

Software & Systems
Requirements Engineering:

In Practice

About the Authors
Brian Berenbach is the technical manager of the requirements
engineering competency center at Siemens Corporate Research in
Princeton, NJ. Prior to joining Siemens, he consulted for many of the
Fortune 100 companies on large projects. For several years he was
an architect at ABB Corporation and oversaw the installation of
large software-based systems in power companies. Mr. Berenbach
has graduate degrees from Emory University and the U.S. Air
Force, and he is an ACM Distinguished Engineer.

Daniel J. Paulish is a Distinguished Member of Technical Staff
at Siemens Corporate Research in Princeton, NJ, responsible for
the Siemens Software Initiative in the Americas. He is a co-author
of Software Metrics: A Practitioner’s Guide to Improved Product
Development, the author of Architecture-Centric Software Project
Management: A Practical Guide, and a co-author of Global Software
Development Handbook. He is formerly an industrial resident
affiliate at the Software Engineering Institute (SEI), and he has
done research on software measurement at Siemens Corporate
Technology in Europe. He holds a Ph.D. in Electrical Engineering
from the Polytechnic Institute of New York.

Juergen Kazmeier holds a major degree in Mathematics and a
Ph.D. in Computer Science from the Technical University of Munich.
He has worked at Siemens on software development processes,
methods, and tools, and he has been a researcher and consultant on
modeling languages and visualization methods. As a member of
the Corporate Development Audit Unit, he analyzed and supported
large product development and IT projects. Within the Intelligent
Transportation Systems Division, he headed a global development
group, as Vice President of R&D. Dr. Kazmeier has been responsible
for the Software and Engineering Research Department at Siemens
Corporate Research, where he started the Siemens Requirements
Engineering Global Technology Field. Currently, he is Vice President
of the Software Engineering Services Division of Siemens IT
Solutions and Services, headquartered in Vienna, Austria.

Arnold Rudorfer holds an M.S. in Telematics degree from the
University of Technology, Graz. Prior to joining Siemens, he worked
as a developer, process consultant, and manager for user interface
design and usability engineering at the European Software Institute
(Spain), the Institute of Production Engineering Research (Sweden),
and Meta4 (Spain), a French software multinational. At Siemens, he
was responsible for building up Corporate Technology’s first
regional business unit in the United States, the User Interface Design
Center. Since 2004, he is heading the Requirements Engineering
(RE) Global Technology Field with Centers of Competence in
Princeton (NJ, USA), Munich and Erlangen (Europe), as well as
Beijing (China).

Software & Systems
Requirements Engineering:

In Practice

Brian Berenbach
Daniel J. Paulish

Juergen Kazmeier
Arnold Rudorfer

New York Chicago San Francisco
Lisbon London Madrid Mexico City

Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under
the United States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-160548-9

MHID: 0-07-160548-7

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-160547-2,
MHID: 0-07-160547-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative please visit the
Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others,
McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licen-
sors reserve all rights in and to the work. Use of this work is subject to these terms. Except as per-
mitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior co sent. You may use the work for your own noncommercial and
personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETE-
NESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that
its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be
liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work
or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any
information accessed through the work. Under no circumstances shall McGraw-Hill and/or its
licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages
that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.mhprofessional.com

Contents at a Glance

 1 Introduction . 1

 2 Requirements Engineering Artifact Modeling . . . 19

 3 Eliciting Requirements . 39

 4 Requirements Modeling . 73

 5 Quality Attribute Requirements 125

 6 Requirements Engineering for Platforms 175

 7 Requirements Management 193

 8 Requirements-Driven System Testing 219

 9 Rapid Development Techniques
 for Requirements Evolution 233

 10 Distributed Requirements Engineering 257

 11 Hazard Analysis and Threat Modeling 275

 12 Conclusion . 287

 A Configuring and Managing
 a Requirements Database 291

 Index . 301

v

This page intentionally left blank

Contents
Industrial Foreword . xvii
Academic Foreword . xix
Preface . xxi
Acknowledgments . xxv

 1 Introduction . 1
Why Has Requirements Engineering

Become So Important? . 2
Misconceptions about Requirements

Engineering . 3
Misconception 1: Any Subject Matter Expert

Can Become a Requirements Engineer
after a Week or Two of Training 4

Misconception 2: Nonfunctional and
Functional Requirements Can Be Elicited
Using Separate Teams and Processes 4

Misconception 3: Processes That Work
for a Small Number of Requirements
Will Scale . 4

Industrial Challenges in Requirements
Engineering . 4

Key Success Factors in Requirements
Engineering . 5

The Project Has a Full-Time, Qualified Chief
Architect . 5

A Qualified Full-Time Architect Manages
Nonfunctional Requirements 5

An Effective Requirements Management
Process Is in Place . 6

Requirements Elicitation Starts with
Marketing and Sales 6

Requirements Reviews Are Conducted
for All New or Changed Requirements
or Features . 6

Requirements Engineers Are Trained
and Experienced . 6

Requirements Processes Are Proven
and Scalable . 6

vii

 viii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Subject Matter Experts Are Available
as Needed . 6

All Stakeholders Are Identified 7
The Customer Is Properly Managed 7
Progress and Quality Indicators

Are Defined . 7
The RE Tools Increase Productivity

and Quality . 7
The Core Project Team Is Full Time and Reports

into a Single Chain of Command 7
Definition of Requirements Engineering 8
Requirements Engineering’s Relationship

to Traditional Business Processes 8
Characteristics of a Good Requirement 9

Feasible . 9
Valid . 10
Unambiguous . 10
Verifiable . 11
Modifiable . 11
Consistent . 11
Complete . 12
Traceable . 13
Other Project- or Product-Specific

Characteristics . 13
Characteristics of a Good Requirements

Specification . 14
Requirements and Project Failure 15
Quality and Metrics in Requirements

Engineering . 15
Function Point Metrics

as Leading Indicators 16
How to Read This Book . 16
Summary . 16
Discussion Questions . 17
References . 17

 2 Requirements Engineering Artifact Modeling . . . 19
Introduction . 20
RE Taxonomy . 21

Taxonomy Attributes . 24
Creation of an RE Taxonomy 24
Other Types of Taxonomies Useful in RE . . . 25
Taxonomy Extension . 26

RE Artifact Model . 27
Elements of an Artifact Model 27

 C o n t e n t s ix

Creation of a Requirements Engineering
Artifact Model . 28

Using the Artifact Model . 30
Extending an Artifact Model to Augment

Process Definition . 30
Using Templates for Requirement Artifacts 30
Dynamic Tailoring of an Artifact Model 34
Organizational Artifact Model Tailoring 34
Creating a System Life Cycle Process 35
Tips for Requirements Engineering

Artifact Modeling . 36
Summary . 37
Discussion Questions . 37
References . 37

 3 Eliciting Requirements . 39
Introduction . 40
Issues and Problems in Requirements

Elicitation . 41
The Missing Ignoramus 41
The Wrong Stakeholders 42
Untrained Analysts . 42
Not Identifying Requirements Level 42
Failure to Accurately Identify

Stakeholders . 43
Problems Separating Context from

Requirement . 44
Failure to Collect Enough Information 44
Requirements Are Too Volatile 45
System Boundaries Are Not Identified 45
Understanding of Product Needs

Is Incomplete . 46
Users Misunderstand What Computers

Can Do . 47
The Requirements Engineer Has Deep

Domain Knowledge 47
Stakeholders Speak Different Natural

and Technical Languages 47
Stakeholders Omit Important,

Well-Understood, Tacit Information 48
Stakeholders Have Conflicting Views 48

Requirements Elicitation Methods 48
Eliciting Business Goals 49
Ethnographic Techniques 52
Prioritization and Ranking

of Requirements . 53

 x S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Quality Function Deployment
(QFD) Method . 55

Brainstorming Sessions 55
Tabular Elicitation Techniques 56
Process Modeling Techniques 58

Customer-Specific Business Rules 62
Why Are Customer-Specific Business Rules

Important? . 62
What Are Their Characteristics? 62
Example Customer-Specific

Business Rules . 63
Managing the Customer Relationship 64
Managing Requirements Elicitation 64

Planning Elicitation Sessions 64
Requirements and Cost Estimation 67
Requirements Elicitation for Incremental Product

Development . 67
Tips for Gathering Requirements 68
Summary . 69
Discussion Questions . 70
References . 70

 4 Requirements Modeling . 73
Introduction . 74
Model-Driven Requirements Engineering (MDRE) 79
Advantages of an MDRE Approach 84

Using MDRE to Estimate Project Size
and Cost . 85

Improved Management of Cross-Cutting
Requirements . 85

Navigation of Complex System
Requirement Sets . 86

Rapid Review of Business Processes
and Requirements Relationships 86

Metrics for Quality and Progress 86
Semiautomatic Generation of Project Plans

and Requirements Database Content 86
Prerequisites for Using MDRE 87

Modeling Skills Not Readily Available 87
Inadequate Tooling . 87
Organization Not Ready for MDRE 87

MDRE Processes . 88
Initial Understanding . 88
Understanding the Context and How

the Product Will Be Used 90

 C o n t e n t s xi

Analyzing Product Features and Creating
a Use Case Model . 92

Extracting Requirements from the Model . . . 94
Starting an MDRE Effort 96
Managing Elicitation and Analysis Sessions 96
Improved Productivity Through Distributed

Modeling . 98
Conducting Model Reviews 98

Elicitation and Analysis Model Heuristics 99
The Model Should Have a Single

Entry Point . 99
All Actors Associated with the System Being

Analyzed Should Appear on the Context
Diagram . 99

The Early Modeling Effort Should Cover
the Entire Breadth of the Domain 100

Identify “Out-of-Scope” Use Cases
as Early as Possible 100

Every Diagram Should Have an Associated
Description and Status 100

Avoid the Early Use of Packages 101
Do Not Substitute Packages for Abstract

Use Cases . 101
Every Artifact in a Model Should

Be Visible on a Diagram 101
Every Symbol Should Have a Bidirectional

Hyperlink to the Diagrams
That Define It . 102

Package Dependencies Should Be Based
on Content . 102

Every Concrete Use Case Must
Be Defined . 102

Use an Activity Diagram to Show All Possible
Scenarios Associated with a Use Case . . . 105

Use Sequence Rather Than Collaboration
Diagrams to Define One Thread/Path
for a Process . 105

Abstract Use Cases Must Be Realized
with Included or Inherited Concrete
Use Cases . 107

Extending Use Case Relationships Can
Only Exist Between Like Use Cases 108

A Concrete Use Case Cannot Include
an Abstract Use Case 108

Avoid Realization Relationships and Artifacts
in the Analysis Model 108

 xii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Business Object Modeling 108
Coherent Low-Level Processes Should

Be Defined with State or Activity
Diagrams . 112

Elicit Requirements and Processes by Starting
at Boundaries and Modeling Inward 112

Hide Complexity by Using Compound
Business Objects . 112

Initiate Prototyping Efforts Quickly 112
Determining Model Completeness 113

Diagram Quality . 113
Content Correctness . 113
Model Faults That Should Be Corrected

Before a Model Is Completed 113
Transitioning from Analysis to Design 115
Suggested Model Conversion Heuristics 115

Design Model Package Structure 115
Use Case Tracing . 115
Interface Tracing . 115
Artifact Tracing . 115

Design Model Structure . 117
Tracing Requirements Through

the Design Model . 117
Intermodel Quality Assurance Checks 117
Design Model Initial Construction 118

Use of Tooling for MDRE . 120
Tips for Modeling Requirements 120
Summary . 121
Discussion Questions . 122
References . 122

 5 Quality Attribute Requirements 125
Why Architectural Requirements Are Different . . . 126

Terminology . 127
An Integrated Model . 130

Quality Attribute Scenarios 131
Quality Attribute Requirements 131
Factors, Issues, and Strategies 132
Product Architecture . 132

Quality Attribute Requirements 132
Selecting Significant Stakeholders 140

Identifying Potential Stakeholders 141
Methods for Architectural Requirements

Engineering . 142
Quality Attribute Workshop 143

 C o n t e n t s xiii

Goal Modeling . 145
Global Analysis . 146

Testing ASRs . 154
Case Study: Building Automation System 156

Features That Define the Product 157
Forces That Shape the Architecture 159
Constraints on the Architecture 160
Architectural Drivers . 161
Architecture Design . 162
Modeling the Domain 164
Performance Modeling 164

Practice and Experience . 168
Impact of Business Goals 168
The Notion of Quality 169
Integration of Functional Requirements,

Quality Attributes, and Architecture 170
Tips for Quality Attribute Requirements 171
Summary . 172
Discussion Questions . 172
References . 172

 6 Requirements Engineering for Platforms 175
Background . 176
Challenges . 177
Practices . 178

Define Questionnaires 180
Elicit the Stakeholders’ Inputs 181
Unify Terminology . 181
Normalize Stakeholders’ Inputs 181
Reconcile Stakeholders’ Inputs 182
Define the NFRs for the Platform 182
Derive the NFRs for the Components 183
Check for Consistency 184
Check for Testability . 185
Complete the Constraints 185
Tune the NFRs for Feasibility 185
Complete NFRs . 186
Formal Review by Stakeholders 186

Experience . 186
Define the Questionnaires and Elicit

the Stakeholders’ Inputs 186
Unify Terminology . 187
Normalizing and Reconciling

Stakeholders’ Inputs 188
Derive the NFRs for the Software Platform . . . 190

 xiv S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Check for Testability and Complete
the Constraints . 190

Tips for RE for Platforms . 190
Summary . 191
Discussion Questions . 191
References . 191

 7 Requirements Management 193
Background . 194
Change Management . 195

Impact Analysis . 197
Derivation Analysis . 198
Coverage Analysis . 198

Routine Requirements Management Activities 198
Identifying Volatile Requirements 198
Establishing Policies for Requirements

Processes and Supporting Them with
Workflow Tools, Guidelines, Templates,
and Examples . 199

Prioritizing Requirements 199
Establishing and Updating the Requirements

Baseline . 199
Documenting Decisions 199
Planning Releases and Allocating

Requirements to Releases 199
Traceability . 200

Goal-Based Traceability 202
Types of Traces . 202
Example Engineering Project-Based

Traceability Model . 202
Measurement and Metrics . 204

Project Metrics . 205
Quality Metrics . 205

Scalability . 207
Creation of a Requirements

Management Process . 207
Measuring Savings with RE Processes 209
Organizational Issues Impacting

Requirements Management 210
Creating a Requirements Database 210
Managing Requirements for

Product Lines . 213
Tips for Requirements Management 215

Best Practices . 215
Summary . 217

 C o n t e n t s xv

Discussion Questions . 218
References . 218

 8 Requirements-Driven System Testing 219
Background . 220
Requirements Engineering Inputs for Testing 222
Model-Based Testing . 222
Testing Performance and Scalability

Requirements . 227
Rules of Thumb/Best Practices 228

Reviewing Models . 229
Improved Test Coverage 229
Tracing to Requirements 229
Start Early in the Development Life Cycle . . . 229
Improved Efficiency . 230

Summary . 231
Discussion Questions . 231
References . 231

 9 Rapid Development Techniques
 for Requirements Evolution 233

Background . 234
When to Prototype . 236

Early Requirement Elicitation 236
Conflicting or Nonprioritized

Requirements . 237
Bridge the Skills of Stakeholders

and Developers . 238
Capture Detailed Requirements 238
Time-to-Market . 239

Practices and Experience . 240
Requirements Engineering and

Prototype Development in Parallel 240
Identify and Eliminate Stakeholder

Conflicts . 243
Rapid Iteration of Requirements/Stakeholder

Feedback . 244
Storyboarding . 246
Executable Prototypes 248
Transparency . 250
Testing . 250
Modification Optimization 251

Tips for Prototyping . 252
Summary . 254
Discussion Questions . 254
References . 254

 xvi S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

 10 Distributed Requirements Engineering 257
Background . 258
Requirements Engineering for Global Projects 260
Organizations for Distributed Projects 261
Managing Distributed RE Efforts 266
Requirements and Collaboration Tools 267
Communications, Culture, and Team Size 269
RE with OEMs and Suppliers 270
Tips for Distributed Requirements Engineering . . . 271
Summary . 272
Discussion Questions . 272
References . 273

 11 Hazard Analysis and Threat Modeling 275
Hazard Analysis . 276

Terms Used in Hazard Analysis 276
Hazard Analysis Processes 277
Reflecting Actions into the

Requirements Database 280
Hazard Analysis and MDRE 281
Importance of Hazard Analyses 282

Threat Modeling . 284
Basic Terminology . 284
Threat Modeling and MDRE 285
Threat Modeling Metrics 286

Summary . 286
Discussion Questions . 286
References . 286

 12 Conclusion . 287

 A Configuring and Managing
 a Requirements Database 291

Introduction . 292
Prerequisites for the Use of

a Requirements Database 293
RDB Basic Features . 295
RDB Advanced Features . 297

Automatic Upward Propagation
of Attributes . 297

Automatic Downward Propagation
of Attributes . 298

Unique Needs for a Product Line RDB 299
Multidimensional Support 299
Generation of Product Maps 299

Summary . 300

 Index . 301

Industrial Foreword

The last decade has seen a great deal of attention paid to
requirements engineering by researchers, teachers, consultants,
managers, and practitioners. Increasingly, people within

information technology, commercial product development, services
industries, nonprofits, government, and beyond regard good
requirements as a key to project and product success. Requirements
methods and practices are common subject matter for conferences,
books, and classes. The business case for requirements is clear. It is in
a sense a golden age for requirements.

So why then another book on the topic?
There is evidence from many sources to suggest that requirements

engineering is not gaining much ground on the underlying problems
of excessive rework, persistent scope creep, and finished products
that fail to meet user expectations. So, despite the large investment
made and the hard work done to this point, challenges still exist with
regard to ever-increasing product complexity, time-to-market
pressures, market segmentation, and globally diverse users.

It is here that books from practitioners, such as Software & Systems
Requirements Engineering: In Practice, make a valuable contribution.
Unlike most consultants and researchers, practitioners are deeply
involved with individual projects. Moreover, they are present
throughout the project and into the next one. In books from
practitioners, we can see a set of requirements practices and the
underlying setting; a detailed description of the philosophy and
environment in which those practices work.

So, rather than being a compendium of possible practices, or a
generic reference book, Software & Systems Requirements Engineering:
In Practice provides readers a particular view into the world of product
development and applied requirements engineering. Such windows
provide a coherent and useful picture of requirements engineering.

For most practitioners, locating potential solutions to
requirements engineering challenges is only part of the battle. When
a method or practice is being considered for use, the question
becomes “Will this work for me?” Understanding the experiences of

xvii

 xviii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

other practitioners can be an incredibly valuable shortcut to the
answer, and books like Software & Systems Requirements Engineering:
In Practice are a great place to find that information.

Erik Simmons
Requirements Engineering Practice Lead

Corporate Platform Office
Intel Corporation

Academic Foreword

Requirements engineering has proven to be one of the most
difficult and critical activities for the successful development
of software and software-intensive systems. The reasons for

that are obvious. If requirements are invalid, then even the most
careful implementation of a system will not result in a product that is
useful. Moreover, if requirements are included in the requirements
specifications that are not actually valid, then the product or system
becomes unnecessarily expensive. This shows that requirements
engineering is important.

In fact, requirements engineering is also difficult. There are many
reasons for this. One is that often software-intensive systems are
innovative in providing new functionality. Then, learning curves
have to be considered. It is often impossible to understand, in advance,
what the requirements actually are. The people involved have quite
different perspectives on their valid requirements. Therefore, it is
difficult to arrive at an agreement. At the same time, important
requirements might be overlooked and only discovered when gaining
first experiences with the produced systems. Moreover, for large,
long-term projects requirements may change due to changes in the
environment, the market, or user needs.

Finally, requirements engineering is often underestimated or even
neglected by project management. The core of requirements
engineering is devoted to understand and work on the problem
statement and not so much the solution. However, management may
think that only when a team of developers starts to work on the
solution will the project begin to show real progress. Therefore, both
for management and even for experienced developers, there is always
a tendency to rush too early into the solution domain. As a result,
solutions are produced that miss requirements or do not explore the
full range of possible solutions.

However, even having accepted that requirements engineering is
difficult, error-prone, costly, but nevertheless important, a lot more
has to be understood to be able to do professional requirements
engineering. For most projects, the overall development process can
be easily standardized after the requirements have been captured.

xix

 xx S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

What is most difficult is to standardize the process of requirements
engineering, since requirements engineering is at the very beginning
of a project when so much is unclear. Therefore, in industrial software
development, it is important to come up with a requirements
engineering approach that is on the one hand flexible but on the other
hand gives enough methodological guidance.

In scientific research, exploring requirements engineering has
been an active field for many years. However, at least in the beginning,
requirements engineering was sometimes misunderstood as a
discipline, which only has to document and specify requirements but
neglects the necessary decision making. This ignores the difficulty of
coming up with a requirements specification that takes into account
all issues from functionality to quality and cost. There are even
process development issues to consider, such as certification
requirements or product constraints dealing with given operating
systems or software reuse.

As a result of all these considerations, the software engineering
group of Siemens Corporate Research in Princeton, New Jersey,
decided a few years ago to concentrate their research on a broad
spectrum of requirements engineering themes. I had the privilege to
work extensively with this group of engineers and researchers, who
gained a lot of experience in requirements engineering on coaching,
teaching, and consulting methods in ongoing Siemens projects. Some
of the projects are very large scale. It is helpful that the software
engineering group in Princeton is not just focused on the core topics of
requirements engineering but also covers closely related aspects such
as architectural design, quality assurance, testing, model-based
software development, and prototyping. Doing so, the group is looking
at a systematic foundation to requirements engineering by creating a
requirements engineering reference model, which helps to list all the
necessary content in the requirements engineering process while at the
same time providing flexibility by tailoring and by a choice of methods.

It is a pleasure to see the results of the requirements engineering
research and practice at Siemens Corporate Research documented in
this book. It describes a lot of precious experiences, principles, and
the state of the practice in industry. As such, it is quite unique and
complements existing academic books on requirements engineering,
which look more at the basic terminology and approaches.

I hope that this book will help in many respects development teams
around the world to improve their industrial requirements engineering.
It is a pleasure for me to thank the authors and the members of Siemens
Corporate Research for a scientifically fruitful cooperation over the last
six years and to congratulate them on this book, which is a milestone in
the field of industrial requirements engineering.

Manfred Broy
Professor of Software and Systems Engineering

Technical University of Munich

Preface

Today’s software and systems engineers are facing an increasing
number of challenges as they attempt to develop new products
and systems faster, with higher quality and rich feature content.

Part of these challenges are created by advances in computing
technology, as processors and memory become faster and less
expensive. Along with increased processing capability, there is an
expectation that today’s systems will do more. As more features are
being defined for a product or system, the discipline of requirements
engineering has increased in importance to help manage the
development of the features throughout the product life cycle.

This book was written to help provide an understanding of the
challenges in requirements engineering (RE) that are facing industrial
practitioners and to present some best practices for coping with those
challenges. Many texts on RE generally do a good job covering the
basics of RE, but they may not adequately discuss the real-world
problems that can make requirements elicitation, analysis, and
management difficult. For example, Siemens products are typically
defined with at least several thousand recorded requirements.
Complex Department of Defense projects are sometimes reported as
having 100,000 requirements or more in their project database.
Managing projects of this size is very difficult, and managing the
requirements on such a project can be quite daunting. The trend is
toward defining more requirements, but developers often struggle
with managing them, especially as requirements are added or
changed during the development life cycle. Unfortunately, problems
of scale often do not always appear on a project until it is too late to
easily change process, tooling, or infrastructure. It is hoped that some
of the techniques described in this book will be of use to industrial
practitioners for helping to make project managers aware of potential
problems before they happen, and providing techniques and guidance
for successfully navigating the many pitfalls associated with large,
complex projects.

xxixxi

 xxii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Background
The Software and Systems Engineering Department of Siemens
Corporate Research is involved with many software development
projects with Siemens organizations working across a broad spectrum
of application domains in the business sectors of industrial, health
care, and energy. In our dual role of an industrial research and
development laboratory, we have many opportunities for observing
how requirements engineers do their work. Over time we can classify
certain requirements engineering practices as “best practices,” and
we also learn from the not-so-best practices that were not as effective
in achieving project goals.

This book was written to summarize our requirements engineering
experiences, and to describe them in a form that would be useful
to software and systems engineering practitioners; i.e., methods,
processes, and rules of thumb that can be applied to new development
projects. We are not so naïve as to believe that engineers who follow
what is described in this book will work only on successful projects.
We know too well that a practice that worked well in Princeton may
not work so well in Poland, and much like our children, engineers
sometimes learn best from their own mistakes. But, if software and
systems engineers can learn from our experiences and increase the
probability of a successful project outcome, our efforts will be
worthwhile.

Requirements engineering is most critically applied in the early
phases of a systems development project, but it is a decision-making
process that is applied across the entire product development life
cycle. Thus, the requirements engineer must work effectively with
software and systems engineers working on other tasks such as
architecture design and test procedures. Indeed, our research in
requirements engineering was initiated based on the observation that
the first task for an architect on a new project is to understand the
product requirements.

We have worked on projects for a broad range of application
domains; e.g., medical equipment, factory automation, transportation,
communications, automotive. The number of requirements that must
be defined, analyzed, and managed in the projects may range from a
few thousand to one hundred thousand. Many of our projects are
distributed over multiple development sites, involving engineers
living in many different countries. These software and systems
engineers are often working under great pressure to deliver the
product quickly, with good quality and a rich feature set. Most of the
products contain both hardware and embedded software; thus, there
are dependencies on electrical and mechanical characteristics,
reliability, usability engineering, and requirements that must be
considered by many different stakeholders. We often work within
regulated domains such as medical devices where requirements must

be carefully documented, traced, reviewed, and tested. We have also
had to develop expertise on subjects that are not commonly taught at
universities, such as hazard analysis.

Requirements engineering has become more complicated over
time as the complexity of the products we desire to develop has
increased. Thus, the requirements engineer is continually challenged
by issues of scale, unstable requirements, product complexity, and
managing change. Our experience has resulted from the opportunities
to work on, for example, a project that is defining the requirements
for an automobile infotainment system and then a few months later a
project that is defining the requirements for a medical imaging
system.

How to Use This Book
Our experience is with requirements engineering for products,
systems, and services; typically (but not always) with high software
content. This book contains RE methods, processes, and rules of
thumb that have been derived from observed best practices of RE
across many such projects. Thus, this book is meant for software and
systems engineering professionals who are interested in learning new
or validating their current techniques for RE. Such professionals
include practicing requirements engineers, who should benefit most
from the best practices discussed. But, the book material may also be
useful to other engineering professionals, such as system architects,
testers, developers, and engineering managers. The book may be
useful to “not quite yet” practitioners such as graduate students in
software engineering, systems engineering, or computer science. We
would also hope that product or marketing managers would receive
valuable information from this book as they struggle with bringing
new products to a competitive market.

In order to focus on best practices and techniques for the
practitioner, there is very little introductory material presented, but
pointers are given to reference books that cover basic software
engineering concepts. Thus, users of this book typically would have
at least an undergraduate degree in computer science, systems or
software engineering and some experience developing systems.

 P r e f a c e xxiii

This page intentionally left blank

Acknowledgments

Since requirements engineers work across the entire development
life cycle, they must interface with engineers working on
specialized project tasks. We’re fortunate to have had the

experience of working with many talented software and systems
architects, testing experts, project managers, and requirements
engineers. Some of these experts have also collaborated with us on
this book project as contributing authors. We acknowledge the
contributions of these authors here as well as in the chapters they
have written: Sascha Konrad, Raghu Sangwan, Hans Ros, Xiping
Song, Bea Hwong, Marlon Vieira, Bill Hasling, Gilberto Matos, Bob
Schwanke, and Brad Wehrwein.

Like software system development, writing a book can be done
using a very iterative process. Once the author puts the first words to
paper, there is an iterative (seemingly endless) process of review and
rewrite, until we either become comfortable with the work or run out
of time. We’d like to acknowledge the contributions of our review
team: Capers Jones, Manfred Broy, John Worl, John Nallon, Stephan
Storck, and Mark Sampson.

We’d like to acknowledge the contributions of our cartoonist,
Johnol Jones, who helped to insert some humor into a usually serious
subject, and our intern, Lindsay Ivins, who developed the figures and
helped keep us organized when the page counts started to grow.

Finally, we’d like to acknowledge the support of our editor,
Wendy Rinaldi, and the staff at McGraw-Hill and International
Typesetting and Composition. Sometimes, just knowing that someone
has confidence in us to complete the project is enough motivation to
keep us working toward a successful completion.

Brian Berenbach
Daniel J. Paulish

Juergen Kazmeier
Arnold Rudorfer

Princeton, NJ 08540 USA

xxv

This page intentionally left blank

CHAPTER 1
Introduction

by Brian Berenbach, Arnold Rudorfer

1

 2 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Studies such as the CHAOS report [Johnson 2000] indicate that
about half of the factors associated with project or product
success are requirements related. Recently, researchers have

reported on studies showing that project success is directly tied to
requirements quality [Kamata et al. 2007]. With such overwhelming
evidence that requirements engineering is a cornerstone of software
systems engineering, one could ask, why is it still a relatively neglected
topic in university training? It is quite rare, for example, that a new
Computer Science (CS) university graduate might be asked to
participate in the development of a compiler or operating system, yet
nearly every graduate working in the industry will, sooner or later,
be asked to participate in creating the requirements specifications for
a product or service.

1.1 Why Has Requirements Engineering
Become So Important?

For years, many products were successfully created without the
participation of professionals who specialized in requirements
creation or management. So, why is requirements engineering (RE)
so important today? The answer lies in the changing nature of
industry and society in general. First, the pace of product development
has picked up drastically. Whereas just a few decades ago, product
improvements would be a slow process, today customers often
demand new versions of a product in less than one year. For example,
Siemens estimates that approximately 20 years ago, 55 percent
of sales were from products that were less than 5 years old. Today,
75 percent of sales are from products that were developed less than
5 years ago (Figure 1.1). Second, turnover and technology change
have impacted the experience levels of professionals engaged in the
development of products. Just a few short years ago, engineers might
expect to spend their entire careers with a single company, whereas
today job change is more common. Finally, outsourcing and offshoring
have dramatically changed the product life cycle. Specifications must
now be created for implementation or manufacturing by organizations
with potentially limited or no domain expertise. Imagine, for example,
having to create a product specification for a washing machine,
dishwasher, or luxury automobile to be built by staff who may have
never even seen one! Under such circumstances specifications must
be exact and detailed.

Software development is highly coupled to the domain; e.g., cell
phone software and avionics software tend to be designed, built,
and managed with processes that are heavily domain specific.
Furthermore, industries have begun to use software as product
differentiators. Product innovations can be more easily implemented
in software than hardware because of the lower engineering

 C h a p t e r 1 : I n t r o d u c t i o n 3 C h a p t e r 1 : I n t r o d u c t i o n 3

investment and modification costs. This results in domain-specific,
complex software for which high-quality requirements specifications
are essential.

Requirements engineering is extremely important when a product,
service, or industry is regulated. For example, the U.S. government’s
Food and Drug Administration (FDA) and Federal Aviation
Administration (FAA) both mandate specific activities and work
products (e.g., hazard analysis) where there is the potential for injury
or death. Sarbanes-Oxley regulations mandate traceability for certain
types of financial software used by companies doing business in the
United States. The European Union and Japan have regulations for
their respective businesses. Good requirements engineering practices
are essential for companies that must comply with government
regulations.

1.2 Misconceptions about Requirements Engineering
Misconceptions about requirements engineering can strongly
influence a company’s processes. Many companies and organizations
have a solid understanding of requirements processes, but some do
not. Some of the more common misconceptions are listed under the
headings that follow.

FIGURE 1.1 Acceleration of new product creation

1980 1985 2005

0

10

20

30

40

50

60

70

80

1 2 3

Sh
ar

e
of

 s
al

es
 w

it
h

pr
od

uc
ts

 ..
.

Less than 5 years 5 to 10 years More than 10 years

 4 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Misconception 1: Any Subject Matter Expert Can Become
a Requirements Engineer after a Week or Two of Training
Requirements engineers need strong communication and knowledge
of engineering skills, the ability to organize and manage a data set of
requirements, high-quality written and visual presentation skills,
and the ability to extract and model business processes using both
text and graphical (e.g., Integration DEFinition [IDEF], Unified
Modeling Language [UML]) techniques. First and foremost, to elicit
requirements from stakeholders requires the ability to interact with
a variety of roles and skill levels, from subject matter experts (detailed
product requirements) to corporate officers (elicitation of business
goals).

Moreover, people have to be trained to write good specifications.
High school and university training tends to teach a style of writing
that is antithetical to the techniques needed to create unambiguous
and complete documents. Requirements analysts typically need
significant training, both classroom and on the job, before they can
create high-quality specifications.

Misconception 2: Nonfunctional and Functional Requirements
Can Be Elicited Using Separate Teams and Processes
The subject domains for nonfunctional and functional requirements
are related, may impact each other, and may result in iterative changes
as work progresses (see Chapter 5). Team isolation may do more
harm than good.

Misconception 3: Processes That Work for a Small Number
of Requirements Will Scale
Requirements engineering processes do not scale well unless crafted
carefully. For example, a trace matrix is an N × N matrix, where N is
the number of requirements of interest. In each cell, a mark or arrow
indicates that there is a trace from requirement Ri (row i) to requirement
Rj (column j). It is relatively easy to inspect, say, a 50-requirement
matrix, but what happens when five to ten thousand requirements
are needed to define a product? Filtering and prioritization become
important in order to retrieve results that can be better understood,
but the requirement annotations necessary to provide such filtering
are often neglected up front because the database is initially small.

1.3 Industrial Challenges in Requirements Engineering
Over the last few years, the requirements engineering R&D focus
program at Siemens Corporate Research has been involved with a
substantial number of requirements engineering (RE) projects with
Siemens development organizations. Many RE challenges have been
identified as potentially impacting project performance. We have

 C h a p t e r 1 : I n t r o d u c t i o n 5 C h a p t e r 1 : I n t r o d u c t i o n 5

observed that problems tend to be exacerbated by three critical
factors, the first being a decision to outsource the implementation, the
second being a significant change in technology, and the third being
the introduction of new products (e.g., entering a market where the
company has minimal prior experience).

When a decision is made to outsource, changes must take place in
all processes, especially in the area of requirements engineering. The
implementation may be done by staff with minimal domain
knowledge and, because of customs, logistics, time, or distance, with
limited access to subject matter experts. Attempts to use the same
processes and techniques used for in-house development for the
development of specifications for subcontracting or outsourcing may
lead to significant delays in delivery, sometimes even resulting in
project cancellation.

When technology changes rapidly, domain experts may no longer
be “experts.” Techniques and solutions that worked for many years
may become obsolete or irrelevant. Such technological discontinuities
may require substantial new training, or the experts in the older
technologies may make poor decisions for new product designs. A set
of key success factors for identifying potential requirements
engineering problems early has been developed at SCR and is
described in the next section.

1.4 Key Success Factors in Requirements Engineering
This section contains a checklist describing key factors for success in
requirements engineering. Most of the factors can be evaluated prior
to project initiation. Although project success cannot be guaranteed,
it is likely that if several of the success factors are not in place there
may be significant project difficulties.

The Project Has a Full-Time, Qualified Chief Architect
On many large projects the only senior technical role that spans the
requirements process through delivery is that of the chief architect.
He provides technical continuity and vision, and is responsible for
the management of the nonfunctional requirements (e.g., scalability,
quality, performance, environmental, etc.) and for the implementation
of the functional requirements. In our experience having an
experienced, full-time architect on a project contributes significantly
to its success [Hofmeister et al. 1999], [Paulish 2002].

A Qualified Full-Time Architect Manages
Nonfunctional Requirements
The architect is responsible for managing nonfunctional requirements
and the relationships among requirements analysis, development,
and management.

 6 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

An Effective Requirements Management Process Is in Place
The critical success factors in a requirements management process
are well defined by the Capability Maturity Model Integration
(CMMI), specifically those addressing change management and
traceability. A change control board (CCB) performs an impact analysis
and conducts cost/benefit studies when feature changes are requested.
The CCB acts as a gatekeeper to prevent unwanted “scope creep” and
ensures properly defined product releases.

Requirements Elicitation Starts with Marketing and Sales
The marketing and sales organizations and the project’s requirements
engineering staff must establish strong bonds to enable accurate
definition of product and/or product line features. Incorrect features
and requirements may be carried over into the requirements
development activities and create downstream problems.

Requirements Reviews Are Conducted for All New
or Changed Requirements or Features
Requirements must be reviewed, and the review must occur at the
right level. Since it typically takes one hour to review four to ten
requirements (e.g., for the first review—followup reviews may go
faster), reviews must be conducted at a high enough level to avoid
“analysis paralysis” and yet low enough to catch significant feature-
level defects.

Requirements Engineers Are Trained and Experienced
Requirements engineering is like any other scientific or engineering
endeavor in that the basic skills can be learned through training. But
without experienced staff, the project may “stall” or “churn” in the
requirements definition stage. If the staff is new, and the team has
more than four members, RE mentors should be used to improve the
skills of the team.

Requirements Processes Are Proven and Scalable
When processes are defined at the start of a project, they should be
bootstrapped from prior successful efforts, not just based on
“textbook” examples. As the size of a project increases, or the number
or size of work products increases, the methodologies must be scaled
to match.

Subject Matter Experts Are Available as Needed
Arrangements must be made early on to access the experts needed to
assist in defining requirements. For example, during tax season, tax

 C h a p t e r 1 : I n t r o d u c t i o n 7 C h a p t e r 1 : I n t r o d u c t i o n 7

accountants and attorneys may be unavailable. Schedules cannot be
defined unless the experts are available during requirements
development.

All Stakeholders Are Identified
All the relevant stakeholders must be identified if requirements are to
be properly defined and prioritized. The later key requirements are
identified during the project, the greater the risk that major changes
to the in-progress implementation will be necessary. Furthermore,
the success of a product may be jeopardized by failure to validate key
requirements.

The Customer Is Properly Managed
Customer management includes rapid feedback during prototyping,
minimizing the number of points of contact between project staff and
stakeholders, and maintaining strict control of feature change
requests. It also includes using good techniques to elicit product
features that are correct and unambiguous.

Progress and Quality Indicators Are Defined
The CMMI has a measurement and analysis practice area that
overlaps with both requirements development and requirements
management. Sometimes, a methodology (such as the Rational
Unified Process [RUP] techniques for capturing text use cases)
doesn’t include progress or work product quality measures. These
indicators must be defined in advance, or project management will
find it difficult to gauge project progress and make appropriate
corrections.

The RE Tools Increase Productivity and Quality
Any software tools used must enable a process (increasing
productivity and CMMI compliance), rather than hinder it. Positive
outcomes may require tool integration, customization, or, in rare
cases where there is a justifiable cost benefit, creating a new tool
from scratch.

The Core Project Team Is Full Time and Reports
into a Single Chain of Command
Studies have shown that a full-time core team is essential to the
success of a large project [Ebert 2005]. Without the continuity provided
by a committed full-time core of people, issues may “fall through the
cracks” or not show up until problems are revealed at integration
testing time.

 8 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

1.5 Definition of Requirements Engineering
“Requirements engineering [DoD 1991] involves all lifecycle activities
devoted to identification of user requirements, analysis of the
requirements to derive additional requirements, documentation of
the requirements as a specification, and validation of the documented
requirements against user needs, as well as processes that support
these activities.” Note that requirements engineering is a domain-
neutral discipline; e.g., it can be used for software, hardware, and
electromechanical systems. As an engineering discipline, it
incorporates the use of quantitative methods, some of which will be
described in later chapters of this book.

Whereas requirements analysis deals with the elicitation and
examination of requirements, requirements engineering deals with all
phases of a project or product life cycle from innovation to obsolescence.
Because of the rapid product life cycle (i.e., innovation→development→
release→maintenance→obsolescence) that software has enabled,
requirements engineering has further specializations for software.
Thayer and Dorfman [Thayer et al. 1997], for example, define software
requirements engineering as “the science and discipline concerned
with establishing and documenting software requirements.”

1.6 Requirements Engineering’s Relationship
to Traditional Business Processes

It is extremely important to tie requirements activities and artifacts to
business goals. For example, two competing goals are “high quality”
and “low cost.” While these goals are not mutually exclusive, higher
quality often means higher cost. Customers would generally accept
the higher cost associated with a car, known for luxury and high
quality, but would likely balk at paying luxury car prices for a car
expected to compete in the low-cost automotive market.

Unfortunately, some organizations may tend to decouple business
and requirements activities. For example, business goals may drive
marketing activities that result in the definition of a new product and
its features. However, the business goals may have no clearly defined
relationship to the artifacts used and produced during requirements
analysis and definition. RE activities start at the very beginning of
product definition with business goals and innovation. Requirements
engineering techniques can add an element of formality to product
definition that can improve communication and reduce the
downstream implementation effort.

 C h a p t e r 1 : I n t r o d u c t i o n 9 C h a p t e r 1 : I n t r o d u c t i o n 9

1.7 Characteristics of a Good Requirement
Requirements characteristics are sometimes overlooked when defining
requirements processes. They can be an excellent source of metrics for
gauging project progress and quality. One question we typically ask
organizations when discussing their quality processes is, “Given two
requirements specifications, how would you quantitatively determine
that one is better than the other?” This question may be answered by
looking at the IEEE 830 Standard [IEEE 1998]. The characteristics of
a good requirement, as defined by the IEEE, are listed next, with
several additional useful ones.

It is important to distinguish between the characteristics of a
requirement and the characteristics of a requirements specification (a set
of related requirements). In some cases a characteristic can apply to a
single requirement, in some cases to a requirements specification, and in
other cases to the relationship of two or more requirements. Furthermore,
the meaning may be slightly different when referring to a requirement
or a specification. Care must be taken, therefore, when discussing the
characteristics described here to define the context of the attributes.

Feasible
A requirement is feasible if an implementation of it on the planned
platform is possible within the constraints of the program or project.
For example, the requirement to handle 10,000 transactions per second
might be feasible given current technologies, but it might not be feasible
with the selected platform or database manager. So a requirement is
feasible if and only if it can be accomplished given the resources,
budget, skills, schedule, and technology available to the project team.

Valid
A requirement is valid if and only if the requirement is one that the
system shall (must) meet. Determination of validity is normally
accomplished by review with the stakeholders who will be directly
responsible for the success or failure of the product in the marketplace.
There can be a fine line between “must” and “nice to have.” Because
the staff of a development team may be mainly focused on technology,
it is important to differentiate between stakeholder requests that are
wishful thinking and those that are actually needed to make the project
or product a success. The inclusion of requirements that are nice but
not valid is called “gold plating.” As the name implies, having
requirements on a project that are not valid will almost certainly add
cost without adding value, possibly delaying project completion.

 10 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Unambiguous
A requirement is unambiguous if it has only one interpretation. Natural
language tends toward ambiguity. When learning writing skills in
school, ambiguity can be considered a plus. However, ambiguity is
not appropriate for writing the requirements for a product, and care
must be taken to ensure that there is no ambiguity in a requirements
specification. For example, consider this statement:

“The data complex shall withstand a catastrophe (fire, flood).”

This statement is ambiguous because it could mean “The data
complex shall withstand a catastrophe of type fire or flood,” or it
could mean “The data complex shall withstand any catastrophe, two
examples being fire and flood.” A person skilled in writing requirement
specifications would rephrase as

“The data complex shall be capable of withstanding a severe fire.
It shall also be capable of withstanding a flood.”
An example of an ambiguous statement is “The watch shall be
water resistant.” An unambiguous restatement is “The watch shall
be waterproof to an underwater depth of 12 meters.”

A measure of the quality of a requirements specification is the
percent of requirements that are unambiguous. A high level of
ambiguity could mean that the authors of the specification likely
need additional training. Ambiguity often causes a project to be late,
over budget, or both, because ambiguity allows freedom of
interpretation. It is sometimes necessary to take a holistic view of
ambiguity; e.g., a requirement may be ambiguous, but when placed
in the context of the background, domain, or other related
requirements, it may be unambiguous. Product features found in
marketing literature (e.g., shock resistant) are typically ambiguous.
However, when placed in the context of the detailed specifications
used by manufacturing, the ambiguity is no longer present. On the
other hand, a requirement may be unambiguous, but when placed
in the context of related requirements, there may be ambiguity.

The Use of the Terms “Valid” and “Correct”
The IEEE Standard 830 uses the term “correct.” We use the term “valid”
instead because “correct” can be misleading. Something that is “correct”
is said to be “without error,” or mathematically provable. However, in
the context of a requirement, “valid” is more appropriate, as the
requirement may be exactly what the customer wants, but it may still
contain errors or be an inappropriate solution.

 C h a p t e r 1 : I n t r o d u c t i o n 11 C h a p t e r 1 : I n t r o d u c t i o n 11

When two requirements conflict with each other or create contextual
ambiguity, they are said to be inconsistent (see the later section
“Consistent”).

Verifiable
A requirement is verifiable if the finished product or system can be
tested to ensure that it meets the requirement. Product features are
almost always abstract and thus not verifiable. Analysis must be done
to create testable requirements from the product features. For example,
the requirement “The car shall have power brakes” is not testable,
because it does not have sufficient detail. However, the more detailed
requirement “The car shall come to a full stop from 60 miles per hour
within 5 seconds” is testable, as is the requirement “The power brake
shall fully engage with 4 lbs. of pressure applied to the brake pedal.”
As we have noted, product features lack detail and tend to be
somewhat vague and not verifiable. However, the analysis of those
features and the derived requirements should result in a specification
from which full coverage test cases can be created.

Modifiable
The characteristic modifiable refers to two or more interrelated
requirements or a complete requirements specification. A requirements
specification is modifiable if its structure and style are such that any
changes to a requirement can be made easily, completely, and
consistently while retaining the structure and style. Modifiability
dictates that the requirements specification has a coherent, easy-to-
follow organization and has no redundancy (e.g., the same text
appearing more than once), and that it keeps requirements distinct
rather than intermixed. A general rule is that information in a set of
requirements should be in one and only one place so that a change to
a requirement does not require cascading changes to other
requirements.

A typical way of ensuring modifiability is to have a requirement
either reference other requirements specifically or use a trace
mechanism to connect interrelated requirements.

Consistent
In general, consistency is a relationship among at least two
requirements. A requirement is consistent if it does not contradict or is
not in conflict with any external corporate documents or standards or
other product or project requirements. Contradiction occurs when
the set of external documents, standards, and other requirements
result in ambiguity or a product is no longer feasible to build. For
example, a corporate standard might require that all user interface
forms have a corporate logo in the upper-right corner of the screen,

 12 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

whereas a user interface requirement might specify that the logo be at
the bottom center of the screen. There are now two conflicting
requirements, and even though a requirements specification may be
internally consistent, the specification would still be inconsistent
because of conflict with corporate standards. Creating documentation
that is both internally and externally consistent requires careful
attention to detail during reviews.

Complete
A requirements specification is complete if it includes all relevant
correct requirements, and sufficient information is available for the
product to be built. When dealing with a high-level requirement, the
completeness characteristic applies holistically to the complete set
of lower-level requirements associated with the high-level feature
or requirement. Completeness also dictates that

• Requirements be ranked for importance and stability.

• Requirements and test plans mirror each other.

A requirements specification is complete if it includes the following
elements [IEEE 1998]:

 1. Definition of the responses of the system or product to all
realizable classes of input data in all realizable classes of
situations. Note that it is important to specify the responses
to both valid and invalid input values and to use them in test
cases.

 2. Full labels and references to all figures, tables, and diagrams
in the specification and definitions of all terms and units of
measure.

 3. Quantification of the nonfunctional requirements. That is,
testable, agreed-on criteria must be established for each
nonfunctional requirement.

Nonfunctional requirements are usually managed by the project’s
chief architect. In order for the completed product to be correct and
complete, it must include the testable requirements that have been
derived from the high-level nonfunctional requirements.

It is difficult to create complete specifications, yet complete
specifications are mandatory under certain circumstances; e.g.,
where the implementation team has no domain knowledge, or where
communication between subject experts and developers will be
problematic. We have seen projects where the requirements definition
phase was shortened for schedule reasons. The general consensus

 C h a p t e r 1 : I n t r o d u c t i o n 13 C h a p t e r 1 : I n t r o d u c t i o n 13

was that “the developers will finish writing the requirements.” But
when doing a risk analysis, it was nearly always quite clear that
having the developers complete the requirements was not an
appropriate process, due to

• Limited access to subject matter experts

• Lack of experience or bias when defining product requirements

At the back end of the project, the failure to properly define the
requirements almost always caused a greater delay than would have
happened by allowing the requirements specification to be completed
with the appropriate level of detail up front.

Traceable
Requirements traceability is the ability to describe and follow the life
of a requirement, in both a forward and backward direction, i.e., from
its origins, through its development and specification, to its
subsequent deployment and use, and through periods of ongoing
refinement and iteration in any of these phases” [Gotel et al. 1994].
Traceability is required for proper requirements management and
project tracking.

A requirement is traceable if the source of the requirement can be
identified, any product components that implement the requirement
can easily be identified, and any test cases for checking that the
requirement has been implemented can easily be identified.

Tracing is sometimes mandated by a regulatory body such as the
Federal Aviation Administration (FAA) or Food and Drug
Administration (FDA) for product safety. Furthermore, there are
some rare situations where failure to create the appropriate traces
between requirements can have legal repercussions. Traceability is
discussed in more detail in Chapter 7.

Other Project- or Product-Specific Characteristics
Occasionally, the requirements for a specific project or product have
characteristics that do not apply to all the projects or products. While
it can be argued that an attribute that crosscuts all other requirements
is just another requirement, when treated as a characteristic it is more
likely that the requirement will be fulfilled. For example, if a new
system is being built that must be downward compatible with an
older system, it could be argued that the need for downward
compatibility is just a nonfunctional requirement. However, we have
found that having such all-encompassing requirements converted to
characteristics makes it more likely that the completed system will be

 14 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

in compliance. A similar approach can be used for other “umbrella”
requirements such as

• Compliance with Sarbanes-Oxley regulations

• Meeting all corporate security requirements

• Meeting electrical safety requirements

Characteristics of a Good Requirements Specification
As was stated in the definition of consistency, the definition of
a characteristic may be different when applied to requirements
and to a specification. A requirements specification is a filtered
compendium of requirements. Having the requirements in a
document rather than a database permits holistic views and allows
the addition of history, a rationale, etc. There are certain characteristics
that apply to specifications as opposed to individual requirements as
listed here:

• A requirements specification is feasible if building the product
specified is feasible given the state of technology, the budget,
and the allotted time.

• A requirements specification is unambiguous if there is no
pair-wise ambiguity in the specification.

• A requirements specification is valid if every requirement in it
is valid.

• A requirements specification is verifiable if every requirement
in it is verifiable.1

• A requirements specification is modifiable if there is no
redundancy and changes to requirements are easily and
consistently made; e.g., a change to one requirement does not
require cascading changes to other requirements.

• A requirements specification is consistent if the requirement
set is internally consistent.

• A requirements specification is complete if it provides sufficient
information for complete coverage testing of the product or
system.

• A requirements specification is traceable if every requirement
in it can be traced back to its source and forward to test
cases.

• A requirements specification is concise if the removal of any
requirement changes the definition of the product or system.

1 Product or business requirements specifications typically describe features, and
as such there may be ambiguity and a lack of testability.

 C h a p t e r 1 : I n t r o d u c t i o n 15 C h a p t e r 1 : I n t r o d u c t i o n 15

Requirements elicitation and analysis are typically done under
project time constraints. Consequently, it is important to prioritize
and identify risks when defining requirements. For example, “If
this nonfunctional requirement is not completely analyzed, what
are the risks to the project, the company, and/or the user?” By
doing a risk analysis, the effort associated with fully defining a
requirement set can usually be balanced against the needs of the
project. Techniques for doing risk analysis of high-level requirements
(e.g., balancing effort against need) will be discussed further in
Chapter 5.

1.8 Requirements and Project Failure
It must be remembered that most systems under development are not
new; i.e., only a fraction of the requirements in the product are new or
unique [Jones 2007]. Yet issues of requirements maintenance and
long-term support are often missing from project plans; e.g., the
project plan is created as though the requirements will be discarded
after project completion. When long-term requirements management
is not planned, requirements creep can cause significant problems
late in a project. Furthermore, Capers Jones reports that the defect
rate increases significantly in requirements that are injected late over
those that are created prior to the start of implementation, and the
most egregious defects in requirements defined or modified late in a
project can sometimes show up in litigation [Jones 2007].

