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Industrial Foreword

The last decade has seen a great deal of attention paid to 
requirements engineering by researchers, teachers, consultants, 
managers, and practitioners. Increasingly, people within 

information technology, commercial product development, services 
industries, nonprofits, government, and beyond regard good 
requirements as a key to project and product success. Requirements 
methods and practices are common subject matter for conferences, 
books, and classes. The business case for requirements is clear. It is in 
a sense a golden age for requirements.

So why then another book on the topic?
There is evidence from many sources to suggest that requirements 

engineering is not gaining much ground on the underlying problems 
of excessive rework, persistent scope creep, and finished products 
that fail to meet user expectations. So, despite the large investment 
made and the hard work done to this point, challenges still exist with 
regard to ever-increasing product complexity, time-to-market 
pressures, market segmentation, and globally diverse users.

It is here that books from practitioners, such as Software & Systems 
Requirements Engineering: In Practice, make a valuable contribution. 
Unlike most consultants and researchers, practitioners are deeply 
involved with individual projects. Moreover, they are present 
throughout the project and into the next one. In books from 
practitioners, we can see a set of requirements practices and the 
underlying setting; a detailed description of the philosophy and 
environment in which those practices work.

So, rather than being a compendium of possible practices, or a 
generic reference book, Software & Systems Requirements Engineering: 
In Practice provides readers a particular view into the world of product 
development and applied requirements engineering. Such windows 
provide a coherent and useful picture of requirements engineering.

For most practitioners, locating potential solutions to 
requirements engineering challenges is only part of the battle. When 
a method or practice is being considered for use, the question 
becomes “Will this work for me?” Understanding the experiences of 
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other practitioners can be an incredibly valuable shortcut to the 
answer, and books like Software & Systems Requirements Engineering: 
In Practice are a great place to find that information.

Erik Simmons 
Requirements Engineering Practice Lead 

Corporate Platform Office 
Intel Corporation



Academic Foreword

Requirements engineering has proven to be one of the most 
difficult and critical activities for the successful development 
of software and software-intensive systems. The reasons for 

that are obvious. If requirements are invalid, then even the most 
careful implementation of a system will not result in a product that is 
useful. Moreover, if requirements are included in the requirements 
specifications that are not actually valid, then the product or system 
becomes unnecessarily expensive. This shows that requirements 
engineering is important.

In fact, requirements engineering is also difficult. There are many 
reasons for this. One is that often software-intensive systems are 
innovative in providing new functionality. Then, learning curves 
have to be considered. It is often impossible to understand, in advance, 
what the requirements actually are. The people involved have quite 
different perspectives on their valid requirements. Therefore, it is 
difficult to arrive at an agreement. At the same time, important 
requirements might be overlooked and only discovered when gaining 
first experiences with the produced systems. Moreover, for large, 
long-term projects requirements may change due to changes in the 
environment, the market, or user needs.

Finally, requirements engineering is often underestimated or even 
neglected by project management. The core of requirements 
engineering is devoted to understand and work on the problem 
statement and not so much the solution. However, management may 
think that only when a team of developers starts to work on the 
solution will the project begin to show real progress. Therefore, both 
for management and even for experienced developers, there is always 
a tendency to rush too early into the solution domain. As a result, 
solutions are produced that miss requirements or do not explore the 
full range of possible solutions.

However, even having accepted that requirements engineering is 
difficult, error-prone, costly, but nevertheless important, a lot more 
has to be understood to be able to do professional requirements 
engineering. For most projects, the overall development process can 
be easily standardized after the requirements have been captured. 

xix
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What is most difficult is to standardize the process of requirements 
engineering, since requirements engineering is at the very beginning 
of a project when so much is unclear. Therefore, in industrial software 
development, it is important to come up with a requirements 
engineering approach that is on the one hand flexible but on the other 
hand gives enough methodological guidance.

In scientific research, exploring requirements engineering has 
been an active field for many years. However, at least in the beginning, 
requirements engineering was sometimes misunderstood as a 
discipline, which only has to document and specify requirements but 
neglects the necessary decision making. This ignores the difficulty of 
coming up with a requirements specification that takes into account 
all issues from functionality to quality and cost. There are even 
process development issues to consider, such as certification 
requirements or product constraints dealing with given operating 
systems or software reuse.

As a result of all these considerations, the software engineering 
group of Siemens Corporate Research in Princeton, New Jersey, 
decided a few years ago to concentrate their research on a broad 
spectrum of requirements engineering themes. I had the privilege to 
work extensively with this group of engineers and researchers, who 
gained a lot of experience in requirements engineering on coaching, 
teaching, and consulting methods in ongoing Siemens projects. Some 
of the projects are very large scale. It is helpful that the software 
engineering group in Princeton is not just focused on the core topics of 
requirements engineering but also covers closely related aspects such 
as architectural design, quality assurance, testing, model-based 
software development, and prototyping. Doing so, the group is looking 
at a systematic foundation to requirements engineering by creating a 
requirements engineering reference model, which helps to list all the 
necessary content in the requirements engineering process while at the 
same time providing flexibility by tailoring and by a choice of methods.

It is a pleasure to see the results of the requirements engineering 
research and practice at Siemens Corporate Research documented in 
this book. It describes a lot of precious experiences, principles, and 
the state of the practice in industry. As such, it is quite unique and 
complements existing academic books on requirements engineering, 
which look more at the basic terminology and approaches.

I hope that this book will help in many respects development teams 
around the world to improve their industrial requirements engineering. 
It is a pleasure for me to thank the authors and the members of Siemens 
Corporate Research for a scientifically fruitful cooperation over the last 
six years and to congratulate them on this book, which is a milestone in 
the field of industrial requirements engineering.

Manfred Broy 
Professor of Software and Systems Engineering 

Technical University of Munich



 

Preface

Today’s software and systems engineers are facing an increasing 
number of challenges as they attempt to develop new products 
and systems faster, with higher quality and rich feature content. 

Part of these challenges are created by advances in computing 
technology, as processors and memory become faster and less 
expensive. Along with increased processing capability, there is an 
expectation that today’s systems will do more. As more features are 
being defined for a product or system, the discipline of requirements 
engineering has increased in importance to help manage the 
development of the features throughout the product life cycle.

This book was written to help provide an understanding of the 
challenges in requirements engineering (RE) that are facing industrial 
practitioners and to present some best practices for coping with those 
challenges. Many texts on RE generally do a good job covering the 
basics of RE, but they may not adequately discuss the real-world 
problems that can make requirements elicitation, analysis, and 
management difficult. For example, Siemens products are typically 
defined with at least several thousand recorded requirements. 
Complex Department of Defense projects are sometimes reported as 
having 100,000 requirements or more in their project database. 
Managing projects of this size is very difficult, and managing the 
requirements on such a project can be quite daunting. The trend is 
toward defining more requirements, but developers often struggle 
with managing them, especially as requirements are added or 
changed during the development life cycle. Unfortunately, problems 
of scale often do not always appear on a project until it is too late to 
easily change process, tooling, or infrastructure. It is hoped that some 
of the techniques described in this book will be of use to industrial 
practitioners for helping to make project managers aware of potential 
problems before they happen, and providing techniques and guidance 
for successfully navigating the many pitfalls associated with large, 
complex projects.
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Background
The Software and Systems Engineering Department of Siemens 
Corporate Research is involved with many software development 
projects with Siemens organizations working across a broad spectrum 
of application domains in the business sectors of industrial, health 
care, and energy. In our dual role of an industrial research and 
development laboratory, we have many opportunities for observing 
how requirements engineers do their work. Over time we can classify 
certain requirements engineering practices as “best practices,” and 
we also learn from the not-so-best practices that were not as effective 
in achieving project goals.

This book was written to summarize our requirements engineering 
experiences, and to describe them in a form that would be useful 
to software and systems engineering practitioners; i.e., methods, 
processes, and rules of thumb that can be applied to new development 
projects. We are not so naïve as to believe that engineers who follow 
what is described in this book will work only on successful projects. 
We know too well that a practice that worked well in Princeton may 
not work so well in Poland, and much like our children, engineers 
sometimes learn best from their own mistakes. But, if software and 
systems engineers can learn from our experiences and increase the 
probability of a successful project outcome, our efforts will be 
worthwhile.

Requirements engineering is most critically applied in the early 
phases of a systems development project, but it is a decision-making 
process that is applied across the entire product development life 
cycle. Thus, the requirements engineer must work effectively with 
software and systems engineers working on other tasks such as 
architecture design and test procedures. Indeed, our research in 
requirements engineering was initiated based on the observation that 
the first task for an architect on a new project is to understand the 
product requirements.

We have worked on projects for a broad range of application 
domains; e.g., medical equipment, factory automation, transportation, 
communications, automotive. The number of requirements that must 
be defined, analyzed, and managed in the projects may range from a 
few thousand to one hundred thousand. Many of our projects are 
distributed over multiple development sites, involving engineers 
living in many different countries. These software and systems 
engineers are often working under great pressure to deliver the 
product quickly, with good quality and a rich feature set. Most of the 
products contain both hardware and embedded software; thus, there 
are dependencies on electrical and mechanical characteristics, 
reliability, usability engineering, and requirements that must be 
considered by many different stakeholders. We often work within 
regulated domains such as medical devices where requirements must 



 

be carefully documented, traced, reviewed, and tested. We have also 
had to develop expertise on subjects that are not commonly taught at 
universities, such as hazard analysis.

Requirements engineering has become more complicated over 
time as the complexity of the products we desire to develop has 
increased. Thus, the requirements engineer is continually challenged 
by issues of scale, unstable requirements, product complexity, and 
managing change. Our experience has resulted from the opportunities 
to work on, for example, a project that is defining the requirements 
for an automobile infotainment system and then a few months later a 
project that is defining the requirements for a medical imaging 
system.

How to Use This Book
Our experience is with requirements engineering for products, 
systems, and services; typically (but not always) with high software 
content. This book contains RE methods, processes, and rules of 
thumb that have been derived from observed best practices of RE 
across many such projects. Thus, this book is meant for software and 
systems engineering professionals who are interested in learning new 
or validating their current techniques for RE. Such professionals 
include practicing requirements engineers, who should benefit most 
from the best practices discussed. But, the book material may also be 
useful to other engineering professionals, such as system architects, 
testers, developers, and engineering managers. The book may be 
useful to “not quite yet” practitioners such as graduate students in 
software engineering, systems engineering, or computer science. We 
would also hope that product or marketing managers would receive 
valuable information from this book as they struggle with bringing 
new products to a competitive market.

In order to focus on best practices and techniques for the 
practitioner, there is very little introductory material presented, but 
pointers are given to reference books that cover basic software 
engineering concepts. Thus, users of this book typically would have 
at least an undergraduate degree in computer science, systems or 
software engineering and some experience developing systems.
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Studies such as the CHAOS report [Johnson 2000] indicate that 
about half of the factors associated with project or product 
success are requirements related. Recently, researchers have 

reported on studies showing that project success is directly tied to 
requirements quality [Kamata et al. 2007]. With such overwhelming 
evidence that requirements engineering is a cornerstone of software 
systems engineering, one could ask, why is it still a relatively neglected 
topic in university training? It is quite rare, for example, that a new 
Computer Science (CS) university graduate might be asked to 
participate in the development of a compiler or operating system, yet 
nearly every graduate working in the industry will, sooner or later, 
be asked to participate in creating the requirements specifications for 
a product or service.

1.1  Why Has Requirements Engineering  
Become So Important?

For years, many products were successfully created without the 
participation of professionals who specialized in requirements 
creation or management. So, why is requirements engineering (RE) 
so important today? The answer lies in the changing nature of 
industry and society in general. First, the pace of product development 
has picked up drastically. Whereas just a few decades ago, product 
improvements would be a slow process, today customers often 
demand new versions of a product in less than one year. For example, 
Siemens estimates that approximately 20 years ago, 55 percent  
of sales were from products that were less than 5 years old. Today, 
75 percent of sales are from products that were developed less than 
5 years ago (Figure 1.1). Second, turnover and technology change 
have impacted the experience levels of professionals engaged in the 
development of products. Just a few short years ago, engineers might 
expect to spend their entire careers with a single company, whereas 
today job change is more common. Finally, outsourcing and offshoring 
have dramatically changed the product life cycle. Specifications must 
now be created for implementation or manufacturing by organizations 
with potentially limited or no domain expertise. Imagine, for example, 
having to create a product specification for a washing machine, 
dishwasher, or luxury automobile to be built by staff who may have 
never even seen one! Under such circumstances specifications must 
be exact and detailed.

Software development is highly coupled to the domain; e.g., cell 
phone software and avionics software tend to be designed, built, 
and managed with processes that are heavily domain specific. 
Furthermore, industries have begun to use software as product 
differentiators. Product innovations can be more easily implemented 
in software than hardware because of the lower engineering 
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investment and modification costs. This results in domain-specific, 
complex software for which high-quality requirements specifications 
are essential.

Requirements engineering is extremely important when a product, 
service, or industry is regulated. For example, the U.S. government’s 
Food and Drug Administration (FDA) and Federal Aviation 
Administration (FAA) both mandate specific activities and work 
products (e.g., hazard analysis) where there is the potential for injury 
or death. Sarbanes-Oxley regulations mandate traceability for certain 
types of financial software used by companies doing business in the 
United States. The European Union and Japan have regulations for 
their respective businesses. Good requirements engineering practices 
are essential for companies that must comply with government 
regulations.

1.2 Misconceptions about Requirements Engineering
Misconceptions about requirements engineering can strongly 
influence a company’s processes. Many companies and organizations 
have a solid understanding of requirements processes, but some do 
not. Some of the more common misconceptions are listed under the 
headings that follow.

FIGURE 1.1 Acceleration of new product creation
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Misconception 1: Any Subject Matter Expert Can Become  
a Requirements Engineer after a Week or Two of Training
Requirements engineers need strong communication and knowledge 
of engineering skills, the ability to organize and manage a data set of 
requirements, high-quality written and visual presentation skills, 
and the ability to extract and model business processes using both 
text and graphical (e.g., Integration DEFinition [IDEF], Unified 
Modeling Language [UML]) techniques. First and foremost, to elicit 
requirements from stakeholders requires the ability to interact with 
a variety of roles and skill levels, from subject matter experts (detailed 
product requirements) to corporate officers (elicitation of business 
goals).

Moreover, people have to be trained to write good specifications. 
High school and university training tends to teach a style of writing 
that is antithetical to the techniques needed to create unambiguous 
and complete documents. Requirements analysts typically need 
significant training, both classroom and on the job, before they can 
create high-quality specifications.

Misconception 2: Nonfunctional and Functional Requirements 
Can Be Elicited Using Separate Teams and Processes
The subject domains for nonfunctional and functional requirements 
are related, may impact each other, and may result in iterative changes 
as work progresses (see Chapter 5). Team isolation may do more 
harm than good.

Misconception 3: Processes That Work for a Small Number  
of Requirements Will Scale
Requirements engineering processes do not scale well unless crafted 
carefully. For example, a trace matrix is an N × N matrix, where N is 
the number of requirements of interest. In each cell, a mark or arrow 
indicates that there is a trace from requirement Ri (row i) to requirement 
Rj (column j). It is relatively easy to inspect, say, a 50-requirement 
matrix, but what happens when five to ten thousand requirements 
are needed to define a product? Filtering and prioritization become 
important in order to retrieve results that can be better understood, 
but the requirement annotations necessary to provide such filtering 
are often neglected up front because the database is initially small.

1.3 Industrial Challenges in Requirements Engineering
Over the last few years, the requirements engineering R&D focus 
program at Siemens Corporate Research has been involved with a 
substantial number of requirements engineering (RE) projects with 
Siemens development organizations. Many RE challenges have been 
identified as potentially impacting project performance. We have 
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observed that problems tend to be exacerbated by three critical 
factors, the first being a decision to outsource the implementation, the 
second being a significant change in technology, and the third being 
the introduction of new products (e.g., entering a market where the 
company has minimal prior experience).

When a decision is made to outsource, changes must take place in 
all processes, especially in the area of requirements engineering. The 
implementation may be done by staff with minimal domain 
knowledge and, because of customs, logistics, time, or distance, with 
limited access to subject matter experts. Attempts to use the same 
processes and techniques used for in-house development for the 
development of specifications for subcontracting or outsourcing may 
lead to significant delays in delivery, sometimes even resulting in 
project cancellation.

When technology changes rapidly, domain experts may no longer 
be “experts.” Techniques and solutions that worked for many years 
may become obsolete or irrelevant. Such technological discontinuities 
may require substantial new training, or the experts in the older 
technologies may make poor decisions for new product designs. A set 
of key success factors for identifying potential requirements 
engineering problems early has been developed at SCR and is 
described in the next section.

1.4 Key Success Factors in Requirements Engineering
This section contains a checklist describing key factors for success in 
requirements engineering. Most of the factors can be evaluated prior 
to project initiation. Although project success cannot be guaranteed, 
it is likely that if several of the success factors are not in place there 
may be significant project difficulties.

The Project Has a Full-Time, Qualified Chief Architect
On many large projects the only senior technical role that spans the 
requirements process through delivery is that of the chief architect. 
He provides technical continuity and vision, and is responsible for 
the management of the nonfunctional requirements (e.g., scalability, 
quality, performance, environmental, etc.) and for the implementation 
of the functional requirements. In our experience having an 
experienced, full-time architect on a project contributes significantly 
to its success [Hofmeister et al. 1999], [Paulish 2002].

A Qualified Full-Time Architect Manages  
Nonfunctional Requirements
The architect is responsible for managing nonfunctional requirements 
and the relationships among requirements analysis, development, 
and management.
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An Effective Requirements Management Process Is in Place
The critical success factors in a requirements management process 
are well defined by the Capability Maturity Model Integration 
(CMMI), specifically those addressing change management and 
traceability. A change control board (CCB) performs an impact analysis 
and conducts cost/benefit studies when feature changes are requested. 
The CCB acts as a gatekeeper to prevent unwanted “scope creep” and 
ensures properly defined product releases.

Requirements Elicitation Starts with Marketing and Sales
The marketing and sales organizations and the project’s requirements 
engineering staff must establish strong bonds to enable accurate 
definition of product and/or product line features. Incorrect features 
and requirements may be carried over into the requirements 
development activities and create downstream problems.

Requirements Reviews Are Conducted for All New  
or Changed Requirements or Features
Requirements must be reviewed, and the review must occur at the 
right level. Since it typically takes one hour to review four to ten 
requirements (e.g., for the first review—followup reviews may go 
faster), reviews must be conducted at a high enough level to avoid 
“analysis paralysis” and yet low enough to catch significant feature-
level defects.

Requirements Engineers Are Trained and Experienced
Requirements engineering is like any other scientific or engineering 
endeavor in that the basic skills can be learned through training. But 
without experienced staff, the project may “stall” or “churn” in the 
requirements definition stage. If the staff is new, and the team has 
more than four members, RE mentors should be used to improve the 
skills of the team.

Requirements Processes Are Proven and Scalable
When processes are defined at the start of a project, they should be 
bootstrapped from prior successful efforts, not just based on 
“textbook” examples. As the size of a project increases, or the number 
or size of work products increases, the methodologies must be scaled 
to match.

Subject Matter Experts Are Available as Needed
Arrangements must be made early on to access the experts needed to 
assist in defining requirements. For example, during tax season, tax 
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accountants and attorneys may be unavailable. Schedules cannot be 
defined unless the experts are available during requirements 
development.

All Stakeholders Are Identified
All the relevant stakeholders must be identified if requirements are to 
be properly defined and prioritized. The later key requirements are 
identified during the project, the greater the risk that major changes 
to the in-progress implementation will be necessary. Furthermore, 
the success of a product may be jeopardized by failure to validate key 
requirements.

The Customer Is Properly Managed
Customer management includes rapid feedback during prototyping, 
minimizing the number of points of contact between project staff and 
stakeholders, and maintaining strict control of feature change 
requests. It also includes using good techniques to elicit product 
features that are correct and unambiguous.

Progress and Quality Indicators Are Defined
The CMMI has a measurement and analysis practice area that 
overlaps with both requirements development and requirements 
management. Sometimes, a methodology (such as the Rational 
Unified Process [RUP] techniques for capturing text use cases) 
doesn’t include progress or work product quality measures. These 
indicators must be defined in advance, or project management will 
find it difficult to gauge project progress and make appropriate 
corrections.

The RE Tools Increase Productivity and Quality
Any software tools used must enable a process (increasing 
productivity and CMMI compliance), rather than hinder it. Positive 
outcomes may require tool integration, customization, or, in rare 
cases where there is a justifiable cost benefit, creating a new tool 
from scratch.

The Core Project Team Is Full Time and Reports  
into a Single Chain of Command
Studies have shown that a full-time core team is essential to the 
success of a large project [Ebert 2005]. Without the continuity provided 
by a committed full-time core of people, issues may “fall through the 
cracks” or not show up until problems are revealed at integration 
testing time.
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1.5 Definition of Requirements Engineering
“Requirements engineering [DoD 1991] involves all lifecycle activities 
devoted to identification of user requirements, analysis of the 
requirements to derive additional requirements, documentation of 
the requirements as a specification, and validation of the documented 
requirements against user needs, as well as processes that support 
these activities.” Note that requirements engineering is a domain-
neutral discipline; e.g., it can be used for software, hardware, and 
electromechanical systems. As an engineering discipline, it 
incorporates the use of quantitative methods, some of which will be 
described in later chapters of this book.

Whereas requirements analysis deals with the elicitation and 
examination of requirements, requirements engineering deals with all 
phases of a project or product life cycle from innovation to obsolescence. 
Because of the rapid product life cycle (i.e., innovation→development→
release→maintenance→obsolescence) that software has enabled, 
requirements engineering has further specializations for software. 
Thayer and Dorfman [Thayer et al. 1997], for example, define software 
requirements engineering as “the science and discipline concerned 
with establishing and documenting software requirements.”

1.6  Requirements Engineering’s Relationship  
to Traditional Business Processes

It is extremely important to tie requirements activities and artifacts to 
business goals. For example, two competing goals are “high quality” 
and “low cost.” While these goals are not mutually exclusive, higher 
quality often means higher cost. Customers would generally accept 
the higher cost associated with a car, known for luxury and high 
quality, but would likely balk at paying luxury car prices for a car 
expected to compete in the low-cost automotive market.

Unfortunately, some organizations may tend to decouple business 
and requirements activities. For example, business goals may drive 
marketing activities that result in the definition of a new product and 
its features. However, the business goals may have no clearly defined 
relationship to the artifacts used and produced during requirements 
analysis and definition. RE activities start at the very beginning of 
product definition with business goals and innovation. Requirements 
engineering techniques can add an element of formality to product 
definition that can improve communication and reduce the 
downstream implementation effort.
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1.7 Characteristics of a Good Requirement
Requirements characteristics are sometimes overlooked when defining 
requirements processes. They can be an excellent source of metrics for 
gauging project progress and quality. One question we typically ask 
organizations when discussing their quality processes is, “Given two 
requirements specifications, how would you quantitatively determine 
that one is better than the other?” This question may be answered by 
looking at the IEEE 830 Standard [IEEE 1998]. The characteristics of 
a good requirement, as defined by the IEEE, are listed next, with 
several additional useful ones.

It is important to distinguish between the characteristics of a 
requirement and the characteristics of a requirements specification (a set 
of related requirements). In some cases a characteristic can apply to a 
single requirement, in some cases to a requirements specification, and in 
other cases to the relationship of two or more requirements. Furthermore, 
the meaning may be slightly different when referring to a requirement 
or a specification. Care must be taken, therefore, when discussing the 
characteristics described here to define the context of the attributes.

Feasible
A requirement is feasible if an implementation of it on the planned 
platform is possible within the constraints of the program or project. 
For example, the requirement to handle 10,000 transactions per second 
might be feasible given current technologies, but it might not be feasible 
with the selected platform or database manager. So a requirement is 
feasible if and only if it can be accomplished given the resources, 
budget, skills, schedule, and technology available to the project team.

Valid
A requirement is valid if and only if the requirement is one that the 
system shall (must) meet. Determination of validity is normally 
accomplished by review with the stakeholders who will be directly 
responsible for the success or failure of the product in the marketplace. 
There can be a fine line between “must” and “nice to have.” Because 
the staff of a development team may be mainly focused on technology, 
it is important to differentiate between stakeholder requests that are 
wishful thinking and those that are actually needed to make the project 
or product a success. The inclusion of requirements that are nice but 
not valid is called “gold plating.” As the name implies, having 
requirements on a project that are not valid will almost certainly add 
cost without adding value, possibly delaying project completion.
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Unambiguous
A requirement is unambiguous if it has only one interpretation. Natural 
language tends toward ambiguity. When learning writing skills in 
school, ambiguity can be considered a plus. However, ambiguity is 
not appropriate for writing the requirements for a product, and care 
must be taken to ensure that there is no ambiguity in a requirements 
specification. For example, consider this statement:

“The data complex shall withstand a catastrophe (fire, flood).”

This statement is ambiguous because it could mean “The data 
complex shall withstand a catastrophe of type fire or flood,” or it 
could mean “The data complex shall withstand any catastrophe, two 
examples being fire and flood.” A person skilled in writing requirement 
specifications would rephrase as

“The data complex shall be capable of withstanding a severe fire. 
It shall also be capable of withstanding a flood.”
An example of an ambiguous statement is “The watch shall be 
water resistant.” An unambiguous restatement is “The watch shall 
be waterproof to an underwater depth of 12 meters.”

A measure of the quality of a requirements specification is the 
percent of requirements that are unambiguous. A high level of 
ambiguity could mean that the authors of the specification likely 
need additional training. Ambiguity often causes a project to be late, 
over budget, or both, because ambiguity allows freedom of 
interpretation. It is sometimes necessary to take a holistic view of 
ambiguity; e.g., a requirement may be ambiguous, but when placed 
in the context of the background, domain, or other related 
requirements, it may be unambiguous. Product features found in 
marketing literature (e.g., shock resistant) are typically ambiguous. 
However, when placed in the context of the detailed specifications 
used by manufacturing, the ambiguity is no longer present. On the 
other hand, a requirement may be unambiguous, but when placed 
in the context of related requirements, there may be ambiguity. 

The Use of the Terms “Valid” and “Correct”
The IEEE Standard 830 uses the term “correct.” We use the term “valid” 
instead because “correct” can be misleading. Something that is “correct” 
is said to be “without error,” or mathematically provable. However, in 
the context of a requirement, “valid” is more appropriate, as the 
requirement may be exactly what the customer wants, but it may still 
contain errors or be an inappropriate solution.
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When two requirements conflict with each other or create contextual 
ambiguity, they are said to be inconsistent (see the later section 
“Consistent”).

Verifiable
A requirement is verifiable if the finished product or system can be 
tested to ensure that it meets the requirement. Product features are 
almost always abstract and thus not verifiable. Analysis must be done 
to create testable requirements from the product features. For example, 
the requirement “The car shall have power brakes” is not testable, 
because it does not have sufficient detail. However, the more detailed 
requirement “The car shall come to a full stop from 60 miles per hour 
within 5 seconds” is testable, as is the requirement “The power brake 
shall fully engage with 4 lbs. of pressure applied to the brake pedal.” 
As we have noted, product features lack detail and tend to be 
somewhat vague and not verifiable. However, the analysis of those 
features and the derived requirements should result in a specification 
from which full coverage test cases can be created.

Modifiable
The characteristic modifiable refers to two or more interrelated 
requirements or a complete requirements specification. A requirements 
specification is modifiable if its structure and style are such that any 
changes to a requirement can be made easily, completely, and 
consistently while retaining the structure and style. Modifiability 
dictates that the requirements specification has a coherent, easy-to-
follow organization and has no redundancy (e.g., the same text 
appearing more than once), and that it keeps requirements distinct 
rather than intermixed. A general rule is that information in a set of 
requirements should be in one and only one place so that a change to 
a requirement does not require cascading changes to other 
requirements.

A typical way of ensuring modifiability is to have a requirement 
either reference other requirements specifically or use a trace 
mechanism to connect interrelated requirements.

Consistent
In general, consistency is a relationship among at least two 
requirements. A requirement is consistent if it does not contradict or is 
not in conflict with any external corporate documents or standards or 
other product or project requirements. Contradiction occurs when 
the set of external documents, standards, and other requirements 
result in ambiguity or a product is no longer feasible to build. For 
example, a corporate standard might require that all user interface 
forms have a corporate logo in the upper-right corner of the screen, 
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whereas a user interface requirement might specify that the logo be at 
the bottom center of the screen. There are now two conflicting 
requirements, and even though a requirements specification may be 
internally consistent, the specification would still be inconsistent 
because of conflict with corporate standards. Creating documentation 
that is both internally and externally consistent requires careful 
attention to detail during reviews.

Complete
A requirements specification is complete if it includes all relevant 
correct requirements, and sufficient information is available for the 
product to be built. When dealing with a high-level requirement, the 
completeness characteristic applies holistically to the complete set 
of lower-level requirements associated with the high-level feature 
or requirement. Completeness also dictates that

• Requirements be ranked for importance and stability.

• Requirements and test plans mirror each other.

A requirements specification is complete if it includes the following 
elements [IEEE 1998]:

 1. Definition of the responses of the system or product to all 
realizable classes of input data in all realizable classes of 
situations. Note that it is important to specify the responses 
to both valid and invalid input values and to use them in test 
cases.

 2. Full labels and references to all figures, tables, and diagrams 
in the specification and definitions of all terms and units of 
measure.

 3. Quantification of the nonfunctional requirements. That is, 
testable, agreed-on criteria must be established for each 
nonfunctional requirement.

Nonfunctional requirements are usually managed by the project’s 
chief architect. In order for the completed product to be correct and 
complete, it must include the testable requirements that have been 
derived from the high-level nonfunctional requirements.

It is difficult to create complete specifications, yet complete 
specifications are mandatory under certain circumstances; e.g., 
where the implementation team has no domain knowledge, or where 
communication between subject experts and developers will be 
problematic. We have seen projects where the requirements definition 
phase was shortened for schedule reasons. The general consensus 
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was that “the developers will finish writing the requirements.” But 
when doing a risk analysis, it was nearly always quite clear that 
having the developers complete the requirements was not an 
appropriate process, due to

• Limited access to subject matter experts

• Lack of experience or bias when defining product requirements

At the back end of the project, the failure to properly define the 
requirements almost always caused a greater delay than would have 
happened by allowing the requirements specification to be completed 
with the appropriate level of detail up front.

Traceable
Requirements traceability is the ability to describe and follow the life 
of a requirement, in both a forward and backward direction, i.e., from 
its origins, through its development and specification, to its 
subsequent deployment and use, and through periods of ongoing 
refinement and iteration in any of these phases” [Gotel et al. 1994]. 
Traceability is required for proper requirements management and 
project tracking.

A requirement is traceable if the source of the requirement can be 
identified, any product components that implement the requirement 
can easily be identified, and any test cases for checking that the 
requirement has been implemented can easily be identified.

Tracing is sometimes mandated by a regulatory body such as the 
Federal Aviation Administration (FAA) or Food and Drug 
Administration (FDA) for product safety. Furthermore, there are 
some rare situations where failure to create the appropriate traces 
between requirements can have legal repercussions. Traceability is 
discussed in more detail in Chapter 7.

Other Project- or Product-Specific Characteristics
Occasionally, the requirements for a specific project or product have 
characteristics that do not apply to all the projects or products. While 
it can be argued that an attribute that crosscuts all other requirements 
is just another requirement, when treated as a characteristic it is more 
likely that the requirement will be fulfilled. For example, if a new 
system is being built that must be downward compatible with an 
older system, it could be argued that the need for downward 
compatibility is just a nonfunctional requirement. However, we have 
found that having such all-encompassing requirements converted to 
characteristics makes it more likely that the completed system will be 
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in compliance. A similar approach can be used for other “umbrella” 
requirements such as

• Compliance with Sarbanes-Oxley regulations

• Meeting all corporate security requirements

• Meeting electrical safety requirements

Characteristics of a Good Requirements Specification
As was stated in the definition of consistency, the definition of  
a characteristic may be different when applied to requirements  
and to a specification. A requirements specification is a filtered 
compendium of requirements. Having the requirements in a 
document rather than a database permits holistic views and allows 
the addition of history, a rationale, etc. There are certain characteristics 
that apply to specifications as opposed to individual requirements as 
listed here:

• A requirements specification is feasible if building the product 
specified is feasible given the state of technology, the budget, 
and the allotted time.

• A requirements specification is unambiguous if there is no 
pair-wise ambiguity in the specification.

• A requirements specification is valid if every requirement in it 
is valid.

• A requirements specification is verifiable if every requirement 
in it is verifiable.1

• A requirements specification is modifiable if there is no 
redundancy and changes to requirements are easily and 
consistently made; e.g., a change to one requirement does not 
require cascading changes to other requirements.

• A requirements specification is consistent if the requirement 
set is internally consistent.

• A requirements specification is complete if it provides sufficient 
information for complete coverage testing of the product or 
system.

• A requirements specification is traceable if every requirement 
in it can be traced back to its source and forward to test 
cases.

• A requirements specification is concise if the removal of any 
requirement changes the definition of the product or system.

1  Product or business requirements specifications typically describe features, and 
as such there may be ambiguity and a lack of testability.
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Requirements elicitation and analysis are typically done under 
project time constraints. Consequently, it is important to prioritize 
and identify risks when defining requirements. For example, “If 
this nonfunctional requirement is not completely analyzed, what 
are the risks to the project, the company, and/or the user?” By 
doing a risk analysis, the effort associated with fully defining a 
requirement set can usually be balanced against the needs of the 
project. Techniques for doing risk analysis of high-level requirements 
(e.g., balancing effort against need) will be discussed further in 
Chapter 5.

1.8 Requirements and Project Failure
It must be remembered that most systems under development are not 
new; i.e., only a fraction of the requirements in the product are new or 
unique [Jones 2007]. Yet issues of requirements maintenance and 
long-term support are often missing from project plans; e.g., the 
project plan is created as though the requirements will be discarded 
after project completion. When long-term requirements management 
is not planned, requirements creep can cause significant problems 
late in a project. Furthermore, Capers Jones reports that the defect 
rate increases significantly in requirements that are injected late over 
those that are created prior to the start of implementation, and the 
most egregious defects in requirements defined or modified late in a 
project can sometimes show up in litigation [Jones 2007].

1.9 Quality and Metrics in Requirements Engineering
As was mentioned in connection with the success factors for projects, 
project indicators need to be defined in order to have some measure 
of project transparency. It is important to be able to answer the 
questions “Am I making progress?” and “What is the quality of my 
work products?” How does one, for example, determine that a 
requirements specification is of high quality?

Requirement characteristics or quality indicators are extremely 
important for determining artifact quality. They can be measured by 
inspection (metrics), and the reported metrics can then be used to 
determine the quality of individual requirements and requirements 
specifications. Furthermore, metrics summaries tracked over time 
can be used to identify potential problems earlier to permit corrective 
actions, and provide guidance as to what type of corrective actions to 
take. For example, a high level of ambiguity in a requirement set 
might indicate that the analysts creating the requirements may need 
additional training in requirements writing. Some of the chapters in 
this book provide guidance on how to capture and use metrics to 
improve requirements processes.



 16 S o f t w a r e  &  S y s t e m s  R e q u i r e m e n t s  E n g i n e e r i n g :  I n  P r a c t i c e

Function Point Metrics as Leading Indicators
A function point is used to estimate the complexity and effort 
necessary to build a software product. Capers Jones has published 
extensively on this topic [Jones 2007, 2008]. Function point metrics 
are an excellent way of identifying potential problems with 
requirements prior to the implementation of a project. Furthermore, 
there is a clear correlation between function points and requirements; 
that is, function points can be used as an indicator of requirements 
creep and quality. Furthermore, it has been shown that function point 
analysis (FPA) can be effective in determining requirements 
completeness [Dekkers et al. 2001].

1.10 How to Read This Book
We suggest that you start by reading Chapters 1 and 2 before looking 
at any of the other chapters. They lay the groundwork for the 
remaining chapters by defining basic terminology that is used 
throughout the book.

Chapters 3 and 5 describe techniques for eliciting requirements. If 
you are interested in gathering requirements for software platforms 
or middleware, we also suggest that you read Chapter 6.

Chapter 4 describes modeling techniques that can be used for 
business or use case analysis. One specific method that has been used 
successfully at Siemens on several projects, the hierarchical 
decomposition of use cases, is described in detail.

Chapter 9 is devoted to rapid prototyping and describes a simple 
technique that has been found useful in the development of systems 
that are categorized by workflow and graphical user interfaces.

Chapter 7 describes techniques and best practices for requirements 
management. If you are interested in managing environments where 
the work may be distributed, then read Chapter 10 as well.

Chapter 8 describes advanced techniques for transforming 
requirements into test cases. It will be of interest to project and quality 
assurance staff. However, as Chapter 8 uses model-based methods, 
be sure to read Chapter 4 before reading Chapter 8.

Finally, Chapter 11 describes hazard and threat analysis and 
management in the context of a requirements engineering process. If 
you are an analyst working in a domain that is regulated or where 
there is the potential for physical or financial harm to an end user of 
a product, we recommend reading this chapter.

1.11 Summary
We’ve introduced some of the key challenges for requirements 
engineering and some of the success factors to achieve good RE. 
We’ve provided a definition of requirements engineering, and we’ve 
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described the characteristics of a good requirement and a good 
requirements specification.

1.12 Discussion Questions
 1. Why is good requirements engineering more important to 

product development than it was ten years ago?

 2. What are the differences between good requirements and a 
good requirements specification?

 3. What are some of the key full-time roles necessary for a 
project to be successful?

 4. What is the role of the chief architect?
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“Without goals, and plans to reach them, you are like a ship that  
has set sail with no destination.”

—Fitzhugh Dodson

2.1  Introduction
In order to successfully reach a destination, travelers needs to know 
where they are going. For most of the software and system 
development life cycle, the work products are well understood, and 
professionals generally have a reasonable understanding of how to 
create them. Requirements engineering is somewhat different, since 
it is a relatively new field in which fewer have worked; sometimes 
the objectives can be a bit obscure or hard to define. A lack of well-
defined work products may result in ill-defined RE artifacts and 
processes, with repercussions felt in the downstream phases of the 
life cycle. This chapter discusses an important aspect of requirements 
engineering work; that is, fully and accurately defining RE work 
products and their relationships. While the examples shown here are 
specific to RE, many of the techniques could (and in some cases 
should) be extended to the entire project life cycle.

The purpose of requirements engineering artifact modeling is to

• Define a reference model for RE that provides the core set of 
RE artifacts (work products) and their interdependencies.

• Guide the establishment and maintenance of product- and 
project-specific RE processes [Geisberger 2006].

Thus, early requirements engineering activities include

• Analyzing marketing information, stakeholder, and user 
needs to derive the functional and nonfunctional requirements 
to be met by the system’s design

• Understanding the effect of these requirements on the 
business that creates the product

• Consolidating these requirements into consistent and 
complete requirements and systems specifications as defined 
in the Requirements Engineering Artifact Model (REAM).

RE artifacts are used to support product design and project 
management decisions throughout the entire product life cycle. The 
quality and appropriateness of these artifacts is a key factor for 
successful system development. Developing consistent and 
comprehensive specifications of the “desired” system is an important 
objective of RE.
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Thus, the key components of requirements engineering artifact 
modeling are

• An RE artifact model as a measurable reference model that 
can be used to support interdisciplinary communication and 
specifications development

• A process tailoring approach that specializes the RE artifact 
model to specific organizational or project needs

• RE artifact-centered process guidelines that define completion 
levels of the RE artifact model. The specified completion levels 
form a baseline for measuring project progress and artifact 
quality.

2.2  RE Taxonomy1

It is important that all stakeholders and process participants in the 
development of products understand the meaning of each 
requirements engineering term to represent the same thing. If, for 
example, customers, product managers, and manufacturing 
understand the term “feature” to mean different things, there may be 
difficulty with quality assurance tasks and related productivity. While 
universal definitions exist for many terms in requirements engineering, 
there is still disagreement within the RE research community as to the 
meaning of some terms such as “nonfunctional requirement.” 
Consequently, it may be necessary for an organization or project to 
create its own set of definitions wherever there is the potential for 
misunderstandings.

