NATO Security through Science Series
D: Information and Communication Security - Vol. 9

Software System
Reliability and Security

Edited by
Manfred Broy
Johannes Grunbauer
Tony Hoare

| This publicaion | 1 € NATO Programme
|OTAN | issupportedbye | fOT Security through Science

SOFTWARE SYSTEM RELIABILITY AND SECURITY

NATO Security through Science Series

This Series presents the results of scientific meetings supported under the NATO Programme for
Security through Science (STS).

Meetings supported by the NATO STS Programme are in security-related priority areas of
Defence Against Terrorism or Countering Other Threats to Security. The types of meeting
supported are generally “Advanced Study Institutes” and “Advanced Research Workshops”. The
NATO STS Series collects together the results of these meetings. The meetings are co-organized
by scientists from NATO countries and scientists from NATO’s “Partner” or “Mediterranean
Dialogue” countries. The observations and recommendations made at the meetings, as well as
the contents of the volumes in the Series, reflect those of participants and contributors only; they
should not necessarily be regarded as reflecting NATO views or policy.

Advanced Study Institutes (ASI) are high-level tutorial courses to convey the latest
developments in a subject to an advanced-level audience.

Advanced Research Workshops (ARW) are expert meetings where an intense but informal
exchange of views at the frontiers of a subject aims at identifying directions for future action.

Following a transformation of the programme in 2004 the Series has been re-named and re-
organised. Recent volumes on topics not related to security, which result from meetings
supported under the programme earlier, may be found in the NATO Science Series.

The Series is published by 10S Press, Amsterdam, and Springer Science and Business Media,
Dordrecht, in conjunction with the NATO Public Diplomacy Division.

Sub-Series

A. Chemistry and Biology Springer Science and Business Media
B. Physics and Biophysics Springer Science and Business Media
C. Environmental Security Springer Science and Business Media
D. Information and Communication Security 1OS Press

E. Human and Societal Dynamics 10S Press

http://www .nato.int/science
http://www.springer.com
http://www.iospress.nl

Sub-Series D: Information and Communication Security — Vol. 9 ISSN: 1574-5589

Software System Reliability and
Security

Edited by
Manfred Broy

Technische Universitdt Miinchen, Germany
Johannes Griinbauer
Technische Universitdt Miinchen, Germany
and

Tony Hoare
Microsoft Research, UK

10S

Press

Amsterdam e Berlin ¢ Oxford e Tokyo e Washington, DC
Published in cooperation with NATO Public Diplomacy Division

Proceedings of the NATO Advanced Research Institute on Software System Reliability

and Security
Marktoberdorf, Germany
1-13 August 2006

© 2007 10S Press.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, without prior written permission from the publisher.

ISBN 978-1-58603-731-4

Library of Congress Control Number: 2007922976

Publisher

1OS Press

Nieuwe Hemweg 6B
1013 BG Amsterdam
Netherlands

fax: +31 20 687 0019
e-mail: order@jiospress.nl

Distributor in the UK and Ireland
Gazelle Books Services Ltd.
White Cross Mills

Hightown

Lancaster LA1 4XS

United Kingdom

fax: +44 1524 63232

e-mail: sales@gazellebooks.co.uk

LEGAL NOTICE

Distributor in the USA and Canada
10S Press, Inc.

4502 Rachael Manor Drive
Fairfax, VA 22032

USA

fax: +1 703 323 3668

e-mail: iosbooks@iospress.com

The publisher is not responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

Software System Reliability and Security \%
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 10S Press. All rights reserved.

Preface

Today almost every complex technical system used in industry, science, commerce and
communication is more or less interfaced with software and software systems. This dic-
tates that most information exchange is closely related to software and computer systems.
The consequence of this wide distribution of software is a high dependency on its func-
tioning and quality. Because of this dependency and distribution, making information
systems safe, reliable, as well as secure and protecting information against all kinds of
attack is an essential research topic, particularly in computer science.

Scientific foundations have been developed for programming and building computer
systems. These foundations cover a broad spectrum of issues and work with formal mod-
els and description techniques in order to support a deep and precise understanding and
managing of a system’s properties and interplay. In addition, software engineering has
many additional applications, ranging from telecommunications to embedded systems.
For example software engineering has now become essential in automotive and aircraft
industry, and has been intergral in furthering computer networks distributed over wide-
area networks. A vast proportion of information exchange is influenced by computer sys-
tems and information security is important for reliable and secure software and computer
systems.

Information security covers the protection of information against unauthorized dis-
closure, transfer, modification, and destruction, whether accidentally or intentionally. At-
tacks against computer systems can cause considerable economic and physical damage.
Quality of life in general and of individual citizens, and the effectiveness of the economy
critically depends on our ability to build software in a transparent and efficient way. Fur-
thermore, we must be able to enhance the software development process systematically
in order to ensure safety, security and reliability. This, in turn, requires very high soft-
ware reliability, i.e., an extremely high confidence in the ability of the software to per-
form flawlessly. The foundations of software technology provide models that enable us
to capture application domains and their requirements, but also to understand the struc-
ture and working of software systems, software architectures and programs. New devel-
opments must pay due diligence to the importance of security-related aspects, and align
current methods and techniques to information security, integrity, and system reliability.
However, based on the specific needs in applications of software technology, models and
formal methods must serve the needs and the quality of advanced software engineering
methods, especially taking into account security aspects in Information Technology.

As a consequence of the wide distribution of software and software infrastructure, in-
formation security depends on the quality and excellent understanding of its functioning.
Only when this functionality is guaranteed as safe, customers, and information are pro-
tected against adversarial attacks. Thus, to make communication and computation secure
against catastrophic failure and malicious interference, it is essential to build secure soft-
ware systems and methods for their development. Such development is difficult, mainly
because of the conflict between development costs and verifiable correctness.

vi

In the summer of 2006, a group of internationally renowned researchers in computer
science met and lectured on the topics described above. The articles in this book describe
the state-of-the-art ideas on how to meet these challenges in software engineering.

Rajeev Alur describes the foundations of model checking of programs with finite
data and stack-based control flow. Manfred Broy introduces an abstract theory for sys-
tems, components, composition, architectures, interfaces, and compatibility. In his article
he applies this theory to object orientation and elaborates on the application of that theory
covering notions for a formal model of objects, classes, components, and architectures as
well as those of interfaces of classes and components and their specification. Ernie Co-
hen explains how to use ordinary program invariants to prove properties of cryptographic
protocols.

Networked computer systems face a range of threats from hostile parties on the net-
work leading to violations of design goals such as confidentiality, privacy, authentication,
access control, and availability. The purpose of Andrew Gordon’s article is to introduce
an approach to this problem based on process calculi. Transactions are the essential com-
ponents of electronic business systems, and their safety and security are of increasing
concern. Tony Hoare presents a theoretical model of compensable transactions, showing
how long running transactions may be correctly composed out of shorter ones. Orna
Kupferman presents on “Applications of Automata-Theory in Formal Verification”. In
this automata-theoretic approach to verification, she reduces questions about programs
and their specifications to questions about automata.

In a distributed system with no central management such as the Internet, security
requires a knowledge about who can be trusted for each step in establishing it, and why.
Butler W. Lampson explains the “speaks for” relation between principals describing how
authority is delegated. Axel van Lamsweerde contributes model-based requirements engi-
neering. Models for agents, operations, obstacles to goals, and security threats are intro-
duced and a model building with the KAOS method is presented. Wolfgang Paul outlines
a correctness proof for a distributed real time system — for the first time in a single place
— from the gate level to the computational model of a CASE tool.

Amir Pnueli describes an approach for the synthesis of (hardware and software) de-
signs from LTL specifications. This approach is based on modelling the synthesis prob-
lem which is similar to the problem of finding a winning strategy in a two-person game.
K. Venkatesh Prasad introduces the notion of a “mobile networked embedded system”,
in which a mobile entity is composed of internally and externally networked software
components. He discusses the challenges related to designing a mobile networked embed-
ded system with regards to security, privacy, usability, and reliability. Finally, Wolfram
Schulte explains the “Spec# Approach”, which provides method contracts in the form of
pre- and post-conditions as well as object invariants. He describes the design of Spec#’s
state-of-the-art program verifier for object-oriented programs.

The contributions in this volume have emerged from lectures of the 27th Interna-
tional Summer School on Software System Reliability and Security, held at Marktober-
dorf from August 1 to August 13, 2006. More than 100 participants from 28 countries at-
tended, including students, lecturers and staff. The Summer School provided two weeks
of learning, discussion and development of new ideas, and was a fruitful event, at both
the professional and social level.

vii

We would like to thank all lecturers, staff, and hosts in Marktoberdorf. In particu-
lar special thanks goes to our secretaries Dr. Katharina Spies, Silke Miiller, and Sonja
Werner for their great and gentle support.

The Marktoberdorf Summer School was arranged as an Advanced Study Institute of
the NATO Security Through Science Programme with support from the town and county
of Marktoberdorf and the Deutscher Akademischer Austausch Dienst (DAAD). We thank

all authorities involved.
THE EDITORS

viii

Contents

Preface \

Logics and Automata for Software Model-Checking 1
Rajeev Alur and Swarat Chaudhuri

Specifying, Relating and Composing Object Oriented Interfaces, Components

and Architectures 22
Manfred Broy

Using Invariants to Reason About Cryptographic Protocols 73
Ernie Cohen

Verified Interoperable Implementations of Security Protocols 87

Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon and
Stephen Tse

Compensable Transactions 116
Tony Hoare

Automata on Infinite Words and Their Applications in Formal Verification 135
Orna Kupferman

Practical Principles for Computer Security 151
Butler Lampson

Engineering Requirements for System Reliability and Security 196

Axel van Lamsweerde

Pervasive Verification of Distributed Real-Time Systems 239
Steffen Knapp and Wolfgang Paul

Verification and Synthesis of Reactive Programs 298
Amir Pnueli

Security, Privacy, Usability and Reliability (SPUR) in Mobile Networked

Embedded Systems: The Case of Modern Automobiles 341
K. Venkatesh Prasad and T.J. Giuli
A Veritying Compiler for a Multi-Threaded Object-Oriented Language 351

K. Rustan, M. Leino and Wolfram Schulte

Author Index 417

This page intentionally left blank

Software System Reliability and Security 1
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 10S Press. All rights reserved.

Logics and Automata for Software
Model-Checking *

Rajeev ALUR and Swarat CHAUDHURI

University of Pennsylvania

Abstract. While model-checking of pushdown models is by now an established
technique in software verification, temporal logics and automata traditionally used
in this area are unattractive on two counts. First, logics and automata traditionally
used in model-checking cannot express requirements such as pre/post-conditions
that are basic to software analysis. Second, unlike in the finite-state world, where
the p-calculus has a symbolic model-checking algorithm and serves as an “assem-
bly language” of temporal logics, there is no unified formalism to model-check lin-
ear and branching requirements on pushdown models. In this survey, we discuss a
recently-proposed re-phrasing of the model-checking problem for pushdown mod-
els that addresses these issues. The key idea is to view a program as a generator of
structures known as nested words and nested trees (respectively in the linear and
branching-time cases) as opposed to words and trees. Automata and temporal logics
accepting languages of these structures are now defined, and linear and branching
time model-checking phrased as language inclusion and membership problems for
these languages. We discuss two of these formalisms—automata on nested words
and a fixpoint calculus on nested trees—in detail. While these formalisms allow
a new frontier of program specifications, their model-checking problem has the
same worst-case complexity as their traditional analogs, and can be solved sym-
bolically using a fixpoint computation that generalizes, and includes as a special
case, “summary”’-based computations traditionally used in interprocedural program
analysis.

Keywords. Temporal and fixpoint logics, Automata, Software model-checking,
Verification, Program analysis

1. Introduction

Because of concerted research over the last twenty-five years, model-checking of reac-
tive systems is now well-understood theoretically as well as applied in practice. The the-
ories of temporal logics and automata have played a foundational role in this area. For
example, in linear-time model-checking, we are interested in questions such as: “do all
traces of a protocol satisfy a certain safety property?” This question is phrased language-
theoretically as: is the set of all possible system traces included in the language of safe
behaviors? In the world of finite-state reactive programs, both these languages are w-
regular [22]. On the other hand, in branching-time model-checking, the specification de-

I'This research was partially supported by ARO URI award DAAD19-01-1-0473 and NSF award CPA
0541149.

2 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

fines an w-regular language of trees, and the model-checking problem is to determine if
the tree unfolding of the system belongs to this language [17].

Verification of software is a different ball-game. Software written in a modern pro-
gramming language has many features such as the stack, the heap, and concurrent exe-
cution. Reasoning about these features in any automated manner is a challenge—finding
ways to model-check them is far harder. The approach that software model-checking
takes [10] is that of data abstraction: finitely approximate the data in the program, but
model the semantics of procedure calls and returns precisely. The chosen abstractions
are, thus, pushdown models or finite-state machines equipped with a pushdown stack
(variants such as recursive state machines [1] and boolean programs [9] have also been
considered). Such a machine is now viewed as a generator of traces or trees modeling
program executions or the program unfolding.

There are, of course, deviations from the classical setting: since pushdown mod-
els have unbounded stacks and therefore infinitely many configurations, answering
these queries requires infinite-state model-checking. Many positive results are known
in this area—for instance, model-checking the u-calculus, often called the “assembly
language for temporal logics,” is decidable on sequential pushdown models [24,12].
However, many attractive computational properties that hold in the finite-state world
are lost. For instance, consider the reachability property: “a state satisfying a proposi-
tion p is reachable from the current state,” expressible in the p-calculus by a formula
¢ = pX.(pV ()X). In finite-state model checking, ¢ not only states a property, but
syntactically encodes a symbolic fixpoint computation: start with the states satisfying p,
add states that can reach the previous states in one step, then two steps, and so on. This
is the reason why hardware model-checkers like SMV translate a specification given in
a simpler logic into the p-calculus, which is now used as a directive for fixpoint com-
putation. Known model-checking algorithms for the p-calculus on pushdown models,
however, are complex and do not follow from the semantics of the formula. In partic-
ular, they cannot capture the natural, “summarization”-based fixpoint computations for
interprocedural software analysis that have been known for years [19,21].

Another issue with directly applying classical temporal specifications in this con-
text is expressiveness. Traditional logics and automata used in model-checking define
regular languages of words and trees, and cannot argue about the balanced-parenthesis
structure of calls and returns. Suppose we are now interested in local reachability rather
than reachability: “a state satisfying p is reachable in the same procedural context (i.e.,
before control returns from the current context, and not within the scope of new contexts
transitively spawned from this context via calls).” This property cannot be captured by
regular languages of words or trees. Other requirements include Hoare-Floyd-style pre-
conditions and postconditions [16] (“if p holds at a procedure call, then ¢ holds on re-
turn”), interface contracts used in real-life specification languages such as JML [11] and
SAL [14], stack-sensitive access control requirements arising in software security [23],
and interprocedural dataflow analysis [18].

While checking pushdown requirements on pushdown models is undecidable in
general, individual static analysis techniques are available for all the above appli-
cations. There are practical static checkers for interface specification languages and
stack inspection-type properties, and interprocedural dataflow analysis [19] can compute
dataflow information involving local variables. Their foundations, unfortunately, are not
properly understood. What class of languages do these properties correspond to? Can

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 3

we offer the programmer flexible, decidable temporal logics or automata to write these
requirements? These are not merely academic questions. A key practical attraction of
model-checking is that a programmer, once offered a temporal specification language,
can tailor a program’s requirements without getting lost in implementation details. A
logic as above would extend this paradigm to interprocedural reasoning. Adding syn-
tactic sugar to it, one could obtain domain-specific applications—for example, one can
conceive of a language for module contracts or security policies built on top of such a
formalism.

In this paper, we summarize some recent work on software model-checking [4,6,7,2,
3] that offers more insights into these issues by re-phrasing the model-checking problem
for sequential pushdown models. In classical linear-time model-checking, the problem is
to determine whether the set of linear behaviors of a program abstraction is included in
the set of behaviors satisfying the specification. In branching-time model-checking, the
question is whether the tree unfolding of the program belongs to the language of trees
satisfying the requirement. In other words, a program model is viewed as a generator of a
word or tree structure. In the new approach, programs are modeled by pushdown models
called nested state machines, whose executions and unfoldings are given by graphs called
nested words and nested trees. More precisely, a nested word is obtained by augmenting
a word with a set of extra edges, known as jump-edges, that connect a position where
a call happens to its matching return. As calls and returns in program executions are
properly nested, jump-edges never cross. To get a nested tree, we add a set of jump-
edges to a tree. As a call may have a number of matching returns along the different
paths from it, a node may now have multiple outgoing jump-edges. Temporal logics and
finite-state automata accepting languages of nested words and trees are now defined. The
linear-time model-checking question then becomes: is the set of nested words modeling
executions of a program included in the set of nested words accepted by the specification
formula/automaton? For branching-time model-checking, we ask: does the nested tree
generated by a program belong to a specified language of nested trees? It turns out that
this tweak makes a major difference computationally as well as in expressiveness.

Let us first see what an automaton on nested words (NWA) [6,7] would look like.
Recall that in a finite automaton, the state of the automaton at a position depends on
the state and the input symbol at the preceding position. In a nested word, a “return”
position has two incoming edges—one from the preceding time point, and one from the
“matching call.” Accordingly, the state of an NWA may depend on the states of the au-
tomaton at both these points. To see how this would help, consider the local reachability
property. Consider an automaton following a program execution, and suppose it is in a
state g that states that a target state has not yet been seen. Now suppose it encounters
a procedure call. A finite automaton on words would follow the execution into the new
procedural context and eventually “forget” the current state. However, an NWA can re-
trieve the state ¢ once the execution returns from this call, and continue to search only
the current context. Properties such as this can also be expressed using temporal logics
on nested words [4,13], though we will not discuss the latter in detail in this survey.

For branching-time model-checking, we use a fixpoint calculus called NT-y [2]. The
variables of the calculus evaluate not over sets of states, but rather over sets of substruc-
tures that capture summaries of computations in the “current” program block. The fix-
point operators in the logic then compute fixpoints of summaries. For a node s of a nested
tree representing a call, consider the tree rooted at s such that the leaves correspond to

4 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

exits from the current context. In order to be able to relate paths in this subtree to the
trees rooted at the leaves, we allow marking of the leaves: a 1-ary summary is specified
by the root s and a subset U of the leaves of the subtree rooted at s. Each formula of the
logic is evaluated over such a summary. The central construct of the logic corresponds
to concatenation of call trees: the formula {call)@{+} holds at a summary (s, U) if the
node s represents a “call” to a new context starting with node ¢, there exists a summary
(t, V) satisfying ¢, and for each leaf v that belongs to V, the subtree (v, U) satisfies 1.
Intuitively, a formula {call) {1} asserts a constraint ¢ on the new context, and requires
1) to hold at a designated set of return points of this context. To state local reachability,
we would ask, using the formula ¢, that control returns to the current context, and, using
1), that the local reachability property holds at some return point. While this requirement
seems self-referential, it may be captured using a fixpoint formula.

It turns out that NWAs and NT-x have numerous attractive properties. For instance,
NWAs have similar closure properties such as regular languages, easily solvable decision
problems, Myhill-Nerode-style characterizations, etc. NT-y can express all properties
expressible in the p-calculus or using NWAs, and has a characterization in terms of
automata on nested trees [3]. In this survey, we focus more on the computational aspects
as applicable to program verification, in particular the model-checking problem for NT-
w. The reason is that NT-y can capture both linear and branching requirements and,
in spite of its expressiveness, can be model-checked efficiently. In fact, the complexity
of its model-checking problem on pushdown models (EXPTIME-complete) is the same
as that of far weaker logics such as CTL or the alternation-free u-calculus. Moreover,
just as formulas of the p-calculus syntactically encode a terminating, symbolic fixpoint
computation on finite-state systems, formulas of NT-u describe a directly implementable
symbolic model-checking algorithm. In fact, this fixpoint computation generalizes the
kind of summary computation traditionally known in interprocedural program analysis,
so that, just like the p-calculus in case of finite-state programs, NT- can arguably be
used as an “assembly language” for interprocedural computations.

The structure of this paper is as follows. In Sec. 2, we define nested words and trees,
and introduce nested state machines as abstractions of structured programs. In Sec. 3, we
define specifications on nested structures, studying NWAs and NT-y in some detail. In
Sec. 4, we discuss in detail the symbolic model-checking algorithm for NT-4.

2. Models

A typical approach to software model-checking uses data abstraction, where the
data in a structured program is abstracted using a finite set of boolean variables that stand
for predicates on the data-space [8,15]. The resulting models have finite-state but stack-
based control flow. In this section, we define nested state machines, one such model. The
behaviors of these machines are modeled by nested words and trees, the structures on
which our specifications are interpreted.

As a running example, in the rest of this paper, we use the recursive procedure foo.
The procedure may read or write a global variable x or perform an action think, has non-
deterministic choice, and can call itself recursively. Actions of the program are marked
by labels L1-LS5 for easy reference. We will abstract this program and its behaviors, and
subsequently specify it using temporal logics and automata.

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 5
2.1. Nested words

Nested words form a class of directed acyclic graphs suitable for abstracting executions
of structured programs. In this application, a nested word carries information about a
sequence of program states as well as the nesting of procedure calls and returns during
the execution. This is done by adding to a word a set of extra edges, known as jump-
edges, connecting positions where calls happen to their matching returns. Because of the
balanced-parentheses semantics of calls and returns, jump-edges are properly nested.

Formally, let X be a finite alphabet. Let a finite word w of length n over X be a map
w:{0,1,...,n— 1} — ¥, and an infinite word be a map w : N — X. We sometimes
view a word as a graph with positions as nodes, and edges (i, j) connecting successive
positions 4, j. A nested word over X is a pair WW = (w, <), where w is a finite or infinite
word over ¥, and — C N x (N U o0) is a set of jump-edges. A position i in a nested
word such that ¢ < oo or ¢ — j for some j is called a call position, and a position j
such that 7 <— j for some 1 is called return position). The remaining positions are said
to be local. The idea is that if a jump-edge (i, j) exists, then position j is the matching
return of a call at position ¢; a jump-edge (i, oo) implies that there is a call at position 4
that never returns. The jump-edge relation must satisfy the following conditions:

1. if ¢ — 7, then? < j — 1 (in other words, a jump-edge is a non-trivial forward
jump in the word);

2. for each i, there is at most one x € N U {oo} such that i < z or x < i (a call
either never returns or has a unique matching return, and a return has a unique
matching call);

3.ifi — jand i — 5" and i < 7/, then either j < ¢’ or j' < j (jump-edges are
properly nested);

4. if i — oo, then for all calls 7’ < ¢, either 7/ — oo ori’ — j for some j < i (if a
call never returns, neither do the calls that are on the stack when it is invoked).

If i — j, then we call ¢ the jump-predecessor of j and j the jump-successor of i. Let an
edge (4,4 + 1) in w be called a call and return edge respectively if i is a call and (¢ + 1)
is a return, and let all other edges be called local.

Let us now turn to our running example. We will model an execution by a nested
word over an alphabet >. The choice of ¥ depends on the desired level of detail—we
pick the symbols wr, rd, en, ex, tk, and end, respectively encoding write(x), read(x), a
procedure call leading to a beginning of a new context, the return point once a context
ends, the statement think, and the statement return. Now consider the execution where foo
calls itself twice recursively, then executes think, then returns once, then loops infinitely.
The word encoding this execution is w = wr.en.wr.en.wr.tk.rd.ex.(rd)*. A prefix of
the nested word is shown in Fig. 1-(a). The jump-edges are dashed, and call, return and
local positions are drawn in different styles. Note the jump-edge capturing the call that
never returns.

Now we show a way to encode a nested word using a word. Let us fix a set of tags
I = {call, ret, loc}. The tagged word Tag(WW) of a nested word W = (w, <) over X is
obtained by labeling the edges in w with tags indicating their types. Formally, Tag(WV)
is a pair (w, n), where 7 is a map labeling each edge (¢, i+ 1) such that n(¢, i + 1) equals
call if 7 is a call, ret if (¢ + 1) is a return, and loc otherwise. Note that this word is
well-defined because jump-edges represent non-trivial forward leaps.

6 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

(a) s1 Owr (b)
So e.en
S3 00 Wr.
N oo
S 4 en ,
/S5 01 Wr K
1
I
1
' s 00tk |
\
]
\
\s7 00 rd '
N N \
S0 ex \
Sg o rd
Figure 1. (a) A nested word (b) A nested tree

While modeling a program execution, a tagged word defines the sequence of types
(call, return or local) of actions in this execution. We note that the construction of
Tag(WW) requires us to know the jump-edge relation <. More interestingly, the jump-
edges in W are completely captured by the tagged word (w,n) of W, so that we can
reconstruct a nested word from its tagged word. To see why, call a word 8 € I*
balanced if it is of the form 8 := (B3 | call.B.ret | loc, and define a relation
—'C N x Nas: foralli < j — 1,4 <’ j iff i is the greatest integer such that the word
(i, i+ 1).m(@E+ 1,94 2)...n(5 — 1, 7) is balanced. It is easily verified that —'=<.

Let us denote the set of (finite and infinite) nested words over ¥ as NW (3). A
language of nested words over ¥ is a subset of NW (X).

2.2. Nested trees

While nested words are suitable for linear-time reasoning, nested trees are necessary
to specify branching requirements. Such a structure is obtained by adding jump-edges
to an infinite tree whose paths encode all possible executions of the program. As for
nested words, jump-edges in nested trees do not cross, and calls and returns are defined
respectively as sources and targets of jump-edges. In addition, since a procedure call
may not return along all possible program paths, a call-node s may have jump-successors
along some, but not all, paths from it. If this is the case, we add a jump-edge from s to a
special node co.

Formally, let T' = (S, 7, —) be an unordered infinite tree with node set .S, root r and

edge relation — C S x S. Let —*, denote the transitive (but not reflexive) closure of the
edge relation, and let a (finite or infinite) path in T from node s; be a (finite or infinite)
sequence T = §152...Sy ...over S, wheren > 2 and s; — s;41 forall 1 <4.

A nested tree is a directed acyclic graph (T, <), where < C T x (T'U 00) is a set
of jump-edges. A node s such that s < ¢ or s < oo (similarly ¢t < s) for some ¢ is a
call (return) node; the remaining nodes are said to be local. The intuition is that if s — ¢,
then a call at s returns at ¢; if s <— o0, then there exists a path from s along which the
call at s never returns. We note that the sets of call, return and local nodes are disjoint.
The jump-edges must satisfy:

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 7

1. if s < ¢, then s —— t, and we do not have s — ¢ (in other words, jump-edges
represent non-trivial forward jumps);

2. if s — t and s — t’, then neither ¢ Lt nort! st (this captures the intuition
that a call-node has at most one matching return along every path from it);

3. if s — tand s’ — ¢, then s = s’ (every return node has a unique matching call);

4. for every call node s, one of the following holds: (a) on every path from s, there
is a node ¢ such that s < ¢, and (b) s < oo (a call either returns along all paths,
or does not);

5. if there is a path 7 such that for nodes s, ¢, ', lying on 7 we have s —— &,
s t,and 8 < ¢/, then either t —— s’ or t/ —— ¢ (jump-edges along a path do
not cross);

6. for every pair of call-nodes s, s’ on a path 7 such that s —*, ¢, if there is no node

t on 7 such that s’ < ¢, then a node ¢’ on 7 can satisfy s < ¢ only if ¢/ —— &'
(if a call does not return, neither do the calls pending when it was invoked).

For an alphabet ¥, a Y-labeled nested tree is a structure 7 = (T, <, A), where
(T, <) is a nested tree with node set S, and \ : S — X is a node-labeling function. All
nested trees in this paper are >-labeled.

Fig. 1-(b) shows a part of the tree unfolding of our example. Note that some of
the maximal paths are finite—these capture terminating executions of the program—and
some are not. Note in particular how a call may return along some paths from it, and yet
not on some others. A path in the nested tree that takes a jump-edge whenever possible
is interpreted as a local path through a procedure.

If s < t, then s is the jump-predecessor of ¢ and ¢ the jump-successor of s. Edges
from a call node and to a return node are known as call and return edges; the remaining

edges are local. The fact that an edge (s, t) exists and is a call, return or local edge is

denoted by s call t, s ret, t,or s Loc, 4 For a nested tree 7 = (T, —, \) with edge

set E, the tagged tree of T is the node and edge-labeled tree Tag(7) = (T, \,n : E —
{call, ret, loc}), where (s, t) = a iff s — t.

A few observations: first, the sets of call, return and local edges define a partition
of the set of tree edges. Second, if s ret, s1 and s ret, so for distinct s; and s, then
s1 and so have the same jump-predecessor. Third, the jump-edges in a nested tree are
completely captured by the edge labeling in the corresponding structured tree, so that we
can reconstruct a nested tree 7 from Tag(7T).

Let NT'(X) be the set of Y-labeled nested trees. A language of nested trees is a
subset of NT'(X).

2.3. Nested state machines

Now we define our program abstractions: nested state machines (NSMs). Like push-
down system and recursive state machines [1], NSMs are suitable for precisely modeling
changes to the program stack due to procedure calls and returns. The main difference is
that the semantics of an NSM is defined using nested structures rather than a stack and a
configuration graph.

Let AP be a fixed set of atomic propositions, and let us set as an alphabet
of observables. A nested state machine (NSM) is a tuple M={(V, v, £, Nijoc, Acail, Aret),

— 2AP

8 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

where V' is a finite set of states, v, € V is the initial state, the map x : V — X la-
bels each state with what is observable at it, and A, €V x V, Acuy C V x V, and
Ayt €V x V x V are respectively the local, call, and return transition relations.

A transition is said to be from state v if it is of the form (v,v’) or (v,v’,v"), for

. ! .
some v',v" € V. If (v,v') € Ay for some v,v’ € V, then we write v —— o'; if

. call . . ret
(v,v") € Acau, we write v — ' if (v,0v',v") € Ay, we write (v,0v") — 0.

Intuitively, while modeling a program by an NSM, a transition (v, v) in A .4 models
a procedure call that pushes the current state on the stack, and a transition (v,v’) in
Ay, models a local action (a move that does not modify the stack). In a return transition
(v,v',v"), the states v and v" are respectively the current and target states, and v’ is the
state from which the last “unmatched" call-move was made. The intuition is that v is on
top of the stack right before the return-move, which pops it off the stack.

Let us now abstract our example program into a nested state machine M ¢,,. The
abstraction simply captures control flow in the program, and consequently, has states
v1, V2, V3, U4, and vs corresponding to lines L1, L2, 1.3, L4, and LS. We also have a state
v} to which control returns after the call at L2 is completed. Now, let us have proposi-
tions rd, wr, tk, en, ex, and end that hold respectively iff the current state represents a
read, write, think statement, procedure call, return point after a call, and return instruc-
tion. More precisely, x(v1) = {wr}, k(ve) = {en}, k(vh) = {ex}, k(vs) = {tk},
k(vq) = {rd}, and k(vs) = {end} (for easier reading, we will, from now on, abbreviate
singletons such as {rd} just as rd).

The transition relations of Mj,, are given by:

[] Acall = {(UQ’Ul)}

o Ao = {(v1,v2), (v1,03), (v, v4), (Vy,v5), (v3,v4), (v3,v5), (Va,v4), (va,v5)},
and

o At = {('U57'U2avé)}‘

Linear-time semantics The linear-time semantics of a nested state machine M =
(V, Vin s Ky Dioe, Acalls Aret) 18 given by a language L£(M) of traces; this is a lan-
guage of nested words over the alphabet 247 First consider the language £V (M) of
nested executions of M, comprising nested words over the alphabet V' of states. A
nested word W = (w, <) is in £V (M) iff the tagged word (w,n) of W is such that

w(0) = vsp, and forall i > 0, (1)if n(i, i+ 1) € {call, loc}, then w(7) Ry w(i+1);
and (2) if n(i,i + 1) = ret, then there is a j such that j — (¢ + 1) and we have
(w(d), w(j)) 2% wli + 1). Now, a trace produced by an execution is the sequence of
observables it corresponds to. Accordingly, the trace language £(M) of M is defined as
{(w', =) : forsome (w,—) € LY (M) and all i > 0, w'(i) = x(w;)}. For example,
the nested word in Fig. 1-(a) belongs to the trace language of M .
Branching-time semantics The branching-time semantics of M is defined via a 247-
labeled tree 7 (M), known as the unfolding of M. For branching-time semantics to be
well-defined, an NSM must satisfy an additional condition: every transition from a state
v is of the same type (call, return, or local). The idea is to not allow the same node to be
a call along one path and, say, a return along another. Note that this is the case in NSMs
whose states model statements in programs.

Now consider the V-labeled nested tree 7V (M) = (T, <, \), known as the execu-
tion tree, that is the unique nested tree satisfying the following conditions:

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 9

if r is the root of T', then (1) = v;p;
. every node s has precisely one child ¢ for every distinct transition in M from
As);
3. for every pair of nodes s and ¢, if s —— ¢, for a € {call, loc}, in the tagged tree
of this nested tree, then we have \(s) —— A(t) in M;
4. forevery s,t,if s "% tin the tagged tree, then there is a node ¢’ such that ¢’ < ¢

and (A(s), \(#')) =5 A(¢) in M.

N =

Note that this definition is possible as we assume transitions from the same state of M
to be of the same type. Now we have 7 (M) = (T, —, \’), where X' (s) = k(A(s)) for
all nodes s. For example, the nested tree in Fig. 1-(b) is the unfolding of M j,.

3. Specifications

In this section, we define automata and a fixpoint logic on nested words and trees, and
explore their applications to program specification. Automata on nested words are useful
for linear-time model-checking, where the question is: “is the language of nested traces
of the abstraction (an NSM) included in the language of nested words allowed by the
specification?” In the branching-time case, model checking question is: “is the unfolding
of the NSM a member of the set of nested trees allowed by the specification?” Our
hypothesis is these altered views of the model-checking problem are better suited to
software verification.

3.1. Automata on nested words

We start with finite automata on nested words [7,6]. A nested Biichi word automaton
(NWA) over an alphabet ¥ is a tuple A = (Q, %, ¢in, dioc; Ocail, Oret, G), Where @ is a
set of states), q;, is the initial state, and ;o € Q X X X @, dean € Q X X X Q,
and 0, € Q X @ x X x @ are the local, call and return transition relations. The Biichi
acceptance condition G C (@ is a set of accepting states. If (q,0,q") € Jj,. for some

. loc, . . 11, .
¢.¢ € Q and o € X, then we write ¢ —= ¢; if (¢,0,q") € bcau, we write ¢ I it
ret,o

(4,q',0,q") € Oret, we write (¢,¢') — ¢

The automaton A starts in the initial state, and reads a nested word from left to
right. At a call or local position, the current state is determined by the state and the input
symbol (in case of traces of NSMs, the observable) at the previous position, while at a
return position, the current state can additionally depend on the state of the run just before
processing the symbol at the jump-predecessor. Formally, a run p of the automaton A
over a nested word W = (o102...,<>) is an infinite sequence qo, g1, g2, . . . over Q
such that ¢y = ¢;n, and:

e forall 7 > 0, if 7 is a call position of W, then (¢;, 0;, ¢i+1) € Ocal;

e for all 7 > 0, if 7 is a local position, then (g;, 07, Gi+1) € diocs

e fori > 2,if 4 is areturn position with jump-predecessor j, then (¢;—1,¢j—1,0:, ;) €
57“525-

The automaton 4 accepts a finite nested word W if it has a run qq, q1, q2, - . . g, Over
W such that ¢, € G. An infinite nested word is accepted if there is a run qo, g1, g2, - . -

10 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

where a state ¢ € G is visited infinitely often. The language £(.A) of a nested-word
automaton A is the set of nested words it accepts.

A language L of nested words over X is regular if there exists a nested-word au-
tomaton A over ¥ such that L = £(.A). Observe that if L is a regular language of words
over ¥, then {(w,—) | w € L} is a regular language of nested words. Conversely, if
L is a regular language of nested words, then {w | (w,—) € L forsome <} is a
context-free language of words, but need not be regular.

Let us now see an example of how NWAs may be used for specification. Consider
the following property to be tested on our running example: “in every execution of the
program, every occurrence of write(x) is followed (not necessarily immediately) by an
occurrence of read(x).” This property can be expressed by a finite-state, Biichi word
automaton. As before, we have ¥ = {wr, rd, en, ex, tk, end}. The automaton S has
states ¢q; and go; the initial state is ¢;. The automaton has transitions q; 2 q2, G2 LN

q2, 42 d, q1, and @1 o, q1 (on all input symbols other that wr and rd, S stays at the
state from which the transition fires). The idea is that at the state g2, S expects to see
a read some time in the future. Now, we have a single Biichi accepting state g;, which
means the automaton cannot get stuck in state gz, thus accepting precisely the set of
traces satisfying our requirement.

However, consider the property: “in every execution of the program, every occur-
rence of write(x) is followed (not necessarily immediately) by an occurrence of read(x)
in the same procedural context (i.e., before control returns from the current context, and
not within the scope of new contexts transitively spawned from this context via calls).” A
finite-state word automaton cannot state this requirement, not being able to reason about
the balanced-parentheses structure of calls and returns. On the other hand, this property
can be expressed simply by a NWA A with states g1, g2 and g.—here, g2 is the state
where A expects to see a read action in the same context at some point in the future, ¢
is an error state, and ¢; is the state where there is no requirement for the current context.
The initial state is g;. As for transitions:

l

loc,wr loc,rd oc,rd loc,wr ..
e wehaveqy — @2,q1 — q1,q2 — q1,and g2 —— ¢ (these transitions

are for the same reason as in S);

all, 1, .
e we have 1 i q1 and go i q1 (as the requirement only relates reads and
writes in the same context, we need to “reset” the state when a new context starts
due to a call);

ret,en

d
e for ¢’ € {q1,q2}, we have (q1,¢') —— ¢ (suppose we have reached the end
of a context. So long as there is no requirement pending within this context, we
must, on return, restore the state to where it was before the call. Of course, this

transition is only fired in contexts that are not at the top-level.) We also have, for

t,end . .
¢ € {q, g} (g2,¢) "==% g (in other words, it is an error to end a context

before fulfilling a pending requirement).
oc,er

loc, tk l
e Also, for ¢’ € {q1,¢2}, we have ¢/ =5 ¢/ and ¢/ 225
The single Biichi accepting state, as before, is ¢ .
More “realistic” requirements that may be stated using automata on nested words
include:

® Pre/post-conditions: Consider partial and total correctness requirements based on
pre/post-conditions, which show up in Hoare-Floyd-style program verification as

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 11

well as in modern interface specification languages such JML [11] and SAL [14].
Partial correctness for a procedure A asserts that if precondition Pre is satisfied
when A is called, then if A terminates, postcondition Post holds upon return.
Total correctness, additionally, requires A to terminate. If program executions are
modeled using nested words, these properties are just assertions involving the
current state and jump-successors, and can be easily stated using automata on
nested words.

® Access control: Specifications such as “in all executions of a proggram, a proce-
dure A can access a database only if all the frames on the stack have high privi-
lege” are useful in software security and are partially enforced at runtime in pro-
gramming languages such as Java. Such “stack inspection” properties cannot be
stated using traditional temporal logics and automata on words. It can be shown,
however, that they are easily stated using nested word languages.

® Boundedness: Using nested word languages, we can state requirements such as
“the height of the stack is bounded by k along all executions,” useful to ensure
that there is no stack overflow. Another requirement of this type: “every call in
every program execution eventually returns.”

We will now list a few properties of regular languages of nested words. The details
may be found in the original papers [7,6,5].

e The class of regular languages of nested words is (effectively) closed under union,
intersection, complementation, and projection.

e Language membership, inclusion, and emptiness are decidable.

e Automata on finite nested words can be determinized.

o Automata on finite nested words can be characterized using Myhill-Nerode-style
congruences, and a subclass of these may be reduced to a unique minimum form.

o Automata on finite or infinite nested words are expressively equivalent to monadic
second order logic (MSO) augmented with a binary “jump” predicate capturing
the jump-edge relation in nested words. This generalizes the equivalence of regu-
lar word languages and the logic S18S.

An alternative way to specify linear-time behaviors of nested executions of programs
is to use temporal logics on nested words. First consider the logic CARET [4], which may
be viewed as an extension of LTL on nested words. Like LTL, this logic has formulas
such as ()¢ (the property ¢ holds at the next time point), Oy (¢ holds at every point in
the present and future), and Q¢ (¢, holds eventually). The formulas are evaluated as LTL
formulas on the word w in a nested word W = (w, <). In addition, CARET defines the
notion of an “abstract successor” in a nested word—the abstract successor of a call posi-
tion is its jump-successor, and that of a return or local position is its successor—and has
formulas such as ()% (the property ¢ holds at the abstract successor) and ¢ (i holds
at some future point in the current context). The full syntax and semantics may be found
in the original reference. For a concrete example, consider the property we specified
earlier using nested word automata. In CARET, this specification is given by a formula
¢ = O(wr = 0%rd), which is interpreted as “every write is followed (not necessarily
immediately) by a read in the same context,” and asserted at the initial program state.
So far as model-checking goes, every CARET specification may be compiled into an
equivalent (and, at worst, exponentially larger) Biichi NWA, so that the model-checking
problem for CARET reduces to that for NWAs.

12 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

More recently, the linear-time p-calculus has been extended to nested word mod-
els [13]. This logic has modalities () and ()%, which assert requirements respectively
at the successor and abstract successor of a position, and, in addition, has set-valued
variables z and fixpoint formulas such as uX.¢o(X). We will not go into the details in
this paper, but recall that a property “a position satisfying rd is reached eventually” can
be stated in the linear-time p-calculus as ¢ = pX.(rd V (OX) (the notation is stan-
dard and hence not defined in detail). A property “rd is reached eventually in the cur-
rent context” is expressed in the linear-time p-calculus on nested words by the formula
v = pX.(rd v O*X). It turns out that this logic has a number of attractive properties—
for example, it is expressively equivalent to MSO-logic interpreted on nested words, and
collapses to its alternation-free fragment on finite nested words. Like CARET, formulas
in this logic can also be compiled into equivalent NWAs.

3.2. A fixpoint calculus on nested trees

Now we introduce a fixpoint calculus, known as NT-x, for nested trees [2]. This logic
may be viewed as an analog of the modal p-calculus for nested trees. Recall that a pu-
calculus formula is interpreted at a state s of a program, or, equivalently, on the full sub-
tree rooted at a node corresponding to s in the program’s tree unfolding. NT-y is inter-
preted on substructures of nested trees wholly contained within “procedural” contexts;
such a structure models the branching behavior of a program from a state s to each exit
point of its context. Also, to demand different temporal requirements at different exits,
we introduce a coloring of these exits—intuitively, an exit gets color ¢ if it is to satisfy
the ¢-th requirement.

Formally, let a node ¢ of 7 be called a matching exit of a node s if there is an s’ such

that &' —— s and s’ < t, and there are no s”,t"” such that s’ NN/ SN SN t",

and s” — t”. Intuitively, a matching exit of s is the first “unmatched” return along some
path from s—for instance, in Fig. 1-(a), the node sg is the single matching exit of the
nodes ss5, sg, and s7. Let the set of matching exits of s be denoted by ME(s). For a
non-negative integer k, a summary s in 7 is a tuple (s, Uy, Us, ..., Uy), where s is a
node, k > 0, and Uy, Us, ..., U, € ME(s) (such a summary is said to be rooted at s).
The set of summaries in a nested tree 7 is denoted by Summ™ . Note that such colored
summaries are defined for all s, not just “entry” nodes of procedures.

In addition to being interpreted over summaries, the logic NT-p, can distinguish
between call, return and local edges in a nested tree via modalities such as (call), (ret),
and (loc). Also, an NT- formula can enforce different “return conditions” at differently
colored returns by passing subformulas as “parameters” to call modalities. Let AP be
a finite set of atomic propositions, Var be a finite set of variables, and Ry, R, ... be a
countable, ordered set of markers. Forp € AP, X € Var, and m > 0, formulas ¢ of
NT-p are defined by:

o, i =p | —p | X | (ret)(Ry) | [ret](Ri) | o Vo lohg | pXp | vX.p |
(call) () {1, 2, s ¥} | [calll(@){h1, Y2, s Y} | (loc) ¢ | [loc] .

Intuitively, the markers R; in a formula are bound by (call) and [call] modalities,
and variables X are bound by fixpoint quantifiers X and v .X. The set of free variables
is defined in the usual way. Also, we require our call-formulas to bind all the markers
in their scope—for example, formulas such as ¢ = (call)(p A (ret)R1){q} N (ret)Ry

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 13

(2)

Figure 2. (a) Local modalities (b) Call modalities (c) Matching contexts.

are not permitted. A formula that satisfies this criterion is called closed if it has no free
variables. The arity of a formula ¢ is the maximum m such that ¢ has a subformula
(call)'{1)1, ..., ¢m} or [calll’ {1, ..., 1¥m}. Also, we define the constants ¢t and ff
in the standard way.

Like in the p-calculus, formulas in NT-x encode sets, in this case sets of summaries.
Also like in the p-calculus, modalities and boolean and fixed-point operators allow us to
encode computations on these sets.

To understand the semantics of local (e.g. {loc)) modalities in NT-1, consider a node
s in a nested tree with a local edge to a node s’. Note that ME(s') C ME(s), and
consider two summaries s and s’ rooted respectively at s and s’. Now look at Fig. 2-a.
Note that the substructure 7,/ captured by the summary s’ “hangs™ from the substructure
for s by a local edge; additionally, (1) every leaf of 7, is a leaf of 7, and (2) such a leaf
gets the same color in s and s’. A formula (loc)¢ asserted at s requires some s’ as above
to satisfy .

Succession along call edges is more complex, because along such an edge, a new

context gets defined. Suppose we have s call o , and let there be no other edges from
s. Consider the summary s = (s, {s1}, {s2,s3}), and suppose we want to assert a 2-
parameter call formula (call)¢’{p1,p2} at s. This requires us to consider a 2-colored
summary of the context starting at s’, where matching returns of s’ satisfying p; and p-
are respectively marked by colors 1 and 2. Our formula requires that s’ satisfies ¢’. In
general, we could have formulas of the form ¢ = (call)'{1)1,v2, ..., ¥}, where ¢;
are arbitrary NT-y formulas. We find that the above requires a split of the nested tree 7
for summary s in the way shown in Fig. 2-b. The root of this tree must have a call-edge
to the root of the tree for s’, which must satisfy (. At each leaf of 7 colored 7, we must
be able to concatenate a summary tree 7 satisfying v; such that (1) every leaf in 7
is a leaf of 7§, and (2) each such leaf gets the same set of colors in 7; and 7.

The return modalities are used to assert that we return at a point colored 7. As the
binding of these colors to requirements gets fixed at a context calling the current context,
the ret-modalities let us relate a path in the latter with the continuation of a path in the
former. For instance, in Fig. 2-c, where the rectangle abstracts the part of a program
unfolding within the body of a procedure foo, the marking of return points s; and s, by
colors 1 and 2 is visible inside foo as well as at the call site of foo. This lets us match
paths P, and P; inside foo respectively with paths P| and Py in the calling procedure.
This lets NT-x capture the pushdown structure of branching-time runs of a procedural
program.

14 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

Let us now describe the semantics of NT-x formally. An NT-x formula ¢ is inter-
preted in an environment that interprets variables in Free(y) as sets of summaries in a
nested tree 7 . Formally, an environment is a map £ : Free(yp) — 28umm” T et us write

[¢]Z to denote the set of summaries in 7 satisfying ¢ in environment & (usually 7

will be understood from the context, and we will simply write [¢]¢). For a summary

s = (s,Uy,Us,...,Uy), where s € S and U; C ME(s) for all i, s satisfies o, i.e.,
©] e, iff one of the following holds:

se |
e p=pec AP andp € \(s)
e o =—pforsomep € AP, and p ¢ \(s)
e p=X,ands € £(X)
® o =1 Vpasuchthats € [p1]s ors € [p2]e
® ¢ =1 Apssuchthats € [p1]e ands € [p2]e
o © = (call)p' {11, 1, ..., }, and there is a t € S such that (1) s <% ¢, and (2)
the summary t = (¢, V1, Vo, ..., V,,), where forall 1 < i < m, V; = ME(t) N
{s': (s, UtNME(s"),..., Uy N ME(s")) € [t:]e}. issuchthatt € [¢]¢
© = [call] p'{t1,12, ..., }, and for all t € S such that s ool t, the summary
t=(t,Vi,Va,..., V), whereforall 1 <i <m,V; = ME(®#)N{s": (s, U1 N
ME(s"),..., U, N ME(s")) € [¢i]e},issuchthatt € [¢']e
(loc) ¢', and there is a t € S such that s 19 ¢ and the summary t =
t,Vi,Va,..., Vi), where V; = ME(t) N U, is such thatt € [¢']¢

loc

[loc] ¢, and for all t € S such that s — ¢, the summary t =
t, Vi, Va, ..., Vi), where V; = ME(t) N U;, is such that t € [¢']¢

¢ = (ret) R;, and thereis at € S such that s el tandt € U

¢ = [ret] R;, and for all t € S such that s ret, t, we have t € U;

¢ =puX.¢,ands € Sforall S C Summ? satisfying [¢'lexi=s) €S

¢ = vX.¢', and there is some S C Summ? such that (1) S C [¢']ex:=s) and
2)s € S.

Here £[X := S] is the environment £’ such that (1) &'(X) =S,and 2)&'(Y) = E(Y)
for all variables Y # X. We say a node s satisfies a formula ¢ if the 0-colored summary
(s) satisfies ¢. A nested tree 7 rooted at s is said satisfy ¢ if s¢ satisfies ¢ (we denote
this by 7 |= ¢). The language of ¢, denoted by £(¢), is the set of nested trees satisfying

®.

°
=6
I

°
©
I

While formulas such as ¢ (negation of) are not directly given by the syntax of
NT-p, we can show that closed formulas of NT-p are closed under negation. Also, note
that the semantics of closed NT-x formulas is independent of the environment. Also,
the semantics of such a formula ¢ does not depend on current color assignments; in
other words, a summary s = (s, Uy, . .., Uy) satisfies a closed formula iff (s) satisfies ¢.
Consequently, when ¢ is closed, we can infer that “node s satisfies ¢” from “summary
s satisfies ¢.” Finally, every NT-x formula ¢(X) with a free variable X can be viewed
asamap p(X) : gSumm™ _, 9Summ” defined as follows: for all environments & and all
summary sets S C Summ?, p(X)(S) = [o(X)]ex:=s)- It is not hard to verify that
this map is monotonic, and that therefore, by the Tarski-Knaster theorem, its least and
greatest fixed points exist. The formulas uX.p(X) and v X.(X) respectively evaluate
to these two sets. This means the set of summaries satisfying X .(X), for instance, lies
in the sequence of summary sets 0, (1), o(¢(0)),

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 15

Just as the p-calculus can encode linear-time logics such as LTL as well as
branching-time logics such as CTL, NT-x can capture linear and branching properties on
nested trees. Let us now specify our example program using a couple of requirements.
Consider the simple property Reach asserted at the initial state of the program: “the in-
struction read(x) is reachable from the current node.” Let us continue to use the atomic
propositions rd, wr, etc. that we have been using through the paper. This property may
be stated in the p-calculus as @peqer, = (uX.7d V () X) (the notation is standard—for
instance, ()¢ holds at a node iff ¢ holds at a node reached by some edge). However, let
us try to define it using NT-p.

First consider a nontrivial witness 7 for Reach that starts with an edge s coll g,
There are two possibilities: (1) a node satisfying rd is reached in the new context or a
context called transitively from it, and (2) a matching return s” of s’ is reached, and at
s”, Reach is once again satisfied.

To deal with case (2), we mark a matching return that leads to rd by color 1. Let
X store the set of summaries of form (s”), where s” satisfies Reach. Then we want the
summary (s, MFE(s)) to satisfy (call)p’'{ X}, where ¢’ states that s’ can reach one of its
matching returns of color 1. In case (1), there is no return requirement (we do not need
the original call to return), and we simply assert (call) X {}.

Before we get to ¢, note that the formula (loc) X captures the case when 7 starts
with a local transition. Combining the two cases, the formula we want iS YRreqen, =
uX.(rd Vv (loc) X V (cal) X{} V (call)p’{ X }).

Now observe that ¢’ also expresses reachability, except (1) its target needs to satisfy
(ret) Ry, and (2) this target needs to lie in the same procedural context as s'. It is easy to
verify that: o' = pY.({(ret) Ry V (loc)Y V {cal)Y{Y'}).

Let us now suppose we are interested in local reachability: “a node satisfying rd
is reached in the current context.” This property cannot be expressed by finite-state au-
tomata on words or trees, and hence cannot be captured by the p-calculus. However,
we note that the property ¢’ is very similar in spirit to this property. While we can-
not merely substitute rd for (ret)R; in ¢’ to express local reachability of rd, a for-
mula for this property is easily obtained by restricting the formula for reachability:
OLocalReach = WX .(rd V {loc) X V (call)p’{X}).

Note that the highlight of this approach to specification is the way we split a program
unfolding along procedure boundaries, specify these “pieces” modularly, and plug the
summary specifications so obtained into their call sites. This “interprocedural” reasoning
distinguishes it from logics such as the p-calculus that would reason only about global
runs of the program.

Also, there is a significant difference in the way fixpoints are computed in NT-p and
the p-calculus. Consider the fixpoint computation for the p-calculus formula pX.(rd Vv
()X) that expresses reachability of a node satisfying rd. The semantics of this formula
is given by a set Sx of nodes which is computed iteratively. At the end of the i-th step,
Sx comprises nodes that have a path with at most (¢ — 1) transitions to a node satisfying
rd. Contrast this with the evaluation of the outer fixpoint in the NT-u formula @ reqen.
Assume that ¢’ (intuitively, the set of “jumps” from calls to returns”) has already been
evaluated, and consider the set Sx of summaries for Y geqcr- At the end of the ¢-th phase,
this set contains all s = (s) such that s has a path consisting of (¢ — 1) call and loc-
transitions to a node satisfying rd. However, because of the subformula (call)¢’{ X}, it
also includes all s where s reaches rd via a path of at most (¢ — 1) local and “jump”

16 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

transitions. Note how return edges are considered only as part of summaries plugged into
the computation.

More details about specification using NT-pz may be found in the original refer-
ence [2]. Here we list some other requirements expressible in NT-y:

e Any closed p-calculus formula, as well as any property expressible in CARET or
automata on nested words, may be expressed in NT-u. Consequently, NT-x. can
express pre/post-conditions on procedures, access control requirements involving
the stack, and requirements on the height of the stack, as well as traditional linear
and branching-time requirements.

o Interprocedural dataflow requirements: It is well-known that many classic
dataflow analysis problems, such as determining whether an expression is very
busy, can be reduced to the problem of finding the set of program points where
a certain pu-calculus property holds [20]. However, the p-calculus is unable to
state that an expression is very busy at a program point if it has local as well as
global variables and we are interested in interprocedural paths—the reason is that
dataflow involving global variables follows a program execution through proce-
dure calls, while dataflow for local variables “jumps” across procedure calls, and
the p-calculus cannot track them both at the same time. On the other hand, the
ability of NT-u to assert requirements along jump-edges as well as tree edges lets
it express such requirements.

We end this discussion by listing some known mathematical properties of NT- .

e Generalizing the notion of bisimulation on trees, we may define bisimulation re-
lations on nested trees [2]. Then two nested trees satisfy the same set of closed
NT-p formulas iff they are bisimilar.

e The satisfiability problem for NT-x is undecidable [2].

e Just as the modal p-calculus is expressively equivalent to alternating parity tree
automata, NT-p has an automata-theoretic characterization. Generalizing au-
tomata on nested words, we can define automata on nested trees; generalizing fur-
ther, we can define alternating parity automata on nested trees. It turns out that
every closed formula of NT-u has a polynomial translation to such an automaton
accepting the same set of nested trees, and vice versa [3].

4. Model-checking

In this section, we show how to model-check specifications on nested structures gener-
ated by NSMs. Our chosen specification language in this section is the logic NT-u—the
reason is that it can express linear as well as branching-time temporal specifications, and
lends itself to iterative, symbolic model-checking. Appealingly, this algorithm follows
directly from the operational semantics of the logic and has the same complexity (EXP-
TIME) as the best algorithms for model-checking CTL or the alternation-free p-calculus
over similar abstractions.

For a specification given by a (closed) NT-i formula ¢ and an NSM M abstracting
a program, the model-checking problem is to determine if 7 (M) satisfies ¢. It is also
useful to define the model-checking problem for NWAs: here, a problem instance com-
prises an NSM M abstracting a program, and an NWA 4_, accepting the nested words

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 17

that model program executions that are not acceptable. The model-checking problem in
this case is whether any of the possible program traces are “bad”, i.e., if L(M) N L(A-)
is non-empty. Of course, instead of phrasing the problem this way, we could have also
let the instance consist of an NSM and a specification automaton A’, in which case we
would have to check if £(M) N L(A’) is non-empty. However, complementation of A’,
while possible, is costly, and this approach would not be practical.

Now, intersection of the languages of two NWAs is done by a product construc-
tion [6]. The model-checking problem thus boils down to checking the emptiness of a
Biichi NWA A. Let us now view A as an NSM where a state is marked by a proposition
g iff it is a Biichi accepting state. An NWA on infinite nested words is then non-empty iff
there are infinitely many occurrences of g along some path in the unfolding of A, a re-
quirement can be expressed as a fixpoint formula in the p-calculus, and hence NT-x. To
determine that an NWA on finite nested words is non-empty, we merely need to ensure
that a node satisfying g is reachable in this unfolding—an NT-y formula for this property
is as in the example in Sec. 3.2.

