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Preface

Commodity markets have traditionally developed along paths leaving them structurally inde-
pendent from each other. In the last thirty years, several markets have undergone a process

of deregulation and liberalisation, turning the corresponding goods into tradable commodities.
This is the case, for instance, with energy markets, such as oil, gas and, more recently, elec-
tricity. As a result, both the amount of traded products and the degree of heterogeneity among
products in the market has grown.

According to major market players, the next ongoing step in market evolution is underway.
It is a process of integration across markets of different types, such as energy, agricultural,
metals, and standardised services. This shift raises important questions which merit attention
by financial literature; questions about the identification and analysis of actual opportunities
carried over by financial deals involving several commodities. To cite but a few:

� How, in terms of profit-making or risk management, can we exploit pay-off profiles and
trading strategies by betting on the evolution of a diversified set of commodity prices?

� How should we price energy products and other commodities belonging to markets
segmented across specific structural features (e.g., storable vs. non-storable, material vs.
immaterial)?

� Which methods and models should we develop or select to make appropriate estimations
of the future evolution of prices, specifically in terms of trend and market risk?

� What measures of risk should we adopt for the purpose of correctly assessing the exposure
from multi-commodity portfolios?

� What financial opportunities are there at major energy and commodity markets such as
Singapore, London and New York?

The nature of multi-commodity deals makes it necessary for the professional to:

� Become acquainted with the structure, functioning, rules and practices across a wide
spectrum of commodity markets;

� Master a large set of different skills and bodies of knowledge. In particular, the conver-
gence of topics such as arbitrage valuation, econometric modelling, market structure anal-
ysis, contract engineering, risk assessment and management. Scenario simulation is also
necessary to structure and manage both simple and more sophisticated multi-commodity
deals.

Two facts provide the impetus to undertake our systematic study of multi-commodity markets
and contracts. First, an increasing number of complex contracts are negotiated within each of

xix
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the commodity markets analysed in our study. Operators thus tend to borrow existing methods
from non-commodity markets for the purpose of trading, structuring and risk managing multi-
commodity deals. In addition, this in turn tends to implicitly establish a common structure
upon which one may ground valuation and hedging methods for multi-commodity deals.
Second, the high-level profits generated across all commodity markets worldwide drives an
increasing number of investors to enter into deals, which involve a wide spectrum of commodity
prices. Hence it comes as no surprise that accurate, scientifically-conducted studies of multi-
commodity contracts are rapidly becoming a topic of great importance for any institution
involved in energy and/or commodity trading.

The aim of this book is to offer the reader an up-to-date reference handbook on multi-
commodity markets and products. The book boasts a wide coverage of energy and commodity,
and related, markets.

Presentations are developed at an introductory-intermediate level. We address those who
wish to rapidly acquire a sound body of knowledge on one or several commodity markets,
independently of their previous exposure to any commodity market. The distinctiveness of
this book lies in the contributions from both industry participants and academic experts at the
forefront of energy and commodity markets practice and research.

On this basis, the target market for the book includes:

� Marketers, Traders, Structurers and Risk Managers wishing to broaden their knowledge
of multi-commodity markets;

� Academics professionals, including masters students and doctoral candidates;
� Professionals enrolled in programs for continuing education in finance and economics.

The content of the book is organised into two parts. Part I contains chapters devoted to a wide
variety of commodity markets. including the core energy markets of oil, coal, gas and elec-
tricity, along with the key commodity markets of industrial metals and agriculturals. Shipping
markets as the fundamental link in the globalisation of commodities are presented, in addition
to other important related markets such as emissions, weather and foreign exchange. Presenta-
tions are self-contained and can be read independently of one another or, in line with the focus
of the book, jointly in any desired sequence. Market features and main functioning rules of the
market in question are introduced at the outset of each chapter. Then, basic financial products
and standardised deals are described using case examples, where appropriate, underlying the
contract structure and the corresponding financial use for the client. Quantitative models for
pricing and hedging commodity derivatives are presented and illustrated using practical exam-
ples. Issues in structuring, pricing, selling, and hedging are examined from a problem-solving
viewpoint.

Part II contains chapters of a technical and methodological nature. Our practical approach
allows us to deliver a comprehensive reference manual that the user may consult when tackling
daily valuation, hedging and econometric problems. Excessively technical details are left
to further reading. Our primary focus is on the concrete implementation of the proposed
methodologies. The chapters are presented in a self-contained manner and introduce the reader
to topics such as: stochastic modelling;modelling and estimation, using filtering and non-
parametric techniques, of commodity price and volatility dynamics; construction of forward
curves in commodity markets, with a special emphasis on electricity; GARCH models and
variance modelling with applications to risk analysis; pricing and hedging of strategically
important derivative structures, such as spread options and asian options; measurement of
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counterparty credit risk arising in OTC non-collateralized derivative transactions; modelling
of natural gas storage capacity; and techniques for the quantitative trading of commodities,
with applications to the optimization and assessment of commodity portfolios and spread
trading.

Our vision for this book is that it becomes the standard reference handbook for the multi-
commodity industry, with future editions likewise providing the latest in market developments
and technical innovations.
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CHAPTER 1
Oil Markets and Products

Cristiano Campi and Francesco Galdenzi

1 .1 INTRODUCTION

The price of crude oil and oil products, once discussed solely in industry and government
circles, has taken centre stage in the past 15 years among the lead indicators of the state of
the economy and is now always quoted when forecasting economic trends. This phenomenon
has occurred in conjunction with the growing acceptance of commodities as a mainstream
financial and investment asset class, with the resulting growth in the volume and variety of
financial instruments linked to them and the widespread use of these financial instruments in
hedging, risk management and investments products.

This chapter focuses on two important offshoots of this ‘coming of age’ of the energy
markets: the implementation of financially settled risk management policies by corporations
exposed to fluctuating oil and oil product prices and the growth of hedging activities for
companies active in physical oil trading. Before going further, it is worth looking at some key
elements that determine the economics in the oil and oil products value chain. The oil industry
is based on two main types of processes:

1. Upstream. This part of the oil cycle is associated with the exploration and production of
crude oil.

2. Downstream. This part encompasses the transportation, refining and marketing of refined
oil products (gasoline, diesel, jet fuel, naphtha, etc.).

The production of crude represents the starting point of the oil cycle. A producer is a
company dedicated to extracting crude oil, which is supplied to the refinery system for the
production of products needed to satisfy the demand of its energy consumers. The oil cycle is
composed of the following elements.

1. The production of crude oil by several kinds of players, including:
(a) Integrated oil companies, such as Royal Dutch Shell in the UK, Eni in Italy, China

National Petroleum Corporation in China and Exxon in the United States.
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(b) Independent oil companies, such as Cairn Energy in the UK and Perenco in France.
(c) National oil companies (NOCs), such as Petrobras in Brazil, Saudi Aramco in Saudi

Arabia or Petronas in Malaysia.
2. The demand for crude oil by the refinery system to produce oil products from:

(a) Refineries owned and managed by integrated oil companies or NOCs sourcing crude
oil from their own production as well as buying it from international oil markets.

(b) Independent refineries, such as Saras in Italy and Valero in the United States, sourcing
crude oil from the international oil markets.

3. The demand for oil products by final consumers, such as utilities, airlines, shipping com-
panies, energy-intensive manufacturers, petrochemical companies, gasoline and diesel
retailers.

The cycle described above is complemented by the transportation system, a vast and
complex network of pipelines, crude oil and product carriers (by sea, rail and road) and
storage facilities dedicated to the logistics behind the delivery of crude oil to refineries and of
products to the final consumers.

The price of crude oil and oil products is driven by many factors, from macroeconomics
to environmental legislation, from geopolitics to the weather and from production levels to
taxation. The list in Table 1.1 proposes a scheme of the key factors observed by market
operators when trying to assess price trends for oil and oil products.

1.2 RISK MANAGEMENT FOR CORPORATIONS: HEDGING
USING DERIVATIVE INSTRUMENTS

1.2.1 Crude Oi l and Oi l Products Risk Management for
Corporat ions

1.2.1.1 Corporate Risk Management Overview Companies with exposure to the price
volatility of oil and oil products are taking an active role in managing this risk. They do so by
entering into financially settled derivatives transactions, with the goal of achieving one of the
following objectives:

1. Budget and/or profit margin protection.
2. Stabilization of cash flow and control of supply chain prices.
3. Gaining competitive advantage through swift reactions to changes in market prices.

Effective energy price risk management requires expertise in both financial instruments
and oil markets: one must find financial instruments that mimic the prices from the suppliers
(or to the customers) and constantly analyse oil price movements in the commodity markets.
Because so few organizations have the in-house resources to support such specialization,
energy price risk management expertise is often externally sourced from consultants or per-
formed with the support of the sales and trading desks of investment banks, brokers and trading
companies.



TABLE 1.1 Key factors impacting price trends of oil and oil products

Macroeconomics Gross domestic product (GDP) growth is generally linked to the increased
consumption of energy and is positively correlated with spot and forward prices
for crude and refined products.

Technology
developments

Technological breakthroughs in the exploration sector (such as horizontal drilling,
hydraulic fracturing or ‘fracking’, oil sand extraction, deep sea drilling) often
force a re-evaluation of available oil reserves and can impact spot and forward
prices.

Level of proven
reserves

Technological developments such as those listed above plus improved seismic
surveys often lead to new discoveries or to upgrading the amount of recoverable
oil in existing oil reservoirs, with a potential impact on the level of forward
prices.

Commercial and
strategic
storage

Additions to the worldwide network of commercially operated storage facilities or
to state-controlled strategic storage can impact the behaviour of spot versus
forward prices.

Weather Hurricanes and typhoons can severely disrupt the logistics around oil and oil
product markets, often impacting spot prices. Unusually cold or hot weather
patterns can affect the consumption of gas and electricity, with an indirect
impact on the spot and forward prices of oil products.

Arbitrage among
energy
commodities

The relative value of oil products versus that of other energy commodities can
push prices up or down. For example, if the price of natural gas goes up, some
industrial consumers using natural gas for heat and steam production may
decide to switch to fuel oil if this proves to be cheaper on a per unit of heat
basis. This would increase the demand for fuel oil and up its price, reducing the
demand and price for natural gas.

Geopolitics Trouble in important oil-producing countries (wars, terrorism, resource
nationalism, etc.) will most likely lead to spikes in spot and forward prices,
especially when spare production capacity is limited.

Financial markets Crude oil is now an established asset class for financial investors (via index
products or exchange-traded funds or directly on the futures markets). Changes
in investment allocations by large players such as pension funds and asset
managers can lead to material changes in oil future prices.

Exchange rates Oil markets are denominated in US dollars, so US currency movements have a
direct impact on the cost of consuming oil and oil products when expressed in
the local currency, thus causing increases or reductions in demand.

Refining capacity The construction of an oil refinery is a long and capital-intensive process; thus,
when a global refinery system’s spare capacity is limited, sudden increases in
demand for oil products will likely lead to increases in oil product prices.

Shipping Shipping rates for the transportation of crude and oil products, among the various
production and consumption points, are a traded commodity per se. Changes in
shipping rate levels have a direct impact on oil and oil product prices.

Taxation policy Taxation policy can affect oil price economics at the upstream level (royalties
policy, petroleum revenue taxes, etc.) by impacting the profitability of the
extraction of crude oil and at the downstream level by taxing certain kinds of oil
products differently (e.g., diesel cars receive more favourable tax treatment than
gasoline cars in certain countries).

Environmental
policy

Environmental policies generally lead to an improvement in efficiency of the
consumption of oil products (e.g., mandatory minimum fuel efficiency ratings
for cars), resulting in a reduction in the demand for oil products and a
progressive elimination of pollutants (e.g., reduction in the sulphur content of
diesel and fuel oil), resulting in an increased demand for higher-quality crude
oil (e.g., with a lower sulphur content).
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Many factors affect the decision as to what is the appropriate risk management instrument,
including the following:

1. Payoff structure. The hedging tools used need to create a cash flow consistent with the
stated requirements of the hedging policy.

2. Credit exposure. The choice of hedging strategy can be influenced by its impact on the
credit exposure versus the hedging counterpart. For example:
(a) Swaps are generally more credit intensive (i.e., they generate a higher credit exposure)

than options structures.
(b) A strategy based on a combination of options and/or swaps plus options can help

reduce the consumption of credit lines.
(c) Long-term maturities are more credit intensive than short-term ones.

3. Documentation. Hedging counterparts with master agreements – such as with the Inter-
national Swap Dealers Association (ISDA) – in place with a credit support annex (CSA)
generally generate less credit exposure compared with their hedging counterparts without
such documentation.

4. Accounting rules. Hedging instruments compliant with accounting rules (such as Interna-
tional Accounting Standards (IAS) 39, Financial Instruments: Recognition and Measure-
ment) tend to be preferred to limit their impact on financial reporting activity. Regulation
IAS 39 requires that all derivatives are marked to market, with changes in the mark to
market being taken to the profit and loss account. For many entities this would result in a
significant amount of profit and loss volatility arising from the use of derivatives spilling
over into the financial reports. Customers can mitigate the profit and loss effect arising
from derivatives used for hedging by using hedging instruments that comply with certain
tests of hedging effectiveness defined in the IAS regulations.

5. Financial legislation. New legislation on financial markets introduced after the financial
crisis of 2008 (e.g., Dodd–Frank in the UNITED STATES or MIFID and EMIR in the
EU) is having a deep impact on the hedging strategies and behaviour of the market
participants.

6. Suitability. Not all hedging instruments and strategies are suitable for all customers.
Local and international financial regulations require banks, trading companies and other
providers of risk management services to assess the suitability of the product or strategy
offered against several factors, such as the customer’s actual risk management needs and
ability to understand the implications of the products offered and whether the customer
is authorized to enter into such a transaction.

7. Basis risk. Most hedging strategies will not match the exact price behaviour of the
underlying physical commodity price exposure, since physical contracts can be pricing
off indexes that are similar but not equal to the indexes traded on the financial markets.
An important part of the risk manager’s job is to find the most effective instrument (or the
right combination of instruments) to minimize this residual risk.

8. Liquidity of the instruments. The choice of the most effective risk management strategy is
also driven by market liquidity factors. Hedging large volumes and long tenors generally
restricts the strategy to the most liquid indexes and instruments available.

9. Internal hedging policy. Most corporations active in the energy risk management space
have risk management policies – approved at board level or issued by the chief financial
officer (CFO) – defining the hedging volume profile, maximum tenors and derivatives
strategies that can be used.
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10. Market risk measurability. The correct evaluation (fair value) of the risk of the hedging
structure at any time during the life of the transaction depends on the availability of
reliable market data points across the maturities and volatility of the traded commodities.
The availability of these data varies greatly across commodities. Many companies are
barred from entering into transactions where the fair value cannot be properly calculated.

11. ‘Bookability’ and the back office. A hedging strategy is often defined by the limits of the
counterparts booking and documenting the trade, with only transactions that are bookable
eventually being executed.

1.2.1.2 Oi l and Oi l Products Overview The oil we find underground is called crude oil,
and it is a mixture of hydrocarbons – from almost solid to gaseous – produced when plants and
animals decayed under layers of sand and mud millions of years ago. Many grades of crude
oil are produced today, each grade identified by many characteristics (listed in a document
called an ‘assay’), such as viscosity, flash point and aniline point. For the purposes of this
chapter, only two of the main characteristics are considered: the American Petroleum Institute
(API) gravity and the sulphur content.

1. API gravity. This is a measure of the crude oil density relative to the density of water, an
index developed by the API and expressed in the range from 0◦ to 100◦, with 0◦ being
the heaviest and 100◦ the lightest. Water has an API gravity of 10◦ and the majority of
crude oils have an API gravity in the range of 30◦ to 40◦ (also called intermediate or
medium crude oils) – most refineries are configured to process crude oil within this range.
Crude oils with an API gravity above 40◦ are called light and those with an API gravity
below 30◦ are called heavy. The higher the API gravity, the higher the proportion of
high-added-value products (such as gasoline, kerosene and naphtha) that can be obtained
from a specific crude oil during the refining process. Light crude oil trades at a premium
compared with intermediate crude oils, and intermediate crude oils trade at a premium to
heavy crude oils.

2. Sulphur content. The higher a crude oil’s sulphur content, the lower its value, since
a higher number of sulphur molecules displace hydrocarbon molecules. High sulphur
content also has other negative side effects, such as increasing the speed of corrosion
in pipelines and refinery equipment, and is an atmospheric pollutant when the oil or oil
product is burned. Sulphur content is expressed as a percentage of weight, with three main
categories: sour (>1.5%), medium sour (0.5–1.5%) and sweet (<0.5%). Sweet crude oil
trades at a premium to medium sour and sour crudes.

The API grade and sulphur content are the main elements defining the value of crude oil.
Figure 1.1 presents the main crude oil benchmarks traded in the international markets.

Before crude oil can be used for anything it must be processed in an oil refinery. Crude oil
is a mix of different chemical compounds, a combination of hydrogen and carbon atoms called
hydrocarbons. Each of these chemical compounds has its own boiling temperature. Hence if
one progressively raises the temperature of crude oil in a container, one obtains progressive
separation by evaporating the various chemical compounds; once separated, the compounds
are cooled and turned back into liquid. The temperatures at which the different chemical
compounds reach their boiling points define what is called a distillation curve, and different
types of crudes have different distillation curves. The main refinery techniques are discussed
later, when we examine the refinery sector’s hedging strategies.
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WTI – US (39.6 0.24%)

Brent – UK (38.3 0.37%)

Tapis – Indonesia (45.2 0.03%)

Urals – Russia (31.7 1.35%)

Mars – US (30.3 1.91%)

Dubai – UAE (30.7 1.80%)

Arabian Light – Saudi Arabia (32.8 1.97%)

More Expensive Crude Oil

Less Expensive Crude Oil

F IGURE 1.1 Main crude oil benchmarks (API and sulphur content)

A single crude oil or mix of crude oils (called a ‘crude slate’) can be used as feedstock
and processed in a refinery, with the resulting mix of oil products called a ‘product slate’ (see
Figure 1.2). Refinery operators always try to optimize production by purchasing a crude slate
that maximizes the desired product slate. The percentage of each oil product produced per unit
of feedstock is called the ‘yield’ (see Table 1.2). Local market requirements, product demand
seasonality and the complexity of the refinery all affect the yield values for refineries around
the world.

1.2.1.3 Oi l Pr ice Risk Management Overview The implementation of hedging strate-
gies to protect against the movement of oil and oil product prices affects many different
industrial sectors, from those (such as crude oil exploration and production and oil refinery)
where the value of oil or oil products is the main driver of business strategy and business
economics to those (such as transportation and power generation) where the value of oil and
oil products is a key component of the cost line, although not necessarily the main one (but it
is often the most volatile).

Corporate hedging strategies are not homogeneous across different industrial sectors and,
even within the same industry sector, substantially different hedging strategies are used by
the various market participants. The general principle is that smaller/newer corporations tend
to have no hedging policy in place or will be active in the hedging market on a ‘one-off’
basis; the more such companies increase in size and knowledge and/or confidence (in terms
of the hedging process, oil markets and tools), the more likely they will be to develop a proper
risk management policy. A larger company will also have a better credit risk profile, and will



Oil Markets and Products 9

FIGURE 1.2 Distillation column

therefore have access to a wider group of risk management service providers (e.g., futures
and over-the-counter (OTC) clearing platforms), thus improving the quality and price of the
hedging structures they can transact. Medium to large companies often have a dedicated risk
management team that manages oil price exposure and is involved with the preparation and
execution of risk management strategy.

A company’s risk management strategy is often approved at the board level (or at least at
the CFO level) and defines the size and scope of the risk management activity. The following
elements are generally included:

1. Derivative instruments that can be used, such as swaps, options and exotics.
2. Underlyings that can be used for risk management purposes, such as ICE Brent, fuel oil

and gasoil cracks.
3. The volumes of the product that need to be hedged.
4. Maximum maturities for the above-mentioned instruments, such as ICE Brent up to five

years but fuel oil up to two years only.
5. A hedging matrix (or hedging envelope), which defines the combination of instruments,

underlyings and maturities that can be used when implementing a hedging strategy.
6. A credit envelope, which defines the criteria the hedging counterparts of a corporation

need to meet to qualify as a counterpart (e.g., credit ratings, legal documentation).
7. A list of the people authorized to trade on behalf of the company.
8. Set-up and credit limits with futures exchanges and OTC clearing houses.
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TABLE 1.2 Average yield structure

Product category Subproducts Typical use

Average yield (EIA
data: Global
Refineries)

Butane and lighter Methane
Ethane
Propane
Butanes

Home heating, fertilizers,
petrochemicals

Petrochemicals
Petrochemicals
Blended with gasoline

9%

Naphtha Light naphtha
Heavy naphtha

Petrochemicals
Blended with gasoline,

fertilizers

6%

Gasoline Motor gasoline Automotive petrol engines 26%
Kerosene Jet fuel

Gas turbine fuel
Kerosene

Jet propulsion aircraft fuel
Power generation turbine
Heating and lighting

8%

Distillate Diesel (auto and marine)
Heating oil

Auto and marine diesel
engines

Heating and power
generation

27%

Heavy oil Marine fuel oil (bunker)
Heavy industrial fuel oil

Marine engines
Power generation

14%

Speciality products Base oil
Waxes
Bitumen
Petroleum coke
Carbon black

Lubricants
Candles, packaging, food

industry
Asphalt and construction
Fuel used in steel and

cement industries
Rubber tyres

10%

A typical risk management strategy comprises two components:

1. A non-discretionary component defining transactions that the risk management team
executes automatically, either at specific dates during the hedging year or whenever the
market reaches certain levels.

2. A discretionary component where the risk management team is authorized to have a more
opportunistic approach and transact whenever they see fit.

Before analysing in depth the risk management strategies of different energy-intensive
customers, it is worth examining the way oil and oil product prices are created and reported.
Some of the most traded oil products – such as Brent and West Texas intermediate (WTI)
crude oil, European gasoil and heating oil in the United States – have their prices reported on
the major oil futures exchanges (such as the Intercontinental Exchange (ICE) for Brent and
European gasoil and the New York Mercantile Exchange (NYMEX) for WTI and heating oil).

Together with the energy futures exchanges, the major providers of energy price assess-
ments are Platts and Argus. These companies publish news, research, commentary, mar-
ket data and analysis and several hundred price assessments daily that are widely used as
benchmarks in the physical futures markets and for OTC financial hedging. Their products
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and services include real-time news and price information, end-of-day market data, newsletters
and reports.

A market-appropriate methodology is used to assess prices in the various markets covered.
This methodology is generally produced in consultation with a range of market participants.
To assess the price of a certain oil product, it first needs to be properly identified. Without
going too much into the specifics of the methodologies used by the price providers, three
elements are generally used in oil product classification:

1. Product type. For example, fuel oil, diesel, gasoil and jet fuel.
2. Sulphur content. For example, fuel oil 3.5%, diesel 10 parts per million (ppm), gasoil

0.1%.
3. Delivery information. That is, the geographic point at which the title to goods transfers

from the seller to the buyer. This is generally either free on board (FOB), where the buyer
assumes the risk of loss and any further freight and handling charges at the crude oil
loading facility or refinery terminal or cost insurance and freight (CIF), where the quoted
price includes the cost of the goods, insurance and freight charges for a crude or oil
product terminal in a specific region. For example, Fuel Oil 3.5% FOB Mediterranean
(MED), Diesel 10 ppm CIF North West Europe (NWE) and Jet Fuel Singapore (Sing).

As a final note, while at the time of printing the product references are deemed to be
correct and a good reflection of the various products used in risk management in the various
trading regions, it is important to remember that this is a slow but constantly changing market.
Occasionally regulations on chemical additives for some of the oil products may change,
thus forcing the creation of a new specification. In addition, there is constant pressure to
phase out polluting products (like sulphur) in favour of products with a lower impact on the
environment.

Please also note that the swap, forward and option premium levels in the hedging strategy
examples presented in the next paragraphs are for illustration purpose only and do not reflect
actual market trading levels.

1.2.2 Aviat ion: R isk Prof i le and Hedging Strategies

1.2.2.1 Introduct ion: The Aviat ion Industry The term aviation industry encompasses
both civil and military aviation. Civil aviation is further divided into general aviation (i.e.,
everything that is not a military flight, such as scheduled civil and cargo flights) and sched-
uled air transport. To analyse risk management activity, we focus on scheduled air transport
companies, namely:

1. Large regional airlines.
2. Medium and large international airlines.

It is worth noting that one occasionally encounters hedging activity from cargo airlines
and national military air forces.

The aviation industry is a major consumer of oil products in the form of jet fuel (or
aviation fuel), a product of the family of middle distillates. According to the International Air
Transport Association (IATA, Economic Briefing, December 2012), following the increase in
energy prices of 2007, jet fuel is now the largest expense for airlines, accounting for roughly
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a third of the industry’s total variable cost base (up from 28% in 2007 and 14% in 2003),
followed by labour costs (including pensions).

While fuel makes up a significant portion of an airline’s total costs, efficiency among
different carriers can vary widely:

1. Short-haul airlines typically get lower fuel efficiency because takeoffs and landings con-
sume high amounts of jet fuel.

2. Low-cost airlines generally have more modern and hence more fuel-efficient fleets.
3. Low-cost airlines tend to have a lower cost base compared with national carriers; hence,

fuel costs often represent a higher percentage of the overall cost.

Large airlines are among the most sophisticated players in corporate oil risk management,
with dedicated teams actively trading the swap and option markets for crude oil, gasoil and jet
fuel for maturities from six months to five years forward.

1.2.2.2 Jet Fuel and the Jet Engine Aviation fuel is a specialized type of petroleum-
based fuel used to power aircraft. It is generally of higher quality than fuels used in less critical
applications, such as heating and road transport, and often contains additives to reduce the risk
of icing and explosion due to high temperatures, among other properties. The most commonly
used jet fuel types are Jet A and Jet A-1, but other kinds of jet fuels are available (JP-8, JP-5,
etc.) for military use, with higher specifications (such as a lower freezing point or higher flash
point).

Another type of fuel, aviation gasoline (avgas), is generally used in the high-compression
sparkplug ignition piston engines of small private propeller airplanes and helicopters. It is sold
in much lower volumes but to many more individual aircraft, whereas jet fuel is sold in high
volumes to large aircraft operated typically by airlines, the military and large corporations.
For the purposes of this chapter, the focus of the analysis is on references that are useful for
scheduled air transport only: jet fuel, gasoil and crude oil.

Although modern aircraft engines contain some of the most sophisticated engineering
technology in everyday use, their basic principles are quite simple and have changed little
since jet engines came into use at the end of World War II. In its simplest form, the jet
engine is a tube into which air is sucked before being compressed, mixed with fuel and burnt.
Combustion causes the fuel–air mixture to expand and accelerate towards the rear of the
engine. This high-speed exhaust generates the thrust to push the engine forward.

1.2.2.3 Product Speci f icat ions

Europe, Middle East and Africa Regions The jet fuel references generally used by
European-based airlines for risk management purposes are published by Platts, as follows:

1. Jet Kero CIF NWE Cargoes (in US$ per metric tonne (USD/MT)). Platts considers the
prices of cargoes delivered into Amsterdam, Rotterdam and Antwerp (ARA), the UK and
northern France for the assessment.

2. Jet Cargoes FOB NWE (USD/MT). Platts considers transactions from ARA, Ghent and
Flushing. Any transactions at other loading ports in NWE are typically normalized on a
freight differential basis back to Rotterdam.
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3. Jet Barges FOB ARA (USD/MT). Platts considers as transactions basis FOB Rotterdam.
Any transactions occurring at other loading ports in NWE are typically normalized on
a freight differential basis back to Rotterdam. Platts considers bids and offers from
Rotterdam, Antwerp, Amsterdam, Ghent and Flushing.

4. Jet Fuel FOB MED (USD/MT). Platts derives this quote from the Jet Kero CIF NWE
Cargoes quote adjusted for the cost of transportation from NWE into the Mediterranean
region (Augusta, Italy).

Jet fuel is not the only price reference used by European airlines when hedging price
risk. The market for financial OTC products for jet fuel has limited liquidity in terms of
maximum volume and maximum tenor executable. Hence, airlines often use crude oil and oil
product references whenever the volume to be hedged is too large or the tenor is too long to
be accommodated within the liquidity of jet fuel references. The main alternative references
used by European airlines are as follows:

1. ICE Brent (in US$ per barrel (USD/bbl)), based on the daily settlement price of the ICE
Brent futures contract.

2. ICE gasoil (USD/MT), based on the daily settlement price of the ICE gasoil futures
contract.

3. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures
contract.

4. Jet differential (USD/MT) = jet fuel – ICE gasoil.
5. Jet crack (USD/bbl) = jet fuel/7.45 (conversion factor MT to bbl) – ICE Brent.
6. ICE gasoil crack (USD/bbl) = ICE gasoil/7.45 (conversion factor MT to bbl) – ICE Brent.

Asian Region The references generally used by Asian airlines for risk management purposes
are published by Platts:

Jet Kerosene FOB Cargoes Singapore ($/bbl). The Singapore physical assessment reflects
transactions, bids and offers of a minimum of 100,000 bbl and a maximum of 250,000
bbl, and loading within 15–30 days from the date of publication.

Asian airlines also use other crude oil and oil product references whenever the volume is
too large or the tenor is too long to be accommodated within the liquidity of jet fuel references.
The main alternative references used by Asian-based airlines are as follows:

1. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures
contract.

2. ICE Brent (USD/bbl), based on the daily settlement price of the ICE Brent futures contract.
3. Singapore Gasoil Reg 0.5% Sulphur (USD/bbl).

Americas Region The references generally used by airlines in the Americas region for risk
management purposes are published by Platts and include:

US Gulf Coast Jet Kerosene 54 Waterborne (in USD cents per gallon (USDc/gal)).



14 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

Airlines also use other crude oil and oil product references whenever the volume is too
large or the tenor is too long to be accommodated within the liquidity of jet fuel references.
The main alternative references used by Americas-based airlines are as follows:

1. NYMEX Heating Oil (HO) (USD/bbl), also known as #2 contract, based on the daily
settlement price of the NYMEX heating oil futures contract.

2. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures
contract.

1.2.2.4 Risk Management Strategies for the Aviat ion Industry The airlines sector
has no such thing as a generic hedging strategy: the approach to what and when to cover
exposure to jet fuel prices varies widely across the various players and is based on many
factors, including local accounting regulations, the size of the airline, the presence of an
approved hedging programme, tolerance and understanding of basis risk at the CFO and board
levels, oil market dynamics, what the competition is doing and fuel surcharge policies.

Important elements affecting an airline’s risk management behaviour are its credit standing
and the contractual arrangements put in place with hedging counterparts:

1. Credit considerations. Large international airlines generally obtain larger and longer credit
lines from banking counterparts. Hence, they are able to execute more refined hedging
strategies compared with those that can be executed by smaller airlines with access to
smaller and shorter credit lines. Some large airlines are also actively using futures and
OTC cleared platforms.

2. Contractual considerations. Large international airlines have the resources to negotiate
master ISDA agreements (and an occasional CSA, although this is not very common in
the airline industry). Smaller airlines do not have the internal legal resources and are, in
general, more resistant to enter into ISDAs and tend to rely on single trade (long-form)
confirmations. The presence of an ISDA master agreement generally leads to obtaining
better credit terms with trading counterparts.

Based on observations of the behaviour of market participants, some generic conclusions
on risk management behaviour can be drawn.

1. Small to medium airlines (e.g., with a total consumption of less than 500,000 MT of
jet fuel per year) tend to implement and execute risk management strategies with the
following characteristics:
(a) Involving short to medium maturities (e.g., less than three years), generally covering

no more than three seasons ahead (winter season is from October to March and
summer season is from April to September).

(b) Mainly using swaps or plain vanilla options.
(c) Limited exposure to basis risk between jet fuel and gasoil or jet fuel and crude oil.

2. Medium to large airlines (with jet fuel consumption of 500,000 MT per year and above)
generally have a dedicated team for the structuring, implementation and execution of
hedging programmes and their strategies have the following characteristics:
(a) Involving short to long maturities (up to seven years), depending on what product is

used (e.g., short maturities for jet fuel quotes, long maturities for crude oil quotes).
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(b) A hedging schedule, approved at the board level and an integral part of the financial
strategy communicated to shareholders, with typical hedging ratios of
(i) up to 75% of forecasted consumed volumes one year ahead

(ii) up to 50% of forecasted consumed volumes two years ahead
(iii) up to 35% of forecasted consumed volumes three years ahead
(iv) up to 25% of forecasted consumed volumes four years ahead and beyond.

(c) Using a combination of swaps, plain vanilla options and exotic structures.
(d) Exposure and active management of basis risk.

3. On a regional basis, European and American airlines tend to use exotic structures less
than Asian airlines.

Common risk management structures used by airlines are discussed next.

Jet Fuel Swaps: Simple and Straightforward Situation. An airline, let it be called
DreamAir, has a strategic hedging programme in place with a provision that at any time
at least 55% of the forecasted jet fuel consumption over the next 12 months needs to be at a
fixed price. DreamAir’s forecasted consumption over the next 12 months is 350,000 MT.

Strategy. DreamAir will enter over time into several swap transactions, for a total volume
of 350,000 × 55% = 192,500 MT for a tenor of 12 months. Every month (or as often as stated
by the hedging policy), DreamAir will adjust the hedged volumes to take into consideration
expired periods and changes in fuel consumption forecasts.

Pros. Swap transactions are the basic building block of any risk management structure.
They are generally the simplest and most liquid tools available for hedging purposes. Hence,
they are well understood and accepted by customer boards and auditors. Pricing is easy and
relatively transparent (depending on the location of the Platts quote).

Cons. The beauty of the swap is also its main limitation. The customer is locked into
a fixed price level. Hence, if the jet fuel price moves in favour of the customer (e.g., the
jet fuel price goes down in the future for an airline), DreamAir will eventually be paying
for jet fuel at a fixed level higher than the price paid by its competitors that did not hedge
(or hedged less) with swaps. Volumes are also fixed and so if the forecasted consumption
changes (e.g., as a result of expected reduced demand for air travel due to economic reces-
sion), then DreamAir can find itself with a hedging ratio higher than that which would have
been desired.

Example. Figure 1.3 represents a situation where DreamAir has entered into a swap
on jet fuel for 12 months forward at 525$/MT (straight line). If we assume that no other
hedges are put in place until the expiry of this hedge, the net result of this hedging strategy is
as follows.

1. DreamAir is effectively paying its jet fuel consumption at 525$/MT during the 12-month
period, since (assuming the price of jet fuel moves as described by the dashed line):
(a) In months 1 to 3 and 10 to 12 DreamAir pays its physical supplier of jet fuel a price

below 525$/MT but also pays to the hedging bank the difference between 525$/MT
and the market price.

(b) In months 4 to 9 DreamAir pays its physical supplier of jet fuel a price above 525$/MT
but also receives from the hedging bank the difference between the market price and
525$/MT.
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F IGURE 1.3 Jet fuel swap

Gasoil and Jet Fuel Differential: Optimizing Relative Value Situation. DreamAir now
wants to protect additional volumes of jet fuel but, while the CFO is concerned about the price
trend for oil products, there are worries about changes in the relative value of jet fuel against
that of other oil products due to the increased refinery capacity from the opening of new
refineries in India and China. The CFO wants to protect DreamAir against a general increase
in the oil complex but also has a view that jet fuel may be weaker in the future compared with
other oil products.

Strategy. DreamAir initially enters into a swap transaction on ICE gasoil for a tenor of
12 months. After this initial transaction (which leaves DreamAir exposed to the ICE gasoil
differential with Jet), DreamAir continues to monitor the differential between jet fuel and
gasoil for that hedged period. If the CFO is correct and this forward differential is reducing
over time (as a result of the increased volumes of jet fuel coming onto the physical markets
from the new refineries in India and China), DreamAir will enter, at a later stage, into a second
transaction buying the swap differential (jet swap differential = jet fuel swap – ICE gasoil
swap) between jet fuel and ICE gasoil, effectively transforming the initial ICE gasoil hedge
into a jet fuel hedge for the same period:

ICE gasoil swap + (jet fuel swap − ICE gasoil swap) = jet fuel swap

Pros. DreamAir can take advantage of expected developments on the jet fuel physical
markets (e.g., expected increases in jet fuel production from new or upgraded refineries) or
from reductions in demand (e.g., reductions in air traffic linked to events such as the economic
crisis, the severe acute respiratory syndrome (SARS) epidemic of 2003 and volcanic ash
closing airspaces in 2010). As a result of this two-stage strategy, DreamAir may be able to
lock in the price of jet fuel at a cheaper relative price compared with buying jet fuel directly
in stage one.

Cons. If the expected market events do not materialize and jet fuel does not become
cheaper than gasoil, DreamAir will end up locking the price of jet fuel at a level that is
relatively more expensive than what would have been obtained by buying a jet fuel swap
directly in stage one.
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Payoff analysis Swap market situation on 1 June 2014:

Gasoil Jet fuel
Swap Jan15–Dec15

650 750

For the period January 2015 to December 2015 DreamAir buys gasoil swaps at 650$/MT,
taking the view that the jet fuel differential (currently at 750 – 650 = 100$/MT) will come
down in the next three months.

Swap market situation on 15 September 2014:

Gasoil Jet fuel
Swap Jan15–Dec15

750 800

The jet fuel market differential has moved as expected, the energy complex has moved
up, but jet fuel is now relatively cheaper compared with gasoil. DreamAir can now complete
its hedging transaction as follows:

1. DreamAir sells the January 2015 to December 2015 gasoil swap at 750$/MT, realizing a
gain of 100$/MT.

2. DreamAir buys the January 2015 to December 2015 jet fuel swap at 800$/MT, realizing
an overall gain of 50$/MT (100$/MT of gain on the gasoil transaction – 50$/MT loss on
the increased cost of jet fuel).

ICE Brent and Gasoil Crack: Optimizing Relative Value Situation. DreamAir needs to
put in place a hedging programme for a large volume of jet fuel, but in order to minimize
liquidity costs, it decides to initially put a hedging position using either ICE Brent or ICE
gasoil. The ICE gasoil positions can then be rolled into jet fuel by using the jet differential
strategy described in the previous section.

Strategy. DreamAir’s CFO believes that ICE gasoil is relatively too expensive compared
with ICE Brent. DreamAir initially enters into a swap transaction on ICE Brent for a tenor
of 18 months. After this initial transaction, it continues to monitor the relative value between
ICE Brent and ICE gasoil, called the ‘crack’ and expressed as the differential between gasoil
(quoted in $/MT but converted to $/bbl using a fixed volume conversion factor of 7.45) and
Brent (quoted in $/bbl):

ICE gasoil crack swap
(
$∕bbl

)
= ICE gasoil swap∕7.45 − ICE Brent swap

If the CFO’s view of the oil markets is correct and this crack reduces over time, DreamAir
will enter into further transactions, buying the ICE gasoil crack and effectively transforming
the initial ICE Brent hedge into an ICE gasoil hedge for the same hedging period.
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Pros. DreamAir can take advantage of expected positive developments in the crude and
middle distillate markets. As a result of this strategy, DreamAir has built up a position in ICE
gasoil at a better level than they would have obtained if they had locked an ICE gasoil swap at
the beginning of the hedging programme.

Cons. If the ICE gasoil crack increases over time, DreamAir will end up locking the price
of the ICE gasoil swap at a more expensive level than they would have obtained by buying a
ICE gasoil swap directly in stage one.

Payoff analysis Swap market situation on 1 June 2014:

ICE Brent ($/bbl) ICE gasoil ($/MT)
Swap Jan15–Jun16

80 710

DreamAir buys the January 2015 to June 2016 ICE Brent swap at $80/bbl and takes the
view that ICE gasoil crack (currently at 710/7.45 – 80 = $15.3/bbl) will come down in the
coming months.

Swap market situation on 15 November 2014:

ICE Brent ($/bbl) ICE gasoil ($/MT)
Swap Jan15–Jun16

93 792

The gasoil and Brent markets have moved as expected and the energy complex has moved
up, but gasoil is now relatively cheaper than Brent. DreamAir can now complete its hedging
transaction as follows:

1. DreamAir buys the January 2015 to June 2016 ICE gasoil crack swap at 13.30$/bbl.
2. The gasoil crack swap added to the existing ICE Brent swap creates an actual position on

ICE gasoil at a level of 80$/bbl (original ICE Brent swap) + 13.3$/bbl (new ICE gasoil
crack swap) = 93.3$/bbl. Using a conversion factor of 7.45, this is equivalent to an ICE
gasoil swap at 695$/MT – hence, 15$/MT better than if DreamAir had closed the ICE
gasoil swap at the original level on 1/6/2014.

ICE Brent Three Ways – When There are Credit Line Constraints Situation. DreamAir
wants to put in place a two-year hedge to protect against an increase in oil prices (see
Figure 1.4). To minimize liquidity and transaction costs, DreamAir chooses to execute the
trade using ICE Brent and, in selecting the structure, needs to keep in mind two constraints:

1. Limited budget for paying premiums for options.
2. Limited credit lines available from counterparty banks.
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F IGURE 1.4 ICE Brent three ways

Strategy. To successfully put in place the required protection against the potential increase
of ICE Brent prices and to satisfy the constraints above, DreamAir will have to do the following:

1. Buy a call option on ICE Brent (e.g., at a strike of 120$/bbl for a premium of 3.5$/bbl).
� The call option provides protection for price increases above $120/bbl.

2. Sell a put option on ICE Brent (e.g., at a strike of 70$/bbl for a premium of 1.5$/bbl).
� The put option partially finances the cost of the call option.

3. Buy a put option on ICE Brent (e.g., at a strike of 50$/bbl for a premium of 0.5$/bbl).
� The second put option locks the maximum amount DreamAir will ever have to pay

in case the first put option is exercised. This reduces DreamAir’s credit risk since the
maximum exposure (e.g., the maximum amount DreamAir can be asked to pay to the
hedge provider under this strategy) is now capped at 70 – 50 = 20$/bbl × number of
hedged barrels.

Pros. The overall cost of the structure is 3.5 – 1.5 + 0.5 = $2.5/bbl, cheaper than just
buying the call option at 120$/bbl, and provides the same upside oil price protection. In case
of an extreme drop in oil prices, DreamAir is locked by the first put option only up to the strike
of the second put option (partial downside price reparticipation). The credit line consumption
from this structure is lower than that which would have originated from a simple collar (e.g.,
call at 120$ with put at 70$) since the maximum payout of the 70$ put is capped at 20$/bbl.

Cons. The structure is more expensive than a simple collar equivalent, which would have
cost 3.5 – 1.5 = 2$/bbl.

ICE Brent Knock-Out Swaps: Cheaper (and Riskier) Situation. DreamAir wants to enter
into a 24-month swap on ICE Brent but the current swap market is deemed too high (see
Figure 1.5).

Strategy. DreamAir needs to sell some of the price upside to finance a better swap level.
This can be done by entering into a knock-out swap and whenever the monthly settlement is



20 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23

Hedging Month

IC
E

 B
re

n
t 

($
/b

b
l)

KOL Ice Brent Price 

Normal Swap KO Swap

ICE Brent price paid post hedge

F IGURE 1.5 ICE Brent knock-out swap

above a certain strike level, the knock-out level (KOL), the swap settlement will be suspended
for that specific month.

Pros. In exchange for giving up price protection above the KOL, DreamAir is able to
enter into a swap level better than the one that would have been obtained using a normal swap
structure.

Cons. DreamAir loses the whole swap protection whenever the monthly ICE Brent settles
above the KOL.

1.2.3 Shipp ing: R isk Prof i le and Hedging Strategies

1.2.3.1 Introduct ion: The Shipp ing Industry The shipping industry encompasses a vast
universe that can broadly be classified as follows:

1. Transport of people – ferries, cruise ships.
2. International transport of goods – bulk carriers, tankers and container ships.
3. Service ships – dredgers and tugboats.
4. Local transport of goods – barges and coasters.
5. Military ships.

The use of risk management tools is not confined to particular areas of the shipping
industry, although the majority of activity comes from shipping companies active in the
international transportation of goods. The cost of the ship’s fuel (commonly referred to as
bunker fuel in the industry) is anywhere between 25% and 50% of an average ocean-going
vessel’s operating costs (e.g., not including chartering costs).

The costs of operating a vessel incurred during a charter primarily consist of the following:

1. Fuel.
2. Crew’s wages and associated costs.
3. Insurance premiums.
4. Lubricants, spare parts, repair and maintenance costs.
5. Port charges.
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To provide risk management services to the shipping sector, it is important to understand
that the ship owner is not necessarily the one paying the fuel bill. There are four basic
contractual agreements used in the shipping industry:

1. A voyage charter is the hiring of a vessel and crew for a voyage between a load port and
a discharge port. The charterer pays the vessel owner on a per ton or lump sum basis. The
owner pays the port costs (excluding stevedoring), fuel costs and crew costs.

2. A time charter is the hiring of a vessel for a specific period of time. The owner still
manages the vessel but the charterer selects the ports and directs where the vessel goes.
The charterer pays for all the fuel that the vessel consumes, in addition to port charges
and a daily hire to the vessel owner.

3. A bareboat charter is an arrangement for the generally long-term hiring of a vessel
whereby no administration or technical maintenance is included as part of the agreement.
The charterer pays for all operating expenses, voyage expenses, port expenses and hull
insurance.

4. A demise charter shifts the control and possession of the vessel. The charterer takes full
control of the vessel along with any of its legal and financial responsibilities.

A ship’s engine room typically contains several engines for different purposes. The main
engines, or propulsion engines, are used to turn the ship’s propeller and move the ship through
the water. They typically burn heavy fuel oil or diesel and can sometimes switch between
the two. There are many propulsion arrangements for motor vessels, some including multiple
engines, propellers and gearboxes.

The propulsion technology most used on modern ships is based on the ‘diesel cycle
reciprocating’ engine. The rotating crankshaft can power the propeller directly for slow-speed
engines (<450 rpm), via a gearbox for medium- and high-speed engines or via an alternator
and electric motor in diesel–electric vessels. The reciprocating marine diesel engine first came
into use in 1903, quickly displacing the less efficient steam turbine technology.

The majority of modern ships use oil distillate products to power ship engines. The
greater part of the world’s commercial fleet (wet and dry cargoes, container ships, some
cruise ships and ferries) uses fuel oil as fuel, while the rest uses gasoil as the main fuel
(mostly high-speed ferries), natural gas (liquefied natural gas (LNG) tankers) or nuclear-
powered steam engines (mostly military ships). Bunker consumption represents a little more
than 50% of the world’s total fuel oil production, roughly equivalent to 4 million barrels per
day of the roughly 7 million barrels of fuel oil produced daily (as of 2010). Because bunker
fuel contains a large percentage of sulphur (between 1% and 5%) it is, for environmental
legislation reasons, typically used only in ocean-going ships’ primary or main engines once in
international waters.

Bunker fuel is technically any type of fuel oil used aboard ships. It gets its name from
the containers on ships and in ports in which it is stored, which used to be coal bunkers in the
days of steam engines but are now bunker fuel tanks. Bunker fuel in the shipping industry can
also be referred to by other names:

1. Heavy oil.
2. #6 oil.
3. Resid (as in residual oil product).
4. Bunker C.
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5. Blended fuel oil.
6. Furnace oil and other locally used names.

The International Standards Organization (ISO) has issued marine fuels standards (ISO
8217) and introduced some uniformity to the international marine fuel markets. Bunker fuel
has the following characteristics:

1. Its colour is always black, dark brown or at least very dark. This colour arises from the
asphaltenes in the crude oil.

2. Bunker is generally viscous, especially when first produced at the refinery. Certain resid-
uals are actually solid at ambient temperatures.

The following are the two main factors identifying fuel oil.

1. Sulphur content. The most commonly traded marine fuels have a sulphur content of
1% (low-sulphur fuel oil, or LSFO) and 3.5% (high-sulphur fuel oil, or HSFO). The
higher the sulphur content, the cheaper the fuel oil. The introduction of more stringent
environmental regulations by the International Maritime Organization (IMO) has been
progressively reducing the sulphur content in the bunker by issuing Marine Pollution
(MARPOL) regulations, with the following limits being phased in:
(a) Reduction of the maximum sulphur content in the bunker used by members of the

IMO to 3.5% by 2012 and to 0.5% by 2015.
(b) Creation of sulphur emission control areas (SECAs) where the maximum sulphur

content in the bunker cannot be higher than 1% (March 2010), dropping to 0.1%
by 2015. Vessels entering a SECA will have to switch to a bunker of lower sulphur
quality (e.g., have a separate bunker for LSFO) or blend the bunker fuel sulphur levels
down to under the SECA sulphur limits before entering the area. As of June 2010,
the SECAs are the Baltic Sea, the UNITED KINGDOM North Sea and the California
coast.

2. Viscosity (measured in centistokes, or cst). Fuel oils of 180 cst and 380 cst are the most
commonly traded. The higher the value in centistokes, the higher the viscosity. A higher
viscosity means cheaper fuel oil, because it makes the fuel more difficult for engines to
burn.

The most commonly used marine fuels are colloquially referred to as intermediate fuel
oils (IFOs). The reason they are called intermediate is that they can contain up to 7% middle
distillates, used as ‘cutter stock’ to lower the viscosity of heavy fuel oil. Generally, IFOs are
named after their viscosity at 50◦C (viscosity is temperature dependent, such that the higher
the temperature, the lower the viscosity), which is the normal handling temperature for marine
fuels to reduce viscosity and allow for the pumping of the fuel into fuel tanks and engine
rooms. The most commonly used IFOs are called IFO 180 cst and IFO 380 cst.

The pricing of fuel oil can be referenced to three different prices:

1. According to Bunkerwire, which refers to pricing in specific ports where fuel oil of
different grades and qualities are mixed together. The Bunkerwire price is the equivalent
of a retail price, paid by the shipping companies for filling up.

2. Cargo prices are a wholesale price for deliveries of 200,000 barrels or more.
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3. Barge prices are a wholesale price for deliveries of up to 50,000 barrels. Barges generally
go for a premium compared with cargoes, since they involve smaller volumes and can
deliver to more destinations.