We recommend that a project or product team have a glossary of 
terms. An enterprise-wide dictionary is always preferable but may 
not be feasible; e.g., different parts of an organization may be working 
in different domains.

A taxonomy is a collection of controlled vocabulary terms 
organized into a hierarchical structure. Taxonomies are commonly 
used to classify things; e.g., a taxonomy of the insect world. An 
example of a taxonomy for requirements is given in Figure 2.1. In 
well-structured taxonomies, each term has only one parent. However, 
depending on need, it is possible to have poly-hierarchies where  
a term can have more than one parent. Figure 2.2 illustrates the 
difficulty of creating taxonomies; i.e., there may be multiple ways of 
representing concepts. Note that a term can appear in more than one 
place in a taxonomy.

1  www.metamodel.com/article.php?story=20030115211223271

www.metamodel.com/article.php?story=20030115211223271
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The difference between a glossary and a taxonomy is that in a 
glossary, terms are listed alphabetically and defined, whereas in a 
taxonomy, terms are grouped into classifications. To create a glossary, 
we recommend starting with a taxonomy of RE terms (e.g., Figure 2.1). 
The terms that would then go into the glossary are the leaves of 
the taxonomy tree plus any additional domain- or organization-
specific terms.

A complete RE taxonomy would include the classification of all 
artifacts associated with a requirements engineering process, not just 
the categorization of requirement types. Since the artifacts can change 
from organization to organization or project to project, any such 
taxonomy would have to be extensible (see the later section “Using 
the Artifact Model”).

Taxonomies can be quite extensive. As an example, see the 
fragment of the taxonomy for security requirements given in 
Figure 2.3 [Firesmith 2005].

Nonfunctional
Requirement

Performance
Requirement

Quality
Requirement

Durability Appearance
Appearance

Quality
Requirement

Nonfunctional
Quality

Requirement

Functional
Quality

Requirement

Luxury
Features

FIGURE 2.2 Two taxonomies illustrating differing representations of the 
same concepts
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taxonomy 
suggested by 
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Getting Started with a Taxonomy
Capers Jones [Jones 2008] suggests the following approach as a starting 
point:

 1. Start with the NAIC codes.

 2. Using these codes, identify your industry or domain.

 3. Then identify the scope (e.g., algorithm, prototype), class (e.g., 
internal product, external salable product), and type of 
application (e.g., batch, embedded software, mechanical 
panel).

A good starting point for creating a project- or product-specific 
taxonomy is the North American Industry Classification (NAICS) 
provided by the U.S. Government [NTIS 2007]. This classification 
system is a great starting point for creating a domain/project/
product-specific taxonomy.

FIGURE 2.3 Sample taxonomy fragment for security requirements (Picture 
courtesy of Donald G. Firesmith, Software Engineering Institute, 2005)
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Taxonomy Attributes
Any taxonomy for requirements engineering work products should, 
as a minimum, have the following attributes:

• Complete At the leaf level, include every requirement type 
that will be used by the organization or project. The 
categorization of requirements is critical when defining 
metrics (see Chapter 7). Without a proper categorization, it 
may not be possible to do a filtered query of a large 
requirements data store and return meaningful information.

• Extensible Companies should be able to take a core 
taxonomy and extend it. The sample fragment shown in 
Figure 2.3 is an example of a complex extension for security 
requirements.

• Navigable The taxonomy should be easy to navigate, 
possibly with hyperlinks on web pages.

• Valid There are many potential taxonomy sources; however, 
it is important that any such taxonomy used by an organization 
or on a product should be validated with other sources such 
as textbooks or experts.

• Systematic The categories should be well chosen and be at 
the same level.

Creation of an RE Taxonomy
There are many fine references and tools available to assist with 
the creation of taxonomies.2 We recommend the following simple 
steps (see the starting point suggested by Capers Jones in the 
sidebar on the previous page):

• Identify the tooling that will be used and how the taxonomy 
will be presented to project staff, keeping in mind that the 
taxonomy may have to be updated periodically, and there 
may be links to other tools; e.g., the taxonomy and the artifact 
model that will be described in the next section are 
interrelated.

• Collect all the requirement types that are currently in use or 
planned. Group them together.

• If the project is an incremental development, mine the 
requirements for classes. Note that Capers Jones estimates 
that as many as 75 percent of all new projects are incremental 
changes to an existing product.

2  www.loc.gov/flicc/wg/taxonomy.html

www.loc.gov/flicc/wg/taxonomy.html


 C h a p t e r  2 :  R e q u i r e m e n t s  E n g i n e e r i n g  A r t i f a c t  M o d e l i n g  25 C h a p t e r  2 :  R e q u i r e m e n t s  E n g i n e e r i n g  A r t i f a c t  M o d e l i n g  25

• Categorize by grouping and create a draft taxonomy. For 
example, network performance requirements, UI performance 
(response time), query response times, etc., might all be 
grouped under Performance Requirements.

• Make sure that complete, agreed-upon definitions are 
available for every term that will be in the requirements 
taxonomy, including parent terms.

• Create a draft taxonomy and circulate to stakeholders for 
comments.

• Revise and publish (usually to the web).

• Provide feedback and maintenance mechanisms (including 
processes and identified roles) for keeping the taxonomy up-
to-date.

Other Types of Taxonomies Useful in RE
In addition to a “generic” RE taxonomy covering the classification of 
requirements, there are other artifact taxonomies that may be useful. 
For example, a document classification taxonomy can be used to identify 
common templates, assist with planning processes such as version 
control and baselining, and aid in the training of staff. The leaves of 
such a document classification taxonomy should all be real documents 
that are created by the organization or project staff. A partial 
requirements document classification taxonomy can be seen in 
Figure 2.4.
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FIGURE 2.4 Sample partial taxonomy of requirement documents
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Taxonomy Extension
To extend a taxonomy is a rather simple undertaking. The classification 
tree is extended with artifacts of the appropriate classification (see 
Figure 2.5). Figure 2.6 illustrates how detailed a taxonomy can become. 
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Functional Testable
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FIGURE 2.5 Sample extension of a taxonomy

FIGURE 2.6 Taxonomy of business needs artifacts
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If templates with the appropriate attributes are filled in for each 
artifact, process definition is much simpler (see the section “Extending 
an Artifact Model to Augment Process Definition”).

2.3  RE Artifact Model
An RE artifact model (REAM) is a meta-model for the structuring of 
requirements engineering work products. A meta-model is an explicit 
model of the constructs and rules needed to build specific models 
within a domain of interest. An RE artifact model contains all the 
artifacts referenced, modified, or created during requirements 
engineering activities. The artifacts shown on REAM diagrams are 
those that are actually used in a project, and they each have a name 
and definition.

Upon first glance, the REAM diagram may appear similar to a 
software class diagram. However, there are some significant 
differences. A software class diagram may show many different types 
of relationships between objects, whereas an RE artifact model only 
shows simple associations (a single solid line). For example,

• Classes shown on a class diagram may have methods and 
attributes; an RE artifact only has a name and description.

• A class diagram may show abstract classes, or classes for 
which there is no physical representation; an artifact model 
only shows real objects that will be used or created during a 
requirements engineering activity.

An artifact model is different than a taxonomy in that it is a graph 
rather than a tree, has many more artifacts than what would be in a 
taxonomy, and typically contains many domain specific extensions.

Both a REAM and a taxonomy can be multitiered, so that selecting 
an object can open onto a different diagram. However, care must be 
taken in that while a taxonomy lends itself well to a hierarchical 
approach, artifact models tend to be flatter. For example, an object on 
one REAM diagram might have a relationship with an object on a 
different diagram.

Elements of an Artifact Model
A fragment of an artifact model is shown in Figure 2.7. It consists of 
the following elements:

Actor Use Case
* Participates in *
1     Initiates       *

FIGURE 2.7 Simple artifact model
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• Artifact A rectangular box with the name of the artifact. The 
definition of each artifact should be in a glossary or taxonomy 
accompanying the model.

• Association A line connecting two artifacts. The line 
indicates that there is a relationship between the artifacts. 
Every association must be labeled to indicate the relationship 
between the artifacts.

• Cardinality The cardinality indicates quantities. Any 
numbering convention can be used if appropriately defined; 
however, the Unified Modeling Language (UML) notation3 is 
typically used. If the cardinality is not specified on an 
association, then unity is implied.

Figure 2.7, showing a sample model fragment, can be read as 
follows: “One or more actors participate in one or more use cases, and 
an actor can initiate one or more use cases.”

Creation of a Requirements Engineering Artifact Model
The actual creation of an artifact model is not difficult. What is important 
is to have a holistic understanding of the business processes used from 
product creation through maintenance. It may be necessary to identify 
an individual within an organization who can interact with stakeholders 
across the different organizational units. Across the entire organization 
and product life cycle, then, these questions must be asked:

• What are the artifacts that the roles use?

• How are the artifacts related?

• Who creates them?

• Who modifies them?

• How do they become obsolete?

Consider, as an example, a small company creating a software 
product. They may have the following artifacts:

• Business plan

• Business goals

• Marketing brochure(s)

• Product features

• Customers

• Product definition

• Test plan

3  The UML specification can be found at www.omg.org.

www.omg.org
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• Test cases

• System requirements

• Customer requirements

• Product design

• …

For creating the REAM, we first want to see how the products are 
related. We expect, for example, that a business plan will contain 
business goals (Figure 2.8). We can then model the artifacts and the 
relationships between them. We know that the business goals will be 
used as inputs to define the products. The products will be described 
in a marketing brochure (Figure 2.9).

Various techniques are used to define the features that the 
product needs to have in the marketplace to meet the business goals. 
At this point, product features have to be tied to business goals. Since 
the model is a simple construct, any drawing tool can be used to 
create one. UML modeling tools work quite well, as do general-
purpose drawing tools such as Visio. However, it may be necessary 
to trace between different artifacts. Furthermore, it is important to 
have clear definitions of all the artifacts. This, in turn, may require 
stakeholder involvement. Also, if there is a taxonomy, all the leaves 
in the taxonomy should be in the artifact model. Since artifact models 
can be quite comprehensive, we may start with a subset. Let’s say, 
for example, that, given the artifacts described, we wind up with an 
initial draft REAM as shown in Figure 2.10.

There are some things missing from this draft REAM that would 
have to be added, including metrics, artifact reviews, project plans, 
standards and procedures, and so forth. Here are some other important 
things to consider that tend to be neglected until well into the project:

• Internal training standards and procedures

• Maintenance requirements (e.g., how will the product be 
maintained, what are the artifacts that will be needed to 
properly maintain the product after deployment?)

• Product documentation, including training manuals, marketing 
literature, internal maintenance manuals, and so on

• Holistic tool support that works across organizational 
boundaries (e.g., from the help desk to design)

Business Plan Business Goal
*

ContainsFIGURE 2.8  
Starting fragment

FIGURE 2.9  
Next model 
fragment

ProductMarketing Brochure
Describes

1..*



 30 S o f t w a r e  &  S y s t e m s  R e q u i r e m e n t s  E n g i n e e r i n g :  I n  P r a c t i c e

2.4  Using the Artifact Model
The artifact model that is created prior to the start of a project is like 
looking at the X-ray of a patient prior to starting surgery. The model 
is used by most stakeholders (except possibly customers). Examples 
of the RE artifacts that will be used by the various roles of a 
development project are given in Table 2.1.

Extending an Artifact Model to Augment Process Definition
Artifact models can be extended to support process definition. For 
example, we may add artifacts such as completion status, decision 
gates, checklists, etc. (Figure 2.11). At the beginning of a project, a 
draft artifact model is created. The model is then used to define the 
product life cycle processes. After review, the artifact model and the 
defined processes are continually updated. While the upfront costs of 
creating a model may appear high, in our experience it is a very fast 
and cost-effective activity. Furthermore, just having project staff think 
about downstream artifacts, quality gates, and approval checklists 
can result in significant efficiencies.

2.5  Using Templates for Requirement Artifacts
A suggested way to get started creating a REAM is to use a template 
to fill in the information about each artifact in the model. A sample 
template is shown in Figure 2.12.

The template is filled out for each artifact and then maintained 
with the same tool used to create the drawings. As mentioned 
previously, commercial tools are available; however, for a staff with 

FIGURE 2.10 Example requirements engineering artifact model
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Role (Cluster) Objective Functional Area RE Artifacts 

Product 
Management 
(ProdM)

Delivery of cost-
effective products and 
solutions that meet 
customer needs 

Planning and managing the entire life cycle 
of a product, including identifying customer 
needs, system vision, and scope

Business objectives, customer/user 
requirements, system vision, conditions and 
scope, product portfolio, return on investment 
(ROI), risks, system success factors

Requirements 
Engineering 
(RE)

Qualified and 
comprehensible/
reusable product 
decisions

Refinement and analysis of business objectives, 
reasonable and consolidated modeling of 
customer/user and business processes 
(functional, domain, quality goals, constraints)

Analysis models of customer and business 
needs (functional, domain, quality goals, 
constraints), user interface and system 
specification, acceptance conditions

Systems 
Architecture 
(SA)

High-quality and cost-
effective system design 
that meets business 
requirements

Specifying system architecture according to 
quality and business requirements, defining 
the system structure, decomposing the 
system into functional interface specifications

Comprehensible functional system specification, 
system integration and interface specification, 
release planning, system test criteria

Project 
Management 
(ProjM)

Delivering the product 
solution within project 
constraints

Planning and managing the product 
development, process definition, 
measurement and control

System specification, design constraints, 
risk analysis, process requirements and 
constraints

Development 
(Dev)

Build to specifications Implementation of product solution, including 
(hardware) design, coding, integration, testing

System/interface specification, design 
constraints, integration plan, system test criteria

Quality Assurance 
(QA)

Ensure verified product 
quality 

Review and measurement of all specifications 
according to domain-specific quality standards

Measurable specifications, system integration, 
and (acceptance) test specification

Release 
Management 
(RelM)

Incremental release of 
product features

Release planning and execution according 
to market strategy, system structure, 
development sequence, and integration

Release strategy, system specifications, 
release planning, corresponding system 
interface, integration and test specification

TABLE 2.1 Use of an Artifact Model by Project Roles
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developers it would be a relatively simple matter to extend a tool 
such as PowerPoint or Visio using the macro language. Once 
published to the web, the model and definitions are available to all 
the roles involved in the definition and creation of a product. A 
sample filled-in template for business and customer requirements is 
shown in Figure 2.13.

If the template is for an artifact that will be created by the staff 
associated with the product, we recommend creating a checklist  

Phase Decision Gate Checklist

Completion Level Document

RE Artifacts

Activity Role

Template

Method

Tool

Characterize Determine

DetermineDetermine

Relate to

Define

Complete

Produce

Construct

Support
Contribute/is responsible

FIGURE 2.11 Process artifacts

Artifact group

Artifact X

Responsible: Contributing:

Contributing:

Description:

Purpose:

References:

Artifact Y

Responsible:

Content item

Content item

Content item

Mandatory

Mandatory
Recommended
Optional

FIGURE 2.12 Sample artifact information template
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or set of quality indicators (see Figure 2.11) that can be used to 
determine:

• What is the quality of the artifact? Does it need rework?

• Has the artifact been completed? What are the criteria for 
completion?

• What is the status of the artifact; e.g., suggested, draft, 
completed, sunset?

FIGURE 2.13 Filled-in artifact template for business requirements

Business and Customer Requirements Mandatory

Responsible: Prod M Contributing: RE, SA

MandatoryBusiness Objectives

Summarize the important business benefits the system will provide, preferably 
in a way that is quantitative and measurable. The background and business 
opportunities of the future system are described. This includes a description 
of business problems that are being solved, and a comparative evaluation of 
existing systems and potential solutions. The rationale for the system 
development is described, and how the system aligns with market trends or 
corporate strategic decisions is defined.

Description: The Business Objectives and Customer Requirements identify the
primary benefits that the new system will provide to the customer and to the 
organization that is developing the system.

Customer Requirements Mandatory

Summarize the needs of typical customers or users. Customer needs are 
defined at a high level for any known critical conditions, interface, or quality 
requirements. They provide examples of how the customer will use the system
and identify the components (hardware and software) of the environment in
which the system will operate. Explicitly define the value the customer/user
will receive from the future system and how it will lead to improved customer 
satisfaction.

Purpose: Business and customer requirements serve as entry points to 
context analysis and the specification of the required features and 
characteristics of the System Vision and the definition of the general 
Conditions & Scope of the development.

By identifying the business objectives, the situation, and the critical conditions, 
collect business risks associated with the developing (or not developing) this 
system systematically as input to risk and cost/benefit analysis (ROI & Risk).

References: [Wie 1999] gives an overview of business requirements and provides 
a list of possible customer values.
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2.6  Dynamic Tailoring of an Artifact Model
Software projects come in different sizes and use different 
methodologies. Large plan-driven projects can take years to 
implement and have staffs of well over 100 developers. Small, agile 
projects might have just two or three developers, and the project 
duration could be as short as a week or two. When creating a REAM 
for a project, clearly one size does not fit all. If an organization has a 
range of projects on an ongoing basis, it is a good practice to provide 
some built-in tailoring facilities. An artifact, for example, could be 
mandatory on a “large” project, optional on a “medium-sized” 
project, and not used at all on a “small” project. If the project artifacts 
are tagged during the creation of the artifact model, it then becomes 
possible to filter and present the required information, or to couple it 
to a workflow used to reinforce the process. Tailoring techniques 
range from simple manual selection of artifacts to very sophisticated 
approaches such as the use of neural nets [Park et al. 2006]. Regardless 
of the tailoring approach, it will not work unless the artifacts in the 
model have attributes that permit them to be evaluated based on 
type, size, and duration of the project. An example of a small model 
used to define the artifacts for a prototyping effort can be seen in 
Figure 2.14. An example table fragment for defining tailoring rules is 
shown in Figure 2.15.

2.7  Organizational Artifact Model Tailoring
In addition to the tailoring of an artifact model for a specific project, 
high-level organizational models can be used as the starting point 
for the creation of project-specific models. An example is given in 
Figure 2.16. The starting point was a corporate-level model defining 
the core artifacts needed on any project. That model is then modified 
for the specific organization within the company, and finally the 
model is completed on a per-project basis.

FIGURE 2.14 Artifact model for small prototyping project

Business Goal Feature Prototype

CustomerStakeholder Request

Used to
identify Shown in

Shown to

May provide 
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1..* 1..* 1..*

1..*

1
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FIGURE 2.16 Organizational tailoring of an artifact model
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2.8  Creating a System Life Cycle Process
As was mentioned earlier, both a taxonomy and an artifact model are 
useful in the creation of system life cycle processes. By adding 
attributes to the artifacts that specify when they are needed (based on 
the type and size of the project), a query will result in the production 
of a list of all the appropriate artifacts. Project management can then 
use this list for planning, including the definition of decision and 
review points, work products needed, and quality artifacts needed to 
measure project quality and efficiency. An example process creation 
approach is illustrated in Figure 2.17.

Process creation to some extent can be automated, depending on 
how much of an investment the organization is willing to make in 
tooling. Automation of process creation can include

• Generation of selected project templates

• Assembly of standards and procedures from a library

FIGURE 2.15 Sample table for tailoring RE processes
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• Drawing of a filtered, domain, and project-specific artifact 
model

• Population of a rule set for a workflow engine

In general, it is much better to have an “active” rather than 
a “passive” process. An active process is one where rules are used to 
prompt and inform staff about activities and provide templates for 
documents that have already been tailored based on the project type. 
A passive process is where documents (e.g., standards, procedures, 
templates) are stored containing process information, and the project 
staff has to download and read the relevant information.

2.9  Tips for Requirements Engineering Artifact Modeling
Some suggested practices for modeling requirements engineering 
artifacts are summarized below:

• Define a Glossary of Terms for your project or product.

• Create an RE Taxonomy while keeping in mind what tools 
will be used to maintain it and how it will be communicated 
to the project team (e.g., publish to a project web site).

• Develop an RE Artifact Model specific to your project.

Create
Taxonomy

Create 
Artifact 
ModelCreate Artifact

Information Sheets

Define Process Levels Define 
Processes

Create 
Workflows 

for 
Processes

Define Process
Rule Sets

Primary
Activity

Supporting
Activity

Included activity

FIGURE 2.17 RE activities for process creation
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• Communicate project roles to all team members and the 
artifacts they are responsible for as defined in the RE Artifact 
Model.

• Use templates to define RE artifacts.

• For scaling projects, provide tailoring information in the RE 
Artifact Model; e.g., a specific artifact may be mandatory, 
optional, or not used, depending on the project size.

• Tailor the RE Artifact Model for a specific project from any 
corporate-level models, if they exist.

• Create a system life cycle process by adding needed timing to 
the defined artifacts.

2.10  Summary
We have seen in this chapter how taxonomies are used to define and 
classify work products that are referenced, created, or modified 
during the requirements engineering process. A taxonomy is typically 
the starting point for the creation of a project glossary and a 
Requirements Engineering Artifact Model. An artifact model for an 
organization is essential for the definition of requirements engineering 
processes; however, the same techniques can be extended to defining 
the entire life cycle model. Organizations that have different types of 
projects need to be flexible in their approach to process definition, so 
that small projects will not be burdened with excessive bureaucracy 
and paperwork, while larger projects will have the infrastructure and 
tools necessary to succeed.

2.11  Discussion Questions

 1. Where are taxonomies used outside of requirements 
engineering?

 2. What are the differences between a taxonomy and a glossary?

 3. What are some project roles, and which artifacts do they use?

 4. Must each project create its own artifact model? Are there 
tailoring techniques to help select artifacts for different 
projects?
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“The hardest single part of building a system is deciding what to build…  
No other part of the work so cripples the resulting system if done wrong.  

No other part is more difficult to rectify later.”

—Dr. Fredrick P. Brooks, Jr.

3.1  Introduction
Elicitation is the process of identifying the needs and bridging the 
disparities among involved communities for the purpose of defining 
and distilling requirements to meet the needs of an organization or 
project while staying within imposed constraints. It involves all 
aspects of meeting with stakeholders, recording their needs, and 
classifying them into a manageable set of stakeholder requests that 
will later, through an analysis process, become requirements. There 
are many different elicitation techniques that can be used, and many 
of these techniques (brainstorming, for example) have been rigorously 
described in several texts [Clegg et al. 2007], [Conway Correll 2004], 
[Souter 2007]. We differentiate between elicitation and analysis as 
follows:

• Elicitation is the interaction with stakeholders to capture their 
needs.

• Analysis is the refinement of stakeholder needs into formal 
product specifications.

In this chapter, we will describe some of the more well-known 
techniques of elicitation from the perspective of what works, what is 
important, and how to drive a successful elicitation effort. Rather than 
describe any single elicitation technique in detail, we will review some 
commonly used techniques, suggest some best practices, and identify 
problems that can arise during elicitation and how to address them.

As Dr. Brooks points out in the opening quotation [Brooks 1995], 
one of the most difficult parts of the development life cycle is the 
identification of key requirements. Analysts can sometimes begin 
working on a project with a predisposition or bias that may impact their 
work. For example, if software developers are given the task of defining 
product requirements, they may start with solutions with which they 
are most comfortable, e.g., “Sentence first—verdict afterwards.”1 
Analysts must be trained to separate solutions from requirements when 
transcribing client needs and creating requirements specifications.

We start by discussing some of the difficulties in successfully 
eliciting the requirements for a product or service, including the 
different types of situations that can affect the approach used for 
collecting requirements. We then discuss key issues. Finally, we 
discuss approaches that can be used to elicit customer needs along 
with some metrics that can be used to measure progress.

1  As stated by the red queen in Alice’s Adventures in Wonderland by Lewis Carroll.
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3.2  Issues and Problems in Requirements Elicitation
Eliciting requirements from stakeholders can sometimes become a 
painful, drawn-out, and thankless task. Collecting requirements may 
be viewed as an afterthought or assigned to junior staff. There may 
even be situations where there are no documented requirements until 
the project is nearing completion and the staff realizes that requirements 
are necessary to create test cases, or even worse, a requirements review 
is necessary for client acceptance or payment. A difficult task may 
then begin to reverse-engineer requirements for a system that is 
already in system test or nearing completion. When requirements are 
reverse-engineered from a product under construction purely for 
contractual reasons, the finished system may not meet the client’s 
needs or be accepted. If the definition of nonfunctional requirements 
is delayed until the end of the project, the system may turn out to be 
inadequate for the intended purpose; e.g., it may not meet the needed 
performance, reliability, or security goals. Typical situations that may 
impede or otherwise affect the requirements elicitation process are 
described in the sections that follow, along with suggestions for 
handling them.

The Missing Ignoramus
Elicitation should be led by senior staff members with experience and 
training in requirements elicitation techniques. An elicitation team 
composed of a mixture of experienced staff and not-so-experienced 
staff enables the mentoring and training of less-experienced members 
of the team. Furthermore, it is usually advisable to have someone 
involved with the elicitation process who has no domain knowledge, 
e.g., someone who is not afraid to ask “what does that mean?” Professor 
Dan Berry of the University of Waterloo refers to such an analyst  
as a “smart ignoramus” [Berry 1995]. Without such people present, 
situations can arise where insufficient information is collected, or 
worse, the same term is used to mean different things. On one occasion 
one of the authors was the facilitator in a brainstorming session to 
gather requirements for a payroll system for automobile dealerships. 
During a discussion of contractual issues he asked the simple question 
“what is a contract?” Several managers were dumbfounded that he 
should ask such a question—after all, it was perfectly obvious what a 
contract was. Yet it still took three days for the participants to agree on 
a viable definition of contract.

It is beneficial to have the elicitation team ask the question “why?” 
When a need is identified, by asking why, you may find legitimate 
reasons for the need, or you might find out it is “feature folklore.” 
Folklore is something that has been done on every project, but such 
features have no value to the customer and nobody knows why they 
are there. This can result in the elimination of an unnecessary need 
that turns into a requirement that you implement and the customer 
does not want.
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The Wrong Stakeholders
A stakeholder or subject matter expert may not speak for an entire 
organization. It is important during elicitation that the team capturing 
the data understands the relationship of the expert to the organization 
and project; i.e.:

• Is the expert speaking for the entire organization?

• Are there differences of opinion regarding functionality or 
issues that have not been resolved?

• Are the stakeholders knowledgeable about the domain under 
discussion?

Untrained Analysts
An untrained analyst may be a very senior, skilled, or business-savvy 
person. However, the job of the analyst is to capture organization, 
project, or product needs, and not to engage in wishful thinking or 
make solution decisions.

On occasion, we have used software developers or database staff 
to assist in capturing stakeholder requests (note: requests are not 
requirements until they have gone through a review process and been 
accepted). It can be very difficult for an untrained person to separate 
need from solution. For example, database analysts might think of 
database configurations as they conduct interviews and place their 
thoughts in with the stakeholder requests. For example: “There shall 
be a table for storing customer names and addresses” rather than 
“The new system shall store customer names and addresses.” 
Similarly, developers will naturally try to design as they capture 
needs or define requirements: “The customer names shall be cached 
to ensure rapid retrieval” as opposed to “The new system shall be 
able to rapidly retrieve customer names and addresses.”

Not Identifying Requirements Level
Requirements are often captured at different levels of detail (see 
Figure 3.1). For example, “The car shall have power steering” 
recorded alongside “The power steering coupling shall use metric 

FIGURE 3.1 Requirements pyramid

Business Requirements: Why do we develop the product?
Captured in a vision and scope document (V&S)

Customers Requirements: What are customers’ expectations?
Captured in a customers requirements specification (CRS)

System Architecture/Design
Captured in architecture documentation

Problem Space
(RE Scope)

Solution Space
(not RE Scope)
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hex head screws.” Meetings to elicit requirements can be sometimes 
chaotic, with customers rambling or not necessarily focusing on one 
specific topic. While it is important to have stakeholders’ focus, it is 
also important not to lose any worthwhile information. Therefore, 
when stakeholder requests are captured, it is important to tag the 
information recorded with one or more attributes describing the 
level of the captured information, along with which stakeholder is 
requesting it. For example,

“We want to have the safest car on the market. So we plan to have 
an interlock system between the brake and the transmission. The 
interlock will decouple the transmission when the brake is pressed. 
We should use ½-inch stainless steel for the decoupling rod for safety 
purposes, and to prevent corrosion in climates where salt is used on 
the roads from eroding the coupling.”

In this example there are requirements at several levels, along 
with some design decisions mixed in with the requirements. When 
captured and placed in a requirements database, the tagging might 
look as shown in Table 3.1.

Note that the selection of stainless steel was removed because it 
was a proposed solution, not a requirement.

Failure to Accurately Identify Stakeholders
Imagine being at a meeting with ten or fifteen stakeholders 
representing hospitals and health care networks. One stakeholder 
suggests a product feature that would allow patients or doctors to 
schedule appointments for medical services over the web. Another 
stakeholder feels that it is a good idea, but not as urgent as having 
doctors schedule appointments and services from their PDAs. During 
prioritization meetings it is determined that both requests cannot be 
satisfied in the first release of the hospital scheduling system. One of 
the requests came from a ten-thousand-bed health care network, and 
the other request came from a small, one-hundred-bed hospital. 

Request Request Type (or Level) Stakeholder

Safest Car on the 
Highway

Business Goal Sales VP Smith

Interlock Between 
Brake and 
Transmission

Customer Requirement Rental Car  
VP Jones

Corrosion-
Resistant Coupling 
Mechanism

System Requirement Engineering  
Mgr. Carlson

TABLE 3.1 Level of Requirements
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Unfortunately, while the meeting information is available, the names 
of the customers requesting the features were never recorded. Thus, 
the information needed for prioritization and release scheduling is 
missing. So, it is very important to record stakeholder information 
when collecting product requests.

Problems Separating Context from Requirement
Eliciting stakeholder requests to create requirements can be a difficult 
task when stakeholders ramble. Sometimes, stakeholders will confuse 
background with need. For example,

“We need to have cars stop at the intersection when the light 
changes in order to avoid accidents. Drivers should therefore be 
able to see the signal from at least 50 feet away in the rain, and 
then apply their brakes if the light is red. We do not want drivers 
going through red lights.”

In the preceding paragraph there is only one real potential 
requirement, that the drivers should be able to see the signal from at 
least 50 feet away. Everything else is either wishful thinking or out of 
scope for requirements for a signaling system. It is possible that a 
township might insist on a contract clause that states “after installation 
of the signaling system there will be no more accidents caused by cars 
running red lights.” However, it is not physically possible for any 
commercial traffic signal system to guarantee that there will not be 
any accidents, since drivers and their cars are not controlled by the 
system and furthermore, even if they were, no system can have perfect 
reliability.

One way to prevent the intermixing of requests and requirements 
with need is to carefully separate context and background from 
stakeholder requests. Requests are something that the system shall do. 
Context might include information about the way the environment 
will be impacted by the system after installation. Context might also 
include background information about the reason the system is being 
purchased or created; it might include background information 
describing the environment. We recommend that background 
information be kept in separate documents or, at the least, in separate 
sections of a document, e.g., sections on what the customer would like 
to accomplish, and the customer’s environment before and after the 
system being proposed is operational. Under no circumstances should 
the “will” statements appear in a requirements specification. 
Specifications may become part of binding contracts, and it is important 
to avoid having wishful thinking or expected external behavior 
contractually guaranteed by a supplier.

Failure to Collect Enough Information
Some stakeholders or domain experts can be difficult to track down 
and meet with. Problems of elicitation can be exacerbated if a key 
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subject matter expert is available for only limited periods of time. On 
a taxation system project that we worked on, for example, the 
requirements engineers were informed that the tax accountants and 
attorneys were very busy (during tax return preparation season) and 
could meet with the analysts only one hour a week.

Once an elicitation cycle is completed, it can be difficult in some 
cases to revisit open issues with stakeholders. Therefore, it is important 
to collect as much information as possible during elicitation sessions. 
One way to do this is to have representatives of development, 
manufacturing, and testing present their requirements wishes during 
elicitation sessions. We also recommend that access to subject matter 
experts be part of the initial planning for a project. Very often the 
people who know the most about a topic are those a company may 
rely most heavily on, and consequently, their availability may be very 
limited.

Requirements Are Too Volatile
Capers Jones and Walker Royce have estimated that for most projects 
there is a 1–3 percent change per month in the meaning or interpretation 
of requirements [Jones 2008], [Royce 1998]. If needs are changing 
rapidly, defining a stable set of product requirements may not be 
feasible. It may be necessary to wait until there is some level of 
stability before attempting to finalize a baseline requirement set for a 
product (Figure 3.2).

System Boundaries Are Not Identified
Several years ago one of the authors worked on the requirements for an 
insurance underwriting system. As underwriting systems are used by 

FIGURE 3.2 Requirements volatility vs. time
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many functions within the insurance industry, there were interactions 
with sales, marketing, policy writing, accounting, and independent 
insurance agents. The requirements gathering was being done in a 
distributed fashion, so it was important to ensure that there was no 
duplication of work, and that time was not spent on topics that were 
out of scope (e.g., how marketing uses underwriting information). 
High-level, color-coded models were used to indicate the distribution 
of work and identify out-of-scope topics (see Figure 3.3).

Understanding of Product Needs Is Incomplete
Analysts are often asked to help define requirements for products 
where the stakeholders are uncertain of their needs. Sometimes they 
are even uncertain as to what the business goals are. There are several 
techniques that can be used to assist in clarifying customer needs. One 
method, prototyping, is discussed in detail in Chapter 9. Sometimes, 
just the act of eliciting requirements with several stakeholders present 
will stimulate discussion and help to clarify customers’ needs. Another 
technique that we recommend is to start by creating marketing 
literature, a user manual, or lightweight specification sheets for the 
product. For example, create a simple, two-page marketing brochure 
or fictional product advertisement that might be given to customers:

• Is it what the customers want and need?

• Is it feasible to build (with the available technology, time, and 
budget)?

• Does it adequately describe, at a high level, the proposed 
product features?

• Does it indicate why customers should buy it (e.g., over the 
competitive products)?

Such a mock marketing brochure development task might lead to 
the conclusion that not enough is known about the market, or perhaps 
the business goals are not clear enough. If work does go forward to 

FIGURE 3.3 Using color to identify subjects that are out of scope
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create a full requirements specification and to design and build the 
product, then, at the very least, the product vision will be described 
in an internal document.

Users Misunderstand What Computers Can Do
Stakeholders may ascribe virtues to computer systems that are 
futuristic, wishful thinking, or simply impractical. For example,

“We would like the new payroll system to automatically detect the 
employee’s marital status from public records.”

It is important for analysts to adjust the phrasing of stakeholder 
requests so that a reasonable discussion can be held on whether to 
make the requests requirements or not, e.g., feasibility, legality, and 
practicality. However, it is a good idea to record cutting-edge requests, 
as they may go from cutting-edge to commonplace in short order. For 
example, in 1992, we saw the following statement in a requirements 
specification:

“As there will never be a need for computers to have more than 
one processor, there is no need for a requirement for the new 
system to support multiple processors.”

The Requirements Engineer Has Deep Domain Knowledge
If a requirements analyst has strong domain knowledge, there may be 
a tendency to minimize communication with stakeholders. That is, the 
analyst may try to do it all himself or herself without seeking outside 
validation or views. Failure to communicate with external stakeholders 
can be especially dangerous in a domain where technology is changing 
rapidly (e.g., cell phones).

Stakeholders Speak Different Natural and Technical Languages
When stakeholders are from different domains or speak different 
languages, communication can be even more difficult. Problems may 
arise in several areas, such as

• Ensuring efficient quality reviews of requirements

• Smoothly running elicitation sessions

• Domain experts understanding the impact of stakeholder 
requests made in one area on their area

• Understanding complex needs, processes, or algorithms

Because of the difficulty in getting stakeholders and analysts to 
understand and review each other’s work, we recommend wherever 
possible using visual techniques, including models, diagrams, and 
tables, to communicate important concepts.
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Stakeholders Omit Important, Well-Understood, Tacit Information
On occasion, a stakeholder or domain expert may be “too close” to 
the material he or she is describing and forget to include salient 
points, assuming that the material is so basic that it does not need to 
be communicated. You may have been in a situation where you were 
reading the instructions for doing something, could not get it to work, 
and then found out that steps were missing from the instructions. For 
example,

“To drive a stick-shift car, start the engine, put the car in gear, 
and go!”

Of course, there are a few missing steps such as putting the key in 
the ignition and making sure that the clutch is pressed in order to 
start the engine. But a driver who uses such a car every day might 
take for granted putting the key in the ignition and pressing down on 
the clutch, while someone who has never driven before might realize 
that some steps had been left out. The “smart ignoramus” (see the 
earlier section “The Missing Ignoramus”) can help, but a trained 
analyst or facilitator is really necessary during elicitation sessions to 
ensure that every last detail needed to define a product is captured. 
There is also a crossover point between elicitation and analysis; 
sometimes the boundary between the two activities is clearly defined, 
and sometimes it is not.

Stakeholders Have Conflicting Views
When stakeholders have conflicting views, a heated discussion 
(possibly started by the “smart ignoramus” asking a question) may 
ensue. The conflict must be resolved, but not during the elicitation 
session (unless it is just a matter of a minute or two). Conducting an 
elicitation session requires the same skill at moderation or facilitation 
as any other professional meeting, and complex or lengthy discussions 
need to take place elsewhere to avoid a loss of productivity. Facilitation 
of brainstorming sessions is described in more detail in the next 
section.

3.3  Requirements Elicitation Methods
As mentioned early in this chapter, requirements elicitation is the 
interaction with stakeholders to capture their needs. No decisions 
have been made at this point about which of the needs will become 
requirements, and which of the requirements will be included in a 
release of the product that is yet to be built. Furthermore, in many 
cases the same techniques can be used for both elicitation and analysis 
(Figure 3.4). As there are so many different ways to capture stakeholder 
needs, we only mention a few here. The reader is encouraged to seek 
out techniques that are appropriate to their situation.
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Eliciting Business Goals
A sometimes overlooked aspect of requirements elicitation is the 
determination of business goals. These goals are associated with the 
needs of the manufacturing or development organization rather than 
the needs of the customer or purchaser. For example, sample business 
goals might be

• Increase profitability by 5 percent the next fiscal year.

• Customers should associate our product with high quality.

• Customers should associate our product with best value.

• Our next product should take advantage of emerging 
technologies.

One way of visualizing and capturing business goals is a simple 
graphical technique known as goal modeling. Two of the more 
popular techniques are KAOS [Dardenne et al. 1993] and I* [Yu 1993]. 
A nice survey of different goal modeling techniques can be found in 
the article by van Lamsweerde [van Lamsweerde 2001].

Goal modeling is a nice way to crystallize ideas, to present 
corporate goals in a simple-to-understand and unambiguous way, 
and to identify and balance difficult choices. In Figure 3.5, we see a 
simple goal model fragment, where a plus sign indicates that the 
lower-level goal contributes to the higher-level goal, and a minus sign 
indicates that the lower-level goal detracts from the higher-level goal. 
If the additions and detractions can be quantified, then the selection of 
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the optimal goal set can be calculated. However, the reality is that the 
contribution of many high-level requirements cannot be calculated for 
a variety of reasons, including changing demographics, rapid shifts in 
technology, etc. Sometimes, difficulties associated with conflicting 
goals are not recognized until the requirements have gone through a 
complete review cycle. The refinement of nonfunctional requirements 
can bring to light issues that may otherwise remain hidden. The 
importance and impact that nonfunctional requirements can have 
warrant their consideration and elicitation as early as possible in 
the product development cycle.