We will now show how to do NT-x model-checking for an NSM M with vertex
set V and an NT-z formula . Consider a node s in the nested tree 7" (M). The set
ME(s), as well as the return-formulas that hold at a summary s rooted at s, depend on
states at call nodes on the path from the root to s. However, we observe that the history
of call-nodes up to s is relevant to a formula only because they may be consulted by
return-nodes in the future, and no formula interpreted at s can probe “beyond” the nodes
in ME(s). Thus, so far as satisfaction of a formula goes, we are only interested in the
last “pending” call-node; in fact, the state of the automaton at this node is all that we
need to record about the past.

Let us now try to formalize this intuition. First we define the unmatched call-
ancestor Anc(s) of anode s in a nested tree 7. Consider the tagged tree of 7, and recall

the definition of a balanced word over tags (given in Sec. 2.1). If t = Anc(s), then we

require that ¢ <ol 41 for some node ¢’ such that in the tagged tree of 7, there is a path

from ¢’ to s the edge labels along which concatenate to form a balanced word. Note that
every node in a nested tree has at most one unmatched call-ancestor. If a node s does not
have such an ancestor, we set Anc(s) =L.

Now consider two k-colored summaries s = (s,Uy,Us,...,Us) and s’ =
(s',U],Ub,...,U]) in the unfolding 7V (M) = (T,—,\) of the NSM M, and let
Anc(s) =t and Anc(s’) = t', where t, t' can be nodes or the symbol L (note that if we
have Anc(s) =L, then ME(s) = (), so that U; =) for all 7).

Now we say s and s’ are NSM-equivalent (written as s = s') if:

o A\(s) = A(s);

e cithert =t =1, 0r A(t) = A(t);

e foreach 1 < i < k, there is a bijection ; : U; — Ui’ such that for all u € U;, we
have A(u) = A(Q;(u)).

It is easily seen that the relation = is an equivalence. We can also prove that any two
NSM-equivalent summaries s and s’ satisfy the same set of closed NT-y formulas.

Now note that the number of equivalence classes that = induces on the set of
summaries is bounded! Each such equivalence class may be represented by a tuple
(v,v',V1,..., Vi), where v € V, v € VU{L},and V; C V for all i—for the class
of the summary s above, for instance, we have \(s) = v and A(U;) = V;; we also have

18 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

A(t) = v’ incase t #1, and v' =L otherwise. Let us call such a tuple a bounded sum-
mary. The idea behind the model-checking algorithm of NT-x is that for any formula
(, we can maintain, symbolically, the set of bounded summaries that satisfy it. Once
this set is computed, we can compute the set of bounded summaries for formulas de-
fined inductively in terms of (. This computation follows directly from the semantics
of the formula; for instance, the set for the formula (loc)p contains all bounded sum-

maries (v,v’, Vi, ..., V) such that for some v” € V, we have v ee, v”, and, letting V”/
comprise the elements of V; that are reachable from v”, (v", o', V{", ..., V}) satisfies .

Let us now define bounded summaries formally. Consider any state v in an NSM
M with state set V. A state v’ is said to be the unmatched call-ancestor state of state
u if there is a node s labeled u in 7V (M) such that u’ is the label of the unmatched
call-ancestor of s (we have a predicate Ancy (u’,) that holds iff this is true). Note that
a state may have multiple unmatched call-ancestor states. If there is a node s labeled u
in 7V (M) such that Anc(s) =L, we set Ancy (L, u).

A state v is a matching exit state for a pair (u,u’), where Ancy (u',), if there are
nodes s,s’,tin 7V (M) such that t € ME(s), s is the unmatched call-ancestor of s,
and labels of s, s’, and ¢ are u, v/, and v respectively (a pair (u, L) has no matching exit
state).

The modeling intuition is that from a program state modeled by NSM state » and a
stack with a single frame modeled by the state v/, control may reach a u” in the same

context, and then return at the state v via a transition (u”, u’) . Using well-known
techniques for pushdown models [1], we can compute, given a state u, the set of u” such
that Ancy (u’, u), and for every member v’ of the latter, the set MES (u, u') of matching
exit states for (u, u’), in time polynomial in the size of M.

Now, let n be the arity of the formula ¢ in whose model-checking problem we
are interested. A bounded summary is a tuple (u,u’,Vi,..., Vi), where 0 < k < n,
Ancy (v, u) and for all 4, we have V; C MES (u,). The set of all bounded summaries
in M is denoted by BS.

Let Esr. : Free(yp) — 259 be an environment mapping free variables in ¢ to
sets of bounded summaries, and let £y denote the empty environment. We define a map
Eval(p, Esy) assigning a set of bounded summaries to a NT-y formula (:

e If p = p, forp € AP, then Eval(yp,Esy,) consists of all bounded summaries
(u, v, Vi,...,V;) such that p € k(u) and k < n.

o If o = —p, forp € AP, then Eval(yp,Esy,) consists of all bounded summaries

(u, ', Vi, Va, ..., Vi) such that p ¢ x(u) and k < n.

If o = X, for X € Var, then Eval(p,Esr) = Esr.(X).

If ¢ = 1 V q then Eval(p,Esr) = Eval(p1,Esy) U Eval(pa, Esy).

If ¢ = 1 A o then Eval(p,Esr) = Eval(p1,Esy) N Eval(pa, EsyL).

If o = (call) ¢'{¢1,...,¢¥m }, then Eval(p,Esy) consists of all bounded sum-

. s call
maries (u,u’,Vi,..., V%) such that for some transition u — u” of M, we

have a bounded summary (u”, v, V{,V4,.., V..) € Eval(¢',EsL), and for all
v e V/, wherei = 1,...,m, we have (v,u',V/",..., V) € Eval(¢y;,EsL),
where V" = V; N MES (v, u) forall j < k.

o If ¢ = [call] ¢'{t1,...,m}, then Eval(p,Esy) consists of all bounded sum-
maries (u,u’, Vi, ..., Vi) such that for all u” such that there is a transition u call
u” in M, we have a bounded summary (u”, v”, V{, V5, .., V') € Eval(y’, EsL),

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 19

and for all v € V/, where ¢ = 1,...,m, we have (v,u/,V{,..., V) €
Eval(v;, Es1), where V" = V; N MES (v, u") forall j < k.

o If o = (loc) ¢, then Ewal(p,Esy) consists of all bounded summaries
(u,u/, Vi ..., Vi) such that for some v such that there is a transition u oe, v, we
have (v,u', V4 N MES(v,v),...,Vix N MES(v,u’)) € Fval(y¢’,Esy).

o If o = (locy ¢, then Ewal(p,Esr) consists of all bounded summaries
(u, v/, Vi ..., Vi) such that for some v such that there is a transition u doc, v, We
have (v,u', V4 N MES(v,u),...,Vix N MES(v,u’)) € Fval(y¢’,EsL).

o If o = (ret) R;, then Ewval(y,Egr) consists of all bounded summaries

ret

<u7 u,Vi,..., Vk> such that (1) V; = {u”}, (2) M has a transition (u, u/) _ret,
u”, and (3) for all j # 4, V; = 0.

o If o = (ret) R;, then Eval(y,Esy) consists of all bounded summaries
(u,u/, Vi, ..., Vi) such that for all transitions of the form (u,u’) T W we

have (1) V; = {u”}, and (2) forall j # 4, V; = 0.
o If o = uX.¢', then Fval(p, Esr) = FizPoint (X, ¢, Esp[X = 0]).
o If o = vX.¢/, then Eval(yp, Esy,) = FizPoint (X, ¢',Esr, [X := BS)).

Here FizPoint (X, ¢, Egy,) is a fixpoint computation function that uses the formula ¢ as
a monotone map between subsets of BS, and iterates over variable X. This computation
is as in Algorithm 1:

Algorithm 1 Calculate FizPoint (X, ¢,Es1)
X" — Eval(p,Es1)
if X' = gSL(X) then
return X'
else
return FizPoint (X, ¢, Esr[X = X))
end if

Now we can easily show that for an NSM M with initial state v;, and a closed NT-u
formula ¢, T (M) satisfies ¢ if and only if (v;,) € Fval(p, &), and that Eval(p, &) is
inductively computable. To understand this more concretely, let us see how this model-
checking algorithm runs on our running example. Consider the NSM abstraction M ,,
in Sec. 2.3, and suppose we want to check if a write action is locally reachable from the
initial state. The NT-y property specifying this requirement is ¢ = puX.(wr V (loc) X V
(cally’{X}), where ¢’ = pY.((ret) Ry V (loc)Y V {cal)Y{Y}).

We show how to compute the set of bounded summaries satisfying ¢'—the
computation for ¢ is very similar. After the first iteration of the fixpoint com-
putation that builds this set, we obtain the set S; = {{(vs,ve,{v5})} (the set
of summaries satisfying (ret)Ry). After the second step, we obtain S; = S; U
{{vh, va, {v5}), (vs, v2, {V5}), (vg, v2,{v5})}, and the next set computed is Sz =
Sz U {(v1, va, {v}})}. Note that in these two steps, we only use local edges in the NSM.
Now, however, we have found a bounded summary starting at the “entry state” of the
procedure foo, which may be plugged into the recursive call to foo. More precisely, we
have (va, v1) € Acai, (v1,v2, {vh}) € Sg, and (v}, va, {vh}) € Sa, so that we may now
construct Sq = Sz U (ve, v2, {v4}). This ends the fixpoint computation, so that Sy is the
set of summaries satisfying ¢’.

20 R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking

Let us now analyze the complexity of this algorithm. Let Ny be the number of
states in M, and let n be the arity of the formula in question. Then the total number of
bounded summaries in M that we need to consider is bounded by N = N‘2/2N V™ Letus
now assume that union or intersection of two sets of summaries, as well as membership
queries on such sets, take linear time. It is easy to see that the time needed to evaluate a
non-fixpoint formula ¢ of arity n < |¢| is bounded by O(NN?|p|N,,) (the most expensive
modality is (call)¢' {11, . .., ¥}, Wwhere we have to match an “inner” summary satisfy-
ing ¢’ as well as n “outer” summaries satisfying the 1);-s). For a fixpoint formula ¢ with
one fixpoint variable, we may need N such evaluations, so that the total time required
to evaluate Eval(p,) is O(N3|¢|Ny). For a formula ¢ of alternation depth d, this
evaluation takes time O(N3?N¢ |¢|), i.e., exponential in the sizes of M as well as (.

It is known that model-checking alternating reachability specifications on a push-
down model is EXPTIME-hard [24]. It is not hard to generate a NT-x formula ¢ from
a p-calculus formula f expressing such a property such that (1) the size of ¢ is lin-
ear in the size of f, and (2) M satisfies ¢ if and only if M satisfies f. It follows that
model-checking a closed NT-y formula ¢ on an NSM M is EXPTIME-hard. Combin-
ing, we conclude that model-checking a NT-y formula ¢ on an NSM M is EXPTIME-
complete. Better bounds may be obtained if the formula has a certain restricted form.
For instance, it can be shown that for linear time (Biichi or reachability) requirements,
model-checking takes time polynomial in the number of states of M. The reason is that
in this case, it suffices to only consider bounded summaries of the form (v, v’, {v"'}),
which are polynomial in number. The fixpoint computation stays the same.

Note that our decision procedure is very different from known methods for
branching-time model-checking of pushdown models [24,12]. The latter are not really
implementable; our algorithm, being symbolic in nature, seems to be a step in the direc-
tion of practicality. An open question here is how to represent sets of bounded summaries
symbolically. Also, note that our algorithm directly implements the operational seman-
tics of NT-y formulas over bounded summaries. In this regard NT-p resembles the modal
p-calculus, whose formulas encode fixpoint computations over sets; to model-check -
calculus formulas, we merely need to perform these computations. Unsurprisingly, our
procedure is very similar to classical symbolic model-checking for the p-calculus.

References

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis of recursive
state machines. ACM Transactions on Programming Languages and Systems, 27(4):786-818, 2005.

[2] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global program flows. In
Proceedings of the 33rd Annual ACM Symposium on Principles of Programming Languages, 2006.

[3] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In Computer-Aided Verification,
CAV’06, 2006.

[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns. In TACAS 04:
Tenth International Conference on Tools and Algorithms for the Construction and Analysis of Software,
LNCS 2988, pages 467—481. Springer, 2004.

[5] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly pushdown languages.
In Automata, Languages and Programming: Proceedings of the 32nd ICALP, LNCS 3580, pages 1102—
1114. Springer, 2005.

[6] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th ACM Symposium
on Theory of Computing, pages 202-211, 2004.

[71

[8]

[9]
[10]

[11]

[12]
[13]
(14]

[15]

[16]
(17]
(18]
[19]
(20]
(21]
(22]
(23]

(24]

R. Alur and S. Chaudhuri / Logics and Automata for Software Model-Checking 21

R. Alur and P. Madhusudan. Adding nesting structure to words. In Developments in Language Theory,
2006.

T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate abstraction of C pro-
grams. In SIGPLAN Conference on Programming Language Design and Implementation, pages 203—
213,2001.

T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN 2000
Workshop on Model Checking of Software, LNCS 1885, pages 113—130. Springer, 2000.

T. Ball and S. Rajamani. The SLAM toolkit. In Computer Aided Verification, 13th International Con-
ference, 2001.

L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, R. Leino, and E. Poll. An overview of
JML tools and applications. In Proceedings of the 8th International Workshop on Formal Methods for
Industrial Critical Systems, pages 75-89, 2003.

O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite sequential processes.
Theoretical Computer Science, 221:251-270, 1999.

H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques
and applications. Draft, Available at http://www.grappa.univ-1ille3.fr/tata/,2002.
B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for buffer overflows in the large. In ICSE,
pages 232-241, 2006.

T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer. Temporal-safety proofs
for systems code. In CAV 02: Proc. of 14th Conf. on Computer Aided Verification, LNCS 2404, pages
526-538. Springer, 2002.

C.AR. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-580, 1969.

O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312-360, 2000.

T. Reps. Program analysis via graph reachability. Information and Software Technology, 40(11-12):701—
726, 1998.

T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In
Proceedings of the ACM Symposium on Principles of Programming Languages, pages 49-61, 1995.
D.A. Schmidt. Data flow analysis is model checking of abstract interpretations. In Proceedings of the
25th Annual ACM Symposium on Principles of Programming Languages, pages 68—78, 1998.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis, chapter 7, pages 189—
234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Pro-
ceedings of the First IEEE Symposium on Logic in Computer Science, pages 332-344, 1986.

D. S. Wallach and E. W. Felten. Understanding Java stack inspection. In IEEE Symp. on Security and
Privacy, pages 52-63, 1998.

I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation,
164(2):234-263, 2001.

22 Software System Reliability and Security
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 I0S Press. All rights reserved.

Specifying, Relating and Composing
Object Oriented Interfaces, Components
and Architectures !

Manfred BROY

Institut fiir Informatik, Technische Universitdt Miinchen
D-80290 Miinchen Germany, broy@in.tum.de
http://wwwbroy.informatik.tu-muenchen.de

Abstract. We introduce an abstract theory for systems, components, composition,
architectures, interfaces, and compatibility. We apply this theory to object orienta-
tion and work out an instance of that theory that covers these notions in terms of a
formal model of objects, classes, components, and architectures as well as of inter-
faces of classes and components and their specification. We define and analyze, in
particular, interfaces for object oriented software systems and their architectures.
We deal with "design by contract” as well as "specification by contract" and ana-
lyze their limitations. We show how to specify these interfaces by logical formulas
in the style of specification by contract, by state machines and also by interaction
diagrams. We treat composition given a formal definition of class composition and
analyze semantic complications. We discuss, in particular, how we can extend con-
cepts from object orientation towards components and more sophisticated ways to
handle interfaces and hierarchical architectures. Our approach is based on the con-
cept of states, state assertions, and state machines. A pragmatic goal is to explore
simple and tractable ways to describe interfaces.

1. Motivation

Software development is today, without any doubts, one of the most difficult and signifi-
cant tasks in the engineering of complex systems. Modern software systems typically are
deployed and distributed on large networks; they are dynamic, and accessed concurrently
via a couple of independent user interfaces. They are based on software infrastructures
such as operating systems and middleware, which offers the communication services of
object request brokers.

To master complexity in the development process large software systems are typ-
ically built in terms of architectures in a modular fashion and hierarchically structured
into components. These components are grouped together into software architectures.
These ideas of structuring software go back to "structured programming" according to
Dijkstra, Hoare, Dahl, Wirth, and, in particular, to Parnas (see [16]). We apply their ideas
to object oriented systems. We start our discussion in terms of the idea of assertions and

IThis work was done in cooperation with and was partially sponsored by sd&m AG.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 23

"design by contract" to specify methods. We then show shortcomings and limitations of
design by contract specifications and explore ways to overcome those.

Basically, we treat the following basic concepts to specify the behaviour of classes
and objects following the idea of interfaces:

e Predicates on the interaction between the objects, classes, and components in
terms of streams of invocations and return messages

* Message sequence charts (interaction charts)
e State based specifications

* Pre/post assertion specifications
* State machines

In the following we discuss these approaches, their advantages as well as their limita-
tions. We underline and illustrate our discussions by characteristic examples.

In this paper we try to develop a formal approach to modular interface specification
of classes and components and their composition. We deal with the following issues and
concepts

e methods and their specification by contract
e classes (with simple "one-way" export interfaces) and their specification by

* contract
* state machines
= stream processing functions

e a modular view of classes taking also into account methods of classes that are
used (in forwarded method invocations) leading to import/export interfaces.

This modular view is badly needed when trying to compose classes to large more com-
plex systems. The architectural decomposition and the systematic integration needs in-
terface specifications.

We introduce and discuss the concept of components, which are generalizations of
classes that have several export/import interfaces. Our basic ideas read as follows:

e A basic class is a simple form of a component with only one export interface.

e A generalization yields families of classes with interfaces with export and import
parts.

e A component is a generalization of a class; it features several interfaces with
export and import parts.

e The composition of components is realized by matching their export/import inter-
faces.

e Export/import interfaces are mandatory to deal with composition of components.

e Export/import interfaces introduce a number of severe complications

* Simple pre/post specifications of method calls do no longer work. Method calls
are carried out by a sequence of forwarded calls and returns, in general.

* We have to make call stacks explicit to handle return messages of forwarded
calls effectively.

e In the composition of components that are represented by state machines we ob-
tain state machines that have internal state transitions.

24 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

In the following we discuss all these problems, concepts, and demonstrate all the men-
tioned complications and obstacles by examples in detail and show solutions. Through-
out the paper we do not treat inheritance, at all.

2. Interfaces and Compatibility: A Theory of Substitutability, Modularity, and
Observability

In this section we fix the essential notions of abstraction, interface and architecture. We
describe the essentials of a basic theory (see also [6]).

2.1. Syntactic Framework

We assume some syntax to describe components and architectures. This means that we
have a syntactic notion of components. Let LC be the formal language of components.
Every syntactic element ¢ € LC represents a component. For our purposes, it does not
matter whether we describe components by logics (as in [3]), graphical languages (like
UML) or by textual languages (like programming languages such as Java or C# or by
architecture description languages).

In addition, we assume a syntactic composition operator. It is a partial operation on
components that allows us to compose two components:

®:LCx LC —> LC written in infix notation

Here "partial" means that not for every pair cl, c2 € LC of components the operation
yields a well-defined result. Only if two components cl1, c2 fit together with respect to
their syntactic properties (their "syntactic interfaces" given by the types of their shared
variables, their messages or method calls) their composition is meaningful. For every
pair cl, c2 € LC of components, c1 ® c2 is called composed component, if for c1 and c2
their composition is defined.

In order to deal with the partiality of composition we assume a relation

R:p(LC) > B

R(C) holds for a set of components C C LC if their composition is well-defined. So
if and only if R({c1, c2}) holds for components c1, c2 € LC (for simplicity we ignore
here the case ¢l = ¢2 and assume that c1 # ¢2 holds) we get that c1 ® ¢2 yields a
well-defined result (we assume that ¢ ® c¢ is not well-defined; in fact, this is not a real
restriction, since we may assume that all components have at least different names).

For finite sets of components {cy, ...,ck} C LC with R({cy, ..., ck}) we define
composition as follows

H{Cb e Ck =01 Q .. Bk

This notation is justified by assuming that the operator ® is commutative and associative.
Whenever for a set of components C C LC the proposition R(C) holds, the term [C
is called an architecture with components from C.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 25

Using the operation @ we get a hierarchical concept of components — composing
two components yields a component, again. In fact, every architecture represents again
a component. A more restricted concept is obtained, if [] C is not seen as a component
again. Then hierarchical design is not supported. However, such a restriction is not sub-
stantial — at least in theory. Given two (disjoint) sets of components C1, C2 C LC we
easily define [[C1 ® [] C2 by [[(C1U C2). We loose the hierarchy, however, this way.

To keep our framework simple, we only introduced the concept of components here
but not that of connectors as found in some architecture description languages. Connec-
tors are easily subsumed by modelling them as special versions of components.

A system is a component with specific properties. We assume that in the set of all
components a subset LS C LC is given that characterizes comprehensive self-contained
systems.

2.2. Semantic Framework: Substitutability and Compatibility

When dealing with specifications and behaviours we are in particular interested in an
essential semantic relation for components namely substitutability (see [22,15]).

Definition. Substitutability and Compatibility

A component cl is called substitutable for a component c2 if the following holds: in
every system that is syntactically correct and in which c2 occurs as a component we can
replace the component c2 by cl and this results in a system that is again syntactically
correct and the observable behaviour it shows is identical to (or a refinement of) the
observable behaviour of the original system. In this case we also say that component cl
is compatible to (or refined by) component c2. g

This definition is informal, since it does not provide a formal model of observable
behaviour. The concept of substitutability is closely related to that of interface specifica-
tions, as we will show in more detail below. Each interface specification has to charac-
terize the set of components that can be used as replacements for the specified compo-
nent. Thus an interface specification for a component defines a set of compatible com-
ponents. We will discuss whether an interface specification can be seen as an "abstract"
component.

The essential concept that formalizes substitutability is observability. Looking at
an entity from the outside we can observe certain actions and events triggering state
changes. By such observations we filter out the relevant information about systems. If
we restrict the concept of observations we obtain a more abstract view.

2.3. Observability and Compatibility

We give a more formal approach to observability in the following sections. We distin-
guish syntactic and semantic issues.

2.3.1. Syntactic Compatibility

Our concept of syntactic composability formalized by the predicate R introduces the
idea of syntactic compatibility of components. Given two components cl,c2 € LC,
the component c2 is called syntactically compatible to cl, if we can use component c2
whenever we use cl without running into syntactic errors.

26 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

To formalize this, we introduce a relation
>C LC x LC
with the following definition for components c1, c2 € LC
cl>c2 & VC C LC\{cl,c2}:R(C U {cl}) = R(C U {c2})

The proposition c1 > ¢2 expresses that whenever component cl can be used as a com-
ponent in a system (leading to a syntactically correct system), c2 can be used instead,
too. Of course, the system that we obtain by replacing component c2 for cl may show
a different behaviour. We only require that the resulting systems be syntactically well
formed.

Syntactic substitutability induces an equivalence relation

~ CLCxLC

on the set of components that corresponds to the idea of mutually syntactically substi-
tutability. This relation is easily defined as follows:

cl~c2e (cl>c2 A2 cl)
and called syntactic equivalence.

2.3.2. Observable Equivalence

After having introduced a basic syntactic framework of components and architectures,
we develop a more semantic view onto components. This cannot be done without a pre-
cise semantic perspective. We introduce such a concept only for systems, to begin with,
by assuming that we have some idea of observations at least about systems, which are
elements in the set LS.

To formalize observable equivalence we are interested in the question, under which
conditions two systems are observably equivalent. Syntactic equivalence was introduced
above. Observable equivalence is modelled by an equivalence relation on systems.

= CLSXLS
The equivalence relation expresses by the proposition s1 = s2 that two systems s1, s2 €
LS are observably and thus semantically equivalent.
We can also be more concrete and introduce a concept of observation explicitly. Let
OBS be the set of observations about a system and
Obs:LS — OBS
be the functions that maps systems onto observations. We assume:

51252 & Obs(s1) = Obs(s2)

for all systems s1,s2 € LS.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 27

Theoretically and practically, there are of course many options to define observabil-
ity and observable equivalence. In the end, observability has to be related to the usersS
expectations and views onto a system making explicit which observations about a system
are relevant for the users. Practically, what is a good notion of observation for systems
seems often obvious. In principle, however, we may include also non-functional aspects
into observability such as reaction time or consumed resources. In the following, we are
interested exclusively in observability in terms of functional ("behavioural") properties.

2.3.3. Refinement

Another way to introduce observability is to introduce a partial order > on systems that
defines observability such s1 > s2 expresses that all observations about s2 or also obser-
vations about s1. On components we introduce the relation of semantic substitutability
for components. We call this relation refinement and denote it by the relation

= CLCxLC

The relation > is assumed to be transitive and reflexive. Semantic substitutability for
components has to be and can be directly related to observable equivalence of systems.
In fact, we could define the relation > formally based on the observability relation =.
We rather keep the two relations independent to begin with and show, how they are and
must be related then.

2.4. Compositionality and Modularity

Refinement for components has to be consistent with composition. This is called com-
positionality. With the introduced concepts we can formally define compositionality of
refinement >~ with respect to the observability relation =.

Definition. Compositionality and modularity
The relation > is called compositional (or modular) with respect to the relation of ob-
servable equivalence =, if for all components c1, c2 € LC we have:

cl>c2=VC C LC\{cl,c2},s e LS:
R(CU{clHhAs ZEJ[(CU{cl}) = R(CU{2}H) As Z[[(CU{c2}) O

This definition expresses that if c1 > ¢2 holds we can replace in any system s that uses
the component c1 the component c1 by c2 and get an observably equivalent system.

2.4.1. Denotational Semantics

The core idea of denotational semantics is the definition of the meaning of a program-
ming language in terms of mathematical denotations. Let us denote by MD the set of
mathematical denotations. The mapping

p:LC —> MD
maps components onto their denotations (that are mathematical representations of the

meaning of the system, component, or program). Moreover we assume a form of com-
position on the set MD of denotations

28 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

*: MDx MD — MD written in infix notation

which is again a partial operation. The key property and idea of denotational semantics
is captured by the following equation for c1, ¢2 € LC with R({cl, c2}):

Blcl ®c2) = plcl) * f(c2)

This is called compositionality and is the core concept of denotational semantics.
Given a concept of observations, we call the denotational semantics represented by
the mapping £ consistent with the observation, if there is a mapping

a:MD — OBS

where forall s € LS:

a(B(s)) = Obs(s)

In other words, we require that we can obtain the observations about a system from its
denotation — the denotational semantics carries enough information to derive all obser-
vations from it.

2.4.2. Full Abstractness of Denotational Semantics

A consistent and compositional denotational semantics is easy to provide: take for the
set of denotations MD simply the syntactic set LC of components, for £ the identity and
for * the operation ®. Then « is easily represented by Obs and we have all the required
properties.

However, this merely syntactic construction is not what we are looking for. Abstrac-
tion is what we are interested in. We are interested in a more abstract denotational seman-
tics. A denotational semantics represented by /£ is called fully abstract, if it is consistent,
compositional and if there does not exist a more abstract denotational semantics that is
consistent and compositional, too.

Given two denotational semantics

p1:LC > MD,

p2:LC - M D,

we call f; as least as abstract than S, if there is a mapping
y:MD; —- MD,

such that for all components ¢ € LC:

y (B1(c)) = pa(c)

This means that there may be components c1, c2 € LC such that we have

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 29

pr(cl) # p1(c2) A pa(cl) = fa(c2)

and moreover

Bi(cl) = Bi(c2) = palcl) = pa(c2)
forall cl,c2 € LC.

2.4.3. Full Abstractness of Refinement

By refinement > we can extend the relation = from systems to components cl, c2 €
LC\LS by the definition

clZc2& (cl =c2Ac2 = cl)

This defines what it means that two components and two systems are observably equiv-
alent. For systems c1, ¢2 € LS, the formula is a straightforward theorem.
We expect that observable equivalence implies syntactic equivalence

cl=Ec2=cl ~c2
If the relation > is compositional, then for all components c1, ¢2, c3, c4 € LC we have
R{cl,2H Al Z3BAREcd= R{3,cAD)Acl 2= c3®c4

In this case we call the relation = compositional, too, and we speak of a modular theory
of components and architectures.

Refinement and substitutability is, of course, related to inheritance. Actually, refine-
ment is the semantically more appropriate idea of inheritance — a relation, which in object
oriented languages, where inheritance is often just code reuse, is not always guaranteed.

Finally we consider the notion of what it means that refinement is fully abstract.

Definition. Full abstractness
The relation > is called fully abstract for the observability equivalence relation =, if for
all components c1, c2 € LC we have

¢l = ¢2 < [VC C LC\{cl,c2},s € LS:R(C U {cl}) As Z[(CU {cl}) =
R(C U {c2}) As = [(C U {c2})] O

Full abstractness means that the refinement relation on components is the most ab-
stract relation that guarantees modularity for the chosen concept of observability onto
systems.

There is a way to introduce refinement > based on the observability relation = such
that it is always fully abstract. This is achieved by taking the following formula as a
definition of refinement:

cl =2 [VC C LC\{cl,c2},s € LS:R(CU {clP) As Z[[(CU {cl}) =

RC U {clP) As ZET(CU{c2})]

If we introduce > independently, then full abstractness is not guaranteed. If > is fully

30 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

abstract and compositional, however, this formula obviously holds and we have then also
for all components c1 and c2 the validity of the following formula:

cl E2 2 [VC C LC\{cl,c2},s € LS:
RCU{clhAsZET[CU{cl)) & RCU{2H) As ZT](C U {c2}))]

The relations = and > are called fully abstract, if for all components c1,c2 € LC we
have

Ve e LC:R({cl,c) = cl®c=E2Qc] = cl =2
and respectively
[Vc e LC:R({cl,c}) = R({cl,cHh Acl®c>=c2Qc]=cl =2

Full abstractness is an essential methodologically concept, since it only allows us to
replace a component by any of its refinements.

2.5. Component and System Interfaces and Specifications

For practical purposes it is difficult to work with an abstract notion of refinement and ob-
servable equivalence. It is better and from a methodological point of view more interest-
ing to introduce explicitly the concept of syntactic and semantic interfaces that character-
ize sets of components that can be used for a certain system. Interfaces are specifications
of components.

2.5.1. Interface Specification

The notion of a syntactic interface is straightforward. A syntactic interface defines a set
of components. Formally, an interface specification is nothing but a predicate of the form

§LC — B

that is closed under the syntactic substitutability relation . It characterizes a set of com-
ponents. Actually, then for all components c1, c2 € LC we have

S Aclec2 = F(c2)

In other words, a syntactic interface § characterizes a set of components such that with
every components that is syntactically fine with respect to § all its valid syntactic re-
placements do also fulfil §.

Formally, a semantic interface is a predicate

§:LC - B

that is closed under the semantic substitutability relation . Then for all components
cl, c2 € LC we assume

Sl Acl = c2= F(c2)

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 31

In other words, a semantic interface §§ characterizes a set of components such that with
every component that is semantically correct with respect to § all its valid refinements
do also fulfil §.

A semantic interface § characterizes, in general, a set of components. Sometimes
there is a concrete representation of a semantic interface by a component ¢ € LC such
that for all components ¢’ € LC we have

() ec-c

Then 3§ is called a concrete interface, otherwise an abstract interface.

Logical implication induces a refinement relation on interfaces. This way notions
such as compositionality or full abstractness carry over to interfaces.

A consequent methodological step is to consider abstract interface specifications
as non-operational components, too. Then in architectures specifications and realized
components can be freely combined. We work that out in the following section.

2.5.2. Composing Specifications

There is, in the general case, not a one-to-one correspondence between specifications
and components. More precisely, not every interface specification is concrete, in general.
A specification may be fulfilled by many components and a component may fulfil many
specifications. Nevertheless, we may be interested to "lift" the notion of composition and
refinement to specifications. Let CS denote the set of all specifications. To do that we
introduce ("extend") the composition operations to specifications

®:CSxCS—>CS infix
where for specifications p1, p2 € CS we get (whenever pl ® p2 is well-defined)
(p1® p2)(c) =3cl,c2 € LC:c =cl ® c2 A pl(cl) A p2(c2)

In other words we mimic the notion of compositions at the language level at the specifi-
cation level. The same applies for refinement:

(p2= ply e Ve, e LC:p2.(c) Ac = = pl.(c)

These notions of composition and refinement are properly reflected at the level of speci-
fications.

2.6. Architectures

Systems architectures are given by sets of components and a description, how these are
composed such that the composition is well-defined. Architectures are given by terms of
compositions of components.

Architecture specifications consist of interface specifications of the set of compo-
nents (of abstract or concrete components) and a description, how these are composed
where we require that the composition is well-defined. From a more practical point of
view, we introduce names for the interface specifications that represent components and
additional information "how" the composition connects the components.

32 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

2.7. Final Remarks on the Theory

An instance of the theory that offers all the concepts introduced so far and fulfils all
the given rules can be found in the approach Focus (see [3]). In contrast, such a fully
worked-out theory does not exist so far for object orientation.

What we have described in this section is essential for a theory and methodology for
the specification and modular design of architectures and their components. Of course,
the theory alone is not enough for doing engineering. Obviously, we need, in addition, a
useful syntax to represent interface specifications and architectures. The theory, however,
provides a theoretical framework that gives hints which properties an approach with a
concrete syntax has to fulfil.

A challenge is, however, to work out an explicit denotational semantics for a given
language, with all the relations introduced as well as a concrete syntax for writing inter-
face specifications.

3. Components and Interfaces in Object Orientation

In this section we study the object oriented programming paradigm. We introduce the
essential syntactic and semantic notions of method, method specification, interface, and
class and finally that of a component. We analyze ideas of design by contract (see [12]).

We introduce the notion of a method, interface, class and component based on the
idea of design by contract, on state machines, and that of a data stream and components
interacting by exchanging streams of data. Throughout this paper we work with only
a few basic notations for state machines and data streams. On this basis we discuss a
semantic theory for object orientation.

3.1. Methods and Invocation/Return Messages

In this section we show an approach to interfaces and components based on ideas used
in object oriented software development.

3.1.1. Types and Methods

We work with interfaces that refer to the concept of data types. We deal with variable
types and constant types. A constant type is basically a set of data values.

Definition. Types A type is either a constant type or a variable type. Constant types are
basically sets of data values. An identifier with constant type denotes a value of that set. A
variable type is denoted by Var T where T is a constant type. An identifier with variable
type denotes a variable (in object orientation called an attribute) that has assigned a value
of the set of elements of type T. Every class name is also a type. (I

A method in object orientation consists syntactically of its method header and its
method body. Since we are not interested in the design of algorithms as done in program-
ming in the small in this paper and thus not in the particular code forming the method
body we just deal with syntactic method headers in the following. We assume a special
set Object of object identifiers. Object identifiers are typed. Their types are represented
by their class names.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 33

Definition. Method header

A method header has the syntactic form (for simplicity we only consider the special
case, where the method has one constant and one variable as formal parameters, the
generalisation of our notions to many parameters is straightforward)

method m (w : WT, v : Var VT)

where w and v are identifiers for parameters and WT as well as Var VT are their types.
Identifiers with constant types carry input and those with variable types serve for output
(carry results).

The set of method invocations INVOC(m) for the method m is defined by the fol-
lowing equation:

INVOC(m) = { m(cl, c2, w, v, v’): w e WT, v, v’ € VT, cl, c2 € Object}

where the phrase d € T expresses that d is a value of type T and m(bl, b2, w, v, v*)
denotes a tuple of values. Here c1 denotes the caller and c2 the callee of the method
invocation. O

For simplicity we do not distinguish between input parameters, transient parameters,
and result parameters. Transient parameters carry both input and output for the method
invocation. Also for simplicity, we do not consider the question, whether the callee is
an object of the appropriate type — more precisely an object of a class that exports the
method m, but take that for granted.

In specification by contract we treat method invocations as atomic state changes.
Later we treat method invocations as sequences of state changes, starting with the method
invocation and ending with its corresponding method return message. In the later case,
method invocations are represented by two messages.

3.1.2. Specification by Contract

A method can be specified by contract as long as we can understand it as a definition of
an atomic state change. To do that, we have to refer to the states of an object or more
precisely to the states of an object oriented system before and after the invocation of a
method.

Definition. States and their Attributes
The states of the objects of a class are determined by the valuations of the attributes of
that class. An attribute is a typed identifier. An attribute set V is a set of the form

V={a :Ti,..,a,:T,}

where ay, ..., a, are (distinct) identifiers and 77, ..., T, are their types. A valuation of the
attribute set V is a mapping

c:V—>UD

where UD is the universe of data values. Of course, we assume for each valuation o that
for each attribute a the value o (@) has the type given to the attribute. o is also called a
state of V. By Z (V) we denote the set of all states for V. (|

Given the concept of a state of attributes and objects we now define what it means
to write a specification by contract for a method.

34 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

Definition. Specification by contract for a Method

Let V= {a: T} be an attribute set (for simplicity of notation we consider again only the
simple case with just one attribute — the generalization to n attributes is quite straightfor-
ward). A specification by contract for a method with header

method m (w : WT, v: Var VT)
in a class with attribute set V is given by the scheme

method m (w : WT, v: Var VT)
pre P(a, w,v)
post O(a, w,v,a’,v")

In this scheme
P(a, w,v)
and
Qa, w,v,a’,v’)

denote predicates — more precisely, formulas in predicate logic called assertions which
contain the identifiers a, w, v and a, w, v, a’, v’ as their free variables. We assume that
each "primed" variable a’, v’ denotes the value of that variable in the state after the ter-
mination of the invocation. O

If
P(a,w,v) = 3a’,v":0(a, w,v,d’,v’)
does not hold then we can enhance the precondition by
P(a,w,v) Ada’,v":Q(a,w,v,ad’,v")
We give a first simple example for a specification by contract. We choose a method from
a class defining lists. We consider the class of lists later and we select only one method
here. To deal with lists we have to have a mathematical definition of the data structure of

sequences underlying the idea of a list. For that purpose we use the following algebraic
specification as a basis defining the types of our examples:

SPEC SEQ =

{ based_on BOOL,
type Seq a,
() : Seq a, "empty sequence"
(():a— Seqa, Mixfix "one-element sequence"
°:Seqa,Seqa — Seqa, Infix "concatenation”

iseseq : Seq a — Bool,
first, last : Seq a — «a,
head, rest : Seq a — Seq a,

index: a, Seq oo — Nat,

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 35

length: Seq & — Nat,

ith : Nat, Seqa — «a,

drop : a, Seq a — Seq a,
cut: Seq a, Nat, Nat — Seq a

]

Seq o generated_by (), (_),°,

iseseq(()) = true,
iseseq(({a)) = false,
iseseq(x°y) = and(iseseq(x), iseseq(y)),

length(()) = 0,
length({a)) =1,
length(x°y) = length(x) + length(y),

ith(1, (a)°y) =a,
ith(n+1, (a)°y) =ith(n, y),

index(a, ()) =0,
index(a, (a)) =1,
a # b = index(a, (b)°x) = if index(a, x) = 0 then O else 1 + index(a, x) fi

drop(a, (a)°x) = x,
a # b = drop(a, (b)°x) = (b)°drop(a, x),

cut(s, i, 0) = ()
cut(s, 0, j+1) = (first(s))° cut(rest(s), 0, j)),
cut(s, i+1, j+1) = cut(rest(s), 1, j),

x°() =x=()x,
(x°y)oz=x0(y"2),

}

We do not go deeper into details of the algebraic specification of data structures
but rather refer to [23]. Throughout this paper we use algebraic specification only as an
auxiliary technique to specify the data types which we refer to in specifications of class
behaviours.

Example. Specification by contract (see [12])
The following section gives a syntactic interface of the class List. We consider only one
method here and assume only one attribute

36 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

v : Var Seq Data

We give the following example of specification by contract for a method that gets access
("reads") the ith element of sequence v:
method get (i : Nat, r : Var Data);
pre 1 <i <length(v)

post r'=ith(i,p) Av' =0
It is essential to write also v’ = v to express that the attribute v is not changed by the
execution of the method invocation. (]

It is important to emphasize that the specification by contract approach requires
knowledge about the local state structure, determined by the attribute names and their
types, of the respective class and object.

In our post-conditions we use a simple notational convention: to avoid a lot of as-
sertions of the form a’ = a, which state that attribute a is not changed, we assume that
an attribute a (or a variable parameter) is not changed, i.e. that @’ = a holds in the
post-condition, if the identifier a’ does not occur syntactically in the post-condition.

3.2. Simple Export Interfaces

We start with interfaces of conventional classes, which we call pure export classes and
resp. export interfaces. An object oriented export interface is described simply by a col-
lection of (exported) class names and the methods offered by them. The description of
a syntactic class interface obviously is simple. It is the collection of a set of syntactic
method headers for each of the classes. Nothing is said about behavioural aspects.

Of course, we gain more flexibility, if we consider also sets of objects as part of
the interface. Since we are rather interested in foundational issues, we do not do that.
Nevertheless, the approach can schematically be extended into this direction.

3.2.1. Simple Object Oriented Interfaces

We start with interfaces of conventional classes which we call "export". An "export"
object oriented interface consists simply of a set of class names and of a collection of
methods M (more precisely a set of methods for each class). For simplicity, we do not
capture in our formalism which of the class names offers which methods, which of course
could be easily formalized, too. A simple class defines and provides only such interfaces.

Example. Syntactic List interfaces
The syntactic interface of the example class List is given by the following set of methods:

interface SynList {
method add (x : Data);
method size (s : Nat);
method get (i : Nat, r : Var Data);
method contains (x : Data, r : Var Bool);
method indexOf (x : Data, r : Var Nat);
method remove (x : Data);

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 37

This example defines just a syntactic interface by listing a set of method headers. It
specifies nothing, however, about the effects or behaviour of these methods. g

The description of a syntactic class interface obviously is simple. It is the collection
of a set of syntactic method headers. Nothing is said about behavioural aspects.

Definition. Syntactic export interface

A syntactic export interface consists of a name (the interface name) and a set of class
names (used as types) and for the class names the set M of method headers. We assume
for simplicity that all methods have different names, since we do not want to deal with
overloading. We also assume that each method is related to a class. By

INVOC(M) = |_J INVOC(m)

meM

we denote the set of all possible invocations of methods that are in the syntactic export
interface M. U

In the following we discuss semantic, behavioural notions of such interfaces. Such infor-
mation is needed if we plan to use the classes without wanting to look at their code.

3.2.2. Specification by Contract for Methods in Export Interfaces

In this section we show how to express specifications of classes by contract. It is essen-
tially based on specifying methods by contract as introduced above.

Definition. State transition assertion
Given a set of attributes V = {a : T} a state transition assertion is an assertion of the form

R(a,a)

that restricts the state changes and also the set of reachable states. If the primed attribute
a’ does not occur in the assertion, we speak of a state assertion (and also of an invariant
for a class), otherwise of a state transition assertion. O

We use state transition assertions and state assertions to provide behavioural speci-
fications for classes in addition to the assertions given for the individual methods in the
specification by contract.

Now we give the definition of the specification of a class by contract.

Definition. Specification of classes by contract

For a syntactic interface consisting of a set of method headers a specification by contract
is given by a set of typed attributes defining the class state and a specification by contract
for each of its methods.

In addition, a state invariant may be given by the construct

invariant Inv(a)

that expresses that every reachable state fulfils Q. In addition, a state transition assertion
may be given by the construct

38 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

invariant R(a, a’)

restricting the state changes to those which lead from state a to state a’ with R(a, a’).
Finally, a state assertion

init P(a)

may be given defining the initial properties. Every invariant Q (a) restricts also the set of
initial states.

An invariant R for an export interface expresses that each method call fulfils R. This
means that R(a, a’) holds for every invocation where a is the attribute value of the state
before and a’ is the attribute values of the state after the invocation.

Example. State transition invariant
For the attribute a the relation @’ = a + 1 used as an invariant expresses that each method
invocation increases the value of a by one. (I

There are two essentially different ways to interpret invariants in specifications by con-
tract for classes. One way is to require that each method respects the invariant. The
other sees in the invariant an additional specification ("constraint") for each method. We
choose the second alternative.

In our case we add each invariant given by the condition Inv and for every method
to its precondition P and to its post-condition Q. This way we get for the modified pre-
condition

P(a, w,v) A Inv(a)
and the modified post-condition where we add each transition invariant
O(a, w,v,a’,v") A R(a,a") AInv(a")

In the reminder of this paper, invariants are seen as implicit parts of the initial state as-
sertions, all preconditions and all post-conditions. This saves some notational overhead.

For the class List it is rather straightforward to provide a specification by contract
based on the algebraic specification of sequences.

Example. List interfaces
An interface for the class List is given by the following set of messages. We use the
attribute v : Var Seq Data. The specification by contract for the interface List reads as
follows:

interface List {

v : Var Seq Data;

initial v = ();

method add (d : Data);
pre true
post v =0°(d)

method size (Var s : Nat);

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 39

pre true
post s’ =length(v) Av' =0

method get (i : Nat, r : Var Data);
pre 1 <i <length(v)
post ' =ith(i,v) Av =0

method contains (d : Data, r : Var Bool);
pre true
post ' = (index(d,v) > 0) AV =0

method indexOf (d : Data, r : Var Nat);
pre index(d,v) > 0
post ' =index(d,v) Av =0

method remove (d : Data);
pre index(d,v) > 0
post v’ =drop(d, v)

}

Invariants restrict the set of reachable states. In this example we do not have to formulate
an invariant, since every state in the state space can be reached. However, we can easily
switch to a version with a specification that shows an interesting invariant. Assume we
introduce a further attribute

le : Var Nat

into the class List which stores the length of the sequence represented by attribute v.
Then obviously we always assume the following assertion to hold

invariant le = length(v)

We may add this equation as an invariant to the class. By our interpretation of invariants
this implies for our contracts for the methods that every method that changes v changes
the attribute le accordingly.]

A specification by contract treats an export interface as a state transition system.
Thus the specification defines, essentially, a state machine by restricting the state space
and the state changes by the specification by contract.

Example. Cell
We give another simple example of a class defining a storage cell.

Class Cell =

{ c: Var Data | {void}
initial ¢ = void
method store (d: Data)
pre c = void
postc’ =d

40 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

method read (v: Var Data)
pre ¢ # void

postc’ =cAv' =c
method delete ()

pre c # void
post ¢’ = void

}
This defines the interface of a simple memory cell. Again there is no nontrivial invariant
involved since all states are reachable. (]

One way of looking at the objects of a pure export class is to see them as state
machines. This view is explained in more detail in the following section.

3.2.3. Export Interfaces described by State Machines

The specification by contract takes an atomic state transition view. Every method invo-
cation results in an atomic state transition. The pre- and post-conditions characterize the
states under which such an invocation can take place to guarantee a certain property of
the generated state. In this section we show that this way essentially a state machine is
defined (see also [15]).

Definition. Class state machine for an export interface
Given an export interface with an attribute set and a set of methods M the associated state
transition function is a partial function of the form

A:Z(V) x INVOC(M) — (Z(V) U {L})

Here for m € INVOC(M) and s, s’ € (V) the equation A (s, m) = s’ expresses that in
state s the method invocation m is enabled and leads to the state s’ (note that m includes
the results of the invocation — thus if m is not enabled in state s it may simply mean that
the results indicated in m of the method invocation cannot occur). If A(s, m) does not
have a defined result, this means that the method invocation m is not enabled in state s.
A(s,m) = L expresses that the method invocation does not terminate. In addition, we
assume a set of initial states /X C Z (V). |

In the definition above we have defined deterministic state machines. In general, we
have to deal with nondeterministic state machines of the form:

A:X(V) x INVOC(M) = @ (Z(V)U {L1})

The state machine associated with a class is easily defined via its specification by con-
tract.

Given a method invocation m(cy, ¢z, w, v,v") for method m with precondition
P(a, w, v) and post-condition Q(a, w, v, a’,v"), we get (if the call terminates) a speci-
fication of a state transition function as follows:

A(o,m) = {c":P(c(a), w,v) A Q(o(a), w,v,0'(a),v)}

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 41

add(d) {v' =v ° <d>}
size(s) { v’ = v A s’ = length(v) }
{1=izlength(v)} get(i, r){v' =var=ith(iv)}
contains(d, r) {v'=v ~ r=(index(d, v)>0)}
{index(d, v) = 0} indexOf (d, r) { V' =v A ' =index(d, v) }

{index(d, v) > 0 } remove (d) { v’ = drop(d, v)}

Figure 1. State transition diagram that describes the state machine of a List

By o (a) we denote the value of the attribute a in state o (a). The state transition diagram
in Fig. 1 shows only a slightly different way to represent the information by a specifica-
tion by contract. It is a simple version of a state transition diagram with only one control
state. Since the set X (V) is in general infinite, it is quite common in practice to pick a
finite abstraction of X (V), implying a description of A as presented in Fig. 1.

Perhaps more appropriate than the diagram is in this case a table as shown below.

Precondition \ Method Invocation | Post-condition
add(d) v =0°{d)
size(s) v =v As' =length(v)
1 <i<length(v) | get(i,r) o' =vAr =ith(i,v)
contains(d, r) v =v Ar = (index(d,v) > 0)
index(d, v) > 0 indexOf(d, r) v =v Ar =index(d,v)
index(d, v) >0 remove(d) v’ =drop(d,v)

Some heuristic for picking the abstraction may be to group equal transitions or to split
complex transition relations into smaller ones on different states.

The difference between a state transition diagram specification of a class and a spec-
ification by contract is mainly a methodological one. In the first case we consider the
states and define which method calls are possible in each state and to which successor
state they lead. In the second case we specify for each method in which states they may
be invoked leading to which successor states. Formally this can be seen just as two ways
of specifying the state transition relation: For each state ¢ € X (v) we define

Ay :(INVOC(M) = p(Z(V)))
For each method m € INVOC(M) we define
Am:(2(V) = p(2(V))

We get form € M and ¢ € INVOC(m):

42 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces
initial

store(d) {c’ = d} read (v){v' =c~c =c}

delete() {c’ = void}
Figure 2. State Transition Diagram for the Interface of the Cell
As(c) = Ao, ¢)
and
Ap(o) = Ao, ¢)

We also may use tables as already shown above to define the behaviour of classes as
well as state transition diagrams, which actually are just a graphical representation of the
tables.

Example. Memory Cell

The memory cell is specified by contract easily as shown in the previous section. This
defines the interface of a simple memory cell. Here there is no nontrivial invariant in-
volved since all states are reachable. It is easy to provide a state transition description for
the state machine modelling a cell as it is shown in Fig. 2. (]

Export interfaces are simple to specify, since they can be modelled by atomic state
changes.

3.2.4. Reachable States

For a state machine given by a set of initial states ¥ C X (V) and a state transition
function

A:Z(V) x INVOC(M) - (2(V)Uu{L}
we define the set of reachable states X C X (V) as the least set that fulfils the following
formulas:

X0 C X

0 €Xpr= A(o,c) e IR

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 43
Every predicate
Pz (V) > B
with
plo) >0 € Xp
is called an invariant. Every predicate with

p(o)= p(A(o,0)

is called stable. Note that not every invariant is stable and not every stable predicate is
an invariant. If for a stable predicate p we have

o€ XZy=>p(o)

then p is an invariant. This is the key idea how to prove that a predicate q is an invari-
ant: find a stable predicate p that implies q and holds for the initial states. Since every
export interface specification defines a state machine the concept of stable and invariant
predicates carries immediately over to classes.

3.2.5. Closed View of Export Interfaces: Systems

By classes with export interfaces we get a closed view onto object-oriented systems. Two
systems with export-only interfaces cannot be composed in a nontrivial way since all we
can do with these systems is to call their methods. The systems never "call back" but
simply respond by a return message. We speak of closed systems. Therefore we may
conclude that such classes describe systems, but not general components.

For such closed system we get a simple concept of observability. What we can ob-
serve is the sequences of method calls, and, in particular, whether method calls terminate
and which results they produce.

4. Limitations of Export Interfaces and Specification by Contract

So far our view onto class interfaces is simple. Every method invocation corresponds
to one atomic state change. This simplicity goes away if we are interested modeling
forwarded method calls explicitly.

4.1. Forwarded Method Invocations

To be able to compose two components in a way that they cooperate they have to ex-
change information. The only sensible way to do this in conventional object orientation
is by mutual method invocation. The possibilities to allow for such forwarded calls and
to compose components on this basis are discussed in the following.

44 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

LinkedList

r’;,_"___.-r—' 2<izle

get (i)

Ir.get (i- 1)

Y

return (d)

A

return (d)

T~ {le=lenlr=lravd=vd'}

Figure 3. Message sequence chart for the method get

The specification of export-only interfaces is particularly simple since it can rely on
a simple control flow. By each method invocation exactly one state transition is executed.
The control is transferred to the component and returned at once. A method invocation
is understood as an atomic action that corresponds to a possible huge state change this
way. This is also called the synchronous view for method invocations. This makes the
execution model extremely simple - too simple for the component world.

The simplicity of this situation changes significantly if we allow and consider addi-
tional invocations of methods (especially of methods of other classes that are not in the
export interface) during the execution of methods. We speak of forwarded method calls.
This way we get a considerably more complex execution model. A method invocation
can be seen as an atomic state change then, only if we comprise also state changes for
the objects affected by the forwarded method invocations in this state change. As a con-
sequence the method invocations change not only the local attributes of the called object,
but also those of other objects, in the general case also of objects that do not belong to
classes in the considered sub-system.

In this section we consider the semantic consequences of further invocations of
methods during the execution of method calls. We study families of classes (and their ob-
jects) that encapsulated states of which are changed by a method invocation by forwarded
method calls.

4.2. Interactive Method Invocation Illustrated by MSCs

In this section we do not understand method calls as events that result in atomic huge
state changes for all the objects affected by forwarded message calls, but consider the
addressed class and object in isolation. A message sequence chart is a good way of
representing an instance of the interaction behaviour of an interactive method invocation

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 45

and illustrates forwarded method invocation. An example for a method get is shown in
Fig. 3.

Here we simplify the representation of the method invocation messages and the re-
turn messages in diagrams. We do not list the identifier of the object in the invocations
explicitly. The message return(d) stands for a return message with the return variable r
with r = d. We can give or even generate a message sequence chart for each of the state
transitions, however, the number of message sequence charts can be very high - even
infinite. We study the situation of forwarded method invocations in a more systematic
way in the following section.

4.3. A Motivating Example for Forwarded Method Invocations

In this section we study a more involved example of a list implementation where lists are
realized by a family of pointer structures. This example serves us to discuss problems of
forwarded method calls.

Example. Lists interfaces for pointer classes
A syntactic interface of the class List is given by the class LinkedList and the following
set of methods. Here we do no longer use the attribute

v : Var Seq Data

but each object encapsulates only one element of the sequence as well as links to the
objects carrying the other elements.

The implementation - now given for illustration purposes by explicit program code
and not by a specification - reads as follows:

Class LinkedList

{ vd: Var Data
Ir: Var LinkedList
le: Var Nat
initial: le = 0 A vd = Nil A Ir = Nil
invariant: le > 0 & Ir # Nil

method add (d : Data):
if le = 0 then vd :=d; le := 1; create.LinkedList(Ir)
else le :=le+1; Ir.add(d) fi

method size (s : Var Nat):
s:=1le

method get (i : Nat, r : Var Data):
if i = 1 then r := vd else Ir.get(i-1, r) fi

method contains (d : Data, r : Var Bool):
if le = 0 then r := false else if vd = d then r := true
else Ir.contains(d, r) fi fi

46 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

method indexOf (x : Data, r : Var Nat):
if vd = d then r := 1 else Ir.indexOf(d, r); r :=r+1 fi

method remove (d : Data):
if vd = d then if le > 1then Ir.get(1, vd); Ir.remove(vd), le :=le-1
else le :=0; vd := Nil
fi
else le :=le-1; Ir.remove(d)

However, this example is not elegant. To improve it we could rather choose perhaps
a different set of methods, perhaps private methods, to provide a more elegant version of
this class. We are not interested in such more elegant versions here, however. Moreover,
the method remove is - as it is implemented - not efficient, since, when invoked, it goes
down the complete list. A more efficient version is obtained as follows:

method remove (d : Data):
if vd = d then if le > 1 then Ir.get(1, vd); Ir.assignrest(Ir), le := le-1
else le :=0; Ir := Nil
fi
else le := le-1; Ir.remove(d)
fi

method assignrest (r : Var LinkedList):
r:=Ir

This change leads, however, a step deeper into programming with pointers. We are inter-
ested in the principle problems of specifying the behaviour of interfaces with forwarded
method invocations and not in pointer structures, which pose additional problems. A dif-
ficult issue, in fact, is to give a specification by contract for that class according to the
forwarded method invocations. Actually, to give an appropriate comprehensive invariant
is already difficult. Actually the invariant should express that the links form a chain of el-
ements of length le without cycles. This can only be expressed informally by introducing
sophisticated operators as shown below(see [17]). (]

The class LinkedList is compatible to the class List and vice versa. Therefore they
provide the same interfaces. However, this is not captured at all in the specification by
contract. Actually the class LinkedList fulfils the specification by contract for the class
List as shown above, however, now the state consists not just of the attributes of the
respective object that represents a sequence, but the sequence is represented by a linked
list of several objects.

To deal with this problem we see two options. Either we try to express the contract
specifications at the level of the object data structures. Then we need a notation that
allows us to express properties of the linked structure of the object data model in terms of
the attributes of referenced objects (see [17]). Another technique is to abstract from that
concrete object state into a sequence and then talk about the sequence in the contracts as
before. This way we collect several objects into one state.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 47

Example. Specification by contract for the pointer class List
Given an object b of type LinkedList we can calculate the sequence represented by b by
the following function:

Fct absseq (b : LinkedList) Seq Data:
if b.le = 0 then () else (b.vd) o absseq(b.Ir) fi

Here we use the notation b.a to refer to attribute a in the of the object b. This function
calculates for every object of type LinkedList, which is not cyclic, a sequence that is rep-
resented by the linked list. If the LinkedList is cyclic the computation does not terminate
and the value of the function call is not defined.