Fuel oil is also used for power generation. Hence, in certain locations, it is important to
consider the effect of the activity of utilities over the price of a bunker. For example:

1. Whenever the price of natural gas becomes too expensive compared with the price of fuel
oil, then utilities may consider increasing the use of fuel oil to generate electricity. The
increased fuel oil demand results in increased bunker prices for shippers.

2. If the prices of emission certificates in Europe drop, then utilities have an incentive to
use more fuel oil for power generation (fuel oil is more polluting than natural gas), hence
affecting the cost of bunkers for shippers.

The shipping industry is also a consumer of diesel (marine diesel), used in the auxiliary
engines of large ships. It is used when a vessel is close to shore (diesel is less polluting than
fuel oil) or for manoeuvring in a harbour. Auxiliary engines also generate electricity for a ship
while in port.

1.2.3.2 Product Speci f icat ions

Europe, Middle East and Africa Regions The main fuel oil references generally used by
shipping companies for risk management purposes are published by Platts:

1. Fuel Oil 3.5% Barges (Platts considers parcels of 2000 to 5000 MT FOB in Rotterdam),
in USD/MT.

2. Fuel Oil 3.5% Cargoes CIF NWE (Platts considers parcels of 25,000 MT delivered CIF
NWE basis Rotterdam), in USD/MT.

3. Fuel Oil 3.5% Cargoes FOB MED (Platts considers parcels of 25,000–30,000 MT deliv-
ered FOB basis Italy), in USD/MT.

Quality. Platts generally considers fuel oil with a 3–4% sulphur content and a viscosity of
around 380 cst.

For risk management transactions, shipping companies also use crude oil whenever the
volume is too large or the tenor is too long to be accommodated within the liquidity of fuel oil
references. The main alternative references used by European-based shipping companies are
as follows:

1. ICE Brent (USD/bbl), based on the daily settlement price of the ICE Brent futures contract.
2. Fuel oil crack (USD/bbl) = fuel oil × conversion factor (MT to bbl) – ICE Brent, generally

a negative number since fuel oil trades at a discount to crude.

Asian Region The main references generally used by shipping companies for risk manage-
ment purposes are published by Platts:

1. Singapore 180 cst, in USD/MT.
2. Singapore 380 cst, in USD/MT.

Quality. Platts generally considers fuel oil with a sulphur content of up to 5%.
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Shipping companies also use other crude oil and oil product references whenever the
volume is too large or the tenor is too long to be accommodated within the liquidity of fuel oil
references. The main alternative reference used by Asian-based shipping companies is:

� ICE Brent in USD/bbl, based on the daily settlement price of the ICE Brent futures
contract.

Americas Region The main references generally used by shipping companies for risk man-
agement purposes are published by Platts:

� Fuel Oil 1% US New York Harbour Cargoes (NYHC), in USD/bbl.

Shipping companies also use other crude oil and oil product references whenever the
volume is too large or the tenor is too long to be accommodated within the liquidity of
the fuel oil references. The main alternative reference used by shipping companies based in
the Americas is:

� NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures
contract.

1.2.3.3 Risk Management Strategies for the Shipp ing Industry European and
American shipping companies generally adopt less complex hedging tactics compared with the
aviation industry and their structures tend to be mostly plain vanilla and for short to medium
tenors. As seen for the aviation industry, there are many variables affecting the implementation
of a risk management programme. There are also some shipping-industry-specific elements
that should be considered.

1. Many shipping companies are privately owned and managed by the founder or the
founder’s successors. This often makes the decision process cumbersome and sub-
optimal when implementing risk management decisions.

2. Shipping customers can be divided broadly into owners and charterers, where owners buy
ships and rent them on short- or long-term leases to charterers. The fuel costs are borne by
the company operating the ship. Hence, owners generally have no exposure to oil prices
since this is paid by the charterers operating the ships. Sometimes shipping companies
are structured into two divisions, one operating as an owner and the other as a charterer.

3. For insurance, tax and liabilities management reasons, shipping companies are often
divided into management and operational subsidiaries. This may make the process of
opening a credit line for trading purposes difficult due to the perceived weakness of the
counterpart from the credit point of view.

4. Based on observations of the behaviour of market participants, some generic conclusions
on risk management behaviour can be drawn.

5. Small to medium shipping companies (e.g., with a yearly consumption of up to 250,000
MT of fuel oil) tend to implement and execute risk management strategies with the
following characteristics:
(a) Short to medium maturities (e.g., less than two years).
(b) Mainly based on the use of swaps.
(c) Limited exposure to basis risk.
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6. Medium to large shipping companies (with a consumption of 250,000 MT and above)
generally have a dedicated team for the structuring, implementation and execution of a
hedging programme, and their strategies have the following characteristics:
(a) Short to long maturities (up to five years), depending on the product they use (e.g.,

short maturities for fuel oil quotes and long maturities for crude oil quotes).
(b) Use of a combination of swaps, plain vanilla options and exotic structures.
(c) Active management of basis risk.

7. On a regional basis, European and American shipping companies tend to use exotic
structures less compared with Asian-based shipping companies.

Fuel Oil Capped Swaps: A Cheaper Swap Situation. A containers shipping company, call
it SeaHorse, has a strategic hedging programme in place where one of the provisions is that at
any time at least 75% of the forecasted bunker consumption over the next 12 months needs to
be at a fixed price at a level not higher than 10% of the budgeted bunker price for the calendar
year (see Figure 1.6). SeaHorse’s forecasted consumption over the next 12 months is 500,000
MT. The budgeted bunker price for the next calendar year is 325$/MT, and the swap price for
bunker (using a 3.5% Fuel Oil FOB Barges reference) for the next calendar year is 375$/MT.

Strategy. SeaHorse buys a swap for the next calendar year on a Fuel Oil 3.5% FOB Barges
reference for 500,000 × 75%/12 = 31,250 MT per month at $375/MT and at the same time
sells a call option for the next calendar year on Fuel Oil 3.5% FOB Barges at 475$/MT for
25$/MT. The premium of the option is deducted from the level of the swap. Hence, SeaHorse
has effectively entered into a swap at 350$/MT (capped at 475$/MT). This is within the
325 + 10% = 357.5$/MT limit defined by the hedging policy.

Pros. SeaHorse has reached its targeted hedging level (as long as the market does not
move above the call strike level).

Cons. As a result of selling the call option, SeaHorse loses the protection of the swap
whenever the market settles above the strike level of the call option. It is important to remember
that the customer is not completely losing its price protection, since even in the event that the
fuel oil market moves above the strike level of the call option, SeaHorse will benefit from a
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cash flow from the risk management structure equal to the difference between the call option’s
strike and the swap level.

Payoff analysis Swap and option markets situation on 1 June 2014:

FO 3.5 FOB swap ($/MT) FO 3.5 FOB call @ 475 ($/MT)
Jan15–Dec15

375 25

SeaHorse buys a January 2015 to December 2015 fuel oil 3.5% barges swap at 375$/MT
and SeaHorse sells a call option on fuel oil 3.5% barges for the period January 2015 to
December 2015 at a strike of 475$/MT for 25$/MT.

The average fuel oil price during February 2015 is 330$/MT:

FO 3.5 FOB swap ($/MT) FO 3.5 FOB call @ 475 ($/MT)
Feb15

–45 Premium +25$/MT

SeaHorse pays 330$/MT to its physical supplier but also has to pay 45$/MT from the
swap and receives +$25$/MT from the option’s premium. The actual cost of fuel for SeaHorse
is then 330 + 45 – 25 = 350$/MT.

The average fuel oil price during May 2015 is 405$/MT:

FO 3.5 FOB swap ($/MT) FO 3.5 FOB call @ 475 ($/MT)
May15

+30 Premium +25$/MT

SeaHorse pays 405$/MT to its physical supplier but receives +30$/MT from the swap
and +25$/MT from the option’s premium. The actual cost of fuel for SeaHorse is 405 – 30 –
25 = 350$/MT.

The average fuel oil price during August 2011 is $495/MT:

FO 3.5 FOB swap ($/MT) FO 3.5 FOB call @ 475 ($/MT)
Aug11

+120 Premium +25$/MT
Settlement –20$/MT

SeaHorse pays 495$/MT to its physical supplier but receives +120$/MT from the swap
and +25$/MT from the option’s premium. SeaHorse also pays 20$/MT from the call option
being exercised. The actual cost of fuel for SeaHorse is 495 – 120 – 25 + 20 = 370$/MT (e.g.,
above the target level but still cheaper than the market price).
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F IGURE 1.7 ICE Brent extendable swap

Brent Extendable: Accommodating Operational Issues Situation. SeaHorse has entered
into a contract to transport goods for a customer from Hong Kong to Los Angeles. The contract
is at a fixed price for one year with an option (for the customer) to extend it for another six
months at the same rate (see Figure 1.7). SeaHorse is exposed to the bunker’s price volatility
(priced on a Singapore 380 IFO reference) and would like to lock in the profitability of the
contract by locking the bunker’s cost with a structure reflecting the potential time extension
feature.

Strategy. SeaHorse can enter into an extendable swap structure on Singapore 380 where
it would fix the price for a period of 12 months at a certain level with the right (to be exercised
by SeaHorse before the end of the 12th month) to extend the maturity of the swap by an extra
six months at the same level as that of the original 12-month structure. SeaHorse will exercise
the option back to back, with its customer exercising its right to extend the shipping contract.

Pros. SeaHorse is able to match the risk deriving from the potential extension of the
contract with a swap matching the extendibility of the shipping contract. In case the shipping
contract is not extended beyond the 12th month, SeaHorse will not extend the swap and has
no further obligations under the swap.

Cons. There is a cost associated with granting optionality to extend the swap beyond the
12th month for an extra six months. This cost is embedded in the level of the swap. Hence,
a ‘regular’ 12-month swap will be at a better level compared with a 12-month swap with the
option to extend for an extra six months.

1.2.4 Land Transportat ion: R isk Prof i le and Hedging
Strategies

1.2.4.1 Introduct ion: Land Transportat ion and Exposure to Oi l Pr ices The land
transportation industry includes local and national road passenger services, passenger and
freight railways, and commercial haulage. The economics are similar to that seen in the sec-
tions dedicated to the shipping and aviation industries, although the indexes used for risk
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TABLE 1.3 Diesel sulphur content breakdown

Sulphur content (ppm)

High-sulphur diesel ppm > 500 (ppm > 0.05% by weight)
Low-sulphur diesel 15 < ppm < 500 (0.0015% < ppm < 0.05% by weight)
Ultra-low-sulphur diesel (ULSD) 10 < ppm < 15 (0.0010% < ppm < 0.0015% by weight)
Sulphur-free diesel ppm < 10 (ppm < 0.0010% by weight)

management purposes are different. The oil products relevant to this industry are those used as
fuel for the engines of buses, trucks and train engines, that is, diesel and occasionally gasoline.

Diesel is essentially the same product as gasoil, and from a practical standpoint there are
only a few differences:

1. Diesel fuel, for road use, has a lower sulphur content than gasoil.
2. Gasoil is dyed with red dye.
3. During winter months, diesel fuel is cut or diluted with kerosene to improve its perfor-

mance.

Demand for gasoline and diesel has a certain seasonality and tends to peak in sum-
mer during the so-called ‘driving season’. Diesel fuel is the term used for fuels suitable for
compression engines, also known as diesel engines, developed by Rudolph Diesel in 1892.
Compression engines operate at a much higher pressure than gasoline engines and function
without a spark plug. Diesel engines also offer the following advantages when compared with
gasoline engines:

1. Diesel gets a higher mileage per gallon (20–30%) due to high compression and energy
density.

2. Diesel, being a heavier hydrocarbon, has a higher energy content.
3. Diesel fuel is burned in a high-pressure/high-temperature environment, resulting in more

efficient burning compared with gasoline.
4. Diesel engines are structurally easier to maintain and have a longer lifespan than gasoline

engines.

The main feature examined when discussing and identifying diesel fuel with a customer
is its sulphur content, identified in ppm. See Table 1.3.

Motor gasoline is the result of blending hydrocarbons from the naphtha family. The key
specifications for gasoline are its octane rating, volatility, aromatics, olefins, lead and methyl
tertiary butyl ether (MTBE) content.

1.2.4.2 Product Speci f icat ions The main oil references generally used by land trans-
portation companies for risk management purposes are published by Platts and Argus.

Europe, Middle East and Africa Regions

1. ULSD 10 ppm CIF NWE (USD/MT).
2. Diesel 10 ppm Barges FOB ROT (USD/MT).
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3. 10 ppm ULSD FOB MED Cargoes (USD/MT).
4. 50 ppm ULSD FOB MED Cargoes (USD/MT).
5. ULSD 10 ppm CIF MED Cargoes (USD/MT).
6. Gasoline Euro Bob Oxy NWE Barges (USD/MT).
7. Premium unleaded gasoline10 ppm Cargoes CIF NWE (USD/MT).
8. Premium unleaded gasoline 10 ppm Cargoes FOB NWE (USD/MT).
9. Premium unleaded gasoline 10 ppm Cargoes FOB MED (USD/MT).

10. Premium unleaded gasoline 10 ppm FOB Barges ARA (USD/MT).

Asian Region

1. Singapore Mogas 92 unleaded Mean of Platts Singapore (MOPS, in USD/bbl).
2. Singapore Gasoil Reg 0.5% Sulphur (USD/bbl).

Americas Region

1. ULSD US Gulf Coast (USGC) pipeline (USDc/gal).
2. Gasoline Reformulated Blendstock for Oxygenate Blending (RBOB) (based on the daily

settlement price of the NYMEX gasoline futures contract, (USDc/gal)).

1.2.4.3 Risk Management Strategies for the Land Transportat ion Industry The
land transportation industry can be divided into two subsections:

1. Regulated business, including metropolitan and some regional bus companies and regional
train companies. These businesses often operate on a long-term concession basis from the
government or local authority and operate in a regulated tariff environment. Hence, they
need to protect their revenue margin by locking the variable costs (such as fuel) as much
as possible. These companies are inclined to have very high hedging ratios for tenors
as long as the tenor of the concession. Typical hedging ratios in this scenario are in the
region of 75% or more for tenors of anywhere between 3 and 10 years.

2. Unregulated business, including regional and international bus and train passenger com-
panies and road and train goods haulage. These businesses operate with dynamics more
similar to those seen for shipping and aviation companies. Their hedging programmes
follow the principle of a hedging envelope over a maximum period of five years, and
its implementation will be on the back of budgeted fuel prices and fuel price market
movements. A typical hedging envelope for a land transportation company is
(a) up to 75% of expected fuel consumption for one year forward
(b) up to 50% of expected fuel consumption for two years forward
(c) up to 25% of expected fuel consumption for three years forward.

Diesel Differentials and Rolling Hedges: Optimizing the Liquidity of Financial Markets
Situation. A regional train company, Railmore, has won a seven-year concession for the
London–Cardiff line, operating with diesel trains. The concession has a limited provision for
fuel surcharge and Railmore needs to make sure the profit margin built into the concession
price is not eroded by potential increases in the price of diesel. The fuel supply contracts
are indexed to ULSD 10 ppm CIF NWE with an expected yearly consumption of 120,000
MT. After consultation with hedging counterparts, it becomes clear that there is no financial
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F IGURE 1.8 Rolling hedge structure

derivatives market for that ULSD reference for that tenor. The recommended strategy in this
case is to enter into a two-step hedging strategy, also known as a rolling hedge (see Figure 1.8),
where the company enters into a long-term hedge based on a liquid index correlated to ULSD
10 ppm CIF NWE (e.g., ICE gasoil) and into a short-term hedge based on ULSD 10 ppm CIF
NWE.

Strategy. Railmore will initially enter into two swap transactions:

1. A swap on ULSD 10 ppm CIF NWE for 10,000 MT per month for two years.
2. A swap on ICE gasoil for 10,000 MT per month for five years, starting at the beginning

of the third year.

Every month (or quarter) during the life of the hedging programme, Railmore will convert
the forward ICE gasoil swap into ULSD 10 ppm CIF NWE swaps by buying the ULSD–gasoil
differential (see the second hedging strategy for the aviation industry). This process will be
repeated until all the outstanding volumes are covered by the ULSD swap:

ULSD CIF NWE swap − ICE gasoil swap = ULSD CIF NWE differential

Pros. By tapping the right liquidity pools, Railmore is able to lock in the long-term price
level for gasoil, a product highly correlated to ULSD, and in the short to medium term the
price for ULSD CIF NWE. Railmore can also take advantage of potentially favourable relative
movements of ULSD against gasoil (e.g., a reduction in the ULSD differential). The ULSD
price risk is effectively translated into a ULSD differential price risk.
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F IGURE 1.9 Gasoil call spread

Cons. This is not a perfect risk management structure, since during the life of the hedge
the ULSD differential may move against Railmore (e.g., it may go up), resulting in the erosion
of the rail concession contract’s profitability.

Gasoil Call Spreads: Reducing the Cost of Option Strategies Situation. Railmore also
operates a regional bus service and wants to protect against a perceived potential increase in
the price of gasoil. The financial director decides against using swaps because the market is
in steep contango and the forward levels are perceived to be too high when compared with the
spot price of gasoil.

Strategy. Railmore enters into a call spread structure for the next year, where it buys a call
option on ICE gasoil at a certain strike (strike #1 = $750/MT) and sells a call option on ICE
gasoil at another strike (strike #2 = $850/MT), with strike #1 < strike #2 (see Figure 1.9).

Pros. Railmore gets full protection against price increases above strike #1 and partial
price protection against price increases above strike #2. When gasoil prices move above strike
#2, Railmore will always receive a net benefit equal to strike #2 – strike #1, compared with a
no-hedge situation. The cost of this hedging strategy is lower than the simple purchase of a
call option with strike #1 since the premium earned for strike #2 reduces the overall cost of
the hedging structure.

Cons. This structure provides only partial market risk protection in case the gasoil markets
move firmly above strike #2.

Payoff analysis The option market situation as of 1 June 2014 is as follows: Railmore buys
a January 2015 to December 2015 ICE gasoil call at 750$/MT and sells ICE gasoil call at
850$/MT. The net premium paid is –45 + 20 = –25$/MT:

ICE GO +call @ 750 ($/MT) ICE GO –call @ 850 ($/MT)
Jan15–Dec15

−45 +20
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The average gasoil price during February 2015 is 625$/MT:

ICE GO +call @ 750 ($/MT) ICE GO –call @ 850 ($/MT)
Feb15

0 0

None of the call options are exercised. Railmore is effectively paying 625$/MT for its
gasoil plus the net premium of 25$/MT for a total of 650/$MT, thus worse than the spot market
level.

The average gasoil price during the month of July 2015 is 800$/MT:

ICE GO +call @ 750 ($/MT) ICE GO –call @ 850 ($/MT)
Jul15

+50 0

Railmore exercises the option at $750, with the short second option not exercised. It is
thus effectively paying 800$/MT for its gasoil plus the net premium of 25$/MT minus the
settlement of the option (–50$/MT), for a total of 775$/MT, thus better than the spot market
level.

The average fuel oil price during September 2015 is 925$/MT:

ICE GO +call @ 750 ($/MT) ICE GO –call @ 850 ($/MT)
Sep15

+175 –75

Railmore exercises the option at 750$/MT, with the short second option being exercised
at 850$/MT. It is effectively paying 925$/MT for its gasoil plus the net premium of 25$/MT
minus the settlement of the first option (–175$/MT) plus the settlement of the second option
(+75$/MT), for a total of 850$/MT, thus better than the spot market level.

1.2.5 Ut i l i t ies: R isk Prof i le and Hedging Strategies

1.2.5.1 Introduct ion: Ut i l i t ies and Exposure to Oi l Pr ices At the centre of nearly all
power stations is a generator, a rotating machine that converts mechanical energy into electrical
energy through the relative motion created between a magnetic field and a conductor. The
energy source harnessed to turn such generators varies widely and depends chiefly on which
fuels are easily available and the types of technology the power company can access.

Utilities have two different kinds of exposure to oil prices; namely, direct on the cost side
and indirect on the cost and revenue side.

1. Direct exposure occurs when utilities use oil products as a combustible for power gener-
ation in thermal power stations. The fuels used are fuel oil and, to a less extent, gasoil.
(a) In thermal power stations, mechanical power is produced by a heat engine that

transforms thermal energy, produced by the combustion of fuel oil or gasoil generating
steam via a boiler, into rotational energy.
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(b) Fuel-oil-based power plants are still used around the world, although due to their high
operational costs, low efficiency and high environmental impact, their numbers have
been declining over the past 10 years and they are progressively being replaced by
natural gas-fired plants.

(c) Gasoil-based power plants are less common. They are generally small and are typically
used as back-up generation capability or whenever there is a need for small generation
capabilities in remote areas (e.g., small islands or remote mining operations). In this
context, gasoil has higher operational costs than fuel oil and similar environmental
impact issues.

2. Indirect exposure occurs when utilities buy or sell gas (pipeline or LNG) or electricity,
where prices are linked to oil products. Oil products generally used for energy pricing are
fuel oil, gasoil and crude oil.
� Indirect exposure can come in different shapes and forms. There are many different

oil-linked pricing formulas for electricity and gas (pipeline and LNG), often including
foreign exchange (FX) components and occasionally factors such as inflation and other
macroeconomic indexes.

3. The actual exposure of an average utility company is fairly complex to calculate and
represent, because in addition to direct and indirect exposure to oil products, it must also
account for exposure to electricity and gas prices not linked to oil products, as well as
exposure to fuels other than oil, such as coal and biofuels.

1.2.5.2 Product Speci f icat ions

Europe, Middle East and Africa Regions The main oil references generally used by utility
companies for risk management purposes are published by Platts and include the following:

1. Fuel Oil 3.5% FOB Barges ARA (USD/MT).
2. Fuel Oil 3.5% Cargoes CIF NWE (USD/MT).
3. Fuel Oil 3.5% Cargoes FOB MED (USD/MT).
4. Fuel Oil 1% FOB NWE (USD/MT).
5. Fuel Oil 1% Cargoes CIF NWE (USD/MT).
6. Gasoil 0.1% Cargoes FOB NWE (USD/MT).
7. Gasoil 0.1% Cargoes CIF MED (USD/MT).
8. Gasoil 0.1% Cargoes CIF NWE (USD/MT).

In most cases exposure to these products derives from the fact that natural gas (used for
power generation) is priced in many European markets by using pricing baskets containing
the products above.

Utilities also use other crude oil and oil product references whenever the volume is too
large or the tenor is too long to be accommodated within the liquidity of fuel oil or gasoil
references. The main alternative references used by Europe-based utilities are the following:

1. ICE Brent (USD/bbl), based on the daily settlement price of the ICE Brent futures contract.
2. ICE gasoil (USD/MT), based on the daily settlement price of the ICE gasoil futures

contract.
3. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures

contract.
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4. Fuel oil crack (USD/bbl) = fuel oil/6.35 (conversion factor MT to bbl) – ICE Brent.
5. Gasoil crack (USD/bbl) = gasoil/6.35 (conversion factor MT to bbl) – ICE Brent.

Asian Region The main oil references generally used by utility companies for risk manage-
ment purposes are published by Platts and include the following:

1. Singapore 180 cst (USD/MT).
2. Singapore 380 cst (USD/MT).
3. Singapore Gasoil Reg 0.5% Sulphur (USD/bbl).

Utilities also use other crude oil and oil product references whenever the volume is too
large or the tenor is too long to be accommodated within the liquidity of fuel oil or gasoil
references. The main alternative references used by Asian-based utility companies are the
following:

1. ICE Brent (USD/bbl), based on the daily settlement price of the ICE Brent futures contract.
2. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures

contract.

Americas Region The main oil references generally used by utility companies for risk
management purposes are published by Platts or NYMEX and include the following:

1. Residual fuel oil 1% CIF NWE York Harbour (USD/bbl).
2. NYMEX HO (USDc/gal), based on the daily settlement price of the NYMEX heating oil

futures contract.

Utilities also use other crude oil and oil product references whenever the volume is too
large or the tenor is too long to be accommodated within the liquidity of fuel oil or gasoil
references. The main alternative reference used by Americas-based utility companies is

� NYMEX WTI, based on the daily settlement price of the NYMEX WTI futures contract.

1.2.5.3 Risk Management Strategies for the Ut i l i t ies Industry Utilities are gener-
ally exposed to the full spectrum of energy price risks, from oil to natural gas, from electricity
to coal and emissions certificates. They therefore tend to be among the largest and most expe-
rienced consumers of risk management products, with dedicated teams and well-defined risk
management policies in place. For the purposes of this chapter, we focus only on transactions
related to oil and oil product prices.

Gas Formula Swaps: Hedging an Oil Pricing Basket with Swaps Situation. A Belgian
utility, Distriplus, has a portfolio of long-term pipeline gas supply contracts from Russia and
Norway that are indexed to a basket of oil products. The total volume is 10 TWh (terawatt
hours) per year, with the following pricing structure:

Pgas (€c∕MWh) = 0.022 × PGO + 0.058 × PFO
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where

� Pgas is the price in euro cents per megawatt hour (MWh) in a certain delivery month
period

� PFO is the monthly average Fuel Oil 3.5% FOB Barges (in $/MT) daily settlement price
during the Pgas delivery month period, published by Platts and converted into euros based
on the monthly average of the daily euro and US dollar rates

� PGO is the monthly average Gasoil 0.1% Cargoes FOB NWE (in $/MT) daily settlement
price during the Pgas delivery month period, published by Platts and converted into euros
based on the monthly average of the daily euro and US dollar rates.

Distriplus pays its gas supplier every month based on the formula above, but for the next
calendar year (e.g., 2015) it sells a total of 3 TWh to its customer on a fixed price basis. This
exposes Distriplus to the risk that the price paid to the supplier will move above the price
received in the fixed price contract.

Strategy. Distriplus will set the fixed price level based on the forward value for 2015 of
the formula. The formula will then be hedged by its gasoil, fuel oil and FX components.

Step 1. Calculate the volume equivalents of fuel oil and gasoil for 3 TWh (3,000,000
MWh) of gas:

1. FO = 0.058 × 3,000,000 MWh = 174,000 MT over the calendar year => 14,500 MT per
calendar month (pcm).

2. GO = 0.022 × 3,000,000 MWh = 66,000 MT over the calendar year => 5500 MT pcm.

Step 2. Using swaps, Distriplus hedges the underlying fuel oil and gasoil exposure (in
euros per MT):

1. FO swap January 2015 to December 2015 for 14,500 MT pcm = 260 €/MT.
2. GO swap January 2015 to December 2015 for 5500 MT pcm = 519 €/MT.

Step 3. The pricing of the swap level for the formula for the period January 2015 to
December 2015 is

Pgas = 0.058 × 260 + 0.022 × 519 = 26.50€c∕MWh

Pros. Distriplus covers its pricing risk between the floating gas purchase price and its
fixed gas sale price and locks in a margin.

Cons. If Distriplus decides not to hedge and the fuel oil and gasoil prices become cheaper
during the life of the contract, Distriplus would be able to make a potentially larger margin.

1.2.6 Ref ineries: R isk Prof i le and Hedging Strategies

1.2.6.1 Introduct ion: What is a Ref inery? In its basic structure, a refinery operation
is composed of a distillation column (atmospheric or vacuum), where crude oil enters and the
exiting oil products are gases (e.g., butane), gasoline, naphtha, kerosene, gasoil, fuel oil and
residues. The distillation process is generally referred to as separation and it is the first step in
the refinery process.
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F IGURE 1.10 Distillation + cracking refinery

The section on crude oil and oil products at the beginning of this chapter shows the
basic structure of a distillation column, but most modern refineries are more complex in
structure than a simple distillation column. This is because over the years production tech-
nologies have been developed to maximize the production (yield improvement) of high-value
products such as gasoline and jet fuel, as opposed to low-value products such as fuel oil
and bitumen.

One of the most common ways of improving a refinery’s yield is to extend the distilling
column refining process with a ‘cracking’ process (see Figure 1.10). This involves processing
naphtha, some light products and the heavy products produced by the distilling column with
heat and pressure (thermal cracking) and/or placing them in contact with a catalyst (a chemical
substance that facilitates a reaction) to promote cracking (catalytic, or cat cracking). The output
of this process is the production of more gasoline, better quality fuel oil and light products for
the petrochemical production process.

A variation and improvement of the cat cracking process is the hydrocracking process
(see Figure 1.11). This involves technology similar to that in cat cracking, but with the addition

F IGURE 1.11 Distillation + cracking + hydro refinery
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of hydrogen. This further improves the yield in terms of the production of gasoline and other
high-end products (such as jet fuel).

The cracking process is part of the conversion process. The following are other elements
of the conversion process:

1. Coking, a thermal cracking process specifically for the heavy-residue products of the
refinery that yields additional naphtha, gasoline blend stock and coke (a product used as
fuel in energy-intensive industries).

2. Combining and modifying, another process aimed at creating high-value-added products
but this time by joining together smaller hydrocarbon molecules to produce larger, more
valuable ones.

After the conversion, there are further steps in the refinery process:

1. Treatment/enhancement, involving the removal or reduction of unwanted elements such
as sulphur and nitrogen.

2. Blending, where several semi-finished products are blended together to meet certain
market specifications; for example, blending straight-run gasoline with other high-octane
products to obtain a gasoline ready to be sold at the pump.

Oil refineries are large-scale plants, processing from about a hundred thousand to several
hundred thousand barrels of crude oil per day. Because of their high capacity, many of the units
are operated continuously at steady state, or approximately steady state, for long periods of
time (from months to years). This high capacity also makes process optimization and advanced
process control very desirable.

Refineries with secondary processing units typically have two modes of operation:

1. Maximum production of gasoline in the summer, during the so-called driving season.
2. Maximum production of middle distillates in the winter, during the so-called heating

season.

All oil refineries are configured differently, according to the product needs and seasonality
of their target market and according to the slate of crude oil feedstock they will likely end
up buying. Complex, modern and large refineries can produce large amounts of gasoline
and kerosene from heavy oil crude, while smaller, older refineries cannot produce as much
high-value products from the same barrel of crude oil.

1.2.6.2 Product Speci f icat ions Refineries, by their very nature, are active across the
full spectrum of oil and refined oil products, and the lists below present only the most active
references at the time of this writing.

Europe, Middle East and Africa Regions The main oil references generally used by
refineries for risk management purposes are the following and are published by Platts, Argus
or are referenced to ICE futures contracts:

1. Fuel Oil 3.5% FOB Barges ARA (USD/MT).
2. Fuel Oil 3.5% Cargoes CIF NWE (USD/MT).
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3. Fuel Oil 3.5% Cargoes FOB MED (USD/MT).
4. Fuel Oil 1% FOB NWE (USD/MT).
5. Fuel Oil 1% Cargoes CIF NWE (USD/MT).
6. Gasoil 0.1% Cargoes FOB NWE (USD/MT).
7. Gasoil 0.1% Cargoes CIF MED (USD/MT).
8. Gasoil 0.1% Cargoes CIF NWE (USD/MT).
9. ULSD 10 ppm CIF NWE (USD/MT).

10. Diesel 10 ppm FOB NWE (USD/MT).
11. Diesel 10 ppm Barges (USD/MT).
12. 10 ppm ULSD FOB MED Cargoes (USD/MT).
13. 50 ppm ULSD FOB MED Cargoes (USD/MT).
14. Gasoline 10 ppm Cargoes CIF NWE (USD/MT).
15. Premium Gasoline 10 ppm Cargoes FOB NWE (USD/MT).
16. Gasoline Euro Bob Oxy NWE Barges (USD/MT).
17. Premium Gasoline 10 ppm Cargoes FOB MED (USD/MT).
18. Premium Gasoline 10 ppm FOB Barges ARA (USD/MT).
19. Naphtha CIF NWE (USD/MT).
20. ICE Brent (USD/bbl), based on the daily settlement price of the ICE Brent futures contract.
21. ICE gasoil (USD/MT), based on the daily settlement price of the ICE gasoil futures

contract.
22. Urals MED (USD/bbl) based on the Platts assessment.

Asian Region The main oil references generally used by refineries for risk management
purposes are the following and are published by Platts or are referenced to ICE, Dubai
Mercantile Exchange (DME) or NYMEX futures contracts:

1. Singapore 180 cst (USD/MT).
2. Singapore 380 cst (USD/MT).
3. Singapore Gasoil Reg 0.5% Sulphur (USD/bbl).
4. Singapore Kerosene (USD/bbl).
5. Singapore Gasoline 92 Unleaded MOPS (USD/bbl).
6. Singapore Naphtha FOB (USD/bbl).
7. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures

contract.
8. ICE Brent (USD/bbl), based on the daily settlement price of the ICE Brent futures contract.
9. DME Oman crude (USD/bbl), based on the daily settlement price of the Oman futures

contract.

Americas Region The main oil references generally used by refineries for risk management
purposes are the following and are published by Platts or NYMEX:

1. Residual Fuel Oil 1% CIF New York Harbour (USD/bbl).
2. NYMEX HO (USDc/gal), based on the daily settlement price of the NYMEX heating oil

futures contract.
3. ULSD 15 ppm USGC Pipeline (USDc/gal).
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4. Gasoline RBOB (USDc/gal), based on the daily settlement price of the gasoline NYMEX
futures contract.

5. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures
contract.

1.2.6.3 Risk Management Strategies for the Ref inery Industry Risk management
activity in a refinery is closely linked to the planning of crude oil purchasing and its processing
schedule to satisfy both specification and demand with the highest profit. The decision
variables are crude oil supply purchase decisions, processing, inventory management and
blending over various time periods. The lengths of these periods must be decided upon based
on business cycles.

Most refineries are continuously involved in a full range of pricing risk management
transactions, from short-term crude oil relative value optimization (more on this in Section
1.3) to short- to medium-term enhancement of the relative value of crude oil versus certain
products (refinery crack swaps, similar in concept to the gasoil crack swaps in the section on
aviation) to term locking in of the operational margin via the use of refinery margin swaps.

Refinery Margin Swaps: Locking the Forward Margin Situation. A refinery in Europe
would like to take advantage of the favourable relative forward value of oil products versus
crude oil and lock it in using financial OTC swaps.

Strategy. As seen in the previous section, refinery inputs are a blend of several kinds of
crude oil and the output is comprised of different oil products. The large number of crude oil
and oil products physical references used in the refinery process is unmatched by the relatively
limited number of liquid OTC financial swap references. To find an effective hedge structure,
the refinery needs to identify what OTC-traded products represent the best proxy for its crude
and product slates. For the purpose of this example, we can assume the following.

1. The crude oils’ slate supply is all indexed against the ICE Brent futures contract plus (or
minus) certain premiums (or discounts).

2. The products’ slate output can effectively be represented using the following proxy basket
of OTC swaps:
(a) 20% Fuel Oil 3.5% Barges
(b) 30% Gasoil 0.1% Cargoes FOB NWE
(c) 15% Jet Cargoes FOB NWE
(d) 20% Premium Gasoline 10 ppm Cargoes FOB NWE
(e) 15% Naphtha CIF NWE.

3. As seen before, the conversion from barrels (volume) to metric tonnes (weight) depends
on the specific gravity, or density, of the oil or oil product. The lighter the oil or oil
product, the more barrels per tonne. We assume the following conversion factors:
(a) barrels per MT of fuel oil
(b) barrels per MT of gasoil and jet fuel
(c) barrels per MT of gasoline
(d) 8.90 barrels per MT of naphtha.

4. If the refinery wants to lock in its refinery margin for 2015 for a volume of 100,000 barrels
per month, it has to enter into the following transactions:
(a) Buy a calendar 2015 monthly settled swap on ICE Brent for January 2015 to December

2015 for 100,000 barrels per month.
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(b) Sell the following monthly settled swaps for January 2015 to December 2015
(i) 20% × 100,000/6.35 = 3150 MT per month of 3.5% Fuel Oil Barges

(ii) 30% × 100,000/7.45 = 4025 MT per month of Gasoil 0.1% FOB NWE
(iii) 15% × 100,000/7.45 = 2015 MT per month of Jet Cargoes FOB NWE
(iv) 20%× 100,000/8.33 = 2401 MT per month of Premium Gasoline 10 ppm Cargoes

NWE
(v) 15% × 100,000/8.90 = 1685 MT per month of Naphtha CIF NWE.

(c) The difference between the values of the crude oil swap and the basket of oil product
swaps is the forward crack, which is generally measured in barrels.

Pros. By locking in the forward margin, the refinery is able to reduce the volatility of its
operational margin.

Cons. The refinery may miss out on further potential positive movements in the margin
level and there is an element of basis risk between the hedging instrument and the actual
economics of the refinery that needs to be carefully evaluated and monitored.

1.2.7 Industr ia l Consumers: R isk Prof i le and Hedging
Strategies

1.2.7.1 Introduct ion: Energy- Intensive Manufacturing and Oi l Pr ices This section
discusses energy-intensive manufacturers with direct or indirect exposure to oil prices. These
are typically paper mills, steel and aluminium mills, cement mills, ceramic and glass manu-
facturers, and any other industrial process requiring the production of large amounts of heat
or steam. Direct exposure to oil markets comes from using fuel oil in furnaces or boilers or
gasoil for localized power generation. Indirect exposure comes from using natural gas priced
on a basket of oil products in the industrial process.

1.2.7.2 Product Speci f icat ions

Europe, Middle East and Africa Regions The main oil references generally used by
manufacturing companies for risk management purposes are published by Platts and include
the following:

1. Fuel Oil 3.5% Barges (USD/MT).
2. Fuel Oil 3.5% Cargoes CIF NWE (USD/MT).
3. Fuel Oil 3.5% Cargoes FOB MED (USD/MT).
4. Fuel Oil 1% Cargoes CIF NWE (USD/MT).
5. Gasoil 0.1% Cargoes FOB NWE (USD/MT).
6. Gasoil 0.1% Cargoes CIF MED (USD/MT).

Asian Region The main oil references generally used by manufacturing companies for risk
management purposes are published by Platts and include the following:

1. Singapore 180 cst (USD/MT).
2. Singapore 380 cst (USD/MT).
3. Singapore Gasoil Reg 0.5% Sulphur (USD/bbl).
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Americas Region The main oil references generally used by manufacturing companies for
risk management purposes are the following and are published by Platts and NYMEX:

1. Residual Fuel Oil 1% CIF New York Harbour (USD/bbl).
2. NYMEX HO (USDc/gal), based on the daily settlement price of the NYMEX heating oil

futures contract.
3. NYMEX WTI (USD/bbl), based on the daily settlement price of the NYMEX WTI futures

contract.

1.3 OIL PHYSICAL MARKET HEDGING AND TRADING

1.3.1 The Actors, Futures and OTC Prices

The implementation of hedging strategies to protect against the movement of oil prices is an
issue for many different industrial sectors. Corporate hedging strategies are not homogeneous
across industrial sectors, and even within the same industrial sector the hedging strategies
are substantially different across market participants, but they are usually implemented by
a risk manager operating within a financial or supply department. However, there are other
actors besides industrial risk managers active in the energy market. Indeed, we can rely on the
presence of at least the following:

1. Speculators who attempt to gain from anticipated changes in the prices of commodities
or financial instruments. Speculators aim primarily for a quick profit from a short-term
trading strategy.

2. Traders who trade on different oil benchmarks. These traders are focused on gaining
from their view. Therefore, they create different positions through a combination of the
different derivatives described below.

3. Risk managers who trade the same type of financial derivative products as traders. How-
ever, risk managers are dedicated to optimizing the cost and results of their hedging
strategies.

Contrary to expectations, risk management is not about the elimination of risk but con-
cerns its management. Financial derivatives provide a powerful tool for limiting the risks
that individuals and organizations face in the ordinary conduct of their business. Successful
derivative risk management requires a thorough understanding of the principles that govern
the pricing of financial derivatives that can save costs and increase returns.

For the sake of simplicity, both traders and risk managers are identified as traders. Traders
can build portfolios and strategies by using and combining at least the following instruments:

1. Forwards are agreements where one party promises to buy an asset from another party at
some specified time in the future and at some specified price. No money changes hands
until the delivery date or the maturity of the contract.

2. Futures contracts are very similar to forward contracts. Futures contracts are usually
traded through an exchange, which standardizes the terms of the contracts. The profit or
loss from the futures position is calculated every day and changes in this value are paid
from one party to the other. Thus, futures contracts involve a gradual payment of funds
from initiation until expiry.
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3. A swap is an exchange of a fixed price of a crude oil benchmark for a floating average of
the same benchmark.

4. An option is an instrument that gives to the holder (buyer) the right to buy or sell a defined
underlying at a certain price.

The energy market provides two main opportunities to create a profit:

1. Variations of oil prices – by way of an example, the movement of crude oil from $80/bbl
to $85/bbl.

2. Variations of the differential, that is, the movement between two different oil benchmarks
– by way of an example, the movement of the difference between European crude oil and
American crude oil.

As a consequence, any energy underlying is calculated according to the following equa-
tion:

final price = futures price + differential

Thus, traders are generally focused on implementing strategies on flat prices and differ-
entials separately.1

The flat prices are mostly traded on regulated markets, based on standardized contracts
and defined rules. On the contrary, the differential risk is usually traded on OTC markets, which
are based on bilateral negotiations. In these markets, the types of contracts and products traded
are defined case by case. The prices are assessed by agencies on the basis of the information
provided by different traders.

Futures contracts are usually traded through an exchange on a standardized contract. The
most active exchanges are:

1. NYMEX, based in New York.
2. ICE, based in London.

The profit or loss from the futures position is calculated every day and the change in this
value is paid from one party to the other. Thus, futures contracts involve a gradual payment
of funds from initiation until expiry. This process is managed by a clearing house, which is
a financial institution that stands between the parties to ensure that all market participants
honour their trade settlement obligations. The clearing house secures market activity by the
utilization of a margin methodology based on the following:

1. The initial margin or original margin is the amount necessary to start to trade.
2. The variation margin is the amount paid periodically (generally daily) by the market

participant, according to the marking to market of their open position.2

1Flat price is a trading term that indicates the overall price of a commodity. The fluctuation between
$80/bbl and $85/bbl of a futures on crude oil is defined as a flat price variation.
2Mark-to-market or fair value accounting refers to accounting for the fair value of an asset or liability
based on the current market price of the asset or liability.
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The initial margin should be considered the insurance necessary to guarantee the clearing
house and its members from variations in price within a trading day. The variation margin is
the mechanism necessary to restore the initial margin.

The futures contract is standardized, particularly for the following features:

1. Type of contract (physical or cash delivery).
2. Contract unit (barrel, metric tonnes, gallons, etc.).
3. Underlying (Brent, WTI, gasoil, etc.).
4. Trading hours (between 7:00 p.m. and 5:00 p.m. Chicago time, between 5:00 p.m. and

4:15 p.m. Chicago time, etc.).

Table 1.4 shows the specifications of the two contracts.
Table 1.4 compares the main futures contract. WTI was created on 02/01/1981 in

New York by New York Mercantile, which was the first international energy regulated
market. In recent years the rivalry between ICE Brent and NYMEX WTI has increased
due to:

1. The development of a better electronic platform by ICE.
2. The rise of Far East demand.

However, the two contracts are very similar, except for settlement type. The difference
between a physical delivery and a cash delivery is important, particularly for

1. US traders
2. arbitrageurs.

Physical delivery could be a risk for traders who have no physical asset to perform it
(such as storage, pipeline capacity, etc.). For this reason, in recent years ICE has developed
a WTI cash-settled contract. The futures contract is traded on ICE and, except for the price
levels and expiry dates, which equal those of the NYMEX WTI, has the same features as
ICE Brent.

Table 1.4 describes the settlement price for a futures contract, which is the closing price
of the trading day for the futures, and it is necessary to mark the price of the market futures at
the close. The settlement price is the official closing price of the exchange. However, NYMEX
and ICE publish several other markers.

A marker is necessary to indicate the price of the futures at a defined period of the day. In
this example, ICE Brent futures are characterized by several markers:

1. The ICE Brent futures crude afternoon marker is calculated by the weighted average of
trades completed between 4:29 and 4:30 p.m. London time.

2. The ICE Brent futures crude Singapore marker is calculated by the weighted average of
trades completed between 8:29 and 8:30 a.m. London time.

Markers represent points of contact between the regulated and OTC markets. The
OTC markets are based on bilateral negotiations. In these markets, the types of con-
tracts and products traded should be defined case by case between traders. The prices are



TABLE 1.4 A comparison of contract specifications between ICE Brent futures and NYMEX WTI

Specifications ICE Brent futures NYMEX WTI

Trading hours UK hours. Monday to Friday. Open
1:00 a.m. (11:00 p.m. on Sundays).
Closed 11:00 p.m. London time.

Chicago hours. Monday to Friday.
Open 7:00 p.m. (5:00 p.m. on
Sundays). Closed 5:00 p.m. the
following day.

New York hours. Sunday to Friday.
Open 6:00 p.m. Closed 5:15 p.m.,
with a 45-minute break each day,
beginning at 5:15 p.m.

Chicago hours. Sunday to Friday.
Open 5:00 p.m. Closed 4:15 p.m.,
with a 45-minute break each day,
beginning at 4:15 p.m.

Comparison WTI has longer trading hours.
Listed contracts A maximum of 72 consecutive months

will be listed. In addition, six
contract months comprising of June
and December contracts will be listed
for an additional three calendar
years. Twelve additional contract
months will be added each year on
the expiry of the prompt December
contract month.

Consecutive months are listed for the
current year and the next five years.
In addition, the June and December
contract months are listed beyond the
sixth year. Additional months will be
added on an annual basis after the
December contract expires.

Comparison WTI has more listed contracts.
Expiration date Trading shall cease at the end of the

designated settlement period on the
business day (a trading day that is not
a public holiday in England or Wales)
immediately preceding either (i) the
15th day before the first day of the
contract month, if such 15th day is a
business day or (ii) if such 15th day
is not a business day, the next one.

Trading in the current delivery month
shall cease on the third business day
prior to the 25th calendar day of the
month preceding the delivery month.
If the 25th calendar day of the month
is not a business day, trading shall
cease on the third business day prior
to the last business day preceding the
25th calendar day.

Comparison Both contracts have defined expiry dates.
Price quotation US dollars and cents per barrel. US dollars and cents per barrel.
Daily margin All open contracts are marked to market

daily.
All open contracts are marked to market

daily.
Settlement price The weighted average price of trades

during a 3-minute settlement period
from 7:27 to 7:30 p.m. London time.

The weighted average price of trades
during a 3-minute settlement period
from 7:27 to 7:30 p.m. London time.

Minimum
fluctuation

$0.01 per barrel. $0.01 per barrel.

Contract
security

ICE Clear Europe acts as the central
counterparty for trades conducted on
the London exchanges. This enables
it to guarantee the financial
performance of every contract
registered with it by its members (the
clearing members of the exchanges)
up to and including delivery, exercise
and/or settlement. ICE Clear Europe
has no obligation or contractual
relationship with its members’ clients
who are non-member users of the
exchange markets or non-clearing
members of the exchanges.

The CME Clearing House acts as the
central counterparty for trades
conducted on the CME exchanges.
This enables it to guarantee the
financial performance of every
contract registered with it by its
members (the clearing members of
the exchanges) up to and including
delivery, exercise and/or settlement.
The CME Clearing House has no
obligation or contractual relationship
with its members’ clients who are
non-member users of the exchange
markets or non-clearing members of
the exchanges.

Comparison No difference
Settlement type Cash Physical
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assessed by agencies on the basis of the information provided by different traders. The main
agencies are

1. Platts
2. Argus
3. ICIS Heren.

The prices are calculated according to the methodology published on these agencies’
respective websites.3

Of these agencies, the most important for crude oil and oil product assessment is Platts.
Platts has defined a methodology called market on close (MOC). According to this methodol-
ogy, Platts calculates the price of each commodity, considering the value of the physical cargo
and derivatives traded during a defined period of the day. It is not the goal of this chapter to
describe this calculation. However, the methodology is fundamental in pricing each physical
and derivative contract based on an OTC benchmark.

Platts calculates its assessments during three defined periods:

1. The Singapore window, between 8:00 and 8:30 London time.
2. The European window, between 16:00 and 16:30 London time.
3. The US window, between 19:00 and 19:30 London time.

The MOC methodology provides an assessment based on the market condition of the
futures market at the end of the window period. For this reason ICE decided to launch a series
of their markers, the main ones of which were introduced above.

1.3.2 The Most Commonly Used F inancia l Instruments

Energy markets and financial markets have the following instruments in common, which are
the most frequently utilized in trading strategies:

1. Futures traded in regulated markets.
2. Swaps traded in OTC markets.
3. Options.

The use of options is mainly a feature of risk manager strategies, which were considered
previously. Trader strategies based on options are not a matter of concern for this chapter.

The distinction between futures and swaps is fundamental to evaluate the different trading
strategies that could be selected. A swap agreement is a derivative where two counterparties
exchange one stream of cash flows against another stream, calculated by reference to an
underlying (e.g., a securities index, bond currencies, interest rates, commodities and even
more intangible items). A swap represents a customized financial instrument that allows the

3The assessment methodologies of Platts, Argus and ICIS Heren are published at www.platts.com,
www.argusmedia.com and www.icis.com, respectively.

http://www.platts.com
http://www.argusmedia.com
http://www.icis.com
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trader to open a position on a quantity or a benchmark that is not possible to execute in the
futures market. The underlying of the swap could be:

1. One of the futures markers indicated above.
2. One of the prices assessed and released by the agencies (Platts, Argus or ICIS Heren).

Traders combine futures and swaps with different underlyings to implement their strategies
and maximize profit based on their market view. The combinations differ according to

1. Crude oil trader strategies.
2. Product trader strategies.

The differences are related to the different parts of the industry involved with crude oil
and oil products. Crude oil is a commodity important for

1. Arbitrage.
2. Storage.
3. Refinery operations.

Oil products are important for

1. Arbitrage.
2. Storage.
3. Petrochemicals.
4. Utilities.
5. Automotive companies.
6. Industrial sectors.

1.3.2.1 Crude Oi l The crude oil markets are characterized by a great number of bench-
marks, the main ones being the following:

1. The ICE Brent futures is the benchmark for European crude oil markets and it is listed on
the ICE exchange in London. The future contracts traded are monthly based. The contract
does not settle with physical delivery.