Goal models can be as simple or as complex as necessary.  
Figure 3.6 shows some of the goals for a nuclear power plant 
simulator. Such simulators, mandated by regulation, are used to 
train the operators of nuclear power plants and must have high 
fidelity and reliability. The figure shown identifies quality assessment 
methods, or QAMs, that are used to determine how well the business 
goals meet the desired quality [Cleland-Huang 2005]. For example, 
QAM 5 states that when any action is taken, the simulator indicator 
light response shall be within 200 milliseconds of the response in the 
real plant. That is, if a button is pressed in the power plant closing a 
valve and an indicator light comes on in three tenths of a second, 
then in the simulator, that light must come on within three to five 
tenths of a second. The actual QAM was evaluated by randomly 
connecting an oscilloscope to button/light pairs (there were 
thousands of such pairs) in the simulator and determining that the 
response was within specification by measuring the step wave on 
the oscilloscope. Goal models with QAMs can be used as checklists 
to ensure that important nonfunctional requirements have not been 
overlooked. If a QAM cannot be defined for a nonfunctional 
requirement, then it may not be possible to test that the requirement 
has been met, and the requirement should then not be part of a 
contract or requirements specification, as it may not be feasible to 
implement.

FIGURE 3.5 Simple goal model fragment
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FIGURE 3.6 Partial goal model for a nuclear power plant simulator (Picture courtesy of Professor Jane 
Cleland-Huang, DePaul University, 2005)
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Ethnographic Techniques
Ethnographic research tends to focus on a particular community or 
culture [Agar 1996]. Typical collection methods are interviews and 
surveys. These are techniques not normally thought of as being a part 
of requirements engineering, yet some survey methods are heavily 
used to evaluate market demands, possible interest in a product, and 
even emotional content. Furthermore, where there is a large customer 
base to draw on, it is possible to perform statistical analyses on 
surveys to measure customer interest or the emotional appeal of 
product features. One of the most common survey methods for 
analyzing customer interest in features is Kano modeling, named 
after its inventor, Professor Noriaki Kano [Kano 1984].

Kano modeling provides three variables to measure customer 
interest: one-dimensional, expected, and attractive quality. One-
dimensional, or linear quality, applies where the potential value of a 
product feature increases linearly with some aspect of the feature. A 
good example of this is refrigerator energy efficiency. The more efficient 
the refrigerator is, the greater the likelihood it will attract purchasers. 
Expected quality is a feature that is mandatory for a product to succeed 
in the marketplace. Attractive quality is a feature that is not expected 
but would add to the emotional appeal of a product. Product features 
can have different types of Kano quality variables, depending on locale, 
targeted market, and time. For example, a camera in a cell phone would 
have been an attractive quality several years ago but is now an expected 
quality in most markets.

One interesting aspect of Kano modeling is that measurements 
can be culturally sensitive. For example, in the United States most 
automobile customers would expect to purchase a car with an 
automatic transmission, while in Europe, a manual transmission is 
the norm. Kano modeling is widely accepted; some commercial 
requirements engineering management software tools come with 
Kano analysis facilities built in.

Another interesting use of survey and interview techniques is the 
measure of the emotional appeal of a product feature. Engineers and 
software developers are often not aware of or interested in the 
emotional appeal of their products, yet such factors can have 
important consequences for product sales. One extreme example of 
failing to take emotional appeal into consideration is the case of the 
Ford Edsel. The Washington Post called it the “The Flop Heard Round 
the World” [Carlson 2007]. After the car was introduced, customer 
response was extremely negative, including comments such as “an 
Oldsmobile sucking a lemon” and “a Pontiac pushing a toilet seat.”
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Prioritization and Ranking of Requirements
While prioritization and ranking of requirements typically occur after 
analysis (or even later), the topic is worth mentioning here, as 
customer priorities are best captured during elicitation.

First, we should mention the difference between the two, as there 
tends to be some confusion regarding the use of the two terms. 
Prioritization is the assignment of importance to a requirement using 
a tag or label. For example,

• “The base engine sold with the car shall be a 1.8 liter 
turbocharged engine”—priority high.

• “18 inch wheels shall be offered as an option with the car”—
priority medium.

Priorities are usually defined at the start of a project, using either 
a numerical or verbal ranking; e.g., 1 means most important and 5 
means least important (a numerical ranking has the advantage of 
being sortable).

When priorities are assigned to requests and requirements by 
stakeholders, only one of the defined values is acceptable.

Ranking is the assignment of a unique order to each requirement 
in a group, such that no two requirements have the same rank. For 
example,

Under $100 street price   1 (the lower number is more  
 important)

Built-in camera   2
Operable with one hand 3
LCD panel can be seen in 4
daylight   

When deciding which features will be in a product release, a 
ranking technique is normally used, whereas prioritization is used 
more for initial scoping. When questionnaires or surveys are sent out 
to customers, they will typically be asked to assign a priority to a 
feature (e.g., more likely to buy the product, no difference, less likely to 
buy the product).

A common problem can occur when customers label their 
stakeholder requests as being of “high,” “medium,” or “low” priority, 
since to some customers, every request will be of “high” priority.

An effective approach when scoping a product or planning 
schedules or releases is to use pairwise ranking [Karlsson 1996], 
[Sobczaka et al. 2007]. Pairwise ranking, sometimes called the 
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“Analytic Hierarchy Process” (AHP), is where the stakeholder or 
analyst ranking the requirements looks at only two requirements, 
compares them, and ranks them; e.g., the more important of the two is 
placed higher in a list. This process is done iteratively until all the 
requirements have been ranked. While the approach may work well 
for small requirements sets, as the number of requirements N increases, 
the number of rankings that must be done increases quadratically 
(N(N – 1)/2) [Sheehan et al. 2000]. Since different stakeholders may 
rank the same requirements set differently, an approach must be 
formulated to merge the different sets of ranked requirements. We 
therefore recommend that a pairwise ranking prioritization be 
restricted to stakeholder requests or product features (near the top of 
the pyramid), to reduce the ranking effort.

Another technique used to prioritize requirements is the “planning 
game,” or PG, approach, popularized with extreme programming 
[Beck 1999]. In the PG approach, stakeholder requests, features, or 
requirements (depending on when prioritization takes place) are 
partitioned into three sets that align with Kano qualities: “needed for 
the system to function,” “add real value,” and “nice to have but not 
necessary.” An informal risk analysis is done to determine the ease of 
implementation effort, and a final decision is made as to which 
features or requirements to implement.

Ranking cannot take place in a vacuum; e.g., the cost and risk 
associated with implementation must be known. Furthermore, in 
some industries additional factors such as hazards (to the consumer) 
and technology shifts must be considered. For example, a novel 
technique for opening and closing car windows is evaluated that uses 
a light sensor; i.e., no physical contact with the switch is required. The 
cost to implement is low, customers evaluate the feature very highly, 
and it seems to have high positive emotional value. However, the 
hazard analysis (see Chapter 11) indicates the potential for an unsafe 
condition, as a child can be hurt or injured when the window rises 
accidentally. As a result, the feature is not included in the next year’s 
car model.

In summary, initial prioritization of stakeholder requests should 
take place as early in a product life cycle as possible. Several 
prioritization activities may be needed, one just for the stakeholders, 
another when the architect or designers evaluate the cost and risk of 
implementation, and possibly additional sessions prior to the build/
no build decision. Prioritization should be accomplished as far up the 
requirements pyramid as is feasible, with ranking taking place once 
the requirements are sufficiently finalized such that the cost and 
resource impact of implementation is understood. Furthermore, some 
techniques such as pairwise ranking may not be feasible with a large 
number of requirements, e.g., rank at the feature level and not at the 
system level. Prioritization (and the ranking of small sets of requests) 
can be combined with the stakeholder review process where the 
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determination is made as to whether a request is “in” or “out”; i.e., 
will or will not become part of the approved requirements set.

Quality Function Deployment (QFD) Method
QFD was developed by Drs. Shigeru Mizuno and Yoji Akao in an 
effort to integrate customer needs into product designs [Akao 1990]. 
According to the QFD Institute,2 the QFD method:

 1. Seeks out spoken and unspoken customer needs from the 
fuzzy voice of the customer verbatim.

 2. Uncovers “positive” qualities that wow the customer.

 3. Translates these into design characteristics and deliverable 
actions.

 4. Builds and delivers a quality product or service by focusing 
the various business functions toward achieving a common 
goal—customer satisfaction.

As QFD is well documented, it will not be described here. QFD 
is often part of a Six Sigma program [Mikel et al. 1999]. The “house 
of quality” matrix (so named because the matrix shape resembles a 
house) is a widely used technique for capturing unspoken customer 
needs and then correlating them with requirements.

Brainstorming Sessions
Brainstorming sessions are widely used to elicit initial stakeholder 
requests for products. They tend to take place with multiple 
stakeholders or customers, and the sessions are usually managed by 
experienced facilitators in one session over one or two days maximum. 
The objective of a brainstorming session is to come up with new and 
innovative ideas or product features in a very rapid period of time. A 
brainstorming session tends to have a set of discrete, well-defined 
activities. A capable facilitator is essential to the success of the session. 
When defining ideas, it is important to avoid conflicts: e.g., one 
participant disparaging the ideas of another. Since very senior people 
can be in the session, it is important that they not intimidate the other, 
less senior-level participants.

An interesting story was told to one author during his military 
service. Military schools for senior officers often teach brainstorming 
techniques. At one such class, an Air Force captain, who was a friend 
of the author, engaged in a heated discussion with one of the 
other participants. After the session was over, the captain went over 
to the other participant to review their in-class discussion, only to 
find out to his dismay that the other officer was a lieutenant general.  

2  www.qfdi.org/

www.qfdi.org/
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The general explained to the captain that when he went in to class, 
he always hid his rank as best he could to avoid intimidating the 
other students, as he wanted their unbiased opinions. In business, it 
is the role of the facilitator to prevent intimidation or speech making 
from occurring, and to keep the session moving smoothly.

The objective and duration of the brainstorming session must be 
agreed upon by all the participants. This should ideally be determined 
prior to the start of the session. The session starts with a free flow of 
ideas, creating an unsorted set of product suggestions. Often “sticky 
notes” are used to record the ideas, and they are placed on a board 
(see Figure 3.7). Some general brainstorming protocols include 
allowing duplicates or similar ideas to be recorded, and discouraging 
filtering or censorship; e.g., allow “extreme” ideas.

The next activity in brainstorming is the condensation of the ideas 
to group related concepts and eliminate redundancy. The third activity 
is to formally assign the ideas to categories. Next, the group breaks up 
into small teams that assess the ideas and expand upon them.

Within each group, the ideas are then ranked (pairwise ranking). 
Finally, the brainstorming session is concluded with action items 
where appropriate for participants in the session. If the session was 
attended by customers not involved in analysis, then the post-session 
activities are usually done internally by project team members and 
company stakeholders.

Tabular Elicitation Techniques
The use of tables can provide a compact, unambiguous method for 
capturing stakeholder requests. Two types of widely used tabular 

Unstructured Ideas Grouped Related Ideas

Categorized IdeasExpanded and Prioritized Ideas

FIGURE 3.7 Stages of a brainstorming session
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techniques are decision tables and state tables. Decision tables are 
most often used where there are discrete sets of conditions that can 
be determined with a “yes” or “no,” actions to take if the conditions 
are met, and a set of rules, where each unique set of conditions and 
the action to take is one rule.

Most of us have seen or used decision tables at one time or another. 
A very common form of decision table is the tax table shown in 
Figure 3.8.3 Each row represents a condition, in this case the taxpayer’s 
income. Each column represents a rule; i.e,. a condition (single, married 
filing jointly, etc.) and a set of actions, where the actions in this case 
determine what tax should be paid. When eliciting draft requirements 
from stakeholders, a decision table can be an efficient, compact, and 
unambiguous technique for capturing business rules.

State tables are different than decision tables in that they are used 
where the object under consideration can be in various states at different 
times, and well-defined, simple events trigger the change from one 
state to another. An object that transitions only on discrete events and 
has a predefined number of known states is called a state machine. In 
the case of a taxpayer, a state table would not be appropriate, as there 
is only one state: “about to pay taxes.”

State tables, which show the behavior of a state machine, usually 
have a single start state, and then a set of states that an object 
transitions to, and finally either a successful exit state or one or more 
“error” states where activity stops because an error of some kind has 
occurred. Each state change is associated with one or more events 

3  www.irs.gov/pub/irs-pdf/i1040tt.pdf

If line 43
(taxable
income) is— rule And you are—

Your tax is—

At
least

1,300 
1,325 
1,350 
1,375 
1,400 
1,425 
1,450 
1,475

But
less
than

1,325 
1,350 
1,375 
1,400 
1,425 
1,450 
1,475 
1,500

Single

131 
134 
136 
139 
141 
144 
146 
149

Married
filing
jointly

131 
134 
136 
139 
141 
144 
146 
149

Married
filing
separately

131 
134 
136 
139 
141 
144 
146
149

Head
of a
household

131 
134 
136 
139 
141 
144 
146
149

FIGURE 3.8 Example decision table

www.irs.gov/pub/irs-pdf/i1040tt.pdf
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that cause the change, and one or more actions that take place as the 
object transitions from one state to another.

A summary of the different kinds of state tables can be found  
in the March 2008 Crosstalk article by Herrmannsdörfer et al. 
[Herrmannsdörfer et al. 2008]. As an example, consider the design of 
a simple CD player with three buttons (Figure 3.9). The only states 
that the player can be in (assuming the power is on) are open, closed 
and loaded, closed and empty, and playing (which is only possible if 
the player is closed and loaded). There are also well-defined events 
that determine what state the player is in, and clear actions to take for 
any given event. On an event (in this case pressing a button), one or 
more actions are taken, and the player transitions to a different state or 
stays in the same state. The particular state table shown is nondeterministic 
because if the state is “Open” and the “Open/Close” button is pressed, 
there are two possible transitions. If there is a CD in the tray, the player 
will transition to state 2 (closed and loaded), whereas if the tray is empty, 
the player will transition to state 3 (closed and empty), depending on 
whether a CD is detected in the tray. In general, deterministic state 
machines, where an event can have only at most one transition from a 
given state, are preferred because design and testing is simplified. 
However, it is sometimes possible to make a nondeterministic machine 
deterministic by adding intermediate states.

Process Modeling Techniques
A variety of process modeling techniques are suitable for the elicitation 
of requirements. Just a few of them are listed here, and model-driven 
techniques that are suitable for both elicitation and analysis are 
described in more detail in Chapter 4.

FIGURE 3.9 Simple CD player

Play StopState
Number State Open/Close

1 Open Close Tray
{if No Disc
Display “No Disc”
go to 3
else Display “Ready”
go to 2}

No action No action

2 Closed
Loaded

Open Tray
{Display “Open”}
Go to 1

Start Playing
{Display “Playing”}
Go to 4

No action

3 Closed
Empty

Open Tray
{Display “Open”}
Go to 2

{Display “No Disc”}
No action

No action

4 Playing Stop Playing
Open Tray
{Display “Open”}
Go to 1

{Display “Playing”}
No action

Stop Playing
{Display “Stop”}
Go to 2
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Data flow diagrams (DFDs) have been around for a long time. 
There are several similar methodologies, such as those defined by 
[Gane et al. 1997] and [Yourdon 1988]. A sample data flow diagram 
is shown in Figure 3.10. The vertical lines on the data stores indicate 
the number of times that the store is shown on the diagram. While 
DFDs appear to have fallen out of favor and viable tools can be hard 
to find, they still have their proponents. DFDs can be very effective 
diagramming techniques for analyzing business needs. The primary 
difference between the data flow and newer (object-oriented) 
techniques is the focus on data flows and data structures rather than 
services. With data flow techniques, a customer’s data and the flow 
of that data are analyzed. Stores needed to hold the data and 
processes needed to manipulate the data are added. The results of 
the analysis are then captured in data flow diagrams for review 
with the stakeholders.

Use case analysis [Jacobson et al. 1992] (use case = business process) 
involves either defining a customer process (business modeling) or 
showing the relationship of a system or product to the outside world. 
The analysis can be done using natural languages and tables or visual 
techniques such as those described in Chapter 4. A use case consists of 
the following:

• Actors People or things interacting with the use case

• Events Things that cause the use case to happen

• Preconditions Things that must be true for the use case to 
happen

• Postconditions Things that must be true if the use case has 
successfully completed

• Activities The processes that occur in the use case

• Included use cases Other processes used by this use case

• Extending use cases Other processes that may optionally 
take place during the occurrence of this use case

When using natural language, activities are normally described 
using a table similar to the one shown in Table 3.2. In addition to the 
“sunny day” scenario, tables are normally created for alternate 
scenarios. For the “cash a check” example shown in Table 3.2, alternate 
scenarios might include how to handle insufficient funds or an ID 
that is not acceptable.

One problem with using natural language is that the set of use 
cases describing viable business processes makes up a graphical 
structure that is not well represented by text documents. For 
example, two different use cases might use or include the same use 
case (Figure 3.11). Furthermore, as we interact with the customers 
or stakeholders, the number of use cases can grow rapidly. If the use 
cases are kept in text files, document management issues can arise.



 
60  

S
o

ftw
are &

 S
ystem

s R
eq

u
irem

ents En
gineering: In P

ractice

Mgmt

Client
Verify

Requirements
in Scope

3
Verify

Requirements
Testable

2
Capture

Stakeholder
Requests

1

Assess Impact
with Project

Team

4

Request Reviewed
requirements

Mapped requirements

Mapped requirements

7

Risk analysis

5

Failed requirements

6

Business requirements

Impact analysis

Updated
requirements

Updated
requirements

Updated project
schedule

Manpower
allocation

Design changes

Negotiate
Changes

Allocate
Requirements

Track
Change

Flow
Through

Change
control

information

9
Review

Activities
with Mgmt

8
Map

Deliverables
to

Requirements

Requirements change

Change
control

documents

Mapped
requirements

Mapped
deliverables

Status
report

Change control
documents

10
Generate

SRS
Document

Repository information
SRS

DocumentCASE
Repository

Project
Library

Project
Library

Revised
Project Library

Schedule

Requirements
Repository

Requirements
Repository

Requirements
Repository

Requirements
Repository

FIGURE 3.10 Data flow diagram for a requirements management process
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Another problem with textual use cases is the occurrence of 
crosscutting issues that require use case modifications. With graphical 
models, it is a relatively simple matter to make changes, since  
the CASE tool handles the updating of other diagrams. Scenario 
diagrams take the place of tabular descriptions of activities (see 
Figure 3.12). With text, a crosscutting change can involve heavy 
manual effort to keep primary and alternate use cases across all 
relevant documents up-to-date, especially going into the activity 
tables and changing steps and responses.

More information about model-driven requirements engineering 
and the effective use of graphical modeling techniques can be found 
in the next chapter.

Cash a Check Make a Withdrawal

Check Account Balance

Includes Includes

FIGURE 3.11 Graphical nature of use cases

Step Actor
System Response 
(Bank Teller) Output

1 Give check  
to teller

Can I see your ID?

2 Give ID  
to teller

ID is okay

3 Put ID away Return ID

4 Check account for 
enough money

Hold on account to 
cover check amount

5 Take money Cash check

TABLE 3.2 Sample Use Case Activity
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3.4  Customer-Specific Business Rules
Business rules are a special category of customer requirements. They 
are different in that rather than defining a fixed customer need, they 
describe the implementation of a customer policy that may be changed 
by the customer after delivery of a product or system. Hence they 
describe a special category of user-implemented extensibility.

A business can enact, revise, and discontinue the business rules 
that govern and guide it. A business policy is an element of governance 
that is not directly enforceable, whose purpose is to guide an enterprise. 
Compared to a business rule, a business policy tends to be less 
structured; i.e., less carefully expressed in terms of a standard 
vocabulary and not directly enforceable. For example, a banking 
business policy might be: “Bank customers should not be able to 
make too many bank withdrawals in a single day or withdraw more 
than a certain amount of money in a fixed period of time; the 
maximum amount being based on their total account value and 
history.”

Why Are Customer-Specific Business Rules Important?
Customer-specific business rules must be kept separate from regular 
requirements (at least logically, using database tags or attributes), 
since they are not requirements. However, customer requirements 
can be derived from the business rules; the requirements may look 
different than the rules that they derive from.

What Are Their Characteristics?
Customer-specific business rules are implementations of the customer’s 
company policies, where the business rules may change after system 

A
Customer A Teller A Check The Bank

Computer System
A Cash
Drawer

Please cash this check 

Money

Here is your
ID back

Here is my ID
Please show ID

Check info

Get check info

Cash a check

Okay

Get money (amount)

Money

Verify ID

FIGURE 3.12 Detailing a use case with a scenario diagram
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or product delivery. It is mandatory that the customer have the ability 
to alter the rules without system or product modification.

Example Customer-Specific Business Rules
A sample business policy, rules, and some derived requirements are 
shown here:

• Policy The hospital shall be able to define the difference 
between adult and child patients for check-in and medical 
records purposes.

• Rule Any patient under the age of 14 checking in shall be 
considered a child.

 When a child checks into the hospital, depending on the 
hospital’s business policy, a parent or guardian may have to 
accompany the child and sign all the admission forms. 
Detailed rules explain under what circumstances (e.g., an 
accident, emergency, or life-threatening situation) a child 
may be checked in without a parent’s or guardian’s consent.

• Requirement A facility shall be provided with the system 
such that the hospital check-in process for adults and children 
can be changed by hospital administrators without the need 
for system or software modifications.

Note in the preceding example, the hospital may, at any time, 
change the age at which a patient is considered a child, as well as the 
rules governing the emergency check-in of a child without parental 
consent. The relationships among business policies, rules, and 
requirements are illustrated in Figure 3.13.

Business Rule
Statement Policy

Based on
Basis for

Part of
composed of

Source
of

Based
on

Related to

Formal
Expression Type

In the
convention

of An
expression

of
Expressed

in

Source of

Source of

Source of

Business
Requirement

System
Requirement

Formal Rule
Statement

Business
Rule

FIGURE 3.13 Business policies, rules, and derived requirements
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3.5  Managing the Customer Relationship
Managing the customer relationship is important during the entire 
project or product life cycle, and it is crucial during the elicitation 
process. Both the consumer and the supplier need to have an ongoing 
understanding of the product. It may be necessary to continually 
interact with the customer to maintain good relations and keep the 
customer informed; e.g., bring them bad news early rather than later. 
Project management should never go into denial over issues such as 
delivery dates. Rather, open and frequent communication with the 
client can usually prevent more severe difficulties from occurring later.

Furthermore, it may be necessary to secure customer cooperation 
in order to get access to domain expertise. If, for example, a project is 
on a fixed schedule and relations with the client are not managed 
properly, access to the client’s domain experts may be restricted, 
resulting in late delivery.

It is our experience that constant communication with the customer 
is essential for a positive outcome. There may be a tendency on some 
projects to elicit the requirements and then forget about the customer 
until the factory acceptance test. Doing so is a mistake, as the potential 
for misunderstandings widens significantly as a project progresses. 
Keeping the customer up-to-date on progress, demonstrating features 
(e.g., for prototypes, see Chapter 9), and eliciting comments or 
suggestions are both ethically correct and good business.

3.6  Managing Requirements Elicitation
Requirements elicitation is like any other project activity. It must be 
planned, it must be managed properly, and speedy follow-up on 
open issues is essential. While every organization or group has its 
own way of doing things, we have found that certain activities are 
essential to achieving a positive outcome.

Planning Elicitation Sessions
In order for elicitation sessions to be successful, they must be planned. 
Planning includes setting up the framework for conducting the 
sessions, managing the output of the sessions, and defining 
completion. We offer these suggestions:

 1. Set up a schedule of elicitation sessions. Since diverse domain 
expertise may be needed, sessions need to be defined for 
capturing needs based on the expertise needed for each 
domain that is in scope. For example, in sessions to define a 
new insurance system, it might be necessary to capture the 
needs of marketing, sales, underwriting, accounting, etc. Since 
the people who would be participating are usually critical to 
the operation of an organization and access to them may be 
limited, the schedule may need to be carefully defined.
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 2. Define the venue and the media. This includes where the 
sessions will be held, as well as any audiovisual techniques 
used (e.g., whiteboard, stickies, RGB projector). The format 
for capturing the results of each elicitation session needs to be 
defined. Capture mechanisms may include a requirements 
database (viewed using a browser or the database screens), 
Excel spreadsheets, modeling tools, or other electronic capture 
mechanisms.

 3. Define standards, schemas, and processes prior to the start of 
the elicitation sessions. When capturing stakeholder requests, 
they may be at very different levels (see the earlier section 
“Not Identifying Requirements Level”). It is important that 
any information captured be properly identified (including 
the stakeholder), partitioned (level), and identified as to type 
or other project characteristics, at the time of capture. Once 
the requests start to be added, it will be very difficult to go 
back and revisit the tagging of requirements. In order to have 
an electronic system set up to properly capture the relevant 
request or requirement attributes (e.g., priority, stakeholder, 
level, type), the database schema or model attributes need 
to have already been planned and defined in the toolset 
being used. Furthermore, having guidelines for conducting 
elicitation sessions will help in soliciting the cooperation of 
stakeholders or domain experts to provide the needed 
information at the time of elicitation.

 4. Provide a clearly defined agenda for each elicitation session, 
with the role of each attendee clearly understood. The agenda 
should be feasible and reasonable given the duration and the 
people present. Finally, action items should be recorded and 
assigned with short due dates and careful follow-up.

 5. Arrange for a senior manager (on the customer side) to 
participate in the elicitation sessions. While it may be difficult 
to convince clients or customers to have one of their senior 
stakeholders participate, it may be the only way to ensure 
that customer-provided domain experts actually show up at 
the meetings and cooperate. Not that they will be unwilling 
to participate, but the priorities of the manager of a domain 
expert may be quite different than those of the project manager 
for the product under design; they may be in different 
organizations or companies. Consequently, when pulling in 
domain experts, their presence may not be guaranteed 
without the participation of a senior manager in their 
organization.

 6. If necessary, arrange for someone on the customer side (the 
senior manager mentioned above may suffice) to set up the 
schedule and manage it. The analyst in charge of requirements 
elicitation may not have access to the scheduling system of 
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the domain experts or may not have the authority to request 
their presence at elicitation sessions.

 7. Hold sessions in the morning, if feasible, and schedule them to 
last half a day. People tend to tire a bit over time, and about 
four hours or less is best for sustaining high productivity.  
In addition, work will be generated outside of the elicitation 
session (see the next item), and it is recommended that assigned 
work be completed the same day that the session was held.

 8. If heavy writing is assigned during an elicitation session, 
have it done offline, preferably the afternoon that the session 
was completed. This includes definitions, descriptions of 
processes, and so on. Text can then be reviewed the following 
morning or offline at a later date.

 9. Preferably, find a venue where everyone can see the same 
thing at the same time. Whether looking at text or graphics, 
all the attendees should be seeing the same information. If 
you are able to have the relevant stakeholders in the room 
during the elicitation session, the requirements review process 
can be shortened, since the reviewers were present during the 
elicitation session.

 10. Chunk reviews of work. Imagine being sent an e-mail 
containing the following request: “Please review this 
paragraph [or page] and send your comments by tomorrow.” 
Contrast that with “Please review this 200-page requirements 
specification and send your comments within the next two 
days.” Clearly the former is likely to happen, and the latter 
may result in the reader hitting the Delete button. Reviews 
are best done online, with everyone reviewing a reasonably 
small amount of material together. When that is not feasible, 
the review of material should be partitioned, so that only the 
relevant stakeholders see the material they need to review, 
and the amount of material to be reviewed is kept small.

 11. Keep reviews of elicitation sessions short and immediate. 
When reviewing the output of an elicitation session, we 
normally conduct the reviews the same afternoon, not later 
than one or two days after the session (before the domain 
experts vanish back into their environments).

 12. Keep attendance at an elicitation session (as contrasted with 
a brainstorming session, where everyone possible is in the 
room) small, no more than six to eight people. A typical 
session might consist of: a facilitator or lead analyst, one or 
two other analysts (including the designated “smart 
ignoramus”), participating stakeholders at the management 
level, and one or two domain experts. It is always better to 
have two domain experts than one. Two experts can check 
each other’s work as the session progresses, minimizing the 
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need for post-session reviews. Three subject matter experts in 
the same session may or may not be effective, depending on 
their interpersonal dynamics.

To summarize, conducting elicitation sessions may require a 
significant planning effort, depending on the scope of the project. 
Furthermore, if any needed standards, procedures, and tools are in 
place prior to the start of the elicitation sessions, rework will be 
minimized and the sessions will proceed more smoothly.

3.7  Requirements and Cost Estimation
A strong correlation has been found between function point counts 
and requirements [Jones 2008]. With proper planning, it is possible 
to generate function point counts from sets of requirements or an 
analysis model. For example, if use cases are annotated with the 
appropriate information, a function point count estimate can be 
generated by walking the directed graph of the underlying model. 
Software requirements automation can play an important role in 
software requirements estimation. The Bachman Analyst Workbench 
developed in 1991 and the Texas Instruments Information 
Engineering Facility (IEF) developed in the early 1990s both 
provided automatic derivation of function point metrics from 
software requirements.

3.8  Requirements Elicitation for  
Incremental Product Development

It was mentioned in Chapter 1 that Capers Jones reported that less 
than 25 percent of the requirements for typical applications are new 
or unique [Jones 2007]. For projects that are not new, two situations 
typically exist:

• A well-defined RE process was used to define the initial 
requirements. In this situation, elicitation and analysis can 
be a continuation of previous efforts, with new requests 
and requirements recorded using the appropriate database 
attributes to permit partitioning of the requirement sets.

• An enhancement to a legacy system is to be built, with prior 
requirement set(s) either incomplete or missing completely.

The latter situation tends to be quite common; e.g., enhancements 
to systems are often done with no prior requirement specifications or 
documentation to refer to. When this occurs, it may not be feasible to 
reverse-engineer a full requirement set, but rather, only the new 
requirements can be captured. In this case the old system and its 
functions may have to be treated as a set of legacy requirements; 
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e.g., review the new requirements primarily for compatibility with 
the prior system. Depending on the project type, advanced techniques 
such as dynamic tracing [Cleland-Huang 2005] can be used to assist 
with impact analysis. Some general suggestions when defining the 
requirements for incremental improvement to a system for which 
requirements do not exist are:

 1. Where cost effective, reverse-engineer a set of high-level 
requirements and use it as a starting point. User guides and 
help files are an excellent source of such requirements.

 2. Identify any programmatic interfaces, document them, and 
treat them as new requirements.

 3. Be sure to review all new requirements, considering 
downward compatibility and the sensitivities of users. A very 
common complaint for new releases is “I liked the old system 
better.”

3.9  Tips for Gathering Requirements
The following set of tips was learned through trial and error and was 
based on input from SCR staff members and some of our academic 
colleagues. It is not intended to be inclusive, but rather to provide a 
starting point.

• Add a “smart ignoramus” to your requirements analysis team.

• Include stakeholders in requirements elicitation sessions who 
can speak with authority for the organization, and be sure to 
differentiate the “user” from the “customer” when describing 
stakeholders.

• Record the level of information and the stakeholder source of 
requirements during elicitation sessions.

• Separate context and background from stakeholder requests.

• Plan a project such that access to subject matter experts is 
scheduled.

• Where appropriate, start a project by creating marketing 
literature, a user manual, or lightweight specification sheets for 
the product to help clarify incomplete or undefined customer 
needs.

• Force requirements engineers with deep domain expertise to 
communicate with external stakeholders, especially for a 
domain where technology is changing.

• Wherever possible, use visual techniques, including 
models, diagrams, and tables, to communicate important 
requirements concepts.
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• Prioritize stakeholder requests as early in a product life cycle 
as possible. Several prioritization activities may be needed, 
one just for the stakeholders, another when the architect or 
designers evaluate the cost and risk of implementation, and 
possibly additional sessions prior to the build/no build 
decision. If possible, have key stakeholders participate in any 
ranking activity.

• Keep the customer up-to-date on RE progress, demonstrate 
features, and elicit comments or suggestions.

• Plan elicitation sessions to include the schedule, session 
agenda, equipment, and tools needed; the types of information 
to be captured; and the stakeholders who should be present.

• Include a senior manager from the customer’s organization 
in requirements elicitation sessions.

• Schedule elicitation sessions in the morning, and then use the 
afternoon for miscellaneous activities such as writing 
definitions and descriptions and correcting diagrams and 
documents.

• Whether looking at text or graphics, assure that all the 
participants in a requirements elicitation session see the same 
information.

• Organize requirements reviews into small chunks with small 
amounts of material together. When that is not feasible, the 
review of material should be partitioned, so that only the 
relevant stakeholders see the material they need to review, 
and the amount of material to be reviewed is kept small, 
short, and immediate.

• Keep elicitation sessions small, no more than six to eight 
people. Three subject matter experts in the same session may 
or may not be effective, depending on their interpersonal 
dynamics.

3.10  Summary
There are many different techniques for eliciting customer needs 
and business goals. Whatever methods are used, the analysts 
eliciting the needs, goals, or requirements should be trained in the 
techniques they will be using. Furthermore, the elicitation process 
will be more productive and execute more smoothly if process, 
methods, and capture mechanisms are well defined, documented, 
and communicated to the participating stakeholders prior to the 
start of the elicitation sessions.

Those responsible for the elicitation of requirements should be 
cognizant of the techniques needed, as well as of the issues and 
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problems described in this chapter. Furthermore, being a project lead 
analyst or facilitator is an art in itself, requiring the ability to get 
diverse stakeholders to follow an agenda without deviation, and 
drive the elicitation process smoothly to completion in the allotted 
time (Figure 3.14).

3.11  Discussion Questions

 1. When and how should stakeholder requests be reviewed?

 2. How large should a requirements elicitation session  
meeting be?

 3. What are some of the differences between a brainstorming 
session and a requirements elicitation session?
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“‘What is the use of a book,’ thought Alice,  
‘without pictures or conversations?’”

—Lewis Carroll, Alice’s Adventures in Wonderland, 1865

“A picture shows me at a glance what it takes  
dozens of pages of a book to expound.”

—Ivan Turgenev, Fathers and Sons, 1862

4.1 Introduction
As products become more complex with increasing functionality, it 
becomes harder to describe and understand their requirements. 
Furthermore, some product concepts that may be easily represented 
by a picture can become extraordinarily difficult to comprehend 
when transcribed to text. A good example of this is a bicycle. Its 
design is easily understood when viewed as a picture, but incredibly 
complex and difficult to describe textually. Pictures may be used in 
different ways; for instance, they may precisely describe something, 
or they may describe an abstraction of something. An abstraction is 
defined as “a mental representation or concept that isolates and 
generalizes an aspect of an object or group of objects from which 
relationships may be perceived” [White et al. 2002]. When a set of 
related pictures are combined such that the objects contained in the 
pictures are stored along with their relationships, a model is created. 
The associated pictures are then views into the model.

In Chapter 2, we discussed the basics of requirements engineering 
artifact models to help define the product development life cycle, or 
processes used to build a product. In this chapter, we discuss models 
that help describe the product itself.

Models require work and skill to produce. Consequently, there is 
always a rationale for creation of a model. For example, a fault tree is 
a model that graphically represents the interactions of failures and 
other events within a system. A fault tree may be mandated when 
there are hazards associated with a system, and an analysis is 
necessary to determine that there is no danger to the users of the 
system or the environment. Sometimes the use of such a model is 
mandated by regulation (e.g., medical devices).

Models can be created at different levels of abstraction for different 
purposes. In software, a business model can describe why a product is 
needed. A feature model then describes the features of a product being 
created to enable the business model. A requirements analysis model 
then explains the features in sufficient detail to define product 
specifications. A design model illustrates the architecture for the product. 
An implementation model describes the construction of the product (for 
software, the actual source code is the implementation model). Finally, 
a test model would describe how the product would be tested  
(see Chapter 8 for more information on test models). All these models 
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must be interconnected for a variety of reasons (see the section on 
traceability in Chapter 7).

Models may have varying degrees of formality, depending on 
their use. Models for safety-critical systems (see Chapter 11) tend to 
be very formal. A formal model is one where the semantics for model 
construction are defined (e.g., a set of rules for creating the model), 
and where criteria for determining the correctness of the model are 
established. Most models are not formal. For example, software 
developers creating designs in the Unified Modeling Language 
(UML) or systems engineers creating designs with the Systems 
Modeling Language (SysML) are usually not creating formal models 
because there are no rules for model creation, and there is no way to 
determine if the model is correct (determining correctness requires 
validation against the rule set). The degree of formality and the way 
the models are described vary depending on the domain and 
experience of the team. For example, for many of the domains we 
have worked in, models have been described in UML because of 
specific applications and customers, but for embedded systems state 
charts are often used.

Moreover, it is even possible to create a formal model by describing 
objects and their relationships in a database without any diagrams or 
pictures [Rugaber et al. 2001]. It is common, for example, to reverse-
engineer or create UML models (www.uml.org) by loading and 
analyzing software source code. The model is contained in the objects 
and their relationships.

Figure 4.1 illustrates the use of a conceptual diagram to show 
abstraction. In it we see a boiler with water feeds, outlets, and valves. 
This diagram alone is sufficient to understand how to install the 
Parker boiler. Note that

• Minimal expertise is required to read the schematic.

• It conveys a great deal of useful information.

• It is simple enough that a viewer can easily comprehend the 
content.

• It is coherent; that is, everything in the schematic is related in 
a visible, understandable way.

When using models as part of an engineering process, one of the 
objectives is to convey as much information as possible as succinctly 
as possible. This is relatively easy to do in domains where each object 
in a model represents something tangible such as a door, window, 
capacitor, etc. However, how can the relationships among 
requirements, hazards, product features, and business goals be 
readily understood for a complex product with thousands of 
requirements? Furthermore, unlike the boiler shown in Figure 4.1, 
electromechanical and software components may have relatively 

www.uml.org
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complex processes that can be difficult to understand, even for a subject 
matter expert. Some very simple modeling needs can be inferred 
from the need for abstraction:

• Process models should, in general, be understandable by 
viewers who are not experts in the domain being described 
(there are, of course, exceptions, such as views of complex, 
domain-specific information).

• Models should be coherent. That is, there should be no holes 
or discontinuities. For example, when describing how a bank 
customer cashes a check, the reader should be able to traverse 
views easily from the point where the customer enters the 
bank until the customer is handed money.

• Tools used to create and view models should be easy to use 
and should enable processes, not cause difficulties.

Modeling tools and techniques must work in the context of the 
organization and project where they are being used. For example, if 
requirements are being elicited in a distributed fashion, then the tools 
should support distributed requirements elicitation.

For our purposes, a model can be defined as “A representation of 
a system that allows for investigation of the properties of the system 
and, in some cases, prediction of future outcomes.” We can infer then 
that requirements models can be used to

• Provide views that allow us to understand product 
requirements precisely.

• Provide views that show generalizations or simplify complex 
relationships between requirements.

• Describe the context or background in which a product will 
be used.

In systems and software engineering, modeling for analysis has 
very different goals than modeling for design. Martin Fowler has 
stated about software design: “The fundamental driver behind 
[graphical modeling languages] is that programming languages are 
not at a high enough level of abstraction to facilitate discussions about 
design” [Fowler 2004]. This chapter concerns itself with the use of 
models for elicitation and analysis. In requirements engineering, 
elicitation and analysis models are specifically used to

• Provide aids for the elicitation of customer needs.

• Clearly define customer processes and the context for any 
products being developed.

• Provide a vision for how a product might be used after 
completion and deployment.
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• Aid in identifying potential hazards (to users of a product).

• Identify all possible users of a product and external systems, 
and how each of them interacts with the system or product 
under consideration.

Each engineering discipline and domain has its own standards 
for design or modeling. In civil and mechanical engineering, for 
example, blueprints are often used. More generally, the term 
“blueprint” has come to be used to refer to any detailed plan. In 
electrical engineering, there is the traditional circuit diagram. This 
has been augmented in electronics design with standards for circuit 
board design. In the software world, it is recognized that working in 
the problem domain results in higher productivity and better quality 
products than working at a low level (www.darpa.mil/ipto/
programs/hpcs/). When modeling for elicitation and analysis, 
depending on where you are in the product development life cycle, 
there are many different approaches to modeling (see Figure 3.4 in 
the preceding chapter).

Goal modeling is used to define business goals and relate them to 
needs and features (see “Eliciting Business Goals” under Section 3.3 in 
the preceding chapter). Goal modeling can be done at any time, but it 
is usually correlated with the definition of product features, to ensure 
that the features are synchronized with business needs or goals. Goal 
modeling is sometimes used to show nonfunctional requirements and 
their relation to goals and functional requirements.

