98] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, "Reconciling System Requirements

and Runtime Behaviour", Proc. IWSSD’98 - 9th International Workshop on Software Specification and
Design, Isobe, IEEE CS Press, April 1998.

[Fin94] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh, "Inconsistency Handling in Multi-
perspective Specifications", IEEE Trans. on Software Engineering Vol. 20 No. 8, 1994, 569-578.

[Gia03] D. Giannakopoulou and J. Magee, "Fluent Model Checking for Event-Based Systems", Proc.
ESEC/FSE 2003, 10th European Software Engineering Conference, Helsinki, 2003.

[Ham01] J. Hammond, R. Rawlings, A. Hall, "Will it Work?", Proc. RE’01 - 5th Intl. IEEE Symp. on Re-
quirements Engineering, Toronto, IEEE, 2001, 102-109.

[Hop79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

[Jac95] D. Jackson, "Structuring Z specifications with views", ACM Transactions on Software Engineering
and Methodology, Vol. 4 No. 4, October 1995, 365-389.

[Jan06] D. Janssens and A. van Lamsweerde, Synthesizing Threat Models for Security Requirements Engi-
neering, Département d’Ingénierie Informatique, Université Catholique de Louvain, August 2006.

[Jar98] M.Jarke and R. Kurki-Suonio (eds.), Special Issue on Scenario Management, IEEE Trans. on
Sofware. Engineering, December 1998.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security236

[Kem94] R. Kemmerer, C. Meadows, and J. Millen, "Three systems for cryptographic protocol analysis",
Journal of Cryptology 7(2), 1994, 79-130.

[Kem03] R. Kemmerer, "Cybersecurity", Proc.ICSE’03 - 25th Intl. Conf. on Softw. engineering, Portland,
2003, 705 - 715.

[Kru98] I. Kruger, R. Grosu, P. Scholz and M. Broy, From MSCs to Statecharts, Proc. IFIP WG10.3/WG10.5
Intl. Workshop on Distributed and Parallel Embedded Systems (SchloSS Eringerfeld, Germany), F. J.
Rammig (ed.), Kluwer, 1998, 61-71.

[Lad95] P. Ladkin, in The Risks Digest, P. Neumann (ed.), ACM Software Engineering Notes 15, 1995.
[Lam98a] A. van Lamsweerde, R. Darimont and E. Letier, Managing Conflicts in Goal-Driven Rquirements

Engineering, IEEE Transactions on Software Engineering, Special Issue on Managing Inconsistency in
Software Development, Vol. 24 No. 11, November 1998, pp. 908 - 926.

[Lam98b] A. van Lamsweerde and L. Willemet, "Inferring Declarative Requirements Specifications from
Operational Scenarios", IEEE Trans. on Sofware. Engineering, Special Issue on Scenario Management,
December 1998, 1089-1114.

[Lam00a] A. van Lamsweerde, "Requirements Engineering in the Year 00: A Research Perspective". Keynote
Paper, Proceedings ICSE’2000 - International Conference on Software Engineering, Limerick. IEEE
Computer Society Press, June 2000, pp.5-19.

[Lam00b] A. van Lamsweerde and E. Letier, Handling Obstacles in Goal-Oriented Requirements Engineer-
ing, IEEE Transactions on Software Engineering, Special Issue on Exception Handling, Vol. 26, No. 10,
October 2000.

[Lam04a] A. van Lamsweerde, "Elaborating Security Requirements by Construction of Intentional Anti-
Models", Proceedings of ICSE’04 - 26th International Conference on Software Engineering, Edinburgh,
May. 2004, ACM-IEEE , 148-157.

[Lam04b] A. van Lamsweerde, "Goal-Oriented Requirements Engineering: A Roundtrip from Research to
Practice", Invited Keynote Paper, Proc. RE’04, 12th IEEE Joint International Requirements Engineering
Conference, Kyoto, Sept. 2004, 4-8.

[Lam07] A. van Lamsweerde, Requirements Engineering - From System Goals to UML Models to Software
Specifications. Wiley, 2007.

[Lan98] K.J. Lang, B.A. Pearlmutter, and R.A. Price, "Results of the abbadingo one DFA learning competi-
tion and a new evidence-driven state merging algorithm", In Grammatical Inference, Lecture Notes in
Artificial Intelligence Nr. 1433, Springer-Verlag, 1998, 1-12.

[Let02a] E. Letier and A. van Lamsweerde, "Agent-Based Tactics for Goal-Oriented Requirements Elabora-
tion", Proceedings ICSE’2002 - 24th International Conference on Software Engineering, Orlando, May
2002, 83-93.

[Let02b] E. Letier and A. van Lamsweerde, "Deriving Operational Software Specifications from System
Goals", Proc. FSE’10: 10th ACM Symp. Foundations of Software Engineering, Charleston, Nov. 2002.

[Let04] E. Letier and A. van Lamsweerde, "Reasoning about Partial Goal Satisfaction for Requirements and
Design Engineering", Proc. FSE’04, 12th ACM International Symp. on the Foundations of Software
Engineering, Newport Beach (CA), Nov. 2004, 53-62.

[Let05] E. Letier, J. Kramer, J. Magee, and S. Uchitel, "Monitoring and Control in Scenario-Based Require-
ments Analysis", Proc. ICSE 2005 - 27th Intl. Conf. Software Engineering, St. Louis, May 2005.

[Lev95] N. Leveson, Safeware - System Safety and Computers. Addison-Wesley, 1995.
[Low96] G. Lowe, "Breaking and fixing the Needham-Schroeder public-key protocol using FDR", in

TACAS’96: Tools and Algorithms for Construction and Analysis of Systems, 1996.
[Lut93] R.R. Lutz, "Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems", Pro-

ceedings RE’93 - First International Symposium on Requirements Engineering, San Diego, IEEE, 1993,
126-133.

[Mag00] J. Magee, N. Pryce, D. Giannakopoulou and J. Kramer, "Graphical Animation of Behavior Models",
Proc. ICSE’2000: 22nd Intl. Conf. on Software Engineering, Limerick, May 2000, 499-508.

[Mag06] J. Magee and J Kramer, Concurrency - State Models & Java Programs. Second edition, Wiley, 2006.
[Mak01] E. Mäkinen and T. Systä, "MAS - An Interactive Synthesizer to Support Behavioral Modelling in

UML", Proc. ICSE’01 - Intl. Conf. Soft. Engineering, Toronto, Canada, May 2001.
[Man92] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag,

1992.
[Man96] Z. Manna and the STeP Group, "STeP: Deductive-Algorithmic Verification of Reactive and Real-

Time Systems", Proc. CAV’96 - 8th Intl. Conf. on Computer-Aided Verification, LNCS 1102, Springer-

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 237

Verlag, July 1996, 415-418.
[Myl92] Mylopoulos, J., Chung, L., Nixon, B., "Representing and Using Nonfunctional Requirements: A

Process-Oriented Approach", IEEE Trans. on Sofware. Engineering, Vol. 18 No. 6, June 1992, pp. 483-
497.

[Obj04] The Objectiver Toolset. http://www.objectiver.com.
[Onc92] J. Oncina and P. García, "Inferring Regular Languages in Polynomial Update Time", In N. Perez de

la Blanca et al (Ed.), Pattern Recognition and Image Analysis, Vol. 1 Series in Machine Perception &
Artificial Intelligence, World Scientific, 1992, 49-61.

[Par95] D.L. Parnas and J. Madey, "Functional Documents for Computer Systems", Science of Computer
Programming, Vol. 25, 1995, 41-61.

[Pon04] Ch. Ponsard, P. Massonet, A. Rifaut, J.F. Molderez, A. van Lamsweerde, H. Tran Van, "Early Ver-
ification and Validation of Mission-Critical Systems", Proc. FMICS’04, 9th International Workshop on
Formal Methods for Industrial Critical Systems, Linz (Austria) Sept. 2004.

[Rob03] W.N. Robinson, S. Pawlowski and V. Volkov, "Requirements Interaction Management", ACM Com-
puting Surveys Vol. 35 No. 2, June 2003, 132-190.

[Sta95] The Standish Group, "Software Chaos", http:// www.standishgroup.com/chaos.html.
[Tra04] H. Tran Van, A. van Lamsweerde, P. Massonet, Ch. Ponsard, "Goal-Oriented Requirements Anima-

tion",Proc. RE’04, 12th IEEE Joint International Requirements Engineering Conference, Kyoto, Sept.
2004, 218-228.

[Uch03] S. Uchitel, J. Kramer, and J. Magee, "Synthesis of Behavioral Models from Scenarios", IEEE Trans.
Softw. Engineering, 29(2), 2003, 99-115.

[Wal77] R. Waldinger, "Achieving Several Goals Simultaneously", in Machine Intelligence, Vol. 8, E. Elcock
and D. Michie (Eds.), Ellis Horwood, 1977.

[Whi00] J. Whittle and J. Schumann, "Generating Statechart Designs from Scenarios", Proc. ICSE’2000:
22nd Intl. Conference on Software Engineering, Limerick, 2000, 314-323.

[Yue87] K. Yue, "What Does It Mean to Say that a Specification is Complete?", Proc. IWSSD-4, Fourth
International Workshop on Software Specification and Design, Monterey, 1987.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security238

Pervasive Verification of Distributed
Real-Time Systems

Steffen KNAPP 1 and Wolfgang PAUL

Saarland University, Computer Science Dept., 66123 Saarbrücken, Germany
e-mail: {sknapp,wjp}@wjpserver.cs.uni-sb.de

Abstract. In these lecture notes we outline for the first time in a single place a cor-
rectness proof for a distributed real-time system from the gate level to the compu-
tational model of a CASE tool.

Keywords. Model Stack, Pervasive Verification, Distributed System, Real-Time,
Automotive

1. Introduction

The mission of the German Verisoft project [Verb] is (i) to develop tools and methods
permitting the pervasive formal verification of entire computer systems including hard-
ware, system software, communication systems and applications (ii) to demonstrate these
methods and tools with examples of industrial complexity.

In the automotive subproject the following distributed real-time system is con-
sidered. The hardware consists of ECU’s connected by a FlexRay-like bus [Fle]. The
ECU’s comprise a VAMP processor [BJK+03,DHP05] and a FlexRay-like interface.
System software is a C0 compiler [LPP05] and an OSEKtime-like [OSE01b] operat-
ing system OLOS [Kna05] realized as a dialect of the generic operating system ker-
nel CVM [GHLP05]. Applications are compiled C0 programs communicating via an
FTCom-like [OSE01a] data structure. They are generated by a variant of the AutoFocus
CASE tool; the computational model underlying this tool is a variant of communication
automata. A pervasive correctness proof for this system was presented in the lectures of
the second author at the summer school on ’Software System Reliability and Security’
2006 in Marktoberdorf. This survey paper contains the lecture notes.

In Section 2 we outline the specification of a DLX instruction set [HP96,MP00]
including the handling of interrupts.

Using the VAMP processor [BJK+03] as an example we explain in Section 3 how
to verify the hardware design of complex processors with internal and external inter-
rupts. The resulting correctness proofs are based on the scheduling functions introduced
in [SH98,MP00].

1Work partially funded by the International Max Planck Research School for Computer Science (IMPRS)
and the German Federal Ministry of Education and Research (BMBF) in the framework of the Verisoft project
under grant 01 IS C38.

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

239

Section 4 deals with a generic device theory. We show how to specify devices and
how to integrate these specifications into the instruction set architecture of a processor.

In Section 5 we extend the VAMP processor design with memory management units
(MMUs). This gives hardware support for multi processing operating system kernels and
for virtual machine simulation [DHP05]2.

In Section 6 we survey a formal correctness proof for a compiler from the C0 pro-
gramming language [LPP05,Pet06,Lei06] to the DLX instruction set. In a nutshell C0 is
PASCAL [HW73] with C syntax.

In Section 7 we extend the C0 language. We permit portions of inline assembler
code and call the resulting language C0A. Using the allocation function of the compiler
from Section 6 we can define the semantics of C0A programs in a natural way.

In Section 8 we describe the semantics of the generic operating system kernel
CVM [GHLP05], which stands for communicating virtual machines. The programmer
sees a so called abstract kernel and a set of user processes. The user processes are virtual
DLX machines. The abstract kernel is a C0 program that makes use of certain so called
CVM primitives. These primitives allow the transport of data between kernel and user
processes. The semantics of the primitives can be specified in the parallel user model.

The implementation of a CVM kernel requires linking some extra code to the ab-
stract kernel as described in Section 9. This results in a so called concrete kernel. The
concrete kernel necessarily contains inline assembler code, because machine registers
and user processes are simply not visible in C0 variables alone. The correctness proof
hinges on the virtual machine simulation from Section 5, the compiler correctness proof
form Section 6 and on the inline assembler semantics from Section 7.

Next we would like to instantiate the abstract CVM kernel with an OSEKtime-like
operating system kernel called OLOS [Kna05]. User processes running under OLOS will
be C0 programs. These programs communicate via FTCom-like message buffers with
processes running on the same and on remote processors. While the machinery available
at the end of Section 9 permits effortlessly to define the application programmers model,
for a pervasive correctness proof of the entire distributed system we lack an important
ingredient: A correctness proof for a FlexRay-like communication system between pro-
cessors.

Since the ECUs are running with local oscillators of almost but not exactly equal
clock frequency, we cannot guarantee that set up and hold times of registers are respected
when data is being transmitted between ECUs. In such situations serial interfaces are
used. In Section 11 we review a correctness proof for a serial interface from [BBG+05].

In Section 12 we construct I/O devices called f-interfaces, consisting among other
things of message buffers, serial interfaces, and local timers. An ECU consists of a pro-
cessor together with such an interface. In time triggered protocols like FlexRay, ECUs
communicate in fixed time slots; in the simplest case via a single bus. In each time slot
one ECU is allowed to broadcast its message buffers and the other ECU’s must remain
quiet. This only works, if local timers on the ECUs are kept roughly synchronized. The
implementation and correctness proof of a non fault tolerant clock synchronization al-
gorithm –built on top of the serial interfaces of Section 11– is therefore part of Sec-
tion 12. Extension of this section to the fault tolerant case is future work and has two
parts: (i) clock synchronization in the fault tolerant case; this is an extremely well studied

2In real-time systems the virtual machine simulation is done in a restricted way such that no page faults
occur.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems240

problem [Sch87,Rus94] (ii) a startup algorithm for the fault tolerant case. In view of re-
sults reported in [SK06], this might require some modifications in the start-up algorithm
from the FlexRay standard.

In Section 13 we use techniques from [HIP05] to integrate the f-interfaces into the
ISA (instruction set architecture) of the processor. Due to the (external) timer interrupts
we run into a problem which is both surprising and not so easy to overcome: Timer in-
terrupts occur in fixed time intervals. It is trivial to determine on the hardware level in
which cycle such an interrupt occurs. We have to define on the ISA level the correspond-
ing instruction that gets interrupted. This can inherently not be done on the ISA level
alone: The execution time of an instruction depends on cache hits and cache misses, but
the memory hierarchy is invisible on the ISA level. On the pure ISA level we end up with
a nondeterministic model of computation.

We formalize the nondeterminism by oracle inputs that indicate for each instruc-
tion if it is interrupted by a timer interrupt or not. The oracle inputs are determined as a
byproduct of the processor correctness proof. This is intuitively plausible: If one is al-
lowed to look inside the hardware at the register transfer language (RTL) level, then the
occurrence of timer interrupts becomes deterministic. Technically we achieve this with
the help of the scheduling functions introduced in Section 3.

In Section 14 we show how to combine classical program correctness proofs (on the
ISA level), worst case execution time (WCET) analysis on the RTL level and hardware
correctness proofs into pervasive correctness proofs for real-time system from the gate
level to the ISA level. The results of Sections 11 to 14 are from [KP06].

In Section 15 we define the distributed OLOS model (D-OLOS) from [Kna05]: The
realtime operating system OLOS is running on every ECU of the distributed system.
User processes are compiled C0 programs. Using operating system calls they can com-
municate by accessing an FTCom-like data structure on their local ECU.

A pervasive correctness proof for the implementation of D-OLOS outlined in Sec-
tion 16 is based on the correctness of the CVM implementation from Section 8, the com-
piler correctness from Section 6 and the results from Section 14.

In Section 17 we introduce the automaton-theoretic computational model of a CASE
tool called AutoFocus task model (AFTM).

Based on results from [BBG+06] we show in Section 18 how to simulate this model
by D-OLOS.

2. Specifying an Instruction Set Architecture (ISA)

For bit strings a = a[n − 1 : 0] ∈ {0, 1}n we denote the natural number with binary
representation a by:

〈a〉 =

n∑
i=0

ai · 2i

For numbers x ∈ {0, . . . , 2n − 1} the binary representation of x of length n is the bit
string binn(x) ∈ {0, 1}n satisfying:

〈binn(x)〉 = x

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 241

The n bit binary addition function +n : {0, 1}n × {0, 1}n → {0, 1}n is defineded by:

a +n b = binn(〈a〉 + 〈b〉 mod 2n)

For bits x and natural numbers n we define xn as the string obtained by concatenating x
exactly n times with itself:

xn = x ◦ . . . ◦ x

2.1. Configurations and Auxiliary Concepts

In this section we outline how to formally specify the DLX instruction set architec-
ture (ISA). Processor configurations d have the following components:

1. The d.R component stores the current value of register R ∈ {0, 1}32. For this pa-
per, the most relevant registers are: The program counter pc, the delayed PC3 dpc,
the general purpose registers gpr[x] with x ∈ {0, 1}5 and the status register sr
containing the mask bits for the interrupts.

2. The byte addressable memory d.m : A → {0, 1}8 where the set of addresses A ⊂
{0, 1}32 usually has the form A = {a | 〈a〉 ≤ d.b} for some maximal available
memory byte address d.b. The content of the memory at byte address a is given
by d.m(a).

The maximal available address d.b does not change during an ISA computation.
Therefore it is rather treated as a parameter of the model than as a component of a con-
figuration. We will later on partition memory into pages of 4K bytes. We assume that d.b
is a multiple of some page size

d.b = d.ptl · 4K

where d.ptl is a mnemonic for the last index of page tables (detailed in Section 5). For
addresses a, memories m and natural numbers x we denote by mx(a) the concatenation
of the memory elements from address a to address a + x − 1 in little endian order:

mx(a) = m(a + x − 1) ◦ . . . ◦ m(a)

The instruction executed in configuration d, denoted by I(d), is the memory word
addressed by the delayed PC:

I(d) = d.m4(d.dpc)

The six high-order bits of the instruction word constitute the opcode opc:

opc(d) = I(d)[31 : 26]

3The delayed PC is used to specify the delayed branch mechanism detailed in [MP00].

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems242

Figure 1. Instruction Types

Instruction decoding can easily be formalized by predicates on I(d). In some cases
it suffices to inspect the opcode only. The current instruction is for instance a ‘load word’
lw instruction if the opcode equals 100011:

lw(d) ⇔ opc(d) = 100011

DLX instructions come in three instruction types as shown in Figure 1. The type of
an instruction defines how the bits of the instruction outside the opcode are interpreted.
The occurrence of an R-type instruction, e.g. an add or a subtract instruction, is for
instance specified by:

rtype(d) ⇔ opc(d) = 000000

Definitions of I-type and J-type instructions are slightly more complex. Depending
on the instruction type, certain fields have different positions within the instruction. For
the register ‘destination’ operand RD we have for instance

RD(d) =

{
I(d)[20 : 16] itype(d)

I(d)[15 : 11] otherwise

The effective address ea of load / store operations is computed as the sum of (i) the
content of the register addressed by the RS1 field d.gpr(RS1(d)) and (ii) the immediate
field imm(d) = I(d)[15 : 0]. The addition is performed modulo 232 with two’s com-
plement arithmetic. Formally, we define the sign extension of the immediate constant
by:

sxt(imm(d)) = imm(d)[15]16 ◦ imm(d)

This turns the immediate constant into a 32-bit constant while preserving the value
as a two’s complement number. It is like adding leading zeros to a natural number. The
effective address is defined as:

ea(d) = d.gpr(RS1(d)) +32 sxt(imm(d))

This definition is possible since n bit two’s complement numbers and n bit binary
numbers have the same value modulo 2n. For details see e.g. Chapter 2 of [MP00].

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 243

2.2. Basic Instruction Set

With the above definitions in place we specify the next configuration d′, i.e. the configu-
ration after execution of I(d). This obviously formalizes the instruction set.

In the definition of d′ we split cases depending on the instruction to be executed. As
an example we specify the next configuration for a load word and a store word instruc-
tion.

The main effect of a load word instruction is that the general purpose register ad-
dressed by the RD field is updated with the memory word addressed by the effective
address ea:

d′.gpr(RD(d)) = d.m4(ea(d))

The PC is incremented by four in 32-bit binary arithmetic and the old PC is copied
into the delayed PC:

d′.pc = d.pc +32 bin32(4)
d′.dpc = d.pc

This part of the definition is identical for all instructions except control instructions.
Components that are not changed have to be specified, too:

d′.m = d.m
d′.gpr(x) = d.gpr(x) for x �= RD(d)

d′.sr = d.sr

The main effect of store word instructions is that the general purpose register content
addressed by RD is copied into the memory word addressed by ea:

d′.m4(ea(d)) = d.gpr(RD(d))

Completing this definition for all instructions results in the the definition of a DLX
next state function:

d′ = δD(d)

2.3. Dealing with Interrupts

Interrupts are triggered by interrupt event signals that might be internally generated (like
illegal instruction, misalignment, and overflow) or externally generated (like reset and
timer interrupt). Interrupts are numbered using indices j ∈ {0, . . . , 31}. We classify the
set of these indices in two categories:

1. maskable / not maskable. The set of indices of maskable interrupts is given by M .

2. external / internal. The set of indices of external interrupts is given by E.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems244

We denote external event signals by eev[j] with j ∈ E and we denote internal event
signals by iev[j] with j /∈ E. We gather the external event signals into a vector eev and
the internal event signals into a vector iev.

Formally these signals must be treated in a very different way. Whether an internal
event signal iev[j] is activated in configuration d is determined only by the configuration.
For instance if we use j = 1 for the illegal instruction interrupt and LI ⊂ {0, 1}32 is the
set of bit patterns for that d′ is defined if I(d) ∈ LI , then:

iev(d)[1] ⇔ I(d) /∈ LI

Thus the vector of internal event signals is a function iev(d) of the current proces-
sor configuration d. In contrast, external interrupts are external inputs to the next state
function. Therefore we get a new next state function:

d′ = δD(d, eev)

The cause vector ca of all event signals is a function of the processor configuration d
and the external input eev:

ca(d, eev)[j] =

{
eev[j] j ∈ E

iev(d)[j] otherwise

The masked cause vector mca is computed from ca with the help of the interrupt
mask stored in the status register. If interrupt j is maskable and sr[j] = 0, then j is
masked out:

mca(d, eev)[j] =

{
ca(d, eev)[j] ∧ d.sr[j] j ∈ M

ca(d, eev)[j] otherwise

If any one of the masked cause bits is on, the jump to interrupt service routine (JISR)
bit is turned on:

JISR(d, eev) =
∨
j

mca(d, eev[j])

If this occurs, many things happen, e.g. the PCs are forced to point to the start ad-
dresses of the interrupt service routine. We assume it starts at (binary) address 0:

d′.dpc = bin32(0)
d′.pc = bin32(4)

All maskable interrupts are masked and the masked cause register is saved into a
new exception cause register:

d′.sr = 032

d′.eca = mca(d, eev)

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 245

Figure 2. Processor Pipeline

Since interrupt lines might become active simultaneously it is important to know
the smallest index of an active bit of mca. This index is called the interrupt level and
specifies the interrupts of highest priority that will be serviced immediately:

il(d, eev) = min{j | mca(d, eev)[j] = 1}

Auxiliary data for the intended interrupt handler is stored in an exception data regis-
ter edata. We only specify the new content for the case of trap instructions. In the DLX
instruction set the trap instruction has J-type format with opcode 111110. We give the
trap instruction interrupt event line 5:

iev(d)[5] ⇔ opc(d) = 111110

If this event line is active and no line with higher priority is active, then a trap
interrupt occurs:

trap(d, eev) ⇔ il(d, eev) = 5

In case of a trap interrupt, the sign extended (26 bit) immediate constant is saved in
the exception data register

trap(d, eev) ⇒ d′.edata = imm(d)[25]6 ◦ imm(d)

A complete definition of the interrupt mechanism is given in Chapter 5 of [MP00].

3. Processor Correctness

3.1. Processor Hardware Model

The processor hardware is specified in a hardware model. A hardware configurations h
consists of n bit registers h.R ∈ {0, 1}n and (a × d)-RAMs h.r : {0, 1}a → {0, 1}d.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems246

Registers and RAMs are connected by Boolean circuits with the usual semantics from
switching theory.

We denote the value of a signal s in configuration h by s(h). The hardware transition
function δH depends on external inputs ein. It maps a hardware configuration h to the
hardware configuration h′ = δH(h, ein) after the next clock cycle. We define for a
register R with clock enable signal Rce and input Rin:

h′.R =

{
Rin(h) Rce(h) = 1

h.R otherwise

Given a RAM r with address signal addr, data input Din and a write signal w we
define:

h′.r(x) =

{
Din(h) x = addr(h) ∧ w(h)

h.r(x) otherwise

Hardware computations are defined in the usual way as sequences of configura-
tions h0, h1, A superscript t in this model is always read as ’during cycle t’. Hard-
ware computations must satisfy for all cycles t:

ht+1 = δH(ht, eint)

Processor correctness theorems state, that hardware defined in this model simulates
in some sense an ISA next state function δD as defined in the previous sections.

3.2. Scheduling Functions

The processor correctness proofs considered here hinge on the concept of scheduling
functions s. The hardware of pipelined processors consists of many stages k, e.g. fetch
stage, issue stage, reservation stations, reorder buffer, write back stage, etc. (see Fig-
ure. 2). Stages can be full or empty due to pipeline bubbles. The hardware keeps track
of this with the help of full bits fullk for each stage as defined in [MP00]. Recall that
fullk(ht) is the value of the full bit in cycle t. We use the shorthand full tk. Note that the
fetch state is always full, i.e. ∀t : full t0 = 1.

For hardware cycles t and stages k that are full during cycle t, i.e. such that full tk
holds, the value s(k, t) of the scheduling function is the index i of the instruction that is
in stage k during cycle t. If the stage is not full, it is the index of the instruction that was
in stage k in the last cycle before t when the stage was full. Initially s(0, 0) = 0 holds.

In the formal definition of scheduling functions we use an extremely simple idea:
Imagine that the hardware has registers that can hold integers of arbitrary size. Augment
each stage with such a register and store in it the index of the instruction currently being
executed in that stage. These indices are computed exactly as the tags in a Tomasulo
scheduler. The only difference is that the indices have unbounded size because we want
to count up to arbitrarily large indices. In real hardware this is not possible and not
necessary. Nevertheless, in an abstract mathematical model there is no problem to do
this.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 247

Figure 3. Scheduling Functions

Each stage k of the processors under consideration has an update enable signal uek.
Stage k gets new data in cycle t if the update enable signal uek was on in cycle t−1. We
fetch instructions in order and hence define for the instruction fetch stage IF :

s(IF , t) =

{
s(IF , t − 1) + 1 uet−1

IF

s(IF , t − 1) otherwise

In general, a stage k can get data belonging to a new instruction from one or more
stages k′. Examples where more than one predecessor stage k′ exists for a stage k are:
(i) cycles in the data path of a floating point unit performing iterative division or (ii) the
producer registers feeding on the common data bus of a Tomasulo scheduler. In this
situation one must define for each stage k a predicate trans(k′, k, t) indicating that in
cycle t data are transmitted from stage k′ to stage k. In the example of Figure 3 we use
the select signal sel of the multiplexer and define:

trans(k′, k, t) = uet
k ∧ sel t

If trans(k′, k, t − 1) holds for some k′, then we set s(k, t) = s(k′, t − 1) for that k′.
Otherwise s(k, t) = s(k, t − 1).

3.3. Naive Simulation Relations

For ECUs we first consider a ’naive’ simulation relation sim(d, h) between ISA config-
urations d and hardware configurations h. We require that user-visible processor regis-
ters R have identical values:

h.R = d.R

For the addresses a in the processor we would like to make a similar definition,
but this does not work, because the user-visible processor memory is simulated in the
hardware by a memory system consisting among others of an instruction cache icache,
a data cache dcache and a user main memory mainm. Thus there is a quite nontrivial
function m(h) : A → {0, 1}8 specifying the memory simulated by the memory system.
One can define this functions in the following way: Imagine you apply in configuration h
at the memory interface (either at the icache or at the dcache) address a. Considering
a hit in the instruction cache, i.e. ihit(h, a) = 1, the icache would return icache(h, a).

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems248

Figure 4. Memory System

Similarly, considering a hit in the data cache dhit(h, a) = 1 the dcache would re-
turn dcache(h, a). Then we define:4

m(h)(a) =

⎧⎪⎨
⎪⎩

icache(h, a) ihit(h, a)

dcache(h, a) dhit(h, a)

h.mainm(a) otherwise

Using this definition we additionally require in the simulation relation sim(d, h) for all
addresses a ∈ A:

m(h)(a) = d.m(a)

In a pipelined machine this simulation relation almost never holds, because in one
cycle different hardware stages k usually hold data from different ISA configurations;
after all this is the very idea of pipelining. There is however an important exception:
When the pipeline is drained, i.e. all hardware stages except the instruction fetch stage
are empty:

drained(ht) ⇔ ∀k �= IF : ¬full tk

This happens to be the case after interrupts, in particular initially after reset.

3.4. Basic Processor Correctness Theorem

To begin with we ignore the external interrupts event signals (which brings us formally
back to ISA computations defined by di+1 = δD(di)). Figure 2 shows in simplified form
the stages of a processor with out of order processing and a Tomasulo scheduler.

Each user-visible register d.R of the processor has a counter part h.R belonging
to some stage k = stage(R) of the hardware. If the processor would have only reg-
isters R and no memory, we could show by induction over t that for all cycles t and
stages k: If k = stage(R), then the value ht.R of the hardware register R in cycle t
is the value ds(k,t).R of the ISA register R for the instruction scheduled in stage k in
cycle t:

ht.R = ds(k,t).R

4In the processors under consideration the caches snoop on each other. Hence the data of address a is only
in at most one cache [Bey05,BJK+03]

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 249

For the memory one has to consider the memory unit of the processor consisting of
two stages mem and mem1. Stage mem contains hardware for the computation of the
effective address. The memory m(ht) that is simulated by the memory hierarchy of the
hardware in cycle t, is identical with the ISA memory ds(mem1,t).m for the instruction
scheduled in stage mem1 in cycle t:

m(ht) = ds(mem1,t).m

We summarize the above by stating a basic processor correctness theorem. It as-
sumes that initially the pipe is drained and that the simulation relation between the first
hardware configuration h0 and the first ISA configuration d0 holds.

Theorem 1 (Processor Correctness) Assume that drained(h0) and sim(d0, h0) holds.
Then for all t, for all stages k and for all registers R with stage(R) = k:

ht.R = ds(k,t).R
m(ht) = ds(mem1,t).m

Such theorems are proven by induction over t. For complex processors this requires
hundreds of pages of paper and pencil proofs (see [MP00]). A formal correctness proof
is described in [Bey05,BJK+03].

3.5. Dealing with External Interrupts

External interrupts complicate things only slightly. The hardware now has external in-
puts heev that we call the hardware interrupt event signals. Their value in hardware
cycle t is heevt. We have to construct from them a sequence eevi of external ISA
interrupt event signals such that the hardware simulates an ISA computation satisfy-
ing di+1 = δD(di, eevi).

In order to support precise interrupts the processor hardware usually samples inter-
rupt event signals in the write back stage WB (see Chapter 5 of [MP00]). Since the write
back stage is the last stage in the pipeline it cannot be stalled. Thus for every instruction i
there is exactly one cycle t = WB(i) such that s(WB , t) = i ∧ full tWB . The external
ISA event signal observed by instruction i is therefore:

eevi = heevWB(i)

Note that a hardware event signal heevt is not visible to the ISA computation if the write
back stage in cycle t is empty. With this new definition of the ISA computation Theo-
rem 1 still holds. More details regarding a formal processor correctness proof dealing
with external interrupts are given in [Bey05,Dal06].

4. Device Theory

4.1. Device Configurations

This section basically covers the device independent part of [HIP05]. In memory mapped
I/O processors communicate with devices by read and write accesses to certain word ad-

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems250

dresses x called I/O ports. In our treatment these addresses will be above the addresses in
the processor memory. For a hardware designer who integrates a device into a processor
the device therefore should better look in many respects like an ordinary RAM. However,
a device has in general more state than is visible in the I/O ports. Thus configurations of
devices f with N I/O ports have the following components:

• A port RAM f.m. We assume that the RAM is byte addressable providing P bytes,
i.e. f.m : {0, 1}p → {0, 1}8 with p = �log P �.

• An ’internal’ state f.Z.

Hardware devices take inputs from and produce output to the processor side and
to the outside world respectively. Inputs from the processor side are like inputs for the
RAM and consist of: Data input din, address addr, and write signal fw. Outputs to the
processor side consists of data output dout (like in a RAM) and an external hardware
interrupt event signal heev. Inputs fdin from and outputs fdout to the outside world
are device dependent: Network devices have inputs and outputs, monitors produce only
outputs, keyboards take only inputs, disks neither produce outputs nor consume inputs.

I/O ports can be roughly divided in three categories: (i) control ports are only written
from the processor side, (ii) status ports are only read by the processor side and (iii) data
ports can be written or read both from the processor side and from the device side. Thus
we have to deal with the classical synchronization issues of shared memory.

In order to be able to use existing hardware correctness proofs for processors alone,
we split the hardware h into a processor component h.p and make the device configura-
tion f a component h.f of the hardware configuration.

We postulate, that for each word address addr of the device there is a device specific
hardware predicate hquiet(f, addr) acting like a semaphore. It indicates that the 4 ports
belonging to that address are presently not being accessed from the device side and hence
it is safe to access them from the processor side like ordinary RAM. We define for reading
out the port RAM:

dout(h, addr) = h.f.m(addr)

At quiet word addresses x the port RAM behaves like a RAM accessible only by the
processor side:

∀x : hquiet(h.f, x) ⇒ h′.f.m4(x) =

{
din(h) x = addr(h) ∧ fw(h)

h.f.m4(x) otherwise

When a data port is not quiet, it can be read or modified by the device side in a
device specific way. The effect of writing a port that is not quiet is left undefined. The
processor side usually learns about changes in the quiet predicate either by an interrupt
from the device or by polling a status register. We do not consider polling here.5

5A reader experienced in hardware design will observe that our devices are unusually fast: They update a
port in a single cycle of the processor hardware. Devices are usually slower and thus require a busy signal
indicating if a read or write access is in progress. Extending the above definitions in this way poses no big
difficulties.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 251

Figure 5. Memory Mapped IO

4.2. Integrating Devices

Integration of a device into a memory system is an exercise in hardware design. The
device is placed at some base address ba into the processors (byte addressable) memory.
An address decoder decides on read or write accesses whether the device is addressed by
a load word or store word instruction (ea ∈ {ba, . . . , ba + P − 1}). If the base address
is a multiple of the page size 4K and if the device occupies exactly one page of memory,
then the address decoder simply performs the test:

ba[31 : 12] =? ea[31 : 12]

If device f is accessed by a store word instruction, then write signal fw is activated.
If the device is accessed by a load word instruction, then the output enable signal of a
driver between dout and some bus in the processors memory system is enabled. The
cache system must be designed in a way that it does not cache accesses to I/O ports.

4.3. ISA with Devices

The assembler programmer sees a system as shown in Figure 5. It is a distributed system
because the non quiet ports of the device can change in a device specific way while the
processor is working. Configurations have the form ecu = (ecu.d, ecu.f) where ecu.d is
an ISA processor configuration and ecu.f is the device configuration. Component ecu.f
might have the same form as the device configuration from the hardware model or it
might be more abstract. In the assembler model the programmer should have some means
to keep track of the quiet status of ports. Thus, the hardware predicate hquiet(h.f, addr)
needs a device specific assembler level counter part quiet(ecu.f, addr).

As we have argued in the introduction, for a processor with a device the occurrence
of external interrupts is inherently nondeterministic in an assembler level model. We
model this nondeterminism by an oracle input eev that is used in the next state com-
putation of the processor component ecu′.d as explained in Section 3.5. In the case of
accesses to the I/O ports the next processor state will depend on the device state, too.
Thus we will define an extension of the old next state function δD:

ecu′.d = δD(ecu.d, ecu.f, eev)

The extension concerns load word instructions whose effective address is an I/O port
and of course the occurrence of interrupts:

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems252

¬JISR(ecu.d, eev) ∧ ea(ecu.d) = ba + 4 · addr ∧ quiet(ecu.f, addr)
∧ lw(ecu.d) ⇒ ecu′.d.gpr(RD(ecu.d)) = ecu.f.m(addr)

Moreover we can specify in a device independent way, that quiet word addresses x of the
port RAM behave like processor memory:

∀x : quiet(ecu.f, x) ∧ ¬JISR(ecu.d, eev) ⇒
ecu′.f.m4(x) =

{
ecu.d.gpr(RD(ecu.d)) sw(ecu.d) ∧ ea(ecu.d) = ba + 4 · x
ecu.f.m4(x) otherwise

The remaining portions of the definition of ecu′.f are device specific. We will come back
to this point in Section 13.

4.4. Processor Correctness Theorem with Devices

Using the machinery already in place the extensions to the hardware correctness proof
are remarkably easy as long as computations only access quiet I/O ports and the quiet
predicate is stable for all ports. If we place in the hardware the devices port RAM parallel
to the normal memory system, then we can use the same scheduling functions as for the
memory:

Theorem 2 (Processor Correctness with Devices)

ht.p.R = ecus(k,t).d.R
m(ht.p) = ecus(mem1,t).d.m
ht.f.m = ecus(mem1,t).f.m

The external interrupt from the device will need device specific arguments. The hard-
ware correctness proof works with the oracle inputs eevi obtained from the hardware
event signal heevt by the translation from Section 3.5:

eevi = heevWB(i)

5. Memory Management

5.1. Address Translation, Physical Machines and Virtual Machines

Physical machines consist of a processor operating on physical memory and on swap
memory. Configurations d of physical machines have components d.R for processor reg-
isters R, d.m for the physical memory, and d.sm for the swap memory. The physical ma-

Figure 6. Page Table Entry

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 253

Figure 7. Address Translation

chine has several special purpose registers, e.g. the mode register mode, the page table
origin pto, and the page table length ptl.

In system mode, i.e. if d.mode = 0, the physical machine operates like the basic
processor model from Section 2 with extra registers.

In user mode, i.e. if d.mode = 1, the physical machine emulates the basic processor
model from Section 2 using the page table for address translation. The simulated machine
is called a virtual machine. The addresses used in by the virtual machines are called
virtual addresses. We keep the notation d for configurations of the physical machine and
we denote configurations of the virtual machine by vm. Virtual addresses va are split
into a page index va.px = va[31 : 12] and a byte index va.bx = va[11 : 0]. Thus the
pages size is 212 = 4K bytes.

In user mode an access to memory address va is subject to address translation.
It either cause a page fault or it is redirected to the translated physical memory ad-
dress pma(d, va). The result of address translation depends on the content of the page
table, a region of the physical memory starting at address d.pto·4K with d.ptl+1 entries
of four bytes width.6

Page table entries have a length of four bytes. The page table entry address for
virtual address va is defined as ptea(d, va) = d.pto · 4K + 4 · va.px and the page
table entry of va is defined as pte(d, va) = d.m4(ptea(d, va)). For our purposes a
page table entry consists of two components as shown in Figure 6: The physical page
index ppx(d, va) = pte(d, va)[31 : 12] and the valid bit v(d, va) = pte(d, va)[11].

Being in user mode and accessing memory address va, a page fault signals if the
page index exceeds the page table length, va.px > d.ptl or if the page table entry is not
valid, v(d, va) = 0. On page fault the page fault handler, an interrupt service routine, is
invoked.

If no page fault is generated, the access is performed on the (translated) physical
memory address pma(d, va) defined as the concatenation of the physical page index and
the byte index (see Figure 7):

pma(d, va) = ppx(d, va) ◦ va.bx

Notice that the complete definition of a physical machine model involves the specifi-
cation of the effect of a page fault handler. In pervasive system verification there exists a

6The ’+1’ in this definition is awkward. It dates back to very old architectures. The page table length is
usually a power of two, hence a bit in the page table length register is saved.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems254

model between the physical machine and the hardware: A processor with a disk as an I/O
device. In this model we can show that swap memory is a proper abstracting by proving
the correctness of the page fault handler. For details see [HIP05]. Real-time systems, as
being considered here, have no disks and are programmed such that page faults do not
occur; thus the omission of these details will not hurt us later.

5.2. Virtual Memory Simulation

Physical machines with appropriate page fault handlers can simulate virtual machines.
For a simple page fault handler, virtual memory is stored on the swap memory of the
physical machine and the physical memory acts as a write back cache. In addition to
the architecturally defined physical memory address pma(d, va), the page fault handler
maintains a swap memory address function sma(d, va). On page faults that do not vio-
late the page table length check, the handler selects a physical memory page to evict and
loads the missing page from the swap memory.

As in Section 2 we denote by d.b the maximal byte address accessible by the vir-
tual machine. We use a simulation relation B(vm, d) to indicate that a (user mode)
physical machine configuration d encodes virtual machine configuration vm. Essentially,
B(vm, d) is the conjunction of the following two conditions:

1. For each of the d.b/(4K) pages of virtual memory there is a page table entry in
the physical machine, i.e. d.b/(4K) = d.ptl.

2. The content of virtual memory addressed by va is stored in the physical memory
at address pma(d, va) if the corresponding valid bit is on; otherwise it is stored in
the swap memory:

vm.m(va) =

{
d.m(pma(d, va)) v(d, va)

d.sm(sma(d, va)) otherwise

Thus the physical memory serves as a write back cache for the swap memory.

The simulation theorem for a single virtual machine has the following form:

Theorem 3 For all computations of the virtual machine (vm0, vm1, . . .) there is a com-
putation of the physical machine (d0, d1, . . .) and there are step numbers for the physical
machine (s(0), s(1), . . .) such that for all i we have B(vmi, ds(i)).

Thus step i of the virtual machine is simulated after step s(i) of the physical ma-
chine. Even for simple handlers, the proof is not completely obvious since a single user
mode instruction can cause two page faults. To avoid deadlock and guarantee forward
progress, the page fault handler must not swap out the page that was swapped in during
the last execution of the page fault handler. For details see [Hil05].

5.3. Synchronization Conditions

If the hardware implementation of a physical machine is pipelined or if instructions are
executed out of order then an instruction I(di) that is in the memory stage may modify
a later instruction I(dj) for j > i after it has been fetched. This situation is called a read

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 255

after write (RAW) hazard. I(di) may (i) overwrite the instruction itself, (ii) overwrite its
page table entry, or (iii) change the mode.

On a RAW hazard instruction fetch (in particular translated fetch implemented by a
memory management unit) would not work correctly. Of course it is possible to detect
such data dependencies in hardware and to roll back the computation if necessary. Alter-
natively, the software to be run on the processor must adhere to certain software synchro-
nization conventions. Let iaddr(dj) denote the address of instruction I(dj), possibly
translated. If I(di) writes to address iaddr(dj), then an intermediate instruction I(dk)
for i < k < j must drain the pipe. The same must hold if dj is in user mode and I(di)
writes to ptea(dj , dj .dpc). Finally, mode can only be changed to user mode by an rfe
(return from exception) instruction (and the hardware guarantees that rfe instructions
drain the pipe).

These conditions are hypotheses in the hardware correctness theorem in [DHP05].
It is easy to show that they hold for the kernels constructed later on in Section 9.

6. Compilation

6.1. C0 Semantics

In this section we summarize the results from [LPP05]. Recall that C0 is roughly speak-
ing PASCAL with C syntax. Eventually we want to consider several programs running
under an operating system. The computations of these programs are interleaved. There-
fore our compiler correctness statement is based on a small steps / structured operational
semantics [NN99,Win93].

In C0 types are elementary (bool , int , . . .), pointer types, or aggregate (array
or struct). A type is called simple if it is an elementary type or a pointer type. We define
the (abstract) size of types for simple types t by size(t) = 1, for arrays by size(t[n]) =
n · size(t), and for structures by size(struct{n1 : t1, . . . , ns : ts}) =

∑
i size(ti). Values

of variables with simple type are called simple values. Variables of aggregate type have
aggregate values, which are represented as a flat sequence of simple values.

6.2. C0 Machine Configuration

A C0 machine configuration c has the following components:

• The program rest c.pr is the sequence of C0 statements to be executed. In [NN99]
the program rest is called code component of the configuration.

• The current recursion depth c.rd.
• The local memory stack c.lms. It maps numbers i ≤ c.rd to memory frames

(defined below). The global memory is c.lms(0). We denote the top local memory
frame of a configuration c by top(c) = c.lms(c.rd).

• A heap memory c.hm. This is also a memory frame.

Parameters of the configuration that do not change during a computation are

• The type table c.tt containing information about types used in the program.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems256

• The function table c.ft containing information about the functions of a program.
It maps function names f to pairs c.ft(f) = (c.ft(f).ty, c.ft(f).body) where
c.ft(f).ty specifies the types of the arguments, the local variables, and the result
of the function, whereas c.ft(f).body specifies the function body.

We are using a relatively explicit, low level memory model in the style of [Nor98].
Memory frames m have the following components:

• The number m.n of variables in m (for local memory frames this also includes the
parameters of the corresponding function definition).

• A function m.name mapping variable numbers i ∈ [0 : m.n − 1] to their names
(not used for variables on the heap).

• A function m.ty mapping variable numbers to their type. This permits to define
the size of a memory frame msize(m) as the number of simple values stored in it,
namely: msize(m) =

∑m.n−1
i=0 size(m.ty(i)).

• A content function m.ct mapping indices 0 ≤ i < msize(m) to simple values.

A variable v of configuration c is a pair v = (m, i) where m is a memory frame of c
and i < m.n is the number of the variable in the frame. The type of a variable (m, i) is
defined by ty((m, i)) = m.ty(i).

Subvariables S = (m, i)s are formed from variables (m, i) by appending a selec-
tor s = (s1, . . . , st), where each component of a selector has the form si = [j] for se-
lecting array element number j or the form si = .n for selecting the struct component
with name n. If the selector s is consistent with the type of (m, i), then S = (m, i)s is a
subvariable of (m, i). Selectors are allowed to be empty.

In C0, pointers p may point to subvariables (m, i)s in the global memory or on the
heap. The value of such pointers simply has the form (m, i)s. Component m.ct stores
the current values va(c, (m, i)s) of the simple subvariables (m, i)s in canonical order.
Values of aggregate variables x are represented in m.ct in the obvious way by sequences
of simple values starting from the abstract base address ba(x) of variable x.

With the help of visibility rules and bindings we easily extend the definition of va ,
ty , and ba from variables and subvariables to expressions e.

6.3. C0 Machine Computation

Due to space restrictions we cannot give the full definition of the (small-step) transition
function δC mapping C0 configurations c to their successor configuration:

c′ = δC(c)

As an example we give a partial definition of the function call semantics.
Assume the program rest in configuration c begins with a call of function f with

parameters e1, . . . , en assigning the function’s result to variable v, formally c.pr = (v =
f(e1, . . . , en); r). In the new program rest, the call statement is replaced by the body
of function f taken from the function table, c′.pr = (c.ft(f).body; r) and the recursion
depth is incremented c′.rd = c.rd + 1. Furthermore, the values of all parameters ei are
stored in the new top local memory frame top(c′) by updating its content function at the
corresponding positions: top(c′).ctsize(ty(c,ei))(ba(c, ei)) = va(c, ei).