1.9 Quality and Metrics in Requirements Engineering
As was mentioned in connection with the success factors for projects,
project indicators need to be defined in order to have some measure
of project transparency. It is important to be able to answer the
questions “Am I making progress?” and “What is the quality of my
work products?” How does one, for example, determine that a
requirements specification is of high quality?

Requirement characteristics or quality indicators are extremely
important for determining artifact quality. They can be measured by
inspection (metrics), and the reported metrics can then be used to
determine the quality of individual requirements and requirements
specifications. Furthermore, metrics summaries tracked over time
can be used to identify potential problems earlier to permit corrective
actions, and provide guidance as to what type of corrective actions to
take. For example, a high level of ambiguity in a requirement set
might indicate that the analysts creating the requirements may need
additional training in requirements writing. Some of the chapters in
this book provide guidance on how to capture and use metrics to
improve requirements processes.

 16 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Function Point Metrics as Leading Indicators
A function point is used to estimate the complexity and effort
necessary to build a software product. Capers Jones has published
extensively on this topic [Jones 2007, 2008]. Function point metrics
are an excellent way of identifying potential problems with
requirements prior to the implementation of a project. Furthermore,
there is a clear correlation between function points and requirements;
that is, function points can be used as an indicator of requirements
creep and quality. Furthermore, it has been shown that function point
analysis (FPA) can be effective in determining requirements
completeness [Dekkers et al. 2001].

1.10 How to Read This Book
We suggest that you start by reading Chapters 1 and 2 before looking
at any of the other chapters. They lay the groundwork for the
remaining chapters by defining basic terminology that is used
throughout the book.

Chapters 3 and 5 describe techniques for eliciting requirements. If
you are interested in gathering requirements for software platforms
or middleware, we also suggest that you read Chapter 6.

Chapter 4 describes modeling techniques that can be used for
business or use case analysis. One specific method that has been used
successfully at Siemens on several projects, the hierarchical
decomposition of use cases, is described in detail.

Chapter 9 is devoted to rapid prototyping and describes a simple
technique that has been found useful in the development of systems
that are categorized by workflow and graphical user interfaces.

Chapter 7 describes techniques and best practices for requirements
management. If you are interested in managing environments where
the work may be distributed, then read Chapter 10 as well.

Chapter 8 describes advanced techniques for transforming
requirements into test cases. It will be of interest to project and quality
assurance staff. However, as Chapter 8 uses model-based methods,
be sure to read Chapter 4 before reading Chapter 8.

Finally, Chapter 11 describes hazard and threat analysis and
management in the context of a requirements engineering process. If
you are an analyst working in a domain that is regulated or where
there is the potential for physical or financial harm to an end user of
a product, we recommend reading this chapter.

1.11 Summary
We’ve introduced some of the key challenges for requirements
engineering and some of the success factors to achieve good RE.
We’ve provided a definition of requirements engineering, and we’ve

 C h a p t e r 1 : I n t r o d u c t i o n 17 C h a p t e r 1 : I n t r o d u c t i o n 17

described the characteristics of a good requirement and a good
requirements specification.

1.12 Discussion Questions
 1. Why is good requirements engineering more important to

product development than it was ten years ago?

 2. What are the differences between good requirements and a
good requirements specification?

 3. What are some of the key full-time roles necessary for a
project to be successful?

 4. What is the role of the chief architect?

References
Dekkers, C. and Aguiar, M., “Applying Function Point Analysis to Requirements

Completeness,” Crosstalk, February 2001.
DoD 91, U.S. Department of Defense, Software Technology Strategy, December

1991.
Ebert, C., “Requirements BEFORE the Requirements: Understanding the Upstream

Impact,” Proceedings of the 13th IEEE International Conference on Requirements
Engineering (RE’05), 2005, pp. 117–124.

Gotel, O. and Finkelstein, A., “An Analysis of the Requirements Traceability
Problem,” Proceedings of the First International Conference on Requirements
Engineering, Colorado Springs, CO, pp. 94–101, April 1994.

Hofmeister, C., Nord, R., and Soni, D., Applied Software Architecture, Addison-
Wesley, Boston, MA, 1999.

IEEE Standard 830, IEEE Recommended Practice for Software Requirements Specifications,
1998.

Johnson, J., “Turning Chaos into Success,” Software Magazine, Vol. 19, No. 3,
December 1999/January 2000, pp. 30–39.

Jones, C., Applied Software Measurement, 3rd ed., McGraw-Hill, New York, 2008.
Jones, C., Estimating Software Costs, 2nd ed., McGraw-Hill, New York, 2007.
Kamata, M.I. and Tamai, T., “How Does Requirements Quality Relate to Project

Success or Failure?” Proceedings of the International Requirements Engineering
Conference (RE‘07), 2007.

Paulish, D., Architecture-Centric Software Project Management, Addison-Wesley,
Boston, MA, 2002.

Standish Group Report, “CHAOS,” http://www.projectsmart.co.uk/docs/chaos_
report.pdf, 1995.

Thayer, R. and Dorfman, M., Software Requirements Engineering, 2nd ed., Los
Alamitos, CA: IEEE Computer Society Press, 1997.

http://www.projectsmart.co.uk/docs/chaos_report.pdf
http://www.projectsmart.co.uk/docs/chaos_report.pdf

This page intentionally left blank

CHAPTER 2
Requirements

Engineering Artifact
Modeling

by Brian Berenbach

19

 20 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

“Without goals, and plans to reach them, you are like a ship that
has set sail with no destination.”

—Fitzhugh Dodson

2.1 Introduction
In order to successfully reach a destination, travelers needs to know
where they are going. For most of the software and system
development life cycle, the work products are well understood, and
professionals generally have a reasonable understanding of how to
create them. Requirements engineering is somewhat different, since
it is a relatively new field in which fewer have worked; sometimes
the objectives can be a bit obscure or hard to define. A lack of well-
defined work products may result in ill-defined RE artifacts and
processes, with repercussions felt in the downstream phases of the
life cycle. This chapter discusses an important aspect of requirements
engineering work; that is, fully and accurately defining RE work
products and their relationships. While the examples shown here are
specific to RE, many of the techniques could (and in some cases
should) be extended to the entire project life cycle.

The purpose of requirements engineering artifact modeling is to

• Define a reference model for RE that provides the core set of
RE artifacts (work products) and their interdependencies.

• Guide the establishment and maintenance of product- and
project-specific RE processes [Geisberger 2006].

Thus, early requirements engineering activities include

• Analyzing marketing information, stakeholder, and user
needs to derive the functional and nonfunctional requirements
to be met by the system’s design

• Understanding the effect of these requirements on the
business that creates the product

• Consolidating these requirements into consistent and
complete requirements and systems specifications as defined
in the Requirements Engineering Artifact Model (REAM).

RE artifacts are used to support product design and project
management decisions throughout the entire product life cycle. The
quality and appropriateness of these artifacts is a key factor for
successful system development. Developing consistent and
comprehensive specifications of the “desired” system is an important
objective of RE.

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 21 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 21

Thus, the key components of requirements engineering artifact
modeling are

• An RE artifact model as a measurable reference model that
can be used to support interdisciplinary communication and
specifications development

• A process tailoring approach that specializes the RE artifact
model to specific organizational or project needs

• RE artifact-centered process guidelines that define completion
levels of the RE artifact model. The specified completion levels
form a baseline for measuring project progress and artifact
quality.

2.2 RE Taxonomy1

It is important that all stakeholders and process participants in the
development of products understand the meaning of each
requirements engineering term to represent the same thing. If, for
example, customers, product managers, and manufacturing
understand the term “feature” to mean different things, there may be
difficulty with quality assurance tasks and related productivity. While
universal definitions exist for many terms in requirements engineering,
there is still disagreement within the RE research community as to the
meaning of some terms such as “nonfunctional requirement.”
Consequently, it may be necessary for an organization or project to
create its own set of definitions wherever there is the potential for
misunderstandings.

We recommend that a project or product team have a glossary of
terms. An enterprise-wide dictionary is always preferable but may
not be feasible; e.g., different parts of an organization may be working
in different domains.

A taxonomy is a collection of controlled vocabulary terms
organized into a hierarchical structure. Taxonomies are commonly
used to classify things; e.g., a taxonomy of the insect world. An
example of a taxonomy for requirements is given in Figure 2.1. In
well-structured taxonomies, each term has only one parent. However,
depending on need, it is possible to have poly-hierarchies where
a term can have more than one parent. Figure 2.2 illustrates the
difficulty of creating taxonomies; i.e., there may be multiple ways of
representing concepts. Note that a term can appear in more than one
place in a taxonomy.

1 www.metamodel.com/article.php?story=20030115211223271

www.metamodel.com/article.php?story=20030115211223271

 22 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

The difference between a glossary and a taxonomy is that in a
glossary, terms are listed alphabetically and defined, whereas in a
taxonomy, terms are grouped into classifications. To create a glossary,
we recommend starting with a taxonomy of RE terms (e.g., Figure 2.1).
The terms that would then go into the glossary are the leaves of
the taxonomy tree plus any additional domain- or organization-
specific terms.

A complete RE taxonomy would include the classification of all
artifacts associated with a requirements engineering process, not just
the categorization of requirement types. Since the artifacts can change
from organization to organization or project to project, any such
taxonomy would have to be extensible (see the later section “Using
the Artifact Model”).

Taxonomies can be quite extensive. As an example, see the
fragment of the taxonomy for security requirements given in
Figure 2.3 [Firesmith 2005].

Nonfunctional
Requirement

Performance
Requirement

Quality
Requirement

Durability Appearance
Appearance

Quality
Requirement

Nonfunctional
Quality

Requirement

Functional
Quality

Requirement

Luxury
Features

FIGURE 2.2 Two taxonomies illustrating differing representations of the
same concepts

Requirement

Project
Requirement

System
Requirement

Process
Requirement

Functional
Requirement

Attribute Constraint

Performance
Requirement

Specific Quality
Requirement

FIGURE 2.1
Requirements
taxonomy
suggested by
Professor Glinz

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 23 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 23

Getting Started with a Taxonomy
Capers Jones [Jones 2008] suggests the following approach as a starting
point:

 1. Start with the NAIC codes.

 2. Using these codes, identify your industry or domain.

 3. Then identify the scope (e.g., algorithm, prototype), class (e.g.,
internal product, external salable product), and type of
application (e.g., batch, embedded software, mechanical
panel).

A good starting point for creating a project- or product-specific
taxonomy is the North American Industry Classification (NAICS)
provided by the U.S. Government [NTIS 2007]. This classification
system is a great starting point for creating a domain/project/
product-specific taxonomy.

FIGURE 2.3 Sample taxonomy fragment for security requirements (Picture
courtesy of Donald G. Firesmith, Software Engineering Institute, 2005)

Safety Security Survivability

Unintentional
(Accidental)

Harm

Attacker-Caused
(Malicious)

Harm

e.g., caused to
enemy forces by

weapons systems

Authorized
Harm

Unauthorized
Harm

May occur to a
Harm Valuable

Asset

Harm to
People

Harm to
Property

Harm to
Environment

Harm to
Service

Death

Injury

Illness

Kidnap

Corruption
(Bribery or
Extortion)

Hardship

Destruction

Damage

Corruption

Theft

Unauthorized
Access

Unauthorized
Disclosure

Destruction

Damage

Loss of Use

Corruption

Unauthorized
Usage (Theft)

Accidental
Loss of Service

Denial of
Service (DOS)

Repudiation of
Transaction

 24 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Taxonomy Attributes
Any taxonomy for requirements engineering work products should,
as a minimum, have the following attributes:

• Complete At the leaf level, include every requirement type
that will be used by the organization or project. The
categorization of requirements is critical when defining
metrics (see Chapter 7). Without a proper categorization, it
may not be possible to do a filtered query of a large
requirements data store and return meaningful information.

• Extensible Companies should be able to take a core
taxonomy and extend it. The sample fragment shown in
Figure 2.3 is an example of a complex extension for security
requirements.

• Navigable The taxonomy should be easy to navigate,
possibly with hyperlinks on web pages.

• Valid There are many potential taxonomy sources; however,
it is important that any such taxonomy used by an organization
or on a product should be validated with other sources such
as textbooks or experts.

• Systematic The categories should be well chosen and be at
the same level.

Creation of an RE Taxonomy
There are many fine references and tools available to assist with
the creation of taxonomies.2 We recommend the following simple
steps (see the starting point suggested by Capers Jones in the
sidebar on the previous page):

• Identify the tooling that will be used and how the taxonomy
will be presented to project staff, keeping in mind that the
taxonomy may have to be updated periodically, and there
may be links to other tools; e.g., the taxonomy and the artifact
model that will be described in the next section are
interrelated.

• Collect all the requirement types that are currently in use or
planned. Group them together.

• If the project is an incremental development, mine the
requirements for classes. Note that Capers Jones estimates
that as many as 75 percent of all new projects are incremental
changes to an existing product.

2 www.loc.gov/flicc/wg/taxonomy.html

www.loc.gov/flicc/wg/taxonomy.html

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 25 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 25

• Categorize by grouping and create a draft taxonomy. For
example, network performance requirements, UI performance
(response time), query response times, etc., might all be
grouped under Performance Requirements.

• Make sure that complete, agreed-upon definitions are
available for every term that will be in the requirements
taxonomy, including parent terms.

• Create a draft taxonomy and circulate to stakeholders for
comments.

• Revise and publish (usually to the web).

• Provide feedback and maintenance mechanisms (including
processes and identified roles) for keeping the taxonomy up-
to-date.

Other Types of Taxonomies Useful in RE
In addition to a “generic” RE taxonomy covering the classification of
requirements, there are other artifact taxonomies that may be useful.
For example, a document classification taxonomy can be used to identify
common templates, assist with planning processes such as version
control and baselining, and aid in the training of staff. The leaves of
such a document classification taxonomy should all be real documents
that are created by the organization or project staff. A partial
requirements document classification taxonomy can be seen in
Figure 2.4.

Requirements
Document

Requirement
Specification

Process
Specification

Requirements
Engineering
Management

Plan

Market
Requirement
Specification

Product
Feature

Specification

Customer
Requirement
Specification

System
Requirement
Specification

Product
Marketing
Literature

Feature Model

FIGURE 2.4 Sample partial taxonomy of requirement documents

 26 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Taxonomy Extension
To extend a taxonomy is a rather simple undertaking. The classification
tree is extended with artifacts of the appropriate classification (see
Figure 2.5). Figure 2.6 illustrates how detailed a taxonomy can become.

Testable Requirement

Nonfunctional Testable
Requirement

Functional Testable
Requirement

Performance
Requirement Security Requirement Reliability

Requirement

Transactions per Second
Average

Peak Transactions per
Second

SOC Extensions

FIGURE 2.5 Sample extension of a taxonomy

FIGURE 2.6 Taxonomy of business needs artifacts

Business Needs Artifacts

Business & Customer
Requirements System Vision Conditions &

Scope

General
Conditions

Scope &
Limitations

Scope of
Initial Release

Scope of
Subsequent

Releases

Limitations &
ExclusionsSystem Success

Factors

Key Features/
Requirements

Priority of
Requirements

Risk Calculation

Market/
Customer

Technology

Volatile/Vague
Requirements

Supply Guarantee
Reliability

Organizational

Time/Effort/
Cost

Impact
Analysis

Feasibility
Study

ROI & Risk

Business Risk
Analysis

ROI
Calculation

Cost/Benefit
Analysis

Long-term ROI
Analysis

Assumptions
DependenciesMain Features

Functional

Quality
Nonfunctional

Customer
Requirements

Customer/Market
Requirements

Value to the
Customer

Business
Objectives

Background

Opportunities

Objectives

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 27 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 27

If templates with the appropriate attributes are filled in for each
artifact, process definition is much simpler (see the section “Extending
an Artifact Model to Augment Process Definition”).

2.3 RE Artifact Model
An RE artifact model (REAM) is a meta-model for the structuring of
requirements engineering work products. A meta-model is an explicit
model of the constructs and rules needed to build specific models
within a domain of interest. An RE artifact model contains all the
artifacts referenced, modified, or created during requirements
engineering activities. The artifacts shown on REAM diagrams are
those that are actually used in a project, and they each have a name
and definition.

Upon first glance, the REAM diagram may appear similar to a
software class diagram. However, there are some significant
differences. A software class diagram may show many different types
of relationships between objects, whereas an RE artifact model only
shows simple associations (a single solid line). For example,

• Classes shown on a class diagram may have methods and
attributes; an RE artifact only has a name and description.

• A class diagram may show abstract classes, or classes for
which there is no physical representation; an artifact model
only shows real objects that will be used or created during a
requirements engineering activity.

An artifact model is different than a taxonomy in that it is a graph
rather than a tree, has many more artifacts than what would be in a
taxonomy, and typically contains many domain specific extensions.

Both a REAM and a taxonomy can be multitiered, so that selecting
an object can open onto a different diagram. However, care must be
taken in that while a taxonomy lends itself well to a hierarchical
approach, artifact models tend to be flatter. For example, an object on
one REAM diagram might have a relationship with an object on a
different diagram.

Elements of an Artifact Model
A fragment of an artifact model is shown in Figure 2.7. It consists of
the following elements:

Actor Use Case
* Participates in *
1 Initiates *

FIGURE 2.7 Simple artifact model

 28 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

• Artifact A rectangular box with the name of the artifact. The
definition of each artifact should be in a glossary or taxonomy
accompanying the model.

• Association A line connecting two artifacts. The line
indicates that there is a relationship between the artifacts.
Every association must be labeled to indicate the relationship
between the artifacts.

• Cardinality The cardinality indicates quantities. Any
numbering convention can be used if appropriately defined;
however, the Unified Modeling Language (UML) notation3 is
typically used. If the cardinality is not specified on an
association, then unity is implied.

Figure 2.7, showing a sample model fragment, can be read as
follows: “One or more actors participate in one or more use cases, and
an actor can initiate one or more use cases.”

Creation of a Requirements Engineering Artifact Model
The actual creation of an artifact model is not difficult. What is important
is to have a holistic understanding of the business processes used from
product creation through maintenance. It may be necessary to identify
an individual within an organization who can interact with stakeholders
across the different organizational units. Across the entire organization
and product life cycle, then, these questions must be asked:

• What are the artifacts that the roles use?

• How are the artifacts related?

• Who creates them?

• Who modifies them?

• How do they become obsolete?

Consider, as an example, a small company creating a software
product. They may have the following artifacts:

• Business plan

• Business goals

• Marketing brochure(s)

• Product features

• Customers

• Product definition

• Test plan

3 The UML specification can be found at www.omg.org.

www.omg.org

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 29 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 29

• Test cases

• System requirements

• Customer requirements

• Product design

• …

For creating the REAM, we first want to see how the products are
related. We expect, for example, that a business plan will contain
business goals (Figure 2.8). We can then model the artifacts and the
relationships between them. We know that the business goals will be
used as inputs to define the products. The products will be described
in a marketing brochure (Figure 2.9).

Various techniques are used to define the features that the
product needs to have in the marketplace to meet the business goals.
At this point, product features have to be tied to business goals. Since
the model is a simple construct, any drawing tool can be used to
create one. UML modeling tools work quite well, as do general-
purpose drawing tools such as Visio. However, it may be necessary
to trace between different artifacts. Furthermore, it is important to
have clear definitions of all the artifacts. This, in turn, may require
stakeholder involvement. Also, if there is a taxonomy, all the leaves
in the taxonomy should be in the artifact model. Since artifact models
can be quite comprehensive, we may start with a subset. Let’s say,
for example, that, given the artifacts described, we wind up with an
initial draft REAM as shown in Figure 2.10.

There are some things missing from this draft REAM that would
have to be added, including metrics, artifact reviews, project plans,
standards and procedures, and so forth. Here are some other important
things to consider that tend to be neglected until well into the project:

• Internal training standards and procedures

• Maintenance requirements (e.g., how will the product be
maintained, what are the artifacts that will be needed to
properly maintain the product after deployment?)

• Product documentation, including training manuals, marketing
literature, internal maintenance manuals, and so on

• Holistic tool support that works across organizational
boundaries (e.g., from the help desk to design)

Business Plan Business Goal
*

ContainsFIGURE 2.8
Starting fragment

FIGURE 2.9
Next model
fragment

ProductMarketing Brochure
Describes

1..*

 30 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

2.4 Using the Artifact Model
The artifact model that is created prior to the start of a project is like
looking at the X-ray of a patient prior to starting surgery. The model
is used by most stakeholders (except possibly customers). Examples
of the RE artifacts that will be used by the various roles of a
development project are given in Table 2.1.

Extending an Artifact Model to Augment Process Definition
Artifact models can be extended to support process definition. For
example, we may add artifacts such as completion status, decision
gates, checklists, etc. (Figure 2.11). At the beginning of a project, a
draft artifact model is created. The model is then used to define the
product life cycle processes. After review, the artifact model and the
defined processes are continually updated. While the upfront costs of
creating a model may appear high, in our experience it is a very fast
and cost-effective activity. Furthermore, just having project staff think
about downstream artifacts, quality gates, and approval checklists
can result in significant efficiencies.

2.5 Using Templates for Requirement Artifacts
A suggested way to get started creating a REAM is to use a template
to fill in the information about each artifact in the model. A sample
template is shown in Figure 2.12.

The template is filled out for each artifact and then maintained
with the same tool used to create the drawings. As mentioned
previously, commercial tools are available; however, for a staff with

FIGURE 2.10 Example requirements engineering artifact model

Marketing
Brochure

Business
Plan

Product
1..*

Describes

Business
Goal*

Contains

Customer

Design

Stakeholder
Request**

May submit

Feature
*

Has

Assist in meeting

Market Requirement
Specification

Used to create

Test Plan

Customer
Requirement1..*1..*

May become
1..*
Meet the needs of

* 1Contains

System Requirement
Specification

Used to create

System
Requirement

*
*

Augmented with

Contains

Test Case
*

Contains

Tests

1..*
Tests

C

hapter 2:
R

equirem
ents Engineering A

rtifact M
odeling

31

C
hapter 2:

R
equirem

ents Engineering A
rtifact M

odeling
31

Role (Cluster) Objective Functional Area RE Artifacts

Product
Management
(ProdM)

Delivery of cost-
effective products and
solutions that meet
customer needs

Planning and managing the entire life cycle
of a product, including identifying customer
needs, system vision, and scope

Business objectives, customer/user
requirements, system vision, conditions and
scope, product portfolio, return on investment
(ROI), risks, system success factors

Requirements
Engineering
(RE)

Qualified and
comprehensible/
reusable product
decisions

Refinement and analysis of business objectives,
reasonable and consolidated modeling of
customer/user and business processes
(functional, domain, quality goals, constraints)

Analysis models of customer and business
needs (functional, domain, quality goals,
constraints), user interface and system
specification, acceptance conditions

Systems
Architecture
(SA)

High-quality and cost-
effective system design
that meets business
requirements

Specifying system architecture according to
quality and business requirements, defining
the system structure, decomposing the
system into functional interface specifications

Comprehensible functional system specification,
system integration and interface specification,
release planning, system test criteria

Project
Management
(ProjM)

Delivering the product
solution within project
constraints

Planning and managing the product
development, process definition,
measurement and control

System specification, design constraints,
risk analysis, process requirements and
constraints

Development
(Dev)

Build to specifications Implementation of product solution, including
(hardware) design, coding, integration, testing

System/interface specification, design
constraints, integration plan, system test criteria

Quality Assurance
(QA)

Ensure verified product
quality

Review and measurement of all specifications
according to domain-specific quality standards

Measurable specifications, system integration,
and (acceptance) test specification

Release
Management
(RelM)

Incremental release of
product features

Release planning and execution according
to market strategy, system structure,
development sequence, and integration

Release strategy, system specifications,
release planning, corresponding system
interface, integration and test specification

TABLE 2.1 Use of an Artifact Model by Project Roles

 32 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

developers it would be a relatively simple matter to extend a tool
such as PowerPoint or Visio using the macro language. Once
published to the web, the model and definitions are available to all
the roles involved in the definition and creation of a product. A
sample filled-in template for business and customer requirements is
shown in Figure 2.13.

If the template is for an artifact that will be created by the staff
associated with the product, we recommend creating a checklist

Phase Decision Gate Checklist

Completion Level Document

RE Artifacts

Activity Role

Template

Method

Tool

Characterize Determine

DetermineDetermine

Relate to

Define

Complete

Produce

Construct

Support
Contribute/is responsible

FIGURE 2.11 Process artifacts

Artifact group

Artifact X

Responsible: Contributing:

Contributing:

Description:

Purpose:

References:

Artifact Y

Responsible:

Content item

Content item

Content item

Mandatory

Mandatory
Recommended
Optional

FIGURE 2.12 Sample artifact information template

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 33 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 33

or set of quality indicators (see Figure 2.11) that can be used to
determine:

• What is the quality of the artifact? Does it need rework?

• Has the artifact been completed? What are the criteria for
completion?

• What is the status of the artifact; e.g., suggested, draft,
completed, sunset?

FIGURE 2.13 Filled-in artifact template for business requirements

Business and Customer Requirements Mandatory

Responsible: Prod M Contributing: RE, SA

MandatoryBusiness Objectives

Summarize the important business benefits the system will provide, preferably
in a way that is quantitative and measurable. The background and business
opportunities of the future system are described. This includes a description
of business problems that are being solved, and a comparative evaluation of
existing systems and potential solutions. The rationale for the system
development is described, and how the system aligns with market trends or
corporate strategic decisions is defined.

Description: The Business Objectives and Customer Requirements identify the
primary benefits that the new system will provide to the customer and to the
organization that is developing the system.

Customer Requirements Mandatory

Summarize the needs of typical customers or users. Customer needs are
defined at a high level for any known critical conditions, interface, or quality
requirements. They provide examples of how the customer will use the system
and identify the components (hardware and software) of the environment in
which the system will operate. Explicitly define the value the customer/user
will receive from the future system and how it will lead to improved customer
satisfaction.

Purpose: Business and customer requirements serve as entry points to
context analysis and the specification of the required features and
characteristics of the System Vision and the definition of the general
Conditions & Scope of the development.

By identifying the business objectives, the situation, and the critical conditions,
collect business risks associated with the developing (or not developing) this
system systematically as input to risk and cost/benefit analysis (ROI & Risk).

References: [Wie 1999] gives an overview of business requirements and provides
a list of possible customer values.

 34 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

2.6 Dynamic Tailoring of an Artifact Model
Software projects come in different sizes and use different
methodologies. Large plan-driven projects can take years to
implement and have staffs of well over 100 developers. Small, agile
projects might have just two or three developers, and the project
duration could be as short as a week or two. When creating a REAM
for a project, clearly one size does not fit all. If an organization has a
range of projects on an ongoing basis, it is a good practice to provide
some built-in tailoring facilities. An artifact, for example, could be
mandatory on a “large” project, optional on a “medium-sized”
project, and not used at all on a “small” project. If the project artifacts
are tagged during the creation of the artifact model, it then becomes
possible to filter and present the required information, or to couple it
to a workflow used to reinforce the process. Tailoring techniques
range from simple manual selection of artifacts to very sophisticated
approaches such as the use of neural nets [Park et al. 2006]. Regardless
of the tailoring approach, it will not work unless the artifacts in the
model have attributes that permit them to be evaluated based on
type, size, and duration of the project. An example of a small model
used to define the artifacts for a prototyping effort can be seen in
Figure 2.14. An example table fragment for defining tailoring rules is
shown in Figure 2.15.

2.7 Organizational Artifact Model Tailoring
In addition to the tailoring of an artifact model for a specific project,
high-level organizational models can be used as the starting point
for the creation of project-specific models. An example is given in
Figure 2.16. The starting point was a corporate-level model defining
the core artifacts needed on any project. That model is then modified
for the specific organization within the company, and finally the
model is completed on a per-project basis.

FIGURE 2.14 Artifact model for small prototyping project

Business Goal Feature Prototype

CustomerStakeholder Request

Used to
identify Shown in

Shown to

May provide
feedback as

1..* 1..* 1..*

1..*

1

* *

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 35 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 35

FIGURE 2.16 Organizational tailoring of an artifact model

Contains
System

Requirement
System

Requirements
Specification

RequirementRequirements
Specification

Contains

1 1..N

Contains Customer
Requirement1 1..N

Automatically
generatesContains Customer

Requirements
Specification

RE
Database

Customer
Requirement 11..N 1 1

Company

Organization

Project

refine
refine

Customer
Requirements
Specification

2.8 Creating a System Life Cycle Process
As was mentioned earlier, both a taxonomy and an artifact model are
useful in the creation of system life cycle processes. By adding
attributes to the artifacts that specify when they are needed (based on
the type and size of the project), a query will result in the production
of a list of all the appropriate artifacts. Project management can then
use this list for planning, including the definition of decision and
review points, work products needed, and quality artifacts needed to
measure project quality and efficiency. An example process creation
approach is illustrated in Figure 2.17.

Process creation to some extent can be automated, depending on
how much of an investment the organization is willing to make in
tooling. Automation of process creation can include

• Generation of selected project templates

• Assembly of standards and procedures from a library

FIGURE 2.15 Sample table for tailoring RE processes

Project Artifact

Stakeholder Requests in
Database
Requirements in Database
Customer Requirement
Specification
Decision Gates
Business Goals
Feature Model

Prototyping

X

Small
Agile

X

Medium
Agile

X

X

X

Large
Agile

X

X
X

X
X
X

Small Plan
Driven

X

X
X

Medium
Plan

Driven
X

X
X

X
X

Large
Plan

Driven
X

X
X

X
X
X

Government
Contract

X

X
X

X
X
X

 36 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

• Drawing of a filtered, domain, and project-specific artifact
model

• Population of a rule set for a workflow engine

In general, it is much better to have an “active” rather than
a “passive” process. An active process is one where rules are used to
prompt and inform staff about activities and provide templates for
documents that have already been tailored based on the project type.
A passive process is where documents (e.g., standards, procedures,
templates) are stored containing process information, and the project
staff has to download and read the relevant information.

2.9 Tips for Requirements Engineering Artifact Modeling
Some suggested practices for modeling requirements engineering
artifacts are summarized below:

• Define a Glossary of Terms for your project or product.

• Create an RE Taxonomy while keeping in mind what tools
will be used to maintain it and how it will be communicated
to the project team (e.g., publish to a project web site).

• Develop an RE Artifact Model specific to your project.

Create
Taxonomy

Create
Artifact
ModelCreate Artifact

Information Sheets

Define Process Levels Define
Processes

Create
Workflows

for
Processes

Define Process
Rule Sets

Primary
Activity

Supporting
Activity

Included activity

FIGURE 2.17 RE activities for process creation

 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 37 C h a p t e r 2 : R e q u i r e m e n t s E n g i n e e r i n g A r t i f a c t M o d e l i n g 37

• Communicate project roles to all team members and the
artifacts they are responsible for as defined in the RE Artifact
Model.

• Use templates to define RE artifacts.

• For scaling projects, provide tailoring information in the RE
Artifact Model; e.g., a specific artifact may be mandatory,
optional, or not used, depending on the project size.

• Tailor the RE Artifact Model for a specific project from any
corporate-level models, if they exist.

• Create a system life cycle process by adding needed timing to
the defined artifacts.

2.10 Summary
We have seen in this chapter how taxonomies are used to define and
classify work products that are referenced, created, or modified
during the requirements engineering process. A taxonomy is typically
the starting point for the creation of a project glossary and a
Requirements Engineering Artifact Model. An artifact model for an
organization is essential for the definition of requirements engineering
processes; however, the same techniques can be extended to defining
the entire life cycle model. Organizations that have different types of
projects need to be flexible in their approach to process definition, so
that small projects will not be burdened with excessive bureaucracy
and paperwork, while larger projects will have the infrastructure and
tools necessary to succeed.

2.11 Discussion Questions

 1. Where are taxonomies used outside of requirements
engineering?

 2. What are the differences between a taxonomy and a glossary?

 3. What are some project roles, and which artifacts do they use?

 4. Must each project create its own artifact model? Are there
tailoring techniques to help select artifacts for different
projects?

References
Berenbach, B., “The Evaluation of Large, Complex UML Analysis and Design

Models,” Proceedings of the 26th International Conference on Software Engineering,
ICSE 2004, Edinburgh.

Firesmith, D., “A Taxonomy of Security Related Requirements,” SEI, International
Workshop on High Assurance Systems (RHAS’05 – Paris), August 29–30, 2005,
www.sei.cmu.edu/programs/acquisition-support/publications/taxonomy
.pdf.

www.sei.cmu.edu/programs/acquisition-support/publications/taxonomy.pdf
www.sei.cmu.edu/programs/acquisition-support/publications/taxonomy.pdf

 38 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Geisberger, E., “Requirements Engineering Reference Model (REM),” Technical
University of Munich Report, October 31, 2006.

Glinz, M., “A Risk-Based, Value-Oriented Approach to Quality Requirements,”
IEEE Software, March–April 2008.

Jones, C., Applied Software Measurement, 3rd ed., McGraw-Hill, New York, 2008.
National Technical Information Service (NTIS), North American Industry Classification

System (NAICS), U.S. Department of Commerce, 2007.
Park, S., Naa, H., Parka, S., and Sugumarun, V., “A Semi-Automated Filtering

Technique for Software Process Tailoring Using Neural Networks,” Expert
Systems with Applications, Vol. 30, NO. 2, February 2006, pp. 179–189.

Wiegers, K., Software Requirements, Microsoft Press, 1999.

CHAPTER 3
Eliciting

Requirements
by Brian Berenbach

39

 40 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

“The hardest single part of building a system is deciding what to build…
No other part of the work so cripples the resulting system if done wrong.

No other part is more difficult to rectify later.”

—Dr. Fredrick P. Brooks, Jr.

3.1 Introduction
Elicitation is the process of identifying the needs and bridging the
disparities among involved communities for the purpose of defining
and distilling requirements to meet the needs of an organization or
project while staying within imposed constraints. It involves all
aspects of meeting with stakeholders, recording their needs, and
classifying them into a manageable set of stakeholder requests that
will later, through an analysis process, become requirements. There
are many different elicitation techniques that can be used, and many
of these techniques (brainstorming, for example) have been rigorously
described in several texts [Clegg et al. 2007], [Conway Correll 2004],
[Souter 2007]. We differentiate between elicitation and analysis as
follows:

• Elicitation is the interaction with stakeholders to capture their
needs.

• Analysis is the refinement of stakeholder needs into formal
product specifications.

In this chapter, we will describe some of the more well-known
techniques of elicitation from the perspective of what works, what is
important, and how to drive a successful elicitation effort. Rather than
describe any single elicitation technique in detail, we will review some
commonly used techniques, suggest some best practices, and identify
problems that can arise during elicitation and how to address them.

As Dr. Brooks points out in the opening quotation [Brooks 1995],
one of the most difficult parts of the development life cycle is the
identification of key requirements. Analysts can sometimes begin
working on a project with a predisposition or bias that may impact their
work. For example, if software developers are given the task of defining
product requirements, they may start with solutions with which they
are most comfortable, e.g., “Sentence first—verdict afterwards.”1
Analysts must be trained to separate solutions from requirements when
transcribing client needs and creating requirements specifications.

We start by discussing some of the difficulties in successfully
eliciting the requirements for a product or service, including the
different types of situations that can affect the approach used for
collecting requirements. We then discuss key issues. Finally, we
discuss approaches that can be used to elicit customer needs along
with some metrics that can be used to measure progress.

1 As stated by the red queen in Alice’s Adventures in Wonderland by Lewis Carroll.

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 41 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 41

3.2 Issues and Problems in Requirements Elicitation
Eliciting requirements from stakeholders can sometimes become a
painful, drawn-out, and thankless task. Collecting requirements may
be viewed as an afterthought or assigned to junior staff. There may
even be situations where there are no documented requirements until
the project is nearing completion and the staff realizes that requirements
are necessary to create test cases, or even worse, a requirements review
is necessary for client acceptance or payment. A difficult task may
then begin to reverse-engineer requirements for a system that is
already in system test or nearing completion. When requirements are
reverse-engineered from a product under construction purely for
contractual reasons, the finished system may not meet the client’s
needs or be accepted. If the definition of nonfunctional requirements
is delayed until the end of the project, the system may turn out to be
inadequate for the intended purpose; e.g., it may not meet the needed
performance, reliability, or security goals. Typical situations that may
impede or otherwise affect the requirements elicitation process are
described in the sections that follow, along with suggestions for
handling them.

The Missing Ignoramus
Elicitation should be led by senior staff members with experience and
training in requirements elicitation techniques. An elicitation team
composed of a mixture of experienced staff and not-so-experienced
staff enables the mentoring and training of less-experienced members
of the team. Furthermore, it is usually advisable to have someone
involved with the elicitation process who has no domain knowledge,
e.g., someone who is not afraid to ask “what does that mean?” Professor
Dan Berry of the University of Waterloo refers to such an analyst
as a “smart ignoramus” [Berry 1995]. Without such people present,
situations can arise where insufficient information is collected, or
worse, the same term is used to mean different things. On one occasion
one of the authors was the facilitator in a brainstorming session to
gather requirements for a payroll system for automobile dealerships.
During a discussion of contractual issues he asked the simple question
“what is a contract?” Several managers were dumbfounded that he
should ask such a question—after all, it was perfectly obvious what a
contract was. Yet it still took three days for the participants to agree on
a viable definition of contract.

It is beneficial to have the elicitation team ask the question “why?”
When a need is identified, by asking why, you may find legitimate
reasons for the need, or you might find out it is “feature folklore.”
Folklore is something that has been done on every project, but such
features have no value to the customer and nobody knows why they
are there. This can result in the elimination of an unnecessary need
that turns into a requirement that you implement and the customer
does not want.

 42 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

The Wrong Stakeholders
A stakeholder or subject matter expert may not speak for an entire
organization. It is important during elicitation that the team capturing
the data understands the relationship of the expert to the organization
and project; i.e.:

• Is the expert speaking for the entire organization?

• Are there differences of opinion regarding functionality or
issues that have not been resolved?

• Are the stakeholders knowledgeable about the domain under
discussion?

Untrained Analysts
An untrained analyst may be a very senior, skilled, or business-savvy
person. However, the job of the analyst is to capture organization,
project, or product needs, and not to engage in wishful thinking or
make solution decisions.

On occasion, we have used software developers or database staff
to assist in capturing stakeholder requests (note: requests are not
requirements until they have gone through a review process and been
accepted). It can be very difficult for an untrained person to separate
need from solution. For example, database analysts might think of
database configurations as they conduct interviews and place their
thoughts in with the stakeholder requests. For example: “There shall
be a table for storing customer names and addresses” rather than
“The new system shall store customer names and addresses.”
Similarly, developers will naturally try to design as they capture
needs or define requirements: “The customer names shall be cached
to ensure rapid retrieval” as opposed to “The new system shall be
able to rapidly retrieve customer names and addresses.”

Not Identifying Requirements Level
Requirements are often captured at different levels of detail (see
Figure 3.1). For example, “The car shall have power steering”
recorded alongside “The power steering coupling shall use metric

FIGURE 3.1 Requirements pyramid

Business Requirements: Why do we develop the product?
Captured in a vision and scope document (V&S)

Customers Requirements: What are customers’ expectations?
Captured in a customers requirements specification (CRS)

System Architecture/Design
Captured in architecture documentation

Problem Space
(RE Scope)

Solution Space
(not RE Scope)

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 43 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 43

hex head screws.” Meetings to elicit requirements can be sometimes
chaotic, with customers rambling or not necessarily focusing on one
specific topic. While it is important to have stakeholders’ focus, it is
also important not to lose any worthwhile information. Therefore,
when stakeholder requests are captured, it is important to tag the
information recorded with one or more attributes describing the
level of the captured information, along with which stakeholder is
requesting it. For example,

“We want to have the safest car on the market. So we plan to have
an interlock system between the brake and the transmission. The
interlock will decouple the transmission when the brake is pressed.
We should use ½-inch stainless steel for the decoupling rod for safety
purposes, and to prevent corrosion in climates where salt is used on
the roads from eroding the coupling.”

In this example there are requirements at several levels, along
with some design decisions mixed in with the requirements. When
captured and placed in a requirements database, the tagging might
look as shown in Table 3.1.

Note that the selection of stainless steel was removed because it
was a proposed solution, not a requirement.

Failure to Accurately Identify Stakeholders
Imagine being at a meeting with ten or fifteen stakeholders
representing hospitals and health care networks. One stakeholder
suggests a product feature that would allow patients or doctors to
schedule appointments for medical services over the web. Another
stakeholder feels that it is a good idea, but not as urgent as having
doctors schedule appointments and services from their PDAs. During
prioritization meetings it is determined that both requests cannot be
satisfied in the first release of the hospital scheduling system. One of
the requests came from a ten-thousand-bed health care network, and
the other request came from a small, one-hundred-bed hospital.

Request Request Type (or Level) Stakeholder

Safest Car on the
Highway

Business Goal Sales VP Smith

Interlock Between
Brake and
Transmission

Customer Requirement Rental Car
VP Jones

Corrosion-
Resistant Coupling
Mechanism

System Requirement Engineering
Mgr. Carlson

TABLE 3.1 Level of Requirements

 44 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Unfortunately, while the meeting information is available, the names
of the customers requesting the features were never recorded. Thus,
the information needed for prioritization and release scheduling is
missing. So, it is very important to record stakeholder information
when collecting product requests.

Problems Separating Context from Requirement
Eliciting stakeholder requests to create requirements can be a difficult
task when stakeholders ramble. Sometimes, stakeholders will confuse
background with need. For example,

“We need to have cars stop at the intersection when the light
changes in order to avoid accidents. Drivers should therefore be
able to see the signal from at least 50 feet away in the rain, and
then apply their brakes if the light is red. We do not want drivers
going through red lights.”

In the preceding paragraph there is only one real potential
requirement, that the drivers should be able to see the signal from at
least 50 feet away. Everything else is either wishful thinking or out of
scope for requirements for a signaling system. It is possible that a
township might insist on a contract clause that states “after installation
of the signaling system there will be no more accidents caused by cars
running red lights.” However, it is not physically possible for any
commercial traffic signal system to guarantee that there will not be
any accidents, since drivers and their cars are not controlled by the
system and furthermore, even if they were, no system can have perfect
reliability.

One way to prevent the intermixing of requests and requirements
with need is to carefully separate context and background from
stakeholder requests. Requests are something that the system shall do.
Context might include information about the way the environment
will be impacted by the system after installation. Context might also
include background information about the reason the system is being
purchased or created; it might include background information
describing the environment. We recommend that background
information be kept in separate documents or, at the least, in separate
sections of a document, e.g., sections on what the customer would like
to accomplish, and the customer’s environment before and after the
system being proposed is operational. Under no circumstances should
the “will” statements appear in a requirements specification.
Specifications may become part of binding contracts, and it is important
to avoid having wishful thinking or expected external behavior
contractually guaranteed by a supplier.

Failure to Collect Enough Information
Some stakeholders or domain experts can be difficult to track down
and meet with. Problems of elicitation can be exacerbated if a key

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 45 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 45

subject matter expert is available for only limited periods of time. On
a taxation system project that we worked on, for example, the
requirements engineers were informed that the tax accountants and
attorneys were very busy (during tax return preparation season) and
could meet with the analysts only one hour a week.

Once an elicitation cycle is completed, it can be difficult in some
cases to revisit open issues with stakeholders. Therefore, it is important
to collect as much information as possible during elicitation sessions.
One way to do this is to have representatives of development,
manufacturing, and testing present their requirements wishes during
elicitation sessions. We also recommend that access to subject matter
experts be part of the initial planning for a project. Very often the
people who know the most about a topic are those a company may
rely most heavily on, and consequently, their availability may be very
limited.

Requirements Are Too Volatile
Capers Jones and Walker Royce have estimated that for most projects
there is a 1–3 percent change per month in the meaning or interpretation
of requirements [Jones 2008], [Royce 1998]. If needs are changing
rapidly, defining a stable set of product requirements may not be
feasible. It may be necessary to wait until there is some level of
stability before attempting to finalize a baseline requirement set for a
product (Figure 3.2).

System Boundaries Are Not Identified
Several years ago one of the authors worked on the requirements for an
insurance underwriting system. As underwriting systems are used by

FIGURE 3.2 Requirements volatility vs. time

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pe
rc

en
t R

eq
ui

re
m

en
ts

 C
ha

ng
in

g

Month Since Inception of Requirements Gathering

Fo
rm

al
ly

 St
ar

t C
ap

tu
rin

g

Req
uire

m
en

ts

 46 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

many functions within the insurance industry, there were interactions
with sales, marketing, policy writing, accounting, and independent
insurance agents. The requirements gathering was being done in a
distributed fashion, so it was important to ensure that there was no
duplication of work, and that time was not spent on topics that were
out of scope (e.g., how marketing uses underwriting information).
High-level, color-coded models were used to indicate the distribution
of work and identify out-of-scope topics (see Figure 3.3).

Understanding of Product Needs Is Incomplete
Analysts are often asked to help define requirements for products
where the stakeholders are uncertain of their needs. Sometimes they
are even uncertain as to what the business goals are. There are several
techniques that can be used to assist in clarifying customer needs. One
method, prototyping, is discussed in detail in Chapter 9. Sometimes,
just the act of eliciting requirements with several stakeholders present
will stimulate discussion and help to clarify customers’ needs. Another
technique that we recommend is to start by creating marketing
literature, a user manual, or lightweight specification sheets for the
product. For example, create a simple, two-page marketing brochure
or fictional product advertisement that might be given to customers:

• Is it what the customers want and need?

• Is it feasible to build (with the available technology, time, and
budget)?

• Does it adequately describe, at a high level, the proposed
product features?

• Does it indicate why customers should buy it (e.g., over the
competitive products)?

Such a mock marketing brochure development task might lead to
the conclusion that not enough is known about the market, or perhaps
the business goals are not clear enough. If work does go forward to

FIGURE 3.3 Using color to identify subjects that are out of scope

Fleet Automotive Insurance

Underwriting

Sales

Marketing

Accounting

<<include>>

<<include>>

<<include>>

<<include>>

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 47 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 47

create a full requirements specification and to design and build the
product, then, at the very least, the product vision will be described
in an internal document.

Users Misunderstand What Computers Can Do
Stakeholders may ascribe virtues to computer systems that are
futuristic, wishful thinking, or simply impractical. For example,

“We would like the new payroll system to automatically detect the
employee’s marital status from public records.”

It is important for analysts to adjust the phrasing of stakeholder
requests so that a reasonable discussion can be held on whether to
make the requests requirements or not, e.g., feasibility, legality, and
practicality. However, it is a good idea to record cutting-edge requests,
as they may go from cutting-edge to commonplace in short order. For
example, in 1992, we saw the following statement in a requirements
specification:

“As there will never be a need for computers to have more than
one processor, there is no need for a requirement for the new
system to support multiple processors.”

The Requirements Engineer Has Deep Domain Knowledge
If a requirements analyst has strong domain knowledge, there may be
a tendency to minimize communication with stakeholders. That is, the
analyst may try to do it all himself or herself without seeking outside
validation or views. Failure to communicate with external stakeholders
can be especially dangerous in a domain where technology is changing
rapidly (e.g., cell phones).

Stakeholders Speak Different Natural and Technical Languages
When stakeholders are from different domains or speak different
languages, communication can be even more difficult. Problems may
arise in several areas, such as

• Ensuring efficient quality reviews of requirements

• Smoothly running elicitation sessions

• Domain experts understanding the impact of stakeholder
requests made in one area on their area

• Understanding complex needs, processes, or algorithms

Because of the difficulty in getting stakeholders and analysts to
understand and review each other’s work, we recommend wherever
possible using visual techniques, including models, diagrams, and
tables, to communicate important concepts.

 48 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Stakeholders Omit Important, Well-Understood, Tacit Information
On occasion, a stakeholder or domain expert may be “too close” to
the material he or she is describing and forget to include salient
points, assuming that the material is so basic that it does not need to
be communicated. You may have been in a situation where you were
reading the instructions for doing something, could not get it to work,
and then found out that steps were missing from the instructions. For
example,

“To drive a stick-shift car, start the engine, put the car in gear,
and go!”

Of course, there are a few missing steps such as putting the key in
the ignition and making sure that the clutch is pressed in order to
start the engine. But a driver who uses such a car every day might
take for granted putting the key in the ignition and pressing down on
the clutch, while someone who has never driven before might realize
that some steps had been left out. The “smart ignoramus” (see the
earlier section “The Missing Ignoramus”) can help, but a trained
analyst or facilitator is really necessary during elicitation sessions to
ensure that every last detail needed to define a product is captured.
There is also a crossover point between elicitation and analysis;
sometimes the boundary between the two activities is clearly defined,
and sometimes it is not.

Stakeholders Have Conflicting Views
When stakeholders have conflicting views, a heated discussion
(possibly started by the “smart ignoramus” asking a question) may
ensue. The conflict must be resolved, but not during the elicitation
session (unless it is just a matter of a minute or two). Conducting an
elicitation session requires the same skill at moderation or facilitation
as any other professional meeting, and complex or lengthy discussions
need to take place elsewhere to avoid a loss of productivity. Facilitation
of brainstorming sessions is described in more detail in the next
section.

3.3 Requirements Elicitation Methods
As mentioned early in this chapter, requirements elicitation is the
interaction with stakeholders to capture their needs. No decisions
have been made at this point about which of the needs will become
requirements, and which of the requirements will be included in a
release of the product that is yet to be built. Furthermore, in many
cases the same techniques can be used for both elicitation and analysis
(Figure 3.4). As there are so many different ways to capture stakeholder
needs, we only mention a few here. The reader is encouraged to seek
out techniques that are appropriate to their situation.

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 49 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 49

Eliciting Business Goals
A sometimes overlooked aspect of requirements elicitation is the
determination of business goals. These goals are associated with the
needs of the manufacturing or development organization rather than
the needs of the customer or purchaser. For example, sample business
goals might be

• Increase profitability by 5 percent the next fiscal year.

• Customers should associate our product with high quality.

• Customers should associate our product with best value.

• Our next product should take advantage of emerging
technologies.

One way of visualizing and capturing business goals is a simple
graphical technique known as goal modeling. Two of the more
popular techniques are KAOS [Dardenne et al. 1993] and I* [Yu 1993].
A nice survey of different goal modeling techniques can be found in
the article by van Lamsweerde [van Lamsweerde 2001].

Goal modeling is a nice way to crystallize ideas, to present
corporate goals in a simple-to-understand and unambiguous way,
and to identify and balance difficult choices. In Figure 3.5, we see a
simple goal model fragment, where a plus sign indicates that the
lower-level goal contributes to the higher-level goal, and a minus sign
indicates that the lower-level goal detracts from the higher-level goal.
If the additions and detractions can be quantified, then the selection of

B
us

in
es

s
G

oa
ls

E
th

no
gr

ap
hi

c
R

es
ea

rc
h

Su
rv

ey
 T

ec
hn

iq
ue

s

B
ra

in
st

or
m

in
g

T
ec

hn
iq

ue
s

Fe
at

ur
e

M
od

el
in

g

Pr
ot

ot
yp

in
g

B
us

in
es

s
M

od
el

in
g

G
lo

ba
l A

na
ly

si
s

Fo
cu

s
G

ro
up

 M
ee

ti
ng

s

T
ra

d
it

io
na

l R
eq

ui
re

m
en

ts
 A

na
ly

si
s

R
el

ea
se

 P
la

nn
in

g

Elicitation Analysis

ITERATIVE

FIGURE 3.4 Example elicitation and analysis methods

 50 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

the optimal goal set can be calculated. However, the reality is that the
contribution of many high-level requirements cannot be calculated for
a variety of reasons, including changing demographics, rapid shifts in
technology, etc. Sometimes, difficulties associated with conflicting
goals are not recognized until the requirements have gone through a
complete review cycle. The refinement of nonfunctional requirements
can bring to light issues that may otherwise remain hidden. The
importance and impact that nonfunctional requirements can have
warrant their consideration and elicitation as early as possible in
the product development cycle.