Feature modeling is a modeling approach normally associated with 
defining product lines. The model shows all possible features in all 
products in the product line, their dependencies, and their mutual 
incompatibilities. Since an unconstrained feature model is generally 
too broad in scope to be useful, the models are normally coupled with 
product maps that identify which features are associated with 
identified products. Feature models can also be used to identify 
potential variations within a single product; e.g., user configurations.

Process modeling is typically used to show user workflows either 
before or after a product is delivered (or sometimes at both times). 
Some modeling techniques, such as the UML, are also used for 
software design, as the diagrams that are used to show customer 
processes can also be used to illustrate software processes. Unlike 
Goal and Feature Models, which tend to be static representations of 
structure, process models can show both static structures (e.g., the 
structure of an organization) and temporal behavior (steps in 
activities, changes in the state of an object over time, etc.). There are 
many types of process models, including Integrated Definition (IDEF) 
methods developed for military contractors [IEEE 1320.2-1998]. Other 
techniques such as those of [Gane 1979] and [Yourdon 1988] enjoyed 
some early success but were limited by the quality of the tools 
available and the limited functionality of early desktop computers 

www.darpa.mil/ipto/programs/hpcs/
www.darpa.mil/ipto/programs/hpcs/
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and workstations. More recently, simplified modeling techniques 
such as SysML have emerged to support systems engineering efforts 
(www.sysml.org).

Video-based requirements engineering couples workflow models 
with video streams. It is a relatively new field, enabled by advances 
in video capture and editing techniques [Creighton et al. 2006].

The remainder of this chapter will focus on our experience with 
process modeling techniques that have been successfully used on 
Siemens projects to support requirements elicitation and analysis, 
specifically model-driven requirements engineering. Sometimes the 
two activities are confused because the same tool and physical model 
(or files) are used; however, they take place at different points in the life 
cycle. Elicitation is an activity accomplished with stakeholders to 
determine what their needs are. In order to better understand the 
context, a business model may be created that describes business 
activities where a new product or set of services will be used. A 
prototypical product may then be defined and refined, so that the 
customer’s needs are better understood. Once a set of product features 
is known, analysis modeling may take place to define in detail how the 
product will be used. The Model-Driven Requirements Engineering 
(MDRE) methodology described in the next section covers both business 
modeling and analysis modeling activities, starting with business 
activities and ending with the detailed interaction of users and the 
proposed product or system in the same integrated physical model.

4.2 Model-Driven Requirements Engineering (MDRE)
We have used MDRE on Siemens projects because we have found 
that, under certain circumstances, it is often a good way to effectively 
manage the requirements for large and complex systems. On one 
project, for example, there were over eight hundred use cases. Most 
of those use cases described product functionality to be developed. 
Consequently, tasks had to be placed in a project plan. Creating the 
plan manually would have taken at least two weeks, with the risk of 
human error (e.g., leaving out tasks). Using the MDRE tool set, the 
draft project plan was created directly from the model for use by the 
project manager in a matter of minutes, with associated hyperlinks 
between the model use cases and the plan tasks.

MDRE uses models as an enabler for all requirements activities 
and includes the use of modeling techniques for elicitation (business 
modeling and use cases) and analysis (detailed descriptions of the use 
cases). Initially, processes are modeled to better understand how a 
product might support potential customer activities. For example, 
when building a new underwriting system for an insurance company, 
we would want to know what systems and roles the new system would 
interact with; what kind of data was used, modified, and created; how 
the underwriting information was managed; and what constraints the 

www.sysml.org
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underwriting staff operated under (e.g., time, quality, organizational). 
The output of early modeling efforts would be a business model that 
described either the customer’s “as is” or “to be defined” processes. 
From that business modeling effort, a product or set of IT services 
would be derived to support the underwriting process as a set of 
product features. As product features tend to be high level, they then 
need to be analyzed by expanding all the features to show how they 
are used. This is typically done in an analysis model, where each feature 
is a starting point for analysis (note: features typically are shown as 
abstract use cases). The analysis of each feature then results in a 
coherent use case model (typically, in the same modeling tool). As the 
use cases are decomposed during analysis, testable functionality is 
described in concrete use cases. The full, hierarchical set of use cases 
then become the requirements for product construction.

The following activities are from a project to develop an 
underwriting system for a major insurance company, and they 
illustrate the approach used for a typical MDRE effort.

• A business model of the organization was created, showing 
how underwriting works in an insurance company. This was 
accomplished by conducting requirements elicitation 
meetings with corporate officers and underwriters, and 
building the model in their presence with their inputs.

• When reviewing the business model, we observed that certain 
operations were being done inefficiently. For example, letters 
would be sent to various parties containing forms that had to 
be filled out and returned (e-mail was not acceptable, as many 
of the forms required signatures or notarization). There was 
no tracking of when the letters were sent, and when (or if) 
they came back.

• A feature was added to the new, planned underwriting 
system called a “Diary” that would track all sent and returned 
mail, and would automatically notify officials if responses 
were not received in a timely manner.

• During analysis, the Diary feature was expanded through use 
cases to define the interaction of the new underwriting system 
with users, including data, form, and function. Each of the 
low-level functions supported by the Diary feature, after 
careful review, became a customer requirement. Finally, during 
triage, the requirements were prioritized by the stakeholders 
and then allocated to product releases by the project staff.

• The business model and use case model were seamlessly 
integrated in that the use case (or analysis) model was an 
extension of the business model. The requirements were 
generated from the use case model and loaded into a 
requirements database for tracking.
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A design model can be created, using the analysis model as a 
starting point or guide. Finally the product is implemented, where, in 
the case of software, the implementation model is the actual software 
or code (see Figure 4.2).

Project plans, test plans, traces, and requirements can be generated 
from a model, depending on the modeling objectives and effort put into 
creating it. We want models to be sufficiently formal that we can check 
for correctness. That means we need semantics for model construction. 
A useful by-product of increased formality is the use of metrics to 
determine work product quality and project progress. Finally, if the end 
product is software, an analysis model can be the starting point for the 
generation of a software design. Parts of the design can be derived 
semiautomatically or manually from the model. As most, if not all, 
MDRE activities take place prior to design decisions, they are appropriate 
for both systems and software engineering. We have used MDRE 
techniques on mechatronic projects such as mail sorting systems, where 

FIGURE 4.2  
Example types of 
models Business Model

Implementation Model

Design Model

Use Case (Analysis)
Model

Feature/Goal Model

The business model
describes the target
environment and
processes.

A feature and/or goal
model describes
planned product 
features. A goal model
focuses on non-
functional requirement
constraints.

The analysis model
describes each product
feature in detail and
contains the product
requirements.

The design model
translates the
requirements into a
product design.

The implementation
model is the product
instance, e.g., in the
case of a software
product, it is the code.
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it was impossible to tell, from the model and the requirements derived 
from the model, whether the resultant components would be hardware, 
software, or firmware [Bradley et al. 1991].

The use of MDRE processes requires a significant amount of  
up-front planning, skilled staff, and viable tool sets. The creation and 
use of an MDRE process will be described in the following sections, 
with a suggested set of modeling heuristics and best practices. 
Results of the use of MDRE techniques are reported in [Berenbach 
and Borotto 2006].

With MDRE, instead of using text as the framework for the 
requirements in a project, models are used. In Chapter 2, we saw how 
artifact models can improve the quality and productivity of RE 
processes. When using MDRE, as many artifacts as possible are 
generated from or stored in the requirements artifact model. For 
third-party artifacts or objects that cannot be stored in or generated 
from the model, traces are used to create hyperlinks (see Figure 4.3 
and Table 4.1, later in this chapter).

All MDRE artifacts either are stored in a model or have a 
placeholder in the model to represent them. Ideally, the textual 
description for an artifact will be stored with the artifact. On demand, 
the text can be extracted to a specification or transformed as needed. 
External documentation such as standards and government 
regulations are usually referenced via hyperlinks, which are object 
links in the model. However, hyperlinks should be used with 
discretion, as they can only point to a whole “something.” That is, a 
requirement in a model referencing an external document via a 
hyperlink can only reference the entire document. In order for the 
links to be effective, they should ideally have a tighter granularity; 
e.g., they should reference a paragraph or sentence.

The most commonly used tools tend to be disjoint. That is, 
information is kept in different databases, with synchronization 
requiring manual effort of custom programming. Keeping a model 

Requirements
Database

Project
Documents

Design
Outline

Test Plan
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Business
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FIGURE 4.3 The analysis model as a nexus for project activities
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and a requirements database synchronized can be a problem. It is a 
straightforward process to create a first draft of a requirements 
database from a model. However, there is the open issue of keeping 
the model and the database synchronized, as they are now in two 
separate databases, and changes made to one might not be reflected 
in the other. We feel that tools that will combine requirements 
management and process modeling facilities are still several years 
away; consequently, special attention should be paid to tool integration 
and automatic updates.

At Siemens, several pilot projects were conducted to determine 
the effectiveness of MDRE with currently available tool sets on large 
projects [Berenbach and Borotto 2006]. Additional projects used MDRE 
effectively, where the requirements were generated automatically 
from an analysis model and transferred to a requirements database. 
The combination of programmatic quality assurance checks (using 
our internal DesignAdvisor tool) and automated requirement 
generation worked well; the only open issue being the need to 
manually synchronize the model and the generated requirements as 
part of the requirements management process.

An MDRE process or set of processes can span the entire product 
development life cycle from innovation through maintenance. It is 
therefore important to determine the objectives of the process, and what 
the process stakeholders will expect (Figure 4.4). Typical questions  

FIGURE 4.4 Sample shareholder needs within an RE process
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Subject matter analysts
like to know which
areas need further
elucidation, and whether
they have previously
reviewed the material.

Testers are primarily concerned
with the generation of a test plan
and test cases, e.g., how difficult
it would be to generate a viable
set of test cases from the
completed model and associated
documentation.

Requirements analysts have the same
needs as subject matter experts, but
they would also be interested in the
quality of the UML model. They would
also want to know what areas needed
further investigation.

Project managers are concerned
with resource utilization, skill
level of the project team, and
progress (e.g., percent
completeness).

Designers are interested
in coverage and clarity.

Quality assurance personnel
want to be sure that in-place
processes are being followed,
and that the quality of the
work products can be measured
in some tangible way.
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that must be answered when defining a process and an integrated  
tool set to support that process include:

• How will business goals and stakeholder requests (business 
requirements) be captured and traced to product features 
and/or requirements?

• How will product features be captured?

• How will requirements be traced to features?

• What will test cases be traced to?

• How will the project plan be synchronized with the MDRE 
processes?

• How will requirements be elicited and analyzed using an 
MDRE process?

• How will quality and productivity be measured?

• How will artifact completeness be determined?

• What is the most effective way to execute the various 
processes?

• What are the best tools to use given the scope of the project?

• How will tools be integrated, e.g., how will they be 
synchronized?

• How will cross-media traces be managed?

• How will the MDRE processes scale?

• Do we have a product line? If so, will any proposed MDRE 
processes support a product line?

• How will the MDRE artifacts and process be supported or 
maintained once the product is in maintenance?

• Do we have adequately trained staff?

• What standards, procedures, and samples are needed? If we 
don’t have them, how do we get them?

4.3 Advantages of an MDRE Approach
MDRE is not an “all or nothing” methodology. For example, if an 
organization wishes to focus on textual use cases and requirements, a 
high-level use case model makes a very nice navigation aid; e.g., the 
model stops at the level of a use case, and selecting the use case 
symbol launches an editor with the use case document.

With agile approaches to software development, lightweight 
models (e.g., the models are incomplete) can be used to represent a 
collection of user stories. Using a model instead of short textual notes 
provides increased detail that is not only of use to the developers, but 
also to testers and reviewers.
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Use case modeling has also been found to work well when 
discovering requirements for service-oriented architecture (SOA) 
systems [Lau 2004], and the use of modeling for SOA products seems 
to have become the de facto approach for identifying SOA 
requirements.

Models used for navigation work especially well when the models 
are published to the Web, giving stakeholders unfamiliar with the 
project a simple navigation guide for finding documentation. Each 
organization, and each project within that organization, needs to do a 
cost, benefit, and risk analysis to determine what aspects of MDRE 
are desirable. Often, when evaluating methodologies, organizations 
will focus on “the easy stuff”—such as “how do we write use case 
documents?”—while ignoring the details that can cause problems 
later during development. For example, a cross-cutting requirement 
is a requirement that may impact several areas (or use cases). A 
security requirement, for instance, may impact reports, user interfaces, 
logon, etc. As the work products of MDRE are artifacts that can be 
queried or mined, MDRE techniques tend to be better than traditional 
natural language approaches for managing such cross-cutting 
requirements.

MDRE can have significant advantages over other approaches on 
large projects. Some of these are listed in the sections that follow.

Using MDRE to Estimate Project Size and Cost
Karner provides guidelines for creating function point estimates from 
analysis models [Karner 1993]. His approach involves ranking actors 
and use cases as simple or complex using a weighting system. A high-
level use case model is a good fit with function point counting. When 
modeling, actors and use cases can be assigned weights based on 
Karner’s guidelines. As the directed graph underlying the model is 
traversed, “use case points” are summed up and converted to function 
points for estimating cost. Note that this approach is not as simple as 
it sounds; high-level models should be used, and the numbering 
scheme for ranking use case and actor complexity needs to be applied 
judiciously. That having been said, it is an excellent way to estimate 
the cost of completing very large projects when the first project phase 
includes an analysis model.

Improved Management of Cross-Cutting Requirements
Cross-cutting requirements are those that trace to or impact other 
requirements in different areas. With traditional approaches, it can be 
very difficult to manage change control with nonfunctional 
requirements. It can, for example, be difficult to see how a new or 
changed requirement impacts other parts of a system. With MDRE, 
however, it is relatively easy, as the traces are visual, and since the 
views are into a homogeneous model, it is easy to query for changes 
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and make modifications; e.g., changing, adding, or deleting artifacts 
and their relationships will automatically be reflected everywhere the 
related objects are shown.

Navigation of Complex System Requirement Sets
Navigating through volumes of text can be very difficult. Even when 
items are traced to each other in databases, as projects get larger, trace 
matrices increase in size as the square of the number of requirements 
and it can become a daunting task to find information for an impact 
or coverage analysis. Moreover, for someone not familiar with the 
domain, navigation can be a time-consuming, trial-and-error process. 
Navigation with a well-crafted model is no more difficult than finding 
a route with a map. Touch, zoom, touch, zoom, etc., and you are there. 
Finding related objects is as easy as doing an ad hoc query (remember, 
everything is in a database). As models scale well, ease of navigation 
remains the same regardless of model size, although it might take a 
few more mouse clicks to find the material of interest.

Rapid Review of Business Processes  
and Requirements Relationships
Reviewing diagrams is significantly faster and more thorough than 
reviewing similar material in text. We have found that model reviews 
tend to be more culture and language neutral than reviewing text 
documents. Furthermore, if the models are extended to support the 
Unified Requirements Modeling Language (URML) concepts (see 
later Section 4.5), then the relationships between hazards, threats, 
processes, product features, business goals, and functional and 
nonfunctional requirements can all be viewed at the same time by 
distributed teams [Berenbach and Gall 2006]. Pictures tend to be less 
ambiguous than text, and relationships (or the lack thereof) are 
immediately apparent.

Metrics for Quality and Progress
Unlike text, models are mathematical structures (directed graphs). It 
is therefore possible to define metrics for quality and progress, and 
then semiautomatically extract the metrics at periodic intervals 
[Berenbach and Borotto 2006]. The rapid extraction and analysis of 
metrics improves transparency and product quality.

Semiautomatic Generation of Project Plans  
and Requirements Database Content
With a properly crafted model, where one of the goals of the modeling 
effort is the automatic generation of downstream artifacts such as 
project plans and the population of requirements databases, the 
manual transcription of information can be avoided, along with the 
potential for transcription errors [Berenbach 2003].
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4.4 Prerequisites for Using MDRE
There are some organizational prerequisites for effective use of 
MDRE. These prerequisites are described in the sections that follow.

Modeling Skills Not Readily Available
Our experience with RE projects is that, after training, it takes about 
a month of apprenticeship before an analyst can effectively use MDRE 
techniques. For an analyst to be a facilitator or lead an RE team, it will 
likely take at least six months working with MDRE under an 
experienced team leader. These training times are rough rules of 
thumb; the actual times depend on the experience and skills of the 
staff and the complexity of the domain.

In an ideal situation, at least one of the team members, preferably 
the team leader, should have been completely through an MDRE 
cycle, that is, through the end product going into maintenance. We 
have all had the experience of the “do-it-yourselfer” fixing a washing 
machine or a bicycle, and we know that after we are done, we think 
to ourselves, “Now why didn’t I do that in the beginning, it would 
have made my life so much easier?” The same is true with systems 
engineering; often, going through a complete product development 
life cycle can significantly change one’s perspective on what is 
important.

Inadequate Tooling
Tools for requirements engineering are viewed by some to be in their 
infancy. Vendors would have practitioners believe that their 
requirements databases will solve all of our RE process problems, but 
this is not usually the case. We cannot always do everything with one 
tool; for example, consider maintaining cross-database or cross-
document traces. Furthermore, some tools do not scale well; as the 
number of artifacts in use increases, the performance and ease of use 
of the tool degrades. Also, with the current business turmoil in the 
requirements and development tools area, there is always the concern 
that a vendor will stop manufacturing a tool being used on an 
important project, leaving the user with limited support.

Organization Not Ready for MDRE
When tools are being discussed and an organization frequently asks 
“how much does it cost?” that may be an indicator that the organization 
may not be ready for MDRE. Tools can be expensive, but the real 
question is, “What is the cost/benefit impact of MDRE on the product 
life cycle?” Furthermore, the organizational structure may not lend 
itself to MDRE techniques. For example, if there are impediments to 
cooperation across organizational units, then MDRE may not be 
feasible, since business goals need to trace to product features, and 
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product features need to trace to test cases. If organizational barriers 
prevent the creation of those traces, then an organization may not be 
mature enough to support MDRE. MDRE does require skilled staff, 
and that means training, mentoring, and broad experience across the 
life cycle. We have also seen situations where business analysts who 
have been using text-based elicitation and analysis techniques were 
very apprehensive about trying new methods, especially techniques 
with which they would be working at a novice skill level.

Another organizational issue is that of finding the right first 
project. As MDRE techniques might not work as well as desired the 
first time they are used, a small, noncritical first-time project would 
be best. Sometimes organizations are in constant “fire-fighting” mode 
and cannot spare staff to try something new.

“Begin at the beginning”, the King said, gravely,  
“and go till you come to the end; then stop.”

—Lewis Carroll, Alice’s Adventures in Wonderland, 1865

4.5 MDRE Processes
MDRE processes include requirements gathering activities up to but 
not including design, where the focus of the elicitation and analysis 
activities is model creation and utilization. That includes, for example, 
goal and feature modeling activities, hazard analysis, threat modeling, 
and requirements elicitation and analysis using models. Depending 
on the sophistication of the modeling tools used, a full implementation 
of the URML would permit an organization to do most of its RE 
activities with a URML, generating artifacts such as documents or 
requirement specifications as needed on an ad hoc basis. If less 
sophisticated tooling is used, or more traditional tools are used for 
storing requirements, a traditional process modeling tool (e.g., IDEF, 
UML, etc.) can be used for process modeling. In this section, we will 
start with a holistic view of MDRE processes, and then later in the 
chapter, we will provide step-by-step guidance for model creation 
during elicitation and analysis. We use the UML as a starting point 
because of its acceptance and available tool sets. It must be noted that 
limitations of MDRE are often imposed by the tools used. Since the 
focus of the MDRE effort is the creation of models from which high-
level requirements can be extracted, tools must enable whatever 
techniques are used. Where tools cannot provide the needed 
functionality, then customization or the additional use of other tools 
may be necessary.

Initial Understanding
In the beginning of a project, we would like to know why a system or 
product is being built. There are, of course, conflicting points of view 
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as to why products are created. However, in software and systems 
engineering, the view that counts the most is that of the stakeholder 
paying for the system (or the requirements elicitation effort, if the 
decision to build has not yet been reached). If it is at all possible, we 
want to capture the early business goals so that when an impact 
analysis is performed later in the project or design tradeoffs are made, 
the rationale as to why a feature is in the delivered system is readily 
understood. Looking ahead to Figure 4.14 we can see the context 
diagram for a sporting event management system. Several of the 
diagrams in this chapter use this system as a modeling example. Look 
at Figure 4.14 first, then look at Figure 4.5. In Figure 4.5 we see a goal 
model fragment showing some of the goals we hope to achieve in 
creating a sporting event system (commercially desirable; e.g., make 
a profit). The model shows that some business goals are in conflict, 
that is, the goal of high reliability may conflict with the goal for a low-
cost system; those goals will need to be resolved. If a documented 
goal cannot be in the model (e.g., the goal is part of a strategic vision 
document), then at least a symbol in the model can trace to or reference 
the original goal. Ideally, when viewing goals in the modeling tool or 
a published web model, it should be possible to hyperlink to the goal 
details.

Commercially Desirable Sporting
Event Management System

Low-Cost System

Easy to Use

High Reliability

Feature Rich

+

+

+

+

−

−

−

FIGURE 4.5 Goal model fragment
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Understanding the Context and How the Product Will Be Used
Product vision and scope documents may provide insight into the 
environment where the product will be used as well as information 
about the users of the product. These descriptions include contextual 
information, as well as sufficient details to understand how the 
product will be used by customers. For the example shown here we 
provide use cases, although other techniques such as IDEF models 
could also be used. In the scenario shown1 in Figure 4.6, a sporting 
event official wants to assign a competitor to a team. Figure 4.7 
illustrates the process by which the official uses menus to assign a 
competitor to a team. A special symbol is used to indicate that an 
included use case is “terminal”; that is, it has no included or extending 

Assign competitor to
team

Drag competitor from competitor list
and drop in team member list

<<include>>

FIGURE 4.7  
Terminal use case 
as a testable 
requirement

1  See any reference on the UML for a description of how such diagrams are created 
and read.

FIGURE 4.6 Sample scenario illustrating assignment of a competitor to a team

sd Assign competitor

an official:
Official

the terminal:
Access terminal

View teams

:Team
controller

Get teams

Teams

Select a team
Assign competitor to team

the team:
Team

Assign competitor
to team

the competitor:
Competitor

Assign
competitor

Assign team

Confirmation
Display confirmation

Display teams

Okay

Okay
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use cases and is an endpoint of the analysis (see the next section for 
more information). The figure illustrates only one possible scenario; 
there may be many. For example, there may be scenarios where the 
official enters the wrong competitor (e.g., by assigning a U.S. citizen 
to the Albanian ski team) or tries to enter a competitor who does not 
exist. All of these scenarios will have to be defined.

A very common mistake at this point in the elicitation process is not 
to define error scenarios. The oversight may very well be hidden until it 
is time to start testing the system, at which point the elicitation of error 
scenarios may become the responsibility of testers. When testers have to 
complete scenarios, the elicitation process becomes inefficient to say the 
least. Not only are testers less likely to have access to the stakeholders to 
elicit error scenarios, but some of the system may have been designed 
and built at this point without taking into consideration the need to 
handle the “to be discovered” error conditions.

While creating the scenario just described, we find that some 
person or thing must have information about teams and provide 
information about them (arbitrarily called the “team controller” in 
Figure 4.6). So we have identified, while creating a scenario, what is 
typically called a business object. A business object is an object that is 
part of the system (it could be a person, it could be a group of people, 
it could be a computer system or systems) that performs a needed 
function or set of related functions. If we can’t find a business object 
that does what we need early in the elicitation process, we create one. 
Later, we will be collecting requirements by looking at the services 
that these business objects have to provide in order for the scenarios 
to work. During this effort we identify needed product features, 
including the ability to store and retrieve information about teams, 
store and retrieve information about individual competitors, and so 
on. As these product features are identified, we can create a feature 
tree that shows the relationship of all these features (see Figure 4.8). 

The Sports Event Management System

Manage
Competitors

Manage
Teams

Manage
Events

Create TeamDelete Team Edit Team
Details

Add
Competitor to

Team

Remove
Competitor
from Team

FIGURE 4.8 High-level feature tree
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Ideally, the feature tree would be supported in the modeling tool 
being used. If not, any graphical media could be used to illustrate the 
full scope of features in the idealized product. Of course, not all the 
features identified would make it into the final product; they would 
need to be prioritized. After an analysis effort to expand the product 
features into well-defined, testable requirements, a product release 
would then be specified with the desired features. During initial 
product definition, a feature model is kept relatively “lightweight.” 
However, the same model can be extended to fully support a product 
line. It can also be used to define product variations or customization 
that may be made by the user after delivery. Feature models are 
especially useful in identifying test cases where the system can be 
configured by the user after delivery.

Analyzing Product Features and Creating a Use Case Model
Once we have a draft set of features, we are able to start creating a 
model from which we will derive all our customer requirements (all 
of them, before ranking). Product features become high-level abstract 
use cases, from which we start the decomposition process to elicit 
details that will become requirements (Figure 4.9). As we go through 
each of the features, scenarios are created describing the feature in 
action; the scenario diagrams describe the usage details (Figure 4.10), 
and the use case diagrams provide structural information; e.g., which 
other use cases (or processes) are included or sometimes included 
(called extending use cases).

Delete Event
Creation Date:2/26/2006
Modification Date:1/15/2007
Modified By:RDM
Status:Preliminary

Delete event from
event calendar

Delete event from
team calendar

Delete event record from
results database

Delete event from
competitor calendar

Official Delete event
interface

Delete event

<<include>> <<include>>

<<include>>

<<extend>>

FIGURE 4.9 Use case decomposition
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sd Delete event

1: Request event deletion

The Event
Manager

2: Request event
     deletion

15: Ok

16: Deletion successful

The Event
List

3: Retrieve event

4: Event object

An Event

Official

Delete event
interface

A Team

loop

[have _
another_
team=true]

6: Delete event from
    team calendar

A Competitor

7: Delete event from
    competitor calendar

loop

[have _another_
competitor=true] 8: Ok

9: Ok

The Results
Database

10: Delete event

11: Ok

The Event
Calendar

12: Delete event

13: Ok

5: Delete

14: Ok

FIGURE 4.10 Scenario defining the Delete Event use case
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As previously mentioned, depending on the starting point, 
several different types of models (e.g., business, feature, goal, analysis, 
design, implementation) may be used. As we descend to lower and 
lower levels within a business, feature, goal, or analysis model, we 
include more detail.

The lowest level in an analysis model consists of testable use 
cases, as described with scenarios, flowcharts, and state diagrams. 
The lower-level use cases and requirements are the same except for 
phrasing. For example, the use case might be “schedule a patient for 
a followup visit”; with the corresponding requirement being “It shall 
be possible to schedule a patient for a followup visit using the 
scheduling system.” It is important to define the lowest use case level 
from the perspectives of both semantics and mechanics in order to 
determine when a model is complete. For example, a definition of use 
case completeness might include these considerations:

• An individual use case shall be considered terminal (e.g., no 
further decomposition) when it has no included or extending 
use cases.

• It has been defined with state or activity diagrams describing 
both successful and unsuccessful outcomes.

• It provides sufficient information for the creation of test 
cases.

• Its documentation is suitable for use as a requirement 
definition.

• It has been given a special stereotype of terminal use case (see 
Figure 4.7).

• A nonterminal concrete use case shall be considered complete 
when it meets all the quality assurance checks for a 
nonterminal use case, and all of the leaf use cases that are 
included or extend it have been defined and are complete.

• A nonterminal abstract use case shall be considered complete 
when all of the concrete use cases reachable from it are 
complete. By reachable we mean by traversing the graph 
consisting of nodes (use cases) and edges (dependencies, e.g., 
“includes,” “extends”).

Extracting Requirements from the Model
Prior to starting elicitation and analysis, it is necessary to understand 
how model(s) will be used on a project. If models are only to be used 
for background context and to provide information for testers, less 
formality is required. However, if models are to be mined for 
requirements and metrics, or if various artifacts are to be 
semiautomatically generated from the model, then a more formal 
approach is needed. Since a properly crafted model is an acyclic 
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directed graph, it is possible to extract requirements from models 
programmatically to populate a requirements database [Berenbach 
2003]. An alternative is to keep the requirements in the model, 
generating tabular views for review or a Systems Requirements 
Specification (SRS) directly from the model (Figure 4.11).

The UML provides the ability to create profiles with specialized 
icons and object types. In addition, extensions to the UML exist 
specifically for business modeling. We recommend improving the 
clarity and simplicity of business and analysis models by augmenting 
traditional flowchart or use case symbols with symbols unique to 
business modeling or the domain wherever possible, and then 
defining semantics, such as those that we have proposed [Berenbach 
2004]. For example, one business rule that has been found to be 
effective is to require that actors (users of a product) be required to 
communicate with concrete (testable) use cases through a boundary, 
except on the context diagram. By enforcing this rule, every point 
where an interface or form must exist is captured and can be viewed 
in an inventory report.

In Figure 4.12 we see the nonfunctional requirement that 
operations must complete within one second impacting the software 
user interface used by spectators. As mentioned previously, we have 

3.0 Event Management
 3.1 Create Event
 3.2 Delete Event
  3.2.1 Delete Event from Team Calendar
  3.2.2 Delete Event Record from Results Database
  3.2.3 Delete Event from Event Calendar
  3.2.4 Delete Event from Competitor Calendar
 3.3 Edit Event
 3.4 View Events
4.0 Competitor Management
 4.1 Register Competitor
 4.2 Disqualify Competitor

FIGURE 4.11 High-level requirements extracted from model

Spectator

View EventsSpectator
View

Operations must complete
within one second

Impacts

FIGURE 4.12  
Adding 
requirements to 
diagrams
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found that using markers to place nonfunctional requirements on a 
model improve their visibility and reduce the risk that an important 
nonfunctional requirement will be overlooked during design.

Once the model is complete, a properly constructed tabular set of 
detailed requirements can be extracted and used as a starting point 
for the creation of both project task lists and test plans. In addition, it 
should be possible to generate an interface (user and software) 
inventory.

Starting an MDRE Effort
When starting an MDRE effort for elicitation or analysis, it is 
important to

• Define model completion.

• Understand how the model will be used and maintained after 
completion—this defines what tools are needed and how 
they are to be integrated.

• Have the appropriate standards and procedures available. 
Modeling style is important. Without guidelines or directions, 
analysts might create models that cannot be used effectively 
for requirements generation, metrics extraction, or data 
mining.

• Have at least one person on the team to act as a facilitator 
who has been through a complete MDRE cycle.

• Have the desired tool set in place and ready to use.

Organization of a model is key to performing programmatic 
verification and requirements extraction. It is important to have the 
goal of a coherent verifiable model in mind throughout the analysis 
effort and model construction process. The knowledge contained in 
an analysis model is valuable to an organization and can be 
disseminated by publishing to the web. The heuristics described in 
the following sections will make a model more understandable by 
making navigation intuitive.

Managing Elicitation and Analysis Sessions
With MDRE, the management of elicitation and analysis sessions is 
done using the same process, although the participants may be 
different. Initially, subject matter experts, the team lead, and analysts 
will participate. At the initial kickoff meeting, the team lead should 
describe to the core team how the sessions will be run, and provide 
examples of MDRE artifacts. Thus, the team lead will

• Review guidelines and procedures such as style guides for 
content and revise (offline) as necessary.

• Describe the modeling techniques and tools to be used.
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• Show sample “idealized” models.

• Explain how QA will be performed.

• Define completion criteria.

• Review the draft schedule and expected participants.

The modeling sessions start with a skilled facilitator or team lead 
modeling across and then down the model (see the heuristic for 
breadth first modeling in the later section “The Early Modeling Effort 
Should Cover the Entire Breadth of the Domain”). Once other analysts 
have gained some experience with modeling sessions, they can take 
over the lead and get experience as facilitators.

Sessions are usually run in the mornings, three or four times a 
week. At each session, the subject area to be modeled is known in 
advance and the appropriate subject matter experts or customers are 
scheduled into the meeting (see Figure 4.13).

The first order of business in the modeling session is the analysis 
of metrics from any automated analysis tools that were used on the 
model. Also, any descriptions that were created offline are reverse-
engineered into the model. Assignments to make repairs (offline) are 
done, and the elicitation sessions continue.

As modeling activities continue, no more than 5–8 people should 
be present. A projector is used so that participants can see the model 
under construction or review. Sessions should last no more than half a 
day. At the conclusion of each modeling session, the facilitator exports 
a spreadsheet from the model with artifacts and their descriptions. 

Generate Completion and
Error Metrics

Model Incomplete
Areas

Extract Artifact
Spreadsheets

Import Previously Completed
Artifact Descriptions

Begin Modeling Session

Assign Analysts to Complete
Artifact Descriptions

End Modeling Session

Model
Metrics

Incomplete Artifact
Descriptions in Spreadsheet

Completed Artifact
Descriptions in Spreadsheet

Completing artifact documentation
is done outside the modeling session
to improve modeling productivity
and documentation quality.

Team repairs model errors and/or assigns
analysts to repair after the modeling session.

FIGURE 4.13 Example modeling session activities
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Missing descriptions are then added to the spreadsheet by the assigned 
subject matter experts or analysts offline and imported back into the 
model before the next modeling session.

Wherever possible, the entering of textual descriptions should be 
avoided during modeling sessions, as it significantly reduces 
productivity. On the other hand, detailed artifact descriptions (e.g., 
use cases, requirements, actors, objects) are needed in the model in 
order to create high-quality documentation. Thus, a facility for 
“round-tripping” descriptions in and out of the model is essential, 
and quality assurance reviews of the artifact descriptions should be 
part of the modeling process.

Improved Productivity Through Distributed Modeling
Once a routine is established and some initial modeling has taken 
place, all the team members should understand how to use some 
tools; they will start to model in a consistent style. In addition, after a 
short period of time, different subject areas that are to be elicited or 
analyzed will have been identified in the model. At this point, the 
team can split into groups; each group can then model in their 
identified domains, bringing in the relevant subject matter experts or 
stakeholders as necessary.

Conducting Model Reviews
Model reviews are conducted at periodic intervals. During the 
reviews, everyone on the team and the relevant stakeholders and 
experts are present. If the team has split into groups, each group will 
present their work. The facilitator or team lead walks through the 
model using a hierarchical, top-down approach, and deficiencies are 
recorded. After the meeting, the team lead assigns analysts to repair 
the deficiencies in the model, and the repairs are reviewed by the core 
team at the next modeling session prior to modeling new areas. In 
addition, spreadsheets of artifacts and their descriptions are circulated 
for review, typically through e-mail. Careful attention should be paid 
to the content, grammar, and spelling of the descriptions, as the 
narrative text will become part of any requirement specifications.

On occasion, models are reviewed with customers. In our 
experience, we have observed the following positive outcomes 
resulting from customer model reviews:

• Customers gain confidence that the development organization 
understands their needs.

• The customer is relieved of the necessity of reviewing massive 
amounts of text-based documentation.

• The material developed may be reused by both the customer 
and the development organization (depending on the terms 
of the contract).
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4.6 Elicitation and Analysis Model Heuristics
This section describes a set of heuristics and guidelines for 
requirements elicitation and analysis sessions when using the UML. 
These heuristics have been successfully used on several of our larger 
projects. Note that as heuristics and style guides for the UML have 
been widely described elsewhere [Riel 1996], [Ambler 2005], the topic 
will not be covered here. Rather, we have concentrated on heuristics 
that are necessary for the construction of verifiable models and the 
programmatic extraction of requirements.

The Model Should Have a Single Entry Point
In order to force a navigable structure, the starting or context diagram 
should have only a single entry point in the form of an abstract use case 
or product feature (see Figure 4.14). Giving the diagram a special name, 
such as “context,” will help to identify it. The context diagram is also 
important because it has all the external entities that the system or 
product being investigated will have. As we are using use case notation 
here, we will refer to these entities as actors. They can be people (e.g., 
team captain), organizations (e.g., sales department), or systems (e.g., 
police department computer system). Getting the list right is critical, as 
we will see later that important quality assurance checks are based on 
the list of actors derived from the context diagram. Hence, we have the 
related heuristics described in the sections that follow.

All Actors Associated with the System Being Analyzed  
Should Appear on the Context Diagram
The model should be built as an acyclic directed graph [Crochemore 
et al. 1997], and the single product feature or use case symbol on the 
context diagram is the starting node for the graph. Use cases, actors, 

FIGURE 4.14 Example context diagram
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objects, and boundaries or interfaces are the nodes, and the 
relationships between them are the vertices. However, in order to 
keep the model simple enough to analyze programmatically, the core 
of the graph will be the relationship between the use cases and 
product features. This heuristic, along with the heuristics that describe 
the use of factors and boundaries, provides one of the semantics for 
model completion.

The Early Modeling Effort Should Cover  
the Entire Breadth of the Domain
“Drilling down” too soon risks missing interfaces and subject areas that 
need to be modeled. By modeling across the entire domain, identifying 
major areas to be modeled and those that are out of scope, missing 
interfaces will become readily apparent. For example, in the event 
management system for the Olympics, rather than the context diagram 
showing just event management, the first one or two high-level 
diagrams should include information on team management, competitor 
management, etc. Once the interfaces between these functions have 
been identified, then modeling of the event scheduling domain can 
proceed with confidence that all interfaces to outside organizations, 
people, and systems have been identified (see Figure 4.15).

Identify “Out-of-Scope” Use Cases as Early as Possible
Define scope and identify “out-of-scope” domains as quickly as 
possible. We suggest color-coding high-level use cases that are out of 
scope (see Figure 4.16). When working with distributed teams, it is 
most important to identify out-of-scope subject areas, to avoid 
wasting time on material not relevant to the project.

Every Diagram Should Have an Associated  
Description and Status
Ideally the status will be in a legend on the diagram (see the engineering 
drawing example shown in Figure 4.1). Real-world models tend to 

FIGURE 4.15 Initial modeling effort is cross-domain
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have a large number of diagrams. When viewing the diagrams in a 
document, web document, or presentation, it is easy to get lost without 
a legend. If the legend includes the diagram status, incomplete work 
is much easier to find (especially if the legend information can be 
queried programmatically).

Avoid the Early Use of Packages
Packages are used for partitioning work and as virtual folders to store 
related artifacts. It may not be possible to discern a correct partitioning 
of the model and work effort until some significant amount of use 
case modeling has been completed. We have found that the premature 
use of packaging may result in frequent model reorganizations. If 
packaging does not follow the logical organization of the subject 
matter, flaws in construction may surface at a very late date (e.g., 
components that are tightly coupled).

Do Not Substitute Packages for Abstract Use Cases
As stated previously, the model is a single unbroken directed graph. 
Directed graphs or digraphs can be traversed using breadth- or 
depth-first searching techniques. Substituting packages for abstract 
use cases or product features breaks the graph and creates semantic 
ambiguity because packages are just storage mechanisms or 
placeholders; i.e., they have no meaning in the context of process 
(Figure 4.17).

Every Artifact in a Model Should Be Visible on a Diagram
A model stores artifacts and their relationships. It is possible to 
remove objects from diagrams without removing them from the 
model. The hidden artifacts may only show up during reviews of 
printed material generated from the model. In order to be able to 
conduct visual inspections of the model, every artifact in it should be 
visible on at least one of the appropriate types of diagram.

FIGURE 4.16 Marking an area as out of scope
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Every Symbol Should Have a Bidirectional Hyperlink  
to the Diagrams That Define It
The ability to create a link from a symbol on a diagram to another 
diagram is tool specific. However, when navigating large models, the 
ability is mandatory. This makes navigation intuitive and enables 
programmatic model traversal. Table 4.1 highlights the kinds of links 
that would be expected when using a UML CASE tool to do MDRE.

Package Dependencies Should Be Based on Content
If any artifact in package A has a dependency on an artifact in package 
B, then on a class diagram a dependency should be shown between 
package A and package B. If, however, none of the artifacts belonging 
to package A have any dependencies with artifacts in package B, then 
there should not be a dependency relationship between package A 
and package B. Since in complex models it may be difficult to 
determine dependencies by inspection, an automated mechanism is 
recommended.