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 257

6.4. Compiler Correctness Theorem

The compiler correctness statement (for programs to be run on physical or virtual ma-
chines) depends on a simulation relation consis(aba)(c, d) between configurations c of
C0 machines and configurations d of ISA machines that run the compiled program. The
relation is parameterized by a function aba mapping subvariables S of the C0 machine
to their allocated base addresses aba(c, S) in the ISA machine. The allocation function
may change during a computation (i) if the recursion depth and thus the set of local vari-
ables change due to calls and returns or (ii) if reachable variables are moved on the heap
during garbage collection (not yet implemented).

Notice however, that in the first case only the range of the allocation function is
changed: For C0 configurations c and local or (sub) global variables x the allocated base
address aba(x, c) depends only on c.

The simulation relation consists essentially of five conditions:

1. Value consistency v − consis(aba)(c, d): This condition states that reachable ele-
mentary subvariables x have the same value in the C0 machine and in the ISA ma-
chine. Let asize(x) be the number of bytes needed to store a value of type ty(x).
Then we require d.masize(x)(aba(c, x)) = va(c, x).

2. Pointer consistency p − consis(aba)(c, d): This predicate requires for reachable
pointer variables p pointing to a subvariable y that the value stored at the allo-
cated address of variable p in the ISA machine is the allocated base address of y,
i.e. d.m4(aba(c, p)) = aba(c, y). This induces a subgraph isomorphism between
the reachable portions of the heaps of the C0 and the ISA machine.

3. Control consistency c− consis(c, d): This condition states that the delayed PC of
the physical machine (used to fetch instructions) points to the start of the translated
code of the program rest c.pr of the C0 machine. We denote by head(r) the first
statement of statement sequence r and we denote by caddr(s) the address of the
first assembler instruction that is generated for statement s. We require d.dpc =
caddr(head(c.pr)) and d.pc = d.dpc + 4.7

4. Code consistency code − consis(c, d): This condition requires that the compiled
code of the C0 program be stored in the physical machine d beginning at the code
start address cstart. Thus it requires that the compiled code be not changed during
the computation of the physical machine. We thereby forbid self modifying code.

5. Stack consistency s− consis(c, d): this is a technical condition about stack point-
ers, heap pointers etc. which does not play an important role here.

Theorem 4 For every C0 machine computation (c0, c1, . . .) there is a computation of
the physical machine (d0, d1, . . .), step numbers (s(0), s(1), . . .), and a sequence of
allocation functions (aba0, aba1, . . .) such that for all steps i the C0 machine and the
physical machine are consistent consis(abai)(ci, ds(i)).

A formal proof of this statement for a non optimizing compiler specified in Isabelle-
HOL [NPW02] (roughly speaking: In ML) is completed and will be reported in [Lei06].
There is an implementation of the same compilation algorithm written in C0. A formal
proof that the C0 implementation simulates the ML implementation is also completed

7For optimizing compilers this condition has in general to be weakened.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems258

· · · �� c = ĉ0 �������� ĉ1 �������� · · · �������� · · · �������� ĉt = c′ �� · · ·

· · · �� d = d̂0

��

��

�� d̂1

��

��

�� · · ·
��

��

�� · · ·
��

��

�� d̂t = d′
��

��

�� · · ·
Figure 8. Execution of Inline Assembler Code

and will be reported in [Pet06]. In order to solve the bootstrap problem [VERa] the C0
version of the compiler was translated by an existing compiler into DLX code. That the
target DLX code simulates the source code will be shown using translation validation.
This is work in progress.

7. Inline Assembler Code Semantics

Recall that processor registers, I/O ports and user processes are not visible in the C
variables of an operating system kernel written in C. Hence we must necessarily per-
mit in our language sequences u of inline assembler instructions (we do not distinguish
here between assembler and machine language). We extend C0 by statements of the
form asm(u) and call the resulting language C0A. In C0A the use of inline assembler
code is restricted: (i) only a certain subset of DLX instructions is allowed (e.g. no load
or store of bytes or half words, only relative jumps), (ii) the target address of store word
instructions must be outside the code and data regions of the C0A program or it must be
equal to the allocated base address of a subvariable of the C0A program with type int
or unsigned int (this implies that inline assembler code cannot change the stack layout
of the C0A program), (iii) certain registers (e.g. the stack pointer) must not be changed,
(iv) the last assembler instruction in u must not be a jump or branch instruction, (v) the
execution of u must terminate, (vi) the target of jump and branch instructions must not
be outside the code of u, and (vii) the execution of u must not generate misalignment or
illegal instruction interrupts.

In order to argue about the correctness of C0A programs we must define the seman-
tics of the newly introduced statement. A store word instruction of inline assembler code
can overwrite a C variable x, for instance when a processor register is stored into a pro-
cess control block. Hence we have to specify the effect of that store instruction on the
value of x in the C0 configuration. This is easily done with the help of the allocated base
address functions aba of the previous section (and impossible without them).

Thus consider a C0A configuration c with program rest c.pr = asm(u); r. When
we enter the inline assembler portion, then the entire physical machine configuration d
becomes visible. In this situation we make d an input parameter for the C0A transition
function δC0A . As pointed out above, another necessary parameter is an allocated base
address function aba. Finally the inline assembler code will also produce a new DLX
configuration d′. Thus we will define (c′, d′) = δC0A

(aba)(c, d). In all situations where
we apply this definition we will have consis(aba)(c, d).

The execution of u leads to a physical machine computation (d = d̂0, . . . , d̂t = d′)
with d̂t.dpc = caddr(head(r)) and d̂t.pc = d̂t.dpc + 4 by the restrictions on inline
assembler. We construct a corresponding sequence (ĉ0, . . . , ĉt) of intermediate C0 ma-
chine configurations reflecting successively the possible updates of the C0 variables by

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 259

the assembler instructions (see Figure 8). We set ĉ0 = c except for deleting the inline as-
sembler portion asm(u) from the program rest: ĉ0.pr = r. Let j < t. If predicate sw(d̂j)

holds, the instruction executed in configuration d̂j writes the value v = d̂j .gpr(RD(d̂j))

to the word at address ea(d̂j) as defined in Section 2. If this effective address is equal to
the allocated base address of a C0 variable x, then we update the corresponding variable
in configuration ĉj+1 such that va(ĉj+1, x) = v:

sw(d̂j) ∧ (ea(d̂j) = aba(c, x) ⇒ va(ĉj+1, x) = d̂j .gpr(RD(d̂j))

Finally the result of the C0A transition function is defined by c′ = ĉt and d′ = d̂t.
This definition keeps configurations consistent:

Lemma 1 If the program rest of c starts with an inline assembler statement we have:

consis(aba)(c, d) ⇒ consis(aba)(δC0A
(aba)(c′, d′))

8. Communicating Virtual Machines (CVM)

8.1. CVM Semantics

We now introduce communicating virtual machines (CVM), a model of computation
for a generic operating system kernel interacting with a fixed number of user processes.
While the CVM is running, the kernel can only be interrupted by reset. Kernels with
this property are called non-preemptive8. CVM uses the C0 language semantics to model
computations of the (abstract) kernel and virtual machines to model computations of user
processes. It is a pseudo-parallel model in the sense that in every step of computation
either the kernel or one user process can make progress.

From a kernel implementor’s point of view, CVM encapsulates the low-level func-
tionality of a microkernel and provides access to it as a library of functions, the so-called
CVM primitives. Accordingly, the abstract kernel may be ‘linked’ with the implementa-
tion of these primitives to produce the concrete kernel, a C0A program, that may be run
on the target machine. This construction and its correctness will be treated in Section 9.

In the following sections we define CVM configurations, CVM computations, and
show how abstract kernels implement system calls as regular C0 function calls.

8.2. CVM Configuration

A CVM configuration cvm has the following components:

• User processes are modeled by virtual machine configurations cvm.vm(u) having
indices u ∈ {1, . . . , P} (and P fixed, e.g. P = 128).

∗ Each user process has an individual page table ’lengths’ cvm.vm(u).ptl. The
memory available to virtual machines can be de- or increased dynamically.

8Premptive kernels require dealing with nested interrupts. A theory of nested interrupts is outlined in Chap-
ter 5 of [MP00].

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems260

• A C0 machine configuration cvm.c represents the so-called abstract kernel. We re-
quire the kernel configuration, in particular its initial configuration, be in a certain
form:

∗ Certain functions f ∈ CVMP , the CVM primitives, must be declared only,
i.e. their body must be empty. Its arguments and effects are described below.

∗ In addition to the cvm primitives a special function called kdispatch must be
declared. It takes two integer arguments and returns an integer. An invocation
of the kdispatch function must eventually result in a function call of the
CVM primitive v = start(e), which passes control to the user processes
determined by the current value va(cvm.c, e) of expression e.

• The component cvm.cp denotes the current process: cvm.cp = 0 means that the
kernel is running while cvm.cp = u > 0 means that user process u is running.

• The cvm.f component denotes the state of one external device9 capable of inter-
rupting user processes with an ISA interrupt signal eev.

8.3. CVM Computation

In every step of a CVM computation a new CVM configuration is computed from an old
configuration cvm, an oracle input eev, and from a device specific external input fdin:

cvm′ = δCV M (cvm, eev, fdin)

The external input fdin only affects the device state cvm′.f . Updates of this state are
device specific and are not treated here.

User computation. If the current process u = cvm.cp in configuration cvm is non-zero
then user process vm(u) does a step:

cvm′.vm(u) = δD(cvm.vm(u))

If no interrupt occurred, i.e. ¬JISR(cvm.vm(u), eev) then user process vm(u) keeps
running:

cvm′.cp = u

Otherwise execution of the abstract kernel starts. Recall from Section 2.3 on interrupt
semantics, that in case of an interrupt the masked cause register is saved into the ex-
ception cause register eca and that certain data necessary for handling the exception is
stored in register edata. The kernels entry point is the function kdispatch that is called
with the saved exception cause register cvm.vm(u).eca and the saved exception data
register cvm.vm(u).edata as parameters. We set the current process component and the
kernel’s recursion depth to zero:

cvm′.cp = 0
cvm′.c.rd = 0
cvm′.c.pr = (v = kdispatch(cvm.vm(u).eca, cvm.vm(u).edata))

9Dealing with more devices is not necessary here; it is not much more difficult.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 261

Kernel computation. Initially (after power-up) and after an interrupt, as seen above,
the kernel starts execution with a call of the function kdispatch. User process execution
continues when the kernel calls the CVM primitive start.

If we have cvm.cp = 0 and the kernel’s program rest does not start with a call to a
CVM primitive, a regular C0 semantics step is performed:

cvm′.c = δC(cvm.c)

Otherwise, we have cvm.cp = 0 and cvm.c.pr = (v = f(e1, . . . , en); r) for a CVM
primitive f , an integer variable v and integer expressions e1 to en. Although the imple-
mentation of the CVM primitives involves inline assembler code, their semantics can be
specified in the pseudo parallel CVM model by their effect on the user processes vm(u)
and on the device f .

Below we describe a few selected CVM primitives. We ignore any preconditions or
border cases; these are straightforward to specify and resolve:

• The start(e) primitive hands control over to the user process specified by the
current value of expression e:

cvm′.cp = va(cvm.c, e)

By this definition, the kernel stops execution and is restarted again on the next
interrupt (with a fresh program rest as described before).

• The alloc(u, x) primitive increases the memory size of process U = va(cvm.c, u)
by X = va(cvm.c, x) pages:

cvm′.vm(U).ptl = cvm.vm(U).ptl + X

The new pages are cleared:

∀y ∈ [cvm.vm(U).ptl : cvm.vm(U).ptl + 4K − 1] : cvm′.vm(U).m(y) = 08

• The primitive free(u, x) that frees X = va(cvm.c, x) pages of user process U =
va(cvm.c, u) is defined in a similar way.

• The primitive copy(u1, a1, u2, a2, d) copies a memory region between user pro-
cesses U1 = va(cvm.c, u1) and U2 = va(cvm.c, u2). The start addresses in
the memory of the source process U1 and the destination process U2 are given
by A1 = va(cvm.c, a1) and A2 = va(cvm.c, a2) respectively. The number of
bytes to be copied is given by D = va(cvm.c, d):

cvm′.vm(U2).mD(A2) = cvm.vm(U1).mD(A1)

• Primitives copying data between user processes and I/O ports and between C vari-
ables of the kernel and I/O ports are defined in a similar way.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems262

• The primitive e = getgpr(r, u) reads general purpose register R = va(cvm.c, r)
of user process U = va(cvm.c, u) and assigns it to the (sub)variable specified by
expression e:

va(cvm′.c, e) = cvm.vm(U).gpr(R)

As described below, this primitive is used to read parameters of system calls.
• The primitive setgpr(r, u, e) writes the current value of expression e into general

purpose register R of process U :

cvm′.vm(U).gpr(R) = va(cvm.c, e)

This primitive is used to set return values of system calls.

8.4. Binary Interface of Kernels

Before we deal with the implementation of CVM and a proof for its correctness, we show
how to build a kernel by appropriately specializing the generic abstract kernel of CVM.

The obvious means for a user process to invoke a system call is to use the trap
instruction that causes an internal interrupt. If the kernel provides k trap handlers, then
the user can specify the handler to be invoked using the immediate constant i being
part of the trap instruction, where i ∈ [0 : k − 1]. A so called kernel call definition
function kcd maps immediate constants i ∈ [0 : k − 1] to names of functions declared
in the abstract kernel. Thus kcd(i) is simply the name of the C function (including CVM
primitives) handling a trap with immediate constant i. For each i, let np(i) < 20 be
the number of parameters10 of function kcd(i). We require that user processes pass the
parameters for function kcd(i) in general purpose registers gpr[1 : np(i)]. Together with
the specification of the functions kcd(i) this is the entire binary interface definition.

Implementation by specialization of the abstract CVM kernel is completely straight
forward. First of all the kernel maintains a variable cup keeping track of the user process
that is currently running or that has been running before the kernel started execution:

cvm.cp > 0 ⇒ va(cvm.c, cup) = cvm.cp

Assume cvm.cp = u > 0 and user vm(u) executes the trap instruction with im-
mediate constant i. Furthermore assume that the trap instruction activates internal event
line iev(5), as described in Section 3.5, and that no interrupts with higher priority (lower
index) are active simultaneously. Then the masked cause vector 026105 is saved into the
exception cause register eca[31 : 0] and parameter i is saved into the exception data
register edata:

cvm′.vm(u).eca = 026105

cvm′.vm(u).edata = i

According to the CVM semantics the abstract kernel starts running with the func-
tion call kdispatch(eca, edata) where eca = 026105 and edata = i. By a case split

10Assume for simplicity they are of type integer.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 263

on eca the handler concludes that a trap instruction needs to be handled. Hence the han-
dler invokes the function call f(e1, . . . , enp(i)), where f = kcd(i) using the parameters
computed by the assignment ei = getgpr(i, cup).

Let cvmd be the CVM configuration immediately after execution of the call of kcd.
Then we easily derive from the semantics of CVM and C0:

Lemma 2 (Intended Handler Called with the Intended Parameters)

cvmd.rd = cvm′.rd + 1 = 1
cvmd.c.pr = cvm.c.ft(f).body; r for some r

top(cvmd).ct(j) = cvm.vm(u).gpr(j) for all j ∈ [1 : np(i)]

This lemma formalizes the idea that an interrupt is something like a function call of the
handler. Comparing with the C0 semantics in Section 6.1 we see that the trap instruction
indeed formally causes a function call of the handler. The function call is however re-
mote, because it is executed by a process (the abstract kernel) different from the calling
process (virtual machine vm(u)).

9. CVM Implementation and Correctness

9.1. Concrete Kernel and Linking

So far we have talked about the abstract kernel, but we have argued mathematically
only about its configurations c. Now we also argue about its source code that we denote
by sak. We describe how to obtain the source code sck of the so called concrete kernel
by linking sak with the source code of some CVM implementation scvm using some
link operator ld:

sck = ld(sak, scvm)

Note that sak is a pure C0 program, whereas scvm and sck are C0A programs.
The function table of the linked program sck is constructed from the function tables of
the input programs. For functions present in both programs, defined functions (with a
non-empty body) take precedence over declared functions (without a body). We do not
formally define the ld operator here; it may only be applied under various restrictions
concerning the input programs, e.g. the names of global variables of both programs must
be distinct, function signatures must match, and no function may be defined in both input
programs.

We require that the abstract kernel sak defines kdispatch and declares all CVM
primitives while the CVM implementation scvm defines the primitives and declares
kdispatch.

In analogy to the consis relation of the compiler correctness proof we define a rela-
tion kconsis(kalloc)(c, cc) stating that abstract kernel configuration c is coded by con-
crete kernel configuration cc. The configuration cc is a tuple consisting of a C0 machine
configuration cc.c and a physical machine configuration cc.d.

The function kalloc maps subvariables x of abstract kernel configuration c to sub-
variables kalloc(x) of concrete kernel configuration cc.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems264

Linking is less complex than compiling. The definition of the kconsis relation has
only three parts:

1. e − kconsis(kalloc)(c, cc): All reachable elementary (sub) variables x of the ab-
stract kernel configuration c and the values of x in the concrete kernel coincide:

va(c, x) = va(cc.c, x)

2. kalloc is a graph isomorphism between reachable portions of the heaps. For all
reachable pointer variables p of abstract kernel configuration c, pointing to sub-
variable v, the following holds:

(va(c, p) = v) ⇒ va(cc.c, kalloc(p)) = kalloc(v)

3. c−kconsis: The program rest of the concrete kernel is a prefix of the program rest
of the abstract kernel. For technical reason there is a particular suffix r containing
’dangling returns’. This suffix is cleared when the kernel is started the next time
(see Section 8.3).

cc.c.pr = c.pr; r

9.2. Data Structures

The CVM implementation maintains data structures for the simulation of the virtual
machines, i.e. for the support of multiprocessing. These include:

1. An array of process control blocks pcb[u] for the kernel (u = 0) and the user
processes (u > 0). Process control blocks are structs with components pcb[u].R
for every processor register R of the physical machine.

2. A single integer array ptarray on the heap holds the page tables of all user pro-
cesses in the order of the process numbers u. The function ptbase(u) defines the
start index of the page table for process u:

ptbase(u) =
∑
j<u

(pcb[j].ptl + 1)

Since the C array ptarry is indexed by words and not by bytes we define the page
table entry for virtual address va and process u as:

pte(u, va) = ptarray[ptbase(u) + va.px]

Notice that we have faked pointer arithmetic on the page table array, but formally
we just barely managed to dance around it. The physical page address and valid
bit are defined by C expressions.

pma(u, va) = pte(u, va)[31 : 12] ◦ va.bx
v(u, va) = pte(u, va)[11]

Swap memory addresses sma(u, va) are computed by C function in an analo-
gous way. We require that the compiler computes the allocated base address of
array ptarray as a multiple of the page size 4K.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 265

3. Data structures (in the simplest case doubly-linked lists) for the management of
physical and swap memory (including victim selection for page faults).

4. The variable cup keeping track of the current user process thus encoding the
cvm.cp component (unless the kernel is running).

9.3. Entering System Mode after an Interrupt

When the mode bit in the concrete kernel flips from user to system mode, the program
rest is initialized with init1; init2. In all cases except reset, the first part init1 will
(i) write all processor registers R to the process control block pcb[cup].R of the pro-
cess cup that was interrupted while it was running and (ii) restore the registers of the
kernel from process control block pcb[0].

In the second part init2, the CVM implementation detects whether the interrupt was
due to a page fault or to other causes. Page faults are handled silently without calling the
abstract kernel (cf. below). For other interrupts, we call kdispatch with the parameters
already obtained from the C variables pcb[cup]:

kdispatch(pcb[cup].eca, pcb[cup].edata)

9.4. Leaving System Mode

A call of start(cup) will switch to user mode again. It is implemented using inline as-
sembler. We write the physical processor registers to pcb[0] in order to save the con-
crete kernel state. Then we restore the physical processor registers for process cup
from pcb[cup] and execute an rfe instruction (return from exception).

9.5. Page Fault Handler

The page fault handler maintains a simulation relation B as described in Section 5.2.
With correct page fault handlers, user mode steps in the physical machine without inter-
rupts simulate steps of a virtual machine. Note that a single user mode instruction can
produce up to two page faults: One during instruction fetch and one during a load or store
operation. In order to prevent even more page faults the page most recently swapped in
must not be choose as the victim page to be swapped out (as it is possible with pure
random selection of the victim page).

To reason about multiple user processes u, we have to slightly modify and extend
the B relation. Let u be an index of a user process/virtual machine. Let cvm be a CVM
configuration and let cc be a configuration of the concrete kernel. We define predi-
cate B(u)(cvm, cc) stating that the configuration cvm.vm(u) of user process u is coded
by configuration cc.

1. Processor registers of vm(u) are stored in the physical processor registers, if pro-
cess u is running; otherwise they are stored in the process control blocks:

cvm.vm(u).gpr(r) =

{
cc.d.gpr(r) cvm.cp = u

va(cc.c, pcb[u].gpr(r)) otherwise

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems266

2. The memory content vm(u)(a) is stored in the physical memory at the correspond-
ing physical memory address, if the valid bit of virtual address a is 1, otherwise it
is stored in swap memory at the swap memory address:

cvm.vm(u).m(a) =

{
cc.d.m(va(cc.c, pma(u, a))) va(cc.c, v(u, a)) = 1

cc.d.sm(va(cc.c, sma(u, a))) otherwise

9.6. Implementation of the CVM Primitives

The implementation of CVM primitives like e = getgpr(u, r) and e = setgpr(u, r, g)
is straightforward. Let U = va(cc.c, u), R = va(cc.c, r), G = va(cc.c, g) and E =
va(cc.c, e), then:

E = va(cc.c, pcb[U].gpr(R))
va(cc.c, pcb[U].gpr(R)) = G

For the CVM primitives alloc and free the page table length of the process has to
be increased or decreased and –we have chosen a very simple implementation– lots of
page table entries in ptarry above the portion of the modified user process have to me
moved around in the page table array. Various other data structures concerning memory
management have to be adjusted as well. Such operations are closely interconnected
with the page fault handler. Since the page tables are accessible as a C0 data structure,
inline assembler is only required to clear newly allocated physical pages. Similarly, the
implementation of the copy primitive requires assembler code to copy pages of physical
memory between user processes.

9.7. CVM Correctness Theorem

The correctness proof of the cvm deals simultaneously with computations in three com-
putational models:

1. The CVM consisting of a C0 machine and several virtual machines; configurations
are denoted by cvm.

2. An intermediate model for the C0A computation of the concrete kernel; configu-
rations are denoted by cc.c

3. The physical machine model; configurations are denoted by cc.d

Theorem 5 Consider an input sequence of external interrupts (eev0, eev1, . . .) and a
CVM computation (cvm0, cvm1, . . .) defined with this input sequence. Then there exists
(i) a concrete kernel computation (cc.c0, cc.c1, . . .), (ii) a physical machine computa-
tion (cc.d0, cc.d1, . . .), (iii) two sequences of allocation functions (aba0, aba1, . . .) and
(kalloc0, kalloc1, . . .) and finally (iv) two sequences of step numbers (s0, s1, . . .) and
(t0, t1, . . .) such that:

1. The abstract kernel component cvmi.c of the CVM computation after i steps is
coded by the concrete kernel configuration ccs(i) after s(i) steps:

kconsis(kalloci)(cvmi.c, ccs(i))

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 267

Figure 9. Electronic Control Units

2. The concrete kernel configuration cc.cs(i) after s(i) steps is coded by configu-
ration cc.dt(i) of the physical machine after t(i) instructions. Recall that on the
physical machine the compiled concrete kernel is executed:

consis(abai)(cc.cs(i), cc.dt(i))

3. The user machines cvmi.vm(u) after i steps of the CVM computation are coded
by the configuration cct(i) of the concrete kernel after t(i) instructions:

B(u)(cvmi, cct(i))

The correctness theorem is proven by induction over the steps i of the CVM compu-
tations. Depending on the current process number cvmi.cp and the interrupts occurring,
the proof uses compiler correctness (see Section 6.4), the correctness of memory man-
agement mechanisms (see Section 5.2), and detailed arguments about inline assembler
code using C0A semantics (see Section 7).

10. Parallel Hardware Overview

So far we only have considered systems with a single processor and a device. In what
follows we construct particular hardware devices serving as interfaces to a FlexRay-like
bus called fbus. The devices will be called FlexRay-like interfaces or short f-interfaces.
A processor together with a device will be called an electronic control unit (ECU).

We will consider p electronic control units ecuv , where v ∈ {0, . . . , p − 1}, which
are communicating over a common fbus. At the ISA level, an ECU configuration
ecuv = (ecuv.d, ecuv.f) is a pair consisting of a processor configuration ecuv.d, and a
configuration ecuv.f of an f-interface, see Figure 9.

From an interface configuration ecuv.f we define two user-visible buffers: A send
buffer sb(ecuv) and a receive buffer rb(ecuv). Each buffer is capable of holding a mes-
sage of � bytes.

In the distributed system all communications and computations proceed in rounds r
where r ∈ N. As depicted in Figure 10 each round is divided into an (even) number
of slots s where s ∈ {0, . . . , ns − 1}. The tuple (r, s) refers to slot s in round r. On
each ECU, boundaries between slots will be determined by local timer interrupts ev-
ery T hardware cycles. At the beginning of each round the local timers are synchronized.

Given a slot (r, s) we define the predecessor (r, s)−1 and successor (r, s)+1 accord-
ing to the lexicographical order of slots. We denote by dv(r, s) the first and by ev(r, s)
the last ISA configuration of ecuv during slot (r, s).

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems268

Figure 10. Slots and Rounds

ECUs of the system communicate according to a fixed schedule that is identical for
each round. The send function specifies for all rounds r the electronic control unit ECU
that owns the bus during slot (r, s):

send : {0, . . . , ns − 1} → {0, . . . , p − 1}

During slot (r, s) the content of the send buffer of ecusend(s) at the end of the pre-
vious round (r, s) − 1 is broadcast to the receive buffers of all units ecuu and becomes
visible there at the beginning of the next round (r, s) + 1:

∀u, r, s : sb(esend(s)((r, s) − 1)) = rb(du((r, s) + 1)) (1)

In Sections 11 to 14 we will outline the proof of a hardware correctness theorem
for the entire distributed system justifying this programming model. This theorem es-
tablishes for each ecuv at the start of each slot (r, s) the naive simulation relation sim
from Section 3.4 between the ISA configuration dv(r, s) before the execution of the first
instruction of the slot and the corresponding hardware configuration hv(r, s) during the
first hardware cycle of the slot:

sim(dv(r, s), hv(r, s))

11. Serial Interface

The hardware of each ECU is clocked by an oscillator with a nominal clock period of
say τref . For all v the individual clock periods τv of ECU v are allowed to deviate from
the nominal period by δ = 0.15%:

| τv − τref | ≤ τref · δ

This limitation can be easily achieved by current technology.
With Δ = 2δ/(1 − δ) we easily bound for all u and v the relative deviation of

individual clock periods among each other by:

| τv − τu | ≤ τv · Δ

Consider a situation, where a sending ECU puts data on the bus and these data
are sampled into registers of receiving ECUs. Then, due to the clock drift, we cannot

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 269

Figure 11. Serial Interface

guarantee that the set up and hold times of the receiving registers are obeyed at all clock
edges. This problem occurs whenever computers without a common clock exchange data.
It is solved by serial interfaces using a nontrivial protocol. Therefore we first need a
hardware correctness proof of a serial interface as prescribed by the FlexRay standard.

11.1. Hardware Model with Continuous Time

The problems solved by serial interfaces can by their very nature not be treated in the
standard digital hardware model with a single digital clock clk. Nevertheless, we can
describe each ECU v in a standard digital hardware model having its own hardware con-
figuration hv .

In order to argue about a sender register S of a sending ECU that is transmitting data
via the fbus to a receiver register R of a receiving ECU, as depicted in Figure 11, we
have to extend the digital model.

For the registers –and only for the registers– connected to the fbus we extend the
hardware model such that we can deal with the concepts of propagation delay (tpd), set-
up time (ts), hold time (th) and metastability of registers from hardware data sheets. In
the extended model used near the fbus we therefore consider time to be a real valued
variable t. Given some offset cv < τv the date of the clock edge ev(i) that starts cycle i
on ECU v is defined by:

ev(i) = cv + i · τv (2)

In this continuous time model the content of the a sender register S at time t is denoted
by S(t).

We now have enough machinery to define in the continuous time model the output
of a sender register Sv on ECU v during cycle i of ECU v , i.e. for t ∈ (ev(i), ev(i + 1)].
If in cycle i − 1 the digital clock enable Sce(hi−1

v) signal was off, we see during the
whole cycle the old digital value hi−1

v .S of the register. If the update enable signal was
on, then during the propagation delay tpd we cannot predict what we see, which we
denote by Ω. When the propagation delay has passed, we see the new digital value of the
register, which is equal to the digital input Sdin(hi−1

v) during the previous cycle (see
Figure 12).

Sv(t) =

⎧⎪⎨
⎪⎩

hi−1
v .S ¬Sce(hi−1

v)

Ω Sce(hi−1
v) ∧ t ≤ ev(i) + tpd

Sdin(hi−1
v) Sce(hi−1

v) ∧ t > ev(i) + tpd

The fbus is an open collector bus modeled for all t by:

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems270

fbus(t) =
∧
v

Sv(t)

Now consider a receiver register Ru on ECU u whose clock enable is continuously
turned on; thus the register always samples from the fbus. In order to define the new
digital value hj

u.R of register R during cycle j on ECU u we have to consider the value
of the fbus(t) in the time interval (eu(j)−ts, eu(j)+th), i.e. from the clock edge minus
the set-up time until the clock edge plus the hold time. If during that time the fbus has a
constant digital value x, the register samples that value:

∃x ∈ {0, 1} ∀t ∈ (eu(j) − ts, eu(j) + th) : fbus(t) = x ⇒ hj
u.R = fbus(eu(j))

Otherwise we define hj
u.R = Ω.

We have to argue how to deal with unknown values Ω as input to digital hardware.
We will use the output of register R only as input to a second register R̂ whose clock
enable is always turned on, too. If Ω is clocked into R̂ we assume that R̂ has an unknown
but digital value:

hj
u.R = Ω ⇒ hj+1

u .R̂ ∈ {0, 1}

Indeed, in real systems the counterpart of register R̂ exists. The probability that R
becomes metastable for an entire cycle and that this causes R̂ to become metastable too
is for practical purposes zero. This is exactly what has been formalized above. Note that
our model uses different but fixed individual clock periods τv .

There is no problem to extend the model to deal with jitter. Let τv(i) denote the
length of cycle i on ECU v , then we require for all v and i:

τv(i) ∈ [τref · (1 − δ), τref · (1 + δ)]

The time ev(i) of the i-th clock edge on ECU j is then defined as:

ev(i) =

{
cv i = 0

ev(i − 1) + τv(i − 1) otherwise

This does not complicate the subsequent theory significantly.

e(i)

Sdin

S � x

tpd

x

Figure 12. Sender Register

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 271

e (i)s

ts th

e (j)r

Figure 13. Clock Edges

11.2. Continuous Time Lemmas for the Bus

Consider a pair of ECUs, where ECU s is the sender and ECU r is a receiver in a given
slot. Let i be a sender cycle such that Sce(hi−1

s) = 1, i.e. the output of S is not guar-
anteed to stay constant at time es(i). This change can only affect the value of register R
of ECU r in cycle j if it occurs before the sampling edge er(j) plus the hold time th, i.e.
es(i) < er(j) + th. Figure 13 shows a situation where due to a hold time violation we
have es(i) > er(j). The first cycle that is possibly being affected is denoted by:

cyr,s(i) = min{j | es(i) < er(j) + th}

In what follows we assume that all ECUs other than the sender unit ECU s put the
value 1 on the bus (hence fbus(t) = Ss(t) for all t under consideration). Furthermore
we consider only one receiving unit ECU r. Because the indices r and s are fixed we
simply write cy(i) instead of cyr,s(i).

There are two essential lemmas whose proof hinges on the continuous time model.
The first lemma considers a situation, where we activate the clock enable Sce of the
sender ECU in cycle i − 1 but not in the following seven cycles. In the digital model
we then have hi

s.S = . . . = hi+7
s .S and in the continuous time model we observe x =

fbus(t) = Sv(t) = hi
s.S for all t ∈ [es(i) + tpd, es(i + 8)]. We claim that x is correctly

sampled in at least six consecutive cycles

Lemma 3 (Correct Sampling Interval) Let the clock enable signal of the S register be
turned on in cycle i − 1, i.e. Sce(hi−1

s) = 1 and let the same signal be turned off in the
next seven cycles, i.e. Sce(hj

s) = 0 for j ∈ {i, . . . , i + 6} then:

hcy(i)+k
r .R = hi

s.S for k ∈ {1, . . . , 6}

The second lemma simply bounds the clock drift. It essentially states that within 300
cycles clocks cannot drift by more than one cycle; this is shown using δ ≤ 0.15%.

Lemma 4 (Bounded Clock Drift) The clock drift for a given cycle m ∈ {1, . . . , 300}
is bounded by:

cy(i) + m − 1 ≤ cy(i + m) ≤ cy(i) + m + 1

Detailed proofs of very similar lemmas are to be found in [Pau05,BBG+05], a for-
mal proof is reported in [Sch06a].

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems272

11.3. Serial Interface Construction and Correctness

Recall that for natural numbers n and bits y we denote by yn the string in which bit y is
replicated n times, e.g. 04 = 0000. For strings x[0 : k − 1] consisting of k bits x[i] we
denote by 8 · x the string obtained by repeating each bit eight times:

8 · x = x[0]8 ◦ · · · ◦ x[k − 1]8

Our serial interface transmits messages m[0 : � − 1] consisting of � bytes m[i] from
a send buffer sb of the sending ECU to a receive buffer rb of the receiving ECU.

The following protocol is used for transmission (see Figure 14). One creates from
message m a frame f(m) by inserting falling edges between the bytes and adding some
bits at the start and the end of the frame:

f(m) = 0110m[0] · · · 10m[� − 1]01

In f(m) we call the first zero the transmission start sequence (TSS), the first one the
frame start sequence (FSS), the last zero the frame end sequence (FES) and the last one
the transmission end sequence (TES). The two bits producing a falling edge before each
byte are called the byte start sequence (BS0 ,BS1). The sending ECU broadcasts 8·f(m)
over the fbus.

Figure 15 shows a simplified view on the hardware involved in the transmission of a
message. On the sender side, there is an automaton keeping track which bit of the frame
is currently being transmitted. This automaton inserts the additional protocol bits around
the message bytes. Hardware for sending each bit eight times and for addressing the send
buffer is not shown.

On the receiver side there is the automaton from Figure 14 (the automaton on the
sender side is very similar) trying to keep track of which bit of the frame is currently
transmitted. That it does so successfully requires proof.

The bits sampled in register R̂ are processed in the following way. The voted bit v is
computed by applying a majority vote to the last five sampled bits. These bits are given
by the R̂ register and a 4-bit shift register as depicted in Figure 16.

According to Lemma 3 for each bit of the frame a sequence of at least six bits is cor-
rectly sampled. The filtering essentially maintains this property. If the receiver succeeds
to sample that sequence roughly in the middle, he wins. For this purpose the receiver has
a modulo-8 counter (see Figure 17) trying to keep track of which of the eight identical
copies of a frame bit is currently transmitted. When the counter value equals four a strobe
bit is produced. For frame decoding the voted bit is sampled with the strobed bit. The
automaton trying to keep track of the protocol is also clocked with this strobe bit.

Figure 14. Frame Encoding

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 273

Figure 15. Send and Receive Buffer

Clocks are drifting, hence the hardware has to perform a low level synchronization.
The counter is reset by a sync signal in two situations: At the beginning of a transmission
or at an expected falling edge during the byte start sequence. Abbreviating signals s(hi

r)
with si we write

synci = (idlei ∨ BS0 i) ∧ (¬vi ∧ vi−1)

The crucial part of the correctness proof is a lemma arguing simultaneously about
three statements by induction over the receiver cycles:

Lemma 5 (Transmitting Single Messages) Three hypothesis:

1. The state of the automaton keeps track of the transmitted frame bit.
2. The sync signal is activated at the corresponding falling edge of the voted bit

between BS0 and BS1 .
3. Sequences of identical bit are sampled roughly in the middle.

Formalizing this lemma (as done in [Pau05,Sch06b]) requires a detailed look on the
automaton as well as on the sender- and receiver logic which both is not possible here
due to space restrictions. A formal proof of such a lemma in an abstract model, which
was obtained largely by automatic methods, is reported in [BP06]; a formal proof of the
lemma in our hardware model is reported in [Sch06b].

We sketch the proof: Statement 1 is clearly true in the idle state. From statement 1
follows that the automaton expects the falling edges of the voted signal exactly when the

Figure 16. Receiver Logic

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems274

Figure 17. Strobe Signal

sender generates them. Thus the counter is well synchronized after these falling edges.
This shows statement 2. Immediately after synchronization the receiver samples roughly
in the middle. There is a synchronization roughly every 80 sender cycles. By Lemma 4
and because 80 < 300, the sampling point can wander by at most one bit between
activations of the sync signal. This is good enough to stay within the correctly sampled
six copies. This shows statement 3. If transmitted frame bits are correctly sampled, then
the automaton keeps track of them. This shows statement 1.

Let t0 be the time (not the cycle) when the start signal of the sender is activated.
Let t1 be the time, when all automata have reached the idle state again and all write
accesses to the receive buffer are completed. Let

tc = 45 + 80 · �

be the number of ‘transmission cycles’. Then:

Lemma 6 (Correct Message Transfer With Time Bound) All messages are correctly
transmitted, and the transmission does not last longer than tc sender cycles:

rb(t1) = sb(t0)
t1 − t0 ≤ tc · τs

Intuitively, the product 80 ·� in the definition of tc comes from the fact that each byte
produces 10 frame bits and each of these is transmitted 8 times. The four bits added at the
start and the end of the frame contribute 4 · 8 = 32. The remaining 13 cycles are caused
by delays in the receiver logic, in particular by the delay in the shift register before the
majority voter.

12. FlexRay-Like Interfaces and Clock Synchronization

Using the serial interfaces from the last section we proceed in the construction of entire
f-interfaces. The results from this section were first reported in [Pau05,KP06].

12.1. Hardware Components

Recall that we denote hardware configurations of ECU v by hv . If the index v of the
ECU does not matter, we drop it. The hardware configuration is split into a processor
configuration h.p and an interface configuration h.f . In addition to the registers of the
serial interface, the essential components of the hardware configuration h.f of our (non
fault tolerant) FlexRay-like interface are:

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 275

Figure 18. Hardware Timer

• Double buffers h.f.sb(par) and h.f.rb(par), where par ∈ {0, 1}, implementing
the user-visible send and receive buffers.

• The registers of a somewhat non trivial timer h.f.timer.
• Configuration registers.

The construction of the hardware timer h.f.timer is sketched in Figure 18. The low
order bits h.f.timer.cy count the cycles of a slot. Unless the timer is synchronized, slots
have locally T cycles, thus the low order bits are part of a modulo-T counter. The high-
order bits h.f.timer.s count the slot index s of the current slot (r, s) modulo ns. The
timer is initialized with the value (ns − 1, T − 1).

The timers on all ECUs but ECU send(0) stall when reaching the maximum value
(ns−1, T −1) and wait for synchronization. The timer on ECU send(0) always continues
counting. Details regarding the synchronization mechanism are given in Section 12.2.

The overflow signal ovf (h) between the low order and the high-order bits of the
counter can essentially serve as the timer interrupt signal ti(h) generated by the interface
hardware:11

ti(hi) = ovf (hi) ∧ ¬ovf (hi−1)

The low order bit of the slot counter keeps track of the parity of the current slot and
is called the hardware parity signal:

par(h) = h.f.timer.s[0]

In general the fbus side of the interface will see the copies h.f.sb(par(h)) and
h.f.rb(par(h)). Messages are always transmitted between these two copies of the
buffers. The processor on the other hand writes to h.f.sb(¬par(h)) and reads from
h.f.rb(¬par(h)). This does not work at boundaries of rounds unless the number of
slots ns is even.

The configuration registers are written immediately after reset / power-up. They con-
tain in particular the locally relevant portions of the scheduling function. Thus if ECU v

is (locally) in a slot with slot index s and send(s) = v then ECU v will transmit the
content of the send buffer h.f.sb(par(h)) via the fbus during some transmission inter-
val [ts(r, s), te(r, s)]. A serial interface that is not actively transmitting during slot (r, s)
puts by construction the idle value (the bit 1) on the bus.

If we can guarantee that during the transmission interval all ECUs are locally in
slot (r, s), then transmission will be successful by Lemma 6. The clock synchronization
algorithm together with an appropriate choice of the transmission interval will guarantee
exactly that.

11The interrupt signal is kept active until it is cleared by software; the extra hardware is simple.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems276

12.2. Clock Synchronization

The idea of clock synchronization is easily explained: Imagine one slot is one hour and
one round is one day. Assume different clocks drift by up to drift = 5 minutes per
day. ECUs synchronize to the first bit of the message transmission due between midnight
and 1 o’clock. Assume adjusting the clocks at the receiving ECUs takes up to adj = 1
minute. Then the maximal deviation during 1 day is off = drift + adj = 6 minutes.
ECU send(s), which is the sender in hour s, is on the safe side if it starts transmitting
from s o’clock plus off minutes until off minutes before s + 1 o’clock, i.e. somewhen
in between s : 06 o’clock and s + 1 : 54 o’clock.

At midnight life becomes slightly tricky: ECU send(0) waits until it can be sure that
everybody believes that midnight is over and hence nobody is transmitting, i.e. until its
local time 0 : 06. Then it starts sending. All other ECUs are waiting for the broadcast
message and adjust their clocks to midnight + off = 0 : 06 once they detect the first
falling bit. Since that might take the receiving ECUs up to 1 minute it might be 0 : 07
o’clock on the sender when it is 0 : 06 o’clock at the receiver; thus after synchronization
the clocks differ by at most adj = 1 minute.

We formalize this idea in the following way: Assume without loss of general-
ity that send(0) = 0. All ECUs but ECU 0 synchronize to the transmission start se-
quence (TSS) of the first message of ECU 0. When ECU’s waiting for synchronization
(h.f.timer = (ns−1, T −1)) receive this TSS, they advance their local slot counter to 0
and their cycle counter to off . Analysis of the algorithm will imply that for all v �= 0,
ECU v will be waiting for synchronization, when ECU 0 starts message transmission in
any slot (r, 0).

First we define the start times αv(r, s) of slot (r, s) on ECU v . This is the start time
of the first cycle t in round r when the timer in the previous cycle had the value:

ht−1.f.timer = ((s − 1 mod ns), T − 1)

This is the cycle immediately after the local timer interrupts. For every round r, we
also define the cycles βv(r) when the synchronization is completed on ECU v . Formally
this is defined as the first cycle β > αv(r, 0) such that the local timer has value:

hβ .f.timer = (0, off)

Timing analysis of the synchronization process in the complete hardware design
shows that for all v and y adjustment of the local timer of ECU v to value (0, off) is
completed within an adjustment time ad = 15 · τy after α0(r, 0):

β0(r) = α0(r, 0) + off · τ0

βv(r) ≤ β0(r) + 15 · τy

For s ≥ 1 no synchronization takes place and the start of new slots is only deter-
mined by the progress of the local timer:

αv(r, s) =

{
βv(r) + (T − off) · τv s = 1

αv(r, s − 1) + T · τv s ≥ 2

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 277

Figure 19. Schedules

ECU 0 synchronizes the other ECUs. Thus the start of slot (r, 0) on ECU 0 depends
only on the progress of the local counter:

α0(r, 0) = α0(r − 1, ns − 1) + T · τ0

An easy induction on s bounds the difference between start times of the same slot
on different ECUs:

αx(r, s) − αv(r, s) ≤ 15 · τv + (s · T − off) · (τx − τv)
≤ 15 · τv + (ns · T · Δ · τv)
= τv · (15 + (ns · T · Δ))
= τv · off

(3)

Thus we have off = ad + drift with ad = 15 and drift = ns · T · Δ.
The transmission is started in slots (r, s) by ECU send(s) when the local cycle count

is off . Thus the transmission start time is:

ts(r, s) = αsend(s)(r, s) + off · τsend(s)

By Lemma 6 the transmission ends at time:

te(r, s) = ts(r, s) + tc · τsend(s)

= αsend(s)(r, s) + (off + tc) · τsend(s)

The transmission interval [ts(r, s), te(r, s)] must be contained in the time interval,
when all ECUs are in slot (r, s), as depicted in Figure 19.

Lemma 7 (No Bus Contention) For all indices v and u of ECUs:

αv(r, s) ≤ ts(r, s)
te(r, s) ≤ αu((r, s) + 1)

The first inequality holds because of (3). Let x = send(s):

αv(r, s) ≤ αx(r, s) + τx · off
= ts(r, s)

The second inequality determines the minimal size of T :

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems278

te(r, s) ≤ αx(r, s) + (off + tc) · τx

≤ αu(r, s) + off · τu + (off + tc) · (1 + Δ) · τu

≤ αu((r, s) + 1)
= αu(r, s) + T · τu

Further calculations are necessary at the borders between rounds. Details can be
found in [Pau05].

From the local start times of slots αv(r, s) we calculate the numbers of local start
cycles tv(r, s) using (2)

αv(r, s) = cv + tv(r, s) · τv

and then solving for tv(r, s). Trivially the number uv(r, s) of the locally last cycle on
ECUv is:

uv(r, s) = tv((r, s) + 1) − 1

Consider slot (r, s). Lemma 6 and Lemma 7 then imply that the value of the send
buffer of ECUsend(s) on the network side (par = s mod 2) at the start of slot (r, s) is
copied to all receive buffers on the network side by the end of that slot.

Theorem 6 (Message Transfer With Cycles) Let x = send(s). Then for all v:

htx(r,s)
x .f.sb(s mod 2) = huv(r,s)

v .f.rb(s mod 2)

This lemma talks only about digital hardware and hardware cycles. Thus we have
shown the correctness of data transmission via the bus and we are back in the digital
world.

13. Integrating f-Interfaces into the ISA

In Section 4.3 we have developed an ISA model for processors with generic devices.
So far we have collected many device specific results for ECUs connected by an fbus.
Hence there is not terribly much left to be done in order to integrate f-Interfaces into the
ISA.

13.1. Specifying Port RAM

If a processor accesses a device f with K I/O byte ports, then for k = �log K� the device
configuration (here ecu.f) contains a byte RAM:

ecu.f.m : {0, 1}k → {0, 1}8

In our case the memory of the device contains the send buffer, the receive buffer
–each with � bytes where � is a multiple of 4– and say k configuration registers. Thus:

K = 2 · � + 4 · k

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 279

We use the first � bytes of this memory for the send buffer, the next � bytes for the
receive buffer and the remaining bytes for the configuration registers. We formalize this
by defining for all indices of message bytes y ∈ {0, . . . , � − 1}:

sb(ecu)(y) = ecu.f.m(y)
rb(ecu)(y) = ecu.f.m(� + y)

In the absence of timer interrupts the ports are quiet. Thus, as long as no timer
interrupt occurs, we can use the generic ISA model from Section 2.

13.2. Timer Interrupt and I/O

As pointed out earlier, at the ISA level the timer interrupt must be treated as an oracle in-
put eev. Furthermore we have to deal with the external data input fdin to the f-interface.
If we denote by eevi the oracle input and by fdini the external data input for the i-th
instruction, then we get computations ecu0, ecu1, . . . by defining (again straight from the
automata theory textbooks):

ecui+1 = δD(ecui, eevi, fdini)

Within our programming model we now introduce names jv(r, s) for certain indices
of local instructions on ecuv . Intuitively, the timer interrupts the instruction executed in
local configuration ecu

jv(r,s)
v , and this locally ends slot (r, s). By the results of Section 3,

this is the instruction scheduled in the write back stage WB in the last cycle uv(r, s), as
defined in Section 12.2, of slot (r, s) on ecuv:

jv(r, s) = s(WB , uv(r, s)) (4)

Note that in every cycle an instruction is scheduled in every stage. Nevertheless, due
to pipeline bubbles, the write back stage might be empty in cycle uv(r, s). In this situation
the scheduling functions, by construction, indicates the next instruction to arrive which
is not there presently. We require interrupt event signals be only cleared by software,
hence the hardware interrupt signal will stay active in cycles following uv(r, s). Thus
Equation (4) also holds in this case.