2. The NYMEX WTI future is the benchmark for the US crude oil markets and is listed on
the NYMEX in New York. The future contracts traded are monthly based. The contract
settles with physical delivery.

3. The BFOE 21 days is a physical forward contract traded on the OTC markets of the North
Sea.4 The contract is similar to a futures and settles with physical delivery.

4. Dated Brent is the main benchmark for the OTC European, African and Mediterranean
crude oil markets.

421-day BFOE involves the actual cash market trade in the cheapest-to-deliver crude from the Brent,
Forties, Osenberg and Ekofisk market. This historically was Brent itself, but that has changed with time
to make Forties the cheapest-to-deliver crude oil more often than not. The 21-day BFOE index is used
to compile the Brent Index on a daily basis and then used to cash-settle the Brent futures contract.
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5. Exchange for physical (EFP) is a price that indicates the difference between the ICE Brent
futures and the BFOE of the same delivery.

6. Dated to frontline (DFL) implies a differential between the daily Platts Dated Brent
assessment for dated or physical cargoes and the ICE settlement for the front-month ICE
futures for that day.

7. A contract for difference (CFD) implies a differential between the daily Platts Dated Brent
assessment for dated or physical cargoes and the BFOE daily Platts assessment for that
day.

The following equations are fundamental to understanding the trading strategies imple-
mented in the European crude oil markets:

Dated Brent = BFOEt1 + differential
BFOEt1 = ICE Brentt1 + EFPt1
Dated Brent swapt1 = ICE swap Brentt1 + DFLt1

The Brent frontline swaps are calendar monthly swaps based on the ICE Brent futures
contract. The swap is calculated using mean-adjusted values for the number of trading days,
and each futures contract spends as the front month. This is done by calculating the exact
number of trading days within each month, which varies according to the calendar month:

ICE swapt1 = (ICE Brent futurest2 × g1 + ICE Brent futurest3 × g2)∕G

where g1 is the number of business days between the start of the month and the day before the
expiry of the first line, g2 is the number of business days between the day before the expiry of
the first line and the end of the month, and G is the total number of business days in the month
(g1 + g2).

Below is an example of an ICE Brent swap relating to June 2014.
The June 2014 swap is made up of 21 business days. The expiry date of the ICE Brent

future is 13 June 2014 and the delivery month is July 14 (June 14 + 1). The first line from 16
June to the end of the month is August 14 (June 14 + 2). Here ICE Brent July 14 is the first
line for 10 business days and ICE Brent August 14 is the first line for 11 business days. On
the basis of the rule on the expiry date of the futures introduced above, we have to consider
ICE Brent August and not ICE Brent July; therefore, there are 9 business days relating to ICE
Brent July and 12 to ICE Brent August.

On the basis of the above, the following equation is obtained:

ICE swap June 14 = (ICE Brent future July 14 × 9 + ICE Brent future August 14 × 12) ∕21

where g1 = 10, the number of business days between the start of the month and the day before
the expiry of the first line; g2 = 12, the number of business days between the day before the
expiry of the first line and the end of the month; and G = (10 + 12) = 22, the total number of
business days in the month.

Suppose that:

1. The ICE Brent July 14 price is $79.04/bbl.
2. The ICE Brent August 14 price is $80.80/bbl.
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Then the price of ICE Brent June 14 may be calculated as follows:

ICE swap June 14 = ($79.04∕bbl × 9 + $80.80∕bbl × 12)∕21 = 80.04$∕bbl

The ICE Brent swap is necessary to calculate the Dated Brent swap on the average of the
month. To obtain the Dated Brent swap, the trader has to add the DFL to the ICE Brent swap,
as indicated in the equation

Dated Brent swapt1 = ICE Brent swapt1 + DFLt1

1.3.2.2 Products The product markets are characterized by too many different bench-
marks to be listed in this chapter. The following futures and OTC benchmarks are defined, as
utilized in the trading example:

1. The ICE gasoil future is the benchmark for European middle distillates and is listed on
the ICE in London. The future contracts traded are monthly based. The contract settles
with physical delivery.

2. The NYMEX heating oil futures is the benchmark for US middle distillates and is listed on
the NYMEX in New York. The futures contracts traded are monthly based. The contract
settles with physical delivery.

3. 10 ppm CIF MED is the main benchmark for the OTC Mediterranean middle distillate
markets.5

4. The 10 ppm CIF MED differential is the differential between the daily Platts 10 ppm CIF
MED assessment and the ICE settlement for the front-month ICE futures for that day.

The following equations are fundamental to understanding the trading strategies imple-
mented in the European crude oil markets:

10 ppm CIF MED = ICE gasoil futures + differential
10 ppm CIF MED swapt1 = ICE gasoil swapt1 + 10 ppm CIF MED differentialt1

The gasoil frontline swaps are calendar monthly swaps based on the ICE gasoil futures
contract. The swap is calculated using mean-adjusted values for the number of trading days,
and each futures contract is the front month. This is done by calculating the exact number of
trading days within each month, which varies according to the calendar month:

ICE gasoil swapt1 = (ICE gasoil futuret1 × g1 + ICE gasoil futuret2 × g2)∕G

where g1 is the number of business days between the start of the month and the day before the
expiry of the first line, g2 is the number of business days between the day before the expiry of
the first line and the end of the month, and G is the total number of business days in the month
(g1 + g2).

Below is an example of an ICE gasoil swap relating to June 2014.
The June 2014 swap is made up of 21 business days. The expiry date of the ICE gasoil

futures is 12 June 2014 and the delivery month is June 14. The first line from 13 June to the

510 ppm CIF MED means ULSD, a motor engine diesel with a sulphur content of 10 ppm. For the sake
of clarity, we will continue to call it 10 ppm CIF MED.
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end of the month is July 14 (June 14 + 1). Here ICE gasoil June 14 is the first line for nine
business days and ICE Brent July is the first line for 12 business days. On the basis of the rule
on the expiry date of the futures introduced above, it is necessary to consider ICE gasoil July
and not ICE gasoil June; therefore, there are eight business days relating to ICE gasoil June
and 13 relating to ICE gasoil July.

On the basis of the above, we obtain the following equation:

ICE swap June 14 = (ICE gasoil future June 14 × 8 + ICE gasoil future July 14 × 13) ∕21

where g1 = 8, the number of business days between the start of the month and the day before
the expiry of the first line; g2 = 14, the number of business days between the day before the
expiry of the first line and the end of the month; and G = (8 + 14) = 22, the total number of
business days in the month.

Suppose that:

1. The ICE gasoil June 14 price is $902.25/MT.
2. The ICE gasoil July 14 price is $898.75/MT.

The price of ICE gasoil June 14 may be calculated as follows:

ICE swap June 14 = ($902.25∕MT × 8 + $898.75∕MT × 13)∕21 = 900$∕MT

The ICE gasoil swap is necessary to calculate the 10 ppm CIF MED swap on the average
of the month. To obtain the 10 ppm CIF MED swap, the trader has to add the 10 ppm CIF
MED to the ICE gasoil swap, as indicated in the equation

10 ppm CIF MED swapt1 = ICE gasoil swapt1 + 10 ppm CIF MED differentialt1

1.3.3 How to Monitor and Manage Risk

A trader has the opportunity to set his own risk strategy according to the following limits:

1. A stop loss is the level at which a trader has to close a position to avoid further losses.6

2. A take-profit strategy is the level at which a trader has to close a position to collect the
gains.

3. Value at risk (VaR) calculates the worst expected loss over a given horizon at a given
confidence level under normal market conditions. It provides a single number summarizing
the organization’s exposure to market risk and the likelihood of an unfavourable move. It
provides a predictive tool to prevent portfolio managers from exceeding risk tolerances
that have been developed in portfolio policies. It can be measured at the portfolio, sector,
asset class and security levels. Multiple VaR methodologies are available and each has its
own benefits and drawbacks. The three main methodologies are parametric (also called
analytical), historical simulations and Monte Carlo simulations. To illustrate, suppose a
$100 million portfolio has a monthly VaR of $8.3 million with a 99% confidence level.

6JP Morgan, Product and Service Risk Disclosure.
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F IGURE 1.12 When the position hits the stop loss, the trader must close
the position

The VaR simply means that there is a 1% chance of losses greater than $8.3 million in
any given month of a defined holding period under normal market conditions.7

The stop loss is the maximum level of loss that a trader can realize for a position. When
the position has lost that amount, the trader must close the position and stop trading (see
Figure 1.12).

The profit-taking strategy is the opposite of the stop-loss strategy and involves the level
of profit a trader wants to realize for a position. When the position has gained that amount, the
trader starts to close out the position and stops trading (see Figure 1.13).

The VaR is a measure of the maximum potential change in value of a portfolio of financial
instruments with a given probability over a preset horizon. The VaR answers the question of
how much one can lose with an x% probability over a given time horizon (see Figure 1.14).

If the position reaches the stop loss and VaR limits, the trader must close the position. The
same types of obligation are not applicable when the strategy reaches the profit-taking level.

If the position does not hit any limits, the trader can decide to hold the position or to
change it. The trader will decide according to his own view. If he strongly believes that his
strategy will generate a profit he will hold it, otherwise he will close it and open another one
(see Figure 1.15).

Below we have an example of how a monitoring system should be worked in the case of
the following assumed variables:

� Underlying swap position indicated above at –$0.10/bbl.
� VaR limit of $275,000.
� Stop-loss strategy –$500,000.
� Profit-taking strategy +$500,000.

7Romain Berry, Setting Up a Sound Risk Management Framework, JP Morgan Investment Analytics and
Consulting.
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F IGURE 1.13 When the position hits the take profit, the trader must close
the position
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F IGURE 1.14 When the position hits the VaR limit, the trader must close the
position
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F IGURE 1.15 When the position does not hit any limits, the trader can
elaborate another strategy
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On this basis, a company can allow a trader to run the risk associated with the following
strategies:

1. A wait-and-see strategy.
2. A breakdown strategy.

1.3.4 How to Create a Market View

The variables introduced above are influenced by the demand and supply of crude oil and
refined products. The movement of demand is difficult to forecast but it is influenced by the
seasons. For instance, the consumption of gasoline usually increases during the summer, with
heightened consumer demand for travelling, while the consumption of heating oil is higher in
the winter than the summer.

Reductions or increases in supply are easier to forecast because of their direct connection
to the oil industry. The production of crude oil, and therefore its supply in the market, should
be influenced by the following factors:

1. The decisions of Organization of the Petroleum Exporting Countries (OPEC) and non-
OPEC producers to increase or reduce the production of crude oil.

2. The release of strategic reserves (US reserves are called the strategic petroleum reserve,
or SPR).

3. Natural events (hurricanes, earthquakes, etc.).

The above example has an impact on the following price differentials:

1. Time spread structure.
2. Differential level.

In the analysis of a time spread, two market situations emerge (Figure 1.16):

1. Contango. This is the situation where today’s price is lower than that of a subsequent
period (weeks or months ahead). This is the classic situation in which an increase in price
is expected. It is generally connected to current excess supplies in the physical markets.

2. Backwardation. This is the situation where today’s price is higher than that of a subsequent
period (weeks or months ahead). This is the classic situation in which a decrease in the
price is expected. It is generally connected to current excess demand in the physical
markets.

The differential level is the movement between two prices related to two different bench-
marks or underlyings.

The most well-known differential is the spread between Dated Brent and ICE Brent first
line, which is characterized by high volatility as indicated in Figure 1.17.

For instance, if OPEC and non-OPEC producers decide to increase the production of
crude oil or the United States decides to release the SPR, the supply of crude oil will increase.
The prices of physical crude oil benchmarks will drop and the contango structure will increase,
because traders will expect demand to require a certain period to adjust and, as in any other
market, if there is an excess of supply, current prices will start to drop.
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F IGURE 1.16 An example of contango and backwardation

On the contrary, if OPEC and non-OPEC producers decide to reduce the production of
crude oil, the United States decides to increase the SPR or a hurricane stops production at the
crude oil facilities in the Gulf of Mexico, the supply of crude oil will decrease. The prices
of physical crude oil benchmarks will rise and the contango structure will decrease, because
traders will expect demand to require a certain period to adjust and, as in any other market, if
there is an excess of demand, current prices will start to rise.

The demand for crude oil is mainly influenced by the following:

1. Refinery maintenance, which is the period when a refinery is closed to carry out the
maintenance of plants.

2. Refinery runs, which is the percentage of a refinery’s total capacity that is active in a
certain period.

3. Natural events.
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TABLE 1.5 The main increase and supply events and their impact on crude oil and product prices

Event Impact on demand/supply Price movement

Crude oil Oil producers increase production Increase in supply Reduction
Refineries reduce runs Decrease in demand Reduction

Crude oil Oil producers reduce production Decrease in supply Increase
Refineries increase runs Increase in demand Increase

Products Refineries increase runs Increase in supply Reduction
Decrease of industrial production Decrease in demand Reduction

Products Hurricane stops refinery production in
the Gulf of Mexico

Decrease in supply Increase

Increase of industrial production Increase in demand Increase

For instance, if US refineries decide to increase the production of products (i.e., the runs
increase from 85% to 87%), the demand for crude oil will increase. The prices of physical
crude oil benchmarks will increase and the contango structure will decrease, because traders
will expect the supply to require a certain period to adjust and, as in any other market, if there
is an excess of demand, current prices will start to increase.

On the contrary, if US refineries decide to reduce the production of products (i.e., the
runs decrease from 85% to 83%), or decide on an extraordinary period of maintenance or a
hurricane stops refinery activity in the Gulf of Mexico, the demand for crude oil in the market
will decrease. The prices of physical crude oil benchmarks will decrease and the contango
structure will increase, because traders will expect the supply to require a certain period to
adjust and, as in any other market, if there is an excess of supply, current prices will start to
decrease.

The events set out above affect not only the demand and supply of crude oil but also
that of refined products. In addition, the events described have different impacts in different
areas. The closure of a refinery in the United States has a strong impact on crude oil demand
and the supply of products in the United States whereas the impact in Europe is minor and
unimportant in the Far East.

The different impacts in the different geographical areas justify the greater importance
of arbitrage trading strategies in the commodity market than in the equity and FX markets.
Table 1.5 summarizes the most common events and their impacts on the level of the differentials
(physical and swap) and the shape of the forward curve of crude oil prices. For the sake of
simplicity, the events are identified as either having a reducing or an increasing effect on prices.

1.3.5 Trading Strategies to Maximize a Market View

1.3.5.1 Introduct ion This section describes possible trading strategies and how a trader
can maximize a market view. The examples are divided as follows:

1. Crude oil hedging and crude oil storage (contango capture) strategies.
2. Arbitrage.
3. Product hedging and product storage strategies.
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Each of these examples is introduced by means of a brief description of the hedging
strategy involved. The hedging strategy is the right combination of financial derivatives that
lets the trader neutralize risk and lock in a certain result. Knowledge of how to minimize
or eliminate risk is necessary in order to mitigate effectively against all of the risk that goes
against the particular market view.

1.3.5.2 Crude Oi l Strategy

Hedging a Physical Crude Oil Cargo Situation. On 15 May 2014 a trader buys a cargo of
630 kb crude oil from a producer in the North Sea area.8 The buy price is the average over
June 2014 of the Dated Brent. The sell price of the cargo is 80.04$/bbl.

Strategy. The trader expects an increase in prices and decides to enter into two swap
transactions for 630 kb each. The trader fixes the price of the ICE Brent swap (i.e., at 80.04$/bbl)
and the DFL (i.e., at –50 cts/bbl). This way the trader locks in a margin against his or her
physical operation, as indicated in Table 1.6.

However, the trader can hedge the risk by using a portfolio combination of swaps and
futures. According to the equations introduced earlier, the trader knows that

Dated Brent swapt1 = ICE Brent swapt1 + DFLt1
ICE swapt1 = (ICE Brent futuret2 × g1 + ICE Brent futuret3 × g2)∕G

Strategy. The ICE June swap is calculated according to the above equation, yielding

ICE swap June 14 = (ICE Brent future July 14 × 9 + ICE Brent future August 14 × 12) ∕21

Therefore, the ICE June swap is comprised of:

1. 270 lots of ICE Brent July.
2. 360 lots of ICE Brent August.

For this reason the trader buys 270 lots of ICE Brent July (i.e., at $79.04/bbl) and 360 lots
of ICE Brent August (i.e., at $80.80/bbl) for an average buy price of the future of $80/bbl:

June dated Brent swap = June ICE Brent swap + June DFL

TABLE 1.6

COST PROFIT

Physical Avg. June 14 of Dated Brent 80.04$/bbl
ICE Brent Swap 80.04 $/bbl Avg. June 14 of ICE Brent

Hedge Avg. June 14 of Dated Brent
DFL Swap Avg. June 14 of ICE Brent

50 cts/bbl
RESULT 50 cts/bbl

81 kb = 1000 barrels.
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TABLE 1.7

COST PROFIT

Physical 80.04 $/bbl
Future July Avg. June 14 of Dated Brent
Future Aug 270 lots @ 79.04 $/bbl

Average 360 lots @ 80.80 $/bbl
80.04 $/bbl ?

Hedge Avg. June 14 of Dated Brent
DFL Swap Avg. June 14 of ICE Brent 50 cts/bbl

TARGET RESULT 50 cts/bbl

Therefore, the trader buys a fixed swap on June DFL at a price of –0.50 cts/bbl. The
portfolio leads to the trader’s risk profile indicated in Table 1.7. Without any further action, the
trader runs the risk that the average of the June settlement prices of ICE Brent will be lower
than $80.04/bbl.

Therefore, during June, the trader will sell 30 lots per day at the ICE Brent settlement
price, following the programme indicated in Table 1.8. By selling every day 1/21 of the total
630,000 barrels, the trader will be able to replicate the average of June’s ICE Brent settlement
prices.

TABLE 1.8

Trade Date Lots Expiry Date

02/06/2014 30 July14
03/06/2014 30 July14
04/06/2014 30 July14
05/06/2014 30 July14
06/06/2014 30 July14
09/06/2014 30 July14
10/06/2014 30 July14
11/06/2014 30 July14
12/06/2014 30 July14
13/06/2014 30 Aug14
16/06/2014 30 Aug14
17/06/2014 30 Aug14
18/06/2014 30 Aug14
19/06/2014 30 Aug14
20/06/2014 30 Aug14
23/06/2014 30 Aug14
24/06/2014 30 Aug14
25/06/2014 30 Aug14
26/06/2014 30 Aug14
27/06/2014 30 Aug14
30/06/2014 30 Aug14
Total Lots 630
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TABLE 1.9

COST PROFIT

Physical Avg. June 14 of Dated Brent 80.04 $/bbl
Future July 270 lots @ 79.04 $/bbl
Future Aug 360 lots @ 80.80 $/bbl

Average 80.04 $/bbl Avg. June 14 of ICE Brent
Hedge Avg. June 14 of Dated Brent

DFL Swap Avg. June 14 of ICE Brent 50 cts/bbl
RESULT 50 cts/bbl

In this selling strategy, the average sell prices of the futures are equivalent to the monthly
average of June’s ICE Brent. The result of this strategy is exactly the same as that presented
above, shown here in Table 1.9. For the sake of simplicity, no cost related to futures execution
is assumed and it is further assumed that there are no bids or offers for swaps.

Crude Oil Storage or Contango Capture The most common practices are land storage
and floating storage. For the sake of simplicity, the following identifies all land storage and
floating storage as simply storage.

Storage is the practice of taking advantage of a price differential between two different
time periods by using a combination of physical deals, physical facilities (storage or vessels)
and derivatives. It is a widespread practice in physical and financial commodity trading. Such
deals take advantage of a particular market situation, where there exists an excess of supply
in which the spot prices are lower than the forward prices and the shape of the forward curve
shows a steep contango. Since a large majority of the risk can be hedged, these deals carry a
limited amount of commodity price risk.

For the sake of clarity, the following example does not consider the physical differential
of the different crudes but only hedgeable underlyings. Typical storage activity for a cargo of
crude oil is described below.

Situation. A trader buys, on 25 June 2014, a crude oil cargo of Forties with a bill of lading
(b/l) of 23 July 20149 (and stores it for resale on 12 December 2014). The buy price is the
average for Dated Brent over the week from 21 to 25 July, the cost of the storage is equal to
$2/bbl and the sell price is the average over the month of December for Dated Brent.

The storage cost generally involves:

1. The physical cost to store the crude and rent the tank.
2. The financial cost of paying for the crude oil cargo in July and reselling it in December.
3. Possible loss of crude oil in storing and loading operations (loss).

For the sake of simplicity, these costs are considered to be linear and equal to 40 cts per
month; therefore, the total cost from 23 July to 30 December is $2/bbl.

9A bill of lading is generated by a shipper; it details a shipment of merchandise, gives title to the goods
and requires the carrier to deliver the merchandise to the appropriate party.
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TABLE 1.10

COST PROFIT

Physical Avg. Dated Brent from 21 to
25 of July

Storage Cost – 2 $/bbl

Avg. December 14 of
Dated Brent

Hedge Strategy 1 Dated Brent Swap 80 $/bbl Avg. Dated Brent from 21
to 25 of July

Hedge Strategy 2 Dated Brent Swap Avg. December 14 of Dated
Brent

83 $/bbl

RESULT 1 $ bbl

As discussed above, the trader executes an operation in the financial market that guar-
antees opposite flows of the physical contract. On 25 June, the trader executes the following
operations:

1. Buys fixed at $80/bbl and sells the average for Dated Brent over the week from 21 to
25 July 600 kb.

2. Sells fixed at $83/bbl and buys the average over the month of December 2014 of Dated
Brent for 600 kb.

On the basis of the combined operations above, the trader neutralizes any risk resulting
from the fluctuation of prices and locks in a certain result, as indicated in Table 1.10.

In the following example, the market conditions change and the trader is interested in
reselling the cargo before December.

Situation. A trader buys, on 25 July 2014, a crude oil cargo b/l 23 July 2014 and stores it
for resale on 30 December 2014. The trader has already hedged the cargo but on 25 October
2014 sells it b/l 30 November 2014 because the market conditions are favourable. The buy
price is the average month over July for Dated Brent, storage costs equal $2/bbl and the sell
price expected is the average over the month of December for Dated Brent, but the sell price
realized is the average over the month of November for Dated Brent + $1/bbl. In addition, the
storage costs are lower, at $1.60/bbl, because the product is sold one month in advance.

On 25 June the trader executes the following operations:

1. Buys fixed at $80/bbl and sells the average for Dated Brent over the week from 21 to
25 July for 600 kb.

2. Sells fixed at $83/bbl and buys the monthly average over the month of December 2014 of
Dated Brent for 600 kb.

On 25 October the trader executes the following operations:

1. Sells fixed at $82.75/bbl and sells the monthly average over the month of November 2014
of Dated Brent for 600 kb.

2. Buys fixed at $83.5/bbl and buys the monthly average over the month of December 2014
of Dated Brent for 600 kb.



Oil Markets and Products 59

TABLE 1.11

COST PROFIT

Physical Avg. Dated Brent from 21 to 25 July
Storage Cost – 1.6 $/bbl

Avg. December 14 of
Dated Brent

Hedge Strategy 1 Dated Brent Swap 80 $/bbl Avg. Dated Brent from
21 to 25 July

Hedge Strategy 2 Dated Brent Swap Avg. December 10 of Dated Brent 83 $/bbl
Hedge Strategy 3 Dated Brent Swap Avg. November 14 of Dated Brent 82.75 $/bbl
Hedge Strategy 4 Dated Brent Swap 83.5 $/bbl Avg. December 14 of

Dated Brent
RESULT 1.65 $/bbl

On the basis of the combined derivative operations, the trader neutralizes any risk resulting
from fluctuations in prices and locks in a certain result higher than the $1/bbl locked in on
25 June. Table 1.11 summarizes the details.

Arbitrage Opportunities: Geographical Arbitrage on Products and Crude Oil The
following describes the most important arbitrage possibilities.

Arbitrage is the practice of taking advantage of a price differential between two or more
markets by using a combination of physical deals and derivatives. It is a widespread practice in
both the trading of financial instruments (especially Forex and international interest rates) and
in commodity trading. Such deals take advantage of a particular market situation that presents
itself irregularly, in which the commodity markets in a certain area place a higher premium on
a commodity than the market in another area. Since a large majority of the risk can be hedged,
these deals carry a limited amount of commodity price risk.

Typical major flows of arbitrage on oil-related commodities include the following:

1. Procure gasoil in the United States and move it to/sell it in European markets.
2. Procure crudes in West Africa on a Brent-related price base and sell in US markets at

WTI-related prices.
3. Procure middle distillates in the Far East (Japan, Korea) and move them to/sell them in

European markets.
4. Procure naphtha or fuel oil in European markets and move them to/sell them in the Middle

East or the Far East.

These flows can form, depending on specific circumstances, a significant part of the
activities of major oil and trading companies. However, the major flows are changing on the
basis of the evolution of the supply and demand of crude oil and products. The following
example tries to describe the main problems faced by a trader the moment he or she wants to
take advantage of an arbitrage.

The characteristics of arbitrage opportunities are the following.

1. Limited duration. Arbitrages, being related to differences in market indices, ‘open’ and
‘close’ irregularly, according to the fluctuations of relative markets. Therefore, arbitrage
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opportunities require a very rapid approach to lock them in. As an example, the arbitrage
between Brent and WTI crudes has exhibited this recent historical trend.

2. Involvement of multiple factors with different time scales. A typical commodity arbi-
trage opportunity involves a physical buy, a physical sale, the structuring of a derivatives
hedge/lock-in operation and chartering a ship. All these factors have different time dynam-
ics, as follows:
(a) The derivatives operation (1) is essentially instantaneous in terms of execution; (2)

can span several months and even exceed one year.
(b) Physical deals can require several days to assemble and must be executed within

defined time frames before loading or delivering the cargo (a few weeks for crudes,
5 to 15 days for other products).

(c) The shipping component can require several days to charter, which is typically done
relatively close to the actual date of travel (both in the case of a spot charter and in the
case of dispatching a controlled ship, since scheduling is done as close as possible to
the actual travel dates). Shipping operations, to an extent, may also be covered with
derivatives (through freight forward agreements, or FFAs).

To understand better the hedging scheme connected with arbitrage strategies, we analyse
the following:

1. The variables that concur with the result of the strategy.
2. The opportunities of a physical trader who is in charge of selling a cargo of West African

Crude oil.
3. The possible result.

In fact, a trader must consider many different variables to implement an arbitrage, as
indicated here:

1. ΔWTI = physical differential at which the physical trader sells the cargo in the United
States.

2. ΔFOB = physical differential at which the physical trader buys or sells the cargo.
3. Freight = cost of the vessel to deliver the crude oil.
4. Other cost = lightening, loss, etc.
5. Financial cost = cost of the holding storage and FX hedging.
6. Paper result t0 = for example, the differential at t0 between Dated Brent and WTI.

For the sake of clarity, a strategy connected with the different geographical benchmarks
(i.e., WTI and Dated Brent) is considered here. All other costs are defined just as transportation
costs.

Situation. A trader buys, on 25 June 2014, a crude oil cargo of 1000 kb b/l 30 July 2014.
The buy price is the average over the month of July for Dated Brent + $1/bbl (ΔFOB). The
trader can choose one of the following strategies:

1. Sell the cargo FOB at the Dated Brent average for July + ΔFOB.
2. Buy the cargo FOB on a Dated Brent basis and sell it delivered to the United States on a

WTI basis.
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TABLE 1.12

COST PROFIT

Physical Avg. July 14 of Dated Brent + 1 $/bbl
Physical Avg. July 14 of Dated Brent + 1.5 $/bbl
RESULT 0.5 $/bbl

In the first case the trader makes a profit if the buy price is lower than the sell price. There
is no risk in this operation which could be eliminated with derivatives. The trader knows the
quality of his or her own cargo and the demand of the market for that specific crude oil, but
there are no derivatives to hedge the physical differentials of the different types of crude oil.

In the second case, the trader obtains a profit if the following holds:

(Paper result t0) − Transportation cost + ΔWTI − ΔFOB1 > ΔFOB1 − ΔFOB2

Situation. A trader buys, on 25 June 2014, a crude oil cargo of 1000 kb b/l 30 July 2014.
The buy price is the average month of July for Dated Brent + $1/bbl (ΔFOB). The trader can
choose one of the following strategies:

1. Sell the cargo at the Dated Brent average for July + $1.5/bbl (ΔFOB).
2. Sell the cargo in the United States at the price of the NYMEX October WTI of 20 August

2014.

In the first case the trader can lock in a certain margin of $0.5/bbl, as indicated in
Table 1.12.

In the following case the trader decides that it is more profitable to deliver the cargo in
the United States. Therefore, the trader implements the following trading strategies:

1. Buys fixed at $80/bbl and sells the monthly average over the month of July 2014 of the
Dated Brent for 1000 kb.

2. Sells 1000 lots of NYMEX October futures at $84/bbl.
3. Buys 1000 lots of NYMEX October futures at the 20 August 2014 settlement price.
4. Fixes the cost to deliver the crude oil cargo in the United States at $2/bbl.
5. The physical differential at which the physical trader sells the cargo in the United States

(ΔWTI) is 10 cts/bbl.

The result of this strategy is $1.1/bbl, which is higher than the 50 cts/bbl obtainable by
reselling the crude oil cargo in the area. The results are summarized in Table 1.13.

1.3.5.3 Product Strategy

Hedging a Physical ULSD Cargo Situation. A trader buys, on 15 May 2014, a cargo of
ULSD 10 ppm of 31.5 kt from a refinery in Italy. The buy price is the average for June 2014
of ULSD 10 ppm CIF MED. The sell price of the cargo is $935/MT.

Strategy. The trader expects an increase in prices and decides to enter into two swap
transactions of 31.5 kt each and fixes the price of the ICE gasoil swap (i.e., at $900/bbl) and
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TABLE 1.13

COST PROFIT

Physical Avg. July 1 of Dated Brent +
1 $/bbl

Physical Transportation Cost 2 $/bbl NYMEX October WTI
20/08/2010 + 0.1 $/bbl

Hedge Strategy 1 Dated Brent Swap 80 $/bbl Avg. Dated Brent of July
Hedge Strategy 2 NYMEX Future 1000 lots of NYMEX

October WTI @
20/08/2010

1000 lots of NYMEX
October WTI @ 84

RESULT 1.1 $/bbl

the ULSD 10 ppm CIF MED differential (i.e., at $30/MT). In this way the trader locks in a
margin against his or her physical operation, as indicated in Table 1.14.

However, the trader can hedge the risk by using a portfolio combination of swaps and
futures. According to the equations introduced earlier, the trader knows that

10 ppm CIF MED swapt1 = ICE gasoil swapt1 + 10 ppm CIF MED differentialt1
ICE gasoil swapt1 =

(
ICE gasoil futuret1 × g1 + ICE gasoil futuret2 × g2

)
∕G

Strategy. The ICE June swap is calculated according to the above equation, yielding

ICE swap June 14 = (ICE gasoil future June 14 × 8 + ICE gasoil future July 14 × 13) ∕21

Therefore, the ICE June swap is comprised of:

1. 120 lots of ICE gasoil June.
2. 195 lots of ICE gasoil July.

For this reason the trader buys 120 lots of ICE gasoil June (i.e., at $902.25/MT) and buys
195 lots of ICE gasoil July (i.e., at $898.75/MT) for an average buy price of the swap of
$900/MT:

June 10 ppm CIF MED swap = June ICE gasoil swap

+10 ppm CIF MED differential June swap

TABLE 1.14

COST PROFIT

Physical Avg. June of 14 ppm CIF
MED

935 $/bbl

Hedge Average 900 $/mt Avg. June 14 of ICE Gasoil
10 ppm CIF MED

differetial
Avg. June 14 of ICE Gasoil Avg. June of 14 ppm CIF

MED
30 $/mt

RESULT 5 $/mt
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TABLE 1.15

COST PROFIT

Physical Avg. June of 10 ppm CIF
MED

935 $/bbl

Hedge Future June 120 lots @ 902.25 $/mt
Future July 195 lots @ 898.75 $/mt

Average 900 $/mt ?
10 ppm CIF MED

differential
Avg. June of ICE Gasoil

30 $/mt Avg. June of 10 ppm CIF
MED

RESULT 5 $/mt

Therefore, the trader buys a fixed swap on June 10 ppm CIF MED differential swap at
the price of $30/MT. The portfolio gives the trader the risk profile indicated in Table 1.15.
Without any further action, the trader runs the risk that the average June settlement price of
ICE gasoil will be lower than $900/MT.

Therefore, during June the trader will sell 15 lots per day at the ICE gasoil settlement
price, following the programme indicated in Table 1.16. By selling every day 1/21 of the total

TABLE 1.16

Trade Date Lots Expiry Date

02/06/2014 15 June14
03/06/2014 15 June14
04/06/2014 15 June14
05/06/2015 15 June14
06/06/2014 15 June14
09/06/2014 15 June14
10/06/2014 15 June14
11/06/2014 15 July14
12/06/2014 15 July14
13/06/2014 15 July14
16/06/2014 15 July14
17/06/2014 15 July14
18/06/2014 15 July14
19/06/2014 15 July14
20/06/2014 15 July14
23/06/2014 15 July14
24/06/2014 15 July14
25/06/2014 15 July14
26/06/2014 15 July14
27/06/2014 15 July14
30/06/2014 15 July14
Total Lots 315
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TABLE 1.17

COST PROFIT

Physical Avg. June 14 of 10 ppm CIF
MED

935 $/bbl

Hedge Future June 120 lots @ 902.25 $/mt
Future July 195 lots @ 898.75 $/mt

Average 900 $/mt Avg. June of ICE Gasoil
10 ppm CIF MED

differential
Avg. June 14 of ICE Gasoil

30 $/mt Avg. June of 10 ppm CIF
MED

RESULT 5 $/mt

31,500 metric tonnes, the trader will be able to replicate the average of June’s ICE gasoil
settlement prices.

With this selling strategy, the average sell prices of the futures are equivalent to the
monthly average over June of the ICE gasoil price. The result of this strategy is exactly the
same as that presented above, shown here in Table 1.17. For the sake of simplicity, the costs
related to the futures execution are not considered and it is further assumed that there are no
bids or offers for swaps.

Product Storage or Contango Capture As we have already seen in the crude oil section,
the most common practices are land storage or floating storage. For the sake of simplicity, the
following identifies both land storage and floating storage as simply storage.

Below is an example of typical storage activity for a cargo of diesel.
Situation. A trader buys, on 25 June 2014, a diesel cargo with b/l 23 July 2014 and stores

it for resale on 30 December 2014. The buy price is the average for 10 ppm CIF MED over
July, the cost of storage is equal to $5/MT and the sell price is the average over December for
10 ppm CIF MED.

The storage costs generally comprise the following:

1. The physical cost to store the diesel and rent the tank.
2. The financial cost to pay for the diesel oil cargo in July and resell it in December.
3. Possible loss of diesel in storing and loading operations (loss).

For the sake of simplicity, these costs are considered to be linear and equal to $2 per
month; therefore, the total costs from 23 July to 30 December are $10/MT.

As discussed above, the trader executes an operation in the financial market that guarantees
opposite flows of the physical contract. On 25 June the trader executes the following operations:

1. Buys fixed at $900/MT and sells the average for 10 ppm CIF MED over July for 33 kt.
2. Sells fixed at $920/MT and buys the monthly average over December of 10 ppm CIF

MED for 33 kt.
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TABLE 1.18

COST PROFIT

Physical Avg. July 14 of 10 ppm CIF
MED Storage cost – 10 $/mt

Avg. Dec 14 of 10 ppm
CIF MED

Hedge Strategy 1 10 ppm CIF MED 900 $/mt Avg. July 14 of
10 ppm CIF MED

Hedge Strategy 2 10 ppm CIF MED Avg. Dec 14 of 10 ppm CFI
MED

920 $/mt

RESULT 10 $/mt

On the basis of the combined operations above, the trader neutralizes any risk resulting
from fluctuations of the prices and locks in a certain result, as outlined in Table 1.18.

In the following example, the market conditions change and the trader is interested in
reselling the cargo before December.

Situation. A trader buys, on 25 June 2014, a crude oil cargo b/l 23 July 2014 and stores it
for resale on 30 December 2014. The trader has already hedged the cargo but on 25 October
2014 sells it b/l 30 November 2014 because the market conditions are favourable. The buy
price is the average over July for 10 ppm CIF MED, with storage costs of $10/MT. The sell
price expected is the average over December for 10 ppm CIF MED, but the actual sell price
realized is the average over November for 10 ppm CIF MED. In addition, the storage cost is
lower, at $8/MT, because the product is sold one month in advance.

On 25 June the trader executes the following operations:

1. Buys fixed at $900/MT and sells the average for the 10 ppm CIF MED over July for 33 kt.
2. Sells fixed at $920/MT and buys the monthly average over December for 10 ppm CIF

MED for 33 kt.

On 25 October the trader executes the following operations:

1. Sells fixed at $920/MT and sells the monthly average over November of 10 ppm CIF
MED for 33 kt.

2. Buys fixed at $915/MT and buys the monthly average over December for 10 ppm CIF
MED for 33 kt.

TABLE 1.19

COST PROFIT

Physical Avg. July 14 of 10 ppm CIF MED
Storage cost – 8 $/mt

Avg. Nov 14 of 10 ppm CIF
MED

Hedge Strategy 1 10 ppm CIF MED 900 $/mt Avg. July 14 of 10 ppm CIF
MED

Hedge Strategy 2 10 ppm CIF MED Avg. Dec 14 of 10 ppm CIF MED 920 $/mt
Hedge Strategy 3 10 ppm CIF MED Avg. Nov 14 of 10 ppm CIF MED 920 $/mt
Hedge Strategy 4 10 ppm CIF MED 915 $/mt Avg. Dec 14 of 10 ppm CIF

MED
RESULT 17 $/mt
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On the basis of this combination of derivative operations, the trader neutralizes any risk
resulting from fluctuations in the prices and locks in a certain result of $17/MT higher than
the $10/MT locked in on 25 June. See Table 1.19.
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CHAPTER 2
Coal Markets and Products

Lars Schernikau

2.1 INTRODUCTION

The world today depends on fossil fuels – oil, coal and gas (in that order of importance) –
for over 80% of its primary energy. From the time early humans tamed fire, wood or biomass
became their primary energy sources. Coal took over the leading role from biomass during
the Industrial Revolution and accounted for over 60% of the world’s primary energy by the
early 1900s. The current age is often referred to as the ‘Oil Age’ (or the end thereof), which is
somewhat appropriate considering that about 35% of the world’s primary energy still comes
from oil. However, today about 27% of the world’s primary energy and more than 40% of the
world’s electricity comes from coal. In addition, about 66% of the world’s steel is produced
using coal (IEA – Statistics, 2012; VDKI, 2006, 2011, 2012) and coal is now expected to
overtake oil again as the most important source of energy.

The World Coal Institute already projected a decade ago that coal will again become the
primary source of energy in the future (see Figure 2.1). Despite the fact that the illustration
may change slightly (especially the gas section) considering the recent shale gas revolution
in North America, it does correspond to the global belief that future electricity demand will
largely be met by coal as a fuel at least for decades to come.

The world’s appetite for energy is still far from being met. Today, about 1.6 billion
people (or almost one-quarter of the world’s 7 billion inhabitants) are still without access
to electricity. Of the remainder, over 2 billion people are dependent on primitive or erratic
electricity supply. In 2030, the world’s population is expected to have reached 8–9 billion. By
then, about 1.4 billion people will still lack access to electricity (VDKI, 2006, 2011). Thus, it
is expected that there will be over 1.5 billion new power customers in the next two decades.
The international strategy consulting firm The Boston Consulting Group has tellingly named
a series of its successful economic consumer studies The Next Billion Consumers, indicating
the huge growth in demand that the energy industry is facing. The growth in energy demand
is primarily driven by non-OECD countries such as China and India (see Figure 2.2).

Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Edited by
Andrea Roncoroni, Gianluca Fusai and Mark Cummins.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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In the 1990s, certain events and market phenomena created a false sense of energy security
in the Western world (see Yaxley, 2006). The Berlin Wall fell, and with it a decades-old enemy
system. The victory of the international coalition in the first Gulf War and further European
Union expansion deepened the false sense of geopolitical security. There was also a tendency
to misinterpret energy policy as an extended arm of climate policy. Politics and modern
environmentalism increasingly regarded coal and nuclear energy as a scapegoat. This attitude
was coupled with an overestimation of the short- and mid-term potential of renewable energy.
Overcapacity in coal, oil and gas led to low fossil commodity prices in the late 1990s and
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F IGURE 2.2 Comparison of energy demand growth up to 2030: OECD/non-OECD
Source: EIA, 2011. Author’s analysis.
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the early 2000s, which in turn resulted in dangerous oversight of the unequal distribution of
resources and the limitation of energy resources in the world. The resulting lack of investment
by producers led to false expectations by consumers.

However, the new millennium also brought a set of new circumstances. In the following
years, in the beginning of the third millennium, there was a growing need to reassess energy
policy and to become aware of the importance of fossil fuels, especially coal, and our reliance
on them. The threat of terrorism has increased dramatically, introducing a new type and concept
of enemy for the West. Natural disasters such as Fukushima have raised questions about the
viability of security of nuclear energy. Also, more political problems and rising instability in
supplying countries have shaken the Western world. Oil, coal and gas prices have skyrocketed
(even allowing for the price drops in 2008/2009 and 2012/2013), again raising questions about
the impact of monopolistic and oligopolistic markets on the world economy and, as a result, the
role of governments and protectionism. Renewable energy sources are being re-evaluated and
their potential estimated more realistically than in the 1990s. In addition, the Chinese economic
boom has affected every aspect of the world economy, including almost all commodities and
logistical capacities.

As a result, commodity prices increased sharply (see Figure 2.3) up until the financial
crisis in 2008 and have followed a long-term positive trend ever since (despite increased
volatility). Along with this, coal prices reached unprecedented levels (see Figure 2.4) in 2008
before correcting in 2009 and then continuing a long-term rising trend.

Today, many voices claim that the commodity boom and with it the coal boom are over.
There is no doubt that the abnormally high growth rates of the past 10 years will be a hindrance,
but the reader can judge for him- or herself from the References whether the boom and the
long-term story are really over.

The world seaborne steam coal market continues to be an interesting and, for the energy
economy, a crucial playing field. A lack of investment since 2000 (Kopal, 2007), near-capacity
export production and a new breed of market players influencing prices have ensured continued
if not increased price volatility.
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F IGURE 2.4 Coal price developments 2000 to July 2013
Source: McCloskey Coal Price Index. Author’s analysis.

In the decades to come, despite slowing market growth, there will be no way around
coal. Governments and organizations need to spend more time as well as financial and human
capital on developing technologies to improve the world’s power plant park and to find newer
and better ways of producing and transporting fossil fuel resources rather than fighting coal
(in Germany this opposition runs parallel to the fight against nuclear energy, which has now
prevailed and it will be phased out. Such a phase-out will cost Germany a lot of money and
does not make much economic sense). There is no question that the world needs every possible
megawatt-hour sourced from renewable energy. However, for the foreseeable future, renewable
energy will not satisfy the world’s hunger for energy. Since coal’s lifetime far surpasses that of
other fossil energy resources (see Figure 2.5) it will become increasingly important, especially
once the CO2 problem of coal utilization can be managed.

There is increasing evidence that coal will not only remain one of the key sources for our
energy demand, but actually gain in importance. Despite increased transparency, much of the
coal market is still a very private and closed market with relatively little transparency, partly
as a result of the general public antipathy towards coal. In fact, coal has only been traded on
an international level since the early 1980s, a development that was sparked by the oil crises in
1973 and 1979. However, even today politicians and the scientific community lack the same
level of knowledge about coal compared with oil, gas, nuclear and, increasingly, renewable
energy sources.

Here we argue that coal will fill the gap between the Oil Age and the often-referred-to
‘Solar Age’ of the future, where renewable energy sources will satisfy the majority of the
planet’s hunger for electricity specifically and energy in general. In filling this gap, coal com-
petes head-on with other sources of energy, but coal has the major advantage of being available
in a relatively free market, with supply coming from developed and developing countries alike.

The Achilles’ heel of coal is the justified environmental concern. Currently, coal generates
more CO2 per MWh of electricity produced than any other fossil fuel. With 43%, or 13 Gt of
the total 30 Gt global CO2 emissions stemming from coal, environmental risks demand ‘clean
coal’ technology (IEA – CO2, 2012). Independent of the need to step up efforts for cleaner
production and use of coal, it is crucial that the world increases the speed at which renewable
energy sources are being developed.
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The world produced about 7.2 billion tons of hard coal in 2012, of which almost 1.2 billion
tons was traded internationally. Green border trade totalled 79 million tons. The remaining
1082 million tons traded by sea comprised 256 million tons of coking coal and 826 million
tons of steam coal – the focus of this study (VDKI, 2013). On a side note, the steam coal trade
alone increased 12% from 739 million tons in 2011 to the numbers shown in Figure 2.6 in
2012, a phenomenal step up in one year when few would have expected it.
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F IGURE 2.6 Overview of coal volumes 2012
Source: VDKI (2013). Author’s analysis.
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Steam coal includes all bituminous and most sub-bituminous coals as well as anthracite.
Not included is coking coal or classic lignite coal.

The supply for the global seaborne steam coal market is measured by the production for
export. The capacity is measured by the sum of all export mine capacities. The demand is
measured by seaborne trade. Herein we focus on the power industry’s coal consumption.

This research focuses on the global market. We can do this since Li (2008) and Warell
(2007) have shown that the Atlantic and Pacific coal markets are co-integrated. As a result,
the traditional separation of the Atlantic and Pacific steam coal markets is fading. In any case,
today, the faster growing Pacific market has far surpassed the Atlantic market, a trend that will
continue. The steam coal market has thus become a global market and is relatively unified in
terms of economics. The law of one price acts as a guiding principle for defining the market.

2.2 SOURCE OF COAL – SYNOPSIS OF THE RESOURCE COAL

This chapter serves as an introduction to coal as a resource, examining the process of coal
generation, coal classification and the key characteristics of coal, worldwide coal reserves,
production methods, the competitive situation in the coal supply market, basic economic
production costs and environmental and safety issues involved in the production of coal.

2.2.1 The Fundamenta ls of Energy Sources and Fossi l Fue ls

There are a number of energy sources available for human use. Table 2.1 summarizes these
sources. Terrestrial sources of energy include the fossil fuels coal, oil and gas, as well as
nuclear energy based on uranium. These terrestrial sources accounted for 87% of world
primary energy production and 81% of world electricity production in 2010 (see Figure 2.7).
Solar and other sources – including wind, hydro, biomass, tidal and geothermal energy –
accounted for the remainder, less than 13%. Herein we refer to fossil fuels as primary energy,
which is, scientifically speaking, not very precise. Wolf and Scheer (2005) have pointed out
that fossil fuels are nothing but solar energy coupled with earth matter, water and CO2, which
have turned into biomass. In their very interesting and highly recommended book Öl aus
Sonne – Die Brennstoffformel der Erde (Oil from the Sun – the Earth’s Fuel Formula) they

TABLE 2.1 Overview of sources of energy for human use

Terrestrial sources Solar sources Other sources

Fossil fuels
� Hard Coal
� Lignite
� Oil
� Gas

Direct solar
� Solar radiation

Tidal energy
Geothermal energy

Nuclear energy
� Uranium

Indirect solar
� Wind
� Hydro
� Biomass

Source: Energy: Long-Run Sustainability, BCG Industrial Goods
Alumni Meeting, Munich. Author’s research.
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argue that, in the long run, the burning of fossil energy is a reversible process with solar energy
required as the process energy.

When speaking about fossil energy sources, it is important to note that all carbon-based
fossil energy sources are generated from biomass. Biological and physical processes in the
form of heat and pressure are responsible for the generation of fossil fuels over millions of
years. One could argue that even uranium is a fossil fuel; however, uranium does not develop
through biological and physical processes, but rather during fusion processes in the final phase
of certain stars (supernova).

Today, the majority of our electricity is generated using various industrial processes to
oxidize (combust) the carbon contained in fossil fuels, and biomass for that matter. In this
process, molecules develop in an exothermic reaction whose bonding force (the Coulomb
force) is higher than that of the original molecules (Erdmann and Zweifel, 2008, pp. 15–19).
The energy released in this combustion process is only released through heat.

Formula (2.1) summarizes the amount of energy released through combustion of 1 kg
of carbon content. Formula (2.2) summarizes the theoretical complete combustion of fossil
hydrocarbon fuels resulting in heat plus carbon dioxide and water.

1 kg C + 2.7 kg O2 → 3.7 kg CO2 + 32.8 × 106 J (2.1)

CxHy +
(

x +
y

4

)
O2 → heat + xCO2 +

y

2
H2O (2.2)

Processes such as the steam turbine generator of a coal-fired power plant are required
to generate energy in a form other than heat (i.e., mechanical or electromagnetic energy).
Usually, only those fossil fuels whose energy content is economically utilized through the
chemical reaction of some form of combustion are used for such energy sources. Fossil fuels
are also finite. We are consuming them far faster than they can be produced. This is one key
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fact on which environmentalists base their protest. This is also a key fact for the coal industry
to consider. However, coal reserves and resources will far outlast those of oil and gas, and
mankind continues to find new reserves and resources. Nevertheless, the smart and economical
use of our planet’s fossil fuels will remain a key political and technological challenge until
humans are able to satisfy their energy demand primarily from solar sources.

2.2.2 Process of Coal Format ion

Today’s hard coal resources were generated in the carboniferous era about 360–290 million
years ago. The carboniferous era was named for the coalification process that took place at
that time. During that era the continents had not yet reached their current position. The climate
was mild, and morasses, swamps and large forests covered the land masses.