Every Concrete Use Case Must Be Defined
A use case diagram identifies business processes and their static 
relationships with actors, entities, and other use cases (see Figure 4.18). 
Without temporal information, the use case description is incomplete. 
Consequently, every concrete use case must be defined using one or 
more sequence, collaboration, activity, or state diagrams that provide 
temporal information. Note also that one diagram is usually not 
sufficient, as there may be many different outcomes, depending on the 
starting conditions and preconditions.

FIGURE 4.17 Incorrect use of packages
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Symbol Hyperlink To Rationale

Abstract use case 
representing a set 
of functions

Use case 
diagram

An abstract use case is a 
placeholder for a product feature 
or concept and does not have 
logic. It is the included use cases 
that would have concrete logic.

Abstract use case 
representing a 
product feature

Use case 
diagram

Abstract use cases and product 
features may need to be 
decomposed several levels before 
concrete, testable features or 
use cases are reached. In order 
to keep the diagrams simple, it is 
necessary to be able to hyperlink 
use case diagrams that continue 
the hierarchy.

Concrete use case Use case 
diagram

Use cases with many ancillary 
processes may need to be 
decomposed several levels. 
The ability to put only one level 
of decomposition on a diagram 
reduces clutter and makes the 
model more manageable.

Concrete use case Activity 
diagram

When a use case is concrete 
(e.g., testable), there may be 
many possible paths. While 
scenario diagrams are good for 
showing one path, the best way 
to see all the possible outcomes 
or variations is to use an activity 
diagram as an overview, showing, 
in simplified fashion, all possible 
paths that the process may take.

Concrete use case Sequence 
diagram

A use case is a process. One 
specific thread (e.g., a success 
mode or a failure mode) is best 
shown on one diagram for clarity.

Concrete use case Activity 
diagram

When a process is primarily 
sequential logic (e.g., an algorithm 
or computation) activity diagrams 
do a much better job of presenting 
the logic than sequence diagrams, 
showing activities, inputs, and 
outputs.

TABLE 4.1 Example Hyperlinks
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Symbol Hyperlink To Rationale

Concrete use case State diagram Event-driven logic (e.g., the 
process behaves as a state 
machine) is best described with  
a state diagram.

Message Activity or 
state diagram

A message on a sequence 
diagram represents a single 
service that is usually described 
with an activity or state diagram.

Activity Activity or 
state diagram

An activity may be relatively 
complex. One property of activity 
and state diagrams is that each 
activity (activity diagram) or 
transition (state diagram) can be 
exploded to another activity or 
state diagram to reveal increasing 
levels of detail.

Hazard Hazard 
analysis 
diagram or 
document

When extending the UML or other 
modeling language (e.g., the 
URML) a hazard symbol may be 
shown on a use case diagram. 
If hazard models are built into 
the tool, the hyperlink may 
be to a hazard model-specific 
diagram; otherwise, it may link 
to a complete hazard analysis 
document.

Threat Threat model 
diagram or 
document

In a similar fashion to hazards, 
threats shown on use case 
diagrams can hyperlink to either 
threat model diagrams or threat 
analysis documents.

Requirements Requirements 
may be shown 
on use case 
or other 
diagrams 
as either 
stereotyped 
use cases 
or custom 
artifacts

Requirements can hyperlink 
to their corresponding entry in 
requirements databases, or to 
other documentation that contains 
more details. Where feasible, a 
bidirectional link is best, e.g., 
requirement on diagram hyperlinks 
to requirement in database, 
requirement in database 
hyperlinks to requirement on 
diagram.

TABLE 4.1 Example Hyperlinks (continued)
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Use an Activity Diagram to Show All Possible Scenarios 
Associated with a Use Case
Sequence and collaboration diagrams are typically used to show a 
single thread of execution per diagram. It is possible to put more than 
one thread on a collaboration diagram, but it makes the diagram 
cluttered and hard to read. Using an activity diagram as an overview 
(e.g., “all paths”) of the process makes it easier to identify important 
logic threads that need to be defined. Where possible, create hyperlinks 
on the “all paths” diagrams to create an intrinsic trace to the associated 
threads. For example, an item can be either scheduled or back-
ordered. Both possibilities are shown in Figure 4.19.

Use Sequence Rather Than Collaboration Diagrams  
to Define One Thread/Path for a Process
The UML is flexible (sometimes too flexible) regarding the choice of 
diagrams for defining a process. Sequence, collaboration, activity, 
and state diagrams can all be used. However, we have found that 
sequence and activity diagrams are the easiest for nontechnical 
reviewers to read. As sequence and activity diagrams have a timeline, 
they force subject matter experts to be methodical when eliciting 
process information.

FIGURE 4.18 Example of defining a use case with a scenario
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This diagram illustrates all possible paths
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FIGURE 4.19 Sample “All paths” activity diagram for the “validate item” use case
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Since the MDRE process starts with product features that become 
use cases, when explaining them with sequence diagrams the objects 
that communicate are initially not known (with the exception of 
actors). During sequence diagram creation, objects necessary to 
provide services are “discovered.” The objects are then placed as 
classes on class diagrams and later organized by combining similar 
classes or splitting classes that provide too many services or have 
disjoint or unrelated services. Sequence diagrams force the early 
discovery of objects, along with their associated classes and business 
services. We have found that sequence diagrams are better for 
elicitation services and sequence features, while activity diagrams do 
a better job of illustrating complex logic.

Abstract Use Cases Must Be Realized with Included or 
Inherited Concrete Use Cases
Abstract use cases represent product features that are at a very high 
level (e.g., “power steering”) or can be a placeholder for sets of 
processes (e.g., “manage teams”). They must be decomposed to sets 
of features or processes that are testable.

The definition of a use case must be consistent across all diagrams 
defining the use case. A use case shown on a use case diagram can 
include other use cases and can optionally be extended by other use 
cases. Included and extending use cases will appear on sequence 
diagrams as messages to objects that will perform the requested 
service. Consistency can be defined as follows (see Figure 4.20):

• There will be at least one message on a defining sequence 
diagram with the same name as each included use case; that 
is, how a use case fits into a process must be explained. 
Otherwise, the use case is ambiguous; e.g., it uses other 
processes but does not explain how they are used.

These functions must be
utilized
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FIGURE 4.20 Semantic correctness requires that every concrete use case 
must be used in a scenario.
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• There will be at least one message on a defining sequence 
diagram with the same name as each extending use case.

• Every actor interface or boundary communication will 
appear on at least one sequence diagram.

• Any entities shown attached to a use case will appear as an 
item being passed (message argument) on at least one 
sequence diagram or as an object on an activity diagram.

Extending Use Case Relationships Can Only Exist  
Between Like Use Cases
The extending relationship is a specialized extension to a well-defined 
process. As such, both the extending and extended use cases must be 
of the same type. Using the extending relationship where one of the 
use cases is abstract and the other is concrete leads to ambiguity. For 
example, extending “manage documents” with “place document 
under configuration management” is ambiguous, as we don’t know 
whether a new or existing document is being placed under 
configuration management.

A Concrete Use Case Cannot Include an Abstract Use Case
The rationale is the same as for the extending relationship. A concrete 
use case that includes an abstract use case is ambiguous; e.g., it cannot 
be defined.

Avoid Realization Relationships and Artifacts  
in the Analysis Model
Realization relationships have different meanings, depending on the 
context in which they are used. This can lead to ambiguity and 
confusion. A realization relationship between two use cases means 
that one of the use cases “implements” the other use case. Realization 
of a use case by a sequence diagram indicates that the sequence 
diagram explains the use case process.

Business Object Modeling
Business object modeling is the process of describing behavior in a 
domain. By describing the behavior of the subject areas associated 
with feature-level requirements, we expose details of the subject area, 
and by doing so we elicit requirements and business rules. During 
the analysis modeling effort, classes are sometimes referred to as 
“business objects,” not to be confused with the objects on sequence 
and collaboration diagrams that are class instances. Defining classes 
for objects as they are discovered will keep the effort focused on the 
domain processes (as opposed to data).
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Discover Business Objects and Their Services Through Use Case 
Definition with Sequence Diagrams
Modelers with a development background sometimes start building 
a model by defining classes and then drawing class diagrams. This 
skews the model and makes it data-centric. Sequence diagrams 
consist of objects and messages. When objects are placed on diagrams, 
they initially will not belong to a class. The objects needed are 
discovered by identifying services that have to be provided, and then 
identifying who will provide them (see Figure 4.21).

Every Service in a Business Object Should Have Defined  
Pre- and Post-Conditions
In an analysis model, services are discovered using sequence 
diagrams, usually as messages. The messages are then incorporated 
into the servicing object as services or methods. Pre- and post-
conditions are then attached. In order to distinguish “none” from an 
oversight, an entry can be made indicating that there are no pre-post-
conditions.

A Boundary or Interface Should Only Communicate  
with a Concrete Use Case
An abstract use case is an arbitrary container for a set of features, some 
of which may not require an interface. Consequently interfaces or 
boundaries permitting communication between an actor and a use 
case should only be associated with concrete use cases (Figure 4.22). 

Get account information
(customer name)

Customer

 : Bank Teller
Cash a check

Can I see your ID?

ID

In this “Cash Check” scenario, we
discover that a business object is

needed that can retrieve a
customer’s account information.

Discovered

?

FIGURE 4.21 Using scenarios to discover needed business objects
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We prefer the use of boundaries in the analysis model to distinguish 
them from interfaces in the design model. A boundary symbol and an 
interface symbol are different, and, depending on the modeling tool, 
can be selected by choosing the artifact stereotype. Actors should be 
shown communicating with concrete use cases through actors at the 
lowest possible level. For example, instead of having a boundary 
“Bank_Computer_Boundary,” there would be “Find_Customer_
Boundary,” “View_Customer_Account_Boundary,” “Cash_Customer_
Check_Boundary,” and so on. While this may appear to be a lot of 
extra work, in reality it saves a significant amount of time in that when 
the analysis model is complete, the architect will have a complete 
inventory of every form, partial form, or other interface type needed 
for each function (see Figure 4.23).

FIGURE 4.22 Illustrating the correct and incorrect way for an actor to 
communicate with a use case
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FIGURE 4.23 Creating a boundary report
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A Concrete Class Must Be Instantiated
If a concrete class is not instantiated, it means that the class is not 
used in any processes; e.g., it does not appear on a sequence, activity 
or collaboration diagram. The question then arises, if it is not used, 
why is it in the model?

A Boundary or Interface Class Is Properly Defined If and Only If It 
Has Public Methods, and Each of These Methods Is Shown on a 
Sequence or Collaboration Diagram
This heuristic is self-explanatory. Missing public methods (services) 
in a boundary or interface are typically an oversight.

Every Business Object Service (i.e., Class Method)  
Should Be Defined
Class methods are typically defined using a state or activity diagram. 
A state diagram is used when the logic is “event driven,” and an 
activity diagram is often used when the logic is procedural.

Every Actor in the Model Should Communicate  
with Use Cases Through Boundaries
At the context level we identify all the actors associated with the 
domain being modeled. However, in order to adequately explain  
the nature of the communication, at some point every actor–use case 
interaction must take place through a boundary.

Using Boundaries as Proxies for External Objects
During a project to create a medical billing system for a hospital, we 
observed that the scheduling function was out of scope, yet scheduling 
services were needed. A “scheduling system” boundary was created as 
a catchall, and in any scenario where scheduling was needed, a message 
would be sent to the scheduling system requesting a service, along 
with the supplied and returned information. As the modeling effort 
neared completion, the project manager for the scheduling system 
development effort approached our team and inquired about what 
scheduling services the billing system would need. She was shocked 
when within five minutes we were able to generate a complete report 
showing all scheduling services needed by medical billing, which 
billing system actors used the service, and what scenarios (context) 
they were used in. Even though the model had over eight hundred use 
cases and several thousand diagrams, such complex queries were  
a relatively simple matter as the model had been designed with scale  
in mind.
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Avoid Passive Objects
A passive object is one that receives messages but never sends any 
(including replies). Broadcasting messages where there is no 
mechanism for determining whether the message was received may 
cause instabilities or unreliable behavior and is not recommended.

Avoid Loquacious Objects
Loquacious objects are those that send many messages to other objects 
without receiving any. Although sometimes necessary, they can lead 
to instability and poor performance.

Coherent Low-Level Processes Should Be Defined  
with State or Activity Diagrams
As previously mentioned, a concrete use case is defined by showing 
temporal behavior with sequence, state chart, or activity diagrams. If 
the use case does not include and is not extended by use cases, then it 
is a “leaf” or terminal use case and should be defined with a state or 
activity diagram or perhaps with just a paragraph of text. If there are 
many possible scenarios associated with the use case, then an 
overview activity diagram should be used and each individual 
scenario can hyperlink from the “all paths” activity diagram associated 
with the use case.

Elicit Requirements and Processes by Starting  
at Boundaries and Modeling Inward
The static relationships between processes and their associated 
requirements are defined first using use case diagrams. As concrete 
use cases are exposed, their communication with actors is discovered 
and boundaries (e.g., a class with a boundary stereotype) are defined.

Hide Complexity by Using Compound Business Objects
On a high-level sequence diagram a compound object such as a 
“Master Schedule” will hide complexity. On a lower-level diagram, 
“Master Schedule” will be decomposed into the objects that contribute 
to processes (such as an inventory object that could determine if an 
item is in stock and, if so, which warehouse it is in).

Initiate Prototyping Efforts Quickly
Prototyping is an extremely valuable way of eliciting requirements 
from subject matter experts. There are normally two types of 
prototypes. The marketing prototype is a “throwaway” tool to elicit 
customer interest and define potential product features. It is treated 
as a background reference when modeling. The requirements 
prototype may be reusable; prototype development and model 
development are synchronized such that each provides information 
that assists in defining the other (see Chapter 9).
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Ideally, the requirements prototype will be reusable for 
construction of the actual product. This will only happen if the target 
language, coding standards, and architecture are known prior to the 
start of model construction. Unfortunately, those facts being known, 
the model might wind up being “skewed” toward development.

4.7 Determining Model Completeness
Models are reviewed for completeness by looking at three areas: 
diagram quality, content correctness (reviewed with subject matter 
experts), and model faults. The criteria for completeness should have 
been defined prior to the start of modeling.

Diagram Quality
Diagrams should be reviewed for clarity and completeness. Upon 
acceptance of a diagram, its status can be changed from draft to 
accepted. In order for a model to be accepted, every diagram in the 
model should have a status of accepted. Depending on the 
organization’s specific quality assurance procedures, an MDRE model 
could pass conditionally if diagrams have minor changes to be made 
and those changes

• Are well understood.

• Are quickly accomplished.

• Do not change the semantics of the model.

• Do not impact other parts of the model.

Content Correctness
Content correctness is accomplished by having subject matter experts 
and analysts review reports and documents generated from the 
model. The following criteria are applied:

• Every use case, whether abstract or concrete, must have a text 
definition that is meaningful and correct.

• Every concrete use case with extending or included use cases 
must have at least one activity or sequence diagram describing 
its logic.

• Every boundary (user interface or software interface) must be 
shown on at least one diagram explaining how it is used, and 
that explanation must be correct.

Model Faults That Should Be Corrected  
Before a Model Is Completed
Some MDRE model faults are serious and, if not corrected, can lead 
to problems during development. Where possible, the fault checks 
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should be performed programmatically, as performing them manually 
could be prone to errors and time consuming. Some of the checks that 
can be performed are shown in Table 4.2.

Error Indicates That

Circular Dependency There is the possibility of deadlock, e.g., a depends 
on b, which depends on c, which depends on a. This 
can result in confusing or incomplete requirements.

Class Not Instanced A concrete class has been defined to the model; 
however, an instance of the class cannot be found 
on any sequence or activity diagram. This means 
nowhere is it shown how this business object is used.

Concrete Use Case 
Not Defined

A process has not been adequately described. 
It does not have enough information provided to 
extract requirements.

Dangling Abstract 
Use Case

A subject area has not yet been modeled, the model 
is incomplete.

Hidden Artifact Something in the model is not shown on any 
diagram. It appears to have been forgotten or 
overlooked.

Illegal Extending 
Association

An extending relationship has an abstract use case 
at least on one end, causing ambiguity. 

Illegal Interface 
Association

A boundary or interface has an association with an 
abstract use case. This association will result in 
ambiguous requirements being generated.

Interface Not Used An interface or boundary (a class with a stereotype 
of boundary) has been shown on a use case 
diagram, but nowhere is it explained how it is used.

Missing Boundary The interaction of an actor with the product, either 
via software (a software interface) or visually (a user 
interface, panel, etc.), is missing.

Mixed Use Case 
Relationships

A use case with mixed abstract/concrete included/
extending use cases is ambiguous, and as a result 
any requirements derived from it may also be 
ambiguous.

Unused Concrete 
Actor

It probably means that the model is incomplete, or 
the actor does not communicate with the system. An 
actor can only access a process through a boundary. 

Use Case 
Completeness

Parts of the definition of the use case are 
missing. This may result in incorrect or incomplete 
requirements.

TABLE 4.2 Serious Model Faults
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4.8 Transitioning from Analysis to Design
At some point, we may be interested in taking an analysis model, and 
creating a design model from it. We must ensure that traceability is 
maintained from analysis to design, where the development effort is 
relatively straightforward, with the target hardware and/or software 
platform known in advance. A good starting point for design 
heuristics can be found in the Design Patterns text by Gamma et al. 
[Gamma et al. 1994], and the text on Design Heuristics by Arthur Riel 
[Riel 1996]. Note that the heuristics described here are primarily for 
software components.

4.9 Suggested Model Conversion Heuristics
We will start with some important low-level heuristics and then 
describe some high-level heuristics/guidelines.

Design Model Package Structure
The design package structure will resemble, but not be exactly the 
same as, the analysis structure. This is because the analysis views 
mirror the problem, whereas the logical views show the design of the 
solution to the problem.

Use Case Tracing
Use case tracing can be done with “off the shelf” CASE tool 
techniques. A concrete use case in the analysis model MUST be 
realized2 by one or more use case realizations in the design model. 
The use case realization then becomes a subsystem, set of components, 
etc., further down in the model (see Figure 4.24).

Interface Tracing
Interface tracing is illustrated in Figure 4.25. In general, a boundary 
in the analysis model will be realized by one or more interfaces in the 
design model.

Artifact Tracing
Tracing between the analysis and design model elements can be done 
using the “<<realize>>” stereotyped association. Table 4.3 lists the 
most important elements and their relationships.

2  “Realized” is UML terminology meaning “implemented by.” In the UML the 
arrows are drawn from the solution back to the problem definition (requirements) 
and the stereotype of the line is “<<realize>>.”



 116 S o f t w a r e  &  S y s t e m s  R e q u i r e m e n t s  E n g i n e e r i n g :  I n  P r a c t i c e

FIGURE 4.25 Boundary-to-interface tracing
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TABLE 4.3 Analysis to Design Tracing Relationships

FIGURE 4.24 Tracing use case realizations to use cases
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4.10 Design Model Structure
The design model structure is flexible and dependent upon

• Granularity of model for parallel development.

• How close the design model (solution) matches the analysis 
model.

Tracing Requirements Through the Design Model
Tracing of requirements through the design model (see Figure 4.26) 
can be accomplished as follows:

• Ensure that all requirements in the requirements database (if 
used) trace to one or more use cases in the analysis model. 
For “child” requirements, it is acceptable for the parent 
requirement to trace to a use case.

• Every concrete use case or requirement as shown in the 
analysis model must be realized by one or more use case 
realizations in the design model.

• All software classes or components in the design model are 
associated with one or more use case realizations. Association 
means that they are shown on class diagrams that are owned 
by the respective use case realization or one of its 
derivatives.

• Wherever possible, have the package structure in the design 
model mirror that in the analysis model.

Intermodel Quality Assurance Checks
Some quality assurance checks can be performed to ensure that the 
analysis and design models are synchronized.

 1. Can every requirement be traced to a component, either 
directly or indirectly?

 2. Can every component be traced to a use case?

 3. Can every concrete use case trace to a component?

 4. Are there test cases for each component?

Requirements Database

• Team Requirements
• Coach
• Players

Analysis Model Design Model

Team ManagementTeam Management

FIGURE 4.26 Tracing from design to requirements
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 5. Do the test cases match (are appropriate) for the related 
requirements?

 6. Do system-level requirements derive from the components; 
e.g., a component must perform the following functions…?

Design Model Initial Construction
When a design model is derived from the analysis model, the 
following steps are normally taken:

 1. Naming conventions and design standards are identified and 
applied.

 2. For each major use case in the analysis model, packages are 
created in the design model.

 3. Use case realizations provide tracing from the requirements 
to the design. These realizations are inserted at whatever 
level is deemed necessary by the lead architect and quality 
assurance. Reports can then be generated showing the 
analysis model use case, associated requirements, and 
associated components (by tracing from the use case 
realization to its associated components).

 4. Boundaries transform to one or more user interface forms or 
other (software or hardware) interfaces (see Figure 4.27).

Impact analysis can then be performed on an ad hoc basis, by 
simply pointing to a requirement, tracing through the use cases 
associated with that requirement to the use case realizations, and 
from the realizations to the components associated with those 
realizations (e.g., the realizations are the trace points that join the 
analysis and design models).

Figure 4.28, for example, shows an artifact model with the 
relationships between an analysis model created using the MDRE 
and a design created from the analysis model using the UML.

FIGURE 4.27 Boundaries become forms or interface specifications.
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FIGURE 4.28 Relationship of elements in the analysis and design models
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4.11 Use of Tooling for MDRE
When a large model or set of models is created, there is just too much 
material for visual inspection. Unlike natural languages, models have a 
mathematical grounding that enables programmatic checks. For 
example, analysis models are usually acyclic directed graphs, and 
feature models are normally tree structures. Such graphs lend themselves 
to programmatic traversal and data mining. Ideally, any tools used can 
be customized and simplified with profiles and semantics (rules). A 
plug-in tool, DesignAdvisor, was developed at Siemens Corporate 
Research and used successfully to provide automated checking of 
critical model heuristics (see Figure 4.29) [Berenbach 2003]. As 
mentioned previously, with judicious use, instrumented models can 
be made to generate specifications, tests, and project plans.

If a model is not in the final requirements repository, a first set of 
requirements is mined from the model and then imported into the 
requirements repository. Decisions will have to be made about how 
the two different data stores will be kept synchronized. We suggest 
the creation of an artifact model (Chapter 2) and the identification of 
all the possible traces or links, and how they will be maintained 
(during and after project completion) when defining a tool integration 
strategy.

4.12 Tips for Modeling Requirements
The tips shown below are “food for thought”. Holistically, they 
suggest an engineered rather than an ad hoc or artistic approach to 
model creation.

• Develop models at different levels of abstraction for different 
purposes.

FIGURE 4.29 Using the tool DesignAdvisor to find errors
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• Develop process models that are understandable by viewers 
who are not experts in the domain being described.

• Develop models that are coherent, with no holes or 
discontinuities.

• For creating and viewing models, select tools that are easy to 
use and enable processes, not cause difficulties.

• As MDRE techniques might not work as well as desired the 
first time they are used, select a small, noncritical project as 
the first pilot for MDRE.

• Understand how the model will be used and maintained after 
completion—this defines what tools are needed and how 
they are to be integrated.

• Have at least one person on the team to act as a facilitator 
who has been through a complete MDRE cycle.

• Schedule modeling sessions in the mornings, three or four 
times a week. At each session, the subject area to be modeled 
is known in advance and the appropriate subject matter 
experts or customers are scheduled into the meeting.

• As the modeling sessions continue, have no more than 5–8 
people present. A projector is used so that everyone present 
can see the model under construction or review. Sessions 
should last no more than half a day.

• Avoid entering textual descriptions during modeling sessions, 
as it significantly reduces productivity.

• Assure that the starting or context diagram for a model has 
only a single entry point in the form of an abstract use case or 
product feature.

• Define scope and identify “out-of-scope” domains as quickly 
as possible, and color-code any high-level use cases that are 
out of scope.

• Review all model diagrams for clarity and completeness.

• Create a Requirements Engineering Artifact Model, 
identifying all possible traces or links and how they will be 
maintained (during and after project completion), prior to 
initial use of the RE tool set.

4.13 Summary
In this chapter, you have seen how the MDRE approach to 
requirements engineering can be effective on large projects. We 
believe that as projects increase in size and complexity, the use of 
hierarchical databases for requirements storage and the review of 
textual material may be inadequate to ensure a positive outcome. 
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Visual techniques that combine and improve on traditional modeling 
and text-based requirements elicitation and analysis techniques have 
been successfully piloted at Siemens, resulting in work products 
with consistent high quality and uniformity. While modeling skills 
are important when using MDRE, it is often possible to use an 
incremental approach to process and methodology improvement. 
We suggest experimenting with “lightweight” modeling techniques 
initially on small projects, and as confidence increases, gradually 
moving from a natural language approach to a more formal, model-
driven process.

4.14 Discussion Questions

 1. What are some of the advantages of using models to describe 
requirements over text-based approaches?

 2. What types of tests can be automatically performed on 
requirements models to help find errors?

 3. What are some of the skills required for those who lead 
requirements elicitation sessions?
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Michael was assigned as a software architect on a project to 
develop a building security management system. He knew 
that he would start this assignment by talking to the 

requirements engineers, review the requirements in the database, 
and become familiar with the operation of some similar products 
developed by his company and its competitors. He planned to learn 
enough about what the new product would do to be able to propose 
a draft architecture for efficiently meeting the requirements.

He began reviewing the functional requirements that had already 
been described in the requirements management database and the 
high-level use cases and scenarios that had been developed. He 
quickly realized that the architecture would need to be able to meet a 
large number of nonfunctional or quality attribute requirements. 
These requirements often were described with a word with “ity” at 
the end of it, e.g., security, scalability, maintainability. But, the areas 
Michael became most concerned about were performance and 
reliability. Since a security event can generate a building alarm, he 
began to worry about how long it would take after the event occurred 
for security personnel to be notified. He could imagine many bad 
outcomes if the security system that he was designing was too slow 
or unreliable in notifying personnel of the event. As a result, he 
considered architectural approaches for a system that would respond 
quickly and reliably to events.

This chapter deals with nonfunctional or quality attribute 
requirements: their elicitation, analysis, validation, and management. 
While these requirements are deemed architecturally significant, they 
must be treated with functional requirements in an integrated manner. 
A conceptual framework for an integrated approach is described 
along with its application to an industrial case study.

5.1 Why Architectural Requirements Are Different
Software architecture is defined as “a structure or structures of a 
system which comprise its software elements, their externally visible 
properties and relationships among them” [Bass et al. 2003]. Some 
of the structures consist of static software elements such as classes 
or modules that are related to each other through inheritance or 
decomposition. Others include runtime structures, consisting of 
dynamic software elements such as processes or tasks related to each 
other by data transmission or invocation. Architecture is concerned 
with the public interfaces via which these elements interact and the 
externally visible properties of these elements and their interfaces.

The requirements that drive a product’s architecture are often 
quite different from the requirements that define the functionality of 
a product.
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• They come from many more sources than just the customer, 
such as stakeholders within the development organization, 
regulatory agencies, available implementation technologies, 
and implementations of previous products.

• They have a longer-term impact on the product than most 
functional requirements, because a good architecture is 
expected to remain stable through several releases of the 
product.

• Some of them are highly subjective or difficult to articulate.

• Many have a continuous, quantitative nature, in contrast to 
discrete, logical functional requirements. Instead of being 
pass/fail criteria, they are often expressed as measures of the 
goodness of a system, which must be calibrated to the 
stakeholders’ expectations. Different measures must be 
traded off against each other to reach an architecture that is 
“good enough” according to each of the measures.

• They have nonobvious interactions with each other, due to 
(future) implementation decisions. Many stakeholders don’t 
understand the architectural implications of what they need, 
so they are likely to overlook some of their quality attribute 
requirements, i.e., until an architect asks the right question.

• The architecture must anticipate change: in the functional 
requirements, in business conditions, in available 
technologies, in the development organization itself, etc. 
The architecture must also be stabilized while many 
functional and business requirements are still unstable.

• Architecturally significant requirements (ASRs) can be 
difficult to test before the system is operational.

• Some ASRs are passive in nature, such as cost and ease of use. 
Feedback on these may emerge gradually instead of being 
directly testable.

• They often have cross-cutting impact, making shortcomings 
difficult to correct after development has progressed, and 
thus making them high risk.

Terminology
Several different terms are commonly used to refer to requirements 
that determine the architecture of a system. A functional requirement 
is “a requirement that specifies a function that a system or system 
component must be able to perform” [IEEE 1990]. In other words, 
the functional requirements define what the system is supposed  
to do.
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A quality attribute requirement (QAR) is specified in terms of 
observable, usually measurable, characteristics of the system that 
indicate its fitness for use. Quality attributes may be thought of as 
modifiers of the functional requirements that indicate how they are 
achieved. Quality attribute requirements address all “uses” of the 
system, including those where the system is a passive object rather 
than an active participant, such as when the system is being sold or 
when the next version of the system is being developed. Examples of 
quality attributes include: capacity, security, usability, cost, 
modifiability, and fault tolerance. The term nonfunctional requirement, 
although still commonly used, has become a synonym for quality 
attribute requirement.

A cross-cutting requirement is a requirement that applies to many 
different functions of a system, often scattered across diverse 
functional groups. For example, a system might require all of its “short” 
interactive commands to display their results within 0.1 seconds, 
whereas the “long” commands might be permitted to take time 
proportional to the amount of data they process. Cross-cutting 
requirements and their implications are described in Chapter 4.

An architecturally significant requirement (ASR) is any requirement 
that is likely to have a substantial influence on a choice among 
architectural alternatives [Bass et al. 2003]. The most significant  
of these are sometimes called architectural drivers. Any sort of 
requirement might be architecturally significant, but in our 
experience, apart from a few “sunny day scenarios” defining the 
overall functionality of the system, most architectural drivers tend 
to be quality attribute requirements.

Although architecturally significant requirements are often quite 
different from functional requirements, they should be analyzed and 
documented in a coordinated, integrated fashion. Failure to do so can 
lead to unnecessary duplication of work, or in the worst case, to 
project failures due to creation of a system that does not meet the 
needs of its customers [Finkelstein et al. 1996].

Quantifying Quality in Large Software Systems
by Capers Jones

Large software systems, where quality attributes become important, 
have a typical size on the order of 10,000 function points.

• The failure rate of projects with applications >10,000 function 
points is about 35 percent. That is, more than one application out 
of three will never be finished or delivered.

• Of the applications that are delivered, more than 50 percent will 
exceed their planned schedules by more than 12 calendar months.
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• The major cost drivers for large software applications in the 
10,000 function point size range are finding and fixing bugs and 
producing documentation.

• Applications in the 10,000 function point size range generate 
about 50 different kinds of documents and total about 6,000 
pages. More than 200,000 English words, plus about 5,000 
diagrams, will be created. More than 30 percent of the cost of 
software goes to document production.

• There will be about 3 defects per page or 18,000 defects in the 
documents. Unless document inspections are used, many of these 
will find their way into the code and eventually go to customers.

• The total volume of defects for applications in the 10,000 function 
point size range is about 50,000. Defect removal efficiency for 
this size range averages only about 80 percent. That means that 
the software will be delivered (if it is delivered at all) with 10,000 
latent defects that were not found during development.

• Testing such large applications requires at least 10 different test 
stages. A total of about 55,000 test cases will be created. 
Unfortunately, each testing stage is only about 30 percent 
efficient, or only finds about one bug out of three.

• About 25 percent of the test cases will have defects or bugs 
themselves. It often happens that the error density of test cases is 
higher than the error density of the software itself.

• About 7 percent of attempts to fix bugs will be “bad fixes” that 
accidentally inject a new defect back into the application. If you 
start with 50,000 defects and find 40,000 of them, then you will 
create about 2,800 new defects while trying to fix the 40,000 that 
you discovered. These will probably get delivered with the 
10,000 defects that slipped through testing, leading to a delivered 
total of about 12,800 defects. Of these about 20 percent will be 
high-severity defects.

• If formal inspections are used for requirements, design 
documents, architecture documents, and other key information 
sources, they have a measured defect removal efficiency level of 
about 85 percent. Inspections should be mandatory for a project 
of this size.

• If code inspections plus document inspections are used, it is 
possible to elevate defect removal efficiency up to 96 percent or 
slightly higher. Doing so will greatly raise the odds of a successful 
outcome.

More data on software and documentation defects and their 
implications can be found in [Jones 2007, 2008].
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5.2 An Integrated Model
As was discussed in Chapter 2, integrated requirements engineering 
revolves around an integrated artifact model. Figure 5.1 shows the 
artifact model that we will use as a guide for this chapter. It shows the 
artifacts and relationships that integrate functional and architectural 
requirements engineering disciplines.

In this model, the two subdisciplines (functional and architectural 
requirements) share artifact types, and specific artifacts, wherever 
possible. Where this is not possible, trace relationships are established 
between the artifacts so that consistency and completeness checks can 
be carried out as needed. In many cases, the integration is achieved by 
introducing new subclasses of existing artifact classes. For example, 
quality attribute requirements are a kind of system requirement and as 
such are applied to system use cases and system use case scenarios in 
the same way as functional requirements. On the other hand, a quality 
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attribute scenario is not a use case scenario in the usual sense, but we 
often formalize quality attribute scenarios by writing corresponding 
use case scenarios, which can then be annotated with requirements 
and tested in the usual way.

Quality Attribute Scenarios
Quality attribute scenarios (QASs) [Bass et al. 2003] are a special kind of 
structured natural language description of a behavior. They are used 
for capturing stakeholder concerns, by illustrating each concern with 
a concrete example. A QAS may have a corresponding use case 
scenario that formalizes it for the purpose of attaching requirements 
and testing them.

Quality Attribute Requirements
A quality attribute requirement (QAR) is a special kind of requirement 
that deals with measurable properties (quality attributes), such as 
capacity, price, and responsiveness, related to stakeholders’ 
expectations.

Document Dependency Diagrams
In the methodology framework diagrammed in Figure 5.1, great 
attention has been paid to how artifacts (documents) depend on one 
another. Each arrow represents a uses dependency: Artifact X uses 
Artifact Y (X → Y) if and only if the correctness of X depends on the 
presence of a correct version of Y. For example, it is possible to agree 
upon a set of architectural principles before the product architecture is 
complete, but it makes no sense to approve the product architecture 
before the architectural principles have been signed off. In the case of 
subclass and composition relations, the subclass depends on the parent 
class and the component depends on the composite. The arrows do not 
necessarily represent time sequences for the activities to develop the 
artifacts. The only way that they represent time sequences is in the 
sense already defined: a document cannot achieve a sufficient degree 
of completeness and quality until the relevant parts of the documents 
it depends on have sufficient completeness and quality. We call this 
notation a document dependency diagram for specifying the overall 
structure of a software process, whether it is a generic process, like this 
one, or tailored for a specific project. Describing the overview without 
control information turns out to make it easy to tailor, even after the 
project is under way, because the state of the process is captured 
primarily in the state of the artifacts and does not depend on the control 
sequence used to reach that state. When you start a new project, you 
can copy and modify this diagram to suit the needs of your project.
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Factors, Issues, and Strategies
Factors, issues, and strategies are artifacts used in a technique called 
global analysis [Hofmeister et al. 1999], [Paulish 2002]. Factors 
(architecture-influencing factors) are statements about the product, 
the project, or their contexts that potentially influence the architecture. 
Factors may be inferred from the problem statement or from the 
engineers’ experience or general knowledge. Factors often generalize 
QASs or use case scenarios. Sometimes, a factor is identified first, and 
then a use case scenario is written as an example of the factor. Sometimes, 
product requirements are introduced as examples of factors.

Issues are identified by finding conflicts between factors. The 
statement of the issue juxtaposes the conflicting factors and explains 
why they are hard to reconcile.

Strategies are tentative decisions about the architecture or the 
project plan that address (architectural) issues.

Product Architecture
This artifact maps out all the coarse-grained components and 
interfaces of the system, preferably using view models [IEEE 2000], 
[Clements et al. 2003]. It conforms to the architecture principles while 
allocating responsibility for product requirements to specific 
components and interfaces. Note that the architecture principles are 
largely independent of specific product requirements. That is, adding 
or removing a major piece of functionality could lead to adding or 
removing the components and interfaces responsible for that 
functionality without affecting the principles.

5.3 Quality Attribute Requirements
The road to understanding quality attribute requirements starts with 
a brief detour into the fundamentals of system quality. The quality of 
a system, in general, is its fitness for its intended uses. ISO Std. 9126-1 
defines a quality model with four linked topic areas of quality:

• Process quality Quality of the process that is producing the 
product

• Internal quality Quality of the intermediate work products 
(some of which may also be deliverable work products)

• External quality Quality of the finished product, before 
delivery

• Quality in use Quality of the larger processes in which the 
delivered product is used

A quality attribute is a system or process property indicative of 
quality in any of these quality topic areas. Note that, for our purposes, 
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the “process” in “process quality” includes not only software 
development, but all the business functions surrounding the product, 
including marketing, sales, planning, maintenance, installation, 
customer support, and preparing to develop the next version.

Naturally, quality in use is the most important area of quality, but 
it is also the latest one to measure, because it cannot be measured 
until the product is delivered. Fortunately, quality attributes in the 
other topic areas give us useful indications of what the quality in use 
will be; i.e., we say that such quality attributes are “indicative of” 
quality in use.

As an example, consider a web-based, self-service airline 
reservation system. We’ll focus first on the completeness of the system, 
which is one aspect of its fitness for use. For quality in use, 
completeness might be measured, in part, by “the percentage of 
actual reservations that are made successfully without involving 
airline personnel.” This, after all, is a primary goal of such a system: 
reduce personnel costs for reservations. This percentage will be 
affected by many things, including bugs, unimplemented use cases, 
ease of use, response time, server capacity, etc. It will also be affected 
by the proportions of different kinds of reservations that customers 
want to make. Figure 5.2 illustrates the many quality attributes, from 
the four quality areas, that are indicative of the percent of unassisted 
reservations in actual use.

Before the system is deployed, it has gone through system testing, 
where testers, acting the part of customers, try to accomplish specified 
travel reservation tasks. Completeness, here, might be measured by 
“percentage of use cases passing system test,” which would be an 
external quality measure. It is obviously indicative of the percent of 
unassisted reservations, but it is different in several ways, including 
these:

• It attaches equal weight to each use case, instead of accounting 
for the frequency with which each use case is needed by 
actual customers.

• Paid testers quickly become experts in using the software 
they are testing, whereas many real-world customers remain 
only casual users of the software. So, a tester might complete 
a task successfully via a user interface that is too frustrating 
for the typical customer.

• A use case that fails system testing might still work most of 
the time under real-world conditions.

Before the system even reaches system testing, the development 
team is tracking their progress toward completing coding. To measure 
completeness at a finer grain than use cases, they count the requirements 
associated with the use cases and measure the “percentage of 
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requirements that have passed unit testing.” This would be an internal 
quality measure, both because unit tests can be performed on 
preliminary configurations of the system and because some of the 
unit tests represent conditions that cannot be tested via external 
(system) tests.

Although process quality is in some sense a quite different matter 
from product quality, we can certainly explore how product 
completeness is affected by the process. First of all, the process defines 
the measures of product completeness that are used in the three other 
topic areas for a given project. Second, the degree to which the 
organization adheres to the defined process will have a significant 
effect on the accuracy and timeliness of the completeness measures, 
and therefore on the ability of the organization to achieve sufficient 

FIGURE 5.2 A quality attribute: completeness
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completeness. For example, the process may define how to count use 
cases for purposes of measuring the percentage of use cases that have 
passed their system tests. The project manager needs to update this 
statistic at regular intervals to keep track of progress. If he doesn’t, 
then the executed process is incomplete, because it does not do 
everything that the defined process says it should. If the defined 
process does not specify how to determine whether the set of use 
cases is sufficiently complete to satisfy the stakeholders, then the 
defined process itself may be considered to be incomplete as well, 
which could result in lack of completeness-in-use.