Goal models can be as simple or as complex as necessary.
Figure 3.6 shows some of the goals for a nuclear power plant
simulator. Such simulators, mandated by regulation, are used to
train the operators of nuclear power plants and must have high
fidelity and reliability. The figure shown identifies quality assessment
methods, or QAMs, that are used to determine how well the business
goals meet the desired quality [Cleland-Huang 2005]. For example,
QAM 5 states that when any action is taken, the simulator indicator
light response shall be within 200 milliseconds of the response in the
real plant. That is, if a button is pressed in the power plant closing a
valve and an indicator light comes on in three tenths of a second,
then in the simulator, that light must come on within three to five
tenths of a second. The actual QAM was evaluated by randomly
connecting an oscilloscope to button/light pairs (there were
thousands of such pairs) in the simulator and determining that the
response was within specification by measuring the step wave on
the oscilloscope. Goal models with QAMs can be used as checklists
to ensure that important nonfunctional requirements have not been
overlooked. If a QAM cannot be defined for a nonfunctional
requirement, then it may not be possible to test that the requirement
has been met, and the requirement should then not be part of a
contract or requirements specification, as it may not be feasible to
implement.

FIGURE 3.5 Simple goal model fragment

High Quality Low Cost Low Weight

Bicycle
Attractive to
Customers

Titanium
Gears

+
+

+

+

–
+

C

hapter 3:
Eliciting R

equirem
ents

51

C
hapter 3:

Eliciting R
equirem

ents
51

FIGURE 3.6 Partial goal model for a nuclear power plant simulator (Picture courtesy of Professor Jane
Cleland-Huang, DePaul University, 2005)

C

B

Q#

A

C

Q11

Q10
Q8

Q7

Q4
Q5

Q6

Q3

Q1

Q2

Q9

Real-time
simulations must
behave identically
within xmicrosecs
of real plant

ASCII message
protocol

Real-time
feedback

Lights
responds
within < 200ms
of physical
plant

Metrics
within
1% of real
plant
performance

Temporal
high
fidelity

Quantitative
high fidelity

High
fidelity

Key
Helps
Hurts

Impact
point

QAMs

Support
simulation
speed-up

Effective
teaching Scalable

Specify
acceptable
user
response
times.

Run
simulations
for large
scaled
plants.

Deployable
on various
hardware
configurations.

Portable

Maileable

Supports
different
metrics

Supports
different
languages
French, English,
German,
Japanese.

Factory
pattern

MetricImperial

Network
transparency

Run as
distributed
system across
multiple ven
systems.

Run on
multiple
operating
systems.

Compact
runtime
system,
capable of
running on
small
computers
 with
 limited
system and
disk.

Reliability

Run
simulations
for small
scaled
plants.

Support
scenarios.

Score a
student’s
treatment of a
malfunction.

Permanently
cache common
simulation states.

Malfunctions

Specify
expected
responses.

Replay
scenarios

High
MTTF

Continuous
failures that
increase in
intensity

Discrete
failures

Virtual
network with
inbuilt memory
management
services

Add new
malfunctions
at runtime

Standard
malfunction
interfaces

Working
hardware
indicators

Pure
message
architecture Use

message
bus

Compose
scenarios
from
events

Create,
modify,
delete
events. Runtime

reconfiguration
Visual
modeling
environment

Cost effective
to win market
share

Interchangeable
parts

Ability to
create new
components

Boiling
water
reactor

OilCoal

Pressurized
 water
 reactor

Existing
equipment
reconfigured

Fossil fuel
plants

Nuclear

New
equipment
installed
at plant.

Optimizing
compiler
from
Fortran to
Assembler

Where feasible
perform
computations in
parallel.

Model with no
compilation.
(instant feedback)

Changed
scenario.

Support
simulations of
various types
of power
plants

Extensible

Able to
accommodate
physical
changes
in plant.

Able to
accommodate
new failure
scenarios.

New scenario
received from
nuclear regulatory
commission.

Responsive
modeling
tools

High Performance

Integrate
computations
at 10 frames
per second.

Refresh
screens in
2 secs.

Gauges respond
within < 200ms
of physical plant.

 52 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Ethnographic Techniques
Ethnographic research tends to focus on a particular community or
culture [Agar 1996]. Typical collection methods are interviews and
surveys. These are techniques not normally thought of as being a part
of requirements engineering, yet some survey methods are heavily
used to evaluate market demands, possible interest in a product, and
even emotional content. Furthermore, where there is a large customer
base to draw on, it is possible to perform statistical analyses on
surveys to measure customer interest or the emotional appeal of
product features. One of the most common survey methods for
analyzing customer interest in features is Kano modeling, named
after its inventor, Professor Noriaki Kano [Kano 1984].

Kano modeling provides three variables to measure customer
interest: one-dimensional, expected, and attractive quality. One-
dimensional, or linear quality, applies where the potential value of a
product feature increases linearly with some aspect of the feature. A
good example of this is refrigerator energy efficiency. The more efficient
the refrigerator is, the greater the likelihood it will attract purchasers.
Expected quality is a feature that is mandatory for a product to succeed
in the marketplace. Attractive quality is a feature that is not expected
but would add to the emotional appeal of a product. Product features
can have different types of Kano quality variables, depending on locale,
targeted market, and time. For example, a camera in a cell phone would
have been an attractive quality several years ago but is now an expected
quality in most markets.

One interesting aspect of Kano modeling is that measurements
can be culturally sensitive. For example, in the United States most
automobile customers would expect to purchase a car with an
automatic transmission, while in Europe, a manual transmission is
the norm. Kano modeling is widely accepted; some commercial
requirements engineering management software tools come with
Kano analysis facilities built in.

Another interesting use of survey and interview techniques is the
measure of the emotional appeal of a product feature. Engineers and
software developers are often not aware of or interested in the
emotional appeal of their products, yet such factors can have
important consequences for product sales. One extreme example of
failing to take emotional appeal into consideration is the case of the
Ford Edsel. The Washington Post called it the “The Flop Heard Round
the World” [Carlson 2007]. After the car was introduced, customer
response was extremely negative, including comments such as “an
Oldsmobile sucking a lemon” and “a Pontiac pushing a toilet seat.”

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 53 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 53

Prioritization and Ranking of Requirements
While prioritization and ranking of requirements typically occur after
analysis (or even later), the topic is worth mentioning here, as
customer priorities are best captured during elicitation.

First, we should mention the difference between the two, as there
tends to be some confusion regarding the use of the two terms.
Prioritization is the assignment of importance to a requirement using
a tag or label. For example,

• “The base engine sold with the car shall be a 1.8 liter
turbocharged engine”—priority high.

• “18 inch wheels shall be offered as an option with the car”—
priority medium.

Priorities are usually defined at the start of a project, using either
a numerical or verbal ranking; e.g., 1 means most important and 5
means least important (a numerical ranking has the advantage of
being sortable).

When priorities are assigned to requests and requirements by
stakeholders, only one of the defined values is acceptable.

Ranking is the assignment of a unique order to each requirement
in a group, such that no two requirements have the same rank. For
example,

Under $100 street price 1 (the lower number is more
 important)

Built-in camera 2
Operable with one hand 3
LCD panel can be seen in 4
daylight

When deciding which features will be in a product release, a
ranking technique is normally used, whereas prioritization is used
more for initial scoping. When questionnaires or surveys are sent out
to customers, they will typically be asked to assign a priority to a
feature (e.g., more likely to buy the product, no difference, less likely to
buy the product).

A common problem can occur when customers label their
stakeholder requests as being of “high,” “medium,” or “low” priority,
since to some customers, every request will be of “high” priority.

An effective approach when scoping a product or planning
schedules or releases is to use pairwise ranking [Karlsson 1996],
[Sobczaka et al. 2007]. Pairwise ranking, sometimes called the

 54 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

“Analytic Hierarchy Process” (AHP), is where the stakeholder or
analyst ranking the requirements looks at only two requirements,
compares them, and ranks them; e.g., the more important of the two is
placed higher in a list. This process is done iteratively until all the
requirements have been ranked. While the approach may work well
for small requirements sets, as the number of requirements N increases,
the number of rankings that must be done increases quadratically
(N(N – 1)/2) [Sheehan et al. 2000]. Since different stakeholders may
rank the same requirements set differently, an approach must be
formulated to merge the different sets of ranked requirements. We
therefore recommend that a pairwise ranking prioritization be
restricted to stakeholder requests or product features (near the top of
the pyramid), to reduce the ranking effort.

Another technique used to prioritize requirements is the “planning
game,” or PG, approach, popularized with extreme programming
[Beck 1999]. In the PG approach, stakeholder requests, features, or
requirements (depending on when prioritization takes place) are
partitioned into three sets that align with Kano qualities: “needed for
the system to function,” “add real value,” and “nice to have but not
necessary.” An informal risk analysis is done to determine the ease of
implementation effort, and a final decision is made as to which
features or requirements to implement.

Ranking cannot take place in a vacuum; e.g., the cost and risk
associated with implementation must be known. Furthermore, in
some industries additional factors such as hazards (to the consumer)
and technology shifts must be considered. For example, a novel
technique for opening and closing car windows is evaluated that uses
a light sensor; i.e., no physical contact with the switch is required. The
cost to implement is low, customers evaluate the feature very highly,
and it seems to have high positive emotional value. However, the
hazard analysis (see Chapter 11) indicates the potential for an unsafe
condition, as a child can be hurt or injured when the window rises
accidentally. As a result, the feature is not included in the next year’s
car model.

In summary, initial prioritization of stakeholder requests should
take place as early in a product life cycle as possible. Several
prioritization activities may be needed, one just for the stakeholders,
another when the architect or designers evaluate the cost and risk of
implementation, and possibly additional sessions prior to the build/
no build decision. Prioritization should be accomplished as far up the
requirements pyramid as is feasible, with ranking taking place once
the requirements are sufficiently finalized such that the cost and
resource impact of implementation is understood. Furthermore, some
techniques such as pairwise ranking may not be feasible with a large
number of requirements, e.g., rank at the feature level and not at the
system level. Prioritization (and the ranking of small sets of requests)
can be combined with the stakeholder review process where the

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 55 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 55

determination is made as to whether a request is “in” or “out”; i.e.,
will or will not become part of the approved requirements set.

Quality Function Deployment (QFD) Method
QFD was developed by Drs. Shigeru Mizuno and Yoji Akao in an
effort to integrate customer needs into product designs [Akao 1990].
According to the QFD Institute,2 the QFD method:

 1. Seeks out spoken and unspoken customer needs from the
fuzzy voice of the customer verbatim.

 2. Uncovers “positive” qualities that wow the customer.

 3. Translates these into design characteristics and deliverable
actions.

 4. Builds and delivers a quality product or service by focusing
the various business functions toward achieving a common
goal—customer satisfaction.

As QFD is well documented, it will not be described here. QFD
is often part of a Six Sigma program [Mikel et al. 1999]. The “house
of quality” matrix (so named because the matrix shape resembles a
house) is a widely used technique for capturing unspoken customer
needs and then correlating them with requirements.

Brainstorming Sessions
Brainstorming sessions are widely used to elicit initial stakeholder
requests for products. They tend to take place with multiple
stakeholders or customers, and the sessions are usually managed by
experienced facilitators in one session over one or two days maximum.
The objective of a brainstorming session is to come up with new and
innovative ideas or product features in a very rapid period of time. A
brainstorming session tends to have a set of discrete, well-defined
activities. A capable facilitator is essential to the success of the session.
When defining ideas, it is important to avoid conflicts: e.g., one
participant disparaging the ideas of another. Since very senior people
can be in the session, it is important that they not intimidate the other,
less senior-level participants.

An interesting story was told to one author during his military
service. Military schools for senior officers often teach brainstorming
techniques. At one such class, an Air Force captain, who was a friend
of the author, engaged in a heated discussion with one of the
other participants. After the session was over, the captain went over
to the other participant to review their in-class discussion, only to
find out to his dismay that the other officer was a lieutenant general.

2 www.qfdi.org/

www.qfdi.org/

 56 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

The general explained to the captain that when he went in to class,
he always hid his rank as best he could to avoid intimidating the
other students, as he wanted their unbiased opinions. In business, it
is the role of the facilitator to prevent intimidation or speech making
from occurring, and to keep the session moving smoothly.

The objective and duration of the brainstorming session must be
agreed upon by all the participants. This should ideally be determined
prior to the start of the session. The session starts with a free flow of
ideas, creating an unsorted set of product suggestions. Often “sticky
notes” are used to record the ideas, and they are placed on a board
(see Figure 3.7). Some general brainstorming protocols include
allowing duplicates or similar ideas to be recorded, and discouraging
filtering or censorship; e.g., allow “extreme” ideas.

The next activity in brainstorming is the condensation of the ideas
to group related concepts and eliminate redundancy. The third activity
is to formally assign the ideas to categories. Next, the group breaks up
into small teams that assess the ideas and expand upon them.

Within each group, the ideas are then ranked (pairwise ranking).
Finally, the brainstorming session is concluded with action items
where appropriate for participants in the session. If the session was
attended by customers not involved in analysis, then the post-session
activities are usually done internally by project team members and
company stakeholders.

Tabular Elicitation Techniques
The use of tables can provide a compact, unambiguous method for
capturing stakeholder requests. Two types of widely used tabular

Unstructured Ideas Grouped Related Ideas

Categorized IdeasExpanded and Prioritized Ideas

FIGURE 3.7 Stages of a brainstorming session

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 57 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 57

techniques are decision tables and state tables. Decision tables are
most often used where there are discrete sets of conditions that can
be determined with a “yes” or “no,” actions to take if the conditions
are met, and a set of rules, where each unique set of conditions and
the action to take is one rule.

Most of us have seen or used decision tables at one time or another.
A very common form of decision table is the tax table shown in
Figure 3.8.3 Each row represents a condition, in this case the taxpayer’s
income. Each column represents a rule; i.e,. a condition (single, married
filing jointly, etc.) and a set of actions, where the actions in this case
determine what tax should be paid. When eliciting draft requirements
from stakeholders, a decision table can be an efficient, compact, and
unambiguous technique for capturing business rules.

State tables are different than decision tables in that they are used
where the object under consideration can be in various states at different
times, and well-defined, simple events trigger the change from one
state to another. An object that transitions only on discrete events and
has a predefined number of known states is called a state machine. In
the case of a taxpayer, a state table would not be appropriate, as there
is only one state: “about to pay taxes.”

State tables, which show the behavior of a state machine, usually
have a single start state, and then a set of states that an object
transitions to, and finally either a successful exit state or one or more
“error” states where activity stops because an error of some kind has
occurred. Each state change is associated with one or more events

3 www.irs.gov/pub/irs-pdf/i1040tt.pdf

If line 43
(taxable
income) is— rule And you are—

Your tax is—

At
least

1,300
1,325
1,350
1,375
1,400
1,425
1,450
1,475

But
less
than

1,325
1,350
1,375
1,400
1,425
1,450
1,475
1,500

Single

131
134
136
139
141
144
146
149

Married
filing
jointly

131
134
136
139
141
144
146
149

Married
filing
separately

131
134
136
139
141
144
146
149

Head
of a
household

131
134
136
139
141
144
146
149

FIGURE 3.8 Example decision table

www.irs.gov/pub/irs-pdf/i1040tt.pdf

 58 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

that cause the change, and one or more actions that take place as the
object transitions from one state to another.

A summary of the different kinds of state tables can be found
in the March 2008 Crosstalk article by Herrmannsdörfer et al.
[Herrmannsdörfer et al. 2008]. As an example, consider the design of
a simple CD player with three buttons (Figure 3.9). The only states
that the player can be in (assuming the power is on) are open, closed
and loaded, closed and empty, and playing (which is only possible if
the player is closed and loaded). There are also well-defined events
that determine what state the player is in, and clear actions to take for
any given event. On an event (in this case pressing a button), one or
more actions are taken, and the player transitions to a different state or
stays in the same state. The particular state table shown is nondeterministic
because if the state is “Open” and the “Open/Close” button is pressed,
there are two possible transitions. If there is a CD in the tray, the player
will transition to state 2 (closed and loaded), whereas if the tray is empty,
the player will transition to state 3 (closed and empty), depending on
whether a CD is detected in the tray. In general, deterministic state
machines, where an event can have only at most one transition from a
given state, are preferred because design and testing is simplified.
However, it is sometimes possible to make a nondeterministic machine
deterministic by adding intermediate states.

Process Modeling Techniques
A variety of process modeling techniques are suitable for the elicitation
of requirements. Just a few of them are listed here, and model-driven
techniques that are suitable for both elicitation and analysis are
described in more detail in Chapter 4.

FIGURE 3.9 Simple CD player

Play StopState
Number State Open/Close

1 Open Close Tray
{if No Disc
Display “No Disc”
go to 3
else Display “Ready”
go to 2}

No action No action

2 Closed
Loaded

Open Tray
{Display “Open”}
Go to 1

Start Playing
{Display “Playing”}
Go to 4

No action

3 Closed
Empty

Open Tray
{Display “Open”}
Go to 2

{Display “No Disc”}
No action

No action

4 Playing Stop Playing
Open Tray
{Display “Open”}
Go to 1

{Display “Playing”}
No action

Stop Playing
{Display “Stop”}
Go to 2

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 59 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 59

Data flow diagrams (DFDs) have been around for a long time.
There are several similar methodologies, such as those defined by
[Gane et al. 1997] and [Yourdon 1988]. A sample data flow diagram
is shown in Figure 3.10. The vertical lines on the data stores indicate
the number of times that the store is shown on the diagram. While
DFDs appear to have fallen out of favor and viable tools can be hard
to find, they still have their proponents. DFDs can be very effective
diagramming techniques for analyzing business needs. The primary
difference between the data flow and newer (object-oriented)
techniques is the focus on data flows and data structures rather than
services. With data flow techniques, a customer’s data and the flow
of that data are analyzed. Stores needed to hold the data and
processes needed to manipulate the data are added. The results of
the analysis are then captured in data flow diagrams for review
with the stakeholders.

Use case analysis [Jacobson et al. 1992] (use case = business process)
involves either defining a customer process (business modeling) or
showing the relationship of a system or product to the outside world.
The analysis can be done using natural languages and tables or visual
techniques such as those described in Chapter 4. A use case consists of
the following:

• Actors People or things interacting with the use case

• Events Things that cause the use case to happen

• Preconditions Things that must be true for the use case to
happen

• Postconditions Things that must be true if the use case has
successfully completed

• Activities The processes that occur in the use case

• Included use cases Other processes used by this use case

• Extending use cases Other processes that may optionally
take place during the occurrence of this use case

When using natural language, activities are normally described
using a table similar to the one shown in Table 3.2. In addition to the
“sunny day” scenario, tables are normally created for alternate
scenarios. For the “cash a check” example shown in Table 3.2, alternate
scenarios might include how to handle insufficient funds or an ID
that is not acceptable.

One problem with using natural language is that the set of use
cases describing viable business processes makes up a graphical
structure that is not well represented by text documents. For
example, two different use cases might use or include the same use
case (Figure 3.11). Furthermore, as we interact with the customers
or stakeholders, the number of use cases can grow rapidly. If the use
cases are kept in text files, document management issues can arise.

60

S
o

ftw
are &

 S
ystem

s R
eq

u
irem

ents En
gineering: In P

ractice

Mgmt

Client
Verify

Requirements
in Scope

3
Verify

Requirements
Testable

2
Capture

Stakeholder
Requests

1

Assess Impact
with Project

Team

4

Request Reviewed
requirements

Mapped requirements

Mapped requirements

7

Risk analysis

5

Failed requirements

6

Business requirements

Impact analysis

Updated
requirements

Updated
requirements

Updated project
schedule

Manpower
allocation

Design changes

Negotiate
Changes

Allocate
Requirements

Track
Change

Flow
Through

Change
control

information

9
Review

Activities
with Mgmt

8
Map

Deliverables
to

Requirements

Requirements change

Change
control

documents

Mapped
requirements

Mapped
deliverables

Status
report

Change control
documents

10
Generate

SRS
Document

Repository information
SRS

DocumentCASE
Repository

Project
Library

Project
Library

Revised
Project Library

Schedule

Requirements
Repository

Requirements
Repository

Requirements
Repository

Requirements
Repository

FIGURE 3.10 Data flow diagram for a requirements management process

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 61 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 61

Another problem with textual use cases is the occurrence of
crosscutting issues that require use case modifications. With graphical
models, it is a relatively simple matter to make changes, since
the CASE tool handles the updating of other diagrams. Scenario
diagrams take the place of tabular descriptions of activities (see
Figure 3.12). With text, a crosscutting change can involve heavy
manual effort to keep primary and alternate use cases across all
relevant documents up-to-date, especially going into the activity
tables and changing steps and responses.

More information about model-driven requirements engineering
and the effective use of graphical modeling techniques can be found
in the next chapter.

Cash a Check Make a Withdrawal

Check Account Balance

Includes Includes

FIGURE 3.11 Graphical nature of use cases

Step Actor
System Response
(Bank Teller) Output

1 Give check
to teller

Can I see your ID?

2 Give ID
to teller

ID is okay

3 Put ID away Return ID

4 Check account for
enough money

Hold on account to
cover check amount

5 Take money Cash check

TABLE 3.2 Sample Use Case Activity

 62 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

3.4 Customer-Specific Business Rules
Business rules are a special category of customer requirements. They
are different in that rather than defining a fixed customer need, they
describe the implementation of a customer policy that may be changed
by the customer after delivery of a product or system. Hence they
describe a special category of user-implemented extensibility.

A business can enact, revise, and discontinue the business rules
that govern and guide it. A business policy is an element of governance
that is not directly enforceable, whose purpose is to guide an enterprise.
Compared to a business rule, a business policy tends to be less
structured; i.e., less carefully expressed in terms of a standard
vocabulary and not directly enforceable. For example, a banking
business policy might be: “Bank customers should not be able to
make too many bank withdrawals in a single day or withdraw more
than a certain amount of money in a fixed period of time; the
maximum amount being based on their total account value and
history.”

Why Are Customer-Specific Business Rules Important?
Customer-specific business rules must be kept separate from regular
requirements (at least logically, using database tags or attributes),
since they are not requirements. However, customer requirements
can be derived from the business rules; the requirements may look
different than the rules that they derive from.

What Are Their Characteristics?
Customer-specific business rules are implementations of the customer’s
company policies, where the business rules may change after system

A
Customer A Teller A Check The Bank

Computer System
A Cash
Drawer

Please cash this check

Money

Here is your
ID back

Here is my ID
Please show ID

Check info

Get check info

Cash a check

Okay

Get money (amount)

Money

Verify ID

FIGURE 3.12 Detailing a use case with a scenario diagram

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 63 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 63

or product delivery. It is mandatory that the customer have the ability
to alter the rules without system or product modification.

Example Customer-Specific Business Rules
A sample business policy, rules, and some derived requirements are
shown here:

• Policy The hospital shall be able to define the difference
between adult and child patients for check-in and medical
records purposes.

• Rule Any patient under the age of 14 checking in shall be
considered a child.

 When a child checks into the hospital, depending on the
hospital’s business policy, a parent or guardian may have to
accompany the child and sign all the admission forms.
Detailed rules explain under what circumstances (e.g., an
accident, emergency, or life-threatening situation) a child
may be checked in without a parent’s or guardian’s consent.

• Requirement A facility shall be provided with the system
such that the hospital check-in process for adults and children
can be changed by hospital administrators without the need
for system or software modifications.

Note in the preceding example, the hospital may, at any time,
change the age at which a patient is considered a child, as well as the
rules governing the emergency check-in of a child without parental
consent. The relationships among business policies, rules, and
requirements are illustrated in Figure 3.13.

Business Rule
Statement Policy

Based on
Basis for

Part of
composed of

Source
of

Based
on

Related to

Formal
Expression Type

In the
convention

of An
expression

of
Expressed

in

Source of

Source of

Source of

Business
Requirement

System
Requirement

Formal Rule
Statement

Business
Rule

FIGURE 3.13 Business policies, rules, and derived requirements

 64 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

3.5 Managing the Customer Relationship
Managing the customer relationship is important during the entire
project or product life cycle, and it is crucial during the elicitation
process. Both the consumer and the supplier need to have an ongoing
understanding of the product. It may be necessary to continually
interact with the customer to maintain good relations and keep the
customer informed; e.g., bring them bad news early rather than later.
Project management should never go into denial over issues such as
delivery dates. Rather, open and frequent communication with the
client can usually prevent more severe difficulties from occurring later.

Furthermore, it may be necessary to secure customer cooperation
in order to get access to domain expertise. If, for example, a project is
on a fixed schedule and relations with the client are not managed
properly, access to the client’s domain experts may be restricted,
resulting in late delivery.

It is our experience that constant communication with the customer
is essential for a positive outcome. There may be a tendency on some
projects to elicit the requirements and then forget about the customer
until the factory acceptance test. Doing so is a mistake, as the potential
for misunderstandings widens significantly as a project progresses.
Keeping the customer up-to-date on progress, demonstrating features
(e.g., for prototypes, see Chapter 9), and eliciting comments or
suggestions are both ethically correct and good business.

3.6 Managing Requirements Elicitation
Requirements elicitation is like any other project activity. It must be
planned, it must be managed properly, and speedy follow-up on
open issues is essential. While every organization or group has its
own way of doing things, we have found that certain activities are
essential to achieving a positive outcome.

Planning Elicitation Sessions
In order for elicitation sessions to be successful, they must be planned.
Planning includes setting up the framework for conducting the
sessions, managing the output of the sessions, and defining
completion. We offer these suggestions:

 1. Set up a schedule of elicitation sessions. Since diverse domain
expertise may be needed, sessions need to be defined for
capturing needs based on the expertise needed for each
domain that is in scope. For example, in sessions to define a
new insurance system, it might be necessary to capture the
needs of marketing, sales, underwriting, accounting, etc. Since
the people who would be participating are usually critical to
the operation of an organization and access to them may be
limited, the schedule may need to be carefully defined.

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 65 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 65

 2. Define the venue and the media. This includes where the
sessions will be held, as well as any audiovisual techniques
used (e.g., whiteboard, stickies, RGB projector). The format
for capturing the results of each elicitation session needs to be
defined. Capture mechanisms may include a requirements
database (viewed using a browser or the database screens),
Excel spreadsheets, modeling tools, or other electronic capture
mechanisms.

 3. Define standards, schemas, and processes prior to the start of
the elicitation sessions. When capturing stakeholder requests,
they may be at very different levels (see the earlier section
“Not Identifying Requirements Level”). It is important that
any information captured be properly identified (including
the stakeholder), partitioned (level), and identified as to type
or other project characteristics, at the time of capture. Once
the requests start to be added, it will be very difficult to go
back and revisit the tagging of requirements. In order to have
an electronic system set up to properly capture the relevant
request or requirement attributes (e.g., priority, stakeholder,
level, type), the database schema or model attributes need
to have already been planned and defined in the toolset
being used. Furthermore, having guidelines for conducting
elicitation sessions will help in soliciting the cooperation of
stakeholders or domain experts to provide the needed
information at the time of elicitation.

 4. Provide a clearly defined agenda for each elicitation session,
with the role of each attendee clearly understood. The agenda
should be feasible and reasonable given the duration and the
people present. Finally, action items should be recorded and
assigned with short due dates and careful follow-up.

 5. Arrange for a senior manager (on the customer side) to
participate in the elicitation sessions. While it may be difficult
to convince clients or customers to have one of their senior
stakeholders participate, it may be the only way to ensure
that customer-provided domain experts actually show up at
the meetings and cooperate. Not that they will be unwilling
to participate, but the priorities of the manager of a domain
expert may be quite different than those of the project manager
for the product under design; they may be in different
organizations or companies. Consequently, when pulling in
domain experts, their presence may not be guaranteed
without the participation of a senior manager in their
organization.

 6. If necessary, arrange for someone on the customer side (the
senior manager mentioned above may suffice) to set up the
schedule and manage it. The analyst in charge of requirements
elicitation may not have access to the scheduling system of

 66 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

the domain experts or may not have the authority to request
their presence at elicitation sessions.

 7. Hold sessions in the morning, if feasible, and schedule them to
last half a day. People tend to tire a bit over time, and about
four hours or less is best for sustaining high productivity.
In addition, work will be generated outside of the elicitation
session (see the next item), and it is recommended that assigned
work be completed the same day that the session was held.

 8. If heavy writing is assigned during an elicitation session,
have it done offline, preferably the afternoon that the session
was completed. This includes definitions, descriptions of
processes, and so on. Text can then be reviewed the following
morning or offline at a later date.

 9. Preferably, find a venue where everyone can see the same
thing at the same time. Whether looking at text or graphics,
all the attendees should be seeing the same information. If
you are able to have the relevant stakeholders in the room
during the elicitation session, the requirements review process
can be shortened, since the reviewers were present during the
elicitation session.

 10. Chunk reviews of work. Imagine being sent an e-mail
containing the following request: “Please review this
paragraph [or page] and send your comments by tomorrow.”
Contrast that with “Please review this 200-page requirements
specification and send your comments within the next two
days.” Clearly the former is likely to happen, and the latter
may result in the reader hitting the Delete button. Reviews
are best done online, with everyone reviewing a reasonably
small amount of material together. When that is not feasible,
the review of material should be partitioned, so that only the
relevant stakeholders see the material they need to review,
and the amount of material to be reviewed is kept small.

 11. Keep reviews of elicitation sessions short and immediate.
When reviewing the output of an elicitation session, we
normally conduct the reviews the same afternoon, not later
than one or two days after the session (before the domain
experts vanish back into their environments).

 12. Keep attendance at an elicitation session (as contrasted with
a brainstorming session, where everyone possible is in the
room) small, no more than six to eight people. A typical
session might consist of: a facilitator or lead analyst, one or
two other analysts (including the designated “smart
ignoramus”), participating stakeholders at the management
level, and one or two domain experts. It is always better to
have two domain experts than one. Two experts can check
each other’s work as the session progresses, minimizing the

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 67 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 67

need for post-session reviews. Three subject matter experts in
the same session may or may not be effective, depending on
their interpersonal dynamics.

To summarize, conducting elicitation sessions may require a
significant planning effort, depending on the scope of the project.
Furthermore, if any needed standards, procedures, and tools are in
place prior to the start of the elicitation sessions, rework will be
minimized and the sessions will proceed more smoothly.

3.7 Requirements and Cost Estimation
A strong correlation has been found between function point counts
and requirements [Jones 2008]. With proper planning, it is possible
to generate function point counts from sets of requirements or an
analysis model. For example, if use cases are annotated with the
appropriate information, a function point count estimate can be
generated by walking the directed graph of the underlying model.
Software requirements automation can play an important role in
software requirements estimation. The Bachman Analyst Workbench
developed in 1991 and the Texas Instruments Information
Engineering Facility (IEF) developed in the early 1990s both
provided automatic derivation of function point metrics from
software requirements.

3.8 Requirements Elicitation for
Incremental Product Development

It was mentioned in Chapter 1 that Capers Jones reported that less
than 25 percent of the requirements for typical applications are new
or unique [Jones 2007]. For projects that are not new, two situations
typically exist:

• A well-defined RE process was used to define the initial
requirements. In this situation, elicitation and analysis can
be a continuation of previous efforts, with new requests
and requirements recorded using the appropriate database
attributes to permit partitioning of the requirement sets.

• An enhancement to a legacy system is to be built, with prior
requirement set(s) either incomplete or missing completely.

The latter situation tends to be quite common; e.g., enhancements
to systems are often done with no prior requirement specifications or
documentation to refer to. When this occurs, it may not be feasible to
reverse-engineer a full requirement set, but rather, only the new
requirements can be captured. In this case the old system and its
functions may have to be treated as a set of legacy requirements;

 68 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

e.g., review the new requirements primarily for compatibility with
the prior system. Depending on the project type, advanced techniques
such as dynamic tracing [Cleland-Huang 2005] can be used to assist
with impact analysis. Some general suggestions when defining the
requirements for incremental improvement to a system for which
requirements do not exist are:

 1. Where cost effective, reverse-engineer a set of high-level
requirements and use it as a starting point. User guides and
help files are an excellent source of such requirements.

 2. Identify any programmatic interfaces, document them, and
treat them as new requirements.

 3. Be sure to review all new requirements, considering
downward compatibility and the sensitivities of users. A very
common complaint for new releases is “I liked the old system
better.”

3.9 Tips for Gathering Requirements
The following set of tips was learned through trial and error and was
based on input from SCR staff members and some of our academic
colleagues. It is not intended to be inclusive, but rather to provide a
starting point.

• Add a “smart ignoramus” to your requirements analysis team.

• Include stakeholders in requirements elicitation sessions who
can speak with authority for the organization, and be sure to
differentiate the “user” from the “customer” when describing
stakeholders.

• Record the level of information and the stakeholder source of
requirements during elicitation sessions.

• Separate context and background from stakeholder requests.

• Plan a project such that access to subject matter experts is
scheduled.

• Where appropriate, start a project by creating marketing
literature, a user manual, or lightweight specification sheets for
the product to help clarify incomplete or undefined customer
needs.

• Force requirements engineers with deep domain expertise to
communicate with external stakeholders, especially for a
domain where technology is changing.

• Wherever possible, use visual techniques, including
models, diagrams, and tables, to communicate important
requirements concepts.

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 69 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 69

• Prioritize stakeholder requests as early in a product life cycle
as possible. Several prioritization activities may be needed,
one just for the stakeholders, another when the architect or
designers evaluate the cost and risk of implementation, and
possibly additional sessions prior to the build/no build
decision. If possible, have key stakeholders participate in any
ranking activity.

• Keep the customer up-to-date on RE progress, demonstrate
features, and elicit comments or suggestions.

• Plan elicitation sessions to include the schedule, session
agenda, equipment, and tools needed; the types of information
to be captured; and the stakeholders who should be present.

• Include a senior manager from the customer’s organization
in requirements elicitation sessions.

• Schedule elicitation sessions in the morning, and then use the
afternoon for miscellaneous activities such as writing
definitions and descriptions and correcting diagrams and
documents.

• Whether looking at text or graphics, assure that all the
participants in a requirements elicitation session see the same
information.

• Organize requirements reviews into small chunks with small
amounts of material together. When that is not feasible, the
review of material should be partitioned, so that only the
relevant stakeholders see the material they need to review,
and the amount of material to be reviewed is kept small,
short, and immediate.

• Keep elicitation sessions small, no more than six to eight
people. Three subject matter experts in the same session may
or may not be effective, depending on their interpersonal
dynamics.

3.10 Summary
There are many different techniques for eliciting customer needs
and business goals. Whatever methods are used, the analysts
eliciting the needs, goals, or requirements should be trained in the
techniques they will be using. Furthermore, the elicitation process
will be more productive and execute more smoothly if process,
methods, and capture mechanisms are well defined, documented,
and communicated to the participating stakeholders prior to the
start of the elicitation sessions.

Those responsible for the elicitation of requirements should be
cognizant of the techniques needed, as well as of the issues and

 70 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

problems described in this chapter. Furthermore, being a project lead
analyst or facilitator is an art in itself, requiring the ability to get
diverse stakeholders to follow an agenda without deviation, and
drive the elicitation process smoothly to completion in the allotted
time (Figure 3.14).

3.11 Discussion Questions

 1. When and how should stakeholder requests be reviewed?

 2. How large should a requirements elicitation session
meeting be?

 3. What are some of the differences between a brainstorming
session and a requirements elicitation session?

References
Agar, M., Professional Stranger: An Informal Introduction to Ethnography, 2nd ed.,

Academic Press, 1996.
Akao, Y., Quality Function Deployment: Integrating Customer Requirements into Product

Design, Productivity Press, 1990.
Beck, K., Extreme Programming Explained, Addison-Wesley, 1999.
Berry, D., “The Importance of Ignorance in Requirements Engineering,” Journal of

Systems and Software, Vol. 28, No. 2, February 1995, pp. 179–184.
Brooks, F.P., Jr., The Mythical Man-Month: Essays on Software Engineering, Anniversary

Edition, Addison Wesley, 1995.
Carlson, P., “The Flop Heard Round the World,” Washington Post, September 4,

2007.
Clegg, B., and Birch, P., Instant Creativity: Simple Techniques to Ignite Innovation &

Problem Solving, Kogan Page, 2007.
Cleland-Huang, J., “Toward Improved Traceability of Non-Functional

Requirements,” International Workshop on Traceability in Emerging Forms of
Software Engineering, Long Beach, CA, November 2005. (In conjunction with
ASE’05.)

Conway Correll, L., Brainstorming Reinvented: A Corporate Communications Guide to
Ideation, Response Books, 2004.

Dardenne, A., van Lamsweerde, A., and Fickas, S., “Goal-Directed Requirements
Acquisition,” in IWSSD: Selected Papers of the Sixth International Workshop on
Software Specification and Design, 1993, pp. 3–50.

Sit down
and shut

up!

FIGURE 3.14
Facilitation skills
are important.

 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 71 C h a p t e r 3 : E l i c i t i n g R e q u i r e m e n t s 71

Gane, C., and Sarson, T., Structured Systems Analysis: Tools and Techniques, McDonnell
Douglas Information, June 1977.

Herrmannsdörfer, M., Konrad, S., and Berenbach, B., “Tabular Notations for State
Machine–Based Specifications,” Crosstalk Magazine, March 2008.

Jacobson, I., Jonnson, P., Christerson, M., and Overgaard, G., Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

Jones, C., Applied Software Measurement, 3rd ed., McGraw-Hill, New York, 2008.
Jones, C., Estimating Software Costs, 2nd ed., McGraw-Hill, New York, 2007.
Kano, N., “Attractive Quality and Must-Be Quality,” The Journal of the Japanese

Society for Quality Control, April 1984, pp. 39–48.
Karlsson, J., “Software Requirements Prioritizing,” Proceedings of the ICRE, 1996,

pp. 110–116.
Mikel, H., and Schroeder, R., Six Sigma: The Breakthrough Management Strategy

Revolutionizing the World’s Top Corporations, Doubleday, 1999.
Royce, W., Software Project Management, Addison-Wesley, 1998.
Sheehan, M., Brace, C., Williams, S., and Sullivan, L., “Optimal Allocation of

Resources to Distribution Investments Using the Analytic Hierarchy Process
to Balance the Impacts of Investments on Safety, Customer Interruption Costs,
Levelized Annual Revenue Requirement, Contribution to Margin, and Other
Considerations,” Proc. IEEE Power Society Summer Meeting, Vol. 3, Seattle, WA,
2000, pp. 1311–1316.

Sobczaka, A., and Berry, D., “Distributed Priority Ranking of Strategic Preliminary
Requirements for Management Information Systems in Economic
Organizations,” Information and Software Technology, Vol. 49, Nos. 9–10,
September 2007, pp. 960–984.

Souter, N., Creative Business Solutions: Breakthrough Thinking: Brainstorming for
Inspiration and Ideas, Sterling, 2007.

van Lamsweerde, A., “Goal-Oriented Requirements Engineering: A Guided Tour,”
Proceedings RE’01, 5th IEEE International Symposium on Requirements Engineering,
Toronto, August 2001, pp. 249–263.

Yourdon, E., Modern Structured Analysis, Prentice-Hall, 1988.
Yu, E.S.K., “Modelling Organizations for Information Systems Requirements

Engineering,” Proc. REP3 – 1st International Symposium on Requirements
Engineering, IEEE, 1993, pp. 34–41.

This page intentionally left blank

CHAPTER 4
Requirements

Modeling
by Brian Berenbach, Sascha Konrad, Juergen Kazmeier

73

 74 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

“‘What is the use of a book,’ thought Alice,
‘without pictures or conversations?’”

—Lewis Carroll, Alice’s Adventures in Wonderland, 1865

“A picture shows me at a glance what it takes
dozens of pages of a book to expound.”

—Ivan Turgenev, Fathers and Sons, 1862

4.1 Introduction
As products become more complex with increasing functionality, it
becomes harder to describe and understand their requirements.
Furthermore, some product concepts that may be easily represented
by a picture can become extraordinarily difficult to comprehend
when transcribed to text. A good example of this is a bicycle. Its
design is easily understood when viewed as a picture, but incredibly
complex and difficult to describe textually. Pictures may be used in
different ways; for instance, they may precisely describe something,
or they may describe an abstraction of something. An abstraction is
defined as “a mental representation or concept that isolates and
generalizes an aspect of an object or group of objects from which
relationships may be perceived” [White et al. 2002]. When a set of
related pictures are combined such that the objects contained in the
pictures are stored along with their relationships, a model is created.
The associated pictures are then views into the model.

In Chapter 2, we discussed the basics of requirements engineering
artifact models to help define the product development life cycle, or
processes used to build a product. In this chapter, we discuss models
that help describe the product itself.

Models require work and skill to produce. Consequently, there is
always a rationale for creation of a model. For example, a fault tree is
a model that graphically represents the interactions of failures and
other events within a system. A fault tree may be mandated when
there are hazards associated with a system, and an analysis is
necessary to determine that there is no danger to the users of the
system or the environment. Sometimes the use of such a model is
mandated by regulation (e.g., medical devices).

Models can be created at different levels of abstraction for different
purposes. In software, a business model can describe why a product is
needed. A feature model then describes the features of a product being
created to enable the business model. A requirements analysis model
then explains the features in sufficient detail to define product
specifications. A design model illustrates the architecture for the product.
An implementation model describes the construction of the product (for
software, the actual source code is the implementation model). Finally,
a test model would describe how the product would be tested
(see Chapter 8 for more information on test models). All these models

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 75 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 75

must be interconnected for a variety of reasons (see the section on
traceability in Chapter 7).

Models may have varying degrees of formality, depending on
their use. Models for safety-critical systems (see Chapter 11) tend to
be very formal. A formal model is one where the semantics for model
construction are defined (e.g., a set of rules for creating the model),
and where criteria for determining the correctness of the model are
established. Most models are not formal. For example, software
developers creating designs in the Unified Modeling Language
(UML) or systems engineers creating designs with the Systems
Modeling Language (SysML) are usually not creating formal models
because there are no rules for model creation, and there is no way to
determine if the model is correct (determining correctness requires
validation against the rule set). The degree of formality and the way
the models are described vary depending on the domain and
experience of the team. For example, for many of the domains we
have worked in, models have been described in UML because of
specific applications and customers, but for embedded systems state
charts are often used.

Moreover, it is even possible to create a formal model by describing
objects and their relationships in a database without any diagrams or
pictures [Rugaber et al. 2001]. It is common, for example, to reverse-
engineer or create UML models (www.uml.org) by loading and
analyzing software source code. The model is contained in the objects
and their relationships.

Figure 4.1 illustrates the use of a conceptual diagram to show
abstraction. In it we see a boiler with water feeds, outlets, and valves.
This diagram alone is sufficient to understand how to install the
Parker boiler. Note that

• Minimal expertise is required to read the schematic.

• It conveys a great deal of useful information.

• It is simple enough that a viewer can easily comprehend the
content.

• It is coherent; that is, everything in the schematic is related in
a visible, understandable way.

When using models as part of an engineering process, one of the
objectives is to convey as much information as possible as succinctly
as possible. This is relatively easy to do in domains where each object
in a model represents something tangible such as a door, window,
capacitor, etc. However, how can the relationships among
requirements, hazards, product features, and business goals be
readily understood for a complex product with thousands of
requirements? Furthermore, unlike the boiler shown in Figure 4.1,
electromechanical and software components may have relatively

www.uml.org

76

S
o

ftw
are &

 S
ystem

s R
eq

u
irem

ents En
gineering: In P

ractice

Drain Valve Bypass Small Pipe Size

Air Elimination
Tank

Flow Switch

Circulating
Pump

Water Inlet
Install with Proper
RPBFP

Balancing Cock

Air Vent

Expansion Tank

Reducing
Valve

3 Way
Diverting
Valve

To Drain

To Return

To Heating System

Typical Heating Coil

Temp.- Pressure
Gauge

Operating
Control

Electrical
Control Panel

Boiler Relief Valve

Inlet to Boiler

Return from
Heating System

Single Boiler with 3 Way Valve Hot
Water Piping Schematic

Note:

(1) System pump should run at all times boiler is energized. When heat is no longer required,
 electrical power to boiler should be disconnected and pump should run for 5–15
 minutes before being turned off.

(2) When 3 way valve is utilized, a minimum position stop on 3 way valve
 or an open bypass should be utilized to insure
 a small flow thru boiler.

U
sed

 on

For

D
r.

C
h.

A
pproved R

PC Parker H
ot W

ater System

D
irect Fired

, C
losed

 System
 H

eating w
ith 3 W

ay V
alve

PA
R

K
E

R
 B

O
IL

E
R

 co.
5930 B

A
N

D
IN

I B
LV

D
.

L
O

S A
N

G
E

L
E

S, C
A

L
IF. 90040

D
ate

11/
16/

01

Part N
am

e
B

oiler Piping Schem
atic

Scale
N

one

Superced
es N

o.
3-29-96

D
W

G
. N

o.
A

201-IN
ST

3

FIGURE 4.1 Conceptual diagram in mechanical engineering (Picture courtesy of Parker Boiler Company, Los Angeles, CA)

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 77 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 77

complex processes that can be difficult to understand, even for a subject
matter expert. Some very simple modeling needs can be inferred
from the need for abstraction:

• Process models should, in general, be understandable by
viewers who are not experts in the domain being described
(there are, of course, exceptions, such as views of complex,
domain-specific information).

• Models should be coherent. That is, there should be no holes
or discontinuities. For example, when describing how a bank
customer cashes a check, the reader should be able to traverse
views easily from the point where the customer enters the
bank until the customer is handed money.

• Tools used to create and view models should be easy to use
and should enable processes, not cause difficulties.

Modeling tools and techniques must work in the context of the
organization and project where they are being used. For example, if
requirements are being elicited in a distributed fashion, then the tools
should support distributed requirements elicitation.

For our purposes, a model can be defined as “A representation of
a system that allows for investigation of the properties of the system
and, in some cases, prediction of future outcomes.” We can infer then
that requirements models can be used to

• Provide views that allow us to understand product
requirements precisely.

• Provide views that show generalizations or simplify complex
relationships between requirements.

• Describe the context or background in which a product will
be used.

In systems and software engineering, modeling for analysis has
very different goals than modeling for design. Martin Fowler has
stated about software design: “The fundamental driver behind
[graphical modeling languages] is that programming languages are
not at a high enough level of abstraction to facilitate discussions about
design” [Fowler 2004]. This chapter concerns itself with the use of
models for elicitation and analysis. In requirements engineering,
elicitation and analysis models are specifically used to

• Provide aids for the elicitation of customer needs.

• Clearly define customer processes and the context for any
products being developed.

• Provide a vision for how a product might be used after
completion and deployment.

 78 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

• Aid in identifying potential hazards (to users of a product).

• Identify all possible users of a product and external systems,
and how each of them interacts with the system or product
under consideration.

Each engineering discipline and domain has its own standards
for design or modeling. In civil and mechanical engineering, for
example, blueprints are often used. More generally, the term
“blueprint” has come to be used to refer to any detailed plan. In
electrical engineering, there is the traditional circuit diagram. This
has been augmented in electronics design with standards for circuit
board design. In the software world, it is recognized that working in
the problem domain results in higher productivity and better quality
products than working at a low level (www.darpa.mil/ipto/
programs/hpcs/). When modeling for elicitation and analysis,
depending on where you are in the product development life cycle,
there are many different approaches to modeling (see Figure 3.4 in
the preceding chapter).

Goal modeling is used to define business goals and relate them to
needs and features (see “Eliciting Business Goals” under Section 3.3 in
the preceding chapter). Goal modeling can be done at any time, but it
is usually correlated with the definition of product features, to ensure
that the features are synchronized with business needs or goals. Goal
modeling is sometimes used to show nonfunctional requirements and
their relation to goals and functional requirements.

Feature modeling is a modeling approach normally associated with
defining product lines. The model shows all possible features in all
products in the product line, their dependencies, and their mutual
incompatibilities. Since an unconstrained feature model is generally
too broad in scope to be useful, the models are normally coupled with
product maps that identify which features are associated with
identified products. Feature models can also be used to identify
potential variations within a single product; e.g., user configurations.

Process modeling is typically used to show user workflows either
before or after a product is delivered (or sometimes at both times).
Some modeling techniques, such as the UML, are also used for
software design, as the diagrams that are used to show customer
processes can also be used to illustrate software processes. Unlike
Goal and Feature Models, which tend to be static representations of
structure, process models can show both static structures (e.g., the
structure of an organization) and temporal behavior (steps in
activities, changes in the state of an object over time, etc.). There are
many types of process models, including Integrated Definition (IDEF)
methods developed for military contractors [IEEE 1320.2-1998]. Other
techniques such as those of [Gane 1979] and [Yourdon 1988] enjoyed
some early success but were limited by the quality of the tools
available and the limited functionality of early desktop computers

www.darpa.mil/ipto/programs/hpcs/
www.darpa.mil/ipto/programs/hpcs/

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 79 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 79

and workstations. More recently, simplified modeling techniques
such as SysML have emerged to support systems engineering efforts
(www.sysml.org).

Video-based requirements engineering couples workflow models
with video streams. It is a relatively new field, enabled by advances
in video capture and editing techniques [Creighton et al. 2006].

The remainder of this chapter will focus on our experience with
process modeling techniques that have been successfully used on
Siemens projects to support requirements elicitation and analysis,
specifically model-driven requirements engineering. Sometimes the
two activities are confused because the same tool and physical model
(or files) are used; however, they take place at different points in the life
cycle. Elicitation is an activity accomplished with stakeholders to
determine what their needs are. In order to better understand the
context, a business model may be created that describes business
activities where a new product or set of services will be used. A
prototypical product may then be defined and refined, so that the
customer’s needs are better understood. Once a set of product features
is known, analysis modeling may take place to define in detail how the
product will be used. The Model-Driven Requirements Engineering
(MDRE) methodology described in the next section covers both business
modeling and analysis modeling activities, starting with business
activities and ending with the detailed interaction of users and the
proposed product or system in the same integrated physical model.

4.2 Model-Driven Requirements Engineering (MDRE)
We have used MDRE on Siemens projects because we have found
that, under certain circumstances, it is often a good way to effectively
manage the requirements for large and complex systems. On one
project, for example, there were over eight hundred use cases. Most
of those use cases described product functionality to be developed.
Consequently, tasks had to be placed in a project plan. Creating the
plan manually would have taken at least two weeks, with the risk of
human error (e.g., leaving out tasks). Using the MDRE tool set, the
draft project plan was created directly from the model for use by the
project manager in a matter of minutes, with associated hyperlinks
between the model use cases and the plan tasks.

MDRE uses models as an enabler for all requirements activities
and includes the use of modeling techniques for elicitation (business
modeling and use cases) and analysis (detailed descriptions of the use
cases). Initially, processes are modeled to better understand how a
product might support potential customer activities. For example,
when building a new underwriting system for an insurance company,
we would want to know what systems and roles the new system would
interact with; what kind of data was used, modified, and created; how
the underwriting information was managed; and what constraints the

www.sysml.org

 80 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

underwriting staff operated under (e.g., time, quality, organizational).
The output of early modeling efforts would be a business model that
described either the customer’s “as is” or “to be defined” processes.
From that business modeling effort, a product or set of IT services
would be derived to support the underwriting process as a set of
product features. As product features tend to be high level, they then
need to be analyzed by expanding all the features to show how they
are used. This is typically done in an analysis model, where each feature
is a starting point for analysis (note: features typically are shown as
abstract use cases). The analysis of each feature then results in a
coherent use case model (typically, in the same modeling tool). As the
use cases are decomposed during analysis, testable functionality is
described in concrete use cases. The full, hierarchical set of use cases
then become the requirements for product construction.

The following activities are from a project to develop an
underwriting system for a major insurance company, and they
illustrate the approach used for a typical MDRE effort.

• A business model of the organization was created, showing
how underwriting works in an insurance company. This was
accomplished by conducting requirements elicitation
meetings with corporate officers and underwriters, and
building the model in their presence with their inputs.

• When reviewing the business model, we observed that certain
operations were being done inefficiently. For example, letters
would be sent to various parties containing forms that had to
be filled out and returned (e-mail was not acceptable, as many
of the forms required signatures or notarization). There was
no tracking of when the letters were sent, and when (or if)
they came back.

• A feature was added to the new, planned underwriting
system called a “Diary” that would track all sent and returned
mail, and would automatically notify officials if responses
were not received in a timely manner.

• During analysis, the Diary feature was expanded through use
cases to define the interaction of the new underwriting system
with users, including data, form, and function. Each of the
low-level functions supported by the Diary feature, after
careful review, became a customer requirement. Finally, during
triage, the requirements were prioritized by the stakeholders
and then allocated to product releases by the project staff.

• The business model and use case model were seamlessly
integrated in that the use case (or analysis) model was an
extension of the business model. The requirements were
generated from the use case model and loaded into a
requirements database for tracking.

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 81 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 81

A design model can be created, using the analysis model as a
starting point or guide. Finally the product is implemented, where, in
the case of software, the implementation model is the actual software
or code (see Figure 4.2).