Two phases were required for the generation of coal:

1. Biochemical process – peat development under airtight conditions.
2. Geochemical process – coalification through heat and pressure exerted on the peat.

In the first phase, the climate as well as the flora and fauna were important for coal to
develop. Biological remains of plants such as ferns and trees could not always decay or rot
fully because they were compressed at the bottom of swamps or morasses. As a result, the
usual aerobic process of rotting could not occur, and peat developed.

In the second phase, large amounts of heat and pressure were exerted on the peat-like
material over hundreds of millions of years. The peat was covered by new oceans and land
masses that developed over time. Geological movements of land masses, the creation of
mountain ranges and tectonic eruptions were required to generate today’s coal resources.
Through heat and pressure the water and other ‘impurities’ in the peat slowly volatized.

Through the coalification process biomass obtains the properties shown in Figure 2.8. In
the final stages, diamonds develop (Krüger, 2007). In the two extremes and for illustration,
today’s lignite resources first developed in the tertiary era about 65.2 million years ago, while
diamonds that surface today are estimated to be between 1 and 3 billion years old.

Oil and gas differ from coal in their generation. Whereas coal developed mostly from
terrestrial plants, most geologists support the biogenic theory in which oil and gas developed
from small life forms and other ancient organic material. Here also compression and heat
under oxygen-free conditions were required for the process to take place. This process also
started over 300 million years ago.

Plants Peat Lignite Hard Coal Anthracite Diamonds 

F IGURE 2.8 Coalification process

2.2.3 Coal C lassi f icat ion

Ever since coal replaced wood-based biomass as the primary source of energy in the early
1800s, various classifications of coal have been developed. Today, coal is generally divided
into low-rank coal and high-rank coal, which is often referred to as hard coal.
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Figure 2.9 provides a good overview of the general classification of coal products. Here,
hard coal includes all bituminous coal and anthracite. Today, however, some sub-bituminous
coal is also classified as hard coal (e.g., Indonesian sub-bituminous coal which is part of
internationally traded steam coal).

Figure 2.10 provides a more detailed overview of various US-, UN- and German-based
classification methods, including their official name. The classification of coal is generally
derived from the key coal characteristics: (a) energy content or calorific value (in the coal
industry, indicated by the abbreviation CV); (b) total moisture content (indicated by the
abbreviation TM); and (c) volatile content.
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Herein we refer to hard coal and steam coal. Steam coal is usually treated as a subsection
of hard coal. Steam coal for our purposes includes anthracite (even if not used in the power
industry), but excludes coking coal. Hard coal includes all coking coal. However, many industry
specialists regard hard coal as excluding sub-bituminous coals. For the purpose of this section,
sub-bituminous coal is included in the category of steam coal. Later, when looking at reserves
and resources, we will only refer to hard coal since it is currently close to impossible to
differentiate coking coal and non-coking coal or steam coal when discussing global reserves
and resources.

2.2.3.1 Calor i f ic Value The calorific value (or CV) is stated in kcal/kg or MJ/kg (equal
to GJ/t). The lower heating value (LHV) – also known as the net calorific value (net CV, or
NCV) – of a fuel is defined as the amount of heat released by combusting a specified quantity
of product (initially at 25◦C or another reference state) and returning the temperature of the
combustion product to 150◦C. The NCV assumes that the latent heat of vaporization of the
water in the fuel and the reaction products are not recovered. It is useful in comparing fuels
when the condensation of the combustion products is impractical, or heat at a temperature
below 150◦C cannot be put to use. The NCV is generally used in the European coal trading
business, which dominates the Atlantic coal trading market. Coal traded in the Atlantic market
typically reaches a CV of 6000 kcal/kg net as received.

In contrast, the gross CV (GCV) or higher heating value (HHV) includes the heat of
condensation of the water in the combustion products. The GCV is generally used in the
Asian coal trading business, which dominates the Pacific coal trading market. Coal traded
in the Atlantic market specifically for Asian customers typically reaches a GCV of 5500 to
6700 kcal/kg gross air dried. For converting gross into net or as received into air dried basis,
please see below and refer to Table 2.2.

For comparison and to summarize, the NCV is the ‘net energy’ contained in coal that
the power plant can use to generate electricity. The GCV is the ‘complete energy’ that coal
contains. However, part of this energy is required to vaporize the water in the coal when
generating heat.

The following formulas, especially the simplified ones, are used in the coal industry to
convert GCV into NCV or NCV into GCV:

NCV(ar) = GCV(ar) − 50.6H − 5.85TM − 0.191O

Simplification 1: NCV(ar) = GCV(ar) − 6(9H + TM)

Simplification 2: NCV(ar) = GCV(ar) − 260∕300 kcal∕kg

where H = hydrogen content; TM = total moisture content; O = oxygen content. Note:
Simplification 2 assumes typical bituminous coal with 10% TM and 25% volatile matter.

TABLE 2.2 Converting coal characteristics: ar, adb, db, daf

To obtain
multiply

As received
(ar)

Air dried basis
(adb)

Dry basis
(db)

Dry ash free
(daf)

ar by (100-IM%)/(100-TM%) 100/(100-TM%)
adb by (100-TM%)/(100-IM%) 100/(100-IM%)
db by (100-TM%)/100 (100-IM%)/100 100/(100-A%)

Note: IM = inherent moisture; TM = total moisture; A = ash.
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The most frequently used simplified formulas for converting steam coal from the Atlantic
market standard net as received (nar, or NCV(ar)) into the Pacific market standard gross air
dried (gad, or GCV(adb)), and vice versa, are summarized below:

NCV(ar) = [1 − (TM − IM) × GCV(ad)] − 260 kcal∕kg

NCV(ar) = GCV(ad) − 550∕600 kcal∕kg

where IM = inherent moisture; TM = total moisture.
It should be noted that the CV is the key characteristic in the coal trade. This seems

obvious, but the CV is not as simple as it first appears to be. It must be remembered that the
coal customer in the end buys energy content per ton delivered to its power plant. Thus, a
higher CV will not only reduce the relative cost of transportation per ton of coal transported
but also have an impact on the efficiency reached in the power plant when measured per ton
of input product. However, an overly high CV may result in overly high temperatures in the
boiler and therefore cause technical problems. Even some veterans in the coal trading industry
often forget these very important facts about CV.

In contrast, there is a general trend towards lower CVs when looking at international coal
supplies. Indonesian export volumes have increased significantly and are often of lower CV
content. South African exported coal products have also dropped in CV due to geological
circumstances as well as for wash plant capacity reasons. Coal from Russia has also dropped
in CV due to geological reasons. Long-term, it is expected that exported coal will continue to
drop in CV. This will increase the relative cost of transportation and also pose challenges for
old and new power plants. All else being equal, the falling CV will result in higher prices per
delivered ton of coal. Thus, economically speaking, the trend towards lower CV coal does not
make much sense; the relatively lower per ton cost is mostly offset by higher relative transport
costs and lower power plant efficiencies. In mid-2013, when high-CV coal prices dropped
faster than low-CV coal prices, for the first time in a decade power plants reconsidered their
strategy of moving towards lower CV coal qualities and started shifting back to higher CV
coal where possible.

2.2.3.2 Bal last : Moisture and Ash Content The key components in coal that do not
carry calorific value are the moisture content and ash. Both together are referred to as ballast.
The higher the ballast, the lower the carbon content and therefore the calorific value and
vice versa.

Moisture. All mined coal is wet. When coal is mined, the product will include groundwater
and other extraneous moisture – also referred to as adventitious moisture. The moisture that
is held within the coal itself is called inherent moisture (IM). The total moisture content, both
adventitious and inherent, is called just that: total moisture (TM).

Ash. This is an inorganic matter (i.e., sand crystals) and the residue left after coal is burnt.
Thus, ash is non-combustible. It represents the bulk mineral matter after carbon, oxygen, sul-
phur and moisture (including from clays) have been driven off during the combustion process.
High ash contents in bituminous coals can be ‘washed out’ in a chemical and mechanical
process called coal washing. For instance, almost 100% of South African export coal (about
65 million tons p.a.) is first washed before shipping. Indonesian coal, on the contrary, tends to
have very low ash content.

Ash fusion temperature (AFT). When considering ash in coal, it is also important to
understand about fusion temperatures. Ash is a non-combustible component. However, at
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very high temperatures (i.e., above 1000◦C), ash or the crystals held within it will melt. The
temperature at which ash melts is called the ash fusion temperature.

2.2.3.3 Volat i le Matter The volatile matter (also called volatiles, volatile content or
VM) in coal refers to those components of coal, except for moisture, which are released
at high temperature in the absence of air. VM is usually a mixture of short- and long-chain
hydrocarbons, aromatic hydrocarbons and some sulphur. The volatile content is a key indication
of how the coal will burn and what characteristic the flame will have. For instance, high-volatile
coal tends to burn more quickly with a larger flame. Also, the coal self-ignites much quicker.
Low-volatile coal, in contrast, tends to burn more slowly with a lower flame, but also at higher
temperatures.

The volatile content can also be expressed on an as received (ar), air dried or dried basis.
Typical volatiles of steam coal range from 20 to 40% ar. For example, Indonesian coal tends
to have around 40% ar (therefore, it also self-combusts faster) and South African coal tends
to have around 25% ar. Russian and Colombian coal tends to have 30 to 35% volatiles ar.

High-volatile coal with volatiles around or above 40% ar can slowly devolatize over time
when exposed to oxygen. Since the volatiles also contain hydrocarbons, this also means that
the calorific value of high-volatile coal can decline over time. This is especially a risk with
lower calorific material, such as sub-bituminous, or younger, coal. As such, the ability to store
low-CV/high-volatile coal is significantly reduced and such coal needs to be burnt quickly
after it has been mined.

2.2.3.4 F ixed Carbon Content The carbon content of coal (called the ultimate carbon
content) is responsible for the energy contained. The fixed carbon content of coal does not
equal the ultimate carbon content. Fixed carbon is the carbon found in the material, which is
left after volatile materials are driven off. This differs from the ultimate carbon content of the
coal because some carbon is lost in hydrocarbons with the volatiles. Fixed carbon (FC) is used
as an estimate of the amount of coke that will be yielded from a sample of coal and therefore is
especially relevant for anthracite products or coking coal. The fixed carbon content is only of
marginal importance for the power industry as the calorific value, ballast and volatile matter
describe the coal well enough for power generation purposes. The ultimate carbon content,
however, will determine the amount of CO2 generated when burning the coal. Thus, the CV to
C-content ratio is crucial when finding coal with the lowest CO2 emission per MWh produced.

Fixed carbon is determined by removing the mass of volatiles determined by the volatility
test above from the original mass of the coal sample. Often, fixed carbon is determined by
difference:

FC(db) = 100 − VM(db) − ash(db)

Note that the above formula only works on a dried basis and not on an as received or air
dried basis.

2.2.3.5 Sulphur, S ize , Grindabi l i ty, N i trogen, Chlor ine and F lour The sulphur con-
tent of coal is the last of the key coal characteristics important for the steam coal market. Coal
quality and sulphur content are usually inversely related to each other. However, since most
power plant consumers can blend the coal they utilize inside the boiler at their own storage
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facility, consumers often blend low-sulphur coal with high-sulphur coal, resulting in a better
market potential for higher-sulphur material as well.

Less important for steam coal, but relevant for coking coal, is that sulphur comes in
organic and inorganic, usually pyritic (FeS2), forms. Besides pyrite there can be marcasite
and sulphates, though the sulphate content is usually low unless the pyrite has been oxidized.
The forms of organic sulphur are less well established and organic sulphur cannot be removed
by physical means; existing chemical processes for removing organic sulphurs are usually
very expensive. Inorganic sulphur (called ‘pyritic sulphur’ because it is combined with iron
to form iron pyrite) washes out relatively easily when the ash of coal is reduced in washing
processes.

The size of the coal in millimetres is another important factor for hard coal. Steam
coal for power generation is usually offered in 0–50 mm size with maximum 5–10% above
50 mm. Since modern power plants work with pulverization, in theory, one could even supply
0–6 mm coal, however, here the risk of dust and environmental problems is very high. The grain
size affects the transportation on belts and the choice of mills in the power plant. Sized coal
(separated with screens) is traded at a significant price premium of around 10–40% compared
with similar ‘fine’ coal. Such sized coal is used for domestic purposes and industrial uses,
where some older ovens can only work with sized material. Run of mine coal (ROM, or coal
straight from mining without crushing) usually has 0–300 mm size. However, surface mining
can result in larger junks of up to 500+ mm in size. Harder coal is sometimes easier to handle
than softer coal. Harder coal absorbs less moisture during transportation, tends to generate
less dust and does not ‘glue’ to equipment.

Grindability is expressed through the Hardgrove grindability index (HGI). The HGI
determines the hardness of the coal. A high HGI score means soft coal and a low HGI score
means hard coal. Harder coal (i.e., HGI below 40) is more difficult to grind which causes larger
coal particles to be supplied to the boilers. This in turn may result in an increased amount of
unburned coal in the fly ash.

Nitrogen content is responsible for the NOx emission of power plants. NOx is especially
carefully monitored in the UK and the USA. The relationship of the coal nitrogen with
emissions of nitrogen oxides is not clearly understood to date, and thus is an area in which
further research is needed (Davidson, 1994).

Chlorine and fluorine contents affect the performance of the wet flue gas desulphurization
and the gypsum quality. The risk of corrosion increases with higher chlorine and fluorine
values. Chlorine is one of the most troublesome components of coal in combustion applica-
tions, causing slagging, fouling and corrosion. There is substantial evidence that fouling and
corrosion increase as the chlorine content in coal increases above 0.25 to 0.5% ar (IEA Clean
Coal Center, 2008).

2.2.4 Reserves and Resources

The world’s coal resources are widely distributed. One of the major advantages of coal com-
pared with other fossil energy sources is that resources are not only available in developing
countries but also in Europe, Australia, the USA and other countries that are generally con-
sidered part of the Western and more stable world. This is exemplified by Australia’s status as
one of the world’s largest coal exporters.

We shall use the internationally accepted definitions of reserves and resources as detailed
in Figure 2.11.
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Reserves

Proven deposits,

Recoverable in 

an economically 

efficient manner 

using existing 

technologies

Resources

Not proven, but highly likely 

according to geological 

indicators, ‘yet to find’

Proven deposits, not yet 

recoverable in a cost-effective 

manner

Accumulated 

production

Accumulated

production

Reserves

(proven and 

recoverable 

deposits)

In situ resources 

(overall resources, also referred to as in situ coal)

Overall potential (Estimated Ultimate Recovery EUR) = accumulated production, reserves and resources

Remaining potential

Oil,

Gas

Coal

F IGURE 2.11 Definition of coal, oil and gas reserves and resources
Note: The above definitions may vary depending on the source used.
Source: IEA Manual (2006).

Figure 2.12 summarizes the global distribution of hard coal. While total production in
2011 was 7 billion tons, of which about 1 billion tons were exported via sea, total hard coal
reserves are estimated at 755 billion tons (lignite: 283 billion tons), resulting in a theoretical
reserve/production ratio for hard coal of 114 years. The total remaining potential, combin-
ing reserves and resources, is about 17,874 billion tons of hard coal (lignite: 4,435 billion
tons), resulting in a remaining theoretical potential/production ratio for hard coal of about
2,708 years (BGR, 2012). However, when interpreting these numbers it must be remem-
bered that coal reserves and resources do not differentiate between raw coal and sellable
coal. In many countries such as Australia and South Africa, where the coal is washed, only

North America

Cumulative Production since 1950 (2011 production: about 7 billion tons)

Reserves 2011: ∑ = 755 billion tons

Resources 2011: ∑ = 17,119 billion tons

Central and

South America

23145

1.6

Europe
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Austral-Asien
Africa

5082

6,644

8.9

473 479.0

2026

24 121

2,842

80 336

6,862

7

Middle East

1.2

40
26.5

F IGURE 2.12 Global hard coal production, reserves and resources (in billion tons)
Source: BGR (2012). Author’s research and analysis.
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Hard coal reserves by country, 2011 (Bt) Remaining potential by country, 2011 (Bt)

USA (225)

China (181)

India (77)

Russia (69)

South Africa

(34)

Australia (58)

Ukraine (32)

Poland (15)

Indonesia (14)

Kazakhstan (17)
Other (38) Other (698)

China (5,190)

Russia (2,694)

USA (6,682)

India (157)

Australia (153)

Great Britain (187)

Poland (177)

Canada (188)

Kazakhstan (143)
Germany (83)

30%

24%
10%

9%

5%

8%

4%

5%

29%

15%
37%

4%

F IGURE 2.13 Global reserves and resources by country, 2011
Note: resources + reserves = remaining potential.
Source: BGR (2012). Author’s analysis.

65–80% of raw coal translates into sellable coal. Kjaerstad and Johnsson (2008) argue that
the reserve/production ratio is therefore meaningless. While it is agreed here that this factor
makes the figures less reliable, they nonetheless demonstrate that coal is available in abundant
quantities, which is the point we wish to discuss here.

Current production has only scratched the surface of the remaining potential of coal. The
largest potential (reserves plus resources) in tons of hard coal exists in the USA and China
(see Figure 2.13). The reserves of the USA are the largest in the world, which is most likely a
function of the investments in and professional surveys done on US coal reserves.

Reserves are well distributed across the globe, with countries in Asia, Europe, North
America and South America in the top 10. This fact is good news for the international coal
market, in particular for steam coal consumers, since diversified sources translate into greater
reliability of supply. Table 2.3 presents the 10 countries with the largest reserves. Indonesia
is probably the most interesting case. According to the BGR, if it continues to produce at
the current rate it will have exhausted its reserves in only 42 years. This, of course, will not
happen. It indicates the difficulty with such statistics where the availability of data is limited.
In fact, Schernikau World Coal (2013) – Myths and Realities, Indonesia – has clarified that
Indonesia is expected to have over 150 years’ reserves, but it is true that Indonesia’s reserves
are relatively modest considering its status as the largest steam coal exporter in the world.
From Table 2.3 we can determine that the resource/reserve ratio for hard coal is 23:1. This
ratio was 5:1 only 8 years ago according to Ritschel and Schiffer (2007). Thus, even though
resources are reassigned to reserves, relatively speaking, known resources have increased at
an extraordinary pace and are expected to continue to do so.

In general, the estimates of coal reserves and resources are subject to continuous adjust-
ment, similar to the estimates concerning oil and gas. However, while figures for oil and gas
are systematically updated, the same has not been true for coal deposits. The international
community has historically spent much less time and capacity updating data on coal deposits
than those on oil and gas. Also, relatively little effort has gone into researching new and
long-term coal reserves. This has changed already in the past 5 years. For example, the BGR
reported global coal resources almost doubled in 6 years from about 9,000 billion tons in 2006
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to about 18,000 billion tons in 2012. We can expect that figures for coal reserves and resources
will continue to increase significantly.

2.2.5 Coal Min ing and Product ion

Understanding coal mining is important for the economic study of coal because coal mining
costs are a key component of the marginal FOB costs relevant for global long-term pric-
ing. Based on previous work on the international coal market, Schernikau (2010) estimates
that mining costs account for almost 40% of total marginal FOB costs. Inland transporta-
tion accounts for 44% and trans-shipment about 16%. However, the mining companies have
relatively little influence over inland transportation and trans-shipment costs.

2.2.5.1 Coal Min ing Methods About 60% of global coal production is underground or
deep mining, and the remaining 40% is surface mining (World Coal Institute – Resource Coal,
2005). Because of its inherent cost advantage surface mining is much more important for
export coal mines, with an average share of about three-quarters and only about one-quarter
extracted through underground mining (based on author’s FOB cost analysis). The choice
of coal mining method is largely determined by the geological location of the coal seams.
Typically and depending on coal seam thickness, larger coal seams at a depth below 150–
200 m are mined in underground mines (although this also varies from country to country).
Figure 2.14 summarizes the stages of a typical mining project. The mining company decides
whether the resource can be surface mined by the first exploration stage at the latest.

The methods of mining mentioned above differ not only in terms of marginal costs (export
marginal mining costs of 15 USD/mt for deep mining versus 11 USD/mt for surface mining)
but also in terms of investment costs (Schernikau, 2010). However, since only the marginal
costs are relevant for the long-term competitiveness of a product, surface mining will always
have an advantage. This is borne out by the prevalence of surface mining in the global seaborne
steam coal market.

Underground mining is usually conducted in one of two ways:

1. Long-wall mining.
2. Room and pillar mining.

The long-wall mining method is much more efficient and used in the world’s largest mines
(i.e., in Russia, Australia and the USA). Here a mechanical extraction machine or shearers
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F IGURE 2.14 Process of a typical mining project
Source: Author’s research and analysis.
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extract entire seams of coal. The coal face from which the machines extract can vary in length
from 100–400 m. Semi-automated (self-advancing) equipment supports the roof of the coal
seams temporarily with hydraulically powered supports. In most cases, the coal roof collapses
once the machine has moved on. These machines can extract from various seam thicknesses,
between 3 m and 5 m or more. Seeing such equipment in operation is very impressive, but the
mining company often has to spend tens of millions of US dollars just to procure one of these
machines. Also, the planning, installation and training times involved are very long and costly.

Here lies the advantage of room and pillar mining. Mobile machinery that costs 1–5 million
USD per mine can be used and set up very quickly. Here only 50–70% of the coal is mined in
each seam; the remaining 30–50% of the coal remains in the mine and forms the pillars that
support the roof. One moves through the seam from left to right leaving some coal unmined
to form the pillars. The resulting pattern, when viewed from above, looks a bit like a chess
board.

Surface mining is the oldest way of extracting coal from the ground. At its core is the
very basic ‘shovel and truck’ exploitation system. One differentiates between continuous and
discontinuous surface mining. Continuous mines often employ large-wheel bucket excavators,
reclaimers and extensive systems of conveyor belts to move the overburden and coal. Discon-
tinuous mining uses mostly excavators, bulldozers and trucks to extract and move overburden
and coal. The basic surface mining exploitation system is accomplished in five stages: (1) the
selected land area is cleared; (2) the overburden is removed; (3) the coal is extracted; (4) the
coal is trucked to the intermediary stock piles at the mine; and (5) the coal is crushed or
otherwise processed.

Stage 1: Land clearing. Depending on the size of the mine area and its location, this
process may be as simple as removing trees and fauna from the land. In larger and
more populated mine areas, for instance the large lignite mines in the Lausitz region
in the East of Germany, this process may also involve relocating villages, houses and
roads.

Stage 2: Overburden removal. During the exploration phase the mining company deter-
mines the mining plan and the size of the reserve. During this process the so-called
overburden ratio (OB ratio – the average number of cubic metres of overburden that
needs to be removed in order to extract one ton of coal) is determined. The overburden
is removed either in a continuous or a discontinuous way, as explained above. The
overburden needs to be replaced strategically so it does not have to be moved twice.
Sophisticated mines use the overburden they remove from the start of the mine to
refill the mining area after the coal has been extracted at the end of the mine. The
OB ratio is the key economic factor determining mining cost, because removing one
cubic metre of sand costs exactly as much as removing/extracting one cubic metre
of coal (depending on its quality, one ton of raw coal usually equals between 0.9 and
1.3 cubic metres of sand).

Stage 3: Coal extraction. The coal is extracted either in a continuous or – more often in the
case of hard coal – a discontinuous way, the same as the overburden. The key economic
factor during coal extraction is to leave as little coal as possible unmined. In fact,
some countries have regulations that determine how much coal can remain unmined
in the ground. In the case of Russia, usually a maximum of 20% of the reserve may
remain unmined, otherwise the mining company risks losing its exploitation licence.
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With surface mining, most of the coal – usually 85–95% of the reserve – can be
extracted. With underground mining, depending on the method, this figure is usually
lower. The risk of extracting too high a percentage of the reserve is that the coal
quality will decline for two reasons: (1) the coal closer to the roof of the seam often
has higher sulphur contents or other impurities, because geologically the upper parts
filter the water; and (2) the closer you come to the edge of the seam the higher the
chance of extracting sand and other sediments including the ash content of the coal.

Stage 4: Coal hauling, stockpiling. A lot of very large trucks or extensive conveyor belt
systems move the coal from the extraction site to the intermediary stockpiles. The key
economic factor is to design a road and conveyor belt system that is inexpensive to
maintain but minimizes distances. Especially with rising fuel costs, the design phase
is therefore gaining importance. Smaller and less efficient mines will lose more and
more competitive advantage in times of high fuel costs. An added layer of complexity
is caused by the fact that the mine moves, thus requiring roads and any conveyor belt
systems to move as well.

Stage 5: Coal crushing and other amelioration. The mined coal is extracted in what we
call ‘raw’ or ROM form. All ROM coal needs to be treated in one or more ways,
including but not limited to (a) crushing, (b) screening, (c) washing and (d) drying.
For surface mining and for power plant use, all coal is crushed and often screened.
In South Africa and much of Russia, exported coal is also washed.

2.2.5.2 Coal Min ing Investment Costs Investment costs in coal mines can be significant
and need to be analysed in order to understand the future economics of the industry. Especially
in scarce times, even the most expensive producer in the world will want to recuperate his
investment costs. Investment costs include expenditure on developing the deposits before or
during actual production:

� Purchase costs for the land or mining rights.
� One-time licence costs.
� Prospecting and exploration costs.

It is still estimated today – and confirmed historically by Kopal (2007) and Ritschel and
Schiffer (2007) – that total investment costs average about 60 USD for each annual production
ton of coal mining capacity (see also Figure 2.15). Thus, when one develops a mine with one
million tons of output per annum, one will pay on average 60 million USD upfront. Total
financial costs are currently estimated at 6–7 USD per annual production ton, consisting of
2.5–3 USD/ton depreciation assuming a 20-year lifetime of the mine and 3.5–4 USD/ton
interest (assuming 10% average debt service rate).

Investment costs vary widely. For mines with little or no existing infrastructure nearby (i.e.,
lacking roads, rail tracks, water, energy supply, accommodation, etc.) and high CV resources
this cost can be substantially higher. Some greenfield coal projects (requiring large-scale
investment in infrastructure) in remote and undeveloped areas may require specific investments
of up to 160 USD for each annual production ton. From the author’s own experience, however,
some smaller coal mines in logistically superior locations can be developed with investments
as low as 3–10 USD per annual production ton. This is especially true for small mines in
Colombia, South Africa and, of course, Indonesia.
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Relatively speaking, coal has received a very small share of global investment in energy.
This is astonishing, given the importance of coal. As discussed previously (Figure 2.7), 27%
of world primary energy and 41% of world electricity generation is based on coal. However, as
detailed by the IEA World Energy Investment Outlook (2011) and summarized in Figure 2.16,
coal is projected to receive only 6% of global cumulative investments in fossil fuels between
2011 and 2035.

Kopal (2007) and Ritschel and Schiffer (2007) pointed out that this trend has been changing
slowly. Coal has been and will continue to increase its investment share compared with gas and
oil. When coal increases its global investment share, this will translate into higher investment
costs per reserve ton, which in turn will result in higher prices, especially in scarcer times such
as 2007/2008 and 2010/2011.

Nevertheless, the IEA has also determined and confirmed that coal is the least capital-
intensive energy resource compared with oil and gas and has much room to remain competitive
even when investment costs increase (IEA World Energy Investment Outlook, 2011). In fact,
gas requires 4.5 times and oil 5.8 times as much investment as coal with all calorific values
adjusted.

2.2.5.3 Coal Min ing Operat ing Costs Variable or marginal coal mining costs depend
on a number of factors: (1) the type of mining operation (i.e., opencast versus underground,
continuous versus discontinuous); (2) the topography and available infrastructure (i.e., access
to electricity and how hilly the region is); (3) the type of coal (i.e., steam coal versus coking
coal); (4) labour costs; and (5) productivity per man year. The key components of average
opencast mining costs are summarized in Table 2.4.

It is interesting to see that about two-thirds to three-quarters of the variable costs are
driven by fuel and maintenance & repair. Thus, the kind of equipment used in any opencast
mine will determine the efficiency of the mine.
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Total cumulative investments 2011 to 2035: ~20.7 Trillion USD(1)
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investments in electricity generation and 20.7 trillion in coal, oil and gas.
Note: T&D = transmission and distribution; E&D = exploration and development.
Source: IEA World Energy Investment Outlook (2011); Schernikau (2010).

The outlook for operating costs is not positive. There is substantial rationalization and
productivity improvement potential in many smaller and medium-sized mining operations.
However, the key components of fuel and labour will likely increase further in cost. Coupled
with higher investment and thus financing costs, it can be expected that coal production as a
whole will become significantly more expensive in the future. The floor for coal prices on the
international seaborne coal market will therefore increase further. Here is a brief summary of
the drivers causing coal production costs to increase:

� New deposits require longer inland logistics.
� Overburden ratios increase.
� Fuel costs increase.
� Machinery costs increase.
� Royalties and other government charges are likely to increase.
� Coal qualities decrease.

TABLE 2.4 Percentage breakdown of variable mining costs

Category
Typical share of total variable cost

(opencast mine in developing world)

Fuel 30–40%
Maintenance & repair (inc. tyres) 30–40%
Labour 10–20%
Other support functions and royalties 10–20%

Source: Author’s research and analysis.
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2.2.5.4 Coal Amel iorat ion and Coal Washing Crushing, screening, washing and drying
are typical ways of treating or ameliorating ROM coal after it has been extracted. Coal
amelioration costs are an integral part of the total coal mining costs. It is important to note
that all costs for the entire mining and logistics chain are paid on a per-ton basis. Thus, the
earlier the coal is ameliorated the better, since all costs (usually only logistics related) are then
lower per calorific unit. For instance, let’s assume that a South African producer extracts and
hauls the coal at a marginal cost of 8 USD/ton. The producer then washes the coal at a cost
of 3 USD/feed ton to reduce the ash content, producing a yield of 65%. Thus, for each ton
of ROM coal the producer gets 0.65 tons of washed product, yielding 6200 kcal/kg nar. The
coal is then transported to the port and trans-shipped at a total marginal cost of 30 USD/ton.
The coal is finally sold for 60 USD/mt. The sales basis of 6000 kcal/kg nar is the international
standard for South African coal. The net margin achieved for this coal thus equals the sales
price minus the true marginal FOB cost.

Washing means treating coal in order to reduce the ash content. Before washing, the
coal is usually crushed and screened to remove the very fine material (for instance, 2 mm in
size) because fine material does not wash very well and can clog the machinery. The coarser
material is treated using a ‘dense medium separation’. Here the coal is separated from other
impurities by being floated in a tank containing a liquid of specific gravity. Usually, this
liquid is a suspension of finely ground magnetite. The lighter coal floats and can be separated
from the heavier rock and other impure materials that sink (World Coal Institute – Resource
Coal, 2005).

Figure 2.17 shows a mobile wash plant capable of treating 100 tons of ROM coal per
hour. Larger stationary wash plants are capable of treating 300 or more tons of ROM material
per hour. Assuming 20-hour operation for 25 days a month over 12 months, you can process
600,000 tons of ROM coal per year for each 100 t/h washing capacity.

When washing coal, the yield is the most important factor. The more ash you wash out the
lower is the yield and the more discard – the name of the washing by-product – you receive.
Thus, relative costs increase and the need to find an outlet for the discard can also reduce your
economic return. Therefore, mining companies take into consideration the increased sales

F IGURE 2.17 Mobile wash plant with 100 t/h feed capacity in South Africa
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price for higher calorific value material, the cost of washing, the yield and the proceeds, if any,
from discard material.

2.2.5.5 Environmenta l and Safety Issues Associated with Coal Product ion As with
any industrial process, the production of coal strains the environment. State-of-the-art mine
planning can minimize the environmental side-effects. The effect on the environment can be
classified into four categories (see World Coal Institute – Secure Energy, 2005):

� Emissions from fuel-consuming equipment.
� Land disturbance and mine subsidence.
� Water, dust and noise pollution.
� Methane emissions.

Emissions from Equipment IEA – Oil (2007) estimates a total 2005 demand for motor
gasoline and middle distillates of around 2.1 billion tons (compared with total oil product
demand of around 3.9 billion tons during that year). Also, we discussed already that fuel
accounts for about one-third of the operational costs in a typical non-continuous opencast
mine. What this means in effect is that each ton of non-continuous opencast coal requires
about 2–3 litres of fuel. So, 250 million litres of fuel are required to mine 100 million tons
of non-continuous opencast coal. While this simplified figure may seem rather high, the
calculation indicates that coal mining or mining in general will account for a significant share
of global oil product demand. Thus, coal mining results in the emission of significant amounts
of carbon dioxide due to fuel consumption, which is not accounted for when considering
carbon dioxide emissions from coal combustion alone, as most statistics do.

Land Disturbance and Mine Subsidence Opencast mining requires land. During the min-
ing process, vegetation, animal life, infrastructure and even housing can be affected. Some
older underground mines are known to have caused land subsidence. Especially when mining
beneath inhabited areas, modern mine planners carefully calculate how much coal can be taken
out and how the roof has to be supported.

Water, Dust and Noise Pollution During mining a chemical reaction between water and
rocks containing sulphur-bearing minerals can result in acid mine drainage (AMD), a metal-
rich water. AMD is formed when pyrite reacts with air and water to form sulphuric acid and
dissolved iron. This acid runoff dissolves heavy metals such as copper, lead and mercury
that are emitted into the ground (World Coal Institute – Secure Energy, 2005). AMD can
be minimized using water treatment plants and effective mine planning. Water can also be
polluted during coal washing, which requires large amounts of water. Wash plant licences are
therefore only granted with strict environmental requirements. Dust and noise pollution can be
a problem when coal is surface-mined near inhabited areas. Also, mine workers are subject to
dust and noise pollution, and so safety measures need to be installed in such mine operations.

Methane Emissions Methane emissions can occur during underground mining. Methane
is 21 times more harmful to the planet (in terms of global warming) than carbon dioxide.
Methane needs to be vented during underground mining in order to reduce the risk of methane
explosions. Frondel et al. (2007) and Steenblik and Coronyannakis (1995) point out that about
15 tons of methane is emitted for each ton of coal production. They argue, therefore, that a
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number of older underground mines, especially in Europe, should be closed down immediately
in order to substantially reduce greenhouse gas emissions. Three million tons of coal mined
underground in Europe produces approximately one million tons of CO2 equivalent.

Safety in Coal Production Larger mine accidents are regularly reported in the media. Many
of these accidents occur in older mines in Eastern Europe and Asia. Historically, the majority
of fatalities in coal mining accidents – according to statistics compiled by the Chinese State
Administration of Work Safety (SAWS) – occurred in China, but this is changing. Mining
operations in Australia, the USA and other countries also experience underground mine
accidents with collapsing roofs or fumigation from time to time.

Modern mines rarely experience safety problems. Effective mine planning can greatly
reduce and avoid safety hazards. Existing mines need to be reinvestigated and international
treaties should be signed to make coal mining safer. International mining conglomerates have
done a lot but need to do more to make mining safer.

Another factor to be considered with mining safety is the employment of inexpensive
and often untrained labour in some of the world’s underground mines. Today, however, most
countries have laws regulating the hiring of untrained and trained personnel in mines.

2.3 USE OF COAL – POWER GENERATION AND MORE

Coal accounted for about half the increase in global energy use over the past decade (IEA –
Energy Outlook, 2011). Electricity use was the key driver of this demand increase. Power
or electricity is one of the most important elements of human life today. However, about
2.7 billion people still rely on primitive biomass fuels to meet their household energy and heat
requirements. According to the World Health Organization (WHO), almost 2 million people
die each year from the effects of burning solid fuels indoors. Dependable and affordable access
to electricity is essential for improving people’s health, providing education and information
services, improving living conditions and freeing up time from gathering fuel. Electrification
of rural areas and energy consumption growth are therefore not only environmental issues
but also a necessity for the human race. Reliable access to electricity will allow (1) more
people to work in agriculture and manufacturing jobs, freeing them from unproductive fuel-
collecting tasks; (2) better use of agricultural or protected natural land; (3) improvement of
public health; and (4) the use of modern appliances and lighting, which improves productivity.
In short, electrification spurs a nation’s GDP development (World Coal Institute – Resource
Coal, 2005, p. 21).

Our ancestors tamed fire for the first time 300,000–800,000 years ago. Since then, light
and warmth from burning biomass has fuelled – in the true sense of the word – the development
of humankind. It took many thousands of years before humans discovered the advantages of
burning coal rather than wood. Historians believe that the Chinese were at the forefront of
this development. There are some reports that the Chinese were already using coal about
3000 years ago for casting coins and smelting metal products. It took about 500 years longer
for Europeans to utilize coal for energy generation. The Greeks and Romans were first. In the
Middle Ages, the use of coal was widespread and the first trading of coal apparently occurred
between England and Belgium. The industrial revolution in the eighteenth and nineteenth
centuries would not have been possible without coal. The steam engine, powered by coal,
was invented by James Watt in 1769. In the nineteenth century, many cities – starting with
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TABLE 2.5 Use of world hard coal by sector, 1980–2011

1980 2011

Consumption Bln tons % Bln tons %

Total hard coal consumed, of which: 2.8 7.0
– Power plants 1.0 36% 4.6 66
– Steel industry 0.6 21% 1.1 15%
– Heat market, cement and other 1.2 43% 1.3 19%

Source: Estimate based on author’s research and analysis. VDKI (2006–2013); Ritschel and Schiffer
(2007); IEA Medium-Term Coal Market Report (2012); IEA Energy Outlook (2007, 2011).

London – produced so-called town gas from coal to light their city streets using the coal
gasification process (World Coal Institute – Resource Coal, 2005, p. 19).

Today, coal is used in a variety of applications: (1) power generation, (2) steel production,
(3) coal liquefaction, (4) cement production and (5) other applications including but not limited
to household consumption, alumina refineries, paper manufacturers, chemical industry (such
as for soda production), pharmaceutical industry and for specialist products, such as activated
carbon, carbon fibre and silicon metal.

However, about two-thirds of the 7.0 billion tons of coal produced worldwide is used for
power generation. The IEA (IEA Medium-Term Coal Market Report, 2012) estimates that
about 78% of coal use is driven by demand for power in the OECD, while for non-OECD
countries that figure is far lower at around 55%. The remainder is used for steel production
and other applications. Table 2.5 summarizes the uses of all produced hard coal. Note that
6.1 billion tons of the total 7.0 billion tons of hard coal produced in 2011 was steam coal.
Since about 4.6 billion tons of coal is used by power plants and since power plants mostly use
steam coal, this results in power plants consuming about 85% of global steam coal production.

Hard coal, here mostly coking coal, is also a crucial ingredient for two-thirds of global
steel production. Other industries, such as the alumina, paper and chemical industries, also rely
heavily on coal. Coal liquefaction has been perfected by Sasol, the South African company that
uses the famous German Fischer–Tropsch technology to generate fuel from coal. For example,
Sasol already consumes one-quarter of South Africa’s coal production for the purpose of CtL.

Since internationally traded steam coal is mainly used for power generation, we will focus
on power generation and its implications for the global seaborne steam coal trade.

2.3.1 Steam Coal and its Role in Power Generat ion

Coal is used to generate over 41% of the world’s electricity (see Figure 2.7). As such, coal is
the single most important source of energy for all the world’s electricity needs, outstripping
gas (22%), nuclear (13%) and oil (5%). Based on market research, we estimate that over 85%
of the global seaborne steam coal trade is used in power generation. This is confirmed by the
German Coal Importers Association (VDKI, 2006, p. 8). Thus, power generation drives the
demand for seaborne traded steam coal.

Efficient power generation requires availability and most importantly reliability of an
energy resource. In addition to securing the raw material, power plants need to ensure they
can get the produced electricity to the consumer. Coal, in many respects, is the most reliable
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and widely available energy source for power generation. Major blackouts such as those that
occurred in the last decade (for instance, in Brazil in 2001, California in 2000–2001, New
Zealand in 2001 and 2003, Northeastern USA in 2003, Italy in 2003, China in 2008, South
Africa in 2008, India in 2012, and so on) can be avoided in the future if steam coal is used
more wisely, often in connection with renewable sources of energy (World Coal Institute –
Secure Energy, 2005). Many countries that currently use little coal for power generation, such
as New Zealand and Brazil, are advised to increase their coal share in order to reach higher
levels of system reliability.

The world produced about 21,500 TWh of electricity in 2010. China has reached US
levels and in fact overtook the USA in 2012. Figure 2.18 summarizes the global situation in
more detail (2011 numbers).

More interestingly, Figure 2.19 shows the world’s top ten electricity producers and their
respective power generation mix. The top ten countries account for two-thirds of global power
generation. China, India, the USA, Korea and Germany generate about half or more of their
electricity using coal; in fact, China depends on coal for over 75% and India for almost 70% of
power generated. The graph gives a good visual overview of the power generation mix. Canada
and Brazil use a lot of hydro/biomass, while France is the country with the highest nuclear
power generation share of almost 80%. Japan, the world’s third largest power producer with
almost one-quarter coal power generation share, has also been the largest steam coal importer
in the world until 2012 when China overtook Japan for the first time. Remember, Japan has
no significant coal reserves itself.

The graph also shows the compound annual growth rate (CAGR) for India and China,
which illustrates how the importance of coal is continuously increasing globally, much driven
by these two countries. However, one key factor changing or at least slowing this trend is the
recent shale gas revolution in North America, reducing coal use in the USA, which used to be
the largest power market in the world before China overtook it in recent years.
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Looking to the future one can visualize, based on Figure 2.19, that China’s and India’s
columns will grow much wider and, thus, the world’s use of coal will increase. Both countries
rely more heavily than average on coal for their power generation mix, thus their use of coal
will increase more than that of any other fossil or even nuclear energy resource.

2.3.2 Coal -F ired Power Plant Technolog ies

Coal power plant technology is considered one of the most stable technologies for generating
electricity. This in fact is one of the many advantages of coal-based electricity over other
energy sources. It is interesting, but in terms of efficiency unfortunate, that there are scarcely
two coal power plants in the world of the same design. This means that almost every power
plant is different and also works differently, resulting in varying efficiencies among power
plants when burning various qualities of coal.

In a coal-fired power plant, the chemical energy stored in the coal is first converted into
thermal energy in the boiler, then to mechanical energy in the turbine, and finally to electrical
energy using generators. Figure 2.20 depicts the typical process of a coal-fired power plant.

Engineers are currently focusing on two principal means of optimizing coal-fired power
plant technologies: (1) by increasing efficiency and (2) by reducing CO2 emissions. However,
these two aims compete to an extent; reducing CO2 emissions always reduces efficiency, as
energy is required to capture and process CO2 for storage.

Figure 2.21 indicates current average efficiencies and the resulting CO2 emissions. Pre-
viously, we discussed the amount of coal-fired electricity production in China. It can now
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be derived that the driver for CO2 reduction is not the Western world, but China and other
developing countries. If China reached the same technological standard as Germany or the
Western world, then CO2 emissions in China from coal-fired power generation could almost
be halved. Far over 1 billion tons of CO2, or almost 5% of the 30 billion tons of CO2 emitted
globally through human activity, could be saved by this measure alone. I would like to remind
the reader that to this day, China builds about one power plant every week of the year, and
in this process of renewing its power plant park has also made amazing strides to improve its
average efficiencies.

Coal-fired plants with room for improvement Power plant efficiency and CO2 emissions
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Future technologies are expected to increase conversion efficiencies to 60% or more.
However, this has little impact on the present challenge of capturing and storing carbon
dioxide. For a more detailed discussion of carbon capture and storage (CCS), please refer to a
series of research papers from Stanford University (Rai et al., 2008).

2.3.3 Cement and Other Industry

Demand for steam coal outside the power industry stems from the iron and steel industry, heat
production for district and industrial processes, the cement industry, paper industry, textile
industry and any other industry with large energy requirements that uses coal to generate the
energy required – often using the steam generated in the process.

Such non-power coal demand correlates closely to GDP growth (similar to the power
industry) and the construction industry economic cycle. In the OECD, where less than one-
quarter of coal demand comes from this sector, it is projected that demand will be stable to
slightly decreasing. Europe and Asia Oceania (here Japan) account for about 80% of such
non-power OECD coal demand (IEA – Medium-Term Coal Market Report, 2012, p. 70). In
China and other non-OECD countries, the proportion of non-power coal demand is much
higher, over 40%. Industry is still more energy intensive here and coal is still used in some
home heating. Growth focuses on China (accounting for over three-quarters of non-OECD
non-power coal demand) and India, where infrastructure investments such as large railway
systems, sea port capacity, airport capacity and the road network have been expanding and
will continue to expand at remarkable speed.

2.3.4 Alternat ives to Coal : Shale Gas and Other

As with any market, demand and prices for a product are also driven by the availability of
substitutes and the costs of switching between substitutes. Key competitors for coal are other
fuels and techniques for power generation; namely gas, nuclear, oil and alternatives such as
hydro, wind, biomass and solar.

2.3.4.1 Natural Gas and Shale Gas Gas accounts for about 21–22% of the world’s
electricity production and is the second most important fuel for electricity generation after
coal. Gas is also one of the most important sources of primary energy, accounting for 21% of
primary energy in 2010 versus 32% for oil and 27% for coal (cf. Figure 2.7).

BGR (2011) estimates the remaining potential of natural gas to have increased substan-
tially over the past 5 years, translating into approximately 60 years reserve/production ratio,
and 256 years when taking the remaining potential into account. However, gas reserves and
resources are spread very unevenly across the globe. Russia and the Middle East, and thanks
to shale gas now North America, have the largest available reserves.

The shale gas revolution in the USA started in the years before 2010. It led to an oversupply
of natural gas, which in turn reduced prices for natural gas from USD 6.00/MBTU in early
2010 to about USD 2.00/MBTU in 2012 (IEA – Medium-Term Coal Market Report, 2012,
p. 73). Coal prices had increased after the sharp drop in 2009 and both these diverging price
movements led to a switch from coal to gas in the USA. The IEA estimates that coal remains
the backbone of power generation in the USA, but coal use will decrease further in the next
4 to 5 years by approximately another 15%. Gas, at the same time, will increase its share
continuously.
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Outside the USA it is predicted that the shale gas revolution will be more difficult to
‘implement’ itself. While large reserves are expected outside the USA, most mineral rights are
owned by governments, giving local private entities little incentive for industrial drilling. It
also suffices to say that the technology for fracking is anything but simple and also surprisingly
energy intensive. For instance, Shell’s technology is used a lot for shale gas production. They
state that about 30% of the energy produced from shale gas has to be invested beforehand in
its production. Keep in mind that much of this invested energy will in fact come from coal.
Nevertheless, other countries in South America, Africa, Europe and Asia are exploring the
possibilities of shale gas and are likely to succeed on a selective basis within the next 10 years.

Combusting gas versus coal is less CO2 intensive. Assuming power plant efficiency of
𝜔 = 0.38, with 1 MWh of coal power generation, each ton of standard 6000 kcal/kg nar coal
emits 0.89 tons of CO2. Gas-powered generators emit about 45% less carbon dioxide than
coal. However, this does not take into consideration the energy-intensive production of shale
gas as described above.

On a global scale, the key disadvantages for gas are its infrastructure requirements in the
form of pipeline networks or LNG terminals.

2.3.4.2 Nuclear Energy Nuclear energy today plays an important role in our electricity
production. In 2010, about 13% of global electricity was generated in nuclear power plants
(down from 15% in 2005). Nuclear power accounts for approximately 6% of primary energy
(cf. Figure 2.7). Since nuclear power production is virtually CO2-neutral and is more econom-
ical for base load (see Figure 2.22), it would certainly be the technology for the future were it
not for the risks involved.

Nuclear energy results from the splitting (fission) or merging (fusion) of the nuclei
of atoms. The conversion of nuclear mass to energy is consistent with the mass–energy
equivalence formula ΔE = Δmc2, in which ΔE equals energy release, Δm equals mass defect
and c equals the speed of light in a vacuum. In the early 20th century, Albert Einstein
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discovered that mass can be transferred to energy. In 1938, the German chemists Otto Hahn
and Fritz Strassmann proved that nuclear fission is technically feasible. In 1945, the US Army
exploded the first atomic bombs over Hiroshima and Nagasaki. Since the 1950s, nuclear energy
has also been harnessed for peaceful purposes: to generate electricity. The use of nuclear
energy for electricity generation expanded rapidly after the oil price shocks of the 1970s.
However, at least three major incidents shattered confidence in nuclear energy: the accident
at the Three Mile Island reactor in Harrisburg, USA in 1979; the Chernobyl catastrophe
in the Ukraine in 1986; and the Fukushima tsunami catastrophe in 2011. After the first
two incidents, no new nuclear power plants were built outside France and Japan until 2005
(Erdmann and Zweifel, 2008, p. 270). After Fukushima, Germany decided to step away from
nuclear energy completely, with Japan planning to reduce its use and other nations becoming
more careful.

The safety risks involved with nuclear energy, however, will politically stall development
of new nuclear power plants. Leaving aside political and strategic games on the international
diplomatic playing field, it is undeniably true that by their nature nuclear power plants can cause
drastic catastrophes if something goes wrong. The reason for accidents or catastrophes can
be terrorism, human error, natural disaster or any other cause. Another major environmental
concern in relation to nuclear energy is how to deal with nuclear waste, which remains
radioactive, and therefore hazardous to life, for tens and even hundreds of thousands of years.

The risks involved with nuclear energy are so large that one can argue in the interest of
human survival that no nuclear power plants whatsoever should be built or operated. Germany
followed this argument when it committed itself to decommissioning all of its existing nuclear
power plants. It is clear that the three briefly discussed risk categories – (1) accidents in
nuclear power plants, (2) disposal of radioactive waste and (3) potential misuse of nuclear
fuel – cannot be carried by any one company or risk insurer. Risks 1 and 3 cannot even be
quantified and the timeframes involved can go far beyond a human lifetime. Therefore, only
laws and international regulation or collaboration can reduce and handle such risks, if at all.
We doubt that is possible, and therefore predict that nuclear energy will not be the primary
choice in the future, yet will remain part of the mix.