Given this function we easily write a specification by contract. The specification
by contract reads as shown below. Here we write self to refer to the respective object
identifier:

Class LinkedList1 {
vd : Var Data
Ir : Var List
le : Var Nat
initial : le=0Alr=0
invariant: le > 0 => Ir # Nil

method add (d : Data):
pre true
post absseq(self’) = absseq(self) o (d)

method size (Var s : Nat):
pre true
post s’ = length(absseq(self)) A absseq(self’) = absseq(self)

method get (i : Nat, r : Var Data):
pre 1 > i > length(absseq(self))
post r’ = ith(i, absseq(self)) A absseq(self’) = absseq(self)

method contains (d : Data, r : Var Bool): pre true
post r’ = (index(d, absseq(self)) > 0) A absseq(self’) = absseq(self)

method indexOf (d : Data, r : Var Nat);
pre index(d, absseq(self)) > 0
post r’ = index(d, absseq(self)) A absseq(self’) = absseq(self)

method remove (d : Data);
pre index(d, absseq(self)) > 0
post absseq(self’) = drop(d, absseq(self))

In fact, this example specification looks again not elegant. Our notation is not clean.
In fact, it is not "referentially transparent". Actually, the value denoted by self is not

48 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

changed in any of the methods. Therefore writing self” does not make sense. We use this
notation, however, to express that we calculate the sequence absseq(self’) in the state
after the method invocation.]

This example provides a specification of lists, too. In fact, the observable interface
behaviour of List and LinkedList are identical although the specifications by contract
look quite differently. The proof that both classes have the same interface based on the
specification by contract techniques needs a sophisticated theory.

5. Open View: Components with Export and Import

In this section we develop a concept of a component for object orientation. A component
is a syntactic unit that can be composed.

5.1. Methods, Invocations and Return Messages

In this section we introduce an approach to interfaces and components for classes and
forwarded method invocations. In specification by contract we treat method invocations
as atomic state changes. Now we treat method invocations as sequences of state changes,
starting with the method invocation message and ending with the corresponding method
return message. In the latter case, the asynchronous case, method invocations correspond
to two messages.

Definition. In- and Out-Messages for a method header

A method invocation consists of two interactions of messages called the method invo-
cation message and the return message. Given a method header (for explanations see
above)

method m (w : WT, v: Var VT)
the corresponding set of invocation messages is defined by the following equation
SINVOC(m) = m(b1, b2, w, v): w € WT, v € VT, bl, b2 € Object

Here we treat variables as call-by-value-return parameters. The v represents the value of
the variable parameter before the call. The return message has the type (where v’ is the
value of the variable after the execution of the method invocation)

RINVOC(m) = return_m(b1, b2, v’): v’ € VT, b1, b2 € Object

With each method we associate this way two types of messages, the invocation message
and the return message. (]

Given a set of methods M we define the sets of invocation and return messages as
follows:

SINVOC(M) = |_J SINVOC(m)
meM

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 49

Import
Method mi ...

Export
Method me ...

Figure 4. Graphical representation of an export/import interface

RINVOC(M) = |] RINVOC(m)

meM

This way we denote the set of all possible invocations of methods that are in the set of
methods M.

5.2. Export/Import Interfaces

In object orientation, a class uses other classes via their methods as sub-services to offer
its interface behaviour. Thus a class on one hand offers methods to its environment called
an export method and on the other hand invokes methods of other classes called import
methods. We speak of the exported methods and the imported methods of a class. This
idea of exported and imported methods is captured by import/export interfaces.

In the following we deal with issues related to the import and export of interfaces in
more detail.

5.2.1. Syntax of Export/Import Interfaces

In the case of forwarded calls we deal with classes dealing with two kinds of methods,
imported and exported ones. This should be explicitly reflected in the syntactic and se-
mantic interface of object oriented systems. Every interface specification with an explicit
import part and an explicit export part defines a so-called export/import interface.

Definition. Syntactic export/import interface

A syntactic export/import interface consists of two syntactic "export" interfaces repre-
sented by two sets of class names, sets of method headers associated with each class
name, which define the set of export and the set of import methods. Methods in the
set of export methods can be called from the environment, import methods are methods
provided by the environment and can be called by the component.]

For simplicity, we assume that all methods and classes in the export and import
interfaces have different names, since we do not want to deal with overloading. More-
over, we do not treat explicitly in the following the exported types (class names). Given
an export/import interface of a component ¢ we denote by EX(c) its export interface
and by IM(c) its import interfaces, both being simple export interfaces. A syntactic ex-
port/import interface can easily be described graphically as it is shown in Fig. 4.

50 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

A class in object oriented programming, in general, delegates parts of the execution
to other classes via forwarded method invocations and therefore in general has an ex-
port/import interface in spite of the fact that the idea of explicit imported interfaces is
surprisingly not supported by most of the conventional object oriented techniques. Often
the import interface is kept implicit for classes and not mentioned at all in the syntactic
interface description.

Now we give a first example of an export/import interface and its specification by a
state machine.

Example. Accountmanager
We consider a simple class Accountmanager that is an account manager. It is based on
the following three types:

Person the type of individuals that may own accounts
Account the type of accounts (a class)
Amount the type of numbers representing amounts of money

For the class Accountmanager we consider only one export method and one import
method. It uses a function f

Fct f = (x: Person) Account

that relates persons to their account numbers.

Class Accountmanager =

[

export method credit = (x: Person, y: Var Amount, z: Var Account)

import method balance = (y: Var Amount)

}

The account manager calls the method balance of object b, which is a manager of the
money in the account. But for finding out the credit for other persons the credit has to be
determined by issuing back calls. Therefore the proper state machine looks as shown in
Fig. 5 which gives such a state machine with input and output for the account manager.
In this diagram we write on the arcs, which represent state transitions,

{A} ml/m2 {B}

to express that this transition is executed if the assertion A holds and the message ml1 is
received (as input); as an effect of this transition the message m?2 is send (produced as
output) and the state change described by the state transition assertion B takes place.

Note that the state machine requires additional attributes that are not the attributes
that we use in the class Accountmanager such as

b: Var Object
p: Var Person

to store the actual parameters of the call while waiting for the result of the forwarded
call. They can be seen as examples of simple representations of the call stack. (]

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 51

credit(e, self, x, y, z) / balance(self, f(x), y) {b =€, p := x}

return_balance(self, other, w) / return_credit(b, self, p, w, f(p))

Figure 5. Graphical representation of an export/import interface

The example shows also a property more explicitly that is implicit in classes. An
object cannot be revisited by method calls (in this case of method invocations of message
credit) before the call is finished (if we assume that objects are like monitors). If we do
not like this rule, we have to provide another state machine. This will be discussed in
more detail below.

The example also shows that there are cases where the call stack is part of the state
space of the state machine associated with a class. At the level of object-oriented code
this call stack is implicit. When writing specifications, we have to make the call stack
explicit.

5.2.2. Control Flow, Forwarded Calls, Back-Calls, and the Call Stack

When dealing with export/import interfaces we have to deal with call-backs, in general.
In other words, a method invocation for object b may lead to a forwarded call that in turn
may lead to invocation of methods of object b. We speak of a call-back. For forwarded
calls and possible call-backs, we need additional state attributes in the local state of the
interface to be able to find the correct continuation for returned invocations (in the sense
of the return addresses for subroutine calls and for storing the parameters).

In the general case, we have to work with a full call stack. The call stack is the clas-
sical way to manage nested procedure calls or method invocations. Every time a proce-
dure or method is called, the parameters and the return address are pushed onto the call
stack. This way the call stack has to deal with control (such as return addresses) as well
as data aspects (such as parameter values) of pending calls. The call stack determines the
continuation after the return of a forwarded call and provides the local state information
providing the values of the parameters of the call under execution.

5.2.3. Modelling Export/Import Interfaces by 1/O State Machines

In this section we demonstrate how to describe the behaviour of export/import interfaces
by state machines with input and output. Since we have a set of in- and out-messages
related to each of the method headers, this easily generalizes to class interfaces.

Definition. In- and Out-Messages of a syntactic class interface

Let c be a syntactic export/import interface with set EX(c) of export class names and
their methods and the set IM(c) of import class names and methods. It defines a set In(c)
of ingoing messages

In(c) = SINVOC(EX(c)) U RINVOC(IM(c))

and of a set of outgoing messages Out(c) specified by

52 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces
Out(c) = SINVOC(IM(c)) U RINVOC(EX(c)) 0

Since we have a set of in- and out-messages related to each of the method headers
of an export/import interface, we construct a state machine that describes the behaviour
of the export/import interface. It uses the invocation messages in the export interface and
the return messages in the import interface as input and the invocation messages in the
import interface and the return messages in the export interface as output.

Definition. Export/import state machine
Given an interface ¢ with an attribute set V and a set of methods, the associated state
machine has the form (here we work with a total function)

A : State x In(c) = ((State x Out(c)) U {L})

Here for m € In(IF) the equation A(s, m) = L expresses that the method invocation does
not terminate. The state space State is defined by the equation

State = X(V) x CTS

Here CTS is the control state space. Its members can be understood as represen-
tations of the control stack. Since we do not want to go deeper into the very technical
discussion of control stacks, we do not further specify CTS. Of course, we assume that a
set of initial states IState C State is given. O

A convenient way to describe I/O state machines is a state transition diagram. In the
case of asynchronous models of method invocations we work with state machines with
input and output called Mealy machines.

It is not difficult to go - in the case of export-only interfaces - from such a given
Mealy machine

A : State x In(IF) — ((State x Out(IF)) U { L})
to the kind of state machines
A’ Z(V) x INVOC(M) — (Z(V)U 1)

we have introduced for export-only interfaces. In the case of export-only interfaces the
only output messages that exist are return messages. Each transition of the state machine

(s, y) = A(s, X)
determines a transition
7’ = NA(z,¢)
and vice versa. From
(s, y) = A(s, X)

we easily construct the data states z, z” € X (V) from the states s and s’ since in this case
the control stack is trivial. The message ¢ € INVOC(M) with c = m(bl, b2, w, v, v’) with
7’ = A(z, ¢) is determined by x = m(bl, b2, w, v), y = m(bl, b2, v’).

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 53

5.2.4. Closed View of Export/Import Interfaces: Systems

By classes with export/import interfaces we can get a closed view onto object oriented
systems. This means that we consider a method invocation as one state change that
changes the attribute of the called object and all attributes changed by further forwarded
method calls.

For the closed view we may again use the specification by contract idea. However,
then we have to refer in the assertions of methods to the attributes of other objects that
are updated by forwarded calls.

5.2.5. Specification by Contract for Export/Import Interfaces

In the general case of export/import interfaces we have to deal with forwarded calls and
back-calls. As demonstrated this enforces to make the call stack explicit part of the state
space - also in the case of specification by contract.

In the general case of specification by contract for export/import interfaces asser-
tions have not only to refer to the call stack, but also to attributes of objects in their
environment. We demonstrate that again by our example of the account manager.

Example. Account manager (continued)

We consider again the simple class Accountmanager. The account manager calls the
method balance of an object b, which is a manager of the money in the account. But
perhaps this call changes the attributes of object b.

Class Accountmanager
{ Fct f = (x : Person) Account:...

method credit = (x : Person, y : Var Amount, z : Var Account):
f(x).balance(y); z:= f(x)
}
Class Account
{ a, d : Var Nat; a denotes the state of the account, d what is bound by credit

invariant a > d;

method balance = (y : Var Amount)
if a-d > y then d := d+y
elseifa=dtheny:=0
elsey:=a-d;d:=a
fi fi
}

In this example a call of the method credit leads to a call of balance, which may change
the attribute d. The specification by contract for the method credit reads as follows:

method credit = (x : Person, y : Var Amount, z : Var Account):
pre f(x) # nil
post 7’ =f(x)
A f(x).d” = f(x).d+y’

54 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

A (E0af0d >y =y =y)
A (fx).a-f(x).d <y =y =f(x).a-f(x).d)

This shows that we have to refer to attributes of the object f(x) in the method credit. Here
we use again the notation b.a to refer to attribute a of the object b. (]

In the specification by contract we do not actually refer to the export/import inter-
face, in fact. We do not express that method balance is called to change the attributes of
the object f(x). However, we may specify balance in the import specification by contract
and then refer to this specification in the assertions for credit:

Example. Account manager (continued)
We consider again the simple class Accountmanager. The specification by contract of the
export/import interface reads as follows:

Class Accountmanager =

(.

export
method credit = (x: Person, y: Var Amount, z : Var Account):
pre f(x) #nil
post 7z’ =f1(x)
A post(f(x).balance(y))

import

method balance = (y: Var Amount):
pre true
post d =d+y’

A (ad>y=>y =y)
A (a-d<y=>y =a-d)
}

Here post(b.m(y)) stands for the post-condition of the method m modified by replacing
all local attribute identifiers such as a by the global identifiers b.a. (]

The example looks fine but it does not show an additional difficulty: Often several
forwarded calls are executed in specific local states. The order in which the forwarded
methods are called and in which local states introduces another difficulty here. This prob-
lem can be solved, but makes the specification more execution specific and much more
incomprehensible.

5.2.6. Observability for Export/Import Interfaces

For an interface with export and import it makes an essential difference how a system is
seen from the import/export point of view either making the import explicit or keeping
it implicit. For a useful interface description for architectures, we have to make the im-
port explicit. This leads to different idea of observability. Now we observe sequences of
alternating input and output actions as well as the termination of method invocations.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 55

Actually we have now two ways of non-termination. In one case an input message
m in a state s may not lead to an output message. This is indicated by A(s, m) = L.
Moreover, a method invocation will lead to an infinite sequence of in- and out-messages
under certain reactions of the environment.

In this model of observability using I/O state machines we can even do a step in
the direction of concurrency using interleaving. Assume, we send a method invocation
message to a component that triggers an invocation of an import method representing a
forwarded method call. Then a sequential execution the next input message could only be
another invocation message (triggered by a back-call) or the return message to the pre-
vious call. But nothing prevents us from giving an arbitrary invocation message (which
cannot be distinguished from a back-call) and thus to handle interleaved independent
method invocations. We only have to place return messages at the right places in the
input streams (see later). Thus we get a restricted form of concurrency.

5.2.7. Concurrency and Multi-Threading

So far we have mainly considered sequential control flow without concurrency. In more
technical terms we did only consider executions of one thread. This kept our execution
model rather simple. In large distributed systems a more complex model is mandatory.
There are several threads executed concurrently. Then it is no longer valid that a method
invocation leads to a sequence of method invocations and return messages that is com-
pleted before the next method invocation takes place. New method invocations from other
threads may arrive before a method invocation sequence is completed. Several method
invocations are executed, in general, in an interleaving mode.

Decomposing a method call into two complementary message exchanges, the invo-
cation call and the return, which is done to be able to have open specifications of compo-
nents and classes gives an interesting additional option: now we may (or may not) accept
further method invocations before a method call has been completely executed - before it
has sent back its return message. This forces us to freely introduce interleavings of calls
and to introduce language constructs that allow us to avoid them in cases where calls
should be completed before further calls are processed (mutual exclusion).

As aresult of concurrency and multi-threading we get interleaving of single threaded
invocation sequences. This leads also to issues of synchronization to be able to control
the interleaving. Note that now the invocation stack has to be replaced by an individual
stack for each thread.

5.2.8. Control Flow in Export/Import Interfaces

The specification of export/import interfaces gets more involved than that of simple in-
terfaces since in this case we can rely no longer on the simple control flow of method
invocations in terms of atomic state changes. By each method invocation a sequence
of state transitions is executed alternating between those invocations changing the local
state of the considered interface and those triggering state changes in the environment
and producing return messages or even further invocations of messages for the consid-
ered interface (so called call backs).

The control is then transferred several times back to the environment and returned
from the environment several times while executing a method invocation. This control
flow transfer corresponds to a sequence of method invocations and method return mes-
sages. This sequence has a specific structure as shown by the following BNF form:

56 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

SegMIR ::= EMI { IMI {SeqMIR }* IMR }* EMR

Here EMI denotes the set of invocations of export methods, IMI denotes the set of invoca-
tions of import methods, EMR denotes the set of return messages of export methods and
IMR denotes the set of return messages of export methods. SeqMIR denotes the set of
sequences of invocation and return messages that may occur in principle (syntactically)
as results of method invocation of export methods.

Due to application specific logical constraints the set of actually occurring sequences
of method invocation messages and return messages is a subset of SeqMIR. This subset
specifies the invocation protocol. The formula above simply says that sequences of in-
vocation and return messages always start with an invocation of an export method and
always ends with the corresponding return message. If there is a sequence between these
two messages, this sequence starts with an invocation of an import method and always
ends with the corresponding return message. The sequence between these messages can
again be a sequence of invocation sequences for export methods.

Since invocation sequences always have this regularity, each return message can be
related uniquely to its corresponding invocation message and vice versa. Note, the gram-
mar describing the language SeqMIR and the language itself is a Chomsky-2-language
(context-free language) and thus needs a stack to parse it. This corresponds to the call
stack existing for each thread at run time.

5.3. Relating Export/Import Interfaces: Design and Refinement

As we have demonstrated, for object oriented interfaces in its most general form with
call forwarding and call-backs we have to make the call stacks explicit and refer to the
local attributes of the environment in the assertions when working with specification by
contract. This makes specification by contract more difficult and less modular. In the fol-
lowing we introduce a refinement relation for classes and objects in terms of specification
by contract. It provides an answer to our principle of substitutability and compatibility.

5.3.1. Design By Contract

In this section we briefly outline the key idea of design by contract. We explain how to
connect specification by contract to implementations. We deal with export/import inter-
faces.

We explain the general idea of an implementation in terms of design by contract
based on a specification by contract for an export/import interface specification. Given
specifications by contract for both the import and the export interface (we assume for
simplicity that all invariants are included explicitly in the pre- and post-conditions) we
construct a "verified" implementation as follows. We give code for every method in the
export part and prove that the code fulfils the pre- and post-condition specification as
given by the contracts. In the proof we may use for all forwarded calls the pre- and post-
condition from their design by contract assertions. The proof can be, for instance, done
by annotating the code using Hoare logic (see [8]).

Example. Account manager (continued) We consider again the simple class Account-
manager. The account manager calls the method balance of an object b, which is a man-
ager of the money in the account. We do not give the proof.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 57

Class Accountmanager
{ Fect f = (x : Person) Account: ...
export
method credit = (x : Person, y : Var Amount, z : Var Account):
pre f(x) # nil
post 7’ =1(x)
A f(x).d’ = f(x).d+y’
A (EEafd >y sy =y)
A (f(x).a-f(x).d <y =y’ =f(x).a-f(x).d)
body f(x).balance(y); z:= f(x)

import
a, d : Var Nat;
invariant a > d;

method balance = (y : Var Amount):
pre true
post d’ =d+y’
A (a-d>y=y =y)
A (a-d <y=>y =a-d)
}

The proof that the body of the method credit is correct with respect to the pre/post-
condition is quite straightforward using the pre/post-condition of the method balance.
|

A design by contract including a proof for a component with export and import methods
reads as follows:

Step 1: Specify: Specification by contract (SbC): We give SbCs for all methods
Step 2: Design: Component implementation

e We provide a body for each exported method

e Only method calls are allowed in the bodys that are either in the export or import
parts (no calls of "undeclared" methods)

e The body is required to fulfil the pre/postconditions

Step 3: Verify: Component verification

e Verify the pre/post-conditions for each implementation of an export method

e We refer to the SbCs for the imported (and the exported) methods use in nested
calls in the bodies when proving the correctness of each exported method w.r.t. its
pre/postconditon

An interface specification is called correctly implemented if for every export method a
body ("code") is given with an assertion proof along the lines described above.

There is some similarity to Lamport’s TLA (see [10]) where systems are modelled
by

58 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

The set of actions a system can do

The set of actions the environment can do

Actions are represented by relations on states
Fairness/lifeness properties by temporal logic on system runs
Difference: actions are atomic - method calls are not

We may, in addition, structure the export and import part into (see chapter 6)

e a set of pairs of export and import signatures that are sub-signatures of the overall
export and import interfaces

e This pairs may be called sub-interfaces

e This leads in the direction of connectors

Given export/import components ¢; with i = 1, 2, and export signature EX(c;) and import
signature IM(c;) we assume that J3({c1, c2}) holds, if there are no name conflicts. Then
export signature EX and import IM of the result of the composition ¢; ® c; is defined by

EX(c1 ® c2) = (EX(c)\IM(c2)) U (EX(c2)\IM(c1))
IM(c1 ® c2) = (IM(c)\EX(c2)) U (IM(c2)\EX(c1))

The composed component ¢ =c1 ® c2

e exports what is exported by one of the components and not imported by the other
one and

e imports what is imported by one of the component and not exported by the other
one.

e Methods that imported by one component and exported by the other one are bound
this way and made local

Actually we get local (hidden) methods that way, we ignore that to keep notation simple.

5.3.2. Verification of composed components

Let all definitions be as before and assume given SbC for all methods. For proving the
correctness of composition we prove

e for each exported method m with pre-condition P,, and post-condition Q.
e that is bound by some imported method m with pre-condition P;, and post-
condition Qj,, such that

Pim = Pex Qex = Qim
This gives the general pattern for the d Design by contract for the export/import case:

Step S: Specify system: Export only SbC

Step A:Develop the architecture
Step AD: Design architecture: List components and their export/import methods
Step AS: Specify architecture: Give Export/Import SbC for all components
Step AV: Verify architecture: Show that for the exported method calls the
specification be contracts can be proved.

Step I: Component implementation
Step ID: Design: We provide a body for each exported method

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 59

Only calls are allowed that are either in the export or import parts

(no calls of "undeclared" methods)

Step IS: Specification taken from architecture: The body is supposed to fulfil

the pre/post-conditions

Step IV: Component verification: SbCs for imported methods are used when

proving the correctness of each exported method for its pre/postconditon
Step G:Component composition - integration: correctness for free

This gives a general scheme how to proceed in design by contract and to keep component
implementation and verification and architecture verification independent.

5.3.3. Refinement

In this section we discuss a notion of refinement that fulfils the idea of substitutability.
Given two interfaces described by specifications by contract, we relate them by re-
lating their states and their pre- and post-condition.

Definition. Refinement

Let two export/import interfaces IF1 and IF2 be given, specified by contract. Let V1 and
V2 be their attribute sets. We call IF2 a refinement of IF1 if the following conditions
hold:

e EX(IF1) C EX(IF2) and IM(IF2) C IM(IF1); this means that the refined interface
offers more methods and uses less.
e There exists a function p: X(V2) — X (V1) called state mapping such that

* For the specified invariants I1 and 12 (and in analogy for the initial state asser-
tions) of the interfaces we require forallo 1 € £(V1), 62 € X(V2):

I1(c1) = 302 € 2(V2):p(62) =1 A12(c2)

12(c2) = I1(p(c2))
* For all methods m in EX(IF1) (let P1 and Q1 be the pre- and post-conditions
of m in IF1 and P2 and Q2 be the pre- and post conditions of m in IF2) we

require:

P1(p(c2)) A 12(c2) = P2(52)

02(62) A 12(02) = Q1(p(c2))

* For all methods m in IM(IF2) (let P1 and Q1 be the pre- and post-conditions of
m in IF1 and P2 and Q2 be the pre- and post conditions of m in IF2) we require:

12(62) A P2(c2) = Pl(p(c2))

01(p(c2)) A 12(52) = 02(c2) O

60 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

These formulas mimic the situation where we replace an implementation with interface
IF1 by an implementation with interface IF2. Doing so, we assume that in the implemen-
tation of IF2 (and also in that of IF1) we call imported methods. Every time we call an
imported method in the implementation of IF2 we assume when calling it that the pre-
and post-conditions according to the import specifications hold. This is done in state, say
0 2. Seen in terms of the original program, this is as if the method is called in state p (¢ 2).
The refinement condition then guarantees that also the original precondition P1(p(c2))
holds. After the call Q1(p(02)) can be assumed; by the refinement condition we can as-
sume that the assertion Q2(¢2) holds. If we add methods that respect the invariants to
the export part of an interface we get a refinement. The definition shows a way to prove
refinement relations between interfaces. In this case, since the specification by contract
captures all the effects of calls of exported methods, this relation is most relevant. For
imported methods the refinement relation is mainly of interest in cases where implemen-
tations exist and we want to make sure that these also work in the refined case if we call
the imported functions of the interface IF1 instead of those of the interface of IF1.

Refinement is helpful in a number of situations to relate interfaces and components.
It supports the stepwise introduction of more and more specific properties.

6. Towards a Theory of Components and Architectures in Object Orientation

In this chapter we discuss where we are with our theory of components and architectures
in object orientation. In this section we relate the introduced notion of object orienta-
tion to those of the theory introduced in section 3. We discuss the state of the art and
methodological challenges.

6.1.1. What is a Component in Object Orientation

In object orientation an obvious first choice for the notion of a component is a class. Ac-
tually one can argue that rather objects should be considered components. We, however,
prefer to see components as building blocks at design time in contrast to objects that are
rather building blocks at runtime. So, for our purpose, classes or compounds of classes
are an obvious choice. But is a class really a good choice for the notion of a component?

Obviously classes have a lot of properties addressing the idea of components. There
is a notion of interface, state encapsulation, and information hiding for classes as we
would expect it for components. There are, at least, two arguments, however, throwing
some doubts on the idea that classes may be good candidates for components:

e Classes are too small. Actually, of course, one may argue that we can write very
large classes. But then we get unstructured huge entities. For components we
need larger building blocks with additional hierarchical structuring concepts (the
threads of Java are a much too low level concept).

e The concept of concurrency is not support by conventional classes.

e There is no tractable interface specification technique for classes with export and
import.

This shows that classes, although they provide concepts close to what we need for com-
ponents, fail to address necessary requirements for the notion of components.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 61

6.1.2. What is Composition in Object Orientation

There is no widely accepted concept of composition in object orientation. Nevertheless,
it is not so difficult to define a concept for composition in object orientation. Given two
classes with export and import methods (where import methods are related to objects of
certain classes), we can compose them in a way, where classes may mutually call meth-
ods in their import signature that are in the export signature of the other class. We speak
of internal calls. For simplicity, we ignore any problems that may arise with inheritance
and method overloading where methods may be called for classes with names that do not
occur in the export of the class or methods. So we concentrate on the method names and
ignore any aliasing.

We start with the definition, when two classes can be defined. Given classes ¢; with
i=1, 2, and export signature EX(c;) and import signature IM(c;) we define that %t ({c1,
c2}) holds, if there are no name conflicts. Then export signature EX and import IM of
the result of the composition c1 & c2 is defined by

EX(c1 ®c2) = (EX(c1) \ IM(c2)) U(EX(c2) \ IM(c1))

IM(c1 ® c2) = (IM(c1) \ EX(c2)) U(IM(c2) \ EX(c1))

In other words, in the composed class ¢ = ¢1 ® ¢ exports what is exported by one of
the classes and not imported by the other one and imports what is imported by one of its
component classes and not exported by the other one.

Next we consider the semantic composition of the two state machines associated
with the classes or interfaces ¢; (i=1, 2):

Ni:State; x In(c;) = (State; x Out(c;)) U {L}

Now we define the composed state machine

A:State x In(c) = (State x Out(c)) U {Ll}

as follows

State = Statey x Staten

and for x € In(c) and (s1, 52) € State; x State; we define:

x e ln(cr) A (s, y) = £16s1,%) = y € In(ca) = A((s1, $2), X) = A(s7,52), ¥)

Ay & In(ea) = A(s1,9), %) = ((s]552), ¥)
x € In(c1) A Aq1(s1, x) =L= A((s1, 52),x) =L

In other words, we give the input to that state machine to which the input fits. If the
output is in the input of the other state machine, we do another state transformation. If
this is done forever, then the state transition does not terminate, and thus A(sy, 52), X) =
L . In analogy we define the case where the input goes to the second component:

62 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

x € In(c) A (s/z, y) = Dalsa, x) = y € In(cy) = A((s1, 52), x) = A(sq, s/z), y)

Ay & 1In(cr) = A((s1,52), %) = (51, 5), ¥)
x € In(c) A Do(s2, x) =L= A((s1, 52),x) =L

This gives a recursive definition for the state transition function A for the composed
component. This way we define

A=A A

Actually, this way of definition results in a classical least fixpoint characterization
of the composed transition relation A

6.1.3. What is a System in Object Orientation

A system in object orientation in terms of our theory is a class or a set of classes (perhaps
a composed one) with an empty import signature. A system nevertheless can actually be
composed with a component in an interesting way. Consider a system s with the export
set EX(s) and import set IM(s) = @ and a component ¢ with EX(s) C IM(c). Then the
term ¢ ® s describes a composed system where s is used as a local sub-system. For two
systems composition degrades to the union of the signatures.

6.1.4. Intermediate Conclusion

We have defined a first step of an instance of a theory of components, interfaces, and
composition in object orientation. What we presented is certainly not sufficient for prac-
tical purposes. However, it gives a first idea what can be achieved and shows the limita-
tions of existing approaches and unsolved problems.

Perhaps, it is worthwhile to draw a bottom line for what we have achieved by our
theory and also to draw some conclusions:

e We defined a concept of component in OO as a generalization of the concept of
a class: a component is a set of classes and their visible methods, divided into
export, import and internal (hidden) ones.

e We described a model for this concept of components, namely state machines
with input and output.

e We introduced composition for this concept of components.

e But we pay a (too) high price: we have to make the call stack explicit in the state
space of the machine, in general.

There seems to be only one way out: introducing an explicit notion of a component,
defining a wrapper for a set of classes and the methods (being the components in object
orientation as we have introduced them), and connecting them by asynchronous message
passing.

6.2. Components in Object Orientation

Based on the idea of export/import interfaces we define the general notion of a compo-
nent. Following ideas of architectures where each component is connected over a num-

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 63

Import
Method m...
Export
Method m...
component C
Import
Method m...
Export
Import Method m...
Method m...
Export
Method m...

Figure 6. Component with three individual export/import interfaces

ber of separate interfaces to components we generalize now export/import interfaces to
object-oriented components where a component has a collection of export/import inter-
faces.

Multiple export/import interfaces have proven to be useful when specifying systems
top down, since in this case distinct functionalities may be assigned to a single compo-
nent without specifying how these tasks are accomplished. Multi-threaded components
are helpful when specifying systems with certain response time requirements and mul-
tiple users / neighbour systems or when separating complex computation (e.g. search,
simulation, remote access) from control interfaces (e.g. GUI). As a consequence, a con-
ventional class as found in object orientation is a special case of a component which is
only single-threaded and has only one export/import interface.

Definition. Syntactic component interface
A syntactic component interface consists of a set syntactic export/import interfaces.

A component with a set of syntactic export/import interfaces can easily be described
graphically as shown in Fig. 6.

We can take an arbitrary export/import interface and turn it into a component by par-
titioning it into a set of sub-interfaces. On the other hand we always can turn a component
into an export/import interface by taking the union over all import interfaces forming
one huge import interface and also taking the union over all export interfaces forming
one huge export interface. In other words the separation into a number of export/import
interfaces provides additional structure but does not lead to more complex models of be-
haviour.

We now give a first, moderately complex example of a component and its specification.

Example. Authorization
We base our specification on a data model for the authorization component. We can do
this by an algebraic specification as it was shown for sequences. Since the axioms are

64

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

interface AuthorizationOracle {
export

pre knowlUse(x, a) ~ know (y, a)
postr' =isAuth (x,y,a)

Method mayPerform(x : User, y : Action, r : VarBool)

component Authorization

interface AuthorizationAdmin {
export

Method exitUser (x : User, r: Boal)
pre true
postr = knowUse(x, a)

Method void AddUser { User x)
pre true

Figure 7. Component Authorization

rather straightforward, we skip them.

SPEC
{

Axioms

AUTH =
based_on BOOL, User, Action

sort Auth,

eauth : Auth,

addAct : Action, Auth — Auth,
addUse : User, Auth — Auth
addAuth : User, Action, Auth — Auth

knownUse : User, Auth — Bool,
knownAct : Action, Auth — Bool
isAuth : User, Action, Auth — Bool

delAct : Action, Auth — Auth,
delUse : User, Auth — Auth
delAuth : User, Action, Auth — Auth

"Empty authorization"
"new action”
"new user"”

"del action"
"del user"

Auth generated_by eauth, addAct, addUse, addAuth

The design by contract for the component based on this specification is directly
based on this specification and reads as follows (example due to [19]):

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

Component Authorization {

a: Var Auth
interface AuthorizationOracle
{
export
method mayPerform (x : User, y : Action, r : Var Bool)
pre knownUse(x, a) A knownAct(y, a)
post r’ =isAuth(x, y, a)
1
interface AuthorizationAdmin
{
export
method existUser(x : User, r : Var Bool)
pre true
post r’ = knownUse(x, a)
method addUser(x : User)
pre true
post a’ = addUse(x, a)
method removeUser(x : User)
pre true
post a’ = delUse(x, a)
method existAction(v : Action, r : Var Bool)
pre true
post r’ = knownAct(x, a)
method addAction(y : Action)
pre true
post a’ = addAct(x, a)
method removeAction(y : Action)
pre true
post a’ = delAct(x, a)
method allow(x : User, y : Action, r : Var Bool)
pre knownUse(x, a) A knownAct(y, a)
post a’ = addAuth(x, y, a) A r’ = not isAuth(x, y, a)
method disallow(x : User, y : Action, r : Var Bool)
pre true
post a’ = delAuth(x, y, a) A r’ =isAuth(x, y, a)
method getAllowedActions(x : User, actionlist : Var List)
pre true
post act € actionlist < knownAct(act, a)
method getAllowedUsers(y : Action, userlist : Var List)
pre true
post user € userlist < knownUse(user, a)

1

65

66 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

A graphical representation of the component Authorization is shown in Fig. 7. In this
case we work only with an attribute that is global to all interfaces of the component. It is
not a problem to introduce attributes that are local to the interfaces. Formally this is just
a restricted use of general attributes. (]

The specification by contract of a component is like that of an export/import inter-
face as long as we do not consider the structure of forwarded calls and back-calls. The
specification expresses that the component works properly and has the indicated effects
as long as the environment provides the imported methods as specified. If there is a more
complicated situation due to forwarded invocations and back-calls we have to work with
the more involved specification techniques such as state machines as discussed above.

In the next section we show how to relate interfaces of components to compose the
components.

6.3. Interface Abstraction by Functions on Streams

So far we have modelled interfaces by state machines. Actually, the state space is thus
part of the interface model. At the end there are several state machines modelling in-
terfaces that are observably equivalent, but use different state spaces. One way to relate
these state machines are simulations in terms of relations between the state spaces that
relate states (or sets of states) with the same traces of pairs of input output in the state
transitions. Another possibility is the definition of a mapping that assigns an explicit de-
notation for a state machine for each state in terms of a function on sequences also called
streams. This function is called interface abstraction. It is specified as follows: given a
state machine.

A:State x In (c) — (State x Out (c)) U {L}
we specify a function
ap:State = (In (c)* — Out (c)*)

by (let x € In (c)*;by (i)"x we denote the concatenation of a one element sequence (i)
with the stream X)

(6°,0) = A(0,i) = aalo) ()" x) = (0)" aa(o”) (x)

A(o,i)y =L = ap(o) ((() x) =)

Obviously aa (o) is prefix monotonic. aa (o) is the abstract interface for the state
machine(A, i), which is the state machine with the initial state A. Two classes c1 and
¢2 are observably equivalent, if and only if their state machines(A1, g 1) and (A2, 62)
fulfil the equation

ap1 (01) =ap2(02)

This definition is rather abstract. However, we get a quite concrete idea of a specification
following this idea by specifying equations.

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 67

AccountManager

credit (e, self, x, y)

balance (self, f(x), y)

[
o

return_balance (self, other, w)

return_credit (e, self, x, w)

-
-

Figure 8. Message sequence chart for the Accountmanager

Example. Account manager (continued)
We reconsider the simple (class Accountmanager). We define the associated function a
by one equation:

o ((credit (e, self, x, v, 2))" (return_balance (self, other, w))" x) =

(balance (self, f(x), Y)))" (return_credit (e, self, x, w, f(x)))" a(x)

In this case the specification fairly simple due to the simple structure of the class. In
particular, the problem of making the stack explicit disappears.

Note that the sequence chart in Fig. 8 has according to [4] exactly the meaning of
the formula above.]

The example shows a line of specifications of export/import interfaces. A better-tuned
syntax - for instance special tables - is needed, of course, to make it into a useful tech-
nique. Representing object/class behaviours by functions on streams we can use all the
specification techniques available for stream process functions (see [3]).

6.4. Interface Projection

We may hide some export and import methods in an interface. This is a way to get
simplified versions of a component and simplified views on interfaces. Assume we have
a huge component with many interfaces. A large state machine can, in principle, give a
precise description of the behaviour of the component in a state based approach. Such a
comprehensive behaviour may be rather complex and difficult to understand. Often we
are interested in the behaviour of a component with respect to an isolated interface. More

68 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

precisely, we assume that all transitions with methods that are not part of that interface
are internal and nondeterministic. Given a state machine

A:State x In (c) > (State x Out (c)) U {Ll}

we define the interface projection to the sub-interface c> as follows.We define the nonde-
terministic state machine (let ¢ be the export/import interface with EX(c>) = IM(c\¢’)
and IM(c») = EX(c\¢’)).

A":State x In (c”) — ¢ (State x Out (¢”))

specified by the transition function, that may respond to every call with arbitrary return
messages and arbitrary back calls. The machine is highly nondeterministic. We only as-
sume for the machine that it follows the proper scheme of calls and returns (only returns
occur for calls that have been issues). Now we define the projection

A":State x In(c') = @ ((State x Out(c)))U{ L}
by
A=A A

This definition puts arbitrary input and output on the hidden methods. The idea of hidden
state transition proves to be useful also elsewhere. Interface projections are refined by
the original interface.

7. Composition

In this chapter we finally deal with the composition of components. We are interested in
composing two or more components into a composed component. We do that by con-
necting their interfaces. Due to the typical graphical descriptions of object orientation by
diagrams most object oriented methodologies do not consider the composition of classes
at all. In this section we show how to compose classes by connecting their interfaces.
One reason for ignoring composition by most of the approaches to object orientation
has to do with the fact that imported methods are kept implicit and the behaviour is not
described by an open component architecture. Only if we make export/import of methods
explicit and use modular specifications, composition is turned into an interesting concept.

7.1. Connecting Interfaces

In this section we study the composition of components by connecting some of their
interfaces. This means that we bind imported methods of one component with exported
methods of the other one.

In general, we cannot obtain a pure input/output oriented description of a composed
system in a straightforward way from the state machines describing the sub-systems that
are composed. The reason is that some unbounded chain of method invocations may take

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 69

Import Import
Method m... Method m...
Export Export
Method m ... Method m ...

CA[EX(CAIl)— M(CAI)]CB
component CA]’ T component CB

CAl : Import CBI : Import
Method m1 ... Method m2 ...
Export Export
Method m2 ... Method m1 ...

Import Import

O Method m... 0 Method m....
Export Export
Method m ... Method m ...

Figure 9. Component composition by connection

place between the subsystems within the composed system. This corresponds to state
transitions without input or output.

In the following we give a general approach to composing components. In particular,
we show how to incorporate all the local state changes.

7.1.1. Syntactic Connection via Interfaces

To give a syntactic notion of component composition we define the matching of ex-
port/import interfaces.

Definition. Syntactic Matching export/import interfaces
Given an export/import interface F we call an interface F* matching with F, if IM(F’) C
EX(F) and IM(F) C EX(F’).]

If we have two components CA and CB such that CA has an interface CAI that
matches the interface CBI of CB, then we can connect the components via these two
interfaces.

Definition. Composing two components via matching interfaces

Given two components CA and CB such that CA has an interface CAI that matches
the interface CBI, then we can connect these into component denoted by CA[CAI <>
CAI]JCB. This component has the union of the sets of interfaces of CA and CB as its
interface except CAI and CBL |

Fig. 9 shows the composition of the two components by connecting the matching in-
terfaces. In fact, this definition of composition by connecting interfaces is only syntactic
and rather straightforward.

7.1.2. Composing a State Machine from Two by Interface Connection

If we consider two components CA and CB such that CA has an interface CAI that
matches the interface CBI of component CB, then we can connect these. Assume both

70 M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

components are described by state machines. Let the objects al and b2 of CA and CB
resp. be given by state machines with state spaces X (V1) and X(V2). Let us compose al
and b2 by connecting their interfaces CAI and CAB. We get a state machine with state
space X(V1 U V2).

Fig. 9 shows the composition of components. The construction of the composed state
machine is as shown before. More difficult is the derivation of the specification or the
design by contract specification for the new state machine out of the given specifications
of the original state machines or the original design by contract specification.

The difficulty here is as follows. If we connect the two interfaces there may be a stat-
ically unbounded number of method invocations going on between the two components
over the connected interface in terms of forwarded method calls and back calls. We speak
of "internal chatter". These method invocations correspond to internal state changes af-
ter the composition. We need in the general case an invocation stack as part of the state
of the new component to be able to determine where to continue after return messages
arrive. If we have introduced such a stack as shown in section 5.2, we get internal state
transitions that we would like to get rid of. Moreover, we have to characterize the gener-
ated states as required in the post-condition while the generated state may be the result
of many method invocations going back and forth between the two components.

In technical terms each method invocation at the connected interface results in a
state transition in which something is pushed onto the stack and each return results in a
state transition where something is popped from the stack.

7.2. Other Forms of Composition

Given a syntactic notion of component in object orientation and a notion of composi-
tion the semantically interesting issue is how to model and express composition at the
semantic level.

7.2.1. Composition and Semantic Models for Components

We have considered three concepts for representing the meaning of components inde-
pendent of code: specification by contract, state machines, and functions of streams of
invocation messages.

We have explicitly defined composition for state machines representing behaviours
of nondeterministic components. Another idea would be to introduce composition for
stream processing functions representing behaviours of nondeterministic components. In
fact, this can be defined along the lines of [3].

We do not work out and show this composition explicitly. We only remark that this
can be done in a way such that interface abstraction and composition form commuting
diagrams - in other words, interface abstraction is a homomorphism for composition on
state machines to composition on stream processing functions.

Note that giving a composition in terms of design by contract interface specifications
is a more difficult problem. The key problem is to find the pre- and post conditions of the
composed component.

7.2.2. Inheritance

We did not consider, inheritance, at all. There are several reasons for that. First of all,
inheritance is mainly interesting for either discussing the type structure of the types that

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces 71

correspond to classes or, at the code level, for dealing with its effects to inherited code.
This allows for methodologically unclean methods such as overwriting of method code
in inherited methods.

Another issue of inheritance is the clean description of the type structure (see, for
instance, [5]). We are not interested in the type structure in this paper.

The effects of inheritance on the notion of observability, is, however, of some rel-
evance for our theme. An interesting question is, whether inheritance can be seen as a
form of composition. In fact, assuming multiple inheritance, where a class can inherit
attributes and methods, we may speak of a kind of composition. On one hand, this is se-
mantically not very interesting, as long as this way unions of families of disjoint attribute
and method sets are formed. If, however, this way methods are added that allow for new
state changes, for instance, then old invariants may become invalid. This poses questions
for the specification by contract in the presence of inheritance.

More interesting, however, is the effect of inheritance for observability. By inheri-
tance we get an additional concept of observability that allows us, in principle, to observe
all the implementation details of a class - details that should be protected by information
hiding.

8. Concluding Remarks

Object orientation is a popular programming paradigm that is used quite a lot in prac-
tical projects. As we have demonstrated, the methodology for object orientation is still
insufficient and incomplete. We demonstrated the limitations and shortcomings of cur-
rent approaches. Some may be due to the chosen specification concepts. Others are in-
herent to object orientation and part of this paradigm. We introduced a general notion of
component, but still a tractable specification method is not available.

There are a number of directions of research to overcome the described difficulties.
One step could be to introduce an explicit notion of component into object oriented
languages with a different composition paradigm - such as for instance asynchronous
message exchange between components, which encapsulate a family of classes, which
cooperate locally by method invocation. Then components form the architecture, which
can be hierarchically structured, while the class concepts inside the components represent
a detailed design.

Another step would go into a more interaction oriented direction where the cooper-
ation between classes and their objects is specified in terms of method invocation proto-
cols along the lines of assertions on streams as used in FOCUS (see [3]).

Acknowledgement

It is a pleasure to thank Andreas Rausch, Bernhard Rumpe and Siedersleben for discus-
sions and feedback on topics of this paper. Thanks go also to Andreas Bauer und Tobias
Hain for reading drafts.

72

M. Broy / Specifying, Relating and Composing Object Oriented Interfaces

References

(1]
(2]

(3]
[4]

(31

(6]

(71

(8]
(91

[10]
[11]

[12]
[13]

[14]

[15]
[16]
[17]

[18]
[19]

[20]
[21]

[22]

[23]

[24]

M. Barnett, R. DeLine, B. Jacobs, M. Fihndrich, K. R. M. Leino, W. Schulte, H. Venter: The Spec#
programming system: Challenges and directions. Position paper at VSTTE 2005

M. Broy, C. Hofmann, I. Kriiger, M Schmidt: A Graphical Description Technique for Communication
in Software Architectures. In: Joint 1997 Asia Pacific Software Engineering Conference and Interna-
tional Computer Science Conference (APSEC’97/ICSC’97)

M. Broy, K. Stglen: Specification and Development of Interactive Systems: FOCUS on Streams, In-
terfaces, and Refinement. Springer 2001

M. Broy: The Semantic and Methodological Essence of Message Sequence Charts. Science of Com-
puter Programming, SCP 54:2-3, 2004, 213-256

M. Broy, M. V. Cengarle, B. Rumpe; Semantics of UML. Towards a System Model for UML. The
Structural Data Model, Technische Universitdt Miinchen, Institut fiir Informatik, Report TUM-10612,
Juni 06

L. de Alfaro, Th. A. Henzinger. Interface-based design. In Engineering Theories of Software-intensive
Systems (M. Broy, J. Griinbauer, D. Harel, and C.A.R. Hoare, eds.), NATO Science Series: Mathe-
matics, Physics, and Chemistry, Vol. 195, Springer, 2005, pp. 83-104

D. Herzberg, M. Broy: Modeling layered distributed communication systems. Formal Aspects of
Computing 17:1, May 2005, 1-18

C.AR. Hoare: An Axiomatic Basis for Computer Programming. Comm. ACM 12, 576-583 (1969)

I. Kriiger, R. Grosu, P. Scholz, M. Broy: From MSCs to statecharts. In: Proceedings of DIPES’98,
Kluwer, 1999

L. Lamport: Specifying Systems: The TLA+ Language and Tools for Harware and Software Engi-
neers. Addison-Wesley Professional 2002

G. T. Leavens, K. R. M. Leino, P. Miiller: Specification and verification challenges for sequential
object-oriented programs. TR 06-14, Dept. CS, Iowa State University, 2006

Bertrand Meyer: Object-Oriented Software Construction, Prentice Hall, 1988

Bertrand Meyer: Applying "Design by Contract ", in Computer (IEEE), 25, 10, October 1992, pages
40-51

P. Miiller, A. Poetzsch-Heffter: Modular Specification and Verification Techniques for Object-
Oriented Software Components. In: Leavens, G. T. and Sitaraman, M. ed., Foundations of
Component-Based Systems. Cambridge University Press 2000

Oscar Nierstrasz: ECOOP’93 - Object-Oriented Programming, 7th European Conference, Kaiser-
slautern, Germany, Jul 26-30, 1993, Proceedings Springer 1993

D. Parnas: On the criteria to be used to decompose systems into modules. Comm. ACM 15, 1972,
1053-1058

A. Poetzsch-Heffter: Specification and Verification of Object-Oriented ProgramS. Habilitation thesis,
Technical University of Munich, Available, January, 1997

B. Selic, G. Gullekson. P.T. Ward: Real-time Objectoriented Modeling. Wiley, New York 1994

J. Siedersleben: Moderne Software-Architektur. Umsichtig planen, robust bauen mit Quasar. Dpunkt
Verlag, August 2004

M. Spivey: Understanding Z - A Specification Language and Its Formal Semantics. Cambridge Tracts
in Theoretical Computer Science 3, Cambridge University Press 1988

G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language for Object-Oriented Develop-
ment, Version 1.0, RATIONAL Software Cooperation

P. Wegner, S.B. Zdonik: Inheritance as an Incremental Modification Mechanism or What Like Is and
Isn’t Like. In Proceedings ECOOP’88, ed. S. Gjessing and K. Nygaard, Lecture Notes in Computer
Science 322, Springer-Verlag, Oslo, Aug. 15-17, 1988, 55-77

M. Wirsing, P. Pepper, H. Partsch, W. Dosch, M. Broy: On hierarchies of abstract data types. Technis-
che Universitit Miinchen, Institut fiir Informatik, TUM-18007, May 1980. Revidierte Fassung: Acta
Informatica 20, 1983, 1-33

P. Zave, M. Jackson: Four dark corners of requirements engineering. ACM Transactions on Software
Engineering and Methodology, January 1997

Software System Reliability and Security 73
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 10S Press. All rights reserved.

Using Invariants to Reason About
Cryptographic Protocols

Ernie COHEN
Microsoft Corporation, Redmond, USA

Abstract. This tutorial describes how to reason about cryptographic protocols in
perfect cryptography models using ordinary program invariants.

1. Introduction

If there is a lesson to be learned from the last 30 years of concurrent programming re-
search, it is that the most effective way to prove safety properties of most concurrent
programs is to use global invariants, and that improvements to concurrent programming
reasoning methodology come from finding better ways to structure these invariants.

A good example is the analysis of cryptographic protocols in perfect cryptography
models. For many years, the research community virtually ignored invariance reasoning,
wandering through dead-ends such as special-purpose epistemic logics. When hitherto
undiscovered bugs finally drove the community back to operational models, the first in-
variance proofs were initially difficult, requiring complex, recursive invariants that were
specific to the particular property being proved[6,5]. A major simplification came with
the discovery of a new invariant structure that simultaneously took into account the whole
system state[2].

In this tutorial, we present a simple way to use ordinary program invariants to reason
about cryptographic protocols. Of course, few readers need to do such reasoning. We
present the tutorial because there is a tendency nowadays to thing of invariants as big,
unstructured set of states that should be generated by finite-state exploration. In fact, a
suitable invariant structure is the key to effective reasoning in any new program domain.

2. Cryptographic Protocols

Cryptographic protocols can be viewed as distributed programs with three distinguishing
features:

e they are designed to operate in a hostile communication environment, where
an adversary with certain computational abilities controls the communication
medium;

e they make essential use of secrets, typically created through random number gen-
eration;

74 E. Cohen / Using Invariants to Reason About Cryptographic Protocols

e they use encryption to hide these secrets from the adversary, while revealing them
to appropriate participants.

As an example, we’ll take what has become a standard benchmark in the field, the
Needham-Schroeder-Lowe public key! authentication protocol [4]:

A—B: {A,Na}yp
B—A: {B,Na,Nb}k(A)

Following traditional protocol notation, tuples are enclosed in curly braces and sub-
scripting denotes encryption. Here, A and B represent names of principals (protocol par-
ticipants), and Na and Nb represent nonces (freshly generated random numbers), gener-
ated by A and B, respectively.

The steps above describe a typical sequence of messages sent in a single protocol
session. There can be any number of such sessions going on at the same time. The pur-
pose of this protocol is to allow A and B to securely exchange nonces (typically to be
used to generate a shared secret key for subsequent communication). In the first step,
A generates a nonce Na, tuples it together with his name, encrypts the tuple under B’s
public key, and sends the message to B. When B receives the message, he decrypts it,
generates his own nonce Nb, tuples it together with his name and Na, encrypts the tu-
ple under A’s public key, and sends the message back to A. When A receives the reply,
he decrypts the message, checks that the Na value agrees with the value he sent in his
first message, and sends the Nb value from the message back to B, encrypted under B’s
public key. When B receives this message, he checks that the Nb value agrees with the
value he sent in the second step, and accepts the protocol as finished.

This protocol is designed to operate in parallel with an adversary that can copy,
delete, reorder, or redirect any messages. In addition, he can form new messages by
encrypting messages that he has seen under keys that he has seen, and can decrypt a
message he has seen if he has also seen a suitable decryption key. The properties we
would like to prove for the protocol are

e if A completes the third protocol step successfully, then either B has completed
the second protocol step with corresponding values for A, Na and Nb, or one of
A or B is compromised (i.e., his private key is available to the adversary);

e if B accepts the protocol as completed, then either A has completed the third
protocol step with corresponding values for B, Na, and Nb, or one of A or B is
compromised.

Other properties, such as the conditions under which Na and Nb remain secret, are
proved in the course of establishing suitable invariants for the NSL protocol.

3. Modeling the Protocol

In order to reason about the protocol above, we must first translate it into a transition sys-
tem. This means we have to model both the state space and the transition relation. Mod-

'In fact, we formulate the protocol so that the type of key used is irrelevant to the correctness proof.

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 75

eling the transition relation means modeling both the actions of the protocol participants
and the actions of the adversary.

3.1. Encryption

Consider first the situation where B has received the first message sent by A. We want
to make sure that the values for A and Na he obtains by decrypting the message agree
with the values used to generate the message. The usual way to allow such reasoning is
to assume that encryption is injective in all of its arguments. Similarly, we would expect
normally that principals do not share public keys. We can formalize these as axioms on
the message space; we refer to these axioms jointly as “injectivity”:

XYy ={U}y=X=UAY =V
KX)=k(Y)=> X =Y

When writing formulas, ordinary identifiers starting with uppercase letters (such as Y
and V above) are variables ranging over messages (the data values manipulated by prin-
cipals and sent between principals); variables written with vector notation (such as X
and U above) range over tuples of message values. Both kinds of variables are implicitly
universally quantified when they appear free in a formula. We consider two tuples to be
equal if they have equal length and corresponding components are equal.

We need to model when the adversary can decrypt an encrypted message. This de-
pends on the kind of cryptography used for the encryption. To handle many flavors of
cryptography at once, we represent the relation between encryption and decryption keys
with a binary relation d(X,Y); intuitively, d(X,Y") (“X decrypts for Y’) means that
messages encrypted under key Y can be decrypted with key X. For example, we could
define symmetric keys, key pairs, and cryptographic hash functions with the axioms

sk(X) e (VW dV, X)) X =Y)
kp(X,Y) & X £Y A(VZ: (d(Z,X) & Z=Y)A(d(Z,Y) & Z = X))
hash(X) < (VY : —d(Y, X))

These say that (1) a key is symmetric if it is the only key that decrypts for itself, (2) a
pair of keys is a key pair if the two keys are the only keys that decrypt for each other, and
(3) encryptions under a cryptographic hash function cannot be decrypted.

We say that a message is atomic if it is not in the range of encryption:

atom(X) & (YW, Z : X £ {V12)

We distinguish atoms because some operations (like random nonce generation) should
not produce encryptions.

3.2. The State Space

As usual, the state of a distributed system can be obtained by composing the state of the
principals along with the state of the communication medium.

The usual way to model the communication state of a distributed program is with
a queue of messages between each pair of communicating principals. However, because

76 E. Cohen / Using Invariants to Reason About Cryptographic Protocols

the adversary controls all message delivery, there is little point in keeping track of what
order messages were sent (since the adversary can reorder messages), how many times
a sent message was sent (since the adversary can duplicate or delete messages), or even
where a message was sent from/to (since the adversary can move messages between
channels). This means that the relevant communication state is given by the set of all
messages that have ever been sent (by anybody). We can represent this state by a single
state predicate pub(X) (“X is published”). Thus, sending a message is just publishing
it, and receiving a message is just checking that it has been published.

Next, consider the state of the adversary. The adversary can construct new messages
from the messages that he has seen or constructed. Rather than trying to track these sepa-
rately, we might as well assume that the adversary has seen every published message, and
that he publishes every message that he constructs. Thus, the adversary simply constructs
new messages from previously published messages, and publishes the results.

Finally, consider the state of a principal. The obvious model is a set of protocol
sessions, each recording the history of the session. However, this approach has some
drawbacks; many protocols include actions that are not conveniently associated with a
single protocol session (for example, generating a long-term key to be shared between
two principals), or have a structure that is not conveniently broken up into sessions. So
instead, we just record what protocol actions have been executed, without trying to group
the actions into sessions. (We are on safe ground in doing this, because we could always
introduce additional session identifiers into the individual protocol actions.) Formally
speaking, we introduce a history predicate for each protocol action; the arguments to
each predicate capture the relevant state of the principal performing the action.

For example, in the NSL protocol, we can record instances of the first protocol ac-
tion with a predicate p0(A, Na, B); for any messages A, Na, and B, this predicate is true
iff principal A has executed the first protocol step, intending to communicate with B, and
generating nonce value Na. Similarly, we can record instances of the second and third
steps with state predicates pl1(A, B, Na, Nb) and p2(A, B, Na, Nb). Finally, we can
record B accepting the final protocol message with a state predicate p3(A, B, Na, Nb).

The state of the whole system is given by the values assigned to the state predicates
pub,p0,pl,p2, and p3. By the “value” of a state predicate, we mean an interpretation in
the usual sense of logic, i.e. a state assigns to each state predicate a set of tuples for which
the predicate is true.

Since state predicates record history, they are monotonically weakening during pro-
tocol execution. (Published messages are never unpublished, executed protocol steps are
never unexecuted.) We say a formula is positive iff state predicates appear in the formula
only with positive polarity (i.e., governed by an even number of negations). It follows
that every positive formula is stable - if it holds in a state, it also holds in all subsequent
states. This property simplifies program reasoning considerably.