This was the crucial step to get from the cycle level to the instruction level. Purely
within the ISA model we continue to define:

• iv(r, s) = jv((r, s) − 1) + 1: The index of the first local instruction in slot (r, s).

• dv(r, s) = ecu
iv(r,s)
v : The first local ISA configuration in slot (r, s).

• ev(r, s) = ecu
jv(r,s)
v : The last local ISA configuration in slot (r, s).

We can even define the sequence eev(r, s) of oracle timer inputs eevi where i ∈
{iv(r, s), . . . , jv(r, s)}. It has the form

eev(r, s) = 1a0b1

where the timer interrupt is cleared by software instruction iv(r, s)+a−1 and a+b+1 =
jv(r, s) − iv(r, s) + 1 is the number of local instructions in slot (r, s).

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems280

Indeed we can complete, without any effort, the entire ISA programming model.
The effect of an interrupt on the processor configuration has been defined in the previous
section, thus we get for instance:

dv(r, s).d.dpc = 032

dv(r, s).d.pc = 03010

Also for the transition from ev(r, s) to dv((r, s) + 1) and only for this transition we
use the external input:

fdinjv(r,s) ∈ {0, 1}8·�

Thus we assume that it consists of an entire message and we copy that message into
the user-visible receive buffer

rb(dv((r, s) + 1)) = fdinjv(r,s)

Of course we also know what this message should be: The content of the user-visible
send buffer of ecusend(s) at the end of slot (r, s) − 1:

fdinjv(r,s) = sb(esend(s)((r, s) − 1))

Theorem 7 (Buffer Broadcast)

∀v : rb(dv((r, s) + 1)) = sb(esend(s)((r, s) − 1))

This completes the user-visible ISA model. And with Theorem 6 we essentially
already completed the hardware correctness proof of the implementation of Equation (1).
The nondeterminism is completely encapsulated in the numbers jv(r, s) as it should be,
at least if the local computations are fast enough. All we need to do is to justify the model
by a hardware correctness theorem and to identify the conditions under which it can be
used.

13.3. Hardware Correctness of the Parallel System

For a single slot (r, s), and a single processor with an f-interface, the generic hardware
correctness statement from Section 4.4 translates into Theorem 8 below. Recall from
Section 12.2 that we know already the start cycles tv(r, s) for all ECUs. The statement
of the theorem is identical for all ecuv . Thus we drop the subscript v. The theorem as-
sumes that the pipe is drained and that the simulation relation between the first hardware
configuration h(r, s) = ht(r,s) and the first ISA configuration d(r, s) = ecui(r,s) of the
slot holds.

Theorem 8 (Hardware Correctness for One Slot) Assume that drained(h(r, s)) and
sim(d(r, s), h(r, s)) holds. Then for all t ∈ {t(r, s), . . . , (t((r, s) + 1)) − 1}, for all
stages k and for all registers R with stage(R) = k:

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 281

ht.p.R = ecus(k,t).p.R
m(ht.p) = ecus(mem1,t).p.m

ht.f.sb(¬par(ht)) = sb(ecus(mem1,t))
ht.f.rb(¬par(ht)) = rb(ecus(mem1,t))

The theorem is proven by induction over the cycles of the slot. Using the above theorem
we can show:

Theorem 9 (Hardware Correctness for System)

∀(r, s), v : drained(hv(r, s)) ∧ sim(dv(r, s), hv(r, s))

Theorem 9 is proven by induction over the slots (r, s). In order to argue about the
boundaries between two slots Theorem 8 and Lemma 7 must be applied on the last cycle
of the previous slot.

14. Pervasive Correctness Proofs

Next, we show how pervasive correctness proofs for computations with timer interrupts
can be obtained from (i) correctness proofs for ISA programs that cannot be interrupted
(ii) hardware correctness theorems and (iii) worst case execution time (WCET) analysis.
As one would expect, the arguments are reasonably simple, but the entire formalism of
the last sections is needed in order to formulate them.

We consider only programs of the form:12

{P ; a : jump a; a + 4 : NOP}

The program does the useful work in portion P and then waits in the idle loop for
the timer interrupt. P initially has to clear and then to unmask the timer interrupt, which
is masked when P is started (see Section 2.3).

14.1. Computation Theory

We have to distinguish carefully between the transition function δD(ecu, eev, fdin) of
the interruptible ISA computation and the transition function δU (ecu) of the non inter-
ruptible ISA computation that we define as follows:

δU (ecu) = δD(ecu, 0, ∗)

Observe that this definition permits the non interruptible computation to clear the
timer interrupt bit by software. Non interruptible computations starting from configura-
tion ecu are obtained by iterated application of δU :

δi
U (ecu) =

{
ecu i = 0

δU (δi−1
U (ecu)) otherwise

12Note that we have an byte addressable memory and that in an ISA with delayed branch the idle loop has
two instructions.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems282

For the ISA computation

d(r, s) = ecui(r,s), ecui(r,s)+1, . . . , ecuj(r,s) = e(r, s)

that has been constructed in Theorem 8 we get:

Lemma 8 For all instructions in a given slot, i.e. t ∈ [0 : (j(r, s) − i(r, s))]:

ecui(r,s)+t = δt
U (d(r, s))

This lemma holds due to the definition of j(r, s) and the fact that the timer is masked
initially such that the instructions of the interruptible computation are not interrupted.

We define the ISA run time TU (ecu, a), i.e. the time until the idle loop is reached,
simply as the smallest i such that δi

U fetches an instruction from address a:

TU (ecu, a) = min{i | δi
U (ecu).p.dpc = a}

Furthermore we define the result of the non interruptible ISA computation by:

resU (ecu, a) = δ
TU (ecu,a)
U (ecu)

Correctness proofs for non interruptible computations can be obtained by classical
program correctness proofs. They usually have the form ecu ∈ E ⇒ resU (ecu, a) ∈ Q
or, written as a Hoare triple {E}P{Q}.

We assume that the definition of Q does not involve the PC and the delayed PC.
Because the idle loop only changes the PC and the delayed PC of the ISA computation
we can infer on the ISA level that property Q continues to hold while we execute the idle
loop:

∀i ≥ TU (ecu, a) : δi
U (ecu) ∈ Q

14.2. Pervasive Correctness

Let sim(ecu, h) hold, then the ISA configuration ecu can be decoded from the hardware
configuration by a function:

ecu = decode(h)

Clearly, in order to apply the correctness statement {E}P{Q} to a local computation
in slot (r, s), we have to show for the first ISA configuration in the slot:

d(r, s) ∈ E

Now consider the last hardware configuration g(r, s) = hu(r,s) of the slot (r, s). We
want to conclude:

Theorem 10 Assume the simulation relation holds initially, i.e. sim(d(r, s), h(r, s)).
Then the decoded configuration obeys the postcondition Q:

decode(g(r, s)) ∈ Q

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 283

This only works if portion P of the program is executed fast enough on the pipelined
processor hardware.

14.3. Worst Case Execution Time

We consider the set H(E) of all hardware configurations h encoding an ISA configura-
tion ecu ∈ E:

H(E) = {h | decode(h) ∈ E}

While the decoding is unique, the encoding is definitely not. Portions of the ISA
memory can be kept in the caches in various ways.

Given a hardware configuration h = h0 we define the hardware run time TH(h, a)
until a fetch from address a as the smallest number of cycles such that in cycle t an
instruction, which has been fetched in an earlier cycle t′ < t from address a, is in the
write back stage WB . Using scheduling functions this definition is formalized as:

TH(h, a) = min{t′ | ∃t : s(WB , t′) = s(IF , t) ∧ ht.dpc = a}

Thus for ISA configurations satisfying E we define the worst case execution time
WCET (E, a) as the largest hardware runtime TH(h, a) of a hardware configuration
encoding a configuration in E:

WCET (E, a) = max{TH(h, a) | h ∈ H(E)}

As pointed out earlier such estimates can be obtained from (sound!) industrial tools
based on the concept of abstract interpretation [Abs]. AbsInt’s WCET analyzer does
not calculate the “real” worst-case execution time WCET (E, a), but an upper bound
WCET ′(E, a) ≥ WCET (E, a). Nevertheless this is sufficient for correctness since
WCET ′(E, a) ≤ T − off ⇒ WCET (E, a) ≤ T − off . Assume we have:

WCET (E, a) ≤ T − off

Within slot (r, s) we look at the ISA configuration d(r, s) = ecui(r,s) and a local
computation starting in hardware configuration h(r, s) = ht(r,s). Considering the com-
putation after hardware run time many cycles TH(h(r, s), a) < T −off we can conclude
that the computation is not interrupted and the instruction in the write back stage (at the
end of the computation) is the first instruction being fetched from a. By the definition of
the ISA run time this is exactly instruction i(r, s) + TU (d(r, s), a), thus we conclude:

s(WB , t(r, s) + TH(h(r, s), a)) = i(r, s) + TU (d(r, s), a)

Let h′ = ht(r,s)+TH(h(r,s),a) be the hardware configuration in this cycle and let
ecu′ = ecui(r,s)+TU (d(r,s),a) = resU (d(r, s), a) be the ISA configuration of the instruc-
tion in the write back stage.

In this situation the pipe is almost drained. It contains nothing but instructions from
the idle loop. Thus the processor correctness theorem sim(ecu′, h′) holds for all com-
ponents of the configuration but the PC and the delayed PC. Therefore we weaken the

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems284

simulation relation sim to a relation dsim by dropping the requirement that the PCs and
delayed PCs should match:

dsim(ecu′, h′)

Until the end of the slot in cycle t(r, s)+T and instruction j(r, s), only instructions
from the idle loops are executed. They do not affect the dsim relation, hence:

dsim(e(r, s), g(r, s))

Since resU (d(r, s), a) ∈ Q and Q does not depend on the program counters we
have e(r, s) ∈ Q. We derive that decode(g(r, s)) coincides with e(r, s) except for the
program counters. And again, because this does not affect the membership in Q, we get
the desired Theorem 10.

15. The Distributed OSEKtime-Like Operating System D-OLOS

15.1. D-OLOS Configuration

We consider p electronic control units ECU i, where i ∈ [0 : p − 1]. On each ECU i

there are ni user processes UP (i, j), where j ∈ [0 : ni − 1], running under the real-time
operating system OLOS. These user programs are compiled C0 programs. We denote the
source program for UP (i, j) by C(i, j).

On each ECU i application programs C(i, j) can access a set of messages buffers
MB(i) via system calls. Messages come in nm many different types. For k ∈ [0 :

nm − 1] messages of type k are stored in message buffers MB(i)(k). Thus each ECU i

is capable of storing one message of each type in its message buffers MB(i)(k). These
message buffers are the direct counterparts of the FTCom buffers in OSEK. However
we do not support fault tolerance, yet.

Messages between different ECU’s are exchanged via an fbus using f-interfaces.
The drivers for these interfaces are part of OLOS.

As before time is divided into rounds r each consisting of a fixed number ns of
slots s. From the point of view of a C0 application programmer a D-OLOS configu-
ration dolos represents the global state of the distributed system having the following
components:

• dolos.C(i, j) is the configuration of an abstract C0 machine representing applica-
tion program C(i, j) for i ∈ [0 : p − 1] and j ∈ [0 : ni − 1].

• dolos.MB(i)(k) is the k-th message in the message buffer of ECU i.

• dolos.s is the current slot index.

• dolos.bus holds the message value of the message currently being broadcast.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 285

15.2. Scheduling and Communication

For slots (r, s) we denote by D(r, s) resp. E(r, s) the D-OLOS configuration at the start
resp. at the end of slot (r, s). The message on the bus is constant during each slot (r, s).
It equals D(r, s).bus.

The scheduling of all applications C(i, j) as well as the inter ECU communication
procedure via the fbus is identical in each round r and only depends on the slot index s.
Both are determined by three functions:

• The scheduling of all applications is defined by the global scheduling func-
tion run, where run(i, s) ∈ [0 : ni − 1]. For all i and s this function returns
the index of the application being executed in slots (r, s) on ECU i. Thus applica-
tion C(i, run(i, s)) is running on ECU i during slots (r, s). The state of applica-
tions that are not running does not change during a slot:

j �= run(i, s) ⇒ E(r, s).C(i, j) = D(r, s).C(i, j)

• As before functions send with send(s) ∈ [0 : p − 1] gives the index of the ECU
sending during slots (r, s).

• The function mtype with mtype(s) ∈ [0 : nm − 1] gives the type of the message
transmitted over the fbus during slots (r, s).

The message bus(r, s) is the content of message buffer with index mtype(s) of
ECU send(s) at the end of the previous slot:

bus(r, s) = E((r, s) − 1).MB(send(s))(mtype(s))

At the start of the next slot, message bus(r, s) is copied into all message buffers with
index mtype(s):

∀i : D((r, s) + 1).MB(i)(mtype(s)) = D(r, s).bus

15.3. Local Computation

For each ECU i and slot (r, s) we have to define the effect of application C(i, run(i, s))
on the corresponding C0 configuration dolos.C(i, run(i, s)) and on the local message
buffers dolos.MB(i)(k). Therefore we introduce local configurations lc being a pair
with the following components: A C0 configuration lc.c of a local application and a set
of local message buffers lc.MB(k) with k ∈ [0 : nm − 1].

We will now define a local transition function lc′ = δLC(lc). The C0 programs
running under the local operating system (OLOS) can read and write MB(k) using two
system calls:

1. ttsend(k, msg): The execution of this function results in copying the value of
the C0 sub-variable with identifier msg into MB(k). Let K = va(lc.c, k) be the
current values of k. Then:

lc.c.pr = ttsend(k, msg); r ⇒ lc′.MB(K) = va(lc.c, msg) ∧ lc′.c.pr = r

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems286

2. ttrec(k, msg): At invocation of this function the C0 sub-variable having the iden-
tifier msg is updated with the value of MB(k). Let K = va(lc.c, k). Then:

lc.c.pr = ttrec(k, msg); r ⇒ va(lc′.c, msg) = lc.MB(K) ∧ lc′.c.pr = r

OLOS offers a third call named ttex. An application invoking this system call indicates
that it has completed its computation for the current slot and wants to return the control
back to the operating system. The execution of system call ttex on the local configuration
is like a NOP :

lc′.c.pr = ttex; r ⇒ lc′.c.pr = r

If the program rest does not start with one of the system calls, then an ordinary C0
instruction is executed and the message buffers stays unchanged:

lc′.c = δC(lc.c)

We define run time (measured in C instructions) and result of a local computation in
the usual way:

TC(lc) = min{t | ∃r : (δt
LC(lc)).pr = ttex; r}

resLC(lc) = δ
TC(lc)
LC (lc)

and complete the definition of the D-OLOS semantics with the help of the result of local
computations. Let j = run(i, s). Then:

(E(r, s).C(i, j), E(r, s).MB(i)) = resLC(D(r, s).C(i, j), D(r, s).MB(i))

Let us consider a situation where the application code is wrapped by a while-loop
and that ttex is invoked only once as the last statement of the loop body:

while(true) { “application code” ; ttex }

In this case we enforce the application code to be executed once each time the applica-
tion is scheduled. Intuitively, from the applications programmers point of view, the ttex
system call does nothing but wait till the application is scheduled again.

16. D-OLOS Implementation

We implement the local version OLOS of D-OLOS by specializing the abstract kernel
of CVM. The only device of CVM is an f-interface. The ISA programs of the virtual
machines are obtained by compiling the local application programs. Among others the
abstract kernel uses the following variables and constants (i) the constant own of the
kernel stores the index of the local ECU (ii) C0 implementations of the functions run,
send and mtype (iii) an integer variable s keeping track of the current slot (iv) an ar-
ray MB [0 : nm − 1] capable of storing nm messages.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 287

16.1. Invariants

On each cvm(i), i ∈ [0 : p − 1], we will run ni virtual machines, one for each ap-
plication on the i-th ECU. An obvious simulation relation osim(aba)(dolos, cvm) is
parameterized by a sequence aba of allocation functions aba(i, j). For each ECU i we
require:

1. The kernel keeps track of the D-OLOS slot:

va(cvm(i).c, s) = dolos.s

2. The application scheduled by D-OLOS is running:

cvm(i).cp = run(i, dolos.s)

3. The user processes of CVM encode the applications of D-OLOS:

∀i, j < ni : consis(aba(i, j))(dolos.C(i, j), cvm(i).vm(j))

4. The content of the D-OLOS message buffers are stored in the corresponding vari-
ables of the abstract kernel:

∀i, k : va(cvm(i).c,MB [k]) = dolos.MB(i)(k)

To argue about slot boundaries we need to define for all ECU indices i and slots (r, s)
the first CVM configuration dcvm(i)(r, s) and the last CVM configuration ecvm(i)(r, s)
of cvm(i) in slot (r, s). Slot boundaries are defined by timer interrupts.

Because the CVM primitive wait is interruptible by timer interrupts, one has to
extend the sequence eev(i)t of oracle interrupt event signals also for the situation, when
the current process of CVM is the abstract kernel, i.e. a C0 program, and the program rest
starts with wait. Now we have to construct a sequence eev(i)t such that the simulation
theorem works. Since the kernel computation gets stuck if the program rest starts with
the wait primitive we can easily show that: If user processes on the i-th ECU are not
interrupted during slot (r, s) then dcvm(i)(r, s) is the first configuration in slot (r, s)
such that cvm(i).c.pr = wait; r′ for some r′. The first configuration after the timer
interrupt is defined in a similar way as the cvm configuration after a trap instruction in
Section 8.4.

At slot boundaries two more ’communication’ invariants are needed:

1. If i = send(s), then the send buffer sb(ecvm(i)((r, s) − 1)) on the i-th ECU at
the end of the previous slot is the message on dolos.bus during slot (r, s):

i = send(s) ⇒ sb(ecvm(i)((r, s) − 1)) = D(r, s).bus

2. The receive buffer rb(dcvm(i)(r, s)) on every ECU at the beginning of slot (r, s)
is the message on dolos.bus during the previous slot:

∀i : rb(dcvm(i)(r, s)) = D((r, s) − 1).bus

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems288

Figure 20. Slots in OLOS

16.2. Construction of the Abstract OLOS Kernel

Assume that all invariants hold for slot (r, s)− 1 we construct the abstract OLOS kernel
such that they are maintained during slot (r, s). One round of a CVM computation on
an ECU proceeds in three phases as shown in Figure 20. In phases 1 and 3 the kernel
runs; in phase 2 a user process runs and invokes system calls. The following happens in
phase 1:

1. The kernel is running and increments s. Hence part 1 of osim holds.
2. A driver using variants of the CVM copy primitive copies the local receive buffer

into variable MB [type(own, s − 1)]. This implies that part 4 of osim holds after
phase 1.

3. The next process to be started is computed by cup = run(own, s). Furthermore
the CVM primitive start(cup) is executed. Hence part 2 of osim holds after
phase 1.

During phase 2 we only have to worry about the running process. It is easy to im-
plement the handlers for system calls ttsend and ttrec with the help of the CVM copy
primitive such that parts 3 and 4 of osim hold. Phase 2 ends by a system call ttex of the
application returning control to the kernel again. The kernel determines if the ECU is the
sender in the next slot:

send(s + 1) =? own

If this is the case it copies the content of variable MB [mtype(s + 1)] into the local send
buffer. This implies part 1 of the communication invariant. In any case the kernel then
executes the wait primitive and idles waiting for the end of the round.

Worst case execution time analysis for an ECU must consider all assembler pro-
grams running on the ECU: The compiled concrete kernel as well as the compiled user
programs. Address a from Section 14 is the address, where the compiled concrete kernel
starts waiting for the timer interrupt. Theorem 7 then implies part 2 of the communication
invariant.

17. The Auto Focus Task Model (AFTM)

17.1. Configurations

The AutoFocus task model (AFTM) is a computational model for a restricted version of
the AutoFocus CASE tool [Aut]. The restrictions aim at making the implementation of

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 289

AFTM by D-OLOS efficient. As in many high level CASE tools AFTM programs are
modeled by a certain number M of communicating ’task’ automata T (i). For technical
reasons we add a automaton T (M+1) that models the environment and always generates
output. We number the automata with indices i ∈ [1 : M + 1].

Each T (i) has nip(i) input ports IP(i)(j) with j ∈ [0 : nip(i)−1] as well as nop(i)
output ports OP(i)(j) with j ∈ [0 : nop(i) − 1]. A function src (for source) speci-
fies for each input port IP(i)(j) the index (i′, j′) = src(i, j) of the output port such
that OP(i′)(j′) is connected to IP(i)(j). An AFTM configuration aftm has the follow-
ing components:

• aftm.S(i): The state of the i’th task automaton. It is split into a control compo-
nent aftm.S(i).con and data components aftm.S(i).x. Each automaton has a set
of control state called idle.

• aftm.IP(i)(j): The current value of input port IP(i)(j).
• aftm.OP(i)(j): The current value of output port OP(i)(j).

Input and output ports can hold non empty values or a special empty value ε.
Initially (in configuration aftm0) all automata are in an idle state and all ports are

empty. Indices i of tasks are partitioned into three classes: Indices of AND-tasks, OR
tasks and the special ’environment’ automaton T (M + 1):

[1 : M + 1] = Tand � Tor � {M + 1}

17.2. Local and Global AFTM Computations

If a task i is runnable in configuration aftm is defined by the runnable(aftm, i) predi-
cate:

• The environment task is always runnable:

∀aftm : runnable(aftm, M + 1)

• OR-tasks are runnable if one of their inputs is non empty:

i ∈ Tor ⇒ runnable(aftm, i) ⇔ ∃j : aftm.IP(i)(j) �= ε

• AND-tasks are runnable if all their inputs are non empty:

i ∈ Tand ⇒ runnable(aftm, i) ⇔ ∀j : aftm.IP(i)(j) �= ε

For AFTM configurations aftm we define the next configuration aftm ′ of an AFTM
step. AFTM computations are then defined in the usual way by :

aftmr+1 = (aftmr)′

In AFTM, each step consists of two phases. In the first phase all runnable tasks make
locally a number of micro steps until an idle state is reached again. In the second phase

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems290

values of non empty output ports are copied into the connected input ports and all output
ports are cleared.13 Formalization of this model is straight forward.

The local computation is specified by a ’local AutoFocus’ transition function δLAF

mapping states S and a vector IP of input port contents to states S′ and a vector of output
port contents OP ′:

(S′,OP ′) = δLAF (S, IP)

The local run time TLAF (aftm, i) –in automata steps– of runnable task i in configura-
tion aftm is defined by:

TLAF (aftm, i) = min{t | δt
LAF (aftm.S(i), aftm.IP(i)).S.con = idle}

The result of this local computation is:

resLAF (aftm, i) = δ
TLAF (aftm,i)
LAF (aftm.S(i), aftm.IP(i))

We define the configuration aftm ′′ after the local computations by:

1. For runnable tasks state and output ports are determined by the result of local
computations. Input ports are cleared:

runnable(aftm, i) ⇒
{

(aftm ′′.S(i), aftm ′′.OP(i)) = resLAF (aftm, i)
∀j : aftm ′′.IP(i)(j) = ε

2. State and output ports of non runnable tasks don’t change. Input ports are not
cleared. Thus new inputs will be accumulated in the communication phase:

¬runnable(aftm, i) ⇒{
aftm ′′.T (i) = aftm.S(i)

∀j, k : (aftm ′′.IP(i)(j), aftm ′′.OP(i)(k)) = (aftm.IP(i)(j), aftm.OP(i)(k))

In the communication phase non empty contents of output ports are copied into con-
nected input ports. Let src(i, j) = (i′, j′). Then:

aftm ′.IP(i)(j) =

{
aftm ′′.OP(i′)(j′) aftm ′′.OP(i′)(j′) �= ε

aftm ′′.IP(i)(j) otherwise

All output ports are cleared:

∀i, j : aftm ′.OP(i)(j) = ε

The local state does not change during the communication phase:

∀i : aftm ′.S(i) = aftm ′′.S(i)

13An easy exercise shows that this model is equivalent to the model described in [BBG+06].

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 291

18. Simulation of AFTM by D-OLOS

18.1. C0 Code Generation for Local Computation

A local configuration T of a task automaton is a triple with the following components:
State T.S, content of input ports T.IP(k), where k ∈ [0 : nip− 1] and content of output
ports T.OP(k), where k ∈ [0 : nip − 1].

In order to implement a single task automaton T as a process in OLOS, we first need
a C0 program prog(T) that simulates local runs of the automaton in the following sense:

• I/O: Inputs are read from a C array IP [0 : nip − 1] and outputs are written to an-
other C-array OP [0 : nop− 1]. Access to these arrays is restricted to assignments
of the form e = IP [e′] for input and OP [e′] = e for output operations; where e
and e′ are expressions. This restriction makes it later easy to replace these assign-
ments by operating system calls like ttrec(e, e′); the replacement will however be
slightly more involved.

• Data: Each data component S.x of the state has its counter part in a C variables
with the name x.

Recall that for C0 configurations c and expressions e we denote by va(c, e) the value
of expression e in configuration c. A trivial simulation relation asim(T, c) between T
and c is established by requiring for all j and x

T.OP(j) = va(c,OP [j])
T.IP(j) = va(c, IP [j])

T.x = va(c, x)

Assume asim(T, c) holds and assume that both the automaton and the C machine
are in their initial states. For the C machine this means that the program rest is the body
of the main function. This body is formally to be found in the function table c.ft at
argument main.

T.con = idle
c.pr = c.ft(main).body

The program prog(T) is specified by requiring that the simulation relation holds for the
results of the computations:

asim(resLAF (T), resC(c))

There are several ways to produce the program prog(T) from the task automaton T .
The program could for instance be generated by hand or by a translation tool. Also the
correctness proof can either be done by hand or by an automatic translation validation
tool.

For a program generated by a verified generation tool, no further correctness proof
would be needed. However to the best of our knowledge no such tool exists yet. Note
that in any case we are dealing with plain C code verification only.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems292

18.2. Deployment

We will simulate each step of AFTM by one round consisting of ns slots of D-OLOS.
Thus, we will be interested to relate aftmr with D(r, 0). In order to deploy an AFTM
machine on D-OLOS machine we have to specify several things:

• Task deployment: For each automata we have to specify the C0 application C(i, j)
that simulates the task. Let p be the number of ECUs and N the maximum num-
ber of task executable on an ECU. Then this will be done with an injective task
deployment function

depl : [1 : M + 1] → [0 : p − 1] × [0 : N − 1]

• Application scheduling: For every ECU index i and for every slot s we have to
specify the C0 application run(i, s) running on ECU i during slot s:

run : [0 : p − 1] × [0 : ns − 1] → [0 : N − 1]

This defines for each task T (k) and round r a slot start(k) < ns, such that
task T (k) is simulated in slot start(k) of the round:

depl(k) = (i, j) ⇒ start(k) = s ⇔ run(i, s) = j

18.3. Output Port Broadcasting

Recall that for each AFTM task T (i) we denote by nip(i) resp. nop(i) the number output
ports resp. input ports of task T (i). The set of all indices of output ports is denoted by

OP =
⋃
i

{i} × [0 : nop(i) − 1]

We denote by N the cardinality of this set. For each pair of indices (i, j) ∈ OP we
specify a function:

broad : OP → [0 : ns − 1]

During each round r we plan to broadcast (aftmr)′′.OP(i)(j) (i.e. the content of
port OP(i)(j) after the local computation phase of macro step r in slot broad(i, j).

We require in each round, that any output port OP(i)(j) of task i be broadcast after
the task has run:

∀i, j : broad(i, j) > start(i)

Obviously we need ns ≥ N +1. This is the only restriction we impose on schedules.
Schedules will tend to be shorter if tasks with many output ports are scheduled earlier
than tasks with few output ports.

The content of output port OP(i)(j) will be stored in MB(u)(broad(i, j)), for all
ECU u. Equivalently the output port broadcast in slot s is stored on the i-th ECU in
message buffers MB(i)(s).

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 293

18.4. Invariants

At the slot boundaries we maintain four invariants between the AFTM configurations
aftmr, (aftmr)′′ and the corresponding D-OLOS configuration D(r, s). For all indices e
of ECUs, for all indices i and j of output ports OP(i)(j) and for all slots (r, s):

1. Consider an output port OP(i)(j) and the message buffers MB(e)(broad(i, j)).
Before or while OP(i)(j) is scheduled for the broadcast, the message buffers con-
tain the value of OP(i)(j) before the local computation phase, i.e. the value that
was broadcast in the last round. Afterwards they have the value as OP(i)(j) after
the local computation phase. There is however an exception. On the ECU e where
task i is deployed (formally: e is the first component of depl(i)) the new values
are already in the local message buffers after the task has been simulated:

D(r, s).MB(e)(broad(i, j)) ={
(aftmr)′′.OP(i)(j) s > broad(i, j) ∨ s > start(i) ∧ e = fst(depl(i))

(aftmr−1)′′.OP(i)(j) otherwise

2. Consider a data component aftm.S(i).x of task i and the C0 variable x of the ap-
plication C(depl(i)) that simulates task i. Until the task is scheduled for simula-
tion, the value of the variable is the value of x. Otherwise it is the value after the
communication phase, which is the same as the value after the computation phase:

va(D(r, s).C(depl(i)), x) =

{
aftmr(i).S.x start(i) ≤ s

aftmr+1(i).S.x otherwise

3. The invariants given so far do not suffice to infer the input buffers aftm.IP(i)(j)
from the message buffers for slots s = start(i). Let (i′, j′) = src(i, j) and assume
that broad(i′, j′) < start(i). Then the output port value (aftmr−1)′′.OP(i′)(j′)
needed for the computation of input port value aftmr.IP(i)(j) is already over-
written in the message buffers. Therefore we save in the previous round the en-
dangered value (aftmr−1)′′.OP(i′)(j′) into a ’shadow message buffer’ SMB [j]
of the application i. We define a predicate q(i, j) stating that a shadow message
buffer is needed:

q(i, j) ⇔ broad(src(i, j)) < start(i)

We require:

q(i, j) ⇒
va(D(r, s).C(depl(i)),SMB [j]) =

{
(aftmr−1)′′.OP(i′)(j′) s ≤ start(i)

(aftmr)′′.OP(i′)(j′) otherwise

Initially the shadow buffers must be set to ε.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems294

4. Finally we must track the accumulation of values in the input ports IP(i)(j). This
is done in array elements IP [j] of application C(depl(i)). Even if task i is not
runnable in step r the array IP must be updated. We require:

va(D(r, s).C(depl(i)), IP [j]) =

{
(aftmr−1).IP(i)(j) s ≤ start(i)

(aftmr).IP(i)(j) otherwise

18.5. Construction of D-OLOS Applications

In the following we argue inductively on the current slot number. Given that applica-
tion C(depl(i)) is starting in slot (r, start(i)), we first simulate the communication
phase at the end of the previous slot.

The input port values aftmr.IP(i)(j) at the start of step r are accumulated in C0
array IP(i). Let k(i, j) = broad(src(i, j)) be the index of message buffers, where
values of the output port OP(src(i, j)) connected to IP(i)(j) are stored. Then for
each j the new value of IP [j] is computed as follows. The current content of message
buffer MB(fst(depl(i))(k(i, j))) is accessed with a ttrec system call. If q(i, j) = 0
non-ε values are stored in IP [j]:

ttrec(k(i, j), X); if (X �= ε) then IP [j] = X

Otherwise, if the shadow buffer SMB [j] is different form ε it is copied into IP [j]. Fur-
thermore SMB [j] itself is updated with the value of MB(fst(depl(i))(k(i, j))), using
the ttrec system-call:

if (SMB [j] �= ε) then IP [j] = SMB [j]; ttrec(k(i, j),SMB [j])

In the C0 configurations C(depl(i)) after execution of these pieces of code we con-
clude from the invariants of the previous slot

va(C(depl(i)), IP [j]) = aftmr.IP(i)(j)

and that invariant 3 holds. Then we clear all entries OP [j] in the C0 array of output val-
ues. For configurations C(depl(i)) after the execution of this code the following holds:

va(C(depl(i)),OP [j]) = aftmr.OP(i)(j) = ε

Local Computations. Task i tests if it is runnable. If so the program prog(T (i)) is run.
For configurations C(depl(i)) after execution of this piece of code we conclude that
invariant 2 holds and that array OP holds the values of the output ports OP(i)(j) after
the local computation phase:

va(C(depl(i)),OP [j]) = (aftmr)′′.OP(i)(j)

For runnable tasks we clear the input array IP , for non runnable tasks, the input array
stays unchanged. From this we conclude invariant 4.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 295

Updating the Message Buffer. Using the ttsend system call the new values of the output
ports are copied into their message buffers

ttsend(broad(i, j),OP [j])

After this invariant 1 holds and we are done.

References

[Abs] AbsInt Angewandte Informatik GmbH. http://www.absint.com/.
[Aut] AutoFocus Project. http://autofocus.in.tum.de.
[BBG+05] S. Beyer, P. Böhm, M. Gerke, M. Hillebrand, T. In der Rieden, S. Knapp, D. Leinenbach, and

W.J. Paul. Towards the Formal Verification of Lower System Layers in Automotive Systems. In
23nd IEEE International Conference on Computer Design: VLSI in Computers and Processors
(ICCD 2005), 2–5 October 2005, San Jose, CA, USA, Proceedings, pages 317–324. IEEE, 2005.

[BBG+06] J. Botaschanjan, M. Broy, A. Gruler, A. Harhurin, S. Knapp, L. Kof, W. Paul, and M. Spichkova.
On the Correctness of Upper Layers of Automotive Systems. 2006. To appear.

[Bey05] Sven Beyer. Putting It All Together: Formal Verification of the VAMP. PhD thesis, Saarland
University, Computer Science Department, March 2005.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolfgang Paul. Instantiating
uninterpreted functional units and memory system: Functional verification of the VAMP. In Proc.
of the 12th Advanced Research Working Conference on Correct Hardware Design and Verification
Methods (CHARME), LNCS, pages 51–65. Springer, 2003.

[BP06] Geoffrey M. Brown and Lee Pike. Easy Parameterized Verification of Biphase Mark and 8N1
Protocols. In Proceedings of the 12th International Conference on Tools and the Construction
of Algorithms (TACAS’06), volume 3920 of Lecture Notes in Computer Science, pages 58–72.
Springer, 2006.

[Dal06] Iakov Dalinger. Formal Verification of a Processor with Memory Management Units. PhD thesis,
Saarland University, Computer Science Department, July 2006.

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. On the Verification of Memory Manage-
ment Mechanisms. In Proceedings of the 13th Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods (CHARME 2005), volume 3725 of LNCS, pages
301–316. Springer, 2005.

[Fle] FlexRay Consortium. http://www.flexray.com.
[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On the Correctness of

Operating System Kernels. In J. Hurd and T. F. Melham, editors, 18th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2005), volume 3603 of LNCS, pages 1–16.
Springer, 2005.

[Hil05] Mark Hillebrand. Address Spaces and Virtual Memory: Specification, Implementation, and Cor-
rectness. PhD thesis, Saarland University, Computer Science Department, June 2005.

[HIP05] Mark Hillebrand, Thomas In der Rieden, and Wolfgang Paul. Dealing with I/O Devices in the
Context of Pervasive System Verification. In ICCD ’05, pages 309–316. IEEE Computer Society,
2005.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[HW73] C. A. R. Hoare and Niklaus Wirth. An Axiomatic Definition of the Programming Language
PASCAL. Acta Informatica (ACTA), 2:335–355, 1973.

[Kna05] Steffen Knapp. Towards the Verification of Functional and Timely Behavior of an eCall Imple-
mentation. Master’s thesis, Universität des Saarlandes, 2005.

[KP06] Steffen Knapp and Wolfgang Paul. Realistic Worst Case Execution Time Analysis in the Context
of Pervasive System Verification. In Program Analysis and Compilation, Theory and Practice:
Essays Dedicated to Reinhard Wilhelm, 2006. To appear.

[Lei06] Dirk Leinenbach. Compiler Verification in the Context of Pervasive System Verification. PhD
thesis, Saarland University, Computer Science Department, 2006. To appear.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems296

[LPP05] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the Formal Verification of a C0
Compiler: Code Generation and Implementation Correctness. In Bernhard Aichernig and Bern-
hard Beckert, editors, 3rd International Conference on Software Engineering and Formal Methods
(SEFM 2005), 5-9 September 2005, Koblenz, Germany, pages 2–11, 2005.

[MP00] Silvia M. Müller and Wolfgang J. Paul. Computer Architecture: Complexity and Correctness.
Springer, 2000.

[NN99] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal Introduction.
John Wiley & Sons, Inc., New York, NY, USA, 1992, revised online version: 1999.

[Nor98] Michael Norrish. C Formalised in HOL. Technical Report UCAM-CL-TR-453, University of
Cambridge, Computer Laboratory, December 1998.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[OSE01a] OSEK group. OSEK/VDX Fault-Tolerant Communication (FTCom), 2001. http://portal.
osek-vdx.org/files/pdf/specs/ftcom10.pdf.

[OSE01b] OSEK group. OSEK/VDX Time-Triggered Operating System (OLOS), 2001. http://portal.
osek-vdx.org/files/pdf/specs/ttos10.pdf.

[Pau05] Wolfgang Paul. Lecture Notes from the lecture Computer Architecture 2: Automotive Systems.
http://www-wjp.cs.uni-sb.de/lehre/vorlesung/ rechnerarchitektur2/
ws0506/temp/060302 CA2 AUTO.pdf, 2005.

[Pet06] Elena Petrova. Verification of the C0 Compiler Implementation on the Source Code Level. PhD
thesis, Saarland University, Computer Science Department, 2006. To appear.

[Rus94] John Rushby. A formally verified algorithm for clock synchronization under a hybrid fault model.
In PODC ’94: Proceedings of the thirteenth annual ACM symposium on Principles of distributed
computing, pages 304–313, New York, NY, USA, 1994. ACM Press.

[Sch87] Fred B. Schneider. Understanding Protocols for Byzantine Clock Synchronization. Technical
report, Department of Computer Science, Ithaca, NY, USA, 1987.

[Sch06a] Julien Schmaltz. A Formal Model of Lower System Layer. In Aarti Gupta and Panagiotis Mano-
lios, editors, Formal Methods in Computer-Aided Design, 6th International Conference, FMCAD
2006, San Jose, CA, USA, November 12–16, 2006, Proceedings. IEEE Computer Society, 2006.
To appear.

[Sch06b] Julien Schmaltz. A Formalization of Clock Domain Crossing and Semi-Automatic Verification of
Low Level Clock Synchronization Hardware. 2006. To appear.

[SH98] Jun Sawada and Warren A. Hunt. Processor Verification with Precise Exceptions and Speculative
Execution. In Alan J. Hu and Moshe Y. Vardi, editors, CAV ’98, pages 135–146. Springer, 1998.

[SK06] Wilfried Steiner and Hermann Kopetz. The Startup Problem in Fault-Tolerant Time-Triggered
Communication. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN’06), pages 35–44, Washington, DC, USA, 2006. IEEE Computer Society.

[VERa] The VERIFIX Project. http://www.info.uni-karlsruhe.de/∼verifix/.
[Verb] The Verisoft Project. http://www.verisoft.de/.
[Win93] G. Winskel. The formal semantics of programming languages. The MIT Press, 1993.

S. Knapp and W. Paul / Pervasive Verification of Distributed Real-Time Systems 297

Verification and Synthesis of Reactive
Programs1

Amir PNUELI 2

New York University and Weizmann Institute of Science 3

Abstract. In these notes we present a viable approach to the synthesis of reactive
programs from a temporal specification of their desired behavior. When successful,
this direct correct-by-construction approach to system development obviates the
need for post-facto verification.

In spite of the established double exponential lower bound that applies to the
general case, we show that many useful specifications fall into a class of temporal
formulas, technically identified as the Reactivity(1) class, for which we present an
n

3 synthesis algorithm.

Keywords. Program synthesis, formal verification, correct-by-construction development,
temporal logic, reactivity

1. Introduction

One of the most ambitious and challenging problems in reactive systems construction
is the automatic synthesis of programs and (digital) designs from logical specifications.
First identified as Church’s problem [5], several methods have been proposed for its
solution ([4], [17]). The two prevalent approaches to solving the synthesis problem were
by reducing it to the emptiness problem of tree automata, and viewing it as the solution of
a two-person game. In these preliminary studies of the problem, the logical specification
that the synthesized system should satisfy was given as an S1S formula.

This problem has been considered again in [16] in the context of synthesizing reac-
tive modules from a specification given in Linear Temporal Logic (LTL). This followed
two previous attempts ([6], [13]) to synthesize programs from temporal specification
which reduced the synthesis problem to satisfiability, ignoring the fact that the environ-
ment should be treated as an adversary. The method proposed in [16] for a given LTL

specification ϕ starts by constructing a Büchi automaton Bϕ, which is then determinized
into a deterministic Rabin automaton. This double translation may reach complexity of
double exponent in the size of ϕ. Once the Rabin automaton is obtained, the game can
be solved in time nO(k), where n is the number of states of the automaton and k is the
number of accepting pairs.

1Research supported in part by the European community project Prosyd, the John von-Neumann Minerva
center for Verification of Reactive Systems, ONR grant N00014-99-1-0131, and SRC grant 2004-TJ-1256.

2Joint work with Nir Piterma and Yaniv Sa’ar
3E-mail: amir@cs.nyu.edu

Software System Reliability and Security
M. Broy et al. (Eds.)

IOS Press, 2007
© 2007 IOS Press. All rights reserved.

298

The high complexity established in [16] caused the synthesis process to be identified
as hopelessly intractable and discouraged many practitioners from ever attempting to use
it for any sizeable system development. Yet there exist several interesting cases where,
if the specification of the design to be synthesized is restricted to simpler automata or
partial fragments of LTL, it has been shown that the synthesis problem can be solved
in polynomial time. Representative cases are the work in [3] which presents (besides
the generalization to real time) efficient polynomial solutions (N2) to games (and hence
synthesis problems) where the acceptance condition is one of the LTL formulas p,

q, p, or q. A more recent paper is [2] which presents efficient synthesis
approaches for the LTL fragment consisting of a boolean combinations of formulas of the
form p.

This paper can be viewed as a generalization of the results of [3] and [2] into the
wider class of generalized Reactivity(1) formulas (GR(1)), i.e. formulas of the form

(p1 ∧ · · · ∧ pm) → (q1 ∧ · · · ∧ qn) (1)

Following the developments in [8], we show how any synthesis problem whose speci-
fication is a GR(1) formula can be solved in time N3, where N is the size of the state
space of the design. Furthermore, we present a (symbolic) algorithm for extracting a de-
sign (program) which implements the specification. We make an argument that the class
of GR(1) formulas is sufficiently expressive to provide complete specifications of many
designs.

This work has been developed as part of the Prosyd project (see www.prosyd.org)
which aims at the development of a methodology and a tool suit for the property-
based construction of digital circuits from their temporal specification. Within the prosyd
project, synthesis techniques are applied to check first whether a set of properties is
realizable, and then to automatically produce digital designs of smaller units.

Most of the technical material contained in this paper is taken from [14] which is a
joint work with Nir Piterman and Yaniv Sa’ar.

One of the main points we wish to emphasize in this more detailed account of the
techniques is the observations that the game-theoretic approach to designs synthesis can
be viewed as a generalization of the iterative techniques regularly employed for model
checking. The generalization can be expressed as replacing the operator for computing
the predecessor of an assertion by the more general operator of controlled predecessor.

2. Fair Discrete Systems and their Computations

As our computational model, we take fair discrete systems (FDS) [10]. This generalizes
the model of fair transition systems [12] by allowing a more general form of fairness
requirements. . An FDS is represented by a tuple D =

〈
V, Θ, ρ,J , C

〉
, where

• V – A finite set of typed state variables. A V -state s is an interpretation of V .
Denote by ΣV – the set of all V -states.

• Θ – An initial condition. A satisfiable assertion that characterizes the initial states.
• ρ – A transition relation. An assertion ρ(V, V ′), referring to both unprimed (cur-

rent) and primed (next) versions of the state variables. For example, x′ = x + 1
corresponds to the assignment x := x + 1.

A. Pnueli / Verification and Synthesis of Reactive Programs 299

• J = {J1, . . . , Jk} A set of justice (weak fairness) requirements. Ensure that a
computation has infinitely many Ji-states for each Ji, i = 1, . . . , k.

• C = {〈p1, q1〉, . . . 〈pn, qn〉} A set of compassion (strong fairness) requirements.
The compassion requirement 〈pi, qi〉 implies that a computation that contains In-
finitely many pi-states must also contain infinitely many qi-states.

A Simple Programming Language: SPL

To illustrate reactive programs we use a simple programming language SPL. This lan-
guage allows composition of parallel processes communicating by shared variables.

As an example of an SPL program we present in Fig. 1 a program consisting of two
parallel processes.

x, y : natural initially x = y = 0

P1 ::

⎡
⎢⎣

�0 : while x = 0 do[
�1 : y := y + 1

]
�2 :

⎤
⎥⎦ P2 ::

[
m0 : x := 1
m1 :

]

Figure 1. Program ANY-Y

The FDS corresponding to program ANY-Y is given by:

• State Variables V :

⎛
⎝x, y : natural

π1 : {�0, �1, �2}
π2 : {m0, m1}

⎞
⎠.

• Initial condition:

Θ : π1 = �0 ∧ π2 = m0 ∧ x = y = 0.

• Transition Relation: ρ : ρ
I
∨ ρ�0 ∨ ρ�1 ∨ ρm0 , with appropriate disjunct for

each statement. For example, the disjuncts ρ
I

and ρ�0 are

ρ
I

: π′
1 = π1 ∧ π′

2 = π2 ∧ x′ = x ∧ y′ = y

ρ�0 : π1 = �0 ∧

⎛
⎝x = 0 ∧ π′

1 = �1

∨
x �= 0 ∧ π′

1 = �2

⎞
⎠ ∧ π′

2 = π2 ∧ x′ = x ∧ y′ = y

• Justice set: J : {¬at−�0,¬at−�1,¬at−m0}.
• Compassion set: C : ∅.

As seen in this example, we standardly include in the set of system variables the program
counters π1 and π2 which point to the locations, in each process, of the next statement to
be executed in this process.

The transition ρ
I

is the idling transition which preserves the values of all variables.
This transition is standardly included in the transition relation of any program in order to
guarantee that some transition is enabled on every state, even when the program termi-
nates.

A. Pnueli / Verification and Synthesis of Reactive Programs300

Computations

Let D be an FDS for which the above components have been identified. The state s′ is
defined to be a D-successor of state s if

〈s, s′〉 |= ρ
D
(V, V ′).

That is, ρ
D

evaluates to true when we interpret every x ∈ V as s[x] and every x′ as s′[x].
We define a computation of D to be an infinite sequence of states

σ : s0, s1, s2, ...,

satisfying the following requirements:

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For each j ≥ 0, the state sj+1 is a D-successor of the state sj .
• Justice: For each J ∈ J , σ contains infinitely many J-positions. This guaran-

tees that every just transition is disabled infinitely many times.
• Compassion: For each 〈p, q〉 ∈ C, if σ contains infinitely many p-positions, it

must also contain infinitely many q-positions. This guarantees that every compas-
sionate transition which is enabled infinitely many times is also taken infinitely
many times.

We denote by Comp(D) the set of computations of FDS D.

Examples of Computations

Identification of the FDS DP corresponding to a program P gives rise to a set of compu-
tations Comp(P) = Comp(DP).