Fuelling nuclear power plants. Keep in mind that nuclear power does require a natural
non-renewable, yet not fossil, resource. The uranium isotope uranium-235 (235U) is the most
commonly used nuclear fuel. Naturally occurring uranium ore consists of 0.7% 235U and
99.3% 238U. The uranium isotope 235U can be split by bombarding it with neutrons of lower
energy. The result of this nuclear fission is 3.2×10−11 joules of thermal heat and two to three
new neutrons that can split more 235U atomic cores resulting in the well-known and often
feared nuclear chain reaction.

BGR (2006, p. 23) estimates that nuclear power plants generated 390 GWe (gigawatts of
electrical power) in 2006. The world’s nuclear power plants thus required about 66,500 tons of
uranium ore, of which about 40,000 tons (60%) came from normal uranium ore production. The
other 40% came from earlier and sometimes quite old civil inventory and, most importantly,
from strategic military inventory. As such, the production of uranium ore has been lagging
behind consumption for many years.

Australia, Kazakhstan and Russia account for about 40% of global uranium production.
The biggest importers – the USA, France, Japan, Germany and the UK – have virtually no
domestic production. Total global uranium ore reserves at current production levels of 0.04 Mt
(or 0.6 Gt tce) per year will last for only about 28 years (BGR, 2011). The remaining potential
will last for 164 years (see Figure 2.5).
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2.3.4.3 Oi l and Power Generat ion In 2010, oil accounted for 32% of global primary
energy but only 5% of electricity, down from 35% and 7%, respectively, in 2005. It has been
argued in the press as well as by leading research institutions such as the IEA and others that
coal will replace oil as the most important source of primary energy within the next 5 years.

Alternatively produced oil (heavy raw oil, oil sands, bitumen, tar, shale oil and possibly
CtL and BtL technology) will ensure that there will be enough fuel for our cars, planes, vessels
and other means of transportation. At the same time those alternatives are expensive and keep
the price of oil at high levels.

Some countries, such as Indonesia (32% in 2005), Mexico (29%), Morocco (26%) and
Japan (11%), and also Pakistan, rely heavily on oil for electricity generation. They are con-
tinuously reducing the share of petroleum in electricity generation, switching to coal and/or
gas. Cumulative oil production almost equals currently known oil reserves. If we include cur-
rently known resources in the equation, experts expect that the ‘depletion mid-point’ (see also
peak oil theory), where cumulative production equals the remaining potential, will be reached
within the next 5 to 10 years. However, experts also argue that innovation and newly discov-
ered resources will further extend the depletion mid-point into the future (see Figure 2.23).
The current reserve/production ratio translates to 54 years as per BGR (2011), compared with
42 years in 2006 (Schernikau, 2010).

Prices for oil are driven by the fuel industry market and the oil producers. The electricity
market plays only a minor role, unlike for gas and coal. With oil prices reaching above
140 USD/barrel in July 2008 before slumping back to 40 USD/barrel in November 2008 and
climbing back up to consistently around 105–115 USD/barrel in 2013, the use of oil in the
power industry will decrease even faster than expected.

When looking at oil versus coal it becomes clear that changes in oil consumption will only
marginally impact coal. Heavy fuel oils, which have been used in power plants, can be used in
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other fuel applications. The technology used for oil-fired power plants can be adapted to fire
other fuels such as coal and gas. Many coal-fired power plants use oil to start up a power plant
before switching to coal for fuelling combustion. Oil, however, is a key factor for the cost of
coal production as much of global coal production uses truck-and-shovel methods which are
very fuel intensive. Also, all transportation is heavily fuel intensive.

2.3.4.4 Alternat ives: Hydro, Wind, B iomass, Solar and Other Sources The alterna-
tive, non-fossil and non-nuclear energy sources already accounted for 19% of total electricity
production (21,500 TWh) in 2010. Of the about 4100 TWh classified as deriving from ‘other
sources’, about 3400 TWh or 85% is hydroelectricity (IEA – World Energy Outlook, 2011;
IEA – Statistics, 2012). Thus, non-hydro only accounted for approximately 650 TWh or less
than 3% of global electricity production.

The IEA estimates that the non-hydro share of global electricity generation will increase
five times by the year 2030. Because this starts from such a small base (650 TWh), this will
only cover a relatively small portion of the increased electricity demand by that time. IEA
predicts in its reference scenario that total electricity demand will increase to 35,500 TWh
by 2030, thus increasing by 65% from 2010. The IEA estimates that by 2030 approximately
19% or 2700 TWh of the increased demand will be served by non-hydro alternative fuels;
the remaining 81% or 11,300 TWh of increased demand will have to be filled by fossil fuels,
nuclear and hydro (see Figure 2.24).

Hydroelectricity accounted for 16% of global electricity generation in 2010. The main
hydroelectricity generators in terms of electricity share are many South American countries,
Canada, China and Russia. Also, smaller countries such as Nigeria, Switzerland and Norway
generate a large proportion of their electricity using hydro-technology. Importantly for this
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study, the EIA predicts that hydro’s share will drop to 14% of world electricity generation by
2030. This makes sense as hydro will not solve the world’s energy problem nor can it keep up
with the rise in global electricity demand.

Non-hydro alternative electricity accounted for about 3% of global electricity generation
in 2010. While they are not yet relevant on a global scale, it is important to summarize these
alternatives here as they will become more prominent in the future. Non-hydro alternatives
include (1) wind, (2) biogenic products, (3) solar photovoltaic and other sources such as
geothermal energy and hydrogen. We can safely assume that the 650 TWh generated by
non-hydro alternatives in 2010 stem mostly from wind and maybe some biogenic products.

We view non-hydro alternatives as ‘solar generated electricity’. In a way, this is where the
world has to go after the Oil Age and Coal Age are over in perhaps 50–100 years. The goal is
to find ways to capture the solar energy for CO2-neutral electricity generation. However, this
is less relevant for this study as its scope is merely the next 20–30 years. So far, non-hydro
alternatives are not yet able to meet the majority of increased electricity demand in the next
20 years, but their share is increasing and in 30–50 years the situation will certainly look
different. A technological breakthrough, today still unforeseen, is likely to shift the energy
landscape when it happens. History has shown that such technological breakthroughs can very
quickly alter the existing landscape. One recent example is certainly the fracking technology
that allowed the shale gas revolution in the USA.

Wind Of the non-hydro alternatives, wind has developed the fastest. Some countries, such
as Germany and certain other European countries, already generate a significant share (often
more than 5%) of their electricity needs using wind power.

The problem with wind power is that much of it is still heavily subsidized and it requires
a large area to generate any noticeable energy. Standard wind turbines today produce perhaps
2 MW of electricity; thus, 1500 onshore wind turbines would be required to replace a standard
1000 MW coal-fired power plant, assuming the turbines work only one-third as often and
efficiently as a coal-fired power plant. Offshore wind power systems are expected to become
more efficient and have less impact on the environment. The biggest problem with wind is
that the wind cannot be predicted. Therefore, most countries have laws where wind power
has priority over any other form of generation, often causing inefficiency with other power
stations (i.e., when coal-fired power plants are switched on and off). These external factors,
which also produce added inefficiency in existing power plants, are rarely, if ever, considered
or quantified when talking about the effectiveness of wind power.

Biogenic Products Biogenic products can be divided into energy plants and residual plant
products such as used wood. In order to process biogenic products into gaseous or liquid
fuels, the industry uses (1) biochemical processes (i.e., fermentation to biogas or bio-ethanol),
(2) thermochemical processes (i.e., Fischer–Tropsch synthesis used in BtL) and (3) phys-
ical/chemical processes (i.e., esterification of rape products to bio-diesel) (Erdmann and
Zweifel, 2008, p. 254).

Biogenic products can support both the petroleum-based fuel industry and the coal- and
gas-based electricity generation industries. Newer technology is also being developed to pro-
cess biomass into coal products through biomass-to-coal (BtC) processes. These technologies
promise to become more efficient, utilizing 100% of the carbon content and with 80% energy
efficiency. However, the economic and energy community expects that biogenic energy prod-
ucts will play a small role in the future energy mix. Fuel product costs rise quickly as increasing
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quantities of the feed product (biomass) are required. Logistics for collecting, handling and
storing high-energy plants are a further limiting factor. Economies of scale cannot be fully
utilized because not enough feed product can be sourced. Subsidies in the form of tax breaks,
direct investment or other financial support often distort the picture when comparing biogenic-
based energy products to fossil-based products. However, for many farmers in the Western
world, growing energy crops is a welcome change from cutting down crops or reducing planted
areas. On a worldwide scale, though, using agricultural land to grow energy plants seems to
have a limited future.

Solar, Photovoltaic, Geothermal, Tidal Power and Other Sources From a long-term
perspective this third category of new technologies that don’t rely on wind or biogenic products
seems to have the brightest future. However, today it is difficult to say if and when such non-
wind and non-biogenic products/technologies will play a more important role in the planet’s
electricity mix.

Solar, photovoltaic, geothermal and tidal power are currently being researched and already
contribute, to some extent, to electricity needs. The use of such technologies will grow but
it will take decades before they can economically satisfy a substantial share of the world’s
electricity needs. For example, about 3 GW of geothermal capacity was installed in the USA
by December 2008; the goal is to reach 100 GW by 2050. This compares with a total globally
installed capacity of 1000 GW in 2008 (Tester, 2009).

Longer-term future technologies may also include fusion power technology (see the
current International Thermonuclear Experimental Reactor (ITER) project in Cadarache, South
of France, www.iter.org) and other technologies that use hydrogen as an energy source.
Currently there are five groups of technologies that have been selected for further research as
they promise large-scale hydrogen production over the next 50 years: (1) steam reforming of
natural gas, (2) gasification of coal, (3) gasification of biomass, (4) electrolysis of water and
(5) thermolysis.

2.3.5 Future Trend: CtL and Coal Bed Methane

There are a number of new and not-so-new technologies that will further increase the efficiency
of coal products in today’s energy-hungry economies. First and foremost is the quest to further
increase coal-fired power plant efficiencies. Second, carbon capture and storage is being
explored to reduce CO2 emission into the atmosphere (not only CO2 resulting from coal
combustion). Third, coal-to-liquid (CtL) and coal bed methane (CBM) allow more efficient
and environmentally sustainable use of hard coal and sub-bituminous coals.

Coal-to-liquid technology expands the use of coal into fuel products, thus competing
with oil. In 1913, Fritz Bergius patented the direct hydration of coal. In 1925, Franz Fischer
and Hans Tropsch patented the indirect liquefaction method, which is still referred to as
Fischer–Tropsch synthesis. Germany started using liquefied coal for strategic reasons before
and during World War II. Towards the end of the war the country operated 27 CtL facilities, 9
Fischer–Tropsch indirect plants and 18 direct liquefaction plants. By the end of the war, 90%
of Germany’s fuel demand was being met by CtL. After the war the technology fell out of
favour, as a result of a different energy policy and low oil prices (Deutsche Bank Research,
2007). South Africa picked up the technology to develop it further. Sasol, today’s leading
CtL company, converts over 40 million tons of coal into liquids using CtL technology and
satisfies about 60% of South Africa’s domestic fuel demand in this way, thus replacing oil

http://www.iter.org
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imports. Germany’s Lurgi is another CtL technology provider that is quite successful and is
implementing and planning projects around the globe. CtL is, of course, more economical
when oil prices are high.

The main disadvantages of CtL relate to the environment. CtL fuels cause significantly
higher CO2 emissions than standard fuels derived from oil. IEA CIAB-CtL (2006), p. 25 esti-
mates that CtL fuel emits 2–2.5 times more CO2 per km driven than standard fuel under similar
conditions. Some experts argue that this figure is rather in the range 7–10 times. CtL plants also
require 10–18 tons of water per ton of output (China Coal Monthly, 2006), are very expensive
and require mine-mouth access to coal, which is possible in most larger coal-producing nations.
Such projects exist in China, Russia and also in North America. Additionally, Mozambique
is considering this technology to overcome the logistical disadvantages of its coal reserves.
Technology is continuously improving and will reduce the environmental impact of CtL. Also,
CCS will play a potentially large role when reducing the CO2 impact of CtL.

Coal bed methane projects are supported under the Kyoto Protocol. Through so-called joint
implementation projects investors can claim CO2 credits, using them either to offset their own
emissions or selling them on the open market. The idea is to capture otherwise wasted methane
that is released (a) from abandoned underground coal fields, (b) from operating underground
coal fields or (c) from bore holes on the surface. A combined heat and power station can be
fuelled in this way. A case study in China, presented by Faizoullina (2006), shows that one such
project capturing 15 million cbm of methane per annum can supply 10,000 houses with heat
while generating electricity at the same time. In addition, the project accumulates 400,000 tons
of CO2 credits per annum. Recent projects in Australia and Indonesia will further optimize
this technology. Also, new drilling technology will make this use of coal more economically
viable in the future.

2.4 OVERVIEW OF WORLDWIDE STEAM COAL SUPPLY
AND DEMAND

After having explored the source of coal and the use of coal we can now go to the traded coal
market. The global steam coal trade market is ever changing and has gone through a decade of
substantial transformation, moving from the Atlantic to the Pacific, with China emerging as the
largest coal importer, the USA becoming a large exporter and new supply from Mozambique
and Mongolia entering the market. This section will give an overview of the key demand and
supply regions.

2.4.1 At lant ic Demand Market : Europe at i ts Core

Historically, the UK (2012 imports 45 million tons) and Germany (2012 imports 45 million
tons) belonged to the top five steam coal importers globally. Despite Germany importing
more now than 5 years ago, today the situation looks different. China, Japan, India, Korea
and Taiwan are the top five and all are located in Asia, or the Pacific market. Europe, or the
Atlantic market is supplied mainly by South Africa, Colombia, Russia and since the shale gas
revolution also by the USA (VDKI, 2011, 2012).

While the Pacific and Atlantic markets have historically behaved differently, in recent years
there has been more inter-market trade. For instance, Russian sales to Asia have increased, as
has South African trade to India and China. Some Australian and Indonesian coal has found
its way to Europe, subject to freight viability.
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F IGURE 2.25 Market structure of Atlantic and Pacific coal trade
Source: Author’s research and analysis, also based on BCG (2004).

Figure 2.25 depicts the market structure and how the Pacific and Atlantic markets interact.
The key importing gateways for European demand are ARA (Amsterdam/Rotterdam/

Antwerp), the UK and north German ports. Another important market in the Atlantic is
Poland. The country used to be one of the key exporters but in 2011 only exported seaborne
about 3 million tons. In fact, Poland today imports more coal from Russia for its own use,
much of it via rail.

Southern European imports via the Mediterranean are growing because Turkey is expected
to import more coal in the years to come. Otherwise, Spain, Italy, Morocco and Israel are the key
countries to be supplied in this region. The north European consumers are served by Russian
coal and some small intra-European trade from Germany and ARA. Overall, it is expected that
Atlantic demand will stagnate or grow very slowly. From 2011 to 2012, however, European
imports (including Mediterranean imports) grew from 148 million tons to 193 millions tons
(see Figure 2.26).
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2.4.2 Paci f ic Demand Market : China, Ind ia , Japan, Taiwan,
Korea and SEA

Two new import powers have appeared in the Pacific market: China and India. Japan, Korea
and Taiwan have already been part of the top five import nations for many years, but China has
quickly moved to the top spot, for the first time becoming a net importer only in 2007/2008
after years of supplying Japan, Korea and Taiwan with steam coal. China became the largest
steam coal importer only 4 years later in 2012 (see Figure 2.27).

2.4.2.1 China Undoubtedly, China plays a key role in the world market of any industry;
and so it is with coal. Approximately 290 million tons of coal was imported into China in 2012,
of which about 200 million tons was steam coal and lignite (VDKI puts China’s steam coal
imports of 2012 at 145 million tons) and the rest coking coal and anthracite. Indonesia alone
supplied over 80 million tons of coal to China, up from 6 million tons in 2006 (VDKI, 2012,
2013; Platts, 2013). This means, today, that China is by far the largest steam coal importer, far
surpassing Japan, the historic leader.

Some key facts about China (The Beijing Axis, 2012; National Bureau of Statistics of
China, 2012; industry press) include the following:

� China has surpassed the USA as the largest energy-consuming nation, accounting for
about 21% of global energy consumption. At the same time, China accounts currently for
about 10% of global GDP on the way to making it 15% within 5 years.
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� GDP per capita is still only 1/10th that of developed nations and still below Brazil, Russia
and South Africa (but above India).

� GDP is concentrated in coastal regions, with growth spearheaded by more central regions.
� The Chinese workforce, and as a result heavy industry and coal demand, is expected to

plateau within the next 10 years.
� China is the world’s largest exporter (31% of China’s GDP is exported, compared with

Germany’s 50% and Japan’s around 15%).
� After the USA, China is the world’s second biggest importer (almost 25% of its GDP).
� China accounts for 50% of global coal production or about 3.6 billion tons in 2011, only

5% import dependency.
� China consumes about 3500 kWh per capita per annum (compared with India’s about

800 kWh).

China will remain a key influencing factor for the global coal market. Chinese policy is
predicting that coal use will plateau. This is not only because of air pollution problems in
Beijing and other cities (which, by the way, is mainly caused by old coal-fired power plant
technology and insufficient filtering, which could easily be rectified). Chinese GDP growth is
stabilizing.

In September 2013, China’s domestic coal prices had dwindled to a 4-year low of
520 RMB/mt FOB QHD. Many industry experts are expecting a slight reduction in China’s
imports in 2013/2014. From China we can expect continued and regular imports, but volatility
will remain high. China’s relatively small import dependency and the power of its central
planning system can quickly wipe out or add tens of millions of tons of imports, which would
have a severe impact on the coal industry in Indonesia but also in South Africa and Australia
at any given time.

China, currently relying on coal for almost 80% of its electricity generation, will have to
reduce – and is in the process of reducing – this coal dependency. However, keep in mind that
whatever China does, it will still pull up the global average of currently just over 40% coal
dependency for decades to come.

2.4.2.2 Ind ia The third largest coal producer in the world, with about 580 million tons
in 2012, is also continuously short of power and coal. Its internal infrastructure, logistics,
the location of domestic coal reserves as well as quality constraints have resulted in India
becoming the fourth largest importer after China, Japan and South Korea in 2012.

The industry estimates that about 105–110 million tons of steam coal will be imported in
2013, mostly from Indonesia and South Africa. Indonesia alone exported over 60 million tons
to India in 2012. We can expect that India will become the largest steam coal importer in the
world before the decade is over.

India is increasing its power plant park capacity by 88 GW, of which 64 GW is planned
to come from coal. Total coal demand could surpass 750 million tons per annum, resulting in
shortfalls of around 200 million tons per annum within the next 3 to 5 years. While it is difficult
to predict exactly how Indian imports will develop, it is clear that India will remain a more
stable and slowly growing importer of steam coal. With import dependency of around 20% it
is also expected to be less volatile. According to the BP Statistical Review of World Energy
(2012), India is even expected to overtake the USA as the second largest coal consumer in 2024.
Import demand will continue to grow, maybe surpassing 200 million tons per annum later this
decade, but long term it will tail off as India finds ways to become more self-sufficient with coal.
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At the same time, power is still in extraordinarily short supply in India and will remain so for
many years. One illustration is the low 800 kWh per capita per annum electricity consumption
compared with China, where 3500 kWh per capita is consumed. Another illustration is that
today it is not uncommon for the government to defer to load shedding rather than importing
expensive coal from abroad.

Much of the power capacity is still in the government’s hands. However, large private
enterprises such as Tata, Reliance, Essar, Adani, JSW, Jindal and many more are constantly
adding to their own capacity, increasing non-government imported coal demand. The key
challenges that India face remain, such as: import port capacity, local logistical infrastructure,
privatization of the power distribution networks and financial concerns of government agencies.
In past years, private power companies such as those mentioned above have been continuously
losing money since the power tariff does not cover the cost of coal. At the same time, the sharp
depreciation of the Indian rupee (INR) in 2013 increased the strain on the Indian economy.
While international coal prices dropped in 2013, the landed cost of coal in India in INR
increased. The government will need to step in, but the 2014 election will seem to support
more short-term rather than long-term thinking among many politicians.

2.4.2.3 Japan Japan is often credited with having engendered the ‘Asian industrial revo-
lution’ in the second half of the last century. Because Japan does not possess any significant
natural resources itself, it was able to accomplish this through building up long-lasting and
successful trading relationships with most of the world’s major natural-resource-exporting
countries. This is also true for coal. Today, Japan is the second largest importer of steam coal
after China. With 133 million tons of steam coal imports in 2011, Japan alone accounts for
almost one-sixth of the global seaborne steam coal trade. Its share of the coking coal trade is
even more substantial. Japan, which is the world’s second largest steel producer after China,
imported 52 million tons of coking coal, or one-quarter of all sea-traded coking coal (IEA –
Statistics, 2005; Global Insight – Russia, 2007; VDKI, 2013).

Japan’s electricity generation used to be based almost 30% on nuclear generation. After
2011’s Fukushima tsunami accident, Japan has decided to phase out nuclear energy leaving
room for coal, gas and of course renewable. At least 50% of Japan’s steam coal imports come
from Australia, and the rest mainly from Indonesia and Russia.

2.4.2.4 South Korea South Korea is now the third largest steam coal importer after China
and Japan, sharing this place with India. Nevertheless, South Korea’s demand was a key factor
influencing the price spikes in 2007 and 2008 and has continuously lifted coal cargos during
2012, the difficult time of sharply dropping prices. In 2012, South Korea imported 105 million
tons of steam coal. The country depends on coal for about 40% of its electricity generation. In
the longer term, it is expected that the relative share of coal in South Korea’s power generation
mix will fall, and imports will stagnate or decline slightly. South Korea did not sign the Kyoto
Protocol.

The key suppliers to South Korea are, as in the case of Japan, Australia, Indonesia and
Russia. However, since 2007 a few cargos of South African coal have been imported each
year. This means that Asian countries are now competing for coal that historically has been
sold almost exclusively to Europe.

2.4.2.5 Taiwan Taiwan imported 66 million tons of steam coal in 2012. Coal accounts for
over 50% of the country’s power mix compared with about 18% for nuclear and about 17%
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for gas. It is expected that Taiwan will continue to build up its coal-fired power plant park and
further increase steam coal imports at a slow pace, reaching over 70 million tons by the end
of the decade.

Taiwan holds a special position in the Pacific coal market. The country is logistically much
better situated than Korea or Japan because of its proximity to Indonesia. Australian coal has
also been a key source for Taiwan. Given its flexibility on quality, Taiwan, unlike Japan, can
look to a wider range of import sources in the future. Taiwanese power companies have also
started to invest into Chinese facilities and have started to import coal for their Chinese power
plants.

2.4.2.6 Other Importers in South East Asia (SEA) Thailand, Malaysia, the Philippines
and Vietnam (together SEA) are becoming increasingly a new importing region for steam coal.
While data is difficult to get, it can be extracted from a number of industry sources that about
50 million tons were imported in 2012 (Malaysia, Thailand and the Philippines, in that order).
Vietnam is expected to turn into a net importer by 2015 from being an historical net exporter
(mostly anthracite). It is predicted that this will increase to about 90 million tons by the end of
the decade, much driven by Vietnamese emerging steam coal imports. This would mean the
SEA region importing more than Taiwan by that time, and getting closer to European levels.
Much of the region has been supplied by Indonesia. However, some cargos from Australia as
well as South Africa have been shipped in past years.

2.4.3 Steam Coal Supply Regions: ID , AU, USA, SA, RU, CO
and Others

Figure 2.28 illustrates the top six coal exporters worldwide discussed in this chapter. The
more detailed regional analyses below rely on information from various industry sources:
VDKI (2011, 2012), IEA – Medium-Term Coal Market Report (2012), Schernikau (2010),
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Morse/Schernikau World Coal (2011), Schernikau World Coal (2012), Platts (2013) and
various other publicly available articles and publications.

2.4.3.1 Indonesia Indonesia is the largest economy in South East Asia and the mineral
sector including coal contributes 12% to the country’s GDP, totalling about $93 billion.
Indonesia has developed into the most important steam coal exporter, overtaking Australia for
the first time in 2005. The country exported approximately 304 million tons of steam coal,
more than 35% of global exports, in 2012 – much of it of lower quality. For example, in 2001
the country still exported only 67 million tons, resulting in a CAGR of about 15% from then
until today. That is phenomenal growth, which is likely to slow now as the base has become so
large. Indonesia is relatively new to the coal mining business, with modern coal mining only
starting in the 1980s; according to the Indonesian Coal Mining Association (2006), in 1993
Indonesia’s total coal production comprised only 27 million tons. Government policy up to
now has prevented international standard consolidation in Indonesia’s coal industry. Through
a relatively complicated mining rights system, the government distributed state-owned coal
reserves in three tranches (referred to as coal contracts of work, CCOW) in the early 1980s
(Ritschel and Schiffer, 2007). In 2009, the government redrafted the mining law introducing so-
called intended use plans (IUPs). Mining laws and most importantly their implementation are
often erratic with export bans, export tax and many other issues being discussed in government
and industry on a regular basis. Some regulatory specialists in Indonesia expect the government
to become less and less supportive of massive coal exports or at least continued export growth,
resulting in continued road blocks along the way and appropriate regulation. At the same time,
the government and its politicians depend a lot on a healthy coal export industry.

With about 250 million inhabitants, Indonesia is the world’s fourth most populous country
after China, India and the USA. Indonesia’s electricity demand is still rising rapidly. Histori-
cally, Indonesia – until May 2008 a member of OPEC – has relied largely on oil and gas for
its electricity production. In the near future, Indonesia will switch to coal and increase its own
coal consumption within the next 20 years. Indonesians’ domestic coal demand is currently
expected to be around 65+ million tons per annum and is rising consistently every year.

The majority of Indonesia’s coal reserves are located in Kalimantan and Sumatra, with
Kalimantan being the historic exporter and Sumatra slowly catching up – although this is
being hampered by logistics. Sumatra contributed only about 11 million tons to Indonesia’s
exports in 2011/2012 (see Figure 2.29), but the coal resources in South Sumatra alone total
60 billion tons, more than East and South Kalimantan combined. Sumatra is considered a
‘new frontier’ in Indonesian exports, but logistical infrastructure – here mostly rail – needs to
improve for Sumatra to reach the realistically targeted 30–50 million tons of exports within
the next 10 years. Central Kalimantan is still very small in terms of exports, but rail projects
and foreign investments are ahead of Sumatra’s despite the small resource base (Figure 2.30).

The top coal producers (Bumi with KPC and Arutmin, Adaro, Kideco, Banpu, Berau,
Tanito, Bayan and Bukit Asam) control more than two-thirds of Indonesian exports and
production. Foreign conglomerates have only limited control. Total production reached about
330 to 360 million tons in 2012 (numbers published vary), of which about 304 million tons
were exported.

Indonesia’s coal reserves are generally of lower quality compared with those of other
exporting countries. Ash (1–9% ar) and sulphur (0.1–1% ar) contents are low, while TM
contents are usually high (15–25% ar). The majority of the exported coal is bituminous and
sub-bituminous. India, China and the South East Asian market are able to off-take Indonesia’s
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FIGURE 2.29 Indonesia’s coal exports by province (total 2011: 273 million tons)
Source: Author’s and PT HMS Bergbau Indonesia Research & Analysis; Indonesian Coal Mining
Association; Ministry of Energy and Mineral Resources Republic Indonesia.
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sub-bituminous coal qualities with TM running as high as 35–45% ar, while Japan, South
Korea, Taiwan and Hong Kong generally prefer to buy coal of a higher calorific value. Where
freight rates allow, Indonesian coal is also transported to Europe, but only in small quantities
(such as to Italy, also driven by ENEL’s investment in Indonesian coal mining).

Of the world’s steam coal exporting countries, Indonesia is probably the country with
the least worries about infrastructure. This, however, by no means infers a perfect inland
transportation and trans-shipment system. By nature, and due to Indonesia being a country
of many islands, Indonesia’s coal mines are mainly located very close to the sea or rivers,
with the exception of mines in Sumatra and Sumatra’s key coal resource base around Lahat
in South Sumatra. Trucks are used to transport the coal to river or sea ports. There are about
15 coal-loading ports and about 20+ offshore loading facilities (so-called anchorage points,
where coal is trans-shipped via floating cranes or self-loading vessels from barges onto sea-
going vessels). In Kalimantan, there are countless barge-loading facilities located along rivers
or the seashore. Kalimantan has many rivers and almost every mine, even the smaller ones,
has its own barge port facility. Barge-loading capacities range from 3000 to 12,000 tons; some
exports to nearby countries are handled purely by barge. In Sumatra, the situation is different.
Here, 200–300 km of trucking is quite common.

Indonesia is probably the lowest-cost coal producer on a per-ton basis. The main reason
for this, logistics, has already been discussed previously. Also, labour costs are still very low
with an average mine worker earning maybe 100–300 USD per month. There is no productivity
data available, but the many smaller mines work much less efficiently on a per-worker basis
than in the rest of the world. However, one can assume that the big eight producers can compete
with international productivity levels. The larger mines are managed by large Australian and
other foreign mining contractors.

2.4.3.2 Austral ia In 2012, 21% of the world’s exported steam coal was sourced from
Australia, number two behind Indonesia. Australia’s role in the supply of coking coal is even
greater, as over 55% of the world’s seaborne coking coal is sourced from Australia.

Australia’s coal reserves are located in the East of the country, in the states of Queensland
and New South Wales. Of the total production of about 366 million tons, about 316 million
tons (171 million tons steam coal) or 86% were exported. Australia’s largest customer, Japan,
bought over 70 million tons of steam coal in 2012 followed by China with over 30 million tons,
South Korea about 30 million tons and Taiwan 15 million tons (Platts, 2013; VDKI, 2013).

Of the total production, about three-quarters is produced in opencast mines and one-quarter
underground. There are about 100 mines of various sizes in Australia. The coal is mined down to
about 70 m in the opencast mines. Underground mines can reach depths of about 200 m. While
Australia’s mining operations are among the best in the world, productivity of 7–9 kt/employee
per annum is far below the Western USA at 30–35 kt/employee per annum (IEA – Medium-
Term Coal Market Report, 2012). Australia’s coal production is almost entirely privately
owned. The Australian Coal Report estimates that the four biggest Australian producers –
BHP, Rio Tinto, Xstrata and Anglo – accounted for 53% of Australia’s output and for 55% of
the country’s exports in 2006.

The Australian coal industry is likely to continue to be consolidated. In addition, Chinese,
Indian and other new Asian entries have started purchasing smaller mine assets and are
expected to continue to do so. It is expected that about half of all global coal investment
projects are located in Australia. One example of a large project is GVK Hancock, which is
expecting 60–85 million tons of new exports before 2020. Other large projects are centred
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around the Galilee Basin with large reserves. At the same time, mining has become financially
less attractive in Australia with the Mining Resource Rent Tax (MRRT) coming into effect in
July 2012, which basically taxes 30% above A$ 75 million earnings.

Australia’s steam coal exports are known for their homogeneity and high quality. Since
Australian coal is mostly washed in a similar way to South African coal, the high ash content
of the raw coal is reduced sufficiently to supply a reliable 6000 and 5500 kcal/kg nar quality
or even better. Water is scarce in Australian mining regions and the government has put a
price on water. This may increase the cost of coal washing and as a result could lead to lower
coal qualities in the future. Today, Australian coal has medium volatile matter (25–30% ar),
average ash content (8–20% ar) and tends to be rather dry (7–9% ar). The sulphur content
is below 1% ar and can go as low as 0.3% ar. The coal is also relatively soft (higher HGI).
Overall, Australian steam coal quality is well suited for the export market. Japan, the world’s
second largest coal importer and also Australia’s most important customer, is considered to
be ‘spoiled’ by Australia’s good coal qualities. International coal consumers have tended to
prefer Australian coal over, for example, Indonesian and Russian coal, and are therefore often
willing to pay a premium, especially in Japan.

Australia has been particularly hampered by a lack of infrastructure development. Both rail
lines from the mines to the ports and port capacity have been and will continue to be expanded.
Australia exports its coal resources through seven main ports; in order of importance these are
Newcastle, Gladstone, Dalrymple Bay, Hay Point, NCIG, Abbot Point and Brisbane. All ports
have expansion plans.

Australia is one of the world’s most efficient and therefore also cost-effective coal pro-
ducers. The distance from the mines to the ports ranges from about 100 to 400 km, and
geologically the coal is situated advantageously with undisturbed deposits. Costs are likely to
increase further for a number of reasons, including the following:

� Coal from newer deposits will be railed over longer distances.
� Overburden on coal ratios is expected to increase and drive up pure production costs.
� Machinery costs will go up because equipment suppliers lack the capacity to fulfil global

mining requirements (this also affects iron ore and other mineral production in addition
to coal).

� Fuel costs will rise, causing mining costs to rise with them.
� Australian royalties are linked to the sales price.
� The ash content of the coal will increase, reducing washing yields and exported qualities.
� Trained mining personnel are scarce and become more expensive.

Overall, Australia is expected to further increase its production and exports. Because of
rising costs, high-value export products, such as coking coal, will be especially favoured. But
also the development of a 5500 nar NEWC steam coal index has helped the export of higher
ash material that is much sought after in China. In the author’s view, Australia has the biggest
long-term potential for sustainable steam coal and coking exports, total production (including
coking coal) may reach as much as 500 million tons in the next 15 years.

2.4.3.3 Russia Russia accounts for about 13% of global steam coal exports, with 109 mil-
lion tons of coal exported seaborne in 2012, and is the third largest steam coal exporter globally.
Total steam coal production reaches about 279 million tons and coking coal production about
74 million tons per annum. Russian coal has a long history, though not in the international
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arena. Russia’s own industry consumes the majority of the country’s production output. In
the early 1990s, following the collapse of the Soviet regime, small quantities of Russian coal
started to appear on the international seaborne steam coal market. Russia’s export growth really
only began after 1997, but was not as spectacular as Indonesia’s. The Russian coal industry
was very quick to privatize in the 1990s, resulting in an immediate cut in large amounts of
unprofitable production. In fact, Russian coal production (coking coal and steam coal) was cut
by over 35% from 401 million tons in 1989 to 272 million tons in 1994 (see Global Insight –
Russia, 2007).

Russia’s reserves and resources are among the largest in the world and the country is one
of the most important steam coal exporters. Europe and increasingly Asia rely on Russia’s
logistical proximity. Russia is especially important for the economics of the coal market, since
it is the key marginal cost supplier. Thus, long-term global FOB prices will be close to Russia’s
FOB marginal cost.

Russia produced 353 million tons of hard coal in 2012 (VDKI, 2013). Of this, 279 million
tons were steam coal. In total, Russia exported seaborne 117 million tons and 109 million
tons of hard coal and steam coal, respectively. Another approximately 10 million tons was
exported via the green border by rail. Production is centred in Kuzbass, Siberia where about
80% of Russia’s coal is produced. About two-thirds of Russia’s production is opencast. The
production is concentrated in such a way that the top eight producers (SUEK, Kuzbassrazrezu-
gol, Siberian Business Union, Yuzhkuzbassugol, Vostsibugol, Raspadskaya, Yuzhny Kuzbass
and Yakutugol) account for about two-thirds of Russia’s coal production, which has been
decreasing from over 70% 6 years ago. Russia’s coal production, unlike other industry sectors,
is largely in private hands with little or no government involvement.

Two-thirds or just over 65 million tons of Russian hard coal is shipped to the European
countries via the Baltic and the Black Sea. Another 50 million tons approximately is shipped to
Japan, Korea, China and the Far East. Exports via the Far East are expected to rise to 85 million
tons by 2020, a very sizable number. This is planned with increased rail and port capacity as
well as a production increase to around 450 million tons. If this comes true, Russia will be
competing head on with the USA, Australia and of course Indonesia in the Far East, but will
have a logistical advantage especially for exports to Korea, Japan and Northern China.

Russian coal exports are of relatively high quality, with high enough calorific values
and low sulphur contents. Much of Russia’s coal for export is improved through washing
programmes. The difficult and lengthy transportation on old rail cars results in some contami-
nation of Russian coal with metal and other debris. The ports employ extensive metal cleaning
technology, but often consumers still complain about problems with scrap and other decon-
tamination. In wintertime, Russian coal is at risk of freezing, especially when shipped from
Murmansk. The Kuzbass region is known for its low sulphur contents. This is probably the
only advantage of being far from the sea. Also, the reserves were far removed from saltwater
when the coal developed millions of years ago. Because of the low sulphur contents, Russian
coal is often used for blending with higher-sulphur coal in European or Asian power stations.
However, in times when the coal price is low, such as in mid-2013, it is expected that many
exporters will move coal below their marginal cost of production.

Logistically speaking, Russian coal is very important for Eastern Europe, Turkey and
the Nordic countries (i.e., Finland and Denmark). Despite being a very high-cost producer,
this is another key reason why Russia will continue to play an important role in the Atlantic
market, especially for the Nordic countries, Northern Germany and the UK. Riga, Ust-Luga
and Murmansk are the most important Western ports for Russian coal, and Vostochny and
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Muchka in the Far East. Russian coal needs to be transported by rail up to 5000 km from its
Kuzbass-based production to the ports. Thus, the key infrastructural constraint is rail capacity.
The rail company RhZD is still 100% government controlled (similar to the situation in South
Africa). Some insiders claim that the increased government rail tariffs are one way for the
government to recoup the money lost by the private producers’ offshore marketing departments
and low transfer pricing policies.

2.4.3.4 Colombia Colombia is ranked fourth in the world and is the key exporting country
in Latin America, with 2012 exports reaching 81 million tons (up from 62 million tons in
2006) – 80 million tons of steam coal and 1 million tons of coking coal. Venezuela only
exported 3 million tons in 2012, down from 9 million tons in 2006, and thus became less
relevant. The USA and Europe consume most of Colombia’s and Venezuela’s coal. Virtually
all of Colombia’s coal produced is also exported.

The Colombian supply market is controlled by Cerrejon, Drummand and Glencore
(Prodeco/Carbones de la Jagua), accounting for almost 90% of export volumes. Production
in these countries is highly efficient and production costs are low and exports competitive. In
fact, Colombia could still export profitably when prices fell sharply in 2012 and 2013 and the
USA had to ship at a loss.

Colombia’s coal generally has a very low ash content, which results in above-average
calorific values. When buying some of the very high-CV Colombian coals on FOB terms, the
buyer will benefit from reduced relative transportation costs and efficient coal burning. The
drawbacks of the coal are – generally speaking – its relatively high moisture content, low HGI
and thus hardness, and in some cases a proneness to self-ignition. However, this type of coal
may be used as PCI coal for the steel industry.

The future will see rising export volumes from Colombia. Plans are in place to increase
production to 150 million tons per annum by 2020. Reserves are large enough and various
projects to improve rail and port infrastructure are underway, including a 1000-km railway
from mines near Bogota to the Caribbean. Colombia and Venezuela do not yet consume much
coal themselves and even if that consumption should increase, it would do so from a small
basis. Demand in North, Central and South America is increasing and Colombia will remain
a key supplier for these American markets as well as Europe and (in the future) Asia. The
opening of the new improved Panama Canal in 2014, allowing mini-capes, will enable exports
to Japan, China and Korea.

2.4.3.5 South Afr ica With about 9% share of world steam coal exports South Africa is
slowly losing ground on the ever-growing world market (12% in 2006) and has become the
number 5 exporter from formerly being the number 3. However, South Africa has a special
position in the international steam coal business for the following reasons: (1) it runs the
largest and most efficient single coal export terminal, Richards Bay Coal Terminal and (2) the
FOB South African price is quoted daily in the form of the API4 Index, ensuring better market
transparency and as such being a gauge for the global coal market. The country exported about
75 million tons (washed product) in 2012 and production has been relatively stable around
260 million tons (unwashed product). However, local coal demand and CtL demand is such
that it is expected South Africa will increase production to about 350 million tons by 2020.
Also, exports are expected to increase, driven by infrastructure investments in ports and rail.

For South Africa itself, the mining industry (and to a large extent coal) plays an above-
average role in the health of the economy (Dlamini, 2007), accounting for almost 20% of GDP
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and 25% of employment (directly and indirectly). Coal and its industry accounts for 90% of
electricity generation and 15% of electricity demand. Also, 30% of liquid fuels are produced
from coal by Sasol, the world’s market leader in CtL. Eskom, the country’s government-owned
power company, is increasing coal-fired power plant electricity output and requires more coal
for the domestic market. Eskom has historically been buying on a very long-term contract
basis at a cost-plus scheme (often below market price). This is slowly changing, as Eskom is
tapping more into the junior coal market and has become open to pay market-relevant prices
for the product.

In a drive for a fairer and more efficient use of South Africa’s natural resources, and as part
of its Black Economic Empowerment (BEE) programme, the South African government agreed
to a new mining law in 2002. This law ensured that all of South Africa’s natural resources were
transferred from previous land ownership to state ownership. Thus, today, ownership of lands
and mining rights can be separate. All previously operating mining companies had to reapply
for their mining rights. New regulation also requires that older mining companies and new
mining companies be partly black-owned. This has caused some problems due to an educational
and financial gap between the black and white populations, but this gap is narrowing.

South Africa’s reserves and resources are ample. With 38 billion tons of reserves and
115 billion tons of resources (BGR, 2006, 2011) the country has over 150 years of reserves
and, additionally, over 600 years of resources at current production levels. The main reserves
(about 20 billion tons) are located in the Highveld and Witbank areas just East of Johannesburg.
South Africa’s coal production is highly concentrated, with the top five producers controlling
over 80% of exports. However, due to new mining regulations and increasing involvement of
BEE companies, the consolidation process is shifting. It is for instance expected that BEE-
controlled Exxaro will form alliances and take over other smaller BEE players, increasing its
export share to 9–12 million tons within the next 3–5 years.

South Africa produces a high-ash, low-moisture coal. All exported coal volumes are
mechanically and chemically washed, reducing the ash content from around 25% ar to 10–
15% ar. The washing yield (typically in the 50–80% range) determines not only the washing
capacity required but also the marginal cost, since all costs up to washing have to be divided
by the washing yield in order to determine the true costs of exported coal, as discard material
(left over from washing) has little or no value. South African coal otherwise has a very good
reputation on the market, because washing guarantees a very homogenous output product.

The government-owned railroad system in South Africa has been a key capacity constraint
for higher exports. COALlink, which operates the 600-km-long railway line from the key
mining areas to Richards Bay Coal Terminal, has a capacity of 72 million tons, not enough
to fill the 90-million-ton RBCT capacity. Trains running on this line can load more than
16,000 tons of coal in one load, for instance with 250 wagons of 64 tons each. Such trains
are several kilometres long. The inefficiencies of a state-run rail operation also affect South
Africa. While there is some talk about privatization, it is not clear when this will happen.
Service philosophy and accountability are key problems at COALlink.

The outlook for South Africa is positive, as demand from the Pacific market, namely from
India, China and even South Korea, is going to increase. In the past 5 years South Africa was
unable to participate in the worldwide coal export growth and has been constantly exporting
between 65 and 75 million tons while the world market grew. However, South Africa managed
well to shift its customer base from Europe (the historic almost exclusive buyer of South
African coal) to Asia. In 2012, two-thirds of all exports went to India and Asia (or outside
Europe), an achievement for the country.
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2.4.3.6 USA The US swing supply to the global steam coal market seems to be over. Since
2011, caused by the shale gas revolution, the USA has become a more consistent supplier
to the global coal market. In 2012, it is estimated that the USA exported over 130 million
tons: about 59 million tons coking coal, 48 million tons steam coal and maybe 30 million
tons petcoke products (Platts, 2013; VDKI, 2013). For steam coal, the USA is therefore still
relatively marginal (less than 5% of global supply) but the petcoke and coking coal products
make the USA a serious contender globally. In fact, the price falls in 2012 were largely driven
by increased exports of higher-CV and higher-sulphur US coal to the Asian markets (via the
Pacific to China and the Atlantic to India). Most steam coal exports went to Europe and to a
much lesser extent to Canada, China, Mexico and India/China.

Coal production reached just over 900 million tons, but has been reducing in the past
2 years because of much cheaper gas from shale gas production entering the market and
replacing coal. Peabody and Arch Coal account for over 40% of US production and are two
of the top five global producers. Production is of lower cost in the West, Powder River Basin
(PRB) and of higher cost in the East, Appalachian and Interior. Some of the PRB coal has
found its way to Asia via expanding ports in the West.

In the latter half of 2012 and the first few months of 2013, coal exports from the USA
stabilized, stopping the ‘disruptive’ effect that low-cost, high-sulphur, high-CV coal had on
the international coal arena. As a result, coal prices also stabilized despite the exchange rate
effects disrupting prices again starting in June 2013. Today, fewer US producers are willing and
able to export at a marginal loss. They were ‘forced’ to do so in 2011 and early 2012 because
of long-term contracts with logistics providers and contractors when local coal demand in the
USA fell too sharply. Many producers are still struggling. For instance, Patriot Coal filed for
bankruptcy in July 2012.

We expect the USA to remain a sizeable exporter in the decades to come, while production
will continue to decrease. The developments of PRB coal exports will largely determine the
future of the USA as an exporter. If it is possible to set up the rail and port capacity as planned,
we will get used to lower-CV coal, competing with Indonesian coal, arriving in Northern Asia.
This would in fact be the first time that high-moisture coal would be available in significant
quantities from a source outside Indonesia. On a macroeconomic level we expect that the USA
is becoming again a new production hub for the developed world as low energy prices also
mean lower production costs. Increased production/manufacturing (GDP growth) will again
lead to increased power consumption, which in turn will stabilize coal production again –
despite the current negativity in the USA about coal.

2.4.3.7 Other Producing Regions Relevant for Export Other countries and regions
relevant for coal exports (hard coal and steam coal) are Mozambique/Southern Africa,
Mongolia, Kazakhstan, Canada, Vietnam and Poland. These countries form a new frontier
and will continue reshuffling the global coal trade business. It will be interesting to see the
developments over the next 5 to 10 years.

Mozambique/Southern Africa. Vale, Rio Tinto (formerly Riversdale), Anglo American,
Beacon Hill and Jindal are just a few names that are active in the Tete region to develop coking
coal and steam coal exports out of Mozambique. The government has issued over 100 coal
licences to 50+ national and international companies. Billions of US dollars have already been
invested and more billions are about to be spent. The first shipments of coking coal and steam
coal have been executed successfully. Port and rail capacity is still the limiting factor. Steam
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coal is only exported to reduce the cost of producing coking coal. In fact, it can be assumed
that marginally much of the steam coal will not be economical because of transportation.

New Southern African rail and port projects are planned in the next 5 to 8 years and
may, if successful, allow Botswana, Namibia and Mozambique coal to enter the international
market.

Mongolia. One of the raw-material-richest countries in the world also claims 160+ billion
tons of coal reserves. In 2012, it is estimated that between 15 and 22 million tons of coking
coal was exported to neighbouring China. Plans are there to export up to 80 million tons of
mostly coking coal per annum within 5 to 10 years. Mongolia is landlocked and has to rely on
Russia or China for entering the seaborne trade market. As such, the author does not expect
that Mongolian steam coal will enter the international seaborne market simply because of
prohibitive logistic costs.

Kazakhstan/Ukraine/Poland. Kazakhstan does not have large coal reserves but still pro-
duced about 121 million tons of coal in 2012, about 30 million tons were exported in 2012 –
most if not all via rail. The Ukraine produced about 84 million tons in 2012, of which about
62 million tons was steam coal. The Ukraine is mostly relevant for the international market
because of its good anthracite and Yuzhny port operations that mostly exports Russian coal.

Poland used to be an important supplier to Western Europe. The country still produces shy
of 80 million tons of high-quality thermal coal. However, the country requires large amounts of
coal itself, now importing more from Russia and overseas. 2012 exports dwindled to 7 million
tons, probably less than half of it via the sea.

Canada. An important supplier of coking coal, with 31 million tons of exports in 2012.
Another 4 million tons of steam coal was also exported. The country produces about 67 million
tons of coal and relies on hydropower and coal for its electricity generation. We do not expect
large export increases to come from the Canadian coal industry, which is also struggling with
cheap shale gas.

Vietnam. Vietnamese anthracite has been famous for decades because of its good and
consistent quality. China still relies very much on anthracite imports from Vietnam for some
of its steel heavy industry. Vietnam produced just below 45 million tons of coal in 2012
(another 10% reduction since 2011) and exported around 15 million tons of anthracite (about
12 of which went to China). Vietnam is expected to further reduce exports and in fact will be
a key importer for steam coal in the decades to come.

2.4.4 Seaborne Freight

We have seen in previous sections that coal supply is very much about logistics. Logistics for
any bulk raw material such as coal, iron ore or grain also includes shipping in bulk carriers
across the world. Shipping not only costs money but also takes considerable time. For instance,
a vessel travelling from Indonesia to Europe takes about 4 weeks and a vessel from South
Africa to Europe more than 2 weeks. Thus, seaborne freight is a key CIF price determinant
for coal.

Bulk carriers are divided into three categories: (1) Capesize vessels – named after the Cape
because they have to ship around it – carrying 120 to 170 kt of bulk product; (2) Panamax
vessels – so named because they are the largest vessels that can pass through the Panama
Canal (prior to expansion) – carrying 60 to 80 kt of bulk product; and (3) supramax/handysize
vessels carrying somewhere between 20 and 50 kt of bulk product. These smaller vessels are
also typically geared versus the gearless Capesize and Panamax vessels that require shore
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F IGURE 2.31 Iron ore, coal and grain determine sea freight demand, 1994–2012
Source: Frachtkontor Junge (2013). Author’s analysis.

cranes for loading and unloading. Standard routes, such as Route 4 from Richards Bay,
South Africa to ARA, Europe, are served by the largest Capesize and Panamax vessels. Less
standard routes such as within Asia or from Baltic Russia to England tend to be served by
smaller supramax and handysize vessels.