Project plans, test plans, traces, and requirements can be generated
from a model, depending on the modeling objectives and effort put into
creating it. We want models to be sufficiently formal that we can check
for correctness. That means we need semantics for model construction.
A useful by-product of increased formality is the use of metrics to
determine work product quality and project progress. Finally, if the end
product is software, an analysis model can be the starting point for the
generation of a software design. Parts of the design can be derived
semiautomatically or manually from the model. As most, if not all,
MDRE activities take place prior to design decisions, they are appropriate
for both systems and software engineering. We have used MDRE
techniques on mechatronic projects such as mail sorting systems, where

FIGURE 4.2
Example types of
models Business Model

Implementation Model

Design Model

Use Case (Analysis)
Model

Feature/Goal Model

The business model
describes the target
environment and
processes.

A feature and/or goal
model describes
planned product
features. A goal model
focuses on non-
functional requirement
constraints.

The analysis model
describes each product
feature in detail and
contains the product
requirements.

The design model
translates the
requirements into a
product design.

The implementation
model is the product
instance, e.g., in the
case of a software
product, it is the code.

 82 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

it was impossible to tell, from the model and the requirements derived
from the model, whether the resultant components would be hardware,
software, or firmware [Bradley et al. 1991].

The use of MDRE processes requires a significant amount of
up-front planning, skilled staff, and viable tool sets. The creation and
use of an MDRE process will be described in the following sections,
with a suggested set of modeling heuristics and best practices.
Results of the use of MDRE techniques are reported in [Berenbach
and Borotto 2006].

With MDRE, instead of using text as the framework for the
requirements in a project, models are used. In Chapter 2, we saw how
artifact models can improve the quality and productivity of RE
processes. When using MDRE, as many artifacts as possible are
generated from or stored in the requirements artifact model. For
third-party artifacts or objects that cannot be stored in or generated
from the model, traces are used to create hyperlinks (see Figure 4.3
and Table 4.1, later in this chapter).

All MDRE artifacts either are stored in a model or have a
placeholder in the model to represent them. Ideally, the textual
description for an artifact will be stored with the artifact. On demand,
the text can be extracted to a specification or transformed as needed.
External documentation such as standards and government
regulations are usually referenced via hyperlinks, which are object
links in the model. However, hyperlinks should be used with
discretion, as they can only point to a whole “something.” That is, a
requirement in a model referencing an external document via a
hyperlink can only reference the entire document. In order for the
links to be effective, they should ideally have a tighter granularity;
e.g., they should reference a paragraph or sentence.

The most commonly used tools tend to be disjoint. That is,
information is kept in different databases, with synchronization
requiring manual effort of custom programming. Keeping a model

Requirements
Database

Project
Documents

Design
Outline

Test Plan

Hazard
Analysis

Project
Plan

Product
Features

Business
Goals

Analysis
Model

FIGURE 4.3 The analysis model as a nexus for project activities

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 83 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 83

and a requirements database synchronized can be a problem. It is a
straightforward process to create a first draft of a requirements
database from a model. However, there is the open issue of keeping
the model and the database synchronized, as they are now in two
separate databases, and changes made to one might not be reflected
in the other. We feel that tools that will combine requirements
management and process modeling facilities are still several years
away; consequently, special attention should be paid to tool integration
and automatic updates.

At Siemens, several pilot projects were conducted to determine
the effectiveness of MDRE with currently available tool sets on large
projects [Berenbach and Borotto 2006]. Additional projects used MDRE
effectively, where the requirements were generated automatically
from an analysis model and transferred to a requirements database.
The combination of programmatic quality assurance checks (using
our internal DesignAdvisor tool) and automated requirement
generation worked well; the only open issue being the need to
manually synchronize the model and the generated requirements as
part of the requirements management process.

An MDRE process or set of processes can span the entire product
development life cycle from innovation through maintenance. It is
therefore important to determine the objectives of the process, and what
the process stakeholders will expect (Figure 4.4). Typical questions

FIGURE 4.4 Sample shareholder needs within an RE process

Subject matter
expert

Quality
assurance

analyst

Tester

Requirements
analyst

Architect-Designer-
Developer

Model-Driven
Project

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

Project manager

1..*

1..*

Subject matter analysts
like to know which
areas need further
elucidation, and whether
they have previously
reviewed the material.

Testers are primarily concerned
with the generation of a test plan
and test cases, e.g., how difficult
it would be to generate a viable
set of test cases from the
completed model and associated
documentation.

Requirements analysts have the same
needs as subject matter experts, but
they would also be interested in the
quality of the UML model. They would
also want to know what areas needed
further investigation.

Project managers are concerned
with resource utilization, skill
level of the project team, and
progress (e.g., percent
completeness).

Designers are interested
in coverage and clarity.

Quality assurance personnel
want to be sure that in-place
processes are being followed,
and that the quality of the
work products can be measured
in some tangible way.

 84 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

that must be answered when defining a process and an integrated
tool set to support that process include:

• How will business goals and stakeholder requests (business
requirements) be captured and traced to product features
and/or requirements?

• How will product features be captured?

• How will requirements be traced to features?

• What will test cases be traced to?

• How will the project plan be synchronized with the MDRE
processes?

• How will requirements be elicited and analyzed using an
MDRE process?

• How will quality and productivity be measured?

• How will artifact completeness be determined?

• What is the most effective way to execute the various
processes?

• What are the best tools to use given the scope of the project?

• How will tools be integrated, e.g., how will they be
synchronized?

• How will cross-media traces be managed?

• How will the MDRE processes scale?

• Do we have a product line? If so, will any proposed MDRE
processes support a product line?

• How will the MDRE artifacts and process be supported or
maintained once the product is in maintenance?

• Do we have adequately trained staff?

• What standards, procedures, and samples are needed? If we
don’t have them, how do we get them?

4.3 Advantages of an MDRE Approach
MDRE is not an “all or nothing” methodology. For example, if an
organization wishes to focus on textual use cases and requirements, a
high-level use case model makes a very nice navigation aid; e.g., the
model stops at the level of a use case, and selecting the use case
symbol launches an editor with the use case document.

With agile approaches to software development, lightweight
models (e.g., the models are incomplete) can be used to represent a
collection of user stories. Using a model instead of short textual notes
provides increased detail that is not only of use to the developers, but
also to testers and reviewers.

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 85 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 85

Use case modeling has also been found to work well when
discovering requirements for service-oriented architecture (SOA)
systems [Lau 2004], and the use of modeling for SOA products seems
to have become the de facto approach for identifying SOA
requirements.

Models used for navigation work especially well when the models
are published to the Web, giving stakeholders unfamiliar with the
project a simple navigation guide for finding documentation. Each
organization, and each project within that organization, needs to do a
cost, benefit, and risk analysis to determine what aspects of MDRE
are desirable. Often, when evaluating methodologies, organizations
will focus on “the easy stuff”—such as “how do we write use case
documents?”—while ignoring the details that can cause problems
later during development. For example, a cross-cutting requirement
is a requirement that may impact several areas (or use cases). A
security requirement, for instance, may impact reports, user interfaces,
logon, etc. As the work products of MDRE are artifacts that can be
queried or mined, MDRE techniques tend to be better than traditional
natural language approaches for managing such cross-cutting
requirements.

MDRE can have significant advantages over other approaches on
large projects. Some of these are listed in the sections that follow.

Using MDRE to Estimate Project Size and Cost
Karner provides guidelines for creating function point estimates from
analysis models [Karner 1993]. His approach involves ranking actors
and use cases as simple or complex using a weighting system. A high-
level use case model is a good fit with function point counting. When
modeling, actors and use cases can be assigned weights based on
Karner’s guidelines. As the directed graph underlying the model is
traversed, “use case points” are summed up and converted to function
points for estimating cost. Note that this approach is not as simple as
it sounds; high-level models should be used, and the numbering
scheme for ranking use case and actor complexity needs to be applied
judiciously. That having been said, it is an excellent way to estimate
the cost of completing very large projects when the first project phase
includes an analysis model.

Improved Management of Cross-Cutting Requirements
Cross-cutting requirements are those that trace to or impact other
requirements in different areas. With traditional approaches, it can be
very difficult to manage change control with nonfunctional
requirements. It can, for example, be difficult to see how a new or
changed requirement impacts other parts of a system. With MDRE,
however, it is relatively easy, as the traces are visual, and since the
views are into a homogeneous model, it is easy to query for changes

 86 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

and make modifications; e.g., changing, adding, or deleting artifacts
and their relationships will automatically be reflected everywhere the
related objects are shown.

Navigation of Complex System Requirement Sets
Navigating through volumes of text can be very difficult. Even when
items are traced to each other in databases, as projects get larger, trace
matrices increase in size as the square of the number of requirements
and it can become a daunting task to find information for an impact
or coverage analysis. Moreover, for someone not familiar with the
domain, navigation can be a time-consuming, trial-and-error process.
Navigation with a well-crafted model is no more difficult than finding
a route with a map. Touch, zoom, touch, zoom, etc., and you are there.
Finding related objects is as easy as doing an ad hoc query (remember,
everything is in a database). As models scale well, ease of navigation
remains the same regardless of model size, although it might take a
few more mouse clicks to find the material of interest.

Rapid Review of Business Processes
and Requirements Relationships
Reviewing diagrams is significantly faster and more thorough than
reviewing similar material in text. We have found that model reviews
tend to be more culture and language neutral than reviewing text
documents. Furthermore, if the models are extended to support the
Unified Requirements Modeling Language (URML) concepts (see
later Section 4.5), then the relationships between hazards, threats,
processes, product features, business goals, and functional and
nonfunctional requirements can all be viewed at the same time by
distributed teams [Berenbach and Gall 2006]. Pictures tend to be less
ambiguous than text, and relationships (or the lack thereof) are
immediately apparent.

Metrics for Quality and Progress
Unlike text, models are mathematical structures (directed graphs). It
is therefore possible to define metrics for quality and progress, and
then semiautomatically extract the metrics at periodic intervals
[Berenbach and Borotto 2006]. The rapid extraction and analysis of
metrics improves transparency and product quality.

Semiautomatic Generation of Project Plans
and Requirements Database Content
With a properly crafted model, where one of the goals of the modeling
effort is the automatic generation of downstream artifacts such as
project plans and the population of requirements databases, the
manual transcription of information can be avoided, along with the
potential for transcription errors [Berenbach 2003].

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 87 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 87

4.4 Prerequisites for Using MDRE
There are some organizational prerequisites for effective use of
MDRE. These prerequisites are described in the sections that follow.

Modeling Skills Not Readily Available
Our experience with RE projects is that, after training, it takes about
a month of apprenticeship before an analyst can effectively use MDRE
techniques. For an analyst to be a facilitator or lead an RE team, it will
likely take at least six months working with MDRE under an
experienced team leader. These training times are rough rules of
thumb; the actual times depend on the experience and skills of the
staff and the complexity of the domain.

In an ideal situation, at least one of the team members, preferably
the team leader, should have been completely through an MDRE
cycle, that is, through the end product going into maintenance. We
have all had the experience of the “do-it-yourselfer” fixing a washing
machine or a bicycle, and we know that after we are done, we think
to ourselves, “Now why didn’t I do that in the beginning, it would
have made my life so much easier?” The same is true with systems
engineering; often, going through a complete product development
life cycle can significantly change one’s perspective on what is
important.

Inadequate Tooling
Tools for requirements engineering are viewed by some to be in their
infancy. Vendors would have practitioners believe that their
requirements databases will solve all of our RE process problems, but
this is not usually the case. We cannot always do everything with one
tool; for example, consider maintaining cross-database or cross-
document traces. Furthermore, some tools do not scale well; as the
number of artifacts in use increases, the performance and ease of use
of the tool degrades. Also, with the current business turmoil in the
requirements and development tools area, there is always the concern
that a vendor will stop manufacturing a tool being used on an
important project, leaving the user with limited support.

Organization Not Ready for MDRE
When tools are being discussed and an organization frequently asks
“how much does it cost?” that may be an indicator that the organization
may not be ready for MDRE. Tools can be expensive, but the real
question is, “What is the cost/benefit impact of MDRE on the product
life cycle?” Furthermore, the organizational structure may not lend
itself to MDRE techniques. For example, if there are impediments to
cooperation across organizational units, then MDRE may not be
feasible, since business goals need to trace to product features, and

 88 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

product features need to trace to test cases. If organizational barriers
prevent the creation of those traces, then an organization may not be
mature enough to support MDRE. MDRE does require skilled staff,
and that means training, mentoring, and broad experience across the
life cycle. We have also seen situations where business analysts who
have been using text-based elicitation and analysis techniques were
very apprehensive about trying new methods, especially techniques
with which they would be working at a novice skill level.

Another organizational issue is that of finding the right first
project. As MDRE techniques might not work as well as desired the
first time they are used, a small, noncritical first-time project would
be best. Sometimes organizations are in constant “fire-fighting” mode
and cannot spare staff to try something new.

“Begin at the beginning”, the King said, gravely,
“and go till you come to the end; then stop.”

—Lewis Carroll, Alice’s Adventures in Wonderland, 1865

4.5 MDRE Processes
MDRE processes include requirements gathering activities up to but
not including design, where the focus of the elicitation and analysis
activities is model creation and utilization. That includes, for example,
goal and feature modeling activities, hazard analysis, threat modeling,
and requirements elicitation and analysis using models. Depending
on the sophistication of the modeling tools used, a full implementation
of the URML would permit an organization to do most of its RE
activities with a URML, generating artifacts such as documents or
requirement specifications as needed on an ad hoc basis. If less
sophisticated tooling is used, or more traditional tools are used for
storing requirements, a traditional process modeling tool (e.g., IDEF,
UML, etc.) can be used for process modeling. In this section, we will
start with a holistic view of MDRE processes, and then later in the
chapter, we will provide step-by-step guidance for model creation
during elicitation and analysis. We use the UML as a starting point
because of its acceptance and available tool sets. It must be noted that
limitations of MDRE are often imposed by the tools used. Since the
focus of the MDRE effort is the creation of models from which high-
level requirements can be extracted, tools must enable whatever
techniques are used. Where tools cannot provide the needed
functionality, then customization or the additional use of other tools
may be necessary.

Initial Understanding
In the beginning of a project, we would like to know why a system or
product is being built. There are, of course, conflicting points of view

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 89 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 89

as to why products are created. However, in software and systems
engineering, the view that counts the most is that of the stakeholder
paying for the system (or the requirements elicitation effort, if the
decision to build has not yet been reached). If it is at all possible, we
want to capture the early business goals so that when an impact
analysis is performed later in the project or design tradeoffs are made,
the rationale as to why a feature is in the delivered system is readily
understood. Looking ahead to Figure 4.14 we can see the context
diagram for a sporting event management system. Several of the
diagrams in this chapter use this system as a modeling example. Look
at Figure 4.14 first, then look at Figure 4.5. In Figure 4.5 we see a goal
model fragment showing some of the goals we hope to achieve in
creating a sporting event system (commercially desirable; e.g., make
a profit). The model shows that some business goals are in conflict,
that is, the goal of high reliability may conflict with the goal for a low-
cost system; those goals will need to be resolved. If a documented
goal cannot be in the model (e.g., the goal is part of a strategic vision
document), then at least a symbol in the model can trace to or reference
the original goal. Ideally, when viewing goals in the modeling tool or
a published web model, it should be possible to hyperlink to the goal
details.

Commercially Desirable Sporting
Event Management System

Low-Cost System

Easy to Use

High Reliability

Feature Rich

+

+

+

+

−

−

−

FIGURE 4.5 Goal model fragment

 90 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Understanding the Context and How the Product Will Be Used
Product vision and scope documents may provide insight into the
environment where the product will be used as well as information
about the users of the product. These descriptions include contextual
information, as well as sufficient details to understand how the
product will be used by customers. For the example shown here we
provide use cases, although other techniques such as IDEF models
could also be used. In the scenario shown1 in Figure 4.6, a sporting
event official wants to assign a competitor to a team. Figure 4.7
illustrates the process by which the official uses menus to assign a
competitor to a team. A special symbol is used to indicate that an
included use case is “terminal”; that is, it has no included or extending

Assign competitor to
team

Drag competitor from competitor list
and drop in team member list

<<include>>

FIGURE 4.7
Terminal use case
as a testable
requirement

1 See any reference on the UML for a description of how such diagrams are created
and read.

FIGURE 4.6 Sample scenario illustrating assignment of a competitor to a team

sd Assign competitor

an official:
Official

the terminal:
Access terminal

View teams

:Team
controller

Get teams

Teams

Select a team
Assign competitor to team

the team:
Team

Assign competitor
to team

the competitor:
Competitor

Assign
competitor

Assign team

Confirmation
Display confirmation

Display teams

Okay

Okay

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 91 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 91

use cases and is an endpoint of the analysis (see the next section for
more information). The figure illustrates only one possible scenario;
there may be many. For example, there may be scenarios where the
official enters the wrong competitor (e.g., by assigning a U.S. citizen
to the Albanian ski team) or tries to enter a competitor who does not
exist. All of these scenarios will have to be defined.

A very common mistake at this point in the elicitation process is not
to define error scenarios. The oversight may very well be hidden until it
is time to start testing the system, at which point the elicitation of error
scenarios may become the responsibility of testers. When testers have to
complete scenarios, the elicitation process becomes inefficient to say the
least. Not only are testers less likely to have access to the stakeholders to
elicit error scenarios, but some of the system may have been designed
and built at this point without taking into consideration the need to
handle the “to be discovered” error conditions.

While creating the scenario just described, we find that some
person or thing must have information about teams and provide
information about them (arbitrarily called the “team controller” in
Figure 4.6). So we have identified, while creating a scenario, what is
typically called a business object. A business object is an object that is
part of the system (it could be a person, it could be a group of people,
it could be a computer system or systems) that performs a needed
function or set of related functions. If we can’t find a business object
that does what we need early in the elicitation process, we create one.
Later, we will be collecting requirements by looking at the services
that these business objects have to provide in order for the scenarios
to work. During this effort we identify needed product features,
including the ability to store and retrieve information about teams,
store and retrieve information about individual competitors, and so
on. As these product features are identified, we can create a feature
tree that shows the relationship of all these features (see Figure 4.8).

The Sports Event Management System

Manage
Competitors

Manage
Teams

Manage
Events

Create TeamDelete Team Edit Team
Details

Add
Competitor to

Team

Remove
Competitor
from Team

FIGURE 4.8 High-level feature tree

 92 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Ideally, the feature tree would be supported in the modeling tool
being used. If not, any graphical media could be used to illustrate the
full scope of features in the idealized product. Of course, not all the
features identified would make it into the final product; they would
need to be prioritized. After an analysis effort to expand the product
features into well-defined, testable requirements, a product release
would then be specified with the desired features. During initial
product definition, a feature model is kept relatively “lightweight.”
However, the same model can be extended to fully support a product
line. It can also be used to define product variations or customization
that may be made by the user after delivery. Feature models are
especially useful in identifying test cases where the system can be
configured by the user after delivery.

Analyzing Product Features and Creating a Use Case Model
Once we have a draft set of features, we are able to start creating a
model from which we will derive all our customer requirements (all
of them, before ranking). Product features become high-level abstract
use cases, from which we start the decomposition process to elicit
details that will become requirements (Figure 4.9). As we go through
each of the features, scenarios are created describing the feature in
action; the scenario diagrams describe the usage details (Figure 4.10),
and the use case diagrams provide structural information; e.g., which
other use cases (or processes) are included or sometimes included
(called extending use cases).

Delete Event
Creation Date:2/26/2006
Modification Date:1/15/2007
Modified By:RDM
Status:Preliminary

Delete event from
event calendar

Delete event from
team calendar

Delete event record from
results database

Delete event from
competitor calendar

Official Delete event
interface

Delete event

<<include>> <<include>>

<<include>>

<<extend>>

FIGURE 4.9 Use case decomposition

C

hapter 4:
R

equirem
ents M

odeling
93

C

hapter 4:
R

equirem
ents M

odeling
93

sd Delete event

1: Request event deletion

The Event
Manager

2: Request event
 deletion

15: Ok

16: Deletion successful

The Event
List

3: Retrieve event

4: Event object

An Event

Official

Delete event
interface

A Team

loop

[have _
another_
team=true]

6: Delete event from
 team calendar

A Competitor

7: Delete event from
 competitor calendar

loop

[have _another_
competitor=true] 8: Ok

9: Ok

The Results
Database

10: Delete event

11: Ok

The Event
Calendar

12: Delete event

13: Ok

5: Delete

14: Ok

FIGURE 4.10 Scenario defining the Delete Event use case

 94 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

As previously mentioned, depending on the starting point,
several different types of models (e.g., business, feature, goal, analysis,
design, implementation) may be used. As we descend to lower and
lower levels within a business, feature, goal, or analysis model, we
include more detail.

The lowest level in an analysis model consists of testable use
cases, as described with scenarios, flowcharts, and state diagrams.
The lower-level use cases and requirements are the same except for
phrasing. For example, the use case might be “schedule a patient for
a followup visit”; with the corresponding requirement being “It shall
be possible to schedule a patient for a followup visit using the
scheduling system.” It is important to define the lowest use case level
from the perspectives of both semantics and mechanics in order to
determine when a model is complete. For example, a definition of use
case completeness might include these considerations:

• An individual use case shall be considered terminal (e.g., no
further decomposition) when it has no included or extending
use cases.

• It has been defined with state or activity diagrams describing
both successful and unsuccessful outcomes.

• It provides sufficient information for the creation of test
cases.

• Its documentation is suitable for use as a requirement
definition.

• It has been given a special stereotype of terminal use case (see
Figure 4.7).

• A nonterminal concrete use case shall be considered complete
when it meets all the quality assurance checks for a
nonterminal use case, and all of the leaf use cases that are
included or extend it have been defined and are complete.

• A nonterminal abstract use case shall be considered complete
when all of the concrete use cases reachable from it are
complete. By reachable we mean by traversing the graph
consisting of nodes (use cases) and edges (dependencies, e.g.,
“includes,” “extends”).

Extracting Requirements from the Model
Prior to starting elicitation and analysis, it is necessary to understand
how model(s) will be used on a project. If models are only to be used
for background context and to provide information for testers, less
formality is required. However, if models are to be mined for
requirements and metrics, or if various artifacts are to be
semiautomatically generated from the model, then a more formal
approach is needed. Since a properly crafted model is an acyclic

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 95 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 95

directed graph, it is possible to extract requirements from models
programmatically to populate a requirements database [Berenbach
2003]. An alternative is to keep the requirements in the model,
generating tabular views for review or a Systems Requirements
Specification (SRS) directly from the model (Figure 4.11).

The UML provides the ability to create profiles with specialized
icons and object types. In addition, extensions to the UML exist
specifically for business modeling. We recommend improving the
clarity and simplicity of business and analysis models by augmenting
traditional flowchart or use case symbols with symbols unique to
business modeling or the domain wherever possible, and then
defining semantics, such as those that we have proposed [Berenbach
2004]. For example, one business rule that has been found to be
effective is to require that actors (users of a product) be required to
communicate with concrete (testable) use cases through a boundary,
except on the context diagram. By enforcing this rule, every point
where an interface or form must exist is captured and can be viewed
in an inventory report.

In Figure 4.12 we see the nonfunctional requirement that
operations must complete within one second impacting the software
user interface used by spectators. As mentioned previously, we have

3.0 Event Management
 3.1 Create Event
 3.2 Delete Event
 3.2.1 Delete Event from Team Calendar
 3.2.2 Delete Event Record from Results Database
 3.2.3 Delete Event from Event Calendar
 3.2.4 Delete Event from Competitor Calendar
 3.3 Edit Event
 3.4 View Events
4.0 Competitor Management
 4.1 Register Competitor
 4.2 Disqualify Competitor

FIGURE 4.11 High-level requirements extracted from model

Spectator

View EventsSpectator
View

Operations must complete
within one second

Impacts

FIGURE 4.12
Adding
requirements to
diagrams

 96 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

found that using markers to place nonfunctional requirements on a
model improve their visibility and reduce the risk that an important
nonfunctional requirement will be overlooked during design.

Once the model is complete, a properly constructed tabular set of
detailed requirements can be extracted and used as a starting point
for the creation of both project task lists and test plans. In addition, it
should be possible to generate an interface (user and software)
inventory.

Starting an MDRE Effort
When starting an MDRE effort for elicitation or analysis, it is
important to

• Define model completion.

• Understand how the model will be used and maintained after
completion—this defines what tools are needed and how
they are to be integrated.

• Have the appropriate standards and procedures available.
Modeling style is important. Without guidelines or directions,
analysts might create models that cannot be used effectively
for requirements generation, metrics extraction, or data
mining.

• Have at least one person on the team to act as a facilitator
who has been through a complete MDRE cycle.

• Have the desired tool set in place and ready to use.

Organization of a model is key to performing programmatic
verification and requirements extraction. It is important to have the
goal of a coherent verifiable model in mind throughout the analysis
effort and model construction process. The knowledge contained in
an analysis model is valuable to an organization and can be
disseminated by publishing to the web. The heuristics described in
the following sections will make a model more understandable by
making navigation intuitive.

Managing Elicitation and Analysis Sessions
With MDRE, the management of elicitation and analysis sessions is
done using the same process, although the participants may be
different. Initially, subject matter experts, the team lead, and analysts
will participate. At the initial kickoff meeting, the team lead should
describe to the core team how the sessions will be run, and provide
examples of MDRE artifacts. Thus, the team lead will

• Review guidelines and procedures such as style guides for
content and revise (offline) as necessary.

• Describe the modeling techniques and tools to be used.

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 97 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 97

• Show sample “idealized” models.

• Explain how QA will be performed.

• Define completion criteria.

• Review the draft schedule and expected participants.

The modeling sessions start with a skilled facilitator or team lead
modeling across and then down the model (see the heuristic for
breadth first modeling in the later section “The Early Modeling Effort
Should Cover the Entire Breadth of the Domain”). Once other analysts
have gained some experience with modeling sessions, they can take
over the lead and get experience as facilitators.

Sessions are usually run in the mornings, three or four times a
week. At each session, the subject area to be modeled is known in
advance and the appropriate subject matter experts or customers are
scheduled into the meeting (see Figure 4.13).

The first order of business in the modeling session is the analysis
of metrics from any automated analysis tools that were used on the
model. Also, any descriptions that were created offline are reverse-
engineered into the model. Assignments to make repairs (offline) are
done, and the elicitation sessions continue.

As modeling activities continue, no more than 5–8 people should
be present. A projector is used so that participants can see the model
under construction or review. Sessions should last no more than half a
day. At the conclusion of each modeling session, the facilitator exports
a spreadsheet from the model with artifacts and their descriptions.

Generate Completion and
Error Metrics

Model Incomplete
Areas

Extract Artifact
Spreadsheets

Import Previously Completed
Artifact Descriptions

Begin Modeling Session

Assign Analysts to Complete
Artifact Descriptions

End Modeling Session

Model
Metrics

Incomplete Artifact
Descriptions in Spreadsheet

Completed Artifact
Descriptions in Spreadsheet

Completing artifact documentation
is done outside the modeling session
to improve modeling productivity
and documentation quality.

Team repairs model errors and/or assigns
analysts to repair after the modeling session.

FIGURE 4.13 Example modeling session activities

 98 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Missing descriptions are then added to the spreadsheet by the assigned
subject matter experts or analysts offline and imported back into the
model before the next modeling session.

Wherever possible, the entering of textual descriptions should be
avoided during modeling sessions, as it significantly reduces
productivity. On the other hand, detailed artifact descriptions (e.g.,
use cases, requirements, actors, objects) are needed in the model in
order to create high-quality documentation. Thus, a facility for
“round-tripping” descriptions in and out of the model is essential,
and quality assurance reviews of the artifact descriptions should be
part of the modeling process.

Improved Productivity Through Distributed Modeling
Once a routine is established and some initial modeling has taken
place, all the team members should understand how to use some
tools; they will start to model in a consistent style. In addition, after a
short period of time, different subject areas that are to be elicited or
analyzed will have been identified in the model. At this point, the
team can split into groups; each group can then model in their
identified domains, bringing in the relevant subject matter experts or
stakeholders as necessary.

Conducting Model Reviews
Model reviews are conducted at periodic intervals. During the
reviews, everyone on the team and the relevant stakeholders and
experts are present. If the team has split into groups, each group will
present their work. The facilitator or team lead walks through the
model using a hierarchical, top-down approach, and deficiencies are
recorded. After the meeting, the team lead assigns analysts to repair
the deficiencies in the model, and the repairs are reviewed by the core
team at the next modeling session prior to modeling new areas. In
addition, spreadsheets of artifacts and their descriptions are circulated
for review, typically through e-mail. Careful attention should be paid
to the content, grammar, and spelling of the descriptions, as the
narrative text will become part of any requirement specifications.

On occasion, models are reviewed with customers. In our
experience, we have observed the following positive outcomes
resulting from customer model reviews:

• Customers gain confidence that the development organization
understands their needs.

• The customer is relieved of the necessity of reviewing massive
amounts of text-based documentation.

• The material developed may be reused by both the customer
and the development organization (depending on the terms
of the contract).

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 99 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 99

4.6 Elicitation and Analysis Model Heuristics
This section describes a set of heuristics and guidelines for
requirements elicitation and analysis sessions when using the UML.
These heuristics have been successfully used on several of our larger
projects. Note that as heuristics and style guides for the UML have
been widely described elsewhere [Riel 1996], [Ambler 2005], the topic
will not be covered here. Rather, we have concentrated on heuristics
that are necessary for the construction of verifiable models and the
programmatic extraction of requirements.

The Model Should Have a Single Entry Point
In order to force a navigable structure, the starting or context diagram
should have only a single entry point in the form of an abstract use case
or product feature (see Figure 4.14). Giving the diagram a special name,
such as “context,” will help to identify it. The context diagram is also
important because it has all the external entities that the system or
product being investigated will have. As we are using use case notation
here, we will refer to these entities as actors. They can be people (e.g.,
team captain), organizations (e.g., sales department), or systems (e.g.,
police department computer system). Getting the list right is critical, as
we will see later that important quality assurance checks are based on
the list of actors derived from the context diagram. Hence, we have the
related heuristics described in the sections that follow.

All Actors Associated with the System Being Analyzed
Should Appear on the Context Diagram
The model should be built as an acyclic directed graph [Crochemore
et al. 1997], and the single product feature or use case symbol on the
context diagram is the starting node for the graph. Use cases, actors,

FIGURE 4.14 Example context diagram

Official

Administrator

Competitor Judge

Spectator

Team Captain

Olympics
Scheduling System

 100 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

objects, and boundaries or interfaces are the nodes, and the
relationships between them are the vertices. However, in order to
keep the model simple enough to analyze programmatically, the core
of the graph will be the relationship between the use cases and
product features. This heuristic, along with the heuristics that describe
the use of factors and boundaries, provides one of the semantics for
model completion.

The Early Modeling Effort Should Cover
the Entire Breadth of the Domain
“Drilling down” too soon risks missing interfaces and subject areas that
need to be modeled. By modeling across the entire domain, identifying
major areas to be modeled and those that are out of scope, missing
interfaces will become readily apparent. For example, in the event
management system for the Olympics, rather than the context diagram
showing just event management, the first one or two high-level
diagrams should include information on team management, competitor
management, etc. Once the interfaces between these functions have
been identified, then modeling of the event scheduling domain can
proceed with confidence that all interfaces to outside organizations,
people, and systems have been identified (see Figure 4.15).

Identify “Out-of-Scope” Use Cases as Early as Possible
Define scope and identify “out-of-scope” domains as quickly as
possible. We suggest color-coding high-level use cases that are out of
scope (see Figure 4.16). When working with distributed teams, it is
most important to identify out-of-scope subject areas, to avoid
wasting time on material not relevant to the project.

Every Diagram Should Have an Associated
Description and Status
Ideally the status will be in a legend on the diagram (see the engineering
drawing example shown in Figure 4.1). Real-world models tend to

FIGURE 4.15 Initial modeling effort is cross-domain

Competitor ManagementEvent Management

Team Management

The Olympics Scheduling System

<<include>> <<include>>
<<include>>

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 101 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 101

have a large number of diagrams. When viewing the diagrams in a
document, web document, or presentation, it is easy to get lost without
a legend. If the legend includes the diagram status, incomplete work
is much easier to find (especially if the legend information can be
queried programmatically).

Avoid the Early Use of Packages
Packages are used for partitioning work and as virtual folders to store
related artifacts. It may not be possible to discern a correct partitioning
of the model and work effort until some significant amount of use
case modeling has been completed. We have found that the premature
use of packaging may result in frequent model reorganizations. If
packaging does not follow the logical organization of the subject
matter, flaws in construction may surface at a very late date (e.g.,
components that are tightly coupled).

Do Not Substitute Packages for Abstract Use Cases
As stated previously, the model is a single unbroken directed graph.
Directed graphs or digraphs can be traversed using breadth- or
depth-first searching techniques. Substituting packages for abstract
use cases or product features breaks the graph and creates semantic
ambiguity because packages are just storage mechanisms or
placeholders; i.e., they have no meaning in the context of process
(Figure 4.17).

Every Artifact in a Model Should Be Visible on a Diagram
A model stores artifacts and their relationships. It is possible to
remove objects from diagrams without removing them from the
model. The hidden artifacts may only show up during reviews of
printed material generated from the model. In order to be able to
conduct visual inspections of the model, every artifact in it should be
visible on at least one of the appropriate types of diagram.

FIGURE 4.16 Marking an area as out of scope

Software
Interface

User
Interface

Fault
Management Performance

Security
Management

Manage Logging
and Audit Trails

<<include>>

<<include>>

<<include>>
<<include>>

<<include>>

 102 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Every Symbol Should Have a Bidirectional Hyperlink
to the Diagrams That Define It
The ability to create a link from a symbol on a diagram to another
diagram is tool specific. However, when navigating large models, the
ability is mandatory. This makes navigation intuitive and enables
programmatic model traversal. Table 4.1 highlights the kinds of links
that would be expected when using a UML CASE tool to do MDRE.

Package Dependencies Should Be Based on Content
If any artifact in package A has a dependency on an artifact in package
B, then on a class diagram a dependency should be shown between
package A and package B. If, however, none of the artifacts belonging
to package A have any dependencies with artifacts in package B, then
there should not be a dependency relationship between package A
and package B. Since in complex models it may be difficult to
determine dependencies by inspection, an automated mechanism is
recommended.

Every Concrete Use Case Must Be Defined
A use case diagram identifies business processes and their static
relationships with actors, entities, and other use cases (see Figure 4.18).
Without temporal information, the use case description is incomplete.
Consequently, every concrete use case must be defined using one or
more sequence, collaboration, activity, or state diagrams that provide
temporal information. Note also that one diagram is usually not
sufficient, as there may be many different outcomes, depending on the
starting conditions and preconditions.

FIGURE 4.17 Incorrect use of packages

Team
Management

Team
Management

Add Team Add Team

WrongRight

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 103 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 103

Symbol Hyperlink To Rationale

Abstract use case
representing a set
of functions

Use case
diagram

An abstract use case is a
placeholder for a product feature
or concept and does not have
logic. It is the included use cases
that would have concrete logic.

Abstract use case
representing a
product feature

Use case
diagram

Abstract use cases and product
features may need to be
decomposed several levels before
concrete, testable features or
use cases are reached. In order
to keep the diagrams simple, it is
necessary to be able to hyperlink
use case diagrams that continue
the hierarchy.

Concrete use case Use case
diagram

Use cases with many ancillary
processes may need to be
decomposed several levels.
The ability to put only one level
of decomposition on a diagram
reduces clutter and makes the
model more manageable.

Concrete use case Activity
diagram

When a use case is concrete
(e.g., testable), there may be
many possible paths. While
scenario diagrams are good for
showing one path, the best way
to see all the possible outcomes
or variations is to use an activity
diagram as an overview, showing,
in simplified fashion, all possible
paths that the process may take.

Concrete use case Sequence
diagram

A use case is a process. One
specific thread (e.g., a success
mode or a failure mode) is best
shown on one diagram for clarity.

Concrete use case Activity
diagram

When a process is primarily
sequential logic (e.g., an algorithm
or computation) activity diagrams
do a much better job of presenting
the logic than sequence diagrams,
showing activities, inputs, and
outputs.

TABLE 4.1 Example Hyperlinks

 104 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Symbol Hyperlink To Rationale

Concrete use case State diagram Event-driven logic (e.g., the
process behaves as a state
machine) is best described with
a state diagram.

Message Activity or
state diagram

A message on a sequence
diagram represents a single
service that is usually described
with an activity or state diagram.

Activity Activity or
state diagram

An activity may be relatively
complex. One property of activity
and state diagrams is that each
activity (activity diagram) or
transition (state diagram) can be
exploded to another activity or
state diagram to reveal increasing
levels of detail.

Hazard Hazard
analysis
diagram or
document

When extending the UML or other
modeling language (e.g., the
URML) a hazard symbol may be
shown on a use case diagram.
If hazard models are built into
the tool, the hyperlink may
be to a hazard model-specific
diagram; otherwise, it may link
to a complete hazard analysis
document.

Threat Threat model
diagram or
document

In a similar fashion to hazards,
threats shown on use case
diagrams can hyperlink to either
threat model diagrams or threat
analysis documents.

Requirements Requirements
may be shown
on use case
or other
diagrams
as either
stereotyped
use cases
or custom
artifacts

Requirements can hyperlink
to their corresponding entry in
requirements databases, or to
other documentation that contains
more details. Where feasible, a
bidirectional link is best, e.g.,
requirement on diagram hyperlinks
to requirement in database,
requirement in database
hyperlinks to requirement on
diagram.

TABLE 4.1 Example Hyperlinks (continued)

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 105 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 105

Use an Activity Diagram to Show All Possible Scenarios
Associated with a Use Case
Sequence and collaboration diagrams are typically used to show a
single thread of execution per diagram. It is possible to put more than
one thread on a collaboration diagram, but it makes the diagram
cluttered and hard to read. Using an activity diagram as an overview
(e.g., “all paths”) of the process makes it easier to identify important
logic threads that need to be defined. Where possible, create hyperlinks
on the “all paths” diagrams to create an intrinsic trace to the associated
threads. For example, an item can be either scheduled or back-
ordered. Both possibilities are shown in Figure 4.19.

Use Sequence Rather Than Collaboration Diagrams
to Define One Thread/Path for a Process
The UML is flexible (sometimes too flexible) regarding the choice of
diagrams for defining a process. Sequence, collaboration, activity,
and state diagrams can all be used. However, we have found that
sequence and activity diagrams are the easiest for nontechnical
reviewers to read. As sequence and activity diagrams have a timeline,
they force subject matter experts to be methodical when eliciting
process information.

FIGURE 4.18 Example of defining a use case with a scenario

Add Competitor
to Team

: Official
: Team Editor

Login()

Login Successful

Select Competitor()

Competitor Selected

Select Team()

Team Selected

Assign Competitor to Team()

Competitor Assigned to Team

Logout()

106

S
o

ftw
are &

 S
ystem

s R
eq

u
irem

ents En
gineering: In P

ractice

Statechart Diagram:
Validate Item Code/
Validate Item Code

Sequence Diagram: Back
Order Out of Stock Item/

Back Order Out of Stock Item

Sequence Diagram: Schedule
Item for Delivery/ Schedule

Item for Delivery

Activity Diagram: Check
Item Status/ Check Item

Status

Statechart Diagram:
Validate Item Quantity/
Validate Item Quantity

Activity Diagram: Validate
Retail Department/

Validate Retail Department

Validate Item
Code

Validate Item
Quantity

Validate Retail
Department

Check Item Status

Back Order Out of
Stock Item

Schedule Item for
Delivery

Invalid Item Code

Invalid Retail Department

Invalid Item Quantity

Validate Item

In Stock Out of Stock

Item Scheduled for
Delivery

Item Back Ordered

This diagram illustrates all possible paths
for validating one item when a

supermarket or grocery store places an
order with a distributor.

FIGURE 4.19 Sample “All paths” activity diagram for the “validate item” use case

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 107 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 107

Since the MDRE process starts with product features that become
use cases, when explaining them with sequence diagrams the objects
that communicate are initially not known (with the exception of
actors). During sequence diagram creation, objects necessary to
provide services are “discovered.” The objects are then placed as
classes on class diagrams and later organized by combining similar
classes or splitting classes that provide too many services or have
disjoint or unrelated services. Sequence diagrams force the early
discovery of objects, along with their associated classes and business
services. We have found that sequence diagrams are better for
elicitation services and sequence features, while activity diagrams do
a better job of illustrating complex logic.

Abstract Use Cases Must Be Realized with Included or
Inherited Concrete Use Cases
Abstract use cases represent product features that are at a very high
level (e.g., “power steering”) or can be a placeholder for sets of
processes (e.g., “manage teams”). They must be decomposed to sets
of features or processes that are testable.

The definition of a use case must be consistent across all diagrams
defining the use case. A use case shown on a use case diagram can
include other use cases and can optionally be extended by other use
cases. Included and extending use cases will appear on sequence
diagrams as messages to objects that will perform the requested
service. Consistency can be defined as follows (see Figure 4.20):

• There will be at least one message on a defining sequence
diagram with the same name as each included use case; that
is, how a use case fits into a process must be explained.
Otherwise, the use case is ambiguous; e.g., it uses other
processes but does not explain how they are used.

These functions must be
utilized

Select Window()

Open Window()

Driver : Power Window Console

Open Completely()

Open

Driver Operate Window

Close
WindowSelect

Window
Open

Window Lock
Window

Unlock
Window

Jog
Window Up

Jog Window
Down

Selected
Window

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

FIGURE 4.20 Semantic correctness requires that every concrete use case
must be used in a scenario.

 108 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

• There will be at least one message on a defining sequence
diagram with the same name as each extending use case.

• Every actor interface or boundary communication will
appear on at least one sequence diagram.

• Any entities shown attached to a use case will appear as an
item being passed (message argument) on at least one
sequence diagram or as an object on an activity diagram.

Extending Use Case Relationships Can Only Exist
Between Like Use Cases
The extending relationship is a specialized extension to a well-defined
process. As such, both the extending and extended use cases must be
of the same type. Using the extending relationship where one of the
use cases is abstract and the other is concrete leads to ambiguity. For
example, extending “manage documents” with “place document
under configuration management” is ambiguous, as we don’t know
whether a new or existing document is being placed under
configuration management.

A Concrete Use Case Cannot Include an Abstract Use Case
The rationale is the same as for the extending relationship. A concrete
use case that includes an abstract use case is ambiguous; e.g., it cannot
be defined.

Avoid Realization Relationships and Artifacts
in the Analysis Model
Realization relationships have different meanings, depending on the
context in which they are used. This can lead to ambiguity and
confusion. A realization relationship between two use cases means
that one of the use cases “implements” the other use case. Realization
of a use case by a sequence diagram indicates that the sequence
diagram explains the use case process.

Business Object Modeling
Business object modeling is the process of describing behavior in a
domain. By describing the behavior of the subject areas associated
with feature-level requirements, we expose details of the subject area,
and by doing so we elicit requirements and business rules. During
the analysis modeling effort, classes are sometimes referred to as
“business objects,” not to be confused with the objects on sequence
and collaboration diagrams that are class instances. Defining classes
for objects as they are discovered will keep the effort focused on the
domain processes (as opposed to data).

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 109 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 109

Discover Business Objects and Their Services Through Use Case
Definition with Sequence Diagrams
Modelers with a development background sometimes start building
a model by defining classes and then drawing class diagrams. This
skews the model and makes it data-centric. Sequence diagrams
consist of objects and messages. When objects are placed on diagrams,
they initially will not belong to a class. The objects needed are
discovered by identifying services that have to be provided, and then
identifying who will provide them (see Figure 4.21).

Every Service in a Business Object Should Have Defined
Pre- and Post-Conditions
In an analysis model, services are discovered using sequence
diagrams, usually as messages. The messages are then incorporated
into the servicing object as services or methods. Pre- and post-
conditions are then attached. In order to distinguish “none” from an
oversight, an entry can be made indicating that there are no pre-post-
conditions.

A Boundary or Interface Should Only Communicate
with a Concrete Use Case
An abstract use case is an arbitrary container for a set of features, some
of which may not require an interface. Consequently interfaces or
boundaries permitting communication between an actor and a use
case should only be associated with concrete use cases (Figure 4.22).

Get account information
(customer name)

Customer

 : Bank Teller
Cash a check

Can I see your ID?

ID

In this “Cash Check” scenario, we
discover that a business object is

needed that can retrieve a
customer’s account information.

Discovered

?

FIGURE 4.21 Using scenarios to discover needed business objects

 110 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

We prefer the use of boundaries in the analysis model to distinguish
them from interfaces in the design model. A boundary symbol and an
interface symbol are different, and, depending on the modeling tool,
can be selected by choosing the artifact stereotype. Actors should be
shown communicating with concrete use cases through actors at the
lowest possible level. For example, instead of having a boundary
“Bank_Computer_Boundary,” there would be “Find_Customer_
Boundary,” “View_Customer_Account_Boundary,” “Cash_Customer_
Check_Boundary,” and so on. While this may appear to be a lot of
extra work, in reality it saves a significant amount of time in that when
the analysis model is complete, the architect will have a complete
inventory of every form, partial form, or other interface type needed
for each function (see Figure 4.23).

FIGURE 4.22 Illustrating the correct and incorrect way for an actor to
communicate with a use case

Teller Account Information
User Interface

Provide Banking
Services

Teller Account Information
User Interface

View Account
Balance

Every actor must communicate with at
least one concrete use case via a

boundary. Actors can only communicate
with use cases through boundaries
(except for the context diagram).

Report

… … …

Generates

Interface Actors Diagrams

Account for Cost
Interface

Account for Cost
[Use Case]

Add Location
Interface

IS Worker Add Location
[Use Case]

Allocate Payment
Interface

Cashier Allocate Payment
[Use Case]

Approve Adjustment
Interface

Collection
Supervisor

Approve Adjustment
[Use Case]

Archive Encounter
Interface

IS Worker Archive Encounter
[Use Case]

FIGURE 4.23 Creating a boundary report

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 111 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 111

A Concrete Class Must Be Instantiated
If a concrete class is not instantiated, it means that the class is not
used in any processes; e.g., it does not appear on a sequence, activity
or collaboration diagram. The question then arises, if it is not used,
why is it in the model?

A Boundary or Interface Class Is Properly Defined If and Only If It
Has Public Methods, and Each of These Methods Is Shown on a
Sequence or Collaboration Diagram
This heuristic is self-explanatory. Missing public methods (services)
in a boundary or interface are typically an oversight.

Every Business Object Service (i.e., Class Method)
Should Be Defined
Class methods are typically defined using a state or activity diagram.
A state diagram is used when the logic is “event driven,” and an
activity diagram is often used when the logic is procedural.

Every Actor in the Model Should Communicate
with Use Cases Through Boundaries
At the context level we identify all the actors associated with the
domain being modeled. However, in order to adequately explain
the nature of the communication, at some point every actor–use case
interaction must take place through a boundary.

Using Boundaries as Proxies for External Objects
During a project to create a medical billing system for a hospital, we
observed that the scheduling function was out of scope, yet scheduling
services were needed. A “scheduling system” boundary was created as
a catchall, and in any scenario where scheduling was needed, a message
would be sent to the scheduling system requesting a service, along
with the supplied and returned information. As the modeling effort
neared completion, the project manager for the scheduling system
development effort approached our team and inquired about what
scheduling services the billing system would need. She was shocked
when within five minutes we were able to generate a complete report
showing all scheduling services needed by medical billing, which
billing system actors used the service, and what scenarios (context)
they were used in. Even though the model had over eight hundred use
cases and several thousand diagrams, such complex queries were
a relatively simple matter as the model had been designed with scale
in mind.

 112 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Avoid Passive Objects
A passive object is one that receives messages but never sends any
(including replies). Broadcasting messages where there is no
mechanism for determining whether the message was received may
cause instabilities or unreliable behavior and is not recommended.

Avoid Loquacious Objects
Loquacious objects are those that send many messages to other objects
without receiving any. Although sometimes necessary, they can lead
to instability and poor performance.

Coherent Low-Level Processes Should Be Defined
with State or Activity Diagrams
As previously mentioned, a concrete use case is defined by showing
temporal behavior with sequence, state chart, or activity diagrams. If
the use case does not include and is not extended by use cases, then it
is a “leaf” or terminal use case and should be defined with a state or
activity diagram or perhaps with just a paragraph of text. If there are
many possible scenarios associated with the use case, then an
overview activity diagram should be used and each individual
scenario can hyperlink from the “all paths” activity diagram associated
with the use case.

Elicit Requirements and Processes by Starting
at Boundaries and Modeling Inward
The static relationships between processes and their associated
requirements are defined first using use case diagrams. As concrete
use cases are exposed, their communication with actors is discovered
and boundaries (e.g., a class with a boundary stereotype) are defined.

Hide Complexity by Using Compound Business Objects
On a high-level sequence diagram a compound object such as a
“Master Schedule” will hide complexity. On a lower-level diagram,
“Master Schedule” will be decomposed into the objects that contribute
to processes (such as an inventory object that could determine if an
item is in stock and, if so, which warehouse it is in).

Initiate Prototyping Efforts Quickly
Prototyping is an extremely valuable way of eliciting requirements
from subject matter experts. There are normally two types of
prototypes. The marketing prototype is a “throwaway” tool to elicit
customer interest and define potential product features. It is treated
as a background reference when modeling. The requirements
prototype may be reusable; prototype development and model
development are synchronized such that each provides information
that assists in defining the other (see Chapter 9).

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 113 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 113

Ideally, the requirements prototype will be reusable for
construction of the actual product. This will only happen if the target
language, coding standards, and architecture are known prior to the
start of model construction. Unfortunately, those facts being known,
the model might wind up being “skewed” toward development.

4.7 Determining Model Completeness
Models are reviewed for completeness by looking at three areas:
diagram quality, content correctness (reviewed with subject matter
experts), and model faults. The criteria for completeness should have
been defined prior to the start of modeling.

Diagram Quality
Diagrams should be reviewed for clarity and completeness. Upon
acceptance of a diagram, its status can be changed from draft to
accepted. In order for a model to be accepted, every diagram in the
model should have a status of accepted. Depending on the
organization’s specific quality assurance procedures, an MDRE model
could pass conditionally if diagrams have minor changes to be made
and those changes

• Are well understood.

• Are quickly accomplished.

• Do not change the semantics of the model.

• Do not impact other parts of the model.

Content Correctness
Content correctness is accomplished by having subject matter experts
and analysts review reports and documents generated from the
model. The following criteria are applied:

• Every use case, whether abstract or concrete, must have a text
definition that is meaningful and correct.

• Every concrete use case with extending or included use cases
must have at least one activity or sequence diagram describing
its logic.

• Every boundary (user interface or software interface) must be
shown on at least one diagram explaining how it is used, and
that explanation must be correct.

Model Faults That Should Be Corrected
Before a Model Is Completed
Some MDRE model faults are serious and, if not corrected, can lead
to problems during development. Where possible, the fault checks

 114 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

should be performed programmatically, as performing them manually
could be prone to errors and time consuming. Some of the checks that
can be performed are shown in Table 4.2.

Error Indicates That

Circular Dependency There is the possibility of deadlock, e.g., a depends
on b, which depends on c, which depends on a. This
can result in confusing or incomplete requirements.

Class Not Instanced A concrete class has been defined to the model;
however, an instance of the class cannot be found
on any sequence or activity diagram. This means
nowhere is it shown how this business object is used.

Concrete Use Case
Not Defined

A process has not been adequately described.
It does not have enough information provided to
extract requirements.

Dangling Abstract
Use Case

A subject area has not yet been modeled, the model
is incomplete.

Hidden Artifact Something in the model is not shown on any
diagram. It appears to have been forgotten or
overlooked.

Illegal Extending
Association

An extending relationship has an abstract use case
at least on one end, causing ambiguity.

Illegal Interface
Association

A boundary or interface has an association with an
abstract use case. This association will result in
ambiguous requirements being generated.

Interface Not Used An interface or boundary (a class with a stereotype
of boundary) has been shown on a use case
diagram, but nowhere is it explained how it is used.

Missing Boundary The interaction of an actor with the product, either
via software (a software interface) or visually (a user
interface, panel, etc.), is missing.

Mixed Use Case
Relationships

A use case with mixed abstract/concrete included/
extending use cases is ambiguous, and as a result
any requirements derived from it may also be
ambiguous.

Unused Concrete
Actor

It probably means that the model is incomplete, or
the actor does not communicate with the system. An
actor can only access a process through a boundary.