The following computation of program ANY-Y corresponds to the case that m0 is
the first executed statement:

〈π1 : �0 , π2 : m0 ; x : 0 , y : 0〉
m0−→ 〈π1 : �0 , π2 : m1 ; x : 1 , y : 0〉

�0−→

〈π1 : �2 , π2 : m1 ; x : 1 , y : 0〉
τ

I−→ · · ·
τ

I−→ · · ·

The following computation corresponds to the case that statement �1 is executed before
m0.

〈π1 : �0 , π2 : m0 ; x : 0 , y : 0〉
�0−→ 〈π1 : �1 , π2 : m0 ; x : 0 , y : 0〉

�1−→

〈π1 : �0 , π2 : m0 ; x : 0 , y : 1〉
m0−→ 〈π1 : �0 , π2 : m1 ; x : 1 , y : 1〉

�0−→

〈π1 : �2 , π2 : m1 ; x : 1 , y : 1〉
τ

I−→ · · ·
τ

I−→ · · ·

In a similar way, we can construct for each n ≥ 0 a computation that executes the
body of statement �0 n times and then terminates in the final state

〈π1 : �2 , π2 : m1 ; x : 1 , y : n〉.

A Non-Computation

While we can delay termination of the program for an arbitrary long time, we cannot
postpone it forever. Thus, the sequence

A. Pnueli / Verification and Synthesis of Reactive Programs 301

〈π1 : �0 , π2 : m0 ; x : 0 , y : 0〉
�0−→ 〈π1 : �1 , π2 : m0 ; x : 0 , y : 0〉

�1−→

〈π1 : �0 , π2 : m0 ; x : 0 , y : 1〉
�0−→ 〈π1 : �1 , π2 : m0 ; x : 0 , y : 1〉

�1−→

〈π1 : �0 , π2 : m0 ; x : 0 , y : 2〉
�0−→ 〈π1 : �1 , π2 : m0 ; x : 0 , y : 2〉

�1−→

〈π1 : �0 , π2 : m0 ; x : 0 , y : 3〉
�0−→ · · ·

in which statement m0 is never executed is not an admissible computation. This is be-
cause it violates the justice requirement¬at−m0 contributed by statement m0, by having
no states in which this requirement holds.

This illustrates how the requirement of justice ensures that program ANY-Y always
terminates. Justice guarantees that every (enabled) process eventually progresses, in spite
of the representation of concurrency by interleaving.

FDS Operations: Asynchronous Parallel Composition

The asynchronous parallel composition of systems D1 and D2, denoted by D1 ‖D2, is
given by D = 〈V, Θ, ρ,J , C〉, where

V = V1 ∪ V2

Θ = Θ1 ∧ Θ2

ρ = (ρ1 ∧ pres(V2 − V1)) ∨ (ρ2 ∧ pres(V1 − V2))
J = J1 ∪ J2

C = C1 ∪ C2

The predicate pres(U) stands for the assertion U ′ = U , implying that all the variables in
U are preserved by the transition.

As implied by the definition, a step taken by D1 ‖D2 is a step that is taken by either
system D1 or system D2, while preserving the variables local to the other system.

Asynchronous parallel composition represents the interleaving-based concurrency
which is assumed in shared-variables models.

Claim 1 D(P1 ‖P2) ∼ D(P1) ‖D(P2)

Thus, given an SPL program P1 ‖P2, we can either compute the FDS corresponding to
the entire program, or compute separately D(P1) and D(P2) and then take their asyn-
chronous parallel composition. Claim 1 assures us that the resulting FDS will be the same
in both cases.

Synchronous Parallel Composition

The synchronous parallel composition of systems D1 and D2, denoted by
D1 ‖|D2, is given by the FDS D = 〈V, Θ, ρ,J , C〉, where

V = V1 ∪ V2

Θ = Θ1 ∧ Θ2

ρ = ρ1 ∧ ρ2

J = J1 ∪ J2

C = C1 ∪ C2

A. Pnueli / Verification and Synthesis of Reactive Programs302

As implied by the definition, a step taken by D1 ‖|D2 consists of jointly taking a D1-step
together with a D2-step.

Synchronous parallel composition can be used for hardware verification, where it is
the natural operator for combining two circuits into a composed circuit. Here we use it
for model checking of LTL formulas.

Claim 2 A sequence σ of V -states is a computation of the combined D1 ‖|D2 iff σ⇓V1

is a computation of D1 and σ⇓V2 is a computation of D2.

Here, σ⇓Vi
denotes the sequence obtained from σ by restricting each of the states to a

Vi-state, i.e. projecting the states on the variables Vi.

Feasibility and Viability of Systems

An FDS D is said to be feasible if D has at least one computation.
An infinite sequence of states is defined to be a run of an FDS D if it satisfies the

requirements of initiality and consecution but not necessarily any of the fairness require-
ments.

The FDS D is defined to be viable if any finite run of D can be extended to a com-
putation of D.

Claim 3 Every FDS derived from an SPL program is viable.

Note that if D is a viable system, such that its initial condition Θ
D

is satisfiable, then D
is feasible.

3. The Specification Language

As the language for specifying properties of reactive systems we use linear-time temporal
logic (LTL) [11].

Requirement Specification Language: Temporal Logic

Assume an underlying (first-order) assertion language. The predicate at−�i, abbreviates
the formula πj = �i, where �i is a location within process Pj .

A temporal formula is constructed out of state formulas (assertions) to which we
apply the boolean operators ¬ and ∨ and the basic temporal operators:

– Next – Previous
U – Until S – Since

Other temporal operators can be defined in terms of the basic ones as follows:

p = TUp – Eventually

p = ¬ ¬p – Henceforth

p W q = p ∨ (pU q) – Waiting-for, Unless, Weak Until

p = TSp – Sometimes in the past

p = ¬ ¬p – Always in the past

p B q = p ∨ (pSq) – Back-to, Weak Since
A model for a temporal formula p is an infinite sequence of states σ : s0, s1, ...,

where each state sj provides an interpretation for the variables of p.

A. Pnueli / Verification and Synthesis of Reactive Programs 303

Semantics of LTL

Given a model σ, we define the notion of a temporal formula p holding at a position
j ≥ 0 in σ, denoted by (σ, j) |= p:
• For an assertion p,

(σ, j) |= p ⇐⇒ sj |= p
That is, we evaluate p locally on state sj .

• (σ, j) |= ¬p ⇐⇒ (σ, j) �|= p
• (σ, j) |= p ∨ q ⇐⇒ (σ, j) |= p or (σ, j) |= q
• (σ, j) |= p ⇐⇒ (σ, j + 1) |= p
• (σ, j) |= pU q ⇐⇒ for some k ≥ j, (σ, k) |= q,

and for every i such that j ≤ i < k, (σ, i) |= p
• (σ, j) |= p ⇐⇒ j > 0 and (σ, j − 1) |= p
• (σ, j) |= pSq ⇐⇒ for some k ≤ j, (σ, k) |= q,

and for every i such that j ≥ i > k, (σ, i) |= p
This implies the following semantics for the derived operators:
• (σ, j) |= p ⇐⇒ (σ, k) |= p for all k ≥ j
• (σ, j) |= p ⇐⇒ (σ, k) |= p for some k ≥ j

If (σ, 0) |= p we say that p holds over σ and write σ |= p. Formula p is satisfiable if it
holds over some model. Formula p is (temporally) valid if it holds over all models.

Formulas p and q are equivalent, denoted p ∼ q, if p ↔ q is valid. They are called
congruent, denoted p ≈ q, if (p ↔ q) is valid. If p ≈ q then p can be replaced by q in
any context.

The entailment p⇒ q is an abbreviation for (p → q).
For an FDS D and an LTL formula ϕ, we say that ϕ is D-valid, denoted D |= ϕ, if all
computations of D satisfy ϕ.

Reading Exercises

Following are some temporal formulas ϕ and a verbal formulation of the constraint they
impose on a state sequence σ : s0, s1, . . . such that σ |= ϕ:
• p → q — If p holds at s0, then q holds at sj for some j ≥ 0.
• (p → q) — Every p is followed by a q. Can also be written as p⇒ q.
• q — The sequence σ contains infinitely many q’s.
• q — All but finitely many states in σ satisfy q. Property q eventually stabi-
lizes.
• q⇒ p — Every q is preceded by a p — causality.
• (¬r) W q — q precedes r. r cannot occur before q — precedence. Note that q is
not guaranteed, but r cannot happen without a preceding q.
• (¬r) W (q ∧ ¬r) — q strongly precedes r.
• p⇒(¬r) W q — Following every p, q precedes r.

Classification of Formulas/Properties

A formula of the form p for some past formula p is called a safety formula.
A formula of the form p for some past formula p is called a response formula.

An equivalent characterization is the form p⇒ q. The equivalence is justified by

(p → q) ∼ ((¬p) B q)

A. Pnueli / Verification and Synthesis of Reactive Programs304

Both formulas state that either there are infinitely many q’s, or there there are no p’s, or
there is a last q-position, beyond which there are no further p’s.

A property is classified as a safety/response property if it can be specified by a
safety/response formula.

Every temporal formula is equivalent to a conjunction of a reactivity formulas, i.e.

k∧
i=1

(pi ∨ qi)

Hierarchy of the Temporal Properties

In Fig. 2 we present a hierarchy of the temporal properties. Every box in this diagram
represents a class of properties together with the canonical formula corresponding to this
class. The formulas p, pi, q, qi appearing in the canonical representations are arbitrary
past formulas. Lines connecting the boxes in the diagram represent strict inclusion re-
lations between the classes. Thus, the class of safety properties is strictly included in
the class of obligation properties. This means that every safety property is also an obli-
gation property, but there exists an obligation property which is not a safety property.
Note that, the obligation and reactivity classes contain each an internal strict hierarchy
parameterized by k.

Reactivity
k∧

i=1

(pi ∨ qi)

Guarantee
p

Response
p

Persistence
p

Progress

Safety
p

Obligation
k∧

i=1

(pi ∨ qi)

Figure 2. The Temporal Hierarchy of Properties

A. Pnueli / Verification and Synthesis of Reactive Programs 305

Temporal Specification of Properties

Formula ϕ is D-valid, denoted D |= ϕ, if all initial states of D satisfy ϕ. Such a formula
specifies a property of D.

We illustrate these notions on program MUX-SEM presented in Fig. 3. This program
implements mutual exclusion by the use of semaphores.

y : natural initially y = 1

P1 ::

⎡
⎢⎢⎢⎢⎣

�0 : loop forever do⎡
⎢⎢⎣

�1 : Non-critical
�2 : request y
�3 : Critical
�4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ P2 ::

⎡
⎢⎢⎢⎢⎣

m0 : loop forever do⎡
⎢⎢⎣

m1 : Non-critical
m2 : request y
m3 : Critical
m4 : release y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

Figure 3. Program MUX-SEM

The main properties we wish to specify for this program are:

• Mutual Exclusion — No computation of the program can include a state in
which both processes are in their respective critical sections, i.e., process P1 is at
�3 while P2 is at m3. This property can be specified by the formula

¬(at−�3 ∧ at−m3)

• Accessibility for P1 — Whenever process P1 is at �2, it shall eventually reach
its critical section at �3. This property is specifiable by the formula

(at−�2 → at−�3)

• Accessibility for P2 — A similar requirement for Process P2. This property is
specifiable by the formula

(at−m2 → at−m3)

4. Model Checking

In this section we will present an approach to the algorithmic verification of finite-state
reactive systems. We refer the reader to [7] for a more comprehensive discussion of
model checking and the various approaches to its implementations.

A. Pnueli / Verification and Synthesis of Reactive Programs306

Model Checking

Model checking is a process by which we algorithmically check that a given finite state
FDS D satisfies its temporal specification ϕ. There are two approaches to this process:

• Enumerative (explicit state) approach, by which we construct a graph containing
all the reachable states of the system, and then apply graph theoretic algorithms to
its analysis.

• Symbolic approach, by which we continuously work with assertions which char-
acterize sets of states.

Here, we consider the symbolic approach. Note that every assertion over a finite-domain
FDS can be represented as a boolean formula over boolean variables. Assume that a
finite-state FDS is represented by such formulas, including the initial condition Θ and the
bi-assertion ρ representing the transition relation.

We assume that we have an efficient representation of boolean assertions, and effi-
cient algorithms for manipulation of such assertions, including all the boolean operations
as well as existential and universal quantification. Note that, for a boolean variable b,

∃b : ϕ(b) = ϕ(0) ∨ ϕ(1) ∀b : ϕ(b) = ϕ(0) ∧ ϕ(1)

Also assume that we can efficiently check whether a given assertion is valid, i.e., equiv-
alent to 1 (True).

The Essence of Model Checking

All that one needs to know in order to perform general model checking, is how to check
for reachability and response. That is, verifying the properties p and p⇒ q.

Once these capabilities are attained, one can model check all of LTL.

Predecessors and Their Transitive Closure

For an assertion ϕ(V) and a bi-assertion R(V, V ′), we define the existential predecessor
predicate transformer:

R ψ = ∃V ′ : R(V, V ′) ∧ ψ(V ′)

Obviously

‖R ϕ‖ = {s | s is an R-predecessor of a ϕ-state}

For example

(x′ = x + 1) (x = 1) = ∃x′ : x′ = x + 1 ∧ x′ = 1 ∼ x = 0

The immediate predecessor transformer can be iterated to yield the eventual predecessor
transformer:

R∗ ϕ = ϕ ∨ R ϕ ∨ R (R ϕ) ∨ R (R (R ϕ)) ∨ · · ·

A. Pnueli / Verification and Synthesis of Reactive Programs 307

Formulation as Fixed Points

Consider a recursive equation of the general form y = f(y), where y is an assertion
representing a set of states. Such an equation is called a fix-point equation.

Not every fix-point equation has a solution. For example, the equation y = ¬y has
no solution.
The assertional expression f(y) is called monotonic if it satisfies the requirement

‖y1‖ ⊆ ‖y2‖ implies ‖f(y1)‖ ⊆ ‖f(y2)‖

Solutions to Fix-point Equations

Every assertional expression f(y) which is constructed out of the assertion variable y
and arbitrary constant assertions, to which we apply the boolean operators ∨ and ∧, and
the predecessor operator ρ p is monotonic.
Consider a fix-point equation

y = f(y) (2)

It may have 0, one, or many solutions. For example, the equation y = y has many
solutions. A solution ym is called a minimal solution if it satisfies ‖ym‖ ⊆ ‖y‖ for
any solution y of Equation (2). A solution y

M
is called a maximal solution if it satisfies

‖y
M
‖ ⊇ ‖y‖ for any solution y of Equation (2). We denote by μy.f(y) and νy.f(y) the

minimal and maximal solutions, respectively.

Claim 4 If f(y) is a monotonic expression, then the fix-point equation y = f(y) has
both a minimal and a maximal solution which can be obtained by the iteration sequence

y1 = f(y0), y2 = f(y1), y3 = f(y2), . . .

where y0 = 0 for the minimal solution, and y0 = 1 for the maximal solution.

Expressing the Eventual Predecessor

The eventual predecessor can be expressed by a minimal fix-point expression:

ρ∗ q = μy.(q ∨ ρ y)

This is because the fix-point expression generates the following approximation sequence:

y0 = 0
y1 = q ∨ 0 = q
y2 = q ∨ ρ y1 = q ∨ ρ q
y3 = q ∨ ρ y2 = q ∨ ρ q ∨ ρ (ρ q)

· · ·

Characterizing the set of all states which initiate a path leading to a q-state.

A. Pnueli / Verification and Synthesis of Reactive Programs308

A Symbolic Algorithm for Model Checking Invariance

Algorithm INV (D, p) : assertion — Check that FDS D satisfies Inv(p), using symbolic
operations

new : assertion
1. new := 0
2. Fix (new) do
3. new := ¬p ∨ (ρ

D
new)

4. return Θ
D

∧ new

where

Fix (y) do S = old := ¬y; While (y �= old) do [old := y; S]

The algorithm returns an assertion characterizing all the initial states from which there
exists a finite path leading to violation of p. It returns the empty (false) assertion iff D
satisfies Inv(p).
An equivalent formulation is

return Θ
D

∧ μy. ¬p ∨ ρ
D

y

Checking for Feasibility

Before we discuss model checking response properties we consider the problem of
checking whether a given FDS is feasible.

Recall that a run of an FDS is an infinite sequence of states which satisfies the re-
quirements of initiality and consecution but not necessarily any of the fairness require-
ments.

A state s of an FDS D is called reachable if it participates in some run of D.
A state s is called feasible if it participates in some computation. The FDS is called
feasible if it has at least one computation.

A set of states S is defined to be an F-set if it satisfies the following requirements:

F1. All states in S are reachable.
F2. Each state s ∈ S has a ρ-successor in S.
F3. For every state s ∈ S and every justice requirement J ∈ J , there exists a path

leading from s to some J-state in S.
F4. For every state s ∈ S and every compassion requirement (p, q) ∈ C, either there

exists an S-path leading from s to some q-state, or s satisfies ¬p.

Claim 5 (F-sets)
A reachable state s is feasible iff it has a path leading to some F-set.

Proof:
Assume that s is a feasible state. Then it participates in some computation σ. Let S be
the (finite) set of all states that appear infinitely many times in σ. We will show that S
is an F-set. It is not difficult to see that there exists a cutoff position t ≥ 0 such that S
contains all the states that appear at positions beyond t.

Obviously all states appearing in σ are reachable. If s ∈ S appears in σ at position
i > t then it has a successor si+1 ∈ σ which is also a member of S.

A. Pnueli / Verification and Synthesis of Reactive Programs 309

Let s = si ∈ σ, i > t be a member of S and J ∈ J be some justice requirement.
Since σ is a computation it contains infinitely many J-positions. Let k ≥ i one of the
J-positions appearing later than i. Then the path si, . . . , sk is an S-path leading from s
to a J-state.

Let s = si ∈ σ, i > t be a member of S and (p, q) ∈ C be some compassion
requirement. There are two possibilities by which σ may satisfy (p, q). Either σ contains
only finitely many p-positions, or σ contains infinitely many q positions. It follows that
either S contains no p-states, or it contains some q-states which appear infinitely many
times in σ. In the first case, s satisfies ¬p. In the second case, there exists a path leading
from si to sk, a q-state such that k ≥ i.

In the other direction, assume the existence of an F-set S and a reachable state s
which has a path leading to some state s1 ∈ S. We will show that there exists a compu-
tation σ which contains s.

Since s is reachable and has a path leading to state s1 ∈ S, there exists a finite
sequence of states π leading from an initial state to s1 and passing through s. We will
show how π can be extended to a computation by an infinite repetition of the following
steps. At any point in the construction, we denote by end(π) the state which currently
appears last in π.
• We know that end(π) ∈ S has a successor s ∈ S. Append s to the end of π.
• Consider in turn each of the justice requirements J ∈ J . We append to π the S-path
π

J
connecting end(π) to a J-state.

• Consider in turn each of the compassion requirements (p, q) ∈ C. If there exists an
S-path πq , connecting end(π) to a q-state, we append πq to the end of π. Otherwise, we
do not modify π. We observe that if there does not exist an S-path leading from end(π)
to a q-state, then end(π) and all of its progeny within S must satisfy ¬p.

It is not difficult to see that the infinite sequence constructed in this way is a compu-
tation.

Computing F-Sets

Assume an assertion ϕ which characterizes an F-set. Translating requirements F1–F4
into formulas, we obtain the following implications:

ϕ → reachable
D

ϕ → ρ ϕ Every ϕ-state has a ϕ-successor
ϕ → μY.(J ∧ ϕ ∨ ρ Y) For every J ∈ J , every ϕ-state has a path

leading to a J ∧ ϕ-state
ϕ → ¬p ∨ (ϕ ∧ ρ)∗ (ϕ ∧ q) For every (p, q) ∈ C and each ϕ-state s,

either s |= ¬p, or s initiates a path leading to a q ∧ ϕ-state

This can be summarized as

ϕ →

⎧⎪⎪⎪⎪⎪⎪⎩
reachable

D
∧ ρ ϕ ∧∧

J∈J

(ϕ ∧ ρ)∗ (ϕ ∧ J) ∧
∧

(p,q)∈C

¬p ∨ (ϕ ∧ ρ)∗ (ϕ ∧ q)

⎫⎪⎪⎪⎪⎪⎪⎭

Since we are interested in a maximal F-set, the computation can be expressed as:

A. Pnueli / Verification and Synthesis of Reactive Programs310

νϕ.

⎧⎪⎪⎪⎪⎪⎪⎩
reachable

D
∧ ρ ϕ ∧∧

J∈J

(ϕ ∧ ρ)∗ (ϕ ∧ J) ∧
∧

(p,q)∈C

¬p ∨ (ϕ ∧ ρ)∗ (ϕ ∧ q)

⎫⎪⎪⎪⎪⎪⎪⎭
Algorithmic Interpretation

Computing the maximal fix-point as a sequence of iterations, we can describe the com-
putational process as follows:
Start by letting ϕ := reachable

D
. Then repeat the following steps:

• Remove from ϕ all states which do not have a ϕ-successor.

• For each J ∈ J , remove from ϕ all states which do not have a path leading to a
(J ∧ ϕ)-state.

• For each (p, q) ∈ C, remove from ϕ all p-states which do not have a ϕ-path leading
to a q-state.

until no further change.
To check whether an FDS D is feasible, we compute for it the maximal F-set and

check whether it is empty. D is feasible iff the maximal F-set is not-empty.

Example

As an example, consider the FDS presented in Fig. 4.

x : 0 x : 1 x : 2

x : 5

x : 4

x : 3

Figure 4. An Example FDS

This system is associated with the following fairness requirements:

J1 : x �= 1
C1 : (x = 3, x = 5)
C2 : (x = 2, x = 1)

We set ϕ0 : {0..5} and then proceed as follows:

• Removing from ϕ0 all (x = 2)-states that do not have a ϕ0-path leading to an
(x = 1)-state, as required by C2, we are left with ϕ1 : {0, 1, 3, 4, 5}.

• Removing from ϕ1 all states that do not have a path leading to a (x �= 1)-state, as
required by J1, leaves ϕ2 : {0, 3, 4, 5}.

A. Pnueli / Verification and Synthesis of Reactive Programs 311

• Successively removing from ϕ2 all states without successors, leaves ϕ3 : {3, 4}.

• Removing from ϕ3 all (x = 3)-states which do not have a ϕ2-path leading to a
(x = 5)-state, as required by C1, we are left with ϕ4 : {4}.

• No reasons to remove any further states from ϕ4 : {4}, so this is our final set.

We conclude that the FDS of Fig. 4 is feasible, under the assumption that all states are
initial.

Verifying Response Properties Through Feasibility Checking

Let D : 〈V, Θ, ρ,J , C〉 be an FDS and p⇒ q be a response property we wish to verify
over D. Let reachable

D
be the assertion characterizing all the reachable states in D.

We define an auxiliary FDS Dp,q : 〈V, Θp,q, ρp,q,J , C〉, where

Θp,q : reachable
D

∧ p ∧ ¬q
ρp,q : ρ ∧ ¬q′

Thus, Θp,q characterizes all the D-reachable p-states which do not satisfy q, while ρp,q

allows any ρ-step as long as the successor does not satisfy q.

Claim 6 (Model Checking Response)
D |= p⇒ q iff Dp,q is infeasible.

Proof: The claim is justified by the observation that every computation of Dp,q can
be extended to a computation of D that violates the response property p⇒ q. Indeed,
let σ : sk, sk+1, . . . be a computation of Dp,q. By the definition of Θp,q, we know that sk

is a D-reachable p-state. Thus, there exists, a finite sequence s0, . . . , sk, such that s0 is
D-initial. The infinite sequence s0, . . . , sk−1, sk, sk+1, . . . is a computation of D which
contains a p-state at position k, and has no following q-state. This sequence violates
p⇒ q.

Example: a Simpler MUX-SEM

In Fig. 5, we present a simpler version of program MUX-SEM.
The semaphore instructions request y and release y respectively stand for

〈when y = 1 do y := 0〉 and y := 1.

In Fig. 6 we present the set of all reachable states of program SIMPLE-MUXSEM.
Assume we wish to verify the property T2 ⇒ C2. We start by forming the FDS

SIMPLE-MUXSEM T2,C2 , whose set of reachable states is given by:

C1, T2, 0N1, T2, 1 T1, T2, 1

First, we eliminate all (T2∧y = 1)-states which do not have a path leading to a C2-state.
This leaves us with an FDS consisting of a single state, as presented in Fig. 7.

Next, we eliminate all states which do not have a path leading to a ¬C1-state. This
leaves us with nothing. We conclude that MUX-SEM |= T2 ⇒ C2.

A. Pnueli / Verification and Synthesis of Reactive Programs312

y : natural initially y = 1

N1

T1

request y

C1

request y

release y release y

N2

T2

C2

Figure 5. Program SIMPLE-MUXSEM— a 3-Location Version of MUX-SEM

C1, N2, 0

N1, T2, 1 T1, T2, 1 C1, T2, 0

N1, C2, 0 T1, C2, 0

N1, N2, 1 T1, N2, 1

Figure 6. Set of reachable states of Program SIMPLE-MUXSEM

C1, T2, 0

Figure 7. A single-state FDS

5. Temporal Testers

In this section we present the construction of temporal testers and explain how they are
used for model checking of a general LTL formula. For a more extensive discussion of
temporal testers we refer the reader to [9].

For every LTL formula ϕ, there exists an FDS T [ϕ] called the temporal tester for ϕ.
This tester has a distinguished boolean variable x such that, in every σ a computation of
T [ϕ], and every position j ≥ 0, x[sj] = 1 iff (σ, j) |= ϕ. In such a case, we say that x
matches ϕ in σ.

We can view T [ϕ] as a (possibly non-deterministic) transducer which incrementally
reads the values of the variables occurring in the formula ϕ and outputs in x the current
value of ϕ over the infinite sequence.

A. Pnueli / Verification and Synthesis of Reactive Programs 313

5.1. Construction of Temporal Testers

A formula ϕ is called a principally temporal formula (PTF) if the main operator of p is
temporal. With no serious loss of generality, we restrict our attention to LTL formulas
which are PTF’s.

A PTF is called a basic temporal formula if it contains no other PTF as a proper sub-
formula. We start our construction by presenting temporal testers for the basic temporal
formulas.

A Tester for p

The tester for the formula p is given by:

T [p] :

⎧⎪⎪⎨
⎪⎪⎩

V : Vars(p) ∪ {x}
Θ : 1
ρ : x = p′

J = C : ∅

Claim 7
T [p] is a temporal tester for p.

Proof:
Let σ be a computation of T [p]. We will show that x matches p in σ. Let j ≥ 0 be
any position. By the transition relation, x = 1 at position j iff sj+1 |= p iff (σ, j) |= p.

Let σ be an infinite sequence such that x matches p in σ. We will show that σ
is a computation of T [p]. For any position j ≥ 0, x = 1 at j iff (σ, j) |= p, iff
sj+1 |= p. Thus, x satisfies x = p′ at every position j.

A Tester for pUq

The tester for the formula pUq is given by:

T [pUq] :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V : Vars(p, q) ∪ {x}
Θ : 1
ρ : x = q ∨ (p ∧ x′)
J : q ∨ ¬x
C : ∅

Claim 8 T [pUq] is a temporal tester for pUq.

Proof:
Let σ be a computation of T [pUq]. We will show that x matches pUq in σ. Let j ≥ 0 be
any position. Consider first the case that sj |= x and we will show that (σ, j) |= pUq.
According to the transition relation, sj |= x implies that either sj |= q or sj |= p and
sj+1 |= x. If sj |= q then (σ, j) |= pUq and we are done. Otherwise, we apply the same
argument to position j +1. Continuing in this manner, we either locate a k ≥ j such that
sk |= q and si |= p for all i, j ≤ i < k, or we have si |= ¬q ∧ p ∧ x for all i ≥ j. If we
locate a stopping k then, obviously (σ, j) |= pUq according to the semantic definition of
the U operator. The other case in which both ¬q and x hold over all positions beyond j is

A. Pnueli / Verification and Synthesis of Reactive Programs314

impossible since it violates the justice requirement demanding that σ contains infinitely
many positions at which either q is true or x is false.

Next we consider the case that σ is a computation of T [pUq] and (σ, j) |= pUq,
and we have to show that sj |= x. According to the semantic definition, there exists a
k ≥ j such that sk |= q and si |= p for all i, j ≤ i < k. Proceeding from k backwards all
the way down to j, we can show (by induction if necessary) that the transition relation
implies that st |= x for all t = k, k − 1, . . . , j.

In the other direction, let σ be an infinite sequence such that x matches pUq in σ.
We will show that σ is a computation of T [pUq]. From the semantic definition of U it
follows that (σ, j) |= pUq iff either sj |= q or sj |= p and (σ, j + 1) |= pUq. Thus,
if x = (pUq) at all positions, the transition relation x = q ∨ (p ∧ x′) holds at all
positions. To show that x satisfies the justice requirement q ∨ ¬x it is enough to consider
the case that σ contains only finitely many q-positions. In that case, there must exist a
cutoff position c ≥ 0 such that no position beyond c satisfies q. In this case, pUq must
be false at all positions beyond c. Consequently, x is false at all positions beyond c and
is therefore false at infinitely many positions.

Why Do We Need the Justice Requirement?

Reconsider the definition of the temporal tester for pUq. We will show that the justice
requirement q ∨ ¬x is essential for the correctness of the construction. Consider a state
sequence σ : s0, s1, . . . in which q is identically false and p is identically true at all
positions. Obviously, (σ, j) �|= pUq, for all j ≥ 0, and the transition relation reduces to
the equation

x = x′.

This equation has two possible solutions, one in which x is identically false and the other
in which x is identically true at all positions. Only x = 0 matches pUq. This is also the
only solution which satisfies the justice requirement.

Thus, the role of the justice requirement is to select among several solutions to the
transition relation equation, a unique one which matches the basic temporal formula at
all positions.

A Tester for p W q

A supporting evidence for the significance of the justice requirements is provided by the
tester for the formula p W q:

T [p W q] :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V : Vars(p, q) ∪ {x}
Θ : 1
ρ : x = q ∨ (p ∧ x′)
J : ¬p ∨ x
C : ∅

Note that the transition relation of T [p W q] is identical to that of T [pUq], and they only
differ in their respective justice requirements.

The role of the justice requirement in T [pW q] is to eliminate the solution x = 0
over a computation in which p = 1 and q = 0 at all positions.

A. Pnueli / Verification and Synthesis of Reactive Programs 315

Testers for the Derived Operators

Based on the testers for U and W , we can construct testers for the derived operators
and . They are given by

T [p] :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V : Vars(p) ∪ {x}
Θ : 1
ρ : x = p ∨ x′

J : p ∨ ¬x
C : ∅

T [p] :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V : Vars(p) ∪ {x}
Θ : 1
ρ : x = p ∧ x′

J : ¬p ∨ x
C : ∅

A formula such as p can be viewed as a “promise for an eventual p”. The justice
requirement p ∨ ¬x can be interpreted as suggesting:

Either fulfill all your promises or stop promising.

Note that once x = 0 in the tester T [p], it remains 0 and requires p = 0 ever after.

Testers for the Basic Past Formulas

The following are testers for the basic past formulas p and pSq:

T [p] :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V : Vars(p) ∪ {x}
Θ : x = 0
ρ : x′ = p
J : ∅
C : ∅

T [pSq] :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V : Vars(p, q) ∪ {x}
Θ : x = q
ρ : x′ = q′ ∨ (p′ ∧ x)
J : ∅
C : ∅

Note that testers for past formulas are not associated with any fairness requirements. On
the other hand, they have a non-trivial initial condition.

5.2. Testers for Compound Temporal Formulas

Up to now we only considered testers for basic formulas. The construction for non-basic
formulas is based on the following reduction principle. Let f(ϕ) be a temporal formula
containing one or more occurrences of the basic formula ϕ. Then the temporal tester for
f(ϕ) can be constructed according to the following recipe:

T [f(ϕ)] = T [f(xϕ)] ‖| T [ϕ]

where, xϕ is the boolean output variable of T [ϕ], and f(xϕ) is obtained from f(ϕ) by
replacing every instance of ϕ by xϕ.
Following this recipe the temporal tester for an arbitrary formula f can be decomposed
into a synchronous parallel composition of smaller testers, one for each basic formula
nested within f .

Testers as Circuits

Having viewed testers as transducers, we can view their composition as a circuit inter-
connection. For example, in Fig. 8 we show how a tester for the compound formula ϕUψ
can be constructed by interconnecting the testers for ϕ, ψ, and the tester for the basic
formula pUq.

A. Pnueli / Verification and Synthesis of Reactive Programs316

T [pUq]

p

q

T [ϕ]

T [ψ]

Vars(ϕ, ψ)

Figure 8. A tester for a compound formula presented as a Circuit

5.3. Model Checking General Temporal Formulas

To check whether D |= ϕ, perform the following steps:

• Construct the tester T [ϕ].
• Form the combined system C = D ‖| T [ϕ] ‖| 〈Θ : ¬xϕ, 1, ∅, ∅〉, where

〈Θ : ¬xϕ, 1, ∅, ∅〉 is the trivial FDS which imposes the constraint that all initial
states falsify xϕ.

• Check whether C is feasible.
• Conclude D |= ϕ iff C is infeasible.

Example

Consider system D presented in Fig. 9.

0, p 1, p 2, p

Figure 9. Example system D

For which we wish to verify the property p.
Composing the system with T [p] ‖| 〈Θ : x · · ·〉, we obtain the combined

system C, which is presented in Fig. 10. This system is associate with the justice require-

2, p, x , x

0, p, x , x

0, p, x , x

1, p, x , x

1, p, x , x

2, p, x , x

Figure 10. Combined System C

ments ¬p ∨ x and x ∨ ¬x .
Eliminating all unreachable states and states with no successors, we are left with:

A. Pnueli / Verification and Synthesis of Reactive Programs 317

0, p, x , x 1, p, x , x 2, p, x , x

State 2 is eliminated because it does not have a path leading to a (¬p ∨ x)-state. Then
state 1 is eliminated. having no successors. Finally, 0 is eliminated because it cannot
reach a (¬p ∨ x)-state. Nothing is left, hence the system satisfies the property p.

Correctness of the Algorithms

Claim 9
For an FDS D and temporal formula ϕ, D |= ϕ iff C : D ‖| T [ϕ] ‖| 〈Θ : ¬xϕ · · ·〉 is
infeasible

Proof:
The proof is based on the observation that every computation of the combined system
C is a computation of D which satisfies the negation of ϕ. Therefore, the existence of
such a computation shows that not all computations of D satisfy ϕ, and therefore, ϕ is
not valid over D.

6. Controller Synthesis

In this section we consider the situation that we are given a transition system D and wish
to design for it a controller that will guarantee that all possible executions will satisfy a
given LTL specification ϕ.

This formulation of the problem is inspired by the classical continuous-time con-
troller synthesis problem. Consider a system such as the one presented in Fig. 11.

Controller

Environment
Plant

Figure 11. A continuous plant and its controller

Such a system typically consists of a physical plant which is controlled by an exter-
nal controller, which has limited capabilities for observing the internal state of the plant,
and influencing its behavior.

Required: A design for a controller which will cause the plant to behave correctly under
all possible (appropriately constrained) environments.

Due to the limited ability of the controller to observe and manipulate the plant, this
problem cannot always be solved. The central problem of control theory is to recognize
the cases in which the problem can be solved, and in such cases, produce a design for a
controller that can achieve the desired objective.

A. Pnueli / Verification and Synthesis of Reactive Programs318

Discrete Event Systems Controller

In [18], Ramadge and Wonham consider the application of this paradigm to the design of
controllers for discrete event systems, which is a simplistic model for reactive systems.

They assume a given plant which describes the possible events and actions. Some
of the actions are controllable while the others are uncontrollable.

Required: Finding a strategy for the controllable actions which will maintain a correct
behavior against all possible adversary moves. The strategy is obtained by pruning some
controllable transitions.

This preliminary work has been later followed by subsequent application of the same
approach to the synthesis of reactive modules.

In [15] and [1], it is assumed that the Plant represents all possible actions. Module
actions are controllable. Environment actions are uncontrollable.

Required: Find a strategy for the controllable actions which will maintain a temporal
specification against all possible adversary moves. Derive a program from this strategy.
The problem can be viewed as a two-persons game.

We proceed to show how the controller synthesis paradigm can be applied to the
synthesis of reactive programs (or designs, in general).

6.1. Example Design: Arbiter

Consider a specification for an arbiter whose architecture layout is presented in Fig. 12.

r1

Arbiter

rn gn

g1

Figure 12. Architecture of an Arbiter

The arbiter is expected to allocate a single resource among n clients. The clients post
their requests for the resource on the input signals r1, . . . , rn and receive notification of
their grant on the arbiter’s output signals g1, . . . , gn.

The protocol of communication between each client and the arbiter follows the
cyclic behavior described in Fig. 13.

Thus, the initial state is when both ri and gi are low (0). Then, the client acts first
by setting ri to high (1). This signals a request to access the shared resource. Next, it
is the turn of the system (Arbiter) to respond by raising the grant signal gi to high (1).
Sometimes later, the client is ready to relinquish the resource and this is signaled by
lowering ri to 0. The Arbiter acknowledges the release of the resource by resetting the
grant signal gi to 0. In this diagram we introduce the graphical convention by which
uncontrollable actions, performed by the environment are drawn as solid arrows, while
controllable actions which are performed by the controller (system) are drawn as dashed
arrows (in fact dash-dot font).

A. Pnueli / Verification and Synthesis of Reactive Programs 319

ri giri gi

ri gi

ri gi

Figure 13. Communication between the Arbiter and Client i

The overall specification of the system is given by the LTL formula

∧
i�=j

¬(gi ∧ gj) ∧
∧
i

(gi = ri)

The first conjunct expresses the safety property of exclusion, by which at most one grant
signal may be high at any execution state. The second conjunct expresses the liveness
(response) property by which the Arbiter eventually responds to any request made by any
client. By requiring that infinitely often gi = ri, we cover the case of a request for the
resource eventually been granted, as well as an eventual acknowledgment of any release
of the resource.

Start by Controller Synthesis

Assume a given platform (plant), identifying the controllable (system) and uncontrollable
(environment) transitions for the Arbiter System. This comprehensive transition system
is presented in Fig. 14

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

Figure 14. Complete transition system for the Arbiter

Due to idling, every node is connected to itself by both dashed and solid transitions,
which for simplicity we do not explicitly draw. A complete move consists of a solid edge
followed by a dashed edge. Also given is an LTL specification (winning condition):

A. Pnueli / Verification and Synthesis of Reactive Programs320

ϕ : ¬(g1 ∧ g2) ∧ (g1 = r1) ∧ (g2 = r2)

For Simplicity, we added to the specification the requirement that, at every complete
move, at most one of the four variables r1, r2, g1, g2 may change its value.

6.2. Controller Synthesis Via Game Playing

A game is given by G : 〈V = �x ∪ �y, Θ1, Θ2, ρ1, ρ2, ϕ〉, where

• V = �x ∪ �y are the state variables, with �x being the environment’s (player 1)
variables, and �y being the system’s (player 2) variables. A state of the game is an
interpretation of V . Let Σ denote the set of all states.

• Θ1(�x) — the initial condition for player 1 (Environment). An assertion character-
izing the environment’s initial states.

• Θ2(�x, �y) — the initial condition for player 2 (system).

• ρ1(�x, �y, �x′) — Transition relation for player 1 (Environment).

• ρ2(�x, �y, �x′, �y′) — Transition relation for player 2 (system).

• ϕ — The winning condition. An LTL formula characterizing the plays which are
winning for player 2.

A state s2 is said to be a G-successor of state s1, if both ρ1(s1[V], s2[�x]) and
ρ2(s1[V], s2[V]) are true.
We denote by D�x and D�y the domains of variables �x and �y, respectively.

Plays and Strategies

Let G : 〈V, Θ1, Θ2, ρ1, ρ2, ϕ〉 be a game. A play of G is an infinite sequence of states

π : s0, s1, s2, . . . ,

satisfying the requirement:

• Consecution: For each j ≥ 0, the state sj+1 is a G-successor of the state sj .

A play π is said to be winning for player 2 if π |= ϕ. Otherwise, it is said to be winning
for player 1.

A strategy for player 1 is a function σ1 : Σ+ �→ D�x, which determines the next set of
values for �x following any history h ∈ Σ+. A play π : s0, s1, . . . is said to be compatible
with strategy σ1 if, for every j ≥ 0, sj+1[�x] = σ1(s0, . . . , sj).

Strategy σ1 is winning for player 1 from state s if all s-originated plays (i.e., plays π :
s = s0, s1, . . .) compatible with σ1 are winning for player 1. If such a winning strategy
exists, we call s a winning state for player 1.

Similar definitions hold for player 2 with strategies of the form σ2 : Σ+ × D�x �→ D�y .

A. Pnueli / Verification and Synthesis of Reactive Programs 321

From Winning Games to Programs

A game G is said to be winning for player 2 if every �x-interpretation ξ satisfying Θ1(ξ) =
1 can be matched by a �y-interpretation η satisfying Θ2(ξ, η) = 1, such that the state
〈�x : ξ, �y : η〉 is winning for 2.

Otherwise, i.e., there exists an interpretation �x : ξ satisfying Θ1(ξ) such that, for all
interpretations �y : η satisfying Θ2(ξ, η), the state 〈�x : ξ, �y : η〉 is winning for 1, the
game is winning for player 1.

We solve the game, attempting to decide whether the game is winning for player 1
or 2. If it is winning for player 1 the specification is unrealizable. If it is winning for
player 2, we can extract a winning strategy which is a working implementation.
When applying controller synthesis, the platform provides the transition relations ρ1 and
ρ2, as well as the initial condition.
Thus, the essence of synthesis under the controller framework is an algorithm for com-
puting the set of winning states for a given platform and specification ϕ.

The Game for the Sample Specification

For the sample specification in which the client-server protocol is given by Fig. 13 and
was required to satisfy

∧
i�=j

¬(gi ∧ gj) ∧
∧
i

(gi = ri)

We take the following game structure:

�x ∪ �y : {ri | i = 1, . . . , n} ∪ {gi | i = 1, . . . , n}

Θ1 :
∧

i ri Θ2 :
∧

i gi

ρ1 :
∧

i ((ri �= gi) → (r′i = ri))

ρ2 :
∧

i ((ri = gi) → (g′i = gi))

ϕ :
∧

i�=j ¬(gi ∧ gj) ∧
∧

i (gi = ri)

Note that the safety parts of the specification as implied by the protocol are placed in the
local components (Θ1, Θ2, ρ1, ρ2), while the requirement of exclusion and the liveness
part are relegated to the winning condition.

The Controlled Predecessor

As in symbolic model checking, computing the winning states involves fix-point com-
putations over a basic predecessor operator. For model checking the operator is E p
satisfied by all states which have a p-state as a successor.
For synthesis, we use the controlled predecessor operator p. Its semantics can be
defined by

p : ∀�x′ : ρ1(V, �x′) → ∃�y′ : ρ2(V, V ′) ∧ p(V ′)

where ρ1 and ρ2 are the transition relations of the environment and system, respectively.

A. Pnueli / Verification and Synthesis of Reactive Programs322

In our graphic notation, s |= p iff s has at least one dashed p-successor, and all solid
successors different from s satisfy p.

Solving p Games, Iteration 0

The set of winning states for a specification p can be computed by the fix-point ex-
pression:

νY. p ∧ Y = 1 ∧ p ∧ p ∧ p ∧ · · ·

We illustrate this on the specification ¬(g1 ∧ g2). In Fig. 15, we present iteration 0 of
the fix-point expression which yields Y0 : 1, i.e. all reachable states.

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

Figure 15. Iteration 0, Y0 : 1

Proceeding to the next iteration, we obtain Y1 : ¬(g1 ∧ g2) ∧ 1. The result is
presented in Fig. 16. As can be seen in the diagram, this iteration removed the four states
which lie at the bottom right corner. These are the states which violate the requirement
of exclusion by having g1 = g2 = 1.
The iteration converges at this point, i.e. Y2 = Y1. This can be explained by observing
that no state which belong to Y1 should be removed in the next iteration. Note that all
the four states which have a successor outside of Y1 do not have a solid successor which
will take us out of Y1. All the solid edges departing from these four states lead to other
Y1-states.

From now on, we can restrict our attention to the transition system presented in
Fig. 16 because all winning games must satisfy the exclusion requirement and therefor
avoid the four states that have been removed.

Solving q Games, Iteration 1

The set of winning states for a specification q can be computed by the fix-point ex-
pression:

μY. q ∨ Y = q ∨ q ∨ q ∨ · · ·

A. Pnueli / Verification and Synthesis of Reactive Programs 323

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

Figure 16. Iteration 1, Y1 : ¬(g1 ∧ g2) ∧ 1

We illustrate this on the specification (g1 = r1).
In Fig. 17 we present the first iteration of this fix-point when applied to the transition

system of Fig. 16. The iteration yields Y1 : (g1 = r1) identifies as good states all the
states that satisfy g1 = r1.

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Figure 17. Iteration 1, Y1 : (g1 = r1)

The next iteration Y2 : Y1 ∨ Y1 adds to the set of good states the states
(r1r2; g1g2) and (r1r2; g1g2). Both of these states have a dashed successor ((r1r2; g1g2)
and (r1r2; g1g2), respectively) which is already in Y1, and they do not have any solid
successor different than themselves. Iteration Y2 is presented in Fig. 18.

Iteration Y3, presented in Fig. 19 adds to the set of good states the states (r1r2; g1g2)
and (r1r2; g1g2). These states have the states (r1r2; g1g2), (r1r2; g1g2) ∈ Y2 as dashed
successors, and all of their solid successors are also in Y2.

A. Pnueli / Verification and Synthesis of Reactive Programs324

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Figure 18. Iteration 2, Y2 : Y1 ∨ Y1

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Figure 19. Iteration 3, Y3 : Y2 ∨ Y2

Finally, the fourth and last iteration adds to Y4 the single state (r1r2; g1g2) which
has (r1r2; g1g2) ∈ Y3 as a dashed successor and no external solid successor. This final
(and convergent) iteration is presented in Fig. 20.

Note that state (r1r2; g1g2) is not included in the set of sinning states. This implies
that, starting at this state, the Arbiter cannot force the combined system into a state at
which g1 = r1. This is a state in which Client C1 has requested the resource, but a grant
is not guaranteed. Why is that? Because currently Client C2 holds the resource and there
is no obligation on its behalf to ever release it. Until Client C2 releases the resource, there
is no way that the Arbiter can grant the resource to C1 without violating the requirement
of exclusion.

This indicates that the original specification may be unrealizable without imposing
additional obligations on the behavior of the clients.

A. Pnueli / Verification and Synthesis of Reactive Programs 325

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Figure 20. Iteration 4, Y4 : Y3 ∨ Y3

Solving q Games

A game for a winning condition of the form q can be solved by the fix-point ex-
pression:

νZμY. q ∧ Z ∨ Y

This is based on the maximal fix-point solution of the equation

Z = μY. (q ∧ Z) ∨ Y

This nested fix-point computation can be computed iteratively by the program:

Z := 1
Fix (Z)⎡
⎢⎢⎢⎢⎣

G := q ∧ Z
Y := 0
Fix (Y)

[Y := G ∨ Y]
Z := Y

⎤
⎥⎥⎥⎥⎦

Solving (g1 = r1) for the Arbiter Example

Applying the above fix-point iterations to the Arbiter example, we obtain the set of win-
ning stated depicted in Fig. 21.

Note that the obtained strategy, keeps g2 = 0 permanently. This suggests that we
will have difficulties finding a solution that will maintain

(g1 = r1) ∧ (g2 = r2)

A. Pnueli / Verification and Synthesis of Reactive Programs326

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Figure 21. Set of winning states for the winning condition)g1 = r1

Generalized Response (Büchi)

In order to solve the game for a winning condition of the form q1 ∧ · · · ∧ qn,
we may use the following vector-form fix-point expression:

ϕ = ν

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

...