Coal is only one of many bulk products carried by such vessels. Ores – here mainly iron
ore – make up the largest share, followed by steam coal, then coking coal and grain. Thus, ores,
coal and grain are the so-called major bulk products. Minor bulk products include steel, scrap,
cement, fertilizers and many others. Figure 2.31 shows the amount of major bulk products
shipped with sea bulk carriers. The steam coal numbers do not add up to seaborne freight
volume because this figure does not account for smaller handysize vessels or very small vessels.

The freight market is also nothing more than a normal global market with supply and
demand. Based on research, we estimate the marginal cost of running a Capesize vessel from
South Africa to Europe at around 9–14 USD/mt in 2012. But resource (or vessel) scarcity kept
prices well above that until the staggering freight price drop in autumn of 2008. Since then the
freight market has been hovering around very low numbers. On many occasions the freight
was below the cost of running a vessel and barely covered bunker (fuel) costs. It is expected
that freight rates will remain low for at least another 2 years. This is an important fact for the
coal market: with low freight rates, it is economical to ship coal from faraway places such
as the USA to Asia. Competition increases globally and FOB price levels will move more in
sync across the coal world.

Freight capacity is influenced by the following basic determinants:

� Vessel stock.
� New builds that have about a 2-year lead time.
� Scrapped vessels.
� Vessels travelling empty.
� Asset utilization/port congestion.
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The outlook for freight rates is rather difficult. Freight rates went down from their peak
levels in June 2008 to 8 USD/mt in October 2008 (see Figure 2.32) for a Capesize coal cargo
from South Africa to Europe, similar to numbers in early 2013 when vessels were chartered
below 7 USD/mt which is below cost. Experts expect generally weak freight prices in 2013
and 2014. In the longer term, it is expected that freight prices will be high enough to cover at
least total costs while remaining highly volatile.

2.4.5 Geopol i t ica l and Pol icy Environment

Before we look at the coal market, to pull all information together it is necessary to say a few
words about the geopolitical and policy environment within which the coal market, and in fact
most energy raw material markets, function.

This chapter is not a philosophical treatise on human existence; rather, it is about coal
and therefore energy, or more specifically electricity. Humans have no doubt done to the
atmosphere and the planet’s environment what no other living creature has done in the past;
however, in order to find solutions for the future, humans will need electricity. And coal, as we
have seen, is the primary source of electricity and will continue to be so for many decades to
come. Unfortunately, coal is also a main contributor to greenhouse gas emissions. Therefore,
governments have a responsibility to create policy that enables safe and sustainable coal use.

It is the task of governments and the global community to find a framework and to decide
on policy that guides the generation and use of energy and electricity. It is also their task to
regulate monopolies. It is clear that no one single government can do much about the global
population problem, energy crises and environmental issues on its own. These problems can
only be solved if all nations participate. Western Europe may cut its CO2 output by 50%,
but that will be close to useless if China and India increase their CO2 output by 10 times the
amount saved in Western Europe. At the same time, it will be the utilities – the main coal
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consumers – that can drive many technological and environmentally sensible changes. The
large multinational energy corporations will not be able to avoid their growing responsibility
for minimizing the effect of their choice of generation mix on the environment and for the
development and use of modern technology.

The triangle of objectives depicted in Figure 2.33 summarizes the main objectives of
energy policy. The same imperatives apply to the utilities. It is all about sustainability (financial
and environmental), driven by security of supply, efficiency and environmental protection.
What has been neglected in much of the past decade’s environmental and sustainability debates
is the application of sound economics in the face of enormous uncertainties when dealing with
the environmental impacts of human activity in general, and more specifically the use of coal.
The application of the simple Pareto efficiency concept could not only have prevented many
misguided decisions that caused major environmental damage but also saved large amounts
of money.

2.4.5.1 Greenhouse Gas, Kyoto and CO2 Trading Greenhouse gases (GHGs) are harm-
ful to the Earth’s ozone layer and as a result will lead to increasing average temperatures, which
in turn are likely to lead to climate change. At the World Climate Summit in Kyoto, 55 indus-
trialized nations ratified the 1997 Protocol, including Annex I, and committed to reducing
GHG emissions, first during the period 2008–2012. Kyoto covers the six main GHGs: carbon
dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluoro-
carbons (PFCs) and sulphur hexafluoride (SF6). All gases are expressed as CO2 equivalents,
thus producing a single GHG reduction target. Unfortunately, the global climate conference
in Durban in 2012 was not successful in starting a new era after Kyoto. Durban participants
did, however, agree to a second commitment period of the Kyoto Protocol and a launch of a
new platform of negotiations with the goal of legally binding GHG reductions by 2015 for the
period beyond 2020.

The well-intended Kyoto Protocol was not, however, ratified by the most important
nations when it comes to population, energy and raw material use: the USA, China and India.
Vahlenkamp and McKinsey (2006) concluded that coal burning should decrease in Europe as a
result of GHG-reduction policies, but will increase in the USA where it makes economic sense
without the same GHG policy. As a result, Schernikau (2010) and Erdmann (2007) agree that
Kyoto, as it is, has only a limited environmental effect, if any. In fact, it may result in higher
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emissions of GHGs. To illustrate this point, consider the following two scenarios which may
result from the emissions trading scheme introduced in Europe in 2005 to comply with Kyoto:

1. Higher CO2 prices in Europe could result in an avoidance strategy. But what if (as is most
certainly the case) the area to which the CO2-emitting activity is moved produces energy
with much less efficiency than in Europe? The result would be an increase in global CO2
emissions, which was certainly not the intention of Kyoto.

2. Higher CO2 prices will, relatively speaking, push coal prices down and gas prices up, thus
increasing the spread between gas and coal. Countries with no CO2 avoidance obligations
can now buy coal more cheaply than gas, thus they are incentivized to use CO2-emitting
coal rather than cleaner gas. As a result, global CO2 emissions increase. This again was
certainly not the intention of Kyoto.

Thus we can see that GHG policy only makes sense when all or at least the largest nations
participate. International protocols can be useless or even harmful when nations such as the
USA (18% of global CO2 output), China (24% of global CO2 output) and India (currently just
5% of CO2 output) do not participate. By comparison, Germany contributes only 3% and the
UK 2% of global CO2 output (see IEA – CO2, 2012).

In fact, the current Kyoto Protocol will rather support the increased global use of coal
than reduce it. It is strongly suggested to find every energy alternative to coal, which accounts
for 40% of all anthropogenic CO2 emissions. However, we believe that there is no way around
coal, and no matter what international policies are adopted they will not prevent the relative
coal burn from increasing for at least the next three decades. They can, however, influence or
reduce the level of this increase, and the impact of its GHG emissions.

2.4.5.2 Pol i t ica l Environment The political environment for coal in the industrialized
world is not what I would call supportive. On first glance, this may seem predictable or even
justified. However, politicians sometimes lack sound economic judgment, more often due to a
lack of information or understanding than to unwillingness. The results are missteps such as
those described previously. The problem with politics in a democracy is that politicians need
to be elected every 4 to 5 years. It is argued that this system of democracy inherently favours
short-term popular measures over long-term, initially unpopular approaches. The embracing of
economic realities in democratic politics is required. There are certainly a number of politicians
with very long-term views and sound analyses of the current situation, but inherently political
systems are generally not well equipped to deal with long-term environmental and energy
security issues. Populists in Germany, for instance, abandon nuclear power and at the same
time want to stop all coal burning, yet together these sources currently account for about
70% of electricity generation. A result of Germany subsidizing wind and solar power is an
unimaginable overcapacity of energy generation facilities in times of good wind and sun that
strain the electricity networks and make conventional power plants uneconomical – which by
law have to remain operational.

Domestic policies are about optimizing the nation’s development and wealth. This is true
for countries such as the USA, Russia, China, Indonesia or Middle Eastern countries. Experts
argue that most countries lack a coherent energy policy (see PESD, 2009). Resources are
used foremost to cover the country’s domestic energy needs. But energy needs in developing
countries are very large. As a result, prices for energy raw materials will tend to rise.

Politics is also responsible for subsidies, tariffs and quotas. These instruments are used
by governments to either protect their resources from excessive export or to protect their
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industries from international competition that is harmful to the nation’s security or long-term
existence. For the global coal trade the use of such instruments has the effect of increased
price volatility and, as a result, increased uncertainty for coal consumers. It can be expected
that more coal-producing nations will use political means to protect the resources.

This section has discussed only limited aspects of the global geopolitical and policy
context. We focus on less obvious aspects of the discussion rather than repeating what can
be read in newspapers and magazines on a daily basis. In summary, politics and policy are
all about compromises. The coal market is still a relatively unregulated arena. We expect
that this market will be subject to greater regulation in the decades to come. Competitive
issues will also be looked at much more closely. The attention of anti-competitive agencies is
currently focused on coal consumers, such as power utilities, rather than coal producers. But
we have shown that, in fact, the production of coal is already much more consolidated than
the consumption of coal. It will therefore be interesting to see what the future brings.

2.5 THE GLOBAL STEAM COAL TRADE MARKET
AND ITS FUTURE

Up to the late 1970s, steam coal was consumed near its site of production. If international
trade occurred, it did so across green borders (i.e., in Europe or between Canada and the USA).
Following the oil crises, the coal trade began to pick up. In 1980 only about 150 million tons
of seaborne steam coal was traded globally (Ritschel and Schiffer, 2007, p. 23). By 2012 this
figure had grown to 826 million tons (VDKI, 2013). This translates into a CAGR of 5.5%.
Germany, for instance, also appeared very late on the international coal trading scene. The
VDKI reported that in 1988 Germany imported only 6.5 million tons of steam coal. This
figure grew to 48 million tons in 2012, and is likely to increase further as local production and
nuclear power are phased out. Thus, while coal demand has grown at about 2% per annum
since 1980, it can be deduced that trade has grown at more than twice the rate of underlying
industry demand over the past three decades.

As with all raw material markets, the coal market is largely about logistics. Pure mining
costs account for only a small fraction of total delivered costs, and 40% of FOB costs. We must
consider that getting coal from the mine to the power plant involves the following logistical
steps: (a) moving coal from the mine to the port; (b) trans-shipping the coal to bulk carriers;
(c) shipping coal in vessels to the destination port; (d) unloading and storing the coal at the
destination port; (e) moving the coal from the destination port to the power plant; and (f) storing
the coal at the power plant. Even mining, as we have seen, is largely about logistics. For that
reason, we have discussed key logistical issues, such as freight.

Trade flow has largely shifted from the Atlantic, with total imports of about 190 mil-
lion tons to the Pacific, with total imports of about 550 million tons (including India), see
Figure 2.26. This shift has occurred surprisingly quickly; in 2006 we were still at about
230 million tons versus 350 million tons respectively.

2.5.1 Current and Future Market Dynamics
of the Coal Trade

2.5.1.1 Market Part ic ipants, Consol idat ion and Contract Behaviour Market partic-
ipants in the global coal arena are of three types: (1) coal producers, (2) coal consumers and
(3) physical coal traders. These three groups not only greatly influence pricing (as discussed
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below), but also product flow. Producers and consumers seemingly do not require traders to
do business. However, since production and consumption are continuous and only correlate
on a global scale, a buffer is required.

Producers Producers want to cover their investment and operational costs. Historically,
they have a medium-term view but since coal price spikes in 2007 and 2008, and volatility
thereafter, they are increasingly looking for spot deals. Only the biggest producers have their
own freight departments. With a few exceptions, such as Peabody and more recently Anglo
American, producers rarely act as traders – with some new developments expected in the
coming years. However, some large traders participate in production.

Consumers Consumers tend to have a longer-term view driven by the larger relative invest-
ment in plant and equipment. Their storage capacity is limited and therefore just-in-time
delivery is becoming increasingly important, especially with higher coal prices. Many larger
consumers have built their own trading teams in order to utilize their inherent flexibility (espe-
cially where they have more than one power plant location) and to take advantage of logistical
swap opportunities. Freight departments are also being built up. Japanese consumers still tend
to buy mostly CIF. The author estimates that more than 50% (by volume) of European con-
sumers are now flexible in terms of buying CIF or FOB, while the bulk of the volume is still
sold to final consumers on CIF or DES terms.

Traders Traders serve several functions in the international coal market: they (a) act as a
physical buffer, (b) finance cargos (i.e., prepay), (c) arrange freight and logistics, (d) act as
outsourced purchasing or sales departments and (e) mitigate credit risk. Being a good and
successful trader requires additional attributes to being a good and successful power generator
or coal producer. Therefore, many producers or consumers utilize traders as an outsourced
extension. Particularly larger utilities or producers have headcount budgets and are not as
flexible in expanding or shrinking their teams. Trading, by nature, is a much more volatile
business and requires flexibility that often consumers or producers, usually larger corporations,
either cannot or do not want to offer.

Consolidation. Coal supply is being consolidated more and more. The largest coal merger
in a long time, Glencore and Xstrata in 2012, illustrates this fact very well. Other mergers (not
comprehensive, just illustrative) seen in the past 3 to 4 years include:

� Xstrata and Prodeco in Colombia in 2009.
� Yancoal and Felix Resources in Australia in 2009.
� Alpha Natural Resources and Massey Energy in the USA in 2011.
� Whitehaven and Aston Resources in Australia in 2011.
� Peabody and Macarthur Coal in Australia in 2011.
� Walter Energy and Western Coal in Canada in 2011.
� Exxaro and Total South Africa in 2014.

Each supply region tends to be dominated by three to five key producers that account for
50–80% of each region’s production. The supply market is therefore neither monopolistic nor
close to perfect competition. It is fair to say that it is oligopolistic and imperfect in nature. It is
estimated that over 500 export mines supply the world coal trade. Coal demand is also being
consolidated, but this development is slower and less relevant to the coal market. The demand
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TABLE 2.6 Top 11 world hard coal producers

No. Company Resident 2012 production (Mln mt)

1 Coal India India 554
2 Peabody* SA 249
3 Shenhua China 304
4 Arch USA 141
5 China Coal China 176
6 BHP Billiton Australia 105
7 Anglo UK 84
8 Suek Russia 98
9 Xstrata Switzerland 90

10 Bumi Group Indonesia 79
11 Rio Tinto Australia 32

Total 1.912
Share of world hard coal 27%
World hard coal (Mln Tons) 7.200

*Own production only.
Source: Author’s market research and analysis based on VDKI (2012).

market is far more fragmented. For example, in Europe, despite consolidation, large utilities
such as E.ON, EDF, RWE, Vattenfall, Drax and Enel account for a much smaller percentage
of coal imports than do the largest producers.

There is an interesting trend that can be observed in the global coal trade: exporting
countries, such as Indonesia, China, Russia and South Africa, will need to supply more and
more to their own domestic coal power generators. Thus, exporting countries are being offered
more competitive alternatives to pure exports. On the contrary, importing countries are relying
more and more heavily on imports. This can be shown to be the case in Europe, where local
production is declining. This trend underlines our finding that relative coal burn will increase as
more countries turn to coal generation. Overall, one can expect the market power of producers
to increase.

The coal supply market is becoming more concentrated on a global level, and even more
so in the various supply regions. Historically the 25 top coal producers accounted for almost
55% of world hard coal exports, and one-third of world production. Today, the top 11 producers
account already for 27% alone. Consolidation also makes economic sense as EBITDA margins
and total shareholder returns are increasing (for more details, see Schernikau, 2010, p. 152).

Contract behaviour. The first transformation of the global coal trade occurred in the new
millennium at the beginning of this decade. Becker and Ungethuem (2001), formerly of Enron,
have already seen a change in the market, where historically long-term contract buying by
utilities changed to increased spot buying due to the need for pricing close to current market
levels. Utilities used to buy from one or two mines and purchasing was driven by technical
rather than market considerations. Today, there is more spot buying and we are in the midst of
a trend in which a real global commodity market for coal has developed or is still developing.

Contract behaviour has also changed, with the Pacific/Asian market taking a much larger
percentage of steam coal imports. The Western, Anglo-Saxon understanding of contracts does
not work 1:1 in countries such as China and India. Many large producers and traders were
stuck with non-performing contracts in 2008/09 and again in 2012/13 when the markets fell.
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These non-performances, even of large state-owned coal importers, also led to fewer long-term
contracts as the supply side does not trust the demand side to perform in adverse situations.
However, smaller Indonesian suppliers have also had problems with performance in times
of rising markets. It is imperative that the industry counteracts such developments. The coal
market, or any market for that matter, cannot function if contracts are not performed and
simply become an option for either party rather than an obligation.

In the future, market participants will invest more and more in logistics and upstream
assets. Coal remains a scarce raw material. This is supported by the conclusion that coal
demand will continue to show higher growth rates than those for other traditional electricity
generation methods such as nuclear, gas and oil. Less than 50% of global FOB costs are pure
mining costs. Thus, of CIF costs, we can conclude that pure mining accounts for only 10–30%
of total CIF costs, depending on freight. It is therefore evident that the coal market is largely
about logistics and access to resources. This is apparent in the struggle for export port capacity,
not only in South Africa but also in Russia, Australia, Colombia, the USA and even Indonesia.

2.5.1.2 Regional Developments Current industry sentiment is that world coal trade
growth will slow in the years to come. While the author certainly sees a slow down in some
countries, we still expect that trade growth will outpace demand growth on a global scale.

The six main export regions – Indonesia, Australia, Russia, Colombia, South Africa and
the USA – will not benefit equally from the expected volume increase. Local demand in the
various regions will curb export volume levels. The author considers Australia and Russia
to be most likely to increase export volumes. However, Russia is more at risk because the
national strategy is to increase gas exports and use indigenous coal more within the country
and because its cost base is simply too high. Indonesia, relatively speaking, is expected to
increase production most; but domestic demand will grow faster than production can grow.
The USA and Colombia will increase their exports to Asia but increased volumes will still
remain small compared with Australia and Russia. Demand will be driven by the Pacific
market, here mostly China and India as well as the new developing South East Asian market.
Thus, increased Russian volumes will be exported primarily to the Far East.

It is clear that African coal exports – outside of South Africa – will develop and increase in
the next two decades. Africa is very rich in coal deposits, localized in Mozambique, Zimbabwe
and Botswana in Eastern Africa, as well as Western Africa. The one key problem that African
supplier countries have is a lack of logistical infrastructure. Inland transportation systems and
port infrastructure need to be built, and wash plants need to be erected.

China is the wild card for global coal demand since it plays a special role as it developed
from a fringe supplier to the largest importer in the world. The country produces about 50%
of global coal volumes and historically has been an important supplier to Japan, South Korea
and Taiwan. We predict that, over a longer period of time, China will remain a net importer but
we don’t see volumes increasing much beyond the current 200–300 million tons per annum
for prolonged periods of time.

India is expected to increase coal imports more steadily, becoming number one importer
worldwide (depending on Chinese developments) within this decade. The country is struc-
turally short of coal and has to catch up with its per capita electricity consumption. Indigenous
production is hampered by government inefficiencies.

2.5.1.3 Physica l and Derivat ive Trading Volumes Steam coal is traded over large dis-
tances across the world to reach consumers in Europe and Asia. Currently less than 20% of
globally consumed coal is traded; the remainder is consumed in the country of production.
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Globalization translates into increased trade. For coal this also means that trading volumes
will grow faster than the underlying growth of demand for coal. The resulting higher growth
of the steam coal trade will further increase the significance of the market. The coal industry
will become more professional – attracting new, well-educated talent – and will increase in
transparency.

The growing importance of coal traders for financing and buffer purposes will also lead
to more ‘intra-trader’ coal trading. Long trading chains of 10 or even more participants in one
physical vessel delivery first developed during the price increases of 2007 and 2008. While
price drops (in the autumn of 2008 caused by the financial crisis and the overheating of the coal
market and in 2012/13 caused by the financial crisis and the shale gas revolution in the USA)
will reduce these trading chains temporarily, the author expects that we will see each coal
delivery go through more hands in the long term. As a result, the risk for any trader increases
because default risk increases proportionally to the number of traders in one chain. These risks
will also affect producers and consumers.

As price volatility increases, so does trading risk. As a result of the above developments,
well-thought-out credit risk requirements and compliance are essential but probably not suf-
ficient to keep trading as safe as it used to be. The development of physical and financial
exchanges for coal will speed up with these developments. For example, the physical OTC
coal exchange globalCoal represents one important step towards managing credit risks. But
the market has to develop and implement true exchanges that manage default risks themselves.
One step was the creation of coal swaps traded at the Chicago Mercantile Exchange (CME)
in 2012, that reached globalCoal levels within less than a year. For financial derivatives,
exchanges have become more common in the past years, but for physical coal there is still
much to do.

We predict that only the large standardized coal volumes will be handled via exchanges
in the next decade. This will include the standard RB and ARA as well as NEWC and API8
(CFR China) products. For the more fragmented trading routes that include ‘off-spec’ coal
products, it will become much more difficult to standardize. Hence, the author predicts that
at least 50% of the traded coal volume will continue being traded outside of exchanges, thus
requiring physical coal traders to manage the product flow.

Increased trade volumes will also attract more financial traders, including but not limited
to investment banks. Figure 2.34 depicts the growth of derivative coal volumes, which seem
to have stagnated since 2007 but are likely to get a new boost from exchanges.

2.5.2 Future Steam Coal Price Trends

The trend for future steam coal prices in the medium term points towards higher prices for the
following reasons:

� Electricity demand is rising.
� Coal’s share of electricity generation is rising, mainly driven by China’s and India’s large

coal share in electricity generation.
� Major export countries, such as South Africa, Indonesia and Russia, have increasing

domestic coal demand.
� New demand coming from ‘new’ importers in South East Asia.
� FOB costs will increase because of labour and transportation costs. Machinery and expe-

rienced personnel will likely remain in short supply.
� Export mine capacity utilization will remain or go back to higher levels.
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Source: Author’s analysis based on VDKI (2013) and industry press.

� Coal asset prices will increase as relative coal investments slowly catch up with oil and
gas investments (see Figure 2.16).

� Producers will continue to consolidate.

In contrast, we have factors keeping coal prices ‘in check’ and as such it becomes less
likely that we will see price spikes such as in 2008 again.

� USA: low gas prices and new PRB coal.
� New supply sources (i.e., Mozambique, Mongolia and others).
� Increased supply from Australia.
� Freight rates are likely to remain low for a few years, increasing competition from global

coal sources.
� Import demand growth will slow in China and India.

Figure 2.35 depicts historic average steam coal for CIF ARA (API2) and FOB Richards
Bay (API4). It can be seen that the first price increase occurred in 2003/2004. In 2005 and 2006
the market consolidated at a relatively high level before peaking in 2008. The average price
for 2008 is tainted by the intra-year peak of 210 USD/mt for API2 in July. By comparison, the
API2 was at 130 USD/t in January 2008 and 62 USD/t in March 2009. After reaching the low
point in early 2009 the market recovered until 2011 before retreating again in 2012 and 2013.
At the time of writing this chapter (September 2013), the market has reached a low point and
is likely to slowly increase again after a longer period of volatile low prices.

It can be seen by looking at Figure 2.35 that the ‘low points’ in 2002, 2006, 2009 and 2013
are touching higher and higher values. Long-term, pricing in a perfectly competitive market
should equal the marginal cost of the marginal producer. In the coal market, the marginal cost
is probably hit in the USA and Russia first. But we have also seen for several years now that,
on average, price will remain above the marginal cost of production – allowing producers to
earn scarcity rents. For a more detailed discussion about scarcity rents and marginal cost of
production, please refer to Schernikau (2010), Chapters 5, 6 and 7.
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Overall, basic demand growth is driven by population growth, GDP per capita growth
and increasing electrification rates. Today, about 7 billion people inhabit our planet and by the
middle of this century the number is expected to exceed 9–10 billion. At the same time, the
average incomes of people in the so-called developing countries will continue to increase. The
more money people have, the more they will spend on primary goods: water, food and energy.

We predict that coal prices will remain – on average – above the marginal cost of the
marginal producers. In relative terms, we expect coal prices to slowly catch up with gas
prices (in the USA gas prices have caught up and undercut coal prices). We believe that
the basic economic principle of making a CO2-friendly fuel less expensive than a non-CO2-
friendly fuel such as coal will win support from policymakers. This chapter has not considered
exchange rates but they do remain an important driver for coal prices. Consider the rather steep
depreciation of the South African rand, Indonesian rupiah and Indian rupee in the summer
of 2013 and its impact on coal prices, which fell steeply as a result. In summary, the key
long-term drivers for coal prices are (for a discussion on exchange rates, see also Schernikau
World Coal, 2012):

1. Foremost demand/supply balanced including import dependency and domestic demand
of coal-exporting countries.

2. Politics and government policy.
3. Cost of substitutes (gas, nuclear, renewables) and environmental concerns.
4. Supply costs including logistics.

2.5.3 Future Source of Energy: What Role Wi l l Coal P lay?

As can be seen in Figure 2.36, global primary energy consumption is growing at an average
annual rate (1990–2030) of about 1.6% (CAGR). Electricity consumption, in contrast, has
always grown much faster and will continue to do so at an average annual rate of 2.6% in the
period 1990–2030. Growth is fuelled by non-OECD countries, most importantly China and
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India. As such, electricity generation will grow at a CAGR (2005–2030) of 3.1% – slowing
growth from 4.7% between 1990 and 2005 – in non-OECD countries versus 1.3% in OECD
countries.

Global electricity demand will continue to outgrow GDP growth as developing nations
catch up with per capita electricity consumption in addition to increased GDP. Coal will
continue to be the most important energy source for power generation, and will increase its
importance compared with oil and gas for primary energy in general. In fact, the IEA has
already concluded that coal will surpass oil as the main source of energy in the next 10 years.
Figure 2.37 illustrates how coal is expected to grow at a rate of 2.1% CAGR (2009–2030),
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faster than gas at 2.0% CAGR or even hydro at 1.9% CAGR or biomass at 1.3% CAGR. Only
‘other renewables’ are expected to grow faster at 6.8% CAGR. Interestingly, renewable energy
sources as a whole can increase their total 2009 share of 13% of primary energy just by 1%
until 2030, to reach about 14%. For electricity generation total non-hydro and hydro renewable
sources can increase their share from 19% in 2010 to 23% in 2013 (cf. also Figure 2.24). The
shale gas revolution has increased the competitiveness of gas, which is good news for CO2
emissions. This will mean that coal’s growth is likely to reduce a bit, but the basic story of
coal’s renaissance remains unchanged.

2.6 CONCLUDING WORDS

Environmental concerns about emissions of CO2 from increased burning of coal will need to
be addressed by the global community. We have argued that there is no way around coal as a
source of electricity and energy in the coming decades. More so, the use of coal will increase
drastically. Thus, we predict that solar-based energy will only be able to reduce coal in the
second half of this century. Politicians and scientists should, therefore, stop fighting coal and
focus on improving technology to more efficiently burn coal. The best chances of reducing
emissions lie in (a) more efficient power plants, (b) more efficient production of energy
resources, (c) more efficient ways to transport energy resources and electricity and (d) more
efficient use of energy and electricity in general (UBS – Resources, 2008; Schernikau, 2010).

In order to support more gas-fired electricity (gas-fired generation produces about 45%
less CO2/kWh than coal-fired generation) it is important to close the gap between coal and gas
prices. The shale gas option has already improved the situation in North America. CO2 trading
schemes that penalize coal, which result in relative lower coal prices versus gas prices, in fact
achieve the opposite. From a macroeconomic and geopolitical perspective, gas, the low-CO2
fuel, should be priced below coal, the high-CO2 fuel, and worldwide at that.

Independent of the current and future struggle to improve efficiencies, coal is likely to
play an important role in replacing oil through CtL technologies. Coal may even play an
important role in hydrogen production – a possible future source of energy – and for fracking
and extracting gas from shale gas, coal will be required. However, using coal as a source of
hydrogen production will require successful carbon capture and storage technologies. CCS
is a much-hoped-for technology to solve the big CO2 problem of coal use. We believe that
CCS will come but do not think that it will be a long-term solution. In our view, the only
long-term solution to all environmental problems associated with the burning of fossil fuels is
solar energy.

The planet has access to enough energy in the form of solar radiation. The task for the
future is not to develop new ways to release energy, but to discover how the primary needs of
humankind (food, heat, electricity and fuel/process energy) can be met with regenerative or
renewable sources of energy. Although this chapter is about coal, we would like to conclude it
by repeating the formula proposed by Wolf and Sheer (2005) in their book Öl aus Sonne – Die
Brennstoffformel der Erde (Oil from the Sun – the Earth’s Fuel Formula), which illustrates
that only solar energy is required to process carbon dioxide and water into a carbon-based fuel
and oxygen:

solar energy + CO2 + H2O ⇔ CH2 + 1.5O2
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ABBREVIATIONS AND DEF INIT IONS

af Ash-free
AFT Ash fusion temperature
AMD Acid mine drainage. A metal-rich water, resulting during mining from

a chemical reaction between water and rocks containing sulphur-
bearing minerals

API2 Physical coal price index published each week by McCloskey and
Argus Media. API2 is the price for 1 metric ton of coal (6000 kcal/kg
net as received, less than 1% sulphur as received) delivered CIF
Europe (ARA = Amsterdam, Rotterdam, Antwerp) in Capesize ves-
sels (approx. 150,000 mt)

API4 Physical coal price index published each week by McCloskey and
Argus Media. API4 is the price for 1 metric ton of coal (6000 kcal/kg
net as received, less than 1% sulphur as received) delivered FOB
Richards Bay, South Africa

ASTM American Society for Testing and Materials
ASX Australian Securities Exchange
BCG The Boston Consulting Group, international strategy consulting firm
BEE Black Economic Empowerment or Black Economic Empowered

(South Africa)
BtC Biomass-to-coal, gasification of biomass to coal products
BtL Biomass-to-liquid, liquefaction of biomass to fuel products
Btu British thermal unit, a traditional unit of energy (1 Btu = approx.

1.06 kJ)
CAGR Compound annual growth rate
CCGT Combined cycle gas turbine
CCOW Coal contracts of work, Indonesia
CCS Carbon capture and storage
CDS Clean dark spread, defined as base load electricity price minus coal

price minus price of emission rights
CHP Combined heat and power
CHPP Combined heat and power plant
CIF Price cost insurance freight (definition as per Incoterms, 2010)
CtL Coal-to-liquid, liquefaction of coal to fuel products
CV Calorific value
daf Dry ash-free
Dark spread Dark spread refers to the defined difference between cash streams

(spread) for coal-fired power plants
DIW Deutsches Institut für Wirtschaftsforschung (German Institute for

Economic Research)
DS Dark spread, defined as baseload electricity price minus coal price
EEX European Energy Exchange in Leipzig, Germany
FC Fixed carbon
FOB Price free on board (definition as per Incoterms, 2000)
gad Gross air-dried basis
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gar Gross as received
GCV Gross calorific value
GDP Gross domestic product
GHG Greenhouse gas
Gtoe Gigatons of oil equivalent (the amount of energy released by burning

one gigaton of crude oil)
Hard coal Hard coal is defined as the sum of steam coal and coking coal
HGI Hardgrove index
HHV Higher heating value
ICMA Indonesian Coal Mining Association
IGCC Integrated gasification combined cycle
IPO Initial public offering
JSE Johannesburg Stock Exchange
LHV Lower heating value
LNG Liquefied natural gas
MIT Massachusetts Institute of Technology
nar Net as received basis
Nash equilibrium In game theory, Nash equilibrium is a solution concept of a game

involving two or more players, in which each player is assumed to
know the equilibrium strategies of the other players and no player has
anything to gain by changing only his or her own strategy unilaterally

NCV Net calorific value, as received basis (ar)
OECD Organization for Economic Cooperation and Development
OTC Over-the-counter
oxid. Atm. Oxidizing atmosphere, relevant for ash fusion temperatures
PCI Pulverized coal injection
PNG Pipeline natural gas
RBCT Richards Bay Coal Terminal – the world’s largest coal export terminal

located in Richards Bay, South Africa
red. Atm. Reducing atmosphere, relevant for ash fusion temperatures
Remaining potential Number of years that the coal in theory will last when taking current

annual production, reserves and resources into account
Reserves Proven and recoverable deposits of coal considering today’s technol-

ogy
Resources Overall coal resources, also referred to as ‘in-situ coal’. Resources

include the known coal deposits that are currently not economical or
technically recoverable

ROM Run-of-mine coal; coal that comes directly out of the mines before it
has been crushed, screened or otherwise treated

Spark spread Spark spread is the theoretical gross margin of a gas-fired power plant
from selling a unit of electricity

Steam coal For the purpose of this study and in line with international practice
I classify anthracite, bituminous and the majority of sub-bituminous
coals as steam coal. Steam coal excludes coking coal and lignite

T&D Transmission and distribution
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tce Tons of coal equivalent, assumes coal with a calorific value of
7000 kcal/kg net as received (SKE = Steinkohleeinheit in German)

toe Tons of oil equivalent
TSR Total shareholder return, a measure to determine profitability for an

investor that includes share price and dividends
VDKI Verein der Kohleimporteure (German Coal Importers Association)
VM Volatile matter
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Li, R. (2008) International Steam Coal Market Integration, Macquarie University, Australia, Department

of Economics.
McCloskey (2012) Weekly coal reports.
McCloskey (2013) Weekly coal reports.
Morse/Schernikau World Coal (2011) Asia’s Changing Landscape, Richard Morse and Lars Schernikau,

World Coal, October.
National Bureau of Statistics of China (2012) China Statistical Yearbook 2012.
PESD (2009) Global Coal Market Conference, 2009 PESD Annual Winter Working Seminar, Program

on Energy and Sustainable Development, Stanford University, February.
Platts (2013) Publicly available industry press based on Platts ICR Coal Statistics Monthly, February

2013.
Rai, V., Victor, D.G. and Thurber, M.C. (2008) Carbon Capture and Storage at Scale: Lessons from

the Growth of Analogous Energy Technologies, Program on Energy and Sustainable Development
(PESD), Stanford University, November.

Ritschel, W. and Schiffer, H.-W. (2007) World Market for Hard Coal, 2007 Edition, RWE Power,
Essen/Cologne, October.

Schernikau, L. (2010) The Renaissance of Steam Coal – Economics of the International Coal Trade,
Springer-Verlag, Berlin.

http://www.coalonline.org/catalogues/coalonline/81591/6247/html/6247_27.html
http://www.coalonline.org/catalogues/coalonline/81591/6247/html/6247_27.html
http://www.ima-api.com
http://www.ima-api.com


134 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

Schernikau World Coal (2012) Thermal Coal: A Macroeconomic Perspective, Lars Schernikau and
Cathryn Carlson, World Coal, October.

Schernikau World Coal (2013) Myths and Realities (Indonesia), Lars Schernikau and Daniel Goeckus,
World Coal, June.

Steenblik, R.P. and Coronyannakis, P. (1995) Reform of coal policies in Western and Central Europe:
Implications for the environment, Energy Policy, 23(6), 537–553.

Tester, J. (2009) A Pathway for Widespread Utilization of Geothermal Energy, Presentation at Stanford
University by Professor Jefferson Tester from MIT, Stanford, February.

The Beijing Axis (2012) The China Compass – August 2012: Figures, Forecast and Analysis, August.
UBS-Resources (2008) UBS Research Focus – Knappe Ressourcen als Herausforderung und Chance,

Wellershoff and Reiman, UBS AG Wealth Management Research, Zurich, August.
Vahlenkamp – McKinsey (2006) Integrated Power Perspective – Implications for Regulation, Thomas

Vahlenkamp, McKinsey, Coaltrans Athens, October.
VDKI Annual Report (2006) Annual Report of the German Coal Importers Association (Verein der

Kohlenimporteure e.V.), Hamburg, Spring 2007.
VDKI Annual Report (2007) Annual Report of the German Coal Importers Association (Verein der

Kohlenimporteure e.V.), Hamburg, July 2008.
VDKI Annual Report (2011) Annual Report of the German Coal Importers Association (Verein der

Kohlenimporteure e.V.), Hamburg, May 2011.
VDKI Annual Report (2012) Annual Report of the German Coal Importers Association (Verein der

Kohlenimporteure e.V.), Hamburg, May 2012.
VDKI Annual Report (2013) Annual Report of the German Coal Importers Association (Verein der

Kohlenimporteure e.V.), Hamburg, July 2013.
Warell, L. (2007) Market Integration in the International Coal Industry: A Cointegration Approach, Lulea

University of Technology, Economics Unit, 2006, p. 38.
Wolf, B. and Scheer, H. (2005) Öl aus Sonne – Die Brennstoffformel der Erde, Bochum, Germany.
World Coal Institute – Resource Coal (2005) The Coal Resource: A Comprehensive Overview of Coal,

First published in the UK in May 2005.
World Coal Institute – Secure Energy (2005) Coal: Secure Energy, First published in the UK in October

2005.
Yaxley, N. (2006) President Euracoal, Secure and Sustainable Energy from Coal, Presentation in Brussels,

23 January.



CHAPTER 3
Natural Gas Markets and Products

Mark Cummins and Bernard Murphy

3.1 PHYSICAL NATURAL GAS MARKETS

This first section is designed to give an introduction to natural gas as a fossil fuel and overview
current levels of global reserves, production and consumption. It then goes on to discuss the
physical structure and operation of the natural markets, presents the primary natural gas trading
hubs and overviews the main market participants and then finishes with a discussion on the
liquefied natural gas markets and recent shale gas developments.

Natural gas is a fossil fuel that when unprocessed is primarily composed of methane
(CH4), found in the typical range of 70–95%, but may also comprise other hydrocarbons such
as ethane (C2H6), propane (C3H8) and butane (C4H10); often collectively referred to as the
natural gas liquids that are used in the production of liquefied petroleum gases (LPGs) and
which are found in the typical range of 0–8%. Additional components found in unprocessed
natural gas may include nitrogen, carbon dioxide and hydrogen sulphide. Traces of mercury
and rare gases such as helium, argon, neon and xenon may also be found. Natural gas may also
include other impurities, such as water and sand, which contaminate deposits; such impurities
are commonly referred to as bottoms, sediment and water (BS&W). Natural gas found with
crude oil is referred to as associated gas, whereas in contrast natural gas found in a separate
reservoir is referred to as non-associated gas. Associated gas may be found dissolved within
the crude oil but may also be found next to the crude oil. In the past, associated gas was simply
flared off while extracting crude oil. However, nowadays, in efforts to optimize reservoirs, the
associated gas is extracted in parallel with the crude oil for commercial use. Methane may also
be found associated with or within other substances such as coal, sandstone, shale, biomass,
landfill materials and animal waste. Technologies exist and are being developed that allow for
the extraction of such associated methane sources, with particular focus on unconventional
shale gas in recent years.

The terms ‘dry’ and ‘wet’ are commonly used in classifying the quality of natural gas, with
dry referring to natural gas that is almost pure methane and wet referring to natural gas that
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contains substantial amounts of other hydrocarbons, such as the liquefied petroleum gases of
ethane, propane and butane. Given the relative purity of dry gas compared with wet gas, much
less processing of this type of natural gas is required. Dry gas is typically non-associated and
so found separate from crude oil or other substances. Like in the crude oil markets, the terms
‘sweet’ and ‘sour’ also apply to natural gas, with sweet referring to low hydrogen sulphide
levels and sour referring to high hydrogen sulphide levels. Another dimension of interest in
classifying natural gas is its energy output or calorific value. ‘H-gas’ refers to natural gas that
has a high calorific value, while ‘L-gas’ refers to natural gas with a low calorific value.

As with other energy and commodity markets, there are a number of metrics for the
measurement of natural gas within the industry. The metric used is typically determined by
whether one is considering production and supply or sale and consumption. In the former
case of production and supply, market participants are generally interested in volume and
so measure on this basis. In the latter case of sale and consumption, market participants are
generally more interested in energy content and so measure on this basis. The volumetric unit
typically used in Europe is the cubic metre, while the typical unit used in the United States
is the cubic foot. The volumetric measurement of natural gas must be done and quoted at a
specified temperature and pressure. The reason for this of course is that given its gaseous state,
the volume of natural gas may increase or decrease depending on the temperature and pressure.
Three measurement conventions are typically used in the industry: (i) standard units, measured
at 15◦C and a pressure of 1.013 bar; (ii) normal units, measured at 0◦C and a pressure of 1.013
bar; and (iii) Russian units, measured at 20◦C and a pressure of 1.013 bar. Energy content
is measured in terms of calorific value, which gives the amount of heat produced per unit
of natural gas burned. The typical units of measurement used in North America, the United
Kingdom and mainland Europe are as follows: (i) North America – British thermal unit (Btu);
(ii) United Kingdom – therm (the equivalent of 100,000 Btus); and (iii) Continental Europe –
kilowatt hours (kWh) or gigajoules (GJ).

To get an understanding of global levels of natural gas reserves, production and con-
sumption, we refer to the annual BP Statistical Review of World Energy report series. This
series is an excellent source of statistics pertaining to the key energy markets of oil, natural
gas and coal, as well as nuclear, hydro and renewables. The 2013 report looks back at the
2012 energy markets and, of relevance here, gives important insights into the state of the
natural gas market (BP Group, 2013).1 In terms of total world primary energy consumption,
Figure 3.1 shows that natural gas comes in third place to coal and oil, recording a consumption
figure of approximately 3000 million tonnes oil equivalent. Figure 3.2 shows the distribution
of proved reserves of natural gas for 2012 and for comparative purposes the same distributions
for the earlier years of 2002 and 1992. Total proved reserves in 2012 were 187.3 trillion cubic
metres, with this being dominated in the Middle East and Europe & Eurasia regions. Iran
and Qatar take the top two positions in the Middle East region, with reported estimates of
approximately 33.6 trillion cubic metres and 25.1 trillion cubic metres of reserves respec-
tively. In the Europe & Eurasia regions, Russia dominates with approximately 32.9 trillion
cubic metres of reserves, followed in second position by Turkmenistan with approximately
17.5 cubic metres. Total proved reserves are significantly higher than the 2002 and previous
1992 levels, but the geographic distribution of reserves has not changed much in the intervening
years.

1Available at http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_
energy_2013.pdf.

http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_energy_2013.pdf
http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_energy_2013.pdf
http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_energy_2013.pdf
http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_energy_2013.pdf
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World primary energy consumption grew by a below-average 1.8% in 2012. Growth was below average in all regions except
Africa. Oil remains the world’s leading fuel, accounting for 33.1% of global energy consumption, but this figure is the lowest
share on record and oil has lost market share for 13 years in a row. Hydroelectric output and other renewables in power
generation both reached record shares of global primary energy consumption (6.7% and 1.9%, respectively).

F IGURE 3.1 World primary energy consumption 2012
Source: BP Statistical Review of World Energy 2013.

Further to this, Figure 3.3 gives production and consumption figures by region, with
Figure 3.4 providing additional insight into consumption, showing the per capita figures by
region. The analysis of BP reports that world natural gas consumption grew by 2.2% in 2012,
which is below the historical average growth of 2.7%. Above average growth is reported to
have occurred in South & Central America, Africa and North America, with the USA showing
the greatest absolute increase (a 4.1% increase) in consumption to 722.1 billion cubic metres
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F IGURE 3.2 Natural gas proved reserves 1992, 2002 and 2012
Source: BP Statistical Review of World Energy 2013.
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F IGURE 3.4 Natural gas consumption per capita 2012
Source: BP Statistical Review of World Energy 2013.

of natural gas. In Asia, China and Japan saw substantial increases in consumption totalling
143.8 billion (a 9.9% increase) and 116 billion cubic metres respectively. In contrast, the EU
experienced a relative decline in natural gas consumption of 2.3%, with consumption in the
former Soviet Union countries being down 2.6%. Of this latter figure, Russia as the second
largest natural gas consumer saw its individual usage decline by 2.2% to 416.2 billion cubic
metres. These significant declines in key global economies underlie the below average growth
in natural gas consumption. In line with the modest growth in consumption, growth in natural
gas production was relatively weak in 2012 with a 1.9% increase reported. The largest absolute
increase occurred in the USA, with total production increasing to 681.4 billion cubic metres
from 648.5 billion cubic metres the year previous. Although the largest global consumer of
natural gas by far, it is also the largest natural gas producer by some margin. Norway, Saudi
Arabia and Qatar saw significant relative increases in production of 12.6%, 11.1% and 7.8%
respectively. Russia, as the second largest producer of natural gas, saw a non-negligible decline
in its production, down from 607 billion cubic metres in 2011 to 592.3 billion cubic metres
in 2012.

Natural gas is typically brought to market over pipeline networks, which are primarily
regional in reach but are also international and transcontinental – to be discussed in the next
section. However, it is also possible to convert natural gas into liquid form for transportation
through a process referred to as liquefaction. Through the cooling process of liquefaction,
natural gas becomes much denser and so its volume contracts significantly, with the conversion
to liquefied natural gas (LNG) then allowing for efficient transportation via specialized freight
vessels. This transportation of LNG has allowed for the globalization of natural gas markets
and is often a viable solution for natural gas reserves where pipeline transportation is either
not geographically possible or not economically viable. The LNG market has seen significant
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F IGURE 3.5 Natural gas and LNG: major trade routes 2012
Source: BP Statistical Review of World Energy 2013.

growth over recent years and will be discussed separately in Section 3.1.3. In terms of global
natural gas trade, Figure 3.5 shows the major trade routes for natural gas and LNG, along with
the volumes traded in 2012. Overall trade activity growth was very poor, with only a 0.1%
increase recorded in the year. Massive declines of 12% in Russian pipeline exports were partly
counterbalanced by an increase of 12% in Norwegian pipeline exports. The LNG share of
global natural gas trade fell slightly over the period. A massive drop off in demand was seen
in Europe, with a decline of 28.2% in LNG imports there. However, this was counteracted by
a substantial increase in LNG imports into the Asia region, with a 22.8% increase recorded.

The face of the natural gas markets is also changing with the increasing prominence of
shale gas, as the technology to exploit such unconventional natural gas deposits is developed
and deployed. The USA in particular has undergone, what commentators refer to as a ‘shale
gas revolution’ with significant penetration of shale gas reserves across a number of states in
the USA. The introduction of shale gas reserves to the mix has dramatically altered the natural
gas markets there, impacting on price dynamics and potentially positioning the USA as a net
exporter of natural gas rather than a net importer in coming years. A previous focus on the
development of regasification infrastructure for LNG imports has not changed to a focus on
liquefaction infrastructure for LNG exports. To showcase this effect of the shale gas revolution
in the USA, Figures 3.6 and 3.7 illustrate the change in natural gas reserve levels for the USA
and UK respectively over the past two decades. Whereas a gradual decline has been seen in
UK natural gas reserve levels with the depletion of deposits in the North Sea in particular, the
USA in contrast has seen a dramatic rise in reserves generally since 2000 and in particular
since 2006, driven primarily by the exploitation of shale gas basins. Shale gas and its current
and future role in global natural gas markets will be discussed in Section 3.1.4.
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FIGURE 3.6 Natural gas reserve levels in the USA: 1994–2014
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

3.1.1 Physica l Structure

Natural gas is a key source of energy in all modern economies. Gas markets have evolved
into a very complex network of physical and financial operations as a result of the following:
(i) strong demand growth throughout the world; (ii) the need to transport gas from wells to final
consumers; and (iii) the need to take financial positions for both physical and financial trading.
We can divide the primary physical activities into exploration and production, processing,
transportation, storage and local distribution.

Explorat ion and Product ion Natural gas fields are not easy to identify and access. The
search for gas fields is costly and expected benefits are volatile because it is not known with
absolute certainty how profitable the search and/or the extraction will be. The extraction
activity could be a standalone project or could be a by-product of the extraction of crude oil.
A detailed discussion of the latest technology underlying modern natural gas exploration and
production is beyond the scope of this chapter.
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F IGURE 3.7 Natural gas reserve levels in the UK: 1994–2014
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

Processing Before consumption, natural gas must be processed to satisfy end consumer
requirements and to ensure that it is in a state that can be shipped through the high-pressure
pipelines across the natural gas network. The level of processing depends very much on the
composition of the gas and the contained impurities. Sand and other impurities such as water
and hydrogen sulphide are removed. Heavier gases or natural gas liquids, such as ethane,
propane and butane, are also extracted as these have their own commercial value. There are
three fundamental stages to processing: (i) dehydration; (ii) sweetening; and (iii) absorption.
These process stages are together referred to as stripping and are described below.

� Dehydration stage. This process involves the removal of water content from natural gas by
vaporization. It is important to remove such water traces in order to prevent the formation
of hydrates and freezing in pipeline systems.

� Sweetening stage. This is the process of removing hydrogen sulphide impurities from
natural gas, where the importance of this stage increases with the sourness of the natural
gas. Carbon dioxide is also removed with the sweetening process, along with other gas
contaminants, some of which may have commercial value in themselves.
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� Absorption stage. This is the process whereby the natural gas liquids are separated from
the natural gas. As mentioned previously, the natural gas liquids of ethane, propane and
butane are used in the production of liquefied petroleum gases but may also be used as
motor gasoline blending components and as raw material for the petrochemicals industry.

Transportat ion Once processed, natural gas must be transported to either large industrial
users, storage facilities or local distribution companies. This is not a trivial part of the natural gas
market because it adds a considerable cost to the commodity and results in price differentials
between locations, underlining the need to be able to store gas at cost-effective prices. As
gas fields tend to be in remote locations far away from the areas where the natural gas is
ultimately consumed (e.g., urban areas, industrial centres, etc.), transportation distances can
be substantial. Indeed, within the natural gas market, transportation between countries and
between continents is also common. Natural gas is primarily transported over networks of
pipelines that interconnect between the gas field sources and the end consumers. With LNG,
shipping of natural gas using special freight vessels is a major but secondary transportation
mechanism. High-pressure pipelines are typically made of welded steel, with low-pressure
pipelines made of polyethylene. The pressure drops the further that the natural gas travels and
so the longer the pipeline, the more the pressure drops as well. To deal with these pressure
issues, pipelines are fitted with compression stations or compressors at regular intervals (80–
100 km) that increase pressure within the pipeline. The overall objective of the compressor
system is to maintain the flow of natural gas at as constant a rate as possible. In most cases, the
compressors are powered by some of the flowing natural gas in the pipeline. Pipelines tend to
operate at varying pressures depending on the time of year and the volume of natural gas in
the pipeline. There are three main types of pipeline network, which are set out below.