Use Case
Completeness

Parts of the definition of the use case are
missing. This may result in incorrect or incomplete
requirements.

TABLE 4.2 Serious Model Faults

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 115 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 115

4.8 Transitioning from Analysis to Design
At some point, we may be interested in taking an analysis model, and
creating a design model from it. We must ensure that traceability is
maintained from analysis to design, where the development effort is
relatively straightforward, with the target hardware and/or software
platform known in advance. A good starting point for design
heuristics can be found in the Design Patterns text by Gamma et al.
[Gamma et al. 1994], and the text on Design Heuristics by Arthur Riel
[Riel 1996]. Note that the heuristics described here are primarily for
software components.

4.9 Suggested Model Conversion Heuristics
We will start with some important low-level heuristics and then
describe some high-level heuristics/guidelines.

Design Model Package Structure
The design package structure will resemble, but not be exactly the
same as, the analysis structure. This is because the analysis views
mirror the problem, whereas the logical views show the design of the
solution to the problem.

Use Case Tracing
Use case tracing can be done with “off the shelf” CASE tool
techniques. A concrete use case in the analysis model MUST be
realized2 by one or more use case realizations in the design model.
The use case realization then becomes a subsystem, set of components,
etc., further down in the model (see Figure 4.24).

Interface Tracing
Interface tracing is illustrated in Figure 4.25. In general, a boundary
in the analysis model will be realized by one or more interfaces in the
design model.

Artifact Tracing
Tracing between the analysis and design model elements can be done
using the “<<realize>>” stereotyped association. Table 4.3 lists the
most important elements and their relationships.

2 “Realized” is UML terminology meaning “implemented by.” In the UML the
arrows are drawn from the solution back to the problem definition (requirements)
and the stereotype of the line is “<<realize>>.”

 116 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

FIGURE 4.25 Boundary-to-interface tracing

Event
Creation Interface

Update Event
Interface

Event Deletion
Interface

Event
Management Boundary

Event Manager

Design Model
Element

Analysis Model
Element Comment

Use Case
Realization

Business Use
Case

The use case realization represents a
physical implementation of a process
or set of processes, as an executable
program, a subsystem, etc.

Interface Boundary Analysis Model concrete classes with
a stereotype of boundary are realized
by one or more design model classes
with a stereotype of interface.

Software
Classes

Business
Objects

Business Objects represented as
analysis model classes are realized in
the design model by “plain” software
classes.

TABLE 4.3 Analysis to Design Tracing Relationships

FIGURE 4.24 Tracing use case realizations to use cases

Event Management
System

View Event

<<include>>

<<realizes>>
<<realizes>>

<<realizes>>

<<include>>

View Event
Create Event

Create Event

Update Event
Results

Update Event Results

<<include>>

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 117 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 117

4.10 Design Model Structure
The design model structure is flexible and dependent upon

• Granularity of model for parallel development.

• How close the design model (solution) matches the analysis
model.

Tracing Requirements Through the Design Model
Tracing of requirements through the design model (see Figure 4.26)
can be accomplished as follows:

• Ensure that all requirements in the requirements database (if
used) trace to one or more use cases in the analysis model.
For “child” requirements, it is acceptable for the parent
requirement to trace to a use case.

• Every concrete use case or requirement as shown in the
analysis model must be realized by one or more use case
realizations in the design model.

• All software classes or components in the design model are
associated with one or more use case realizations. Association
means that they are shown on class diagrams that are owned
by the respective use case realization or one of its
derivatives.

• Wherever possible, have the package structure in the design
model mirror that in the analysis model.

Intermodel Quality Assurance Checks
Some quality assurance checks can be performed to ensure that the
analysis and design models are synchronized.

 1. Can every requirement be traced to a component, either
directly or indirectly?

 2. Can every component be traced to a use case?

 3. Can every concrete use case trace to a component?

 4. Are there test cases for each component?

Requirements Database

• Team Requirements
• Coach
• Players

Analysis Model Design Model

Team ManagementTeam Management

FIGURE 4.26 Tracing from design to requirements

 118 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

 5. Do the test cases match (are appropriate) for the related
requirements?

 6. Do system-level requirements derive from the components;
e.g., a component must perform the following functions…?

Design Model Initial Construction
When a design model is derived from the analysis model, the
following steps are normally taken:

 1. Naming conventions and design standards are identified and
applied.

 2. For each major use case in the analysis model, packages are
created in the design model.

 3. Use case realizations provide tracing from the requirements
to the design. These realizations are inserted at whatever
level is deemed necessary by the lead architect and quality
assurance. Reports can then be generated showing the
analysis model use case, associated requirements, and
associated components (by tracing from the use case
realization to its associated components).

 4. Boundaries transform to one or more user interface forms or
other (software or hardware) interfaces (see Figure 4.27).

Impact analysis can then be performed on an ad hoc basis, by
simply pointing to a requirement, tracing through the use cases
associated with that requirement to the use case realizations, and
from the realizations to the components associated with those
realizations (e.g., the realizations are the trace points that join the
analysis and design models).

Figure 4.28, for example, shows an artifact model with the
relationships between an analysis model created using the MDRE
and a design created from the analysis model using the UML.

FIGURE 4.27 Boundaries become forms or interface specifications.

cTeams

View Competitor
Credentials

Olympics Official
User Interface

ITeams

Boundaries Become User Interface Forms

Boundaries Become Software Interface Specifications

C

hapter 4:
R

equirem
ents M

odeling
119

C

hapter 4:
R

equirem
ents M

odeling
119

FIGURE 4.28 Relationship of elements in the analysis and design models

Requirement

Use Case Diagram

Activity Diagram

Sequence Diagram

Use Case

Derive from

Explained withExplained
with

Shown on
Associated with

Use Case
RealizationRealize

Interface

Boundary

Shown on

Realizes
Business Object

Test Case

Requirement

Verifies
implementation

Design
Package

Contained in

Activity
Diagram

Subsystem

Design of

Contains

Behavior explained by

Sequence Diagram

Details
shown in

Component
Diagram

Class
Diagram

Component

Realized by

Tests

Has

Shown on

Class

Composed
of

Class
Diagram

Relationships
shown on

Business
Object

Manipulate

Shown on

Shown on

Relationships
shown on

Realizes

Interact with

Design Model

Not Part of the
Design Model

 120 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

4.11 Use of Tooling for MDRE
When a large model or set of models is created, there is just too much
material for visual inspection. Unlike natural languages, models have a
mathematical grounding that enables programmatic checks. For
example, analysis models are usually acyclic directed graphs, and
feature models are normally tree structures. Such graphs lend themselves
to programmatic traversal and data mining. Ideally, any tools used can
be customized and simplified with profiles and semantics (rules). A
plug-in tool, DesignAdvisor, was developed at Siemens Corporate
Research and used successfully to provide automated checking of
critical model heuristics (see Figure 4.29) [Berenbach 2003]. As
mentioned previously, with judicious use, instrumented models can
be made to generate specifications, tests, and project plans.

If a model is not in the final requirements repository, a first set of
requirements is mined from the model and then imported into the
requirements repository. Decisions will have to be made about how
the two different data stores will be kept synchronized. We suggest
the creation of an artifact model (Chapter 2) and the identification of
all the possible traces or links, and how they will be maintained
(during and after project completion) when defining a tool integration
strategy.

4.12 Tips for Modeling Requirements
The tips shown below are “food for thought”. Holistically, they
suggest an engineered rather than an ad hoc or artistic approach to
model creation.

• Develop models at different levels of abstraction for different
purposes.

FIGURE 4.29 Using the tool DesignAdvisor to find errors

Selecct Team
Selecct Team

Add Competition

<<include>>

<<include>>

<<include>>

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 121 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 121

• Develop process models that are understandable by viewers
who are not experts in the domain being described.

• Develop models that are coherent, with no holes or
discontinuities.

• For creating and viewing models, select tools that are easy to
use and enable processes, not cause difficulties.

• As MDRE techniques might not work as well as desired the
first time they are used, select a small, noncritical project as
the first pilot for MDRE.

• Understand how the model will be used and maintained after
completion—this defines what tools are needed and how
they are to be integrated.

• Have at least one person on the team to act as a facilitator
who has been through a complete MDRE cycle.

• Schedule modeling sessions in the mornings, three or four
times a week. At each session, the subject area to be modeled
is known in advance and the appropriate subject matter
experts or customers are scheduled into the meeting.

• As the modeling sessions continue, have no more than 5–8
people present. A projector is used so that everyone present
can see the model under construction or review. Sessions
should last no more than half a day.

• Avoid entering textual descriptions during modeling sessions,
as it significantly reduces productivity.

• Assure that the starting or context diagram for a model has
only a single entry point in the form of an abstract use case or
product feature.

• Define scope and identify “out-of-scope” domains as quickly
as possible, and color-code any high-level use cases that are
out of scope.

• Review all model diagrams for clarity and completeness.

• Create a Requirements Engineering Artifact Model,
identifying all possible traces or links and how they will be
maintained (during and after project completion), prior to
initial use of the RE tool set.

4.13 Summary
In this chapter, you have seen how the MDRE approach to
requirements engineering can be effective on large projects. We
believe that as projects increase in size and complexity, the use of
hierarchical databases for requirements storage and the review of
textual material may be inadequate to ensure a positive outcome.

 122 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Visual techniques that combine and improve on traditional modeling
and text-based requirements elicitation and analysis techniques have
been successfully piloted at Siemens, resulting in work products
with consistent high quality and uniformity. While modeling skills
are important when using MDRE, it is often possible to use an
incremental approach to process and methodology improvement.
We suggest experimenting with “lightweight” modeling techniques
initially on small projects, and as confidence increases, gradually
moving from a natural language approach to a more formal, model-
driven process.

4.14 Discussion Questions

 1. What are some of the advantages of using models to describe
requirements over text-based approaches?

 2. What types of tests can be automatically performed on
requirements models to help find errors?

 3. What are some of the skills required for those who lead
requirements elicitation sessions?

References
Alexander, I., “Capturing Use Cases with DOORS,” Fifth IEEE International

Symposium on Requirements Engineering (RE ’01), Toronto, Canada, August
2001, p. 264.

Ambler, S., The Elements of UML 2.0 Style, Cambridge University Press, New York,
NY, 2005.

Babin, G. and Lustman, F., “Formal Data and Behavior Requirements Engineering:
a Scenario-Based Approach,” Proceedings of SEA ’99: 3rd Annual IASTED
International Conference on Software Engineering and Applications, N.C. Debnath
and R.Y. Lee, eds., Scottsdale, AZ, USA, 1999, pp. 119–125.

Berenbach, B., “The Automated Extraction of Requirements from UML Models,”
Eleventh IEEE International Symposium on Requirements Engineering (RE ’03),
Monterey Bay, CA, September 2003, pp. 287–288.

Berenbach, B., “The Evaluation of Large, Complex UML Analysis and Design
Models,” Twenty-Sixth International Conference on Software Engineering (ICSE
2004), Edinburgh, Scotland, May 2004.

Berenbach, B. and Borotto, G., “Metrics for Model-Driven Requirements
Development,” Proceeding of the 28th International Conference on Software
Engineering, Shanghai, 2006, pp. 445–451.

Berenbach, B. and Gall, M., “Toward a Unified Model for Requirements Engineering,”
Proceedings of the IEEE International Conference on Global Software Engineering,
Munich, 2006, pp. 237–238.

Bradley, D.A., Dawson, D., Burd, N.C., and Loader, A.J., Mechatronics: Electronics in
Products and Processes, Chapman and Hall, London, 1991.

Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., and Thurner, V.,
“Towards a Formalization of the Unified Modeling Language,” Proceedings of
ECOOP ’97, Springer Verlag, LNCS, 1997.

Cheng, B. and Campbell, L., “Integrating Informal and Formal Approaches to
Requirements Modeling and Analysis,” Fifth IEEE International Symposium on
Requirements Engineering (RE ’01), Toronto, ON, August 2001, pp. 294–295.

 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 123 C h a p t e r 4 : R e q u i r e m e n t s M o d e l i n g 123

Chung, L. and Subramanian, N., “Process-Oriented Metrics for Software Architecture
Adaptability,” Fifth IEEE International Symposium on Requirements Engineering
(RE ’01), Toronto, ON, August 2001, pp. 310–311.

Cox, K., “Taking to Scenarios to Improve the Requirements Process: an Experience
Report,” IEE Seminar: Scenarios Through the System Life Cycle, London, UK, 2000,
pp. 1–10.

Creighton, O., Ott, M., and Bruegge, B., “Software Cinema-Video-Based Requirements
Engineering,” Proceedings of the 14th IEEE International Requirements Engineering
Conference (RE ’06), 2006, pp. 109–118.

Crochemore, M., Verin, R., “Direct Construction of Compact Directed Acyclic
Word Graphs,” 8th Annual Symposium, CPM 97, Aarhus, Denmark, 1997,
pp. 116–129.

Dulac, N., Viguier, T., Leveson, N., and Storey, M., “On the Use of Visualization
in Formal Requirements Specification,” IEEE Joint International Conference
on Requirements Engineering (RE ’02), Essen, Germany, September 2002,
pp. 71–80.

Fowler, M., UML Distilled, Addison-Wesley, Boston, MA, 2004.
France, R.B. and Bruel, J.M., “A UML Profile for Rigorous Requirements Modeling,”

Proceedings of 2000 Conference on Software Engineering and Applications, M.H.
Hamza, ed., Las Vegas, NV, USA, 2000, pp. 86–91.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Boston, 1994.

Gane, C., Structured Systems Analysis: Tools and Techniques, Prentice-Hall, Englewood
Cliffs, NJ, 1979.

Hartmann, J., Vieira, M., and Ruder, A., “UML-Based Test Generation and
Execution,” Proceedings of the 21st Workshop on Software Test, Analyses and
Verification (GI-FG TAV), Berlin, June 2004.

Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., and Chen, C., “Formal
Approach to Scenario Analysis,” IEEE Software, IEEE, Piscataway, NJ, USA,
March 1994, pp. 33–41.

IEEE, IEEE Standard for Conceptual Modeling Language Syntax and Semantics for
IDEF1X97 (IDEFobject), IEEE Standard 1302.2-1998.

Jackson, M., “Formalism and Informality in RE,” Fifth IEEE International Symposium
on Requirements Engineering (RE ’01), Toronto, Canada, August 2001, p. 269.

Jacobson, I., Booch, G., and Rumbaugh, J., The Unified Software Development Process,
Addison Wesley Longman, Massachusetts, 1999.

Jarke, M., “CREWS: Towards Systematic Usage of Scenarios, Use Cases and Scenes,”
Wirtschaftsinformatik 99, Springer Aktuell, Saarbrücken, Germany, March
1999.

Jarke, M., “Scenarios for Modeling,” Communications of the ACM, Vol 42, No. 1,
Association for Computing Machinery, January, 1999, pp. 47–48.

Karner, G., “Metrics for Objectory,” Diploma thesis, University of Linköping,
Sweden, No. LiTHIDA-Ex-9344:21, December 1993.

Kosters, G., Six, H., and Winter, M., “Coupling Use Cases and Class Models as
a Means for Validation and Verification of Requirements Specifications,”
Requirements Engineering, Vol. 6, No. 1, Springer-Verlag, London, UK, 2001.

Lau, Y.-T., “Service-Oriented Architecture and the C4ISR Framework,” Crosstalk,
September 2004.

Li, X., Liu, Z., and He, J., “Formal and Use-Case Driven Requirement Analysis in
UML,” 25th Annual International Computer Software and Applications Conference,
Chicago, IL, 2001, pp. 215–224.

Lorenz, M., and Kidd, J., Object-Oriented Software Metrics: A Practical Guide, Prentice-
Hall, NJ, 1994.

Muthig, J.D., Sody, P., and Tolzmann, E., “Efficient and Systematic Software
Evolution Through Domain Analysis,” IEEE Joint International Conference
on Requirements Engineering (RE ’02), Essen, Germany, September 2002,
pp. 237–246.

NRC/ERB-1072, January 2000, NRC 43619.
Rational Rose Enterprise Edition is a product of IBM Corporation, www.ibm.com.

www.ibm.com

 124 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Riel, A.J., Object-Oriented Design Heuristics, Addison-Wesley, Indianapolis, 1996.
Rugaber, S., Shikano, T., and Stirewalt, R.E., “Adequate Reverse Engineering,”

Proceedings of the 16th IEEE International Conference on Automated Software
Engineering, Los Alamitos, CA, 2001, p. 232.

Salazar-Zarate, G., Botella, P., and Dahanayake, A., “An Approach to Deal with
Non-Functional Requirements Within UML,” Issues and Trends of Information
Technology Management in Contemporary Organizations, 2002 Information Resources
Management Association International Conference, vol. 1, Seattle, WA, 2002,
pp. 702–704.

Shulz, J.D., “Requirements-Based UML,” Proceedings of the 39th International
Conference and Exhibition on Technology of Object-Oriented Languages and Systems
(TOOLS 39), Q. Li, R. Riehle, G. Pour, and B. Meyer, eds., Santa Barbara, CA, 2001,
pp. 307–316.

Singh, Y., Sabharwal, S., and Sood, M., “A Systematic Approach to Measure the
Problem Complexity of Software Requirement Specifications of an Information
System,” Information and Management Sciences, Vol. 15, No. 1, 2004, pp. 69–90.

Software Engineering Institute, The Capability Maturity Model Version 1.1, CMU/SEI-
93-TR-024, www.sei.cmu.edu/cmmi/, 1993.

Stutz, C., Siedersleben, J., Kretschmer, D., and Krug, W., “Analysis Beyond UML,”
IEEE Joint International Conference on Requirements Engineering (RE ’02), Essen,
Germany, September 2002, pp. 215–218.

Sutcliffe, A., “Requirements Engineering for Complex Collaborative Systems,” Fifth
IEEE International Symposium on Requirements Engineering (RE ’01), Toronto,
Canada, August 2001, pp. 110–119.

The Object Modeling Group, OMG Unified Modeling Specification Version 1.4, Object
Management Group, Needham MA, September 2001.

White, P., and Mitchelmore, M.C., Intelligence, Learning and Understanding in
Mathematics: A Tribute to Richard Skemp, Flaxton, QLD: Post Pressed 2002,
pp. 235–255.

Yourdon, E., Modern Structured Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1988.

www.sei.cmu.edu/cmmi/

CHAPTER 5
Quality Attribute

Requirements
by Raghu Sangwan, Hans Ros, Bob Schwanke

125

 126 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Michael was assigned as a software architect on a project to
develop a building security management system. He knew
that he would start this assignment by talking to the

requirements engineers, review the requirements in the database,
and become familiar with the operation of some similar products
developed by his company and its competitors. He planned to learn
enough about what the new product would do to be able to propose
a draft architecture for efficiently meeting the requirements.

He began reviewing the functional requirements that had already
been described in the requirements management database and the
high-level use cases and scenarios that had been developed. He
quickly realized that the architecture would need to be able to meet a
large number of nonfunctional or quality attribute requirements.
These requirements often were described with a word with “ity” at
the end of it, e.g., security, scalability, maintainability. But, the areas
Michael became most concerned about were performance and
reliability. Since a security event can generate a building alarm, he
began to worry about how long it would take after the event occurred
for security personnel to be notified. He could imagine many bad
outcomes if the security system that he was designing was too slow
or unreliable in notifying personnel of the event. As a result, he
considered architectural approaches for a system that would respond
quickly and reliably to events.

This chapter deals with nonfunctional or quality attribute
requirements: their elicitation, analysis, validation, and management.
While these requirements are deemed architecturally significant, they
must be treated with functional requirements in an integrated manner.
A conceptual framework for an integrated approach is described
along with its application to an industrial case study.

5.1 Why Architectural Requirements Are Different
Software architecture is defined as “a structure or structures of a
system which comprise its software elements, their externally visible
properties and relationships among them” [Bass et al. 2003]. Some
of the structures consist of static software elements such as classes
or modules that are related to each other through inheritance or
decomposition. Others include runtime structures, consisting of
dynamic software elements such as processes or tasks related to each
other by data transmission or invocation. Architecture is concerned
with the public interfaces via which these elements interact and the
externally visible properties of these elements and their interfaces.

The requirements that drive a product’s architecture are often
quite different from the requirements that define the functionality of
a product.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 127 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 127

• They come from many more sources than just the customer,
such as stakeholders within the development organization,
regulatory agencies, available implementation technologies,
and implementations of previous products.

• They have a longer-term impact on the product than most
functional requirements, because a good architecture is
expected to remain stable through several releases of the
product.

• Some of them are highly subjective or difficult to articulate.

• Many have a continuous, quantitative nature, in contrast to
discrete, logical functional requirements. Instead of being
pass/fail criteria, they are often expressed as measures of the
goodness of a system, which must be calibrated to the
stakeholders’ expectations. Different measures must be
traded off against each other to reach an architecture that is
“good enough” according to each of the measures.

• They have nonobvious interactions with each other, due to
(future) implementation decisions. Many stakeholders don’t
understand the architectural implications of what they need,
so they are likely to overlook some of their quality attribute
requirements, i.e., until an architect asks the right question.

• The architecture must anticipate change: in the functional
requirements, in business conditions, in available
technologies, in the development organization itself, etc.
The architecture must also be stabilized while many
functional and business requirements are still unstable.

• Architecturally significant requirements (ASRs) can be
difficult to test before the system is operational.

• Some ASRs are passive in nature, such as cost and ease of use.
Feedback on these may emerge gradually instead of being
directly testable.

• They often have cross-cutting impact, making shortcomings
difficult to correct after development has progressed, and
thus making them high risk.

Terminology
Several different terms are commonly used to refer to requirements
that determine the architecture of a system. A functional requirement
is “a requirement that specifies a function that a system or system
component must be able to perform” [IEEE 1990]. In other words,
the functional requirements define what the system is supposed
to do.

 128 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

A quality attribute requirement (QAR) is specified in terms of
observable, usually measurable, characteristics of the system that
indicate its fitness for use. Quality attributes may be thought of as
modifiers of the functional requirements that indicate how they are
achieved. Quality attribute requirements address all “uses” of the
system, including those where the system is a passive object rather
than an active participant, such as when the system is being sold or
when the next version of the system is being developed. Examples of
quality attributes include: capacity, security, usability, cost,
modifiability, and fault tolerance. The term nonfunctional requirement,
although still commonly used, has become a synonym for quality
attribute requirement.

A cross-cutting requirement is a requirement that applies to many
different functions of a system, often scattered across diverse
functional groups. For example, a system might require all of its “short”
interactive commands to display their results within 0.1 seconds,
whereas the “long” commands might be permitted to take time
proportional to the amount of data they process. Cross-cutting
requirements and their implications are described in Chapter 4.

An architecturally significant requirement (ASR) is any requirement
that is likely to have a substantial influence on a choice among
architectural alternatives [Bass et al. 2003]. The most significant
of these are sometimes called architectural drivers. Any sort of
requirement might be architecturally significant, but in our
experience, apart from a few “sunny day scenarios” defining the
overall functionality of the system, most architectural drivers tend
to be quality attribute requirements.

Although architecturally significant requirements are often quite
different from functional requirements, they should be analyzed and
documented in a coordinated, integrated fashion. Failure to do so can
lead to unnecessary duplication of work, or in the worst case, to
project failures due to creation of a system that does not meet the
needs of its customers [Finkelstein et al. 1996].

Quantifying Quality in Large Software Systems
by Capers Jones

Large software systems, where quality attributes become important,
have a typical size on the order of 10,000 function points.

• The failure rate of projects with applications >10,000 function
points is about 35 percent. That is, more than one application out
of three will never be finished or delivered.

• Of the applications that are delivered, more than 50 percent will
exceed their planned schedules by more than 12 calendar months.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 129 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 129

• The major cost drivers for large software applications in the
10,000 function point size range are finding and fixing bugs and
producing documentation.

• Applications in the 10,000 function point size range generate
about 50 different kinds of documents and total about 6,000
pages. More than 200,000 English words, plus about 5,000
diagrams, will be created. More than 30 percent of the cost of
software goes to document production.

• There will be about 3 defects per page or 18,000 defects in the
documents. Unless document inspections are used, many of these
will find their way into the code and eventually go to customers.

• The total volume of defects for applications in the 10,000 function
point size range is about 50,000. Defect removal efficiency for
this size range averages only about 80 percent. That means that
the software will be delivered (if it is delivered at all) with 10,000
latent defects that were not found during development.

• Testing such large applications requires at least 10 different test
stages. A total of about 55,000 test cases will be created.
Unfortunately, each testing stage is only about 30 percent
efficient, or only finds about one bug out of three.

• About 25 percent of the test cases will have defects or bugs
themselves. It often happens that the error density of test cases is
higher than the error density of the software itself.

• About 7 percent of attempts to fix bugs will be “bad fixes” that
accidentally inject a new defect back into the application. If you
start with 50,000 defects and find 40,000 of them, then you will
create about 2,800 new defects while trying to fix the 40,000 that
you discovered. These will probably get delivered with the
10,000 defects that slipped through testing, leading to a delivered
total of about 12,800 defects. Of these about 20 percent will be
high-severity defects.

• If formal inspections are used for requirements, design
documents, architecture documents, and other key information
sources, they have a measured defect removal efficiency level of
about 85 percent. Inspections should be mandatory for a project
of this size.

• If code inspections plus document inspections are used, it is
possible to elevate defect removal efficiency up to 96 percent or
slightly higher. Doing so will greatly raise the odds of a successful
outcome.

More data on software and documentation defects and their
implications can be found in [Jones 2007, 2008].

 130 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

5.2 An Integrated Model
As was discussed in Chapter 2, integrated requirements engineering
revolves around an integrated artifact model. Figure 5.1 shows the
artifact model that we will use as a guide for this chapter. It shows the
artifacts and relationships that integrate functional and architectural
requirements engineering disciplines.

In this model, the two subdisciplines (functional and architectural
requirements) share artifact types, and specific artifacts, wherever
possible. Where this is not possible, trace relationships are established
between the artifacts so that consistency and completeness checks can
be carried out as needed. In many cases, the integration is achieved by
introducing new subclasses of existing artifact classes. For example,
quality attribute requirements are a kind of system requirement and as
such are applied to system use cases and system use case scenarios in
the same way as functional requirements. On the other hand, a quality

Architecture Requirements Artifacts

System
Requirements

Customer
Requirements

Problem Statement
• Business Case
• Market Analysis
• Business Drivers
• Business Requirements
• Etc.

Satisfice

Stakeholders Can be Use Cases

Participate

Quality Attribute
Scenarios Use-case Scenarios

Exemplify Means
"Partially Define by
Example"

Test Cases

Design

Code

QAW

Quality Attribute Requirement

• Take Measurement
• Exceed Provisional Target

Factors

Issues
• Conflicts Between Factors

Strategies

Product Architecture
• View Models
• Decisions
• Etc.

Architecture Principles
• "Grammar"
• "Semantics"

Conforms to

Architecture
Design

Exemplified by

Engages

Actors
inferred from

(scopes) Satisfice

Formalize

Satisfy

Apply to

Generalize/
exemplified by Apply to

Exemplify

Contrast/
juxtapose

Generalize

Address

Employ

Allocates
responsibility for

Tests

Implements

Implements

Verify

Implied by

Exemplify
concerns of

Elicits

FIGURE 5.1 Architectural requirements engineering artifacts

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 131 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 131

attribute scenario is not a use case scenario in the usual sense, but we
often formalize quality attribute scenarios by writing corresponding
use case scenarios, which can then be annotated with requirements
and tested in the usual way.

Quality Attribute Scenarios
Quality attribute scenarios (QASs) [Bass et al. 2003] are a special kind of
structured natural language description of a behavior. They are used
for capturing stakeholder concerns, by illustrating each concern with
a concrete example. A QAS may have a corresponding use case
scenario that formalizes it for the purpose of attaching requirements
and testing them.

Quality Attribute Requirements
A quality attribute requirement (QAR) is a special kind of requirement
that deals with measurable properties (quality attributes), such as
capacity, price, and responsiveness, related to stakeholders’
expectations.

Document Dependency Diagrams
In the methodology framework diagrammed in Figure 5.1, great
attention has been paid to how artifacts (documents) depend on one
another. Each arrow represents a uses dependency: Artifact X uses
Artifact Y (X → Y) if and only if the correctness of X depends on the
presence of a correct version of Y. For example, it is possible to agree
upon a set of architectural principles before the product architecture is
complete, but it makes no sense to approve the product architecture
before the architectural principles have been signed off. In the case of
subclass and composition relations, the subclass depends on the parent
class and the component depends on the composite. The arrows do not
necessarily represent time sequences for the activities to develop the
artifacts. The only way that they represent time sequences is in the
sense already defined: a document cannot achieve a sufficient degree
of completeness and quality until the relevant parts of the documents
it depends on have sufficient completeness and quality. We call this
notation a document dependency diagram for specifying the overall
structure of a software process, whether it is a generic process, like this
one, or tailored for a specific project. Describing the overview without
control information turns out to make it easy to tailor, even after the
project is under way, because the state of the process is captured
primarily in the state of the artifacts and does not depend on the control
sequence used to reach that state. When you start a new project, you
can copy and modify this diagram to suit the needs of your project.

 132 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Factors, Issues, and Strategies
Factors, issues, and strategies are artifacts used in a technique called
global analysis [Hofmeister et al. 1999], [Paulish 2002]. Factors
(architecture-influencing factors) are statements about the product,
the project, or their contexts that potentially influence the architecture.
Factors may be inferred from the problem statement or from the
engineers’ experience or general knowledge. Factors often generalize
QASs or use case scenarios. Sometimes, a factor is identified first, and
then a use case scenario is written as an example of the factor. Sometimes,
product requirements are introduced as examples of factors.

Issues are identified by finding conflicts between factors. The
statement of the issue juxtaposes the conflicting factors and explains
why they are hard to reconcile.

Strategies are tentative decisions about the architecture or the
project plan that address (architectural) issues.

Product Architecture
This artifact maps out all the coarse-grained components and
interfaces of the system, preferably using view models [IEEE 2000],
[Clements et al. 2003]. It conforms to the architecture principles while
allocating responsibility for product requirements to specific
components and interfaces. Note that the architecture principles are
largely independent of specific product requirements. That is, adding
or removing a major piece of functionality could lead to adding or
removing the components and interfaces responsible for that
functionality without affecting the principles.

5.3 Quality Attribute Requirements
The road to understanding quality attribute requirements starts with
a brief detour into the fundamentals of system quality. The quality of
a system, in general, is its fitness for its intended uses. ISO Std. 9126-1
defines a quality model with four linked topic areas of quality:

• Process quality Quality of the process that is producing the
product

• Internal quality Quality of the intermediate work products
(some of which may also be deliverable work products)

• External quality Quality of the finished product, before
delivery

• Quality in use Quality of the larger processes in which the
delivered product is used

A quality attribute is a system or process property indicative of
quality in any of these quality topic areas. Note that, for our purposes,

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 133 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 133

the “process” in “process quality” includes not only software
development, but all the business functions surrounding the product,
including marketing, sales, planning, maintenance, installation,
customer support, and preparing to develop the next version.

Naturally, quality in use is the most important area of quality, but
it is also the latest one to measure, because it cannot be measured
until the product is delivered. Fortunately, quality attributes in the
other topic areas give us useful indications of what the quality in use
will be; i.e., we say that such quality attributes are “indicative of”
quality in use.

As an example, consider a web-based, self-service airline
reservation system. We’ll focus first on the completeness of the system,
which is one aspect of its fitness for use. For quality in use,
completeness might be measured, in part, by “the percentage of
actual reservations that are made successfully without involving
airline personnel.” This, after all, is a primary goal of such a system:
reduce personnel costs for reservations. This percentage will be
affected by many things, including bugs, unimplemented use cases,
ease of use, response time, server capacity, etc. It will also be affected
by the proportions of different kinds of reservations that customers
want to make. Figure 5.2 illustrates the many quality attributes, from
the four quality areas, that are indicative of the percent of unassisted
reservations in actual use.

Before the system is deployed, it has gone through system testing,
where testers, acting the part of customers, try to accomplish specified
travel reservation tasks. Completeness, here, might be measured by
“percentage of use cases passing system test,” which would be an
external quality measure. It is obviously indicative of the percent of
unassisted reservations, but it is different in several ways, including
these:

• It attaches equal weight to each use case, instead of accounting
for the frequency with which each use case is needed by
actual customers.

• Paid testers quickly become experts in using the software
they are testing, whereas many real-world customers remain
only casual users of the software. So, a tester might complete
a task successfully via a user interface that is too frustrating
for the typical customer.

• A use case that fails system testing might still work most of
the time under real-world conditions.

Before the system even reaches system testing, the development
team is tracking their progress toward completing coding. To measure
completeness at a finer grain than use cases, they count the requirements
associated with the use cases and measure the “percentage of

 134 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

requirements that have passed unit testing.” This would be an internal
quality measure, both because unit tests can be performed on
preliminary configurations of the system and because some of the
unit tests represent conditions that cannot be tested via external
(system) tests.

Although process quality is in some sense a quite different matter
from product quality, we can certainly explore how product
completeness is affected by the process. First of all, the process defines
the measures of product completeness that are used in the three other
topic areas for a given project. Second, the degree to which the
organization adheres to the defined process will have a significant
effect on the accuracy and timeliness of the completeness measures,
and therefore on the ability of the organization to achieve sufficient

FIGURE 5.2 A quality attribute: completeness

Known Bugs
Use Cases

Implemented

Ease of Use Response Time

Server Capacity
Mix of

Reservation
Types

Percent
Unassisted

Reservations

Percent Use
Cases Passing
System Test

Percent
Requirements

Passing Unit Test

Process
Definition

Completeness

Process
Execution

Completeness
Process Quality

Internal Quality

External Quality

Quality in Use

A Quality Attribute: Completeness

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 135 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 135

completeness. For example, the process may define how to count use
cases for purposes of measuring the percentage of use cases that have
passed their system tests. The project manager needs to update this
statistic at regular intervals to keep track of progress. If he doesn’t,
then the executed process is incomplete, because it does not do
everything that the defined process says it should. If the defined
process does not specify how to determine whether the set of use
cases is sufficiently complete to satisfy the stakeholders, then the
defined process itself may be considered to be incomplete as well,
which could result in lack of completeness-in-use.

When it comes to defining actual quality attribute requirements,
it helps to distinguish two types:

• Requirements that define quality attribute measures and how
and when to measure them. For example, “The system shall
measure and report ‘reservation completion time,’ starting
from the display of the first flight query screen and ending
with the display of the screen giving the reservation
confirmation number.”

• Requirements that specify what values of the quality attribute
measures indicate sufficient quality. For example, “The
‘reservation completion time’ for an experienced tester on a
lightly loaded system making a Type 3 reservation shall be
less than two minutes.”

From these examples, you can see that functional requirements
and quality attribute requirements complement each other, and
neither is sufficient without the other. It is not enough to specify all
the kinds of reservation functions (the use cases) that the product
supports, without specifying how quickly a customer should be able
to make a reservation; e.g., it should be much faster than phoning the
airline. Conversely, it is not enough to specify that a customer can
make a reservation in three minutes, without specifying the kinds of
information the customer will be able to examine, the complexity of
the itinerary that can be handled, and all the other functional details.
Nonetheless, the functional requirements are the basic stuff—the
“nouns and verbs”—of the requirements, whereas the quality
attribute requirements are typically modifiers of the functional
requirements—the “adjectives and adverbs.”

Also note that the completeness-in-use of the airline reservation
system will be affected by other quality attributes, such as ease of use,
because from the user’s viewpoint there is little difference between a
function being unimplemented and being too hard to use, too slow,
etc. In general, quality attributes will overlap within each of the
quality topic areas, and each quality attribute in one area will be
indicative of multiple quality attributes in other areas.

 136 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

With these examples in mind, we summarize four related terms:

• Quality Fitness for one or more defined uses

• Quality attribute A property of the system or the process
that is indicative of quality

• Quality attribute measure A way of measuring a quality
attribute for a specific system or process

• Quality attribute requirement A requirement expressed in
terms of one or more quality attribute measures

Table 5.1 gives a broad sampling of other quality attribute topics
you might want to consider, with an example measure pertaining to
each topic. The topics are drawn from ISO/IEC Std. 9126, but there are
many other good sources of topics available on the Internet. The
quality attribute measures you use will be very specific to your project,
as you will see when we discuss quality attribute workshops.

TABLE 5.1 Quality Attributes

Quality Attribute Topic Example Quality Attribute Measure

Suitability The number of use cases, out of a defined set of
use cases that the software supports

Accuracy The magnitude of error in a specified calculation

Interoperability The number of interoperation use cases, out of a
defined set, that the software supports

Security The types of security threats against which the
software has best-practice protection

Reliability System performance (e.g., throughput) under
specified adverse conditions (e.g., burst of
arriving requests)

Maturity Frequency of disruptions in service due to faults
in the software

Fault tolerance The performance of the system (e.g., throughput)
after a specified type of fault (e.g., software,
hardware, or environmental)

Recoverability The time to return to normal system performance
and data integrity after a specified type of failure,
and the types of data that can be recovered when
directly damaged by the failure

Understandability Average time for a user to decide (correctly)
whether the system is well suited for performing
a specified task

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 137 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 137

Quality Attribute Topic Example Quality Attribute Measure

Learnability The average time for a novice user to perform a
specified advanced task for the first time

Operability The frequency with which users make operational
mistakes (attempt to apply the tool to a specified
problem incorrectly)

Attractiveness The frequency with which purchasers choose the
product over a functionally similar product

Time behavior Response time, throughput, and jitter under
specified conditions

Resource utilization Resource consumption (e.g., memory, CPU time,
data transmitted) under a specified workload

Analyzability Average time to diagnose a specified class of bug

Changeability Average time to design, implement, and self-test
a specified type of change to the code

Stability The frequency with which making a specified type
of change introduces unexpected side-effects

Testability The average time to design, implement, and
deploy a specified type of test

Adaptability The average time to adapt the system to a new
type of environment, within a specified range of
environment types, exclusively using specified
adaptation methods

Installability Effort to install the software product in a
specified type of environment

Co-existence Frequency of customer-reported, validated
system failures due to the presence of other
specified, permissible software products in the
same computing environment

Replaceability The list of software products that a given product
is suitable to replace

Effectiveness The proportion of specified use cases that the
software correctly implements

Productivity The proportion of work accomplished to human
effort expended, under specified conditions

Safety The expected monetary cost of harm to people,
business, software, property, or the environment
when the system is used in a specified context

Satisfaction The frequency with which trial users of the software
go on to purchase the software within 30 days

TABLE 5.1 Quality Attributes (continued)

 138 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Besides making reservations, there are many other “uses” of an
airline reservation system. It is used to make money for the software
house that built it. It is used to make a better airline reservation
system later. In fact, each major class of stakeholders will have a
different idea of what “fitness for use” means for them. For example,

• The business team cares about process speed and efficiency:
time to market and value for money spent on development.
They also care about the product’s capacity and efficiency.

• The development manager cares about code understandability
and modifiability.

• The IT department at the customer site cares about the product’s
resistance to viruses and other penetration attempts.

Choosing a good set of quality attribute requirements requires a
judicious blend of stakeholder focus and expert knowledge. You have
to satisfy the stakeholders in the short term, to keep the project going.
But, you also have to anticipate problems that the stakeholders
haven’t thought about yet. For that, you draw on your own experience
and the experience of other architecture experts. Be careful not to
bloat your requirements database with every conceivable quality
attribute, but you might want to keep a private list of attributes that
you think will become important later.

Setting Performance Targets Too Soon
Timing can be important when setting quality attribute targets. In a
recent project, the leadership team had an estimate for the throughput
needed from a certain subsystem but decided to withhold the
information from the subsystem team because

• They lacked confidence in the throughput estimate.

• The estimate would demand a high-performance design, which
would be costly and take a long time to develop.

As it turned out, the throughput estimate was correct, but the
subsystem designer had chosen a simpler design that could not provide
the required throughput. Major rework was performed, delaying the
project.

In retrospect the leadership team could have

• Documented the risk associated with uncertainty in the estimate,
and managed it along with other risks.

• Mitigated the risk, by giving the subsystem designer two
throughput estimates, and asking for a quick-and-dirty analysis
of the implications of choosing one over the other.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 139 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 139

We’ve come to recognize that treating quality attribute
requirements effectively is partly a matter of timing.

• Many team members will not be ready to talk much about
quality attributes until the broad functional requirements
have been defined.

• Before the quality attribute requirements can be defined, one
must define the units of measure of the quality attributes, and
focus on a manageable number of such attributes.

• Many quality attributes need to be traded off against other
quality attributes. The relative importance of them will be
different for different stakeholders. For external stakeholders,
the stakeholders’ understanding of these tradeoffs will evolve
based on external events of which you might not be aware.

• Setting an ambitious target value for, say, a performance
requirement can push the designers toward a complex, high-
performance solution. Project leadership needs to think
carefully about such impacts before committing to specific
targets. In worrisome cases, it may be worthwhile to discuss

Stages of Quality Attribute Grief
The stages that a project team goes through when dealing with quality
attributes can be compared with the stages of grief that an individual
may experience.

• Denial Early in the project, quality attributes are poorly
understood and therefore given less attention than they deserve.
They are treated superficially, as in “the system shall have good
performance.”

• Shock When the first realistic end-to-end scenarios are
executed, and it becomes possible to observe the quality
attributes, everyone suddenly realizes how poorly the system
measures up, and panic sets in.

• Anger Everyone tries to blame someone else.

• Depression Fixing the quality problems seems overwhelming.
Developers waste energy grumbling or worrying. Productivity
decreases.

• Bargaining The architect begs and cajoles stakeholders to
approve tradeoffs among quality attributes.

• Acceptance Stakeholders adjust their expectations to close
remaining gaps between actual and desired quality.

 140 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

the implications with the affected subteams and see if it is
worth commissioning a comparative study to see whether a
simple solution may be good enough to justify the savings
compared to a higher-performance, costlier design.

• For resource-related attributes, we have to deal with
configurations of resources and associated quality attribute
requirements (see Chapter 6).

5.4 Selecting Significant Stakeholders
Earlier chapters have mentioned stakeholders as the sources of
requirements, but for architecturally significant requirements, you
need to think carefully about identifying all of the stakeholders. We
recommend writing a stakeholder analysis document and updating it
from time to time. This document will likely have some frank and
unflattering opinions in it, as stakeholders have different views of
important requirements, so it must not be widely circulated.

A stakeholder is any person whose opinions, needs, or
preferences are likely to be relevant to the success of the project. An
obvious example is the customer: if we want someone to buy the
product, that person’s opinions matter. However, even with this
simple example, it is important to note subtle differences between
the buyer and the primary users. For example, for medical imaging,
the purchasing decisions for million-dollar CT scanners and MRI
devices are often driven by the opinions of a small number of
influential research faculty staff at major teaching hospitals.
However, the primary users of such machines are medical
technicians, who care more about ease of use than the latest technical
advances.

Examples of stakeholders include

• Installer In some fields, such as telecommunications or
manufacturing, installing the software and configuring it to
operate correctly with diverse preexisting equipment
constitute a labor-intensive, mentally challenging task.
Especially in businesses that use indirect sales channels, ease
of installation can have a huge impact on profitability, so
including installers as stakeholders is important.

• Tech support In many businesses, the staff who answer
phone calls from irate customers need good remote diagnostic
tools, as well as easy-to-explain user interfaces.

• Competitor Some stakeholders want to see the project fail!
But things get even more complicated when the same
company is a partner in one part of a business and a competitor
in another.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 141 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 141

The term “stakeholder” may have any of three meanings,
depending on context

• Stakeholder class A group, category, or type of individual
with a certain set of concerns.

• Individual stakeholder A particular, named person who is
a member of one or more stakeholder classes. You might need
to engage several individuals from the same class.

• Stakeholder representative An individual selected to
represent a stakeholder class for the purposes of a project. In
some cases, a stakeholder representative is not a member of
the class he or she represents but is chosen as a proxy for
them because, for one reason or another, no member of the
class can be made available to represent them.

Identifying Potential Stakeholders
It is very important for you to brainstorm a list of potentially important
stakeholders before settling on which ones you will actually engage,
because if you miss a significant stakeholder, you are likely to miss a
significant requirement.

Your project will undoubtedly present you with several obvious
individual stakeholders. Some additional sources that can help
identify significant stakeholders are

• The problem definition This should tell you why the
project is important, which will give you clues as to whom it
is important to.

• Other projects and departments in your organization Other
departments may, for example, provide field support to the
product you are developing, giving them a stake in it.

• Checklists There are several good published lists of
potential stakeholder classes, including those from the
Software Engineering Institute [Clements et al. 2003] and the
Atlantic Systems Guild.

• Use-case context diagram In Chapter 4, you learned how to
identify use case categories top-down and breadth-first. The
top-level use case diagram identifies all the types of actors
that interact with the system you are building. Each type of
actor suggests a stakeholder class. Tip: If the use case context
diagram hasn’t been created yet, offer to help draft it.

• Quality attributes As you consider potentially important
quality attributes, ask the question “important to whom?”
This will sometimes uncover new stakeholder classes worth
considering.

 142 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Begin to document each stakeholder class as you identify it. For
each potentially important stakeholder class, you may want to describe

• Major concerns of that class of stakeholders

• Their stake in the project (how the project benefits or hurts
them, including how big the impact is)

• Expertise and other inputs they bring to the project

• How much of their time you expect to need

• When you expect them to spend significant time talking to
you about the project, considering both when you need them
and when they will begin to see the project as urgent enough
to spend time on

• Candidates to represent the class of stakeholders

Prioritize the stakeholder classes as you go along, both in terms of
importance and urgency. You don’t need to complete the analysis if
you are sure a stakeholder class is unimportant, but it helps to at least
mention the class and why it is not important, so that others know
you have thought about it.

Next, choose the stakeholder representatives. For each stakeholder
class, consider how the candidate fits or differs from the rest of the
class members. Pay particular attention to

• The political importance of the individual within the
organization

• Availability

• Importance of the project to the individual personally

• Potential for conflicting agendas

Conflicting agendas are an inevitable part of the analysis. For
example, if your project is building a software platform or library that
will be used in several different products, each product will have a
different development schedule and will use your software in a different
way. When you find that candidates to represent the same class have
conflicting agendas, you may want to do one of the following:

• Give preference to the candidate for whom the project is most
important and/or urgent.

• Split the stakeholder class into two or more classes.

5.5 Methods for Architectural Requirements Engineering
In this section, we describe a number of methods that architects use
for defining and analyzing quality attribute requirements as part of
starting system design.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 143 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 143

Quality Attribute Workshop
A quality attribute workshop (QAW) [Bachmann et al. 2002], [Barbacci
et al. 2000] brings together a diverse set of stakeholders in a one- or
two-day meeting to elicit their quality attribute concerns and help
them understand one another’s concerns. As a concern is being
described, the facilitator helps the stakeholder write a quality attribute
scenario (QAS) that describes what he wants (and thinks might be
hard to achieve). Each stakeholder captures at least two of his or her
biggest concerns in the form of QASs and presents them to the group.
The group then selects a handful of QASs to explore in more detail. The
facilitator helps them see some of the architectural significance of the
QASs, and begins the process of trading them off against each other.

A QAS is a structured textual description of how a piece of a
system responds to a stimulus, including measuring the quality of the
response. It was invented by software architecture researchers at the
Software Engineering Institute (SEI) as a medium of communication
between stakeholders and the architecture team [Bass et al. 2003].

A QAS is typically structured to have the following parts:

• A stimulus

• A stimulus source

• An artifact being stimulated

• An environment in which the stimulus occurs

• A response to the stimulus

• A response measure (to quantitatively define a satisfactory
response)

For example, a configurability scenario might be written as

“A customer requests support for a new type of sensor after the
software has been installed and activated. The customer support
engineer reconfigures the system to support the new sensor without
writing any new source code, without extraordinary downtime, and
commencing operation with the new sensor within one calendar
week of receiving the necessary documentation on the sensor.”

For this example, we can define

• Stimulus Requests support for a new type of sensor

• Stimulus source The customer

• Artifact The system and the customer support organization

• Environment After the software has been installed and
activated

• Response The customer support engineer reconfigures the
system to support the new sensor

 144 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

• Response measure No new source code, no extraordinary
downtime, and commencing operation within one calendar
week

Note the quality attribute, measure, and requirement implied by
this scenario:

• The quality attribute is “configurability to accommodate new
sensors.”

• The measure is “the amount of new source code written, the
amount of downtime, and the amount of calendar time to
bring a new sensor online.”

• The requirement is “zero new source code, no extra downtime,
and less than one calendar week.”

Also, notice how the QAS nails down some details that an
unstructured scenario might have left open:

• Since no new source code is permitted, there must be a limit on
the range of new sensor types that can be handled. With enough
programming, any type of sensor could have been handled.

• Shutting the system down to reconfigure it is probably not an
option, because that would require extraordinary downtime.

• Reconfiguration will be done by an expert, not a novice.

• The expert is part of the installation organization, not the
customer organization.

But the most important aspect of the scenario is that it gives a
concrete example of configurability, which is easy for both the
stakeholder and the architecture team to understand.

When eliciting QASs, it is helpful to consider the following types
of scenarios, as a way of bringing out issues that might not have been
considered:

• Normal operations These are the most obvious scenarios.

• System-as-object scenarios In these, the system is a passive
object that is being manipulated by, say, a programmer or an
installer.

• Growth scenarios These scenarios deal with likely or
plausible changes to the requirements in the future, such as a
50 percent increase in capacity requirements. They help
develop a system that is (somewhat) future-proof.

• Exploratory scenarios These are improbable scenarios, such
as the loss of power from an “uninterruptible” power supply.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 145 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 145

They are used to stimulate thinking about implicit assumptions
underpinning the architecture, which may turn out not to be
true.

We recommend using QASs, not just in workshops, but whenever
you are capturing stakeholder concerns. You will want to manage
them similarly to how you manage other high-level requirements.
However, it is important to remember that

• The QAS is only an example of the concern. It is up to you to
investigate the topic and propose good quality attribute
measures and requirements.

• The stakeholders’ priorities will change over time. The
prioritization work done in a workshop helps you know
where to focus your attention first, but the official prioritization
of concerns will need to be done later and more
systematically.

• QASs do not replace use case scenarios. A QAS generally
treats the system as a black box, with a stimulus and a response,
whereas a use case scenario is attached to a particular use case
and can be as rigorous and detailed as necessary. We
recommend that you establish trace links between QASs and
the use cases or use case scenarios they correspond to,
indicating that the QAS is part of the rationale for the quality
attribute requirements attached to the use case.

Goal Modeling
One of the challenging differences between functional requirements
and quality attribute requirements is that functional requirements
usually have a yes/no flavor to them, whereas quality attribute
requirements have a more-is-better character. For example, if an
airline reservation system is required to display a certain list of
available flights within 15 seconds, the information displayed in
the list is either correct or incorrect, but nothing very bad happens
if the list is displayed in 16 seconds instead of 15, and displaying it
in 10 seconds is even better than 15, although the additional benefit
may not be very important.

Another challenging difference is that the logical linkage between
design decisions and functional requirements is normally clear-cut,
whereas the linkage between design decisions and quality attributes
often remains subjective during development. The easiest example is
user interface design, where many design decisions affect ease of use,
but it is mainly guesswork to say which ones will have a big impact,
and whether the aggregate ease of use will be sufficient for the end
user’s needs.

 146 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

One way to deal with “more is better” logic is by using the goal
modeling approach we have discussed in Chapter 3. A goal model is
a graph of nodes and edges, where the nodes are goals and other
decisions, and the edges are “satisficing” relationships. The term
“satisfice” means “satisfy sufficiently.” So, if a design decision seems
to achieve a goal well enough for the purposes of a particular project,
we say that the decision satisfices the goal.

More typically, a single decision contributes toward satisfying
several goals but also interferes with achieving other goals. Some
goal modeling notations therefore support both positive and negative
satisficing relationships, and some even provide for “double-plus”
and “double-minus” links. In these models, an edge A → + B means
“A contributes to satisficing B.” A → − B means “A interferes with
satisficing B.” To decide whether a given node N is satisficed, one
must consider all the edges leading to it, both positive and negative,
and analyze the combined effect of those decisions on the goal. While
this representation can be useful in visualizations, diagrams of large
graphs can be in practice quite unreadable. Their value comes more
from their use in a trace link database, when analyzing the impact of
changing a decision (see later Figure 5.4).