3.3. Actions
We specify the transitions of the model with actions of the form
guard — terms

where guard is a formula and terms is a list of state predicates applied to terms. This
action is executed by nondeterministically choosing an arbitrary message value for each

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 77

free variable in the action, such that guard is true in the current state, and adding a
minimal set of tuples to the interpretations of the state predicates to make each of the
formulas of terms true. For example, the action

pub(A) A pub(B) A atom(Na) — p0(A, B, Na)

is executed by choosing arbitrary values for A, B and Na such that A and B are pub-
lished and Na is an atom, and adding the corresponding (A, B, Na) tuple to p0.

3.4. Adversary Actions

The adversary can

e publish a new random nonce (adversary nonce generation);

e tuple together a number of published messages, encrypt them under a published
key, and publish the result (adversary encryption);

e publish X,if {)? }y is published and there is a published key that decrypts for Y’
(adversary decryption).

Consider first random nonce generation. The NSL protocol suggests two require-
ments:

e No random nonce value should be generated more than once. Otherwise, the ad-
versary might luckily generate some nonce that was being kept as a secret, and
use it to compromise the protocol just as if he knew the secret. In other words, the
newly generated value must be fresh.

o Randomly generated nonces should not collide with encryptions. Otherwise, the
adversary could break the protocol by just randomly generating the second pro-
tocol message, fooling A into thinking that B had executed his first step. In other
words, the newly generated value must be aromic.

We can define freshness as follows. A fresh value should not coincide with a nonce value
that has been generated either for Na in the first protocol step or for Nb in the second
step, nor should a fresh value be published. (This latter requirement guarantees that it
doesn’t collide with nonces previously generated by the adversary.) In other words, we
should have the properties

() fresh(X)= —-p0(A,B,X)
(2) fresh(X) = -pl(A, B, Na, X)
3) fresh(X)= —pub(X)

(Note that freshness will normally be state dependent, but is not stable.) We can then
specify adversary nonce generation with the action

fresh(X) A atom(X) — pub(X)

Adversary encryption translates directly to

78 E. Cohen / Using Invariants to Reason About Cryptographic Protocols

pub()z) Apub(Y) — pub({)_('}y)

—

Here, as below, pub(X) means that every component of the tuple X is published.
Define dk(X) (“X is a decryptable key”) iff some published key decrypts for X:

dk(X) < 3Y 1 d(Y, X) A pub(X))

We can then model adversary decryption with the action

pub({X}y) A dk(Y) — pub(X)

3.5. Protocol Actions

Finally, we turn to formalizing the actions of the protocol itself. To save writing the same
message terms over and over, let’s define some macros:

m0 = {A,Na}k(B)
ml = {B,Na,Nb}k(A)
m2 = {Nb}k(B)

The obvious way to formalize the first step is with the action
fresh(Na) A atom(Na) — p0(A, B, Na), pub(m0)

However, this does not constrain A in any way. For example, we could choose for A
a value that contains some arbitrary secret, which would obviously break the protocol.
So we must constrain A (at least) to not leak any new information. The simplest way to
make sure that a piece of data cannot leak information is to make sure that it is already
published:

fresh(Na) A atom(Na) A pub(A) — p0(A, B, Na), pub(m0)

For the second step, we have to constrain B (since it was not constrained in the first
step). As expected, we model the receipt of m0 by checking that it is published:

pub(m0) A fresh(Nb) A atom(Nb) A pub(B) — pl(A, B, Na, Nb), pub(m1)

For the third step, A has to check that we’ve already started a “session” with appropriate
values for B, and Na; similarly, before finishing the protocol, B must check that the Nb
value he receives corresponds to the value he sent in the second step:

p0(A, B, Na) A pub(m1) — p2(A, B, Na, Nb), pub(m?2)
pl(A4, B, Na, Nb) A pub(m2) — p3(A, B, Na, Nb)

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 79

As it turns out, we almost always use state predicates with the exact arguments given
above. To reduce unnecessary writing, we use the convention that whenever one of the
state predicates p0...p3 appears with no arguments, it implicitly applies to the default
sequence of arguments given above. (To take care of cases where we want a history
predicate applied to a second set of arguments, p0’ abbreviates p0(A’, B’, Na'), and
similarly for the other history predicates.) Thus, we can rewrite the whole model more
succinctly as follows:

fresh(_?() A atom(X) — pub(XZ
pub(XZ/\ pub(Y) — pub({_X}y)
pub({X}y) A dk(Y) — pub(X)
fresh(Na) A atom(Na) A pub(A) — p0, pub(m0)
pub(mO) A fresh(Nb) A atom(Nb) A pub(B) — pl, pub(ml)
p0 A pub(ml) — p2, pub(m2)
pl A pub(m?2) — p3

While this kind of abbreviation is not terribly important for a toy protocol like this
one, real protocols often have state predicates with many arguments, making explicit
parameter lists painful and error prone. (A more sophisticated renaming scheme can be
found in [2].)

Note that there are no explicit actions for publishing the principal names. We can
think of principal names (as well as other public data values) as simply being generated
by adversary nonce generation.

4. Structural Invariants

Before attacking the protocol proper, we consider two kinds of invariants common to all
such protocols.

4.1. Unicity Invariants

Recall that we require that nonces are fresh when they are generated, but that freshness
is not stable. Therefore, we need to capture the essence of fresh nonce generation with
invariants. Intuitively, the properties we want are that

e Two different p0 steps cannot generate the same Na nonce.
e Two different pl steps cannot generate the same Nb nonce.
e The same nonce cannot be generated as both an Na nonce and an Nb nonce.

Note that these depend only on which protocol steps generate fresh nonces, not on any
particular properties of the protocol itself.> We can formalize these properties as the
following invariants:

2In a tool, instead of writing the definition of fresh atoms in the guard of an action, we would build fresh
nonce generation into the syntax, so that these lemmas could be generated automatically.

80 E. Cohen / Using Invariants to Reason About Cryptographic Protocols

pOAPY ANo=Na' = A=A ANB=FB
plApl’ ANb=Nb' = A= A'"AB =B A Na= Nd
p0 A pl’ = Na # NV’

We refer to these invariants generically as “unicity”. To see that these are invariants, no-
tice that they hold in the initial state, since the left-hand sides are false (since all history
predicates are initially false). The first two protocol steps preserve these properties be-
cause of the freshness conjuncts in the guards. These last two steps and the adversary
steps preserve these because they do not modity p0 or pl.

In practice, we use the following (equivalent) formulation of unicity. Suppose f and
g are formulas, and v is a list of variables that does not include Na. Then

fAPOA(IV,A,B:p0Ag)=FTAPOA(Tv:g)

is an invariant of the system. In other words, if we have p0 as a conjunct both inside and
outside of an existential quantification, and the quantified variables do not include Na,
we can remove A and B from the list of existentially quantified variables. Similarly, if v
does not include Nb,

fApILA(Iv,A,B,Na:plAg)=fAplAQv:g)
is also an invariant of the system.
4.2. Guard Invariants

If we remove the freshness conjuncts from the protocol transitions, the history predi-
cate updated by each transition implies its corresponding guard. That is, we have the
invariants

p0 = atom(Na) A pub(A)

pl = atom(Nb) A pub(B) A pub(m0)
p2 = p0 A pub(ml)

p3 = pl A pub(m2)

For every binding of the free variables, of these formulas is an invariant. To see why,
note that each formula holds initially, because all history predicates are initially false.
An implication can be falsified only by a step that truthifies the hypothesis or falsifies
the consequent. The only transitions that truthify the hypotheses simultaneously check
that the consequent holds, and no step falsifies the consequent (because the consequent
is positive, hence stable). Note that we have to remove the freshness conjuncts because
freshness is not stable.
We reference these invariants with the hints p0, p1, etc.

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 81

5. The secrecy invariant

The invariants so far do not constrain the messages that can be published; they could be
satisfied even if all messages were published. Since messages are the only way a principal
can learn about the states of other principals, we need an invariant that constrains the
conditions under which messages can be published.

The obvious way to write such an invariant is in the form

pub(X) = ok(X)

where ok(X) is a disjunction of cases, one for each way that a message can be published.
However, there is a problem with this approach, because of the adversary decryption
case; this case would produce a disjunct of the form

VAY :pub({X}y) AdE(Y))

Regardless of any other disjunctions, this would allow the possibility that all messages
are published (as long as some key is decryptable). This would make the secrecy invariant
practically useless.

Thus, we must find an indirect way to eliminate the adversary decryption case from
the secrecy invariant. Of course, we can’t simply ignore the adversary decryption action,
because the set of cases must be closed under all actions. Instead, we add additional
disjuncts to the definition of ok to make ok closed under adversary decryption.

So let’s construct the disjuncts of ok(X') for NSL:

e For each protocol step that publishes a message, there is a case corresponding
to the published message; in each case, we know that the corresponding history
predicate also holds (since it is truthified when the message is published):

V (3 A, Na, Nb : X =m0 A p0)
V(3 A,B,Na,Nb: X =mlApl)
V(3 A, Na, Nb: X =m2Ap2)

e There is a case for a message that arose through adversary encryption (of any ar-
ity); in this case, we know that the components of the message and the encryption
key are already published:

VEY,Z: X ={Y} s Apub(Y) A pub(Z))

e There is a case for adversary nonce generation; in this case, we know that the
generated nonce is not generated by one of the ordinary protocol steps. Defining

junk(X) < atom(X)A(VA, B, Na, Nb : (p0 = X # Na)A(pl = X # Nb))

we have a case
V junk(X)

These cases cover all of the actions except for adversary decryption. To close the
set of cases under adversary decryption, we need to consider what new cases can be
generated from each of the message cases we have already.

82 E. Cohen / Using Invariants to Reason About Cryptographic Protocols

Obviously, decryption cannot produce a new case from those cases that produce
atoms (by the definition of atonicity). Moreover, decryption of a message produced under
the adversary encryption case doesn’t produce anything new, because all of the tupled
messages were already published. Thus, we need only consider adversary decryption
of messages published from honest protocol actions. These actions may result in the
publication of previously unpublished nonce values.

Looking at the protocol, it seems that Na or Nb nonces should be revealed only if
dk(k(A)) V dk(k(B)). (Heuristically, this is because k(A) and k(B) are the only keys
that guard the exposure of messages that mention A and B.) Thus, our last two cases are

VX = Na Ap0A (dk(k(A)) V dk(k(B)))

V X = Nb A pl A (dk(k(A)) V dk(k(B)))

Putting all of this together, we define ok(X) by

ok(X)= (3 A B,Na,Nb,Y,Z:
V (X =m0 A p0)
V(X =mlApl)
V(X =m2Ap2)
V(X ={Y}z Apub(Y) A pub(Z))
V junk(X)
V (X = Na A p0 A (dk(k(A)) v dk(k(B))))
V (X = Nb A pl A (dk(k(A)) V dk(k(B)))))

Note that we haven’t yet proved that the secrecy invariant is actually an invariant.

5.1. Consequences of the Secrecy Invariant

Using the secrecy invariant, we can conclude information about the state from publica-
tion of a message. For example, if pub(m0), then m0 must match one of the cases in the
secrecy invariant. By atomicity and injectivity, the only cases that can be matched are
the p0 case and the adversary encryption case. (Similarly for the other message forms.)
Hence, by injectivity, we have the consequences

pub(m0) = p0 V (pub(k(B)) A pub(A) A pub(B))
pub(ml) = pl V (pub(k(A)) A pub(B) A pub(Na) A pub(ND))
pub(m?2) = (3 A, Na : p2) V (pub(k(B)) A pub(ND))
We reference these consequences by the hints “m0”, “m1”, and “m2”, respectively.

Similarly, thanks to the unicity invariants and the secrecy invariant, we have the
consequences

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 83

p0 A pub(Na) = dk(k(A)) V dk(k(B))
pl A pub(Nb) = dk(k(A)) Vv dk(k(B))

We reference these consequences with the hints “Na” and “Nb”, respectively.
We repeat that these are mere consequences of the secrecy invariant; they are guar-
anteed to hold only in states where we know the secrecy invariant holds.

5.2. Checking the Secrecy Invariant

The secrecy invariant trivially holds in the initial state, since initially no messages are
published. Because the definition of ok is positive, ok messages remain ok. Thus, to
show that the secrecy invariant is an invariant, it suffices to show that messages are ok
on the step before they are published. The only transition for which this is nontrivial is
adversary decryption. Because atoms cannot be decrypted, the proof obligations are as
follows (all assuming the secrecy invariant):

p0 A dk(k(B)) = ok(A)
p0 A dk(k(B)) = ok(Na)
pl A dk(k(A)) = ok(B)
pl A dk(k(A)) = ok(Na)
pl A dk(k(A)) = ok(Nb)
p2 A dk(k(B)) = ok(Nb)

We can discharge these obligations as follows (the hint ok references the definition
of ok):

PO A dh(K(B)) = {0 }
pub(A) = {inv}
ok(A)

PO A dk(k(B)) = {ok}
ok(Na)

pL A dk(k(A)) = {p1 }

pub(B) = {inv}

ok(B)

pL A dk(E(A)) Sl)
pub(mO) A dk(k(A)) ={m0 }
(p0V pub(Na)) A db(k(A)) = {logic}
(PO A dk(k(A))) V pub(Na) = {ok }
ok(Na) V pub(Na) = {inv }

ok(Na)

84 E. Cohen / Using Invariants to Reason About Cryptographic Protocols

pL A dk(k(A)) = {ok}

ok (ND)

p2 A dk(k(B)) ={r2 }
pub(ml) A dk(k(B)) ={ml }
(1 V pub(ND)) A db((B)) = {logic}
(p1 A dk(K(B))) vV pub(Nb) = {ok }
ok(Nb) V pub(Nb) = {inv }

ok(Nb)

This concludes the proof that the secrecy invariant is, in fact, an invariant of the
transition system.

6. Proving Authentication Properties

Now that we have established the secrecy invariant is an invariant, we can prove other in-
variant properties of the protocol by ordinary logical reasoning from the secrecy, unicity,
and guard invariants. This is because we have intentionally chosen to make the secrecy
invariant as strong as possible.

Here are proofs of the authentication properties for the NSL protocol. The first the-
orem says that, if A completes his final step, then either A or B is compromised, or B
has completed his first step, with the same values for A,B,Na and Nb:

p2 ={p2 }
p0 A pub(m1l) = {ml }
PO A (pl V pub(Na)) = {logic}
(p0 A pub(Na)) V pl = {Na }

dk(k(A)) v dk(k(B)) V pl

The second theorem says that, if B completes his final step, then either A or B is
compromised, or A has completed his final step, with the same values for A,B,Na and
Nb:

p3 ={p3 }
pl A pub(m2) = {m2}
pl A ((3 A, Na : p2) V pub(ND))

Notice that the term we want in the conclusion (namely, p2) appears, but enclosed in an
existential quantification. Note, however, that we have pl outside of the quantification,
and the quantification does not quantify over Nb. Therefore, if we can get pl as a con-
junct inside the quantification, we can strip away the quantification of A and Na, using
the unicity lemma for Nb. This motivates the following continuation of the proof, where
we expand out the cases under which p2 can arise:

E. Cohen / Using Invariants to Reason About Cryptographic Protocols 85

pl A ((3 A, Na : p2) V pub(NbD)) = {p2 }
pl A ((3 A, Na : p2 A pub(m1)) V pub(Nb)) = {ml }
pl A ((3 A, Na:p2 A (plV pub(Nb))) V pub(Nb)) = {logic }
pl A ((3 A, Na : p2 A pl) V pub(Nb)) = {logic }
(pl A pub(ND)) V (pL A (3 A, Na : p2 A pl)) = { Nb unicity}
(p1 A pub(ND)) V (pl A p2) = {Nb }

dk(k(A)) V dk(k(B)) V p2

7. Exercises

1.

Show that the NSL protocol still works without the assumption that k is injective.

2. Remove B from m1 and try to prove the resulting protocol correct. Where does

10.
11.

12.

the proof get stuck? Can you find a counterexample that shows the new protocol
is broken?

. Replace the keying function with new protocol actions that generate pub-

lic/private key pairs for principals, publishing the public key. Show that the re-
sulting protocol is still correct.

Model the compromise of principals explicitly, by introducing a new state pred-
icate that tracks which principals have been compromised. Add suitable actions
to model the compromise of a principal and to release his information to the
adversary. If necessary, reformulate and prove the safety properties of the new
protocol.

. Add to NSL an action that receives an arbitrary message and simply republishes

it. Try to treat it like the other protocol actions (i.e., generate corresponding guard
and message lemmas, and add a corresponding case to the secrecy invariant).
Does this action affect your ability to reason about the protocol? Can you modify
your method to prove the protocol correct?

. Add to NSL an adversary action that permutes the component order of encrypted

2-tuples. Prove the resulting protocol correct.

. Model and verify a protocol with two levels of encryption. How does the proof

structure change?

Model and verify a “repeated authentication” protocol, such as Kao-Chow.

How would you model a key K with a pair of decryption keys both decryption
keys are required to decrypt messages encrypted under K ?

Try to design your own crypto protocol, specify it, and prove it correct.
[Research] Modify the methodology here to work with more realistic protocol
models. For example, model and reason about any of the following:

e Vernam encryption (bitwise exclusive-or)

e bitwise concatenation and projection

e encryption that is injective with respect to the key and with respect to the
encrypted message, but not necessarily both together.

Some guidance for these can be found in [3].

[Research] Construct a simple protocol for unidirectional secret communication,
and use simulation relations to prove that it simulates a protocol where the ad-
versary sees nothing but noise. (See [1] for a process-algebraic solution to this
challenge.)

86

E. Cohen / Using Invariants to Reason About Cryptographic Protocols

References

(1]
(2]
(3]
(4]
[31]
(6]

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In Proceedings of
the Fourth ACM Conference on Computer and Communications Security, pages 36-47, 1997.

E. Cohen. First-order verification of cryptographic protocols. Journal of Computer Security, 11(2):189—
216, May 2003.

E. Cohen. Taps: The last few slides. In FASec 2002: Formal Aspects of Security, volume 2629 of LNCS,
pages 183-190. Springer, 2003.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and
Algorithms for Construction and Analysis of Systems, pages 147-166, 1996.

C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming, 26(2):113-131,
February 1996.

L. Paulson. The inductive approach to verifying cryptographic protocols. JCS, 6:85-128, 1998.

Software System Reliability and Security 87
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 10S Press. All rights reserved.

Verified Interoperable Implementations of
Security Protocols

Karthikeyan BHARGAVAN #, Cédric FOURNET#, Andrew D. GORDON#, and
Stephen TSE"

2 Microsoft Research
b University of Pennsylvania

Abstract. We present an architecture and tools for verifying implementations of
security protocols. Our implementations can run with both concrete and symbolic
implementations of cryptographic algorithms. The concrete implementation is for
production and interoperability testing. The symbolic implementation is for debug-
ging and formal verification. We develop our approach for protocols written in F#,
a dialect of ML, and verify them by compilation to ProVerif, a resolution-based the-
orem prover for cryptographic protocols. We establish the correctness of this com-
pilation scheme, and we illustrate our approach with protocols for Web Services
security.

Keywords. Security protocols, verification, process calculi

1. Introduction

The design and implementation of code involving cryptography remains dangerously
difficult. The problem is to verify that an active attacker, possibly with access to some
cryptographic keys but unable to guess other secrets, cannot thwart security goals such as
authentication and secrecy [35]; it has motivated a serious research effort on the formal
analysis of cryptographic protocols, starting with Dolev and Yao [18] and eventually
leading to effective verification tools. Hence, it is now feasible to verify abstract models
of protocols against demanding threat models.

Still, as with many formal methods, a gap remains between protocol models and
their implementations. Distilling a cryptographic model is delicate and time consuming,
so that verified protocols tend to be short and to abstract many potentially troublesome
details of implementation code. At best, the model and its implementation are related
during tedious manual code reviews. Even if, at some point, the model faithfully covers
the details of the protocol, it is hard to keep it synchronized with code as it is deployed
and used. Hence, despite verification of the abstract model, security flaws may appear in
its implementation.

Our thesis is that to verify production code of security protocols against realistic
threat models is an achievable research goal. The present paper advances in this direc-
tion by contributing a new approach to deriving automatically verifiable models from
code. We demonstrate its application, if not to production code, at least to code constitut-

88 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols
Protocol Code

.

Symbolic Concrete

Crypto Crypto
Some Other
\ Implementation
fs2pv + (WSE)

: Crypto
= ij
VR Platform (CLR) Net
Verification Symbolic Testing Interoperability (via SOAR)

ing a working reference implementation—one suitable for interoperability testing with
efficient production systems but itself optimized for clarity not performance.

Our prototype tools analyze cryptographic protocols written in F# [41], a dialect of
ML. F# is a good fit for our purposes: it has a simple formal semantics; its datatypes offer
a convenient way of programming operations on XML, important for our motivating
application area, web services security. Semantically, F# is not so far from languages like
Java or C#, and we expect our techniques could be adapted to such languages. We run F#
programs on the Common Language Runtime (CLR), and rely on the .NET Framework
libraries for networking and cryptographic functions.

The diagram above describes our new language-based approach, which derives ver-
ifiable models from executable code. We prefer not to tackle the converse problem, turn-
ing a formal model into code, as, though feasible, it amounts to language design and
implementation, which generally is harder and takes more engineering effort than model
extraction from an existing language. Besides, modern programming environments pro-
vide better tool support for writing code than for writing models.

We strive to share most of the code, syntactically and semantically, between the
implementation and its model. Our approach is modular, as illustrated by the diagram:
we write application code defining protocols against restrictive typed interfaces defining
the services exposed by the underlying cryptographic, networking, and other libraries.
Further, we write distinct versions of library code only for a few core interfaces, such as
those featuring cryptographic algorithms. For example, cryptographic operations are on
an abstract type bytes. We provide dual concrete and symbolic implementations of each
operation. For instance, the concrete implementation of bytes is simply as byte arrays,
subject to actual cryptographic transforms provided by the .NET Framework. On the
other hand, the symbolic implementation defines bytes as algebraic expressions subject
to abstract rewriting in the style of Dolev and Yao, and assumed to be a safe abstraction
of the concrete implementation.

We formalize the active attacker as an arbitrary program in our source language, able
to call interfaces defined by the application code and also the libraries for cryptography
and networking. Our verification goals are to show secrecy and authentication properties
in the face of all such attackers. Accordingly, we can adapt our threat model by design-
ing suitable interfaces for the benefit of the attacker. The application code implements
functions for each role in the protocol, so the attacker can create multiple instances of,

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 89

say, initiators and responders, as well as monitor and send network traffic and, in some
models, create new principals and compromise some of their credentials.

Given dual implementations for some libraries, we can compile and execute pro-
grams both concretely and symbolically. This supports the following tasks:

(1) To obtain a reference implementation, we execute application code against con-
crete libraries. We use the reference implementation for interoperability testing
with some other available, black-box implementation. Experimental testing is es-
sential to confirm that the protocol code is functionally correct, and complete for
at least a few basic scenarios. (Otherwise, it is surprisingly easy to end up with a
model that does not support some problematic features.)

(2) To obtain a symbolic prototype, we execute the same application code against
symbolic libraries. This allows basic testing and debugging, especially for the
expected message formats. Though this guarantees neither wire format interop-
erability nor any security properties, it is pragmatically useful during the initial
stages of code development.

(3) To perform formal verification, we run our model extraction tool, called fs2pv, to
derive a detailed formal model from the application code and symbolic libraries.
Our models are in a variant of the pi calculus [32,1] accepted by ProVerif [15,14].
ProVerif compiles our models to logical clauses and runs a resolution semi-
algorithm to prove properties automatically. In case a security property fails,
ProVerif can often construct an explicit attack [4].

The fs2pv/ProVerif tool chain is applicable in principle to a broad range of crypto-
graphic protocols, but our motivating examples are those based on the WS-Security [34]
standard for securing SOAP [25] messages sent to and from XML web services. WS-
Security prescribes how to sign and encrypt parts of SOAP messages. WSE [30] is an
implementation of security protocols based on WS-Security. Previous analyses of pi cal-
culus models extracted from WSE by hand have uncovered attacks [9,11], but there has
been no previous attempt to check conformance between these models and code automat-
ically. To test the viability of our new approach, we have developed a series of reference
implementations of simple web services protocols. They are both tested to be interopera-
ble with WSE and verified via our tool chain. The research challenge in developing these
implementations is to confront at once the difficulty of processing standard wire formats,
such as WS-Security, and the difficulty of extracting verifiable models from code.

Our model extraction tool, fs2pv, accepts an expressive first-order subset of F# we
dub F, with primitives for communications and concurrency. It has a simple formal se-
mantics facilitating model extraction, but disallows higher-order functions and some im-
perative features. The application code and the symbolic libraries must be within F, but
the concrete libraries are in unrestricted F#, with calls to the platform libraries. Formally,
we define the attacker to be an arbitrary F program well formed with respect to a re-
strictive attacker interface implemented by the application code. The attacker can only
interact with the application code via this interface, which is supplied explicitly to the
model extraction tool along with the application code. Although we compile to the pi
calculus for verification, the properties proved can be understood independently of the pi
calculus. We prove theorems to justify that verification with ProVerif implies properties
of source programs defined in terms of F. The principal difficulty in the proofs arises
from relating the attacker models at the two levels.

90 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

Since security properties within the Dolev-Yao model are undecidable, and we rely
on an automatic verifier, there is correct code within F that fails to verify. A cost of
our method, then, is that we must adopt a programming discipline within F suitable
for automatic verification. For example, we avoid certain uses of recursion. The initial
performance results for our prototype tools are encouraging, as much of the performance
is determined by the concrete libraries; nonetheless, there is a tension between efficiency
of execution and feasibility of verification. To aid the latter, fs2pv chooses between a
range of potential semantics for each F function definition (based on abstractions, rewrite
rules, relations, and processes).

Our method relies on explicit interfaces describing low-level cryptographic and
communication libraries, and on some embedded specifications describing the intended
security properties. Model extraction directly analyzes application code using these in-
terfaces plus the code of the symbolic libraries, while ignoring the code of the concrete
libraries. Hence, our method can discover bugs in the application code, but not in the
trusted concrete libraries.

At present, we have assessed our method only on new code written by ourselves in
this style. Many existing protocol implementations rely on well defined interfaces pro-
viding cryptographic and other services, so we expect our method will adapt to existing
code bases, but this remains future work.

In general, the derivation of security models from code amounts to translating the
security-critical parts of the code and safely abstracting the rest. Given an arbitrary pro-
gram, this task can hardly be automated—some help from the programmer is needed, at
least to assert the intended security properties. Further work may discover how to com-
pute safe abstractions directly from the code of concrete libraries. For now, we claim
the benefit of symbolic verification of a reference implementation is worth the cost of
adding some security assertions in application code and adopting a programming disci-
pline compatible with verification.

In summary, our main contributions are as follows:

(1) An architecture and language semantics to support extraction of verifiable formal
models from implementation code of security protocols.

(2) A prototype model extractor fs2pv that translates from F to ProVerif. This tool is
one of the first to extract verifiable models from working protocol implementa-
tions. Moreover, to the best of our knowledge, it is the first to extract models from
code that uses a standard message format (WS-Security) and hence interoperates
with other implementations (WSE).

(3) Theorems justifying model extraction: low-level properties proved by ProVerif
of a model extracted by fs2pv imply high-level properties expressed in terms of
F.

(4) Reference implementations of some typical web services security protocols and
mechanisms, both formally verified and tested for interoperability. Our imple-
mentation is modular, so that most code is expressed in reusable libraries that
give a formal semantics to informal web services security specifications.

Section 2 informally introduces many ideas of the paper in the context of a simple
message authentication protocol. Section 3 defines our source language, F, as a subset of
F#, and formalizes our desired security properties. Section 4 outlines our techniques for
model extraction, and states our main theorems. Section 5 summarizes our experience in
writing and verifying code for web services security protocols. Section 6 concludes.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 91

An abridged version [12] of this paper appears in a conference proceedings. A com-
panion report [13] provides additional technical details, including definitions for the tar-
get (pi calculus) language, the formal translation, and all proofs.

2. A Simple Message Authentication Protocol

We illustrate our method on a very simple, ad hoc protocol example. Section 5 discusses
more involved examples.

The protocol Our example protocol has two roles, a client that sends a message, and a
server that receives it. For the sake of simplicity, we assume that there is only one prin-
cipal A acting as a client, and only one principal B acting as a server. (Further examples
support arbitrarily many principals in each role.)

Our goal here is that the server authenticate the message, even in the presence of an
active attacker. To this end, we rely on a password-based message authentication code
(MAC). The protocol consists of a single message:

A — B:HMACSHA {nonce}|pwd, | text] |
RSAEncrypt{ pkg } [nonce] | text

The client acting for principal A sends a single message text to the server acting for B.
The client and server share A’s password pwdy, and the client knows B’s public key
pkg. To authenticate the message text, the client uses the one-way keyed hash algorithm
HMAC-SHALI to bind the message with pwd, and a freshly generated value nonce. Since
the password is likely to be a weak secret, that is, a secret with low entropy, it may be
vulnerable to offline dictionary attacks if the MAC, the message fext, and the nonce are
all known. To protect the password from such guessing attacks, the client encrypts the
nonce with pkp.

Application code Given interfaces Crypto, Net, and Prins defining cryptographic prim-
itives, communication operations, and access to a database of principal identities, our
verifiable application code is a module that implements the following typed interface.

pkB: rsa_key
client: str — unit
server: unit — unit

The value pkB is the public encryption key for the server. Calling client with a string
parameter should send a single message to the server, while calling server creates an
instance of the server role that awaits a single message.

In F#, str — unit is the type of functions from the type str, which is an abstract type of
strings defined by the Crypto interface, to the empty tuple type unit. The Crypto interface
also provides the abstract type rsa_key of RSA keys.

The exported functions client and server rely on the following functions to manipu-
late messages.

let mac nonce password text =
Crypto.hmacshal nonce
(concat (utf8 password) (utf8 text))

92 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

let make text pk password =

let nonce = mkNonce() in

(mac nonce password text,
Crypto.rsa_encrypt pk nonce, text)

let verify (m,en,text) sk password =
let nonce = Crypto.rsa_decrypt sk en in
if not (m = mac nonce password text)
then failwith "bad MaAC"

The first function, mac, takes three arguments—a nonce, a shared password, and
the message text—and computes their joint cryptographic hash using some implemen-
tation of the HMAC-SHA1 algorithm provided by the cryptographic library. As usual
in dialects of ML, types may be left implicit in code, but they are nonetheless verified
by the compiler; mac has type bytes — str — str — bytes. The functions concat and utf8
provided by Crypto perform concatenation of byte arrays and an encoding of strings into
byte arrays.

The two other functions define message processing, for senders and receivers, re-
spectively. Function make creates a message: it generates a fresh nonce, computes the
MAC, and also encrypts the nonce under the public key pk of the intended receiver, using
the rsa_encrypt algorithm. The resulting message is a triple comprising the MAC, the en-
crypted nonce, and the text. Function verify performs the converse steps: it decrypts the
nonce using the private key skd, recomputes the MAC and, if the resulting value differs
from the received MAC, throws an exception (using the failwith primitive).

Although fairly high-level, our code includes enough details to be executable, such
as the details of particular algorithms, and the necessary utf§ conversions from strings
(for password and text) to byte arrays.

In the following code defining protocol roles, we rely on events to express in-
tended security properties. Events roughly correspond to assertions used for debug-
ging purposes, and they have no effect on the program execution. Here, we define two
kinds of events, Send(text) to mark the intent to send a message with content text, and
Accept(text) to mark the acceptance of text as genuine. Accordingly, client uses a primi-
tive function log to log an event of the first kind before sending the message, and server
logs an event of the second kind after verifying the message. Hence, if our protocol is cor-
rect, we expect every Accept(text) event to be preceded by a matching Send(text) event.
Such a correspondence between events is a common way of specifying authentication.

The client code relies on the network address of the server, the shared password, and
the server’s public key:

let address =S "http://server.com/pwdmac"
let pwdA = Prins.getPassword(S "A")
let pkB = Prins.getPublicKey(S "B")

type Ev = Send of str | Accept of str

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 93

let client text =
log(Send(text));
Net.send address (marshall (make text pkB pwdA))

Here, the function getPassword retrieves A’s password from the password database, and
getPublicKey extracts B’s public key from the local X.509 certificate database. The func-
tion S is defined by Crypto; the expression S "A", for example, is an abstract string rep-
resenting the literal "A". The function client then runs the protocol for sending text; it
builds the message, then uses Net.send, a networking function that posts the message as
an HTTP request to address.

Symmetrically, the function server attempts to receive a single message by accepting
a message and verifying its content, using B’s private key for decryption.

let skB = Prins.getPrivateKey(S "B")

let server () =
let m,en,text = unmarshall (Net.accept address) in
verify (m,en,text) skB pwdA; log(Accept(text))

The functions marshall and unmarshall serialize and deserialize the message triple—
the MAC, the encrypted nonce, and the text—as a string, used here as a simple wire
format. (We present an example of the resulting message below.) These functions are
also part of the verified application code; we omit their details.

Concrete and symbolic libraries The application code listed above makes use of a
Crypto library for cryptographic operations, a Net library for network operations, and
a Prins library offering access to a principal database. The concrete implementations of
these libraries are F# modules containing functions that are wrappers around the corre-
sponding platform (.NET) cryptographic and network operations.

To obtain a complete symbolic model of the program, we also develop symbolic
implementations of these libraries as F# modules with the same interfaces. These sym-
bolic libraries are within the restricted subset F we define in the next section, and rely on
a small module Pi defining name creation, channel-based communication, and concur-
rency in the style of the pi calculus. Functions Pi.send and Pi.recv allow message passing
on channels, functions Pi.name and Pi.chan generate fresh names and channels, and a
function Pi.fork runs its function argument in parallel. The members of Pi are primitive
in the semantics of F. The Pi module is called from the symbolic libraries during sym-
bolic evaluation and formal verification; it is not called directly from application code
and plays no part in the concrete implementation.

The listings above show the two implementations of the Crypto interface. The con-
crete implementation defines bytes as primitive arrays of bytes, and essentially forwards
all calls to standard cryptographic libraries of the .NET platform. In contrast, the sym-
bolic implementation defines bytes as an algebraic datatype, with symbolic constructors
and pattern matching for representing cryptographic primitives. This internal represen-
tation is accessible only in this library implementation. For instance, hmacshal is im-
plemented as a function that builds an HmacShal(k,x) term; since no inverse function is
provided, this abstractly defines a perfect, collision-free one-way function. More inter-
estingly, RSA public key encryptions are represented by RsaEncrypt terms, decomposed

94 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

module Crypto // concrete code in F# module Crypto // symbolic code in F
open System.Security.Cryptography type bytes =
type bytes = byte[] | Name of Pi.name
type rsa_key = RSA of RSAParameters | HmacShal of bytes * bytes
| RsaKey of rsa_key

let rng = new RNGCryptoServiceProvider () | RsaEncrypt of rsa_key * bytes
let mkNonce () =
let x = Bytearray.make 16 in and rsa_key = PK of bytes | SK of bytes
rmg.GetBytes x; x
let freshbytes label = Name (Pi.name label)
let hmacshal k x = let mkNonce () = freshbytes "nonce"
new HMACSHA 1(k).ComputeHash x .
let hmacshal k x = HmacShal(k,x)
let rsa = new RSACryptoServiceProvider()

let rsa_keygen () = ... let rsa_keygen () = SK (freshbytes "rsa™"

let rsa_pub (RSA 1) =... let rsa_pub (SK(s)) = PK(s)

let rsa_encrypt (RSA r) (v:bytes) = ... let rsa_encrypt s t = RsaEncrypt(s,t)

let rsa_decrypt (RSA r) (v:bytes) = let rsa_decrypt (SK(s)) e = match e with
rsa.ImportParameters(r); | RsaEncrypt(pke,t) when pke = PK(s) —t
rsa.Decrypt(v,false) | - —failwith "rsa_decrypt failed"

only by a function rsa_decrypt that can verify that the valid decryption key is provided
along with the encrypted term.

Similarly, the concrete implementation of Net contains functions, such as send and
accept, that call into the platform’s HTTP library (System.Net. WebRequest), whereas the
symbolic implementation of these functions simply enqueues and dequeues messages
from a shared buffer implemented with the Pi module as a channel. We outline the sym-
bolic implementation of Net below.

module Net // symbolic code in F

let httpchan = Pi.chan()

let send address msg =
Pi.send httpchan (address,msg)

let accept address =
let (addr,msg) = Pi.recv httpchan in
if addr = address then msg else ...

The function send adds a message to the channel httpchan and the function accept
removes a message from the channel.

In this introductory example, we have a fixed population of two principals, so the
values for A’s password and B’s key pair can simply be retrieved from the third interface
Prins: the concrete implementation of Prins binds them to constants; its symbolic imple-
mentation binds them to fixed names generated by calling Pi.name. In general, a concrete
implementation would retrieve keys from the operating system key store, or prompt the
user for a password. The symbolic version implements a database of passwords and keys
using a channel kept hidden from the attacker.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 95

Next, we describe how to build both a concrete reference implementation and a
symbolic prototype, in the sense of Section 1.

Concrete execution To test that the protocol runs correctly, we run the F# compiler
on the F application code, the concrete F# implementations of Crypto, Net, and Prins,
together with the following top-level F# code to obtain a single executable, say run.
Depending on its command line argument, this executable runs in client or server mode:

do match Sys.argv.(1) with
| "client" —client (S Sys.argv.(2))
| "server" — server ()
| . —printf "Usage: run client txt\n";
printf " or: run server\n"

The library function call Sys.argv.(n) returns the nth argument on the command
line. As an example, we can execute the command run client Hi on some machine, ex-
ecute run server on some other machine that listens on address, and observe the proto-
col run to completion. This run of the protocol involves our concrete implementation
of (HTTP-based) communications sending and receiving the encoded string “FADCIz-
ZhW3XmgUABgRIJj1KjnWy...”.

Symbolic execution To experiment with the protocol code symbolically, we run the F#
compiler on the F application code, the symbolic F implementations of Crypto, Net, and
Prins, and the F# implementation of the Pi interface, together with the following top-level
F code, that conveniently runs instances of the client and of the server within a single
executable.

do Pi.fork (fun()— client (S "Hi"))
do server ()

The communicated message prints as follows

HMACSHA 1{nonce3}[pwdl | "Hi’] |
RSAEncrypt{PK(rsa_secret2) }[nonce3] | "Hi’

where pwdl, rsa_secret2, and nonce3 are the symbolic names freshly generated by the Pi
module. This message trace reveals the structure of the abstract byte arrays in the com-
municated message, and hence is more useful for debugging than the concrete message
trace. We have found it useful to test application code by symbolic execution (and even
symbolic debugging) before testing them concretely on a network.

Modelling the opponent We introduce our language-based threat model for protocols
developed in F. (Section 3 describes the formal details.)

Let S be the F program that consists of the application code plus the symbolic li-
braries. The program S, which largely consists of code shared with the concrete imple-
mentation, constitutes our formal model of the protocol.

Let O be any F program that is well formed with respect to the interface exported by
the application code (in this case, the value pkB and the functions client and server), plus
the interfaces Crypto and Net. By well formed, we mean that O only uses external values

96 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

and calls external functions explicitly listed in these interfaces. Moreover, O can call
all the operations in the Pi interface, as these are primitives available to all F programs.
We take the program O to represent a potential attacker on the formal model S of the
protocol, a counterpart to an active attacker on a concrete implementation. (Treating an
attacker as an arbitrary F program develops the idea of an attacker being an arbitrary
parallel process, as in the spi calculus [2].)

Giving O access to the Crypto and Net interfaces, but not Prins, corresponds to
the Dolev-Yao [18] model of an attacker able to perform symbolic cryptography, and
monitor and send network traffic, but unable to access principals’ credentials directly.
In particular, Net.send enables the attacker to send any message to the server while
Net.accept enables the attacker to intercept any message sent to the server. The functions
Crypto.rsa_encrypt and Crypto.rsa_decrypt enable encryption and decryption with keys
known to the attacker; Crypto.rsa_keygen and Crypto.mkNonce enable the generation of
fresh keys and nonces; Crypto.hmacshal enables MAC computation.

Giving O access to client and server allows it to create arbitrarily many instances of
protocol roles, while access to pkB lets O encrypt messages for the server. (We can enrich
the interface to give the opponent access to the secret credentials of some principals,
and to allow the generation of arbitrarily many principal identities.) Since pwdA, skB,
and log are not included in the attacker interface, the attacker has no direct access to the
protocol secrets and cannot log events directly.

Formal verification aims to establish secrecy and authentication properties for all
programs S O assembled from the given system S and any attacker program O.

In particular, the message authentication property of our example protocol is ex-
pressed as correspondences [42] between events logged by code within S. For all O, we
want that in every run of S O, every Accept event is preceded by a corresponding Send
event. In our syntax (based on that of ProVerif), we express this correspondence assertion
as:

ev:Accept(x) = ev:Send(x)

Formal verification We can check correspondences at runtime during any particular
symbolic run of the program; the more ambitious goal of formal verification is to prove
them for all possible runs and attackers. To do so, we run our model extractor fs2pv on
the F application code, the symbolic F implementations of Crypto, Net, and Prins, and
the attacker interface as described above. The result is a pi calculus script with embedded
correspondence assertions suitable for verification with ProVerif. In the simplest case, F
functions compile to pi calculus processes, while the attacker interface determines which
names are published to the pi calculus attacker. For our protocol, ProVerif immediately
succeeds.

Conversely, consider for instance a variant of the protocol where the MAC compu-
tation does not actually depend on the text of the message—essentially transforming the
MAC into a session cookie:

let mac nonce password text = hmacshal nonce
(concat (utf8 password) (utf8 (S "cookie™")))

For the resulting script, ProVerif automatically finds and reports an active attack,
whereby the attacker intercepts the client message and substitutes any text for the client’s

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 97

text in the message. Experimentally, we can confirm the attack found in the analysis, by
writing in F an instance of the attacker program O that exploits our interface. Here, the
attack may be written:

do fork(fun()— client (S "Hi"));
let (nonce, mac, _) = unmarshall (Net.accept address) in
fork(fun()— server());
Net.send address (marshall (nonce, mac, S "Foo"))

This code first starts an instance of the client, intercepts its message, starts an in-
stance of the server, and forwards an amended message to it. Experimentally, we observe
that the attack succeeds, both concretely and symbolically. At the end of those runs, two
events Send "Hi" and Accept "Foo" have been emitted, and our authentication query
fails. Once the attack is identified and the protocol corrected, this attacker code may be
added to the test suite for the protocol.

In addition to authentication, we verify secrecy properties for our example protocol.
Via ProVerif [15], we can query whether a protocol allows an attacker to guess a weak
secret and then verify the guess—if so, the attacker can mount an offline guessing attack.
In the case of our protocol, ProVerif shows the password is protected against offline
guessing attacks. Conversely, if we consider a variant of the protocol that passes the
nonce in the clear, we find an attack that can also be written as a concrete F program.

3. Formalizing a Subset of F#

This section defines the untyped subset F of F# in which we write application code
and symbolic libraries. We specify the syntax of F, describe its informal and formal
semantics, and define security properties.

The language F consists of: a first-order functional core; algebraic datatypes with
pattern-matching (such as the type bytes in the symbolic implementation of Crypto); a
few concurrency primitives in the style of the pi calculus; and a simple type-free module
system with which we formalize the attacker model introduced in the previous section.
(Although we do not rely on type safety in the formal definition, F programs can be
typechecked by the F# compiler.)

Syntax and Informal Semantics of F In the syntax below, ¢ ranges over first-order func-
tions (such as freshBytes or hmacshal in Crypto) and f ranges over datatype construc-
tors (such as Name or Hmacshal in the type bytes in Crypto). Functions and construc-
tors are either primitive, or introduced by function or datatype declarations. The primi-
tives include the communication functions Pi.send, Pi.recv, and Pi.name described in the
previous section. The concurrency operator Pi.fork is a higher-order function; we build
Pi.fork into the syntax of F. In F, we treat Pi.chan as a synonym for Pi.name; they have
different types but both create fresh atomic names. We omit the “Pi.” prefix for brevity.

Syntax of F:

I 1
X052 variable

a,b name

f constructor (uncurried)

98 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

12 function (curried)
true, false, tuplen n>0 primitive constructors
name, send, recv, log, failwith primitive functions
M, N ::= value
X variable
a name
f(My,....M,) constructor application
e:n= expression
M value
{My ... M, function application
fork (fun()—e) fork a parallel thread
match M with(| M; — ¢;)/€!-" pattern match
let x =¢; in ey sequential evaluation
d:= declaration
type s = (| f; of s;1%.. .*simi)iEI"” datatype declaration
letx =e value declaration
let{x;..x,=e¢ n>0 function declaration
Su=d;---d, system: list of declarations

We rely on the following syntactic conventions. For any phrase of syntax ¢, we write
Sv(¢) and fn(¢) for the sets of variables and names occurring free in ¢. To facilitate the
translation from F to the pi calculus, we assume each function ¢ is a pi calculus name,
so that, for example, fin(¢ My ... M,) = {£}Ufn(M;)U---Ufn(M,). A phrase of syntax
¢ is closed iff fv(¢) = @. We identify phrases of syntax up to consistent renaming of
bound variables and names; that is, ¢ = ¢’ means that ¢ and ¢’ are the same up to
such renaming. Let ¢ range over ground substitutions {M; /xi,...,My,/x,} of values for
variables, where fv(M;) = @.

A system S is a sequence of declarations. We write the list S as @ when it is empty. A
datatype declaration introduces a new type and its constructors (much like a union type
with tags in C); the type expressions s, s;; are ignored in F. A value declaration let x = ¢
triggers the evaluation of expression e and binds the result to x. A function declaration
let / x| ...x, = e defines function ¢ with formal parameters x ...x, and function body e.
These functions may be recursive.

A value M is a variable, a name, or a constructor application. Names model chan-
nels, keys, and nonces. Names can only be introduced during evaluation by calling the
primitive name. Source programs contain no free names. Expressions denote potentially
concurrent computations that return values. Primitive functions mostly represent com-
munication and concurrency: name() returns a freshly generated name; send M N sends
N on the channel M; recv M returns the next value received on channel M; log M logs
the event M; failwith M represents a thrown exception; and fork(fun()— ¢) evaluates e
in parallel. (We need not model exception handling in F as we rely on exceptions only to
represent fatal errors.) If £ has a declaration, the application £ M, ... M, invokes the body
of the declaration with actual parameters M, ..., M,. A match M with(| M; — ¢;)/€!-"
runs e; for the least i such that pattern M; matches the value M; if the pattern M; contains
variables, they are bound in ¢; by matching with M. If there are two or more occurrences
of a variable in a pattern, matching must bind each to the same value. (Strictly speaking,
F# forbids patterns with multiple occurrences of the same variable. Still, the effect of

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 99

any such pattern in F can be had in F# by renaming all but one of the occurrences and
adding one or more equality constraints via a when clause.) Finally, let x = ¢; in e; first
evaluates e to a value M, then evaluates e;{M/x}, that is, the outcome of substituting
M for each free occurrence of x in e;.

In addition to the core syntax of F, we recover useful syntax supported by F# as
follows. The first three rules allow expressions to be written in places where only values
are allowed by the core syntax; these rules only apply when the left-hand side is not
within the core syntax.

Derived Expressions:
I 1

flel,... en életxl =epin...letx, =¢, in f(x1,...,x,) x; fresh
lep ...e,=letx; =e; in...leixn =e,inflx; ... x, x;fresh
match ey with(| M; — ¢;)/!"" = let xo = eo in match xo with(| M; — ¢;)€!"" xq fresh

f £ F() where constructor f has arity 0
A
(e1,...,en) :tupleri(el,...,en) where n > 0
if e then ¢, else e, = match e with | true — e | false — e
e| = e, = match (e1,e2) with | (x,x) — true | (x,y) — false

ei;ep=letx=ej;ine; where x ¢ fv(e2)
L]

Operational Semantics of F Next, we formalize the operational semantics of F and the
idea of safety with respect to a query. Let a configuration, C, be a multiset of running sys-
tems and logged events. We write C | C’ for the composition of configurations C and C'.
To formalize that configurations are multisets, we identify configurations up to a struc-
tural equivalence relation, C = C’, that includes laws of associativity and commutativity
for composition. It also includes a law C | @ = C to allow deletion of an empty sequence
of declarations, &.

Syntax of F Configurations, and Structural Equivalence:
I 1

C:=S|eventM | (C|C")

CG=C=0C=0C C1|CQEC2|C1
C=GC,0=0G=C =0 Ci | (C2|C3)E(C1 ‘Cz)‘C3

C15C2:>C1‘CEC2|C C|@EC
L

The following rules define a small-step reduction semantics on configurations.

Reduction Rules: C — C’ where C and C' are closed

I

Ci—GifC=C,C—C,Co=C

Cold S— Cy|S ifd is adatatype declaration

Cold S—Cy|d|S ifd isafunction declaration, S # &

Colletx=M S — Cy|S{M/x}

Colletx=¢M) ... M, S— Cy|letx=e{M/x1,....My/x,} S
ifCo=Cj|letlx;...x,=e

Co |letx=name () S— Cy|S{a/x} ifa¢m(Cy,S)

100 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

Co | letx; =send M N S | let x, =recvM S> — C |S1{()/x1} | SQ{N/XZ}
Co|letx=1logM S — Cy|event M| S{()/x}
Co | let x = fork(fun()—e) S — Cp |letx=e¢ | S{()/x}
Co | let x = match M with (| M; — ¢;)/€'"" S — Cy|letx=ej0 S if M =Mc
Co | let x = match M with (| M; — ¢;)'€!"" §

— Cp | let x = match M with (| M; — ¢;)'*>" S if -36. M = Mo
Colletx=(lety=ejine;) S—Co|lety=eletx=er S y¢&f(S)
|

The first rule allows configurations to be rearranged up to C = C’ when calculating a
reduction. The second simply discards a top-level datatype declaration in a system; types
have no effect at runtime. The third forks a top-level function declaration d as a separate
system consisting just of d; this system is itself insert, but it can be called from other
systems running in parallel. The remaining rules apply to a top-level value declaration
let x = ¢, for some e, running in a context including a configuration Cp, and specify
how the expression e evaluates in that context. These rules formalize the description of
expression evaluation given earlier in this section.

The only primitive function not to appear in a reduction rule is failwith; applications
of the form failwith M are simply stuck (although in F# they raise an exception).

A Simple Example We consider an example system S;o representing transmission of a
single encrypted message from an initiator to a responder. The system Sjo consists of a
sequence of ten declarations, which we define below.

A
S10 = dgy dCipher denc ddec dnet dkey dinit dresp dyy du2

The first two declarations are of types: a type of events (as in Section 2) and a type
of symmetric-key authenticated encryptions (a much simplified version of the type bytes
from Section 2).

dgy 2 type Ev = Send of string | Accept of string

dCipher £ type Cipher = Enc of string * string

Next, we declare an encryption function enc and a decryption function dec. (The
latter includes a pattern (Enc(p,z),z) containing two occurrences of the same variable. As
mentioned above, such patterns are allowed in F but not literally in F#, although we can
achieve the same effect in F# by writing (Enc(p,z),z’) when z=z’.)

denc £ Jet enc x y = Enc(x,y)

dyec £ Jet dec x y = match (x,y) with | (Enc(p,z),z) —p

The next four declarations generate names for a shared network channel (net) in-
tended to be public, and a shared symmetric key (key) intended to be known only to the
initiator and responder, and define the initiator and responder role as functions init and
resp. The initiator logs a Send event, creates an encryption, and sends it on the network
channel. The responder receives a message, decrypts it, and, if the decryption succeeds,
logs an Accept event.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 101

dhet £ Jet net = name()
dyey 2 Jet key = name()
dinit £ Jet init x = log (Send(x)); let ¢ = enc x key in send net ¢
dresp 2 Jet resp () =let m = recv net in let x = dec m key in log (Accept(x))
The final two declarations simply fork a single instance of the initiator role and a
single instance of the responder role.
dy1 £ let ul = fork(fun() — init "msg1")
dy Zletu2 = fork(fun() —resp ()
To illustrate the rules of the formal semantics, we calculate a reduction sequence in
which an encryption of "msgl" flows from the initiator to the responder. We eliminate
empty systems with the equation C | @ = C. We begin the calculation with the following

steps: the two type declarations are discarded, and the first two function declarations are
forked as separate systems.

Si0 — dCipher denc ddec dnet dkey dinit dresp du1 dy2
— denc dgec dnet dkey dinit dresp dyy du2
— denc ‘ ddec dnet dkey dipit dresp dyy du2

— denc ‘ ddec ‘ dnet dkey dinit dresp dyy du2

The next part of the computation generates fresh, distinct names n and k and binds
them to the variables net and key, respectively. The following abbreviations record the
outcome of substituting these names for the variables in init and resp.

AN AN
dh = dipi{n/net} dik=an. {k/key}

init

A A
dpesp = dresp{n/net} dpeé(p = d?esp{k/keY}

We have the following reductions in which n and k are generated, and the initiator
and responder functions are forked as separate systems.

denc ‘ dgec ‘ dnet dkey dinit dresp dyy dy2

n_ n
— denc | ddec | dkey dinit dresp dy1 dy2

nk jnk
— denc | dgec | dinig dresp dyy dy

nk | jnk
— denc | dgec | dinit dresp dyy dy2

n k n k
— denc | ddec | dinit dresp ‘ dul du2

In the next segment of the computation, we fork instances of the initiator and re-
sponder as separate threads. As a shorthand, let Cy = denc | dgec | dlrllnli | d}‘eﬁp.

102 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

denc | daee | dipd | ditgy | duy dua

= Cp | let ul = fork(fun() — init "msgl") let u2 = fork(fun() —resp ())
— Cp |letul =init "msgl" |let u2 = fork(fun() —resp ()

— Cp | letul =init "msgl" | let u2 =resp ()

The initiator logs a Send event and prepares to send the encrypted message on the
channel n. Let C; = Cp | let u2 = resp ().

Co | let ul = init "msgl" |let u2 =resp ()

— C |letul = (log (Send("msgl")); let c=enc "msgl "k in send n c)

— Cj |let u3 =log (Send("msgl")) let ul=(let c=enc "msgl "k in send n c)
— C | event Send("msgl") | let ul=(let c=enc "msgl "k in send n c)

— C) | event Send("msgl") |let c=enc "msgl"klet ul=send nc

— C | event Send("msgl") | let c=Enc("msgl".k)let ul=send n c

— Cj | event Send("msgl") |let ul=send n (Enc("msgl".k))

Next, we consider reductions of the responder let u2 =resp (). In fact, it could
have reduced in parallel with some of the reductions shown above; we are not here
attempting to show all possible interleavings. As a further abbreviation, let C; = Cj |
event Send("msgl") | let ul=send n (Enc("msgl" k)).

C) | event Send("msgl") | let ul=send n (Enc("msgl " k))

=Gy |letu2 =resp ()

— Cy | let u2 = (let m = recv n in let x = dec m k in log (Accept(x)))
— C; | let m =recv n let u2 = (let x = dec m k in log (Accept(x)))

At this point, the encrypted message can pass between the sender and the receiver.
We end the calculation with the following steps. Let Cz = Cp | event Send("msgl").

C | let m =recv n let u2 = (let x = dec m k in log (Accept(x)))
= C3 | let u2 = (let x = dec (Enc("msgl " k)) k in log (Accept(x)))
— Cs | let x = dec (Enc("msgl" k) k let u2 = log (Accept(x)))

— (3 | let x = match (Enc("msgl " k),k) with | (Enc(p,z),z) —p
let u2 = log (Accept(x)))

— C3 | let x = "msgl "let u2 = log (Accept(x)))
— C3 | let u2 = log (Accept("msgl™")))
— (3 | event Accept("msgl")

In summary, we have calculated the following sequence of reductions.

S10 =" dend |gec| dE dfeé‘p | event Send("msgl") | event Accept("msgl")

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 103

Formation Judgments for Expressions and Systems We use system interfaces to control
the capabilities of the opponent. An interface, I, records the set of values, constructors,
and functions imported or exported by a system. Since our verification method does not
depend on types, F interfaces omit type structure and track only the distinction between
values, constructors, and functions, plus the arity of constructors and functions.

Interfaces:

I 1
u :=x:val| f:ctor n | ¢:fun n mention: value, constructor, or function
Io=uy,... Uy interface (unordered sequence)

For example, let Prim be the following interface, which describes the F primitives,
where m is an arbitrary maximum width of tuples.

true: ctor 0, false: ctor 0, (tuplei: ctor i)iEI"’”,
failwith: fun 1, log: fun 1, Pi.name: fun 1, Pi.chan: fun 1,
Pi.send: fun 2, Pi.recv: fun 1, Pi.fork: fun 1

As another example, let I,,,;, be the following interface, which enumerates the func-
tions exported by the symbolic libraries together with the application code for the exam-
ple protocol in Section 2.

Net.send: fun 2, Net.accept: fun 1,

Crypto.S: fun 1, Crypto.iS: fun 1,

Crypto.base64: fun 1, Crypto.ibase64: fun 1,
Crypto.utf8: fun 1, Crypto.iutf8: fun 1,
Crypto.concat: fun 2, Crypto.iconcat: fun 1,
Crypto.mkNonce: fun 1, Crypto.mkPassword: fun 1,
Crypto.rsa_keygen: fun 1, Crypto.rsa_pub: fun 1,
Crypto.rsa_encrypt: fun 2, Crypto.rsa_decrypt: fun 2,
Crypto.hmacshal: fun 2,

pkB: val, client: fun 1, server: fun 1

To define when a system exports an interface, we introduce inductively-defined for-
mation judgments for expressions and systems. Let dom(I) be the set of variables, con-
structors, and functions mentioned in /. We write / - ¢ to mean that the interface / men-
tions no value, constructor, or function twice, that is, there is no split / = I’,I” with
dom(I'"YNdom(I") # @. We write I - i to mean that - ¢ and moreover U is a member
of I, thatis, I = I, u for some I’.