� Transmission system. Delivers the upstream natural gas production to regional distribution
networks or to large industrial centres.

� Regional system. Allows for the transportation of natural gas to local distribution grids.
� Local grids. Allow for the transportation of natural gas to end users in a locality that

includes residential, commercial and industrial consumers. Local distribution companies
own and operate these high-pressure networks.

Figure 3.8 illustrates the extensive natural gas pipeline network that services the US and
Canadian regions. The Energy Information Administration reports that (as of 2007/2008) the
natural gas pipeline network comprised:2

� More than 210 natural gas pipeline systems.
� 305,000 miles of interstate and intrastate transmission pipelines.
� More than 1,400 compressor stations that maintain pressure on the natural gas pipeline

network and assure continuous forward movement of supplies.
� More than 11,000 delivery points, 5,000 receipt points and 1,400 interconnection points

that provide for the transfer of natural gas throughout the United States.
� 24 hubs or market centres that provide additional interconnections.
� 400 underground natural gas storage facilities.

2See http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/index.html.

http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/index.html.
http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/index.html
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F IGURE 3.8 US and Canadian natural gas pipeline network map
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

� 49 locations where natural gas can be imported/exported via pipelines.
� 8 LNG import facilities and 100 LNG peaking facilities.

Storage Natural gas demand is variable throughout the year but amongst the many funda-
mental drivers of natural gas markets, weather plays a key role. Although demand is volatile
and unpredictable, natural gas prices tend to show a strong seasonal pattern: typically high
demand in winter and low demand in summer, a feature which is usually accompanied by
higher gas prices in winter and lower prices in summer. This strong seasonal component,
coupled with the need to have a buffer to meet unexpected short-term demand and supply
deviations, justifies the existence of storage capacity in developed natural gas markets. Natural
gas storage facilities come in a variety of forms: caverns, depleted oil and gas fields, aquifers,
and overground steel storage units. Storage facilities offer the market a mechanism for the
efficient management of natural gas to deal with seasonal, daily and intra-daily fluctuations in
demand. In this context, two classifications of storage exist: seasonal storage and peak storage.

� Seasonal storage. Incorporates large storage facilities with relatively low injection and
withdrawal rates. Such facilities typically provide baseload winter supply to the natural
gas markets. Market participants generally use such facilities to inject natural gas during
summer months when demand and prices are lower and subsequently withdraw the gas
later during winter months when demand and prices are higher. Seasonal storage facilities
therefore allow for the temporal management of supply and demand differences between
seasons. Seasonal storage facilities primarily comprise large-scale depleted oil and gas
fields and aquifers.

� Peak storage. Incorporates smaller storage facilities with relatively high injection and
withdrawal rates. Such storage facilities allow market participants to react to short-term
variations in demand by means of quick injections and withdrawals of natural gas in
and out of storage. Peak storage also allows market participants to balance their activity
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FIGURE 3.9 North American natural gas storage facility map
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

on a transmission system, which is an integral part of maintaining the pressure within
the pipeline network. Peak storage is therefore a mechanism through which daily and
intra-daily fluctuations in demand may be managed. Peak storage facilities include salt
and rock cavities, low-pressure tanks, linepack (i.e., pipeline storage) and LNG tanks.

Figures 3.9 and 3.10 provide maps of the major storage facilities in North America
and North West Europe respectively. The Energy Information Administration (EIA), in its
2012 annual natural gas report (Energy Information Administration, 2012),3 calculates that
underground storage capacity in the USA, as of 31 December 2012, totalled approximately
9,000,000 million cubic feet of natural gas. The largest available capacity is in Michigan
with just over 1,000,000 million cubic feet of capacity, followed closely by Illinois with just
under 1,000,000 million cubic feet and then Texas with just over 830,000 million cubic feet.
The types of storage capacity available include salt caverns, aquifers and depleted fields,
with the latter being the dominant form of available capacity. Figure 3.11, drawn from the
EIA natural gas annual report 2012, provides a detailed map of the regional distribution of
natural gas storage capacity in the USA. The predominance of depleted fields is evident, with
330 depleted field sites identified compared with 44 aquifers and 40 salt caverns. Further to
this, it is reported by the EIA that in terms of capacity utilization, US underground storage
saw a net injection of 7,279 million cubic feet of natural gas, with total injection hitting
2,825,427 million cubic feet and total withdrawal 2,818,148 million cubic feet. LNG storage
similarly saw net injection overall, by 1,560 million cubic feet in this case, although levels of
LNG injection and withdrawal were less than 1% of their underground storage injection and
withdrawal counterparts. The biggest total injection occurred in California (48,071 million
cubic feet), with West Virginia leading the pole for withdrawals (26,959 million cubic feet).

3Available at http://www.eia.gov/naturalgas/annual/pdf/nga12.pdf.

http://www.eia.gov/naturalgas/annual/pdf/nga12.pdf
http://www.eia.gov/naturalgas/annual/pdf/nga12.pdf
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F IGURE 3.10 North West Europe natural gas storage facility map
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.
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F IGURE 3.11 Detailed US natural gas storage facility map
Source: Energy Information Administration Natural Gas Annual Report 2012.

3.1.2 Natural Gas Market Hubs and Main Part ic ipants

The natural gas markets are centred around a number of prominent trading hubs, with much
of the physical and financial-based trading indexed to or settled against the prices at these
locations. Henry Hub is the primary natural gas hub in the United States and the main pricing
point for natural gas transactions in North America. In Europe, the most liquid natural gas hub
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is by far the National Balancing Point in the United Kingdom. Other natural gas hubs have
emerged in Continental Europe and continue to grow in importance. These include Zeebrugge
in Belgium and the Title Transfer Facility in the Netherlands, in addition to Gaspool and
NetConnect in Germany.

� Henry Hub. Distribution hub located at Erath, LA, which interconnects with nine interstate
and four intrastate pipelines. It is the main pricing point in the United States and North
America generally for physical and paper-based natural gas transactions.

� National Balancing Point (NBP). The NBP is the main pricing point for natural gas
transactions in the United Kingdom, and indeed across Europe. It represents the most
liquid natural gas market in Europe. The NBP differs from Henry Hub in that it is a virtual
trading location rather than a physical location. All natural gas transactions in the United
Kingdom are assumed to flow through this virtual hub for the purposes of price formation.

� Zeebrugge. Zeebrugge is a natural gas hub located in Belgium and like the NBP is a
virtual trading location from a pricing perspective. However, Zeebrugge is the physical
location where the UK interconnector pipeline to Continental Europe converges with the
Norwegian Zeepipe. Hence, there is a close relationship between Zeebrugge and the NBP.

� Title Transfer Facility (TTF). A relatively new natural gas hub that was introduced in 2003
and located in the Netherlands. Once again it is a virtual trading location similar to the
NBP and Zeebrugge. It is becoming an ever more important pricing point for European
natural gas transactions.

The natural gas markets are comprised of a number of market participants, which include
producers, consumers, wholesale suppliers and distributors, traders, transmissions system
operators and shippers. These market participants are commonly classified into two levels:
primary and secondary.

� Primary level
� Producers. Extract and produce natural gas, selling it into the market.
� Power generators. Buy natural gas from the market as an input fuel to the generation

of electricity and, where a surplus of natural gas exists, sell natural gas into the market.
� Industrial consumers. Large industrials that are sufficiently large to trade in the natural

gas market on their own account rather than through a wholesaler.
� Suppliers and Distributors. Buy and sell natural gas as part of ongoing supply and

distribution activities to their customers.
� Secondary level

� Traders. Concentrate on the buying and selling of natural gas using the financial paper-
based markets rather than the physical buying and selling of gas. Such traders span
banking and financial institutions, investment funds and energy trading houses.

� Operators. Buy and sell natural gas as part of balancing activities and to ensure the
reliable delivery of natural gas as demanded by network participants.

3.1.3 L iquef ied Natural Gas

The process of liquefaction allows for the conversion of natural gas into LNG, which in its
reduced volume liquid form may easily be transported globally by freight between locations
not connected via pipelines. The liquefaction process involves cooling the natural gas – after
first removing any trace gases and impurities – to about −162◦C. This cooling condenses
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the natural gas into liquid form, reducing the volume dramatically to about 0.16% of its
original volumetric size. The LNG is then in a suitable state that allows for it to be loaded
into special refrigerated storage tanks on specially designed LNG freight vessels. This allows
for the LNG to be transported to any location globally – although defined routes exist. Once
the LNG freight vessel reaches a destination LNG terminal it is regasified, that is converted
back into its original gaseous state, to be plugged into that regional natural gas network. The
liquefaction and regasification processes are such that approximately 30% of the feedstock
natural gas is consumed in the liquefaction process and about 10% in the regasification,
although more efficient techniques are continuously being developed. The LNG process has
opened up markets for gas fields in particularly remote locations where a pipeline network
is either not logistically possible or economically viable. The benefits of the LNG market to
the overall natural gas industry include the provision of emergency supplies and guaranteed
pipeline system operation under extreme demand conditions and as a source of peak storage.

Referring to Figure 3.6 again, which is drawn from the BP Statistical Review of World
Energy 2013, a selection of major trade routes and volumes of LNG moved are mapped out
(BP Group, 2013). In terms of LNG imports, the Asia Pacific region dominates that market
by a considerable margin, which is driven by imports into Japan primarily. Indeed, the BP
assessment calculates imports into Asia Pacific at approximately 227 billion cubic metres,
with imports into Japan alone amounting to almost 119 billion cubic metres; over 50% of
the regional total. South Korea is the next largest importer in the region, with 2012 imports
estimated to be just under 50 billion cubic metres. Indeed, Japan and South Korea depend
exclusively on the LNG markets for their entire natural gas consumption (International Gas
Union, 2013b). Europe & Eurasia is the next biggest import region for LNG, with a total of
approximately 69 billion cubic metres across its countries. In terms of LNG exports, Qatar is
the leading exporter by far based on the BP analysis, dwarfing other exporting countries with
a total of approximately 105 billion cubic metres of natural gas.

The International Gas Union (IGU), in its World LNG Report 2013 (International Gas
Union, 2013b), identifies that with the exception of a dip in 2012, the volume of LNG trade
has grown year after year for the past three decades.4 The number of exporting countries in
2012 dipped slightly to 17, while the number of importing countries rose to 25; the dip in
exporting country numbers was due to Libya ceasing exports during the civil war period. The
total export volume in 2012 is estimated to be in the region of 230 million tonnes. The number
of re-exporters has continued to rise over the past number of years and in 2012 the list of
LNG re-exporters has been extended with France and Portugal.5 It is estimated that re-export
volumes were in the region of 3.5 million tonnes of LNG in 2012, with the main re-exporters
being Belgium, Spain and the USA.

The IGU further estimates in its World LNG Report 2013 (International Gas Union,
2013b) that regasification capacity globally has risen significantly over the past few years to
over 600 million tonnes per annum of LNG, with the leading region being Japan with some
180 million tonnes of capacity, followed closely by the USA and South Korea. Indeed, if
one includes Spain and the UK in this mix then all five nations account for over 74% of

4Available at http://www.igu.org/gas-knowhow/publications/igu-publications/IGU_world_LNG_report
_2013.pdf.
5Re-exportation is the process whereby foreign LNG is offloaded to storage units within a given national
jurisdiction, stored for a period of time and then later re-exported to foreign markets.

http://www.igu.org/gas-knowhow/publications/igu-publications/IGU_world_LNG_report_2013.pdf
http://www.igu.org/gas-knowhow/publications/igu-publications/IGU_world_LNG_report_2013.pdf
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FIGURE 3.12 Major global LNG terminals
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

global regasification capacity. Whereas utilization of regasification capacity is high in Japan
and South Korea (and Asia generally), utilization in the USA was extremely low in 2012 at
a reported figure of just 3%, reflecting the domestic production of natural gas in the USA,
bolstered by its shale gas activities. In contrast, the IGU estimates that global liquefaction
capacity across the main exporting countries in 2012 amounted to approximately 283 million
tonnes per annum of LNG. Qatar as the main exporter globally has the largest liquefaction
capacity at 77 million tonnes per annum of LNG and boasts a 100% utilization rate of this
capacity. Indonesia, Malaysia, Nigeria and Australia follow in order after Qatar but with
liquefaction capacity in each case that is less than half that of Qatar.

Figure 3.12 maps a selection of major LNG terminals globally, with Figures 3.13 and
3.14 providing more detailed maps for the USA and Europe respectively. Figures 3.15–3.17
respectively present snapshots of LNG vessel locations (as of the 27 March 2014) globally, in
the Middle East and around Singapore.

3.1.4 Shale Gas

One of the most important changes to the landscape of the natural gas markets in recent years
has been the rapid growth in shale gas exploitation since 2006. Shale gas is defined to be
unconventional natural gas that is contained within shale gas formations that may be released
through advanced fracturing techniques and is considered a subset of tight gas, which covers
all unconventional gas deposits contained in rock formations such as sandstone, carbonates and
shale (Energy Information Agency, 2013). Shale gas is released through hydraulic fracturing
or fracking. In this process, a liquid mix that is 99% water and sand is injected into the rock
formation at high pressure, resulting in the creation of fractures that allow the trapped natural
gas to flow. The fracking fluid also keeps the formation more porous throughout the extraction
process. Fracking as a technique is particularly controversial and opponents of the technology
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F IGURE 3.13 Major US LNG terminals
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

F IGURE 3.14 Major European LNG terminals
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

point to the seismic disruption from the process and the environmental subsurface damage from
chemicals added to the process.6 This increased focus on shale gas has been driven by a number
of economic factors, in particular the pursuit of energy security by sovereign nations, and has

6For further details of the fracking technology, and more generally on natural gas exploration and
production technology, see the NaturalGas.org educational website at http://naturalgas.org/environ
ment/technology/.

http://naturalgas.org/environment/technology/
http://naturalgas.org/environment/technology/
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FIGURE 3.15 LNG freight vessel locations: global
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

been facilitated by progressive advances in exploration and production technology. The USA is
experiencing what is commonly termed a ‘shale gas revolution’. From a policy perspective, the
USA (more specifically certain states such as Texas, Oklahoma and Pennsylvania) has reacted
more rapidly than other countries in opening up its shale gas resources to the natural gas
industry, notwithstanding continued controversy over the environmental impact of shale gas
production techniques. This proactive strategy has included important policy measures such
as incentive pricing, tax credits and supported R&D. The exploitation of shale gas reserves
in the USA has dramatically altered the natural gas market landscape for the nation, leading

F IGURE 3.16 LNG freight vessel locations: Middle East
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.
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F IGURE 3.17 LNG freight vessel locations: Singapore
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

to consistently low natural gas prices over the past few years and raising the real prospect for
the USA to become a net exporter of natural gas. As noted earlier, a previous focus on the
development of regasification infrastructure for LNG imports has now changed to a focus on
building liquefaction infrastructure for natural gas exports. Indeed, the USA is currently in
the process of constructing liquefaction capacity to the order of 18 million tonnes of LNG
(International Gas Union, 2013b). Given this tangible success of shale gas in the USA, a
greater focus is now being placed on available shale gas resources worldwide.

The EIA released a comprehensive report in 2013 that provides an assessment of the
technically recoverable shale gas (and shale oil) resources worldwide (Energy Information
Administration, 2013).7 It is reported that total shale gas resources amount to 7,299 trillion
cubic feet, spanning 41 countries, 95 basins and 137 individual shale gas formations. Indeed,
it is estimated that 32% of global natural gas resources are now in shale gas form. Table 3.1
presents the top 10 countries by volume of shale gas resources as estimated by the EIA.8

Three key factors are identified in the 2013 report that will drive the economic recoverability
of the shale gas resources going forward. These three factors include: (i) cost of drilling and
completing wells; (ii) amount of natural gas produced from an average well over its lifetime;
and (iii) prevailing prices for natural gas (Energy Information Administration, 2013). In this
respect, a number of key advantages that the USA has in its favour are not readily available to
other jurisdictions. These advantages of the USA include, amongst others, the right of private
owners to resources below the surface of lands owned, extensive exploration and production
infrastructure, and relatively unconstrained access to water resources for the fracturing process
(Energy Information Administration, 2013). Figure 3.18 shows the spread of shale gas deposits

7Available at http://www.eia.gov/analysis/studies/worldshalegas/pdf/fullreport.pdf.
8It is noted that based on estimates from Advanced Resources International, Inc., the USA would be
the leading country with 1161 trillion cubic feet of shale gas (Energy Information Agency, 2013), some
500 trillion cubic feet more than assessed by the EIA.

http://www.eia.gov/analysis/studies/worldshalegas/pdf/fullreport.pdf
http://www.eia.gov/analysis/studies/worldshalegas/pdf/fullreport.pdf
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TABLE 3.1 Top 10 countries by technically recoverable shale gas

Rank Country Shale gas (trillion cubic feet)

1 China 1115
2 Argentina 802
3 Algeria 707
4 USA 665
5 Canada 573
6 Mexico 545
7 Australia 437
8 South Africa 390
9 Russia 285

10 Brazil 245

Source: Energy Information Administration ‘Technically Recoverable
Shale Oil and Shale Gas Resources: An Assessment of 137 Shale
Formations in 41 Countries Outside of the US’ Report 2013.

in the USA, where particular concentrations can be seen to exist close to some of the main
trading points.

The EU is currently in the process of assessing its potential and prospects for shale
gas exploitation. According to the EIA statistics, shale gas in Europe (spanning Western
and Eastern Europe, including Russia) extends across 14 countries, with 17 basins and 24
individual shale formations identified. The total amount of technically recoverable shale in
Europe (based on figures from Advanced Resources International, Inc.) is estimated to be
883 trillion cubic feet as of 2013, with EU coverage including Poland, France, Norway and

F IGURE 3.18 US shale gas deposit map
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.
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the UK. The European Parliament issued a policy briefing in 2013 in which it considers the
case for shale gas exploitation within the EU (European Parliament, 2013). The role of natural
gas is prominent within the energy-mix proposals set out in the EU’s ‘Energy Roadmap 2050’
and central to energy security efforts, while additionally, as the lowest greenhouse gas emitter
of the main fossil fuels, natural gas is seen as a necessary transition fuel to a low carbon
economy and fundamental to the EU’s climate change objectives. The prospects for shale
gas face a number of key challenges, not least environmental concerns around the fracking
process. Indeed, France and Bulgaria have temporary bans in place on shale gas fracking,
while other member states are considering similar lines of objection. The main proponents
of shale gas in the EU include Poland (with the largest shale gas deposits), Romania and the
UK (European Parliament, 2013). Energy security underlies much of the push for exploring
shale gas resources; for example, the European Parliament briefing identifies that Poland is
looking to reduce dependence on Russia, while the UK is looking to replace dwindling natural
gas resources from its North Sea activities. A number of factors are set out by the European
Parliament that create obstacles to large-scale shale gas production. These obstacles include
the following: the high density of populations across the EU member states, which constrains
widespread fracking; EU land ownership laws, which differ significantly from those in the
USA and are dominated by state ownership of subsurface resources; the availability of the
requisite expertise to roll out a large-scale shale gas programme; and, finally and possibly
most importantly, the strong environmental opposition that exists and continues to strengthen
against shale gas fracking activities (European Parliament, 2013).

3.2 NATURAL GAS CONTRACTING AND PRIC ING

The natural gas market is characterized by the demand for reliable and continuous supplies
of natural gas, which means that the market needs to be able to handle peaks in demand,
supply disruptions and transmissions system failures. Hence, the market is structured with
sufficient flexibility in order to deal with such eventualities. Much of the activity in the natural
gas markets, particularly in the European market, involves long-term supply contracts of
high volumes of natural gas. These contracts can span periods from 10 to 25 years, which
provide significant levels of volumetric certainty for consumers but clearly expose suppliers
to significant risks over the commitment period, not least the contractual requirement to
meet the stated volume of supply but also the market price exposure from fluctuating prices.
Contract provisions may be set down that provide market participants with the flexibility to
manage the risks associated with the committed supply volumes, while financial contracts,
such as those discussed in the forthcoming sections, provide mechanisms through which to
manage the market price risk. These long-term contracts include take-or-pay conditions, swing
optionality, index-based or formula pricing and/or interruptible supply provisions. These are
briefly described.

� Take-or-pay. These contracts dominate the landscape of the European natural gas market
in particular. Under the provisions of a take-or-pay contract, an annual contract quantity
(ACQ) is set out that is typically fixed for the life of the contract and the seller commits
to deliver this quantity to the buyer. The buyer in turn is committed to pay for a minimum
amount of the ACQ, which is typically set in the 85–100% range depending on the contract
negotiation. The minimum payment is required irrespective of the amount actually taken
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by the buyer. This structure places commitments on the seller and buyer and in so doing
provides levels of certainty to both parties. Some take-or-pay contracts have additional
clauses that allow for gas not taken by a buyer in one year to be taken in the next year,
subject to the provision that the minimum payment has been met by the buyer first – this
recovered gas is often referred to as ‘free gas’.

� Swing. A swing contract is a type of take-or-pay contract that gives the buyer the right
to nominate the amount of natural gas taken on a daily basis with prespecified maximum
and minimum limits. Such contracts set out an average daily contract quantity (DCQ) and
it is around this level that the minimum and maximum limits are set. The limits typically
may be as narrow as the DCQ±10% or as wide as a minimum of 0% and a maximum of
200% around the DCQ. These contracts give the buyer significant levels of volumetric
flexibility or optionality, essentially providing the holder with a multiple exercise right,
multiple exercise date option.

� Formula pricing. These are contracts that link or index the natural gas to another energy
product. Typically this is heating oil but may also be crude oil, fuel oil or coal. The
indexing is set such that a specified lag of the indexing energy product is used in setting
the natural gas price under the contract. The lag length typically ranges from 3 to 9 months.
Contracts may also be written to protect against inflation and provisions are usually set
out to allow for the resetting or renegotiation of the contract terms every 3 to 5 years. This
allows these long-term contracts to respond and adjust to changing natural gas prices.

� Interruptible contracts: These long-term contracts allow the seller of the natural gas
to disrupt and interrupt the supply of natural gas to the buyer. This provides the seller
with flexibility to manage disruptions to its own supply source and make alternative
arrangements without the same level of contractual penalty. There is normally a maximum
duration set out for the interruption period, for example in the UK market this is typically
a maximum of 45 days in any one year. The buyer is compensated for the disruption,
which normally comes in the form of a discounted price for the natural gas ultimately
supplied.

Long-term gas prices are affected by a number of factors that include the general state of the
economy, external energy market influences (in particular, crude oil), long-term changes in
supply and demand in the natural gas markets, the type of long-term supply contracts that
dominate the market, prevailing pricing arrangements, the make-up of the regional power
generation sector (i.e., to what extent this is based on gas), the level of seasonal capacity
available and general competition in the natural gas markets.

3.2.1 Natural Gas Price Format ion

The IGU provides prominent annual surveys and reports on the global wholesale natural gas
markets. These reports provide particular insights into the global trading of natural gas, the
drivers of natural gas prices and the key pricing mechanisms that exist in the natural gas
markets. The IGU defines the main pricing mechanisms that prevail in the natural gas markets
(International Gas Union, 2011, 2012, 2013a), which are reproduced in Table 3.2.

In its Wholesale Gas Price Survey 2013 report, the IGU provide statistics on natural gas
contracting and price formation globally, discussing the evolution of the market over the period
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TABLE 3.2 Pricing mechanisms in natural gas markets

Pricing mechanism Definition

Oil price escalation The price is linked, usually through a base price and an escalation
clause, to competing fuels, typically crude oil, gas oil and/or fuel
oil. In some cases coal prices can be used as can electricity prices.

Gas-on-gas competition The price is determined by the interplay of supply and demand –
gas-on-gas competition and is traded over a variety of different
periods (daily, monthly, annually or other periods). Trading takes
place at physical hubs (e.g., Henry Hub) or notional hubs (e.g.,
NBP in the UK). There are likely to be developed futures markets
(NYMEX or ICE). Not all gas is bought and sold on a short-term
fixed price basis and there will be longer-term contracts but these
will use gas price indices to determine the monthly price, for
example, rather than competing fuel indices. Spot LNG is also
included in this category.

Bilateral monopoly The price is determined by bilateral discussions and agreements
between a large seller and a large buyer, with the price being fixed
for a period of time, typically 1 year. There may be a written
contract in place but often the arrangement is at the government or
state-owned company level.

Netback from final
product

The price received by the gas supplier is a function of the price
received by the buyer for the final product the buyer produces. This
may occur where the gas is used as a feedstock in chemical plants,
such as ammonia or methanol, and is the major variable cost in
producing the product.

Regulation cost of service The price is determined, or approved, by a regulatory authority, or
possibly a Ministry, but the level is set to cover the ‘cost of service’,
including the recovery of investment and a reasonable rate of return.

Regulation social and
political

The price is set, on an irregular basis, probably by a Ministry, on a
political/social basis, in response to the need to cover increasing
costs, or possibly as a revenue-raising exercise.

Regulation below cost The price is knowingly set below the average cost of producing and
transporting the gas, often as a form of state subsidy to its
population.

No price The gas produced is either flared, or provided free to the population
and industry, possibly as a feedstock for chemical and fertilizer
plants. The gas produced may be associated with oil and/or liquids
and treated as a by-product.

Source: International Gas Union (2011, 2012, 2013a).

2005–1012.9 These statistics form the basis of the discussion to follow. It is reported that of the
total natural gas consumption in 2012 of 3,400 billion cubic metres, contracting based on gas-
on-gas competition represented 40% of the entire market. This gas-on-gas-based contracting
was twice the level of oil indexation-based contracting which only represented 20% of total

9Available at http://www.igu.org/gas-knowhow/publications/igu-publications/Wholesale%20Gas%20
Price%20Survey%20-%202013%20Edition.pdf.

http://www.igu.org/gas-knowhow/publications/igu-publications/Wholesale%20Gas%20Price%20Survey%20-%202013%20Edition.pdf
http://www.igu.org/gas-knowhow/publications/igu-publications/Wholesale%20Gas%20Price%20Survey%20-%202013%20Edition.pdf
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natural gas consumption. Gas-on-gas contracting has increased marginally from the 39% share
it held in 2010 (International Gas Union, 2012) and significantly from the 32% share back
in 2007 (International Gas Union, 2011). Oil indexation contracting has seen little relative
change over the past decade or so, showing a market share of 20% in 2007 (International
Gas Union, 2011) and 23% in 2010 (International Gas Union, 2012). The three regulation-
based contracting categories collectively represented 35% of global natural gas consumption
in 2012. The increasing share of gas-on-gas contracting reflects a significant change to the
dynamic of the European natural gas markets in particular. North America traditionally has
dominated the market in terms of gas-on-gas contracting, and continues to do so, which reflects
the maturity of the liberalized US natural gas markets in particular and the extent of active
Henry Hub and regional market trading (see Section 3.3 for more details). Indeed, of 2012
natural gas consumption in North America, 98% of all contracting was done on a gas-on-gas
basis. This share has remained steady since 2007 (International Gas Union, 2011). The major
change in gas-on-gas contracting has occurred in Europe. In 2007, contracting across Europe
was dominated by oil indexation, with 72% of all consumption being transacted on this basis
(International Gas Union, 2011). However, in the intervening years, the share of oil indexation
has reduced dramatically, while gas-on-gas has increased significantly. In 2012, oil indexation
fell to a 50% share of total European gas consumption, while gas-on-gas rose to a 45% share.
A number of reasons underlie this shift in Europe, which includes an increase in active spot
and hub-based natural gas trading and the renegotiation of contracts away from oil indexation
to spot gas indexation (International Gas Union, 2013a). With the continued development of
the natural gas markets outside North America, along with the increasing role of LNG, it is
projected that gas-on-gas contracting will increase in importance in the formation of global
natural gas prices.

Oil indexation continues to dominate gas transactions in the Asia Pacific region (54%
share), while it represents a significant share of the Asian and Latin American markets (39%
and 23% respectively). In terms of regulation-based contracting, this form tends to dominate
transactions in Russia and the former Soviet Union countries, the Middle East and Africa.
Regulation cost of service is the main price formation mechanism in Russia and the former
Soviet Union countries, representing 48% of all consumption transactions, as well as being the
main mechanism in Asia at 45% of total consumption in this region. Gas-on-gas contracting
however is playing an ever-increasing role in Russia, driven by Gazprom in particular and
a strategic move to compete for international business (International Gas Union, 2013a).
The regulation social and political mechanism is central to the natural gas markets in the
Middle East, while it also represents a significant share of transactions in Latin America
and Asia Pacific. Africa is seen to be almost entirely dominated by regulation below cost,
reflecting the lack of development in natural gas markets across the continent (International Gas
Union, 2011).

In terms of price level achieved in alternative jurisdictions, there are significant differences
in prices. These differences in prices reflect the price formation mechanisms that lead particular
nations and that form the mix of pricing within regions. The IGU reports (International Gas
Union, 2013a) that, based on 2012 data, prices were highest in Asia Pacific and Europe, at
an average of $11 and $10.50/mmBtu respectively. In contrast, prices in North America were
much lower at under $3/mmBtu, the lowest of the regions that operate competitive natural
gas markets. Interestingly, in 2007, North America was the second most expensive region for
gas, with prices transacting at an average price just under $7/mmBtu. The drop in price has
largely been driven by the ‘shale gas revolution’ in the USA, as discussed in Section 3.1.4. The
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higher prices in Europe and Asia Pacific reflect, in addition to other important fundamentals,
the leading role that oil indexation plays in these regions. Indeed, in 2012, the most expensive
natural gas prices emerged from oil price escalation-based contracts. Average prices from
this price mechanism are reported to be over twice the price commanded from gas-on-gas
contracts. The interested reader is directed to the recent series of IGU natural gas reports
(International Gas Union, 2011, 2012, 2013a) for further details on the above discussion and
for a comprehensive treatment of the associated production and import figures.

3.3 F INANCIAL NATURAL GAS MARKETS

Given the liberalization of natural gas markets in the USA and continuing efforts in Europe
towards liberalization, industry participants are increasingly exposed to uncertain and volatile
natural gas prices in the course of their business activities. Effective risk management of
such price exposure has become fundamental to modern-day natural gas markets. This section
begins with a brief introduction to the two main exchange groups – CME Group and the
Intercontinental Exchange – that offer a range of risk management products to participants
within the natural gas markets. A detailed presentation then follows on the main derivatives
products on offer, spanning futures and options. The section concludes with a brief overview
of the over-the-counter (OTC) markets and points to some of the technical chapters in Part II
of this book.

3.3.1 Exchange-Based Markets

The two major exchange conglomerates for natural gas derivatives markets are CME Group
(CME) and the Intercontinental Exchange (ICE). Some key derivative products are traded
on these exchanges that allow for the risk management of what have become highly volatile
natural gas markets, with huge variations on a regional basis in market price dynamics. The
contracts offered on these exchanges allow market participants to eliminate risk entirely (via
futures contracts) or just downside risk (via options contracts), where it is possible to trade
locational differentials, quality differentials and calendar (i.e., maturity-based) differentials.
Both physically and financially settled contracts are offered so as to meet the broad range of
trading and risk management requirements within the market.

CME generally provides access to a hugely diverse derivatives marketplace, reported to
handle 3 billion contracts worth approximately $1 quadrillion annually (on average). The group
controls a collection of prominent exchanges, including the Chicago Mercantile Exchange,
Chicago Board of Trade, New York Mercantile Exchange and the Commodity Exchange. CME
offers an extensive range of products across major asset classes such as interest rates, equity
indexes, foreign exchange, energy, agricultural commodities, metals, weather and real estate.
CME also offers a clearing service to the OTC markets. For the natural gas markets, CME
manages the benchmark natural gas futures and options contracts that are linked to Henry Hub
in the USA. The specifications of these derivative contracts will form the discussion in the
forthcoming section, along with the futures and options contracts that span other key natural
gas market locations in the USA. ICE is equally large with its network of regulated exchanges
and clearing houses that span key global stock and derivatives markets. In total, ICE facilitates
trading in 9,700 contracts across a similar range of major asset classes to CME: energy, interest
rates, credit, currency, bonds, agriculture, precious metals, equities, exchange traded products



Natural Gas Markets and Products 159

and equity options. For the natural gas markets, ICE similarly offers an extensive range of
futures and options derivatives contracts linked to key US, Canadian and European natural gas
markets. The geographic coverage of the CME and ICE contracts is extensive, particularly for
the USA, allowing market participants to manage regional price dynamics and cross-regional
price differences.

3.3.2 Natural Gas Futures

The flagship natural gas futures contract offered by CME is the Henry Hub futures contract.
It is the most liquid natural gas contract that trades globally. Table 3.3 provides a summary of
the main features of the contract. It can be seen that the contract trades in standardized units of
10,000 mmBtus with a listing of up to 118 consecutive months available. Contracts expire with
physical delivery of Henry Hub natural gas and must meet the particular specifications set out
in the FERC-approved tariff of Sabine Pipe Line Company. Market participants not wishing to
take physical delivery of the natural gas on long positions may sell the futures contracts prior
to expiry. Final settlement of the Henry Hub futures contract follows the standard rules that

TABLE 3.3 CME Henry Hub physical futures contract specification

Code: NG
Venue: CME ClearPort, CME Globex, Open Outcry (New York)
Hours (all times are

New York time/ET):
CME Globex. Sunday–Friday 6:00 p.m.–5:15 p.m.

(5:00 p.m.–4:15 p.m. Chicago time CT) with a 45-minute break
each day beginning at 5:15 p.m. (4:15 p.m. CT)

CME ClearPort. Sunday–Friday 6:00 p.m.–;5:15 p.m.
(5:00 p.m.–4:15 p.m. CT) with a 45-minute break each day
beginning at 5:15 p.m. (4:15 p.m. CT)

Open Outcry. Monday–Friday 9:00 a.m.–2:30 p.m.
(8:00 a.m.–1:30 p.m. CT)

Contract unit: 10,000 mmBtus
Pricing quotation: US dollars and cents per mmBtu.
Termination of trading: Trading of any delivery month shall cease 3 business days prior to

the first day of the delivery month. In the event that the official
exchange holiday schedule changes subsequent to the listing of
a natural gas futures, the originally listed expiration date shall
remain in effect. In the event that the originally listed expiration
day is declared a holiday, expiration will move to the business
day immediately prior

Listed contracts: 118 consecutive months
Settlement type: Physical
Grade and quality

specifications:
Natural gas meeting the specifications set forth in the

FERC-approved tariff of Sabine Pipe Line Company as then in
effect at the time of delivery shall be deliverable in satisfaction
of futures contract delivery obligations

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contract_
specifications.html.

http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contract_specifications.html
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TABLE 3.4 CME Henry Hub financial futures contract specification

Code: HH
Venue: CME Globex, CME ClearPort, Open Outcry (New York)
Hours (all times are

New York
time/ET):

CME Globex. Sunday–Friday 6:00 p.m.–5:15 p.m. (5:00 p.m.–4:15 p.m.
Chicago time/CT) with a 45-minute break each day beginning at 5:15 p.m.
(4:15 p.m. CT)

CME ClearPort. Sunday–Friday 6:00 p.m.–5:15 p.m. (5:00 p.m.–4:15 p.m.
CT) with a 45-minute break each day beginning at 5:15 p.m. (4:15 p.m.
CT)

Open Outcry. Monday–Friday 9:00 a.m.–2:30 p.m. (8:00 a.m.–1:30 p.m. CT)
Contract unit: 10,000 mmBtu
Price quotation: US dollars and cents per mmBtus
Floating price: The floating price for each contract month will be equal to the NYMEX

(Henry Hub) natural gas
Futures contract final settlement price for the corresponding contract month

on the last trading day for that contract month
Termination of

trading:
Trading shall cease on the third business day prior to the contract month

Listed contracts: The current year and the next 5 years. A new calendar year will be added
following the termination of trading in the December contract of the
current year

Settlement type: Financial
Final settlement: Delivery under the NYMEX Henry Hub contract shall be by cash settlement.

Final settlement, following termination of trading for a contract month,
will be based on the floating price. The final settlement price will be the
floating price calculated for each contract month

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/natural-gas-last-day_
contract_specifications.html.

apply to a number of energy contracts on CME, including WTI futures, whereby settlement is
based on the following two-tier system:10

� Tier 1. On the day of expiration, the expiring month will settle based on the volume
weighted average price (VWAP) of the outright CME Globex trades executed between
14:00:00 and 14:30:00 ET.

� Tier 2. In the absence of outright or spread trades during this period, the settlement price
will be the best bid or best ask in the expiring contract at 14:30:00 ET, whichever is closer
to the last trade price. If there is not a bid/ask pair in the expiring contract at that time, the
settlement price will be the best bid or ask implied by the bid/ask in the spread between
the expiring and second-month contracts at 14:30:00 ET, whichever is closer to the last
outright trade price in the expiring contract.

In addition to the benchmark physically settled Henry Hub futures contract, CME also offers
a financially settled Henry Hub natural gas look-alike last day financial futures contract;

10See http://www.cmegroup.com/trading/energy/files/NYMEX_Energy_Futures_Final_Settlement_
Procedure.pdf

http://www.cmegroup.com/trading/energy/natural-gas/natural-gas-last-day_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas-last-day_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas-last-day_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas-last-day_contract_specifications.html
http://www.cmegroup.com/trading/energy/files/NYMEX_Energy_Futures_Final_Settlement_Procedure.pdf
http://www.cmegroup.com/trading/energy/files/NYMEX_Energy_Futures_Final_Settlement_Procedure.pdf
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TABLE 3.5 CME Henry Hub last day financial futures contract specification

Code: NN
Venue: CME Globex. CME ClearPort, Open Outcry (New York)
Hours (all times are New

York time/ET):
CME Globex. Sunday–Friday 6:00 p.m.–5:15 p.m. (5:00 p.m.–4:15 p.m.

Chicago time/CT) with a 45-minute break each day beginning at
5:15 p.m. (4:15 p.m. CT). Trade is flow per day

CME ClearPort. Sunday–Friday 6:00 p.m.–5:15 p.m. (5:00 p.m.–4:15 p.m.
CT) with a 45-minute break each day beginning at 5:15 p.m. (4:15 p.m.
CT). Trade is flow per day or flow per month

Open Outcry. Monday–Friday 9:00 a.m.–2:30 p.m. (8:00 a.m.–1:30 p.m.
CT)

Contract unit: 2500 million mmBtus
Price quotation: US dollars and cents per mmBtu
Floating price: The floating price for each contract month will be equal to the NYMEX

(Henry Hub) natural gas futures contract final settlement price for the
corresponding contract month on the last trading day for that contract
month

Termination of trading: Posting of transactions shall cease on the third business day prior to the
contract month

Listed contracts: 118 consecutive months
Settlement type: Financial
Settlement procedure: Delivery under the contract shall be by cash settlement. Final settlement,

following termination of posting for a contract month, will be based on
the floating price. The final settlement price will be the floating price
calculated for each contract month

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-
swap-futures-financial_contract_specifications.html.

referred to also as the Henry Hub swap futures contract. This contract is designed to allow
market participants to trade without the prospect of physical delivery at expiry. As the Henry
Hub financial futures contract is the same size as the physical contract at 10,000 mmBtus, it
offers market participants the flexibility to trade out of the physical contract while holding a
desired position in the natural gas market. The financial settlement of the contract is based on
the physical Henry Hub natural gas futures first nearby contract settlement price on the last
trading day for the delivery month. Table 3.4 sets out the main contract terms.

A third important contract in the CME Henry Hub futures series is the Henry Hub natural
gas last day financial futures contract, which allows for the hedging of basis risk under the
physical futures contract. The contract size is one-quarter the size of the physical and financial
futures contracts described above, at 2500 mmBtus. It is characterized by high correlation
with the physical futures contract. Table 3.5 presents the main features of the contract.

The Henry Hub futures contract series allows for the effective trading and risk management
of Henry Hub natural gas, with either physical or financial exposure. Examples 3.1 and 3.2
present illustrative examples of how one would respectively hedge a physical purchase and
physical sale of Henry Hub natural gas. Figure 3.19 presents the Henry Hub physical futures
curve on 25 February 2014, along with the same curves for 5 years previous (2009) and 10
years previous (2004). The annual winter seasonal peaks in price are clearly evident in the
term structure. Interestingly, it is very notable that Henry Hub prices are far below where they

http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swap-futures-financial_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swap-futures-financial_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swap-futures-financial_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swap-futures-financial_contract_specifications.html
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F IGURE 3.19 CME Henry Hub physical futures curves: Jan 2004, 2009 and 2014
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

were in 2009 and even below levels in 2004. This reduction in price reflects the impact of
shale gas on the US natural gas markets and increased reserves (see Figure 3.7) and increased
production that have resulted. Of interest as well in 2009 is the significant contango that was
observable in the Henry Hub futures curve with market projections beyond 5 years greatly
exceeding $6.50/mmBtu. With current prices below $5/mmBtu and a relatively flat futures
curve along the term structure, the markets view is clearly for a long-term impact of shale gas
on US natural gas markets.

Example 3.1 illustrates how a natural gas consumer would effectively hedge a future
physical purchase of Henry Hub natural gas.

EXAMPLE 3.1 HEDGING A PHYSICAL PURCHASE OF HENRY
HUB GAS

Consider a natural gas consumer who, on 26 February 2014, signs a gas sales agreement
(GSA) to take a delivery of 100,000 mmBtus of Henry Hub natural gas in April 2014, with
the payment terms based (simplistically for the purposes of illustration) on prevailing
spot prices on 1 April 2014. To hedge itself from an expectation of higher spot prices in
April, the natural gas consumer may take the following course of action: go long physical
Henry Hub futures contracts to equal the GSA size and close out prior to the expiration
of the contracts to avoid physical delivery commitments, using the payoff to offset the
spot based payment under the GSA.

Assume the natural gas consumer takes a long position in 10 physical Henry Hub
futures contracts, which are trading at 4.549 US$/mmBtu. As the contract size for
a single physical Henry Hub futures contract is 10,000 mmBtus, the long position
in 10 futures contracts ensures the consumer covers its exposure under the GSA. On
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26 March 2014, assume that natural gas prices have risen as per the expectation of the
consumer and the physical Henry Hub futures contract is trading at 4.846 US$/mmBtu.
The consumer decides to close out its long position by selling the contracts. The payoff
for the consumer on the futures contracts is therefore 100,000 mmBtus × ($4.846–
$4.549)/mmBtu = $29,700. On 1 April 2014, assume that spot prices have continued
to rise and immediate delivery is priced at $4.850. The consumer is obligated to pay
100,000 mmBtus × $4.850/mmBtu = $485,000. Using the proceeds of the futures hedge
as an offset for this purchase gives an effective purchase price of $4.850 − ($4.846−
$4.549) = $4.553/mmBtu and so an overall effective cost of $455,300.

Example 3.2 illustrates how a natural gas producer would effectively hedge a future
physical sale of Henry Hub natural gas.

EXAMPLE 3.2 HEDGING A PHYSICAL SALE OF HENRY HUB GAS

Consider a natural gas producer who, on 26 February 2014, signs a gas sales agreement
(GSA) to make a delivery of 100,000 mmBtus of Henry Hub natural gas in April 2014,
with the payment terms based (simplistically for the purposes of illustration) on prevailing
spot prices on the 1 April 2014. To hedge itself from an expectation of lower spot prices
in April, the natural gas consumer may take the following course of action: go short
physical Henry Hub futures contracts to equal the GSA size and close out prior to the
expiration of the contracts to avoid physical delivery commitments, using the payoff to
offset the spot-based payment under the GSA.

Assume the natural gas producer takes a short position in 10 physical Henry Hub
futures contracts, which are trading at 4.549 US$/mmBtu. As the contract size for a single
physical Henry Hub futures contract is 10,000 mmBtus, the short position in 10 futures
contracts ensures the producer covers its exposure under the GSA. On 26 March 2014,
assume that natural gas prices have fallen as per the expectation of the producer and
the physical Henry Hub futures contract is trading at 4.327 US$/mmBtu. The producer
decides to close out its long position by selling the contracts. The payoff for the producer
on the futures contracts is therefore 100,000 mmBtus × ($4.549−$4.327)/mmBtu =
$22,200. On 1 April 2014, assume that spot prices have continued to fall and imme-
diate delivery is priced at $4.320. The producer receives 100,000 mmBtus × $4.320/
mmBtu = $432,000 from the sale. Using the proceeds of the futures hedge as an offset
for this sale gives an effective sale price of $4.320 + ($4.549−$4.327) = $4.542/mmBtu
and so overall effective proceeds of $454,200.

Before extending the discussion to the North American regional futures contract offerings,
it is worth presenting the outright physically settled contracts that are offered on ICE and that
span the European markets. The futures contracts cover the UK, Dutch and German natural gas
markets. Contracts are for physical delivery through the transfer of rights in respect of natural
gas at a given trading point in a given jurisdiction. Delivery is made equally each day at a given
frequency throughout a specified delivery period (standard futures contract) or on a given date
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TABLE 3.6 UK NBP futures contract specification

Code: M
Expiration date: Trading will cease at the close of business two business days prior

to the first calendar day of the delivery month, quarter, season or
calendar

Units of trading: 1000 therms of natural gas per day (1 therm = 29.3071 kWh)
Contract size: 1000 therms per day per delivery period (i.e., month, quarter,

season or year)
Delivery period
Feb (non-leap year)
Feb (leap year).
Jan, May, Jul, Aug, Dec.
Apr, Jun, Sep, Nov.

Quotation: The contract price is in sterling and pence per therm
Settlement price: The weighted average price of trades during a 15-minute

settlement period from 16:00:00 to 16:15:00 London local time.
If there is low liquidity during this time, quoted settlement
prices (QSPs) will be used to establish the settlement price

Delivery/settlement basis: Matching acquiring and disposing trade nominations (buyer from
ICEU, seller to ICEU) are input by buyer and seller to National
Grid via Gemini before 18:30 on the business day prior to the
commencement of the delivery period. Delivery takes place in
kilowatt hours (29.3071 kWh therm).

The EDSP will be the settlement price on the day the contract
expires

Source: ICE, https://www.theice.com/productguide/ProductSpec.shtml?specId=910.

(daily futures contract). Taking the UK for example as the largest European natural gas market,
ICE offers a range of futures contracts based on the NBP virtual hub. Table 3.6 outlines the
contract specification for the standard NBP natural gas futures, where explicit reference to the
physical delivery can be seen. For this contract, the trading period is broken into alternative
monthly, quarterly, seasonal and yearly strips. Typically 78–83 consecutive month contracts,
11–13 consecutive quarters, 13–14 consecutive seasons and 6 consecutive years trade. Quarters
are strips of three individual and consecutive contract months. Quarters always comprise a
strip of Jan–Mar, Apr–Jun, Jul–Sep or Oct–Dec. Seasons are defined as strips of six individual
and consecutive contract months. Seasons always comprise a strip of Apr–Sep or Oct–Mar.
Years are defined as strips of 12 individual and consecutive contract months comprising Jan–
Dec. The underlying unit of trade for the standard NBP futures contract is the therm, which is
equivalent to 29.3071 kWh, with the currency of trade being pence sterling.

ICE also offers a variant of the standard futures contract that trades in units of 1 MWh of
natural gas per hour per day over a specified delivery period, whether month, quarter, season
or year, where the currency of trade for this contract is the euro. Based on the MWh unit of
trade, the following monthly contract sizes can be specified: Feb (non-leap year), 28 days =
672 MWh; Feb (leap year), 29 days = 696 MWh; Mar, 31 days minus 1 hr = 743 MWh; Oct,
31 days plus 1 hr = 745 MWh; Jan, May, Jul, Aug, Dec, 31 days = 744 MWh; Apr, Jun,
Sep, Nov, 30 days = 720 MWh. ICE additionally offers daily futures contracts that span a

https://www.theice.com/productguide/ProductSpec.shtml?specId$=$910.
https://www.theice.com/productguide/ProductSpec.shtml?specId$=$910
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FIGURE 3.20 ICE UK NBP physical futures curves: Jan 2004, 2009 and 2014
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

range of contract series, where all trading periods are strips of daily contracts and include the
following:11

� Up to 42 daily contracts (from day ahead).
� 1 balance of week (BOW). A strip of daily contracts from day ahead to the end of the

working week, business days only.
� 3 weekends (W/E) Weekends always comprise a strip of Saturday and Sunday contracts

plus any UK bank holidays running sequentially either before or after the Saturday and
Sunday.

� 5 working days next week (WDNW). WDNWs are strips of individual and consecutive
contract days and will typically consist of Mon–Fri. UK Bank Holidays are not included
in the WDNW contracts.

� 1 balance of month (BOM). The BOM contract is a strip of two or more days from two
business days forward to the end of the contract month, where the first day of any period
of non-trading days is considered to be a business day. On certain days at the end of a
contract month there will not be a BOM listed.

Figure 3.20 presents the UK NBP physical futures curve on 25 February 2014, along with
the same curves for 5 years previous (2009) and 10 years previous (2004). As with Henry
Hub, annual winter seasonal peaks in price are observable. In complete contrast to the price
discussion around Henry Hub prices though, it is intriguing to note that NBP prices increased
significantly from 2004 to 2009 and have increased further over the intervening period to
2014. This reflects in no small part the gradual depletion of UK natural gas reserves (see
Figure 3.8) and the lack of replacement reserves. Given that no such ‘shale gas revolution’ has

11See https://www.theice.com/productguide/ProductSpec.shtml?specId=20774967.

https://www.theice.com/productguide/ProductSpec.shtml?specId$=$20774967
https://www.theice.com/productguide/ProductSpec.shtml?specId$=$20774967
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been experienced in the UK or indeed across Europe, and that the prospects for exploration
and production of shale gas are hampered by a challenging political landscape (see Section
3.1.4), UK and European prices have traded persistently higher relative to the USA. The flat
futures curve that prevails for NBP suggests that the market is not pricing in any such ‘shale
gas revolution’ in the medium to long term.