Global Analysis
Global analysis is a methodology for organizing a broad variety of
soft, uncertain information gathered in the early stages of architectural
requirements analysis [Hofmeister et al. 1999], [Paulish 2002]. It is
“global” both in the sense that it looks at the system from all directions
(all external interfaces, all stakeholder concerns, plus any sort of other
constraint, whether from the organization, the marketplace, available
implementation technologies, the job market, or whatever), and the
topics addressed frequently have a broad impact on the system as a
whole, cutting across many subsystems and multiple architectural
views.

Global analysis classifies this information into three types of
entries: factors, issues, and strategies. Architecture-influencing factors
are (alleged) facts that are likely to have significant influence upon
the architecture. Issues are potential conflicts or tradeoffs among
factors. Strategies are proposed decisions that address the issues. All
three types of entries are collected concurrently, as new information
becomes available, opportunities to ask questions arise, and ideas
come to mind. Classifying them this way helps the analysts keep
from confusing external constraints with proposed solutions, helps
them focus on the hard problems first, and helps them build their
rationale for the emerging architecture.

Factors: Beyond Requirements
Any requirement or stakeholder concern might be a factor, but there
are many factors that are neither requirements nor stakeholder

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 147 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 147

concerns in the usual sense. We normally expect requirements to state
properties of the product, whereas a factor may describe something
other than the product itself, for example, “Our programmers don’t
know application service provider (ASP) technology.” Rather than
arising from a stakeholder concern, a factor might arise from general
knowledge, from architectural experience, from legacy products,
from the history of the development organization, or from any other
source. Finally, global analysis deals simultaneously with
requirements, architecture, and project management, so some of the
factors may only bear on the product indirectly.

Here are some example factors, illustrating their diversity:

• “The product developers are spread across three locations.”

• “The license fees for a key third-party software component
will likely be around $1500 per server.”

• “There is significant market demand for both large-screen
and cell-phone versions of this type of product.”

Factors can come from anywhere. For convenience they are
grouped into three categories: product factors (typically derived from
features); technology factors, which involve the technologies available
to implement the product; and organizational factors, which involve
properties of the company or other organization that is developing
the product. These categories are further grouped into subcategories,
such as product performance, services provided, programming tools,
technical standards, staff skills, and schedule constraints. These
categories and subcategories should not be considered exhaustive;
any significant factor should be captured and addressed, whether or
not it fits neatly into one of the categories.

We try to capture the following information to describe factors:

• Category and Subcategory These are specific to the project
and are just used to help organize the factors as you collect
them.

• Name This is a short phrase that makes it easy to refer to
the factor within the team and in other documents.

• Brief statement of the factor This statement typically
consists of a single sentence, as in the preceding examples.

• Negotiability (optional) This is the “wiggle room” in the
factor today. For example, in the case of the three development
sites, one of the sites might be optional, depending on the
overall staffing needs and the skill mix required.

• Change over time (optional) This describes how the factor
might change in the future. For example, the demand for the
product on a cell phone may not be significant for another
two years. Negotiability and changeability should not be

 148 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

confused with stability, a property indicating how strong the
consensus is for the current wording of a requirement.

• Impact This explains how the factor is likely to influence
the architecture.

• Authority This is the justification for including the factor in
the analysis. For example, it could be the name of a stakeholder
or a team member, references to requirements, stakeholder
requests, or other project documents, or a phrase like “general
knowledge” or “past experience.” External authorities are
generally better than just listing a team member, but since you
are the architects, others do expect you to be the authority some
of the time. Also, there will be cases where you identify a factor
that you expect will become important to certain stakeholders
later. You can list yourself as the authority temporarily, and
comment on who else may become interested.

• Expert This is the subject matter expert for the factor.

In addition, each factor has other attributes equivalent to those
usually attached to requirements, such as unique ID, owner, status, or
stability.

An example textual description of a factor is given in Figure 5.3.
Although storing factors, issues, and strategies in an ordinary

text document can be adequate for small efforts, we would recommend
managing them with a general-purpose requirements management
tool, such as Teamcenter, Doors, or Requisite Pro, if your organization is
already using one. The key advantage of using a tool is being able to
look at the same text either as a narrative document or as a
requirements catalog.

FIGURE 5.3 Textual presentation of a factor

1. Organizational Constraints
1.3 Management
1.3.5 Buy reporting subsystem
(Factor-37)
The reporting subsystem should be based on a commercial product, e.g. Crystal
Reports
Negotiability Previous reporting system was implemented in-house, so buying
COTS is not a rigid requirement. But competitors are already doing this.
Changeability Reporting features may become more specialized, making the
“buy” option less advantageous.
Impact Buying the market leading product has low development cost, risk, and
time to market, but introduces licensing costs and reduces product
differentiation.
Authority Features 135, 136, and 139, and SR 174 are from Jim Smith, who has
interviewed customers concerning reporting features.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 149 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 149

“Softness” is a hallmark of architecture-influencing factors. Softness
is inevitable because much of the analysis must be performed before
the hard facts are known. We find that factors often need to capture
four kinds of softness: range, change over time, uncertainty, and
negotiability. These can all be present in a single factor. For example,

“Customers’ networks currently have 100 to 100,000 nodes. The
upper end of this range will increase every two years by a factor
of 1.5 to 3. Our architecture may not have to cover the low end of
the range, if expected sales don’t justify the cost.”

This factor illustrates range (100 to 100,000 nodes), evolution over
time (will increase every two years), probability (factor of 1.5 to 3),
and negotiability (expected sales vs. cost). Although this example
expresses probability with numbers, a factor is permitted to use
qualitative words like “probably,” “likely,” “might,” and “could” to
express uncertainty. Negotiability links this factor to other factors,
giving some idea of how variations in one affect the other. Although
it may be tempting to split such a factor into four different factors,
each addressing one kind of softness, don’t make the split unless you
are confident that the different factors are relatively independent of
each other. Allowing softness in an architecture factor thus allows the
architect to document a factor and make plans concerning it before
the uncertainty is resolved.

Unlike requirements catalogs, the collection of architecture factors
does not have to be complete. Global analysis prioritizes them, finds
conflicts and tradeoffs between them, and finally reduces them to a
set of key issues that shape the architecture. The less important factors
will likely be ignored, for most purposes, so missing a few of them
is okay.

Issues
The purpose of documenting issues is to identify the aspects of the
project that are going to be hard to accomplish. A global analysis issue
is a potential conflict or tradeoff between two or more factors—
usually many more! For example, the issue “Aggressive Schedule”
might be described as, “The project probably can’t be completed in
the 14 months currently budgeted if we have to train our programmers
in Java, add new tools to our development environment, and
implement all 75 major features, using a novel user interface concept.”
Implicit in that statement are the factors

• Develop in 14 calendar months

• Programmers don’t know Java

• Seventy-five major features

• Novel user interface concept

 150 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

To document an issue, record

• Name A short phrase

• Brief description One or two sentences

• Factors involved Names of, and links to, the factors that
conflict with each other to create this issue.

• Why it’s hard The challenges facing the project team; e.g.,
meeting functionality, schedule, budget, schedule, quality,
performance constraints.

• Expert The subject matter expert

• Owner, status, priority, etc. The usual requirements
management attributes

• Discussion Additional information that came up when the
issue was uncovered. This may include potential strategies
for resolving the issue, before the strategies have been
separately documented.

Sometimes, an issue is identified that does not seem to reflect a
conflict between factors. That’s okay. Document it first, and figure out
the factor conflicts later.

• If you’re lucky, thinking about what makes the issue hard
will suggest a new factor.

• Sometimes the factor conflict won’t become apparent until
you consider the architectural alternatives surrounding the
issue.

• If nothing else, there will usually be a conflict with cost and/
or schedule.

• Or, it may turn out that something that appeared to be difficult
didn’t really make a difference to the architecture after all.

Strategies
A strategy is a proposed decision that addresses one or more significant
issues. Many strategies are simply architectural design decisions, such
as the decision to implement asynchronous communication using
loosely coupled event channels instead of tighter-coupled publishers
and subscribers. However, in global analysis, an issue can involve
both technical and managerial factors, and so the strategy may be
technical, managerial, or a combination. For example, if the issue is
“ASP programming is best done in Java for this product, but our
programmers only know C++,” the architect and the project manager
could choose to “retrain our programmers in JSP,” “buy an ASP
development environment for C++,” or “use some C++ programmers
to write C++ applets, and retrain others to write JSP.”

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 151 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 151

To document a strategy, record

• Name A short phrase

• Brief description One or two sentences

• Issues and factors affected Names of, and links to, the
issues and factors that are addressed by this strategy

• Explanation A lengthier description of the strategy

• Why it works Why the strategy satisfices the factor-goals
and issue-goals

• Expert The subject matter expert

• Unique ID, owner, status, priority, etc. The usual
requirements management attributes

• Discussion Additional information about the strategy,
including references to additional reading

Factors vs. Requirements
Although a factor is similar to a requirement, there are important
differences, as summarized in Table 5.2.

We expect both factors and requirements to be correct. However,
a requirement is supposed to be a true statement about a set of
products, whereas a factor is a true statement related to the architecture
of a product family. “Related to” is important because an architecture
is constrained by many stakeholders, not just the market requirements.
“Product family” implies that the architecture should reflect “family
planning,” leaving room for family members to grow and for new
ones to be added.

Although they must be unambiguous, factors are allowed to be
explicitly variable. The idea is that a factor expresses a multidimensional
region of values within which a combination of product requirements
will fall.

Requirement Factor

True of the product(s) True and related to the architecture
of a product family

Unambiguous Explicitly variable

Verifiable Arguable

Modifiable Readable

Consistent Conflicting

Complete Important

Traceable Yes, eventually

TABLE 5.2 Requirements and Factors

 152 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Instead of being verifiable, factors are only expected to be
arguable, meaning that someone can make a convincing case that the
factor is true. This relaxation of rigor is important for capturing
assumptions before the “true facts” are known.

Modifiability is less important than readability, because the number
of important factors should remain small (under 100), making them
relatively easy to maintain in any case. In the customer network
example given earlier under “Factors: Beyond Requirements,”
conventional wisdom on modifiability would recommend breaking
the factor into three or four separate factors, but in truth it is a single
factor that varies in four dimensions. We also prefer not to restrict the
sentence structure of factors (as some requirements standards do), in
favor of greater expressiveness. For example, is it clearer to write, “The
architecture shall facilitate developing the framework and products
using programmers whose previous experience does not include ASP
technology” or “Our programmers don’t know ASP”? The first
alternative is verbose, vague, and might actually be incorrect, if there
is an option to hire a few ASP developers. The second alternative
succinctly captures one fact that constrains the architecture.

We expect to record contradictory factors, both because they can
represent different points of view and because one purpose of global
analysis is to discover conflicting factors and find ways to reconcile
them. For example, one stakeholder may ask for a fast, powerful
system, while another asks for a low-cost, small-footprint system.
Only later analysis will determine whether one of the stakeholder
requests is rejected, a good compromise is found, or two system
family members are produced, where one is fast and powerful and
the other is cheap and small.

The collection of factors will be incomplete because only the most
important ones can be addressed. Experience has shown that, in
practice, architects address only the top 5–10 concerns when defining
the architecture principles. So, the process of collecting factors needs
to be systematic but limited in duration, ending when the team is
reasonably confident that they have reached a point of diminishing
returns (or time has run out). Completeness has a secondary meaning
here as well: some factor descriptions will be left incomplete if they
are deemed not important enough to finish, but will not be deleted so
that they can be revisited later.

Finally, traceability of factors is important, both backward and
forward. Each factor that is deemed important must eventually be
traceable back to a source, which is typically an expert or a stakeholder.
Without such a trace, the factor has no authority over the project, either
because it isn’t true or because no stakeholder thinks it is relevant.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 153 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 153

Goal Modeling of Factors, Issues, and Strategies
Goal modeling is a useful way to describe the relationships among
factors, issues, and strategies. Each factor represents the goal of
developing a product compatible with that factor. Each issue represents
a derived goal, namely to develop a product that satisfices a particular
combination of factor-goals, even though they appear to conflict with
each other. Each strategy, if adopted, represents a design decision that
contributes to satisficing some issue-goals and some factor-goals and
detracts from satisficing others. Finally, the engineering requirements
sponsored by the architecture team have satisficing relationships to
the chosen strategies. Figure 5.4 uses goal modeling to depict
relationships among factors, issues, and strategies.

Managing Factors, Issues, and Strategies
As with functional requirements, it is important to have a definite
procedure for managing factors, issues, and strategies. We have
already mentioned that it is useful to put them in a requirements
catalog, if a suitable tool is already in use in the organization. However,
unlike conventional requirements management, the whole purpose
of Global Analysis is to identify a small number of high-priority issues
and corresponding strategies that shape the architecture. If you don’t
manage toward this goal, global analysis can grow into a very large,

FIGURE 5.4 Goal modeling

Use ASP
Technology

Use Current Staff,
Who Don’t Yet

Know ASP

Localize Use
of ASP

Hire a ASP
Expert

Hold ASP
Classes

+

++

–

+

–

+

+

Use ASP with
Current Staff

+

Factors

Issues

Strategies

 154 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

unwieldy effort that is vulnerable to analysis paralysis. Therefore, we
recommend these approaches:

• Use brainstorming to identify factors, issues, and strategies,
but don’t insist on fully documenting every idea that comes
up. Use priority and status attributes to mark certain items as
deferred (we’ve decided not to work on it right now), and/or
low priority.

• Use face-to-face prioritization meetings within the analysis
team to narrow down the list of high-priority issues to less
than 20. Eventually, the architects will most likely focus on
fewer than 10 issues, but they need a longer list to choose
from. Simple voting can help focus the meeting’s attention,
but then you should discuss the borderline cases to seek
consensus on whether to include them or exclude them from
the high-priority list.

• Use time-boxed scheduling (e.g., sprints in agile terminology)
to limit the amount of time you spend on global analysis;
then pull together what you know and assess whether
additional time is needed, and how it should be spent.

• Drive the analysis toward the document in which it will be
published for outside review. The purpose of this document
will typically be to win buy-in for the early architecture
concepts you’ve selected, by showing how they address
stakeholder concerns and other dangers you’ve uncovered.
The document only needs to include the factors and issues
that justify the strategies selected and the key architectural
concepts adopted. It should be a persuasive document with a
flowing narrative, and not just a catalog of factors, issues,
strategies, and architecture concepts.

5.6 Testing ASRs
Although we have argued that architecturally significant requirement
(ASRs) carry high risk because they cannot be fully tested until very
late in development, we now argue almost the opposite: critical ASRs
should be partially tested early in development, and retested frequently
as development proceeds.

The problem with not testing ASRs is that whatever is not being
tested tends to be ignored. Therefore, once you have prioritized the
ASRs on a project, you must devise a way to test the most important
ones, in order to keep the team’s attention focused on them. However,
the most important ASRs are typically based on quality-in-use
attributes, which by definition cannot be measured until the system
is put into use. Fortunately, as you saw in our earlier example, one
can usually find internal quality attributes that are indicative of
quality-in-use attributes.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 155 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 155

Partially measuring key ASRs can therefore be accomplished by
selecting indicative quality attributes, internal and/or external, that
can be measured early, and measuring them. When results of these
measurements change significantly, it is time to review them and
decide whether the key ASRs that they indicate are in trouble.

For example, in a recent project, we saw that having adequate
performance of the messaging infrastructure was going to be an
important quality attribute and a difficult challenge. Focusing the
project’s attention on it was particularly difficult because the project was
globally distributed and cross-divisional. Therefore, we set out to create
an early testing strategy for the relevant quality attribute scenarios.

First, we discovered that the QASs were written in terms of
complex functionality that could not be tested until late in the project.
But since we were really interested in the infrastructure performance,
we selected much simpler functionality to test, whose performance
would be indicative of the complex functionality’s eventual
performance. We also limited our attention to just four use case
scenarios. We then defined three independent variables to describe
the space of performance tests, with a choice among a handful of
ordinal values on each dimension (see Table 5.3).

We then defined quality attribute measures for four performance
attributes:

• Real-time database memory consumption

• Message throughput

• Message latency

• Command response time

We specified numerical parameter values for each of the
independent variables and wrote automated testing scripts to execute
each of the functional scenarios under each sensible combination of
traffic load and network sensor size. Finally, we specified plausible
success thresholds for each of the performance parameters under
each combination of independent variables.

As soon as the functional scenarios were implemented, we were
able to begin executing these performance tests. We found two

Independent Variable Values

Traffic load Normal, Peak, Burst, Max

Sensor network size Embedded, Small, Medium, Large

Functional scenario Scenario A, Scenario B, Scenario C,
Scenario D

TABLE 5.3 Independent Variables

 156 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

clusters of pain points: in one cluster of failed tests, memory
consumption was excessive; in the other, latency and response time
were too slow. At first, the test results pointed to low-hanging fruit:
obvious design flaws that had obvious fixes. Once these were taken
care of, the tests continued to show deficiencies, but the causes were
much less obvious.

Therefore, we conceived and convened Quality Attribute Testing
Workshops where we brought together cross-functional teams of
architects, implementers, and testers, to dig deeper into the
performance problems, to prototype solutions to the problems, and to
specify internal resource measurements that would better quantify
what a successful solution looked like. Armed with the test findings,
diagnoses, and prototyped solutions, we then conducted Quality
Attribute Design Workshops, where we designed the solutions in detail,
including looking for secondary problems exposed by the solutions
to the primary problems.

To summarize, our ASR testing strategy will

• Use quality-in-use attributes to identify corresponding internal
quality attributes.

• Test the internal QAS by measuring simple scenarios that are
built early.

• Keep the number of ASR test scenarios small, but with
multiple combinations of resource parameters (or other
independent variables).

• Automate the testing early, so that it is repeatable and cheap.

• Use the tests to drive QA Testing Workshops and QA Design
Workshops to improve the quality.

For a more sophisticated approach to testing critical system
qualities, see [Cleland-Huang et al. 2008].

5.7 Case Study: Building Automation System
For the purpose of illustration, consider a company that manufactures
devices for the building automation domain and software applications
that manage a network of these devices. With the hardware being
commoditized, its profit margins have been shrinking. The internal
development costs for the software applications that manage different
devices have also been rising.

To sustain their business long term, the company decides to create
a new integrated building automation system. The intended system
would broadly perform the following functions:

• Manage field devices currently used for controlling building
functions.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 157 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 157

• Define rules based on values of field device properties that
trigger reactions.

• Issue commands to set values of field device properties.

• For life-critical situations, trigger alarms notifying appropriate
users.

Taking this approach would allow the company to reduce internal
development costs, since several existing applications will be replaced
with the new system. The company could also achieve market expansion
by entering new and emerging geographic markets and opening new
sales channels in the form of value-added resellers (VARs).

It is clear that some of these business goals will have a significant
impact on the development of the building automation system; e.g.,
hardware devices from many different manufacturers would need to
be supported; consideration would have to be made to take the
language, culture, and regulations of different markets into account;
tradeoffs would need to be made and risks assessed to determine the
extent to which the product should support these goals; and depending
on the company’s comfort level with the tradeoffs and risks, these
goals might need to be refined, e.g., scaling back on the intended
markets. Therefore, it is highly relevant to use these as a starting
point for deriving not only the features that the building automation
system must support but also the forces (architectural drivers) that
will shape its architecture. Table 5.4 shows these business goals and
their refinement.

Features That Define the Product
Business goals play a significant role in defining the critical features
that a product must support. For instance, integration implies that
the features of existing applications to be integrated must be

Business Goal Goal Refinement

Reduce internal
development costs

Integrate existing applications into a single unified
software package: the building automation system

Expand by entering
new and emerging
geographic markets

Support international languages

Comply with regulations impacting life-critical
systems, such as fire alarms, to operate within
specific latency constraints

Open new sales
channels in the
form of value-added
resellers (VARs)

Support hardware devices from different
manufacturers

Support conversions of nonstandard units used by
the different hardware devices

TABLE 5.4 Business Goals for the Example Building Automation System

 158 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

supported in the new system. This may require innovative ways of
displaying information in the user interface and providing fine-
grained access control over who is allowed to interact with what part
of the system. Supporting international languages implies
personalization capabilities. Regulatory policies for safety-critical
parts of the system would require alarm-handling capabilities for
situations that could cause loss of life. Supporting hardware devices
from different manufacturers would require dynamic configuration
capabilities. Table 5.5 shows a mapping of business goals to the
features of the building automation system.

These features can be refined into specific use cases based on how
the external actors shown in the context diagram in Figure 5.5 intend to
use the system. For instance, the field engineer intends to manage field
systems and dynamically reconfigure them. The facilities manager
intends to manage alarms generated by field systems that monitor a
building. Alarms related to events that could cause loss of life also result
in notifications to the public safety system. The system administrator
intends to manage the users of the building automation system.

Goal Refinement Features

Integrate existing applications into a single
unified software package: the building
automation system

User Management

Access Control

Field Device Management

Event Management

Alarm Management

Support international languages Internationalization and
Localization

Comply with regulations covering life-critical
systems, such as fire alarms, to operate
within specific latency constraints

Alarm Management

Support hardware devices from different
manufacturers

Dynamic Reconfiguration

Support conversions of nonstandard units
used by the different hardware devices

Dynamic Reconfiguration

TABLE 5.5 Features Derived from Business Goals

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 159 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 159

Some of the use cases related to the goals of the actors of the
building automation system are shown in Figure 5.6. These use cases
are grouped by product features they realize and provide a broad
functional context of the system under development.

Forces That Shape the Architecture
The business goals also correspond to quality attributes the system
must exhibit. In order to support a multitude of hardware devices and
consider different languages and cultures, the system must be
modifiable. In order to support different regulations in different
geographic markets, the system must respond to life-threatening
events in a timely manner. It is, therefore, critical that the business
goals and their implied quality concerns be fully understood.

One way to do this is to employ the SEI’s Quality Attribute
Workshop (QAW) [Bachmann et al. 2002], [Barbacci et al. 2000]. As
we have discussed, this is a technique for eliciting quality attribute
requirements that are mapped to business goals. Through workshops,
the business goals provided by management and technical
stakeholders are used to elicit concrete scenarios for the quality

FIGURE 5.5 Building automation system context

Field
Engineer

Facilities
Manager

System
Administrator

Monitoring
Client

Field system
data

Field System
Alarm

notification
Public

Safety System
Automation

Server

Database

ConnectorsComponents

KEY

Software Component

Database

External Entity

Call-Return (X calls Y)
Data Access (A accesses/stores data
to A from B)
X interacts with Y

System Boundary

Store/access
field system data

Monitor building

X Y
A B

X Y

 160 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Manage
Automation Rule

Manage Alarm

Manage Standard
Operating Procedures

Handle Alarm

Issue
Command

Follow SOP

<<include>>

<<include>>

<<include>>

Facilities
manager

System

Public
safety system

Personalize UI

Notify Change
of Value

Manage Field
Devices

Manage Users

System
administrator

Field engineer

Field system

Feature:
Personalization

Feature: Event
Management

Feature: Field Device
Management
Feature: Dynamic
Reconfiguration

Feature: Access
Control

Feature: Alarm
Management

FIGURE 5.6 Use cases

attributes corresponding to these goals. These scenarios must be
specific enough that a system can be evaluated to determine if it
satisfies a given scenario. Table 5.6 shows a mapping of the business
goals to quality attribute scenarios for the building automation
system.

Constraints on the Architecture
While the features define a product and the quality attributes play a
significant role in shaping its architecture, there are additional factors
that may constrain how the architecture will be designed. For instance,
it may be the case the system under consideration has to be developed
on the Microsoft .NET platform and needs to use the Oracle DBMS.
This a priori choice of technology will limit the ability of an architect
to make design decisions such as how the system is partitioned into
tiers; the communication mechanisms across these tiers; and the
strategies for security, failover, and transaction management.

As discussed earlier, global analysis is a technique for analyzing
a wide variety of factors that may become constraints for creating the
architecture. Table 5.7 enumerates a few such factors for the building
automation system.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 161 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 161

Architectural Drivers
From the features, quality attributes and factors enumerated in earlier
sections, we distill a list of significant architectural drivers. A
prioritized list of such drivers for the building automation system is
shown in Table 5.8.

Architectural drivers 1–5 relate to the quality attribute scenarios
enumerated in Table 5.6. In addition, architectural drivers 1 and 3
also correspond to dynamic reconfiguration, 2 corresponds to
personalization, 4 corresponds to event management, and 5, to alarm
management features respectively enumerated in Table 5.3. Most
architectural drivers relate to the factors identified in Table 5.7. For
instance, the organizational factor concerning new market segments
is reflected in architectural drivers 1–5. These drivers take into account
the flexibility needed to accommodate new field devices and their
calibration, language, and cultural aspects, as well as regulatory
concerns regarding the responsiveness of the system to safety-critical
events. The technological factor related to scalability and
responsiveness and the product factor related to performance and
scalability are addressed through architectural drivers 4, 5, and 6.

Refined Business Goal Quality Attribute Quality Attribute Scenario

Support hardware
devices from many
different manufacturers

Modifiability Two developers are able to
integrate a new device into
the system in 320 person
hours.

Support conversions of
nonstandard units used
by the different devices

Modifiability A system administrator
configures the system to
handle the units from a
newly plugged-in field device
in less than three hours.

Support international
languages

Modifiability A developer is able to
package a version of the
system with new language
support in 80 person hours.

Comply with regulations
requiring life-critical
systems, such as fire
alarms, to operate
within specific latency
constraints

Performance A life-critical alarm
should be reported to the
concerned users within
three seconds of the
occurrence of the event
that generated the alarm.

TABLE 5.6 Quality Attributes and Scenarios Derived from Business Goals

 162 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Architecture Design
Given a prioritized list of architectural drivers, we can begin to create
an architecture that reflects them. To accomplish this, we can employ
Attribute-Driven Design (ADD) [Bass et al. 2003].

Category Factor Description Strategy

Organization New Market
Segments

Limited
experience with
some market
segments the
organization
would like to
enter.

Incrementally grow
the solution into
market segments
with limited
experience.

Technology Scalability and
Responsiveness

System must
be scalable to
handle large
number of
field devices
and improve
responsiveness.

Consider the
possibility of
scaling upward by
adding additional
processors in one
server computer
or additional
server computers.

Product Performance
and Scalability

System must
handle a
wide range of
configurations,
say, from 100
field devices to
500,000 field
devices.

A scalable
distributed
solution is
necessary to
meet performance
requirements.

TABLE 5.7 Factors in Designing the Building Automation System

Architectural Driver Priority

1 Support for new field system (H, H)

2 International language support (H, M)

3 Nonstandard unit support (H, M)

4 Latency of event propagation (H, H)

5 Latency of alarm propagation (H, H)

6 Load conditions (H, H)

TABLE 5.8 Architectural Drivers for the Building Automation System

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 163 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 163

ADD begins by prioritizing the architectural drivers. This is done
by soliciting input from both the business and technical stakeholders.
The business stakeholders prioritize scenarios based on their business
value (High – H, Medium – M, Low – L), whereas the technical
stakeholders do so based on how difficult it would be to achieve a
given scenario during the system design, resulting in nine different
combinations in the following order of precedence: HH, HM, HL,
MH, MM, ML, LH, LM, and LL. Table 5.8 shows the prioritized
drivers for the building automation system.

From here we decompose the system by applying a series of
architectural tactics corresponding to each architectural driver.
Figure 5.7 shows the result of applying these tactics to the building
automation system. The sequence of decomposition reflects the
priority order of the quality attribute drivers in Table 5.8.

Software
Management
System

Commands

Events

Field Devices

Software Management System

Virtual FSS

Adapter Manager

Commands
Events

Events

Commands

Commands

Events

Events

Adapter1 Adaptern

Commands

Field System

(b)(a)

Alarms AlarmsAlarm
notification Alarm

notification

Commands
Events

Events

Software Management System

Virtual FSS

Commands
Events Commands

Events
Software Management System

Virtual FSS

Commands
Events

Commands

Field System

Events
Commands

Events
Commands

Field System

(c)

Legend

Component

Components

Database

External System

Connectors

Call-Return (X calls Y)
Data Access (A accesses/stores data to/from B)
Call-Return (X accesses File-Y)

System Boundary

X
A
X

Y
B
Y

(d)

Alarm data
Alarm

notification
Presentation

Alarm
handling

…

FIGURE 5.7 (a) Monolithic system, (b) support for adding new hardware,
(c) support for life-critical systems to operate within specific latency
constraints, and (d) support for internationalization

 164 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Starting with a monolithic system in Figure 5.7(a), ADD applies
the modifiability tactics to limit the impact of change and minimize
the number of dependencies on the part of the system responsible for
integrating new hardware devices. This is shown in Figure 5.7(b),
where an adapter is introduced for each field system (anticipation of
changes tactic) with each adapter exposing a standard interface
(maintain existing interface tactic) and a virtual field system is
introduced to further limit the ripple effect when removing or adding
field systems (hiding information tactic).

The performance tactic (concurrency), shown in Figure 5.7(c), is
applied next to add support for critical systems so that they operate
within specific latency constraints and can handle specified load
conditions. The parts responsible for evaluating rules and generating
alarms for life-threatening situations are separated out into an alarms
module. This module can now be moved to a dedicated execution
node, reducing latency, and its performance can be further enhanced
by introducing multithreading within the module. We can also add
execution nodes for horizontal scalability.

The modifiability tactic (anticipation of changes) is applied in
Figure 5.7(d), and a separate presentation module is created to
support several international languages.

It should be noted that the only driver from Table 5.8 that does
not appear to be addressed is the one dealing with conversion of
nonstandard units used by various devices. We use the adapters
shown in Figure 5.7(b) to do the conversions into standard units
(intermediary modifiability tactic).

Modeling the Domain
Figure 5.8 shows a domain model for the building automation system.
In describing various artifacts related to the system, the use of a
standard vocabulary of the domain plays a significant role in making
the descriptions less ambiguous. The closer the standard vocabulary
is to the problem domain, the smaller is the representation gap
between how the stakeholders of the system perceive their world and
how the software engineers describe the system under design.

Performance Modeling
In the event that data from the field systems begins to indicate the
possibility of an alarm, the facilities manager (and possibly, the public
safety officials) needs to know about this possibility within one
minute of its occurrence. Under normal operating conditions, a single
field system generates ten data samples/second in the worst case.
Sample size is approximately ten bytes. A typical building in the
worst case may have 100 field systems.

This section creates a performance model for the proposed
architecture for the building automation system based on the end-to-end

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 165 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 165

Operator

Standard
Operating
Procedure

Facilities
Person

Alarm Rule

CommandField
Device

Field
System

Executed by

Acknowledges

Generated by

Generated by

Configured by

Defines

Issues

Issues

Contains

*

**

* * *

*

**

*

*

*

1

1

1

1

1

11

0.1

Handles

FIGURE 5.8 Domain model

scenario just described. Once the model is created, the computational
needs of the software and hardware resources are determined. Finally,
this model is evaluated against the specified performance objectives.
The purpose of this exercise is to ensure the proposed architecture meets
the stipulated performance objectives and explore alternatives if any
serious design flaws are discovered. In some cases, a simulation of the
system performance is created in addition to or instead of a performance
model; e.g., for a nuclear reactor, simulation may be the only way to
verify that the design meets the requirements prior to construction.

Figure 5.9 shows the key end-to-end scenario or workflow for the
building automation system. Many field systems concurrently
transmit data to the virtual field system. The virtual field system
processes the raw data and persists it to a database after gaining
secure access through the access control component. This data is then
made available for analysis by the alarm subsystem, and when alarms
are detected, they are reported to the monitoring clients for the
facilities manager and the public safety system for the public safety
officials. This execution snapshot can be used as a basis for creating a
performance model when sufficient information is available on data
volumes, data arrival rates, and processing requirements of the
individual software elements shown in this figure.

 166 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Figure 5.10 shows the execution graph for the building automation
system corresponding to the scenario in Figure 5.9. Each data sample
from the different field systems is first collected by the virtual field
subsystem. On the virtual field subsystem, data from all the field
systems within a building is stored into a database and made available
for analysis by the alarm subsystem. If an alarm is detected, the alarm
subsystem generates a notification for necessary action.

Each sample

Each building

Each field system

Analyze
Data

Store
Data

Collect
Data

KEY

Functional Block

Repetition Node

Control Flow

FIGURE 5.10 Execution graph for alarm detection

FIGURE 5.9 Execution snapshot of the building automation system showing
message flow across communicating hardware and software elements

Field
System

Virtual Field
System

Access
Control Database Alarm

Subsystem
Monitoring

Client
Public Safety

System

par Analyze Data
1: Transmit

data() 2: Process data()

3: Store data()
4: Store data()

5: Request data()

7: Data

8: Data

11: Notify()

12 [threat]:
Notify()

10 [alarm detected]: Create notification()

9: Analyze data()

6: Request data()

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 167 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 167

Table 5.9 specifies the software resource requirements for each of
the processing steps shown in the execution graph. Work units
represent CPU consumption, the range being 1 to 5. Here, 1 represents
a simple task, whereas 5 represents a complex task. Database accesses
represent data persistence or query. We assume data is stored or
retrieved in blocks approximately equivalent to 1000 samples of four
bytes received from all the field systems every second in a building.
For example, the store data task needs one database access to save
data from all the field systems within a given building. Network
messages represent outbound messages from a processing task. We
assume store data and analyze data tasks send packets carrying 10KB
of data. Therefore, to transmit data from each building requires
approximately one network message.

Table 5.10 shows the processing overhead or computer resource
requirements for each of the software resource requirements.

In the top section of the table, the names of devices in a typical
server (for instance, an application server) appear in the first row, the
quantity of each is in the second row, and the units of service provided
by these devices are in the third row. The values in the center section
of the table define the connection between the software resource

Processing Step Work Unit
Database
Access

Network
Message

Collect data 1 0 1000

Store data 3 1 1

Analyze data 5 100 100

TABLE 5.9 Software Resource Requirements

Device CPU Disk Network

Quantity 1 1 1

Service Unit Thousand
Instructions

Physical I/O Messages

Work Unit 20 0 0

Database Access 500 2 0

Network Message 10 2 1

Service Time 0.00001 0.02 0.01

TABLE 5.10 Processing Overhead (Courtesy of Connie U. Smith and Lloyd
G. Williams, 2002)

 168 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

requests and computer device usage. For example, a database access
requires 500K CPU instructions, two physical I/Os, and 0 network
messages. The last section specifies the service time for the devices.
For example, a CPU uses 10 microseconds to execute one thousand
instructions.

This processing overhead table can be used for calculating total
computer resource requirements for the execution graph for alarm
detection in Figure 5.10. We show this in Table 5.11.

The best-case elapsed time for the alarm detection execution
graph, therefore, is (61690 × 0.00001) + (2404 × 0.02) + (1101 ×
0.01) = 59.7 seconds

Thus 59.7 seconds is the best-case elapsed time and does not take
into account any network latency, unavailability, or queuing delays.
Any increase in the number of field devices and the arrival rate of
data samples could also affect the system performance. Given the
best-case time is so close to the expected performance, certain other
design decisions may need to be made to achieve further
improvements. These include but are not limited to

• Concurrent processing at each processing step to avoid
bottlenecks

• Filtering and preprocessing of data that avoids transmitting
all raw data to the alarm subsystem

5.8 Practice and Experience
Our experience in applying these methods has shown benefits in a
number of areas.

Impact of Business Goals
Every system has a rationale for its creation. This rationale takes the
form of business goals set forth by the organization creating the
system and has a strong influence on the architecture of the system
under consideration [Sangwan et. al. 2007].

Processing Step
CPU
Instructions (K)

Physical
I/O

Network
Messages

Collect Data 10,020 2000 1000

Store Data 570 4 1

Analyze Data 51,100 400 100

Total 61,690 2404 1101

TABLE 5.11 Total Computer Resource Requirements for Alarm Detection

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 169 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 169

All of these business decisions require input from technical staff
to determine the impact of such requirements and to inform the
technical staff of the importance of these requirements. Too often in
practice, however, there are some differences between what an
organization wants and what its technical team delivers. For example,
a business unit wants to create a high-performing infotainment
system for a luxury line of cars in a compressed time-to-market. The
technical team is forced to distribute the development of parts of this
system across geographically distributed teams to achieve the
compressed schedule via parallel development efforts. When the
components developed by the teams are integrated together, they
exceed the memory and performance budgets. While individual
components are carefully crafted, not enough attention has been
given to the overall system goal of achieving high performance within
the given resource constraints. The result is that the business unit is
not able to produce the desired product. In this example, the difference
between what was desired and what was delivered cost the company
hundreds of millions of dollars spent developing the system and
billions of dollars in potential lost revenue.

The Notion of Quality
Quality attribute requirements are important both in terms of
customer satisfaction and in driving the design of a software system.
Yet asserting the importance of quality attribute requirements is only
an opening for many other questions [Ozkaya et al. 2008].

There is no shortage of taxonomies and definitions of quality
attributes. The best known is probably ISO 9126, which defines
22 different quality attributes and subattributes (which we refer to as
quality attribute concerns) [Glinz 2008]. There are questions concerning
the extent to which practitioners use the terminology defined in ISO
9126, and which quality attributes defined in ISO 9126 cover the qualities
about which practitioners are most concerned. We have observed
during architectural evaluations that practitioners sometimes do not
use consistent terminology and have concerns that are not covered in
relevant taxonomies. Our approach to resolving terminological
ambiguities is to use quality attribute scenarios as a means of capturing
the precise concerns of the stakeholders. This allows us to supplement
the terms used by various stakeholders with a specification that is
independent of quality attribute definitions and taxonomies.

For example, ISO 9126 does not have an explicit performance
category; the concerns are listed under efficiency and only two
concerns are listed, which are time behavior and resource utilization.
Another commonly used taxonomy is the FURPS+ scheme, which
refers to functionality, usability, reliability, performance, and
supportability. FURPS+ lists recovery time, response time, shutdown
time, startup time, and throughput as concerns under the performance
category. All of these concerns appear in our data, along with some

 170 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

others such as accuracy and stability during overload conditions.
However, several concerns in the FURPS+ taxonomy, such as
configurability, testability, and maintainability under the
supportability category, or availability under the reliability category,
appear at the quality attribute level in our data.

A conclusion from these mismatches is that there is clearly a gap
between the vocabulary used by stakeholders and practitioners in
specifying quality attributes and those that are used in commonly
referred-to reference material and taxonomies. Our observation using
the integrated approach is when it comes to specifying quality attributes,
eliciting the concern supported by the description of the quality attribute
scenario is more expressive than going down a list of classifications,
which may not give a complete coverage of quality issues.

Integration of Functional Requirements,
Quality Attributes, and Architecture
Of the mainstream design methodologies, object-oriented analysis and
design (OOAD) has taken a center stage since the early 1980s, and
almost all programming languages developed since the 1990s have
object-oriented features [Budgen 2003]. OOAD makes use cases and
domain modeling its starting point and primarily uses functional
decomposition to drive the architecture of a system. There is, however,
a need for integrating these activities with the architecture-centric
approaches to gain an understanding of the quality attribute
requirements used in the elaboration of the architecture for a software-
intensive system [Sangwan et al. 2008]. Our experience with the
integrated approach is that such a synergy between the OOAD and
architecture-centric approaches also provides a linkage from high-level
design models to detailed design models that is important for
preserving the integrity of the architectural design as the system evolves.

5.9 Tips for Quality Attribute Requirements
Tips for effectively handling quality attribute requirements are given
below.

• Empower the chief architect to be the technical leader and
decision maker for the project team.

• Establish traceability from soft goals through ASRs and use
cases to test cases, so that testing the architecture can become
a relatively routine part of the software development process.

• Write a stakeholder analysis document and periodically
update it to identify the key stakeholders. Give preference to
the stakeholders for whom the project is most important
and/or urgent.

• Be careful not to bloat your requirements database with every
conceivable quality attribute, but you might want to keep a

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 171 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 171

private list of attributes that you think will become important
later.

• Use quality attribute scenarios not just in workshops, but
whenever you are capturing stakeholder concerns.

• When conducting QAWs, ask stakeholders to capture their
QASs on their laptops and e-mail them to the workshop
facilitator.

• During a QAW, stakeholders should be encouraged to seek
clarifications on QASs, but any other issues for discussion
should be captured and e-mailed to the facilitator. Avoid side
discussions on QASs during a QAW.

• Manage factors, issues, and strategies using a general-purpose
requirements management tool, if your organization is
already using one.

• Address the top 5–10 concerns when defining the architecture
principles.

5.10 Summary
Following an integrated approach to requirements engineering and
architecture design provides the following major benefits:

 1. Joint awareness and a shared understanding, among all
stakeholders, of the system context and its problem domain,
together with an overarching vision of the system to be
designed, helping to properly frame decisions

 2. Clear traceability of requirements specification and
architecture design to business goals ensuring a higher
probability of delivering the “right” system

 3. A shared project context that avoids costly duplication of
work across the requirements engineering and architecture
design disciplines

 4. A clear focus on business goals making it easier to
communicate, to all concerned stakeholders, the vision of the
system being developed, its requirements specification, and
its architecture design

5. 11 Discussion Questions
 1. Which requirements engineering artifacts are likely to be

used by both requirements engineers and software system
architects?

 2. What kinds of practices can be used to elicit architecturally
significant requirements from stakeholders?

 172 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

 3. How does one analyze design tradeoffs and the associated risks
with implementing a system that best meets requirements?

References
Bachmann, F., Bass, L., and Klein, M., Illuminating the Fundamental Contributors to

Software Architecture Quality (CMU/SEI-2002-TR-025), Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, August 2002.

Barbacci, M., Ellison, R., Weinstock, C., and Wood, W., Quality Attribute Workshop
Participants Handbook (CMU/SEI-2000-SR-001), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, July 2000.

Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, 2nd ed.,
Addison-Wesley, Boston 2003.

Berenbach, B., “The Automated Extraction of Requirements from UML Models,”
Eleventh IEEE International Symposium on Requirements Engineering (RE ’03),
Monterey Bay, CA, September 2003, pp. 287–288.

Budgen, D., Software Design, Addison-Wesley, Boston, 2003.
Cleland-Huang, J., Marrero, W., and Berenbach, B., “Goal Centric Traceability: Using

Virtual-Plumblines to Maintain Critical Systemic Qualities,” IEEE Transactions
on Software Engineering, June 2008.

Clements, P., Kazman, R., and Klein, M., Evaluating Software Architectures: Methods
and Case Studies, Addison-Wesley, Boston, 2001.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., and
Stafford, J., Documenting Software Architectures, Addison-Wesley, Boston, 2003.

Cortellessa, V., Di Marco, A., Inverardi, P., Mancinelli, F., and Pelliccione, P., “A
Framework for the Integration of Functional and Non-functional Analysis of
Software Architectures,” Proceedings of the International Workshop on Test and
Analysis of Component Based Systems (TACoS 2004), 2005, pp. 31–44.

Dardenne, A., Lamsweerde, A., and Fickas, S., “Goal-Directed Requirements
Acquisition,” Science of Computer Programming, Vol. 20, Nos. 1–2, 1993, pp. 3–50.

Finkelstein, A. and Dowell, J., “A Comedy of Errors: the London Ambulance Service
Case Study,” Proceedings of the 8th International Workshop on Software Specification
and Design, 1996, pp. 2–4.

Glinz, M., “A Risk-Based, Value-Oriented Approach to Quality Requirements,”
IEEE Software, March–April 2008.

Hofmeister, C., Nord, R., and Soni, D., Applied Software Architecture, Addison-
Wesley, Boston, 1999.

Hofmeister, C., Krutchen, P., Nord, R., Obbink, H., Ran, A., and America, P.,
“Generalizing a Model of Software Architecture Design from Five Industrial
Approaches,” Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA ’05), 2005, pp. 77–88.

IEEE Std. 610.12-1990.
IEEE Std. 1471-2000.
ISO/IEC 9126 (2001). Software Engineering—Product Quality—Part 1: Quality Model.

International Standards Organization.
ISO/IEC 25030 (2007). Software Engineering—Software Product Quality Requirements

and Evaluation (SQuaRE)—Quality Requirements. International Standards
Organization.

Jackson, M., “The Meaning of Requirements,” Annals of Software Engineering,
Vol. 3, 1997, pp. 5–21.

Jones, C., Applied Software Measurement, 3rd ed., McGraw-Hill, New York, 2008.
Jones, C., Estimating Software Costs, 2nd ed., McGraw-Hill, New York, 2007.
Lamsweerde, A., “Requirements Engineering in the Year 00: A Research Perspective,”

Proceedings of the International Conference on Software Engineering, Limerick,
Ireland, 2000, pp. 5–19.

Nuseibeh, B., “Weaving Together Requirements and Architectures,” IEEE Computer,
Vol. 34, No. 3, 2001, pp. 115–119.

 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 173 C h a p t e r 5 : Q u a l i t y A t t r i b u t e R e q u i r e m e n t s 173

Nuseibeh, B. and Easterbrook, S., “Requirements Engineering: A Roadmap,”
Proceedings of the International Conference on Software Engineering, Limerick,
Ireland, June 2000, pp. 35–46.

Ozkaya, I., Bass, L., Sangwan, R., and Nord, R. “Making Practical Use of Quality
Attribute Information,” IEEE Software, March–April, 2008, pp. 25–33.

Paech, B., Dutoit, A., Kerkow, D., and von Knethen, A., “Functional Requirements,
Non-Functional Requirements, and Architecture Should Not Be Separated,”
Proceedings of the International Workshop on Requirements Engineering: Foundations
for Software Quality, Essen, Germany, September 9–10, 2002, pp. 102–107.

Paulish, D., Architecture-Centric Software Project Management, Addison-Wesley,
Boston, 2002.

Peraire, P., Riemenschneider, R., and Stavridou, V., “Integrating the Unified
Modeling Language with an Architecture Description Language,” OOPSLA
’99 Workshop on Rigorous Modeling and Analysis with the UML: Challenges and
Limitations, 1999.

Robbins, J., Medvidovic, N., Redmiles, D., and Rosenblum, D., “Integrating
Architecture Description Languages with a Standard Design Method,”
Proceedings of the 20th International Conference on Software Engineering, Kyoto,
Japan, 1998, pp. 209–218.

Sangwan, R., Bass, M., Mullick, N., Paulish, D., and Kazmeier, J., Global Software
Development Handbook, Auerbach Publications, New York, 2007.

Sangwan, R. and Neill, C., “How Business Goals Drive Architectural Design,” IEEE
Computer, August 2007, pp. 101–103.

Sangwan, R., Neill, C., El Houda, Z., and Bass, M. “Integrating Software Architecture-
Centric Methods into Object-Oriented Analysis and Design,” Journal of Systems
and Software, May 2008, pp. 727–746.

Smith, C. and Williams, L., Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software, Addison-Wesley, Boston, 2002.

Zave, P. and Jackson, M., “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 1, 1997,
pp. 1–30.

This page intentionally left blank

CHAPTER 6
Requirements

Engineering for
Platforms

by Xiping Song, Hans Ros

175

 176 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Steve was assigned as a requirements engineer on a project that
was developing a new platform for real-time control systems.
Although he had worked on platform projects before, he had not

worked with so many different stakeholders. The stakeholders came
from the different business divisions who were planning to develop
their future applications on the platform. In some cases these divisions
were former companies that were acquired by his company, and they
had previously competed with each other. Steve began to sense that
the stakeholders were competing to promote their features to be
developed earliest in the platform project, and they were attempting
to influence the platform development schedule. He realized that this
project would not necessarily be technically challenging, but it would
be very difficult to manage the requirements coming from so many
competing stakeholders.

This chapter deals with how to carry out requirements engineering
when developing software platforms. It describes some of the
challenges that arise when developing the platforms. In order to
address these issues, a practical approach is presented for how to
unify, normalize, and reconcile the nonfunctional requirements in the
platform development.

6.1 Background
Software product lines have been an active area of software systems
engineering for the past few years [Clements et al. 2002]. Building a
product line on top of a common platform with shared services is
commonly practiced in many industries. For example, the use of
platforms has been widely practiced in the automobile industry, where
a standard drive train and body are used for multiple models and
variations of automobiles. One may read automobile model reviews
with statements like, “a new ES 350 will grace the Lexus lineup for the
2007 model year, sharing its platform with the Toyota Camry.” “Of
course, Lexus doesn’t want you to think of the ES 350 as an upscale
Camry, but as a full-scale luxury car.”

Siemens has initiated a number of development projects using
software product line concepts that are referred to as “platform
initiatives.” In this case, a platform refers to a common set of lower-level
software services such as operating system and middleware.
Applications are written on top of the platform to create products within
one or more product lines for potentially differing business units. For
example, the Building Automation System (BAS) project described in
[Sangwan et al. 2007] required that multiple application disciplines be
integrated to run on a single workstation platform. The applications
were developed by different business organizations, at different
development sites, with different skills, and for different domains.

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 177 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 177

6.2 Challenges
Requirements engineers working on platform projects accept
stakeholder requests where the stakeholders are from different
organizations interested in developing products in different application
domains. In such a platform project, it is very likely that stakeholder
requests will be quite different and sometimes conflict with each other.
As each business unit is eager to get their new products quickly to
market, setting priorities for the platform features will be difficult.
Furthermore, there will likely be many feature requests as the
stakeholders from different business units are motivated to put as
much functionality as possible (from their view) into the platform.

Although the platform developers will likely push back on
functional requirements coming from the stakeholders, they will
need to have confidence that the intended platform will be able to
support a wide variety of applications. As future applications will
likely be vaguely defined, the services that the platform will provide
will also be vague. Functional requirements will drive the definition
of the components that make up the software system architecture.
Nonfunctional requirements drive the quality definition of the
platform upon which the components will execute. Thus, requirements
engineers will need to address both functional and nonfunctional
requirements, and the requirements analysis feeds directly into the
software system architecture design.

Requirements engineers and software architects working on
platform projects will necessarily focus on the nonfunctional
requirements that the platform will be designed to meet. As you have
seen in Chapter 5, developing and implementing nonfunctional
requirements (NFRs) is probably one of the most challenging tasks in
developing large software systems. The nonfunctional behaviors of
software systems are difficult to elicit, describe, and quantify. Many
research and industrial standardization efforts have been made to
enable the NFR development to become more systematic and unify
NFR specifications [ISO 2001, ISO 2007]. However, due to the high
complexity and large scale of industrial software development,
software practitioners are still having difficulty in developing and
implementing NFRs. Some example challenges follow:

• The NFRs (quality attribute requirements) defined in the
standards may be incomplete, since each software product
has its own unique needs. Thus, software engineers must
customize the standard NFR definitions to their needs and
make them more effective to categorize their specific NFRs.
For example, the hostability quality attribute may be simple
when the software is operated at only one central location, but
it may grow complex when the software is operated across

 178 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

a number of service locations in order to provide fast services
to many widely distributed customers. This is specific to the
nature (e.g., for an ASP [application service provider]) of the
software being delivered. For example, scalability is the ability
for a system to size its capacity either up or down to fit a variety
of computing devices. However, some software applications
may operate on only one or two types of computing devices.
Selecting and customizing NFRs often needs to be done
iteratively during the NFR development process, based upon
continuous inputs from the stakeholders.

• Software platforms coming from a large software system
company tend to support a large variety of customers with
different application situations. The customer situations
are different financially and operationally. The customer
businesses are likely based upon different hardware
infrastructures and service support models. To reduce
development and maintenance costs, however, it is most
desirable for the software system company to have some
software platforms to support all of those application situations
and maintenance needs. How to reconcile and organize NFRs
for the platforms that support such a wide variety of application
situations and maintenance needs is often very challenging.

6.3 Practices
Based upon our experience in developing NFRs for large software
systems, we have developed a software process that helps us to
more systematically develop NFRs for platforms. This process is
called the Platform NFR Development (PND) process. It complements
existing NFR development methods by emphasizing iterative
development, interacting with other development activities (e.g.,
prototyping, testing, and release management), and reconciling the
stakeholders’ inputs. It provides detailed descriptions for how the
stakeholders’ NFR inputs can be collected, and how such inputs can
be organized to facilitate the reconciliation activity as necessary for
platform projects. The process targets the NFR development of
software systems that are to be installed on a distributed computing
environment that uses a variety of computing devices for different
purposes (e.g., database, user interface, data collection). Simple
systems, such as single-user desktop software, are not the target of
this NFR development process. The PND process has been used for
defining hundreds of NFRs for a large software system; thus, the
techniques described here are capable of managing NFRs for
medium- to large-sized industrial software systems.

Figure 6.1 illustrates the PND process, and each activity of this
process is described in the sections that follow.