Zn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

μY ((q1 ∧ Z2) ∨ Y)

μY ((q2 ∧ Z3) ∨ Y)
...
...

μY ((qn ∧ Z1) ∨ Y)

⎤
⎥⎥⎥⎥⎥⎥⎦

Iteratively:

For (i ∈ 1..n) do [Z[i] := 1]
Fix (Z[1])⎡
⎢⎢⎢⎢⎣

For (i ∈ 1..n) do⎡
⎢⎢⎣

Y := 0
Fix (Y)

[Y := (q[i] ∧ Z[i ⊕n 1]) ∨ Y]
Z[i] := Y

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

Return Z[1]

Specification is Unrealizable

Applying the above algorithm to the specification

(g1 = r1) ∧ (g2 = r2)

we find that it fails. Conclusion:

The considered specification is unrealizable

A. Pnueli / Verification and Synthesis of Reactive Programs 327

Indeed, without an environment obligation of releasing the resource once it has been
granted, the arbiter cannot satisfy any other client.

A Realizable Specification

Consider a specification consisting of the protocol as specified in the diagram of Fig. 13.
and the temporal specification

∧
i�=j

¬(gi ∧ gj) ∧

(∧
i

¬(ri ∧ gi) →
∧
i

(gi = ri)

)

We take the following game components:

�x ∪ �y : {ri | i = 1, . . . , n} ∪ {gi | i = 1, . . . , n}

Θ1 :
∧

i ri Θ2 :
∧

i gi

ρ1 :
∧

i ((ri �= gi) → (r′i = ri))

ρ2 :
∧

i�=j ¬(g′i ∧ g′j) ∧
∧

i ((ri = gi) → (g′i = gi))

ϕ :
∧

i ¬(ri ∧ gi) →
∧

i (gi = ri)

Note that, in this formulation, the safety property of exclusion has been incorporated as
part of the transition relation of the Arbiter.

Solving in Polynomial Time a Doubly Exponential Problem

The paper [16] provided a general solution to the problem of program synthesis from an
LTL specification. It showed that any approach that starts with the standard translation
from LTL to Büchi automata, has a doubly exponential lower bound. The first exponent
comes from the translation of an LTL formula into a non-deterministic Büchi automa-
ton. The second exponent is due to the determinization of the Büchi automaton into a
deterministic Rabin automaton.

One of the messages resulting from the work reported here is

Do not be too hasty to translate LTL into automata. Try first to locate the formula
within the temporal hierarchy, as presented in Fig. 2

For each class of formulas, synthesis can be performed in polynomial time.

Solving Games for Generalized Reactivity[1] (Streett[1])

Following [KPP03], we present an n3 algorithm for solving games whose winning con-
dition is given by the (generalized) Reactivity[1] (GR(1)) condition

(p1 ∧ p2 ∧ · · · ∧ pm) → q1 ∧ q2 ∧ · · · ∧ qn

This class of properties is bigger than the properties specifiable by deterministic Büchi
automata. It covers a great majority of the properties we have seen so far.
For example, it covers the realizable version of the specification for the Arbiter design.

A. Pnueli / Verification and Synthesis of Reactive Programs328

The Solution

The winning states in a React[1] game can be computed by

ϕ = ν

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

...

...

Zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μY

⎛
⎝ m∨

j=1

νX(q1 ∧ Z2 ∨ Y ∨ ¬pj ∧ X)

⎞
⎠

μY

⎛
⎝ m∨

j=1

νX(q2 ∧ Z3 ∨ Y ∨ ¬pj ∧ X)

⎞
⎠

...

...

μY

⎛
⎝ m∨

j=1

νX(qn ∧ Z1 ∨ Y ∨ ¬pj ∧ X)

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

ϕ : ∀�x′ : ρ1(V, �x′) → ∃�y′ : ρ2(V, V ′) ∧ ϕ(V ′)

Results of Synthesis

The design realizing the specification can be extracted as the winning strategy for Player
2. Applying this to the Arbiter specification, we obtain the design presented in Fig. 22.

r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2

Figure 22. Resulting design for Arbiter with n = 2

There exists a symbolic algorithm for extracting the implementing design/winning strat-
egy.

Execution Times and Programs Size for Arbiter(n)

In Fig. 23, we present a graph which displays the time and space for computing the
implementing design for various values of n which counts the number of clients.

A. Pnueli / Verification and Synthesis of Reactive Programs 329

Execution Time

0 10 20 30 40 50 60 70 80 90

25

50

75

100

150

50

100

150

200

250

300

125

T
im

e
(s

ec
on

ds
)

P
ro

gr
am

si
ze

(x
10

00
)

Program Size

Figure 23. Execution time and space for synthesizing design for Arbiter(n)

7. Extraction of Designs

It remains to show how to extract a winning strategy for the case that a game is winning
for player 2.
Let G : 〈V = �x ∪ �y, Θ1, Θ2, ρ1, ρ2, ϕ〉 be a given game. A controller for G is an FDS

Gc : 〈Vc, Θc, ρc, ∅, ∅〉, such that:

• Vc ⊇ V . That is, Vc extends the set of variables of G.

• Θc → Θ1 ∧ Θ2. That is, every Gc-initial state satisfies both Θ1 and Θ2.

• ρc → ρ, where ρ = ρ1 ∧ ρ2. That is, if s2 is a ρc-successor of s1, then s2 is also a
(ρ1 ∧ ρ2)-successor of s1.

• Player-1 Completeness — Θc⇓�x= Θ1 and ρc⇓V,�x′ = ρ1. That is, when projecting
the initial states of Gc on the variables �x, we obtain precisely Θ1. Also, a state
s1 ∈ Σc has a ρ1-successor s2 iff s1 has a ρc-successor which agrees with s2 on
the valuation of �x.

• Every infinite run of Gc satisfies the winning condition ϕ.

Example: Extracted Controller for Arbiter

In Fig. 24, we present again the controller extracted for the Arbiter example.

Interpreting a Controller as a Program

A program (equivalently, a circuit) implementing the extracted controller follows the
states that are contained in Gc. It has a program counter which ranges over the states of
Gc.
Assume that control is currently at state S of Gc. Let the next values of the input variables
be �x = ξ. Choose a state S′ which is a ρc-successor of S, and such that S′[�x] = ξ. By
the requirement of Player-1 Completeness, there always exists such a successor.
The actions of the program is to output the values η such that S′[�y] = η, and to move to
state S′.

In the following sequence of slides, we present for various winning conditions the algo-
rithm for computing the set of winning states and an algorithm for extracting a controller
in the case the game is winning for player 2.

A. Pnueli / Verification and Synthesis of Reactive Programs330

r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2

Figure 24. A program for an Arbiter for 2 Clients

Computing a Controller for the Winning Condition p

The winning states in a game with a winning condition p are given by:

win = νZ. p ∧ Z

The full controller extraction algorithm can be given by the following program:

Z := 1
Fix (Z)[

Z := p ∧ Z
]

if (Θ1 ∧ ¬(∃�y : Θ2 ∧ Z)) �= 0 then
Print "Specification is unrealizable"

else[
Θc := Θ1 ∧ Θ2 ∧ Z
ρc := Z ∧ ρ ∧ Z ′

]

Claim 10 If s is a winning state of a (p)-game, then s |= p, and player 2 can force
the game to move from s to a successor which is also a winning state.

Computing A Controller for the Winning Condition q

The winning states in a game with a winning condition q are given by:

win = μY. q ∨ Y

The full controller extraction algorithm can be given by the following program:

A. Pnueli / Verification and Synthesis of Reactive Programs 331

Y := q; r := 0; U [0] := q
Fix (Y)[

Y := q ∨ Y ; r := r + 1; U [r] := Y
]

if (Θ1 ∧ ¬(∃�y : Θ2 ∧ Y)) �= 0 then
Print "Specification is unrealizable"

else⎡
⎢⎢⎣

Θc := Θ1 ∧ Θ2 ∧ Y
ρc := 0; prev := U [0]
for i ∈ 1 . . . r do[

ρc := ρc ∨ (U [i] ∧ ¬prev) ∧ ρ ∧ prev′; prev := prev ∨ U [i]
]

⎤
⎥⎥⎦

Claim 11 Every winning state s in a (q)-game is associated with a natural rank
r(s) ≥ 0, such that if r(s) = 0 then s |= q, and if r(s) > 0, then player 2 can force the
game to move from s to a winning successor with a lower rank.

Computing A Controller for the Winning Condition q

The winning states in a game with a winning condition q are given by:

win = νZμY. (q ∧ Z) ∨ Y

The full controller extraction algorithm can be given by the following program:

Z := 1
Fix (Z)⎡
⎢⎢⎣

Y := q ∧ Z; r := 0; U [0] := Y
Fix (Y)[

Y := (q ∧ Z) ∨ Y ; r := r + 1; U [r] := Y
]

Z := Y

⎤
⎥⎥⎦

if (Θ1 ∧ ¬(∃�y : Θ2 ∧ Z)) �= 0 then Print "Specification is unrealizable"
else⎡
⎢⎢⎣

Θc := Θ1 ∧ Θ2 ∧ Z
ρc := U [0] ∧ ρ ∧ Z ′; prev := U [0]
for i ∈ 1 . . . r do[

ρc := ρc ∨ (U [i] ∧ ¬prev) ∧ ρ ∧ prev′; prev := prev ∨ U [i]
]

⎤
⎥⎥⎦

Claim 12 Every winning state s in a (q)-game is associated with a natural rank
r(s), such that player 2 can force the game to move from s to a winning successor s′

where either r(s) = 0 and s |= q, or r(s) > r(s′).

Winning States for the Condition q1 ∧ · · · ∧ qn

The winning states in a game with a winning condition q1 ∧ · · · ∧ qn (gener-
alized Büchi) are given by:

A. Pnueli / Verification and Synthesis of Reactive Programs332

win = ν

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

...

Zn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

μY ((q1 ∧ Z2) ∨ Y)

μY ((q2 ∧ Z3) ∨ Y)
...
...

μY ((qn ∧ Z1) ∨ Y)

⎤
⎥⎥⎥⎥⎥⎥⎦
[1]

This is a case where the extracted strategy needs to rely on an auxiliary memory. The

memory will be represented by an additional variable ix : 1 . . . n.

Controller Extraction for the Condition q1 ∧ · · · ∧ qn

The controller extraction algorithm can be given by the following program:

For (j ∈ 1 . . . n) do [Z[j] := 1]
Fix (Z[1])⎡
⎢⎢⎢⎢⎣

For (j ∈ 1 . . . n) do⎡
⎢⎢⎣

Y := q[j] ∧ Z[j ⊕n 1]; r := 0; U [j, 0] := Y
Fix (Y)

[Y := (q[j] ∧ Z[j ⊕n 1]) ∨ Y ; r := r + 1; U [j, r] := Y]
Z[j] := Y ; maxr[j] := r

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

if (Θ1 ∧ ¬(∃�y : Θ2 ∧ Z[1])) �= 0 then Print "Specification is unrealizable"
else⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θc := Θ1 ∧ Θ2 ∧ Z[1] ∧ ix = 1; ρc := 0
For (j ∈ 1 . . . n) do⎡
⎢⎢⎢⎢⎣

ρc := ρc ∨ (ix = j) ∧ U [j, 0] ∧ ρ ∧ Z ′[j ⊕n 1] ∧ (ix′ = j ⊕n 1)
prev := U [j, 0]
for r ∈ 1 . . . maxr[j] do[

ρc := ρc ∨ (ix = j) ∧ (U [j, r] ∧ ¬prev) ∧ ρ ∧ prev′ ∧ (ix′ = j)
prev := prev ∨ U [j, r]

]

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A Controller for the Winning Condition (p → q)

The winning states in such a game are given by:

win = νZμY νX. (q ∧ Z) ∨ Y ∨ (¬p ∧ X)

The full controller extraction algorithm can be given by the following program:

A. Pnueli / Verification and Synthesis of Reactive Programs 333

Z := 1
Fix (Z)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y := 0; r := 0
Fix (Y)⎡
⎢⎢⎣

X := 1
Fix (X)

[X := (q ∧ Z) ∨ Y ∨ (¬p ∧ X)]
Y := X ; U [r] := Y ; r := r + 1

⎤
⎥⎥⎦

Z := Y ; maxr := r − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

if (Θ1 ∧ ¬(∃�y : Θ2 ∧ Z)) �= 0 then Print "Specification is unrealizable"

else

⎡
⎢⎢⎢⎢⎣

Θc := Θ1 ∧ Θ2 ∧ Z
ρc := (q ∧ U [0] ∧ ρ ∧ Z ′) ∨ (¬p ∧ U [0] ∧ ρ ∧ U ′[0]); prev := U [0]
for r ∈ 1 . . . maxr do[

W := U [r] ∧ ¬prev; nprev := prev ∨ U [r]
ρc := ρc ∨ W ∧ ρ ∧ prev′ ∨ ¬p ∧ W ∧ ρ ∧ W ′; prev := nprev

]

⎤
⎥⎥⎥⎥⎦

Claim 13 Every winning state s in a (q)-game is associated with a natural rank
r(s), such that player 2 can force the game to move from s to a winning successor s′

where either r(s) = 0 and s |= q, or r(s) > r(s′).

8. Synthesis from LTL Specifications

We will now consider synthesis of programs/designs directly from an LTL specification
without the intermediary of a platform as part of the specification.

Property-Based System Design

While the rest of the world seems to be moving in the direction of model-based design
(see System-C, UML), some of us persist with the vision of property-based approach.

Specification is stated declaratively as a set of properties, from which a design can
be extracted.
This is currently studied in the project PROSYD.
Design synthesis is needed in two places in the development flow:

• Automatic synthesis of small blocks whose time and space efficiency are not crit-
ical.

• As part of the specification analysis phase, ascertaining that the specification is
realizable.

A Realizable Specification

Reconsider the example of the Arbiter, where the interaction between the Arbiter and the
clients follows the protocol described in Fig. 13.

Assumptions (Constraints on the Environment)

A :
∧
i

(ri ∧ (ri �= gi)⇒(ri = ri) ∧ ri ∧ gi ⇒ ri)

A. Pnueli / Verification and Synthesis of Reactive Programs334

Guarantees (Expectations from System)

G :
∧
i�=j

¬(gi ∧ gj) ∧
∧
i

⎛
⎝gi ∧

⎧⎪⎪⎪⎪⎪⎩
ri = gi ⇒ gi = gi ∧
ri ∧ gi ⇒ gi ∧
ri ∧ gi ⇒ gi

⎫⎪⎪⎪⎪⎪⎭
⎞
⎠

Total Specification

ϕ : A → G

Program Synthesis from LTL Specification

Assume a specification given as an LTL formula ϕ plus an identification of the input
variables �x and output variables �y. We construct the (structurally trivial) game

Gϕ : 〈V = �x ∪ �y, Θ1 : 1, Θ2 : 1, ρ1 : 1, ρ2 : 1, ϕ〉

Solving the game Gϕ by the controller synthesis methods, and extracting the implement-
ing controller, we obtain a program (or circuit) which realizes the specification ϕ.

There are several technical considerations which facilitates the application of this
approach.
For two games G1, G2 we say that G1 is equi-realizable to G2, written G1 ∼ G2, if the
realizability status of G1 is equal to that of G2. That is, if both are realizable, or both are
unrealizable.

GR(1) Specifications over Past Formulas

There are many cases in which the specification is given as, or is equivalent to, an LTL

formula of the form

ϕ : (p1 ∧ · · · ∧ pm) → (q1 ∧ · · · ∧ qn),

where p1, . . . , pm, q1, . . . , qn are past formulas, rather than assertions. We construct the
testers T [p1], . . . , T [pm], T [q1], . . . , T [qn]. Let bp1 , . . . , bpm

, bq1 , . . . , bqn
; Θp1 , . . . ,Θpm

,
Θq1 , . . . ,Θqn

; ρp1 , . . . , ρpm
, ρq1 , . . . , ρqn

be the output variables, initial conditions, and
transition relations, respectively, of testers T [p1], . . . , T [pm], T [q1], . . . , T [qn].

The synthesis of specifications such as ϕ uses the reduction implied by:

Claim 14 The game G : 〈V = �x ∪ �y, Θ1, Θ2, ρ1, ρ2, ϕ〉 is equi-realizable to the game
G̃ : 〈Ṽ , Θ̃1, Θ̃2, ρ̃1, ρ̃2, (

∧m

i=1 bpi
) → (

∧n

j=1 bqj
)〉

where, Ṽ : (�x ∪ {bp1 , . . . , bpm
}) ∪ (�y ∪ {bq1 , . . . , bqn

})

Θ̃1 : Θ1 ∧ Θp1 ∧ · · · ∧ Θpm

Θ̃2 : Θ2 ∧ Θq1 ∧ · · · ∧ Θqn

ρ̃1 : ρ1 ∧ ρp1 ∧ · · · ∧ ρpm

ρ̃2 : ρ2 ∧ ρq1 ∧ · · · ∧ ρqn

A. Pnueli / Verification and Synthesis of Reactive Programs 335

A Special Case: Treatment of the Safety Components

Many specifications have the following form (e.g., the Arbiter example):

ϕ : (I1(�x) ∧ R1(�x, �y, �x) ∧ L1) → (I2(�x, �y) ∧ R2(�x, �y, �x, �y) ∧ L2)

Obviously, I1∧ R1 and I2∧ R2 are the safety parts of the environment and system,
respectively.

The following reduction replaces the safety parts by corresponding p conjuncts.

Claim 15 The game G : 〈V = �x ∪ �y, Θ1, Θ2, ρ1, ρ2, ϕ〉 is equi-realizable to the game
G̃ : 〈Ṽ , Θ̃1, Θ̃2, ρ̃1, ρ̃2, (b1 ∧ L1) → (b2 ∧ L2)〉.

where, Ṽ : (�x ∪ {b1) ∪ (�y ∪ {b2)

Θ̃1 : Θ1 ∧ b1 = I1

Θ̃2 : Θ2 ∧ b2 = I2

ρ̃1 : ρ1 ∧ (b′1 = b1 ∧ R1(�x, �y, �x′))
ρ̃2 : ρ2 ∧ (b′2 = b2 ∧ R2(�x, �y, �x′, �y′))

This transformation can be formally justified by the equivalence

(Ii ∧ Ri(V, V)) ∼ (first ∧ Ii ∨ ¬first ∧ Ri(V, V))

where, first = ¬ 1 characterizes the first position in a sequence.

The VMCAI’06 Transformation

In the paper [14], we considered specifications of the form

ϕ : (I1 ∧ R1 ∧ L1) → (I2 ∧ R2 ∧ L2)

and proposed to apply the transformation supported by the following claim, to which we
refer as the VMCAI’06 transformation.

Claim 16 Consider the game G : 〈V = �x ∪ �y, Θ1, Θ2, ρ1, ρ2, ϕ〉 and its transformed
version G̃ : 〈V, Θ1 ∧ I1, Θ2 ∧ I2, ρ1 ∧ R1, ρ2 ∧ R2, L1 → L2〉. If G̃ is realizable,
then so is G.

This transformation was used in order to synthesize the designs for the Arbiter specifica-
tion for up to 100 clients.

The VMCAI’06 Transformation is Sound but Not Complete

We show a counter-example specification ϕ : (R1 ∧ L1) → (R2 ∧ L2) (due to
Marco Roveri), such that the game G : 〈V : {x, y}, 1, 1, 1, 1, ϕ〉 is realizable but the
transformed game G̃ : 〈V, 1, 1, R1, R2, L1 → L2〉 is not.

The specification is:

A. Pnueli / Verification and Synthesis of Reactive Programs336

ϕ : ((x′ = 0) ∧ (x = y)) → ((y′ = x′) ∧ (y = 1))

An implementing FDS for this specification is the FDS Dy=1 in which the transition
relation is y′ = 1. Namely, an FDS in which y continuously equals 1. Consider any
behavior σ which is compatible with the constraint y = 1. If x is continuously 0 then σ
violates the requirement (x = y). Otherwise, σ violates the conjunct (x′ = 0).
In any case, σ violates (x′ = 0) ∧ (x = y) and, therefore, satisfies ϕ. Thus,
system Dy=1 maintains ϕ against all behaviors of x.

On the other hand, the derived game

G̃ : 〈{x, y}, 1, 1, x′ = 0, y′ = x′, (x = y) → (y = 1)〉

is unrealizable. This is because in any play of this game the values of x and y are forced
by the transition relations to be both 0. Such a behavior necessarily violates the implica-
tion (x = y) → (y = 1), under all possible choices of the second player
(which does not really have any choices).

Conclusions

The obvious conclusion is that the VMCAI’06 transformation cannot be applied in a
complete manner to specifications of the form (R1 ∧ L1) → (R2 ∧ L2). One may
conclude that the transformation is at fault.
An alternative conclusion is that specifications of the form (R1 ∧ L1) → (R2 ∧
L2) are ill-posed since they allow the safety property R2 to depend on the liveness
property L1. A better-posed version of such a specification would be:

(R1 → R2) ∧ (R1 ∧ L1 → L2)

in which the safety property of the system depends only on the safety property of the
environment, while the liveness property of the system depends on both the safety and
liveness properties of the environment.
Indeed, if we rewrite Roveri’s specification as

((x′ = 0) → (y′ = x′)) ∧ ((x′ = 0) ∧ (x = y) → (y = 1))

we obtain a specification which is unrealizable, as is the derived game obtained by the
VMCAI’06 transformation.

Any Improvement?

Therefore, we now consider a specification of the form

ϕ : (R1 → R2) ∧ (R1 ∧ L1 → L2)

and propose transforming the game G : 〈V : {x, y}, 1, 1, 1, 1, ϕ〉 into the derived game
G̃ : 〈V, 1, 1, R1, R2, L1 → L2〉.

A. Pnueli / Verification and Synthesis of Reactive Programs 337

Again we can show that this transformation is sound but incomplete. The counter-
example (due to Oded Maler) in this case is given by the following specification:

(x′ > x︸ ︷︷ ︸
R1

) → (y′ > y︸ ︷︷ ︸
R2

)

where x and y range over the domains [0..10] and [0..5], respectively, and we may assume
x = 0 and y = 0 as initial conditions. Note that here, both liveness properties L1 and L2

are taken as trivially 1. We can show that this specification is realizable by the FDS Dy=0

which keeps y permanently at 0. This is because no behavior of x can satisfy (x′ > x)

for more than 10 steps. On the other hand, the derived game:

G̃ : 〈{x, y}, x = 0, y = 0, x′ > x, y′ > y, 1〉

is unrealizable because, in any play, the system gets blocked (deadlocks) within 5 steps,
while the environment can survive for 10 steps.

The Ultimate Recommended Form

Following the sequence of successive refinements, we finally reach the following recom-
mended form for specifications:

ϕ : (I1 → I2) ∧ (I1 → (R1 → R2)) ∧ (I1 ∧ R1 ∧ L1 → L2)

The second conjunct requires that, for all positions j ≥ 0 in the sequence, if I1 was true
at position 0, and R1 held continuously from position 0 up to j, then R2 holds at j. For
such specifications the VMCAI’06 transformation is both sound and complete, as stated
by the following:

Claim 17 The game G : 〈V, Θ1, Θ2, ρ1, ρ2, ϕ〉 and its derived version
G̃ : 〈V, Θ1 ∧ I1, Θ2 ∧ I2, ρ1 ∧ R1, ρ2 ∧ R2, L1 → L2〉 are equi-realizable.

As before, we assume that that the user identifies for the environment the components I1,
R1, and L1, which stand, respectively, for the initial condition, safety part, and live-

ness part of the environment’s obligations. In a similar way, the components I2, R2,
and L2 are identified as the guarantees of the system. The only difference from the
previous formulation which consisted of the single implication (I1 ∧ R1 ∧ L1) →
(I2 ∧ R2 ∧ L2) is that now we propose to structure the total specification in the form
presented above as ϕ.

Observation

The class of (generalized) GR(1) specifications is interesting because it captures systems
in which both the environment and the synthesized design can be implemented by FDS’s
which may contains justice but no compassion requirements.

A. Pnueli / Verification and Synthesis of Reactive Programs338

9. Conclusions

In this paper we presented an approach to the automatic synthesis of designs (pro-
grams) directly from LTL specifications. Such designs are guaranteed to be correct-by-
construction and does not require any further verification.

We show that for a wide fragment of LTL synthesis can be performed in time which
is polynomial in the size of the specification.

Some of the more concrete conclusions are:

• It is possible to perform design synthesis for restricted fragments of LTL in accept-
able time.

• The tractable fragment (GR(1)) covers most of the properties that appear in stan-
dard specifications.

• It is worthwhile to invest an effort in locating the formula within the temporal
hierarchy. Solving a game in React(k) has complexity N (2k+1).

• The methodology of property-based system design (Prosyd) is an option worth
considering. It is greatly helped by improved algorithms for synthesis.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent program specifications. In
Proc. 16th Int. Colloq. Aut. Lang. Prog., volume 372 of Lect. Notes in Comp. Sci., pages 1–17. Springer-
Verlag, 1989.

[2] R. Alur and S. L. Torre. Deterministic generators and games for LTL fragments. ACM Trans. Comput.
Log., 5(1):1–25, 2004.

[3] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In IFAC Sympo-
sium on System Structure and Control, pages 469–474. Elsevier, 1998.

[4] J. Büchi and L. Landweber. Solving sequential conditions by finite-state strategies. Trans. Amer. Math.
Soc., 138:295–311, 1969.

[5] A. Church. Logic, arithmetic and automata. In Proc. 1962 Int. Congr. Math., pages 23–25, Upsala,
1963.

[6] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branching time
temporal logic. In Proc. IBM Workshop on Logics of Programs, volume 131 of Lect. Notes in Comp.
Sci., pages 52–71. Springer-Verlag, 1981.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[8] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation and trace inclusion.

Inf. and Cont., 200(1):35–61, 2005.
[9] Y. Kesten and A. Pnueli. A Compositional Approach to CTL∗ Verification. Theor. Comp. Sci., 331(2–

3):397–428, 2005.
[10] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifications. In

K. Larsen, S. Skyum, and G. Winskel, editors, Proc. 25th Int. Colloq. Aut. Lang. Prog., volume 1443 of
Lect. Notes in Comp. Sci., pages 1–16. Springer-Verlag, 1998.

[11] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, New York, 1991.

[12] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New York,
1995.

[13] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic specifications.
ACM Trans. Prog. Lang. Sys., 6:68–93, 1984.

[14] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In E. Emerson and K. Namjoshi,
editors, Proc. of the 7t

h workshop on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’06), volume 3855 of Lect. Notes in Comp. Sci., pages 364–380. Springer-Verlag, 2006.

A. Pnueli / Verification and Synthesis of Reactive Programs 339

[15] A. Pnueli and R. Rosner. A framework for the synthesis of reactive modules. In F. Vogt, editor, Proc.
Intl. Conf. on Concurrency: Concurrency 88, volume 335 of Lect. Notes in Comp. Sci., pages 4–17.
Springer-Verlag, 1988.

[16] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp. Princ. of
Prog. Lang., pages 179–190, 1989.

[17] M. Rabin. Automata on Infinite Objects and Churc’s Problem, volume 13 of Regional Conference Series
in Mathematics. Amer. Math. Soc., 1972.

[18] P. Ramadge and W. Wonham. The control of discrete event systems. Proc. of the IEEE on Control
Theory, 77:81–98, 1989.

A. Pnueli / Verification and Synthesis of Reactive Programs340

Security, Privacy, Usability and
Reliability (SPUR) in Mobile Networked
Embedded Systems: The Case of Modern

Automobiles

K. Venkatesh PRASAD a,1 and TJ GIULI a

a Ford Research and Advanced Engineering

Abstract. The notion of nearly all things being networked almost all the time has
been with us for over two decades now. Most networked entities had been fixed
until the advent of cellular telephony. With cellular phones the fringes of the in-
formation age have begun to expand in pervasive forms. Adding the automobile to
this context adds a new dimension to this domain of pervasive networks. In this
chapter we introduce the notion of a mobile networked embedded systems (MNES)
in which a mobile entity such as an automobile is composed of internally as well as
externally networked software components. We further discuss the challenges go-
ing forward of designing a MNES-vehicle with regard to security, privacy, usability,
and reliability (SPUR).

Keywords. Embedded software, security, privacy, mobile computing

Introduction

Modern automobiles make a good pedagogical case for study of mobile networked em-
bedded systems (MNES) in general, and for the study of security, privacy, reliability and
privacy (SPUR), in particular. Today’s automobiles may contain more than 10 million
lines of code distributed across several tens of embedded processors, in inter-connected
us as many as 6 distinct wired and wireless networks, making automobiles a rich net-
working environment (Figure 1). All this computing and communications capability is
housed in highly mobile and durable platforms, and driven by a wide range of users, in
all types of physical and electronic environmental conditions. There are numerous other
examples of embedded systems such as toasters, automatic teller machines or aircraft,
but toasters don’t have much of a SPUR concern, automatic teller machines have con-
siderable SPUR requirements but do not (usually) move and aircraft have SPUR require-
ments but are operated only by highly trained personnel. The automobile therefore stands
out as particularly attractive for the study of SPUR in MNES.

Table 1 contains examples of several real-world automotive use-cases, along with
their associated SPUR attributes. The relevance of each attribute — security (S), privacy

12101 Village Rd. MD 2122, Dearborn, MI 48103, USA

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

341

Figure 1. The increasing influence of software on vehicle design. In 1975, software was mostly limited to
powertrain control and was a few thousand lines of code in size. By the year 2000, software had grown to
several hundred thousand lines of code and by 2006 code has grown to several hundred megabytes of code.
As we move into the next quarter century, we see the influence of software continuing to grow with its cost
together with associated electronics at about 20-30% of vehicle cost and its benefits being derived from the fact
that 90% of future features are expected to be dependant software.

Table 1. Examples illustrating how each SPUR attribute relates to an example from the automotive domain.
Each attribute is classified as having low (l), medium (m) or high (h) relevance in relation to the example.

Example S P U R

Hands-free Bluetooth h h h m

Remote diagnostics h h l m

Stolen vehicle tracking h h l h

Emergency blinkers l l h h

(P), usability (U) and reliability (R) — is indicated by a low (l), medium (m) or high (h)
measure. These measures were arrived at by subjective reasoning and are meant to serve
as examples. The next section deals with service-oriented architectures, followed by an
overview of communications systems in automobiles. Subsequent sections deal with an
introduction to SPUR and conclusions.

1. Embedded Service-Oriented Architectures

Modern automobiles have become quite complex in terms of the number of microproces-
sors, lines of code, and the size of internal vehicle networks. However, while the amount
of compute hardware and software has increased, the methodologies used in implement-
ing software on most vehicles has lagged behind the state of the art typically seen in

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR) in MNES342

the IT industry. Vehicle modules are typically designed as black boxes, where modules
may be designed and manufactured by different suppliers. Modules communicate with
each other using network messages, but these messages are usually not part of an indus-
try standard application programming interface (API), but rather a collection of applica-
tion specific agreed-upon messages that may change between products within the same
original equipment manufacturer (OEM), even if the module functionality remains the
same.

Furthermore, modules often contain overlapping implementation functionality. For
example, a luxury vehicle might have a navigation system with a text-to-speech compo-
nent that reads directions aloud. The same vehicle might also have a hands-free-phone
module with a separate text-to-speech component that tells the driver who is calling. This
overlapping functionality increases development costs because the function was devel-
oped twice and it may also impact the unit cost of each module because twice as much
memory is necessary to store the program code.

Additionally, as consumers demand more features, the complexity of inter-module
interactions is also growing. A safety system that detects a crash has occurred can deploy
the airbags, unlock the doors, and instruct the telematics system to call emergency ser-
vices. This functionality requires a high level of integration between modules that do not
necessarily fall under the category of “safety systems,” which necessitates at least rudi-
mentary interfaces allowing modules to communicate. If these interfaces are not well-
designed, a change in any one of these modules could necessitate changes in all of the
other modules.

Service-oriented architectures (SOA) have been used in other domains to solve these
types of problems, and may find successful application in the automotive domain as
well [1]. A service-oriented architecture is one in which loosely-coupled components
interact through well-specified interfaces and APIs using standard network protocols.
Software components are decomposed into services that export functionality to other
components as well as consume the services of other components through well-defined
interfaces. Ideally, services are single-purpose software components that can easily be
composed with other services to create larger programs. The benefits of this type of
design include:

• Reduced dependencies between module implementations: A key benefit of hav-
ing well-designed interfaces between modules is that underlying module imple-
mentations may change while leaving the interfaces unchanged. Thus, changes to
a module’s implementation do not necessitate code changes to other modules it
interacts with, resulting in significant cost savings.

• Software reuse: To build a complex feature like a navigation system in a service-
oriented architecture, a software engineer composes a set of services together
along with core logic that specifies the behavior of the feature. A navigation sys-
tem could call on a GPS service that keeps track of the vehicle’s current loca-
tion, a text-to-speech service that reads text to the driver, a route-planning ser-
vice, and a map service that displays map graphics. Although the text-to-speech
service is used by the navigation feature, the aforementioned hands-free phone
feature could also use the text-to-speech service as well, thus eliminating the need
for both the navigation module and hands-free phone module to implement their
own text-to-speech code. Service-oriented architectures promote software reuse
by advocating general services that are usable by multiple software programs.

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR)in MNES 343

H
M

I S
er

vi
ce

P
ol

ic
y

S
er

vi
ce

N
et

w
or

k
S

er
vi

ce

S
ec

ur
ity

 S
er

vi
ce

RTOS

Phone User Interface

P
ho

ne
 S

er
vi

ce

Built-in services Brought-
in service

Figure 2. A phone application built on top of a service-oriented architecture. The built-in components include
HMI, policy, network, and security services. The HMI service controls user-interface controls such as the
speakers and display.

• Consistency of user interface: There is an added benefit to reusing user-visible
services. By using the same text-to-speech engine for both the navigation and
hands-free-phone feature, the driver hears the same voice consistently across fea-
tures. This enhances the feel of feature integration and makes the voice system
more usable.

1.1. Example

With the increasing deployment of high-bandwidth wireless network technologies such
as EVDO, WiMAX, and WiFi hotspots, the possibility of vehicles utilizing broadband
connectivity to download software, firmware updates, and digital content is fast ap-
proaching. In this example, we explore the implications of such a connection by exam-
ining a software download use case.

In this use case, a driver brings a new cell phone into his vehicle and wants to inte-
grate it into his driving experience. He downloads software from the OEM, enabling the
vehicle to make and receive hands-free calls and notify the driver of any appointments
on his phone’s calendar. The software displays a cell phone interface on an in-vehicle
display, allowing the driver to control his cell phone either through the built-in knobs,
buttons, and touchscreen display, or via voice commands.

Figure 2 shows an architecture diagram illustrating how a service-oriented architec-
ture might look in a vehicle. The HMI, policy, network, and security services are all core
built-in services. The HMI service displays data via any built-in displays and it gathers
input from controls such as knobs and buttons. The policy service regulates how user
interfaces may interact with the driver given the current context. For example, the pol-
icy service would prevent a DVD from being played on a driver-visible LCD screen un-
less the car is parked. The network service provides network connectivity to other ser-

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR) in MNES344

H
M

I S
er

vi
ce

P
ol

ic
y

S
er

vi
ce

N
et

w
or

k
S

er
vi

ce

S
ec

ur
ity

 S
er

vi
ce

RTOS

Vehicle Infrastructure Integration (VII) Applications

V
II

S
er

vi
ce

Built-in services Beamed-
in service

Figure 3. Wireless (“beamed-in”) vehicle to (roadside) infrastructure communications introduces added com-
plexity to vehicle software as security, privacy, usability and reliability need to be reviewed in this context.

vices and applications. The security service provides services such as authentication and
encryption. The phone service is a brought-in service, available when a cell phone is
present. The phone user interface uses the phone service to make and receive calls and
it uses the HMI service to display a user interface on an in-vehicle display as well as
broadcast sound from calls over the vehicle’s speakers.

In addition to offering the ability to send and receive phone calls, the phone service
may also offer data transport (e.g., over a 3G network), so the network service could use
the phone service to provide another means of connectivity. Thus if the vehicle is outside
of metro-area WiMAX connectivity, the vehicle can still have network connectivity as
long as the cell phone is powered on.

2. Overview of Communications Systems in Automobiles

As shown in Figure 1 automobiles today may have up to 6 communications networks.
A review of intra-vehicle communications may be found in [2] and a representative se-
lection of inter-vehicle and vehicle-to-infrastructure communications may be found in
[3].

Broadly stated, one could group automobile communications into the following cat-
egories:

• Intra-vehicle communications: Vehicle modules communicate mostly over wired
networks following standard protocols such as the controller area network or
CAN, local interconnect network or LIN and media-oriented systems transport
or MOST. These networks support a wide range of applications, each with a dis-
tinct set of functional and non-functional requirements spanning major vehicle
domains such as powertrains, chassis, body, safety, security, and information and

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR)in MNES 345

entertainment domains. Such networks have also traditionally supported inter-
connections to (wireless) radio-frequency units such as security fobs and more
recently to tire pressure monitoring systems.

• Vehicle-to-infrastructure communications: A popular example of this aspect of
vehicle communications is automobile telematics, where a vehicle modules com-
municates to a remote call and data center via a cellular wireless communications
protocol. This is rapidly being augmented by various vehicle to roadside infras-
tructure communications protocols such as the dedicated short-range communi-
cations or DSRC (a 5.9GHz) protocol. etc.

2.1. Example

The Vehicle Infrastructure Integration (VII) project is a collaboration between the United
States Department of Transportation, ten State Departments of Transportation and the
top eight automobile manufacturers that sell vehicles in the United States. The aim of VII
is to enable vehicle to vehicle and vehicle to infrastructure communications to support
safety applications and traffic monitoring [4].

Several use cases have been developed for VII including:

• Emergency electronic brake lights Drivers are frequently only able to see the tail-
lights of the vehicle directly in front of them. If someone two or three vehicles
ahead brakes hard, drivers several cars behind will not know that they need to
brake until the car directly in front of them brakes. In this use case, whenever a
vehicle brakes, it sends out a vehicle-to-vehicle broadcast to the vehicles behind
it that it is slowing down, giving drivers an early warning.

• Highway signage In this use case, transmitters along roadways broadcast high-
way signage information such as exit numbers and nearby businesses. This infor-
mation is displayed for the driver on the vehicle’s HMI.

• Electronic payment In this scenario, vehicles communicate with infrastructure
such as roadway transmitters and gas stations to pay tolls and purchase fuel.

VII services could be implemented in a service-oriented manner, as seen in Figure 3.

3. Implications of Security, Privacy, Usability, and Reliability (SPUR)

Figure 1 illustrates the increasing importance of software on vehicle design, both in terms
of development costs and in impact on the driver experience. Software systems enable
advanced traction control, more efficient engines, advanced onboard diagnostics, and in-
fotainment features such as navigation. Reliance on increasingly complex software to
provide these advanced features means that automobile manufacturers must also be con-
cerned about some of the same issues that concern software producers, among them se-
curity, privacy, usability, and reliability. To be sure, these are all concerns that automotive
manufacturers have been aware of in the context of physical systems (e.g., locks and im-
mobilizers to prevent vehicle theft, well-designed interior controls to enhance usability,
and high quality components to ensure vehicle reliability). We can discuss the problem
of automotive embedded security in terms of two dimensions: network security and soft-
ware security. As we will see, both network security and software security are necessary
to ensure correct vehicle operations.

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR) in MNES346

Section 2 discussed the need for both vehicle-to-vehicle as well as vehicle-to-
infrastructure communications. In the case of active safety applications such as crash
mitigation and avoidance, the authenticity and accuracy of vehicle communications is
crucial. For example, in the VII early brake warning scenario, a vehicle broadcasts a no-
tification whenever its driver brakes. Drivers that cannot see the braking vehicle’s tail-
lights are notified that a vehicle in the lane ahead of them is slowing down and so they
should be prepared to slow down as well. If a malicious actor can arbitrarily spoof safety
messages such as the early brake warning, they could potentially snarl traffic by injecting
false messages into the system.

One potential solution to this problem is to require all vehicles to sign their safety-
related messages with digital signatures. These signatures would prove that they had
originated from a specific vehicle and would be generated using certificates issued by
vehicle manufacturers or possibly local departments of transportation as part of vehicle
registration. Requiring valid signatures on all vehicle safety messages would make it
much harder for a malicious adversary to spoof these types of messages.

Other forms of authentication are necessary in vehicle communications. For exam-
ple, some telematics systems in production today allow service centers to remotely un-
lock specific vehicles if a driver has locked their key in their vehicle. To prevent car
thieves from stealing a car using a false door-unlock signal, an authentication mechanism
should allow the vehicle to authenticate that a door-unlock message is actually coming
from a valid service center.

In addition to communication security, vehicle software should be hardened against
intrusion to prevent subversion by a malicious adversary. In the case of the early brake
scenario, if a virus can compromise the vehicle’s safety software, it could send out signed
brake notifications even when the driver is not braking. To ensure the early brake sys-
tem works well, therefore, vehicles’ software systems must be resistant to intrusion and
communication between vehicles must be difficult to falsify.

Driver privacy is also an issue in designing vehicle-to-vehicle and vehicle-to-
infrastructure communications systems. If communications from vehicles include loca-
tion information such as the current GPS coordinates of a vehicle and a uniquely identify-
ing characteristic such as a license plate number, it is possible to track drivers. Many peo-
ple find this type of location surveillance unacceptable and would resist buying vehicles
that allowed them to be tracked. Potential solutions to this problem involve anonymizing
individual vehicle communications through other vehicles acting as proxies [5].

Usability is also important when considered in the context of security and privacy.
Different drivers can have different views on what they consider private, therefore they
should be able to specify how their data should be protected. An online web portal could
be one method for a driver to specify his preferences, or there could also be an in-vehicle
component as well. Either way, the driver should be able to easily communicate their
preferences to the vehicle. Additionally, the vehicle needs to clearly communicate secu-
rity and privacy related events to the driver. For example, if the vehicle detects the pres-
ence of a software virus, it should communicate this to the driver in such a way as to not
alarm the driver while the vehicle is moving.

Reliability has traditionally been a key concern of automobile manufacturers in the
context of mechanical and electrical systems, and that emphasis now translates into soft-
ware systems. Because software now interacts with most major vehicle subsystems, a
software bug could potentially affect the drivability of a vehicle. Furthermore, even if a

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR)in MNES 347

Vehicle

Verify_Signature()

OEM

Initiate_Secure_Connection()

Complete_Secure_Connection()

Request_Software()

Deliver_Software()

Figure 4. A sequence diagram showing how a vehicle acquires a new piece of software from an original
equipment manufacturer (OEM).

software failure has nothing to do with the powertrain, such as a bug in a rear-seat DVD
player, consumers may incorrectly assume that powertrain software is also buggy.

Each of the individual SPUR attributes are important on their own, but because
automobiles are complex systems, the SPUR attributes must be analyzed as a whole, to
ensure that strengthening one attribute does not weaken another. For example, a module
that maintains a driver’s phonebook from their cell phone could prompt the driver for a
password every time it downloads the phone book. However, this could negatively affect
the usability of the system and frustrate drivers. For a more in-depth look at how SPUR
affects future automobile design, see [6,7].

3.1. Example

We will now consider the example from Section 1.1 with a focus on SPUR. Recall that
our example has to do with a driver downloading software to better interface between his
vehicle and his cell phone. Figure 4 shows the sequence of interactions between the vehi-
cle and its OEM. To download the software, the vehicle first initiates a secure connection

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR) in MNES348

to the OEM using a wireless network connection. The vehicle and the OEM mutually
authenticate each other so that the vehicle can confirm that it is actually talking to its
OEM and the OEM knows that the vehicle is one of its own. After authenticating each
other, the vehicle and OEM set up an encrypted connection. The vehicle then requests the
software package and the OEM delivers the software. The software is digitally signed by
the OEM and the vehicle verifies the signature before installation. Finally, the software
is ready for use.

There are clearly several aspects of the software download and installation process
that have to do with security. First, the authentication step is necessary to prevent a ma-
licious party from posing as the OEM and offering malign software. Encrypting the con-
nection prevents eavesdroppers in case the vehicle transmits sensitive information to the
OEM. As an extra security measure, the software is signed by the OEM and verified by
the vehicle, again to ensure that the software comes from a trusted source.

Both the authentication and signature verification are intended to prevent malicious
software from being downloaded to the vehicle that could negatively affect the driving
experience. In our example, if the cell phone integration software is in fact malicious
spyware, the software could download the driver’s contact list and text messages off of
his phone and email the information to cybercriminals. Or the software could potentially
interfere with the operation of the vehicle directly.

The issue of user data brings up the issue of privacy. In some instances, the driver
might be perfectly happy exposing the contact list in his phone, for instance, to a friend.
However, giving the contact list to a stranger would be unacceptable. As consumer de-
vices like cell phones become more integrated with automobiles, auto manufacturers
must take steps to ensure that data considered private by customers remains private.

The primary benefit to the driver for downloading the cell phone integration soft-
ware is enhanced usability. He can now make and receive phone calls while keeping both
hands on the wheel and his eyes on the road by speaking commands to the phone. How-
ever, there are also other usability concerns in our example. For instance, how usable
is the software download process? Does the vehicle automatically detect the make and
model of the driver’s cell phone and download the correct software, or must the driver
be involved? What happens if there is a security exception, e.g., the software’s signa-
ture is invalid? How does the user specify privacy preferences? These issues must all be
resolved in a usable manner.

Software reliability is a concern in our example as well. The security mechanisms
prevent overtly malicious from being executed by the vehicle, however unintentionally
buggy software can cause just as much damage [8]. For example, a bug in the cell phone
integration software could accidentally delete the driver’s cell phone contact list and
text messages. The threat of unreliable software is difficult to protect against because it
requires extensive resources to ensure software quality, such as formal verification [9]
and software quality assurance. The solution to this problem in the PC software industry
has so far been to provide frequent software upgrades to fix bugs. This method is more
challenging in the automotive domain because vehicles may not always have network
connections, and even if they do, the cost to the consumer may be much greater than they
are used to with their PC.

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR)in MNES 349

4. Conclusion

This chapter has introduced the need to assess security, privacy, usability and reliability
or SPUR in the context of mobile networked embedded systems, using automobiles as an
example. Embedded service-oriented architectures and communications systems within
automobiles were reviewed in the context of SPUR along with several examples.

Acknowledgements

The authors would like to thank Frank Perry and David Watson for their helpful insights
into SPUR and VII.

References

[1] Krüger, I.H., Gupta, D., Mathew, R., Moorthy, P., Phillips, W., Rittmann, S., Ahluwalia, J.: Towards a
process and tool-chain for service-oriented automotive software engineering. In: Proceedings of the ICSE
2004 Workshop on Software Engineering for Automotive Systems. (2004)

[2] Navet, N., Song, Y., Simonot-Lion, F., Wilwert, W.: Trends in automotive communication systems. Pro-
ceedings of the IEEE 93(6) (2005) 1204–1223

[3] IEEE Wireless Communications 13(5) (2006) c1–c1
[4] Farkas, K.I., Heidemann, J., Iftode, L., Kosch, T., Strassberger, M., Laberteaux, K., Caminiti, L., Caveney,

D., Hada, H.: Vehicular communication. IEEE Pervasive Computing 5(4) (2006) 55–62
[5] Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., Sezaki, K.: CARAVAN: Providing

location privacy for VANET. In: Embedded Security in Cars (ESCAR). (2005)
[6] Prasad, K.V., Giuli, T., Watson, D.: The case for modeling security, privacy, usability and reliability

(SPUR) in automotive software. In: Automotive Software Workshop, San Diego, CA (2006)
[7] Giuli, T., Watson, D., Prasad, K.V.: The last inch at 70 miles per hour. IEEE Pervasive Computing 5(4)

(2006) 20–27
[8] Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. Computer 26(7) (1993) 18–41
[9] Meadows, C.: The NRL protocol analyzer: An overview. Journal of Logic Programming 26(2) (1996)

113–131

K.V. Prasad and T.J. Giuli / Security, Privacy, Usability and Reliability (SPUR) in MNES350

A Verifying Compiler for a
Multi-threaded Object-Oriented

Language

K. Rustan M. Leino and Wolfram Schulte

Microsoft Research,Redmond, WA, USA
e-mail: {leino,schulte}@microsoft.com

Abstract. A verifying compiler automatically verifies the correctness of a source
program before compiling it. Founded on the definition of the source language and
a set of rules (a methodology) for using the language, the program’s correctness
criteria and correctness argument are provided in the program text by interface
specifications and invariants.