The formation judgment I = S : I’ means S refers only to external values, construc-
tors, and functions listed in /, and provides declarations for the values, constructors, and
functions listed in I’. The formation judgment I - e means that all occurrences of vari-
ables in e are bound and all occurrences of constructors and functions in ¢ have the cor-
rect arity. We define these judgments inductively via the rules in the following table.
In the rule for match, we write fv(M;):val as a shorthand for x;:val, ... x,:val where

{x1,.. 20} = (M),

104 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

Formation Rules for F:

I
IFxval IF fictorn I-M; Viel.n IH{funn I-M; Viel.n
I+x I+ f(My,....M,) IFOM; ... M,

=M I,fv(Mi):Val FM; fl’l(Ml) =y
Lfv(M;):valle; Vi€ l.n
I+ match M with (| M; — ¢;)'€!"

Ike I+e; Ix:vall e
I+ fork(fun()—e) Ihletx=¢jine;

IFo I, = (fictor m))' € [FS:T
IF@:2 Iktypes = (| fiof sy ks)" St I, T

IFe ILxwval-S:I' I/{funn,xg:val,... x,;valFe I 0funnk-S:I
IFletx =eS:xval I’ IFletlx)...x,=eS:{funn,I’

These formation rules are an abstraction of the typing rules of F# for the fragment
we consider. They are enforced by the F# compiler during typechecking.

Recall the system S19 = dgy dcipher denc ddec dnet diey dinit dresp du1 dy2 and the
interface Prim given earlier. We can derive that Prim - Sy : 119, where I} is the interface:

Send: ctor 1, Accept: ctor 1, Enc: ctor 2, enc: fun 2, dec: fun 2,
net: val, key: val, init: fun 1, resp: fun 1, ul: val, u2: val

Event-Based Security Properties of F We express authentication and other properties
in terms of event-based queries. The general form of a query is ev:E = ev:B; V---V
ev:B,, which means that every reachable configuration containing an event matching the
pattern E also contains an event matching one of the B; patterns.

Queries and Safety:
I 1

A query q is written ev:E = ev:B V ---Vev:B,
for values E, By, ..., B, containing no free names.
Let o stand for a substitution {M /x1,...,M,/x,}.
Let C |= query ev:E = ev:B; V- -- Vev:B, if and only if
whenever C = event Eo | C', we have C' = event B;c | C” for some i € 1..n.
Let C —* C'if and only if either C = C' or C —* C'.
Let S be safe for q if and only if C |= ¢ whenever S —% C.
|

For example, a system is safe for query ev: Accept(x) = ev:Send(x) from Section 2 if
every reachable configuration containing event Accept(M) also contains event Send(M).
Our example system Sjo satisfies this property. For example, let Cjo be any one of
the configurations shown earlier such that Sj9p —* Cjo. We can easily see that Cjg =
ev:Accept(x) = ev:Send(x), since an Accept event only occurs in the final configuration,
which includes a matching Send event.

We define a robust safety property, that is, safety in the presence of an opponent. To
avoid vacuous failures, we forbid the opponent from logging events. If I is an interface,
an /-opponent is a system O that depends only on / and Prim, but not log.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 105

Formal Threat Model: Opponents and Robust Safety

I

Let S :: 1y iff Prim = S : 1, 1,5, for some 1.

Let O be an I-opponent iff Prim\log,/ - O : I’ for some I'.

Let S be robustly safe for g and I iff S :: I and S O is safe for g for all /-opponents O.

Hence, setting a verification problem for a system § essentially amounts to selecting
the subset I, of its interface that is made available to the opponent.

Consider again our small example Sjo, its interface Ijp, and the query g =
ev:Accept(x) = ev:Send(x) given earlier. We already noted that Sy is safe for g and that
Prim = Sy¢ : I1p, but Sy¢ is not robustly safe for ¢ and I19. The interface I;9 exposes too
much to the opponent, and hence does not reflect our intended threat model. For exam-
ple, the secret key is included in /;¢, allowing the following opponent O; to intercept the
encrypted message, and replace it with another.

O £ Jet ul =recv net let u2 = send net (enc("bogus " key))

Moreover, the constructor Enc exposed in /1o allows the following opponent O, to
use pattern matching to discover the secret key, and hence to send a bogus message.

0)) £ Jet u = match recv net with Enc(m,k) — send net (enc("bogus",k))

The concrete counterpart to this symbolic attack is the ability to extract the encryp-
tion key from any ciphertext, a major failure of a cryptosystem. Since this possibility is
not normally included in the threat model for protocols, we would not normally export
encryption constructors, such as Enc, to the symbolic opponent.

For either O; or O, we can calculate the following computation, which ends in a
configuration that does not satisfy the query g.

S10 0; — 7 denc | dgec | dﬁnl; | d?eé(p | event Send("msgl") | event Accept("bogus")

On the other hand, S1g is robustly safe for ¢ and the following interface that reflects
our intended threat model. The interface does not expose the secret key to the attacker,
and by not exporting the constructor Enc prevents the attacker from extracting keys from
ciphertexts. It does allow the attacker to initiate protocol roles, to send and receive net-
work traffic, and to encrypt and decrypt messages.

enc: fun 2, dec: fun 2, net: val, init: fun 1, resp: fun 1
For the example protocol in Section 2, let S be the system that consists of application
code and symbolic libraries. We have that S :: 1,5, Where I, is the example interface
given earlier in this section. Our verification problem is to show that S is robustly safe
for ev:Accept(x) = ev:Send(x) and 7,

4. Mapping F# to a Verifiable Model

We target the script language of ProVerif for verification purposes. ProVerif can establish
correspondence and secrecy properties for protocols expressed in a variant of the pi cal-

106 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

culus, whose syntax and semantics are detailed in our technical report. In this calculus,
active attackers are represented as arbitrary processes that run in parallel, communicate
with the protocol on free channels, and perform symbolic computations. Given a script
that defines the protocol, the capabilities of the attacker, and some target query, ProVerif
generates logical clauses then uses a resolution-based semi-algorithm. When ProVerif
completes successfully, the script is robustly safe for the target query, that is, the query
holds against all (pi calculus) attackers; otherwise, ProVerif attempts to reconstruct an
attack trace. ProVerif may also diverge, or fail, as can be expected since query verifica-
tion in the pi calculus is not decidable. (ProVerif is known to terminate for the special
class of tagged protocols [16]. However, the protocols in our main application area of
web services rarely fall in this class.) ProVerif is a good match for our purposes, as it
offers both general soundness theorems and an effective implementation. Pragmatically,
we also rely on previous positive experience in generating large verification scripts for
ProVerif. In principle, however, we may benefit from any other verification tool.

To obtain a ProVerif script, we translate F programs to pi calculus processes and
rewrite rules. To help ProVerif succeed, we use a flexible combination of several transla-
tions. To validate our usage of ProVerif, we also formally relate arbitrary attackers in the
pi calculus to those expressible in F.

At its core, our translation maps functions to processes using the classic call-by-
value encoding from lambda calculus to pi calculus [31]. For instance, we may translate
the mac function declaration of Section 2

let mac nonce pwd text =
Crypto.hmacshal nonce (concat (utf8 pwd) (utf8 text))

into the process

lin(mac, (nonce,pwd,text,k));
out(k,Hmacshal (nonce,Concat(Utf8(pwd),Utf8(text))))

This process is a replicated input on channel mac; each message on mac carries the
functional arguments (nonce,pwd,text) as well as a continuation channel k. When the
function completes, it sends back a message that carries its result on channel k. Similarly,
we translate the server function declaration of Section 2 into:

lin(server, (arg,kR));
new kX; out(accept, (address,kX)); in(kX,xml);
new kM; out(unmarshall, (xml,kM)); in(kM,(m,en,text));
new kV; out(verify, ((m,en,text),sk,pwd,kV)); in(kV,());
event Ev(Accept(text));
out(kR, ()

This process first calls function accept as follows: it generates a fresh continuation
channel kX; it sends a message that carries the argument address and kX on channel
accept; and it receives the function result xml on channel kX. The process then similarly
calls the functions unmarshall and verify. If both calls succeed, the process finally logs
the event Accept(text) and returns an (empty) result on kR.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 107

Our pi calculus includes the same term algebra—values built from variables, names,
and constructors—as F, so values are unchanged by the translation. Moreover, our pi cal-
culus includes term destructors defined by rewrite rules on the term algebra, and when-
ever possible after inlining, our implementation maps simple functions to destructors.
For instance, we actually translate the mac function declaration into the native ProVerif
reduction:

reduc mac(nonce,pwd,text) =
HmacShal (nonce,Concat(Utf8(pwd),Utf8(text)))

Both formulations of mac are equivalent, but the latter is more efficient. On the other
hand, complex functions with side-effects, recursion, or non-determinism are translated
as processes. Our tool also supports a third potential translation for mac, into a ProVerif
predicate declaration; predicates are more efficient than processes and more expressive
than reductions. Our translation first performs aggressive inlining of F functions, con-
stant propagation, and similar optimizations. It then globally picks the best applicable
formulation for each reachable function, while eliminating dead code.

Finally, the translation gives to the pi calculus context the capabilities available to
attackers in F. For example, the channel httpchan representing network communication
is exported to the context in an initialization message. More interestingly, every public
function coded as a process is made available on an exported channel.

For instance, the server function is available to the attacker; accordingly, we generate
the process:

lin(serverPUB, (arg,kR)); out(server, (arg,kR))

This enables the attacker to trigger instances of the server using the public channel
serverPUB. Conversely, the private channel server is used only by the translation, so that
the attacker cannot intercept local function calls.

Formally, we define translations for expressions e, declarations d, and systems S.
The translation &[e](x,P) is a process that binds variable x to the value of e and then
runs process P. The translations .7 [d](P) and .’[S](P) are processes that elaborate d
and S, and then run process P. At the top level, the translation [S :: / pub]] is a ProVerif
script that includes constructor definitions for the datatypes in S and defines a process
that elaborates S and then exports I,,,;,. Details of these translations are in the technical
report.

Our main correctness result is the following.

Theorem 1 (Reflection of Robust Safety) IfS :: 1., and [S :: I,u5] is robustly safe for g,
then S is robustly safe for q and I,y

In the statement of the theorem, S is the series of modules that define our system;
I,up 1s a selection of the values, constructors, and functions declared in § that are made
available to the attacker; ¢ is our target security query; and [S :: I, is the ProVerif script
obtained from S and /.

The proof of Theorem 1 appears in our technical report; it relies on an operational
correspondence between reductions on F configurations and reductions in the pi calculus.

108 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

We implement our translation as a command line tool fs2pv that intercepts code after
the F# compiler front-end. The tool takes as input a series of module implementations
defining S and module interfaces bounding the attacker’s capabilities, much like /.
The tool relies on the typing discipline of F# (which is stronger than the scope discipline
of F) to enforce that S :: 1,,,;,. It then generates the script [S :: I,,ub]] and runs ProVerif. If
ProVerif completes successfully, it follows that [S :: 1,,] is robustly safe for g. Hence,
by Theorem 1, we conclude that § is robustly safe for g and 1,,,,;.

As a simple example, recall the system § and its interface I, as stated at the end
of Section 3. Our tool runs successfully on this input, proving that S is robustly safe for
the query ev:Accept(x) = ev:Send(x) and I,

5. Verification of Interoperable Code

To validate our approach experimentally, we implemented a series of cryptographic pro-
tocols and verified their security against demanding threat models.

Tables 1 and 2 summarize our results for these protocols. For each protocol, Table 1
gives the program size for the implementation (in lines of F# code, excluding interfaces
and code for shared libraries), the number of messages exchanged, and the size of each
message, measured both in bytes for concrete runs and in number of constructors for
symbolic runs. Table 2 concerns verification; it gives the number of queries and the kinds
of security properties they express. A secrecy query requires that a password (pwd) or key
(key) be protected; a weak-secrecy query further requires that a weak secret (weak pwd)
be protected from a guessing attack. An authentication query requires that a message
content (msg), its sender (sender), or the whole exchange (session) be authentic. Some
queries can be verified even in the presence of attackers that control some corrupted
principals, thereby getting access to their keys and passwords. Not all queries hold for all
protocols; in fact some queries are designed to test the boundaries of the attacker model
and are meant to fail during verification. Finally, the table gives the size of the logical
model generated by ProVerif (the number of logical clauses) and its total running time to
verify all queries for the protocol.

For example, consider the simple authentication protocol of Section 2, named
Password-based MAC in the tables; its implementation has 38 lines of specific code;
ProVerif takes less than one second to verify the message authentication query and to
verify that the protocol protects the password from guessing attacks. A variant of our
implementation for this protocol (second row of Tables 1 and 2) produces the same mes-
sage, but is more modular and relies on more realistic libraries; it supports distributed
runs and enables the verification of queries against active attackers that may selectively
corrupt some principals and get access to their keys and passwords.

As a benchmark, we wrote a program for the four message Otway-Rees key estab-
lishment protocol [36], with two additional messages after key establishment to probe
the secrecy of message payloads encrypted with this key. To complete a concrete, dis-
tributed implementation, we had to code detailed message formats, left ambiguous in
the description of the protocol. In the process, we inadvertently enabled a typing attack,
immediately found by verification. We experimented with a series of 16 authentication
and secrecy queries; their verification takes a few minutes.

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 109

Protocol Implementation

LOCs | messages bytes symbols
Password-based MAC 38 1 208 16
Password-based MAC variant 75 1 238 21
Otway-Rees 148 4 | 74;140; 134; 68 | 24;40;20; 11
WS password-based signing 85 1 3835 394
WS X.509 signing 85 1 4650 389
WS password-based MAC 85 1 6206 486
WS request-response 149 2 6206; 3187 486; 542

Table 1. Summary of example protocols

Protocol Security Goals Verification
queries | secrecy authentication | insiders | clauses time
Password-based MAC 4 | weak pwd | msg no 69 0.8s
Password-based MAC variant 5| pwd msg, sender yes 213 2.2s
Otway-Rees 16 | key msg, sender yes 155 1m50s
WS password-based signing 5 | no msg, sender yes 456 53s
WS X.509 signing 5 | no msg, sender yes 460 26s
WS password-based MAC 3 | weak pwd | msg, sender no 436 10.9s
WS request-response 15 | no session yes 503 | 44m45s

Table 2. Verification Results

A Library for Web Services Security As a larger, more challenging case study, we im-
plemented and verified several web services security protocols.

Web services are applications that exchange XML messages conforming to the
SOAP standard [25]. To secure these exchanges, messages may include a security header,
defined in the WS-Security standard [34], that contains signatures, ciphertexts, and a
range of security elements, such as tokens that identify particular principals. Hence, each
secure web service implements a security protocol by composing mechanisms defined in
WS-Security. Previous analyses of such WS-Security protocols established correctness
theorems [23,9,7,27,28] and uncovered attacks [9,11]. However, these analyses operated
on models of protocols and not on their implementations. In the rest of this section, we
present the first verification results for the security of interoperable web services imple-
mentations.

First, we develop a library in F that implements the formats and mechanisms of
the web services messaging and security specifications. Like WSE [30], our library is a
partial implementation of these specifications; we selected features based on the need to
interoperate with protocols implemented by WSE. Our library provides several modules:

e Soap implements the SOAP formats for requests, responses, and faults, and their
exchange via HTTP.

o Wsaddressing implements the WS-Addressing [17] header formats, for message
routing and correlation.

110 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

o Xmldsig and Xmlenc implement the standards for XML digital signature [20] and
XML encryption [19], which provide flexible formats for selectively signing and
encrypting parts of an XML document.

e Wssecurity implements the WS-Security header format and common security to-
kens, such as username tokens, encrypted keys, and X.509 certificates.

These modules rely on the Crypto module for cryptographic functions and a new Xml
module (with dual symbolic and concrete implementations) for raw XML manipulation.

Applications written with this library produce and consume SOAP messages that
conform to the web services specifications. Such applications can interoperate with other
conformant web services, such as those that use WSE.

The requirement to produce concrete, interoperable, and verifiable code is quite de-
manding, but it yields very precise executable models for the informal WS-Security spec-
ifications, more detailed than any available in the literature. For verifiability, we adopt a
programming discipline that reduces the flexibility of message formats wherever possi-
ble. In particular, we fix the order of headers in a message and limit the number of head-
ers that can be signed. We avoid higher-order functions (such as List.map) and recursion
over lists and XML, and instead inline these functions by hand.

The library consists of 1200 lines of F code. We can quickly write security protocols
using this library, such as an authentication protocol that uses a password or an X.509
certificate to generate an XML digital signature (protocols WS Password-based signing
and WS X.509 signing in Tables 1 and 2). Only 85 additional lines of code need to be
written to implement these protocols; their verification takes a few seconds.

A Simple Authentication Protocol over WS-Security ~As a case study, we used our web
services library to implement an existing password-based authentication protocol (WS
password-based MAC) taken from the WSE samples. The protocol is quite similar to
Password-based MAC, except that the message is now a standards-compliant XML doc-
ument. This message is sent as the body of a SOAP envelope that includes a WS-Security
security header that contains a username token, representing the client’s identity, and an
X.509 token, representing the server’s identity. The username token includes a freshly
generated nonce used, along with a shared password, to derive a key for message au-
thentication. This nonce is protected by encrypting the entire username token with the
server’s public key, using XML encryption. The message is authenticated by an XML
digital signature that includes a cryptographic keyed hash of the body using a key derived
from the username token.

In earlier work [11], we wrote a non-executable formal model for this protocol and
analyzed it with ProVerif. Here, we extract the model directly from a full-fledged im-
plementation. Moreover, we encode a more realistic threat model that enables the at-
tacker to gain access to some passwords and keys. In particular, the Prins module has
two additional functions in its interface: leakPassword and leakPrivateKey.

The leakPassword function is defined as follows:

let leakPassword (u:str) =
let pwd = getPassword u in log Leak(u); pwd

When the attacker calls leakPassword for a principal u, the function extracts the
password for u from the database and returns it to the attacker; but before leaking the

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 111

password, the function logs an event Leak(u) recording that the principal u has been
compromised.

We implement the client and server roles using our library, with slightly different
Send and Accept events from the ones in Section 2. To enable sender authentication, the
client logs Send(u,m), where u is the principal that sends the XML message m. Similarly,
on receiving the message, the server logs Accept(u,m). The datatype of events and the
authentication query becomes

type Ev = Send of strxitem
| Accept of strxitem
| Leak of str
q = ev:Accept(u,m) = ev:Send(u,m) V ev:Leak(u)

where item is the datatype of XML elements. The query q asks that the server authen-
ticate the message m and the sending principal u, unless u has been leaked. Let W be
the system that consists of the client and server code, the symbolic libraries (Crypto,
Net, Prins, and Xml), and the web services library. Let 1,,,;, be the interface of Section 3
extended with the item datatype. Using fs2pv and ProVerif, we prove that W is robustly
safe for q and I,,,;,. The verification of message and sender authentication takes only a
few seconds. As with Password-based MAC, we also prove that the password is protected
even if it is a weak secret.

We experimentally checked that our concrete implementation complies with the web
services specifications: we can run our client with a WSE server, and conversely access
our server from a WSE client. Many details of our model would have been difficult to
determine from the specifications alone, without interoperability testing. The resulting
messages exchanged by the concrete execution are around 6 kilobytes in size, while the
symbolic execution of the protocol generates messages with 486 symbols. The perfor-
mance of our concrete implementation is comparable to WSE, which is not surprising
here, since the execution time is dominated by XML processing and communication.

We also implemented and verified an extension of the protocol described above,
where the server, upon accepting the request message, sends back a response message
signed with the private key associated with its X.509 certificate. For this two message
protocol, the security goals are authentication of the request and the response, as well
as correlation between the messages. Correlation relies on a mechanism called signature
confirmation (described in a draft revision of WS-Security), where the response echoes
and signs the password-based signature value of the request. The protocol is named WS
request-response in the tables; ProVerif establishes all our authentication and correla-
tion goals, but takes almost 45 minutes for the analysis. Elsewhere [10], we describe
the design and architecture of the library used for this and other web services security
protocols.

Our protocol implementation can also be used as part of a larger web application,
while still benefiting from our results. The client functions can be exported as a library
invoked by applications written in any language running on the CLR, such as C# or
Visual Basic. Similarly, the server functions can be embedded in the security stack of
a web server that checks all incoming messages for conformance to the protocol before
handing over the message body to a web application written in any language. In both
cases, assuming the application code does not have access to secret passwords or keys,
the security results transparently apply.

112 K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols
6. Conclusions

We describe an architecture and programming model for security protocols. For produc-
tion use, protocol code runs against concrete cryptography and low-level networking li-
braries. For initial development, the same code runs against symbolic cryptography and
intra-process communication libraries. For verification, much of the code translates to
a low-level pi calculus model for analysis against a Dolev-Yao attacker. The attacker
can be understood and customized in source-level terms as an arbitrary program running
against an interface exported by the protocol code.

Our prototype implementation is the first, we believe, to extract verifiable models
from code implementing standard security protocols, and hence able to interoperate with
other implementations. Our prototype has many limitations; still, we conclude that it
significantly reduces the gap between symbolic models of cryptographic protocols and
their implementations.

Limits of our model As usual, formal security guarantees hold only within the bound-
aries of the model being considered. Automated model extraction, such as ours, enables
the formal verification of large, detailed models closely related to implementations. In
our experience, such models are more likely to encompass security flaws than those fo-
cusing on protocols in isolation. Independently of our work, modelling can be refined in
various directions. Certified compilers and runtime environments can give strong guar-
antees that program executions comply with their formal semantics; in our setting, they
may help bridge the gap between the semantics of F and a low-level model of its native-
code execution, dealing for instance with memory safety.

Our approach also crucially relies on the soundness of symbolic cryptography with
regards to one implementation of concrete cryptography, which is far from obvious. Prag-
matically, our modelling of symbolic cryptography is flexible enough to accommodate
many known weaknesses of cryptographic algorithms (introducing for instance symbolic
cryptographic functions “for the attacker only”). There is a lot of interesting research on
reconciling symbolic cryptography with more precise computational models [3,6]. Still,
for the time being, these models do not support automated analyses on the scale needed
for our protocols.

Related work The ideas of modelling protocol roles as functions and modelling an ac-
tive attacker as an arbitrary functional context appear earlier in Sumii and Pierce’s stud-
ies of cryptographic protocols within a lambda calculus [39,40]. Unlike our functional
language, which has state and concurrency, their calculus cannot directly capture linear-
ity properties (such as replay detection via nonces), as its only imperative feature is name
generation. Several systems [37,33,29,38] operate in the reverse direction, and generate
runnable code from abstract models of cryptographic protocols in formalisms such as
strand spaces, CAPSL, and the spi calculus. These systems need to augment the under-
lying formalisms to express implementation details that are ignored in proofs, such as
message sizes and error handlers. Going further in the direction of growing a formalism
into a programming language, Guttman, Herzog, Ramsdell, and Sniffen [26] propose a
new programming language CPPL for writing security protocols; CPPL combines fea-
tures for communication and cryptography with a trust management engine for logically-
defined authorization checks. CPPL programs can be verified using strand space tech-
niques, although there is no automatic support for this at present. A limitation of all of

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 113

these systems is that they do not implement standard message formats and hence do not
interoperate with other implementations. In terms of engineering effort, it seems easier
to achieve interoperability by starting from an existing general purpose language such as
F# than by developing a new compiler.

Giambiagi and Dam [22] take a different approach to showing the conformance of
implementation to model. They neither translate model to code, nor code to model. In-
stead, they assume both are provided by the programmer, and develop a theory to show
that the information flows allowed by the implementation of a cryptographic protocol
are none other than those allowed by the abstract model of the protocol. They treat the
abstract protocol as a specification for the implementation, and implicitly assume cor-
rectness of the abstract protocol.

Askarov and Sabelfeld [5] report a substantial distributed implementation within the
Jif security-typed language of a cryptographic protocol for online poker without a trusted
third party. Their goal is to prevent some insecure information flows by typing. They do
not derive a formal model of the protocol from their code.

There are only a few works on compiling implementation files for cryptographic
protocols to formal models. Bhargavan, Fournet, and Gordon [8] translate the policy files
for web services to the TulaFale modelling language [11], for verification by compilation
to ProVerif. This translation can detect protocol errors in policy settings, but applies to
configuration files rather than executable source code. Other symbolic modelling [23,9,
7,27,28] of web services security protocols has uncovered a range of potential attacks,
but has no formal connection to source code. Goubault-Larrecq and Parrennes [24] are
the first to derive a Dolev-Yao model from implementation code written in C. Their tool
Csur performs an interprocedural points-to analysis on C code to yield Horn clauses
suitable for input to a resolution prover. They demonstrate Csur on code implementing
the initiator role of the Needham-Schroeder public-key protocol.

There is also recent research on verifying implementations of cryptographic algo-
rithms, as opposed to protocols. For instance, Cryptol [21] is a language-based approach
to verifying implementations of algorithms such as AES.

Acknowledgements James Margetson and Don Syme helped us enormously with using
and adapting the F# compiler. Tony Hoare and David Langworthy suggested improve-
ments to the presentation.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th ACM Sympo-
sium on Principles of Programming Languages (POPL’01), pages 104115, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and
Computation, 148:1-70, 1999.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption). Journal of Cryptology, 15(2):103-127, 2002.

[4] X. Allamigeon and B. Blanchet. Reconstruction of attacks against cryptographic protocols. In /8th
IEEE Computer Security Foundations Workshop (CSFW’05), pages 140—154, 2005.

[5] A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic protocols:
A case study. In /0th European Symposium on Research in Computer Security (ESORICS’05), volume
3679 of LNCS, pages 197-221. Springer, 2005.

[6] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations.
In Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS’03),
pages 220-230. ACM Press, 2003.

114

(71
(8]
(91

[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]
[20]

[21]
[22]

(23]
[24]
[25]
[26]
[27]
(28]

[29]

[30]
[31]
(32]
[33]
[34]

[35]

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols

K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Secure sessions for web services. In 2004 ACM
Workshop on Secure Web Services (SWS), pages 11-22, Oct. 2004.

K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying policy-based security for web services. In //th
ACM Conference on Computer and Communications Security (CCS’04), pages 268-277, Oct. 2004.

K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services authentication. Theoretical
Comput. Sci., 340(1):102-153, June 2005.

K. Bhargavan, C. Fournet, and A. D. Gordon. Verified reference implementations of ws-security proto-
cols. In 3rd International Workshop on Web Services and Formal Methods (WS-FM 2006), volume 4184
of LNCS, pages 88—106. Springer, 2006.

K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. TulaFale: A security tool for web services. In
International Symposium on Formal Methods for Components and Objects (FMCO’03), volume 3188
of LNCS, pages 197-222. Springer, 2004.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementations of security
protocols. In 19th IEEE Computer Security Foundations Workshop (CSFW’06), pages 139-152, 2006.
K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementations of security
protocols. Technical Report MSR-TR-2006—46, Microsoft Research, 2006.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In /4th IEEE Computer
Security Foundations Workshop (CSFW’01), pages 82-96, 2001.

B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for security
protocols. In 20th IEEE Symposium on Logic in Computer Science (LICS’05), pages 331-340, 2005.
B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces termination.
Theoretical Computer Science, 333(1-2):67-90, 2005.

D. Box, F. Curbera, et al. Web Services Addressing (WS-Addressing), Aug. 2004. W3C Member Sub-
mission.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, IT-29(2):198-208, 1983.

D. Eastlake, J. Reagle, et al. XML Encryption Syntax and Processing, 2002. W3C Recommendation.
D. Eastlake, J. Reagle, D. Solo, et al. XML-Signature Syntax and Processing, 2002. W3C Recommen-
dation.

Galois Connections. Cryptol Reference Manual, 2005.

P. Giambiagi and M. Dam. On the secure implementation of security protocols. Science of Computer
Programming, 50:73-99, 2004.

A. D. Gordon and R. Pucella. Validating a web service security abstraction by typing. In 2002 ACM
workshop on XML Security, pages 18-29, 2002.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In 6th Inter-
national Conference on Verification, Model Checking and Abstract Interpretation (VM CAI’05), volume
3385 of LNCS, pages 363-379. Springer, 2005.

M. Gudgin et al. SOAP Version 1.2, 2003. W3C Recommendation.

J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T. Sniffen. Programming cryptographic protocols.
In Trusted Global Computing (TGC’05), volume 3705 of LNCS, pages 116—145. Springer, 2005.

E. Kleiner and A. W. Roscoe. Web services security: A preliminary study using Casper and FDR. In
Automated Reasoning for Security Protocol Analysis (ARSPA 04), 2004.

E. Kleiner and A. W. Roscoe. On the relationship between web services security and traditional proto-
cols. In Mathematical Foundations of Programming Semantics (MFPS XXI), 2005.

S. Lukell, C. Veldman, and A. C. M. Hutchison. Automated attack analysis and code generation in a
multi-dimensional security protocol engineering framework. In Southern African Telecommunication
Networks and Applications Conference (SATNAC), 2003.

Microsoft Corporation. Web Services Enhancements (WSE) 2.0, 2004. At http://msdn.
microsoft.com/webservices/building/wse/default.aspx.

R. Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119-141, 1992.
R. Milner. Communicating and Mobile Systems: the nt-Calculus. CUP, 1999.

F. Muller and J. Millen. Cryptographic protocol generation from CAPSL. Technical Report SRI-CSL—
01-07, SRI, 2001.

A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. OASIS Web Services Security: SOAP Message
Security 1.0 (WS-Security 2004), Mar. 2004. OASIS Standard 200401.

R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.

[36]

[37]

[38]

[39]
[40]

[41]
[42]

K. Bhargavan et al. / Verified Interoperable Implementations of Security Protocols 115

Commun. ACM, 21(12):993-999, 1978.

D. Otway and O. Rees. Efficient and timely mutual authentication. Operation Systems Review, 21(1):8—
10, 1987.

A. Perrig, D. Song, and D. Phan. AGVI - automatic generation, verification, and implementation of
security protocols. In 13th Conference on Computer Aided Verification (CAV), LNCS, pages 241-245.
Springer, 2001.

D. Pozza, R. Sisto, and L. Durante. Spi2Java: automatic cryptographic protocol Java code generation
from spi calculus. In 18th International Conference on Advanced Information Networking and Applica-
tions (AINA 2004), volume 1, pages 400—405, 2004.

E. Sumii and B. C. Pierce. Logical relations for encryption. In /4th IEEE Computer Security Founda-
tions Workshop (CSFW’01), pages 256-269, 2001.

E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. In 37st ACM Symposium on Principles
of Programming Languages (POPL’04), pages 161-172, 2004.

D. Syme. F#, 2005. Project website athttp: //research.microsoft.com/fsharp/.

T. Woo and S. Lam. A semantic model for authentication protocols. In IEEE Computer Society Sympo-
sium on Research in Security and Privacy, pages 178-194, 1993.

116 Software System Reliability and Security
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 I0S Press. All rights reserved.

Compensable transactions

Tony HOARE
Microsoft Research, Cambridge, England

Abstract. The concept of a compensable transaction has been embodied in modern
business workflow languages like BPEL. This article uses the concept of a box-
structured Petri net to formalise the definition of a compensable transaction. The
standard definitions of structured program connectives are extended to construct
longer-running transactions out of shorter fine-grain ones. Floyd-type assertions
on the arcs of the net specify the intended properties of the transaction and of its
component programs. The correctness of the whole transaction can therefore be
proved by simple local reasoning.

1. Introduction

A compensable transaction can be formed from a pair of programs: one that performs
an action and another that performs a compensation for that action if and when required.
The forward action is a conventional atomic transaction: it may fail before completion,
but before failure it guarantees to restore (an acceptable approximation of) the initial state
of the machine, and of the relevant parts of the real world. A compensable transaction
has an additional property: after successful completion of the forward action, a failure of
the next following transaction may trigger a call of the compensation, which will undo
the effects of the forward action, as far as possible. Thus the longer transaction (this one
together with the next one) is atomic, in the sense that it never stops half way through, and
that its failure is adequately equivalent to doing nothing. In the (hopefully rare) case that
a transaction can neither succeed nor restore its initial conditions, an explicit exception
must be thrown.

The availability of a suitable compensation gives freedom to the forward action to
exercise an effect on the real world, in the expectation that the compensation can ef-
fectively undo it later, if necessary. For example, a compensation may issue apologies,
cancel reservations, make penalty payments, etc. Thus compensable transactions do not
have to be independent (in the sense of ACID); and their durability is obviously condi-
tional on the non-occurrence of the compensation, which undoes them. Because all our
transactions are compensable, in this article we will often omit the qualification.

We will define a number of ways of composing transactions into larger structures,
which are also compensable transactions. Transaction declarations can even be nested.
This enables the concept of a transaction to be re-used at many levels of granularity, rang-
ing perhaps from a few microseconds to several months — twelve orders of magnitude.
Of course, transactions will only be useful if failure is rare, and the longer transactions
must have much rarer failures.

The main composition method for a long-running transaction is sequential composi-
tion of an ordered sequence of shorter transactions. Any action of the sequence may fail,

T. Hoare / Compensable Transactions 117

and this triggers the compensations of the previously completed transactions, executed
in the reverse order of finishing. A sequential transaction succeeds only if and when all
its component transactions have succeeded.

In the second mode of composition, the transactions in a sequence are treated as
alternatives: they are tried one after another until the first one succeeds. Failure of any
action of the sequence triggers the forward action of the next transaction in the sequence.
The sequence fails only if and when all its component transactions have failed.

In some cases (hopefully even rarer than failure), a transaction reaches a state in
which it can neither succeed nor fail back to an acceptable approximation of its original
starting state. The only recourse is to throw an exception. A catch clause is provided to
field the exception, and attempt to rectify the situation.

The last composition method defined in this article introduces concurrent execution
both of the forward actions and of the backward actions. Completion depends on com-
pletion of all the concurrent components. They can all succeed, or they can all fail; any
other combination leads to a throw.

2. The Petri box model of execution

A compensable transaction is a program fragment with several entry points and several
exits. It is therefore conveniently modelled as a conventional program flowchart, or more
generally as a Petri net. A flowchart for an ordinary sequential program is a directed
graph: its nodes contain programmed actions (assignments, tests, input, output, ...as in
your favourite language), and its arrows allow passage of a single control token through
the network from the node at its tail to the node at its head. We imagine that the token
carries with it a value consisting of the entire state of the computer, together with the
state of that part of the world with which the computer interacts. The value of the token
is updated by execution of the program held at each node that it passes through. For a
sequential program, there is always exactly one token in the whole net, so there is never
any possibility that two tokens may arrive at an action before it is complete.

In section 6, we introduce concurrency by means of a Petri net transition, which
splits the token into separate tokens, one for each component thread. It may be regarded
as carrying that part of the machine resources which is owned by the thread, and com-
munication channels with those parts of the real world for which it is responsible. The
split token is merged again by another transition when all the threads are complete. The
restriction to a single token therefore applies within each thread.

A structured flowchart is one in which some of its parts are enclosed in boxes. The
fragment of a flowchart inside a box is called a block. The perimeter of a box represents
an abstraction of the block that it contains. Arrows crossing the perimeter are either
entries or exits from the box. We require the boxes to be either disjoint or properly nested
within each other. That is why we call it a structured flowchart, though we relax the
common restriction that each box has only one entry and one exit arrow. The boxes are
used only as a conceptual aid in planning and programming a transaction, and in defining
a calculus for proving their correctness. In the actual execution of the transaction, they
are completely ignored.

We will give conventional names to the entry points and exit points of the arrows
crossing the perimeter of the box. The names will be used to specify how blocks are com-

118 T. Hoare / Compensable Transactions

posed into larger blocks by connecting the exits of one box to the entries of another, and
enclosing the result in yet another box. This clearly preserves the disjointness constraint
for a box-structured net.

One of the arrows entering the box will be designated as the start arrow. That is
where the token first enters the box. The execution of the block is modelled by the move-
ment of the token along the internal arrows between the nodes of the graph that are inside
the box. The token then can leave the box by one of its exit points, generally chosen by
the program inside the box. The token can then re-enter the box again through one of
the other entry points that it is ready to accept it. The pattern of entering and leaving the
block may be repeated many times.

In our formal definition of a compensable transaction, we will include a behavioural
constraint, specifying more or less precisely the order in which entry and exit points can
be activated. The behavioural constraint will often be expressed as a regular expression,
whose language defines all permissible sequences of entry and exit events which may be
observed and sequentially recorded.

We will introduce non-determinism into our flowchart by means of the Petri net
place. A place is drawn as a small circle (Figure 1) with no associated action. It may
have many incoming arrows and many outgoing arrows. The place is entered by a token
arriving along any one of its entries. The next action (known as a firing) of the place is to
emit the token just once, along any one of its exit arrows. The token arriving at the exit
of the place may have originated at any one of its entries. The strict alternation of entries
and exits of a place may be formally described by the regular expression

l+m+n);(r+s+1)

where [, m, n name the entries of the place, and r, s, name the exits.

Technical note: in general, a Petri net place is capable of storing a token. In our
restricted calculus this capability is exploited only once (in section 6). In fact, we may
regard a token as passing instantaneously (as a single event) through any sequence of
consecutive states. Of course, a regular expression cannot model this simultaneity.

If the place has only a single exit arrow, it acts as a normal fan-in, and has the same
function as in a conventional flowchart. If there are many exits, the place acts as a fan-
out. The choice of exit arrow on each occasion of entry is usually determined by the
current readiness of the block at the head of the exit arrow to accept entry of the token.
But if more than one block is ready, the choice is non-deterministic, in the usual sense of
don’t-care or demonic non-determinism. It is the programmer’s responsibility to ensure
that all choices are correct; and the implementation may choose any alternative according
to any criterion whatsoever, because it is known that correctness will not be affected. For
example, efficiency and responsiveness are among the more desirable of the permissible
criteria.

We follow Floyd’s suggestion that the arrows in a flowchart should be annotated
with assertions. Assertions are descriptions of the state of the world (including the state
of the machine), and the programmer intends that they should be true of the world value
carried by the control token, whenever it passes along the annotated arrow. An assertion
on an arrow which enters a box serves as a precondition for the block, and it is the
responsibility of the surrounding flowchart to make it true before transmitting the token
to that entry. An assertion on an exit arrow from the box serves as a postcondition, and

T. Hoare / Compensable Transactions 119

L R

M S

N T

Correctness condition: LVMVN=RASAT
Behaviour: I+m+n);(r+s+1)

Figure 1. A Petri net place

it is the responsibility of the block itself to make it true before transmitting the token
through that exit.

The correctness of the composed flowchart may be determined locally in the usual
way, by considering the assertions on each arrow and on each place. For an arrow which
connects a single exit point to a single entry (usually on another box), the exit assertion
of the box at the tail of the arrow must logically imply the entry assertion of the box at its
head. For a place, the rule is a natural extension of this. A place is correct if the assertion
on each one of its entry arrows logically implies every one of the assertions at the heads of
its exit arrows. In other words, the verification condition for a place is that the disjunction
of all the tail assertions implies the conjunction of all the head assertions (see Figure 1,
where the upper case letters stand for the arrows annotated by the corresponding lower
case letter). Thus overall correctness of the entire flowchart can be proved in a modular
fashion, just one arrow or place or action at a time.

N T

Correctness condition:. LVMVN=RASAT
Behaviour: I+m+n);r+s+1)

Figure 2. The same place as Figure 1

The intention of drawing a box of a structured flowchart is that the details of the
flowchart inside the box should be irrelevant to the rest of the flowchart that lies outside
the box. From the outside, you only need to know three items: (1) the names of the entry
and exit points; these are used to specify how the box is connected into its environment
(2) the assertions on the arrows that enter and leave the box; and (3) the constraints that
govern the order of entry and exit events, by which the token enters and leaves the box
along the arrows that cross the perimeter. If two boxes have the same assertions and the
same set of behaviours, we define them to be semantically equivalent.

This rule of equivalence may be applied to just a single place. As a result, any com-
plete collection of linked Petri net places, in which all the entries are connected to all

120 T. Hoare / Compensable Transactions

the exits, can be replaced by a single place, — one that has all the same entries and the
exits, but the internal arrows areeliminated. Figure 2 therefore has the same semantics as
Figure 1.

3. Definition of a transaction

A compensable transaction is a special kind of box in a Petri net. It is defined as a
box whose names, behaviour and assertions satisfy a given set of constraints. The first
constraint is a naming constraint. A transaction box has two entry points named start and
failback, and three exit points named finish, fail and throw. The intended function of each
of these points is indicated by its name, and will be more precisely described by the other
constraints. When a transaction is represented as a box, we introduce the convention that
these entries and exits should be distributed around the perimeter as shown in Figure 3.
As aresult, our diagrams will usually omit the names, since the identity of each arrow is
indicated by its relative position on the perimeter of the box.

P R
— | start Sfinish p—o—p
P R
«— fail Jailback —|j————
throw
E

Figure 3. Entry and exit names

A more significant part of the formal definition of a transaction is a behavioural
constraint, constraining the order in which the token is allowed to enter and exit the
block at each entry and exit point. The constraint is conveniently defined by a regular
expression:

start ; (finish ; failback)* ; (fail + throw + finish)

This expression stipulates that the first activation of the transaction is triggered by
entry of the token at the start point. The last de-activation of the transaction is when the
token leaves at any one of the three exit points. In between these two events, the trans-
action may engage in any number of intermediate exits and entries. On each iteration, it
finishes successfully, but is later required to compensate by a failback entry, triggered by
failure of the following sequentially composed transaction. The number of occurrences
of finish followed by failback is not limited, and may even be zero. Typical complete
behaviours of a transaction are:

T. Hoare / Compensable Transactions 121

start, finish

start, finish, failback, fail

start, finish, failback, finish

start, finish, failback, finish, failback, throw

The final constraint in the definition of a transaction governs the assertions on its
entry and exit points. This constraint expresses the primary and most essential property of
a transaction: that if it fails, it has already returned the world to a state that is sufficiently
close to the original initial state.

Sufficient closeness might be defined in many ways, but we give the weakest reason-
able definition. Our simple requirement is that on failure the world has been returned to a
state which again satisfies the initial precondition of the transaction. More precisely, the
assertion on the fail exit, must be the same original precondition that labels the start en-
try point. Similarly, on failback the transaction may assume that the postcondition that it
previously established on finishing is again valid. These standard assertional constraints
are indicated by the annotations in Figure 3. There is no constraint on the assertion E
labelling the throw exit.

Many of the constructions of our calculus of transactions can be applied to transac-
tions which satisfy weaker or stronger assertional constraints than the standard described
above. For example, a transaction may be exactly compensable if on failure it returns
to exactly the original state (where obviously the state of the world must be defined to
exclude such observations as the real time clock). A weaker constraint is that the post-
condition of failure is merely implied by the precondition. Finally, there is the possibility
that the transaction has no assertional constraint at all. We will not further consider these
variations.

In drawing diagrams with many boxes, the assertions on the arrows will often be
omitted. It is assumed that in concrete examples they will be restored in any way that sat-
isfies the intended assertional constraint, and also satisfies the local correctness criterion
for assertions, which apply to all arrows and all places.

That concludes our semantic definition of the concept of a transaction. The flowchart
gives an operational semantics, describing how the transactions are executed. The as-
sertions give an axiomatic semantics, describing how the transactions are specified and
proved correct. The interpretation of a flowchart makes it fairly obvious that the opera-
tional and the axiomatic definitions are in close accord.

4. A Calculus of Transactions

In this section we will define a small calculus for design and implementation of trans-
actions. They are built up by applying the operators that we define to smaller by build-
ing them from smaller component transactions. The ultimate components are ordinary
fragments of sequential program. Our semantic definitions will mainly use the picto-
rial representation shown in Figure 3. But for the sake of completeness, here is a more
conventional syntax.

122 T. Hoare / Compensable Transactions

<transaction> ::= <composed transaction> | <primitive transaction>
<primitive transaction> ::= succeed | fail | throw | <transaction declaration>
<transaction declaration> ::= [<forward action> comp compensation>]
<forward action> ::= <ordinary program>
<compensation> .= <ordinary program>
<composed transaction> ::= <sequential composition> |

<alternative composition> | <exception block> | <non-deterministic choice>
<sequential composition>::= <transaction> ; <transaction>
<alternative composition> ::= <transaction> else <transaction>
<exception block> ::= <transaction> catch <transaction>
<non-deterministic choice> ::= <transaction> or <transaction>

The shortest primitive transactions are those that do nothing. There are three ways
of doing nothing: by succeeding, by failing, or by throwing. Definitions for these trans-
actions are given diagrammatically in Figure 4, where the small unconnected arrows will
never be activated. The leftmost example does nothing but succeed, and this can obvi-
ously be compensated by doing nothing again. The other two examples do nothing but
fail or throw. These will never be called upon to compensate.

& > > > —
-+ - l— -+ r—
' I v
succeed fail throw

Figure 4. Primitive Transactions

Longer running transactions are constructed by composing smaller ones in sequence,
or as alternatives, or as a non-deterministic choice, or by try/catch clauses. In all cases,
the result of the composition of compensable transactions will also be a compensable
transaction. The semantics of each construction will be explained diagrammatically as
a box that encloses the boxes representing the components. Some of the exit arrows of
each component box will be connected to some of the entry arrows of the other com-
ponent box, and thereby become internal arrows that can be ignored from outside. En-
tries and exits on the surrounding box are connected to remaining exits and entries of the
component boxes, often ones that share the same name. Where necessary, places may be
introduced to deal with fan-in and fan-out.

The basic primitive fine-grained transaction is declared by specifying two sections
of normal sequential code (Figure 5). The first of them T performs the required action
as control passes from the start on the left to the finish on the right. The second section
of code U specifies how the action should be compensated as control passes back from
the failback on the right to the fail on the left. Either the action or the compensation
can throw, on detecting that neither progress nor compensation is possible. The fan-in

T. Hoare / Compensable Transactions 123

of the throw arrow indicates that it is not known from the outside which of the two
components has actually performed the throw. This fan-in of throws is common to most
of the operators defined below, and will sometimes be omitted from the diagrams

Y
-
\

Figure 5. Transaction Declaration: [T comp U]

The first definition of the constructions for non-primitive transactions will be se-
quential composition, which is shown in Figure 6. The outer block denoting the whole
composition starts with the start of the first component block T. The finish of this block
triggers the start of the second component block U. The finish of the second block fin-
ishes the whole sequential composition. A similar story can be told of the backward-
going failure path, which performs the two compensations in the reverse order to the
forward operations. This is what makes the composed transaction compensable in the
same way as its components are. Furthermore, the sequential composition will satisfy
the behavioural constraint for transactions, simply because its components do so.

There should be assertions on each of the arrows. However, the permitted patterns for
these assertions are completely determined by the correctness principle for flowcharts,
so there is no need to mention them explicitly.

Y
\J

A
A
A

Figure 6. Sequential Composition: T ; U

124 T. Hoare / Compensable Transactions

This definition of sequential composition is associative and has succeed as its unit.
A simple proof of associativity is obtained by drawing the diagram for a sequential com-
position with three components, and adding an extra box, either around the two left
operands or around the two right operands. It is easy to see that this represents the two
different bracketings of the associative law. The flowchart itself remains the same in both
cases.

The definition of sequential composition states that failure of any component trans-
action of the sequence will propagate inexorably to the left, until everything that has ever
been done since the beginning of time has been undone. This is not always desirable.
The else operator shown in Figure 7 gives a way of halting the stream of failures and
compensations. It reverses again the direction of travel of the token, and tries a different
way of achieving the same eventual goal.

At most one of these alternatives will actually take effect. The first of them is tried
first. If it fails (having compensated of course), the second one is started. If this now
succeeds, control is passed to the following transaction, so that it too may try again. As
a result, the finish exit of the whole composition may be activated twice, or even more
often if either of the alternatives itself finishes many times.

Note the fan-in at the finish exit: from the outside it is impossible to distinguish
which alternative has succeeded on each occasion. Note also the fan-out of the failback
arrow. In spite of this fan-out, the else construction is deterministic. When failback oc-
curs, control may pass to the failback of either of the alternatives. The selection of desti-
nation will always be determined by the behavioural constraint on the component boxes.
As a result, control will pass to the alternative that has most recently finished, which is
obviously the right one to perform the appropriate compensation.

A

T

U
S —
Figure 7. Alternative Composition: T else U

In the uncertain world in which computers operate, especially in the vicinity of peo-
ple, it is quite possible that a transaction that has failed once may succeed when it is
simply tried again. But clearly the programmer should control how often to repeat the
attempt. For example, suppose it is known that the transaction U is strictly compensable.
Then the transaction

(succeed else succeed else succeed) ; U

T. Hoare / Compensable Transactions 125

merely causes U to be repeated up to three times — that is, up to three times more
often than this transaction itself is repeated by its own predecessors.

The else operator is associative with unit fail. The proof is no more difficult than
that for sequential composition.

Because of its deterministic order of execution, the else command is asymmetric.
Sometimes the programmer does not care which choice is made, and it is acceptable to
delegate the choice to the implementation. For this reason, we introduce an or construc-
tor, which is symmetric but non-deterministic. Its pictorial definition is very regular, but
too cluttered to be worth drawing explicitly. Each entry of the outer box fans out to the
like-named entry of both inner boxes. Each exit from the outer box fans in from the like-
named exits of the two inner boxes. The non-determinism is introduced by the fan-out of
the start arrow, which leads to two entries that are both ready to accept the token. After
the start, the behavioural constraint ensures that the rejected alternative will never obtain
the token. Note that the fail arrow of the whole box fans in from the fail arrows of both
its operands. This shows that the whole box may fail if either of its two operands fails.
In this respect, non-determinism differs from (and is worse than) the else construction,
which guarantees to recover from any single failure.

There is yet a third form of choice between alternatives, which plays the role of the
external choice in a process algebra. It is denoted by [] in CSP or + in CCS. External
choice is slightly more deterministic than or, and a bit less deterministic than else. Like
or it is symmetric. Like else it recovers from any single failure. It is defined by means of
an else, where the order of trying the operands is non-deterministic.

T[]U=(TelseU)or(UelseT)

A picture of this operator would have to contain two copies of each of the operands;
it is not worth drawing. A conventional equational definition is to be preferred.
This construction T [] U

e fails if both U and T fail

e does U if T fails

e does T if U fails

e chooses non-deterministically if neither fails
e may throw if either T or U can do so.

A catch is similar to an else in providing an alternative way of achieving the same
goal. The difference is that the first operand does not necessarily restore its initial state,
and that the second operand is triggered by a throw exit instead of a fail exit from the
first operand. A throw is appropriate when the first operand has been unable either to
restore the initial state or to finish successfully. The catching clause is intended to behave
like the first operand should have done: either to complete the compensation and fail,
or to succeed in the normal way, or else to throw again to some yet more distant catch.
Note that the catching clause does not satisfy the assertional constraint for a compensable
transaction, because the assertion at its start is not the same as the assertion at its fail
exit.

126 T. Hoare / Compensable Transactions

5. Nested Transactions

We have described in the previous section how a primitive transaction can be declared by
specifying a forward action together with its compensation. In the elementary case, both
of these are ordinary sequential programs. In this section we will also allow the forward
action to be itself a long-running transaction (which we call the child transaction), nested
inside a larger parent transaction declaration, as shown in Figure 8. As before, the com-
pensation U of the parent transaction is an ordinary sequential program, and is triggered
from the failback entry of the parent transaction. As a result, the failback entry of the
child transaction T is never activated. As a result, when the parent transaction is com-
plete, an implementation can discard the accumulated child compensations, and recover
the stack frames and other declared resources of the child transactions.

Nested transactions can be useful as follows. When a long sequence of transactions
all succeed, they build up a long sequence of compensations to be executed (in reverse
order) in the event of subsequent failure. However, at a certain stage there may be some
much better way of achieving the compensation, as it were in a single big step right
back to the beginning, rather than in the sequence of small steps accumulated by the
child transactions. The new single-step compensation is declared as the compensation
for the parent transaction. An example can be taken from a word processing program,
where each child transaction deals with a single keystroke, and undoes it when required
to compensate. However, when the parent document is complete, any subsequent failure
will be compensated by restoring the previous version of the whole document.

Y
Y

Figure 8. Nested Transaction Declaration

When the child transactions have all finished, their failback entries will never subse-
quently be activated, because (when necessary) the parent compensation is called instead.
As a result, at the finish of the parent transaction an implementation can simply discard
the accumulated child compensations, and recover the stack frames that they occupied.

In addition to stack frames, there may be other resources which need to be released
by the child transactions on completion of the parent transaction. In the case of failure,
the compensation can do this. But if all the child transactions succeed, we need another

T. Hoare / Compensable Transactions 127

mechanism. To provide this requires a significant extension to our definition of a transac-
tion. We add to every transaction (the child transactions as well as the parent) a new en-
try point called finally, placed between the start and the fail, and a new exit point called
complete, placed between the finish and the failback. The nestable transaction declara-
tion therefore takes a third operand, a completion action; it is entered by the finally entry
and exited by the complete exit.

When transactions (parents or children) are composed sequentially, their comple-
tions are also composed sequentially, like their compensations, by connecting the com-
plete exit of the left operand to the finally entry of the right operand. So the connecting
arrows between completions go from left to right, and the completions are executed in
the same order as the forward actions, rather than in the reverse order.

Yy

Sinally complete

Y
<

Figure 9. Nesting with Completion: [T finally V comp U]

In Figure 9, the child transaction is denoted T , the parent compensation is U, and the
parent completion is V. The child transaction also has a finally entry and a complete exit,
and a completion action, which is not shown explicitly in the diagram. In the case that
the child is not a transaction, an ordinary sequential program can be artificially made into
a transaction by adding a completion action that does nothing. In that case, the definition
of a nested transaction becomes equivalent to that of an un-nested one.

When the whole child transaction has finished, the completions accumulated by the
child transactions are triggered. That is indicated in Figure 9 by the transverse arrow from
the finally exit of the child transactions T to the new finally entry of the child transactions
themselves. It executes the completion actions of all the children, in the same order as
the execution of forward actions of the children.

128 T. Hoare / Compensable Transactions

Another benefit of the introduction of completion actions is to implement the lazy
update design pattern. Each child makes a generally accessible note of the update that it
is responsible for performing, but lazily does not perform the update until all the child
transactions of the same parent have successfully finished. On seeing the note, the for-
ward action of each subsequent child takes account of the notes left by all previously
executed children, and behaves as if the updates postponed by all previous children had
already occurred. But on completion of the parent transaction, the real updates are actu-
ally performed by the completion code provided by each component child transaction.
As a result, the rest of the world will never know how lazy the transaction has been. The
completion codes will be executed in the same sequence as the forward actions of the
children. Compensations for lazy transactions tend to be rather simple, since all that is
required is to throw away the notes on the actions that should have been performed but
have not yet been.

Introduction of the new finally entry and complete exit for completion actions re-
quires an extension to the definition of the behavioural constraint on transactions. Note
that a completion is not allowed to fail, though it may still throw.

start ; X
where
X = fail + throw + (finish ; (finally ; (complete + throw) + failback ; X))

The definition of sequential composition and other operators needs to be adapted to
accommodate the addition of new entry and exit points for the completion actions. The
adaptations are fairly obvious, and we leave them to the interested reader.

The nesting of transactions may seem unpleasantly complex, but the concept of nest-
ing is essential to deal with the wide range of granularity at which the concept of atom-
icity can be applied. Many kinds of transaction will last a few microseconds, whereas
others may last a few months.

6. Concurrency

The Petri net place has provided a mechanism for fan-in and fan-out of the arrows of a
flowchart. Each activation (firing) of the place involves the entry of a single token along
a single one of the entry arrow, and the exit of the same token along any one of its exit
arrows. As a result, a place always maintains the number of tokens in the net — in our
treatment so far, there has only been just one token.

Introduction and elimination of tokens from the net is the purpose of the other prim-
itive element of a Petri net, the transition. This too provides a form of fan-in and fan-out,
but its behavioural rule is conjunctive rather than disjunctive, universal rather than exis-
tential. Each firing of a transition requires the entry of a token on all of its entry arrows,
and the emission of a token on all of its exit arrows. The notation used for transitions is
shown in Figure 10.

If there is only one entry to a transition, it acts as a fan-out: its firing will increase
the number of tokens travelling simultaneously in the network. This could certainly lead
to confusion if one of the tokens ever meets another at the same place. By allowing only
limited and well-structured forms of composition, our calculus will confine each token to
a disjoint region of the net, and ensure that tokens meet only at the entry to a transition,

T. Hoare / Compensable Transactions 129

L R

/

M S

N ‘\T‘

Correctness condition: L&M&N=R &S &T
Behaviour: (I|m]|n); (rllsllt)

Figure 10. Petri net transition

which is what is intended. Often, such a meeting place is a fan-in; it has only one exit, so
that it reduces the number of tokens in the system.

It is possible to think of all the entry and exit events for a transition as occurring
simultaneously. However, in representing this simultaneous behaviour as a regular ex-
pression, it is common to use a total ordering of events, in which any causal event occurs
before its effect. Furthermore, arbitrary interleaving is commonly used to record sequen-
tially events that occur simultaneously. The regular expression (P Il Q) will stand for the
set of all interleavings of a string from P with a string from Q . Thus the behavioural
constraint on a transition in Figure 10 is that the arrival in any order of a token on all of
the entry arrows will trigger the emission of a token on each and every one of the exit
arrows, again in any order.

The correctness of a transition obviously requires that all the assertions on all the
exit arrows must be valid at the time of firing. In this respect, the transition is like a
place. It differs from a place in the precondition that all the assertions on the entry arrows
may be assumed to be true when the transition fires. Thus the correctness condition on
a transition is that the conjunction of all the entry assertions must logically imply the
conjunction of all the exit assertions. In general, there is a possibility that the conjunction
will be inconsistent; but we will design our calculus carefully to avoid this risk.