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 179 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 179

Define
Questionnaires

Unify the TermsNormalize
Stakeholder Inputs

Elicit
Stakeholder Inputs

Marketing
Requirements

Reconcile the
Stakeholder Inputs

Platform
(Prototype and

Component)
Testing Results

Platform
Architecture

Formal Review
by

Stakeholders

Domain/SW
Architecture
Knowledge

RE
Standard/
Know-how

Service-Level
Functional

Requirements

Platform
Features

The Inputs for
Most Stakeholders

Collected

Derive the NFRs
for the Platform

Derive the NFRs
for the Services

Check for the
Consistencies

Check for
Testability

Complete the
Constraints

Adjust the NFRs
for the Feasibility

Complete the
NFRs

Stakeholder
approval and
NFR finished

Is One More
Formal Review

Needed?

Start NFR work

Structured questionnaires

New
questions

Stakeholder
inputs

Review
comments

Review
comments

Reconciled
inputs

NFRs for
platform

NFRs for
services

NFRs for both platform and services

Platform
features and
deployment
conditions

NFRs

NFRs

NFRs

NFRsConstraints

FIGURE 6.1 The PND process

 180 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Small
Configuration

Medium
Configuration

Large
Configuration

of server
computers 1 4 10

of local client
computers 3 8 20

of remote client
computers 10 30 100

of managed
objects 2000 40,000 100,000

Hard-disk needs

Networking
conditions (Mbps) 100 100 1000

UI Display Needs

Operator screens 3 12 40

Picture size (pixel) 1600 × 1200 6400 × 4800 6400 × 4800

Performance Needs

Normal load

Peak load

Burst load

Burst period

Burst load

Archiving Needs

of archive
servers 0 1 2

of redundant
servers 0 4 10

. . .

TABLE 6.1 Example NFR Questionnaire

Define Questionnaires
This activity defines the questionnaire that will be sent to the stakeholders
for their inputs. Requirements engineers will also use it during the on-
site requirements elicitation meetings to collect the stakeholder inputs.
One major artifact used in this activity is illustrated in Table 6.1. The
table as shown here is not complete, but it provides sufficient information
for showing how we can structurally organize the stakeholders’ inputs.
The data filled in Table 6.1 is for illustration purposes and may not be
fully consistent and realistic. An example row may represent only a

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 181 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 181

category that defines a set of rows (bolded text indicates a category).
Our experience indicates that such a table in practice could have well
over 200 rows related to NFRs (e.g., reliability, availability). Thus, the
ISO standards [ISO 2001, 2007] for quality attributes are a good source
to start to define the questionnaires, but many more details need to be
added for collecting the stakeholders’ inputs.

Elicit Stakeholders’ Inputs
This activity collects inputs from the stakeholders. Requirements
engineers will organize workshops with the stakeholders from each
of the organizations that will use the future software platform for
their products. The goal is to complete the answers to the
questionnaires and avoid any misunderstandings by having
discussions during the on-site workshops. Table 6.1 does not include
any explanations for each row, so it is most important for the
requirements engineers to collect the stakeholders’ inputs when
they are together on site.

Unify Terminology
This activity aims to unify the terms used in the stakeholders’ inputs.
After this, only the unified terms will be used in the NFRs to replace
a set of similar terms. Since a software platform may aim to support
the users of different application situations and organizations,
stakeholders may use varying terms in describing their business
applications. For example, terms such as alarms, telegrams, events,
requests, messages, change of value (COV) events, etc., may have
similar meanings, depending on the application. Thus, we may just
use a unified term “message” to represent all these terms for all
applications of the product platform.

For this activity, the Language Extended Lexicon (LEL)–based
requirement analysis approach [Cysneiros et al. 2004], [Boehm et al.
1996] should be very useful for identifying the terms. Requirement
engineers can effectively unify/conceptualize terms by analyzing
their relationships (e.g., a-type-of, a-part-of, etc.). Depending on how
complex the analysis is, users can choose to use simple modeling
notations (e.g., Structured Table) and visual modeling notations (e.g.,
Entity-Relation).

Normalize Stakeholders’ Inputs
This activity aims to make the stakeholders’ inputs comparable with
each other on the same scale and operating conditions. For example, for
performance requirements, one stakeholder’s input might be
50 alarms per 10 seconds while another stakeholder’s input might
be 20 alarms per 1 second. Such differences are often caused by the
different nature (e.g., how frequently an alarm would usually come and
how quickly the system must respond to it) of their application

 182 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

domains or the existing (legacy) products from which the performance
requirements are derived. Sometimes, such performance needs are
based upon competitors’ product specifications to ensure an edge over
the competitors (e.g., so that the inputs are comparable to the competitors’
quality attribute requirements values). In order to make those
stakeholders’ inputs directly comparable for an NFR for the platform,
requirements engineers must convert them into the same scale (e.g.,
number of alarms per second). Sometimes, this normalization changes
the stakeholder’s original intent. For example, “Processing 50 alarms
per 10 seconds” as a performance need for certain applications reflects
more precisely the stakeholder’s real need than an alarm processing
rate (alarms/second). Normalizing the need to “Processing 5 alarms per
second” would make a more specific and demanding requirement than
the original stakeholder’s need. However, in order to reconcile the
stakeholders’ inputs, such normalization is necessary.

Reconcile Stakeholders’ Inputs
This activity identifies and groups the similar stakeholders’ inputs,
and then requirements engineers can define a single NFR to address
this group of similar stakeholders’ inputs. By doing this, requirements
engineers can also identify a range of variations on the similar
requirements. Depending on how much they vary, some constraints
might be added to ensure the NFRs are feasible to implement. For
example, the performance requirements within a narrow latency
range might be grouped together. If one stakeholder requests less
than 2 seconds for transmitting an alarm while another stakeholder
requests less than 4 seconds (assuming they are easily achievable
with low-end hardware), then the requirements engineers can define
that a low-end, small deployment of the system shall support an
alarm latency that is less than 2 seconds. However, if another
stakeholder requests a 0.5-second alarm latency that is far more
demanding, a constraint might be added to ensure that such a short
latency can be implemented and acceptable for the targeted application
situation. For example, the constraint might be that some high-speed
networking device should be used when achieving this short alarm
latency. By doing this, we can address the stakeholders’ needs with
similar NFRs by specifying different constraints.

Define the NFRs for the Platform
This activity defines the NFRs for the platform from the stakeholders’
inputs that address the end-user needs. The reconciled stakeholders’
inputs will be used for specifying the NFRs. The NFRs will use the
specific values from the reconciliation. The worksheets used in the
reconciliation should be put into the NFR specification, possibly as an
appendix, referred from the main context of the NFR specification.

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 183 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 183

Derive the NFRs for the Components
This activity allocates the NFRs to the related functional
requirements, which are often defined in terms of services in a
service-oriented platform. The stakeholders’ inputs usually describe
the functions they need in their products. The software platform
would have to provide either a program-callable service or an end
user–level (application-level) service to support the implementation
of such functions. This activity derives what NFRs certain services
must satisfy. For example, a NFR might be that the service for
subscribing a value change event must have a latency that is less
than 0.1 seconds. Such NFRs may depend on the high-level
architectural design to some degree. However, since the development
of NFRs will be performed in parallel or intertwined with the
architecture design, the NFRs can be adjusted according to the
architectural design changes.

This activity should document the NFRs’ traces to the original
stakeholders’ inputs so that the NFR reviewers (often a stakeholder)
can understand from which inputs the NFRs are derived.

The NFRs resulting from the two preceding activities are grouped
into NFR categories. For each category, the following structure is
used to define its NFRs.

NFR Category (e.g., Performance)
We give an example of how a platform-level NFR model can identify
lower-level NFRs.

• The platform-level NFR model

• Platform-level NFRs

• [Perf-PLATFORM-1]

• [Perf-PLATFORM-2]

• . . .

• [Perf-PLATFORM-N]

• Component-level NFRs for component 1

• The component-level NFR model

• [Perf-COMP1-1]

• [Perf-COMP1-2]

• . . .

• Component-level NFRs for component 2

• The component-level NFR model

• [Perf-COMP2-1]

• . . .

 184 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

The platform-level NFR model captures how the platform-level
NFRs are refined into the components and their relations. The major
relation is “support” that shows which component-level NFRs
support which platform-level NFRs. For an example, see Figure 6.2.

The component-level NFR model shows the relations among the
NFRs at the component level. The major relations are “reference,”
“replace,” and “deprecated” (a self-relation). It also shows what
platform-level NFRs they support as well. The reference relation
indicates that one NFR is built upon another NFR. For example, one
performance requirement might be that a rate should be two times
faster than the rate defined by another NFR. The replace relation
shows one NFR has been replaced by another NFR. One NFR could
also be replaced by more than one NFR, as shown in Figure 6.3.

Check for Consistency
This activity checks the consistency between the NFRs at the platform
level with those at the component level. The NFRs at the platform

[Perf-PLATFORM-2][Perf-PLATFORM-1]

[Perf-COMP1-1] [Perf-COMP1-2] [Perf-COMP2-1]

FIGURE 6.2 Example platform-level NFR model

[Perf-COMP-1-3]

[Perf-PLATFORM-2][Perf-PLATFORM-1]

[Perf-COMP1-1] [Perf-COMP1-2] [Perf-COMP2-1]

Replace

Replace

FIGURE 6.3 One NFR [Perf-COMP-1-3] replaced by two NFRs, [Perf-COMP1-2]
and [Perf-COMP2-1]

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 185 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 185

level are concerned about the quality of the services that can be
directly used by the end users to provide the product functionalities
(e.g., those for handling alarms in a monitoring product) or the quality
of the platform as a whole (e.g., ease of installing the platform). The
NFRs at the component level are for those services that can only be
used as a part of the implementation for the product functionalities.
For example, an alarm forwarding latency requirement must be
consistent with the performance of the low-level messaging system,
since the latency of alarm forwarding (as a platform-level function)
depends on the performance of the messaging system (e.g., message
transmit latency).

Check for Testability
This activity checks if the NFRs that have been developed are
generally testable or not. The requirements engineers would play the
role of a tester and examine if the NFRs provide sufficient information
that the test procedures (including the testing environment) can be
specified to test the NFRs. This activity is integrated with feature
release management to focus on the features that are to be released
soon (e.g., the next major platform delivery time). That is, for the
features to be released, the related NFRs must be clearly testable. This
strategy avoids requiring all NFRs to be testable, since some of them
may still be unstable and may not be implemented at all. Such an
incremental approach can be integrated well with agile development
methods [Schwaber 2004].

Complete the Constraints
This activity identifies the missing constraints (e.g., operating
conditions, deployment conditions, prerequisite software systems)
under which the NFRs should be defined. The activity “check for
testability” will provide inputs for completing the constraints, since it
helps identify the unspecified conditions under which the tests
should be performed. For example, for testing the platform startup
latency, a necessary condition is whether the operating system has
been started or not. Without this condition specified, the platform
startup latency cannot be tested to verify whether the latency
requirement has been fulfilled or not.

Tune the NFRs for Feasibility
This activity aims to ensure that the NFRs are implementable; i.e., the
NFRs can likely be satisfied with the technologies that the platform
will be based upon. For example, this activity examines whether the
performance requirements are achievable by analyzing the available
results from testing the platform prototypes or finished components.
If the analysis shows that the NFRs may not be achievable,
the constraints might have to be added or modified to make the

 186 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

NFRs more specific so that they will be satisfied only under certain
conditions. For example, the deployment constraints might be
modified to use a more powerful computing infrastructure to support
high performance requirements. This can certainly lead to architectural
changes or the use of other implementation technologies.

Complete NFRs
This activity completes the NFR definitions and makes them ready
for external review by the stakeholders. This activity should include
conducting an internal review of the NFRs by the requirement
engineers, software architects, software testing lead, and project lead.
In particular, this activity should check if each NFR has a trace to
some original stakeholder’s inputs and if the traces are documented
in the NFRs.

Formal Review by Stakeholders
This activity aims to collect feedback comments and get approvals
from the stakeholders. The review results may either lead to
modifications of the NFRs or generate new questionnaires for the
stakeholders. For example, if a stakeholder’s comment is that some
NFR might be missing, a questionnaire about this potentially missing
NFR could be defined and sent to all the stakeholders in the next
iteration of the NFR definition process. From our experience, we
expect that at least three iterations that involve external reviewers are
needed for completing an NFR document.

6.4 Experience
We have applied the PND process for developing a software platform
that supports the running and implementation of diverse industrial
software systems (e.g., factory control, automation, transportation).
For this example, each of the stakeholders represented either a
Siemens company or a division of such a company. In the following
sections, we describe our experiences in carrying out the activities of
the PND process.

Define Questionnaires and Elicit the Stakeholders’ Inputs
Defining the questionnaires for the NFR elicitation is very much an
iterative activity, since multiple elicitations are often needed. At the
beginning of NFR development, the questionnaires can be drafted
based upon the standard quality attribute requirements as defined
by ISO-9126 or other standards in relation to the key business drivers
of the software platform to be developed. An example business driver
could be increasing software reusability to reduce the software
development cost. Based upon ISO-9126, the questionnaires could
include questions regarding software functionality (e.g., accuracy,

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 187 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 187

interoperability, compliance, and security), reliability, usability,
efficiency, maintainability, and portability. The questionnaires
organized around those attributes should help elicit the first set of the
stakeholders’ inputs. Analyzing the answers to those questionnaires
often helps identify the needs that are beyond the scope covered by
the questionnaires. In addition, some answers may be incomplete
when providing insufficient details such as those that describe the
related operating environments. This often needs to be corrected by
carrying out the next round of stakeholder elicitation. During this
elicitation, the NFR Questionnaire Table as illustrated in Table 6.1 will
most likely be used. This table is precise and structured with built-in
mathematical formulas to automatically calculate (derive) the
stakeholders’ inputs.

Some quality attributes that were not covered by the standards
will be added into the questionnaires as well. For example, the ISO
standard does not have the safety and localizability (i.e., defines how
easily the software can be localized) attributes. For a real-time,
embedded system that controls physical equipment, safety is often
very important and thus needs to be added. For a large software
system company, its products often need to be localized to the regional
markets all over the world. Thus, localizability-related questions
could be added to the questionnaires.

Note that although our experience reported herein emphasizes
using the NFR Questionnaire Table, it cannot take the place of the
face-to-face elicitation meetings we have described in Chapter 3.
Complete understanding of functional and nonfunctional
requirements requires much discussion and communication between
stakeholders and requirements engineers.

Unify Terminology
This activity is particularly important for developing NFRs for a
software platform that is potentially applied in multiple application
domains. For example, a software platform may support the
applications in multiple application domains or different applications
(e.g., image analysis for different purposes) in the same application
domain (e.g., the medical imaging domain). Not unifying and
differentiating those key terms in the stakeholders’ inputs will make
many NFR-related discussions very difficult.

Our experience indicates that carrying out this activity is actually
not very difficult if it is well supported by the stakeholders. In our
practice, we used only two to five structured tables that modeled the
relationships among the similar terms. The table can be used to
indicate the relations among the terms and list the differences and
commonalities. Some of those tables were documented into the NFR
requirements as the term definitions. However, during the NFR
documentation development, we must be very disciplined at using

 188 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

the unified terms to ensure the use is appropriate. This requires that
the NFR writer clearly understands the differences among the terms
and decides if it is appropriate to use the unified terms rather than
the terms that came directly from the stakeholders. Though the
different terms used by the stakeholders were very similar, they could
indeed be different, depending on where those terms are used in the
NFRs. For example, for an NFR that defines the rate of transmitting
data, a value change as data that is being transmitted is the same as
an alarm. However, for an NFR that defines the limit on the specific
data size, the two terms are different and the unified term (e.g.,
message) would not be used. When NFRs are bound to specific
platform services, more service-oriented terms (e.g., alarm), and not
the unified term (e.g., message), would be used, since this would
make the NFR more readable and specific.

Normalizing and Reconciling Stakeholders’ Inputs
It is essential to normalize the stakeholders’ inputs before we can
reconcile their requests. Our practice indicates that normalizing (hence,
changing) the original stakeholder’s input is usually acceptable to the
stakeholder as long as a clear trace to the original stakeholder’s request
is maintained. Such traces helped answer the stakeholders’ questions
concerning the origins of the normalized stakeholders’ inputs. Without
such traces, there could be a great deal of confusion when the
stakeholders review the NFRs.

In our practice, Excel spreadsheets are used to perform the
normalization and reconciliation, since the spreadsheets help build
the links and enable automated computations from the original
stakeholders’ inputs to the normalized results. Furthermore, the
spreadsheets help to identify and manage the value ranges
represented in the stakeholders’ inputs. For example, a performance
requirement “alarms processed per 10 seconds” from one stakeholder
was normalized to alarms processed per second (APS). Then, the
APS needs that were collected from all the stakeholders were listed
in the spreadsheet. More specifically, each stakeholder provided the
APS range for different deployment configurations (i.e., those
defined earlier also through the normalizing and reconciling process).
The spreadsheet automatically calculated the combined range (see
Table 6.3: 40–120 alarms per second). In most cases, such simple,
automated calculations can work well, for example, when the ranges
are not too wide to provide specific enough information for design
decision making. However, it is necessary to review the automated
calculations results. Sometimes, in our practice, we did override the
results to make sure that the range was not too wide. If the values of
the combined range were acceptable (e.g., approved by the architects),
we manually put them into the reconciled range, which was further
turned into a NFR. Sometimes, in our practice, we checked with the
stakeholders as to why they provided either an unusually small or

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 189 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 189

unusually large number, to ensure the performance need was for
similar load and deployment configuration situations. It was possible
that one stakeholder had some special application situations that led
to a very wide range of data in the stakeholder input.

The examples provided in Tables 6.2, 6.3, and 6.4 are a very small
part of what we develop in practice. Each of the stakeholders’ inputs
on the NFRs or the reconciliation sheet had hundreds of spreadsheet
cells that captured the stakeholders’ inputs for a variety of situations;
e.g., loading conditions, system deployment conditions. The inputs
from one stakeholder often were a set of collective/combined inputs
within one Siemens business division that planned to use the platform
to develop their products. Such semiautomated analysis was very
useful and greatly improved our productivity for both creating and
maintaining the NFRs.

Stakeholder A . . .
Large
Configuration . . .

Alarm processed
per second (APS) 50 100

. . .

TABLE 6.2 Stakeholder A’s Inputs

Stakeholder B . . .
Large
Configuration . . .

Alarm processed
per second (APS) 40 120

. . .

TABLE 6.3 Stakeholder B’s Inputs

All Stakeholders . . . Large Configuration . . .

APS for
stakeholder A 50 100

APS for
stakeholder B 40 120

.

Combined range 40 120

Reconciled range 40 120

NFR <120

TABLE 6.4 Example Reconciliation Worksheet

 190 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Derive the NFRs for the Software Platform
The derivation is to identify and conceptualize the NFRs for the
platform services based on the stakeholders’ inputs. For example, one
stakeholder’s input could be, “If an unauthorized user attempts
to access the X product, the platform should detect the attempt and cut
off the accessing PC from the network.” Another input might be,
“If an unauthorized user attempts to access the Y product, the
software should detect the attempt and raise an alarm.” The platform
requirement could be, “The software shall provide a service(s) for
detecting the unauthorized access, and upon the detection, execute a
predefined handling action.” Our experience indicates that this activity
actually performs two tasks: one is to identify a required service (e.g., a
platform security service) to support this platform-level security
requirement; another one is to reconcile/combine the stakeholders’
inputs. Such activities have an impact on the software architecture and
services the software platform should provide (e.g., functional
requirements).

Check for Testability and Complete the Constraints
These two activities are highly related in developing software systems.
As the products we develop often support a variety of application
situations (e.g., loading conditions and deployment configurations),
without sufficient description of those situations, the NFRs would not
be testable. The testers would not know how to set up the testing
environment to perform the NFR testing. The tester review of the NFRs
often provides many inputs for completing the NFR constraints.

Using structured templates is a way to ensure the constraints are
more complete. For example, we could enter certain attributes (e.g.,
loading conditions, deployment configurations, redundancy status)
for each requirement. Our experience, however, was that this is too
much work for defining the NFRs for all of the attribute combinations.
Stakeholders would not likely provide all the inputs for all of the
combinations. This is because some of those combinations are rare in
the intended applications (e.g., small deployment configurations
with redundancy). Thus, it was not necessary to provide NFRs for all
combinations.

6.5 Tips for RE for Platforms
The following tips may be useful when developing and analyzing
platform requirements.

• Use a standard set of quality attribute requirements to
structure the first version of the NFR questionnaire.

• Unify the terminology used by different stakeholders for
defining platform requirements.

 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 191 C h a p t e r 6 : R e q u i r e m e n t s E n g i n e e r i n g f o r P l a t f o r m s 191

• Add constraints to ensure that the NFRs are feasible to
implement.

• Describe NFRs with sufficient information so that the test
procedures (including the testing environment) can be
specified to test the NFRs.

• Define NFRs for only the attribute combinations that are
likely to be deployed for the product line.

• Use structured templates to ensure that constraints are
complete.

• After the NFRs are reasonably stable, create draft marketing
literature for the platform (as though it is a standalone salable
product) and use as an aid when conducting requirements
reviews with stakeholders.

6.6 Summary
This chapter introduces an approach for

• Developing NFRs for large software systems that might be
deployed in a variety of computing infrastructures and
operate under a variety of application situations. We call the
lower-level common software (e.g., operating system,
middleware) a platform. We have described a detailed process
(called PND) and related artifacts that can be used to help
reconcile the stakeholders’ inputs.

• The PND process complements the existing NFR approaches
by integrating the NFR development with other software
engineering processes. It describes how testing and release
management could be integrated with the PND process.

6.7 Discussion Questions
 1. What are some of the differences between a software product

line and platforms?

 2. How can one determine which functions should be implemented
in application software and which in the platform?

 3. When should the ISO standards be used within the PND
process to define a list of NFRs?

References
Bachmann, F., Bass, L., Klein, M., and Shelton, C., “Designing Software Architectures

to Achieve Quality Attribute Requirements,” IEEE Software Proceedings, Vol. 152,
No. 4, August 5, 2005, pp. 153–165.

 192 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Bachmann, F., Bass, L., and Klein, M., Illuminating the Fundamental Contributors to
Software Architecture Quality (CMU/SEI-2002-TR-025), Software Engineering
Institute Carnegie Mellon University, Pittsburgh, August 2002.

Barbacci, M., Klein M., Longstaff, T., and Weinstock, C., “Quality Attributes,”
Technical Report, CMU/SEI-95-TR-021, ESC-TR-95-021, December 1995.

Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, 2nd ed.,
Addison-Wesley, Boston, 2003.

Boehm, B. and In, H., “Identifying Quality-Requirement Conflicts,” Proceedings of
the Second International Conference on Requirements Engineering, 1996.

Clements, P., and Northrop, L., Software Product Lines, Addison-Wesley, Boston,
2002.

Cysneiros Luiz Marcio and Leite, Julio Cesar Sampaio do Prado, “Nonfunctional
Requirements: From Elicitation to Conceptual Models,” IEEE Transactions on
Software Engineering, Vol. 30, No. 5. May 2004.

Doerr, J., Kerkow, D., Koenig, T., Olsson, T., and Suzuki, T., “Non-Functional
Requirements in Industry: Three Case Studies Adopting an Experience-Based
NFR Method,” Proceedings of the 13th International Conference on Requirements
Engineering, 2005, pp. 373–382.

ISO/IEC 9126 (2001), Software Engineering—Product Quality—Part 1: Quality Model,
International Standards Organization.

ISO/IEC 25030 (2007), Software Engineering—Software Product Quality Requirements
and Evaluation (SQuaRE)—Quality Requirements, International Standards
Organization.

Kuusela, J. and Savolainen, J., “Requirements Engineering for Product Families,”
Proceedings of the 2000 International Conference on Software Engineering, June 2000,
pp. 61–69.

Mylopoulos, J., Chung, L., and Nixon, B., “Representing and Using Non-Functional
Requirements: A Process-Oriented Approach,” IEEE Transactions on Software
Engineering, June 1992.

Sangwan, R., Bass, M., Mullick, N., Paulish, D., and Kazmeier, J., Global Software
Development Handbook, Auerbach Publications, New York, 2007.

Schwaber, K., Agile Project Management with Scrum, Microsoft Press, Redmond,
WA, 2004.

http://www.v-modell-xt.de/

This page intentionally left blank

This page intentionally left blank

CHAPTER 11
Hazard Analysis and

Threat Modeling
by Brian Berenbach

275

 276 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Seems like it is based on the assumption that this hypothetical
user with no experience will somehow have access to a body of
knowledge about the applications, users, and environment that

they gloss over as ‘already known information’—just enter it into the
tool, it’s that simple. Entering it into the tool is the easy part. Knowing
what questions to ask, and where to go to get that information, is the
hard part. OK, they probably have a template for the information
gathering. In which case, you have a tool into which inexperienced
people can enter information they don’t understand (and might have
guessed at if it’s too hard to track down), in order to generate results
they don’t understand.”—A security expert with over 20 years of
experience.

This chapter describes two topics, hazard analysis (HA) and
threat modeling (TM). Threat modeling is part of the broader subject
of security analysis. Skill in these areas may occasionally be needed
by the requirements analyst, but the topics are rarely described in
basic RE texts. The role of the requirements analyst will most likely be
that of integration and coordination. As hazard analysis and threat
modeling are complex subjects, learned over time and performed by
experts, this chapter focuses on their relationship to Model-Driven
Requirements Engineering (MDRE) as well as on how to integrate
their activities into traditional RE processes. For more information on
HA or TM, we suggest you look at the references, or one of the many
texts available on the subjects.

11.1 Hazard Analysis
Hazard analysis is performed whenever there is a potential risk to the
health and safety of the user of a product. In many cases, the
thoroughness and output of an analysis have to meet certain minimum
standards that are domain and location specific. In the United States,
for example, the Food and Drug Administration (FDA), the Federal
Aviation Administration (FAA), and the U.S. Department of
Transportation’s Federal Transit Administration (FTA) each have
guidelines for performing hazard analyses.

Terms Used in Hazard Analysis
There are certain terms that are used in hazard analysis that are
common across domains. Some of the more frequently used terms1
are defined here:

• Hazard A condition, event, or circumstance that could lead
to or contribute to an unplanned or undesired event.

1 FAA Order 8040.4

 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 277 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 277

• Hazard analysis Identification of a substance, activity, or
condition as potentially posing a risk to human health or
safety.

• Risk assessment The process of identifying hazards and
quantifying or qualifying the degree of risk they pose for
exposed individuals, populations, or resources (severity) and
the likelihood that the hazard will occur (probability of
occurrence). The term also refers to a document containing
the explanation of how the assessment process is applied to
individual activities or conditions.

• Safety-critical system A system that has been designated
by a regulatory body as needing a hazard analysis before
being put into operation.

• Severity The actual categorization of severity is usually
domain specific. For example, the categorizations for the
Food and Drug Administration (FDA) and the Federal Transit
Administration (FTA) are compared in Table 11.1.

Other domains and regulatory bodies have their own definitions
of terms. The reader is encouraged to review the appropriate
guidelines for their specific area of concern.

Severity alone is not sufficient when analyzing a hazard, as not
only is the severity important, but also the likelihood or probability of
occurrence. For example, a car company manufacturing a convertible
might determine that there is a risk that the vehicle might roll over,
causing injury to its occupants; however, the likelihood is very low
because of the vehicle handling characteristics and low center of
gravity. In such a situation, after performing a risk assessment, a
decision is made not to include a roll bar with every convertible sold.

Hazard Analysis Processes
The process of identifying hazards may be different for different
domains. Regardless of domain, the basic steps are the same (see

Type of Hazard FDA Classification FTA Classification

Potential for death Major Category I

Potential for serious injury Major Category II

Potential for minor injury Moderate Category III

Design flaws are unlikely to
cause injury

Minor Category IV

TABLE 11.1 Comparison of FDA and FTA Categorizations of Risk

 278 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Figure 11.1). When a hazard analysis is performed in the context of
requirements elicitation and analysis processes, all the processes must
be tightly integrated. The level of integration is often dictated by
regulation, usually requiring traceability.

Identify
Hazard

Perform
Hazard

Analysis

Does
Hazard Require

Mitigation?

Define and
Implement
Mitigation
Strategy

More
Hazards?

Done

Begin Analysis
Process

Yes

No

Yes

No

FIGURE 11.1 Hazard analysis

 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 279 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 279

Requirements in a domain considered safety critical need to have
special attributes so that they can be mined for metrics. These are
some of the attributes:

• Is the requirement part of a safety-critical system?

• Has this requirement been checked to see if a hazard analysis
needs to be performed?

• If so, is the requirement associated with a hazard analysis
(hyperlink to hazard analysis)?

• Does the requirement need mitigation (traces to mitigating
requirements)?

The attributes should be filled out at the appropriate level so that
a query will provide valid metrics. The attributes are usually
associated with the highest level requirement associated with the
hazard. Typical metrics that might be associated with hazard analysis
for a product or system are shown in Table 11.2.

Note that the metrics shown in Table 11.2 rely on the assignment
of levels to requirements, and level-sensitive queries to return metrics.
We know from the requirements pyramid that there is an explosion of
lower-level system requirements from higher-level customer
requirements, both functional and nonfunctional. Conducting a
hazard analysis at the wrong level might result in either overlooking
potential hazards or an overwhelming amount of effort needed.

The maturity of organizations’ RE processes can have an impact
on the effort to conduct a hazard analysis. Consider two situations

Metric How Calculated Interpretation

% of
requirements
checked for
a potential
hazard

Total requirements
at designated level
vs. requirements
checked at that
level

This metric provides an estimate
of the amount of work necessary
to complete the hazard analysis. It
also provides an indication of how
stable the system architecture is. If
the ratio is low, any architecture may
need to be changed significantly
to support mitigating functional or
nonfunctional requirements.

% of
requirements
that need a
mitigation

% of requirements
at designated
level that have
been identified as
needing mitigation

The higher this number is, the
greater the potential risk of building
the product or system. A high
percent of requirements needing
mitigation may be an indication of
an unsafe design.

TABLE 11.2 Sample Hazard Analysis Metrics

 280 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

(from our experience), where situation #1 is a positive situation and
situation #2 is a negative situation. The two situations illustrate the
differences between well-organized and poorly organized
requirements necessary to conduct a hazard analysis. In situation #1,
the requirements are well organized, let’s say in three levels:
business requirements, customer requirements, and system
requirements. The traces between the requirements exist and are
correct, and the customer requirements are tied to a preliminary
architecture. We assume a ratio of 1:10 between the customer
requirements and the system requirements (often, the ratio is higher).
This means, ten system requirements exist for each customer
requirement. Let’s assume there are 500 customer requirements. This
would mean we have 5000 system requirements. For a hazard
analysis, we would need to analyze the 500 customer requirements. If
we assume that the analysis of each customer requirement requires
1 person hour, it would require 500 person hours.

In situation #2, we assume poorly organized requirements; e.g.,
requirements are not organized in levels and are listed randomly.
Traces do not exist, and only some requirements are tied to a
preliminary architecture. In this situation, we need to analyze all 5500
requirements because we do not know which of the requirements
belong to which level. Applying the previous assumptions, it might
take 5500 person hours in this case to determine which requirements
need to be analyzed for hazards.

Reflecting Actions into the Requirements Database
Hazard analysis activities are “reflected” in a database whenever
mitigating action is required (see Figure 11.2). In Figure 11.3, an
analysis has resulted in identification of risk, justifying the addition of
new requirements. For example, a train door might close on a passenger,

REQ 1.1

REQ 1.2
REQ 1.3
REQ 1.4
REQ 1.5

REQ 2.1
REQ 2.2

REQ 2.0

REQ 1.0

Analyze for
Possible Hazard Identify Risks

MITREQ 2.3
MITREQ 2.4

Create
Mitigating

Requirements

Create Traces

FIGURE 11.2 Mitigation “reflection” in requirements management

 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 281 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 281

resulting in injury, and to prevent that from happening, requirements
are added to the database to ensure that sensors in the door detect
resistance and prevent closure on the passenger. The reflection process
is then completed by creating traces from the hazard requiring
mitigation to the mitigating requirement.

Hazard Analysis and MDRE
Extending a modeling tool to support hazard analysis helps support
performing visual inspections and conducting reviews. Furthermore,
any traces in the model are intrinsic to the relationships. An example
is shown in Figure 11.4 of an X-ray machine use case, along with
potential hazards and mitigating requirements. Note that the symbols
used to indicate hazards can be domain specific, e.g., radiation, toxic
material, biohazard, high voltage, and so on. The use of domain-
specific symbols helps to move the analysis effort from the analyst’s
domain into the subject matter expert’s or customer’s domain,
enabling client and expert reviews (see Chapter 4).

Example Quality Assurance Script for Hazard Analysis Reviews
A quality assurance script to ensure compliance with regulatory
requirements might read as follows:

Loop for each requirement in the database

 Does the requirement have a hazard associated with it?
If the requirement has a hazard associated with it, is the risk
severe enough to warrant mitigation? If the risk is severe enough
to warrant mitigation, then does the requirement trace to
complementary mitigating requirements? If not, then add the
requirement that appears not to have been mitigated to a
published list of requirements requiring further investigation.

Loop End

FIGURE 11.3 Database attributes supporting hazard analysis

Requirement Hazard Analysis
Completed

Requires Mitigating
Requirements

Mitigating
Requirement

Is a Mitigating
Requirement

Mitigates

REQ103.7
Door closes on
Engineer signal

Yes Yes
REQ101.5

REQ103.7.1
REQ103.10.3

No

REQ101.5
Door sensor to

detect obstruction
in door

Yes No Yes REQ103.7
Door
Close

Hazard
Analysis

 282 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

When extending any process model to support hazard analysis,
some new symbols and relationships are needed. Some suggested
extensions to the modeling tool used for analysis are described in
Table 11.3.

Importance of Hazard Analyses
Hazard analyses are sufficiently important that they are mandated by
regulatory agencies in various domains. Furthermore, for a product
to be accepted by the agency, the appropriate traces must be in place
(see the section on traceability in Chapter 7) and due diligence must
be performed to determine that

• Processes are in place to support hazard analyses.

• It can be proven that a full coverage check for needed hazard
analyses was done.

• The analyses have been completed.

• Where necessary (high risk = f(severity, probability of
occurrence)), hazards have been mitigated.

Take X-Ray of
Patient

Automatic,
Based on Patient

Information

Manually
Set Time

X-Ray Machine
Hazard Analysis

Interlock to prevent
overdose to patient

Includes Includes

Impacts Impacts

Has possible
hazard Hyperlink

Has mitigation

Possible overdose

FIGURE 11.4 Example use case with hazards and mitigating requirements

 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 283 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 283

2 July 12, 2006, edition of the Christian Science Monitor.
3 August 9, 2007, edition of the Boston Globe.

Symbol or
Relationship Description Comment

Hazard This is a placeholder
for a hazard analysis.

When activated, would either
hyperlink to a hazard analysis or
open the hazard analysis if the
model and analysis are in the
same tool.

Mitigating
requirement

Identifies a
requirement is needed
to mitigate the risk of
a potential hazard.

The requirement could be entirely
in the model or could be a
placeholder for a hyperlink to the
requirement in a requirements
database.

Mitigates A mitigation
relationship
between a hazard
and a mitigating
requirement.

This relationship can take the
place of manually entered and
maintained traces.

Impacts An impact relationship
between a mitigating
requirement and
another requirement.

Indicates that the mitigating
requirement may constrain
or otherwise impact another
requirement.

TABLE 11.3 MDRE Extensions for Hazard Analysis

A Cautionary Tale
On July 12, 2006, the ceiling of a portion of a tunnel (the “Big Dig”)
in Boston fell on a woman’s car, killing her.2 An investigation revealed
that the wrong glue had been used to fasten the ceiling panels. Each
of the organizations and staff that were involved in the construction
of the tunnel blamed other parties. Finally, the company that supplied
the glue was charged with involuntary manslaughter.3 As there were
no traces from requirements through construction, it was not possible
for project management to trace from the installation back to the
correct type of glue needed (the correct glue needed was known and
recorded at the start of the project). We can learn from this tragedy:

• People can be held criminally liable for failure to follow best
practices.

• Hazard analysis coupled with effective trace mechanisms can
potentially save lives.

 284 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

11.2 Threat Modeling
Threat modeling differs from hazard analysis in where in the life cycle
it occurs. While hazard analysis tends to occur after a significant part
of the high-level requirements analysis effort has been completed,
threat modeling usually occurs in parallel with initial elicitation and
analysis. Although there are many different approaches to modeling
threats, the use of scenarios is very common. It is, therefore, a simple
matter to extend MDRE techniques to support threat modeling. Just
as hazard analysis requires experienced hazard analysts, threat
modeling is best accomplished by experienced security analysts. The
role of the requirements engineer is to merge the threat modeling
processes into the larger requirements elicitation and analysis effort
so that there are no discontinuities between analysis and threat
models; e.g., full traceability and metrics are in place. Of course, the
easier it is for nonexperts to understand the models, the easier it will
be to conduct reviews with stakeholders.

Basic Terminology
There are just a few basic terms the requirements engineer needs to
know about threat modeling:

• Asset An item that needs to be protected or secured. It can
be because of the potential for financial (e.g., bank account
information) or personal (e.g., medical information) loss.

• Threat The type of attack (e.g., service denial) that may
cause a potential risk of lost, destroyed, or stolen assets.

• Treatment A modification to a system that will help prevent
or mitigate the effect of an attack.

Example Scenarios Where Threat Modeling Would Have Helped
“One case involved child-support payments in California, where one
of the flaws in the application was updating the wrong father’s records.
Due to this flaw, some fathers who paid child support were not getting
the payments recorded, while some other, unrelated father was falsely
credited with payment. There were even a few arrests made due to this
defect.”

“Another case involved a financial application where a defect caused
the plaintiff to have to restate prior year earnings. This caused a disruption
of bank credit. Another interesting aspect of this case is that the defendant
made 4 unsuccessful attempts to fix the defect. Each attempt not only left
the defect in the software, but accidentally injected new defects as well!
The defect was finally fixed on the 5th attempt, about 10 months after it
had been reported. The point is that software can cause business damage
as well as harm in a physical sense.”—Capers Jones

 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 285 C h a p t e r 1 1 : H a z a r d A n a l y s i s a n d T h r e a t M o d e l i n g 285

Threat Modeling and MDRE
While the driving force behind hazard analysis is regulation and the
potential for harm, the motivation for threat modeling is generally
financial. (There are, of course, exceptions, such as the early release of
a criminal because of corrupted data in a database where the criminal,
after being freed, commits crimes.) An MDRE tool would need just a
few additional symbols and relationships to support threat modeling
(see Table 11.4).

Symbol or
Relationship Description Comment

Threat Identified threat to
the user or owner of a
product or system

The description can be as
short as one line or as lengthy
as an entire document. For
external descriptions, a
hyperlink would be used.

Treatment Identifies a requirement
or set of requirements
that are needed to
protect the asset(s)
against the threat

The treatment can be as
complex as a process (use
case), or as simple as a single
requirement. Treatments
are marked with an icon and
attribute that identifies them
as treatments.

Attacks A relationship between
an asset and a threat

The relationship indicates
that the threat applies to the
specific asset.

Asset The object that needs
protecting

This is identified by an icon that
indicates something of value,
e.g., currency sign, pot of gold.

Avoid A relationship between
a treatment and an
unwanted incident

Through the treatment, the
incident can be avoided.

Impacts An impact relationship
between a treatment
and another requirement

This indicates that the
treatment may constrain or
otherwise impact another
requirement.

Unwanted
Incident

The threat may be
realized by an unwanted
incident occurring

The incident is a use case or
event.

Realized A relationship between a
threat and an unwanted
incident

A threat may be realized by an
unwanted incident.

TABLE 11.4 Suggested MDRE Extensions for Threat Modeling

 286 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Threat Modeling Metrics
Threat modeling metrics may be simple or complex, depending on
the methodology used to perform the security analysis. Simple
metrics are relatively easy to add to an MDRE model; for example,
percent of use cases or features that may be associated with unwanted
incidents. If this number is large, it might be indicative of a system
that is inherently unsafe and needs a redesign.

11.3 Summary
In this chapter, we have shown the relationships of hazard analysis
and threat modeling to requirements engineering processes. Hazard
analyses take place late in the requirements analysis phase, while
threat modeling should occur at an earlier point in the life cycle.

It is important to use an integrated approach to requirements
engineering, hazard analysis, and threat modeling. If a seamless set
of processes and artifacts are not in place, traces may break, or, even
worse, not get created. When that happens, there is the potential for
catastrophic consequences to customers, users, vendors, or owners of
a product or system.

11.4 Discussion Questions
 1. Give some examples of systems where inadequate hazard

analysis can lead to potential loss of life or personal injury.

 2. What types of additional tooling are necessary for threat
modeling?

 3. What is the difference between a hazard and a threat?

References
Burns, S., “Threat Modeling: A Process to Ensure Application Security,” SANS

Institute, January 5, 2005.
Ingalsbe, J., Kunimatsu, L., Mead, N., and Baeten, T., “Threat Modeling: Diving into

the Deep End,” IEEE Software, Vol. 25, No. 1, January/February 2008.
Swiderski, F. and Snyder, W., Threat Modeling, Microsoft Press, June 2004.

CHAPTER 12
Conclusion

by Brian Berenbach, Juergen Kazmeier, Arnold Rudorfer

287

 288 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Requirements engineering (RE) is only one part of a project’s
effort, and it can never be done in a vacuum. Life-cycle
activities such as project management, quality assurance,

validation, configuration management, system architecture, design,
implementation, and maintenance are all important activities. RE is
cross-cutting, and it helps enable each of these project areas.

The goal of this book is to discuss and share experiences from
many requirements engineering projects (of different sizes,
technologies, business domains, application areas) with practitioners
in the field. All of the authors of this text have had significant
experience in their various domains outside and within Siemens, and
they have presented techniques they have personally used and are
appropriate for large, real-world projects. But, also through
collaborations with universities and “RE best practices sharing
events,” the individual experiences were checked and benchmarked
against both RE theory and industrial practice. Furthermore, this
book is not just about requirements engineering. Rather, it looks at
how RE relates to other software and systems engineering disciplines
such as architecture, testing, and validation.

In Chapter 1, we introduced some basic terminology and
concepts, as well as exploring some common myths of requirements
engineering. We hope that the discussion of terminology will lead to,
at least within the reader’s organization, a better understanding of
the different types of requirements and a more uniform set of terms.

In Chapter 2, we provided the architectural foundation of
requirements engineering, that is, the artifacts on which the field is
based and how they can be represented with Requirements
Engineering Artifact Models (REAMs). Furthermore, we also
highlighted how taxonomies can be used to define and clarify the
relationships between various types of requirements. In our
experience, taxonomies and artifact models have proven to help
support building domain-specific, useful, and scalable RE
approaches.

Chapter 3 is all about eliciting and accurately capturing
requirements. Some of the key takeaways are tips on how to
gather requirements most effectively, how to define the right level
of requirements granularity, and how to train staff members to be
effective communicators when they are involved in the elicitation
process.

Model-Driven Requirements Engineering (MDRE) techniques
are explored in Chapter 4. These techniques, while challenging and
requiring some skill on the part of the participants, offer significant
benefits over the traditional textual approach. Model-driven
approaches utilize graphical structures, based on syntactical and
more or less formally defined semantic rules for model creation. It is
possible to perform verification and validation on such models to a
level that is not feasible with natural language text descriptions.

 C h a p t e r 1 2 : C o n c l u s i o n 289 C h a p t e r 1 2 : C o n c l u s i o n 289

Pictures generally convey more information than text and so are
easier for professionals to create and manage. Also, model views can
be more easily understood by all stakeholders, and thus they facilitate
more rapid and effective reviews.

The role of the system architect in requirements engineering is the
management of quality attribute requirements (QARs) or
nonfunctional requirements (NFRs) as discussed in Chapter 5. A key
point of this chapter is that nonfunctional requirements need to be
analyzed and managed by senior architectural staff to identify the
architecturally significant requirements (ASRs), starting as early in a
project as possible. Furthermore, the management of nonfunctional
requirements needs to be fully integrated with functional
requirements activities.

In Chapter 6, techniques for handling platform requirements
were discussed. Since platforms can be an integral part of a large
product line, we see that the handling of product line and single
product requirements can differ somewhat; e.g., one can expect that
requirements management for product lines will be a more challenging
undertaking than for single products.

Chapter 7 dealt with requirements management and traceability.
A tracing strategy is a necessary precondition for coverage, impact,
and derivation analysis—the key enablers of proper change
management. One major cause of project cost escalation is
requirements churn, which is why effective requirements
management is important for project success.

A benefit of a well-defined requirements hierarchy is a simplified
test phase. Test plans must derive from requirements. A formal
approach to defining requirements can result in generating sets of
test cases from the requirements model. Chapter 8 describes
techniques for deriving and generating test cases from UML activity
diagrams, which significantly reduces the effort to produce and
perform high-quality tests.

Innovative product development and user interface design often
starts with fuzzy requirements. To make fuzzy requirements more
concrete, there’s a need for a high degree of interaction with all the
stakeholders that cannot be adequately handled with visual models
or textual descriptions due to high volatility and complexity. In such
cases, evolutionary prototyping can be of great value for requirements
visualization and analysis, as described in Chapter 9.

In today’s complex product development environment, the effort
is almost always done by a global project team that is spread across
different sites in different countries. Distribution introduces a new set
of challenges. Chapter 10 describes experiences with distributed
product development and provides some best practices when eliciting
and managing requirements in global projects.

An often overlooked aspect of requirements engineering is that
of dealing with safety-critical and secure systems. While RE staff

 290 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

may not have deep expertise in this area, it is important to understand
the implications of safe and secure systems (or other systems that
may be in regulated domains) in terms of RE processes and artifacts.
Chapter 11 discusses the relationship of hazard and safety analyses
to RE artifacts, and some of the necessary extensions to the
requirements management process.

In summary, excellent requirements engineering can be a unique
competitive advantage for organizations, because it supports
optimizing the value chain as well as delivering what the market
expects. We wish you only success with your future software and
systems engineering projects.

APPENDIX

Configuring
and Managing a

Requirements
Database

291

 292 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

This appendix contains suggestions for creating and managing
a requirements database (RDB).

A.1 Introduction
A requirements engineering database is different from a traditional
relational database in that it is optimized for the storage and
management of requirements. It consists of a front end component
that is optimized for requirements and a back end server that is
only accessible through the front end. A typical configuration is
shown in Figure A.1. One possible configuration has the RE
management software on the server, using a browser to access it.
Another configuration, which is faster but requires that software be
installed on the client, is to have a client application on the user PC
accessing the database on a server. Most commercial databases
support both approaches.

The unique attributes of an RE database (as contrasted with a
traditional database) include

• Schema predefined to support the storage of requirements of
different kinds

• Version control at the requirement (record) level, with user
views of the history of a requirement

FIGURE A.1 RE database configuration

Back End Server

Web Browser Client PC with RE
Front End Software

RE Management
Front End

Database

 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 293 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 293

• Intrinsic support for tracing, that is, a “drag and drop”
mechanism that is easy to use and supports creating traces
manually between requirements

• Generation of requirements specifications and reports directly
from the repository. The preferred method of working is to
create and edit requirements in the database, and then to use
the documentation facility of the database to create a filtered
and formatted set of requirements in a requirements
specification, usually as either a Word or PDF document.

Commercial requirements databases vary in terms of features,
but all of them have certain core features in order to comply with
corporate mandates (such as achieving a CMMI level) as well as
various sets of regulations. For example, one common attribute of
requirements databases is version control at the requirement level, so
that changes to requirements can be audited.

Prerequisites for the Use of a Requirements Database
A requirements database is a tool to support the requirements
management process. As such, requirements processes should be
defined prior to the selection and installation of the RDB, keeping in
mind issues of productivity, scalability, and usability. For example,
not defining requirements levels when creating traces can result in a
large, unusable report when generating a trace matrix. Some of the
prerequisites for effective use of an RDB are described next.

Glossary of Terms
There needs to be a uniform approach to the definition of terms in
order for specifications to be understood across organizations and
projects. In addition, where consultants are used or implementation
is outsourced, the ramp-up time is much lower if everyone
understands the same term to mean the same thing. Furthermore, when
outsourcing development, a standardized glossary can significantly
reduce ambiguity. A glossary has other advantages in that it can enable
the structuring of a requirements hierarchy (see the next heading).
Multiple glossaries with a defined precedence are used where the same
RDB is used for multiple organizations or projects. An example hierarchy
is given in Table A.1.

If an RDB is shared across projects or organizations, it is important
that there be no name collisions. The use of specific project or product
logins can help to prevent that from happening by keeping project or
product glossaries in separate name spaces.

Hierarchical Requirements Structure A hierarchical requirements
structure is necessary for effective use of trace and query mechanisms.
With requirements decomposition resulting in an expansion of a
single product feature into hundreds (or thousands) of requirements,

 294 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

a well-thought-out hierarchy is necessary to manage scale and
support coverage and impact analysis. An example requirements
hierarchy is shown in Table A.2.

By rigorously defining requirements levels and defining rules for
traces, queries relying on trace mechanisms can be considerably more
effective. For example, an impact analysis is performed to determine
the cost of a change to a product feature. The feature traces to level 6
system requirements, and the system requirements trace to a specific
level of design, resulting in a reduced set of objects coming back from
the query, i.e., only those directly impacted by the proposed feature
change. Furthermore, restricting and enforcing traces by levels
increases the number of metrics available for RDB analysis.

Metrics Definition Metrics must be defined in advance in order to
configure some requirements attributes and business rules for
evaluating metrics. Table A.3 shows typical metrics and their
implementation in an RDB.

Requirement Type Possible Levels Can Trace Only to Level

Stakeholder request 1 2

Customer requirement 2–4 3

Product feature 3–5 6

System requirement 6–9 Design Component

TABLE A.2 Example Requirements Hierarchy

Type of
Glossary Description Sample Term

Precedence
(1=highest)

Corporate
glossary

Standardized
terms across
all business
organizations

Stakeholder: A
corporate officer, who
may be a member of
the board of directors.

3

Organization
glossary

Terms that
are unique
to a specific
organization within
a corporation

Stakeholder: An
organization manager
of rank department
head or above.

2

Project or
product
glossary

Definitions that
are customer,
domain, product,
or project specific

The product manager,
designated customer
representatives, and
project management
staff.

1

TABLE A.1 Example Glossary Hierarchy

 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 295 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 295

Note that since other database attributes such as the assignment
of a requirement to a release are known, completeness, correctness,
ambiguity, etc., for a specific specification or release can be computed
once the appropriate reviews have been conducted.

A.2 RDB Basic Features
Key features for an RE database are listed here:

• All fields/attributes should be definable on a per-company
or per-project basis, such that the same corporate data
dictionary is used on multiple projects for consistency,
but each project can still have its own glossary of terms,
keywords, etc.

• At a minimum, the following requirements attributes should
be available:

• Priority, Stability, Status, Author, Title, Category
Attributes should be user definable on a per-project basis.

• Keywords (note: multiple items dragged/dropped into
one field) As the ability to do queries is of critical need,
a keyword mechanism is mandatory.

• Requirement type (see the preceding discussion of
levels) It should be possible to create requirements of
different types with different attributes and business
rules.

• Project-specific tags (graphics, GUI, etc.) It should be
possible to create attributes that are project specific, so
that if more than one project is stored in the same database
there are no name space conflicts.

• It should be possible to have a parent-child relationship, and
where there is such a relationship, it should be possible to

TABLE A.3 Example Metrics and Implementation

Metric RDB Implementation

% Ambiguity Ambiguity pass/fail attribute

% Modifiable Modifiable pass/fail attribute

% Complete Depends on level

% Traceable Depends on level

% Feasible Feasible pass/fail attribute

 296 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

have a parent and children of different core requirement
types, for example,

 FEAT101

 SECRQT101.5

 PERFRQT 101.3.3

 Note that some commercial databases do not allow parent-
child requirements to be of different types, which can increase
the amount of tracing that has to be done in the database.

• The tool used shall enable end-to-end traceability, as well as
vertical and horizontal traceability. This may require
integration with other tools such as IDEs and/or modeling
and testing tools.

 For example,

• Requirement to requirement

• Requirement to test case

• Requirement to PDF

• Requirement to external document (In this case, the need
is to extract a requirement from text and to drag and drop
it into a new requirement; then when the requirement is
selected, the document pops up with the text highlighted.
This is used when extracting requirements from large,
complex documents. Note that it is important to keep
links from getting broken when a document is updated.)