This paper describes the program-verifier component of a verifying compiler
for a core multi-threaded object-oriented language. The verifier takes as input a
program written in the source language and generates, via a translation into an
intermediate verification language, a set of verification conditions. The verification
conditions are first-order logical formulas whose validity implies the correctness
of the program. The formulas can be analyzed automatically by a satisfiability-
modulo-theory (SMT) solver.

The paper defines the source language and intermediate language, the translation
from the former into the latter, and the generation of verification conditions from
the latter. The paper also builds a methodology for writing and verifying single-
and multi-threaded code with object invariants, and encodes the methodology into
the intermediate-language program.

The paper is intended as a student’s guide to understanding automatic program
verification. It includes enough detailed information that students can build their
own basic program verifier.

0. Introduction

A verifying compiler is a compiler that establishes that a program is correct before allow-
ing it to be run. Verifying compilers can come in many flavors, from systems that gen-
erate provably correct code from specifications to systems that ask users to guide an in-
teractive theorem prover to produce a replay-able proof script. In this paper, we consider
a verifying compiler that automatically generates logical proof obligations, verification
conditions (VCs), from a given program, its embedded specifications, and a set of rules
(a methodology) that guides the use of the language. The validity of the VCs implies the
correctness of the program. The VCs are passed to a satisfiability-modulo-theory (SMT)
solver to be discharged automatically, if possible. Failed proof attempts are presented to
users as error messages, to which a user responds by fixing errors or omissions in the
program and its specifications.

Software System Reliability and Security
M. Broy et al. (Eds.)
IOS Press, 2007
© 2007 IOS Press. All rights reserved.

351

The Spec� programming system [6] is a modern research prototype of such a verify-
ing compiler. It consists of an object-oriented programming language (also called Spec�)
designed as a superset of the .NET programming language C�, enriching the type sys-
tem (for example with non-null types) and adding specifications (like pre- and postcon-
ditions) as a part of the language, a methodology for using the language, a compiler that
produces executable code for the .NET virtual machine, an integration into the Microsoft
Visual Studio integrated development environment, and a static program verifier.

Generating verification conditions for high-level source programs is nontrivial and
involves a large number of details and design decisions. Therefore, the Spec� static pro-
gram verifier (which is known as Boogie [4]) splits the task into two: it first translates
the Spec� program into an intermediate verification language (called BoogiePL [11]) and
then generates VCs from it. This lets the tool designer make modeling decisions in terms
of the intermediate language, which thus provides a level of abstraction above the actual
formulas passed to the SMT solver.

In this paper, we want to convey the design of the program-verifier component of a
verifying compiler. Doing so for Spec� and BoogiePL is too large of a task for the paper,
so we instead define a core object-oriented source language (which we shall call Spec�)
and an imperative intermediate verification language (which we shall call BoogiePL�).
As their names suggest, these languages are representative of Spec� and BoogiePL, re-
spectively. The Spec� language features classes and single-inheritance subclasses, object
references, dynamic method dispatch, co-variant arrays, multi-threading, and mutual-
exclusion locks.

Outline We start from the bottom up. In Section 1, we define BoogiePL� and its VC
generation. We define Spec� in Section 2, where Section 2.3 defines a translation from
Spec� into BoogiePL�. We then take on some hard questions of how to write specifica-
tions in such a way that one can reason about programs modularly—to scale program
verification, it must be possible to specify and verify each part (say, each class) of a
program separately, in such a way that the separate verification of each part implies the
correctness of the entire program. In Section 3, we introduce a methodology for object
invariants, which specify the data consistency conditions of class instances, and define
a translation of the new features and rules into BoogiePL�. In Section 4, we also add
features for writing multi-threaded code, a methodology for those features, and a cor-
responding translation into BoogiePL�. Throughout, we give enough details to build a
basic program verifier for Spec�. Concepts and typical design issues carry over to other
languages as well.

Foundational Work Program verification has a long history. The foundation for today’s
verification research was laid down by Floyd’s inductive assertion method [25], Hoare’s
axiomatic basis for programming [30], and Dijkstra’s characterization of semantics [18].
Early program verifiers include the systems of King [40,39], Deutsch [15], Good et
al. [28], and German [27], the Stanford Pascal Verifier [56], and the Ford Pascal-F Veri-
fier [63]. Two verifying compilers for procedural languages are SPARK [2] and B [0].

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language352

const K : int ;
function f (int) returns (int) ;
axiom (∃ k : int • f (k) = K) ;

procedure Find(a: int, b: int) returns (k : int) ;
requires a � b ∧ (∀ j : int • a < j ∧ j < b ⇒ f (j) �= K) ;
ensures f (k) = K ;

implementation Find(a: int, b: int)
{ assume f (a) = K ; k := a
[] assume f (b) = K ; k := b
[] assume f (a) �= K ∧ f (b) �= K ; call k := Find(a − 1, b + 1)
}

Figure 0. An example BoogiePL� program, showing the declaration of a constant K , a function f , an axiom
that says f has a K element, a procedure Find that finds the K element of f , and a recursive implementation
of Find . The call statement call x := Find(0, 0) will set x to some K element of f .

1. An Intermediate Imperative Verification Language

This section defines BoogiePL�, an intermediate language for program verification.
BoogiePL� is essentially BoogiePL [11], but without some of the more advanced features
of BoogiePL. A BoogiePL� program consists of two parts:

• a mathematical part to define a logical basis for the terms used in the program,
described by constants, functions, and axioms, and

• an imperative part to define the behavior of the program, described by procedure
specifications, mutable variables, and code.

Figure 0 shows a simple BoogiePL� program. The mathematical part of this program are
the declarations of K , f , and the axiom. The imperative part of the program is given by
the specification and implementation of Find .

The semantics of a BoogiePL� program is defined as a logical formula, consisting of
the theory induced by the mathematical part and the semantics induced by each procedure
implementation in the imperative part. The program is considered correct if the logical
formula is valid.

The next subsections introduce BoogiePL�: its type system, the syntax of its mathe-
matical and imperative parts, and the semantics of the code.

1.0. Basic Concepts

Backus Naur Form We use the common Backus Naur form to specify syntax. Nonter-
minals are written in italics. Terminals are keywords (written in bold), symbols (written
as themselves), and a set Id of identifiers. For any nonterminal a , the suffixes a? denotes
either the empty word or a , a+ denotes one or more repetitions of a , and a∗ denotes
either the empty word or a+. Depending on the context, repetitions are separated by
commas (e.g., in argument lists) or by white space (e.g., in a sequence of declarations);
this is not further specified.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 353

Program Structure At the top level, a BoogiePL� program is a set of declarations.

Program ::= Decl∗

Decl ::= Constant | Function | Axiom
| Variable | Procedure | Implementation

Type System Value-holding entities in BoogiePL� are typed, despite the fact that a theo-
rem prover used on BoogiePL� programs may be untyped. The purpose of semantic-less
types in BoogiePL�, like the purpose of explicit declarations of variables and functions,
is to guard against certain easy-to-make mistakes in the input.

There are four built-in basic types, map types, and the supertype any:

Type ::= bool | int | ref | name | [Type+] Type | any

The type bool represents the boolean values false and true. The type int represents the
mathematical integers. The type ref represents object references. One of its values is the
built-in literal null. The only operations defined by the language on ref are equality and
dis-equality tests. The type name represents various kinds of defined names (like types
and field names). The only operations defined by the language on name are equality and
dis-equality tests and the partial order <:. In a map type, the domain (that is, the types of
the arguments) is given first, followed by the range type.

Type any represents the un-tagged union of the other types. Every type can implic-
itly be converted to and from the type any. Because types in BoogiePL� are semantic-
less, we use the identity for these conversions. But note that the implicit conversion from
any to a type T is “unsafe” (since any is not a tagged union with checked tags). It is
our responsibility to guarantee correct usage of expressions of type any.

We say a type T is assignable to a type U if T is U or if either T or U is any.

Scope Rules BoogiePL� supports nested lexicographic scoping, which means that (0)
all identifiers introduced by top-level declarations must be distinct, and (1) identifiers
introduced in inner scopes hide identifiers in outer scopes. During name resolution, an
identifier is first looked up in the innermost scope, then the enclosing scope, and so on.
It is an error if an identifier can’t be found in the scope of its use.

1.1. Theories

The mathematical part of the language (constants, functions, axioms) is similar to other
specification languages, including Larch [29] or the input language of the theorem prover
Simplify [12].

Constants and functions are identifiers that, throughout the interpretation of a pro-
gram, have a fixed, but possibly unknown, meaning.

Constant ::= const Id : Type ;
Function ::= function Id (Type∗) returns (Type);

Both can be used in expressions and commands.
To constrain the values of constants and functions, one uses axioms:

Axiom ::= axiom Expr ;

The given expression must be of type bool and must not have any free variables. An
axiom that comes from free is that all constants of type name have distinct values.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language354

1.2. Variables and Procedures

The state space of a BoogiePL� program is defined by variables. A global variable is a
variable that is accessible to all procedures.

Variable ::= var Id : Type ;

A procedure is a name for a parameterized operation on the state space.

Procedure ::= procedure Id Signature ; Specification∗

Signature ::= (IdType∗) returns (IdType∗)
IdType ::= Id : Type

Specification ::= requires Expr ;
| modifies Id∗ ;
| ensures Expr ;

The signature defines the list of in-parameters and then the list of out-parameters.
The procedure specification consists of a number of requires, modifies, and

ensures clauses. The expressions given by the requires and ensures clauses must be
of type bool. Every Id mentioned in a modifies clause must name a global variable.
The in-parameters are in scope in the requires clause, and both in- and out-parameters
are in scope in the ensures clause.

Each requires clause specifies a precondition, which must hold at each call to the
procedure (we shall see calls later). An implementation of the procedure is allowed to
assign to a global variable only if it is listed in a modifies clause of the procedure’s
specification. Each ensures clause specifies a postcondition, which must hold on exit
from any implementation of the procedure. The expression in an ensures clause is a
two-state predicate, which means that it can refer to both the initial and final states of the
procedure (using old expressions for the initial state, as we shall see later). The ensures

condition thus specifies a relation between the initial and final states of the procedure.
Procedures can be given implementations.

Implementation ::= implementation Id Signature Block

Here, Id must refer to a declared procedure and Signature must be identical to that of
the declared procedure. There are no restrictions on the number of implementations that
one procedure can have; each implementation is verified to obey the same specification.

Variables come in five flavors: global variables, in-parameters, out-parameters, local
variables, and quantifier-bound variables. We say that a variable is writable in an imple-
mentation if it is a local variable, out-parameter, or a global variable mentioned in the
modifies clause.

1.3. Motivation for Choice of Commands

BoogiePL� commands have been designed to be simple and primitive. The design makes
heavy use of three useful, but perhaps less known, commands: assert, assume, and
havoc. Before we define these and other commands in the next subsection, we give a
couple of examples to develop an intuitive understanding of these commands.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 355

Let us look at how we translate Spec�’s conditional and while loop into BoogiePL�.
Spec� has the usual conditional statement, written as if (E) S else T . It goes wrong
if E is not defined; otherwise, if E evaluates to true, then the conditional statement
executes S , else the conditional statement executes T . The translation of the conditional
statement into BoogiePL� is defined as follows:

Tr [[if (E) S else T]] =
assert Df [[E]] ;
{ assume Tr [[E]] ; Tr [[S]]
[] assume ¬Tr [[E]] ; Tr [[T]]
}

The translation uses three functions (cf. Section 2 for their full definitions). The function
Tr [[s]] = c translates a Spec� statement s into the BoogiePL� command c. The func-
tions Df [[e]] = e ′ and Tr [[e]] = e ′′ return two BoogiePL� expressions for one Spec�

expression: e ′ says whether e is defined and, if so, e ′′ denotes its translated value.
The translation uses an assert command to check that E is defined. If E is not

defined, that is, if Df [[E]] evaluates to false, then the assert command will cause the
program to halt with an error.

The rest of the translation consists of a nondeterministic choice, as denoted by [].
Each choice begins with an assume command, which indicates under which condition
the remainder of that path of the program is analyzed. That is, the translation of S is
analyzed only if Tr [[E]] evaluates to true, and analogously for T .

Spec�’s while loop while (E) invariant J ; {S} proceeds as follows. The while
loop goes wrong if the loop invariant J is not defined or evaluates to false, and it goes
wrong if the loop condition E is not defined. Otherwise, if E evaluates to true, the body
{S} is executed, after which the entire while loop is executed again. If E evaluates to
false, the while loop terminates. We translate the while loop into BoogiePL� as follows:

Tr [[while (E) invariant J ; {S}]] =
assert Df [[J]] ; assert Tr [[J]] ;
havoc Md [[S]] ;
assume Df [[J]] ∧ Tr [[J]] ;
assert Df [[E]] ;
{ assume Tr [[E]]

Tr [[{S}]] ;
assert Df [[J]] ; assert Tr [[J]] ;
assume false

[] assume ¬Tr [[E]]
}

The translation uses a function Md [[S]], which returns the list of variables possibly mod-
ified by S , also known as the syntactic targets of the loop.

The translation can be understood as follows. First, the loop invariant is checked
on entry to the loop. Then, we want to look at just one iteration of the loop, but we
want it to be an arbitrary iteration. The translation thus “fast forwards” to an arbitrary
iteration by setting the variables to arbitrary values. More precisely, the translation sets
the syntactic targets of the loop to arbitrary values (havoc Md [[S]]) satisfying the loop
invariant (assume Df [[J]]∧Tr [[J]]). In that arbitrary iteration, the translation checks that

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language356

the loop condition is defined, and then either performs one more iteration or terminates
the loop. After executing S , the translation checks that the invariant J still holds—this is
essentially the inductive step of the loop verification.

One thing remains to be explained: The assume false command at the end of the
first choice branch indicates that the remainder of the program is not analyzed imme-
diately after an arbitrary loop iteration. The analysis proceeds under the assumption of
successful termination, which happens through the second choice branch.

1.4. Commands

Now we are ready to introduce the BoogiePL� commands, which follow this grammar:

Command ::= assert Expr
| assume Expr
| havoc Id+

| Designator := Expr
| call Id∗ := Id (Expr∗)
| Command ; Command
| Command [] Command
| Block

Block ::= {Variable∗Command}
Designator ::= Id

| Designator [Expr+]

The command assert E evaluates E , which must be of type bool. If E evaluates
to true, then the command terminates. If E evaluates to false, then the command goes
wrong, which indicates a non-recoverable error.

The command assume E evaluates E , which must be of type bool. If E evaluates
to true, then the command terminates. If E evaluates to false, then the execution of the
program stalls forever, which entails that this program path no longer has any chance of
going wrong.

In the command havoc xx , each identifier in the list xx must refer to a writable
variable. The command assigns an arbitrary value to every variable in xx .

The assignment command uses a designator. In general, a designator expression has
one of two forms. If it is an identifier x , then x must refer to a variable or constant. The
type of such an expression is the type of x . A designator expression of the form A[EE]
requires the type of A to be a map type. The number of expressions in the list EE must
equal the number of argument types of A, and the types of the expressions in EE must
be assignable to the types of the corresponding argument types of A. The type of the
expression A[EE] is the range type of A.

The designator expression used as the left-hand side d of an assignment command
d := E must be either a writable variable or an expression a[EE] where a is a writable
map variable. The type of E must be assignable to the type of d . If the left-hand side
is a variable, the assignment command changes the value of that variable to E . If the
left-hand side is an expression a[EE], the assignment command overwrites a with a new
map that is like the old except that it maps EE to E .

In the call command call w := P(EE), P must refer to a procedure and w must
refer to distinct writable variables that are not mentioned in P ’s modifies clauses. The

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 357

length of the list w must equal the number of out-parameters of P , and the types of the
out-parameters of P must be assignable to the types of the corresponding variables in
w . The length of the list EE of expressions must equal the number of in-parameters of
P , and the types of the expressions in EE must be the assignable to the types of the
corresponding in-parameters of P .

The call command evaluates the expressions in EE and binds the resulting values to
the in-parameters of P . It also binds w to the out-parameters of P . The call command
goes wrong if any of P ’s declared preconditions is not satisfied. Otherwise, the call com-
mand sets w and the variables in P ’s modifies clauses to arbitrary values satisfying P ’s
postconditions. Note that the meaning of the call command is given by the procedure’s
specification alone; the procedure’s implementations are separately checked against the
specification, thus enabling modular reasoning.

The sequential composition of two commands S and T is written S ; T , and its
behaviors are defined by the behaviors of S followed by the behaviors of T . The choice
composition of two commands is written S [] T , and its behaviors are defined as the
union of the behaviors of S and T . That is, S [] T can behave as either S or T . We let ;
bind stronger than [].

The block command {VV S} introduces local variables VV for use in S . The
behavior of the block command is the behavior of S started with arbitrary values for VV .

1.5. Expressions

Expressions are fairly standard and follow this grammar, where ⊕ denotes any binary
operator shown in Fig. 1:

Expr ::= Expr ⊕ Expr
| ¬ Expr
| Atom

Atom ::= Literal
| Designator
| Id (Expr∗)
| old (Expr)
| Quantification

Literal ::= false | true | null | 0 | 1 | 2 | · · ·
Quantification ::= (Quantor IdType+ • Expr)

Quantor ::= ∀ | ∃
Unary and binary operators are given in Fig. 1. Each line shows the supported type

signatures of the operators and common names for the operations. The figure also de-
scribes BoogiePL�’s precedence rules. Each box holds operators with the same prece-
dence. Operators in higher boxes have higher precedence than operators in lower boxes.
For example, a +b ∗c means (a +(b ∗c)), as usual. Implication is right associative. The
other logical operators are associative, but associate only with themselves. All other op-
erators are left associative. Although we do not show them in the grammar, we also allow
expressions to contain parentheses, which can be used to override operator precedence.

The literals false and true have type bool, the literal null has type ref , and the
integer literals have type int.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language358

¬ : bool → bool logical negation
∗ : int × int → int multiplication
/ : int × int → int integer division

% : int × int → int integer modulo
+ : int × int → int addition
− : int × int → int subtraction
< : int × int → bool arithmetic less-than
� : int × int → bool arithmetic at-most
� : int × int → bool arithmetic at-least
> : int × int → bool arithmetic greater-than
<: : name × name → bool partial order on names
= : T × T → bool equality
�= : T × T → bool disequality
∧ : bool× bool → bool logical conjunction
∨ : bool× bool → bool logical disjunction
⇒ : bool× bool → bool logical implication
⇔ : bool× bool → bool logical equivalence

Figure 1. BoogiePL� operators, their types, and syntactic precedence.

In the function-application expression f (EE), f must refer to a function. The num-
ber of expressions in the list EE must equal the number of arguments of f , and the types
of the expressions in EE must be assignable to the types of the corresponding arguments
of f . The function-application expression has the same type as the result type of f .

The expression old(E) is allowed to appear only in ensures clauses and proce-
dure implementations. If it appears in code, E must only refer to variables that are in
scope in the procedure’s preconditions; more precisely, global variables, in-parameters,
and quantifier-bound variables can be mentioned, but out-parameters and the implemen-
tation’s local variables cannot. The expression denotes the value of E on entry to the
procedure.

The quantifier expression (Qw • E), where Q is either ∀ or ∃, defines the identi-
fiers in w as bound variables that can be used in E . The type of a quantifier expression
is bool. The expression denotes the corresponding logical quantifier.

1.6. Weakest Preconditions

The semantics of the commands in our simple language is defined by weakest precondi-
tions [18,65].

The weakest precondition of a command S and predicate Q on the post-state of S ,
denoted by wp[[S ,Q]], is a predicate on the pre-state of S that characterizes the set of all
states such that execution of S begun in any of those states does not go wrong, and if it
terminates successfully, terminates in Q .

We define the following:

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 359

wp[[assert E , Q]] = E ∧ Q
wp[[assume E , Q]] = E ⇒ Q
wp[[havoc xx , Q]] = (∀ xx • Q)
wp[[x := E , Q]] = Q [E/x]
wp[[S ; T , Q]] = wp[[S , wp[[T ,Q]]]])
wp[[S [] T , Q]] = wp[[S ,Q]] ∧ wp[[T ,Q]]
wp[[{VV S}, Q]] = (∀ vv • wp[[S ,Q]])

where vv denotes the list of variables declared in VV , and where we understand a quan-
tification with an empty list of bound variables to be just the body of the quantifica-
tion. The semantics of map assignment is defined in Section 1.8 and the semantics of
procedure calls is defined below.

The translation function Q [E/x] denotes the capture-avoiding substitution of E for
x in Q that keeps all old subexpressions intact. For example, if Q is

x < old(x) ∧ (∀ x • 0 � g(x)) ∧ (∀ y • f (x , y) ⇒ g(x))

then Q [y + 1/x] is

y + 1 < old(x) ∧ (∀ x • 0 � g(x)) ∧ (∀ z • f (y + 1, z) ⇒ g(y + 1))

where, to avoid variable capture, the substitution operation renamed the bound variable
y to a fresh variable z .

The definition of assert says that the legal pre-states of assert E are those in which
both E and Q hold. Here and in Spec�, programmers use assert E to claim that the
condition E holds, and a program verifier must verify that claim.

The definition of assume says that the legal pre-states of assume E are those in
which either E does not hold or Q already holds. Here and in Spec�, programmers use
assume E to express the fact that they care only about those executions where E holds,
and a program verifier is then allowed to use E as an assumption.

The definition of havoc xx says that Q has to hold for all possible values of xx .
The assignment says that in order for Q to hold after the assignment, Q with x

replaced by E must hold before it.
Sequential composition and choice correspond to functional composition and con-

junction, respectively.
The meaning of the block command {var x :T ; C} is defined in terms of the mean-

ing of its embedded command C by universally quantifying over all possible initial val-
ues of x . Note that the block command is equivalent to havoc x ; C , but the block
command also introduces the scope of x .

Here are some example derivations for wp, where we have simplified some of the
right-hand sides:

wp[[assert 1 < x , Q]] = 1 < x ∧ Q
wp[[assert true, Q]] = Q
wp[[i := i + 1, i � 1]] = i � 0
wp[[assume y = x + 1, y = 5]] = y = x + 1 ⇒ y = 5
wp[[assume false, Q]] = true
wp[[assert P ; assume P , Q]] = P ∧ (P ⇒ Q)

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language360

Shorthand Notations If a call command has no out-parameters, we write it simply as
call P(EE).

In the definition of procedure calls below, it will be convenient to use simultane-
ous assignments, which we write as xx := EE , where xx is a list of distinct writable
variables, EE is a list of expressions of the same length, and each expression in EE is
assignable to the type of the corresponding variable in xx . The values of the variables
after executing an assignment command xx := EE equal the values of the correspond-
ing expressions before executing it. Simultaneous assignments can be defined in terms
of block commands and assignments: a block command introduces temporary variables
for the variables in xx , then assigns, in sequence, each of the expressions in EE to the
temporary variables, and finally assigns each of the temporary variables to xx . The wp
of simultaneous assignment then becomes:

wp[[xx := EE , Q]] = Q [EE/xx]

where [EE/xx] denotes simultaneous substitution.

Procedures To define the semantics of procedure calls and implementations, we refer
to the names in the following schema:

procedure P(AA) returns (RR);
requires Pre; modifies gg ; ensures Post ;

The semantics of a procedure call call xx := P(EE) is defined to be the semantics
of the following command:

{ var AA; var RR; var HH ;
aa := EE ;
assert Pre;
hh := gg ;
havoc gg ;
assume StripOld [[ReplaceOld [[Post , gg , hh]]]];
xx := rr

}

(0)

where HH is a list of fresh variable declarations corresponding to the global variables
gg , and where we use aa , rr , and hh to denote the lists of identifiers introduced by AA,
RR, and HH , respectively. Here and in the sequel, we are sloppy with the exact syntax
of lists, as in showing just one var keyword in front of the list AA.

The definition of procedure call introduces local variables for the formal parameters
AA and RR, and introduces a fresh variable in HH for every global variable mentioned
in gg . The definition then evaluates the actual in-parameters and assigns these to the for-
mals. The definition then requires that the caller has established the precondition of P .
The havoc command destroys all knowledge about modified global variables; the as-
signment hh := gg captures the previous values of gg . The caller can then assume that
the postcondition has been established, where in the postcondition we first handle old

expressions: for each variable g in gg , the translation function ReplaceOld [[Post , gg , hh]]
replaces every occurrence of g nested inside an old expression within Post by g’s cor-
responding variable in hh; translation function StripOld [[Q]] replaces every subexpres-

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 361

function f (int) returns (int) ;
axiom (∀ k : int • 0 � k ⇒ 2 ∗ k � f (k)) ;
var x : int ;
procedure Inc(n: int) returns (r : int) ;

requires 0 � n ;
modifies x ;
ensures old(x) � x ∧ r = old(x) ;

implementation Inc(n: int) returns (r : int)
{ r := x ; x := x + f (n) }

Figure 2. An example BoogiePL� program, showing the declaration of a function f , an axiom that constrains
f , a global variable x , a procedure Inc that is specified to operate on x , and an implementation of Inc.

sion old(E) in Q by E (we omit the formal definitions of ReplaceOld and StripOld).
Finally, the definition of the call assigns the formal out-parameters to the actuals.

This definition is correct only if AA and RR do not capture variables used in EE . If
they do, we have to introduce fresh variables in AA and RR and consistently rename the
uses of the formal in- and out-parameters in Pre and Post before unfolding the definition
above.

An implementation

implementation P(AA) returns (RR)
Body

of procedure P is valid if it obeys the procedure’s specification, under the proviso of the
mathematical theory (that is, the conjunction of the axioms), here called MT :

valid(P ,Body) =
StripTypes[[MT ⇒ StripOld [[wp[[{ var AA; var RR;

assume Pre;
Body ;
assert Post ;

}, true]]]]]]

(1)

The application of wp produces a predicate on the pre-state of the procedure. In that
state, old(E) means just E , so we apply the translation function StripOld . The transla-
tion function StripTypes erases the types of all quantifier-bound variables (we omit the
formal definition).

Note that, compared to the call, the roles of the assert and assume commands are
reversed here. Also, note that the modifies clause gg need not be verified, since it is
already syntactically checked (Body is allowed to assign only to writable variables).

We say that a BoogiePL� program is correct if all its procedure implementations are
valid. Note that this verification technique is modular, since it verifies each implementa-
tion separately.

1.7. Example

Consider the BoogiePL� program in Fig. 2. The mathematical theory, MT in (1), of this

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language362

program is its one axiom. For the implementation of Inc, the command to which wp is
applied in (1) is:

{ var n: int ; var r : int ;
assume 0 � n ;
{ r := x ; x := x + f (n) } ;
assert old(x) � x ∧ r = old(x)

}
The wp of this command with respect to true is:

(∀n, r • 0 � n ⇒ old(x) � x + f (n) ∧ x = old(x) ∧ true)

Applying StripOld to this formula yields:

(∀n, r • 0 � n ⇒ x � x + f (n) ∧ x = x ∧ true)

So, the verification condition generated for the program in Fig. 2 is:

(∀ k • 0 � k ⇒ 2 ∗ k � f (k)) ⇒
(∀n, r • 0 � n ⇒ x � x + f (n) ∧ x = x ∧ true)

This is a valid formula, which an SMT solver like Simplify [12] easily verifies, so the
program is correct.

By definition (0), the semantics of a call command:

call z := Inc(17)

is given by the following command:

{ var n: int ; var r : int ; var old_x : int ;
n := 17 ;
assert 0 � n ;
old_x := x ;
havoc x ;
assume old_x � x ∧ r = old_x ;
z := r

}

1.8. Targeting a Theorem Prover

The correctness of an implementation Body of a procedure P is verified by pass-
ing valid(P ,Body) to an theorem prover, like a Satisfiability Modulo Theories (SMT)
solver. Modern SMT solvers, like Simplify [12], are particularly well suited for auto-
matic verification. First, they require no user interaction and can thus be used as a push-
button technology. Second, they are refutation based, that is, they may produce coun-
terexamples in case a property can’t be satisfied, and those counterexamples can be used
for error reporting. Third, their heuristics are tuned for software verification.

These SMT solvers are typically built around Nelson-Oppen cooperating decision
procedures [64,66]. They all provide decision procedures for congruence closure (unin-
terpreted function symbols and equality), linear arithmetic, and quantifiers. Some also

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 363

provide partial orders, maps, and other theories. In case a targeted theorem prover does
not support a BoogiePL� defined operator, we have to add proper axioms. Simplify,
for instance, does not have a built-in decision procedure for maps. Consequently, the
verification-condition generator for Simplify has to axiomatize operators for map select
and map update.

For instance, the verification-condition generator for Simplify replaces every map
select expression A[E] by the term select(A,E), and replaces every map update A[E] :=
F by A := store(A,E ,F). Simplify is untyped, so it suffices to add one axiom for
select and store to the theorem prover’s background axioms:

(∀m, i , j , v • (i = j ⇒ select(store(m, i , v), j) = v) ∧
(i �= j ⇒ select(store(m, i , v), j) = select(m, j)))

Of course, arities of function symbols have to be respected in Simplify, that is, we need
different function symbols and axioms to support maps of different arities.

2. An Object-oriented Programming Language

This section defines Spec�, an object-oriented programming language. Spec� is a core
of Spec� [6]. Like the modern object-oriented languages Java, C�, Eiffel, and Modula-3,
Spec� has object references, classes, subclasses with single inheritance, methods with
dynamic dispatch, and co-variant arrays. Spec� excludes features like interfaces, mul-
tiple inheritance, structs, delegates, generics, static members, once functions, abstract
methods, properties, events, iterators, overloading, boxing, and visibility modifiers.

Figure 3 shows an example Spec� program.
We give the semantics of Spec� in terms of a translation into the procedural language

BoogiePL�.

2.0. Programs, Classes, and Members

At the top level, a Spec� program is a set of classes.

Prog ::= Class∗

A class defines an object type and provides its implementation. A class has a name
(an identifier), a superclass, and a set of member declarations.

Class ::= class Id : ObjectType { Member∗ }
ObjectType ::= object | Id

Each class derives from a single existing class, its immediate superclass. The de-
clared classes form a single-inheritance subtype hierarchy rooted at the built-in object
type object. As a shorthand, we allow “: ObjectType” to be omitted; ObjectType then
defaults to object. The values of object types are called objects and consist of the special
value null and of references to a suite of class members (fields, invariants, and methods).
Every reference has a built-in readonly field called Type , which returns the run-time type
of the reference, represented as an object.

In addition to object types, we consider the Spec� types booleans, and integers, and
one-dimensional arrays.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language364

class Cell {
int x ;

Cell(int i)
ensures x == i ;

{ x = i ; }

virtual int Get()
ensures result == x ;

{ return x ; }

virtual void Set(int i)
modifies this.∗;
ensures x == i ;

{ x = i ; }

void IncBy(int i)
modifies this.∗;
ensures x == old(x) + i ;

{ int t = Get(); Set(t + i); }
}

class BackupCell : Cell {
int b;

BackupCell(int i)
ensures b == i && x == i ;

{ base(i); b = i ; }

override void Set(int i)
ensures b == old(x);

{ b = x ; base.Set(i); }

virtual int GetBackup()
ensures result == b;

{ return b; }

void Rollback()
modifies x ;
ensures x == b;

{ x = b; }
}

Figure 3. Two example classes written in Spec�. Class Cell represents a single storage location. The subclass
BackupCell additionally maintains a recent history of the contents of that storage location.

Type ::= bool | int | ObjectType | Type []

Arrays are references to sequences of values. Each array type is a subtype of object.
We refer to object types and array types as reference types. The types respect polymorphic
subtyping, that is, if T is a subtype of S , then an expression of type T can be assigned to
a designator of type S (but not vice versa, unless T and S are the same type). Our array
types are co-variant in their element type. For example, the type Point [] is a subtype
of object[], provided Point is a subtype of object. Arrays support the usual indexing
lookup and update operations; they also have a built-in readonly field called Length .

Class members can be fields and methods.

Member ::= Field | Method

A field is an instance variable, that is, each instance of the class has its own copy of
the variable.

Field ::= FieldModifier? Type Id ;

Modifiers for fields will be introduced later.
Spec� supports usual scoping rules. For simplicity, we assume here that the fields

declared in a class are distinct from other fields declared in the class and its superclasses.
A method is a name for a parameterized operation on the state space. A method can

be invoked, passing a fixed number of values as parameters. Every method declaration
belongs to some class. Syntactically, Spec� distinguishes three kinds of methods: con-

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 365

structors, non-virtual methods, and virtual methods. When a method includes a virtual

or override modifier, that method is said to be a virtual method; otherwise, the method
is said to be a non-virtual method. A constructor declaration looks like a non-virtual
method declaration, but it is named with the name of the class in which it is defined and
it has no result type.

A non-virtual method must be distinct from all methods declared in the class and
its superclasses. The implementation of a non-virtual method is the same whether the
method is invoked on an instance of the class in which it is declared or on an instance of
a derived class.

A virtual method declared with virtual must be distinct from all other methods
declared in the class and its superclasses. In contrast to non-virtual methods, the imple-
mentation of a virtual method can be overridden in derived classes. The declaration of
the method override, indicated by the override keyword, must have the same signature
as the overridden method; it provides a new implementation of the overridden method.

Every class has a constructor. It is only used in the creation of an object of the class.
Constructors are implicitly called by class instance creation expressions (new) and by
base calls inside constructors. For simplicity, we restrict classes to have just one con-
structor. If a class declares no constructor, then a default constructor with no parameters
is provided, which simply calls the superclass constructor with no parameters (which is
an error if the superclass does have a parameterless constructor). If a constructor is given,
the first statement of its body must be a call to the superclass constructor.

Method ::= NonConstrPrefix ?

Id (TypeId∗) Specification∗ Block
NonConstrPrefix ::= MethodModifier? ReturnType
MethodModifier ::= virtual | override

ReturnType ::= Type | void

TypeId ::= Type Id
Specification ::= requires Expr ;

| modifies ModDesignator+ ;
| ensures Expr ;

ModDesignator ::= ODesignator ModSuffix
ODesignator ::= this | Designator

ModSuffix ::= . Id | . ∗ | [∗]

In addition to the explicitly declared parameters, each method takes an implicit re-
ceiver parameter referred to by the keyword this. If a method has no return value, its
return type is specified as void.

The procedure specification consists of a number of requires, modifies, and
ensures clauses, which like in BoogiePL� introduce preconditions, modifies clauses,
and postconditions. The expressions in the pre- and postconditions must be of type bool.
The parameters, including this, are in scope in the specification, except that this is not
available in the precondition of constructors. Postconditions can also mention old and
fresh expressions (explained below) and, for non-void, non-constructor methods, the
keyword result, which denotes the return value. The pre- and postconditions are not al-
lowed to contain allocation and call expressions (explained below). The modifies clause
must not list the designator expression E .Type or E .Length , for any expression E , at
the top level.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language366

Each method has one implementation, consisting of a block statement. Unlike in
BoogiePL�, we cannot enforce modifies clauses in Spec� by syntactic restrictions. In-
stead, method implementations in Spec� need to be verified to satisfy their modifies
clauses. The declared modifies clauses indicate a set of heap locations, which one gets
by evaluating every modifies designator expression on entry to the method. A modifies
designator of the form E .f gives the license to modify the f field of object E , E .∗ gives
the license to modify any field of object E , and E [∗] gives the license to modify array E
at any index. A method implementation also gets a blanket license to modify some other
things, as we explain later.

Spec� supports behavioral subtyping [42,55,16], that is, whenever an object of static
type S is expected, any object of a subtype T of S can be used without invalidating the
program’s verification. A necessary condition for behavioral subtyping is the following:
Consider a virtual method m defined in S (written S ◦m) and an override of m defined
in a subclass T (written T ◦m); then, T ◦m can only weaken S ◦m’s precondition and
only strengthen S ◦m’s postcondition. In this paper, we consider only the strengthening
of postconditions, which override T ◦m can specify by providing additional ensures

clauses. These are then conjoined with the postconditions of the overridden method, as
the translation into BoogiePL� will make explicit.

2.1. Statements

Statements in Spec� follow this grammar:

Stmt ::= Block
| Type Id ;
| Type Id = Expr ;
| assert Expr ;
| assume Expr ;
| Designator = Expr ;
| Call
| IfStmt
| WhileStmt
| return Expr ;

Block ::= { Stmt∗ }
IfStmt ::= if (Expr) Stmt ElseStmt?

ElseStmt ::= else Stmt
WhileStmt ::= while (Expr) Invariant? Block
Invariant ::= invariant Expr ;

If a statement attempts to evaluate an undefined expression (like x/y when y evalu-
ates to 0), the statement goes wrong, which is an unrecoverable error.

The block statement consists of a sequence of statements, which are executed in
order. The declaration statement T x ; introduces a local variable x whose scope goes
from the declaration until the end of the enclosing block. As usual, x must be distinct
from any other variable introduced among the statements, but, unlike in BoogiePL�, a
variable in Spec� must not hide another local variable x in an outer scope. If a local
variable hides a field in scope, then the field has to be accessed via this explicitly.

The statement T x = E ; is simply a shorthand for T x ; x = E ;.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 367

Syntax and semantics of assert and assume are the same as for BoogiePL�, ex-
cept that the Spec� statements also check that their expressions are defined. Embedded
expressions must not contain call or allocation expressions. In Spec�, the assume state-
ment introduces an assumption that is used, but not validated, by the program verifier;
the assumption can instead be validated at run time.

In the assignment statement d = E ;, the type of E must be a subtype of the type of
d . If d is of the form O .f , then f must not be the built-in readonly fields Type or Length .
The statement goes wrong if d or E is not defined; otherwise, it assigns the value of E
to d . More specifically, if d is of the form O .f , the statement updates the heap so that
field f of object O becomes E ; if d is of the form A[F], the statement updates the heap
so that element F of array A becomes E .

The call statement is explained in Section 2.2. Only constructors (called via Base)
and methods with a void return type can be used as Call statements.

In the conditional statement if (E) S else T , expression E must be of type bool.
The statement goes wrong if E is not defined. Otherwise, if E evaluates to true, the
statement executes S , and if E evaluates to false, the statement executes T . If “else S”
is omitted, S defaults to { }. Parsing of conditional statements is ambiguous; we resolve
any ambiguity of parsing else statements by associating them to the rightmost (inner-
most) if .

In the while loop while (E) invariant J ; Body , the condition E and loop invari-
ant J must be of type bool. Furthermore, J must not contain call or allocation expres-
sions. As we explained in Section 1.3, the statement goes wrong if J is not defined, if
J does not evaluate to true, or if E is not defined. Otherwise, if E evaluates to true,
then Body is executed, after which the entire while loop is executed again (including the
evaluation of the loop invariant). If E evaluates to false, the execution of the while loop
terminates.

In the return statement return E ;, the type of E must be a subtype of the method’s
return type. The return statement is allowed only as the last statement of a method imple-
mentation. The statement goes wrong if E is not defined; otherwise, it returns the value
of E to the method’s caller.

2.2. Expressions

Spec� expressions follow the grammar in Fig. 4.
Spec� shares most of its operators with BoogiePL�. Except as noted here, the shared

operators have the same typing, precedence, and meaning. In Spec�, division and modulo
are defined only for non-zero divisors. For the relational operators == and �=, the types
of the operands must be compatible; that is, the type of one operand must be a subtype
of the type of the other.

Instead of the logical operators ⇒, ∧, and ∨ in BoogiePL�, Spec� defines the corre-
sponding short-circuit versions of these operators, written ˙=⇒, &&, and ||, respectively.
Short-circuiting means that if the left-hand operand is defined and evaluates to a value
that determines the result of the operator (false, false, and true, respectively), then the
expressions are defined regardless of whether or not the right-hand operand is defined.

Spec� also adds the binary is operator, whose precedence lies between those of ==
and &&. The precedence of cast expressions, where the prefix “(T)” is like a unary
operator, is just higher than ⊗. Although we do not show them in the grammar, we

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language368

Expr ::= Expr ⊗ Expr
| ¬ Expr
| Atom

⊗ ::= ∗ | / | % | + | − | < | � | � | > | == | �=
| && | || | ˙=⇒

Atom ::= this | result

| Literal
| Designator
| Call
| Allocation
| Expr is Type
| (Type) Expr
| old (Expr)
| fresh (Expr)
| Quantification

Literal ::= false | true | null | 0 | 1 | 2 | · · ·
Designator ::= Id

| Expr . Id
| Expr [Expr]

Call ::= Id (Expr∗)
| Expr . Id (Expr∗)
| base (Expr∗)
| base . Id (Expr∗)

Allocation ::= new ObjectType (Expr∗)
| new Type [Expr]

Quantification ::= Quantor { Binding ; Expr }
Quantor ::= forall | exists

Binding ::= int Id in (Expr : Expr)

Figure 4. The grammar of Spec� expressions.

also allow expressions to contain parentheses, which can be used to override operator
precedence.

The type of the expression this is the enclosing class. The keyword result is al-
lowed to appear only in ensures clauses of non-void, non-constructor methods; its type
is the method’s return type, and its value is the method’s return value. The type of null

is any reference type. The type of boolean literals is bool, the type of integer literals is
int.

Three forms of designators are distinguished. In the first form, if Id does not men-
tion a variable, then it is a synonym for this.Id . The type of the expression Id is the
type of the variable Id . In the second form, E .f , E must be of a reference type, call it
T , and f must be Type , Length (if E is of an array type), or a field declared in class T
or a superclass thereof. The expression is defined only if E evaluates to a non-null value.
The type of E .Type is object, the type of E .Length is int, and otherwise the type of
E .f is the type of f . In the third form, E [F], E must be of an array type and F of type
integer. The expression is defined only if E evaluates to a non-null value, F evaluates

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 369

to a non-negative integer that is less than E .Length . The type of the expression is the
element type of E .

Spec� supports four forms of call expressions. All legal call expressions resolve to
some method. The types of the expressions in list EE must be subtypes of the types of
the respective formal parameters of the callee. If the callee is a constructor or has a void
return type, then the call is allowed only as a statement; otherwise, the type of the call
expression is the return type of the callee.

The first form of the call expression, m(EE), is a shorthand for this.m(EE).
In the second form, E .m(EE), E must be of an object type, call it T , and m must

name a non-constructor method in T or a superclass thereof. The call expression is de-
fined only if E evaluates to a non-null value. The expression binds the formal receiver
parameter this of m to the value of E and binds the formal parameters of m to the values
of EE . Then, if any precondition of m evaluates to false, the call statement goes wrong.
The evaluation of the call expression proceeds by transferring control to the method’s
implementation, upon return of which the result value becomes the value of the call ex-
pression. If m is a virtual method, then the implementation invoked is the one found in
the most derived supertype of the run-time type of E .

The third form, base.m(EE) where m must denote a virtual method, is allowed
only in overrides of m . It is treated like the call this.m(EE), except that control transfers
to the implementation found in the most derived supertype of the immediate superclass
of the enclosing class.

The fourth form, base(EE), is allowed only as the first statement in constructors.
It calls the constructor of the immediate superclass.

Two forms of allocation expressions are supported. The expression new C (EE),
where C must name a class, has type C . It allocates a new object c of run-time type C
with all of c’s fields set to zero-equivalent values. Next, it calls C ′s constructor with c as
the receiver and EE as its actual parameters. All constraints of method calls have to be
obeyed. Upon return of the constructor, c is the result of the expression. The expression
new T [F], where T must be a type and F must be of type int, has type T []. It allocates
and returns a new array a of run-time type T [] and of length F . All array elements of a
have zero-equivalent values. The statement goes wrong if either F is not defined or if F
evaluates to a negative integer.

For the type test expression E is T and cast expression (T)E , T must be a refer-
ence type and the type of E must be compatible with T . The type of E is T is bool,
the type of (T)E is T . The type test expression evaluates to true if E evaluates to a
non-null reference whose run-time type is a subtype of T . The cast expression is defined
only if E evaluates to null or if E is T would evaluate to true, and it returns the value
of E .

The expressions old(E) and fresh(E) are allowed to appear only in ensures

clauses. (Note, unlike BoogiePL�, Spec� does not allow old expressions in code.) The
type of old(E) is the type of E and the type of fresh(E) is bool. The former returns
the value of E evaluated on entry to the method; the latter returns true if E denotes an
object that was not yet allocated on method entry.

In a quantifying expression forall{int x in (M : N); E}, M and N must have
type int and the expression E must have type bool. The newly introduced x is in scope
in E , but not in M or N . Expressions M , N , and E must not include call or alloca-
tion expressions. The quantifying expression has type bool. It is defined and returns

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language370

true, respectively, if E is defined and evaluates to true, respectively, for every value
of x satisfying N � x < M . Existential quantification is defined in terms of universal
quantification in the usual way.

2.3. Translating Spec� into BoogiePL�

We give the semantics of Spec� in terms of a translation into BoogiePL�.

2.3.0. Prelude

The translation into BoogiePL� begins with the prelude described in this subsection. The
prelude is specific to Spec�, but independent of the particular program being translated.

Axiomatizing the Type System We map the Spec� types bool and int to the correspond-
ing BoogiePL� types (we ignore the fact that Spec�’s integers have a fixed size). We map
all reference types in Spec� to the BoogiePL� type ref .

We introduce a name for each Spec� type. The names of the built-in types are:

const _bool :name ;
const _int :name ;
const object :name ;

Since the names are declared as constants of type name, BoogiePL� provides the im-
plicit axiom that the type names are distinct.