When it comes to defining actual quality attribute requirements, 
it helps to distinguish two types:

• Requirements that define quality attribute measures and how 
and when to measure them. For example, “The system shall 
measure and report ‘reservation completion time,’ starting 
from the display of the first flight query screen and ending 
with the display of the screen giving the reservation 
confirmation number.”

• Requirements that specify what values of the quality attribute 
measures indicate sufficient quality. For example, “The 
‘reservation completion time’ for an experienced tester on a 
lightly loaded system making a Type 3 reservation shall be 
less than two minutes.”

From these examples, you can see that functional requirements 
and quality attribute requirements complement each other, and 
neither is sufficient without the other. It is not enough to specify all 
the kinds of reservation functions (the use cases) that the product 
supports, without specifying how quickly a customer should be able 
to make a reservation; e.g., it should be much faster than phoning the 
airline. Conversely, it is not enough to specify that a customer can 
make a reservation in three minutes, without specifying the kinds of 
information the customer will be able to examine, the complexity of 
the itinerary that can be handled, and all the other functional details. 
Nonetheless, the functional requirements are the basic stuff—the 
“nouns and verbs”—of the requirements, whereas the quality 
attribute requirements are typically modifiers of the functional 
requirements—the “adjectives and adverbs.”

Also note that the completeness-in-use of the airline reservation 
system will be affected by other quality attributes, such as ease of use, 
because from the user’s viewpoint there is little difference between a 
function being unimplemented and being too hard to use, too slow, 
etc. In general, quality attributes will overlap within each of the 
quality topic areas, and each quality attribute in one area will be 
indicative of multiple quality attributes in other areas.
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With these examples in mind, we summarize four related terms:

• Quality Fitness for one or more defined uses

• Quality attribute A property of the system or the process 
that is indicative of quality

• Quality attribute measure A way of measuring a quality 
attribute for a specific system or process

• Quality attribute requirement A requirement expressed in 
terms of one or more quality attribute measures

Table 5.1 gives a broad sampling of other quality attribute topics 
you might want to consider, with an example measure pertaining to 
each topic. The topics are drawn from ISO/IEC Std. 9126, but there are 
many other good sources of topics available on the Internet. The 
quality attribute measures you use will be very specific to your project, 
as you will see when we discuss quality attribute workshops.

TABLE 5.1 Quality Attributes

Quality Attribute Topic Example Quality Attribute Measure

Suitability The number of use cases, out of a defined set of 
use cases that the software supports 

Accuracy The magnitude of error in a specified calculation

Interoperability The number of interoperation use cases, out of a 
defined set, that the software supports

Security The types of security threats against which the 
software has best-practice protection

Reliability System performance (e.g., throughput) under 
specified adverse conditions (e.g., burst of 
arriving requests)

Maturity Frequency of disruptions in service due to faults 
in the software

Fault tolerance The performance of the system (e.g., throughput) 
after a specified type of fault (e.g., software, 
hardware, or environmental)

Recoverability The time to return to normal system performance 
and data integrity after a specified type of failure, 
and the types of data that can be recovered when 
directly damaged by the failure

Understandability Average time for a user to decide (correctly) 
whether the system is well suited for performing 
a specified task
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Quality Attribute Topic Example Quality Attribute Measure

Learnability The average time for a novice user to perform a 
specified advanced task for the first time

Operability The frequency with which users make operational 
mistakes (attempt to apply the tool to a specified 
problem incorrectly)

Attractiveness The frequency with which purchasers choose the 
product over a functionally similar product

Time behavior Response time, throughput, and jitter under 
specified conditions

Resource utilization Resource consumption (e.g., memory, CPU time, 
data transmitted) under a specified workload

Analyzability Average time to diagnose a specified class of bug

Changeability Average time to design, implement, and self-test 
a specified type of change to the code

Stability The frequency with which making a specified type 
of change introduces unexpected side-effects 

Testability The average time to design, implement, and 
deploy a specified type of test

Adaptability The average time to adapt the system to a new 
type of environment, within a specified range of 
environment types, exclusively using specified 
adaptation methods 

Installability Effort to install the software product in a 
specified type of environment

Co-existence Frequency of customer-reported, validated 
system failures due to the presence of other 
specified, permissible software products in the 
same computing environment

Replaceability The list of software products that a given product 
is suitable to replace

Effectiveness The proportion of specified use cases that the 
software correctly implements

Productivity The proportion of work accomplished to human 
effort expended, under specified conditions

Safety The expected monetary cost of harm to people, 
business, software, property, or the environment 
when the system is used in a specified context 

Satisfaction The frequency with which trial users of the software 
go on to purchase the software within 30 days

TABLE 5.1 Quality Attributes (continued)
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Besides making reservations, there are many other “uses” of an 
airline reservation system. It is used to make money for the software 
house that built it. It is used to make a better airline reservation 
system later. In fact, each major class of stakeholders will have a 
different idea of what “fitness for use” means for them. For example,

• The business team cares about process speed and efficiency: 
time to market and value for money spent on development. 
They also care about the product’s capacity and efficiency.

• The development manager cares about code understandability 
and modifiability.

• The IT department at the customer site cares about the product’s 
resistance to viruses and other penetration attempts.

Choosing a good set of quality attribute requirements requires a 
judicious blend of stakeholder focus and expert knowledge. You have 
to satisfy the stakeholders in the short term, to keep the project going. 
But, you also have to anticipate problems that the stakeholders 
haven’t thought about yet. For that, you draw on your own experience 
and the experience of other architecture experts. Be careful not to 
bloat your requirements database with every conceivable quality 
attribute, but you might want to keep a private list of attributes that 
you think will become important later.

Setting Performance Targets Too Soon
Timing can be important when setting quality attribute targets. In a 
recent project, the leadership team had an estimate for the throughput 
needed from a certain subsystem but decided to withhold the 
information from the subsystem team because

• They lacked confidence in the throughput estimate.

• The estimate would demand a high-performance design, which 
would be costly and take a long time to develop.

As it turned out, the throughput estimate was correct, but the 
subsystem designer had chosen a simpler design that could not provide 
the required throughput. Major rework was performed, delaying the 
project.

In retrospect the leadership team could have

• Documented the risk associated with uncertainty in the estimate, 
and managed it along with other risks.

• Mitigated the risk, by giving the subsystem designer two 
throughput estimates, and asking for a quick-and-dirty analysis 
of the implications of choosing one over the other.
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We’ve come to recognize that treating quality attribute 
requirements effectively is partly a matter of timing.

• Many team members will not be ready to talk much about 
quality attributes until the broad functional requirements 
have been defined.

• Before the quality attribute requirements can be defined, one 
must define the units of measure of the quality attributes, and 
focus on a manageable number of such attributes.

• Many quality attributes need to be traded off against other 
quality attributes. The relative importance of them will be 
different for different stakeholders. For external stakeholders, 
the stakeholders’ understanding of these tradeoffs will evolve 
based on external events of which you might not be aware.

• Setting an ambitious target value for, say, a performance 
requirement can push the designers toward a complex, high-
performance solution. Project leadership needs to think 
carefully about such impacts before committing to specific 
targets. In worrisome cases, it may be worthwhile to discuss 

Stages of Quality Attribute Grief
The stages that a project team goes through when dealing with quality 
attributes can be compared with the stages of grief that an individual 
may experience.

• Denial Early in the project, quality attributes are poorly 
understood and therefore given less attention than they deserve. 
They are treated superficially, as in “the system shall have good 
performance.”

• Shock When the first realistic end-to-end scenarios are 
executed, and it becomes possible to observe the quality 
attributes, everyone suddenly realizes how poorly the system 
measures up, and panic sets in.

• Anger Everyone tries to blame someone else.

• Depression Fixing the quality problems seems overwhelming. 
Developers waste energy grumbling or worrying. Productivity 
decreases.

• Bargaining The architect begs and cajoles stakeholders to 
approve tradeoffs among quality attributes.

• Acceptance Stakeholders adjust their expectations to close 
remaining gaps between actual and desired quality.
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the implications with the affected subteams and see if it is 
worth commissioning a comparative study to see whether a 
simple solution may be good enough to justify the savings 
compared to a higher-performance, costlier design.

• For resource-related attributes, we have to deal with 
configurations of resources and associated quality attribute 
requirements (see Chapter 6).

5.4 Selecting Significant Stakeholders
Earlier chapters have mentioned stakeholders as the sources of 
requirements, but for architecturally significant requirements, you 
need to think carefully about identifying all of the stakeholders. We 
recommend writing a stakeholder analysis document and updating it 
from time to time. This document will likely have some frank and 
unflattering opinions in it, as stakeholders have different views of 
important requirements, so it must not be widely circulated.

A stakeholder is any person whose opinions, needs, or 
preferences are likely to be relevant to the success of the project. An 
obvious example is the customer: if we want someone to buy the 
product, that person’s opinions matter. However, even with this 
simple example, it is important to note subtle differences between 
the buyer and the primary users. For example, for medical imaging, 
the purchasing decisions for million-dollar CT scanners and MRI 
devices are often driven by the opinions of a small number of 
influential research faculty staff at major teaching hospitals. 
However, the primary users of such machines are medical 
technicians, who care more about ease of use than the latest technical 
advances.

Examples of stakeholders include

• Installer In some fields, such as telecommunications or 
manufacturing, installing the software and configuring it to 
operate correctly with diverse preexisting equipment 
constitute a labor-intensive, mentally challenging task. 
Especially in businesses that use indirect sales channels, ease 
of installation can have a huge impact on profitability, so 
including installers as stakeholders is important.

• Tech support In many businesses, the staff who answer 
phone calls from irate customers need good remote diagnostic 
tools, as well as easy-to-explain user interfaces.

• Competitor Some stakeholders want to see the project fail! 
But things get even more complicated when the same 
company is a partner in one part of a business and a competitor 
in another.
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The term “stakeholder” may have any of three meanings, 
depending on context

• Stakeholder class A group, category, or type of individual 
with a certain set of concerns.

• Individual stakeholder A particular, named person who is 
a member of one or more stakeholder classes. You might need 
to engage several individuals from the same class.

• Stakeholder representative An individual selected to 
represent a stakeholder class for the purposes of a project. In 
some cases, a stakeholder representative is not a member of 
the class he or she represents but is chosen as a proxy for 
them because, for one reason or another, no member of the 
class can be made available to represent them.

Identifying Potential Stakeholders
It is very important for you to brainstorm a list of potentially important 
stakeholders before settling on which ones you will actually engage, 
because if you miss a significant stakeholder, you are likely to miss a 
significant requirement.

Your project will undoubtedly present you with several obvious 
individual stakeholders. Some additional sources that can help 
identify significant stakeholders are

• The problem definition This should tell you why the 
project is important, which will give you clues as to whom it 
is important to.

• Other projects and departments in your organization Other 
departments may, for example, provide field support to the 
product you are developing, giving them a stake in it.

• Checklists There are several good published lists of 
potential stakeholder classes, including those from the 
Software Engineering Institute [Clements et al. 2003] and the 
Atlantic Systems Guild.

• Use-case context diagram In Chapter 4, you learned how to 
identify use case categories top-down and breadth-first. The 
top-level use case diagram identifies all the types of actors 
that interact with the system you are building. Each type of 
actor suggests a stakeholder class. Tip: If the use case context 
diagram hasn’t been created yet, offer to help draft it.

• Quality attributes As you consider potentially important 
quality attributes, ask the question “important to whom?” 
This will sometimes uncover new stakeholder classes worth 
considering.
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Begin to document each stakeholder class as you identify it. For 
each potentially important stakeholder class, you may want to describe

• Major concerns of that class of stakeholders

• Their stake in the project (how the project benefits or hurts 
them, including how big the impact is)

• Expertise and other inputs they bring to the project

• How much of their time you expect to need

• When you expect them to spend significant time talking to 
you about the project, considering both when you need them 
and when they will begin to see the project as urgent enough 
to spend time on

• Candidates to represent the class of stakeholders

Prioritize the stakeholder classes as you go along, both in terms of 
importance and urgency. You don’t need to complete the analysis if 
you are sure a stakeholder class is unimportant, but it helps to at least 
mention the class and why it is not important, so that others know 
you have thought about it.

Next, choose the stakeholder representatives. For each stakeholder 
class, consider how the candidate fits or differs from the rest of the 
class members. Pay particular attention to

• The political importance of the individual within the 
organization

• Availability

• Importance of the project to the individual personally

• Potential for conflicting agendas

Conflicting agendas are an inevitable part of the analysis. For 
example, if your project is building a software platform or library that 
will be used in several different products, each product will have a 
different development schedule and will use your software in a different 
way. When you find that candidates to represent the same class have 
conflicting agendas, you may want to do one of the following:

• Give preference to the candidate for whom the project is most 
important and/or urgent.

• Split the stakeholder class into two or more classes.

5.5 Methods for Architectural Requirements Engineering
In this section, we describe a number of methods that architects use 
for defining and analyzing quality attribute requirements as part of 
starting system design.
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Quality Attribute Workshop
A quality attribute workshop (QAW) [Bachmann et al. 2002], [Barbacci 
et al.  2000] brings together a diverse set of stakeholders in a one- or 
two-day meeting to elicit their quality attribute concerns and help 
them understand one another’s concerns. As a concern is being 
described, the facilitator helps the stakeholder write a quality attribute 
scenario (QAS) that describes what he wants (and thinks might be 
hard to achieve). Each stakeholder captures at least two of his or her 
biggest concerns in the form of QASs and presents them to the group. 
The group then selects a handful of QASs to explore in more detail. The 
facilitator helps them see some of the architectural significance of the 
QASs, and begins the process of trading them off against each other.

A QAS is a structured textual description of how a piece of a 
system responds to a stimulus, including measuring the quality of the 
response. It was invented by software architecture researchers at the 
Software Engineering Institute (SEI) as a medium of communication 
between stakeholders and the architecture team [Bass et al. 2003].

A QAS is typically structured to have the following parts:

• A stimulus

• A stimulus source

• An artifact being stimulated

• An environment in which the stimulus occurs

• A response to the stimulus

• A response measure (to quantitatively define a satisfactory 
response)

For example, a configurability scenario might be written as

“A customer requests support for a new type of sensor after the 
software has been installed and activated. The customer support 
engineer reconfigures the system to support the new sensor without 
writing any new source code, without extraordinary downtime, and 
commencing operation with the new sensor within one calendar 
week of receiving the necessary documentation on the sensor.”

For this example, we can define

• Stimulus Requests support for a new type of sensor

• Stimulus source The customer

• Artifact The system and the customer support organization

• Environment After the software has been installed and 
activated

• Response The customer support engineer reconfigures the 
system to support the new sensor
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• Response measure No new source code, no extraordinary 
downtime, and commencing operation within one calendar 
week

Note the quality attribute, measure, and requirement implied by 
this scenario:

• The quality attribute is “configurability to accommodate new 
sensors.”

• The measure is “the amount of new source code written, the 
amount of downtime, and the amount of calendar time to 
bring a new sensor online.”

• The requirement is “zero new source code, no extra downtime, 
and less than one calendar week.”

Also, notice how the QAS nails down some details that an 
unstructured scenario might have left open:

• Since no new source code is permitted, there must be a limit on 
the range of new sensor types that can be handled. With enough 
programming, any type of sensor could have been handled.

• Shutting the system down to reconfigure it is probably not an 
option, because that would require extraordinary downtime.

• Reconfiguration will be done by an expert, not a novice.

• The expert is part of the installation organization, not the 
customer organization.

But the most important aspect of the scenario is that it gives a 
concrete example of configurability, which is easy for both the 
stakeholder and the architecture team to understand.

When eliciting QASs, it is helpful to consider the following types 
of scenarios, as a way of bringing out issues that might not have been 
considered:

• Normal operations These are the most obvious scenarios.

• System-as-object scenarios In these, the system is a passive 
object that is being manipulated by, say, a programmer or an 
installer.

• Growth scenarios These scenarios deal with likely or 
plausible changes to the requirements in the future, such as a 
50 percent increase in capacity requirements. They help 
develop a system that is (somewhat) future-proof.

• Exploratory scenarios These are improbable scenarios, such 
as the loss of power from an “uninterruptible” power supply. 
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They are used to stimulate thinking about implicit assumptions 
underpinning the architecture, which may turn out not to be 
true.

We recommend using QASs, not just in workshops, but whenever 
you are capturing stakeholder concerns. You will want to manage 
them similarly to how you manage other high-level requirements. 
However, it is important to remember that

• The QAS is only an example of the concern. It is up to you to 
investigate the topic and propose good quality attribute 
measures and requirements.

• The stakeholders’ priorities will change over time. The 
prioritization work done in a workshop helps you know 
where to focus your attention first, but the official prioritization 
of concerns will need to be done later and more 
systematically.

• QASs do not replace use case scenarios. A QAS generally 
treats the system as a black box, with a stimulus and a response, 
whereas a use case scenario is attached to a particular use case 
and can be as rigorous and detailed as necessary. We 
recommend that you establish trace links between QASs and 
the use cases or use case scenarios they correspond to, 
indicating that the QAS is part of the rationale for the quality 
attribute requirements attached to the use case.

Goal Modeling
One of the challenging differences between functional requirements 
and quality attribute requirements is that functional requirements 
usually have a yes/no flavor to them, whereas quality attribute 
requirements have a more-is-better character. For example, if an 
airline reservation system is required to display a certain list of 
available flights within 15 seconds, the information displayed in 
the list is either correct or incorrect, but nothing very bad happens 
if the list is displayed in 16 seconds instead of 15, and displaying it 
in 10 seconds is even better than 15, although the additional benefit 
may not be very important.

Another challenging difference is that the logical linkage between 
design decisions and functional requirements is normally clear-cut, 
whereas the linkage between design decisions and quality attributes 
often remains subjective during development. The easiest example is 
user interface design, where many design decisions affect ease of use, 
but it is mainly guesswork to say which ones will have a big impact, 
and whether the aggregate ease of use will be sufficient for the end 
user’s needs.
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One way to deal with “more is better” logic is by using the goal 
modeling approach we have discussed in Chapter 3. A goal model is 
a graph of nodes and edges, where the nodes are goals and other 
decisions, and the edges are “satisficing” relationships. The term 
“satisfice” means “satisfy sufficiently.” So, if a design decision seems 
to achieve a goal well enough for the purposes of a particular project, 
we say that the decision satisfices the goal.

More typically, a single decision contributes toward satisfying 
several goals but also interferes with achieving other goals. Some 
goal modeling notations therefore support both positive and negative 
satisficing relationships, and some even provide for “double-plus” 
and “double-minus” links. In these models, an edge A → + B means 
“A contributes to satisficing B.” A → − B means “A interferes with 
satisficing B.” To decide whether a given node N is satisficed, one 
must consider all the edges leading to it, both positive and negative, 
and analyze the combined effect of those decisions on the goal. While 
this representation can be useful in visualizations, diagrams of large 
graphs can be in practice quite unreadable. Their value comes more 
from their use in a trace link database, when analyzing the impact of 
changing a decision (see later Figure 5.4).

Global Analysis
Global analysis is a methodology for organizing a broad variety of 
soft, uncertain information gathered in the early stages of architectural 
requirements analysis [Hofmeister et al. 1999], [Paulish 2002]. It is 
“global” both in the sense that it looks at the system from all directions 
(all external interfaces, all stakeholder concerns, plus any sort of other 
constraint, whether from the organization, the marketplace, available 
implementation technologies, the job market, or whatever), and the 
topics addressed frequently have a broad impact on the system as a 
whole, cutting across many subsystems and multiple architectural 
views.

Global analysis classifies this information into three types of 
entries: factors, issues, and strategies. Architecture-influencing factors 
are (alleged) facts that are likely to have significant influence upon 
the architecture. Issues are potential conflicts or tradeoffs among 
factors. Strategies are proposed decisions that address the issues. All 
three types of entries are collected concurrently, as new information 
becomes available, opportunities to ask questions arise, and ideas 
come to mind. Classifying them this way helps the analysts keep 
from confusing external constraints with proposed solutions, helps 
them focus on the hard problems first, and helps them build their 
rationale for the emerging architecture.

Factors: Beyond Requirements
Any requirement or stakeholder concern might be a factor, but there 
are many factors that are neither requirements nor stakeholder 



 C h a p t e r  5 :  Q u a l i t y  A t t r i b u t e  R e q u i r e m e n t s  147 C h a p t e r  5 :  Q u a l i t y  A t t r i b u t e  R e q u i r e m e n t s  147

concerns in the usual sense. We normally expect requirements to state 
properties of the product, whereas a factor may describe something 
other than the product itself, for example, “Our programmers don’t 
know application service provider (ASP) technology.” Rather than 
arising from a stakeholder concern, a factor might arise from general 
knowledge, from architectural experience, from legacy products, 
from the history of the development organization, or from any other 
source. Finally, global analysis deals simultaneously with 
requirements, architecture, and project management, so some of the 
factors may only bear on the product indirectly.

Here are some example factors, illustrating their diversity:

• “The product developers are spread across three locations.”

• “The license fees for a key third-party software component 
will likely be around $1500 per server.”

• “There is significant market demand for both large-screen 
and cell-phone versions of this type of product.”

Factors can come from anywhere. For convenience they are 
grouped into three categories: product factors (typically derived from 
features); technology factors, which involve the technologies available 
to implement the product; and organizational factors, which involve 
properties of the company or other organization that is developing 
the product. These categories are further grouped into subcategories, 
such as product performance, services provided, programming tools, 
technical standards, staff skills, and schedule constraints. These 
categories and subcategories should not be considered exhaustive; 
any significant factor should be captured and addressed, whether or 
not it fits neatly into one of the categories.

We try to capture the following information to describe factors:

• Category and Subcategory These are specific to the project 
and are just used to help organize the factors as you collect 
them.

• Name This is a short phrase that makes it easy to refer to 
the factor within the team and in other documents.

• Brief statement of the factor This statement typically 
consists of a single sentence, as in the preceding examples.

• Negotiability (optional) This is the “wiggle room” in the 
factor today. For example, in the case of the three development 
sites, one of the sites might be optional, depending on the 
overall staffing needs and the skill mix required.

• Change over time (optional) This describes how the factor 
might change in the future. For example, the demand for the 
product on a cell phone may not be significant for another 
two years. Negotiability and changeability should not be 
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confused with stability, a property indicating how strong the 
consensus is for the current wording of a requirement.

• Impact This explains how the factor is likely to influence 
the architecture.

• Authority This is the justification for including the factor in 
the analysis. For example, it could be the name of a stakeholder 
or a team member, references to requirements, stakeholder 
requests, or other project documents, or a phrase like “general 
knowledge” or “past experience.” External authorities are 
generally better than just listing a team member, but since you 
are the architects, others do expect you to be the authority some 
of the time. Also, there will be cases where you identify a factor 
that you expect will become important to certain stakeholders 
later. You can list yourself as the authority temporarily, and 
comment on who else may become interested.

• Expert This is the subject matter expert for the factor.

In addition, each factor has other attributes equivalent to those 
usually attached to requirements, such as unique ID, owner, status, or 
stability.

An example textual description of a factor is given in Figure 5.3.
Although storing factors, issues, and strategies in an ordinary 

text document can be adequate for small efforts, we would recommend 
managing them with a general-purpose requirements management 
tool, such as Teamcenter, Doors, or Requisite Pro, if your organization is 
already using one. The key advantage of using a tool is being able to 
look at the same text either as a narrative document or as a 
requirements catalog.

FIGURE 5.3 Textual presentation of a factor

1. Organizational Constraints
1.3 Management
1.3.5 Buy reporting subsystem
(Factor-37)
The reporting subsystem should be based on a commercial product, e.g. Crystal
Reports
Negotiability Previous reporting system was implemented in-house, so buying
COTS is not a rigid requirement. But competitors are already doing this.
Changeability Reporting features may become more specialized, making the
“buy” option less advantageous.
Impact Buying the market leading product has low development cost, risk, and
time to market, but introduces licensing costs and reduces product
differentiation.
Authority Features 135, 136, and 139, and SR 174 are from Jim Smith, who has
interviewed customers concerning reporting features.
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“Softness” is a hallmark of architecture-influencing factors. Softness 
is inevitable because much of the analysis must be performed before 
the hard facts are known. We find that factors often need to capture 
four kinds of softness: range, change over time, uncertainty, and 
negotiability. These can all be present in a single factor. For example,

“Customers’ networks currently have 100 to 100,000 nodes. The 
upper end of this range will increase every two years by a factor 
of 1.5 to 3. Our architecture may not have to cover the low end of 
the range, if expected sales don’t justify the cost.”

This factor illustrates range (100 to 100,000 nodes), evolution over 
time (will increase every two years), probability (factor of 1.5 to 3), 
and negotiability (expected sales vs. cost). Although this example 
expresses probability with numbers, a factor is permitted to use 
qualitative words like “probably,” “likely,” “might,” and “could” to 
express uncertainty. Negotiability links this factor to other factors, 
giving some idea of how variations in one affect the other. Although 
it may be tempting to split such a factor into four different factors, 
each addressing one kind of softness, don’t make the split unless you 
are confident that the different factors are relatively independent of 
each other. Allowing softness in an architecture factor thus allows the 
architect to document a factor and make plans concerning it before 
the uncertainty is resolved.

Unlike requirements catalogs, the collection of architecture factors 
does not have to be complete. Global analysis prioritizes them, finds 
conflicts and tradeoffs between them, and finally reduces them to a 
set of key issues that shape the architecture. The less important factors 
will likely be ignored, for most purposes, so missing a few of them 
is okay.

Issues
The purpose of documenting issues is to identify the aspects of the 
project that are going to be hard to accomplish. A global analysis issue 
is a potential conflict or tradeoff between two or more factors—
usually many more! For example, the issue “Aggressive Schedule” 
might be described as, “The project probably can’t be completed in 
the 14 months currently budgeted if we have to train our programmers 
in Java, add new tools to our development environment, and 
implement all 75 major features, using a novel user interface concept.” 
Implicit in that statement are the factors

• Develop in 14 calendar months

• Programmers don’t know Java

• Seventy-five major features

• Novel user interface concept
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To document an issue, record

• Name A short phrase

• Brief description One or two sentences

• Factors involved Names of, and links to, the factors that 
conflict with each other to create this issue.

• Why it’s hard The challenges facing the project team; e.g., 
meeting functionality, schedule, budget, schedule, quality, 
performance constraints.

• Expert The subject matter expert

• Owner, status, priority, etc. The usual requirements 
management attributes

• Discussion Additional information that came up when the 
issue was uncovered. This may include potential strategies 
for resolving the issue, before the strategies have been 
separately documented.

Sometimes, an issue is identified that does not seem to reflect a 
conflict between factors. That’s okay. Document it first, and figure out 
the factor conflicts later.

• If you’re lucky, thinking about what makes the issue hard 
will suggest a new factor.

• Sometimes the factor conflict won’t become apparent until 
you consider the architectural alternatives surrounding the 
issue.

• If nothing else, there will usually be a conflict with cost and/
or schedule.

• Or, it may turn out that something that appeared to be difficult 
didn’t really make a difference to the architecture after all.

Strategies
A strategy is a proposed decision that addresses one or more significant 
issues. Many strategies are simply architectural design decisions, such 
as the decision to implement asynchronous communication using 
loosely coupled event channels instead of tighter-coupled publishers 
and subscribers. However, in global analysis, an issue can involve 
both technical and managerial factors, and so the strategy may be 
technical, managerial, or a combination. For example, if the issue is 
“ASP programming is best done in Java for this product, but our 
programmers only know C++,” the architect and the project manager 
could choose to “retrain our programmers in JSP,” “buy an ASP 
development environment for C++,” or “use some C++ programmers 
to write C++ applets, and retrain others to write JSP.”
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To document a strategy, record

• Name A short phrase

• Brief description One or two sentences

• Issues and factors affected Names of, and links to, the 
issues and factors that are addressed by this strategy

• Explanation A lengthier description of the strategy

• Why it works Why the strategy satisfices the factor-goals 
and issue-goals

• Expert The subject matter expert

• Unique ID, owner, status, priority, etc. The usual 
requirements management attributes

• Discussion Additional information about the strategy, 
including references to additional reading

Factors vs. Requirements
Although a factor is similar to a requirement, there are important 
differences, as summarized in Table 5.2. 

We expect both factors and requirements to be correct. However, 
a requirement is supposed to be a true statement about a set of 
products, whereas a factor is a true statement related to the architecture 
of a product family. “Related to” is important because an architecture 
is constrained by many stakeholders, not just the market requirements. 
“Product family” implies that the architecture should reflect “family 
planning,” leaving room for family members to grow and for new 
ones to be added.

Although they must be unambiguous, factors are allowed to be 
explicitly variable. The idea is that a factor expresses a multidimensional 
region of values within which a combination of product requirements 
will fall.

Requirement Factor

True of the product(s) True and related to the architecture 
of a product family

Unambiguous Explicitly variable

Verifiable Arguable

Modifiable Readable

Consistent Conflicting

Complete Important

Traceable Yes, eventually

TABLE 5.2 Requirements and Factors
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Instead of being verifiable, factors are only expected to be 
arguable, meaning that someone can make a convincing case that the 
factor is true. This relaxation of rigor is important for capturing 
assumptions before the “true facts” are known.

Modifiability is less important than readability, because the number 
of important factors should remain small (under 100), making them 
relatively easy to maintain in any case. In the customer network 
example given earlier under “Factors: Beyond Requirements,” 
conventional wisdom on modifiability would recommend breaking 
the factor into three or four separate factors, but in truth it is a single 
factor that varies in four dimensions. We also prefer not to restrict the 
sentence structure of factors (as some requirements standards do), in 
favor of greater expressiveness. For example, is it clearer to write, “The 
architecture shall facilitate developing the framework and products 
using programmers whose previous experience does not include ASP 
technology” or “Our programmers don’t know ASP”? The first 
alternative is verbose, vague, and might actually be incorrect, if there 
is an option to hire a few ASP developers. The second alternative 
succinctly captures one fact that constrains the architecture.

We expect to record contradictory factors, both because they can 
represent different points of view and because one purpose of global 
analysis is to discover conflicting factors and find ways to reconcile 
them. For example, one stakeholder may ask for a fast, powerful 
system, while another asks for a low-cost, small-footprint system. 
Only later analysis will determine whether one of the stakeholder 
requests is rejected, a good compromise is found, or two system 
family members are produced, where one is fast and powerful and 
the other is cheap and small.

The collection of factors will be incomplete because only the most 
important ones can be addressed. Experience has shown that, in 
practice, architects address only the top 5–10 concerns when defining 
the architecture principles. So, the process of collecting factors needs 
to be systematic but limited in duration, ending when the team is 
reasonably confident that they have reached a point of diminishing 
returns (or time has run out). Completeness has a secondary meaning 
here as well: some factor descriptions will be left incomplete if they 
are deemed not important enough to finish, but will not be deleted so 
that they can be revisited later.

Finally, traceability of factors is important, both backward and 
forward. Each factor that is deemed important must eventually be 
traceable back to a source, which is typically an expert or a stakeholder. 
Without such a trace, the factor has no authority over the project, either 
because it isn’t true or because no stakeholder thinks it is relevant.
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Goal Modeling of Factors, Issues, and Strategies
Goal modeling is a useful way to describe the relationships among 
factors, issues, and strategies. Each factor represents the goal of 
developing a product compatible with that factor. Each issue represents 
a derived goal, namely to develop a product that satisfices a particular 
combination of factor-goals, even though they appear to conflict with 
each other. Each strategy, if adopted, represents a design decision that 
contributes to satisficing some issue-goals and some factor-goals and 
detracts from satisficing others. Finally, the engineering requirements 
sponsored by the architecture team have satisficing relationships to 
the chosen strategies. Figure 5.4 uses goal modeling to depict 
relationships among factors, issues, and strategies.

Managing Factors, Issues, and Strategies
As with functional requirements, it is important to have a definite 
procedure for managing factors, issues, and strategies. We have 
already mentioned that it is useful to put them in a requirements 
catalog, if a suitable tool is already in use in the organization. However, 
unlike conventional requirements management, the whole purpose 
of Global Analysis is to identify a small number of high-priority issues 
and corresponding strategies that shape the architecture. If you don’t 
manage toward this goal, global analysis can grow into a very large, 

FIGURE 5.4 Goal modeling
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unwieldy effort that is vulnerable to analysis paralysis. Therefore, we 
recommend these approaches:

• Use brainstorming to identify factors, issues, and strategies, 
but don’t insist on fully documenting every idea that comes 
up. Use priority and status attributes to mark certain items as 
deferred (we’ve decided not to work on it right now), and/or 
low priority.

• Use face-to-face prioritization meetings within the analysis 
team to narrow down the list of high-priority issues to less 
than 20. Eventually, the architects will most likely focus on 
fewer than 10 issues, but they need a longer list to choose 
from. Simple voting can help focus the meeting’s attention, 
but then you should discuss the borderline cases to seek 
consensus on whether to include them or exclude them from 
the high-priority list.

• Use time-boxed scheduling (e.g., sprints in agile terminology) 
to limit the amount of time you spend on global analysis; 
then pull together what you know and assess whether 
additional time is needed, and how it should be spent.

• Drive the analysis toward the document in which it will be 
published for outside review. The purpose of this document 
will typically be to win buy-in for the early architecture 
concepts you’ve selected, by showing how they address 
stakeholder concerns and other dangers you’ve uncovered. 
The document only needs to include the factors and issues 
that justify the strategies selected and the key architectural 
concepts adopted. It should be a persuasive document with a 
flowing narrative, and not just a catalog of factors, issues, 
strategies, and architecture concepts.

5.6 Testing ASRs
Although we have argued that architecturally significant requirement 
(ASRs) carry high risk because they cannot be fully tested until very 
late in development, we now argue almost the opposite: critical ASRs 
should be partially tested early in development, and retested frequently 
as development proceeds.

The problem with not testing ASRs is that whatever is not being 
tested tends to be ignored. Therefore, once you have prioritized the 
ASRs on a project, you must devise a way to test the most important 
ones, in order to keep the team’s attention focused on them. However, 
the most important ASRs are typically based on quality-in-use 
attributes, which by definition cannot be measured until the system 
is put into use. Fortunately, as you saw in our earlier example, one 
can usually find internal quality attributes that are indicative of 
quality-in-use attributes.
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Partially measuring key ASRs can therefore be accomplished by 
selecting indicative quality attributes, internal and/or external, that 
can be measured early, and measuring them. When results of these 
measurements change significantly, it is time to review them and 
decide whether the key ASRs that they indicate are in trouble.

For example, in a recent project, we saw that having adequate 
performance of the messaging infrastructure was going to be an 
important quality attribute and a difficult challenge. Focusing the 
project’s attention on it was particularly difficult because the project was 
globally distributed and cross-divisional. Therefore, we set out to create 
an early testing strategy for the relevant quality attribute scenarios.

First, we discovered that the QASs were written in terms of 
complex functionality that could not be tested until late in the project. 
But since we were really interested in the infrastructure performance, 
we selected much simpler functionality to test, whose performance 
would be indicative of the complex functionality’s eventual 
performance. We also limited our attention to just four use case 
scenarios. We then defined three independent variables to describe 
the space of performance tests, with a choice among a handful of 
ordinal values on each dimension (see Table 5.3).

We then defined quality attribute measures for four performance 
attributes:

• Real-time database memory consumption

• Message throughput

• Message latency

• Command response time

We specified numerical parameter values for each of the 
independent variables and wrote automated testing scripts to execute 
each of the functional scenarios under each sensible combination of 
traffic load and network sensor size. Finally, we specified plausible 
success thresholds for each of the performance parameters under 
each combination of independent variables.

As soon as the functional scenarios were implemented, we were 
able to begin executing these performance tests. We found two 

Independent Variable Values

Traffic load Normal, Peak, Burst, Max

Sensor network size Embedded, Small, Medium, Large

Functional scenario Scenario A, Scenario B, Scenario C, 
Scenario D

TABLE 5.3 Independent Variables
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clusters of pain points: in one cluster of failed tests, memory 
consumption was excessive; in the other, latency and response time 
were too slow. At first, the test results pointed to low-hanging fruit: 
obvious design flaws that had obvious fixes. Once these were taken 
care of, the tests continued to show deficiencies, but the causes were 
much less obvious.

Therefore, we conceived and convened Quality Attribute Testing 
Workshops where we brought together cross-functional teams of 
architects, implementers, and testers, to dig deeper into the 
performance problems, to prototype solutions to the problems, and to 
specify internal resource measurements that would better quantify 
what a successful solution looked like. Armed with the test findings, 
diagnoses, and prototyped solutions, we then conducted Quality 
Attribute Design Workshops, where we designed the solutions in detail, 
including looking for secondary problems exposed by the solutions 
to the primary problems.

To summarize, our ASR testing strategy will

• Use quality-in-use attributes to identify corresponding internal 
quality attributes.

• Test the internal QAS by measuring simple scenarios that are 
built early.

• Keep the number of ASR test scenarios small, but with 
multiple combinations of resource parameters (or other 
independent variables).

• Automate the testing early, so that it is repeatable and cheap.

• Use the tests to drive QA Testing Workshops and QA Design 
Workshops to improve the quality.

For a more sophisticated approach to testing critical system 
qualities, see [Cleland-Huang et al. 2008].

5.7 Case Study: Building Automation System
For the purpose of illustration, consider a company that manufactures 
devices for the building automation domain and software applications 
that manage a network of these devices. With the hardware being 
commoditized, its profit margins have been shrinking. The internal 
development costs for the software applications that manage different 
devices have also been rising.

To sustain their business long term, the company decides to create 
a new integrated building automation system. The intended system 
would broadly perform the following functions:

• Manage field devices currently used for controlling building 
functions.
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• Define rules based on values of field device properties that 
trigger reactions.

• Issue commands to set values of field device properties.

• For life-critical situations, trigger alarms notifying appropriate 
users.

Taking this approach would allow the company to reduce internal 
development costs, since several existing applications will be replaced 
with the new system. The company could also achieve market expansion 
by entering new and emerging geographic markets and opening new 
sales channels in the form of value-added resellers (VARs).

It is clear that some of these business goals will have a significant 
impact on the development of the building automation system; e.g., 
hardware devices from many different manufacturers would need to 
be supported; consideration would have to be made to take the 
language, culture, and regulations of different markets into account; 
tradeoffs would need to be made and risks assessed to determine the 
extent to which the product should support these goals; and depending 
on the company’s comfort level with the tradeoffs and risks, these 
goals might need to be refined, e.g., scaling back on the intended 
markets. Therefore, it is highly relevant to use these as a starting 
point for deriving not only the features that the building automation 
system must support but also the forces (architectural drivers) that 
will shape its architecture. Table 5.4 shows these business goals and 
their refinement.

Features That Define the Product
Business goals play a significant role in defining the critical features 
that a product must support. For instance, integration implies that 
the features of existing applications to be integrated must be 

Business Goal Goal Refinement

Reduce internal 
development costs

Integrate existing applications into a single unified 
software package: the building automation system

Expand by entering 
new and emerging 
geographic markets

Support international languages 

Comply with regulations impacting life-critical 
systems, such as fire alarms, to operate within 
specific latency constraints

Open new sales 
channels in the 
form of value-added 
resellers (VARs)

Support hardware devices from different 
manufacturers 

Support conversions of nonstandard units used by 
the different hardware devices

TABLE 5.4 Business Goals for the Example Building Automation System
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supported in the new system. This may require innovative ways of 
displaying information in the user interface and providing fine-
grained access control over who is allowed to interact with what part 
of the system. Supporting international languages implies 
personalization capabilities. Regulatory policies for safety-critical 
parts of the system would require alarm-handling capabilities for 
situations that could cause loss of life. Supporting hardware devices 
from different manufacturers would require dynamic configuration 
capabilities. Table 5.5 shows a mapping of business goals to the 
features of the building automation system.

These features can be refined into specific use cases based on how 
the external actors shown in the context diagram in Figure 5.5 intend to 
use the system. For instance, the field engineer intends to manage field 
systems and dynamically reconfigure them. The facilities manager 
intends to manage alarms generated by field systems that monitor a 
building. Alarms related to events that could cause loss of life also result 
in notifications to the public safety system. The system administrator 
intends to manage the users of the building automation system.