The semantics of the Petri net transition is given in terms of its correctness condition
and its behaviour. Thus it satisfies the same equivalence criterion as the place: any acyclic
network of pure transitions (in which every external exit is reachable from every external
entry) is equivalent to a single transition with exactly the same external entry and exit
arrows, but omitting the internal arrows.

We will explain the concept of well-structured concurrency first in the context of
ordinary programs, which have only a single entry and a single exit arrow. Concurrent
composition of two such programs is made to satisfy the same constraint, as shown in
Figure 11. This shows how two sections of code T and U will start simultaneously and
proceed concurrently until they have both finished. Only then does the concurrent com-
bination finish.

It is evident from the diagram (and from the structured property of boxes) that the
only meeting point of the two tokens generated by the fan-out transition on the left will
be at the final fan-in transition on the right, where they are merged. The diagram can
easily be adapted to deal with three or more threads. But this is not necessary, because

130 T. Hoare / Compensable Transactions

Yy
-
\ 4

Y
=
\

Figure 11. Parallel composition: T | U

the rules of equivalence for transitions ensure that concurrent composition is both an
associative and a commutative operator.

The proof of correctness of concurrent threads should be modular in the same way as
proof of correctness of all the other forms of composition. In order to make this possible,
some disjointness constraints must be placed on the actions of the individual threads.
The simplest constraint is that no thread can access any variable updated by some other
concurrent thread. This same constraint must also be applied to the assertions used to
prove correctness of each thread. The token which travels within a thread can be regarded
as carrying the variables and owned by that thread, together with their values.

In simple cases, the constraint on disjointness can be enforced by a compile-time
check on the global variables accessed by a thread. But in general, the use of indirect
addressing (for example, in an object-oriented program) will make it necessary to prove
disjointness by including some notion of ownership into the assertion language. Sepa-
ration logic provides an elegant and flexible means of expressing disjointness of own-
ership, and establishing it by means of proof. However, we will not pursue this issue
further here.

The disjointness constraint is effective in ensuring consistency of the final asser-
tions of the threads when they all terminate together. It also avoids race conditions at
run time, and so prevents any form of unwanted interference between the activities of
the threads. However, it also rules out any form of beneficial interaction or cooperation
between them. In particular, it rules out any sharing of internal storage or communication
channels. A safe relaxation of this restriction is provided by atomic regions (or critical
sections). This is defined as a section of code inside a thread, which is allowed to access
and update a shared resource. The implementation must guarantee (for example by an
exclusion semaphore) that only one thread at a time can be executing inside an atomic re-
gion, so race conditions are still avoided. The overall effect of multiple threads updating
the shared resource includes an arbitrary interleaving of the execution of their complete
atomic regions.

The Petri net formalisation of an atomic region models a shared resource as a token,
which may be regarded as carrying the current state and value of the resource. At the
beginning of an atomic region, a thread acquires ownership of this token in order to
access and update the shared resource; and at the end of the region the shared resource is

T. Hoare / Compensable Transactions 131

released. Of course, execution of the region also requires the normal sequential token of
the thread that contains it.

An atomic region is defined (Figure 12) as a sort of inverse of concurrent composi-
tion, with a fan-in at the beginning and a fan-out at the end. For simplicity, we assume
that there is only a single shared resource, consisting of everything except the private
resources of the currently active individual threads. In most practical applications, many
separate resources will need to be declared, but we shall not deal with that complexity
here.

Y
v

Y
-
v

acquire release

Figure 12. Atomic Region: atomic[T]

The definition of an atomic region requires the introduction of another entry and an-
other exit into the standard repertoire. The entry carries the suggestive name acquire , and
the exit is called release. The new entries and exits require extension of the behavioural
constraint, by inserting (acquire;release)* between every entry and the next following
exit. The definition of all the operators of our calculus must also be extended: but this
is very simple, because in each diagram defining an operator, all the acquire entries are
connected via a fan-out place, and all the release exits are connected via a fan-in place.

The declaration of a sharable resource is shown in Figure 13. The token that repre-
sents a resource is created by means of a transition fan-out. The block T contains all the
multiple threads that are going to share the resource. When all of them have finished, the
token is therefore merged again. The assertion R is known as the resource invariant: it
must be true at the beginning of T and at the end of every atomic region within T. Con-
versely, R may be assumed true at the end of the whole block T , and at the beginning of
every atomic region within it. Note that in this diagram the place is expected to store the
token between successive executions of the atomic regions.

The explicit statement of a resource invariant permits a very necessary relaxation of
the restriction that the assertions used within the threads of T may not refer to the values
of the variables of the shared resource, for fear that they are subject to concurrent update
by concurrent threads. The relaxed restriction states that all of the assertions private to
a thread (initial, internal or final) may mention the values of the shared resource, but
only in a way that is tolerant of interference. This means that the local assertions of each

132 T. Hoare / Compensable Transactions

» T >
- B
Ll Ll
acquire release
- >
R > R >

Figure 13. Resource Declaration: resource R in T

thread must also be an invariant of every atomic region that may be invoked by the other
threads.

A direct application of this proof rule would require proof of each thread to know
all the internal assertions in every other thread — a serious violation of the principal of
locality of proof. A stronger but more modular condition is that each thread must prove
locally that all its assertions are invariant of any section of code X that leaves R invariant.
The details of the formalisation will not be elaborated here.

The definition of concurrent composition given in Figure 11 applies to fragments
of ordinary program with a single entry and a single exit. Our final task is to apply the
same idea to compensable transactions, with many more entries and exits. The basic
definition of concurrency of transactions introduces a transition to fan out each entry of
the concurrent block to the two (or more) like-named entries of the components; and
similarly, it introduces a transition to fan in the like-named exits of the components to
relevant exit of the whole composition (Figure 14). This means that the compensations
of concurrent transactions will also be executed concurrently in the same way as their
forward actions.

This scheme works well, provided that both components agree on which exit to
activate on each occasion — either they both finish, or they both fail, or they both throw.
The availability of a shared resource enables them to negotiate an agreement as required.
However, if they fail to do so, the result is deadlock, and no further action is possible. It
may be a good idea to complicate the definition of concurrency of transactions to avoid
this unfortunate possibility automatically, by doing something sensible in each case. Four
additional transitions are needed to implement the necessary logic.

1. if one component T finishes and U fails, these two exits are fanned in by a tran-
sition, whose exit leads to the failback of the successful T.

2. Similarly, if U finishes and T fails, the failback of U is invoked.

3. In the case that T performs a throw but U does not, the whole construction must
throw. This involves connecting U’s finish and fail exits via a place to a transition
that joins it with the throw exit of T.

4. A similar treatment deals with the case that U performs a throw.

Figure 15 shows the network controlling activation of the throw exit of [T I U]. It
is easy to calculate that the correctness condition of the network is

T. Hoare / Compensable Transactions 133

Figure 14. [T 11 U] as a transaction

T.finish T.fail T.throw U.throw U.fail U.finish

Figure 15. Network for throw

(T-finish v T fail) A T.throw Vv T.throw A U.throw Vv U.throw A (U fail v U finish)

7. Conclusion

This paper gives a simple account using Petri nets of long-running transactions with
compensations. The account is also quite formal, in the sense that the nets for any trans-

134 T. Hoare / Compensable Transactions

action composed solely by the principles described can actually be drawn, programmed
and executed by computer. The assertions on the arrows give guidance on how to design
correctness into a system of transactions from the earliest stage. The correctness princi-
ple for places and transitions serves as an axiomatic semantics, and shows how to prove
the correctness of a complete flowchart in a modular way, by proving the correctness
of each component and each connecting arrow separately. Thus we have given a unified
treatment of both an operational and an axiomatic semantics for compensable, compos-
able and nestable transactions. Simple cases of concurrency can also be treated, but more
work, both theoretical and experimental, is needed to deal with more general cases.

The more surprising ideas in this article are (1) use of the precondition of a transac-
tion as the criterion of adequacy of an approximation to the initial state that the compen-
sation should reach (there are many more complicated ways of doing this); and (2) the
suggestion of separation logic as an appropriate language for annotating the transitions
of a concurrent Petri net.

The deficiencies of this article are numerous and obvious. There are no transition
rules, no deductive systems, no algebraic axioms, no denotational semantic functions, no
proofs, no examples and no references. There is far more work still to be done by anyone
sufficiently interested in the subject.

Acknowledgements

The ideas and presentation of this paper have been greatly improved by the helpful com-
ments of:

Michael Butler, Ernie Cohen, Tim Harris, Niels Lohman, Jay Misra, Eliot Moss,
Matthew Parkinson, Simon Peyton Jones, Viktor Vafeiadis.

Software System Reliability and Security 135
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 10S Press. All rights reserved.

Automata on Infinite Words and Their
Applications in Formal Verification

Orna KUPFERMAN

School of Computer Science and Engineering, Hebrew University,
Jerusalem 91904, Israel

Abstract. In formal verification, we check the correctness of a system with respect
to a desired property by checking whether a mathematical model of the system sat-
isfies a specification that formally expresses the property. In the automata-theoretic
approach to formal verification, we model both the system and the specification
by automata. Questions about systems and their specifications are then reduced to
questions about automata. The goal of this course is to teach the basics of automata
on infinite words and their applications in formal verification.

Keywords. Automata on infinite words, Formal verification.

Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key
to the solution of several fundamental decision problems in mathematics and logic
[Biic62,McN66,Rab69]. Today, automata on infinite objects are used for specification
and verification of nonterminating programs [Kur94,VW94]. The idea is simple: when a
system is defined with respect to a finite set P of propositions, each of the system’s states
can be associated with a set of propositions that hold in this state. Then, each of the sys-
tem’s computations induces an infinite word over the alphabet 27, and the system itself
induces a language of infinite words over this alphabet. This language can be defined
by an automaton. Similarly, a specification for a system, which describes all the allowed
computations, can be viewed as a language of infinite words over 2, and can therefore
be defined by an automaton. In the automata-theoretic approach to verification, we re-
duce questions about systems and their specifications to questions about automata. More
specifically, questions such as satisfiability of specifications and correctness of systems
with respect to their specifications are reduced to questions such as nonemptiness and
language containment. The automata-theoretic approach separates the logical and the
combinatorial aspects of reasoning about systems. The translation of specifications to au-
tomata handles the logic and shifts all the combinatorial difficulties to automata-theoretic
problems. We will define automata on infinite words, study some of their properties, and
see how they are used in formal verification.

136 O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

1. The temporal logic LTL

The logic LTL is a linear temporal logic [Pnu77]. Formulas of LTL are constructed from
a set AP of atomic propositions using the usual Boolean operators and the temporal
operators X (“nexttime”) and U (“until”’). Formally, an LTL formula over AP is defined
as follows:

e true, false, or p, forp € AP.
o —)1, Y1 Ao, X1h1, or 11 Urbg, where 1)1 and 1)9 are LTL formulas.

We define the semantics of LTL with respect to an infinite computation ™ =
00,01, 02, ..., where for every j > 0, the set o; C AP is the set of atomic propositions
that hold in the j-th position of 7. We denote the suffix 0, 0j41, ... of m by 7/. We use
7 | 4 to indicate that an LTL formula ¢ holds in the computation 7. The relation |= is
inductively defined as follows:

e For all 7, we have that 7 |= true and 7 [~ false.

e For an atomic proposition p € AP, we have that 7 = p iff p € oy.

e T ': _|'L/)1 iff 17& 11)1.

e T ':1/}1 /\1/}21ff7r ':d)l and 7 ':1/)2

o T X iff b = ;.

o 7 = 11Uy iff there exists & > 0 such that 7% |= 99 and 7 |= ¢y for all
0<i<k.

We denote the size of an LTL formula ¢ by |¢| and we use the following abbrevia-
tions in writing formulas:

e V,—, and <, interpreted in the usual way.
e F) = trueUv (“eventually”, and the “F” comes from “Future”).
e GGy = - F—) (“always”, and the “G” comes from “Globally”).

Example 1.1 We specify in LTL some properties that one may wish a mutual exclusion
algorithm to satisfy.

e The mutual exclusion property states that two processes are never simultaneously
in their critical sections. If ¢; is an atomic proposition that hold when process ¢
is in its critical section, then the LTL formula %/, = G(—¢; V —¢;) expresses
mutual exclusion between processes ¢ and j. Note that the formula ~F'(c; A ¢;)
is equivalent to 157 .

e The finite waiting property for process ¢ states that if process ¢ tries to access
its critical section, it will eventually access it. If for each process ¢, the atomic
proposition ¢; holds when process ¢ tries to enter the critical section, then the LTL
formula L/chw = G(t; — Fc;) expresses finite waiting for process i. Note that
the semantics of the operator U (and therefore also the one of F) includes the
present in the future. Thus, the requirement to have c; eventually is satisfied if the
process ¢ is already in the critical section when it tries. A different specification is
G(t; — X Fc;), in which the access of the critical section has to be in the strict
future.

We interpret LTL formulas also with respect to Kripke structures, which may gener-
ate many computations. Formally, a Kripke structure is K = (AP, W, R, Wy, L), where

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 137

W is a set of states, R C W x W is a total transition relation (that is, for every w € W,
there is at least one w’ such that R(w, w'), the set Wy C W is a set of initial states, and
L : W — 247 maps each state to the sets of atomic propositions that hold in it. A path
of K is an infinite sequence wg, wy, ... such that wy € Wy and for all ¢ > 0 we have
R(w;,w;t+1). Every path wg, wy, . . . of K induces the computation L(wyg), L(wy), . . . of
K.

The model-checking problem for LTL is to determine, given an LTL formula 1) and
a Kripke structure K, whether all the computations of K satisfy v [CE81,QS81,LP85,
VW94].

2. Biichi word automata

2AP

We can view Kripke structures as generators of languages over the alphabet . We can

also view properties as descriptions of languages over this alphabet.

Example 2.1 The properties specified by LTL formulas in Example 1.1, corresponds to
the following languages over the alphabet 247

e The language L%/, that corresponds to mutual exclusion contains all computations
having no occurrences of letters containing both ¢; and ¢;. Formally,

LA ={og-0y---: foralll >0, wehavec; ¢ oy Ve; ¢ o1}

o The language L;w that corresponds to finite waiting for process ¢ contains all
computations in which every occurrence of a letter containing ¢; is followed by
an occurrence of a letter containing c;.

Ljfw ={og-01---: foralll >0, ift; € oy, thenthereis k > [with ¢; € oy)}.

We describe and reason about languages of infinite words using automata on infinite
words. Let 3 be a finite alphabet. A Biichi word automaton is A = (X, Q, d, Qo, &),
where 3 is the input alphabet, () is a finite set of states, § : Q@ X ¥ — 2@ is a transition
function, Qo C @ is a set of initial states, and @ C @ is a set of accepting states. Since
A may have several initial states and since the transition function may specify many
possible transitions for each state and letter, A may be nondeterministic. If |Qg| = 1
and ¢ is such that for every ¢ € @ and o € 3, we have that |6(¢,0)| < 1, then A is a
deterministic automaton. We use NBW and DBW as abbreviations for nondeterministic
Biichi word automata and deterministic Biichi word automata, respectively.

Given an input word w = 0¢-07 -+ -in X*, a run of A on w is a functionr : N — Q)
where (0) € Qo and for every ¢ > 0, we have r(i + 1) € §(r(i), 0;); i.e., the run starts
in one of the initial states and obeys the transition function. Note that a nondeterministic
automaton can have many runs on w. In contrast, a deterministic automaton has a single
run on w. For arun r, let in f () denote the set of states that r visits infinitely often. That
is,

inf(r) ={q € Q : r(i) = ¢ for infinitely many ¢ > 0}.

138 O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

As Q is finite, it is guaranteed that in f (1) # 0. The run r is accepting iff in f (r)Na # (.
That is, iff there exists a state in « that r visits infinitely often. A run that is not accepting
is rejecting. An automaton .4 accepts an input word w iff there exists an accepting run of
A on w. The language of A, denoted L(.A), is the set of words that A accepts.

Example 2.2 In Figure 1 we describe two Biichi automata. The alphabet of both au-
tomata is {a, b}. The automaton .4;, which is deterministic, accepts exactly all words
with infinitely many a’s. The automaton A, complements it and accepts exactly all words
with finitely many a’s.

Jb b
Al -'42 ¢

a
b
b
Figure 1. An example of nondeterministic Biichi automata.

The Biichi acceptance condition suggests one way to refer to inf(r) in order to
determine whether the run 7 is accepting. More acceptance conditions are defined in the
literature. Below we define a generalization of the Biichi condition. A generalized Biichi
automaton is A = (X,Q, 9, Qo,), where X, Q, ¢, and (g are as in Biichi automata,
and the acceptance condition o« C 29 consists of sets «; C Q. A run r of A with
a = {ag,qg,...,ax} is accepting iff inf(r) Na; # @ forall 1 < 4 < k. That is, r
is accepting if every set in « is visited infinitely often. We refer to k as the index of the
generalized Biichi automaton.

In Question 4, you will prove that generalized Biichi automata are not more expres-
sive than Biichi automata: given a nondeterministic generalized Biichi automaton with
n states and index £, it is possible to construct an equivalent Biichi automaton with nk
states.

3. Properties of Biichi Automata

It is easy to see that biichi automata are closed under union. Below we prove closure
under intersection.

Theorem 3.1 [Cho74] Given Biichi automata A, and As, we can construct a Biichi
automaton A such that L(A) = L(A1) N L(Az).

Proof: Let A; = (3,Q1,QY,01,a1) and Az = (3, Q2, QY, da, a2). We define A =
<Ea Q7Q0767 04>, where

o Q=Q1 xQ2x{1,2},
o Q' =Q) x QY x{1},

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 139

® 5((s,t,i),a) = 0;(s,a) x 62(t,a) x {j}, where i = junless i = 1 and s € oy,
in which case j = 2, ori = 2 and ¢ € aw, in which case j = 1, and
e a=oa; X Qyx{1}.

The automaton A has two copies of the product of .A; and A>. When executing a
run, if we are in the first copy (the second copy), and we visit an accepting state of 4;
(Az), we move to the other copy. The accepting condition requires to go infinitely often
through ay x Q2 x {1}, i.e., to visit infinitely often accepting states of .4; in the first
copy. Since we can return to the first copy only after having visited an accepting state of
As on the second copy, both copies visit accepting states infinitely often.]

We now turn to study the expressive power of nondeterministic vs. deterministic
Biichi automata. Recall that in the case of finite words, automata can be determinized,
thus nondeterministic automata on finite words are not more expressive than determinis-
tic automata on finite words. We now show that this is not the case for the infinite-word
setting.

Theorem 3.2 [Lan69] Deterministic Biichi automata are strictly less expressive than
nondeterministic Biichi automata.

Proof: Consider the language L = (a + b)*b%, (i.e., L consists of all infinite words
in which a occurs only finitely many times). As shown in Example 2.2, the language
L is recognizable by a nondeterministic Biichi automata. We now show that L is not
recognizable by a deterministic Biichi automaton. Assume by way of contradiction that
L = L(A), for a deterministic A = ({a,b}, @, {qo}, d, a). Recall that ¢ can be viewed
as a partial mapping from @ X {a,b}* to Q.

Consider the infinite word wg = b“. Clearly, wq is accepted by A, so A has an
accepting run on wy. Thus, wy has a finite prefix ug such that 6(go, ug) € a. Consider
now the infinite word w; = wgad®. Clearly, w; is also accepted by A, so A has an
accepting run on w1 . Thus, w; has a finite prefix ugbu such that 6(qo, upaur) € a. Ina
similar way we can continue to find finite words w; such that §(qo, upauia. ..au;) € a.
Since @ is finite, there are 7, j, where 0 < ¢ < j, such that 6(qo, upauia...au;) =
3(go, uoaura . .. au;a . .. au;). It follows that A has an accepting run on

UoaUIE . . . AU (AU - . . Uj—1au;)”.

But the latter word has infinitely many occurrences of a, so it is not in L.]

The complement of an NBW A is an NBW A’ such that L(A") = X \ L(A).
In the case of finite words, we complement automata by determinizing them and then
dualizing the acceptance condition (that is, defining the set of accepting states to be
Q@ \). While it is possible to complement a DBW (but not by dualization, see Question
5), Theorem 3.2 implies we cannot use such a complementation as an intermediate step
in general NBW complementation. We will get back to the complementation problem
for NBW in Section 7.

140

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

4. From LTL to NBW

Given an LTL formula 1, we construct a generalized Biichi word automaton Ay, such
that A4, accepts exactly all the computations that satisfy . The construction was first
suggested by Vardi and Wolper in 1986.

For an LTL formula v, the closure of 1, denoted ¢l (1)), is the set of ¢’s subformulas
and their negation (—— is identified with 1)). Formally, cl(¢) is the smallest set of
formulas that satisfy the following.

¥ € cl(1)).

If 41 € cl(v)) then —¢h1 € cl(9).

If —p1 € cl(v) then iy € cl(¢).

If 11 A g € cl(y) then Yy € cl(v) and ¢o € cl(¥).
If X1 € cl(v) thenipy € cl(v).

If)1 U)o € cl(vp) then tpy € cl(vp) and 92 € cl(v).

For example, cl(p A ((Xp)Uq)) is

{p A ((Xp)Uq),~(p A (Xp)Uq)),p,—p, (Xp)Uq,~((Xp)Uq), Xp,~Xp,q,q}.

Theorem 4.1 [VW94] Given an LTL formula 1), we can construct an NBW Ay, such that
L(Ay) is exactly the set of words satisfying 1 and the size of Ay, is exponential in the

length of 1.

Proof: We define Ay, = (247, Q, 6, Qo,), where

We say that a set S C cl(v) is good in cl(v)) if S is a maximal set of formu-
las in cl(¢) that does not have propositional inconsistency. Thus, S satisfies the
following conditions.

1. Forall ¢; € cl(y), we have ¢; € S iff -y ¢ S, and
2. Forall 1 A1)a € cl(¢)), we have 11 A ipy € S'iff 1p; € Sand ¢py € S.

The state space Q C 2°/(¥) is the set of all the good sets in cl(¢)).
Let S and S’ be two good sets in cl(v)), and let 0 C AP be a letter. Then S’ €
0(S, o) if the following hold.

1. c=SnNAP,

2. Forall X € cl(v), we have X1 € Siff ¢p; € S’, and

3. Forall 91U € cl(v)), we have 1)1 U)o € S iff either ¢ € S orboth); € S
and Y Uy € S’

Note that the last condition also means that for all —(1Uts) € cl(v)), we have
that —(11U1pg) € S iff —po € S and either —1p; € S or (11 Uhs) € 5.

Qo C @ is the set of all states S € @ for which ¢ € S.

Every formula v U1 contributes to « the set

Qapy Unpy = {S €Q 1y € Sor(1p1Uthg) € S}

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 141
5. Alternating Automata on Infinite Words

In Section 2 we defined Biichi automata and mentioned that automata on infinite words
can be classified according to the type of acceptance condition. Another way to classify
an automaton on infinite words is by the type of its branching mode. In a deterministic
automaton, the transition function § maps a pair of a state and a letter into a single state.
The intuition is that when the automaton is in state ¢ and it reads a letter o, then the
automaton moves to state (g, o), from which it should accept the suffix of the word.
When the branching mode is existential, the automaton is nondeterministic and § maps
q and o into a set of states. In the existential mode, the automaton should accept the
suffix of the word from one of the states in the set. Accordingly, a word is accepted
by a nondeterministic automaton if the automaton has some accepting run on it. We
have met deterministic and nondeterministic automata in Section 2. In this section we
meet more sophisticated branching modes. The universal branching mode is dual to the
existential one. Thus, as there, § maps ¢ and o into a set of states, yet the automaton
should accept the suffix of the word from all of the states in the set. Accordingly, a word
is accepted by a universal automaton if all the runs of the automaton on the word are
accepting. In alternating automata [CKS81], both existential and universal modes are
allowed, and the transitions are given as Boolean formulas over the set of states. For
example, §(q,0) = ¢1 V (g2 A ¢3) means that the automaton should accept the suffix of
the word either from state g; or from both states g2 and ¢3. We now define alternating
automata formally and see how they can serve as an intermediate step in the translation
of LTL to nondeterministic Biichi automata.

For a given set X, let BT (X)) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using A and V), where we also allow the
formulas true and false. For Y C X, we say that Y satisfies a formula § € BT (X)
iff the truth assignment that assigns frue to the members of Y and assigns false to the
members of X \ Y satisfies 6. For example, the sets {q1, g3} and {g2, g3} both satisfy
the formula (g1 V g2) A g3, while the set {q1, g2 } does not satisfy this formula.

Consider an automaton A = (3, Q, Qo, d,). For a word w = 0 - 071 - - - and an
index i > 0, let w* = o; - 041 - - - be the suffix of w that starts in position 7. We can
represent § using B1(Q). For example, a transition 6(q, o) = {q1, g2, g3} of a nondeter-
ministic automaton .4 can be written as §(g, o) = q1 V g2 V g3. If A is universal, the tran-
sition can be written as 6(q, o) = ¢1 A g2 A g3. While transitions of nondeterministic and
universal automata correspond to disjunctions and conjunctions, respectively, transitions
of alternating automata can be arbitrary formulas in B (Q). We can have, for instance,
a transition 6(g, o) = (g1 A q2) V (g3 A q4), meaning that the automaton accepts a suffix
w’ of w from state ¢, if it accepts w'*! from both ¢; and go or from both g3 and g4. Such
a transition combines existential and universal choices.

Formally, an alternating automaton on infinite words is a tuple A = (3, Q, ¢in, 0, @),
where 3, @, ¢;, and « are as in nondeterministic automata (for technical simplicity we
assume that the set of initial states is a singleton), and § : Q x ¥ — BT (Q) is a transition
function. While a run of a nondeterministic automaton is an infinite sequence of states, a
run of an alternating automaton is a tree r : T,. — @) for some 7T;. C IN*. Formally, a tree
is a (finite or infinite) nonempty prefix-closed set 7' C IN*. The elements of 7" are called
nodes, and the empty word ¢ is the root of T'. For every x € T, the nodes x - ¢ € T' where
c € N are the children of x. A node with no children is a leaf. We sometimes refer to the

142 O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

length |x| of « as its level in the tree. A path w of atree T is a set 1 C T such thate € 7
and for every = € , either x is a leaf, or there exists a unique ¢ € IN such that x - ¢ € 7.
Given a finite set 3, a X-labeled tree is a pair (T, V) where Tisatreeand V : T — %
maps each node of T to a letter in 3. A run of A on an infinite word w = 0g - 01 -+ - is a
Q-labeled tree (T}, r) such that the following hold:

e () = qin-

o Let x € T, with 7(z) = ¢ and 6(q, 0),) = 0. There is a (possibly empty) set
S ={q,...,qxr} such that S satisfies § and forall 1 < ¢ < k, wehavez-c € T,
and r(x - ¢) = ..

For example, if 6(¢in,00) = (q1 V g2) A (g3 V q4), then possible runs of .4 on w have
a root labeled ¢;,,, have one node in level 1 labeled ¢; or g2, and have another node in
level 1 labeled g3 or q4. Note that if & = true, then x need not have children. This is
the reason why 7, may have leaves. Also, since there exists no set .S as required for
@ = false, we cannot have a run that takes a transition with 8 = false.

A run (T, r) is accepting iff all its infinite paths, which are labeled by words in
Q*, satisfy the acceptance condition. A word w is accepted iff there exists an accepting
run on it. Note that while conjunctions in the transition function of 4 are reflected in
branches of (7.,), disjunctions are reflected in the fact we can have many runs on the
same word. The language of A, denoted £(.A), is the set of infinite words that A accepts.
We use ABW to abbreviate alternating Biichi automata on infinite words.

6. From LTL to NBW via alternating Biichi automata

In this section we show an alternative translation of LTL to NBW. The translation goes
via alternating automata: we first translate the LTL formula to an ABW, and then translate
the ABW to an an NBW. Using alternating automata as an intermediate step was first
suggested in the branching framework, for the translation of branching temporal logics
to tree automata [KVWOO]. There, the use of alternating automata enables an efficient
automata-based solution to the model checking problem. In the linear framework, an
advantage of the intermediate alternating automaton is the ability to apply optimization
algorithms on both the intermediate ABW and the final NBW [Fri03,FW02,GKSVO03].

For simplicity, we assume that LTL formulas are in positive normal form, where
negation is applied only to atomic propositions. Having no negation, we should have
both A and V, and have the temporal operator G in addition to X and U.

Theorem 6.1 [KVWO00] Given an LTL formula v in positive normal form, we can con-
struct an ABW Ay, such that L(Ay) is exactly the set of words satisfying 1 and the size
of Ay is linear in the length of 1.

Proof: We define A, = (247 cl(1)), 5,1, @), as follows. The set « of accepting states
consists of all the G-formulas in ¢l(1)); that is, formulas of the form Gps. The transition
function § is defined, for all ¢ € 247, as follows.

d(p,0) =trueif p € o.
0(p,o) =falseifp & o.
]

°
°
e §(—p,0) =trueifp & o.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 143

(—p,0) = falseif p € o.

(‘Pl Np2,0) - 6(()0170') A 6(()02’ g).

(‘Pl Vg, 0) - 6(()0170') \ 6(()02’ U)'

(X2, 0) = 2.

(1Up2,0) = d(p2,0) V (8(¢1,0) A p1Uep2).
(S(thg,) = 6((,02,0’) N G(pg.

Intuitively, Ay, follows the structure of the formula, and uses the acceptance condi-
tion « to guarantee that eventualities of U-formulas are eventually satisfied. U

e 6 06 0 0 O
S S 3 &9 O

In order to complete the translation of LTL to NBW, we need to remove alternation
from Ay:

Theorem 6.2 [MH84] Let A be an alternating Biichi automaton. There is a nondeter-
ministic Biichi automaton A’, with exponentially many states, such that L(A") = L(A).

Proof: The automaton A’ guesses a run of .A. At a given point of a run of A’, it keeps
in its memory a whole level of the run tree of A. As it reads the next input letter, it
guesses the next level of the run tree of .A. In order to make sure that every infinite path
visits states in « infinitely often, A’ keeps track of states that “owe” a visit to a. Let
A = (%,Q, gin,0,a). Then A = (3,29 x 29 ({gin}, 1), 8,29 x {D}), where & is
defined, for all (S, 0) € 29 x 29 and o € ¥, as follows.

e IfO # (), then &' ((S,0),0) =

{{(S",0"\ a) | 9’ satisfies /\ 5(q,0),0" C S, and O’ satisfies /\ 5(q,0)}.
qes q€0

e If O = (), then §'(({S, 0),0) =

{(5", 5"\) | S’ satisfies /\ 5(q,0

qeS

g

In [MSS86], Muller et al. introduce alternating weak automata. In a weak automa-
ton, the acceptance condition is v C) and there exists a partition of @ into disjoint sets,
@;, such that for each set Q;, either @; C «, in which case @; is an accepting set, or
Q; Na = 0, in which case Q; is a rejecting set. In addition, there exists a partial order <
on the collection of the ();’s such that for every ¢ € @Q); and ¢’ € Q; for which ¢’ occurs
in §(q, 0, k), for some 0 € ¥ and k € D, we have Q); < Q;. Thus, transitions from a
state in (); lead to states in either the same (); or a lower one. It follows that every infinite
path of a run of a weak automaton ultimately gets “trapped” within some @);. The path
then satisfies the acceptance condition if and only if @); is an accepting set. Note that this
corresponds to the Biichi acceptance condition. Indeed, a run visits infinitely many states
in « iff it gets trapped in an accepting set.

The automaton A, defined in the proof of Theorem 6.1 is weak. To see this, con-
sider the partition of () into disjoint sets in which each formula ¢ € cl(¢)) constitutes

144 O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

a (singleton) set {¢} in the partition. The partial order between the sets is then defined
by {¢1} < {w2} iff o1 € cl(p2). Since each transition of the automaton from a state
¢ leads to states associated with formulas in ¢l(p), the weakness conditions hold. In
particular, each set is either contained in « or disjoint from a.

As pointed out in [GOO01], the fact -Ad) is weak (in fact, it is very weak — the sets
@; in the partition are singletons) enables a simpler removal of alternation than the one
described in Theorem 6.2. In general, the construction we presented in Theorem 4.1 and
the one that follows from the combination of Theorems 6.1 and 6.2 are very basic ones.
Due to the heavy use of the construction in practice, numerous improvements have been
suggested, cf. [GPVW95,SB00,GO01,Fri03].

7. Complementation of Biichi automata

In Section 3, we saw that NBW are closed under union and intersection. In this section
we prove their closure under complementation.

The complementation problem for nondeterministic word automata has numerous
applications in formal verification. In particular, the language-containment problem, to
which many verification problems is reduced, involves complementation. For automata
on finite words, which correspond to safety properties, complementation involves deter-
minization. The 2" blow-up that is caused by the subset construction is justified by a tight
lower bound. For Biichi automata on infinite words, which are required for the model-
ing of liveness properties, optimal complementation constructions are quite complicated,
as the subset construction is not sufficient. Efforts to develop simple complementation
constructions for nondeterministic automata started early in the 60s, motivated by deci-
sion problems of second-order logics. Biichi suggested a complementation construction
for nondeterministic Biichi automata that involved a complicated combinatorial argu-
ment and a doubly-exponential blow-up in the state space [Biic62]. Thus, complement-
ing an automaton with n states resulted in an automaton with 227 states. In [SVWE87],
Sistla et al. suggested an improved construction, with only 20(n?) states, which is still,
however, not optimal. Only in [Saf88], Safra introduced a determinization construction,
which also enabled a 2°0("1°87) complementation construction, matching a lower bound
described by Michel [Mic88].

In this section we describe a complementation construction that avoids Safra’s deter-
minization. The construction, described in [KVO01], uses instead intermediate universal
co-Biichi automata and alternating weak automata. Here, we describe the construction
without the intermediate automata, and go directly to a complementary NBW. The idea
behind the construction is to assign ranks to nodes in a directed acyclic graph that em-
bodies all the runs of the NBW. The idea can be applied also to richer types of acceptance
conditions [KVO05].

Let A = (X, @, ¢in, I, @) be a nondeterministic Biichi automaton with |Q| = n, and
let w = oq - 01- be a word in X*. We define an infinite DAG G that embodies all the
possible runs of .4 on w. Formally, G = (V, E'), where

e V C @ x Nis the union |J;5,(Q: x {l}), where Qo = {gin} and Q111 =
U(IGQL é(q’al)

® B C Upso(Qi % {1}) x (Qui1 x {l + 1}) is such that E((¢,1),(¢’,! + 1)) iff
q €6(q,01).

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 145

We refer to G as the run DAG of A on w. We say that a vertex (¢, ') is a successor
of a vertex {(q,) iff E({(g,1), {¢’,1"}). We say that (¢’, ") is reachable from (g, l) iff there
exists a sequence (qo,lo), (q1,11), (g2, 12), ... of successive vertices such that (g,1) =
(go, lo), and there exists ¢ > 0 such that (¢’,1") = {g;, ;). Finally, we say that a vertex
(g,1) is an a-vertex iff ¢ € «. It is easy to see that A accepts w iff G has a path with
infinitely many a-vertices. Indeed, such a path corresponds to an accepting run of .4 on
w.

A ranking for G is a function f : V' — [2n] that satisfies the following two condi-
tions:

1. For all vertices (g,1) € V,if f({g,)) is odd, then ¢ & c.
2. For all edges ({q,1), (¢',I')) € E, we have f({(¢',1")) < f({g,1)).

Thus, a ranking associates with each vertex in G a rank in [2n] so that the ranks along
paths decreased monotonically, and «a-vertices get only even ranks. Note that each path
in G eventually gets trapped in some rank. We say that the ranking f is an odd ranking
if all the paths of GG eventually get trapped in an odd rank. Formally, f is odd iff for all
paths (go,0), (g1, 1), (g2, 2), ... in G, there is j > 0 such that f((g;, 7)) is odd, and for
all'i > 1, we have f((gj+i,J + 1)) = f((g;,))-

Lemma 7.1 A rejects w iff there is an odd ranking for G.

Proof: We first claim that if there is an odd ranking for G, then A rejects w. To see this,
recall that in an odd ranking, every path in G eventually gets trapped in an odd rank.
Hence, as a-vertices get only even ranks, it follows that all the paths of GG, and thus all
the possible runs of A on w, visit « only finitely often.

Assume now that A rejects w. We describe an odd ranking for G. We say that a
vertex (g, 1) is finite in a (possibly finite) DAG G’ C G iff only finitely many vertices
in G’ are reachable from (g, [). The vertex (g,!) is a-free in G’ iff all the vertices in
G’ that are reachable from (g,) are not a-vertices. Note that, in particular, an a-free
vertex is not an a-vertex. We define an infinite sequence Gog 2 G; 2 G5 O ... of DAGs
inductively as follows.

[J G() = G
® Gait1 = G2 \ {{(¢,]) | (g, 1) is finite in Ga;}.
® Gaita = Goip1 \ {{¢, 1) | (¢, 1) is a-free in G211 }.

Consider the function f : V' — IN where

B 29 If <q, l> is finite in Ga;.
Flla,0) = 2i + 11If (g, 1) is a-free in Ga;41.

Recall that A rejects w. Thus, each path in G has only finitely many «-vertices. It is
shown in [KVO01] that for every ¢ > 0, the transition from Gs;41 to G242 involves the
removal of an infinite path from Gg; ;1. Intuitively, it follows from the fact that as long
as Glg;41 is not empty, it contains a at least one a-free vertex, from which an infinite
path of a-free vertices start. Since the width of Gy is bounded by n, it follows that
the width of Go; is at most n — i. Hence, G, is finite, and Go,,+1 is empty. Thus, f
above maps the vertices in V' to [2n]. We claim further that f is an odd ranking. First,
since an a-free vertex cannot be an «-vertex and f({g, 1)) is odd only for a-free vertices

146 O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

(q,1), the first condition for f being a ranking holds. Second, as argued in [KVOI1],
for every two vertices (g,1) and (¢’,l') in G, if {¢’,l’) is reachable from (g,!), then
FU 1)) < f({g,1)). In particular, this holds for {¢’,1’) that is a successor of (g,).
Hence, the second condition for ranking holds too. Finally, as argued in [KVO01] for every
infinite path in G, there exists a vertex (g, [) with an odd rank such that all the vertices
(¢’, ') in the path that are reachable from (g,) have f({¢’,1")) = f({(g,1)). Hence, f is
an odd ranking.]

By Lemma 7.1, an automaton .4’ that complements .A can proceed on an input word
w by guessing an odd ranking for the run DAG of A on w. We now define such an
automaton .4’ formally. We first need some definitions and notations.

A level ranking for A and w is a function g : @ — [2n] U { L}, such that if g(q)
is odd, then ¢ ¢ . Let R be the set of all level rankings. For two level rankings ¢g and
g, we say that ¢’ covers g if for all ¢ and ¢’ in Q, if g(¢) > 0 and ¢’ € 6(q, o), then
0<9'(¢) <9(q)

We define A’ = (X, R x 29,¢/,.,6', R x {#}), where

® ¢, = (gin, D), where g;,,(¢in,) = 2n and g;,(q) = L for all ¢ # gy, Thus, the
odd ranking that A" guesses maps the root {g;,, 0) of the run DAG to 2n.

e Forastate (g, P) € R x2% and aletter ¢ € %, we define §’({g, P), o) as follows.
oIf P # (), then

' ({9, P),0) = {{g', P') : ¢ covers g, and
P’ ={q’: thereis q € P suchthat ¢’ € 6(¢q,0) and ¢'(¢’) is even}}.

oIf P = (), then
8 (g, P),0) ={(¢',P') : g’ covers g, and P' = {¢' : ¢'(¢’) is even}}.

Thus, when A’ reads the I’th letter in the input, for [> 1, it guesses the level
ranking for level [in the run DAG. This level ranking should cover the level rank-
ing of level [— 1. In addition, in the P component, A’ keeps track of states whose
corresponding vertices in the DAG have even ranks. Paths that traverse such ver-
tices should eventually reach a vertex with an odd rank. When all the paths of
the DAG have visited a vertex with an odd rank, the set P becomes empty, and is
initiated by new obligations for visits in odd ranks according to the current level
ranking. The acceptance condition R X {{J} then checks that there are infinitely
many levels in which all the obligations have been fulfilled.

8. Exercises

Question 1

For each pair ¢7; o of formulas below, decide which of the following hold (note that
possibly both a and b hold, or none of them):

a. Y1 — P2.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 147

b. ¢1 — 2.

When the an implication does not hold, describe a counter example (when a does not
hold, describe a model for ¢; that does not satisfy s, and when b does not hold, describe
a model for o, that does not satisfy 7).

Gp ;o FX-p
.G(pVq) ;GpV Gq
G(pNq) ;Gp NGy
qUp ;g N\ XqUp
-pU(qUr) 5 (pUq)Ur
pAXq ;pUgAqUp

Question 2

Describe nondeterministic Biichi automata for the following properties.

1. F(p A Xp).
2. FG(pV Xp).
3. Gp — Gq.
4 GFp — GFq.

Question 3

Prove or give a counter example:

1. Every nondeterministic Biichi automaton .4 has an equivalent nondeterministic
Biichi automaton A’ with a single initial state.

2. Every nondeterministic Biichi automaton .4 has an equivalent nondeterministic
Biichi automaton A’ with a single accepting state.

Question 4

Given a generalized Biichi automaton with n states and index k, construct an equivalent
Biichi automaton with nk states.

Question 5

Given a deterministic Biichi automaton A = (X, @, d, qo, &) with n states, describe a
nondeterministic Biichi automaton .4’ with O(n) states such that L(A") = X« \ L(A).

Hint: the NBW 4’ uses its nondeterminism in order to guess when the run of A
stops visiting .

Question 6
Consider a nondeterministic word automaton A. Let £, (A) be the language of .4 when

regarded as an automaton on finite words, and let £, (.A) be the language of A when
regarded as a Biichi automaton. Prove or give a counter example:

148 O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

1. L,(A) = lim(L.(A)).
2. L,(A) = lim(L.(A)) iff there is some deterministic Biichi automaton that rec-
ognizes L, (A).
Question 7

In a co-Biichi word automaton, the acceptance condition is a set « C () and a run 7 is
accepting iff it visits « only finitely often; that is inf(r) N« = (.

1. Prove that a language L is recognizable by a deterministic Biichi automaton iff
¥« \ L is recognizable by a deterministic co-Biichi automaton.

2. Given a nondeterministic co-Biichi automaton A = (3, Q,d, Qo, o), define a
deterministic co-Biichi automaton A’ = (3, Q’, §’, ¢}, &) equivalent to A.
Hint: Q' = 29 x 29, and all the reachable states (S, P) in Q' are such that
P C S. The acceptance condition o/ = 2% x {{}.

3. Let L = {w : w has infinitely many a’s } C {a,b}*. Can L be recognized by a
nondeterministic co-Biichi word automaton? Justify your answer.

Question 8

In this question we prove an exponential lower bound on the translation of LTL to non-
deterministic Biichi automata. Let AP = {p, ¢}. For n > 1, we define the language £,
over the alphabet 247 as follows.

L ={{{p}:{d},0,}"-0-w-0-{{p},{a}, 0, }"{p, ¢} -w-{p.¢}* : w € {{p}, {a}}"}-

Thus, a word is in £,, iff the word between the first and second {p, ¢} is of length n, it
is composed of letters in {{p},{q}} only, and it has appeared between ()’s somewhere
before the first {p, ¢}. In addition, the second {p, ¢} starts an infinite tail of {p, ¢}’s.

1. Describe two words in £3 and two words not in L3.

2. Prove that the smallest nondeterministic Biichi automaton that recognizes £,, has
at least 2" states.

3. Specify £,, with an LTL formula of length quadratic in n.

Question 9

Consider the translation of an LTL formula ¢ to nondeterministic Biichi automata A
we saw in class. Recall that Ai (that is, A, with initial state S C cl(1))) accepts exactly

these words in (24F)« that satisfy exactly all the formulas in S.

1. Construct the automaton for) = F(p A Xp). Note you are asked to construct
exactly the automaton we saw in class (which may not be the minimal automaton
for 1)).

2. Describe a linear-time procedure for complementing the automaton .4, (for an

arbitrary).
3. Which of the following statements are correct? (prove or give a counter example)

(a) For every LTL formula ¢, if there is a deterministic Biichi automaton for 1,
then Ay, is deterministic.

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification 149

(b) For every LTL formula 1) and a word w € (24F)“ such that w |= 1, there is

a single run of A, that accepts w.

Question 10

Describe an ABW with O(n) states for the language £,, = {w-w-#“ : w € (0+1)"}.

Question 11

For a word w € ¥¢, let suff (w) = {y : -y = w, for some z € ¥*}. Note that suff (w)
contains w and e. For a language L C 3¢, let suff _limit(L) = {w : suff(w) C L}.
Thus, suff _limit(L) contains exactly all words w such that all the suffixes of w are in L.

Given an NBW A = (¥, Q, 0, Qo, «), describe an ABW A’ with the same state
space @ such that £L(A’) = suff _limit(L(.A)). Prove the correctness of the construction

formally.

References

[Biic62]

[CES81]

[Cho74]
[CKS81]

[Fri03]

[FW02]

[GKSVO03]

[GOO01]

[GPVWO5]

[Kur94]
[KVO01]

[KVO05]

J.R. Biichi. On a decision method in restricted second order arithmetic. In Proc. International
Congress on Logic, Method, and Philosophy of Science. 1960, pages 1-12, Stanford, 1962. Stan-
ford University Press.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using branch-
ing time temporal logic. In Proc. Workshop on Logic of Programs, volume 131 of Lecture Notes
in Computer Science, pages 52-71. Springer-Verlag, 1981.

Y. Choueka. Theories of automata on w-tapes: A simplified approach. Journal of Computer and
System Sciences, 8:117-141, 1974.

A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for
Computing Machinery, 28(1):114-133, January 1981.

C. Fritz. Constructing Biichi automata from linear temporal logic using simulation relations for
alternating b§chi automata. In Proc. 8th Intl. Conference on Implementation and Application of
Automata, number 2759 in Lecture Notes in Computer Science, pages 35—48. Springer-Verlag,
2003.

C. Fritz and T. Wilke. State space reductions for alternating Biichi automata: Quotienting by
simulation equivalences. In Proc. 22th Conference on the Foundations of Software Technology
and Theoretical Computer Science, volume 2556 of Lecture Notes in Computer Science, pages
157-169, December 2002.

S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing nondeterministic
Biichi automata. In /2th Advanced Research Working Conference on Correct Hardware Design
and Verification Methods, volume 2860 of Lecture Notes in Computer Science, pages 96—110.
Springer-Verlag, 2003.

P. Gastin and D. Oddoux. Fast LTL to biichi automata translation. In Computer Aided Verifica-
tion, Proc. 13th International Conference, volume 2102 of Lecture Notes in Computer Science,
pages 53-65. Springer-Verlag, 2001.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In P. Dembiski and M. Sredniawa, editors, Protocol Specification, Testing, and
Verification, pages 3—18. Chapman & Hall, August 1995.

R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Trans. on
Computational Logic, 2(2):408-429, July 2001.

O. Kupferman and M.Y. Vardi. Complementation constructions for nondeterministic automata on
infinite words. In Proc. 11th International Conf. on Tools and Algorithms for The Construction

150

[KVWO00]
[Lan69]

[LP85]

[McN66]
[MH84]
[Mic88]

[MSS86]

[Pnu77]

[QS81]

[Rab69]
[Saf88]

[SB0O]

[SVW8T]

[VW94]

O. Kupferman / Automata on Infinite Words and Their Applications in Formal Verification

and Analysis of Systems, volume 3440 of Lecture Notes in Computer Science, pages 206-221.
Springer-Verlag, 2005.

O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312-360, March 2000.

L.H. Landweber. Decision problems for w—automata. Mathematical Systems Theory, 3:376-384,
1969.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear
specification. In Proc. 12th ACM Symp. on Principles of Programming Languages, pages 97—
107, New Orleans, January 1985.

R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521-530, 1966.

S. Miyano and T. Hayashi. Alternating finite automata on w-words. Theoretical Computer
Science, 32:321-330, 1984.

M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,
1988.

D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory of the
tree and its complexity. In Proc. 13th International Colloquium on Automata, Languages and
Programming, volume 226 of Lecture Notes in Computer Science, pages 275 — 283. Springer-
Verlag, 1986.

A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on Foundation of Computer
Science, pages 46-57, 1977.

J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc.
5th International Symp. on Programming, volume 137 of Lecture Notes in Computer Science,
pages 337-351. Springer-Verlag, 1981.

M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of
the AMS, 141:1-35, 1969.

S. Safra. On the complexity of w-automata. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 319-327, White Plains, October 1988.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In Computer Aided
Verification, Proc. 12th International Conference, volume 1855 of Lecture Notes in Computer
Science, pages 248-263. Springer-Verlag, 2000.

A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Biichi automata with
applications to temporal logic. Theoretical Computer Science, 49:217-237, 1987.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation,
115(1):1-37, November 1994.

Software System Reliability and Security 151
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 10S Press. All rights reserved.

Practical Principles for Computer Security

Butler LAMPSON!
Microsoft Research
Marktoberdorf, 2006

What do we want from secure computer systems? Here is a reasonable goal:

Computers are as secure as real world systems, and people believe it.
Most real world systems are not very secure by the absolute standard suggested above.
It’s easy to break into someone’s house. In fact, in many places people don’t even bother
to lock their houses, although in Manhattan they may use two or three locks on the front
door. It’s fairly easy to steal something from a store. You need very little technology to
forge a credit card, and it’s quite safe to use a forged card at least a few times.

Real security is about punishment, not about locks;
about accountability, not access control

Why do people live with such poor security in real world systems? The reason is that
real world security is not about perfect defenses against determined attackers. Instead,
it’s about

e value,
e locks, and
e punishment.

The bad guys balance the value of what they gain against the risk of punishment,
which is the cost of punishment times the probability of getting punished. The main thing
that makes real world systems sufficiently secure is that bad guys who do break in are
caught and punished often enough to make a life of crime unattractive. The purpose of
locks is not to provide absolute security, but to prevent casual intrusion by raising the
threshold for a break-in.

Security is about risk management
Well, what’s wrong with perfect defenses? The answer is simple: they cost too much.
There is a good way to protect personal belongings against determined attackers: put
them in a safe deposit box. After 100 years of experience, banks have learned how to
use steel and concrete, time locks, alarms, and multiple keys to make these boxes quite
secure. But they are both expensive and inconvenient. As a result, people use them only
for things that are seldom needed and either expensive or hard to replace.

Practical security balances the cost of protection and the risk of loss, which is the
cost of recovering from a loss times its probability. Usually the probability is fairly small
(because the risk of punishment is high enough), and therefore the risk of loss is also
small. When the risk is less than the cost of recovering, it’s better to accept it as a cost of
doing business (or a cost of daily living) than to pay for better security. People and credit
card companies make these decisions every day.

"My colleagues Martin Abadi, Carl Ellison, Charlie Kaufman, and Paul Leach made many suggestions for
improvement and clarification. Some of these ideas originated in the Taos authentication system ([4], [6])

152 B. Lampson / Practical Principles for Computer Security

With computers, on the other hand, security is only a matter of software, which is
cheap to manufacture, never wears out, and can’t be attacked with drills or explosives.
This makes it easy to drift into thinking that computer security can be perfect, or nearly
so. The fact that work on computer security has been dominated by the needs of national
security has made this problem worse. In this context the stakes are much higher and
there are no police or courts available to punish attackers, so it’s more important not
to make mistakes. Furthermore, computer security has been regarded as an offshoot of
communication security, which is based on cryptography. Since cryptography can be
nearly perfect, it’s natural to think that computer security can be as well.

What’s wrong with this reasoning? It ignores two critical facts:

e Secure systems are complicated, hence imperfect.
e Security gets in the way of other things you want.

The end result should not be surprising. We don’t have "real" security that guarantees
to stop bad things from happening, and the main reason is that people don’t buy it. They
don’t buy it because the danger is small, and because security is a pain.

e Since the danger is small, people prefer to buy features. A secure system has
fewer features because it has to be implemented correctly. This means that it takes
more time to build, so naturally it lacks the latest features.

e Security is a pain because it stops you from doing things, and you have to do work
to authenticate yourself and to set it up.

A secondary reason we don’t have "real" security is that systems are complicated,
and therefore both the code and the setup have bugs that an attacker can exploit. This is
the reason that gets all the attention, but it is not the heart of the problem.

1. Implementing security

The job of computer security is to defend against vulnerabilities. These take three main
forms:

1) Bad (buggy or hostile) programs.

2) Bad (careless or hostile) agents, either programs or people, giving bad instructions to
good but gullible programs.

3) Bad agents tapping or spoofing communications.

Case (2) can be cascaded through several levels of gullible agents. Clearly agents that
might get instructions from bad agents must be prudent, or even paranoid, rather than
gullible.

Broadly speaking, there are five defensive strategies:

4) Coarse: Isolate—keep everybody out. It provides the best security, but it keeps you
from using information or services from others, and from providing them to others. This
is impractical for all but a few applications.

5) Medium: Exclude—keep the bad guys out. It’s all right for programs inside this de-
fense to be gullible. Code signing and firewalls do this.

6) Fine: Restrict—Let the bad guys in, but keep them from doing damage. Sandboxing
does this, whether the traditional kind provided by an operating system process, or the
modern kind in a Java virtual machine. Sandboxing typically involves access control on

B. Lampson / Practical Principles for Computer Security 153

resources to define the holes in the sandbox. Programs accessible from the sandbox must
be paranoid; it’s hard to get this right.

7) Recover—Undo the damage. Backup systems and restore points are examples. This
doesn’t help with secrecy, but it helps a lot with integrity and availability.

8) Punish—Catch the bad guys and prosecute them. Auditing and police do this.

Authorize

:/6/uard =P Object

Authenticate

Principal Request
N %

Channel

\\

Execution environment

3

Isolation bounda

| Host (CLR, kernel, hardware, VMM, ...) |

Figure 1. Access control model

The well-known access control model shown in Figure 1 provides the framework
for these strategies. In this model, a guard controls the access of requests for service to
valued resources, which are usually encapsulated in objects. The guard’s job is to decide
whether the source of the request, called a principal, is allowed to do the operation on the
object. To decide, it uses two kinds of information: authentication information from the
left, which identifies the principal who made the request, and authorization information
from the right, which says who is allowed to do what to the object. There are many ways
to make this division. The reason for separating the guard from the object is to keep it
simple.

Of course security still depends on the object to implement its methods correctly.
For instance, if a file’s read method changes its data, or the write method fails to debit
the quota, or either one touches data in other files, the system is insecure in spite of the
guard.

Another model is sometimes used when secrecy in the face of bad programs is a pri-
mary concern: the information flow control model shown in Figure 2 [5]. This is roughly
a dual of the access control model, in which the guard decides whether information can
flow to a principal.

In either model, there are three basic mechanisms for implementing security. To-
gether, they form the gold standard for security (since they all begin with Au):

154 B. Lampson / Practical Principles for Computer Security

Information Reference Principal
monitor

Source Guard Transmit Sink

Figure 2. Information flow model

® Authenticating principals, answering the question "Who said that?" or "Who is
getting that information?". Usually principals are people, but they may also be
groups, machines, or programs.

® Authorizing access, answering the question "Who is trusted to do which opera-
tions on this object?".

e Auditing the decisions of the guard, so that later it’s possible to figure out what
happened and why.

2. Access control

Figure 1 shows the overall model for access control. It says that principals make requests
on objects; this is the basic paradigm of object-oriented programming or of services.
The job of security is to decide whether a particular request is allowed; this is done by
the guard, which needs to know who is making the request (the principal), what the
request is, and what the target of the request is (the object). The guard is often called
the relying party, since it relies on the information in the request and in policy to make
its decision. Because all trust is local, the guard has the final say about how to interpret
all the incoming information. For the guard to do its job it needs to see every request on
the object; to ensure this the object is protected by an isolation boundary that blocks all
access to the object except over a channel that passes through the guard. There are many
ways to implement principals, requests, objects and isolation, but this abstraction works
for all of them.
The model has three primary elements:

1. Isolation: This constrains the attacker to enter the protected execution environ-
ment via access-controlled channels.

2. Access Control: Access control is broken down into authentication, authoriza-
tion, and auditing.

3. Policy and User Model: Access control policy is set by human beings—
sometimes trained, sometimes not.

This paper addresses one piece of the security model: access control. It gives an
overview that extends from setting authentication policy through authenticating a request

B. Lampson / Practical Principles for Computer Security 155

to the mechanics of checking access. It then discusses the major elements of authentica-
tion and authorization in turn.

2.1. What is access control

Every action that requires a security decision, whether it is a user command, a system
call, or the processing of a message from the net, is represented in the model of as a
request from a principal over a channel. Each request must pass through a guard or
relying party that makes an access control decision. That decision consists of a series of
steps:

1. Do direct authentication, which establishes the principal directly making the re-
quest. The most common example of this is verifying a cryptographic signature
on a message; in this case the principal is the cryptographic key that verifies the
signature. Another example is accepting input from the keyboard, which is the
principal directly making the request.?

2. (optionally) Associate one or more other principals with the principal of step 1.
These could be groups or attributes.

3. Do authorization, which determines whether any of these principals is allowed to
have the request fulfilled on that object.

The boundary between authentication and authorization, however, is not clear. Dif-
ferent experts draw it in different places. It is also not particularly relevant, since it makes
little sense to do one without the other.