Spec�’s subtyping relation is captured by BoogiePL�’s partial-order operator <: and
is specified via axioms. To tie <: to type names, we introduce a function superclass:

function superclass(name) returns (name) ;
axiom (∀T :name • T <: superclass(T)) ;

The function array maps a type name T to the name of an array type. Given the
name of such an array type, function elemType gives back T .

function array(name) returns (name) ;
function elemType(name) returns (name) ;
axiom (∀T :name • elemType(array(T)) = T) ;

Array types are distinct and co-variant:

axiom (∀T :name • array(T) <: object) ;
axiom (∀T :name, U :name • array(T) <: U ⇒

U = object ∨ (U = array(elemType(U)) ∧ T <: elemType(U))) ;

Fields are also declared to be of type name. We introduce a function that maps
names of fields to the names of their declared types:

function fieldType(name) returns (name) ;

Function type returns the name of the run-time type of a non-null reference.

function type(ref) returns (name) ;

If o has static type T for a reference type T , then the static type system guarantees that
type(o) <: T holds.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 371

Storage Model We model the heap as a map from references and field names to values.

var H: [ref ,name]any ;

Our heap variable includes all references, allocated or not. We introduce a field alloc
to track whether or not a reference has been allocated. We refer to such a field as a ghost
field, meaning that it is not explicitly represented in the Spec� program.

const alloc:name ;

H[o, alloc] says that o is allocated in H.
Not all mathematical maps are heaps reachable in a Spec� program. We introduce a

function wellFormed(h) to describe that h is a reachable heap.

function wellFormed([ref ,name]any) returns (bool) ;

In a well-formed heap, reference-valued fields map allocated references to allocated ref-
erences of the appropriate type.

axiom (∀ h: [ref ,name]any • wellFormed(h) ⇒
(∀ r : ref , f :name • r �= null ∧ h[r , alloc] ∧ fieldType(f) <: object ⇒

h[r , f] = null ∨ (h[h[r , f], alloc] ∧ type(h[r , f]) <: fieldType(f)))) ;

We introduce a function that relates the heap at two successive program points. It
says that the new heap is well-formed and that every reference allocated in the old heap
is also allocated in the new heap.

function successor([ref ,name]any, [ref ,name]any) returns (bool) ;
axiom (∀ _old : [ref ,name]any, _new : [ref ,name]any •

successor(_old , _new) ⇒
wellFormed(_new) ∧
(∀ r : ref • _old [r , alloc] ⇒ _new [r , alloc]))

The elements of an array are stored as one “big” value in a ghost field called elems:

const elems:name ;

For example, the Spec� array dereference expression a[j] is translated into BoogiePL� as
Select(H[a, elems], j). The length of an array is modeled as a function:

function length(ref) returns (int) ;

Array elements are assigned and updated using the following functions.

function Select(any, int) returns (any) ;
function Store(any, int,any) returns (any) ;

These functions are related as follows:

axiom (∀ e:any, i : int, j : int, v :any •
(i = j ⇒ Select(Store(e, i , v), j) = v) ∧
(i �= j ⇒ Select(Store(e, i , v), j) = Select(e, j))) ;

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language372

In a well-formed heap, reference values stored in elems fields are allocated and of the
appropriate type:

axiom (∀ h: [ref ,name]any • wellFormed(h) ⇒
(∀ r : ref , i : int •

r �= null ∧ h[r , alloc] ∧ elemType(type(r)) <: object ∧
0 � i ∧ i < length(r) ⇒

Select(h[r , elems], i) = null ∨
(h[Select(h[r , elems], i), alloc] ∧

type(Select(h[r , elems], i)) <: elemType(type(r))))) ;

Object constructor Class object is built into the language, so we predefine the speci-
fication of its constructor:

procedure object ◦object(this: ref) returns () ;

2.3.1. Classes and Fields

In the sequel, we think of the translation as producing a stream of BoogiePL� program
text. The translation is described formally using the function Tr , which takes a Spec�

fragment and produces a BoogiePL� fragment.
For the translation of a program, which consists of a list classes, we have:

Tr [[classes]] =
for each c ∈ classes do

Tr [[c]]

The prescription of the translation requires control structures, which we introduce as
meta-syntax, such as the “for each . . . do . . .” construct here. Note that meta-syntax is
written in a Roman font.

We translate a class declaration as follows:

Tr [[class T : S { members }]] =
const T :name ;
axiom superclass(T) = S ;
for each m ∈ members do

Tr [[m]]

For brevity, we use a star to map a translation function over a list of fragments. In this
notation, we write the last two lines as just:

Tr∗[[members]]

As usual, we are sloppy with the connectives between the translated fragments; the im-
plicit connectives are conjunction, some punctuation, or white space.

In the rest of this subsection, we use C to denote the name of the current class.
Field declarations are translated as follows:

Tr [[T f ;]] =
const C

◦f :name ;
axiom fieldType(C◦f) = Type[[T]] ;

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 373

We use “◦” as just another character that can appear as part of identifier names in
BoogiePL�, but that cannot be used in Spec�. Translation function Type gives the
BoogiePL� term for Spec� types:

Type[[bool]] = _bool
Type[[int]] = _int
Type[[T]] = T for any object type T
Type[[T []]] = array(Type[[T]])

2.3.2. Methods

The translation of method declarations is more involved. Recall that BoogiePL� only
has procedures, no instance methods, so we add this as an explicit parameter to the
generated procedure. Furthermore, since BoogiePL� types are semantic-less, we instead
preserve Spec� types via specifications. Also, BoogiePL� has no built-in notion of heap
properties, so we preserve properties like allocatedness of references via specifications.
BoogiePL� has no notion of inheritance, so we translate overriding and strengthening of
postconditions using multiple procedures. Finally, BoogiePL� syntactically distinguishes
calls with possible side effect from side-effect free expressions; thus, we flatten Spec�

method bodies as part of the translation into BoogiePL� expressions and commands.

New Methods The declaration of a new non-virtual or virtual method in a class C is
translated into BoogiePL� as follows:

Tr [[virtual
? T m (Args) Spec Body]] =

procedure C
◦m (Tr∗[[C this,Args]]) returns (Tr [[T _result]]) ;

Tr∗[[Spec]]
TrMod [[Spec]]

implementation C
◦m (Tr∗[[C this,Args]]) returns (Tr [[T _result]])

{ assume wellFormed(H) ;
assume this �= null ;
assume TypeConstraint∗[[C this,Args]] ;
Tr [[Body]]

}

where formal parameters are translated as follows:

Tr [[bool x]] = x :bool

Tr [[int x]] = x : int

Tr [[T x]] = x : ref for any reference type T
Tr [[void x]] =

The last case is intentionally left blank; it is used only for method return types, and a
method with a void return type gives rise to no out-parameter is the translation.

The types of the formal parameters we just described are there only to please
BoogiePL�. The run-time types guaranteed by the static type system of Spec� give rise
to assumptions:

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language374

TypeConstraint [[bool x]] =
TypeConstraint [[int x]] =
TypeConstraint [[T x]] = for any reference type T

x = null ∨ (H[x , alloc] ∧ type(x) <: Type[[T]])

For convenience later, we also define:

TypeConstraint [[H]] =

Overriding Methods If a method overrides a virtual method, then any new postcondi-
tions are added to those previously declared.

Tr [[override T m (Args) Spec Body]] =
procedure C

◦m (Tr [[C this,Args]]) returns (Tr [[T _result]]) ;
for the “virtual T m (Args) Spec′ Body ′” in a superclass of C do

Tr∗[[Spec′]]
TrMod [[Spec′]]

for each “override T m (Args) Spec′ Body ′” in C or a superclass thereof do
Tr∗[[Spec′]]

implementation C
◦m (Tr∗[[C this,Args]]) returns (Tr [[T _result]])

{ assume wellFormed(H) ;
assume this �= null ;
assume TypeConstraint∗[[C this,Args]] ;
Tr [[Body]]

}

Constructors For constructors, we automatically grant the license to modify all fields of
the object being constructed. The implementation initializes the fields before translating
the given constructor body.

Tr [[C (Args) Spec Body]] =
procedure C

◦
C (Tr∗[[C this,Args]]) returns () ;

Tr∗[[Spec]]
TrMod [[modifies this.∗; Spec]]

implementation C
◦
C (Tr∗[[C this,Args]]) returns ()

{ assume wellFormed(H) ;
assume this �= null ;
assume TypeConstraint∗[[C this,Args]] ;
for each field “F f ;” defined in C do

assume H[this, C◦f] = Zero[[F]] ;
Tr [[Body]]

}

where

Zero[[bool]] = false

Zero[[int]] = 0
Zero[[R]] = null for any reference type R

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 375

Method Specifications Translating pre- and postconditions is straightforward:

Tr [[requires E ;]] = requires Df [[E]] ∧ Tr [[E]] ;
Tr [[modifies W ;]] =
Tr [[ensures E ;]] = ensures Df [[E]] ∧ Tr [[E]] ;

Here, we have opted for the simple design of putting the burden of establishing the de-
finedness of the precondition on callers and the burden of establishing the definedness of
the postcondition on the implementation.

To translate the modifies clauses of a method, we first collect all of them and then
add the contribution of the modifies list to the method’s postcondition. This is described
by the following function:

TrMod [[Spec]] =
modifies H ;
ensures (∀ o: ref , f :name •

o �= null ∧ old(H)[o, alloc] ⇒
ModAllowed [[Spec, o, f]] ∨
H[o, f] = old(H)[o, f])

where ModAllowed generates a disjunction of the translated modifies-clause terms:

ModAllowed [[Spec, o, f]] =
for each “modifies W ;” in Spec do

for each “desig suffix” in W do
case suffix of

(.g) : (o = old(Tr [[desig]]) ∧ f = g) ∨
(.∗) : (o = old(Tr [[desig]])) ∨
([∗]) : (o = old(Tr [[desig]]) ∧ f = elems) ∨

2.3.3. Statements

The translation of statements needs a preprocessing step, which we call normalizing.

Normalization A Spec� body is in normal form, if (i) it is context extended, i.e., all its
names are properly resolved; (ii) local variable declarations appear only at the beginning
of a block; and (iii) allocations and non-void returning calls appear only as right-hand
sides of the designator form Id .

We establish (i) as follows: We add this as the target expression to each designator
Id that references a field or method in scope. We prefix each application of an Id that
denotes a method or field in scope (except the built-in fields Type and Length), with
the most derived class of its definition. For example, if a class A declares a method M ,
a subclass B overrides M , and C is a subclass of B that does not declare a further
override, then c.M (EE) where c has static type C is normalized into c.B ◦M (EE). We
normalize each call of the form base.M (EE) into a call this.S ◦M (EE), where S is the
most derived class of M ’s definition among superclasses of the enclosing class. Finally,
each call of the form base(EE) is normalized into a call this.S ◦S (EE) where S is the
immediate superclass of the enclosing class.

We establish (ii) by moving each local variable declaration to the beginning of its
immediately enclosing block. Spec�’s context conditions guarantee that this preserves
the meaning of the program.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language376

We establish (iii) by repeatedly applying the following normalizing transformations:

• Let S be an assignment, call, or return statement that contains an allocation or
call subexpression. Then, select the leftmost innermost subexpression e in S that
is a non-Id designator, a call expression, an allocation expression, or a quantifier,
and is not the entire left-hand side of an assignment or the entire call statement;
we write S [e] to single out that occurrence of e . If such an e exists, then S [e] is
normalized into

{T x ; x = e; S [x]}
where x is a fresh identifier and T is the type of e .

• If the guard expression E of a conditional statement if (E) S else T contains an
allocation or call expression, then the conditional statement is normalized into

{bool x ; x = E ; if (x) S else T}
• If the guard expression E of a while loop while (E) invariant J ; {S} contains

an allocation or call expression, then the while loop is normalized into

{bool x ; x = E ; while (x) invariant J ; {{S} x = E ; }}
This preserves the meaning of the program, since it reflects Spec�’s leftmost-innermost
evaluation order.

Translation We now define the translation of normalized statements.
The translation of blocks is straightforward: translate each variable declaration fol-

lowed by the translation of the individual statements.

Tr [[{typeIds stmts}]] =
{ Tr∗[[typeIds]] Tr∗[[stmts]] }

The translations of assert, assume, and return statements check that everything is
defined before the corresponding BoogiePL� command is generated:

Tr [[assert E ;]] = assert Df [[E]] ; assert Tr [[E]]
Tr [[assume E ;]] = assert Df [[E]] ; assume Tr [[E]]
Tr [[return E ;]] = assert Df [[E]] ; _result := Tr [[E]]

The bulk of the remaining translation is translating assignments. Field update is
translated as follows:

Tr [[E .f = F ;]] =
assert Df [[E]] ; assert Tr [[E]] �= null ;
assert Df [[F]] ;
H[Tr [[E]], f] := Tr [[F]])

Array update needs to check that the array is non-null, that the index is within the bounds
of the array, and that run-time type of G is a subtype of the element type of the run-time
type of the array (that is, we check for co-variance).

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 377

Tr [[E [F] = G ;]] =
assert Df [[E]] ; assert Tr [[E]] �= null ;
assert Df [[F]] ; assert 0 � Tr [[F]] ∧ Tr [[F]] < length(Tr [[E]]) ;
assert Df [[G]] ; assert type(Tr [[G]]) <: elemType(type(Tr [[E]])) ;
H[Tr [[E]], elems] := Store(H[Tr [[E]], elems],Tr [[F]],Tr [[G]])

Since the statements we translate are normalized, there are only four cases of local-
variable assignments to consider. When the right-hand side is an allocation of an object,
then the assignment is translated as follows, where o and oldHeap denote fresh variables:

Tr [[x = new C (EE);]] =
{ var o: ref ; var oldHeap: [ref ,name]any ;

assume o �= null ∧ type(o) = C ;
assume ¬H[o, alloc] ;
H[o, alloc] := true ;
assert Df ∗[[EE]] ;
oldHeap := H ;
call C ◦C (o,Tr∗[[EE]]) ;
assume successor(oldHeap,H) ;
x := o

}

This translation picks an arbitrary o with the properties that it is non-null, has the appro-
priate run-time type, and is not yet allocated. The translation then allocates the object o
by setting its alloc field to true. Finally, it calls the C constructor, adds the assumption
that the post-call heap is a well-formed successor of the pre-call heap, and assigns o to
the local variable in the assignment statement.

Array allocation is similar:

Tr [[x = new T [E];]] =
{ var o: ref ;

assume o �= null ∧ type(o) = Type[[T []]] ;
assume ¬H[o, alloc] ;
assert Df [[E]] ; assert 0 � Tr [[E]] ;
assume length(o) = Tr [[E]] ;
assume (∀ i : int •

0 � i ∧ i < Tr [[E]] ⇒ Select(H[o, elems], i) = Zero[[T]]) ;
H[o, alloc] := true ;
x := o

}

Here, there are two additional assumptions about the reference o: that o has the specified
length E , which we check to be non-negative, and that the elements of o all have zero-
equivalent values.

When the right-hand side is a call to a method T ◦m with return type R, then the
assignment is translated as follows:

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language378

Tr [[x = E .T ◦m(EE);]] =
{ var oldHeap: [ref ,name]any ;

assert Df [[E]] ; assert Tr [[E]] �= null ;
assert Df ∗[[EE]] ;
oldHeap := H ;
call x := T ◦m(Tr∗[[E ,EE]]) ;
assume successor(oldHeap,H) ;
assume TypeConstraint [[R x]]

}

The last assumption states properties that are guaranteed by the Spec� type system.
For all other assignments to local variables, the translation is:

Tr [[x = E ;]] =
assert Df [[E]] ;
x := Tr [[E]]

Call statements are like the calls in local-variable assignments, but they use void
methods and have no result value:

Tr [[E .T ◦m(EE);]] =
{ var oldHeap: [ref ,name]any ;

assert Df [[E]] ; assert Tr [[E]] �= null ;
assert Df ∗[[EE]] ;
oldHeap := H ;
call T ◦m(Tr∗[[E ,EE]]) ;
assume successor(oldHeap,H)

}
The translation of the conditional statement is the one we showed in Section 1.3.
The translation of the while loop in Fig. 5 is almost like we showed in Section 1.3,

but we also assume well-formedness properties of the syntactic targets of the loop,
and we check and assume some “modifies clauses” on the loop. In particular, we con-
join the postcondition contribution of the enclosing method’s modifies clause to the
loop invariant. The strengthened loop invariant makes it possible to prove the method’s
modifies clause at the end of the implementation body. In the definition in Fig. 5, we
use Spec to denote the declared specification of the enclosing method, prepended with
“modifies this.∗;” if the enclosing method is a constructor. Note that the expansion of
LoopMod produces a predicate that refers to the heap in three different states: H refers
to the current value of the heap, which in this context means the value of the heap on
loop-iteration boundaries; oldHeap refers to the value of the heap upon entry to the loop,
before any of its iterations; and old(H), which occurs in the antecedent and may arise in
the expansion of ModAllowed , refers to the heap on entry to the enclosing method, which
is where the method’s modifies clause gets its meaning. Note also that, since LoopMod
becomes part of the loop invariant, we should in principle check it on entry to the loop,
but since by construction it is idempotent, we can omit the check.

Finally, we define Md to return a list of syntactic targets, each of whose form
is either “H” or a type-id pair “T x”. From such a list L, the translation function
StripTypes[[L]] that we used above returns L with the type of each type-id pair removed

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 379

Tr [[while (E) invariant J ; {S}]] =
{ var oldHeap: [ref ,name]any ;

oldHeap := H ;
assert Df [[J]] ; assert Tr [[J]] ;
/* assert LoopMod [[Spec, oldHeap]] ; */
havoc StripTypes[[Md [[S]]]] ;
assume TypeConstraint∗[[Md [[S]]]] ;
assume successor(oldHeap,H) ;
assume Df [[J]] ∧ Tr [[J]] ∧ LoopMod [[Spec, oldHeap]] ;
assert Df [[E]] ;
{ assume Tr [[E]]

Tr [[{S}]] ;
assert Df [[J]] ; assert Tr [[J]] ; assert LoopMod [[Spec, oldHeap]] ;
assume false

[] assume ¬Tr [[E]]
}

LoopMod [[Spec, oldHeap]] =
(∀ o: ref , f :name •

o �= null ∧ old(H)[o, alloc] ⇒
ModAllowed [[Spec, o, f]] ∨
H[o, f] = oldHeap[o, f])

Figure 5. The translation of while loops.

(we omit the formal definition). In the following, E denotes an expression other than an

allocation or call expression, and x denotes an identifier of a type X .

Md [[{typeIds stmts}]] = Md∗[[stmts]] \ typeIds
Md [[assert E ;]] =
Md [[assume E ;]] =
Md [[x = E ;]] = X x
Md [[x = E .m(EE);]] = X x , H
Md [[x = new C (EE);]] = X x , H
Md [[x = new T [E];]] = X x , H
Md [[E .f = F ;]] = H
Md [[E [F] = G ;]] = H
Md [[if (E) S else T]] = Md [[S]],Md [[T]]
Md [[while (E) invariant J ; {S}]] = Md [[{S}]]
Md [[return E ;]] =

2.3.4. Expressions

The well-definedness of an expression E is defined by translation function Df [[E]].

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language380

Df [[E ˙=⇒ F]] = Df [[E]] ∧ (Tr [[E]] ⇒ Df [[F]])
Df [[E || F]] = Df [[E]] ∧ (Tr [[E]] ∨ Df [[F]])
Df [[E && F]] = Df [[E]] ∧ (Tr [[E]] ⇒ Df [[F]])
Df [[E ⊗ F]] = Df [[E]] ∧ Df [[F]] with ⊗ being +, −, or ∗
Df [[E ⊗ F]] = Df [[E]] ∧ Df [[F]] ∧ Tr [[F]] �= 0 with ⊗ being / or %
Df [[¬E]] = Df [[E]]
Df [[this]] =
Df [[result]] =
Df [[λ]] = with λ being any literal
Df [[x]] =
Df [[E .f]] = Df [[E]] ∧ Tr [[E]] �= null

Df [[E [F]]] = Df [[E]] ∧ Tr [[E]] �= null ∧
Df [[F]] ∧ 0 � Tr [[F]] ∧ Tr [[F]] < length(Tr [[E]])

Df [[E is T]] = Df [[E]]
Df [[(T)E]] = Df [[E]] ∧ (Tr [[E]] = null ∨ type(Tr [[E]]) <: Type[[T]])
Df [[old(E)]] = old(Df [[E]])
Df [[fresh(E)]] = Df [[E]]

A Spec� expression E is translated into a corresponding BoogiePL� expression by
Tr [[E]]. In the following, we use ⊕ to denote the BoogiePL� operator corresponding to
the Spec� operator ⊗; except for short-circuit operators (and type setting differences), ⊗
and ⊕ are the same.

Tr [[E ⊗ F]] = Tr [[E]] ⊕ Tr [[F]]
Tr [[¬E]] = ¬Tr [[E]]
Tr [[this]] = this
Tr [[result]] = _result
Tr [[λ]] = λ
Tr [[x]] = x
Tr [[E .f]] = H[Tr [[E]], f] with f not Type or Length
Tr [[E .Type]] = type(Tr [[E]])
Tr [[E .Length]] = length(Tr [[E]])
Tr [[E [F]]] = Select([Tr [[E]], elems],Tr [[F]])
Tr [[E is T]] = Tr [[E]] �= null ∧ type(Tr [[E]]) <: Type[[T]]
Tr [[(T)E]] = Tr [[E]]
Tr [[old(E)]] = old(Tr [[E]])
Tr [[fresh(E)]] = ¬old(H)[Tr [[E]], alloc]

Note that we have special cases for the built-in fields Type and Length , which return the
run-time type of an object and the length of an array, respectively.

2.4. Example

The Spec� program in Fig. 6 is translated into the BoogiePL� program in Fig. 7.

2.5. Summary

To verify object-oriented programs, one needs to define their semantics. One way to do
that, which we have followed here, is to translate them into a simpler language with a

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 381

class C : object {
int x ;
C (int y) { base(); x = y ; }
int M (int n)

modifies x ;
ensures result == old(x);

{ int r = x ; x = x/n; return r ; }
}

Figure 6. An example Spec� program, declaring a class with an integer field, a constructor, and a method.

precisely defined semantics. The simpler language need not be just logical formulas; in
fact, there is evidence that including imperative features, closer to the object-oriented
language than to logical formulas, makes the encoding of the semantics easier to un-
derstand and to implement [53,4]. In the encoding of Spec� that we have presented in
this section, we have decided on a storage model, axiomatized types and declarations,
and prescribed the translation of statements and expressions. In this translation, we have
addressed issues like behavioral subtyping and partiality of operations.

3. Invariants and Ownership

To prove the correctness of a method, it is usually necessary to know that its parameters,
including the receiver parameter, reference well-formed data, that is, data that satisfy
certain consistency conditions. Many consistency conditions can be described by object
invariants.

This section introduces object invariant patterns and their proof obligations. Syntac-
tically, an object invariant is declared as a class member:

Member ::= . . .
| Invariant

The declaration gives an invariant for the enclosing class, written in terms of an arbi-
trary object denoted by the keyword this. We start in Section 3.0 with an example that
highlights the central question of where invariants hold. In Section 3.1, we look at intra-
object invariants, which express semantic constraints on the fields of each object. In Sec-
tion 3.2, we look at an important form of inter-object invariants, which express proper-
ties of linked objects, that is, of objects that refer to each other. Aliasing, the interaction
between object references, complicates the handling of inter-object invariants. We em-
ploy an ownership regime to control the impact of changes among objects. In Section 3.3,
we discuss inheritance and dynamic dispatch.

3.0. Where Do Invariants Hold?

The quintessential idea of object invariants is that an object satisfies its invariant when-
ever no constructor or method of the object is active (cf. [59]). With some restrictions,
this idea can be realized by checking that the constructor establishes the object invariant
and that every non-constructor method of the class preserves the invariant.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language382

const C :name ;
axiom superclass(C) = object ;

const C ◦x :name ;
axiom fieldType(C ◦x) = _int ;

procedure C ◦C (this: ref , y : int) returns () ;
modifies H ;
ensures (∀ o: ref , f :name • o �= null ∧ old(H)[o, alloc] ⇒

o = old(this) ∨ H[o, f] = old(H)[o, f]) ;
implementation C ◦C (this: ref , y : int) returns ()
{ assume wellFormed(H) ; assume this �= null ;

assume this = null ∨ (H[this, alloc] ∧ type(this) <: C ;
assume H[this,C ◦x] = 0 ;
{ var oldHeap: [ref ,name]any ; /* base(); */

assert this �= null ;
oldHeap := H ;
call object ◦object(this) ;
assume successor(oldHeap,H)

} ;
assert this �= null ; /* this.x = y ; */
H[this,C ◦x] := y

}
procedure C ◦M (this: ref , n: int) returns (_result : int) ;

ensures _result = old(H[this,C ◦x]) ;
modifies H ;
ensures (∀ o: ref , f :name • o �= null ∧ old(H)[o, alloc] ⇒

(o = old(this) ∧ f = C ◦x) ∨ H[o, f] = old(H)[o, f]) ;
implementation C ◦M (this: ref , n: int) returns (_result : int)

{ assume wellFormed(H) ; assume this �= null ;
assume this = null ∨ (H[this, alloc] ∧ type(this) <: C) ;
{ var r : int ; /* int r ; */

assert this �= null ; /* r = this.x ; */
r := H[this,C ◦x] ;
assert this �= null ; /* this.x = this.x/n; */
assert this �= null ∧ n �= 0 ;
H[this,C ◦x] := H[this,C ◦x]/n ;
_result := r /* return r ; */

}
}

Figure 7. The BoogiePL� translation of the Spec� program in Fig. 6. This figure omits the prelude of the
translation, which is described in Section 2.3.0 the same for all translated Spec� programs.

Class Subject in Fig. 8 illustrates the idea. Its invariant constrains st to be non-
zero. The constructor sets st to 1, establishing the invariant, and the other methods leave
st with a non-zero value, maintaining the invariant. Given that this satisfies its object
invariant on entry to method Get , one can prove that the division in the body of Get is
defined.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 383

class Subject {
Observer obs;
int st ;
invariant st �= 0;

Subject(Observer o)
{ st = 1; obs = o; }

void Update(int y)
requires y �= 0;
modifies this.∗, obs.∗;

{ st = 0;
if (obs �= null)

obs.Notify(this);
st = y ;

}

int Get()
{ return 1000/st ; }

}

class Observer {
int cache;

void Notify(Subject s)
requires s �= null;
modifies cache;

{ cache = s.Get(); }
}

class Program {
void Main() {

Observer o = new Observer();
Subject s = new Subject(o);
s.Update(5);

}
}

Figure 8. An example program showing the interaction between two objects, a subject and an observer. With-
out the invariant declaration, the formalization of Spec� in Section 2 will report one error in this program,
namely a division-by-zero error in method Get . The invariant in Subject declares an intention to keep st
non-zero, but exactly when is the invariant supposed to hold?

The interaction between class Subject and class Observer illustrates a problem with
the basic realization of the quintessential idea of object invariants. Before it calls Notify
on the observer, method Update changes st to 0, temporarily violating the invariant. But
Notify then causes control to reenter the subject, which leads to a division-by-zero error.
Evidently, there is more to verifying and using object invariants than checking them at
the end of methods.

3.1. Intra-object Invariants

We introduce a programming discipline, a specification and verification methodology,
that makes it possible describe and enforce the program’s intended design regarding
reentrancy and, more generally, regarding object invariants. The methodology explicitly
keeps track of when an invariant is known to hold [3].

For every object and array, we introduce a ghost field inv , which can take on the
values valid and mutable . The intended meaning of these two states is that the object
invariant holds of objects in the valid state, but may or may not hold of objects in the
mutable state. Newly allocated objects are mutable; that is, on entry to a constructor, the
object to be constructed is mutable.

For any class T and object o of class T , we let InvT [[o]] denote the invariant declared
in class T applied to object o. For an array type T , InvT [[o]] is just true.

In order to be able to do modular verification with object invariants, it is necessary
to restrict what an object invariant can depend on. For intra-object invariants, we say an

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language384

invariant (declaration) is admissible if it only refers to fields of the object, that is, if each
of its field-select subexpressions are of the form this.f for some field f (where, as usual,
“this.” can be implicit).

We can now formalize the connection between the inv field and admissible invari-
ants:

Program Invariant 0 If the invariant a class C is admissible, then

(∀ o • o.inv = valid ⇒ InvC [[o]])

where the quantification ranges over non-null, allocated objects of type C , is a program
invariant, that is, it holds in every reachable program state.

To ensure this program invariant, the methodology restricts updates of inv (which occurs
in the antecedent of the quantified formula) and updates of other fields of the object
(which may occur in the consequent).

Updates of inv are restricted to two new operations, written unpack o; and pack o;
for any object-valued expression o. The idea is that these operations delineate where an
object is mutable: unpack o; makes o mutable, and pack o; makes o valid after first
checking that InvC [[o]] holds.

Other field updates are restricted to mutable objects only. That is, we introduce
o.inv = mutable as a new precondition of each field update statement o.f = E ;.

Applying this methodology to the subject-observer example, we change the code in
Fig. 8 as shown in Fig. 9.

Defaults and Shorthands This methodology for object invariants uses unpack and pack
operations to change inv , and uses pre- and postconditions to specify the value of inv
on method boundaries. As is exemplified in Fig. 9, these operations and specifications
tend to be used in a highly stylized fashion: the constructor ends with a pack operation,
state changes in other methods are bracketed by a unpack and pack, the constructor post-
condition says that the object is valid, and the precondition of non-constructor methods
requires the object to be valid. To simplify the program text, we introduce some defaults.

First, we add a pack this; operation at the end of every constructor.
Second, we introduce a structured statement expose (o) {S} to stand for the com-

mon sequence

unpack o; {S} pack o;

where we assume S does not change o. In fact, we only add the expose statement, not
the unpack and pack operations, to the Spec� language syntax:

Stmt ::= . . .
| expose (Expr) Block

where the type of the expression must be a non-object reference type.
Third, for every reference-valued method parameter p, including this unless the

method is a constructor, we add the default precondition p.inv == valid .
Fourth, we add the default postcondition inv == valid to constructors.
Fifth, because it tends to be a more common specification pattern, we change the

definition of o.∗ in modifies clauses to exclude the inv field (cf. page 376):

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 385

class Subject {
Observer obs;
int st ;
invariant st �= 0;

Subject(Observer o)
ensures inv == valid ;

{ st = 1; obs = o;
pack this;

}

void Update(int y)
requires inv == valid ;
requires y �= 0;
modifies this.∗, obs.∗;

{ unpack this;
st = y ;
pack this;
if (obs �= null)

obs.Notify(this);
}

int Get()
requires inv == valid ;

{ return 1000/st ; }
}

class Observer {
int cache;

void Notify(Subject s)
requires inv == valid ;
requires s �= null ∧ s.inv == valid ;
modifies cache;

{ unpack this;
cache = s.Get();
pack this;

}
}

Figure 9. The Subject and Observer classes from Fig. 8, but here using inv , unpack, and pack. The
methodology also forced us to change the implementation of Update, because there is no way to insert unpack
and pack operations in Fig. 8 to live up to the three requirements of: (0) st can be updated only if the subject is
mutable, (1) the precondition of Notify requires that the subject be valid, and (2) the Subject invariant must
hold at the time of a pack operation. One remaining verification problem, which we address in Section 3.2, is
how to make sure the observer obs is valid when calling Notify .

ModAllowed [[Spec, o, f]] =
for each “modifies W ;” in Spec do

for each “desig suffix” in W do
case suffix of

(.∗) : (o = old(Tr [[desig]]) ∧ f �= inv) ∨
. . .

Using these defaults and shorthands, we can simplify the Update method of the

Subject class as follows:

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language386

void Update(int y)
requires y �= 0;
modifies this.∗, obs.∗;

{ expose (this) { st = y ; }
if (obs �= null)

obs.Notify(this);
}

Translation We change the translation to generate proof obligations that guarantee Pro-
gram Invariant 0.

We start by changing the translation of how objects and references come into being.
For objects, we add an assumption in the constructor, saying that the new object starts in
a mutable state (cf. page 375):

Tr [[C (Args) Spec Body]] =
procedure C

◦
C . . .

implementation C
◦
C (Tr∗[[C this,Args]]) returns ()

{ assume wellFormed(H) ;
assume this �= null ∧ H[this, inv] = mutable ;
assume TypeConstraint∗[[C this,Args]] ;
for each field “F f ;” defined in C do

H[this, C◦f] := Zero[[F]] ;
Tr [[Body]]

}

Remember that our defaults and shorthands add a pack this; operation at the end of
Body (during normalization).

For arrays, we make newly allocated arrays appear in the valid state (note that array
types themselves do not have any object invariants) (cf. page 378):

Tr [[x = new T [E];]] =
{ var o: ref ;

. . .
H[o, inv] := valid ; H[o, alloc] := true ;
x := o

}

We add an extra precondition to field and array update (cf. page 377). For brevity,
here and in the rest of this paper, we assume that expressions like o, a , i , and e in the
following translations are local variables; in general, we would first apply normalization
and then use Df [[·]] and Tr [[·]], as in Section 2.3.3.

Tr [[o.f = e;]] =
assert o �= null ∧ H[o, inv] = mutable ;
H[o, f] := e

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 387

Tr [[a[i] = e;]] =
assert a �= null ∧ H[a, inv] = mutable ;
assert 0 � i ∧ i < length(a) ;
assert type(e) <: elemType(type(a)) ;
H[a, elems] := Store(H[a, elems], i , e)

Finally, we define the unpack and pack operations as follows, where o has static type
T .

Tr [[unpack o;]] =
assert o �= null ∧ H[o, inv] = valid ;
H[o, inv] := mutable

Tr [[pack o;]] =
assert o �= null ∧ H[o, inv] = mutable ;
assert Df [[Inv(o)]] ∧ Tr [[Inv(o)]] ;
H[o, inv] := valid

3.2. Inter-object Invariants

An object invariant can span several objects. Suppose object o refers to object c in its
invariant; then changing c might invalidate the invariant of o. There are several strategies
for dealing with this situation [61,3,47,7,67,38,60]. In this section, we deal with the
common situation where accesses to c are controlled by o. We say that c is part of the
representation of o and that o is the owner of c. We do not assume that c knows its
owner, and thus we handle the important case where c is an instance of a class defined in
a library. These object invariants are called ownership-based invariants, because they use
the ownership structure of the heap in the definition of which invariants are admissible.

Suppose we want to design a priority queue of tasks, implemented via a sorted
singly-linked list of nodes. Figure 10 shows a possible implementation. For a proper
working of the priority queue, we design the list so that it is strictly increasing, that is,
we need the following invariant for class Node:

invariant next �= null ⇒ prio < next .prio; (2)

But how can we deal with the fact that the modification of one node’s priority might
break the invariant in the previous node?

We establish a hierarchical ownership relationship on objects. We use ownership to
control that, outside an object’s invariant, the fields of the object can be mentioned only
in the invariants of its transitive owners. The methodology also enforces that when an
object is mutable, so are its transitive owners. Consequently, when the fields of an object
are changed, it can only violate the invariants of owners, but those owners are mutable,
which means the owners are in a state when the invariants are allowed to be violated.

For our list example, we let each node own its successor. To follow the methodology,
we must then arrange to expose all predecessors before modify a node.

We encode this ownership regime as follows:

• We extend the domain of the inv field to {mutable, valid , committed}. We say an
object is committed if its invariant is known to hold and its owner is not mutable.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language388

class PriorityQueue {
Node hd ;

void Insert(object t , int p)
requires t �= null;
modifies hd ;

{ expose (this) {
if (hd �= null)

hd = hd .Inject(t , p);
else

hd =
new Node(t , p,null);

}
}

void DeleteMin()
modifies hd ;

{ expose (this) {
if (hd �= null)

hd = hd .next ;
}

}

object Min() {
if (hd �= null)

return hd .task ;
else

return null;
}

}

class Node {
object task ; int prio;
Node next ;

Node(object t , int p, Node n) {
task = t ;
prio = p;
next = n;

}

Node Inject(object t , int p)
modifies next ;

{
if (p < prio)

return new Node(t , p, this);
expose (this) {

if (next == null)
next = new Node(t , p,null);

else

next = next .Inject(t , p);
}
return this;

}
}

Figure 10. An implementation of a priority queue. Formal parameter t denotes a task and p denotes a priority.
This version of the implementation points out three verification problems. First, the object invariant that nodes
of the priority queue are sorted needs to mention more than one object (namely, this.next .prio), and that is
not allowed by the admissibility condition in Section 3.1. Second, how do we know that the receiver objects of
the two calls to Inject are valid? Third, method Insert might change hd and the next field of an unbounded
number of Node objects, but all of these modifications could not possibly be listed explicitly in the modifies
clause of Insert .

• We introduce a field modifier rep, which specifies that a field refers to a repre-
sentation object.

FieldModifier ::= rep

The rep modifier is allowed on fields having reference types.

We can now formalize the meaning of rep fields, which establishes an additional
property:

Program Invariant 1 For any rep field f declared in a class C ,

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 389

class Subject {
rep Observer obs;
int st ;
invariant st �= 0;

Subject(Observer o)
modifies o.inv ;

{ st = 1; obs = o; }

int Get()
{ return 1000/st ; }

void Update(int y)
requires y �= 0;
modifies this.∗, obs.∗;

{ Observer tmp = obs;
expose (this) { st = y ; obs = null; }
if (tmp �= null)

tmp.Notify(this);
expose (this) { obs = tmp; }

}

Figure 11. The Subject class, updated from Fig. 9. Here, the observer is captured by the subject’s constructor
to claim ownership of it. The Update method temporarily disentangles that ownership relation in order to call
Notify with two valid objects.

(∀ o • o.inv �= mutable ⇒ o.f = null ∨ o.f .inv �= mutable)

where the quantification ranges over non-null, allocated objects of type C , is a program
invariant.

Admissible invariants for our ownership regime are now restricted as follows: An
object o may depend only on the fields of o and the fields of objects transitively owned
by o. We check this restriction syntactically, allowing an invariant to mention a field-
select expression this.a.b. · · · .f .x only if a, b, . . . , f are declared to be rep fields. The
object invariant (2) of our priority queue example in Fig. 10 has this form, and is thus
admissible.

Using our refined methodology, we can solve two of the verification problems in
Fig. 10. We declare hd and next as rep fields, which make invariant declaration (2)
admissible. Program Invariant 1 and the new definition of unpack let us call Inject ,
because they establish that the receiver is valid.

Using our refined methodology, we can also solve the last verification problem with
the subject-observer example in Fig. 9. The verifiable code is shown in Fig. 11.

The problem in Fig. 9 was that, on entry to Update , we know nothing at all about the
validity of obs , but we need to know that it is valid when we invoke its Notify method.
We do know that the subject is valid on entry to Update . To entangle the validity of the
observer with the validity of the subject, we make the former a representation object of
the latter, see the rep keyword in Fig. 11.

We now need to admit to “capturing” the valid observer parameter o in the Subject
constructor. We do that by listing o.inv in the modifies clause of that constructor.

Finally, when the observer is owned by the subject, it is not possible to pass both
of them as valid objects to Notify . Thus, we temporarily disentangle them, as shown in
Fig. 11. While this does make the program verify, it is clumsy. A better solution would
be to make the subject and observer peers, which means they have the same owner. This
solution is explained in detail elsewhere [61,47,54].

Translation We change the translation of unpack and pack operations to reflect changes
in the committed-status of objects (cf. page 388). For a local variable o of static type T :

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language390

Tr [[unpack o;]] =
assert o �= null ∧ H[o, inv] = valid ;
H[o, inv] := mutable ;
for each field “rep F f ;” defined in T do
{ assume H[o, f] �= null ; H[H[o, f], inv] := valid
[] assume H[o, f] = null

}

Tr [[pack o;]] =
assert o �= null ∧ H[o, inv] = mutable ;
assert Df [[InvT [[o]]]] ∧ Tr [[InvT [[o]]]] ;
for each field “rep F f ;” defined in T do

assert H[o, f] = null ∨ H[H[o, f], inv] = valid ;
for each field “rep F f ;” defined in T do
{ assume H[o, f] �= null; H[H[o, f], inv] := committed
[] assume H[o, f] = null

} ;
H[o, inv] := valid

Method Framing Revisited With the meaning of modifies clauses defined in Sec-
tion 2.3.2, methods Insert and Inject in Fig. 10 do not verify. That definition insisted
on that every non-new object with a modified field be mentioned explicitly in the modi-
fies clause. But that’s absurd. We need some form of abstraction in our modifies clauses.
Representation objects establish a natural abstraction boundary that we can use.

With ownership, only owners are allowed to have invariants that depend on repre-
sentation objects. Since representation objects are implementation details, code should
not depend on the exact values of committed objects. Therefore, we now state a more re-
laxed meaning of modifies clauses: committed objects are allowed to be changed without
explicitly being mentioned in modifies clauses.

We change the computing of the postcondition for a Spec� modifies clause (cf.
page 376) by adding another disjunct:

TrMod [[Spec]] =
modifies H ;
ensures (∀ o: ref , f :name •

o �= null ∧ old(H)[o, alloc] ⇒
ModAllowed [[Spec, o, f]] ∨
H[x , inv] = committed ∨
H[o, f] = old(H)[o, f])

With the relaxed meaning, the Insert method in Fig. 10 does not need to mention any
Node object in its modifies clause. Likewise, method Inject does not need to explicitly
mention the modifications of its successor nodes. Since this is valid on entry, methods
must still announce modifications of fields of this, which is why we wrote the modifies
clauses of Insert and Inject in Fig. 10 the way we did. This solves the third verification
problem in Fig. 10.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 391

3.3. Inheritance and Invariants

Inheritance and virtually dispatched calls are key features of object-oriented program-
ming languages. To discuss their verification problems in more detail, let us introduce the
concept of a class frame. We say: Each subclass defines one class frame, consisting of
its instance variables. Applied to our Cell example in Fig. 3, we see that a Cell has two
frames: the object frame, and the Cell frame. The latter contains Cell’s only instance
field, x . A BackupCell also has a third frame, containing BackupCell ’s only instance
field, b. Single inheritance thus results in a sequence of frames.

Let us now look at the problems involved in virtual calls. First, we see that virtual
calls lead to classical callback scenarios. For instance, let c be a BackupCell ; then a
call c.IncBy(3) first enters its Cell frame, which when evaluating this.Get() reenters
its Cell frame; next, it evaluates Set(. . .), which enters the BackupCell frame, which
through a base call reenters the Cell frame. How can we maintain the invariants in Cell
and/or BackupCell under such dynamic control flow?

For verification of invariants in the context of inheritance, we let each class frame
declare its own invariant. The invariants from different frames of an object are enforced
separately. An invariant declared in a class T is admissible if every field-select expres-
sion has the form this.a.b. · · · .f .x where, as before, a, b, . . . , f are declared to be rep

fields, and the first field (a or x) is declared in T or a superclass thereof.
Here is an example:

class Cell {
int x ;
invariant 0 � x ;
. . .

class BackupCell : Cell {
int b;
invariant b � x ;
. . .

The direct superclass frame of BackupCell , namely Cell , can be viewed as a rep “ob-
ject”, or rep frame, of BackupCell objects. This matches the rep model nicely, since
there is only one conceptual pointer from the subclass frame to its immediate superclass
frame. Note that, just as for rep objects, the invariant of the “owner” BackupCell is
allowed to mention fields declared in rep frames (i.e., superclasses).

As in the rep model, we require that all calls (or, more precisely, all expose oper-
ations) on the rep frame go via calls to its owner, i.e., its subclass frame. Consequently,
most methods need to be virtual; you override them in each subclass explicitly, and you
always use base calls to transfer control into the superclass, if needed. Embedding a base
call in expose blocks causes an object’s frames to be exposed in a stack-like fashion.

We could introduce an inv field for each frame, but since virtual calls and expose
statements are used in a highly styled fashion, we can use fewer ghost variables by letting
the inv field of an object refer to the most derived frame of the object that is valid.
That is, o.inv <: T means that o is valid for frame T and all its superclass frame. The
properties o.inv = valid and o.inv = mutable that we introduced in Section 3.1 are
now represented as o.inv = type(o) and o.inv = object, respectively, assuming that
object has no invariant.

An object can become committed only when all its class frames are valid. To encode
the committed state of an object, we introduce a fictitious type named Committed , which
is modeled as a subtype of all types in the program. Thus, o.inv = Committed means
the the object o is committed, previously written as o.inv = committed .

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language392

With our new encoding of inv , the following restates the previous Program Invari-
ants 0 and 1 in the context of subclasses:

Program Invariant 2 For any class C with an admissible invariant,

(∀ o • type(o) <: C ∧ o.inv <: C ⇒ InvC [[o]])

and for any rep field f declared in C ,

(∀ o • o.inv <: C ⇒ o.f = null ∨ o.f .inv = Committed)

where the quantifications range over non-null, allocated objects, are program invariants.

Translation The following definitions of unpack and pack take the new representation
into account. Let T be the static type of o, and let S be the immediate superclass of T
or, if T is an array type, let S be object; then (cf. page 391):

Tr [[unpack o;]] =
assert o �= null ∧ H[o, inv] = T ;
H[o, inv] := S ;
for each field “rep F f ;” defined in T do
{ assume H[o, f] �= null ; H[H[o, f], inv] := type(H[o, f])
[] assume H[o, f] = null

}

Tr [[pack o;]] =
assert o �= null ∧ H[o, inv] = S ;
assert Df [[InvT [[o]]]] ∧ Tr [[InvT [[o]]]] ;
for each field “rep F f ;” defined in T do

assert H[o, f] = null ∨ H[H[o, f], inv] = type(H[o, f]) ;
for each field “rep F f ;” defined in T do
{ assume H[o, f] �= null; H[H[o, f], inv] := Committed
[] assume H[o, f] = null

} ;
H[o, inv] := T

Let f be a field declared in a class C ; then field update is redefined as follows (cf.
page 387):

Tr [[o.f = e;]] =
assert o �= null ∧ ¬(H[o, inv] <: C) ;
H[o, f] := e

and array update is defined as follows:

Tr [[a[i] = e;]] =
assert a �= null ∧ H[a, inv] = object ;
assert 0 � i ∧ i < length(a) ;
assert type(e) <: elemType(type(a)) ;
H[a, elems] := Store(H[a, elems], i , e)

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 393

So that it can be used when proving programs, we add Program Invariant 2 as ax-
ioms.

axiom (∀ h: [ref ,name]any, o: ref •
wellFormed(h) ∧ o �= null ∧ h[o, alloc] ⇒

type(o) <: C ∧ h[o, inv] <: C ⇒ Df [[InvC [[o]]]] ∧ Tr [[InvC [[o]]]]) ;

axiom (∀ h: [ref ,name]any, o: ref •
wellFormed(h) ∧ o �= null ∧ h[o, alloc] ⇒

h[o, inv] <: C ⇒ h[o, f] = null ∨ h[h[o, f], inv] = Committed) ;

for every class and applicable field. In these axioms, InvC [[o]] is expanded to the expres-
sion declared to be the invariant of class C , with o replacing occurrences of this.

Finally, we add an axiom that says that Committed is a subtype of all types.

axiom (∀T :name • Committed <: T) ;

Method Preconditions Revisited Exposing an object frame by frame introduces another
problem: for every class T , the definition or override of a virtual method m in class
T is going to unpack the object, and therefore it needs the precondition inv = T .
For example, to verify the example in Fig. 3 using our methodology, the Cell ◦Set
and BackupCell ◦Set method implementations must expose the object for the Cell and
BackupCell frames, respectively, before modifying the fields x and b. To meet with
the preconditions of such expose statements, Cell ◦Set would need a precondition of
inv == Cell and BackupCell ◦Set would need a precondition of inv == BackupCell ,
but a virtual method and its overrides cannot arbitrarily change the method precondition!
What condition would we check at call sites?

For call sites that invoke the a virtual method m by base.m , we can check differ-
ent preconditions at different call sites, because base calls are statically bound. That is,
calling base.m invokes a particular implementation, so we can arrange to verify, at the
call site, the particular precondition required by that implementation. For a dynamically
dispatched call to m , we cannot statically decide which overridden method will be exe-
cuted, yet we need to verify, at the call site, that the precondition required by the invoked
override holds. By demanding that every class override all inherited virtual methods, the
condition to be verified at a dynamically dispatched call to o.m is inv = type(o).

To support these scenarios where different implementations of a method need dif-
ferent preconditions, we introduce a polymorphic invariant level, written as inv = �:

Literal ::= . . .
| �

where � can appear only in the specifications of virtual methods, and the type of � is that
of a run-time type. The idea is that the definition of a method m writes inv = � in its
precondition. For an implementation given in a class T , inv = � means inv = T , and
for a dynamically dispatched call to o.m , it means inv = type(o).

Our Cell and BackupCell classes can now be specified, implemented, and verified
as shown in Fig. 12. Note that IncBy is a non-virtual method. With its given specifi-
cation, its implementation cannot directly perform any update, because it cannot do the
necessary expose. However, the implementation can still call virtual methods that will
expose the object and modify its state.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language394

class Cell {
int x ;
invariant 0 � x ;

Cell(int i)
ensures inv == Cell ;

{ x = i ; }

virtual int Get()
requires inv = �;

{ return x ; }

virtual void Set(int i)
requires inv = �;

{ expose (this) { x = i ; } }

void IncBy(int i)
requires inv == Type;

{ int t = Get(); Set(t + i); }
}

class BackupCell : Cell {
int b;
invariant b � x ;

BackupCell(int i)
ensures inv == BackupCell ;

{ base(i); b = i ; }

override int Get()
{ int g ;

expose (this)
{ g = base.Get(); }
return g ;

}

override void Set(int i)
{ expose (this)

{ b = x ; base.Set(i); }
}

virtual int GetBackup()
requires inv = �;

{ return b; }

virtual void Rollback()
requires inv = �;

{ x = b; }
}

Figure 12. The Cell and BackupCell classes from Fig. 3 with polymorphic invariant levels. For brevity, we
omit all other contracts.