Goal Refinement Features

Integrate existing applications into a single 
unified software package: the building 
automation system

User Management

Access Control

Field Device Management

Event Management

Alarm Management

Support international languages Internationalization and 
Localization

Comply with regulations covering life-critical 
systems, such as fire alarms, to operate 
within specific latency constraints

Alarm Management

Support hardware devices from different 
manufacturers 

Dynamic Reconfiguration

Support conversions of nonstandard units 
used by the different hardware devices

Dynamic Reconfiguration

TABLE 5.5 Features Derived from Business Goals
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Some of the use cases related to the goals of the actors of the 
building automation system are shown in Figure 5.6. These use cases 
are grouped by product features they realize and provide a broad 
functional context of the system under development.

Forces That Shape the Architecture
The business goals also correspond to quality attributes the system 
must exhibit. In order to support a multitude of hardware devices and 
consider different languages and cultures, the system must be 
modifiable. In order to support different regulations in different 
geographic markets, the system must respond to life-threatening 
events in a timely manner. It is, therefore, critical that the business 
goals and their implied quality concerns be fully understood.

One way to do this is to employ the SEI’s Quality Attribute 
Workshop (QAW) [Bachmann et al. 2002], [Barbacci et al. 2000]. As 
we have discussed, this is a technique for eliciting quality attribute 
requirements that are mapped to business goals. Through workshops, 
the business goals provided by management and technical 
stakeholders are used to elicit concrete scenarios for the quality 

FIGURE 5.5 Building automation system context
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attributes corresponding to these goals. These scenarios must be 
specific enough that a system can be evaluated to determine if it 
satisfies a given scenario. Table 5.6 shows a mapping of the business 
goals to quality attribute scenarios for the building automation 
system.

Constraints on the Architecture
While the features define a product and the quality attributes play a 
significant role in shaping its architecture, there are additional factors 
that may constrain how the architecture will be designed. For instance, 
it may be the case the system under consideration has to be developed 
on the Microsoft .NET platform and needs to use the Oracle DBMS. 
This a priori choice of technology will limit the ability of an architect 
to make design decisions such as how the system is partitioned into 
tiers; the communication mechanisms across these tiers; and the 
strategies for security, failover, and transaction management.

As discussed earlier, global analysis is a technique for analyzing 
a wide variety of factors that may become constraints for creating the 
architecture. Table 5.7 enumerates a few such factors for the building 
automation system.
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Architectural Drivers
From the features, quality attributes and factors enumerated in earlier 
sections, we distill a list of significant architectural drivers. A 
prioritized list of such drivers for the building automation system is 
shown in Table 5.8.

Architectural drivers 1–5 relate to the quality attribute scenarios 
enumerated in Table 5.6. In addition, architectural drivers 1 and 3 
also correspond to dynamic reconfiguration, 2 corresponds to 
personalization, 4 corresponds to event management, and 5, to alarm 
management features respectively enumerated in Table 5.3. Most 
architectural drivers relate to the factors identified in Table 5.7. For 
instance, the organizational factor concerning new market segments 
is reflected in architectural drivers 1–5. These drivers take into account 
the flexibility needed to accommodate new field devices and their 
calibration, language, and cultural aspects, as well as regulatory 
concerns regarding the responsiveness of the system to safety-critical 
events. The technological factor related to scalability and 
responsiveness and the product factor related to performance and 
scalability are addressed through architectural drivers 4, 5, and 6.

Refined Business Goal Quality Attribute Quality Attribute Scenario

Support hardware 
devices from many 
different manufacturers 

Modifiability Two developers are able to 
integrate a new device into 
the system in 320 person 
hours. 

Support conversions of 
nonstandard units used 
by the different devices

Modifiability A system administrator 
configures the system to 
handle the units from a 
newly plugged-in field device 
in less than three hours.

Support international 
languages 

Modifiability A developer is able to 
package a version of the 
system with new language 
support in 80 person hours.

Comply with regulations 
requiring life-critical 
systems, such as fire 
alarms, to operate 
within specific latency 
constraints

Performance A life-critical alarm 
should be reported to the 
concerned users within 
three seconds of the 
occurrence of the event 
that generated the alarm.

TABLE 5.6 Quality Attributes and Scenarios Derived from Business Goals



 162 S o f t w a r e  &  S y s t e m s  R e q u i r e m e n t s  E n g i n e e r i n g :  I n  P r a c t i c e

Architecture Design
Given a prioritized list of architectural drivers, we can begin to create 
an architecture that reflects them. To accomplish this, we can employ 
Attribute-Driven Design (ADD) [Bass et al. 2003].

Category Factor Description Strategy

Organization New Market 
Segments

Limited 
experience with 
some market 
segments the 
organization 
would like to 
enter.

Incrementally grow 
the solution into 
market segments 
with limited 
experience.

Technology Scalability and 
Responsiveness

System must 
be scalable to 
handle large 
number of 
field devices 
and improve 
responsiveness.

Consider the 
possibility of 
scaling upward by 
adding additional 
processors in one 
server computer 
or additional 
server computers.

Product Performance 
and Scalability

System must 
handle a 
wide range of 
configurations, 
say, from 100 
field devices to 
500,000 field 
devices.

A scalable 
distributed 
solution is 
necessary to 
meet performance 
requirements.

TABLE 5.7 Factors in Designing the Building Automation System

# Architectural Driver Priority

1 Support for new field system (H, H)

2 International language support (H, M)

3 Nonstandard unit support (H, M)

4 Latency of event propagation (H, H)

5 Latency of alarm propagation (H, H)

6 Load conditions (H, H)

TABLE 5.8 Architectural Drivers for the Building Automation System
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ADD begins by prioritizing the architectural drivers. This is done 
by soliciting input from both the business and technical stakeholders. 
The business stakeholders prioritize scenarios based on their business 
value (High – H, Medium – M, Low – L), whereas the technical 
stakeholders do so based on how difficult it would be to achieve a 
given scenario during the system design, resulting in nine different 
combinations in the following order of precedence: HH, HM, HL, 
MH, MM, ML, LH, LM, and LL. Table 5.8 shows the prioritized 
drivers for the building automation system.

From here we decompose the system by applying a series of 
architectural tactics corresponding to each architectural driver. 
Figure 5.7 shows the result of applying these tactics to the building 
automation system. The sequence of decomposition reflects the 
priority order of the quality attribute drivers in Table 5.8.
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Starting with a monolithic system in Figure 5.7(a), ADD applies 
the modifiability tactics to limit the impact of change and minimize 
the number of dependencies on the part of the system responsible for 
integrating new hardware devices. This is shown in Figure 5.7(b), 
where an adapter is introduced for each field system (anticipation of 
changes tactic) with each adapter exposing a standard interface 
(maintain existing interface tactic) and a virtual field system is 
introduced to further limit the ripple effect when removing or adding 
field systems (hiding information tactic).

The performance tactic (concurrency), shown in Figure 5.7(c), is 
applied next to add support for critical systems so that they operate 
within specific latency constraints and can handle specified load 
conditions. The parts responsible for evaluating rules and generating 
alarms for life-threatening situations are separated out into an alarms 
module. This module can now be moved to a dedicated execution 
node, reducing latency, and its performance can be further enhanced 
by introducing multithreading within the module. We can also add 
execution nodes for horizontal scalability.

The modifiability tactic (anticipation of changes) is applied in 
Figure 5.7(d), and a separate presentation module is created to 
support several international languages.

It should be noted that the only driver from Table 5.8 that does 
not appear to be addressed is the one dealing with conversion of 
nonstandard units used by various devices. We use the adapters 
shown in Figure 5.7(b) to do the conversions into standard units 
(intermediary modifiability tactic).

Modeling the Domain
Figure 5.8 shows a domain model for the building automation system. 
In describing various artifacts related to the system, the use of a 
standard vocabulary of the domain plays a significant role in making 
the descriptions less ambiguous. The closer the standard vocabulary 
is to the problem domain, the smaller is the representation gap 
between how the stakeholders of the system perceive their world and 
how the software engineers describe the system under design.

Performance Modeling
In the event that data from the field systems begins to indicate the 
possibility of an alarm, the facilities manager (and possibly, the public 
safety officials) needs to know about this possibility within one 
minute of its occurrence. Under normal operating conditions, a single 
field system generates ten data samples/second in the worst case. 
Sample size is approximately ten bytes. A typical building in the 
worst case may have 100 field systems.

This section creates a performance model for the proposed 
architecture for the building automation system based on the end-to-end 
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scenario just described. Once the model is created, the computational 
needs of the software and hardware resources are determined. Finally, 
this model is evaluated against the specified performance objectives. 
The purpose of this exercise is to ensure the proposed architecture meets 
the stipulated performance objectives and explore alternatives if any 
serious design flaws are discovered.  In some cases, a simulation of the 
system performance is created in addition to or instead of a performance 
model; e.g., for a nuclear reactor, simulation may be the only way to 
verify that the design meets the requirements prior to construction.

Figure 5.9 shows the key end-to-end scenario or workflow for the 
building automation system. Many field systems concurrently 
transmit data to the virtual field system. The virtual field system 
processes the raw data and persists it to a database after gaining 
secure access through the access control component. This data is then 
made available for analysis by the alarm subsystem, and when alarms 
are detected, they are reported to the monitoring clients for the 
facilities manager and the public safety system for the public safety 
officials. This execution snapshot can be used as a basis for creating a 
performance model when sufficient information is available on data 
volumes, data arrival rates, and processing requirements of the 
individual software elements shown in this figure.



 166 S o f t w a r e  &  S y s t e m s  R e q u i r e m e n t s  E n g i n e e r i n g :  I n  P r a c t i c e

Figure 5.10 shows the execution graph for the building automation 
system corresponding to the scenario in Figure 5.9. Each data sample 
from the different field systems is first collected by the virtual field 
subsystem. On the virtual field subsystem, data from all the field 
systems within a building is stored into a database and made available 
for analysis by the alarm subsystem. If an alarm is detected, the alarm 
subsystem generates a notification for necessary action.
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FIGURE 5.10 Execution graph for alarm detection

FIGURE 5.9 Execution snapshot of the building automation system showing 
message flow across communicating hardware and software elements
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Table 5.9 specifies the software resource requirements for each of 
the processing steps shown in the execution graph. Work units 
represent CPU consumption, the range being 1 to 5. Here, 1 represents 
a simple task, whereas 5 represents a complex task. Database accesses 
represent data persistence or query. We assume data is stored or 
retrieved in blocks approximately equivalent to 1000 samples of four 
bytes received from all the field systems every second in a building. 
For example, the store data task needs one database access to save 
data from all the field systems within a given building. Network 
messages represent outbound messages from a processing task. We 
assume store data and analyze data tasks send packets carrying 10KB 
of data. Therefore, to transmit data from each building requires 
approximately one network message.

Table 5.10 shows the processing overhead or computer resource 
requirements for each of the software resource requirements.

In the top section of the table, the names of devices in a typical 
server (for instance, an application server) appear in the first row, the 
quantity of each is in the second row, and the units of service provided 
by these devices are in the third row. The values in the center section 
of the table define the connection between the software resource 

Processing Step Work Unit
Database 
Access

Network 
Message

Collect data 1 0 1000

Store data 3 1 1

Analyze data 5 100 100

TABLE 5.9 Software Resource Requirements

Device CPU Disk Network

Quantity 1 1 1

Service Unit Thousand 
Instructions

Physical I/O Messages

Work Unit 20 0 0

Database Access 500 2 0

Network Message 10 2 1

Service Time 0.00001 0.02 0.01

TABLE 5.10 Processing Overhead (Courtesy of Connie U. Smith and Lloyd 
G. Williams, 2002)
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requests and computer device usage. For example, a database access 
requires 500K CPU instructions, two physical I/Os, and 0 network 
messages. The last section specifies the service time for the devices. 
For example, a CPU uses 10 microseconds to execute one thousand 
instructions.

This processing overhead table can be used for calculating total 
computer resource requirements for the execution graph for alarm 
detection in Figure 5.10. We show this in Table 5.11.

The best-case elapsed time for the alarm detection execution 
graph, therefore, is (61690 × 0.00001) + (2404 × 0.02) + (1101 × 
0.01) = 59.7 seconds

Thus 59.7 seconds is the best-case elapsed time and does not take 
into account any network latency, unavailability, or queuing delays. 
Any increase in the number of field devices and the arrival rate of 
data samples could also affect the system performance. Given the 
best-case time is so close to the expected performance, certain other 
design decisions may need to be made to achieve further 
improvements. These include but are not limited to

• Concurrent processing at each processing step to avoid 
bottlenecks

• Filtering and preprocessing of data that avoids transmitting 
all raw data to the alarm subsystem

5.8 Practice and Experience
Our experience in applying these methods has shown benefits in a 
number of areas.

Impact of Business Goals
Every system has a rationale for its creation. This rationale takes the 
form of business goals set forth by the organization creating the 
system and has a strong influence on the architecture of the system 
under consideration [Sangwan et. al. 2007].

Processing Step
CPU 
Instructions (K)

Physical 
I/O

Network 
Messages

Collect Data 10,020 2000 1000

Store Data 570 4 1

Analyze Data 51,100 400 100

Total 61,690 2404 1101

TABLE 5.11 Total Computer Resource Requirements for Alarm Detection
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All of these business decisions require input from technical staff 
to determine the impact of such requirements and to inform the 
technical staff of the importance of these requirements. Too often in 
practice, however, there are some differences between what an 
organization wants and what its technical team delivers. For example, 
a business unit wants to create a high-performing infotainment 
system for a luxury line of cars in a compressed time-to-market. The 
technical team is forced to distribute the development of parts of this 
system across geographically distributed teams to achieve the 
compressed schedule via parallel development efforts. When the 
components developed by the teams are integrated together, they 
exceed the memory and performance budgets. While individual 
components are carefully crafted, not enough attention has been 
given to the overall system goal of achieving high performance within 
the given resource constraints. The result is that the business unit is 
not able to produce the desired product. In this example, the difference 
between what was desired and what was delivered cost the company 
hundreds of millions of dollars spent developing the system and 
billions of dollars in potential lost revenue.

The Notion of Quality
Quality attribute requirements are important both in terms of 
customer satisfaction and in driving the design of a software system. 
Yet asserting the importance of quality attribute requirements is only 
an opening for many other questions [Ozkaya et al. 2008].

There is no shortage of taxonomies and definitions of quality 
attributes. The best known is probably ISO 9126, which defines  
22 different quality attributes and subattributes (which we refer to as 
quality attribute concerns) [Glinz 2008]. There are questions concerning 
the extent to which practitioners use the terminology defined in ISO 
9126, and which quality attributes defined in ISO 9126 cover the qualities 
about which practitioners are most concerned. We have observed 
during architectural evaluations that practitioners sometimes do not 
use consistent terminology and have concerns that are not covered in 
relevant taxonomies. Our approach to resolving terminological 
ambiguities is to use quality attribute scenarios as a means of capturing 
the precise concerns of the stakeholders. This allows us to supplement 
the terms used by various stakeholders with a specification that is 
independent of quality attribute definitions and taxonomies.

For example, ISO 9126 does not have an explicit performance 
category; the concerns are listed under efficiency and only two 
concerns are listed, which are time behavior and resource utilization. 
Another commonly used taxonomy is the FURPS+ scheme, which 
refers to functionality, usability, reliability, performance, and 
supportability. FURPS+ lists recovery time, response time, shutdown 
time, startup time, and throughput as concerns under the performance 
category. All of these concerns appear in our data, along with some 
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others such as accuracy and stability during overload conditions. 
However, several concerns in the FURPS+ taxonomy, such as 
configurability, testability, and maintainability under the 
supportability category, or availability under the reliability category, 
appear at the quality attribute level in our data.

A conclusion from these mismatches is that there is clearly a gap 
between the vocabulary used by stakeholders and practitioners in 
specifying quality attributes and those that are used in commonly 
referred-to reference material and taxonomies. Our observation using 
the integrated approach is when it comes to specifying quality attributes, 
eliciting the concern supported by the description of the quality attribute 
scenario is more expressive than going down a list of classifications, 
which may not give a complete coverage of quality issues.

Integration of Functional Requirements,  
Quality Attributes, and Architecture
Of the mainstream design methodologies, object-oriented analysis and 
design (OOAD) has taken a center stage since the early 1980s, and 
almost all programming languages developed since the 1990s have 
object-oriented features [Budgen 2003]. OOAD makes use cases and 
domain modeling its starting point and primarily uses functional 
decomposition to drive the architecture of a system. There is, however, 
a need for integrating these activities with the architecture-centric 
approaches to gain an understanding of the quality attribute 
requirements used in the elaboration of the architecture for a software-
intensive system [Sangwan et al. 2008]. Our experience with the 
integrated approach is that such a synergy between the OOAD and 
architecture-centric approaches also provides a linkage from high-level 
design models to detailed design models that is important for 
preserving the integrity of the architectural design as the system evolves.

5.9 Tips for Quality Attribute Requirements
Tips for effectively handling quality attribute requirements are given 
below.

• Empower the chief architect to be the technical leader and 
decision maker for the project team.

• Establish traceability from soft goals through ASRs and use 
cases to test cases, so that testing the architecture can become 
a relatively routine part of the software development process.

• Write a stakeholder analysis document and periodically 
update it to identify the key stakeholders. Give preference to 
the stakeholders for whom the project is most important 
and/or urgent.

• Be careful not to bloat your requirements database with every 
conceivable quality attribute, but you might want to keep a 
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private list of attributes that you think will become important 
later.

• Use quality attribute scenarios not just in workshops, but 
whenever you are capturing stakeholder concerns.

• When conducting QAWs, ask stakeholders to capture their 
QASs on their laptops and e-mail them to the workshop 
facilitator.

• During a QAW, stakeholders should be encouraged to seek 
clarifications on QASs, but any other issues for discussion 
should be captured and e-mailed to the facilitator. Avoid side 
discussions on QASs during a QAW.

• Manage factors, issues, and strategies using a general-purpose 
requirements management tool, if your organization is 
already using one.

• Address the top 5–10 concerns when defining the architecture 
principles.

5.10 Summary
Following an integrated approach to requirements engineering and 
architecture design provides the following major benefits:

 1. Joint awareness and a shared understanding, among all 
stakeholders, of the system context and its problem domain, 
together with an overarching vision of the system to be 
designed, helping to properly frame decisions

 2. Clear traceability of requirements specification and 
architecture design to business goals ensuring a higher 
probability of delivering the “right” system

 3. A shared project context that avoids costly duplication of 
work across the requirements engineering and architecture 
design disciplines

 4. A clear focus on business goals making it easier to 
communicate, to all concerned stakeholders, the vision of the 
system being developed, its requirements specification, and 
its architecture design

5. 11 Discussion Questions
 1. Which requirements engineering artifacts are likely to be 

used by both requirements engineers and software system 
architects?

 2. What kinds of practices can be used to elicit architecturally 
significant requirements from stakeholders?
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 3. How does one analyze design tradeoffs and the associated risks 
with implementing a system that best meets requirements?
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Steve was assigned as a requirements engineer on a project that 
was developing a new platform for real-time control systems. 
Although he had worked on platform projects before, he had not 

worked with so many different stakeholders. The stakeholders came 
from the different business divisions who were planning to develop 
their future applications on the platform. In some cases these divisions 
were former companies that were acquired by his company, and they 
had previously competed with each other. Steve began to sense that 
the stakeholders were competing to promote their features to be 
developed earliest in the platform project, and they were attempting 
to influence the platform development schedule. He realized that this 
project would not necessarily be technically challenging, but it would 
be very difficult to manage the requirements coming from so many 
competing stakeholders.

This chapter deals with how to carry out requirements engineering 
when developing software platforms. It describes some of the 
challenges that arise when developing the platforms. In order to 
address these issues, a practical approach is presented for how to 
unify, normalize, and reconcile the nonfunctional requirements in the 
platform development.

6.1 Background
Software product lines have been an active area of software systems 
engineering for the past few years [Clements et al. 2002]. Building a 
product line on top of a common platform with shared services is 
commonly practiced in many industries. For example, the use of 
platforms has been widely practiced in the automobile industry, where 
a standard drive train and body are used for multiple models and 
variations of automobiles. One may read automobile model reviews 
with statements like, “a new ES 350 will grace the Lexus lineup for the 
2007 model year, sharing its platform with the Toyota Camry.” “Of 
course, Lexus doesn’t want you to think of the ES 350 as an upscale 
Camry, but as a full-scale luxury car.”

Siemens has initiated a number of development projects using 
software product line concepts that are referred to as “platform 
initiatives.” In this case, a platform refers to a common set of lower-level 
software services such as operating system and middleware. 
Applications are written on top of the platform to create products within 
one or more product lines for potentially differing business units. For 
example, the Building Automation System (BAS) project described in 
[Sangwan et al. 2007] required that multiple application disciplines be 
integrated to run on a single workstation platform. The applications 
were developed by different business organizations, at different 
development sites, with different skills, and for different domains.
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6.2 Challenges
Requirements engineers working on platform projects accept 
stakeholder requests where the stakeholders are from different 
organizations interested in developing products in different application 
domains. In such a platform project, it is very likely that stakeholder 
requests will be quite different and sometimes conflict with each other. 
As each business unit is eager to get their new products quickly to 
market, setting priorities for the platform features will be difficult. 
Furthermore, there will likely be many feature requests as the 
stakeholders from different business units are motivated to put as 
much functionality as possible (from their view) into the platform.

Although the platform developers will likely push back on 
functional requirements coming from the stakeholders, they will 
need to have confidence that the intended platform will be able to 
support a wide variety of applications. As future applications will 
likely be vaguely defined, the services that the platform will provide 
will also be vague. Functional requirements will drive the definition 
of the components that make up the software system architecture. 
Nonfunctional requirements drive the quality definition of the 
platform upon which the components will execute. Thus, requirements 
engineers will need to address both functional and nonfunctional 
requirements, and the requirements analysis feeds directly into the 
software system architecture design.

Requirements engineers and software architects working on 
platform projects will necessarily focus on the nonfunctional 
requirements that the platform will be designed to meet. As you have 
seen in Chapter 5, developing and implementing nonfunctional 
requirements (NFRs) is probably one of the most challenging tasks in 
developing large software systems. The nonfunctional behaviors of 
software systems are difficult to elicit, describe, and quantify. Many 
research and industrial standardization efforts have been made to 
enable the NFR development to become more systematic and unify 
NFR specifications [ISO 2001, ISO 2007]. However, due to the high 
complexity and large scale of industrial software development, 
software practitioners are still having difficulty in developing and 
implementing NFRs. Some example challenges follow:

• The NFRs (quality attribute requirements) defined in the 
standards may be incomplete, since each software product 
has its own unique needs. Thus, software engineers must 
customize the standard NFR definitions to their needs and 
make them more effective to categorize their specific NFRs. 
For example, the hostability quality attribute may be simple 
when the software is operated at only one central location, but 
it may grow complex when the software is operated across 
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a number of service locations in order to provide fast services 
to many widely distributed customers. This is specific to the 
nature (e.g., for an ASP [application service provider]) of the 
software being delivered. For example, scalability is the ability 
for a system to size its capacity either up or down to fit a variety 
of computing devices. However, some software applications 
may operate on only one or two types of computing devices. 
Selecting and customizing NFRs often needs to be done 
iteratively during the NFR development process, based upon 
continuous inputs from the stakeholders.

• Software platforms coming from a large software system 
company tend to support a large variety of customers with 
different application situations. The customer situations 
are different financially and operationally. The customer 
businesses are likely based upon different hardware 
infrastructures and service support models. To reduce 
development and maintenance costs, however, it is most 
desirable for the software system company to have some 
software platforms to support all of those application situations 
and maintenance needs. How to reconcile and organize NFRs 
for the platforms that support such a wide variety of application 
situations and maintenance needs is often very challenging.

6.3 Practices
Based upon our experience in developing NFRs for large software 
systems, we have developed a software process that helps us to 
more systematically develop NFRs for platforms. This process is 
called the Platform NFR Development (PND) process. It complements 
existing NFR development methods by emphasizing iterative 
development, interacting with other development activities (e.g., 
prototyping, testing, and release management), and reconciling the 
stakeholders’ inputs. It provides detailed descriptions for how the 
stakeholders’ NFR inputs can be collected, and how such inputs can 
be organized to facilitate the reconciliation activity as necessary for 
platform projects. The process targets the NFR development of 
software systems that are to be installed on a distributed computing 
environment that uses a variety of computing devices for different 
purposes (e.g., database, user interface, data collection). Simple 
systems, such as single-user desktop software, are not the target of 
this NFR development process. The PND process has been used for 
defining hundreds of NFRs for a large software system; thus, the 
techniques described here are capable of managing NFRs for 
medium- to large-sized industrial software systems.

Figure 6.1 illustrates the PND process, and each activity of this 
process is described in the sections that follow.
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Small 
Configuration

Medium 
Configuration

Large 
Configuration

# of server 
computers 1 4 10

# of local client 
computers 3 8 20

# of remote client 
computers 10 30 100

# of managed 
objects 2000 40,000 100,000

Hard-disk needs

Networking 
conditions (Mbps) 100 100 1000

UI Display Needs

Operator screens 3 12 40

Picture size (pixel) 1600 × 1200 6400 × 4800 6400 × 4800

Performance Needs

Normal load

Peak load

Burst load

Burst period

Burst load

Archiving Needs

# of archive 
servers 0 1 2

# of redundant 
servers 0 4 10

. . .

TABLE 6.1 Example NFR Questionnaire

Define Questionnaires
This activity defines the questionnaire that will be sent to the stakeholders 
for their inputs. Requirements engineers will also use it during the on-
site requirements elicitation meetings to collect the stakeholder inputs. 
One major artifact used in this activity is illustrated in Table 6.1. The 
table as shown here is not complete, but it provides sufficient information 
for showing how we can structurally organize the stakeholders’ inputs. 
The data filled in Table 6.1 is for illustration purposes and may not be 
fully consistent and realistic. An example row may represent only a 
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category that defines a set of rows (bolded text indicates a category). 
Our experience indicates that such a table in practice could have well 
over 200 rows related to NFRs (e.g., reliability, availability). Thus, the 
ISO standards [ISO 2001, 2007] for quality attributes are a good source 
to start to define the questionnaires, but many more details need to be 
added for collecting the stakeholders’ inputs.

Elicit Stakeholders’ Inputs
This activity collects inputs from the stakeholders. Requirements 
engineers will organize workshops with the stakeholders from each 
of the organizations that will use the future software platform for 
their products. The goal is to complete the answers to the 
questionnaires and avoid any misunderstandings by having 
discussions during the on-site workshops. Table 6.1 does not include 
any explanations for each row, so it is most important for the 
requirements engineers to collect the stakeholders’ inputs when 
they are together on site.

Unify Terminology
This activity aims to unify the terms used in the stakeholders’ inputs. 
After this, only the unified terms will be used in the NFRs to replace 
a set of similar terms. Since a software platform may aim to support 
the users of different application situations and organizations, 
stakeholders may use varying terms in describing their business 
applications. For example, terms such as alarms, telegrams, events, 
requests, messages, change of value (COV) events, etc., may have 
similar meanings, depending on the application. Thus, we may just 
use a unified term “message” to represent all these terms for all 
applications of the product platform.

For this activity, the Language Extended Lexicon (LEL)–based 
requirement analysis approach [Cysneiros et al. 2004], [Boehm et al. 
1996] should be very useful for identifying the terms. Requirement 
engineers can effectively unify/conceptualize terms by analyzing 
their relationships (e.g., a-type-of, a-part-of, etc.). Depending on how 
complex the analysis is, users can choose to use simple modeling 
notations (e.g., Structured Table) and visual modeling notations (e.g., 
Entity-Relation).

Normalize Stakeholders’ Inputs
This activity aims to make the stakeholders’ inputs comparable with 
each other on the same scale and operating conditions. For example, for 
performance requirements, one stakeholder’s input might be  
50 alarms per 10 seconds while another stakeholder’s input might 
be 20 alarms per 1 second. Such differences are often caused by the 
different nature (e.g., how frequently an alarm would usually come and 
how quickly the system must respond to it) of their application 
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domains or the existing (legacy) products from which the performance 
requirements are derived. Sometimes, such performance needs are 
based upon competitors’ product specifications to ensure an edge over 
the competitors (e.g., so that the inputs are comparable to the competitors’ 
quality attribute requirements values). In order to make those 
stakeholders’ inputs directly comparable for an NFR for the platform, 
requirements engineers must convert them into the same scale (e.g., 
number of alarms per second). Sometimes, this normalization changes 
the stakeholder’s original intent. For example, “Processing 50 alarms 
per 10 seconds” as a performance need for certain applications reflects 
more precisely the stakeholder’s real need than an alarm processing 
rate (alarms/second). Normalizing the need to “Processing 5 alarms per 
second” would make a more specific and demanding requirement than 
the original stakeholder’s need. However, in order to reconcile the 
stakeholders’ inputs, such normalization is necessary.

Reconcile Stakeholders’ Inputs
This activity identifies and groups the similar stakeholders’ inputs, 
and then requirements engineers can define a single NFR to address 
this group of similar stakeholders’ inputs. By doing this, requirements 
engineers can also identify a range of variations on the similar 
requirements. Depending on how much they vary, some constraints 
might be added to ensure the NFRs are feasible to implement. For 
example, the performance requirements within a narrow latency 
range might be grouped together. If one stakeholder requests less 
than 2 seconds for transmitting an alarm while another stakeholder 
requests less than 4 seconds (assuming they are easily achievable 
with low-end hardware), then the requirements engineers can define 
that a low-end, small deployment of the system shall support an 
alarm latency that is less than 2 seconds. However, if another 
stakeholder requests a 0.5-second alarm latency that is far more 
demanding, a constraint might be added to ensure that such a short 
latency can be implemented and acceptable for the targeted application 
situation. For example, the constraint might be that some high-speed 
networking device should be used when achieving this short alarm 
latency. By doing this, we can address the stakeholders’ needs with 
similar NFRs by specifying different constraints.

Define the NFRs for the Platform
This activity defines the NFRs for the platform from the stakeholders’ 
inputs that address the end-user needs. The reconciled stakeholders’ 
inputs will be used for specifying the NFRs. The NFRs will use the 
specific values from the reconciliation. The worksheets used in the 
reconciliation should be put into the NFR specification, possibly as an 
appendix, referred from the main context of the NFR specification.
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Derive the NFRs for the Components
This activity allocates the NFRs to the related functional 
requirements, which are often defined in terms of services in a 
service-oriented platform. The stakeholders’ inputs usually describe 
the functions they need in their products. The software platform 
would have to provide either a program-callable service or an end 
user–level (application-level) service to support the implementation 
of such functions. This activity derives what NFRs certain services 
must satisfy. For example, a NFR might be that the service for 
subscribing a value change event must have a latency that is less 
than 0.1 seconds. Such NFRs may depend on the high-level 
architectural design to some degree. However, since the development 
of NFRs will be performed in parallel or intertwined with the 
architecture design, the NFRs can be adjusted according to the 
architectural design changes.

This activity should document the NFRs’ traces to the original 
stakeholders’ inputs so that the NFR reviewers (often a stakeholder) 
can understand from which inputs the NFRs are derived.

The NFRs resulting from the two preceding activities are grouped 
into NFR categories. For each category, the following structure is 
used to define its NFRs.

NFR Category (e.g., Performance)
We give an example of how a platform-level NFR model can identify 
lower-level NFRs.

• The platform-level NFR model

• Platform-level NFRs

• [Perf-PLATFORM-1]

• [Perf-PLATFORM-2]

• . . .

• [Perf-PLATFORM-N]

• Component-level NFRs for component 1

• The component-level NFR model

• [Perf-COMP1-1]

• [Perf-COMP1-2]

• . . .

• Component-level NFRs for component 2

• The component-level NFR model

• [Perf-COMP2-1]

• . . .
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The platform-level NFR model captures how the platform-level 
NFRs are refined into the components and their relations. The major 
relation is “support” that shows which component-level NFRs 
support which platform-level NFRs. For an example, see Figure 6.2.

The component-level NFR model shows the relations among the 
NFRs at the component level. The major relations are “reference,” 
“replace,” and “deprecated” (a self-relation). It also shows what 
platform-level NFRs they support as well. The reference relation 
indicates that one NFR is built upon another NFR. For example, one 
performance requirement might be that a rate should be two times 
faster than the rate defined by another NFR. The replace relation 
shows one NFR has been replaced by another NFR. One NFR could 
also be replaced by more than one NFR, as shown in Figure 6.3.

Check for Consistency
This activity checks the consistency between the NFRs at the platform 
level with those at the component level. The NFRs at the platform 

[Perf-PLATFORM-2][Perf-PLATFORM-1]

[Perf-COMP1-1] [Perf-COMP1-2] [Perf-COMP2-1]

FIGURE 6.2 Example platform-level NFR model

[Perf-COMP-1-3]

[Perf-PLATFORM-2][Perf-PLATFORM-1]

[Perf-COMP1-1] [Perf-COMP1-2] [Perf-COMP2-1]

Replace

Replace

FIGURE 6.3 One NFR [Perf-COMP-1-3] replaced by two NFRs, [Perf-COMP1-2] 
and [Perf-COMP2-1]



 C h a p t e r  6 :  R e q u i r e m e n t s  E n g i n e e r i n g  f o r  P l a t f o r m s  185 C h a p t e r  6 :  R e q u i r e m e n t s  E n g i n e e r i n g  f o r  P l a t f o r m s  185

level are concerned about the quality of the services that can be 
directly used by the end users to provide the product functionalities 
(e.g., those for handling alarms in a monitoring product) or the quality 
of the platform as a whole (e.g., ease of installing the platform). The 
NFRs at the component level are for those services that can only be 
used as a part of the implementation for the product functionalities. 
For example, an alarm forwarding latency requirement must be 
consistent with the performance of the low-level messaging system, 
since the latency of alarm forwarding (as a platform-level function) 
depends on the performance of the messaging system (e.g., message 
transmit latency).

Check for Testability
This activity checks if the NFRs that have been developed are 
generally testable or not. The requirements engineers would play the 
role of a tester and examine if the NFRs provide sufficient information 
that the test procedures (including the testing environment) can be 
specified to test the NFRs. This activity is integrated with feature 
release management to focus on the features that are to be released 
soon (e.g., the next major platform delivery time). That is, for the 
features to be released, the related NFRs must be clearly testable. This 
strategy avoids requiring all NFRs to be testable, since some of them 
may still be unstable and may not be implemented at all. Such an 
incremental approach can be integrated well with agile development 
methods [Schwaber 2004].

Complete the Constraints
This activity identifies the missing constraints (e.g., operating 
conditions, deployment conditions, prerequisite software systems) 
under which the NFRs should be defined. The activity “check for 
testability” will provide inputs for completing the constraints, since it 
helps identify the unspecified conditions under which the tests 
should be performed. For example, for testing the platform startup 
latency, a necessary condition is whether the operating system has 
been started or not. Without this condition specified, the platform 
startup latency cannot be tested to verify whether the latency 
requirement has been fulfilled or not.

Tune the NFRs for Feasibility
This activity aims to ensure that the NFRs are implementable; i.e., the 
NFRs can likely be satisfied with the technologies that the platform 
will be based upon. For example, this activity examines whether the 
performance requirements are achievable by analyzing the available 
results from testing the platform prototypes or finished components. 
If the analysis shows that the NFRs may not be achievable,  
the constraints might have to be added or modified to make the 
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NFRs more specific so that they will be satisfied only under certain 
conditions. For example, the deployment constraints might be 
modified to use a more powerful computing infrastructure to support 
high performance requirements. This can certainly lead to architectural 
changes or the use of other implementation technologies.

Complete NFRs
This activity completes the NFR definitions and makes them ready 
for external review by the stakeholders. This activity should include 
conducting an internal review of the NFRs by the requirement 
engineers, software architects, software testing lead, and project lead. 
In particular, this activity should check if each NFR has a trace to 
some original stakeholder’s inputs and if the traces are documented 
in the NFRs.

Formal Review by Stakeholders
This activity aims to collect feedback comments and get approvals 
from the stakeholders. The review results may either lead to 
modifications of the NFRs or generate new questionnaires for the 
stakeholders. For example, if a stakeholder’s comment is that some 
NFR might be missing, a questionnaire about this potentially missing 
NFR could be defined and sent to all the stakeholders in the next 
iteration of the NFR definition process. From our experience, we 
expect that at least three iterations that involve external reviewers are 
needed for completing an NFR document.

6.4 Experience
We have applied the PND process for developing a software platform 
that supports the running and implementation of diverse industrial 
software systems (e.g., factory control, automation, transportation). 
For this example, each of the stakeholders represented either a 
Siemens company or a division of such a company. In the following 
sections, we describe our experiences in carrying out the activities of 
the PND process.

Define Questionnaires and Elicit the Stakeholders’ Inputs
Defining the questionnaires for the NFR elicitation is very much an 
iterative activity, since multiple elicitations are often needed. At the 
beginning of NFR development, the questionnaires can be drafted 
based upon the standard quality attribute requirements as defined 
by ISO-9126 or other standards in relation to the key business drivers 
of the software platform to be developed. An example business driver 
could be increasing software reusability to reduce the software 
development cost. Based upon ISO-9126, the questionnaires could 
include questions regarding software functionality (e.g., accuracy, 
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interoperability, compliance, and security), reliability, usability, 
efficiency, maintainability, and portability. The questionnaires 
organized around those attributes should help elicit the first set of the 
stakeholders’ inputs. Analyzing the answers to those questionnaires 
often helps identify the needs that are beyond the scope covered by 
the questionnaires. In addition, some answers may be incomplete 
when providing insufficient details such as those that describe the 
related operating environments. This often needs to be corrected by 
carrying out the next round of stakeholder elicitation. During this 
elicitation, the NFR Questionnaire Table as illustrated in Table 6.1 will 
most likely be used. This table is precise and structured with built-in 
mathematical formulas to automatically calculate (derive) the 
stakeholders’ inputs.

Some quality attributes that were not covered by the standards 
will be added into the questionnaires as well. For example, the ISO 
standard does not have the safety and localizability (i.e., defines how 
easily the software can be localized) attributes. For a real-time, 
embedded system that controls physical equipment, safety is often 
very important and thus needs to be added. For a large software 
system company, its products often need to be localized to the regional 
markets all over the world. Thus, localizability-related questions 
could be added to the questionnaires.

Note that although our experience reported herein emphasizes 
using the NFR Questionnaire Table, it cannot take the place of the 
face-to-face elicitation meetings we have described in Chapter 3. 
Complete understanding of functional and nonfunctional 
requirements requires much discussion and communication between 
stakeholders and requirements engineers.

Unify Terminology
This activity is particularly important for developing NFRs for a 
software platform that is potentially applied in multiple application 
domains. For example, a software platform may support the 
applications in multiple application domains or different applications 
(e.g., image analysis for different purposes) in the same application 
domain (e.g., the medical imaging domain). Not unifying and 
differentiating those key terms in the stakeholders’ inputs will make 
many NFR-related discussions very difficult.

Our experience indicates that carrying out this activity is actually 
not very difficult if it is well supported by the stakeholders. In our 
practice, we used only two to five structured tables that modeled the 
relationships among the similar terms. The table can be used to 
indicate the relations among the terms and list the differences and 
commonalities. Some of those tables were documented into the NFR 
requirements as the term definitions. However, during the NFR 
documentation development, we must be very disciplined at using 
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the unified terms to ensure the use is appropriate. This requires that 
the NFR writer clearly understands the differences among the terms 
and decides if it is appropriate to use the unified terms rather than 
the terms that came directly from the stakeholders. Though the 
different terms used by the stakeholders were very similar, they could 
indeed be different, depending on where those terms are used in the 
NFRs. For example, for an NFR that defines the rate of transmitting 
data, a value change as data that is being transmitted is the same as 
an alarm. However, for an NFR that defines the limit on the specific 
data size, the two terms are different and the unified term (e.g., 
message) would not be used. When NFRs are bound to specific 
platform services, more service-oriented terms (e.g., alarm), and not 
the unified term (e.g., message), would be used, since this would 
make the NFR more readable and specific.