3. Examples: Logon and cross-organization access control
This section gives two examples to introduce the basic ideas of access control.
3.1. Example: User and network logon

Figure 3 shows the basic elements of authentication and how they are used to log on a
user, access a resource, and then do a network logon to another host. Note the distinc-
tion between the elements that are part of a single host and external token sources such
as domain controllers and STS’s. For concreteness, the figure describes the process of
authenticating a user as logon to Windows, that is, as creating a Windows session that
can speak for the user; in Windows a SID is a 128-bit binary identifier for a principal.
However, exactly the same mechanisms can be used to log onto an application such as
SQL Server, or to authenticate a single message, so it covers these cases equally well.
The numbers in the figure label the steps of the logon, which are as follows:

1. The user provides some input for logon (for example, user name and password).

2. The logon agent sends a logon validation request with the input (or something
derived from it) to the domain controller (labeled "token source" in the figure),

3. which replies with the user’s SID and a session key if logon succeeded, and an
error if it didn’t.

2See the appendix for a sketch of what you need to know about cryptography.

156 B. Lampson / Practical Principles for Computer Security

Token Source] Tamper-Proof (TP)
Confidential & TP

[“User | Claims | Token |
AuthN | (groups) issue

Host
"Trust root
store
Speaks-for
engine To other
Logon Logon | hogts
5 > (n) (out) [l

NTToken pr=——""

f ~—~— (9 [accessiloo -

authorization —/Q “wResource
ACL

Figure 3. Core logon example

. The token source provides the user’s SID,

. and uses it to provide the group SIDs.

. The trust root says that the token source should be trusted to logon anyone, so

. all the SIDs go into the NT token,

. and the session key is saved in the transient key store.

. When the process accesses some local resource the NT token is checked against
the ACL, and with luck the access is granted.

10. When the process wants to access a remote resource, the NT token

11. and the session key are needed

12. to ask the token source to

13. issue a token that can be sent out

14. to the remote host,

15. which receives it (back on the left side of the figure) and does a net logon.

O 003N L

3.2. Example: Cross-organization access control

A distributed system may involve systems (and people) that belong to different organi-
zations and are managed differently. To do access control cleanly in such a system (as
opposed to the local systems that are well supported by Windows domains, as in the
previous example) we need a way to treat uniformly all the information that contributes
to the decision to grant or deny access. Consider the following example, illustrated in
Figure 4.

B. Lampson / Practical Principles for Computer Security 157

\
\

| says
\
\) v ,
\ Allce@Intel=> Atom@Microsoft
says'y
\
AN Spectra
) ACL
/
says
Kaice <=K,ogm\
Alice’s Alice’s login Spectra
smart card system web page

Figure 4. Speaks-for example

Alice at Intel is part of a team working on a joint Intel-Microsoft project called
Atom. She logs in to her Intel workstation, using a smart card to authenticate herself, and
connects using SSL to a project web page called Spectra at Microsoft. The web page
grants her access because:

1. The request comes over an SSL connection secured with a connection key Kggy,
created using the Diffie-Hellman key exchange protocol.

2. To authenticate the SSL connection, Alice’s workstation uses its temporary logon
key Kjogon to sign a statement certifying that requests secured by the connection
key Kgg, come from the logon session.’

3. At logon time, Alice’s smart card uses her key K 4. certifies that requests
signed by the logon session key Kjo40n come from Alice.

4. Intel certifies that K 4. is the key for Alice @Intel.com.*

5. Microsoft’s group database says that Alice @Intel.com is in the Atom group.

6. The ACL on the Spectra page says that Atom has read/write access.

In the figure, Alice’s requests to Spectra travel over the SSL channel (represented by
the fat arrow), which is secured by the key K sy . In contrast, the reasoning about trust
that allows Spectra to conclude that it should grant the requests runs clockwise around
the circle of double arrows; note that requests never travel on this path.

From this example we can see that many different kinds of information contribute
to the access control decision:

e Authenticated session keys

3Saying that the workstation signs with the public key K logon Means that it encrypts with the corresponding
private key. Through the magic of public-key cryptography, anyone who knows the public key can verify this
signature. This is not the only way to authenticate an SSL connection, but it is the simplest to explain.

“Intel can do this with an X.509 certificate, or by responding to a query "Is K gj;c. the key for Al-
ice@Intel.com?", or in some other secure way.

158 B. Lampson / Practical Principles for Computer Security

User passwords or public keys
Delegations from one system to another
Group memberships

ACL entries.

We want to do a number of things with this information:

o Keep track of how secure channels are authenticated, whether by passwords,
smart cards, or systems.

Make it secure for Microsoft to accept Intel’s authentication of Alice.

Handle delegation of authority to a system, for example, Alice’s logon system.
Handle authorization via ACLs like the one on the Spectra page.

Record the reasons for an access control decision so that it can be audited later.

4. Basic concepts

This section describes the basic concepts, informally but in considerable detail: princi-
pals and identifiers; speaks-for and trust; tokens; paths, security domains, attributes, and
groups; global identifiers; how to choose identifiers and names, and freshness or consis-
tency. Sections 5 and 6 describe the components of the architecture and how they use
these concepts.

4.1. Principals and identifiers

A principal is the source of a request in the model of ; it is the answer to the questions:

o "Who made this request?" (authentication)
e "Who is trusted for this request?" (authorization-for example, who is on the ACL)

We say that the principal says the request, as in P says do read report.doc. In addition
to saying requests, principals can also say speaks-for statements or claims, as explained
in section 4.2.

Principals are not only people and devices. Executable code is a principal. An in-
put/output channel and a cryptographic signing key are principals. So are groups such as
Microsoft-FTE and attributes such as age=32. We treat all these uniformly because they
can all be answers to the question "Who is trusted for this request?". Furthermore, if we
interpret the question "Who made this request?" broadly, they can all be answers to this
question as well: a request can be made directly only by a channel or key, but it can be
made indirectly by a person (or device) that controls the key, or by a group that such a
person is a member of.

It turns out to be convenient to treat objects or resources as principals too, even
though they don’t make requests.

Principals can be either simple or compound. Simple principals are denoted by iden-
tifiers, which are strings. Intuitively, identifiers are labels used for people, computers
and other devices, applications, attributes, channels, resources, etc., or groups of these.?
Compound principals are explained in section 5.8.

SPrograms usually can deal only with identifiers, not with the real-world principals that they denote. In this
paper we will ignore this distinction for the most part.

B. Lampson / Practical Principles for Computer Security 159

Channels are special because they are the only direct principals: a computer can tell
directly that a request comes from a channel, without any other information. Thus any
authentication of a request must start with a channel. A cryptographic signing key is the
most important kind of channel.

An identifier is a string; often the string encodes a path, as explained below. The
string can be meaningful (to humans), or it can be meaningless; for example, it can
encode a binary number (Occasionally an identifier is something that is meaningful, but
not as a string of characters, such as a picture.). This distinction is important because
access control policy must be expressed in terms of meaningful identifiers so that people
can understand it, and also because people care about the meanings of a meaningful
identifier such as coke.com, but no one cares about the bit pattern of a binary identifier.
Of course there are gray areas in this taxonomy; a name such as davcdata.exe is not
meaningful to most people, and a phone number might be very meaningful. But the
taxonomy is useful none the less.

Meaningless identifiers in turn can be direct or not. This leads to a three-way classi-
fication of identifiers:

e name: an identifier that is meaningful to humans.

e [D: a meaningless identifier that is not direct. In this taxonomy an identifier such
as xpz5914 @hotmail.com is probably an ID, not a name, since it probably isn’t
meaningful.

e direct: a meaningless identifier that identifies a channel. There are three kinds of
direct identifiers:

* key: a cryptographic key (most simply, a public key) that can verify a signature
on a request. We view a signing key as a channel, and say that messages signed
by the key arrive on the channel named by that key.®

* hash: a cryptographic collision-free hash of data (code, other files, keys, etc.):
different data is guaranteed to have different hashes. A hash H can say X if
a suitable encoding of "This data says X" appears in the data of which H is
the hash. For code we usually hash a manifest that includes the hash of each
member file. This has the same collision-free property as a hash of the contents
of all the files.

* handle: an identifier provided by the host for some channel, such as the key-
board (Strictly speaking, the wire from the keyboard.) or a pipe.

An identifier can be a path, which is a sequence of strings, just like a path name
for a file such as C:\program files\Adobe\Acrobat6. It can be encoded as a single string
using some syntactic convention. There are a number of different syntactic conventions
for representing a path as a single string; the file name example uses "\" as a separator.
The canonical form is left-to-right with / as the separator. A path can be rooted in a key,
such as Ky ¢risign/andy @intel.com (or Ky ¢risign/com/intel/andy in the canonical form
for paths); such a path is called fully qualified. A path not rooted in a key is rooted in self,
the local environment interpreting the identifier; it is like a relative file name because its
meaning depends on the context.

SFor a symmetric key we can use a hash of it as the public name of the channel, though of course this is not
enough to verify a signature.

160 B. Lampson / Practical Principles for Computer Security
4.2. Speaks-for and trust

Authentication must start with a channel, for example, with a cryptographic signature
key. But it must end up with access control policy, which has to be expressed in terms of
names so that people can understand it. To bridge the gap between channels and names
we uses the notion of "speaks-for". We say that a channel speaks for a user, for example,
if we trust that every request that arrives on the channel comes from the user, in other
words, if the channel is trusted to speak for the user.

But the notion of speaks-for is much more general than this, as the example of sec-
tion 3 illustrates. What is the common element in all the steps of the example and all the
different kinds of information? There is a chain of trust running from the request at one
end to the Spectra resource at the other. A link of this chain has the form

"Principal P speaks for principal Q about statements in set R"

For example, Kgg; speaks for K 4;;c. about everything, and Atom@ Microsoft
speaks for Spectra about read and write. We write "about R" as shorthand for "about
statements in set R". Often P is called the subject and R is called the rights.

The idea of "P speaks for Q about R" is that

if P says something about R, then Q says it too
That is, P is trusted as much as Q, at least for statements in R. Put another way, Q
takes responsibility for anything that P says about R. A third way: P is a more powerful
principal than Q (at least with respect to R) since P’s statements are taken at least as
seriously as Q’s (and perhaps more seriously). Thus P has all of Q’s authority about R.

The notion of principal is very general, encompassing any entity that we can imagine
making statements or being trusted. Secure channels, people, groups, attributes, systems,
program images, and resource objects are all principals. The notion of speaks-for is also
very general; some examples are:

Binding a key to a user name.

Binding a program hash to a name for the program.

Allowing an authority to certify a set of names.

Making a user a member of a group.

Assigning a principal an attribute.

Granting a principal access to a resource by putting it on the resource’s ACL.

The idea of "about R" is that R is some way of describing a set of things that P (and
therefore Q) might say. You can think of R as a pattern or predicate that characterizes
this set of statements, or you can think of it as some rights that P can exercise as much
as Q can. In the example of section 3, R is "all statements" except for step (5), where it is
"read and write requests”. It’s up to the guard of the object that gets the request to figure
out whether the request is in R, so the interpretation of R’s encoding can be local to the
object. For example, we could refine "read and write requests" to "read and write requests
for files whose names match /users/lampson/security/*.doc". In most ACEs today, R is
encoded as a bit vector of permissions, and you can’t say anything as complicated as the
previous sentence.

We can write this P = Q for short, or just P = Q without any subscript if R is "all
statements". With this notation the chain for the example is:

Kssr = Kiogon = Kaiice = Alice@Intel = Atom@Microsoft =/, Spectra
A single speaks-for fact such as K 4;;cc = Alice@Intel is called a claim. The principal
on the left is the subject.

B. Lampson / Practical Principles for Computer Security 161

The way to think about it is that = is "greater than or equal": the more powerful
principal goes on the left, and the less powerful one on the right. So role=architect =
Slava means that everyone in the architect role has all the power that Slava has. This
is unlikely to be what you want. The other way, Slava = role=architect, means that
Slava has all the power that the architect role has. This is a reasonable way to state the
implications for security of making Slava an architect.

Figure 4 shows how the chain of trust is related to the various principals. Note that
the "speaks for" arrows are quite independent of the flow of bytes: trust flows clockwise
around the loop, but no data traverses this path. The example shows that claims can
abstract from a wide variety of real-world facts:

e A key can speak for a person (K 4;,.c = Alice@Intel) or for a naming authority
(K1pter = Intel.com).

e A person can speak for a group (Alice @Intel = Atom @ Microsoft).

e A person or group can speak for a resource, usually by being on the ACL of the
resource (Atom@Microsoft =,. /., Spectra). We say that Spectra makes this claim
by putting Atom on its ACL.

4.2.1. Establishing claims: Delegation

How does a claim get established? It can be built in; such facts appear in the trust root,
discussed in section 5.1. Or it can be derived from other claims, or from statements made
by principals, according to a few simple rules:
(S1) Speaks-for is transitive: if P = Q and Q = R then P = R.
(S2) A principal speaks for any path rooted in itself: P = P/N. This is just
like a file system, where a directory controls its contents. Section 4.1
discusses paths.
(S3) Principals are trusted to delegate their authority, privileges, rights, etc.:
if Q says P = Q then P = Q. (There are restricted forms of speaks-for
where this rule doesn’t hold.)

From the definition of =, if O’ says P = Q and Q’ = Q then Q says P = Q, and it
follows from (S3) that P = Q. So a principal is trusted to delegate the authority of any
principal it speaks for, not just its own authority. Frequently a delegation is restricted so
that the delegate P speaks for Q only for requests (this is the usual interpretation of an
X.509 end-entity certificate, for example, or membership in a group) or only for further
delegation (an X.509 CA certificate, or GROUP_ADD/REMOVE_MEMBER permission
on the ACL for a group).

4.2.2. Validity period

A claim usually has a validity period, which is an interval of real time during which it is
valid. When applying the rules to derive a claim from other claims and tokens, intersect
their validity periods to get the validity period of the derived claim. This ensures that the
derived claim is only valid when all of the inputs to its derivation are valid. A claim can
be the result of a query to some authority A. For example, if the result of a query "Is
P in group G" to a database of group memberships is "Yes", that is an encoding of the
claim P = G. The validity period of such a statement is often just the instant at which
the response is made, although the queryer might choose to cache it and believe it for a
longer time.

162 B. Lampson / Practical Principles for Computer Security
4.3. Tokens

A claim made by a principal is called a token (not to be confused with a user authentica-
tion token such as a SecurID device). Many tokens are called certificates, but this paper
uses the more general term except when discussing X.509 certificates specifically. The
rule (S3) tells you whether or not to believe a token; section 4.5 on global identifiers
gives the most important example of this.

Examples of tokens:

X.509 certificate [K says K g = name, (optionally K says name = attribute)]
Authenticode certificate [Ky says H(code) = publisher/program]

Group memberships [K p says Sy = S¢]

Signed SAML attribute assertion [K7 says name = attribute]

ISO REL (XrML) license

APl el e

where K71 is the issuer key, Kg is the subject key, "name" is the certified name, Ky is
Verisign’s key, H(code) is the hash value of the code being signed, "publisher" is the
name of the code’s publisher, K is the key of the domain controller, Sy is the SID of
the user and S¢ is the SID of the group of which the user is a member. XrML tokens can
do all of these things, and more besides.

A token can be signed in several different ways, which don’t change the meaning of
a token to its intended recipient, but do affect how difficult it is to forward:

e A token signed by a public key, like a X.509 certificate, can be forwarded to
anyone without the cooperation of the third party. From a security point of view
it is like a broadcast.

e A token signed by a symmetric key, like a Kerberos ticket, can be returned to its
sender for forwarding to anyone with whom the sender shares a symmetric key.

e A token that is just sent on an authenticated channel cannot be forwarded, since
there’s no way to prove to anyone that the sender said it.

In a token the principals on both sides of the = must be represented by identifiers,
and it’s important for these identifiers to be unambiguous. A fully qualified identifier (one
that starts with a key or hash) is unambiguous. Other identifiers depend on the context,
that is, on some convention between the issuer and the consumer of the token.

Like a claim, a token usually has a validity period; see section 4.2.2. For example, a
Kerberos token is typically valid for eight hours.

A token is the most common way for a principal to communicate a claim to others,
but it is not the only way. You can ask a principal A "Do you say P = Q?" or "What
principal does P speak for?" and get back "A says ’yes’" or "A says *Q’". Such a state-
ment only makes sense as a response to the original query; to be secure it must not only
be signed by (some principal that speaks for) A, but also be bound securely to the query
(for example, by a secure RPC protocol), so that an adversary can’t later supply it as the
re-sponse to some other query.

LX)

4.4. Organizing principals

There are several common ways to impose structure on principals in addition to the path
identifiers introduced in section 4.1: security domains, attributes, and groups.

B. Lampson / Practical Principles for Computer Security 163

4.4.1. Security domains

A security domain is a collection of principals (users, groups, computers, servers and
other resources) to which a particular set of policies apply, or in other words, that have
common management. Usually we will just say "domain". It normally comprises:

A key K D-

A namespace based on that key.

A trust root—a set of claims of the form Kj; A K3 ... = identifier-pattern

ACLs for the trust root and the accounts, which define the administrators of the

domain.

o A set of accounts—statements of the form Kp says K; = Kp/N for principals
with names in its namespace.

e A set of resources and policies for those resources

The essential property of paths is that namespaces with different roots are indepen-
dent, just as different file system volumes are independent. In fact, namespaces with dif-
ferent prefixes are independent, just as file system directories with different names are in-
dependent. This means that anybody with a public key K can create a namespace rooted
in that key. Such a namespace is the most important part of a security domain. Because
of (S2), K speaks for the domain. Because of (S3), if you know K ! you can delegate
authority over any part of the domain, and since K is public, anyone can verify these
delegations. This means that authentication can happen independent of association with
any domain controller. Of course, you can also rely on a third party such as a domain
controller to do it for you, and this is necessary if K is a symmetric key.

For example, an application such as SQL Server can create its own domain of ob-
jects, IDs, names and authorities that has no elements in common with the Windows
domain of objects, IDs, names and authorities for the machine on which SQL Server is
running. However, the SQL Server can use part or all the Windows security domain if
that is desired. That use is controlled by policy, in the form of trust root contents and
issued tokens.

Here are some other examples of operating in multiple security domains:

1. A user takes a work laptop home and connects to the home network, which has
no connection to the work security domain.

2. A consultant has a laptop that is used in working with two competing companies.
For each company, the consultant has a virtual machine with its own virtual disk.
Each of those virtual machines joins the Windows domain of its respective com-
pany. The host OS, however, is managed by the consultant and has its own local
domain.

Sometimes we distinguish between resource domains and account domains, depend-
ing on whether the domain mostly contains resources or objects, or mostly contains users
or subjects.

Domains can be nested. A child domain has its own management, but can also be
managed by its parent.

4.4.2. Attributes

An attribute such as age=32 is a special kind of path, and thus is a principal like any
other. This one has two components, the name age and the value 32; they are separated

164 B. Lampson / Practical Principles for Computer Security

by "=" rather than "/" to emphasize the idea that 32 is a value for the attribute name
age, but this is purely syntactic. 7 The claim Paul = age=32 expresses the fact that
Paul has the attribute age=32. Like any path, an attribute should be global if it is to be
passed between machines: K,,s;s/age=32. However, unlike file names or people, we
expect that most attributes with the same name in many different namespaces will have
the same intended meaning in all of them. A claim can translate the attribute from one
namespace to another. For example, WA/dmv/age = NY/rmv/age means that New York
trusts WA/dmv for the age attribute. Translation can involve intermediaries: WA/dmv/age
= US/age and US/age = NY/rmv/age means that New York trusts US for age, and US
in turn trusts Washington (presumably US trusts lots of other states as well, but these
claims don’t say anything about that). Locally, of course, it’s fine to use age=32; it’s a
local name, and if you want to translate US/age=32 to age=32 you need a trust root entry
US/age = age. In fact, from the point of view of trust age=32 is just like a nickname.
The difference is that we expect lots of translations, because we expect lots of principals
to agree about the meaning of age, whereas we don’t expect wide agreement about the
meaning of Bob.

Because of the broad scope of many attribute names such as age, the name of an
attribute can change as it is expressed in different languages and even different scripts.
Therefore it is often necessary to use an ID rather than a name for the attribute in policy.
For example, an X.509 object identifier or OID is such an ID. Sections 4.5 and 4.6 discuss
the implications of this; what they say applies to attributes as well.

A Boolean-valued attribute (one with a value that is true or false), such as over21,
defines a group; we normally write it that way rather than as over21=true. The next
section discusses groups.

4.4.3. Groups and conditions

A condition is a Boolean expression over attribute names and values, such as "microsoft-
.com/division ==sales’ & microsoft.com/region =="NW’". A condition is a principal; every
principal that speaks for attributes whose values cause the expression to evaluate "true”
speaks for the condition. In the preceding example, every Microsoft employee in the
northwest sales region would speak for it.

For use in conditions, identifiers are considered to be Boolean-valued attributes that
evaluate true for the principals that speak for them. Hence the condition paul @ micro-
soft.com | carl@microsoft.com is true for paul@microsoft.com and carl@microsoft.com.
It is also true for the key K if K => paul @ microsoft.com.

In addition, there are special attributes, such as time, that may be used in conditions;
every principal is considered to speak for them. For example, "time >= 0900 & time <=
1500 & shift == 'day’ & jobtitle == ’operator’” would be true for all day-shift operators
between 9am and 5pm.

If C is a condition, and a principal P has attributes whose values cause C to evaluate
true, then we write:

P=C

7Sometimes people call age=32 an "attribute-value" or an "attribute-value pair", and call age an "attribute".
This is perfectly good English; it might even be better English than calling age=32 an attribute. But it is con-
fusing to have both meanings for "attribute" floating around. In this paper, "attribute" means the pair age=32,
and age is the attribute name. Sometimes we say "the age attribute", meaning an attribute whose name is age.

B. Lampson / Practical Principles for Computer Security 165

We can give a condition an identifier (a name or an ID) by saying that the condition
speaks for the identifier:

C = identifier
We call such an identifier a group. ® A group is thus a principal with zero or more other
principals that speak for it. If a principal speaks for the group, we say that it is a member
of the group. Today’s groups are defined by a condition that is just the "or" of a list of
members. In such a case, it’s possible to provide a complete list of all the group members,
but this is not always true. The distinction is important for a principal with the authority
to define members, but it is invisible to access control, which only cares about a requestor
P presenting a claim P = G and G = resource being on the ACL.

Such an authority will only issue such a claim if it:

e Has access to a complete list of the group members (such as Paul, Carl, Charlie),
and P is in it, or

e Has access to a partial list of the group members and P is on its partial list; there
may be several such lists, each accessible to a different issuer, or

e Knows that P satisfies the condition that defines the group (such as age>=21).

The question of who is trusted to assert P = G, that is, who can define the members
of a group, is part of authorization.

4.5. Global identifiers

To avoid confusion, identifiers communicated between computer systems should be
global. If a set of systems doesn’t communicate with the rest of the world, they only
need to agree among each other. However, when these systems suddenly do need to share
identifiers (perhaps because they merge with another set of systems), collisions of iden-
tifiers can occur, requiring a massive renaming of entities. To avoid such problems, all
identifiers that might travel between computers should be global, except perhaps names
intended to communicate to a human being.

An identifier is global if everyone agrees on its meaning, that is, when presented with
arequest and some supporting evidence, everyone either agrees on whether the identifier
is the principal that made the request or doesn’t know. A key or hash is automatically
global; cryptography makes it so. Other identifiers are paths (perhaps of length one).

A path rooted in a key, such as K;,,;¢;/andy @intel.com, is called fully qualified. Such
identifiers are global, because K;,:.; is global, and according to rule (S2) above it can
say what other keys can speak for identifiers rooted in itself. For example, K;,,; can
establish that Andy’s key K,nqy speaks for the name K;,,;;/andy @intel.com, by signing
a certificate (token):

(C1) Kinter says Konay = Kinter/andy @intel.com
Paths not rooted in keys are rooted in self, the local environment interpreting the identi-
fier. They are not global and therefore should not be sent outside the local environment.

We would like to treat an identifier like andy @intel.com (or /com/intel/andy in the
canonical form) as global, even though it is not rooted in a key, because we want to
keep keys out of most policy. This is a conventionally global identifier: we make it very
likely that almost everybody agrees about what speaks for it, by making it very likely

8This is not the only meaning of ’group’ in English, in computing, or in security, but it is the usual meaning
and the one we adopt.

166 B. Lampson / Practical Principles for Computer Security

that everyone agrees that K,,,4, = andy@intel.com. We do that by getting the same
agreement that K;,,;.; = intel.com; then everyone will accept K;,,+¢;’s certificate (C1).
Of course this is the same problem, and we can solve it in the same way: agree that
Kuyerisign = com, and get a certificate

(C2) Kyerisign says Kipier = intel.com
This recursion has to stop somewhere, and it stops in a special part of the security policy
called the trust root, where some of these facts are built in. The essential idea is:

Provided their trust roots agree and they have the same tokens, two parties

will agree on what keys speak for a conventionally global identifier.

One case in which the parties might disagree is while a key is being rolled over or re-
placed, but only if they have different tokens—one has heard about the key change and
the other one hasn’t.

Section 5.1 discusses the trust root in detail, and section 5.1.1 explains how to make
it likely that two trust roots agree.

Although any kind of path could be a conventionally global identifier, the ones that
people cares most about are DNS names (see section 4.7). Email names are important
too, but they usually don’t require special attention because there’s a single DNS name
that authenticates a given email name.

4.6. Choosing identifiers for access policy

There are three conflicting requirements on identifiers:

® Meaningful (to humans): When security policy such as group definitions, access
control lists, etc is displayed to humans, identifiers must be meaningful, since
people must be able to understand the policy. Only names are meaningful. An-
other consequence is that only names are controversial: no one cares what bit pat-
tern your public key has, or what domain ID your SID uses, but people do care
who controls microsoft.com or mit.edu.

e Long-lived: The identifier doesn’t need to change when encryption keys or names
change. This is desirable, because much security policy is long-lived: the identi-
fier may appear on ACLs for objects that last for decades, and that are scattered
over the internet or written on DVDs. Neither names nor direct identifiers can be
guaranteed to be long-lived, since people get married, join a new organization,
or otherwise change their minds about names, and keys can be compromised and
need to change.

e Direct: some identifiers must be direct, since only direct identifiers can actually
make requests. Direct identifiers are neither meaningful nor long-lived.’

The following table summarizes the choices:
Property Meaningful Long-lived Direct

Identifier type

Name Yes no no
ID No possibly no
Direct (keys, etc.) No no yes

9The hash of some data is long-lived in the sense that it won’t change. However, the hashes that are important
for access control are hashes of code, and the hash of code that you care about changes frequently, because of
patches and new versions. So in practice a hash has a much shorter lifetime than many keys.

B. Lampson / Practical Principles for Computer Security 167

We can distinguish three main places where an identifier may appear:

e As the direct source of a request, where it must be direct, since all the machine
directly knows about the source of a request is the channel it arrives on.

e In the user’s view of access control policy, where it must be meaningful, in other
words, a name.

e In access control policy stored in the system, where it’s desirable for it to be long-
lived, but it could have none of these properties as long as there is extra machinery
to make up the lack.

As peer-to-peer operation grows—both personal P2P and corporate P2P—identifiers
for principals will show up in access control policy far and wide. An identifier might
be on ACLs on machines and DVDs all over the world, with no record of where those
machines are. It might also be in tokens such as XrtML licenses, SAML or XACML to-
kens, certificates in various forms, etc., which are another way to express access con-
trol policy. These signed statements can be carried anywhere, can be backed up, can be
transferred from one machine to another. Again, there is no requirement that each such
statement have its location registered in any central place. Hence it’s often desirable for
the identifiers in access control policy to be long-lived.

Since no identifiers satisfy all the requirements, there have to be ways of mapping
among them:

e When a request or a token comes in, it can only be authenticated as coming from
a direct principal, that is, a channel C, so there must be a mapping C = P to a
stored principal.

e When a user wants to examine or edit policy they need to see a meaningful prin-
cipal M, so there must be mappings in both directions M = P and P = M.

Any kind of identifier can appear in stored access control policy. As we have seen,
however, it’s often important for stored identifiers to be long lived, so that the policy
doesn’t have to change when the identifiers change. It’s therefore advantageous to use
a particular kind of ID called a SID for stored policy, because SIDs are carefully con-
structed to be long-lived; see section 4.7. There has to be a reliable correspondence be-
tween SIDs and names so that policy can be read and written by people, but this corre-
spondence can change with time. There also has to be a reliable SID«key correspon-
dence so that requests can get access. '

The preferred approach to keys is complementary to this one: the only long-term
place to store keys should be the trust root (see section 5.1), which contains facts about
principals that are installed manually and accepted on faith in reasoning about authenti-
cation.

10Preferring names would also work, and it would be simpler since there would be no need for the
SID«—name correspondence, but it leads to inconvenience when a name changes, and to insecurity when a
name is reused.

Preferring keys seems appealing at first, since although it needs a key«>name correspondence, it doesn’t
need anything else. Unfortunately, it’s insecure when a key is compromised, unless the key in policy is no
longer treated as a direct identifier but rather as something that can be mapped reliably to a key that is currently
valid. Doing this makes it harder to handle than a SID. Since you can’t tell by looking at it whether a key has
been compromised, you have to do this work every time.

168 B. Lampson / Practical Principles for Computer Security

4.6.1. Anonymity

Sometimes people want to avoid using the same identifier for all their interactions with
the world, because they want to preserve their anonymity. A variation on this is that they
don’t want their actions at one web site, for example, to be correlated with their actions
at another site; this kind of correlation is called tracking.

Since there is no shortage of encryption keys or identifiers, it’s easy for a computer
to generate as many identifiers for me as I want, for example, a different one for every
web site I interact with. The computer can keep track of which identifier to use at which
site. If you are really paranoid, you can use a different identifier each time you go to the
same site.

In many case, this by itself is sufficient. Sometimes, however, a web site or other
party may want to know something about me: that I am over 18, or have a decent
credit rating, or whatever. For this purpose a mutually trusted third party such as Live
or Consumer Reports can authenticate one of my identifiers, certifying, for example,
Kpwi—amazon = over18. The protocol for this is simple: I authenticate to Live, I give
Kpwi—amazon to Live and ask for a certificate, and I get back Ky, says Kywi—amazon =
over18.

4.7. SIDs

SIDs contain a 96 bit domain identifier plus a 32 bit relative identifier within the domain.

Thus the structure is D/R. To distinguish SIDs from other identifiers we prefix SID, so the

full identifier is SID/D/R, but we will usually omit the SID/ prefix here. Roughly speak-

ing, D corresponds to something like microsoft.com, and R to blampson or the server red-

msg-70, so D/R corresponds to blampson @ microsoft.com or red-msg-70.microsoft.com.
These SIDs have the following useful properties:

1. They are not meaningful to humans, unlike names. No one will care which num-
bers are assigned to which domains or which principals.

2. They are not direct identifiers, as keys are, so that policy expressed in terms of
SIDs remains the same when keys change. Only the SID«skey correspondence
needs to change.

3. There are plenty of them, so they don’t have to be rationed (except to prevent
denial of service attacks on ID services that map SIDs to keys).

4. They are (two part) paths D/R, so that a key that speaks for a domain D can speak
for lots of SIDs in that domain.

Because of (1) and (2) a SID is a long-lived identifier that is suitable for long-lived
policy such as ACLs.

Since there are plenty of domain identifiers, you can get a new one just by choosing
a 96 bit random number; this is reasonable because one D is as good as another. The
chance of an accidental collision is very small (once every 8,000 years if there are a thou-
sand new domains per second); we consider collisions caused by malice shortly. Some
domains will have only a few SIDs (that is, a few values of R for one D), for example,
a domain for a person, family, or small organization. But most SIDs will probably be in
large domains belonging to corporations or to Internet services such as Live or Yahoo.

As we saw in the previous section, we need to know K = D/R so that we can au-
thenticate a statement signed by K as coming from D/R. We also need to know name =

B. Lampson / Practical Principles for Computer Security 169

D/R and D/R = name so that users can read and change policy that is stored in terms
of SIDs. These mappings could be strictly local if the local administrator takes respon-
sibility for setting up and maintaining them, but in general it will come from someone
who speaks for D/R (for example, someone who speaks for D) or for name (for example,
microsoft.com if name is billg@ microsoft.com).

Note that joining a Windows domain is quite different from learning Kp = D.
A machine can only be joined to one domain, and a domain joined machine trusts its
domain controller for any SID, and also for various management functions. A machine
or session can know about lots of domains, and it trusts each one only for its own SIDs.

4.7.1. Domain ID service

To simplify the handling of domain key changes and malicious (as opposed to accidental)
conflicts for domain identifiers, it’s desirable to have one or more domain ID services,
which are intended to issue tokens Kpr says Kp = D. Then instead of having a trust
root entry for each D that you encounter, you only need one that says Kpr = SID/*
for each ID service that you want to trust. For greater security, you could configure your
trust root with n domain ID services and a requirement that k of them agree on Kp =
D before it is believed; see section 5.1.2 for more on this. As with other kinds of trust
root entries, an entry K p = D for a specific domain takes precedence, or disagreement
is referred to the administrator; see section 5.1. For this to work well, there should not be
too many ID services and the scope of each one should be wide.

The domain ID service can work as a simple web service with no human operator in-
volvement only because what it records has no intrinsic value. The ID service is designed
specifically and only to meet the needs of authentication. It offers only one public query:
"Is Kp = D a registered claim?" ' It is intentionally not a general purpose directory.
It is intentionally limited never to become a general purpose directory. Nothing stops
people from making more general directories, but those are not domain ID services.

In addition to the query, there is one operation for registering new values of D. The
input parameters are D, a public key K, and an optional password PW encrypted by
K pr that can be used for resetting K p. The request is signed by K 51. There is no other
authentication. In particular, there is no linkage to any PII or to any other information
that would require human operators at the domain ID service. After success, Kp = D is
a registered claim.

Windows domains today implement a highly simplified version of this scheme, since
a domain joined machine trusts its domain controller for any SID.

4.8. Names

The purpose of a name is to be meaningful to a human. Most useful names are
paths, and the preferred (conventionally) global names are DNS and email names
such as research.microsoft.com or billg@microsoft.com. As we did with SIDs, to dis-
tinguish DNS names from other identifiers we prefix DNS, so the full identifier is
DNS/com/microsoft/research, but we will usually omit the DNS/ prefix here and use the
standard DNS syntax.

110r perhaps "What are the keys that speak for D?"

170 B. Lampson / Practical Principles for Computer Security

The crucial security questions about a name are what real world entity it identifies,
and what key or SID speaks for it. To answer the second question, you consult the trust
root, together with any tokens that are relevant. Thus the trust root might contain

Kverisign = DNS/*; Ky;114 = billg@microsoft.com

Here the second name is written in its conventional email form; as a canonical path
name it would be DNS/com/microsoft/email/billg. The rule for trust roots (see section 5.1)
is that the more specific entry governs, so that what Verisign or Microsoft have to say
about billg@ microsoft.com will be ignored.

Today’s X.509 trust roots usually grant a certificate authority such as Verisign au-
thority over all DNS names; that is what the Ky¢ri559n = DNS/* claim in the example
says. Although there are ways to limit the names that such a key can speak for, today
they are obscure. Such limits are of fundamental importance, and need to be easy to set
and understand.

Adding an entry for a name to the trust root must be a human decision, so the pro-
cedure by which the human decides that it’s the right thing to do, called a ceremony,
must be carefully designed. A ceremony is like a network protocol but includes human
components as well as computers.

4.9. Freshness

Secure communication requires more than assurance that a message came from a known
source; it also requires freshness, a guarantee that the message is sufficiently recent.
Without freshness, a bad guy can make trouble by replaying old messages, which might
well be misinterpreted in the current context. For example, consider a request to a service
to write a check for $10,000. Replaying this request should not result in a second check.
Or consider a request that asks "Does key K speak for microsoft.com?" and expects a
yes or no answer. If a previous request that asked "Does key Ky icrosoft Speak for mi-
crosoft.com?" got a "yes" answer, it should not be possible to replay this answer and get
the requester to accept it as the answer to the later request.

There are many ways to ensure freshness. In a request-response protocol like the
second example above, you tag the request with a sequence number and demand the same
sequence number in the response. Such a tag is called a nonce or challenge. To ensure
that an incoming message is fresh, in particular that it was generated since you chose a
nonce, you insist that it contain some evidence that the sender received that nonce.

The essential property of a nonce is that it is not reused; nonces may be ordered,
but this is usually unimportant. If you want to prevent the responder from precomputing
the response, a nonce must be unpredictable; frequently this is not a requirement. Often
there are two layers of freshness. For example, a sequence of requests might be carried
on a channel that is secured with a fresh key. Then the nonces need only be unique within
that sequence, since a different sequence of requests will be secured with a different key.
In this example the sequence numbers on the messages don’t need to be unpredictable.

To ensure that a key is fresh, generate it by hashing some data that includes a newly
generated random number. For two party two-way communication, each party should
generate its own random number to be included in the hashed data; this gives each party
assurance of freshness, and also ensures a good key even if one of the parties is not good
at generating random numbers.

For broadcast communication such as a certificate signed with a public key, nonces
don’t work because the receivers don’t send anything to the broadcaster beforehand.

B. Lampson / Practical Principles for Computer Security 171

Instead, we usually rely on a timestamp in the certificate for freshness. The validity
period in a token is an example of such a timestamp. You might also want to use a
timestamp to avoid a round trip, for instance when sending email. It’s not as conclusive
as a nonce because of clock skew (and perhaps because it’s predictable).

4.9.1. Consistency vs. availability

Availability and consistency: choose one

There is a fundamental tradeoff between consistency (or freshness) and availability.
A is consistent with B if A’s view of B’s state agrees with B’s actual state. '> The only
way to ensure this is for A to hold a lock on B’s state, but this means that A has to
communicate with B to acquire the lock, and after that B can’t change its state until A
releases the lock. This is usually unacceptable in a distributed system because it hurts
availability too much: if A and B can’t communicate, one of them is going to be stuck. '3

The alternative is for A to settle for a view of B’s state at some time in the past; often
this is cached information. Now there is a tradeoff among freshness (how far in the past?),
availability, and performance (how often does A check for changes in B’s state?). This
tradeoff is fundamental; no cleverness in the implementation can avoid it. The choice is
between acting on old (perhaps cached) information, and getting stuck when you can’t
communicate. This is a management decision and it must be exposed to management
control. At least two parameters must be settable by the relying party (perhaps taking
account of hints in the token):

1. How old data can be and still be acted on (the tradeoff between freshness and
availability).

2. How frequently data should be refreshed (the tradeoff between freshness and
performance).

The way to get the freshest information is for A to ask B for its state right now. This
still doesn’t guarantee perfect consistency, since B’s state can change between the time
that B sends its reply and the time that A receives and acts on it, but it’s the best you can
do for consistency without a lock. The way to get the greatest availability and the least
communication cost is for A to act on any view it has of B’s state, no matter how old.

This issue shows up most often for authentication in the validity period of a token. A
short validity period means that the token is fresh, but also that new tokens must be issued
and distributed frequently. A long validity period means that once you have the token
you’re good to go, but the token’s issuer might have changed its mind about the claims in
it. Note that there’s nothing to stop a relying party from using a different validity period
from the one in the token.

4.9.2. Revoking claims

If you have issued a token and you want to cancel it, is there any alternative to letting
the validity period expire? Well, yes and no. Yes, because you may be able to revoke the

2More precisely, the view is some function v of B’s state sz, and A knows v(s%““), where s’];“‘” is some

past value of s. A is consistent with B if v(s%**") = v(s).
13Sometimes a special kind of lock called a lease is acceptable; this is a lock that times out. A lease prevents
its issuer from changing the state until either the leaseholder releases it, or the lease times out. People usually

don’t use leases for security information, but they could.

172 B. Lampson / Practical Principles for Computer Security

token. No, because the revocation is just another kind of token, with a shorter validity
period.

The idea behind revocation is that you need two tokens to justify a claim: the origi-
nal token Tk that is "issuer says subject =- ... as long as revoker confirms", and another
confirmation token "revoker says Tk is still valid" that has a much shorter validity pe-
riod than Tk. This is better than simply issuing Tk with a short validity period because
the revoker is optimized for issuing confirmation tokens cheaply, quickly, and with high
availability. It can’t grant any access by itself, and it doesn’t need any detailed informa-
tion about the principals involved. Its database consists simply of tokens revoked by their
issuers. When queried about 7k, it checks that database and issues a confirmation token
if the database doesn’t say that Tk is revoked.

To add an entry to the revoker’s database, the original issuer writes a token "issuer
says the token identified by Tkld has been revoked" and sends it to the revoker. Tkld
could be a hash of the original token or a serial number embedded in the original token.
The revoker puts (issuer, Tkld) in its database. Since issuers can only revoke their own
tokens, the revoker doesn’t need to know anything about the issuers (unless it wants them
to pay). The only harm the revoker can do is to revoke tokens without instructions, that
is, mount a denial of service attack.

Because it is much simpler than most issuers and because it can’t grant any access
by itself, the revoker can afford to issue confirmation tokens with short validity periods,
and it can be replicated for high availability. It’s important to understand, however, that
this is a difference of degree and not of kind. The tradeoffs described in section 4.9.1 still
apply; only the parameters are different. For systems that are expected to be connected
to the Internet, it’s reasonable to use a validity period of a few minutes (or the length
of a session, if that is greater). Policy might say that if you can’t contact a revoker, you
should accept the token anyway.

There are several schemes for revocation. The original X.509 standard specifies a
method called a Certificate Revocation List (CRL), but this has fallen out of favor. The
revocation scheme usually used for X.509 certificates is the Internet standard OCSP; see

[3].

5. Authentication

This section describes the core components of authentication, highlighted in Figure 5:
the trust root, token sources, and the speaks-for engine. Then it touches briefly on other
components: user logon, device and app authentication, compound principals, and capa-
bilities.

Access control is based on checking that the principal making a request is autho-
rized to access the resource, in other words, that the principal speaks for the resource.
This check typically involves a trust chain like the one in the example of section 3.2:

Kssr = Kiogon = Kaiice = Alice@Intel = Atom@Microsoft =/, Spectra

Where do these claims come from? They can be known, (that is, built in), or they
can be deduced from other claims or from tokens, which are claims made by known
principals. The trust root holds the built in claims, token sources supply tokens, and the
speaks-for engine makes the deductions. Thus these components are the core of authen-
tication:

B. Lampson / Practical Principles for Computer Security 173

[] Tamper-Proof (TP)

o c{“m [] Confidential & TP
Dby M
Token Sources C r clair 3

her clair
(CA, KDC, DS, OCSP, WS) T

User | Claims | Token q“ the sources of

AuthN | (groups) | issue statements others say
S

Host

consumes
statements to deduce i
other things we know

{ Trust root
store
Speaks-for
" engine sie ¥ Tp other
I s l on / 'y Traﬂhlhln"—’ { 1gon OBl

holds slatementéwe-
know

ol 5 NTToken | ~—— :
—_ p athhorizatiorT""’/ﬁL oo rResource
T ACL

Figure 5. Core authentication components (see section 3.1 for a walk-through)

1. The trust root holds claims that we know, such as Ky episign = Verisign. All
trust is local, so the trust root is the basis of all trust.

2. Token sources provide claims that others say, such as Kv crisign 5ays K amazon
= Amazon.

3. The speaks-for engine consumes claims and tokens to deduce other things we
may need to know, such as what tokens to believe, nested group memberships,
impersonation, etc.

5.1. Trust root

All trust is local.

The trust root is a local store, protected from tampering, that holds things that a
system (a machine, a session, an application) knows to be true. Everything that a system
knows about authentication is based on facts held in its trust root. The trust root needs
to be tamper-resistant because attackers who can modify it can assign themselves all the
power of any principal allowed on the system.

The trust root is a set of claims (speaks-for facts) that say what keys (or other identi-
fiers) are trusted and what identifiers (names, SIDs) they can speak for. Typical trust root
entries are:

174 B. Lampson / Practical Principles for Computer Security

Kp = SID/D key K p speaks for domain identifier D
Kticrosoft = microsoft.com key Kasicrosoft Speaks for the name microsoft.com
Kverisign = DNS/* the key Ky ¢risign speaks for any DNS name
Kpr = SID/* key K pr speaks for all domain identifiers

Because all trust is local, the trust root is local, and it must be set up manually. It
must also be protected, like any other local store whose integrity is important. Because
manual setup is expensive and error-prone, a trust root usually delegates a lot of authority
to some third party such as a domain controller or certificate authority. The third claim
example above, Ky ¢risign = DNS/*, is such a delegation. It says that Verisign’s key is
trusted for any DNS name. Another example of such a delegation is the first one above,
Kp = SID/D, which delegates authority over the domain identifier D to the key Kp.

All trust is partial.

For convenience people tend to delegate a great deal of authority in the trust root.
For example:

e A domain-joined machine trusts its domain controller for any SID.

e Most trust root entries for X.509 certificate authorities trust the authority for any
DNS name.

e Today Microsoft Update is trusted by default to change entries in a Windows
X.509 trust root.

This is not necessary, however. In a speaks-for claim, a delegation can be as specific
as desired. Existing encodings of claims are not completely general, but for example,
name constraints in a X.509 certificate can either allow or forbid any set of subtrees of
the DNS or email namespace.

A very convenient way of limiting the authority of the delegation in the trust root is
the rule that "most specific wins". According to this rule, a trust root with the two entries

Kverisign = DNS/*; K s = microsoft.com
means that Ky ¢pisqn speaks for every DNS name except those that start with mi-
crosoft.com. It may also be desirable to find out what key Ky erisign says speaks for
microsoft.com, and notify an administrator if that key is different from Kp;g.

5.1.1. Agreeing on conventionally global identifiers

As we saw in section 4.5, we would like to use names such as microsoft.com as global
identifiers. Since this name doesn’t start with a key and therefore is not fully qualified,
however, and since all trust is local, this can only be done by convention. There is nothing
except convention to stop two different trust roots from trusting two different keys to
speak for microsoft.com, or from delegating authority over *.com to two different third
parties that have different ideas about what PKI speaks for microsoft.com.

Our goal is that "normal" trust roots should agree on conventionally global identifiers
(SIDs and DNS names). We can’t force them to agree, but we can encourage them to
consult friends, neighbors and recognized authorities, and to compare their contents and
notify administrators of any disagreements.

As long as trust roots delegate authority to the same third parties they will agree.
If they delegate to two different third parties that agree, the trust roots will also agree.

B. Lampson / Practical Principles for Computer Security 175

So it is desirable to systematically detect and report cases where recognized authorities
disagree.

5.1.2. Replacing keys

The cryptographic mechanisms used in distributed authentication merely take the place,
in the digital world, of human authentication processes. These are not just human-scale
scenarios performed faster and more accurately, however; they are scenarios that are too
complex for unaided humans. Therefore it’s important that human intervention be needed
as seldom as possible.

It’s simple to roll over a cryptographic key automatically, which is fortunate since
good cryptographic hygiene demands that this be done at regular intervals. The owner
of the old key simply signs a token K,;q says K,ew = Koq- Both keys will be valid
for some period of time. The main use of these tokens is to persuade each authority that
issued a certificate for K ;4 to issue an equivalent certificate for K,,¢,,.

When a cryptographic key is stolen or otherwise compromised, or the corresponding
secret key is lost, things are not so simple. If the key is compromised but not lost, often
the first step is to revoke it with a revocation certificate K,;q says "K,q is no longer
valid"; by a slight extension of (S3), everyone believes this. See section 4.9.2.

The lost or compromised key must now be replaced with a new key. That replace-
ment process requires authentication. In the simplest case, there is an authority responsi-
ble for asserting that the key speaks for a SID or name, for example, a trust root (the base
case), Verisign or a domain ID service. This authority must have a suitable ceremony for
replacing the key. Here are five examples of such a ceremony:

You sign a replacement request with a backup key.

You visit the bank in person.

You give your mother’s maiden name.

You call up your associates in a P2P system on the phone and tell them to change
their trust roots.

o Microsoft takes out full page ads in every major newspaper announcing that the
Microsoft Update key has been compromised and explaining what you should do
to update the trust root of your Windows systems.

5.2. Token sources

Recall that a token is a signed claim (speaks-for statement): issuer says P = (. In
today’s Windows, the sources of tokens are highly specialized to particular protocols. For
example, a domain controller provides Kerberos tokens, and the SSL protocols obtain
server and client certificates. Any entity that obeys a suitable protocol (like the STS
protocol for Web Services) can be a source of tokens.

The same host may get tokens from many sources, and any kind of token source can
be local, remote, or both. In addition to coming from domain controllers, protocols such
as SSL and IPSec, and Web Services Security Token Services, tokens can come from
public key certificate authorities, from peer machines, from searches over web pages or
online databases that contain tokens, from Personal Trusted Devices such as smart cards
or (trusted) cellphones, and from many other places. In corporate scenarios most if not
all tokens will probably come from the corporate authentication authority, but in P2P

176 B. Lampson / Practical Principles for Computer Security

scenarios they will often come from peer machines as well as from services such as Live.
This means that a standard Windows machine needs to be a token source.

The simplest kind of token to manage is signed by a key, and therefore can be stored
anywhere since its security depends only on the signature and not on where it is stored.
If the token is signed by a public key, anyone can verify it. However, a token can also be
signed by a symmetric key, and in this case it usually must come from a trusted online
source that shares the symmetric key with the recipient of the token.

5.3. Speaks-for engine

The job of the speaks-for engine is to derive conclusions about what principals are
trusted, starting from claims and adding information derived from tokens. The starting
claims are:

e The ones in the trust root.

e If you are checking access to a resource that has an ACL, the claims in the ACL.
Recall that we view an ACL entry as a claim of the form SID =,c,missions
resource.

Today this reasoning is done in a variety of different places. For example, in Win-
dows:

e Logon, both interactive and network, derives the groups and privileges that a user
speaks for; this is called group expansion. Part of this work is done in the host,
part in the domain controller.

o X.509 certificate chain validation, which is used to authenticate SSL connections,
for example, derives the name that a public key speaks for. In Windows it also
does group expansion and optionally maps a certified name to a local account.

e AccessCheck uses an NT token, which asserts that a thread speaks for every SID
in a set, and an access control list, which asserts that every SID in a set speaks for
a resource, to check that a thread making a request has the necessary access (that
is, speaks for) the resource.

o A Web Services STS takes authentication tokens supplied as input and a query,
and produces new tokens that match the query. It can do this in any way it likes,
but in many cases it has a database that encodes a set of claims (for example,
associating keys with users or users with attributes), and the tokens it produces
are just the ones that the speaks-for engine would produce from those claims and
the inputs.

Although some or all of these specialized reasoning engines may survive for reasons
of performance or expediency, or because they implement specialized restrictions, every
conclusion about trust should be derived from a set of input claims and tokens using a
few simple rules.

The implementation of this tenet is a speaks-for engine, a piece of code that takes
a set of claims and tokens as input and produces all of the claims that follow from this
input. More practically, it produces all of the claims that match some query. In general,
the query defines a set of claims. For example, for an access to a resource, the query is
"Does this request speak for this resource about this operation". For group expansion, the
query is "What are all the groups that this principal speaks for".

B. Lampson / Practical Principles for Computer Security 177

The speaks-for engine produces one or more chains of trust demonstrating that prin-
cipal P speaks for resource T about access R. For example, in section 3 we saw how to
demonstrate that K551, =/, Spectra by deriving the chain of trust

Kssr = Kiogon = Kaiice = Alice@Intel = Atom@Microsoft =/, Spectra
Each link in this chain corresponds to a claim, either already in the trust root or derived
from a token. For example, we derive K 4;;.. = Alice@Intel.com from the token K.;
says K gj;ce = Alice@Intel.com, using the claim K7,;; = Intel.com. This fact comes
either from the trust root or from another token Ky ¢ isign Says Krnier = Intel.com,
using the claim Ky cpisign = *.com. So the main chain of trust has auxiliary chains
hanging off it to justify the use of tokens. The entire structure forms a proof tree for the
conclusion Kgsr =/., Spectra.

When P is a set of SIDs in an NT token, R is a permission expressed in the bit mask
form used in Windows and Unix ACLs and T has an ACL, this is a very simple, very
efficient computational proof.

The full speaks-for calculus extends the flexibility and power of this statement. P
can be a principal other than SIDs. T can be the name of a resource or a named group of
resources. Rights R can be expressed as names and as named groups of rights. A principal
P can delegate to Q its right R to T by the token P says Q =g T (if P has the right to do
this).

For example, what can be delegated in an X.509 certificate chain is the permission
to speak for some portion of the namespace for which the chain’s root key can speak.
This does not include the ability to define groups, for example, because group definition
is outside the X.509 certificate scope. For that, one can use another encoding of a speaks-
for statement (perhaps in SAML, XACML or ISO REL). From the speaks-for engine
deduction we can establish that some key (bound to an ID by X.509) speaks for some
group (defined by the other encoding—e.g., SAML), and establish that without having
to teach SAML to understand X.509 or teach X.509 to understand SAML.

5.4. Additional components

Figure 6 shows all the components of authentication. They are (starting in the lower
left corner of the figure and roughly tracing the arrows in the figure, which follow the
walkthrough in section 3.1; * marks components already discussed):

1. User Logon Agent: a module that is responsible for gathering authentication
information from human users.

2. Logon (in): a module that takes logon requests (currently user, network, batch
or service), interacts with token sources, and collects the principals that the user
speaks for.

3. Token Sources (User Authentication): a source, whether local or remote, such
as the Kerberos KDC or an STS, that verifies a logon and provides SIDs or other
identifiers to represent the logged-on principal.

4. *Token Sources (Claims (groups), Token issue): a source of group and attribute
information. This information may either be obtained over a secure channel, or
issued as a token.

5. Translator: a dispatcher and a collection of components, each of which verifies
the signature on a token and translates that token into an internal claim.

178

B. Lampson / Practical Principles for Computer Security

Token Sources
(CA, KDC, DS, OCSP, WS"....)

. @ [[] Tamper-Proof (TP)
Other claim [] Confidential & TP
sources

User [Claims Token
@ AuthN ((groups) issue
[Cert/ |12 Host
App | claim
Logon | cache
¥ 3
Dem
App =
Manifest = @
\9) store

(B

A

\ 4

key store

i d
From other engine i == To other
hosts _| Logon @/. Tranaient » | ogon | hogts
‘ (out)

(in) |
st D NTToken L -

Keyboard=T="| ——— Accessly IDacolrce
Biometrics=T"| Agent authorization L " W Resource
USB Token™T"| ACLY

10.

11.

12.

13.

| (CredProv)

Figure 6. Authentication: The full story

. App Manifest: a data structure that completely specifies an application (listing

the modules of the application and the hash of each module).

. TPM: hardware support for strong verification of application manifests and of

the entire stack on which the application runs.

. App Logon: code that compares an application being loaded into a process

against the manifest for that application and, when the two agree, assigns an ap-
propriate SID to that process.

. *Speaks-for Engine: the module that derives claims according to the speaks-for

calculus—of primary use in authorization but used in authentication to deduce
group memberships.

NT Token: the existing Windows NT Token—of which there is at least one per
session—containing a collection of SIDs identifying the system on which the
logon initiated, the user, groups to which this process belongs and the application
ID of the process application. In other applications of the architecture this will
be a general security context, that is, a principal. Authentication verifies that the
user and app speak for this principal.

Other claim sources: token or claim sources that do not fit the model of Token
Sources—tokens or claims can come from anywhere.

Cert/ claim cache: a local cache of certificates or claims (in general, tokens)—in
either external or internal form.

*Trust root: a protected store of speaks-for statements representing things that
this session knows.

B. Lampson / Practical Principles for Computer Security 179

14. Transient key store: a protected and confidential store of cryptographic keys
(symmetric keys and private keys) by which this session authenticates (proves)
itself to remote entities.

15. Logon (out): the module with which this session authenticates (proves) itself to
a remote entity, including both protocols for authentication with negotiation and
the user interface that allows a human operator to decide what information to
release to the remote system (the CardSpace Identity Selector).

5.5. User agent and logon

User logon (often called interactive logon) does two things:

e It authenticates the user to the host, giving the host evidence that the user is typing
on the keyboard and viewing the screen.

e [t optionally also makes it possible for the host to convince others that it is acting
on behalf of the user without any more user interaction. This process of convinc-
ing others is called network logon.

There are many subtleties in user authentication that are beyond the scope of this
paper. Here are the steps of user authentication in its most straightforward form:

1. The user agent in the host collects some evidence that it interacted with the user,
called credentials: a nonce signed by a key or password, biometric samples (the
output of a biometric reader: measurements of fingerprints, irises, or whatever), a
one time password, etc.. Modularity here is for the data collection, which is likely
to depend on the type of evidence, and often on the particular hardware device
that provides it.

2. It passes this evidence to logon along with the user name.

3. Logon sends the evidence, together with a temporary logon session key Kiogon,
over a secure channel to a user authentication service that understands this kind
of evidence; the service may be local, like the Windows SAM (Security Accounts
Manager), or may be remote (as in the figure) like a domain controller. Modular-
ity here is for the protocol used to communicate with the service. '#

4. The authentication service evaluates the evidence, and if it is convinced it returns
"yes, this evidence speaks for this user name".

5. In addition, to support single sign-on it returns tokens authority says Kiogon =
user name and authority says Ko, = user SID. It may also return additional
information such as Kj,q40n, = authentication method or K,,4,, = logon loca-
tion.

Single sign-on works by translating the user’s interactive authentication to crypto-
graphic authentication. Logon generates a cryptographic key pair for the user’s logon

14You might think that one protocol could work for any kind of authentication factor. There are two reasons
for using different protocols. One is purely historical: existing services used particular protocols. The other
is that some protocols, such as Kerberos, depend on the fact that the workstation has a key that it can use to
communicate secrets to the service. In Kerberos, for example, the user’s password is the source for such a
key. Biometric samples don’t work. Other protocols, such as SSL, create a secure channel to the service and
authenticate it starting with nothing but a trust root entry for a generic authority such as Verisign. As far as
I know, SSL secure channel setup together with conventions for finding the service to use, encapsulating the
evidence, and allowing for interaction between the user and the service would be a universal protocol.