Defaults and Shorthands To remove the burden that subclasses must override all vir-
tual methods, our normalization will, for any non-overridden inherited method, insert an
override whose body exposes the object and calls the base implementation of the method.
For example, for a subclass of Cell that does not explicitly override methods Set and
Get , normalization will insert:

override void Set(int i)
{ expose (this) { base.Set(i); } }
override int Get()
{ int g ; expose (this) { g = Get(); } return g ; }

Since the value of inv is now a type, no longer a boolean, we must make some ad-
justments in our default method specifications (cf. the discussion on Defaults and Short-
hands in Section 3.1). For a constructor in a class C , we use the default postcondition

ensures inv == C ;

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 395

For every virtual method, we use the default precondition

requires inv = �;

Third, for every reference-valued method parameter p, including this unless the method
is a constructor or virtual method, we add the default precondition

requires p.inv == p.Type;

Translation We adapt the translation to BoogiePL� as follows. For each definition
or override of a virtual method with a polymorphic invariant level, we generate two
BoogiePL� procedure declarations (cf. page 374):

Tr [[MethodModifier T m (Args) Spec Body]] =
procedure C

◦Virtual ◦m (Tr∗[[C this,Args]]) returns (Tr [[T _result]]);
as the previous translation into C

◦m , but replacing � with type(this)
procedure C

◦m (Tr∗[[C this,Args]]) returns (Tr [[T _result]]) ;
as before, but replacing � with C

implementation C
◦m (Tr∗[[C this,Args]]) returns (Tr [[T _result]])

as before

For a call o.m(. . .) where o has static type T and m is a virtual method, we use
T ◦Virtual ◦m in the translation. For a call base.m(. . .) in a class whose superclass is
T , we use T ◦m in the translation. The implementation is given for C

◦m . Our translation
does not give any implementation to C

◦Virtual ◦m; intuitively, this implementation is
provided by the runtime system, which performs the dynamic dispatch by a case split
over the run-time type of the receiver object (typically implemented by dereferencing the
v-table).

3.4. Summary

The verification of programs requires invariants, but, as we have seen, dealing with
invariants presents several verification problems. In this section, we have presented a
methodology the structures a program and its specifications in such a way that it is pos-
sible to perform sound modular verification. The methodology introduces the field mod-
ifier rep, the ghost field inv , the expose statement, and the invariant-level literal �.
We can now specify and generate verification conditions for programs with reentrancy,
subclassing, dynamic dispatch, and invariants that span several objects and class frames.

4. Multi-threaded Programs

Multi-threaded object-oriented programs are becoming mainstream: servers are already
multi-threaded, but soon we will have multi-cores on every desktop, too. So the ques-
tion arises: Can we adapt the single-threaded verification methodology to verify multi-
threaded programs? In particular, can we maintain invariants and also prevent data races
and deadlocks?

Section 4.0 introduces a methodology to avoid data races for individual objects.
Section 4.1 extends the methodology to guarantee inter-object invariants over rep objects.
Section 4.2 concludes by extending this methodology to protect against deadlocks.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language396

class Counter : Runnable {
int dangerous;
Counter() {

dangerous = 0;
}
override void Run() {

int tmp = dangerous;
dangerous = tmp + 1;

}
}

class Program {
void Main() {

Counter ct = new Counter();
Thread t = new Thread(ct);
Thread u = new Thread(ct);
t .Start(); u.Start();

}
}

Figure 13. A simple program to illustrate the possible effects of race conditions. Method Run is invoked
twice in this program (via the Thread ◦Start method), but the final value of dangerous may end up as either
1 or 2, depending on how the runtime system’s thread scheduler happens to interleave the thread executions.

4.0. Data Race Prevention

A data race occurs in a multi-threaded program when one thread writes a field or array
element, another thread reads or writes the same field or array element, and neither thread
performs a synchronization operation that would give it exclusive access to the data. Data
races almost always indicate a programming error and such errors are extremely difficult
to find and debug due to the nondeterministic interleaving of the thread executions.

Figure 13 shows this problem using a straightforward program. An instance of the
Counter class is shared by two threads. Looking at the Run method of the Counter
object, which is invoked by the Thread ◦Start method, each thread appears to increment
the variable by 1. However, in some interleavings of the thread executions, the combined
effect is not to increment the variable by 2. In particular, both threads might read the
variable when its value is 0, in which case each of the two threads will set the variable to
1.

Like in C� and Java, every object in Spec� also acts as a lock. These locks can be
used to ensure mutual exclusion among threads by using a lock statement:

Stmt ::= . . .
| lock (Expr) Block

where the expression must be of a reference type. The execution of lock (o) {S} ac-
quires the lock o, executes S , and then releases o. The acquire operation first waits until
a time when no thread holds o, so that the acquisition of o will maintain the program
invariant that each lock is held by at most one thread at a time.

The locking mechanism prevents multiple threads from holding o at the same time,
but it does not prevent threads from accessing o’s fields. We introduce a methodology
where a thread t can access a field of an object o only if o is thread local—that is, the
thread that created the object has not made the object available to other threads—or t
holds the lock o. We call the set of objects that a thread can access its access set. By
making sure that access sets are disjoint, we prevent data races.

The life cycle of each object can now be described as follows.

• A new object is initially thread local (that is, unshared), and is included in the
access set of the creating thread.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 397

• An unshared object can be made accessible to other threads by sharing it. The
sharing operation removes the object from the thread’s access set.

• A shared object can be exclusively acquired by locking it. When (and if) the ac-
quisition succeeds, the object is added to the access set of the thread.

• When a locked object is released, it is removed from the access set of the thread
and once again becomes available for acquisition.

Language Constructs We introduced the lock statement above. Here, we introduce
ghost variables and other constructs needed to write and specify multi-threaded pro-
grams.

• We introduce a new keyword that denotes the thread object of the current thread:

Atom ::= . . .
| tid

The type of tid is the predefined class Thread , and it evaluates to a different
value for each thread.

• For each object and array, we introduce a boolean ghost field shared , which indi-
cates if the object or array is shared or thread local. Note that shared is monotonic
in the sense that once an object becomes shared, it remains shared forever.

• For each object and array, we introduce a ghost field mythread , which refers to
the thread with access to the object or null if the object is free. Thus, the access
set of a thread t is the set of objects whose mythread field is t . We use this
encoding of access sets because it provides us with an appropriate and existing
mechanism to handle modifications of access sets (see the discussion on Method
Framing Revisited in Section 3.2). The only operation allowed on mythread is to
compare it with tid, and mythread is not admissible in object invariants.

• We introduce a statement for sharing thread-local objects:

Stmt ::= . . .
| ShareStmt

ShareStmt ::= share Expr ;

where the expression must be of a reference type.

Finally, in Fig. 14, we give the specifications of the predefined classes Thread and
Runnable . The precondition and modifies clause of the Thread constructor say that a
Runnable object cannot be used with more than one thread. Similarly, the precondition
of Start and the inclusion of this.mythread in the modifies clause of Start prevent a
thread from being started more than once.

Example Let us consider a variation of the Fig. 13 introductory counter example, where
each thread runs a session object and several session objects share the counter, see
Fig. 15.

The main thread creates a new counter, makes it available for sharing, and creates
two session objects, a and b. At that point, the sessions objects are thread local to the
main thread.

Next, the two threads t and u are created. They take a and b as arguments, both of
which are still thread local to the main thread. According to its specification, the thread
constructor may remove the Runnable object from the caller’s access set; hence, the
main thread cannot access a and b after constructing the threads.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language398

class Thread {
Thread(Runnable r)

requires r �= null && r .mythread == tid && ¬r .shared ;
modifies r .mythread , r .inv ;
ensures mythread == tid && ¬shared ;

void Start()
requires mythread == tid;
modifies this.∗,mythread ;

. . .
}

class Runnable {
virtual void Run()

requires mythread == tid;
modifies this.∗;

}

Figure 14. The predefined classes Thread and Runnable .

/* main thread */
Counter ct = new Counter();
share ct ;
Session a = new Session(ct , 0);
Session b = new Session(ct , 1);
Thread t = new Thread(a);
Thread u = new Thread(b);
t .Start();
u.Start();

class Counter {
int n;
Counter()

ensures mythread == tid &&
¬shared ;

{ n = 0; }
virtual void Inc()

requires mythread == tid;
modifies this.∗;

{ expose (this) { n = n + 1; } }
}
class Session : Runnable {

Session(Counter ct , int id)
requires ct �= null &&

ct .shared ;
ensures mythread == tid &&

¬shared ;
. . .

}

Figure 15. An example where multiple threads run session objects that use a shared counter object.

Next, threads t and u are started, which implicitly calls the Run method on a and b,
respectively. Each session object’s Run method is executed with tid set to the executing
thread; here, t and u, respectively.

Defaults and Shorthands Like the specifications we saw earlier for single-threaded pro-
gram, specifications of multi-threaded programs are written in a stylized fashion. To sim-

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 399

plify the program text, we introduce the following defaults (applied during normaliza-
tion). For every constructor, we use the default postcondition

ensures mythread == tid && ¬shared ;

and for every non-constructor method, we use the default precondition

requires mythread == tid;

These defaults have the additional advantage that they always hold in single-threaded
programs. Thus, any part of a program that would verify under the single-threaded
methodology will also verify under the multi-threaded methodology.

Most methods do not modify shared or mythread , so, as we have already assumed
in examples, we change the definition of o.∗ in modifies clauses to exclude these fields
(cf. page 386):

ModAllowed [[Spec, o, f]] =
for each “modifies W ;” in Spec do

for each “desig suffix” in W do
case suffix of

(.∗) : (o = old(Tr [[desig]]) ∧ f �= inv ∧
f �= shared ∧ f �= mythread) ∨

. . .

If needed, a modifies clause can list these fields explicitly.
The defaults let us omit several of the specifications we showed explicitly in Fig. 15.

Translation Since we don’t intend to verify the implementation of Thread ◦Start , we
never need to keep track of more than one value for tid. Therefore, we simply encode
tid as a global constant with an unknown value:

const tid : ref ;
axiom tid �= null ∧ type(tid) = Thread ;

The translation of the expression tid is:

Df [[tid]] =
Tr [[tid]] = tid

In the translation of constructors, we add the assumption

assume ¬H[this, shared] ∧ H[this,mythread] = tid ;

on entry to the implementation declaration of C
◦
C (cf. page 387).

We record the monotonicity of shared as part of the definition of heap successors
(cf. page 372):

axiom (∀ _old : [ref ,name]any, _new : [ref ,name]any •
successor(_old , _new) ⇒

wellFormed(_new) ∧
(∀ r : ref • _old [r , alloc] ⇒ _new [r , alloc]) ∧
(∀ r : ref • _old [r , shared] ⇒ _new [r , shared]))

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language400

We change the definedness of field-access and array-access expressions. For f a field
different from mythread , we have (cf. page 381):

Df [[E .mythread]] = Df [[E]] ∧ Tr [[E]] �= null

Df [[E .f]] = Df [[E]] ∧ Tr [[E]] �= null ∧ H[Tr [[E]],mythread] = tid
Df [[E [F]]] = Df [[E]] ∧ Tr [[E]] �= null ∧ H[Tr [[E]],mythread] = tid ∧

Df [[F]] ∧ 0 � Tr [[F]] ∧ Tr [[F]] < length(Tr [[E]])

Note that the reading of the mythread field may constitute a race condition, but since the
only operation we allow on mythread is comparing it with tid, any such race condition
is benign because o.mythread == tid is a stable condition—only a thread itself changes
mythread to or from the value tid. This argument also applies to the translations below.

Finally, we change the translation of various statements. For field and array element
updates (cf. page 393):

Tr [[o.f = e;]] =
assert o �= null ∧ H[o,mythread] = tid ∧ ¬(H[o, inv] <: C) ;
H[o, f] := e

Tr [[a[i] = e;]] =
assert a �= null ∧ H[a,mythread] = tid ∧ H[a, inv] = object ;
assert 0 � i ∧ i < length(a) ;
assert type(e) <: elemType(type(a)) ;
H[a, elems] := Store(H[a, elems], i , e)

For the unpack and pack operations (cf. page 393):

Tr [[unpack o;]] =
assert o �= null ∧ H[o,mythread] = tid ∧ H[o, inv] = . . . ;
. . .

Tr [[pack o;]] =
assert o �= null ∧ H[o,mythread] = tid ∧ H[o, inv] = . . . ;
. . .

We define the share statement as follows:

Tr [[share o;]] =
assert o �= null ∧ H[o,mythread] = tid ;
assert ¬H[o, shared] ;
H[o, shared] := true ;
H[o,mythread] := null

The lock statement is more involved:

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 401

Tr [[lock (o) {S}]] =
assert o �= null ∧ H[o, shared] ;
assume H[o,mythread] �= tid ;
{ var oldHeap: [ref ,name]any ;

oldHeap := H ;
havoc H ; assume successor(oldHeap,H) ;
assume (∀ x : ref , f :name • x �= o ⇒ oldHeap[x , f] = H[x , f]) ;
assume H[o,mythread] = null

} ;
H[o,mythread] := tid ;
Tr [[{S}]] ;
H[o,mythread] := null

Note that the precondition of the lock statement reads the field o.shared , which
may constitute a race condition. However, any such race condition is benign, since if the
precondition o.shared holds, then it is also stable (due to the monotonicity of shared).

The lock statement is thread non-reentrant, which means that a thread will deadlock
if it attempts to lock a lock that it already holds. We deal with deadlocks in Section 4.2;
here, we simply assume o.mythread to be different from tid on entry to the lock state-
ment, since this simplifies the bookkeeping we do around the translation of the body of
the lock statement.

The purpose of the havoc construction in the translation of the lock statement is
to simulate the possible interleavings of other threads, and in particular to simulate their
possible effects on the fields of o. The following example illustrates the effect of this
havoc on the verification. Let o be an object of a class that has an integer field f :

int x ;
lock (o) { x = o.f ; }
lock (o) { assert x == o.f ; } /* this assert may fail */

This example has no race condition. However, since other threads may acquire o and
change o.f between the two lock statements, the assertion may fail. The havoc com-
mand at the beginning of the translation of the second lock statement causes the verifica-
tion to “forget” the value of o.f from the first lock statement, which causes the verifica-
tion of the assert to fail.

The translation says that the executions to be verified are those in which the
havoc command establishes the assumption H[o,mythread] = null, that is, those
where o is not held in the state after the havoc command. Intuitively, the command
assume H[o,mythread] = null waits until no other thread holds o. The assignments
H[o,mythread] := tid and H[o,mythread] := null simulate the acquiring and releas-
ing of o’s lock.

4.1. Invariants and Ownership Trees

We have now protected against race conditions. By itself, freedom from race conditions
does not guarantee that a program behaves more correctly. For example, consider again
our introductory counter example in Fig. 13. If we wrap a lock (this) block around the
reading of field dangerous and wrap another lock (this) block around the update of

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language402

dangerous , then we have avoided race conditions, but we still end up with a program
that may fail to increment dangerous by 2. In this section, we consider the locking of
whole data structures, and in particular locking that will maintain object invariants.

To protect invariants by locks, we expand our methodology to guarantee the follow-
ing property:

Program Invariant 3 In a multi-threaded program,

(∀ o • o.shared ∧ o.mythread = null ⇒ o.inv = type(o))

where o quantifies over non-null, allocated objects, is a program invariant.

This property says that when an object is shared but free, then it is valid. In other words,
an object invariant can be violated only when the object is in the access set of some
thread. To enforce this program invariant, we must ensure that objects are valid when
they become free, which affects the precondition of the share operation.

To refine the multi-threaded methodology to ownership trees, we need to consider
what to do with committed objects. According to the single-threaded methodology, oper-
ating on a committed object o must start with unpacking o’s owner, which makes o valid.
Thus, it is natural to let the unpack operation add the representation objects to the thread’s
access set. To avoid race conditions, we must then prevent other threads from gaining
access to committed objects. We will do that by disallowing rep fields from referring
to shared objects. Under this refined methodology, one single lock statement locks an
entire ownership tree, protecting all its invariants. Note that in the refined methodology,
an “unshared” object can be accessed by different threads, but only if the object is part of
an ownership tree whose root is shared—that is, when we previously said “thread local”,
we might now want to say “ownership-tree local”.

Program Invariant 4 In a multi-threaded program,

(∀ o • o.inv = Committed ⇒ o.mythread = null)

where o quantifies over non-null, allocated objects, is a program invariant.

An object o can in a non-rep field, say o.f , hold on to a reference to a shared object.
To access the data structure behind o.f , one would then first need to lock o.f . In order
to meet with the precondition of the lock statement, it is necessary to know that o.f is
shared. But the conjunct this.f .shared is admissible in an object invariant only if f is
a rep field, and we have just disallowed rep fields from referring to shared objects.
Instead, we introduce another field modifier:

FieldModifier ::= . . .
| shared

Declaring a field f with shared adds the implicit object invariant:

this.f == null || this.f .shared

Because shared is monotonic, it is sound to dereference f in this way in an invariant
even when f is not a representation object.

The implicit invariants of rep and shared fields guarantee the following property:

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 403

Program Invariant 5 In a multi-threaded program, for any rep field f declared in a
class C ,

(∀ o • type(o) <: C ∧ o.inv <: C ⇒ o.f = null ∨ ¬o.f .shared)

and for any shared field f declared in C ,

(∀ o • type(o) <: C ∧ o.inv <: C ⇒ o.f = null ∨ o.f .shared)

where the quantifications range over non-null, allocated objects, are program invariants.

Translation We change the translation of unpack and pack to update the mythread field
of representation objects. The pack statement also needs to check the implicit invariants
that come from rep and shared fields. Let T be the static type of o, and let S be the
immediate superclass of T or, if T is an array type, let S be object; then (cf. page 401):

Tr [[unpack o;]] =
assert o �= null ∧ H[o,mythread] = tid ∧ H[o, inv] = T ;
H[o, inv] := S ;
for each field “rep F f ;” defined in T do
{ assume H[o, f] �= null ;

H[H[o, f],mythread] := tid ;
H[H[o, f], inv] := type(H[o, f])

[] assume H[o, f] = null

}

Tr [[pack o;]] =
assert o �= null ∧ H[o,mythread] = tid ∧ H[o, inv] = S ;
assert Df [[InvT [[o]]]] ∧ Tr [[InvT [[o]]]] ;
for each field “rep F f ;” defined in T do

assert H[o, f] = null ∨
(H[H[o, f],mythread] = tid ∧ H[H[o, f], inv] = type(H[o, f]) ∧
¬H[H[o, f], shared]) ;

for each field “shared F f ;” defined in T do
assert H[o, f] = null ∨ H[H[o, f], shared] ;

for each field “rep F f ;” defined in T do
{ assume H[o, f] �= null;

H[H[o, f], inv] := Committed ;
H[H[o, f],mythread] := null

[] assume H[o, f] = null

} ;
H[o, inv] := T

To maintain Program Invariant 3, we add precondition o.inv == o.Type to the
share statement (cf. page 401):

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language404

Tr [[share o;]] =
assert o �= null ∧ H[o,mythread] = tid ;
assert ¬H[o, shared] ;
assert H[o, inv] = type(o) ;
H[o, shared] := true ;
H[o,mythread] := null

When locking, we also have to forget the knowledge about owned objects (cf.
page 402):

Tr [[lock (o) {S}]] =
assert o �= null ∧ H[o, shared] ;
assume H[o,mythread] �= tid ;
{ var oldHeap: [ref ,name]any ;

oldHeap := H ;
havoc H ; assume successor(oldHeap,H) ;
assume (∀ x : ref , f :name •

H[x ,mythread] = tid ⇒ oldHeap[x , f] = H[x , f]) ;
assume H[o,mythread] = null

}
H[o,mythread] := tid ;
Tr [[{S}]] ;
H[o,mythread] := null

Note how we deal with forgetting the knowledge about owned objects. Unlike the pre-
vious translation of the lock statement, where we only forgot the fields of the object be-
ing locked, we now erase knowledge about the entire program state, except for the state
of the objects that are accessible by the current thread. This reflects the recent possible
effects of other threads on the ownership tree rooted at o. It also erases knowledge of
committed objects whose transitive owners are held by the current thread. This encoding
is convenient, because it lets us write the havoc construction without defining exactly
which committed objects are reachable from the thread’s accessible objects—something
that presents a difficulty for automatic theorem provers anyway—and we argue that this
erasing is okay, because a program should rely only on the invariants of, not the exact
field values of, committed objects (this is analogous to how we encoded the postcondi-
tion contribution of modifies clauses, see the discussion on Method Framing Revisited
in Section 3.2).

Finally, the translation also encodes Program Invariants 3 and 5 as axioms (but not
Program Invariant 4, because we don’t need it in verification).

axiom (∀ h: [ref ,name]any, o: ref •
wellFormed(h) ∧ o �= null ∧ H[o, alloc] ⇒

H[o, shared] ∧ H[o,mythread] = null ⇒ H[o, inv] = type(o)) ;

For every class C :

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 405

class Session : Runnable {
shared Counter ct ;
invariant ct �= null;
int id ;

Session(Counter ct , int id)
requires ct �= null;

{ this.ct = ct ; this.id = id ; }

override void Run()
{ while (true) {

lock (ct) { ct .Inc(); }
}

}
}

Figure 16. The full Session class for the counter example in Fig. 15. Field ct is declared with shared, since
the session object needs to keep track of the fact that it is okay to lock it.

axiom (∀ h: [ref ,name]any, o: ref •
wellFormed(h) ∧ o �= null ∧ H[o, alloc] ⇒

type(o) <: C ∧ H[o, inv] <: C ⇒
for each field “rep F f ;” defined in C do

H[o, f] = null ∨ ¬H[H[o, f], shared]
for each field “shared F f ;” defined in C do

H[o, f] = null ∨ H[H[o, f], shared]
) ;

Example Let us continue the example from Fig. 15 by showing the whole Session
class, see Fig. 16.

It is instructive to take a closer look at the verification of the Session ◦Run method:

0. On entry, the typing assumption in the translation of method implementations
tells us type(this) <: Session . Also, the default precondition tells us this.inv =
Session , which by the reflexivity of <: yields this.inv <: Session .

1. The heap, H, is a syntactic target of the loop, since the loop calls a method (Md ,
page 380). What is known about the heap on an arbitrary iteration thus comes
from LoopMod (page 380), which applies the method’s modifies clause to the
loop. The modifies clause of Run , declared in class Runnable in Fig. 14, is
this.∗, which stands for the fields of this except inv , shared , and mythread .
Thus, every iteration of the loop starts with H[this, inv] and H[this,mythread]
having the same values as when the loop was first reached.

2. By steps 0 and 1, we conclude that

type(this) <: Session ∧ this.inv <: Session

holds on entry to each loop iteration.
3. By step 2 and Program Invariant 2, we conclude that this satisfies the Session

invariant on entry to each loop iteration, namely H[this, ct] �= null. And by

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language406

step 2 and Program Invariant 5, we conclude that the shared field ct is shared:
H[H[this, ct], shared]. These properties about H[this, ct] are what we need to
discharge the precondition of the lock statement.

4. By the encoding of the lock statement, and in particular by the conditions
assumed after the havoc command, we have that the object being locked,
H[this, ct], is free. Since H[this, ct] is checked to be shared before the havoc ,
the definition of successor tells us that it remains shared after the havoc . By
Program Invariant 3, we thus have that H[this, ct] is valid, which is the precon-
dition we need to establish for the call to Inc.

5. We deduce that H[this, ct] is unchanged by the call to Inc, which among other
things means it is still non-null, as follows:

• The encoding of the modifies clause of Inc lets us conclude that the call
does not change any field of this , provided this is not the target of the call
(H[this, ct]) and provided this is not committed at the time of the call.

• We deduce the dis-equality this �= H[this, ct] from the assumption about
H[H[this, ct],mythread] at the beginning of the encoding of the lock state-
ment.

• According to proof step 2, this is not committed on entry to the loop. More-
over, lock acquisition does not change fields of objects in the thread’s access
set, and proof step 1 tells us that H[this,mythread] = tid holds on entry to
the loop.)

6. By the definition of successor , which upon return from a call we get to assume
relates the old and new heap of the call, we have that H[this, ct] remains shared
after the call to Inc.

7. By steps 5 and 6, we are able to discharge the proof obligation associated with
the pack operation at the end of the expose block.

4.2. Deadlock Prevention

A deadlock occurs when there is a nonempty set of threads, each of which waits for a
lock held by another thread in the set. Deadlocks are programming errors.

The prototypical example for a deadlock is the dining philosophers problem [17],
where n philosophers (the threads) sit at a round table, spending their time eating and
thinking. There are n forks available (the shared objects), placed between adjacent
philosophers at the table. Eating requires the use of two forks. A philosopher can only
pick up one fork at a time (philosopher locks a fork). In this setting, there is a possibility
of a deadlock, for example if every philosopher holds a left fork and waits for a right
fork.

Deadlocks can be avoided if all shared objects are partially ordered and each thread
acquires shared objects in ascending order.

We let a program construct a partial order on shared objects. We make this order
available in Spec� programs by introducing an irreflexive operator:

⊗ ::= . . .
| �

where the operands of � must be the keyword lockbound (explain shortly) or be of a
reference type. Operator � has the same binding power as <.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 407

We also change the share statement so that one can specify the position of a newly
shared object in this order:

ShareStmt ::= share Expr∗ � Expr � Expr∗ ;

where all expressions must have a reference type. In the statement share LL � o �

UU ;, it is the expression o that is being shared. It is checked to evaluate to a non-null
value. The objects specified by LL are lower bounds and the objects specified by UU
are upper bounds. For every pair of objects l and u in LL and UU , respectively, if both
l and u are non-null, then the share statement requires l � u, which ensures that there is
a place for o between LL and UU .

Finally, we introduce a keyword lockbound that indicates an upper bound on all
the locks acquired by the current thread.

Atom ::= . . .
| lockbound

To avoid deadlocks, a precondition of the lock (o) statement is that o lies above
lockbound. Statement lock (o) {S} then sets lockbound to o before execut-
ing S , and restores lockbound to the old value of lockbound after executing S .
lockbound can be used only as an argument to �.

Example Dijkstra proposed a solution to avoid deadlocks of dining philosophers by
ordering all the forks and requiring the philosophers to pick up their respective forks in
that order [17]. We show that solution for n = 3 in Fig. 17. The forks are named x , y ,
and z and the philosophers are named a , b, and c. Philosopher a will pick up fork x
before fork y , philosopher b will pick up fork y before fork z , and philosopher c will
pick up fork x before fork z . Since all philosophers adhere to the same global fork order,
thus creating an asymmetry around the table, we avoid deadlocks.

Due to timing issues, this solution might still suffer from starvation. To avoid that
problem, one can for example introduce queues of eating requests, that guarantee equal
access to a fork by adjacent philosophers. We do not discuss this solution any further.

Prelude We extend the prelude by encoding lockbound as a global variable:

var lockbound : ref ;

We introduce an strict partial order called LockOrder (i.e., the relation LockOrder
is irreflexive and transitive).

function LockOrder(ref , ref) returns (bool) ;
axiom (∀ o: ref • ¬LockOrder(o, o)) ;
axiom (∀ o: ref , p: ref , q : ref •

LockOrder(o, p) ∧ LockOrder(p, q) ⇒ LockOrder(p, q)) ;

Just like we predefined the object class and added a constructor to the prelude,
we predefine the Runnable class (see Fig. 14). This lets us give the Run method a
specification that is not expressible in the Spec� language; in particular, we include a
precondition that says that lockbound is below all references in the Spec� program:

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language408

class Program {
voidMain() {

Forkx = new Fork(); share � x �;
Forky = new Fork(); share x � y �;
Forkz = new Fork(); share y � z �;
Philosopher a = new Philosopher(x , y);
Philosopher b = new Philosopher(y , z);
Philosopher c = new Philosopher(x , z);
Thread A = new Thread(a);
Thread B = new Thread(b);
Thread C = new Thread(c);
A.Start(); B .Start(); C .Start();

}
}

class Fork { }

class Philosopher {
shared Fork left ; shared Fork right ;
invariant left �= null && right �= null && left � right ;

Philosopher(Fork left , Fork right)
requires left �= null && left .shared ;
requires right �= null && right .shared ;
requires left � right ;

{ this.left = left ; this.right = right ; }

override void Run()
{ while (true) {

lock (right) { lock (left) {
/* use the forks to eat . . . */

} } }
}

}

Figure 17. A program that runs 3 dining philosophers.

procedure Runnable ◦Run(this: ref) returns () ;
requires (∀ o: ref •

o �= null ∧ type(o) <: object ⇒ LockOrder(lockbound , o)) ;
. . .

We omit here the constant Runnable , its associated type axioms, and the translation of
the constructor.

Translation The translation of the expression lockbound is:

Df [[lockbound]] =
Tr [[lockbound]] = lockbound

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 409

Since the lock statement is a structured block statement, the value of lockbound

on exit from a method is the same as it was on entry. However, lockbound can have
different values during the execution of a method. We therefore put lockbound into the
modifies and ensures clause of every procedure in our translation (cf. page 391):

TrMod [[Spec]] =
modifies H, lockbound ;
ensures lockbound = old(lockbound) ;
ensures (∀ o: ref , f :name • . . . H[o, f] = old(H)[o, f])

We replace the translation of the previous share statement (cf. page 405) with the
following translation of the new share statement:

Tr [[share LL � o � UU ;]] =
assert o �= null ∧ H[o,mythread] = tid ;
assert ¬H[o, shared] ;
assert H[o, inv] = type(o) ;
for each expression “l” in LL do

for each expression “u” in UU do
assert l = null ∨ u = null ∨ LockOrder(l , u) ;

for each expression “l” in LL do
assume l = null ∨ LockOrder(l , o) ;

for each expression “u” in UU do
assume u = null ∨ LockOrder(o, u) ;

H[o, shared] := true ;
H[o,mythread] := null

Finally, we change the translation of the lock statement to check for possible dead-
lock violations and to update lockbound (cf. page 405):

Tr [[lock (o) {S}]] =
assert o �= null ∧ H[o, shared] ∧ LockOrder(lockbound , o) ;
{ var oldHeap: [ref ,name]any ;

oldHeap := H ;
havoc H ; assume successor(oldHeap,H) ;
assume (∀ x : ref , f :name •

H[x ,mythread] = tid ⇒ oldHeap[x , f] = H[x , f]) ;
assume H[o,mythread] = null

}
{ var oldLockbound : ref ;

oldLockbound := lockbound ;
lockbound := o ; H[o,mythread] := tid ;
Tr [[{S}]] ;
H[o,mythread] := null ; lockbound := oldLockbound

}
Note, since we now deal with deadlocks, we have removed the assumption

assume H[o,mythread] �= tid ;

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language410

which previously was part of our translation of the lock statement—the checked condi-
tion lockbound � o implies that the thread does not already hold o.

4.3. Summary

In this section, we have extended the single-threaded methodology to multi-threaded
code. The basic idea is to limit the interaction between threads, so that reasoning can
proceed mostly as for single-threaded code, except at certain synchronization points. We
have shown how to maintain objects invariants in a multi-threaded setting. A single lock
statement acquires exclusive access to all objects in an ownership tree. A program can
decide the degree of sharing in a program by deciding to make fields either rep fields
or shared fields. We prevent deadlocks by allowing a program to incrementally and
locally specify a global partial order among the objects in the program. Locking objects
in ascending order then prevents deadlocks.

5. History and Acknowledgments

Program-Verifier Architecture Roots of the program-verifier architecture we have de-
scribed trace back to ESC/Modula-3 [14], a project spearheaded by Greg Nelson. The
ESC/Modula-3 checker translated Modula-3 programs into a form of Dijkstra’s guarded
commands [18,65], from which it generated verification conditions. The ESC/Java
checker [23] refined this approach by more clearly defining two forms of an intermediate
language [53]. The BoogiePL intermediate language [11] took two more steps by adding
a mathematical part to the language, which previously had been passed directly to the
theorem prover, and by adding a parser for the language, which for debugging the verifier
has been shown to have great value [4].

Filliâtre has also proposed a generation of verification conditions via an intermediate
language based on type theory [20]. This has served as the basis for the tool and inter-
mediate verification language Why [21]. Why is being used as the intermediate language
for the Java verifier Krakatoa [57] and the C verifier Caduceus [22].

Rather than using VC generation and first-order logic, a program verifier can encode
more of the program into the formulas passed to the theorem prover. This approach is
followed, for example, by the KeY tool [1] for JavaCard programs, which uses dynamic
logic, and the LOOP [36,58] and Jive [62] verifiers for Java, which use extensions of
Hoare logic.

Translation of Languages and Language Features We have shown a translation of core
object-oriented language features. The use of updatable maps (arrays) to model refer-
ences goes back to Burstall [8]. Modeling the heap as a 2-dimensional array, as done by
Poetzsch-Heffter [68], has the advantage that one can quantify over all field names, as
we have done extensively.

Leino’s thesis [43] gave a translation of object-oriented source-language features,
together with constructs like exceptions, records, and deallocation, into guarded com-
mands, along the lines of what was done in ESC/Modula-3. Ecstatic [44] is a core object-
oriented language with a weakest-precondition semantics, and includes axioms that en-
code types and allocation. The ESC/Java translation of annotated Java into guarded com-
mands and axioms employed a number of encoding tricks aimed at improving the per-

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 411

formance of the underlying theorem prover [52]. Boogie uses similar encodings, but in
this paper we have avoided such “optimizations” in order to make the presentation more
straightforward.

Efficient Formulas We defined the semantics of BoogiePL� commands in terms of clas-
sical weakest preconditions. However, such a definition gives rise to a lot of redundancy
that can lead a theorem prover to unnecessary case splits, which easily can turn into un-
bearable performance [24]. ESC/Modula-3 and ESC/Java used techniques for reducing
this redundancy, which is important for a practical checker [24,46].

Unlike the structured commands of BoogiePL� that we used in this paper, BoogiePL
has unstructured goto commands. Boogie uses a redundancy-reducing technique based
on weakest preconditions to define the semantics of these unstructured commands [5].

Quantifiers Another important consideration in the design of a practical automatic ver-
ifier is how to give the theorem prover directives of how to instantiate universally quan-
tified expressions. The SMT solver Simplify [12] calls these directives triggers, and get-
ting good results from Simplify requires good use of triggers.

Specification, Abstraction, and Methodology The first sound modular verification
methodology for a significant subset of a modern object-oriented language was given
by Müller in his thesis [61]. The particular methodology we presented for using object
invariants in single-threaded [3] and multi-threaded [35,37] programs is based on joint
work with our Spec� colleagues. There are extensions of this methodology to visibility-
based invariants [47,7,60], static class invariants [48], iterators [33], pure methods [9,34],
model fields [49], and subject-observers structures [54].

We made use of committed objects to get abstraction in modifies clauses. Other ap-
proaches have used abstraction dependencies [43,50,61], data groups [45,51], separation
logic [67], and dynamic frames [38].

We know the technique of changing the specification for method overrides from the
work on Fugue [10], which called such specifications sliding. We justified the soundness
of dereferencing shared fields in implicit object invariants on the grounds that shared
is monotonic, which is an idea further explored for type states [19]. The technique of
capturing parameters, which we specify by a modifies clause that mentions inv and/or
shared , was used in the work on ESC/Modula-3 [13].

6. Conclusion

Program verification, although as old as computer science [25], is still one of its grand
challenges [31].

This paper developed a verifying compiler for a multi-threaded object-oriented sub-
set of Spec� [6], here called Spec�. Correctness of Spec� programs is specified by types,
method specifications, object invariants, field modifiers, ghost state, and new statements.
The developed compiler (defined in Sections 2, 3, and 4) takes as input a Spec� program,
and generates, via an intermediate language called BoogiePL� (defined in Section 1),
first-order verification conditions, which can be processed by an SMT solver. If its proof
attempt succeeds, then the program is correct and can be run. If it fails, advice is sought
from the user. Experience shows that this is a viable approach. By now, many thousands

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language412

of Spec� lines have been verified, although often only with shallow properties like free-
dom from raised exceptions.

This paper addresses many challenges of verifying modern multi-threaded object-
oriented languages. We have shown how to deal with reentrancy, aliasing, inheritance,
representation abstraction, method framing, and multi-threading. We have also shown
how to engineer a basic verifier by introducing an intermediate verification language.
Much remains to be done: for instance, we have to learn how to verify more object-
oriented design patterns [26], different kinds of concurrent code [41], and we have to
learn how to verify abstractions [32].

We hope that this paper guides students toward understanding program verification,
and we encourage them to build their own verifier. Program verification is a rich and
rewarding research field.

References

[0] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner Hähnle, Wol-

fram Menzel, Wojciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY
tool. Software and System Modeling, 4:32–54, 2005.

[2] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison Wesley,
2003.

[3] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte. Verifica-
tion of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56, 2004.

[4] Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and K. Rustan M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and Objects: 4th
International Symposium, FMCO 2005, volume 4111 of Lecture Notes in Computer Science, pages
364–387. Springer, September 2006.

[5] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In Michael D.
Ernst and Thomas P. Jensen, editors, Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis For Software Tools and Engineering, PASTE’05, pages 82–87. ACM, September
2005.

[6] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An overview.
In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors, CAS-
SIS 2004, Construction and Analysis of Safe, Secure and Interoperable Smart devices, volume 3362 of
Lecture Notes in Computer Science, pages 49–69. Springer, 2005.

[7] Mike Barnett and David A. Naumann. Friends need a bit more: Maintaining invariants over shared state.
In Seventh International Conference on Mathematics of Program Construction (MPC 2004), Lecture
Notes in Computer Science, pages 54–84. Springer-Verlag, July 2004.

[8] R. Burstall. Some techniques for proving correctness of programs which alter data structures. Machine
Intelligence, 6:23–50, 1971.

[9] Ádám Darvas and Peter Müller. Reasoning about method calls in interface specifications. Journal of
Object Technology, 5(5):59–85, June 2006.

[10] Robert DeLine and Manuel Fähndrich. Typestates for objects. In Martin Odersky, editor, ECOOP
2004—Object-Oriented Programming, 18th European Conference, volume 3086 of Lecture Notes in
Computer Science, pages 465–490. Springer, June 2004.

[11] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research, March 2005.

[12] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
Journal of the ACM, 52(3):365–473, May 2005.

[13] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep exposure. Research Report
156, DEC Systems Research Center, July 1998.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 413

[14] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, December 1998.

[15] L. Peter Deutsch. An Interactive Program Verifier. PhD thesis, University of California, Berkeley,
Berkeley, CA 94720, 1973.

[16] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specification in-
heritance. In 18th International Conference on Software Engineering, pages 258–267. IEEE Computer
Society Press, 1996.

[17] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1(2):115–138,
June 1971.

[18] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.
[19] Manuel Fähndrich and K. Rustan M. Leino. Heap monotonic typestates. In Proceedings of International

Workshop on Aliasing, Confinement and Ownership in object-oriented programming (IWACO), July
2003.

[20] Jean-Christophe Filliâtre. Verification of non-functional programs using interpretations in type theory.
Journal of Functional Programming, 13(4):709–745, July 2003.

[21] Jean-Christophe Filliâtre. Why: a multi-language multi-prover verification tool. Research Report 1366,
LRI, Université Paris Sud, March 2003.

[22] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C programs. In Formal Meth-
ods and Software Engineering, 6th International Conference on Formal Engineering Methods, ICFEM
2004, volume 3308 of Lecture Notes in Computer Science, pages 15–29. Springer, 2004.

[23] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), volume 37, number 5 in SIGPLAN
Notices, pages 234–245. ACM, May 2002.

[24] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: Generating compact verification
conditions. In Conference Record of the 28th Annual ACM Symposium on Principles of Programming
Languages, pages 193–205. ACM, January 2001.

[25] R. W. Floyd. Assigning meaning to programs. In Mathematical Aspects of Computer Science, pages
19–32. XIX American Mathematical Society, 1967.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-Wesley
Professional, January 1995.

[27] Steven M. German. Automating proofs of the absence of common runtime errors. In Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming Languages, pages 105–118, 1978.

[28] Donald I. Good, Ralph L. London, and W. W. Bledsoe. An interactive program verification system. In
Proceedings of the international conference on reliable software, pages 482–492. ACM, 1975.

[29] John V. Guttag and James J. Horning, editors. Larch: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science. Springer-Verlag, 1993. With Stephen J. Garland, Kevin D.
Jones, Andrés Modet, and Jeannette M. Wing.

[30] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580,583, October 1969.

[31] Tony Hoare. The verifying compiler: A grand challenge for computing research. J. ACM, 50(1):63–69,
2003.

[32] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge, MA,
USA, 2006.

[33] Bart Jacobs, Erik Meijer, Frank Piessens, and Wolfram Schulte. Iterators revisited: Proof rules and
implementation. In Workshop on Formal Techniques for Java-like Programs (FTfJP 2005), July 2005.

[34] Bart Jacobs and Frank Piessens. Verification of programs with inspector methods. In Workshop on
Formal Techniques for Java-like Programs (FTfJP 2006), July 2006.

[35] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and Wolfram Schulte. Safe concurrency for aggregate
objects with invariants. In Bernhard K. Aichernig and Bernhard Beckert, editors, Third IEEE Interna-
tional Conference on Software Engineering and Formal Methods (SEFM 2005), pages 137–147. IEEE,
September 2005.

[36] Bart Jacobs and Erik Poll. A logic for the Java Modeling Language JML. In Heinrich Hußmann, editor,
Fundamental Approaches to Software Engineering, 4th International Conference, FASE 2001, volume
2029 of Lecture Notes in Computer Science, pages 284–299. Springer, April 2001.

[37] Bart Jacobs, Jan Smans, Frank Piessens, and Wolfram Schulte. A statically verifiable programming

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language414

model for concurrent object-oriented programs. In Zhiming Liu and Jifeng He, editors, Formal Methods
and Software Engineering, 8th International Conference on Formal Engineering Methods, ICFEM 2006,
volume 4260 of Lecture Notes in Computer Science, pages 420–439. Springer, November 2006.

[38] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without restric-
tions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods,
14th International Symposium on Formal Methods, volume 4085 of Lecture Notes in Computer Science,
pages 268–283. Springer, August 2006.

[39] James C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–394,
July 1976.

[40] James Cornelius King. A Program Verifier. PhD thesis, Carnegie-Mellon University, Pittsburg, PA
15213, September 1969.

[41] Doug Lea. Concurrent programming in Java: design principles and patterns. The Java series. Addison-
Wesley, Reading, MA, USA, 1996.

[42] Gary Todd Leavens. Verifying Object-Oriented Programs that Use Subtypes. PhD thesis, MIT Labora-
tory for Computer Science, February 1989. Available as Technical Report MIT/LCS/TR-439.

[43] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of Technol-
ogy, 1995. Technical Report Caltech-CS-TR-95-03.

[44] K. Rustan M. Leino. Ecstatic: An object-oriented programming language with an axiomatic semantics.
In The Fourth International Workshop on Foundations of Object-Oriented Languages, January 1997.

[45] K. Rustan M. Leino. Data groups: Specifying the modification of extended state. In Proceedings of
the 1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA ’98), volume 33, number 10 in SIGPLAN Notices, pages 144–153. ACM, October
1998.

[46] K. Rustan M. Leino. Efficient weakest preconditions. Information Processing Letters, 93(6):281–288,
March 2005.

[47] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In Martin Odersky, editor,
European Conference on Object-Oriented Programming (ECOOP), volume 3086 of Lecture Notes in
Computer Science, pages 491–516. Springer-Verlag, 2004.

[48] K. Rustan M. Leino and Peter Müller. Modular verification of static class invariants. In John Fitzgerald,
Ian J. Hayes, and Andrzej Tarlecki, editors, FM 2005: Formal Methods, International Symposium of
Formal Methods Europe, volume 3582 of Lecture Notes in Computer Science, pages 26–42. Springer,
July 2005.

[49] K. Rustan M. Leino and Peter Müller. A verification methodology for model fields. In Peter Sestoft,
editor, Programming Languages and Systems, 15th European Symposium on Programming, ESOP 2006,
volume 3924 of Lecture Notes in Computer Science, pages 115–130. Springer, March 2006.

[50] K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding. ACM Transactions on
Programming Languages and Systems, 24(5):491–553, September 2002.

[51] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data groups to specify and check
side effects. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), volume 37, number 5 in SIGPLAN Notices, pages 246–257. ACM, May
2002.

[52] K. Rustan M. Leino and James B. Saxe. Java to guarded commands translation. Design note ESCJ 16c,
ESC/Java source distribution, August 1998.

[53] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs via guarded commands.
In Bart Jacobs, Gary T. Leavens, Peter Müller, and Arnd Poetzsch-Heffter, editors, Formal Techniques
for Java Programs, Technical Report 251. Fernuniversität Hagen, May 1999. Also available as Technical
Note 1999-002, Compaq Systems Research Center.

[54] K. Rustan M. Leino and Wolfram Schulte. Using history invariants to verify observers. Manuscript
KRML 166, October 2006.

[55] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6), 1994.

[56] D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C. Oppen, W. Polak, and
W. L. Scherlis. Stanford Pascal Verifier user manual. Technical Report STAN-CS-79-731, Stanford
University, 1979.

[57] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The KRAKATOA tool for certification
of JAVA/JAVACARD programs annotated in JML. Journal of Logic and Algebraic Programming, 58(1–

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language 415

2):89–106, January–March 2004.
[58] Tiziana Margaria and Wang Yi, editors. The LOOP compiler for Java and JML, volume 2031 of Lecture

Notes in Computer Science. Springer, April 2001.
[59] Bertrand Meyer. Object-oriented Software Construction. Series in Computer Science. Prentice-Hall

International, New York, 1988.
[60] Ronald Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik Luit. Invariants for non-hierarchical

object structures. In Anamaria Martins Moreira and Leila Ribeiro, editors, Brazilian Symposium on
Formal Methods, SBMF 2006, pages 233–248. SBC, September 2006.

[61] Peter Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of
Lecture Notes in Computer Science. Springer-Verlag, 2002. PhD thesis, FernUniversität Hagen.

[62] Peter Müller, Jörg Meyer, and Arnd Poetzsch-Heffter. Programming and interface specification language
of JIVE—specification and design rationale. Technical Report 223, Fernuniversität Hagen, 1997.

[63] John Nagle and Scott Johnson. Practical program verification: Automatic program proving for real-
time embedded systems. In Conference Record of the Tenth Annual ACM Symposium on Principles of
Programming Languages, pages 48–58, January 1983.

[64] Charles Gregory Nelson. Techniques for Program Verification. PhD thesis, Stanford University, 1980.
Also available as Technical Report CSL-81-10, Xerox PARC, June 1981.

[65] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming Languages
and Systems, 11(4):517–561, 1989.

[66] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Transac-
tions on Programming Languages and Systems, 1(2):245–257, October 1979.

[67] Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In Jens Palsberg and
Martín Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, pages 247–258. ACM, January 2005.

[68] Arnd Poetzsch-Heffter. Specification and verification of object-oriented programs. Habilitationsschrift,
Technische Universität München, 1997.

K. Rustan et al. / A Verifying Compiler for a Multi-Threaded Object-Oriented Language416

Software System Reliability and Security 417

M. Broy et al. (Eds.)

IOS Press, 2007

© 2007 IOS Press. All rights reserved.

Author Index

Alur, R. 1

Bhargavan, K. 87

Broy, M. 22

Chaudhuri, S. 1

Cohen, E. 73

Fournet, C. 87

Giuli, T.J. 341

Gordon, A.D. 87

Hoare, T. 116

Knapp, S. 239

Kupferman, O. 135

Lampson, B. 151

Leino, M. 351

Paul, W. 239

Pnueli, A. 298

Prasad, K.V. 341

Rustan, K. 351

Schulte,W. 351

Tse, S. 87

van Lamsweerde, A. 196

This page intentionally left blank