Normalizing and Reconciling Stakeholders’ Inputs
It is essential to normalize the stakeholders’ inputs before we can 
reconcile their requests. Our practice indicates that normalizing (hence, 
changing) the original stakeholder’s input is usually acceptable to the 
stakeholder as long as a clear trace to the original stakeholder’s request 
is maintained. Such traces helped answer the stakeholders’ questions 
concerning the origins of the normalized stakeholders’ inputs. Without 
such traces, there could be a great deal of confusion when the 
stakeholders review the NFRs.

In our practice, Excel spreadsheets are used to perform the 
normalization and reconciliation, since the spreadsheets help build 
the links and enable automated computations from the original 
stakeholders’ inputs to the normalized results. Furthermore, the 
spreadsheets help to identify and manage the value ranges 
represented in the stakeholders’ inputs. For example, a performance 
requirement “alarms processed per 10 seconds” from one stakeholder 
was normalized to alarms processed per second (APS). Then, the 
APS needs that were collected from all the stakeholders were listed 
in the spreadsheet. More specifically, each stakeholder provided the 
APS range for different deployment configurations (i.e., those 
defined earlier also through the normalizing and reconciling process). 
The spreadsheet automatically calculated the combined range (see 
Table 6.3: 40–120 alarms per second). In most cases, such simple, 
automated calculations can work well, for example, when the ranges 
are not too wide to provide specific enough information for design 
decision making. However, it is necessary to review the automated 
calculations results. Sometimes, in our practice, we did override the 
results to make sure that the range was not too wide. If the values of 
the combined range were acceptable (e.g., approved by the architects), 
we manually put them into the reconciled range, which was further 
turned into a NFR. Sometimes, in our practice, we checked with the 
stakeholders as to why they provided either an unusually small or 
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unusually large number, to ensure the performance need was for 
similar load and deployment configuration situations. It was possible 
that one stakeholder had some special application situations that led 
to a very wide range of data in the stakeholder input.

The examples provided in Tables 6.2, 6.3, and 6.4 are a very small 
part of what we develop in practice. Each of the stakeholders’ inputs 
on the NFRs or the reconciliation sheet had hundreds of spreadsheet 
cells that captured the stakeholders’ inputs for a variety of situations; 
e.g., loading conditions, system deployment conditions. The inputs 
from one stakeholder often were a set of collective/combined inputs 
within one Siemens business division that planned to use the platform 
to develop their products. Such semiautomated analysis was very 
useful and greatly improved our productivity for both creating and 
maintaining the NFRs.

Stakeholder A . . .
Large 
Configuration . . .

Alarm processed 
per second (APS) 50 100

. . .

TABLE 6.2 Stakeholder A’s Inputs

Stakeholder B . . .
Large 
Configuration . . .

Alarm processed 
per second (APS) 40 120

. . .

TABLE 6.3 Stakeholder B’s Inputs

All Stakeholders . . . Large Configuration . . .

APS for 
stakeholder A 50 100

APS for 
stakeholder B 40 120

. . . . . . . . .

Combined range 40 120

Reconciled range 40 120

NFR <120

TABLE 6.4 Example Reconciliation Worksheet
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Derive the NFRs for the Software Platform
The derivation is to identify and conceptualize the NFRs for the 
platform services based on the stakeholders’ inputs. For example, one 
stakeholder’s input could be, “If an unauthorized user attempts  
to access the X product, the platform should detect the attempt and cut 
off the accessing PC from the network.” Another input might be, 
“If an unauthorized user attempts to access the Y product, the 
software should detect the attempt and raise an alarm.” The platform 
requirement could be, “The software shall provide a service(s) for 
detecting the unauthorized access, and upon the detection, execute a 
predefined handling action.” Our experience indicates that this activity 
actually performs two tasks: one is to identify a required service (e.g., a 
platform security service) to support this platform-level security 
requirement; another one is to reconcile/combine the stakeholders’ 
inputs. Such activities have an impact on the software architecture and 
services the software platform should provide (e.g., functional 
requirements).

Check for Testability and Complete the Constraints
These two activities are highly related in developing software systems. 
As the products we develop often support a variety of application 
situations (e.g., loading conditions and deployment configurations), 
without sufficient description of those situations, the NFRs would not 
be testable. The testers would not know how to set up the testing 
environment to perform the NFR testing. The tester review of the NFRs 
often provides many inputs for completing the NFR constraints.

Using structured templates is a way to ensure the constraints are 
more complete. For example, we could enter certain attributes (e.g., 
loading conditions, deployment configurations, redundancy status) 
for each requirement. Our experience, however, was that this is too 
much work for defining the NFRs for all of the attribute combinations. 
Stakeholders would not likely provide all the inputs for all of the 
combinations. This is because some of those combinations are rare in 
the intended applications (e.g., small deployment configurations 
with redundancy). Thus, it was not necessary to provide NFRs for all 
combinations.

6.5 Tips for RE for Platforms
The following tips may be useful when developing and analyzing 
platform requirements.

• Use a standard set of quality attribute requirements to 
structure the first version of the NFR questionnaire.

• Unify the terminology used by different stakeholders for 
defining platform requirements.
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• Add constraints to ensure that the NFRs are feasible to 
implement.

• Describe NFRs with sufficient information so that the test 
procedures (including the testing environment) can be 
specified to test the NFRs.

• Define NFRs for only the attribute combinations that are 
likely to be deployed for the product line.

• Use structured templates to ensure that constraints are 
complete.

• After the NFRs are reasonably stable, create draft marketing 
literature for the platform (as though it is a standalone salable 
product) and use as an aid when conducting requirements 
reviews with stakeholders.

6.6 Summary
This chapter introduces an approach for

• Developing NFRs for large software systems that might be 
deployed in a variety of computing infrastructures and 
operate under a variety of application situations. We call the 
lower-level common software (e.g., operating system, 
middleware) a platform. We have described a detailed process 
(called PND) and related artifacts that can be used to help 
reconcile the stakeholders’ inputs.

• The PND process complements the existing NFR approaches 
by integrating the NFR development with other software 
engineering processes. It describes how testing and release 
management could be integrated with the PND process.

6.7 Discussion Questions
 1. What are some of the differences between a software product 

line and platforms?

 2. How can one determine which functions should be implemented 
in application software and which in the platform?

 3. When should the ISO standards be used within the PND 
process to define a list of NFRs?
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Seems like it is based on the assumption that this hypothetical 
user with no experience will somehow have access to a body of 
knowledge about the applications, users, and environment that 

they gloss over as ‘already known information’—just enter it into the 
tool, it’s that simple. Entering it into the tool is the easy part. Knowing 
what questions to ask, and where to go to get that information, is the 
hard part. OK, they probably have a template for the information 
gathering. In which case, you have a tool into which inexperienced 
people can enter information they don’t understand (and might have 
guessed at if it’s too hard to track down), in order to generate results 
they don’t understand.”—A security expert with over 20 years of 
experience.

This chapter describes two topics, hazard analysis (HA) and 
threat modeling (TM). Threat modeling is part of the broader subject 
of security analysis. Skill in these areas may occasionally be needed 
by the requirements analyst, but the topics are rarely described in 
basic RE texts. The role of the requirements analyst will most likely be 
that of integration and coordination. As hazard analysis and threat 
modeling are complex subjects, learned over time and performed by 
experts, this chapter focuses on their relationship to Model-Driven 
Requirements Engineering (MDRE) as well as on how to integrate 
their activities into traditional RE processes. For more information on 
HA or TM, we suggest you look at the references, or one of the many 
texts available on the subjects.

11.1 Hazard Analysis
Hazard analysis is performed whenever there is a potential risk to the 
health and safety of the user of a product. In many cases, the 
thoroughness and output of an analysis have to meet certain minimum 
standards that are domain and location specific. In the United States, 
for example, the Food and Drug Administration (FDA), the Federal 
Aviation Administration (FAA), and the U.S. Department of 
Transportation’s Federal Transit Administration (FTA) each have 
guidelines for performing hazard analyses.

Terms Used in Hazard Analysis
There are certain terms that are used in hazard analysis that are 
common across domains. Some of the more frequently used terms1 
are defined here:

• Hazard A condition, event, or circumstance that could lead 
to or contribute to an unplanned or undesired event.

1  FAA Order 8040.4
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• Hazard analysis Identification of a substance, activity, or 
condition as potentially posing a risk to human health or 
safety.

• Risk assessment The process of identifying hazards and 
quantifying or qualifying the degree of risk they pose for 
exposed individuals, populations, or resources (severity) and 
the likelihood that the hazard will occur (probability of 
occurrence). The term also refers to a document containing 
the explanation of how the assessment process is applied to 
individual activities or conditions.

• Safety-critical system A system that has been designated 
by a regulatory body as needing a hazard analysis before 
being put into operation.

• Severity The actual categorization of severity is usually 
domain specific. For example, the categorizations for the 
Food and Drug Administration (FDA) and the Federal Transit 
Administration (FTA) are compared in Table 11.1.

Other domains and regulatory bodies have their own definitions 
of terms. The reader is encouraged to review the appropriate 
guidelines for their specific area of concern.

Severity alone is not sufficient when analyzing a hazard, as not 
only is the severity important, but also the likelihood or probability of 
occurrence. For example, a car company manufacturing a convertible 
might determine that there is a risk that the vehicle might roll over, 
causing injury to its occupants; however, the likelihood is very low 
because of the vehicle handling characteristics and low center of 
gravity. In such a situation, after performing a risk assessment, a 
decision is made not to include a roll bar with every convertible sold.

Hazard Analysis Processes
The process of identifying hazards may be different for different 
domains. Regardless of domain, the basic steps are the same (see 

Type of Hazard FDA Classification FTA Classification

Potential for death Major Category I

Potential for serious injury Major Category II

Potential for minor injury Moderate Category III

Design flaws are unlikely to 
cause injury

Minor Category IV

TABLE 11.1 Comparison of FDA and FTA Categorizations of Risk
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Figure 11.1). When a hazard analysis is performed in the context of 
requirements elicitation and analysis processes, all the processes must 
be tightly integrated. The level of integration is often dictated by 
regulation, usually requiring traceability.

Identify
Hazard

Perform
Hazard

Analysis

Does
Hazard Require

Mitigation?

Define and
Implement
Mitigation
Strategy

More
Hazards?

Done

Begin Analysis
Process

Yes

No

Yes

No

FIGURE 11.1 Hazard analysis
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Requirements in a domain considered safety critical need to have 
special attributes so that they can be mined for metrics. These are 
some of the attributes:

• Is the requirement part of a safety-critical system?

• Has this requirement been checked to see if a hazard analysis 
needs to be performed?

• If so, is the requirement associated with a hazard analysis 
(hyperlink to hazard analysis)?

• Does the requirement need mitigation (traces to mitigating 
requirements)?

The attributes should be filled out at the appropriate level so that 
a query will provide valid metrics. The attributes are usually 
associated with the highest level requirement associated with the 
hazard. Typical metrics that might be associated with hazard analysis 
for a product or system are shown in Table 11.2.

Note that the metrics shown in Table 11.2 rely on the assignment 
of levels to requirements, and level-sensitive queries to return metrics. 
We know from the requirements pyramid that there is an explosion of 
lower-level system requirements from higher-level customer 
requirements, both functional and nonfunctional. Conducting a 
hazard analysis at the wrong level might result in either overlooking 
potential hazards or an overwhelming amount of effort needed.

The maturity of organizations’ RE processes can have an impact 
on the effort to conduct a hazard analysis. Consider two situations 

Metric How Calculated Interpretation

% of 
requirements 
checked for 
a potential 
hazard

Total requirements 
at designated level 
vs. requirements 
checked at that 
level

This metric provides an estimate 
of the amount of work necessary 
to complete the hazard analysis. It 
also provides an indication of how 
stable the system architecture is. If 
the ratio is low, any architecture may 
need to be changed significantly 
to support mitigating functional or 
nonfunctional requirements.

% of 
requirements 
that need a 
mitigation

% of requirements 
at designated 
level that have 
been identified as 
needing mitigation

The higher this number is, the 
greater the potential risk of building 
the product or system. A high 
percent of requirements needing 
mitigation may be an indication of 
an unsafe design.

TABLE 11.2 Sample Hazard Analysis Metrics
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(from our experience), where situation #1 is a positive situation and 
situation #2 is a negative situation. The two situations illustrate the 
differences between well-organized and poorly organized 
requirements necessary to conduct a hazard analysis. In situation #1, 
the requirements are well organized, let’s say in three levels: 
business requirements, customer requirements, and system 
requirements. The traces between the requirements exist and are 
correct, and the customer requirements are tied to a preliminary 
architecture. We assume a ratio of 1:10 between the customer 
requirements and the system requirements (often, the ratio is higher). 
This means, ten system requirements exist for each customer 
requirement. Let’s assume there are 500 customer requirements. This 
would mean we have 5000 system requirements. For a hazard 
analysis, we would need to analyze the 500 customer requirements. If 
we assume that the analysis of each customer requirement requires  
1 person hour, it would require 500 person hours.

In situation #2, we assume poorly organized requirements; e.g., 
requirements are not organized in levels and are listed randomly. 
Traces do not exist, and only some requirements are tied to a 
preliminary architecture. In this situation, we need to analyze all 5500 
requirements because we do not know which of the requirements 
belong to which level. Applying the previous assumptions, it might 
take 5500 person hours in this case to determine which requirements 
need to be analyzed for hazards.

Reflecting Actions into the Requirements Database
Hazard analysis activities are “reflected” in a database whenever 
mitigating action is required (see Figure 11.2). In Figure 11.3, an 
analysis has resulted in identification of risk, justifying the addition of 
new requirements. For example, a train door might close on a passenger, 

REQ 1.1

REQ 1.2
REQ 1.3
REQ 1.4
REQ 1.5

REQ 2.1
REQ 2.2

REQ 2.0

REQ 1.0

Analyze for
Possible Hazard Identify Risks

MITREQ 2.3
MITREQ 2.4

Create
Mitigating

Requirements

Create Traces

FIGURE 11.2 Mitigation “reflection” in requirements management
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resulting in injury, and to prevent that from happening, requirements 
are added to the database to ensure that sensors in the door detect 
resistance and prevent closure on the passenger. The reflection process 
is then completed by creating traces from the hazard requiring 
mitigation to the mitigating requirement.

Hazard Analysis and MDRE
Extending a modeling tool to support hazard analysis helps support 
performing visual inspections and conducting reviews. Furthermore, 
any traces in the model are intrinsic to the relationships. An example 
is shown in Figure 11.4 of an X-ray machine use case, along with 
potential hazards and mitigating requirements. Note that the symbols 
used to indicate hazards can be domain specific, e.g., radiation, toxic 
material, biohazard, high voltage, and so on. The use of domain-
specific symbols helps to move the analysis effort from the analyst’s 
domain into the subject matter expert’s or customer’s domain, 
enabling client and expert reviews (see Chapter 4).

Example Quality Assurance Script for Hazard Analysis Reviews
A quality assurance script to ensure compliance with regulatory 
requirements might read as follows:

Loop for each requirement in the database

 Does the requirement have a hazard associated with it? 
If the requirement has a hazard associated with it, is the risk 
severe enough to warrant mitigation? If the risk is severe enough 
to warrant mitigation, then does the requirement trace to 
complementary mitigating requirements? If not, then add the 
requirement that appears not to have been mitigated to a 
published list of requirements requiring further investigation.

Loop End

FIGURE 11.3 Database attributes supporting hazard analysis

Requirement Hazard Analysis
Completed

Requires Mitigating
Requirements

Mitigating
Requirement

Is a Mitigating
Requirement

Mitigates

REQ103.7
Door closes on
Engineer signal

Yes Yes
REQ101.5

REQ103.7.1
REQ103.10.3

No

REQ101.5
Door sensor to

detect obstruction
in door

Yes No Yes REQ103.7
Door
Close

Hazard
Analysis
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When extending any process model to support hazard analysis, 
some new symbols and relationships are needed. Some suggested 
extensions to the modeling tool used for analysis are described in 
Table 11.3.

Importance of Hazard Analyses
Hazard analyses are sufficiently important that they are mandated by 
regulatory agencies in various domains. Furthermore, for a product 
to be accepted by the agency, the appropriate traces must be in place 
(see the section on traceability in Chapter 7) and due diligence must 
be performed to determine that

• Processes are in place to support hazard analyses.

• It can be proven that a full coverage check for needed hazard 
analyses was done.

• The analyses have been completed.

• Where necessary (high risk = f(severity, probability of 
occurrence)), hazards have been mitigated.

Take X-Ray of
Patient

Automatic,
Based on Patient

Information

Manually
Set Time

X-Ray Machine
Hazard Analysis

Interlock to prevent
overdose to patient

Includes Includes

Impacts Impacts

Has possible
hazard Hyperlink

Has mitigation

Possible overdose

FIGURE 11.4 Example use case with hazards and mitigating requirements
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2 July 12, 2006, edition of the Christian Science Monitor.
3 August 9, 2007, edition of the Boston Globe.

Symbol or 
Relationship Description Comment

Hazard This is a placeholder 
for a hazard analysis.

When activated, would either 
hyperlink to a hazard analysis or 
open the hazard analysis if the 
model and analysis are in the 
same tool.

Mitigating 
requirement

Identifies a 
requirement is needed 
to mitigate the risk of 
a potential hazard.

The requirement could be entirely 
in the model or could be a 
placeholder for a hyperlink to the 
requirement in a requirements 
database.

Mitigates A mitigation 
relationship 
between a hazard 
and a mitigating 
requirement.

This relationship can take the 
place of manually entered and 
maintained traces.

Impacts An impact relationship 
between a mitigating 
requirement and 
another requirement.

Indicates that the mitigating 
requirement may constrain 
or otherwise impact another 
requirement.

TABLE 11.3 MDRE Extensions for Hazard Analysis

A Cautionary Tale
On July 12, 2006, the ceiling of a portion of a tunnel (the “Big Dig”) 
in Boston fell on a woman’s car, killing her.2 An investigation revealed 
that the wrong glue had been used to fasten the ceiling panels. Each 
of the organizations and staff that were involved in the construction 
of the tunnel blamed other parties. Finally, the company that supplied 
the glue was charged with involuntary manslaughter.3 As there were 
no traces from requirements through construction, it was not possible 
for project management to trace from the installation back to the 
correct type of glue needed (the correct glue needed was known and 
recorded at the start of the project). We can learn from this tragedy:

• People can be held criminally liable for failure to follow best 
practices.

• Hazard analysis coupled with effective trace mechanisms can 
potentially save lives.



 284 S o f t w a r e  &  S y s t e m s  R e q u i r e m e n t s  E n g i n e e r i n g :  I n  P r a c t i c e

11.2 Threat Modeling
Threat modeling differs from hazard analysis in where in the life cycle 
it occurs. While hazard analysis tends to occur after a significant part 
of the high-level requirements analysis effort has been completed, 
threat modeling usually occurs in parallel with initial elicitation and 
analysis. Although there are many different approaches to modeling 
threats, the use of scenarios is very common. It is, therefore, a simple 
matter to extend MDRE techniques to support threat modeling. Just 
as hazard analysis requires experienced hazard analysts, threat 
modeling is best accomplished by experienced security analysts. The 
role of the requirements engineer is to merge the threat modeling 
processes into the larger requirements elicitation and analysis effort 
so that there are no discontinuities between analysis and threat 
models; e.g., full traceability and metrics are in place. Of course, the 
easier it is for nonexperts to understand the models, the easier it will 
be to conduct reviews with stakeholders.

Basic Terminology
There are just a few basic terms the requirements engineer needs to 
know about threat modeling:

• Asset An item that needs to be protected or secured. It can 
be because of the potential for financial (e.g., bank account 
information) or personal (e.g., medical information) loss.

• Threat The type of attack (e.g., service denial) that may 
cause a potential risk of lost, destroyed, or stolen assets.

• Treatment A modification to a system that will help prevent 
or mitigate the effect of an attack.

Example Scenarios Where Threat Modeling Would Have Helped
“One case involved child-support payments in California, where one 
of the flaws in the application was updating the wrong father’s records. 
Due to this flaw, some fathers who paid child support were not getting 
the payments recorded, while some other, unrelated father was falsely 
credited with payment. There were even a few arrests made due to this 
defect.”

“Another case involved a financial application where a defect caused 
the plaintiff to have to restate prior year earnings. This caused a disruption 
of bank credit. Another interesting aspect of this case is that the defendant 
made 4 unsuccessful attempts to fix the defect. Each attempt not only left 
the defect in the software, but accidentally injected new defects as well! 
The defect was finally fixed on the 5th attempt, about 10 months after it 
had been reported. The point is that software can cause business damage 
as well as harm in a physical sense.”—Capers Jones
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Threat Modeling and MDRE
While the driving force behind hazard analysis is regulation and the 
potential for harm, the motivation for threat modeling is generally 
financial. (There are, of course, exceptions, such as the early release of 
a criminal because of corrupted data in a database where the criminal, 
after being freed, commits crimes.) An MDRE tool would need just a 
few additional symbols and relationships to support threat modeling 
(see Table 11.4).

Symbol or 
Relationship Description Comment

Threat Identified threat to 
the user or owner of a 
product or system

The description can be as 
short as one line or as lengthy 
as an entire document. For 
external descriptions, a 
hyperlink would be used.

Treatment Identifies a requirement 
or set of requirements 
that are needed to 
protect the asset(s) 
against the threat

The treatment can be as 
complex as a process (use 
case), or as simple as a single 
requirement. Treatments 
are marked with an icon and 
attribute that identifies them 
as treatments.

Attacks A relationship between  
an asset and a threat

The relationship indicates 
that the threat applies to the 
specific asset.

Asset The object that needs 
protecting

This is identified by an icon that 
indicates something of value, 
e.g., currency sign, pot of gold.

Avoid A relationship between 
a treatment and an 
unwanted incident

Through the treatment, the 
incident can be avoided.

Impacts An impact relationship 
between a treatment 
and another requirement

This indicates that the 
treatment may constrain or 
otherwise impact another 
requirement.

Unwanted 
Incident

The threat may be 
realized by an unwanted 
incident occurring

The incident is a use case or 
event.

Realized A relationship between a 
threat and an unwanted 
incident

A threat may be realized by an 
unwanted incident.

TABLE 11.4 Suggested MDRE Extensions for Threat Modeling
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Threat Modeling Metrics
Threat modeling metrics may be simple or complex, depending on 
the methodology used to perform the security analysis. Simple 
metrics are relatively easy to add to an MDRE model; for example, 
percent of use cases or features that may be associated with unwanted 
incidents. If this number is large, it might be indicative of a system 
that is inherently unsafe and needs a redesign.

11.3 Summary
In this chapter, we have shown the relationships of hazard analysis 
and threat modeling to requirements engineering processes. Hazard 
analyses take place late in the requirements analysis phase, while 
threat modeling should occur at an earlier point in the life cycle.

It is important to use an integrated approach to requirements 
engineering, hazard analysis, and threat modeling. If a seamless set 
of processes and artifacts are not in place, traces may break, or, even 
worse, not get created. When that happens, there is the potential for 
catastrophic consequences to customers, users, vendors, or owners of 
a product or system.

11.4 Discussion Questions
 1. Give some examples of systems where inadequate hazard 

analysis can lead to potential loss of life or personal injury.

 2. What types of additional tooling are necessary for threat 
modeling?

 3. What is the difference between a hazard and a threat?
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Requirements engineering (RE) is only one part of a project’s 
effort, and it can never be done in a vacuum. Life-cycle 
activities such as project management, quality assurance, 

validation, configuration management, system architecture, design, 
implementation, and maintenance are all important activities. RE is 
cross-cutting, and it helps enable each of these project areas.

The goal of this book is to discuss and share experiences from 
many requirements engineering projects (of different sizes, 
technologies, business domains, application areas) with practitioners 
in the field. All of the authors of this text have had significant 
experience in their various domains outside and within Siemens, and 
they have presented techniques they have personally used and are 
appropriate for large, real-world projects. But, also through 
collaborations with universities and “RE best practices sharing 
events,” the individual experiences were checked and benchmarked 
against both RE theory and industrial practice. Furthermore, this 
book is not just about requirements engineering. Rather, it looks at 
how RE relates to other software and systems engineering disciplines 
such as architecture, testing, and validation.

In Chapter 1, we introduced some basic terminology and 
concepts, as well as exploring some common myths of requirements 
engineering. We hope that the discussion of terminology will lead to, 
at least within the reader’s organization, a better understanding of 
the different types of requirements and a more uniform set of terms.

In Chapter 2, we provided the architectural foundation of 
requirements engineering, that is, the artifacts on which the field is 
based and how they can be represented with Requirements 
Engineering Artifact Models (REAMs). Furthermore, we also 
highlighted how taxonomies can be used to define and clarify the 
relationships between various types of requirements. In our 
experience, taxonomies and artifact models have proven to help 
support building domain-specific, useful, and scalable RE 
approaches.

Chapter 3 is all about eliciting and accurately capturing 
requirements. Some of the key takeaways are tips on how to  
gather requirements most effectively, how to define the right level 
of requirements granularity, and how to train staff members to be 
effective communicators when they are involved in the elicitation 
process.

Model-Driven Requirements Engineering (MDRE) techniques 
are explored in Chapter 4. These techniques, while challenging and 
requiring some skill on the part of the participants, offer significant 
benefits over the traditional textual approach. Model-driven 
approaches utilize graphical structures, based on syntactical and 
more or less formally defined semantic rules for model creation. It is 
possible to perform verification and validation on such models to a 
level that is not feasible with natural language text descriptions. 
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Pictures generally convey more information than text and so are 
easier for professionals to create and manage. Also, model views can 
be more easily understood by all stakeholders, and thus they facilitate 
more rapid and effective reviews.

The role of the system architect in requirements engineering is the 
management of quality attribute requirements (QARs) or 
nonfunctional requirements (NFRs) as discussed in Chapter 5. A key 
point of this chapter is that nonfunctional requirements need to be 
analyzed and managed by senior architectural staff to identify the 
architecturally significant requirements (ASRs), starting as early in a 
project as possible. Furthermore, the management of nonfunctional 
requirements needs to be fully integrated with functional 
requirements activities.

In Chapter 6, techniques for handling platform requirements 
were discussed. Since platforms can be an integral part of a large 
product line, we see that the handling of product line and single 
product requirements can differ somewhat; e.g., one can expect that 
requirements management for product lines will be a more challenging 
undertaking than for single products.

Chapter 7 dealt with requirements management and traceability. 
A tracing strategy is a necessary precondition for coverage, impact, 
and derivation analysis—the key enablers of proper change 
management. One major cause of project cost escalation is 
requirements churn, which is why effective requirements 
management is important for project success.

A benefit of a well-defined requirements hierarchy is a simplified 
test phase. Test plans must derive from requirements. A formal 
approach to defining requirements can result in generating sets of 
test cases from the requirements model. Chapter 8 describes 
techniques for deriving and generating test cases from UML activity 
diagrams, which significantly reduces the effort to produce and 
perform high-quality tests.

Innovative product development and user interface design often 
starts with fuzzy requirements. To make fuzzy requirements more 
concrete, there’s a need for a high degree of interaction with all the 
stakeholders that cannot be adequately handled with visual models 
or textual descriptions due to high volatility and complexity. In such 
cases, evolutionary prototyping can be of great value for requirements 
visualization and analysis, as described in Chapter 9.

In today’s complex product development environment, the effort 
is almost always done by a global project team that is spread across 
different sites in different countries. Distribution introduces a new set 
of challenges. Chapter 10 describes experiences with distributed 
product development and provides some best practices when eliciting 
and managing requirements in global projects.

An often overlooked aspect of requirements engineering is that 
of dealing with safety-critical and secure systems. While RE staff 
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may not have deep expertise in this area, it is important to understand 
the implications of safe and secure systems (or other systems that 
may be in regulated domains) in terms of RE processes and artifacts. 
Chapter 11 discusses the relationship of hazard and safety analyses 
to RE artifacts, and some of the necessary extensions to the 
requirements management process.

In summary, excellent requirements engineering can be a unique 
competitive advantage for organizations, because it supports 
optimizing the value chain as well as delivering what the market 
expects. We wish you only success with your future software and 
systems engineering projects.
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This appendix contains suggestions for creating and managing 
a requirements database (RDB).

A.1  Introduction
A requirements engineering database is different from a traditional 
relational database in that it is optimized for the storage and 
management of requirements. It consists of a front end component 
that is optimized for requirements and a back end server that is 
only accessible through the front end. A typical configuration is 
shown in Figure A.1. One possible configuration has the RE 
management software on the server, using a browser to access it. 
Another configuration, which is faster but requires that software be 
installed on the client, is to have a client application on the user PC 
accessing the database on a server. Most commercial databases 
support both approaches.

The unique attributes of an RE database (as contrasted with a 
traditional database) include

• Schema predefined to support the storage of requirements of 
different kinds

• Version control at the requirement (record) level, with user 
views of the history of a requirement

FIGURE A.1 RE database configuration

Back End Server

Web Browser Client PC with RE
Front End Software

RE Management
Front End

Database
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• Intrinsic support for tracing, that is, a “drag and drop” 
mechanism that is easy to use and supports creating traces 
manually between requirements

• Generation of requirements specifications and reports directly 
from the repository. The preferred method of working is to 
create and edit requirements in the database, and then to use 
the documentation facility of the database to create a filtered 
and formatted set of requirements in a requirements 
specification, usually as either a Word or PDF document.

Commercial requirements databases vary in terms of features, 
but all of them have certain core features in order to comply with 
corporate mandates (such as achieving a CMMI level) as well as 
various sets of regulations. For example, one common attribute of 
requirements databases is version control at the requirement level, so 
that changes to requirements can be audited.

Prerequisites for the Use of a Requirements Database
A requirements database is a tool to support the requirements 
management process. As such, requirements processes should be 
defined prior to the selection and installation of the RDB, keeping in 
mind issues of productivity, scalability, and usability. For example, 
not defining requirements levels when creating traces can result in a 
large, unusable report when generating a trace matrix. Some of the 
prerequisites for effective use of an RDB are described next.

Glossary of Terms
There needs to be a uniform approach to the definition of terms in 
order for specifications to be understood across organizations and 
projects. In addition, where consultants are used or implementation 
is outsourced, the ramp-up time is much lower if everyone 
understands the same term to mean the same thing. Furthermore, when 
outsourcing development, a standardized glossary can significantly 
reduce ambiguity. A glossary has other advantages in that it can enable 
the structuring of a requirements hierarchy (see the next heading). 
Multiple glossaries with a defined precedence are used where the same 
RDB is used for multiple organizations or projects. An example hierarchy 
is given in Table A.1.

If an RDB is shared across projects or organizations, it is important 
that there be no name collisions. The use of specific project or product 
logins can help to prevent that from happening by keeping project or 
product glossaries in separate name spaces.

Hierarchical Requirements Structure A hierarchical requirements 
structure is necessary for effective use of trace and query mechanisms. 
With requirements decomposition resulting in an expansion of a 
single product feature into hundreds (or thousands) of requirements, 
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a well-thought-out hierarchy is necessary to manage scale and 
support coverage and impact analysis. An example requirements 
hierarchy is shown in Table A.2.

By rigorously defining requirements levels and defining rules for 
traces, queries relying on trace mechanisms can be considerably more 
effective. For example, an impact analysis is performed to determine 
the cost of a change to a product feature. The feature traces to level 6 
system requirements, and the system requirements trace to a specific 
level of design, resulting in a reduced set of objects coming back from 
the query, i.e., only those directly impacted by the proposed feature 
change. Furthermore, restricting and enforcing traces by levels 
increases the number of metrics available for RDB analysis.

Metrics Definition Metrics must be defined in advance in order to 
configure some requirements attributes and business rules for 
evaluating metrics. Table A.3 shows typical metrics and their 
implementation in an RDB.

Requirement Type Possible Levels Can Trace Only to Level

Stakeholder request 1 2

Customer requirement 2–4 3

Product feature 3–5 6

System requirement 6–9 Design Component

TABLE A.2 Example Requirements Hierarchy

Type of 
Glossary Description Sample Term

Precedence 
(1=highest)

Corporate 
glossary 

Standardized 
terms across 
all business 
organizations

Stakeholder: A 
corporate officer, who 
may be a member of 
the board of directors.

3

Organization 
glossary 

Terms that 
are unique 
to a specific 
organization within 
a corporation

Stakeholder: An 
organization manager 
of rank department 
head or above.

2

Project or 
product 
glossary 

Definitions that 
are customer, 
domain, product, 
or project specific

The product manager, 
designated customer 
representatives, and 
project management 
staff.

1

TABLE A.1 Example Glossary Hierarchy
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Note that since other database attributes such as the assignment 
of a requirement to a release are known, completeness, correctness, 
ambiguity, etc., for a specific specification or release can be computed 
once the appropriate reviews have been conducted.

A.2  RDB Basic Features
Key features for an RE database are listed here:

• All fields/attributes should be definable on a per-company 
or per-project basis, such that the same corporate data 
dictionary is used on multiple projects for consistency,  
but each project can still have its own glossary of terms, 
keywords, etc.

• At a minimum, the following requirements attributes should 
be available:

• Priority, Stability, Status, Author, Title, Category  
Attributes should be user definable on a per-project basis.

• Keywords (note: multiple items dragged/dropped into 
one field) As the ability to do queries is of critical need, 
a keyword mechanism is mandatory.

• Requirement type (see the preceding discussion of 
levels) It should be possible to create requirements of 
different types with different attributes and business 
rules.

• Project-specific tags (graphics, GUI, etc.) It should be 
possible to create attributes that are project specific, so 
that if more than one project is stored in the same database 
there are no name space conflicts.

• It should be possible to have a parent-child relationship, and 
where there is such a relationship, it should be possible to 

TABLE A.3 Example Metrics and Implementation

Metric RDB Implementation

% Ambiguity Ambiguity pass/fail attribute

% Modifiable Modifiable pass/fail attribute

% Complete Depends on level

% Traceable Depends on level

% Feasible Feasible pass/fail attribute
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have a parent and children of different core requirement 
types, for example,

 FEAT101

    SECRQT101.5

    PERFRQT 101.3.3

 Note that some commercial databases do not allow parent-
child requirements to be of different types, which can increase 
the amount of tracing that has to be done in the database.

• The tool used shall enable end-to-end traceability, as well as 
vertical and horizontal traceability. This may require 
integration with other tools such as IDEs and/or modeling 
and testing tools.

 For example,

• Requirement to requirement

• Requirement to test case

• Requirement to PDF

• Requirement to external document (In this case, the need 
is to extract a requirement from text and to drag and drop 
it into a new requirement; then when the requirement is 
selected, the document pops up with the text highlighted. 
This is used when extracting requirements from large, 
complex documents. Note that it is important to keep 
links from getting broken when a document is updated.)

• Bidirectional tracing to and from CASE tool artifacts 
(hopefully synchronized)

• What components implement this requirement? (Impact 
Analysis)

• What requirements caused this component to be 
developed? (Development QA)

• Who is implementing this requirement?

• Automatic generation of warning indicators should a trace 
become suspect

• Protection of critical traces with locks that prevent them 
from becoming suspect

• It should be possible to generate ad hoc reports based on 
advanced searches using combinations of the attributes; e.g., 
“give me all requirements where priority=high and 
status=approved OR subsystem=graphics”.

• It should be possible to extract all detailed requirements that 
are approved and used to generate/update the test plan.

• It should be possible to create hyperlink references to Word 
documents, web sites, etc.
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• It should be possible to baseline and perform change control 
on requirements.

• Performance should be reasonably good in a fully populated 
database (that is, one with several thousand requirements).

• The database should be easy to use; i.e., intuitive with minimal 
need to refer to documentation.

• Bidirectional dumps should be possible to and from another 
format such as Access and/or Excel (csv).

• It should be possible to work offline; one should be able to 
take requirements home, review them, change them, and roll 
them back into the database later.

• It should be possible to generate requirements documents 
automatically from the database (e.g., Functional Requirements 
Specification, System Requirements Specification).

• Rich text and graphics should be supported in a requirement 
description.

• Product line support should be available (e.g., create subsets 
of requirements that can be reused for different projects and 
products).

• It should be possible to create rich traces, that is, to attach a 
rationale to a trace and to define traces hierarchically.

• Global support should be available. The ability to have 
distributed requirements analysis is more than just the ability 
to have people at different locations entering requirements. It 
implies the ability to fold in rules to determine routing, review 
procedures (e.g., workflow), and scripting for user guidance 
and quality assurance.

A.3  RDB Advanced Features
Requirements databases can be augmented with business rules to 
assist in managing problems of scale. Some example advanced 
features are described under the headings that follow.

Automatic Upward Propagation of Attributes
Product features are fully described by successively lower levels of 
requirements, tending from the abstract down to the concrete. At the 
leaf level, every requirement is testable. We can then define a business 
rule, for example, that a product feature is testable only if it has 
level 6 requirements (see Table A.2) for each of those requirements or 
all its children that have been reviewed and found testable. In other 
words, the trace mechanisms form a tree structure, starting with the 
product requirement at the root. The tree is fully traversed in a 
downward direction, and where the leaves are testable, that attribute 
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is propagated upward to the root node. Thus, the extractable metric 
would be that the feature is testable, and that is true if and only if all 
the leaves in the tree formed by its downward traces are testable (see 
Figure A.2).

Automatic Downward Propagation of Attributes
Just as some high-level attributes of a requirement can only be 
determined by traversing all of its downward traces, so too can some 
requirement attributes be calculated with an upward trace. However, 
whereas downward tracing is through a tree structure, upward 
tracing is through a directed graph. For example, certain safety-
critical features in medical products fall under FDA regulations that 
require that a hazard analysis be performed on the requirement. 
However, a product feature may have several hundred derived 
system requirements. If the analysis can be performed at the feature 
level, then, by implication, all of the derived requirements inherit the 
analysis. But it is not that simple; a low-level system requirement 
may trace back up a graph to several product features. If any one of 
those high-level features has not been marked as having a completed 
hazard analysis, then the low-level system requirement cannot be set 
to “analysis completed.” Downward propagation can then be used to 
improve productivity by reducing the workload of analysts; e.g., 
automatically marking hot spots and propagating attribute values 
where appropriate (see Figure A.3).

Customer Requirement

System Requirements

Not Testable

Testable Testable

FIGURE A.2 Upward propagation—for the Customer Requirement to be 
considered testable, all of its system requirements must be testable
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A.4  Unique Needs for a Product Line RDB
Product lines can impose additional burdens on an RDB (see 
Chapter 6). Just a few issues will be described here. As always, it is 
best to plan for the RDB implementation through process definition 
and an artifact model (see Chapter 2).

Multidimensional Support
A product line consists of several products with some shared features 
and some divergent features. This means that the relationship between 
product release, product definition, and product line definition is 
three-dimensional. In Figure A.4 you see that products in a product 
line may or may not implement a requirement. Furthermore, even if a 
product is destined to implement the requirement, it may take several 
releases before it does. In order to support a product line, then, it must 
be possible to support the generation of three-dimensional structures.

Generation of Product Maps
A product map shows, for any given product line, which product 
features will be in a specific product (Figure A.5). As many 
requirements may be associated with a product, it is important that 
when maps containing product reports are created, they be filterable 
so that the generated map is understandable; e.g., only has 
requirements at the same level shown.

FIGURE A.3 Downward propagation—if a requirement attribute value is set at 
a higher level, it is automatically applied to all derived lower level requirements.
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A.5  Summary
In this appendix, we have shown that advanced planning is extremely 
important in order to get the most out of a modern RDB. Although 
defining a process, its metrics, and the structure and content of 
generated material may not seem all that important when a project is 
initiated, careful planning is the key to effective database management 
as the project size increases. Furthermore, when selecting a database, 
needed features should be prioritized. All the current commercial 
RDBs can do a reasonable job if used effectively, but not all RDBs will 
have all needed features. Sometimes, a missing feature (such as 
attribute propagation) can be implemented using the extensibility 
features of the database. If a desired RDB feature is not available, then 
the purchaser must decide for each case just how important it is.
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FIGURE A.4 Three-dimensional nature of product line requirements and databases

FIGURE A.5 Example product map
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