• Bidirectional tracing to and from CASE tool artifacts
(hopefully synchronized)

• What components implement this requirement? (Impact
Analysis)

• What requirements caused this component to be
developed? (Development QA)

• Who is implementing this requirement?

• Automatic generation of warning indicators should a trace
become suspect

• Protection of critical traces with locks that prevent them
from becoming suspect

• It should be possible to generate ad hoc reports based on
advanced searches using combinations of the attributes; e.g.,
“give me all requirements where priority=high and
status=approved OR subsystem=graphics”.

• It should be possible to extract all detailed requirements that
are approved and used to generate/update the test plan.

• It should be possible to create hyperlink references to Word
documents, web sites, etc.

 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 297 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 297

• It should be possible to baseline and perform change control
on requirements.

• Performance should be reasonably good in a fully populated
database (that is, one with several thousand requirements).

• The database should be easy to use; i.e., intuitive with minimal
need to refer to documentation.

• Bidirectional dumps should be possible to and from another
format such as Access and/or Excel (csv).

• It should be possible to work offline; one should be able to
take requirements home, review them, change them, and roll
them back into the database later.

• It should be possible to generate requirements documents
automatically from the database (e.g., Functional Requirements
Specification, System Requirements Specification).

• Rich text and graphics should be supported in a requirement
description.

• Product line support should be available (e.g., create subsets
of requirements that can be reused for different projects and
products).

• It should be possible to create rich traces, that is, to attach a
rationale to a trace and to define traces hierarchically.

• Global support should be available. The ability to have
distributed requirements analysis is more than just the ability
to have people at different locations entering requirements. It
implies the ability to fold in rules to determine routing, review
procedures (e.g., workflow), and scripting for user guidance
and quality assurance.

A.3 RDB Advanced Features
Requirements databases can be augmented with business rules to
assist in managing problems of scale. Some example advanced
features are described under the headings that follow.

Automatic Upward Propagation of Attributes
Product features are fully described by successively lower levels of
requirements, tending from the abstract down to the concrete. At the
leaf level, every requirement is testable. We can then define a business
rule, for example, that a product feature is testable only if it has
level 6 requirements (see Table A.2) for each of those requirements or
all its children that have been reviewed and found testable. In other
words, the trace mechanisms form a tree structure, starting with the
product requirement at the root. The tree is fully traversed in a
downward direction, and where the leaves are testable, that attribute

 298 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

is propagated upward to the root node. Thus, the extractable metric
would be that the feature is testable, and that is true if and only if all
the leaves in the tree formed by its downward traces are testable (see
Figure A.2).

Automatic Downward Propagation of Attributes
Just as some high-level attributes of a requirement can only be
determined by traversing all of its downward traces, so too can some
requirement attributes be calculated with an upward trace. However,
whereas downward tracing is through a tree structure, upward
tracing is through a directed graph. For example, certain safety-
critical features in medical products fall under FDA regulations that
require that a hazard analysis be performed on the requirement.
However, a product feature may have several hundred derived
system requirements. If the analysis can be performed at the feature
level, then, by implication, all of the derived requirements inherit the
analysis. But it is not that simple; a low-level system requirement
may trace back up a graph to several product features. If any one of
those high-level features has not been marked as having a completed
hazard analysis, then the low-level system requirement cannot be set
to “analysis completed.” Downward propagation can then be used to
improve productivity by reducing the workload of analysts; e.g.,
automatically marking hot spots and propagating attribute values
where appropriate (see Figure A.3).

Customer Requirement

System Requirements

Not Testable

Testable Testable

FIGURE A.2 Upward propagation—for the Customer Requirement to be
considered testable, all of its system requirements must be testable

 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 299 A p p e n d i x : C o n f i g u r i n g a n d M a n a g i n g a n R D B 299

A.4 Unique Needs for a Product Line RDB
Product lines can impose additional burdens on an RDB (see
Chapter 6). Just a few issues will be described here. As always, it is
best to plan for the RDB implementation through process definition
and an artifact model (see Chapter 2).

Multidimensional Support
A product line consists of several products with some shared features
and some divergent features. This means that the relationship between
product release, product definition, and product line definition is
three-dimensional. In Figure A.4 you see that products in a product
line may or may not implement a requirement. Furthermore, even if a
product is destined to implement the requirement, it may take several
releases before it does. In order to support a product line, then, it must
be possible to support the generation of three-dimensional structures.

Generation of Product Maps
A product map shows, for any given product line, which product
features will be in a specific product (Figure A.5). As many
requirements may be associated with a product, it is important that
when maps containing product reports are created, they be filterable
so that the generated map is understandable; e.g., only has
requirements at the same level shown.

FIGURE A.3 Downward propagation—if a requirement attribute value is set at
a higher level, it is automatically applied to all derived lower level requirements.

 300 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

A.5 Summary
In this appendix, we have shown that advanced planning is extremely
important in order to get the most out of a modern RDB. Although
defining a process, its metrics, and the structure and content of
generated material may not seem all that important when a project is
initiated, careful planning is the key to effective database management
as the project size increases. Furthermore, when selecting a database,
needed features should be prioritized. All the current commercial
RDBs can do a reasonable job if used effectively, but not all RDBs will
have all needed features. Sometimes, a missing feature (such as
attribute propagation) can be implemented using the extensibility
features of the database. If a desired RDB feature is not available, then
the purchaser must decide for each case just how important it is.

Product Line

P1 P2 P3 P4RQT

R1

R2

R3

R4

1
2

3
4

Rele
as

e

FIGURE A.4 Three-dimensional nature of product line requirements and databases

FIGURE A.5 Example product map

X

X

X

X

X

P4

X

X

X

X

P3

X

X

X

P2

X

X

P1Camera Feature

3-inch Display Screen

18X Zoom Lens

Continuous Shooting Mode

Anti-Shake

Video Capability

In-camera Red-eye Remover

Lithium Ion Battery

A
abstract classes, 27
abstract use case, 101, 103,

107–110, 223–227
abstraction, 74
accuracy, 136
active process, 36
activities, 59, 61, 78–82, 194
activity diagrams, 105, 106, 224,

225–228, 244
actors, 59
acyclic directed graph, 94,

99, 120
adaptability, 137
ADD (architecture design

document), 259
ADD (Attribute-Driven Design),

162–164
agile methodologies, 17, 18, 236,

252–254
agreements, 197, 200
AHP (Analytic Hierarchy

Process), 53–54
Akao, Yoji (Dr.), 55
ambiguity, 10–11, 14, 15, 217, 235

analysis
coverage, 197, 198
defined, 40
derivation, 197, 198, 200
vs. elicitation, 40
hazard, 276–283
impact, 197
LEL-based, 181
performed by CCB members,

196, 197
analysis models, 77–78, 80, 81,

94, 115
“analysis paralysis,” 6
analysis sessions

MDRE, 96–113
UML, 99–113

analysts
prioritizing/ranking

requirements, 53–55, 69
training for, 4
untrained, 42, 217
working with stakeholders, 47

Analytic Hierarchy Process
(AHP), 53–54

analyzability, 137

Index

301

 302 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 302 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

applications
defects, 129
failure rates, 128
integrating existing,

157–158
platforms for. See platform

projects
prototypes for. See prototypes
replacing, 157
testing, 129
time-to-market, 239–240
web, 244, 249, 253

Architect role, 201
architectural drivers, 128,

161–162
architectural requirements,

126–129
architectural requirements

engineering
artifacts, 130
methods for, 142–154

architecturally significant
requirements (ASRs), 127,
128, 154–156

architecture design,
162–164, 259

architecture design document
(ADD), 259

artifact classes, 130
artifact modeling, 19–38. See also

REAM
introduction, 20–21
key components, 21
purpose of, 20
tips for, 36–37

artifact models, 82, 215
artifact taxonomies. See

taxonomies
artifact tracing, 115–116
artifacts

association, 28
cardinality, 28

described, 28
early planning for, 207–208
factors, 132
integrated model for,

130–132
issues, 132
MDRE and, 82, 85
multiple, 251–252
process, 30, 32
quality, 15, 204, 260
strategies, 132
templates for, 30–33
visibility of, 101–102

ASRs (architecturally significant
requirements), 127, 128,
154–156

assets, 284
association, artifacts, 28
attractiveness, 137
attribute scenarios, 131
Attribute-Driven Design (ADD),

162–164
attributes

downward propagation of,
298–299

quality, 128–145
requirements database,

297–299
taxonomies, 24
upward propagation of,

297–298
authority, 148
automation strategies, 207

B
Bachman Analyst Workbench, 67
backward from requirements, 202
backward to requirements, 202
BAS (Building Automation

System) project, 156–168, 176
baselines, 195, 198, 199
benchmark values, 205

 I n d e x 303 I n d e x 303

Berry, Dan, 41
bidirectional hyperlinks, 102
black-box testing, 223
blueprints, 78
book, use of, 16
boundaries, 109–118
boundary class, 111
boundary reports, 110
brainstorming sessions, 55–58
branch prototypes, 249
Brooks, Fredrick P., Jr. (Dr.), 40
bugs, 129, 209
Building Automation System

(BAS), 156–168, 176
business goals

eliciting, 49–51
features derived from, 158
goal modeling, 49–51
goal refinement, 157–158
goal-based traceability, 202
goals vs. subgoals, 202
high quality, 8
impact of, 168–169
including in change

management, 217
low cost, 8
scenarios derived from, 161

business model, 74, 79, 80–81
business modeling, 80, 95
business object modeling,

108–109
business objects, 91, 108–109,

112, 114, 116
business processes, 86
business rules, 62–63, 210
buyers, 200

C
Capability Maturity Model

Integration (CMMI), 6, 7, 220
cardinality, 28
CASE tool, 61, 102, 115

CCB (change control board), 6,
195–197

change control, 197
change control board (CCB), 6,

195–197
change management, 6, 195–198,

217. See also requirements
management

change of value (COV)
events, 181

change requests, 195–197, 200,
237, 247

changeability, 137
CHAOS report, 2
chief architect, 5, 266–267
chief requirements engineer, 266
class diagrams, 224
class methods, 111
classes

abstract, 27
artifact, 130
on class diagrams, 27, 107
combining, 107
concrete, 111, 116
defining for objects,

108–109
equivalence, 224, 226
software, 116, 117
splitting, 107
stakeholder, 141, 142

Cleland-Huang, Jane, 214
CMMI (Capability Maturity

Model Integration), 6, 7, 220
code

models constructed from, 222
reusing, 235
“throwaway,” 235

code inspections, 129
co-existence, 137
collaboration diagrams, 105–107
collaboration web site, 267–269
collaborations, 260

 304 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 304 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

communications, 234–235,
259–270

competence center
organizational approach, 261

competence centers, 258, 261,
263, 265

competitors, 140
completeness metric, 206
component-level NFRs,

183, 184
computing speed, 259
concrete classes, 111, 116
concrete use cases, 94, 102–110,

224–226
concurrency, 164
concurrent requirements

development, 240–243
consistency, 11–12, 14
constraint language, 226
constraints, 185, 190, 191, 226
content correctness, 113
context

ambiguity and, 10–11
defining, 9
separating from requests,

44, 68
understanding, 90–92

context diagrams, 99–101
contractors, 200
contradiction, 11–12
core project team, 7
corporate security

requirements, 14
cost drivers, 129
cost estimation, 67
cost/schedule estimation

methods, 271
COV (change of value)

events, 181
coverage analysis, 197, 198
coverage metric, 206

cross-cutting requirements,
85–86, 128

cultural issues, 269–270
customer communications, 64
customer management, 7, 197
customer relationships, 64
customers

brainstorming sessions, 55–58
identifying product needs,

46–47
model reviews, 98

customer-specific business rules,
62–63

D
data flow diagrams (DFDs),

59, 60
databases

content generation, 86
RDMS, 198–199, 212–213
requirements. See

requirements database
decision points, 224
decision tables, 57
decisions, documenting,

199, 200
defect indicators, 209
defect rates, 15, 129
defects, 209, 221
delivery dates, 195, 196, 267
“demo effect,” 250
Denne, Mark, 214
dependencies

determining, 102
features, 78
impact on priority, 199
packages, 102
RE artifacts, 20
requirements, 214

derivation analysis, 197,
198, 200

 I n d e x 305 I n d e x 305

derivation metric, 206
design models, 74, 81, 115,

117–120
design package structure, 115
DesignAdvisor tool, 120
deterministic state, 58
Developer role, 201
developers

communication issues, 12
prototypes and, 234–238,

248–250
requirements and, 13, 42
role of, 201
working with stakeholders, 238

development costs, 178
development life cycle, 229–230
DFDs (data flow diagrams), 59, 60
diagrams

activity, 105, 106, 224,
225–227, 244

artifact visibility on, 101
clarity/completeness, 113
class, 224
collaboration, 105–107
context, 99–101
description/status, 100–101
DFDs, 59, 60
document dependency, 131
hyperlinks, 102, 103–104
package, 224
REAM, 27–30
sequence, 107–109
UML, 226–227
use case, 102–104, 107, 141,

223–224
disposable prototypes, 239
distributed modeling, 98
distributed projects, 261–266
distributed requirements

engineering, 257–273
challenges, 210, 267–269

collaboration web site, 267–269
communications concerns,

267–269
global projects, 260
managing RE efforts, 266–267
OEMs, 270–271
overview, 258–259
suppliers, 270–271
time differences and, 260
tips for, 271–272
tools for, 267–269

distributed teams, 86, 100,
169, 259

document classification
taxonomies, 25

document dependency
diagrams, 131

document management, 217
document production, 129
documentation, 217, 222
documenting decisions,

199, 200
domain experts, 5, 48, 245,

250–251. See also stakeholders
domain models, 164, 165
downward compatibility, 13
dynamic tailoring, 34

E
ECOs (engineering change

orders), 196
ECRs (engineering change

requests), 196
effectiveness, 137
efficiency, improving, 230
electrical safety requirements, 14
elicitation, 39–71

vs. analysis, 40
brainstorming sessions, 55–58
business goals, 49–51
business rules, 62–63

 306 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 306 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

elicitation (continued)
challenges, 41–48, 234–235
cost estimation and, 67
customer relationships and, 64
defined, 40
described, 79
early, 236–237
ethnographic techniques, 52
“feature folklore,” 41
identifying personnel for,

41–44
incremental product

development, 67–68
managing, 64–67
MDRE, 96–98
methods for, 48–62
overview, 40, 234–235
prioritizing/ranking

requirements, 53–55, 69
process modeling techniques,

58–62
prototyping tasks, 236–237
Quality Function Deployment

method, 55
requirements vs. requests, 44
stakeholder input, 181, 186–187
tabular techniques, 56–58
UML, 99–113

elicitation meetings, 187
elicitation models, 77–78
elicitation sessions, 64–67, 69
e-mail, 268
engineering change orders

(ECOs), 196
engineering change requests

(ECRs), 196
engineering project traceability

model, 202–204
engineering review board

(ERB), 196
English language skills, 260
equivalence classes, 224, 226

ERB (engineering review
board), 196

error scenarios, 91
ethnographic techniques, 52
events, 59, 181
examples, 199
Excel, 188
executable prototypes, 237,

248–250
execution graphs, 166–167
execution snapshots, 165–166
experts, 4, 6–7, 148
extended workbench model,

259, 263, 264, 265, 266
external quality, 132

F
FAA (Federal Aviation

Administration), 3, 13, 276
factors, 132, 146–154
fault tolerance, 136
fault tree, 74
FDA (Food and Drug

Administration), 3, 13, 276, 277
feasibility, 9, 14, 182, 185–186
feature creep, 195
“feature folklore,” 41
feature model, 74, 81
feature modeling, 78
feature tree, 91–92
Federal Aviation Administration

(FAA), 3, 13, 276
Federal Transit Administration

(FTA), 276, 277
folklore, 41
Food and Drug Administration

(FDA), 3, 13, 276, 277
Ford Edsel, 52
formal model, 75
formal reviews, 186, 195
forward from requirements, 202
forward to requirements, 202

 I n d e x 307 I n d e x 307

Fowler, Martin, 77
FPA (function point analysis), 16
FTA (Federal Transit

Administration), 276, 277
function point analysis (FPA), 16
function point counting, 67, 85
function point metrics, 16, 67
function points, 16
functional proposals, 242
functional requirements. See also

NFRs
component, 177
described, 127
implementing, 5
integration of, 170
vs. nonfunctional

requirements, 4
FURPS+ taxonomy, 169–170

G
global analysis, 146–154, 160
global projects, 260
Global Studio Project (GSP),

262, 265
glossaries, 21, 22, 28, 37, 215. See

also terminology
Glossary of Terms, 36, 215
goal model, 81, 89
goal modeling, 49–51, 78,

145–146, 153
goal-based traceability, 202
goals, business. See business goals
government regulations, 3
GSP (Global Studio Project),

262, 265
guidelines, 199

H
HA. See hazard analysis
hazard analysis (HA), 276–283

defined, 277
identifying hazards, 277–280

importance of, 282–283
MDRE and, 281–282, 283
metrics, 279
overview, 276
reflecting activities in RDB,

280–281
risk assessment, 277
terminology, 276–277
vs. threat modeling, 284

hazard analysis reviews, 281
hazards, 277
Hewlett-Packard, 204
hierarchical requirements

structure, 293–294
hierarchies, requirements, 215,

293–294
hub-and-spoke

organization, 262
hyperlinks, 102, 103–104

I
IDEF (Integration DEFinition),

4, 78
IEEE 830 Standard, 9
IEF (Information Engineering

Facility), 67
impact, 148
impact analysis, 197
implementation model, 74, 81
included use cases, 59
incompleteness, 217
incremental product

development, 67–68
independent variables, 155
Information Engineering Facility

(IEF), 67
inspections, 129
installability, 137
installers, 140
integrated model, 130–132
Integration DEFinition (IDEF),

4, 78

 308 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 308 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

interface class, 111
interface tracing, 115, 116
internal quality, 132
interoperability, 136
ISO-9126 standard, 186
issues, 132, 146, 149–150, 153–154

J
Jones, Capers, 23, 45, 239

K
Kano, Noriaki, 52
Kano modeling, 52
Kano values, 211

L
Language Extended Lexicon

(LEL), 181
language/communication

issues, 47–48, 68
languages

constraint, 226
English language skills, 260
natural, 59, 85, 122, 288
OCL, 226
UML, 4, 75, 99–113
URML, 86, 88

learnability, 137
legacy products, 182
LEL (Language Extended

Lexicon), 181
life cycle, 229–230
life cycle process, 35–37
localizability, 187
loquacious objects, 112

M
maintenance, 208
maintenance costs, 178
marketing organization, 6
Marketing role, 201
maturity, 136

MBT (model-based testing),
222–227

MDA (model-driven
architecture) initiative, 223

MDRE (Model-Driven
Requirements Engineering)

advantages of, 84–86
analysis sessions, 96–113
artifacts and, 82, 85
cross-cutting requirements,

85–86
elicitation, 96–98
estimating project size/cost, 85
hazard analysis and,

281–282, 283
initiating MDRE effort, 96
overview, 79–84
prerequisites for, 87–88
threat modeling and, 285
use of tooling for, 120

MDRE artifacts, 82, 85
MDRE processes, 82, 83–84, 88–98
measurement practices, 204–206
meetings

elicitation, 187
face-to-face, 154, 269
prioritization, 154
team, 268

metamodels, 27, 203–204, 215
metrics

artifact quality, 15
categories, 205–206
completeness, 206
coverage, 206
derivation, 206
examples of, 205, 206
function points, 16
hazard analysis, 279
obtaining, 204–206
progress, 86
project, 205, 206
quality, 86, 205–206

 I n d e x 309 I n d e x 309

requirements database, 217,
294–295

requirements engineering,
15–16

requirements management,
204–206

threat modeling, 286
tips for, 205
used early in project, 205
volatility, 198, 206

metrics summaries, 15
mitigation techniques, 215
Mizuno, Shigeru (Dr.), 55
mock-up prototypes, 252
model reviews, 98
model-based testing (MBT),

222–227
model-driven architecture

(MDA) initiative, 223
Model-Driven Requirements

Engineering. See MDRE
model-driven techniques, 58–62
modeling

artifact. See artifact modeling
business, 80, 95
business object, 108–109
challenges, 235
distributed, 98
feature, 78
goal, 49–51, 78, 145–146, 153
Kano, 52
performance, 164–168
SysML modeling, 79
threat. See threat modeling
use case, 85

modeling sessions, 96–116
models

analysis, 77–78, 80, 81, 94, 115
artifact, 101–102
business, 74, 79, 80–81, 95
constructed from source

code, 222

content correctness, 113
creation of, 74
described, 77, 222
design, 74, 81, 115, 117–120
determining completeness of,

113–114
diagram quality, 113
domain, 164, 165
elicitation, 77–78
extracting requirements from,

94–96
fault trees, 74
faults, 113–114
feature, 74, 81
formal, 75
goal, 81, 89
implementation, 74, 81
integrated, 130–132
lightweight, 84
metamodels, 27, 203–204, 215
NFR, 183–184
organization of, 96
process, 77
quality checks, 117–118
REAM. See REAM
requirements, 222
requirements analysis, 74
reviewing, 229
test, 74–75
types of, 74–75, 222–227
UML, 75, 227–228
usage, 222
use case, 80, 81, 92–94
“V” model, 202–204, 220, 221

modifiability, 11, 14, 152, 164
modification optimization,

251–252
modification requests

(MRs), 196
MRs (modification requests), 196
multidimensional support,

299, 300

 310 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 310 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

N
NAIC codes, 23
NAICS (North American

Industry Classification), 23
natural languages, 59, 85,

122, 288
navigational facilities, 217
negotiability, 147, 149
NFR definitions, 177–178, 186
NFR development process,

177, 178
NFR model, 183–184
NFR questionnaire, 180–181,

186, 187, 190
NFR specifications, 177, 182
NFRs (nonfunctional

requirements)
challenges, 177–178
completeness, 12
completing, 186
component-level, 183, 184
consistency between,

184–185
constraints, 185, 190, 191
defining for components,

183–184
defining for platform, 182
deriving for software

platform, 190
downward compatibility, 13
eliciting, 4
feasibility, 182, 185–186
formal review, 186
managing, 5, 12
platform projects, 182–186
platform-level, 183, 184
PND process, 178–179,

186–187
practices, 178–186
quality attributes, 128
quantification of, 12

review of, 188
separating from functional

requirements, 4
templates for, 191
terminology, 187–188
testability, 185, 190

nondeterministic state, 58
nonfunctional requirements.

See NFRs
normalization, 181–182
normalizing stakeholder input,

188–189
North American Industry

Classification (NAICS), 23

O
Object Constraint Language

(OCL), 226
Object Management Group

(OMG), 223
object-oriented analysis and

design (OOAD), 170
objects

business, 91, 108–109, 112,
114, 116

external, 111
loquacious, 112
passive, 112

OCL (Object Constraint
Language), 226

OEMs, 270–271
OMG (Object Management

Group), 223
OOAD (object-oriented analysis

and design), 170
open source organizational

approach, 261, 265
operability, 137
organizational structures,

261–266
outsourcing, 2, 5, 204, 229

 I n d e x 311 I n d e x 311

P
package diagrams, 224
packages, 101, 102, 118, 261
paired programming, 240
pairwise ranking, 53–54
Parker boiler, 75–77
passive objects, 112
passive process, 36
performance, 164, 227–228
performance modeling, 164–168
performance targets, 138
PG (planning game)

technique, 54
planning game (PG)

technique, 54
platform initiatives, 176
Platform NFR Development

(PND) process, 178–179,
186–187

platform organizational
approach, 261

platform projects, 175–192
challenges, 177–178
example of, 186–190
nonfunctional requirements,

182–186, 190
overview, 176
practices, 178–186
tips for, 190–191

platform-level NFRs, 183, 184
platforms, 176, 178
PND (Platform NFR

Development) process,
178–179, 186–187

policies, 63, 210
policy changes, 210
postconditions, 59
PowerPoint, 246
preconditions, 59
prioritization, 53–55, 69,

154, 199, 210

priority
assigning, 53
impact of dependencies on, 199
vs. ranking, 53

process artifacts, 30, 32
process modeling, 58–62, 78, 79
process models, 77
process quality, 132
process steps organizational

approach, 261
processes. See also RE processes

active, 36
business, 86
hazard analysis, 277–280
low-level, 112
MDRE, 82, 83–84, 88–98
passive, 36
requirements management,

207–208
processing overhead, 167–168
product architecture, 132
product development, 67–68
product features, 10, 11, 157–159
product life cycle, 8
product lines, 213–215
product maps, 299–300
product safety, 13
product structure organizational

approach, 261
productivity, 98, 137
products

accelerated creation
process, 2, 3

analyzing features, 92–94
defect rates, 129
government regulations, 3
identifying customer needs,

46–47
introduction of new

products, 5
legacy, 182

 312 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 312 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

products (continued)
managing requirements for,

214–215
vs. product lines, 214–215
use case model, 92–94
use of, 90–92

product-specific characteristics,
13–14

programming, paired, 240
progress indicators, 7
progress metrics, 86
project failure, 15
project glossary. See glossaries
project manager, 266, 267
project measurements, 205
project metamodels, 215
project metrics, 205, 206
project plans, 15, 86
project teams. See also team

members
authority issues, 148
central team, 268
collaboration tools, 267–269
communication issues, 211,

259–270
core team, 7
cultural differences, 269–270
e-mail, 268
isolation and, 4
language issues, 260,

269–270
meetings, 268
paired programming, 240
project roles, 37, 262
proximity considerations, 270
relationships between, 263
remote team, 259, 268–269
roles, 262
scrum, 268
size, 270
tips for, 271–272
virtual RE teams, 266, 271

projects
distributed, 261–266
estimating size/cost, 85
failure rate, 128
global, 260
platform. See platform projects
REAMs for. See REAM
schedules, 128
size, xxi, 215

project-specific characteristics,
13–14

prototypes
advantages of, 235
branch, 249
defined, 246
“demo effect,” 250
disposable, 239
executable, 237, 248–250
feedback on, 242, 251, 252
mock-up, 252
multiple features, 243
physical, 236
reviewing, 237, 242, 245
size, 236
software, 236
“throwaway,” 236, 243, 249, 252
time boxed, 239
transparency and, 250
validity of, 239
versions, 242

prototyping, 112–113
advantages of, 235, 237
concurrent development,

240–243
early elicitation for,

236–237, 253
guidelines for, 239
iterative nature of, 244–245
optimizing process for, 251–252
output of, 243
in parallel with RE, 240–243
project size and, 239

 I n d e x 313 I n d e x 313

rapid, 236–240
storyboarding, 246–248
time constraints, 243
tips for, 252–254
visual, 247
when to prototype, 236–240

Q
QAMs (quality assessment

methods), 50
QAR. See quality attribute

requirements
QAS (quality attribute scenario),

131, 143–145, 155, 171
QAW (quality attribute

workshop), 143–145,
159–160, 171

QFD (Quality Function
Deployment) method, 55

quality
artifact, 15
described, 136
external, 132
internal, 132
metrics for, 86
notion of, 169–170
process, 132
quantifying, 128–129
requirements engineering,

15–16
quality assessment methods

(QAMs), 50
quality assurance checks, 117–118
quality assurance scripts, 281
quality attribute measure, 136
quality attribute requirements

(QARs), 125–173, 128, 131
architectural requirements,

126–129
architecturally significant

requirements, 154–156
basics, 132–140

building automation system,
156–168

described, 128, 131
integrated model for, 130–132
practice/experience, 168–170
scenarios, 131, 143–145, 171
stages of quality attribute

grief, 139
stakeholder selection,

140–142
terminology, 127–130
tips for, 170–171

quality attribute scenario (QAS),
131, 143–145, 155, 171

quality attribute workshop
(QAW), 143–145,
159–160, 171

quality attributes, 128–145
Quality Function Deployment

(QFD) method, 55
quality in use, 132, 133
quality indicators, 7
quality metrics, 205–206
query retrieval, 217
questionnaires, 180–181,

186–187, 190

R
ranking, 53–55
rapid development techniques,

233–255
overview, 234–236
prototyping, 236–240
recommended practices,

240–252
tips for, 252–254

Rational Unified Process (RUP)
techniques, 7

RDB. See requirements database
RDMS (requirements data

management system), 198–199,
212–213

 314 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 314 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

RDMS tools, 199
RE (requirements engineering)

conclusion, 287–290
definition of, 8
distributed, 257–273
early phases of, xxii, 207–208,

236–237, 239, 253
importance of, xxi, 2–3
industrial challenges, 4–5
introduction to, 1–17
key success factors, 5–7
metrics and, 15–16
misconceptions, 3–4
in parallel with prototyping,

240–243
for platforms. See platform

projects
quality and, 15–16
vs. requirements analysis, 8
taxonomies, 21–27
traditional business processes

and, 8
RE processes. See also processes

establishing policies for, 199
measuring savings with, 209
OEMs, 270–271
scalability of, 4, 6
suppliers, 270–271

RE workshops, 266
realization relationships, 108
REAM (RE artifact model). See

also artifact modeling
creating, 28–30
described, 27
dynamic tailoring of, 34
elements of, 27–28
organizational models, 34–35
process definition support,

30, 32
system life cycle process, 35–37
templates for, 30–33
using, 30

REAM diagrams, 27–30
reconciliation worksheet, 188
reconciling stakeholder input,

188–189
recoverability, 136
relationships

analyzing, 181
customer, 64
project team. See

project teams
realization, 108
tracing, 115–116
use cases, 108

release-based organizational
approach, 261

releases
allocating requirements to,

199–200
overlapping, 261
pairwise ranking and, 53–54
planning, 53, 199–200
“scope creep” and, 6
strategies for, 214

reliability, 136
REMP (requirements

engineering management
plan), 208, 210

replaceability, 137
requests

change, 195–197, 200,
237, 247

ECRs, 196
MRs, 196
vs. requirements, 44
separating from context, 44, 68

requirement quality metric, 206
requirements

ambiguity, 10–11, 14, 15,
217, 235

architectural, 126–129
characteristics of, 9–15
completeness, 12–13, 133–135

 I n d e x 315 I n d e x 315

conflicting, 237–238
consistency, 11–12
context, 44
contradictions, 11–12
correct, 9
covered by test cases, 217
cross-cutting, 85–86, 128
defect rates, 15, 129, 221
dependencies, 214
detail level, 238–239
eliciting. See elicitation
example of, 63
vs. factors, 151–152
feasibility of, 9, 14
function points and, 16
functional. See functional

requirements
high-level, 238
identifying risks, 15
importance of good

practices, 194
incompatible, 243
incomplete, 217
marketing/sales and, 6
modifiable, 11
new/changed, 6
nonfunctional. See NFRs
nonprioritized, 237–238
performance, 227–228
prioritizing, 53–55, 69, 199, 210
project failure and, 15
quality attribute. See quality

attribute requirements
ranking, 53–55
rapid development. See rapid

development techniques
rapid iteration of feedback,

244–245
vs. requests, 44
reuse, 254
scalability, 227–228
separating context from, 44

system boundaries, 45–46
team isolation and, 4
tips for gathering, 68–69
traceability. See traceability
transparency, 250
“umbrella,” 14
unambiguous, 10–11
valid, 9, 10
verifiable, 11
volatility, 45, 198, 206

requirements analysis, 8
requirements analysis model, 74
Requirements Analyst role, 201
requirements artifacts. See

artifacts
requirements automation, 67
requirements baseline, 195, 199
requirements data management

system (RDMS), 198–199,
212–213

requirements database (RDB),
291–300

advanced features, 297–299
attribute propagation, 297–299
basic features, 295–297
commercial, 210–211, 293
configuration, 292
considerations, 300
creating, 210–213
hazard analysis activities,

280–281
metrics, 217, 294–295
multidimensional support,

299, 300
overview, 292–295
prerequisites, 293
product line RDB, 299–300
product maps, 299–300
vs. traditional database, 292
terminology, 293–295

requirements database
schema, 217

 316 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 316 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

requirements discovery, 244
requirements elicitation. See

elicitation
requirements engineering. See RE
requirements engineering

management plan (REMP),
208, 210

requirements engineers
communication with

stakeholders, 47, 68
questionnaires used by, 180
training/experience, 4, 6

requirements evolution, 233–255
requirements hierarchies, 215,

293–294
requirements levels, 42–43
requirements management

(RM), 193–218. See also
change management

best practices, 215–217
coverage analysis, 197, 198
critical success factors in, 6
data flow diagram, 59, 60
derivation analysis, 197, 198
distributed engineering

and, 210
documenting decisions,

199, 200
impact analysis, 197
measurement practices,

204–206
metrics, 204–206
nonprioritized requirements,

237–238
organizational issues, 210–215
overview, 194
planning releases, 199–200
prioritizing requirements,

53–55, 69, 199, 210
for product lines, 213–215
purpose of, 194
routine activities for, 198–200

scalability, 207
traceability, 200–204
version control, 195–198, 208,

210–211
volatile requirements, 198

requirements management
processes, 207–208

requirements modeling, 73–124
from analysis to design, 115
clarity/completeness, 113
content correctness, 113
conversion guidelines,

115–116
design models, 115, 117–120
determining model

completeness, 113–114
model faults, 113–114
model-driven requirements.

See MDRE
overview, 74–79
quality assurance checks,

117–118
tips for, 120–121

requirements models, 222
requirements relationships, 86
requirements reviews, 6, 41,

66, 69
requirements specifications, 9,

12–15
requirements-driven system

testing, 219–232
best practices, 228–230
model-based testing, 222–227
overview, 220–221
performance/scalability

requirements, 227–228
RE inputs for, 222
“V” model, 220, 221

resource utilization, 137
return-on-investment (ROI), 214
reuse requirements, 254
reviewing models, 229

 I n d e x 317 I n d e x 317

reviews
formal, 186, 195
hazard analysis, 281
model, 98
NFRs, 186, 188
prototypes, 237, 242, 245
requirements, 6, 41, 66, 69

risk assessment, 15, 277. See also
hazard analysis

RM. See requirements
management

ROI (return-on-investment), 214
roles, 4, 200, 208, 262, 266
Royce, Walker, 45
rules, 63
RUP (Rational Unified Process)

techniques, 7

S
safety, 137
safety requirements, 14
safety-critical system, 277
sales organization, 6
Sales role, 201
Sarbanes-Oxley regulations,

3, 14
satisfaction, 137
scalability

requirements management, 207
testing requirements, 227–228

scenarios, 91–94
defining, 237
derived from business

goals, 161
end-to-end, 139, 165–166
error, 91
identifying, 237
QAR, 131, 143–145, 171
QAS, 131, 143–145, 155, 171
“sunny day,” 128
threat modeling, 284
types of, 143–145

usage, 224
use case, 105, 107,

130–132, 145
schedule estimation methods, 271
schemas, 217
“scope creep,” 6
“scrum of scrums,” 268
Scrum sprint, 242
scrum teams, 268
security, 14, 136
sequence diagrams, 107–109
service-oriented architecture

(SOA), 85
severity, 277
Siemens Corporate Research,

xxii, 4–5
Six Sigma program, 55
“smart ignoramus,” 41, 68
SOA (service-oriented

architecture), 85
“softness,” 149
software architecture, 126
software bugs, 129, 209
Software by Numbers, 214
software classes, 116, 117
software defects. See defects
software developers. See

developers
software platforms. See

platforms
software product lines, 176
software requirements

engineering, 8
software testing, 220. See also

requirements-driven system
testing

source code. See code
specification-based testing, 223
spreadsheets, 188, 210
SRS (Systems Requirements

Specification), 95
stability, 137

 318 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 318 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

stakeholder classes, 141, 142
stakeholder representative,

141, 142
stakeholders. See also domain

experts
availability of, 44–45
brainstorming sessions, 55–58
challenges, 234, 243–244
conflicts/inconsistencies, 48,

237–238, 244
defined, 140, 141
eliciting input from, 181,

186–187
examples of, 140
failing to accurately identify,

43–44
feedback comments, 186,

244–245
formal review by, 186
handling conflicts, 243–244
identifying, 7, 41–44, 68,

141–142
inconsistencies among, 244
individuals, 141
language/communication

issues, 47–48, 68
normalizing inputs, 181–182,

188–189
prioritizing/ranking

requirements, 53–55, 69
problems/issues, 41–48
questionnaires sent to, 180–181
rapid iteration of feedback,

244–245
reconciling inputs, 182,

188–189
reviewing models, 229
selecting significant, 140–142
“smart ignoramus,” 41, 68
understanding of product

needs, 46–47

unsuitable, 42
untrained analysts, 42
working with analysts, 47
working with

developers, 238
state tables, 57–58
storyboarding, 246–248
storyboards, 244
strategies, 132, 146, 150–154
subcontracting, 5
subgoals, 202
subject matter experts, 4, 6–7, 148
suitability, 136
“sunny day” scenarios, 128
suppliers, 270–271
SUT (system under test),

221, 222
swim lanes, 224
SysML modeling technique, 79
system architects, 259
system boundaries, 45–46
system life cycle process, 35–37
“system of systems” approach,

264–265, 266
system requirements,

130–132, 237
system testing. See

requirements-driven
system testing

system under test (SUT),
221, 222

Systems Requirements
Specification (SRS), 95

T
tabular elicitation techniques,

56–58
taxonomies, 21–27

attributes, 24
described, 21
examples of, 22–23

 I n d e x 319 I n d e x 319

extending, 26–27
FURPS+, 169–170
vs. glossaries, 22

team members. See also project
teams

authority issues, 148
central team, 268
communication issues, 211,

269–270
core team, 7
cultural considerations,

269–270
experience, 87
interviewing, 269
language issues, 260
paired programming, 240
project roles, 37, 262
proximity considerations, 270
recruiting, 269
remote team, 259, 268–269

teams. See project teams
tech support, 140
teleconferences, 268
telephone communications, 269
templates, 30–33, 191, 199
terminal use case, 90–91
terminology. See also glossaries

hazard analysis, 276–277
platform projects, 181,

187–188
quality attribute requirements,

127–130
requirements database,

293–295
threat modeling, 284
unifying, 181, 187–188

test cases, 217
test coverage, 229
test engineers, 220–223
test model, 74–75
testability, 137, 185, 190

Tester role, 201
test-first development,

250–251
testing. See also requirements-

driven system testing
applications, 129
ASRs, 154–156
black-box, 223
early stages, 250–251
guidelines, 251
improving efficiency, 230
model-based, 222–227
NFRs, 185, 190
performance requirements,

227–228
scalability requirements,

227–228
specification-based, 223
use cases for, 223–227
white-box, 223

Texas Instruments Information
Engineering Facility
(IEF), 67

threat modeling, 284–286
vs. hazard analysis, 284
MDRE and, 285
metrics, 286
overview, 284–286
scenarios, 284
terminology, 284

threats, 284
“throwaway code,” 235
“throwaway” prototypes, 236,

243, 249, 252
time behavior, 137
time boxed prototypes, 239
time-boxed scheduling, 154
time-to-market, 169, 238–239,

259, 261
TM. See threat modeling
trace matrix, 4

 320 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e 320 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

traceability
based on roles/organization,

200, 201
described, 13, 14
engineering project traceability

model, 202–204
factors, 152
goal-based, 202
incomplete, 204
requirements, 13, 200–204
requirements management,

200–204
requirements specifications, 14

traces categories, 202
tracing relationships, 115–116
tracing to requirements, 229
training, 4, 6, 42, 217
transparency, 250
treatment, 284
tree structure, 215

U
UI (user interface)

interactions, 246
“umbrella” requirements, 14
UML (Unified Modeling

Language), 4, 75, 99–113
UML 2.0 Testing Profile, 223
UML diagrams, 223, 226–227
UML models, 75, 226–227
understandability, 136
Unified Modeling Language.

See UML
Unified Requirements Modeling

Language (URML), 86, 88
URML (Unified Requirements

Modeling Language), 86, 88
usage models, 222
use case analysis, 59–62
use case diagrams, 102–104, 107,

141, 223–224
use case modeling, 85
use case models, 80, 81, 92–94

use case points, 85
use case realizations, 115, 116
use case scenarios, 105, 107,

130–132, 145
use case tracing, 115, 116
use cases, 59–62

abstract, 101, 103, 107–108,
223–227

components of, 59
concrete, 94, 102–110, 224–226
conflicting requirements, 243
decomposition, 92
defining, 102–105
extending, 59, 92, 107–108
including other use cases,

107–108
out-of-scope, 100
vs. packages, 101
relationships, 108
terminal, 90–91
for testing, 223–227

use-case context diagram, 141
user interface (UI)

interactions, 246
user manuals, 222
user-driven interactions, 244

V
“V” model, 202–204, 220, 221
validation, 220
validation activities, 220
validity, 9, 10, 14
value-added resellers

(VARs), 157
variables, independent, 155
VARs (value-added

resellers), 157
verifiability, 11, 14
verifiable requirements, 11
verification, 220
version control, 195–198, 208,

210–211
video communications, 269

 I n d e x 321 I n d e x 321

videoconferences, 268
virtual RE teams, 266, 271
Visio, 246
visual prototyping, 247
volatile requirements, 198
volatility, 198
volatility metric, 198, 206

W
web applications, 244,

249, 253
white-box testing, 223
workflow tools, 199
WYSIWYG document

editors, 246

	Contents
	Industrial Foreword
	Academic Foreword
	Preface
	Acknowledgments
	1 Introduction
	Why Has Requirements Engineering Become So Important?
	Misconceptions About Requirements Engineering
	Misconception 1: Any Subject Matter Expert Can Become a Requirements Engineer After a Week or Two of Training
	Misconception 2: Nonfunctional and Functional Requirements Can Be Elicited Using Separate Teams and Processes
	Misconception 3: Processes That Work for a Small Number of Requirements Will Scale

	Industrial Challenges in Requirements Engineering
	Key Success Factors in Requirements Engineering
	The Project Has a Full-Time, Qualified Chief Architect
	A Qualified Full-Time Architect Manages Nonfunctional Requirements
	An Effective Requirements Management Process Is in Place
	Requirements Elicitation Starts with Marketing and Sales
	Requirements Reviews Are Conducted for All New or Changed Requirements or Features
	Requirements Engineers Are Trained and Experienced
	Requirements Processes Are Proven and Scalable
	Subject Matter Experts Are Available as Needed
	All Stakeholders Are Identified
	The Customer Is Properly Managed
	Progress and Quality Indicators Are Defined
	The RE Tools Increase Productivity and Quality
	The Core Project Team Is Full Time and Reports into a Single Chain of Command

	Definition of Requirements Engineering
	Requirements Engineering’s Relationship to Traditional Business Processes
	Characteristics of a Good Requirement
	Feasible
	Valid
	Unambiguous
	Verifiable
	Modifiable
	Consistent
	Complete
	Traceable
	Other Project- or Product-Specific Characteristics
	Characteristics of a Good Requirements Specification

	Requirements and Project Failure
	Quality and Metrics in Requirements Engineering
	Function Point Metrics as Leading Indicators

	How to Read This Book
	Summary
	Discussion Questions
	References

	2 Requirements Engineering Artifact Modeling
	Introduction
	RE Taxonomy
	Taxonomy Attributes
	Creation of an RE Taxonomy
	Other Types of Taxonomies Useful in RE
	Taxonomy Extension

	RE Artifact Model
	Elements of an Artifact Model
	Creation of a Requirements Engineering Artifact Model

	Using the Artifact Model
	Extending an Artifact Model to Augment Process Definition

	Using Templates for Requirement Artifacts
	Dynamic Tailoring of an Artifact Model
	Organizational Artifact Model Tailoring
	Creating a System Life Cycle Process
	Tips for Requirements Engineering Artifact Modeling
	Summary
	Discussion Questions
	References

	3 Eliciting Requirements
	Introduction
	Issues and Problems in Requirements Elicitation
	The Missing Ignoramus
	The Wrong Stakeholders
	Untrained Analysts
	Not Identifying Requirements Level
	Failure to Accurately Identify Stakeholders
	Problems Separating Context from Requirement
	Failure to Collect Enough Information
	Requirements Are Too Volatile
	System Boundaries Are Not Identified
	Understanding of Product Needs Is Incomplete
	Users Misunderstand What Computers Can Do
	The Requirements Engineer Has Deep Domain Knowledge
	Stakeholders Speak Different Natural and Technical Languages
	Stakeholders Omit Important, Well-Understood, Tacit Information
	Stakeholders Have Conflicting Views

	Requirements Elicitation Methods
	Eliciting Business Goals
	Ethnographic Techniques
	Prioritization and Ranking of Requirements
	Quality Function Deployment (QFD) Method
	Brainstorming Sessions
	Tabular Elicitation Techniques
	Process Modeling Techniques

	Customer-Specific Business Rules
	Why Are Customer-Specific Business Rules Important?
	What Are Their Characteristics?
	Example Customer-Specific Business Rules

	Managing the Customer Relationship
	Managing Requirements Elicitation
	Planning Elicitation Sessions

	Requirements and Cost Estimation
	Requirements Elicitation for Incremental Product Development
	Tips for Gathering Requirements
	Summary
	Discussion Questions
	References

	4 Requirements Modeling
	Introduction
	Model-Driven Requirements Engineering (MDRE)
	Advantages of an MDRE Approach
	Using MDRE to Estimate Project Size and Cost
	Improved Management of Cross-Cutting Requirements
	Navigation of Complex System Requirement Sets
	Rapid Review of Business Processes and Requirements Relationships
	Metrics for Quality and Progress
	Semiautomatic Generation of Project Plans and Requirements Database Content

	Prerequisites for Using MDRE
	Modeling Skills Not Readily Available
	Inadequate Tooling
	Organization Not Ready for MDRE

	MDRE Processes
	Initial Understanding
	Understanding the Context and How the Product Will Be Used
	Analyzing Product Features and Creating a Use Case Model
	Extracting Requirements from the Model
	Starting an MDRE Effort
	Managing Elicitation and Analysis Sessions
	Improved Productivity Through Distributed Modeling
	Conducting Model Reviews

	Elicitation and Analysis Model Heuristics
	The Model Should Have a Single Entry Point
	All Actors Associated with the System Being Analyzed Should Appear on the Context Diagram
	The Early Modeling Effort Should Cover the Entire Breadth of the Domain
	Identify “Out-of-Scope” Use Cases as Early as Possible
	Every Diagram Should Have an Associated Description and Status
	Avoid the Early Use of Packages
	Do Not Substitute Packages for Abstract Use Cases
	Every Artifact in a Model Should Be Visible on a Diagram
	Every Symbol Should Have a Bidirectional Hyperlink to the Diagrams That Define It
	Package Dependencies Should Be Based on Content
	Every Concrete Use Case Must Be Defined
	Use an Activity Diagram to Show All Possible Scenarios Associated with a Use Case
	Use Sequence Rather Than Collaboration Diagrams to Define One Thread/Path for a Process
	Abstract Use Cases Must Be Realized with Included or Inherited Concrete Use Cases
	Extending Use Case Relationships Can Only Exist Between Like Use Cases
	A Concrete Use Case Cannot Include an Abstract Use Case
	Avoid Realization Relationships and Artifacts in the Analysis Model
	Business Object Modeling
	Coherent Low-Level Processes Should Be Defined with State or Activity Diagrams
	Elicit Requirements and Processes by Starting at Boundaries and Modeling Inward
	Hide Complexity by Using Compound Business Objects
	Initiate Prototyping Efforts Quickly

	Determining Model Completeness
	Diagram Quality
	Content Correctness
	Model Faults That Should Be Corrected Before a Model Is Completed

	Transitioning from Analysis to Design
	Suggested Model Conversion Heuristics
	Design Model Package Structure
	Use Case Tracing
	Interface Tracing
	Artifact Tracing

	Design Model Structure
	Tracing Requirements Through the Design Model
	Intermodel Quality Assurance Checks
	Design Model Initial Construction

	Use of Tooling for MDRE
	Tips for Modeling Requirements
	Summary
	Discussion Questions
	References

	5 Quality Attribute Requirements
	Why Architectural Requirements Are Different Terminology
	Terminology

	An Integrated Model
	Quality Attribute Scenarios
	Quality Attribute Requirements
	Factors, Issues, and Strategies
	Product Architecture

	Quality Attribute Requirements
	Selecting Significant Stakeholders
	Identifying Potential Stakeholders

	Methods for Architectural Requirements Engineering
	Quality Attribute Workshop
	Goal Modeling
	Global Analysis

	Testing ASRs
	Case Study: Building Automation System
	Features That Define the Product
	Forces That Shape the Architecture
	Constraints on the Architecture
	Architectural Drivers
	Architecture Design
	Modeling the Domain
	Performance Modeling

	Practice and Experience
	Impact of Business Goals
	The Notion of Quality
	Integration of Functional Requirements, Quality Attributes, and Architecture

	Tips for Quality Attribute Requirements
	Summary
	Discussion Questions
	References

	6 Requirements Engineering for Platforms
	Background
	Challenges
	Practices
	Define Questionnaires
	Elicit the Stakeholders’ Inputs
	Unify Terminology
	Normalize Stakeholders’ Inputs
	Reconcile Stakeholders’ Inputs
	Define the NFRs for the Platform
	Derive the NFRs for the Components
	Check for Consistency
	Check for Testability
	Complete the Constraints
	Tune the NFRs for Feasibility
	Complete NFRs
	Formal Review by Stakeholders

	Experience
	Define the Questionnaires and Elicit the Stakeholders’ Inputs
	Unify Terminology
	Normalizing and Reconciling Stakeholders’ Inputs
	Derive the NFRs for the Software Platform
	Check for Testability and Complete the Constraints

	Tips for RE for Platforms
	Summary
	Discussion Questions
	References

	7 Requirements Management
	Background
	Change Management
	Impact Analysis
	Derivation Analysis
	Coverage Analysis

	Routine Requirements Management Activities
	Identifying Volatile Requirements
	Establishing Policies for Requirements Processes and Supporting Them with Workflow Tools, Guidelines, Templates, and Examples
	Prioritizing Requirements
	Establishing and Updating the Requirements Baseline
	Documenting Decisions
	Planning Releases and Allocating Requirements to Releases

	Traceability
	Goal-Based Traceability
	Types of Traces
	Example Engineering Project-Based Traceability Model

	Measurement and Metrics
	Project Metrics
	Quality Metrics

	Scalability
	Creation of a Requirements Management Process
	Measuring Savings with RE Processes
	Organizational Issues Impacting Requirements Management
	Creating a Requirements Database
	Managing Requirements for Product Lines

	Tips for Requirements Management
	Best Practices

	Summary
	Discussion Questions
	References

	8 Requirements-Driven System Testing
	Background
	Requirements Engineering Inputs for Testing
	Model-Based Testing
	Testing Performance and Scalability Requirements
	Rules of Thumb/Best Practices
	Reviewing Models
	Improved Test Coverage
	Tracing to Requirements
	Start Early in the Development Life Cycle
	Improved Efficiency

	Summary
	Discussion Questions
	References

	9 Rapid Development Techniques for Requirements Evolution
	Background
	When to Prototype
	Early Requirement Elicitation
	Conflicting or Nonprioritized Requirements
	Bridge the Skills of Stakeholders and Developers
	Capture Detailed Requirements
	Time-to-Market

	Practices and Experience
	Requirements Engineering and Prototype Development in Parallel
	Identify and Eliminate Stakeholder Conflicts
	Rapid Iteration of Requirements/Stakeholder Feedback
	Storyboarding
	Executable Prototypes
	Transparency
	Testing
	Modification Optimization

	Tips for Prototyping
	Summary
	Discussion Questions
	References

	10 Distributed Requirements Engineering
	Background
	Requirements Engineering for Global Projects
	Organizations for Distributed Projects
	Managing Distributed RE Efforts
	Requirements and Collaboration Tools
	Communications, Culture, and Team Size
	RE with OEMs and Suppliers
	Tips for Distributed Requirements Engineering
	Summary
	Discussion Questions
	References

	11 Hazard Analysis and Threat Modeling
	Hazard Analysis
	Terms Used in Hazard Analysis
	Hazard Analysis Processes
	Reflecting Actions into the Requirements Database
	Hazard Analysis and MDRE
	Importance of Hazard Analyses

	Threat Modeling
	Basic Terminology
	Threat Modeling and MDRE
	Threat Modeling Metrics

	Summary
	Discussion Questions
	References

	12 Conclusion
	Appendix: Configuring and Managing a Requirements Database
	Introduction
	Prerequisites for the Use of a Requirements Database

	RDB Basic Features
	RDB Advanced Features
	Automatic Upward Propagation of Attributes
	Automatic Downward Propagation of Attributes

	Unique Needs for a Product Line RDB
	Multidimensional Support
	Generation of Product Maps

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