180 B. Lampson / Practical Principles for Computer Security

session. The new key K40y, is certified by a more permanent key (on the user’s smart-
card, in the computer’s hardware security module, sealed by a password, from a domain
controller, or whatever): Kpermanent Says Kiogon = user. It is then used for that one
logon session. Since today there are protocols that insist on secret key such as Kerberos,
and others that use public key such as SSL, logon should certify one of each.

5.6. Device authentication

Device authentication is more subtle than you think. As much as possible, computers and
other digital devices should authenticate to each other cryptographically with tokens of
the form K says As we have seen, for these to be useful the key K must speak for
some meaningful name. This section explains how such names get established, using the
example of very simple devices such as a light switch or a thermostat. More powerful
devices with better I/O, such as PCs, can use the same ideas, but they can be much more
chatty.

It is a fundamental fact of cryptographic security that keys must be established ini-
tially by some out of band mechanism. There are several ways to do this, but two of them
seem practical and are unencumbered by intellectual property restrictions: a pre-assigned
meaningful name and a key ferry. This section describes both of them.

You might think that this is a lot of bother over nothing, but consider that lots of
wireless microphones and even cameras are likely to be installed in bedrooms in apart-
ments. Some neighbors will certainly be strongly motivated to eavesdrop on these de-
vices. Because the wireless channel is a broadcast channel, the neighbor can mount a
"man-in-the-middle" attack that intercepts the messages passing between the device and
your computer, and pretends to be the device to the computer and the computer to the
device.

5.6.1. Device authentication by name

For device authentication, the simplest such mechanism is for the manufacturer to install
akey K~ in the device, give it a name dn, and provide a certificate manufacturer says
K = dn, for example, Honeywell says K = thermo524XN12.Honeywell.com. In this
example the out of band channel is a piece of paper with the name thermo524XN12
printed on it that comes in the box with the thermostat. After installing the thermostat
in the living room, the user goes to a computer, asks it to look around for a new device,
reads the name off the screen, compares it with the name on the paper, and assigns the
thermostat a meaningful name such as LivingRoomThermostat. Of course a hash of the
device’s key would do instead of a name, but it may be less meaningful to the user (not
that 524XN12 is very meaningful). This protocol only authenticates the device to the
computer, not the other way around, but now the computer can "capture" the device by
sending it a "only listen to this key" message.

In many important cases this assignment needs to be done only once, even though
many different people and computers will interact with the device. For example, a net-
worked projector installed in Microsoft conference room 27/1145 might be given the
name projector.27-1145.microsoft.com by the IT department that installs it. When you
walk into the conference room and ask your laptop to look around for available projec-
tors, seeing one that can authenticate with that name should be good enough security

B. Lampson / Practical Principles for Computer Security 181

for almost anyone. Because this name is very meaningful, authenticating to it is just like
authenticating to any other service such as a remote file system.

In many other important cases this assignment only needs to be done very rarely
because the device belongs to one computer, which is the device’s exclusive user until
the computer is replaced. This is typical for an I/O device such as a scanner or keyboard.

5.6.2. Device authentication by key ferry

There are three disadvantages to pre-assigned names that might make you want to use a
different scheme:

e You might lose the piece of paper, in which case the device becomes useless.

e You might not trust the manufacturer to assign the name correctly and uniquely.

e You might not trust the user to compare the displayed name with the printed one
correctly (or at all, since users like to just click OK)

The alternative to a pre-assigned name as an out of band channel is some sort of
physical contact. What makes this problem different from peer-to-peer user authentica-
tion is that the device may have very little I/O, and does not have an owner that you can
talk to. There are various ways to solve this problem, but the simplest one that doesn’t
assume a cable or other direct physical connection is a "key ferry". This is a special gad-
get that can communicate with both host and device using channels that are physically
secure. This communication can be quite minimal: upload a key from host into ferry at
one end; download the key out of ferry into device at the other end. The simplest ferry
would plug into USB on the host and the device.

5.7. App ID

This section explains how to authenticate applications. While it’s also important to un-
derstand how apps are isolated so that it makes sense to hold an app responsible for its
requests, this out of scope here.

The basic idea is that apps are principals just like users:

® An app is registered in a domain, with an AppSID and a name. This domain is
typically the publisher’s domain.

e An app is authenticated by the hash of a binary image, just as a user is authenti-
cated by a key.

o When a host makes a new execution environment (process, app domain, etc.) and
loads a binary image into it, the new environment gets the hash of the image (and
everything that the hash speaks for) as its ID.

e User, machine, and app identifiers can all appear on ACLs or as group members.

Also like users, apps can be put into groups, but this is even more important for
apps than it is for users because groups are the tool for managing multiple versions of
apps. Like any group membership, the fact that an app is a member of the group can
be recorded in AD, or it can be represented in a certificate that is digitally signed by
an appropriate authority. Like groups containing users, groups containing apps can nest
to make management easier. For example, the GoodApps group might have members
GoodOffice, GoodAcrobat, etc.

182 B. Lampson / Practical Principles for Computer Security

AppSIDs are probably assigned from the same space as user, group, and machine
SIDs, though frequently the AppSIDs are from a "foreign" domain, that of the software
publisher (e.g. Microsoft). The assignment is encoded in a signed certificate (usually
in the manifest) that associates the binary image with an AppSID and a name in the
publisher’s domain.

AppSIDs can also be assigned locally by a domain or machine administrator. This
must always be done for locally generated applications, and can be done for third party
applications (where the AppSID is assigned as part of some approval process). The ap-
plication is identified by a hash just as in the published case. The local administrator can
sign a manifest just like the publisher, or can define a group locally or in AD.

ACLs list the users, machines, and applications that are allowed to access the
resource. Sensitive resources might only be accessible through applications in the
GoodApps group. Specialized resources might only be accessible to specific applications
(plus things like backup and restore utilities).

5.7.1. AppSIDs and versions

A certificate for an app is a signed statement that says something like "hash 743829 =
MS/Word12.3.1, s-msft-word12.3.1. Applications contain many files; a manifest is a data
structure that defines the entire contents of the application. The manifest includes hashes
of all the component files, and it’s the hash of the manifest that defines the app.

The manifest can reference system components that are not distributed with the app
(e.g. system .dlls). Such a component is considered to be part the platform on which the
app is running, not part of the app; see section 5.7.2, and it is referred to by a name, which
need not change if the component is patched. There are many complications having to
do with side-by-side execution that are not relevant here; it’s the platform’s job to ensure
that the name gets bound appropriately for both security and compatibility. In this respect
an app treats a platform component just like a kernel call.

The way this is normally encoded is that the publisher includes the principals that
the app speaks for (such as MS/Word12.3.1, s-msft-word12.3.1) in the manifest, and then
simply signs the hash of the manifest. This is just a useful coding trick. Of course, the
signer of the manifest (or other app certificate) must be authoritative for the domain of
the SID and for the name, just as for any other speaks-for statement.

If the system trusts its file store, it can verify the manifest at install time and cache it.
This also covers cases where installation includes updates to registry settings and such.

There may be good reasons not to change AppSIDs with each small version change
such as a patch. Changing the AppSID requires updating all policy that references it.
Some admins will want to do so; others will not. An admin can avoid having to update
lots of policy by adding a level of indirection, defining a group and putting the AppSID
for each new version into the group; this gives the admin complete control. Publishers can
make the admin’s life easier by including multiple AppSIDs in a manifest. For example,
the manifest for a version of Word might say that it is Word, Word12, and Word12SP2
as well as Word12.3.1. In SP3, the first two SIDs remain the same. Then Contoso ITG
can say MS/Word12, MS/Word11.7.3 = Contoso/GoodWord. Since all trust is local, the
structure of the name space for an app is in the end up to the administrator of the machine
that runs it. The job of a publisher like Microsoft is to provide some versions and names
that are useful to lots of customers, not to meet every conceivable need.

B. Lampson / Practical Principles for Computer Security 183

5.7.2. The ApplID stack

The only assertions an app can make directly are ones encoded in its manifest. When the
app is running it depends on its host environment to provide the isolation that is needed
for an app identity to make any sense. Typically the host environment is itself hosted, so
the entire app identity is actually a stack:

StockChart

IE7.0.1

Vista + patch44325

Viridian hypervisor + patch7654

MachineSID
At the bottom, the machine gets its identity from a key it holds. Ideally this key is pro-
tected by the TPM.

We could describe the identity of the app by hashing together the hashes of all the
things below it on the stack, just as we hashed all the files of the app together in the
manifest. This is probably not a good idea, however, because if there are ten versions
of each level in the stack there will be 100,000 different versions—hard to manage. It’s
better to manage each level separately.

Access control of course sees the whole stack. Taking account of plausible group
memberships, an ACL might say GoodApp on GoodOS on GoodMachine gets access,
where "on" here is an informal operator that makes a single principal out of an app
running on a host. This makes it easy for the administrator to decide independently which
apps, which OS’s, and which machines are good. Going further, the administrator might
define GoodApp on GoodOS on GoodMachine = GoodStuff and just put GoodStuff on
ACLs.

Note that the policy for what stacks are acceptable might come from the app rather
than user or administrator. The main example of this is DRM, in which some remote
service that the app calls, such as the license server, demands some kind of evidence
that it is running on a suitably secure hardware and OS. The app’s manifest might even
declare its requirements, but of course an untrustworthy host could ignore them, so the
license server has to check the evidence itself. 1

When a running program loads some new code into itself (a dll, a macro, etc.), it has
a number of options about the appID of the resulting execution environment. It can:

1. Use the new code’s appID to decide not to load it at all.

2. Trust the code and keep the same AppID the host had before. This is typically

what happens at an extensibility point, or in general when an app calls LoadLi-

brary.

Downgrade its own ApplID to reflect less trust in the new code.

4. Sandbox the new code and add another level to the stack. Of course the credibility
of the resulting ApplD is only as good as the isolation of the sandbox.

et

ACL entries on the operation of loading code can express this choice. Note that when
an app calls CreateProcess, for example, it is not loading new code into itself, but asking
its host OS to create a sibling execution environment, and it’s the host’s job to assign the

15The app itself could also demand properties from its host, but since the host has complete control over the
app, this demand could not be enforced very securely. Ideally the evidence for the license server is a chain of
certificates rooted in the hardware TPM’s key.

184 B. Lampson / Practical Principles for Computer Security

applD for the new process, which might have different, even greater rights that the app
that called CreateProcess.

5.8. Compound principals

Simple principals that appear in access control policy are usually human beings, devices
or applications. In many cases, two or three of these will actually provide proof (authen-
ticate a request). Today only one principal typically provides proof—either a human be-
ing or a computer system. Multiple proofs of origin can be used to strengthen security.
One important example of this is combining a user identifier and an appID. There are
two main ways this can be done:

1. Protected subsystem: access is granted only to the combination of two princi-
pals, not to either of them alone—for example, opening of a file for backup can
be allowed to a registered backup operator, but only when that operator is also
running a registered backup application.

2. Restricted Process: the desired access is granted only if each of the two or more
principals qualify for that access individually ' —for example, an applet down-
loaded from a web page at xyz.com might be allowed to access things on xyz.com
but not on the user’s local machine, and the user running that applet might have
access only to objects that the user and the applet both can access.

These two ways of combining principals correspond to and and or. The principal
billg and HeadTrax is billg running the HeadTrax protected subsystem; Windows doesn’t
currently have a way to add such an appID to a security context. The principal billg or
MyDoom is billg running the MyDoom virus; in Windows today this is a billg process with
a MyDoom restricted token.

A Windows security context (or NT token) is a set of SIDs that defines a principal:
the and of all those SIDs. This principal can exercise all the power that any of those SIDs
can exercise. Thus when a security context makes a request, the interpretation is that each
of the SIDs independently makes that request; if any of them is on the resource’s ACL,
the request is granted. So security context says request is SID1 says request and SID2
says request . .., which is another way of saying that security context = SID1 and SID2
and

There are other uses for compound principals made with and. Financial institutions
often demand what they call dual control: two principals have to make a request in order
for it to get access to an object such as a bank account. In speaks-for terms, this is P; and
P, = object. The method for making long-term keys fault-tolerant described in section
5.1.2 is another example of this, which generalized and to k-of-n.

There are also other uses for compound principals made with or. In fact, an ACL is
such a principal. It says that (ACE; or ...or ACE,,) = object.

5.9. Capabilities

A capability for an object is a claim that some principal speaks for the object immedi-
ately, without any indirection. A familiar example in operating systems is a file descrip-

16This kind of access is provided today in Windows by the restricted token, in which one has effectively two
NTtokens, one for the user’s principals and one for a service ID. AccessCheck is called with each of those
tokens and the Boolean results of those calls are then anded.

B. Lampson / Practical Principles for Computer Security 185

tor or file handle for an open file. When a process opens the file, the OS checks that it
speaks for some principal on the file’s ACL, and then creates a handle for the open file.
The handle encodes the claim that the process speaks directly for reads and writes of
the file, without any further checking; this claim is encoded in the OS data structure for
the handle. A capability is thus a summary of a trust chain. Usually it has a quite lim-
ited period of validity, in order to avoid the need to revoke it if the trust chain becomes
invalid.

For a capability to work without a common host such as an OS, it must be in a token
of the form object says P = object that the object issues after evaluating a trust chain.
Later P can make a request along with this token, and the object will grant access without
having to examine the whole chain. Such a token doesn’t have to be secret, since it only
grants authority to P.

6. Authorization

The main problem with authorization is management. Products usually have enough raw
functionality to express the customer’s intent, but there is so much detail to master that
ordinary mortals are overwhelmed. The administrator (or user) needs a way to build a
model of the system that drastically reduces the number of items they need to configure.
The model needs to not only handle enterprise level security, but also "scale down" to
small businesses and homes where there is no professional IT administrator, to peer-to-
peer systems, and to mobile platforms and small devices.

Authorization also needs to be feasible to implement. It needs to scale up to the
Internet, avoiding algorithms and data structures that only work for intranet-sized sys-
tems or that depend on having a single management authority for the whole system. Ev-
erything that works locally should work on the Internet. Authorization needs to support
least privilege, by taking account of application as well as user identity, so that trusted
apps can get more privileges and untrusted ones fewer; this must work even though apps
come in many versions and are extensible. And it needs to be efficient: fast in the com-
mon case and reasonable in complex cases, even in a large system; it needs to identify
problem cases so that people setting policy can avoid them.

6.1. Overview

The underlying semantics of authorization is the notion of "speaks-for": there is a chain
of principals, starting with the principal making a request (typically a channel on which
the request is transmitted or an encryption key that signs the request) and ending with
the resource. For example:

Kiession = Kpaw = Paul@microsoft.com = Zeno @ microsoft.com

= http://winsecurity/sites/strategy

We call the part of this chain closer to the user "authentication", and the part closer to
the resource "authorization". This division is somewhat arbitrary, since there is no sharp
dividing line.

In order to make authorization more manageable, you can build a model that collects
resources into scopes and defines roles, each with a set of predefined permissions to
execute operations on the resources in the scope. In addition, you can build a remplate

186 B. Lampson / Practical Principles for Computer Security

for a scope and its roles, and then instantiate the template multiple times for different
collections of resources that have the same pattern of authorization policy. Figure 7 is an
overview that shows the main steps in specifying and checking authorization.

1. Define Templates

S Role Scope
& DevEler & Templates | Templates ‘
IT Architect >
< 2. Build Instances
§ ro 6 SEZJ) ‘ Roles ‘ Scopes ‘
min
— — —
\‘ - -
3. Synchronize POIICY‘ Groups / ‘ ‘ Resource ACLs/ ‘ {\J
% Token Attributes Groups/Attributes | £ _-
S Source &~ o~ - ~ i
T 4.Acquire Groups /| N Service
S Attributes ~ %‘ Policy ‘
IS Principal&&\ Login 1 Context]
9 8. LT :
2 5. Check Access RS e 4
£ Security |\
- Context AccessCheck(ACL ‘
\ S NV

Figure 7. Authentication architecture overview.

This model-based access control (MBAC) organizes resources into scopes and prin-
cipals making requests into roles.

1. The developer or IT architect defines femplates for scopes and roles that can be
used repeatedly in similar situations.

2. The administrator or owner makes instances of these templates, groups resources
into scopes, and assigns principals to roles.

The remainder of the picture shows how to implement the policy that the model defines.

3. The system compiles or synchronizes the model’s policy into groups, claims, and
ACLs on resources used to do access checks efficiently. When a service starts it
acquires its own identity and resource groups, along with those of its enclosing
execution environments (OS, device, etc.)

4. The user logs in to a service and acquires groups and claims from the directory
or STS to add to the identifiers she already has. The system combines these with
resource manager claims and service trust policy to obtain a set of principals that
the service thinks the user speaks for.

5. Finally, the set of principals is checked against the ACL for the resource the user
is trying to access.

The templates and instances are part of MBAC. The acquisition and access check are
part of implementation. The model and implementation are connected when the policy
is synchronized.

B. Lampson / Practical Principles for Computer Security 187

emerald amber
Scopes
/project.. project.
! N Al N

Roles ﬁg €7 QB ﬁg

Instance

Users

1]
Scope
e~

o= Part
P

sondra [g

Figure 8. The admin sees two scopes, emerald and amber; both are instances of a project repository tem-
plate. A project has two roles, dev and pm. Sondra is a dev for emerald and a pm for amber.

6.2. Model-Based Access Control (MBAC)

The idea of MBAC is to make authorization policy accessible to ordinary mortals; think
of it as Excel for authorization. The main customer pain point is that security manage-
ment is too hard. There are thousands of security knobs (individual ACLs, privileges,
resource names, etc.) on each computer, and in a large installation there are thousands
of computers. No human can keep that number of separate objects in mind. The model
conceals the complexity of the underlying implementation from users and administrators
(though they can dive down into individual groups and ACLs if they really need to).

MBAC shines when complex policies apply to multiple objects. It reduces repetitive
manual effort by the administrator, and makes it easy to find out what the policy is after
a long history of incremental changes. Our examples are necessarily contrived, since
something simple enough to put in this paper is simple enough to do manually. So use
your imagination to see how the reduction in administrative work is actually substantial
for real world scenarios.

Figure 8 shows the administrator’s view of a model for part of a system-two project
repositories that are scopes for resources, one for the emerald project and one for the
amber project. Each project has two roles: one for PMs and one for devs. When deploying
a project repository you create a group for each role, containing the users who are in that
role for that project. Thus a scope is a collection of resources, and a role is a collection
of principals.

This is a simple model-the admin just puts a user, such a Sondra, into the correct
group, and all the permissions and memberships are created as a consequence. The actual
situation might be messier, as Figure 9 shows. Administering this manually would be
quite difficult, but with MBAC the administrator doesn’t have to worry about the mess
when configuring authorization policy.

Someone has to worry, of course, and that person is the designer of the template,
typically a developer or an IT architect. Figure 10 shows the SharePoint template and
the emerald.specs scope that is an instance of it. Such a leaf scope corresponds to an

188 B. Lampson / Practical Principles for Computer Security

especsmeditor especsread asrcadd esrcview Sspca-editors spca-review srca-add srca-vfy

Figure 9. Manual administration gets messy

emerald.specs

Scopes - i !
sharepoint i sharepoint
Roles 8—-3 | €: €3 Users
contributor reader i contributor reader
Operatlons edit read . edit read SO
Template Instance (g% !mance B
s cope

T Service

=3 pm

Figure 10. A template and an instance emerald.specs for sharepoint; Sondra is a viewer.

instance of a service along with (a subset of) its resources. The developer of the service,
in addition to coding the service, creates a scope template that defines the roles for the
service. A role determines the permissions for a user in that role. Each role is tailored to
enable a user to perform some task—Ilike being a teller, or an HR benefits clerk, or in this
example, a contributor or viewer of documents on a SharePoint server. A viewer can read
documents; a contributor can edit documents, and also is a viewer (this is an example of
role nesting). These predefined roles determine the combination of permissions that get
tested, to make sure that they correctly enable the desired tasks. Thus the developer or IT
architect is responsible for all the details of authorization policy within the scope. From
the point of view of the administrator, all the ACLs are immutable.

The administrator instantiates the scope template to create a scope. The same tem-
plate can be used to create many scopes. Figure 10 shows one of these, in which the

B. Lampson / Practical Principles for Computer Security 189

contributor and viewer roles have the same permissions for the SharePoint resource in
the scope that the corresponding role templates had in the template. The administrator
has put Sondra into the viewer role for the emerald.specs scope. Each scope precisely
mirrors the scope template and has the resources, roles, and permissions defined in the
template, just as each instance of a class in an object oriented programming language
precisely mirrors the class definition.

An IT architect can create higher level templates. In Figure 11 SharePoint is used
to create the project repository we described earlier. The project has two subparts, called
specs and source. The PM role is assigned to the contributor role in the specs server,
and the viewer role in the source server. A part’s roles constitute the interface that it
exports to containing scopes. The smallest parts are actual services such as SharePoint;
composite parts such as project contain subparts. The architect can nest these as deeply
as necessary. We expect that there will be a market for templates that are useful to more
than one organization.

Sub-roles 6 a a
coninbutor reader coninbulor reader

Figure 11. Build bigger parts from smaller ones. The specs and source scope templates are SharePoint
scope templates that are parts of the outer project scope template, and the inner contributor and viewer role
templates are populated from the outer pm and dev ones.

Because the IT architect defines this for all project repositories, all the admin has to do is
instantiate the model; she no longer needs to understand all of the details. Two instances
of the project template called emerald and amber would get us back to Figure 8.

6.3. The model and the real world

This section explains how the model is connected to the code and data in the real world
that it is modeling. Although usually we ignore the distinction between the model and
the real world, in this section we need to be clear about it, so we call the real world thing
that corresponds to an object in the model its entity.

The goal is to keep the model and the real world synchronized, so that changes in
entities (and especially creation of new entities) are reflected in the model, and the access
control policy set by the model is reflected in its entities. There are three basic issues in
synchronization:

190 B. Lampson / Practical Principles for Computer Security

1. Naming: An object in the model and its entity in the real world are not necessarily
named in the same way.

2. Delay: An object and its entity are supposed to be in sync, but there may be some
delay.

3. Aggregation: When entities change, how are the changes aggregated for notify-
ing the model.

6.3.1. Naming: Paths and handles

Objects are named by paths: sequences of field names and queries (for selecting an ob-
ject from a set-valued field). Entities are named by handles, which are opaque from the
viewpoint of the model. The handle must have enough information to enable secure com-
munication with the root entity.

Because paths and handles are different in general, there has to be a way to map
between them. In particular, if the model wants to refer to an object’s entity, it needs the
entity’s handle. Similarly, if an entity wants to refer to its object, it needs the object’s
path. We take the view that MBAC should work without any changes to entities, as long
as they have some sort of interface that is adequate for implementing the get, set, and
enum methods described below. Thus the model needs to keep track of each object’s
handle, which it can do by storing it as part of the object.

In some cases a path may itself be a suitable handle. For example, the model for a
file system has objects that correspond to directories and files with isomorphic names.
Thus a directory object do has a set-valued contents field whose elements are the files
and directories in do, each with a name field. So a file with pathname a\b corresponds
to the object whose path is contents?{.name="a"}.contents?{.name="b"}. As this example
illustrates, a path may include queries, and hence to use a path as a handle the entities
have to be able to understand a query well enough to follow a path. The simplest kind of
query has the form [.name = "foo"], where name is a primary key, and this shouldn’t be
too hard for an entity.

6.3.2. The model is in charge

The model can read, and perhaps change, the abstract fields of an entity that correspond
to fields of the model by invoking the get and set methods of a corresponding object:
obj.get(f) allows the model to read the value of field f in the entity, and obj.set(f, value)
allows the model to set the access control policy of the entity. If f is an object, get returns
a handle to that object; see below. If a field is a large set, these methods are not suitable,
so set fields have a different method: obj.enum(f, i) returns a handle to the ith element of
the set, or nil if it has fewer elements (along with a generation number that increases every
time something happens to change the object numbering). To change the membership of
the set you use operations on the containing scope, such as create. Using these APIs a
model can fully explore its entity (as long as the entity isn’t changing too fast), learn the
handles of all the entities, fill in all the fields of the model, and tell the entity the values
of any fields that are determined by the model (normally roles).

In order to use MBAC, an entity must implement these APIs. It may also need to
implement query and assign APIs to deal efficiently with large sets of objects. To reflect
changes to the entity in the model more efficiently than by polling we may also want a
change log. Entries in this log are (h, f) pairs, meaning that field f of entity h has changed.

B. Lampson / Practical Principles for Computer Security 191

6.3.3. Notification and aggregation

With these APIs the only way for the model to find out about changes in the entities is to
do a crawl, that is, read out the entire state again with get and enum. This seem imprac-
tical for models of any size, so it’s necessary to have some kind of change notification.
Notification has three issues:

1. It has to be extremely reliable, since if any changes are missed the model’s state
will diverge from reality, and the only way to get it back in sync is do to a crawl.

2. The entity’s name space is handles, so it can only report changes in terms of
handles. These have to be mapped to paths.

3. It might be desirable to aggregate all the notifications below some point in the
tree.

6.4. Scale Up

Current OS authorization mechanisms can scale quite well to enterprises (one Windows
AD installation exists that holds 6 million users, for example). They need some work,
however, if they are to scale to the Internet, both because things can get much bigger
on the Internet, and because there’s no single management authority that is universally
trusted.

There are some basic features of access control that are important for scaling up:

1. All authentication and authorization statements (speaks-for statements) can be
represented in three different ways:

e They can be stored locally (for example, in the trust root).

e They can be held in a database on the network (for example, active directory)
and delivered over a secure authenticated connection.

e They can be expressed in a digitally signed certificate (for example, X.509 or
SAML tokens), which can be stored and forwarded among the various parties
in the transaction.

The first and third ways permit offline operation and offload of online services
(caching). The third way means that claims can be transmitted via untrusted par-
ties.

2. All principal identifiers that are passed from one system to another are globally
unique. This means that there’s no ambiguity about the meaning of an identifier.

3. Any system or domain can make use of statements from any other domain. It is
trust policy, rather than domain boundaries, that distinguishes friend from foe.

4. There is an unavoidable tradeoff among freshness, availability, and performance.
If you want the latest information about whether a key is revoked, for example,
you cannot proceed if the source of that information is unavailable, and you must
pay for the communication to get it. This tradeoff should be controlled by policy,
rather than being baked in. For example, here are two possible policies for key
revocation:

e Fail without a fresh OCSP for every access.
e If OCSP isn’t available, treat all cached statements as valid for some period.

192 B. Lampson / Practical Principles for Computer Security

Neither one is unconditionally better than the other; it’s a matter for administra-
tors’ judgment to choose the appropriate one.

In addition to these general principles, there are two topics that require special at-
tention in scaling to the Internet:

e Trust in attribute claims made by other authorities.
e Handling groups, because both the number of groups that a principal belongs to
and the total size of a group can become extremely large.

6.4.1. Scale Up: Attribute Claims
An attribute differs from a group in two ways:

e [t can have a value associated with it, for example, birthdate.

o There may not be a single authority responsible for its definition. For example,
birthdates may be certified by any one of 50 state driver’s license issuing author-
ities.

For scaling up, only the second point is important. The first one is handled by con-

ditions.

It is a system’s trust policy that handles attributes from other authorities. For ex-
ample, consider using a driver’s license from another state to verify date of birth at a
bar in New York. It’s convenient for states to agree on the string name of this property.
Oasis.org is a standards organization, and we will use oasis.org/birthdate as the standard
name.

The first step is for the bar’s trust policy to say what the primary authority is for this
property:

Ky = oasis.org/birthdate
Then the primary authority says which other sources to trust:

Ky says Ky 4/oasis.org/birthdate = oasis.org/birthdate
This says that New York believes Washington about birth dates. If they have a broader
agreement, New York might believe Minnesota about all properties defined by oasis.

Kny says K n/oasis.org/* = oasis.org/*

Name translation can be done, too. Suppose Illinois doesn’t adopt the oasis name:

Ky says K;;,/DOB = oasis.org/birthdate

6.4.2. Scale Up: Group Claims

Group membership is a scaling problem today, at least in large organizations. The reason
is that a user can be a member of lots of groups, and a group can have lots of members.
Today Windows manages this problem in two ways:

e By distinguishing client and resource groups (also called domain global and do-
main local groups in Windows), and imposing restrictions on how they can be
used.

e By allowing only administrators to define groups used for security.

Figure 12 illustrates the problem. Imagine that ACM creates a group of corporate
subscribers to its online digital library. There are 1000 corporate members, each with 10-
1,000,000 employees, for a total of millions of individual members. Furthermore, every

B. Lampson / Practical Principles for Computer Security 193

billg Client
A <
FTE Redmond6 roups
~

Microsoft FTE

-

ACM Corp Subs

Resource| s acm Access
Groups

Figure 12. Corporate subscribers can access CACM online. The arrows are group membership.

Microsoft employee may implicitly be a member of thousands of such groups, since
Microsoft subscribes to lots of services. Thus a client may be in too many groups to list,
and a resource may define a group with too many members to list.

In addition, there may be a privacy problem: the client may not want to disclose all
its group memberships, and the server may not want to disclose all the groups that it’s
using for access control.

This is the group expansion, or path discovery, problem. The solution that Windows
adopts today, and that we generalize, is to distinguish two kinds of groups:

o Client groups (also called push groups), which the client is responsible for assert-
ing when it contacts the resource. An individual identifier is a special case of a
client group. Thus in Figure 12, the client groups are green: billg, FTE-Redmond8,
and MicrosoftFTE. A requestor’s client groups are thus known to all resources
(subject to privacy constraints), but there can only be a limited number of them.

e Resource groups (also called pull groups), which the resource is responsible for
keeping track of and expanding as far as client group members. In Figure 12 the
resource groups are blue: ACMCorpSubs and CACMAccess. The resource thus
knows all the client groups that are members, but there can be only a limited
number of them.

A client group can only have other client groups as members. This means that there
can be only one transition from green to blue in the figure. The client asserts all its client
group memberships, and the resource expands its resource groups to the first level of
client groups. Consequently, if there is any path from the client to the resource, what the
client presents and what the resource knows will intersect and the resource will know it
should grant access.

Client groups are a generalization of today’s domain global groups in AD. Unlike
domain global groups, client groups can have members from other domains, but the
client must know all the client groups it belongs to so that it can assert them, because the
resource won’t try to expand client groups.

194 B. Lampson / Practical Principles for Computer Security

Resource groups are a generalization of today’s domain local groups in AD. Unlike
domain local groups, resource groups can be listed on the ACL of any resource so long
as the resource has permission to read the group membership. It’s the resource adminis-
trator’s job to limit the total size of the group, measured in first-level client groups. The
resource may cache the membership of third party resource groups.

An added complication is that today Windows eagerly discovers all the resource
groups in a domain a client belongs to when the client connects to any resource in the
domain. This makes subsequent access checks efficient, and the protocols allow the client
and the resource to negotiate at connection time, but if the domain is big (for example,
if it contains lots of big file servers) there might be too many resource groups. To handle
this, resources may use smaller resource scopes than an entire domain — for example, a
service.

To sum up, the way to handle large-scale group expansion is by distinguishing client
and resource groups. This extends what Windows does today in five ways:

1. The client and resource can negotiate what group memberships (or other at-
tributes) are needed.

2. Both client and resource can query selected third parties for groups.

3. Both client and resource can cache third party groups. The client must do this,
since it must assert all its client groups.

4. The resource can use a smaller scope to limit the number of resource groups that
get discovered when the client connects.

5. The client can be configured to know which groups the resource requires.

References

[1] Abadi and Needham, Prudent engineering practice for cryptographic protocols. IEEE Trans. Soft-
ware Engineering 22, 1 (Jan 1996), 2-15, dlib.computer.org/ts/books/ts1996/pdf/ e0006.pdf or
gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-25.html

[2] Internet X.509 Public Key Infrastructure: Certificate and Certificate Revocation List (CRL) Profile, RFC
3280, http://www.ietf.org/rfc/rfc3280.txt

[3] Internet X.509 Public Key Infrastructure: Online Certificate Status Protocol - OCSP, RFC 2560,
http://www.ietf.org/rfc/rfc2560.txt

[4] Lampson et al, Authentication in distributed systems: Theory and practice. ACM Trans. Computer Systems
10, 4 (Nov. 1992), pp 265-310, www.acm.org/pubs/citations/ journals/tocs/1992-10-4/p265-lampson

[S] Myers and Liskov, A decentralized model for information flow control, Proc. 16th ACM
Symp. Operating ~ Systems Principles, Saint-Malo, Oct. 1997, 129-142, www.acm.org/
pubs/citations/proceedings/ops/268998/p129-myers

[6] Wobber et al., Authentication in the Taos operating system. ACM Trans. Computer Systems 12, 1 (Feb.
1994), pp 3-32, www.acm.org/pubs/citations/journals/tocs/1994-12-1/p3-wobber

A. Basic facts about cryptography

Distributed computer security depends heavily on cryptography, since that is the only
practical way to secure communication between two machines that are not in the same
room. You can describe cryptography at two levels:

e Concrete: how to manipulate the bits
e Abstract: what the operations are and what properties they have

B. Lampson / Practical Principles for Computer Security 195

This section explains abstract cryptography; you can take it on faith that there are
concrete ways to implement the abstraction, and that only experts need to know the
details.

Cryptography depends on keys. The essential idea is that if you don’t know the key,
you can’t do X, for various values of X. The key is the only thing that is secret; everything
about the algorithms and protocols is public. There are two basic kinds of cryptography:
public key (for example, RSA or elliptic curve) and symmetric (for example, RC4, DES,
or AES). In public key (sometimes called asymmetric) cryptography, keys come in pairs,
a public key K and a secret key K—1. The public key is public, and the secret key is the
only thing that is kept secret. In symmetric crypto there is only one key, so K = K.

Cryptography is useful for two things: signing and sealing. Signing provides in-
tegrity: an assurance that signed data hasn’t changed since it was signed. Sealing pro-
vides secrecy: only the intended recipients can learn any of the bits of the original data
even if anyone can see all the bits of the sealed data.

For signing, the primitives are Sign(K !, data), which returns a signature, and Ver-
ify(K, data, signature), which returns true if and only if signature = Sign(K—!, data). The
essential property is that to make a signature that verifies with K requires knowing K1,
so if you verify a signature, you know it was made by someone that knew K—!. With
public key, you can verify without being able to sign, and everyone can know K, so the
signature is like a network broadcast. With symmetric crypto, anyone who can verify can
also sign, since K = K -1 sothe signature is basically from one signer to one verifier, and
there’s no way for the verifier to prove just from the signature that the signature came
from the signer rather than from the verifier itself.

For sealing, the primitives are Seal(K, data), which returns sealed data, and Un-
seal(K~!, sealedData), which returns data if and only if sealedData = Seal(K, data).
The essential property is that you can’t learn any bits of data (other than its length) from
sealedData unless you know K. With public key, anyone can seal data with K (since
K is public) so that only one party can unseal it; thus lots of people can send different
secrets to the same place. With symmetric crypto, the sealing is basically from one sealer
to one unsealer.

There’s a trick that uses public key sealing to get the effect of a signature in one
important case; it’s the usual way of using a certificate to authenticate an SSL session.
Suppose you have made up a symmetric key K (usually a session key) and you want to
know K = P, That is, any messages signed with K that you don’t sign yourself come
from another party P. Suppose you have a certificate for P, that is, you know Kp = P.
This means that only P knows K—'. The usual way to authenticate K is to get a signed
statement Kp says K = P from P. Instead, you can compute SK = Seal(Kp, K) and
send it to P in the clear. Only P can unseal SK, so only P (and you) can know K.

196 Software System Reliability and Security
M. Broy et al. (Eds.)

10S Press, 2007

© 2007 I0S Press. All rights reserved.

Engineering Requirements for System
Reliability and Security

Axel van LAMSWEERDE

Université catholique de Louvain
B-1348 Louvain-la-Neuve
avl@info.ucl.ac.be

Abstract. Requirements engineering (RE) is concerned with the elicitation of the
objectives to be achieved by the system-to-be, the operationalization of such ob-
jectives into specifications of requirements and assumptions, the assignment of re-
sponsibilities for those specifications to agents such as humans, devices and soft-
ware, and the evolution of such requirements over time and across system families.
Getting high-quality requirements is difficult and critical. Poor requirements were
recurrently recognized to be the major cause of system failures. The consequences
of such failures may be especially harmful in mission-critical systems.

This paper overviews a systematic, goal-oriented approach to requirements engi-
neering for high-assurance systems. The target of this approach is a complete, con-
sistent, adequate, and structured set of software requirements and environment as-
sumptions. The approach is model-based and partly relies on the use of formal
methods when and where needed for RE-specific tasks, notably, goal refinement
and operationalization, analysis of hazards and threats, conflict management, and
synthesis of behavior models.

Keywords. Requirements engineering, goal refinement, hazard analysis, threat
analysis, inconsistency management, model synthesis from scenarios, agent
modeling.

1. Introduction

Requirements engineering (RE) embodies a wide range of concerns. The objectives to be
achieved by the system-to-be must be elicited and analyzed within some organizational
or physical context. Such objectives must be operationalized into specifications of ser-
vices, constraints, and assumptions. The responsibilities for such specifications need to
be assigned among the humans, devices, and software forming the system. Requirements
emerge from this process as prescriptive assertions on the software-to-be, formulated in
the vocabulary of the environment.

The requirements problem has been with us for a long time. Poor requirements were
recurrently recognized to be the major cause of project cost overruns, delivery delays,
failure to meet expectations, or severe degradations in the environment controlled by
the software. In their early empirical study, Bell and Thayer observed that inadequate,
inconsistent, incomplete, or ambiguous requirements are numerous and have a critical
impact on the quality of the resulting software [Bel76]. Boehm estimated that the late
correction of requirements errors could cost up to 200 times as much as correction during

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 197

requirements engineering [Boe81]. In his landmark paper on the essence and accidents
of software engineering, Brooks stated that "the hardest single part of building a sofware
system is deciding precisely what to build (...) the most important function that the
software builder performs for the client is the iterative extraction and refinement of the
product requirements" [Bro87]. In her study of software errors in NASA’s Voyager and
Galileo programs, Lutz reported that the primary cause of safety-related faults was errors
in functional and interface requirements [Lut93]. More recent studies have confirmed the
requirements problem on a much larger scale. A survey over 8000 projects undertaken by
350 US companies revealed that one third of the projects were never completed and one
half succeeded only partially, that is, with partial functionalities, major cost overruns,
and significant delays. When asked about the causes of such failure executive managers
identifed poor requirements as the major source of problems [Sta95]. On the European
side, a survey over 3800 organizations in 17 countries similarly concluded that most
of the perceived software problems are in the area of requirements specification and
requirements management [ESI96].
Requirements engineering is an intrinsically difficult task:

e it covers a wide spectrum of concerns ranging from high-level, strategic objectives
to detailed, technical requirements;

e it involves two systems: the system-as-is and the system-to-be - both including
software and environment components;

e it involves stakeholders having diverse, partial, and often conflicting concerns;

e it requires hazardous or malicious behaviors in the environment to be anticipated
in order to guarantee requirements completeness and system robustness;

e it requires the evaluation of numerous alternative options: alternative refinements
of objectives, alternative assignments of responsibilities, alternative resolutions
of conflicts, alternative countermeasures to threats, etc.

The RE process must therefore be supported by systematic methods. To be effective
a RE method should meet the following requirements.

e The method should be goal-oriented in order to ensure that the requirements meet
the system’s objectives -including security and safety objectives.

o It should be incremental and support early analysis of partial models - the later er-
rors such as omissions, inadequacies, inconsistencies, and imprecisions are found,
the more costly their repair is.

e The method should be constructive in order to provide analyst guidance and en-
sure high-quality requirements by construction.

e [t should be model-based to support abstraction from details and specification
structuring. The model should integrate the multiple system facets and support a
variety of analyses.

o The method should mix declarative and operational styles of specification as
needed.

e [t should be formal when and where needed, and lightweight for usability in prac-
tical situations.

This paper overviews a RE method addressing these objectives. The method, known
as KAOS, has been developed and refined for more than fifteen years of research, tool
development, and experience in multiple industrial projects. (KAOS stands for "Keep All

198 A. van Lamsweerde / Engineering Requirements for System Reliability and Security

Objectives Satisfied".) The details on the modeling notations, model building method,
and model analysis techniques can be found in [LamO07].

Section 2 introduces a modeling framework that integrates multiple views of the
system-to-be: goals and their refinements; hazards and threats to safety and security
goals, respectively; conceptual objects which the goals refer to, together with their inter-
relationships; operations to ensure that the goals are satisfied; agents responsible for the
goals, their behaviors, and interaction scenarios. Section 3 outlines how such a multi-
view model can be constructed in a systematic way.

Critical model components should be formalized to enable formal reasoning about
them. Section 4 briefly reviews some basics of real-time linear temporal logic for speci-
fying goals, domain properties, hazards, and threats; goal-structured pre- and postcondi-
tions for specifying operations; and specification patterns for lightweight specification.

The next sections then discuss various formal reasoning techniques to support the
following RE-specific tasks:

e refine goals and check the correctness of refinements (Section 5);

e operationalize fine-grained goals into operations and check the correctness of
such operationalizations (Section 6);

e analyze safety hazards by generating obstacles to goal satisfaction and resolving
them (Section 7);

e analyze security threats by generating malicious plans to break security goals, and
countermeasures to address these (Section 8);

e analyze conflicts among stakeholder goals, and resolve them (Section 9);

e generate system behavior models inductively from interaction scenarios and goal
specifications (Section 10).

2. A multi-view modeling framework for requirements engineering

The multiple facets of the target system are captured through complementary models:

e a goal model interrelates all intentional aspects;

e an object model defines the structural aspects;

e an agent model defines the system components, their interfaces and responsibili-
ties;

e an operation model defines the functional services in relation with the system
goals;

e a behavior model captures agent behaviors in terms of interaction scenarios and
parallel state machines;

e obstacle and threat models capture unexpected ways of breaking system goals, in-
cluding security goals, through incidental or malicious behaviors of environment
agents.

We briefly review these models sucessively.
2.1. Modeling system goals

A goal is a prescriptive statement of intent [Dar93], [Lam00a]. It expresses some objec-
tive to be achieved by the system. The latter comprises the software and its environment.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 199

For example, "train doors shall be closed while the train is moving" is a goal requiring
some cooperation among the software train controller and train sensors and actuators.

Unlike goals, domain properties are descriptive statements about the environment,
for example, "a train is moving iff its physical speed is non-null".

Goals are defined at different levels of abstraction. Higher-level goals capture global,
business-specific objectives, e.g., "50% increase of transportation capacity”. Lower-
level goals capture local, technical objectives, e.g., "train acceleration commanded every
3 secs”.

There are different types of goals. Functional goals prescribe intended behaviors
declaratively, e.g., "passengers transported to their destination". They are used for build-
ing operational models such as use cases, state machines, and the like. Quality goals
(sometimes called "non-functional goals") refer to non-functional concerns such as se-
curity, safety, accuracy, usability, performance, cost, or interoperability, in terms of
application-specific concepts. Some of the quality goals are softgoals; they cannot be es-
tablished in clear-cut sense. Softgoals capture preferred behaviors; they are used to com-
pare alternative options [Myl92], [Chu00]. Non-soft goals prescribe sets of admissible
behaviors.

Goal satisfaction requires agent cooperation. For example, the high-level goal "safe
train transportation” requires the cooperation of agents such as the software train con-
troller, the train tracking system, the train driver, passengers, etc. An agent is an active
system component responsible for goal achievement. Agents refer to roles rather than
individuals.

The finer-grained a goal is, the fewer agents are required for its satisfaction. A
requirement is a goal assigned to a single agent in the software-to-be. For example,
"doorState = ’closed’ while measured speed is non-zero" is a requirement on the train
controller. An expectation is a goal assigned to a single agent in the software environ-
ment. For example, "passengers exit train when doors are open at their destination” is an
expectation. Expectations are sometimes called assumptions; unlike requirements they
cannot be enforced by the software-to-be.

One important, often neglected part of the requirements engineer’s job is to provide
satisfaction arguments [Lam00a], [HamO1]. These take the form

R,E,DF G,
meaning "in view of properties D of the domain, the requirements R satisfy goal G under
expectations E".

Goals provide a criterion for requirements completeness and pertinence [Yue87].
Let REQ, EXPECT, and DOM denote a set of requirements, expectations, and domain
properties, respectively.

A requirements set REQ is complete if for all identified goals G:

{REQ, EXPECT, Dom} - G
A requirement r in REQ is pertinent if for some identified goal G:
ris used in a satisfaction argument {REQ, EXPECT, Dom} - G

Note thus that requirements completeness and pertinence is relative to known do-
main properties and the identified goals and expectations.

A goal model shows contribution links among goals. It is represented by an
AND/OR refinement graph whose nodes represent goals and edges represent AND/OR
refinement links. In this graph, a goal G is AND-refined into subgoals GI, G2, ..., Gn
iff satisfying GI, G2, ..., Gn contributes to satisfying G. (A more precise definition is

200 A. van Lamsweerde / Engineering Requirements for System Reliability and Security

given in Section 5.) The set {G1, G2, ..., Gn} is called refinement of G. A goal G is
OR-refined into refinements R1, R2, ..., Rm iff satisfying the subgoals of Ri is one alter-
native to satisfying G (1 < ¢ < m). Ri is called an alternative for G. Fig. 1 shows a goal
model fragment for our train control system.

)f(Eff ectivePassengers Transportation /‘

AllCrefresent

J(Hapil:ITrans|:u:-rtatil:-n1(JIJS.af-eTr.ans|:u:-rt.a1j|:|nlllr

&
.-___,.:-"0"-\-____\
rl'rTrainP'r-:-gressrl'rl,IrNDDEH!.f;'r LoorsClosed | I BlockSpesd
WY hile hidowin Lirmited

al

Ma Train CollE io

o
refiment et

MoTrains 0On i orstCas eStopping
SameBlock [z tan cehdaintained

Figure 1. Portion of a goal graph in a train control system [Lam07]

FProgressiirhen! |SignalSet
aSignal

Goal models are built using a variety of elicitation techniques. Preliminary goals are
identified by analyzing the problems and deficiencies in the system-as-is, and by search-
ing intentional and prescriptive keywords in available raw material and interview tran-
scripts. More abstract, coarse-grained goals are then obtained bottom-up by asking WHY
questions about available goals and operational material such as scenarios [Jar98]. In par-
allel, more concrete, fine-grained goals are obtained top-down by asking HOW questions
about available goals. Goals are also derived by use of refinement patterns (see Section
5), by resolution of obstacles (see Section 7), and by exploration of countermeasures to
security threats (see Section 8).

In this model elaboration process, goal refinement terminates when fine-grained sub-
goals are obtained that can be assigned as requirements or expectations to software or
environment agents, respectively [Dar93]. Goal abstraction terminates when the system
boundary is reached, that is, the more abstract supergoals cannot be satisfied under the
sole responsibility of the agents forming the system.

The nodes in a goal model are decorated by annotations to characterize the corre-
sponding goal - such as its precise definition, an optional formal specification of the goal
in a real-time temporal logic (see Section 4), the goal’s priority level, etc.

2.2. Modeling system objects

The object model provides a structural view of the target system. A conceptual object is a
thing of interest in the system whose instances can be distinctly identified, share similar
features, and have a specific behavior from state to state. An object is modeled as an
entity, association, or event dependent on whether it is an autonomous, subordinate, or
instantaneous object, respectively. The object model is represented by an operation-free,
design-independent UML class diagram.

Such diagram can be systematically derived from the goal model [LamOOa]. Each
goal formulation is analyzed to extract the entities, associations, and attributes the goal

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 201

refers to. For example, a goal "avoid multiple trains on the same block" gives rise to
"Train" and "Block" entities and an "On" association. The goal "train speed shall not
exceed the speed limit of the block which the train is on" gives rise to a "speedLimit"
attribute of "Block”, etc.

Contrarily to what is is often confessed in the UML literature, no "hocus pocus" is
required here to obtain a "good" object model; goal-directed construction guarantees a
complete and pertinent object model.

8, [specs;train/ TrainSystem-RE04.0b] - Cediti Objectiver 1.5.2 with advanced features =& x|
File Edit Wiew Tools Document Vindows Help

B = Bleosgn el ellagboEfeskn
4

& | Zoom: [0] %

[B] ClassDiagram Afi-F8

Package Yiew

'8
=]
oncept Index |4 E
T A NoTrainsOn Same Block
? [DoorsClosed|FFnonZeroSpeed
| = Measure
i =
il = BlockSpeedLimited
(=4
iq=
1a
] |] 4
© @ oincksy || & Train
&igzz:g 1A MeasuredSpeed : Real |
ggz:: = doorsState : String BlockSpeed : Real |

© @ Doors

[B ChssDisgram [

Properties

StationBlock

Name | value

lame Clas:

jockeeT{]

\ [[“ronee | IR oToom]

igfistart H bR lE| H AefirausT-REDS [[specs;train/TrainSys... [E]Microsoft PowsrPoink - [R... |<E]-%¢%,y@ ARG, 74+

Figure 2. Modeling objects referred to by goals [LamO07]

Fig. 2 illustrates an object model fragment for our train control system. The nodes
in an object model are decorated by annotations to characterize the corresponding object
- such as its precise definition, domain properties associated with the object (that can be
optionally specified in real-time temporal logic), etc.

2.3. Modeling system agents

The agent model defines the responsibilities and interfaces of the various agents. As
introduced before, an agent is a software, device, or human component of the system
that plays some specific role in goal satisfaction. It controls behaviors by performing
operations (see Section 2.4). Agents run concurrently with each other.

An agent is modelled by responsibility links to goals and by monitoring/control links
to object attributes and/or associations from the object model. Monitoring/control links
capture the agent’s interface through the state variables it monitors and controls in its

202 A. van Lamsweerde / Engineering Requirements for System Reliability and Security

own environment [Par95]. A state variable is an attribute or association of some object.
Each state variable is controlled by a single agent.

An agent responsible for some goal must restrict system behaviors [Fea87]. The goal
must be realizable by the agent [Let02a]. A goal G is realizable by agent ag iff :

e (intuitively:) given ag’s monitoring & control capabilities it is possible for ag
alone to satisfy G without more restrictions than required by G;

e (more formally:) there exists a transition system T'S,, = (Init, Next) on
the state variables monitored and controlled by ag such that RUN(T'S,,) =
HISTORIES(G), that is, the set of agent runs equals the set of behaviors pre-
scribed by the goal.

There can be multiple causes for goal unrealizability, namely, (a) lack of monitora-
bility of variables to be evaluated in the goal formulation, (b) lack of controllability of
the variables constrained by the goal, (c) need to evaluate variables in future states, (d)
conditional goal unsatisfiability, or (e) reference to a target condition to be achieved in
unbounded future. This taxonomy of unrealizability problems gives rise to goal refine-
ment tactics for resolving unrealizability [Let02a]. The latter are encoded as refinement
patterns (see Section 5).

In an agent model, OR-assignment links allow us to represent alternative assign-
ments of the same goal to different agents. Alternative software-environment boundaries
can thereby be captured and assessed with respect to softgoals [Chu00] so as to select a
"best" responsibility assignment.

Responsibility assignments also provide a basis for simple forms of load analysis.
Fig. 3 shows the responsibilities of an overloaded air traffic controller. This view was
generated from a corresponding agent model using a query/visualization tool on the
model database.

= i
PF& handlied by assistants
o | mima ravision written en s |
o . =
.'-\..___H_ * J__."'f
i N, e
- 1‘4— -

[mmarmmrenlj___

T

I Data colbsctod by assistanis 1

Figure 3. Load analysis [Lam07]

2.4. Modeling system operations

The operation model provides a functional view of the target system in terms of the
services to be provided.

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 203

An operation Op is a relation: Op C InputState x OutputState. It must opera-
tionalize some underlying goals from the goal model; this entails a proof obligation (see
Section 6).

Operation applications yield state transitions and corresponding events. They are
atomic; an input state is mapped to a state at next smallest time unit. (Operations with
duration are represented through start/end events.) They can be concurrent with others.

In an operation model, operations are connected to goals via operationalization links,
to objects via input/output links, and to agents via performance links. UML use case
models can easily be generated from such models.

Each operation in an operation model is specified by a pair of conditions (DomPre,
DomPost) where:

® DomPre is a descriptive condition that fully characterizes the class of input states
of the operation in the domain,

® DomPost is a descriptive condition that fully characterizes the class of output
states of the operation in the domain.

An operationalization of a goal G into operation Op is further specified by a triple
of conditions (RegPre, ReqTrig, ReqPost) where:

® ReqPre is a prescriptive necessary condition on Op’s input states to ensure G;

® ReqTrig is a prescriptive sufficient condition on Op’s input states to ensure G; it
requires immediate application of Op provided DomPre holds;

® ReqPost is a prescriptive condition on Op’s output states to ensure G.

As an operation may contribute to multiple goals, it can have multiple required pre-
conditions, trigger conditions, and/or postconditions. The global precondition for the op-
eration to be applied is

Pre = DomPre A /\ ReqPre;

The global postcondition when the operation is applied is

Post = DomPost A /\ ReqPost;
J

The global trigger condition forcing the operation to be applied is

Trig = \/ ReqTrigy,
k

The specifier must always ensure the following consistency rule:

\/ ReqTrigi, N DomPre = /\ ReqPre;
k i

In our train control example, the operation for opening train doors might be specified
as follows:
Operation OpenDoors
Def Operation controlling the opening of all train doors
Input Train, Output Train/DoorsState

204 A. van Lamsweerde / Engineering Requirements for System Reliability and Security

DomPre The train doors are closed

DomPost The train doors are open

ReqPre For DoorsClosedWhileNonZeroSpeed
The train’s measured speed is 0

ReqPre For SafeEntry&Exit
The train is at some platform

ReqTrig For NoDelayToPassengers
The train has just stopped

A corresponding formal version can optionally be specified as well (see Section 5).
The distinction between domain and required conditions is important. Unlike in most
specification languages, we are not confusing descriptions and prescriptions. Prescrip-
tions may be assessed, negotiated, and replaced by alternatives; descriptions may not.
Moreover, traceability between operations and their underlying goals is thereby sup-
ported.

2.5. Modeling obstacles to goals

The goals identified in the early stages of the RE process are often too ideal. They are
likely to be violated due to unexpected or malicious agent behaviors. For system robust-
ness and requirements completeness, it is essential to detect and resolve such "overopti-
mism" at RE time - especially in the case of mission-critical systems.

An obstacle O to goal G is a goal violation precondition satisfying the three follow-
ing conditions:

1. O,Dom = -G obstruction

2. Dom }£= -0 domain consistency

3. There exists a behavior E of the environment of the set of agents in charge of G
such that E = O feasibility

Hazards and threats are obstacles obstructing safety and security goals, respectively.

An obstacle model is a set of goal-anchored fault trees where each fault tree is an
AND/OR refinement tree showing how the goal can be violated. The root of the tree is
the goal negation; the leaves are elementary obstruction conditions that are consistent
with the domain and satisfiable by the environment.

Obstacle resolution then consists in overcoming the sub-obstacles through various
resolution tactics such as goal weakening, goal substitution, agent substitution, obsta-
cle mitigation, and so forth [Lam0Ob]. Such resolution yields new or deidealized goals,
resulting in a more complete set of requirements for a more robust system.

Fig. 4 shows an obstacle OR-refinement tree showing how the goal "train stopped if
signal set to ’stop’" could be broken. The new goal of regularly sending out responsive-
ness checks to train drivers emerges there as a resolution to the sub-obstacle in the mid-
dle. The leaf obstacles in Fig. 4 occurred in various reported train accidents (see ACM’s
Risks forum.)

2.6. Modeling security threats

Threat models are augmented obstacle models where:

A. van Lamsweerde / Engineering Requirements for System Reliability and Security 205

B g Bla 2|8 & ald ¢e|llag|B|a[kE 4 & & & 3 & 5 ombon s
4

» @,[Obstecle] Obstacles totrain stops AR-F7 cooismnmmmmnmnn s
Package View | g
o TrainStops IF StopSignal
g [
=
=
=
0 NoStopAtStopSignal
LT Blocks, o V A X
araBlockS ‘t
& & Blocks) & . .
& Brakes| — .
=7 DoorCl 2
@ & Doorch &

& 0oors
raboors
@ & Doors|

SignalNotVisible BrakeSystemDown
4

[EL (obstack) obst I

Properties

Name | alue

RegularResponsivenessCheck

fame Obst]_..
nckem{@
| | e ey 6
dhistare|| (1] @ 150 5y || Sghravsrrens l[specs/train/TrainSys... [E]Microsoft PowerFaint - [R... [2V ORMEE e
Figure 4. Portion of an obstacle model with new goal as resolution [Lam07]
e the root goal negation refers to a security goal,
e the obstacles are malicious obstacles (called threats),
e the refinement graph is extended with the attacker’s anti-goals,
e the refinement terminates when leaf conditions are reached that can be monitored

and controlled by the attacker.

Such models can be built systematically [Lam04a], and even automatically under
certain restrictions [Jan06], see Section 8. They provide the basis for enriching the goal
model with countermeasures to the identified threats.

2.7. Modeling agent behaviors

The agent behaviors are modelled by interaction scenarios at instance level and by par-
allel state machines at class level.

A scenario is a historical sequence of interaction events among agent instances. It
illustrates some way of achieving a goal G; the scenario is a sub-history in the set of
admissible behaviors prescribed by G. An interaction event corresponds to an application
of some operation by a source agent, notified to a target agent.

Scenarios can be positive or negative. A positive scenario is an example of desired
behavior. A negative scenario is a counterexample showing some undesired behavior. A
scenario may be composed of sub-scenarios, called episodes, which may be common to
multiple scenarios.

206 A. van Lamsweerde / Engineering Requirements for System Reliability and Security

Scenarios are represented by simple message sequence charts (MSCs), see Fig. 5.
Such diagrams capture a partial order on interaction events and, along each age