To complete the discussion, a final comment is made about the Dutch TTF and the German
Gaspool and NetConnect futures contracts. In contrast to the daily physical delivery under
the standard UK NBP futures contract, these contracts provide delivery equally each hour
throughout the specified delivery period. For the TTF futures contract, a number of trading
periods are offered by ICE to market participants:

� Up to 83 consecutive month contracts or as otherwise determined and announced by the
exchange from time to time.

� Up to 11 consecutive quarters or as otherwise determined and announced by the exchange
from time to time. Quarters are strips of three individual and consecutive contract months.
Quarters always comprise a strip of Jan–Mar, Apr–Jun, Jul–Sep or Oct–Dec.

� Up to 11 consecutive seasons or as otherwise determined and announced by the exchange
from time to time. Seasons are strips of six individual and consecutive contract months.
Seasons always comprise a strip of Apr–Sep or Oct–Mar.

� Up to 6 consecutive years or as otherwise determined and announced by the exchange
from time to time. Years are strips of 12 individual and consecutive contract months
comprising Jan–Dec.

For the Gaspool and NetConnect futures contracts the following trading periods are on offer:

� Up to 59 consecutive months.
� Up to 7 consecutive quarters. Quarters are strips of three individual and consecutive

contract months. Quarters always comprise a strip of Jan–Mar, Apr–Jun, Jul–Sep or
Oct–Dec.

� Up to 7 consecutive seasons. Seasons are strips of six individual and consecutive contract
months. Seasons always comprise a strip of Apr–Sep or Oct–Mar.

� 4 consecutive years. Years are strips of 12 individual contract months comprising Jan–Dec.

3.3.2.1 USA and Canada: Regional Natural Gas Futures CME and ICE offer a vast
array of futures contracts that span the regional US and Canadian natural gas markets. Three
main futures contract types are tradable on these exchanges: (i) basis futures, (ii) index futures
and (iii) swing futures. Basis futures contracts are structured to allow participants to manage
basis risk. Basis trading is the fundamental trading approach in the USA whereby regional
natural gas markets are traded as differentials off the benchmark Henry Hub market. Basis
risk emerges from the use of the highly liquid Henry Hub futures contract to hedge natural gas
prices in a different location. This mismatch between the futures contract used for hedging
purposes and the underlying market price exposure forms the source of basis risk. The basis
futures contracts allow market participants to lock in the price differential between Henry
Hub as the key natural gas market index in the USA and the reported natural gas market
location of interest. Specifically, the price differential is defined by means of subtracting the
price of the CME Henry Hub natural gas futures contract from the monthly price published
by Inside FERC for the specified location. In this way, basis futures allow for the trading
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and management of locational spreads, which may vary over time due to specific regional
supply and demand factors, amongst other fundamental drivers such as weather. Index futures
are the exchange-based equivalents of the OTC index swap, whereby an agreed fixed price is
exchanged for a floating price defined as the average daily spot price over an agreed contract
period. Given the highly volatile nature of the natural gas markets, the calculation of the
floating price leg of the futures as an average mitigates exposure to large movements in price
that may occur on a single date maturity contract. Such a contract is designed to allow natural
gas producers to hedge physical contract obligations, whereby gas is delivered over a specified
period on a daily basis to a given natural gas consumer. In this way, index futures allow for
the effect management of natural gas price risk. Swing futures, in contrast to the two previous
contracts, allow market participants to manage volumetric risk from ongoing production and
consumption activities. These contracts facilitate market participants who need to enter the
market at inopportune times to buy or sell natural gas in response to unexpected changes in
demand and supply. The contracts are structured to exchange a fixed price for a published
daily index price.

To provide further insights into the basis, index and swing futures series, specific contracts
from CME will be examined. We begin with the basis futures contract and then extend the
discussion to the index and swing futures contracts in turn.

Basis Futures Basis futures contracts allow participants to lock in the differential between
Henry Hub prices and the prices in specific regional natural gas markets. Specifically, payoff is
based on subtracting the price of the NYMEX Henry Hub natural gas futures contract from the
monthly price published by Platts Inside FERC for a specified location. Table 3.7 outlines the
main features of the Henry Hub basis futures contracts as traded on CME. This contract allows
for the management of basis risk from exposure to underlying Henry Hub spot prices. It can be
seen that the floating leg of this contract is specified as the difference between the Henry Hub
index price as published by Platts Inside FERC and the final settlement price of the Henry Hub

TABLE 3.7 CME Henry Hub basis futures contract specification

Product symbol: HB
Contract unit: 2500 mmBtus
Price quotation: US dollars and cents per mmBtu
Minimum fluctuation: $0.0001/mmBtu
Floating price: The floating price for each contract month will be equal to the

Platts Inside FERC’s Gas Market Report (‘Platts IFERC’)
Henry Hub Index (‘Index’) published in the table entitled
‘Market Center Spot-Gas Prices’ in the first regular issue of the
contract month minus the NYMEX (Henry Hub) natural gas
futures contract final settlement price for the corresponding
contract month

Termination of trading: Trading shall cease on the last business day of the month prior to
the contract month

Listed contracts: 72 consecutive months
Settlement type: Financial

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-
basis-swap-futures-platts-iferc_contract_specifications.html.

http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html
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TABLE 3.8 CME San Juan basis futures contract specification

Product symbol: NJ
Venue: CME Globex, CME ClearPort, Open Outcry (New York)
Contract unit: 2500 mmBtus
Price Quotation: US dollars and cents per mmBtu
Minimum fluctuation: $0.0001/mmBtu
Floating price: The floating price for each contract month will be equal to the

Platts Inside FERC’s Gas Market Report (‘Platts IFERC’) El
Paso Natural Gas Co., San Juan Basin Index (‘Index’) published
in the table entitled ‘Prices Of Spot Gas Delivered To Pipelines’
in the first regular issue of the contract month minus the
NYMEX (Henry Hub) natural gas futures contract final
settlement price for the corresponding contract month

Termination of trading: Trading shall cease on the last business day of the month prior to
the contract month

Listed contracts: CME Globex. 36 consecutive months
CME ClearPort and Open Outcry. 72 consecutive months

Settlement type: Financial

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/san-juan-basin-natural-
gas-basis-swap-futures-platts-iferc_contract_specifications.html.

natural gas futures contract for the specified contract month. Now taking a regional contract,
Table 3.8 provides the main features of the San Juan basis futures traded on CME. This contract
allows traders to fix the price differential between Henry Hub and San Juan natural gas and
in this way allow for the effective management of locational price differences between the
two regions. The floating leg of this particular contract is specified as the difference between
the San Juan index price as published by Platts Inside FERC and the final settlement price
of the Henry Hub natural gas futures contract for the specified contract month. The Henry
Hub–San Juan price differential can be seen as an East–West spread within the US natural gas
markets and so the San Juan basis futures contract allows for the management of this spread.
Example 3.3 illustrates the hedging of price and basis risk from a future physical purchase of
natural gas in the San Juan (El Paso) region.

EXAMPLE 3.3 HEDGING PRICE AND BASIS RISK FROM A
PHYSICAL PURCHASE OF NATURAL GAS IN THE SAN JUAN (EL
PASO) REGION

Consider a natural gas consumer who, on 26 February 2014, signs a gas sales agreement
(GSA) to take a delivery of 100,000 mmBtus of San Juan (El Paso) natural gas in June
2014, with the payment terms based (simplistically for the purposes of illustration) on
prevailing spot prices on 1 June 2014. Spot prices in the San Juan region refer to FERC’s
Gas Market Report San Juan Basin Index. To hedge itself from an expectation of higher
spot prices in June, the natural gas consumer may take the following course of action:
(i) go long physical Henry Hub futures contracts to equal the GSA size and close out

http://www.cmegroup.com/trading/energy/natural-gas/san-juan-basin-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/san-juan-basin-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/san-juan-basin-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/san-juan-basin-natural-gas-basis-swap-futures-platts-iferc_contract_specifications.html
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prior to the expiration of the contracts to avoid physical delivery commitments, using
the payoff to offset the spot-based payment under the GSA; and (ii) go long San Juan
basis futures contracts to equal the GSA size and either close out prior to expiry or hold
until expiry (as the contract is financially settled) in order to hedge the basis risk from
the exposure mismatch in using Henry Hub futures.

Assume the natural gas consumer takes a long position in 10 physical Henry Hub
futures contracts, which are trading at 4.466 US$/mmBtu. As the contract size for a single
physical Henry Hub futures contract is 10,000 mmBtus, the long position in 10 futures
contracts ensures the consumer covers its exposure under the GSA. Assume the consumer
also takes a long position in 40 financially settled San Juan basis futures contracts that are
trading at −0.210 US$/mmBtu. As the contract size for a single basis futures contract is
2,500 mmBtus, the long position in 40 futures contracts ensures the consumer covers its
exposure under the GSA. On 27 May 2014, assume that natural gas prices have risen as per
the expectation of the consumer and the physical Henry Hub futures contract is trading
at 4.933 US$/mmBtu. The consumer decides to close out its long position by selling
the contracts. The payoff for the consumer on the futures contracts is therefore 100,000
mmBtus × ($4.933−$4.466)/mmBtu = $46,700. On the same date, the consumer decides
to close out its long basis position, where the basis has now tightened to −0.150 US$/
mmBtu. Given this appreciation in the spread, the basis position is closed out at a profit
of 100,000 mmBtus × $0.060/mmBtu = $6,000. On 1 June 2014, assume that San Juan
spot prices have continued to rise slightly and immediate delivery is priced at $4.765.
The consumer is obligated to pay 100,000 mmBtus × $4.765/mmBtu = $476,500. Using
the proceeds of the price and basis hedges as an offset for this purchase gives an effective
purchase price of $4.765 − ($0.467+$0.060) = $4.238/mmBtu and so an overall effective
cost of $423,800.

Figure 3.21 presents the term structure of basis prices for a selection of key trading
locations in the USA. The magnitude of the differentials from Henry Hub can be seen to vary,
while seasonal components to some of the basis price series can also be observed.

Index Futures An index futures contract is the exchange-based equivalent of an OTC index
swap, whereby an agreed fixed price is exchanged for a floating price defined as the average
daily spot price over an agreed contract period. The payoff of this contract is based on
subtracting the monthly price published by Platts Inside FERC for a given reference natural
gas quality from the average of the daily prices published by Platts Gas Daily for the same
natural gas quality. The averaging over the contract period is designed to mitigate exposure to
large movements in price that may occur on a single date maturity futures contract. Table 3.9
outlines the specific contract details for the Henry Hub index futures contract traded on CME.
The payoff can be seen for each contract month to be the arithmetic average of the Platts Gas
Daily Henry Hub midpoint price minus the Platts Inside FERC Gas Market Report Henry Hub
Index for all flow dates during the contract month.

Swing Futures The swing futures contract allows market participants to manage volumetric
risk from ongoing production and consumption activities, allowing entry into the market at
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F IGURE 3.21 CME basis futures curves: selection of major US trading points
Source data: CME Group 2014.

TABLE 3.9 CME Henry Hub index futures contract specification

Product symbol: IN
Contract unit: 2500 mmBtus
Price quotation: US dollars and cents per mmBtu
Minimum fluctuation: $0.0001/mmBtu
Floating price: The floating price for each contract month will be equal to the

arithmetic average of the Platts Gas Daily Henry Hub Midpoint
(‘Midpoint’) minus the Platts Inside FERC’s Gas Market Report
(‘Platts IFERC’) Henry Hub Index (‘Index’) published in the
table entitled ‘Market Center Spot-Gas Prices’ for the
corresponding contract month calculated for all flow dates
during the contract month and rounded to the nearest hundredth
of a cent. For the purposes of this chapter, ‘flow date’ shall
mean a calendar date that corresponds to a published price used
for determining the floating price

Termination of trading: Trading shall cease on the last business day of the month prior to
the contract month

Listed contracts: CME Globex
CME ClearPort and Open Outcry

Settlement type: Financial

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-
index-swap-futures-platts-gas-daily-platts-iferc_contract_specifications.html.

http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-index-swap-futures-platts-gas-daily-platts-iferc_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-index-swap-futures-platts-gas-daily-platts-iferc_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-index-swap-futures-platts-gas-daily-platts-iferc_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-index-swap-futures-platts-gas-daily-platts-iferc_contract_specifications.html
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TABLE 3.10 CME Henry Hub swing futures contract specification

Product symbol: CME Globex – SN
Clearing – SN

Contract unit: 2500 mmBtus
Price quotation: US dollars and cents per mmBtu
Minimum fluctuation: $0.0001/mmBtu
Floating price: The floating price for each contract day is equal to the Platts Gas

Daily Henry Hub Midpoint. The Platts Gas Daily Midpoint to
be used can be found in the table entitled ‘Daily Price Survey.’

Termination of trading: Trading shall cease on the business day prior to the scheduled
publication date. EFP and EFS transactions may be submitted
up until the deadlines specified in Rules 6.21 and 6.21A

Listed contracts: Days remaining in the current month and the following month
Settlement type: Financial

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-
swing-swap-futures_contract_specifications.html.

inopportune times to buy or sell natural gas in response to unexpected demand and supply. The
contracts are structured to exchange a fixed price for a published daily index price, allowing
a hedge against spot prices. Table 3.10 outlines the contract specifications for the Henry Hub
swing futures contract on CME. It can be seen that the floating leg of this contract is defined
to be the Platts Gas Daily Henry Hub midpoint price for Henry Hub.

3.3.2.2 Natural Gas Spread Futures A selection of calendar spread futures are traded
on ICE that allow one to lock in the price differential between alternative tenors on the
Henry Hub futures curve. ICE offers futures contracts on the spread between the first nearby
month contract and respectively the second, fourth and seventh nearby month contracts. These
contracts respectively allow one to trade the 1-, 3- and 6-month Henry Hub calendar spreads.
The futures contracts are monthly cash-settled contracts based on the mathematical result
of subtracting the monthly price published by NYMEX for the referenced nearby month
contract from the monthly price published by NYMEX for the next nearby month contract.
Table 3.11, for example, provides the contract specification for the Henry Hub penultimate
1-month calendar spread futures contract, which allows one to lock in the price differential
between the first and second nearby month contracts. No such spread futures contracts appear
to be offered by CME. However, both CME and ICE facilitate trading in a number of calendar
spread options contracts, which will be discussed in the next section. Figure 3.22 shows the
calendar spread term structure as of 25 February 2014 with March 2014 being the near-dated
leg. A strong seasonal component is clearly observable reflecting the differences in prices
between seasons.

Futures-based calendar spreads play an important role in exploiting the seasonal pattern
in natural gas prices, with gas storage providing the physical structure to accommodate such
trading. Market players may use gas storage to exploit seasonal spreads by means of buying
gas at low prices over low-demand summer months and injecting the gas into storage and
then withdrawing the gas again in high-demand winter months and selling at higher prices.
Futures-based calendar spreads may be used to lock in prices today under such a strategy
but this represents a static sub-optimal approach to storage utilization. This static sub-optimal

http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swing-swap-futures_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swing-swap-futures_contract_specifications.html.
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swing-swap-futures_contract_specifications.html
http://www.cmegroup.com/trading/energy/natural-gas/henry-hub-natural-gas-swing-swap-futures_contract_specifications.html
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TABLE 3.11 ICE Henry Hub penultimate 1-month calendar spread futures contract specification

Contract symbol: HHM
Settlement method: Cash settlement
Contract size: 2500 mmBtus
Currency: USD
Final settlement: Reference price A minus reference price B

REFERENCE PRICE A NATURAL GAS-NYMEX
(a) Ref price A–description ‘NATURAL GAS-NYMEX’ means that the price for a

pricing date will be that day’s specified price per mmBtu
of natural gas on the NYMEX of the Henry Hub natural
gas futures contract for the delivery date, stated in US
dollars, as made public by the NYMEX on that pricing
date

(b) Ref price A – pricing date 1 Business day prior to the last scheduled trading day of the
NYMEX Henry Hub natural gas futures contract for the
delivery date

(c) Ref price A – specified price Settlement price
(d) Ref price A – pricing calendar NYMEX
(e) Ref price A – delivery date Contract period

REFERENCE PRICE B NATURAL GAS-NYMEX
(a) Ref price B – description ‘NATURAL GAS-NYMEX’ means that the price for a

pricing date will be that day’s specified price per mmBtu
of natural gas on the NYMEX of the Henry Hub natural
gas futures contract for the delivery date, stated in US
dollars, as made public by the NYMEX on that pricing
date

(b) Ref price B – pricing date 1 business day prior to the last scheduled trading day of the
NYMEX Henry Hub natural gas futures contract for the
contract period

(c) Ref price B – specified price Settlement price
(d) Ref price B – pricing calendar NYMEX
(e) Ref price B – delivery date Second nearby month

Source: ICE, https://www.theice.com/productguide/ProductSpec.shtml?specId=6590267.

approach captures the intrinsic value inherent in gas storage but ignores the changing intrinsic
value that comes from market price changes and further ignores the extrinsic value that comes
from the flexibility or embedded optionality that gas storage offers. The next section revisits
gas storage in the context of the calendar spread options, which offer an instrument through
which to capture extrinsic value in addition to intrinsic value.

3.3.3 Natural Gas Opt ions

Whereas futures markets allow one to eliminate price risk, market participants often require
greater flexibility to eliminate downside risk only while maintaining exposure to upside risk.
Options contracts are designed to provide the holder with the right but not the obligation to buy
or sell a specified quantity of a specified asset at a given date in the future. On CME, two main
options contracts are offered on the Henry Hub natural gas market. The most heavily traded

https://www.theice.com/productguide/ProductSpec.shtml?specId$=$6590267.
https://www.theice.com/productguide/ProductSpec.shtml?specId$=$6590267
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FIGURE 3.22 CME Henry Hub calendar spread term structure: March 2014 near-dated leg
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

of the two by volume and open interest is the European-exercise natural gas options contract,
which is written on the physical Henry Hub (NG) futures contract. The European-exercise
feature of the contract allows only for exercise or settlement of the options contract on the
date of expiration. Exercising a call option results in the holder taking a long position in the
underlying physical futures contract, whereas exercising a put option results in the holder
taking a short position in the underlying physical futures contract. The details of the European
contract are provided in Table 3.12, where explicit reference can be seen to the European-
exercise feature. The European call option contract will be exercised only when at expiration
the difference between the settlement price for the underlying Henry Hub futures contract
exceeds that of the stated exercise price or strike price. For the European put option contract,
the decision to exercise will only be made when the strike price exceeds the settlement price
of the underlying Henry Hub futures. A range of strike prices is offered on this contract with
at least 201 strike price levels defined by increments of $0.01/mmBtu above and below the
at-the-money (ATM) strike price; 100 strike prices below and 100 strike prices above this
ATM strike.

Figure 3.23 presents the implied volatility surface for the European Henry Hub options
contract, which plots implied volatility against option maturity and moneyness, with the latter
defined in percentage terms as asset price over strike price. Along the maturity dimension,
the implied volatility can be seen to decline in general with increasing time to expiration, in
line with the usual Samuelson effect. However, annual winter seasonal peaks in the implied
volatility are evident. This seasonal component to the implied volatility term structure of natural
gas options is an important distinction from the implied volatility evidenced for other markets,
such as oil and equities for instance. Along the moneyness dimension a smile-skew effect is
clearly evident, with implied volatilities higher for low-strike and high-strike options relative
to those options trading at- or near-the-money. Indeed, across the full span of moneyness, the
high-strike options can be seen to trade at substantially higher volatility levels relative to the



174 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

TABLE 3.12 CME Henry Hub European options contract specification

Underlying futures: Henry Hub natural gas futures (NG)
Product symbol: LN
Contract unit: On expiration of a call option, the value will be the difference

between the settlement price of the underlying Henry Hub
natural gas futures and the strike price multiplied by 10,000
mmBtu, or zero, whichever is greater. On exercise of a put
option, the value will be the difference between the strike price
and the settlement price of the underlying Henry Hub natural
gas futures multiplied by 10,000 mmBtu, or zero, whichever is
greater

Price quotation: US dollars and cents per mmBtu
Option style: European
Minimum fluctuation: $0.0001/mmBtu
Expiration of trading: Trading ends at the close of business on the business day

immediately preceding the expiration of the underlying futures
contract

Listed contracts: Consecutive months for the balance of the current year plus 12
additional years

Strike prices: 100 strike prices in increments of $0.01/mmBtu above and below
the ATM strike price, for a total of at least 201 strike prices.
Strike price boundaries are adjusted according to price
movements of underlying futures contract

Settlement type: Financial

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_
options.html?optionProductId=1352#optionProductId=1352.

F IGURE 3.23 CME Henry Hub option implied volatility
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_options.html?optionProductId$=$1352#optionProductId$=$1352
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_options.html?optionProductId$=$1352#optionProductId$=$1352
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low-strike prices. This leads to a discernible positive skew, commonly referred to as the inverse
leverage effect; an effect that is generally observed in energy and commodity markets. This
inverse leverage effect reflects the fact that price volatility increases with rising energy and
commodity prices, as concerns mount over the economic impact of these higher prices on the
real economy. This pattern contrasts squarely with what we observe in the equity markets for
instance, where we have a negative skew or leverage effect, whereby market participants are
far more concerned with stock price declines and crashes and so price up out-of-the-money
put options as a form of insurance against such events. This leads to higher implied volatility
for low-strike options relative to high-strike options in these markets. The characteristics of
seasonal volatility in the term structure and inverse leverage effect are important dynamics to
the natural gas options markets.

The second key Henry Hub options contract offered by CME is the American-exercise
counterpart to the European option. The American-exercise feature of this contract offers
greater flexibility to the holder in allowing for exercise of the option on any date up to and
including the expiration date. Table 3.13 provides the details for this options contract. The
range of strike prices offered on this contract differs from the European contract. As quoted
in the contract specification, 20 strike prices are offered in increments of $0.05/mmBtu above

TABLE 3.13 CME Henry Hub American options contract specification

Underlying futures: Henry Hub natural gas futures (NG)
Product symbol: ON
Contract unit: A Henry Hub natural gas put (call) option traded on the exchange

represents an option to assume a short (long) position in the
underlying Henry Hub natural gas futures traded on the
exchange

Price quotation: US dollars and cents per mmBtu
Option style: American
Minimum fluctuation: $0.001/mmBtu
Expiration of trading: Trading ends at the close of business on the business day

immediately preceding the expiration of the underlying futures
contract

Listed contracts: Consecutive months for the balance of the current year plus 12
additional years

Strike prices: 20 strike prices in increments of $0.05/mmBtu above and below
the ATM strike price in all months, plus an additional 20 strike
prices in increments of $0.05/mmBtu above the ATM price will
be offered in the first three nearby months, and the next 10 strike
prices in increments of $0.25/mmBtu above the highest and
below the lowest existing strike prices in all months for a total
of at least 81 strike prices in the first three nearby months and a
total of at least 61 strike prices for 4 months and beyond. The
ATM strike price is nearest to the previous day’s close of the
underlying futures contract. Strike price boundaries are adjusted
according to futures price movements

Settlement type: Exercise into futures

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_
options.html?optionProductId=191#optionProductId=191.

http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_options.html?optionProductId$=$191#optionProductId$=$191
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_options.html?optionProductId$=$191#optionProductId$=$191
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and below the ATM strike price in all months, with an additional 20 strike prices in increments
of $0.05/mmBtu above the ATM price in the first three nearby months. A further 10 strike
prices in increments of $0.25/mmBtu above the highest and below the lowest existing strike
prices in all months then gives a total of at least 81 strike prices in the first three nearby months
and a total of at least 61 strike prices for 4 months and beyond.

Example 3.4 illustrates how a natural gas consumer might hedge downside risk relating
to a future physical purchase of Henry Hub natural gas using a European natural gas option.

EXAMPLE 3.4 HEDGING DOWNSIDE RISK ON A PHYSICAL
PURCHASE OF HENRY HUB GAS USING AN AMERICAN
GAS OPTION

Consider a natural gas consumer who, on 26 February 2014, signs a gas sales agreement
(GSA) to take a delivery of 100,000 mmBtus of Henry Hub natural gas in April 2014, with
the payment terms based (simplistically for the purposes of illustration) on prevailing
spot prices on the 1st April 2014. The consumer wishes to hedge itself from potentially
higher spot prices in April but is unsure about where prices are going to go over the course
of the coming weeks. The consumer does not wish to lock in a position using futures and
would prefer instead to be in a position to protect itself from downside risk if spot prices
rise but leave itself exposed to upside risk if spot prices fall. The natural gas consumer
may take the following course of action: go long Henry Hub American options contracts,
written on the April 2014 futures contract, to equal the GSA size and exercise these
options at or close to expiry if in-the-money, using the payoff (under such a higher-price
scenario) to offset the spot-based payment under the GSA. To complete the example, we
consider a specific higher-price scenario, where the options are in-the-money close to
expiry.

Assume the natural gas consumer decides to take a long position in 10 Henry Hub
American options contracts. As a single options contract is written on a single physical
Henry Hub futures contract of 10,000 mmBtus, the long position in 10 options ensures the
consumer covers its exposure under the GSA. With the underlying futures contract trading
at 4.549 US$/mmBtu, the consumer opts to go for the option with strike price of $4.600,
which is slightly out-of-the-money and trading at 0.165 US$/mmBtu. On 26 March 2014,
assume that natural gas prices have risen and the physical Henry Hub futures contract
is trading at 4.846 US$/mmBtu. As the options are now well in-the-money (i.e., the
prevailing futures price is higher than the strike price), the consumer decides to exercise
its positions in the underlying futures contracts. It is assumed here for ease of exposition
that the futures may be sold on immediately. The payoff for the consumer on the futures
contracts is therefore 100,000 mmBtus × ($4.846−$4.600)/mmBtu = $24,600. Taking
account of the premium payment of 100,000 × $0.165 = $16,500 to set up the hedge, a
total profit of $8,100 is made. On 1 April 2014, assume that spot prices have continued to
rise and immediate delivery is priced at $4.850. The consumer is obligated to pay 100,000
mmBtus × $4.850/mmBtu = $485,000. Using the proceeds of the futures hedge as an
offset for this purchase gives an overall effective cost of $476,900 and so an effective
purchase price of $4.769/mmBtu.
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If prices had fallen below the strike price level then the consumer would simply close
out its long position in the options contracts, that is it would not exercise the options but
simply sell out of its long position. Depending on the cost of the options at the point of
this sale, the consumer would lose no more than the premium payment of $16,500 to set
up the hedge. The consumer would then buy the gas under the GSA as per the spot-based
payment terms at the prevailing price on 1 April.

Note that this options hedging example is static and presented for illustrative pur-
poses. More dynamic trading of the consumer’s exposure is possible but remains outside
the scope of this chapter.

A range of other options contracts are offered on CME with varying degrees of volume
and open interest. The next most prevalent type of options contract traded by US natural gas
market participants are the Henry Hub calendar spread options. Physically and financially
settled spread options are offered for a range of spread lengths. The 1-month contracts allow
for the trading of the spread between the prices of the first nearby and second nearby Henry
Hub physical futures contracts. Specifically, for the settlement of these options contracts, the
floating spread price under the payoff function is defined to be the price differential between a
long position in the second nearby futures and a short position in the first nearby futures. For
the call option class, the payoff of the option is the difference between the spread price and the
strike price, whereas for the put options class the payoff is the difference between the strike
price and the spread price. Table 3.14 provides the contract details for the physically settled
calendar spread option. The call options contract physically exercises into a long position in
the spread, whereby the holder takes a short position in the far-dated futures contract and a
long position in the near-dated futures contract. The put options contract conversely exercises
into a short position in the spread, that is a short position in the near-dated futures contract
and a long position in the far-dated contract.

As discussed in the previous section, futures-based calendar spreads have a role to play
in exploiting the seasonal pattern in natural gas prices, with gas storage facilities being the
physical infrastructure that allows such seasonal plays. As already identified, futures-based
calendar spreads may be used to lock in prices today but this represents a static sub-optimal
approach to storage utilization. This static sub-optimal approach captures the intrinsic value
inherent in gas storage but ignores the changing intrinsic value that comes from market price
changes and further ignores the extrinsic value that comes from the flexibility that gas storage
offers market participants to trade and manage seasonal and indeed idiosyncratic regional
weather-driven supply and demand. Dynamic rolling futures-based calendar spread positions
allow market players to address this first issue, however extrinsic value is still not captured.
Calendar spread options however offer a way to capture this extrinsic value, while rolling
baskets of calendar spread options additionally allow one to dynamically adjust positions with
changing market prices. Chapter 19 will present a technical treatment of gas storage valuation.

ICE also offers participants in the natural gas markets a range of options contracts for the
US natural gas markets. Options are primarily offered on Henry Hub futures contracts, similar
to the CME offering, although options contracts in regional markets are also available. For the
European natural gas markets, the main options contracts offered on ICE are for the UK NBP
and Dutch TTF markets. The NBP options are European exercise and at expiry the exercise
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TABLE 3.14 CME Henry Hub 1-month spread options contract specification

Underlying futures: Henry Hub natural gas futures (NG)
Product symbol: IA
Contract unit: A Henry Hub natural gas calendar spread put option on the

exchange represents an option to assume a short position in the
first expiring Henry Hub natural gas futures in the spread and a
long position in the second expiring Henry Hub natural gas
futures in the spread on the exchange. A Henry Hub natural gas
calendar spread call option represents an option to assume a
long position in the first expiring Henry Hub natural gas futures
in the spread and a short position in the second expiring Henry
Hub natural gas futures in the spread traded on the exchange

Price quotation: US dollars and cents per mmBtu
Option style: European
Minimum fluctuation: $0.001/mmBtu
Expiration of trading: A Henry Hub natural gas calendar spread option on the exchange

shall expire at the close of trading on the business day
immediately preceding the expiration of the first expiring
futures contract in the spread

Listed contracts: Options on 1 month calendar spread are available for the next 24
expirations. For 2-month spread, 3-month spread, 5-month
spread, 6-month spread and 12-month spread, options are listed
for the next 12-expirations

Strike prices: Ten strike prices in increments of $0.01/mmBtu above and below
the ATM strike price, and the next five strike prices in
increments of $0.02/mmBtu above the highest and below the
lowest existing strike prices for a total of at least 31 strike
prices. Strike price boundaries are adjusted according to futures
price movements

Settlement type: Physical

Source: CME Group, http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_
options.html?optionProductId=770#optionProductId=770.

is automatic for options in-the-money. Exercise is into the underlying physically settled NBP
futures contract. A range of strike prices are offered on ICE, spanning 37.50–120.00 p/therm.
In terms of trading period, up to 36 consecutive months, quarterly, seasonal and calendar
contracts are offered. Indeed, any period of consecutive monthly contracts can be registered
as a strip. An example of a strip is outlined in the ICE product documentation: a Q1 option,
for example, is an option on the January futures, an option on the February futures and an
option on the March futures, with each option expiring five calendar days before the start
of the relevant contract month. Figure 3.24 shows the implied volatility surface for the NBP
options contract, where similar dynamics to the Henry Hub contract can be seen, although
the magnitude of the implied volatility is lower. The Samuelson type decline in the volatility
term structure can again be seen with increasing maturity, although the discernible annual
winter seasonal peaks of the Henry Hub implied volatility term structure are not replicated
along the NBP surface. Indeed, a series of sharp peaks and troughs are observable, with the
poorer quality of the surface likely reflecting lower liquidity and open interest at the various

http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_options.html?optionProductId$=$770#optionProductId$=$770
http://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_options.html?optionProductId$=$770#optionProductId$=$770
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FIGURE 3.24 ICE UK NBP option implied volatility
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

tenors. The inverse leverage effect is again evident in the NBP implied volatility surface, with
high-strike options trading higher relative to low-strike options.

3.3.4 OTC Markets and Products

CME and ICE both offer clearing services for the OTC markets. The OTC operations of
CME span the commodity markets, in particular energy, agriculture, metals and commodity
indices, along with the financial markets, in particular interest rates swaps, credit default swaps
and foreign exchange (non-deliverable forwards and cash-settled forwards). ICE has similar
OTC operations spanning energy, agriculture, soft commodities, credit derivatives, foreign
exchange and equity indexes. The OTC markets offer market participants the opportunity to
structure non-standardized derivative structures that better suit individual hedging and risk
management requirements. This non-standardization of products is what differentiates the
OTC markets from the exchange-based derivatives markets. On the energy side, the OTC
markets allow for customization based on contract size, location, grade or quality of the
underlying energy, time of delivery and the form of delivery whether physical or cash settled.
OTC markets have by their very nature lacked the transparency offered by exchange-based
markets and expose market participants to higher levels of credit default risk. This has been
due to the effective absence of regulation and oversight of OTC markets and hence lower
reporting and governance standards around OTC transactions. However, with the emergence
of the 2008 credit crisis, it was seen that the global financial downturn that followed was
significantly compounded by the uncertainty in the financial system resulting from the opacity
of the OTC credit derivatives markets. As a result, regulation pertaining to OTC markets in
general has gradually been strengthened by regulatory bodies worldwide, with a concerted
push to move OTC market transactions on exchange for clearing purposes. This move allows
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for greater system-wide transparency into the OTC markets and provides market participants
with much lower credit default risk exposure in transactions.

In terms of the non-cleared OTC natural gas markets, tailored basis, index and swing
forwards and swaps contracts are traded with full flexibility in negotiating the terms and
conditions of the deals. As in other markets, a range of exotic options are structured to
manage more complex risk exposures of natural gas participants. Examples of exotic options
of relevance to the natural gas markets include spread options, Asian options and spread Asian
options. As mentioned earlier, futures and options-based calendar spread trading allows for
the exploitation of the strong seasonal component in the term structure of natural gas forward
and futures prices. Such calendar spread plays are essential for the trading and optimization
of gas storage, as discussed briefly in the previous sections. Locational spread plays are used
by market participants to hedge and trade price differentials between regions. In this context
OTC spread options offer a flexible trading and risk management tool to market participants.
Spread options are covered in Chapter 17, where a technical discussion of pricing and hedging
issues is presented.

Asian options are options contracts whereby the floating leg (which could possibly be the
strike price if so defined) of the payoff function represents the average of a stated price series,
whether spot, forward or futures. The process of averaging is important as it mitigates against
volatile prices and in particular price jumps that may occur on single dates in a period. It
also suits long-term contracting where delivery of natural gas will be provided over substantial
periods of time or indeed rolling periods of time. The averaging inherently lowers the volatility
exposure for the option holder and so often provides a much cheaper hedging option. Asian
options are covered in Chapter 18, where a technical discussion of pricing and hedging issues
is presented.

Finally, spread Asian options are also found in the natural gas markets, which combine
the features of spread and Asian options. The spread is defined as the differential between the
average price of one given natural gas grade and the average price of a second natural gas
grade. Such contracts allow for calendar spread and locational spread plays as usual but offer
the benefit of lower volatility exposure that results from the averaging.
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CHAPTER 4
Electricity Markets and Products

Stefano Fiorenzani, Bernard Murphy and Mark Cummins

4.1 MARKET STRUCTURE AND PRICE COMPONENTS

4.1.1 Spot and Forward Markets

The general scope of any liberalization process is to support a more efficient allocation of
economic resources, especially when those resources are scarce. Efficient allocation means
that resources are allocated to those subjects that are able to make the best economical use of
them. This notion of economic efficiency should result in a higher degree of satisfaction for all
market participants. The free interaction of demand and supply, which characterizes compet-
itive markets, should produce such efficient allocation of scarce resources. However, perfect
competition is just a theoretical notion and often the improvement of the final consumer’s
utility is not guaranteed at all.

The physical peculiarities of electric power influence greatly the process of power market
liberalization. Electricity delivered at distinct times and at different places is a non-fungible and
non-storable commodity for end users. In order to make the liberalization process effective, it
is necessary to ensure that all market participants (producers and consumers) are granted non-
discriminatory access to the market itself. Organized power spot and derivatives exchanges
have emerged for this reason. Obviously, the internal organization of these exchanges cannot
ignore the physical characteristics of electric power. Hence, peculiar rules have been devised
for the purposes of facilitating electricity transactions.

Electricity spot markets are day-ahead markets, in the sense that physical quantities,
expressed in megawatts per hour (MWh), and prices negotiated during a market session for
each of the 24 hours in a day, will physically deliver on the specific hour of the following day.
Recently, within-day market sessions have taken place up to 1 hour before physical delivery.
These will be discussed further in Section 4.2 when we examine the implications of the mooted
large-scale integration of renewables on the growth of intra-day trading volumes, and indeed
for day-ahead or spot price volatility.
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One of the first examples of an electricity spot exchange was that of Nordpool (Nordic
Power Exchange, Norway) in 1993. Nowadays, in almost all EU countries, in the USA and in
Australia many exchanges are actively operating in short-term physical transactions.

The main goal of organized electricity exchanges should be that of facilitating electricity
short-term physical transactions by improving market information, competition and liquidity.
Power exchanges also represent neutral marketplaces, where deals can take place, reducing
transaction costs and counterparty risk. The price reference may also represent an important
benchmark for over-the-counter (OTC) transactions (financial or physical contracts).

Competitive power markets are usually organized around one or more auctions, but the
specific way these auctions take place may be different from market to market. Power producers
typically wish to sell their production, while consumers represent the buy side of the market.
Suppliers’ and demanders’ bids (expressed in terms of price–quantity couples) are submitted
to the market, ranked in economic merit order and combined together by the market operator
in order to reach market clearing (equilibrium). Market models may differ substantially in
terms of auction type and participation rules. As regards the latter, we may have mandatory
or non-mandatory auctions, depending on whether market participants are obliged or not to
submit their bids to the market.

Bidding sides represent a first criterion for auction type classification. If only power
generators are asked to submit their bids, the market is called one-sided,1 while if both
buyers and sellers participate in the auction then the market is called double-sided. A second
criterion for auction type classification is represented by price formation rules. We can have
a uniform pricing rule, where all the participants get the same price independently of their
price bid, or a pay-as-bid pricing rule, where the bidder pays or receives the price of his
accepted offer (the pay-as-bid mechanism was adopted in the UK spot market in 2001 under
the New Electricity Trading Arrangements (NETA)). Usually, the uniform pricing rule is
associated with the classical system marginal price mechanism. This means that the uniform
price that market participants pay or receive is the price of the last accepted bid in economic
merit order.

As stated before, economic efficiency is not the only scope of electricity markets. Physical
sustainability and grid balancing are essential issues that have to be ensured by a particular
market framework. For this reason, the simple day-ahead or within-day auctions are not
sufficient for a satisfactory allocation of installed and available power generation capacity.
Dispatching services auctions and transmission rights auctions are essential elements of an
efficient electricity market.

In liberalized regimes, the electricity spot price determined in organized exchanges varies
a lot according to the interaction of power supply and demand. In the following sections
we study this erratic behaviour, the magnitude of which may be substantial. Price uncertainty
underpins economic risk for power generators, retailers and final consumers. Electricity deriva-
tive contracts and electricity derivative markets have been introduced for hedging out this risk.
Electricity derivatives represent claims on the future delivery of electricity. Physical delivery
can be replaced by a purely financial settlement rule referenced to the physical electricity spot
price.

1One-sided auctions are present in early-stage phases of market evolution, and their scope is essentially
that of creating a market model which can be easily understood by producers (e.g., Italian Spot Power
Market 2004–2006 was without active demand).
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FIGURE 4.1 UK APX power exchange supply stack and marginal generation source (05/03/14)
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

Standard derivative instruments are: forwards, futures and options. However, as will be
seen later, power structured products represent a significant segment of the market.

Electricity derivatives can be either physically or financially settled. This feature, which is
not usually shared by traditional commodity derivative products, makes electricity derivatives
particularly interesting for financial market participants. Hence, the potential market liquidity
is significantly enhanced. Market liquidity is further increased by instrument standardization.
Liquidity is normally maximized when the number of contract clauses is limited through
standardization.

Regarding the clearing mechanism and the daily settlement procedure, the way electricity
derivatives markets work is not different from that of traditional derivatives ones. Hence, we
usually find a clearing house which works as counterparty for every single trade and a margin
call2 system that prevents the credit risk embedded in any transaction.

4.1.2 Supply and Demand Interact ion

Classical economic theory states that in a free and competitive market the price of any traded
good or service is completely determined by the interaction between aggregated demand and
aggregated supply. It is fundamental to understand and analyse the shape and dynamics of
aggregated demand and supply in order to understand power price behaviour.

Even in ‘pay-as-bid’ markets, the concept of system marginal price has a fundamental
importance. The system marginal price is exactly determined, hour by hour, by the intersection
of the system merit order curve and system aggregated demand.

The merit order curve illustrated in Figure 4.1 is a map of the ability of the productive
system to offer different quantities of electricity at different prices, in a given time. Conse-
quently, it provides us with information about the marginal cost of production of the power
generation units operating in the system (i.e., £40.10/MWh in Figure 4.1 corresponding to a
CCGT generation technology and a capacity level of 40,000 MW for the fixed time interval
13.30–14.00 GMT) and about the bidding strategy of their managers. Very efficient but not
extremely flexible plants contribute to the bottom left side of the curve shape, while less

2In some electricity derivatives markets the margin account system is structured in such a way that the
additional risk related to the potential impact of unexpected physical outages or congestions on electricity
price is considered.



184 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

efficient or very flexible generation units act in the top right corner. The stack curve is effec-
tively a short-term supply function. The supply function defined is always upward sloping, by
construction, but its shape will obviously depend on the internal physical characteristics of the
productive system.

Aggregated electricity demand is typically price inelastic, at least in the short run. This
feature can be graphically inferred from its steepness. In fact, the curve is almost vertical. In
addition, in the case of aggregated demand the peculiarities of the system, in terms of electricity
consumption structure, affect significantly the slope and shape of the demand curve. Typically,
electricity demand can be divided into industrial demand and domestic demand. Industrial
and domestic demands have a different behaviour and mostly display different price elasticity.
Hence, the slope and shape of the aggregated demand curve of a certain country or geographic
area are influenced by the proportion within aggregated demand of industrial and domestic
consumption.

By observing Figure 4.1 it can be seen that demand fluctuations around the ‘normal’
level will cause price fluctuations. The ratio of the demand fluctuation amplitude and the
price fluctuation amplitude depends on the slope of the supply curve in the normal load area.
However, if the demand fluctuates in an area close to the maximum available capacity, a small
demand shock can potentially lead to a significant price spike. Figure 4.1, for example, shows
that the marginal cost of production for an open cycle gas turbine (OCGT) or oil peaking unit
can lead to dramatic increases in the system marginal price if these technologies are required
to be dispatched from the merit order.

Supply curve movements can also cause similar price effects. The supply curve can move
up or down smoothly due to an increase or decrease in the production cost (fuel costs, taxes or
other costs). More frequently, breaks in the supply curve appear for plant outages, which stop
the production (Figure 4.2).

Also, bidding strategies can obviously affect the short-term shape of aggregate supply.
Moreover, if the production system of a certain country or geographic area is intrinsically not
sufficient to match the consumption needs of the same area (i.e., the system is intrinsically in a

Price

Load

P1

P*

F IGURE 4.2 Supply local shock (upward supply price
shock)
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situation of under-capacity), then other factors such as congestion of transmission lines, used
to import electricity, can play an important role in the determination of aggregate electricity
supply.

Electricity aggregated demand is mainly composed of two principal components: indus-
trial demand and domestic demand.

Industrial electricity consumption is driven by different economic factors, which differ
sector by sector. Industrial electricity demand may reflect different cycles and seasonality.
If the industrial structure of a certain country or geographic area is sufficiently diversified,
then the idiosyncratic and seasonal components of the constituent sectors tend to balance
themselves out within the consumption basket. Obviously, not all components are diversified
away since some factors remain systematic.

In general, the main characteristic of industrial electricity demand is the relative insen-
sitivity to electricity price in the short term. This naturally affects electricity procurement
contracts and hedging strategies of large industrial players.

Domestic demand may be a significant and sometimes predominant component of aggre-
gate electricity demand. Typical domestic consumption is concentrated on specific hours of
the day when people use electricity for heating, freezing or cooking. This generates the typical
intra-day load shape. Domestic electricity consumption related to heating or air conditioning
is essentially related to weather conditions. In particular, many empirical studies prove that
temperature and domestic consumption are closely related, especially in developed countries.

Industrial and domestic consumption merge together in different proportions in different
countries and contribute to the typical shape of aggregated demand, with the usual hourly and
monthly behaviour (see Figure 4.3 for example).

Electricity is not an intrinsically storable commodity. So, in analysing the drivers of
electricity supply dynamics, the determinants of the available production capacity are mainly
focused upon (more so than the installed capacity). The static shape of electricity supply, the
merit order curve, depends on the characteristics of the plants which comprise the productive
system. Thermoelectric power plants have patently different characteristics in terms of effi-
ciency and flexibility relative to hydro or nuclear power plants. Hence, the structure of the
production system in a given country strongly affects the dynamics of its electricity supply
capability.

Obviously, installed capacity influences total supply. New entrant plants, characterized
by more modern technology, have the effect of decreasing the price of offered electricity for
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a given quantity. This effect may be described as a right parallel (or almost parallel) shift of
the merit curve. In the short to mid-term, fuel costs have a strong impact on electricity supply.
Fuel costs influence the marginal opportunity cost of production, and impact electricity prices
through the short-term bidding strategy of electricity producers. Where a liquid market for
the fuel exists, the opportunity cost and the real production cost tend to converge with the
consequence of a more direct impact of fuel costs on final power prices. Another important
long-term determinant of electricity supply is the dependence structure of different fuel prices.
In fact, even in productive systems that are well-diversified technologically, fuel costs have a
deeper impact on final prices if different fuel prices tend to move in the same direction (highly
dependent fuel prices). Greater levels of diversification in the technology, efficiency and fuel
consumed within a generation system mitigate against the impact of fuel costs on final power
prices.

In the last few years the significant increase in renewable power generation (wind and
solar in particular) and the corresponding economic incentive schemes adopted by different
countries have sensibly affected power supply and supply price dynamics.

The relevant presence of non-programmable power generation units (units whose produc-
tion load is not completely decided by the unit manager but by unpredictable external factors)
within the system has increased the demand, and consequently the cost, of grid-balancing ser-
vices. A within-day price volatility increase is the market price consequence of that situation.
Moreover, economic incentive systems for renewable energy have introduced a competitive
asymmetry between them and conventional generators.

Over a shorter time horizon, transmission constraints (international and regional intercon-
nectors and merchant lines) play a very important role, particularly in countries or areas that
are intrinsically under-supplied by installed capacity. The impact that transmission constraints
have on prices (regional or national) can be fully understood by analysing price spreads between
neighbouring countries or regions within the same country. If two neighbouring areas are well
interconnected, electricity trading is more fluid between them and prices tend to be similar,
according to no-arbitrage arguments. In the opposite situation, prices can potentially move in a
very different way, both in the long, medium and short term. In the very short term, unpredicted
plant outages and unit commitment strategies determine the shape of the supply function since
they determine the capacity which is effectively available at that specific market moment.

In addition to the list of supply and demand dynamics determinants described so far,
there are some economic drivers which jointly influence electricity demand and supply in the
medium and long term. Such drivers include interest rates, country production and income
trends. The impact of macroeconomic variables on electricity demand and supply is not within
scope here. However, it is important to note that the impact of macroeconomic variables, such
as interest rates and production level, on electricity market behaviour is not dissimilar to that
on other, more traditional, financial markets.

4.1.3 E lectr ic i ty Derivat ives

Liberalized electricity markets are characterized by high volatility levels, which mean high risk
for both electricity producers and consumers. This high level of risk is not always compatible
with agents’ risk attitudes. Hence, derivatives instruments are necessary in order to reconcile
agents’ economic exigencies with the natural characteristics of electricity markets.

Forwards and futures contracts are the simplest examples of derivative products. These
contracts differ only by the associated settlement procedure, which for futures contracts
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involves ‘marking to market’ on a daily basis, while for forwards contracts it involves settlement
at maturity.

Almost all energy exchanges worldwide actively trade futures contracts on baseload and
peakload electricity prices. The actual contracts traded in different markets display different
characteristics related to:

� delivery type
� payoff type.

Forwards and futures contracts can have a physical or a purely financial delivery type.
The standard payoff of a forward contract maturing at T for delivery over the period

[T (1) , T (2)] is (E (T) − K), where K is the forward price established at contract initiation and
E(T) is the average electricity spot price measured during the contract’s delivery period. This
Asian-style payoff feature makes the forward contract practically indistinguishable from the
corresponding plain vanilla electricity swap. The plain vanilla swap is also known by the name
‘contract for difference’ (CFD). Basically, it is a contract to exchange a floating electricity
price for a fixed one. Typically the floating leg of the contract is linked to the average spot
electricity price calculated over a certain (usually quite long) period of time such as a month,
quarter or year (i.e., calendar swap).

The unitary payoff of such an instrument is then given by the following formula:

Swap payoff =

[(
1
N

N∑

i=1

Ei

)

− K

]

,

where E is the spot electricity price and K is a fixed swap price set at the contract’s initiation.
Not many electricity exchanges regularly trade options (though the German EEX exchange

is a notable exception). In general, exchange-traded options are purely financial (meaning
financially rather than physically settled) options written on forwards or futures contracts
with quite long maturities (i.e., a season or longer). However, the traded volume for such
instruments is very low compared with that of OTC volumes. OTC markets enable the trading
of not only plain vanilla options on futures but also exotic options such as swing options with
flexible take characteristics. Such instruments include the following:

Block options. OTC options whose underlying is a block of hours (e.g., 17–20) of a certain
day or of a certain group of days. They display typical option or swaption features in the sense
that the opportunity to exercise can be limited to one period or to multiple periods.

Hourly options. OTC options whose underlying is a single hour of a single day or of a
group of days. Such contracts display more or less the same characteristics as block options.
They are important because they represent the maximum flexibility tradable in electricity
markets. They are not intensively traded since they are extremely risky instruments.

Plain vanilla options can be further combined or bundled together to create derivative
structures such as caps, floors or self-financing collars,3 which are familiar to interest-rate and
currency derivatives traders.

3A cap is a variable-price contract (typically a purchase contract) with a maximum purchase price. A
cap can be synthetically replicated by a fully variable purchase contract and a call option. A floor is a
variable-price contract (typically a sell contract) with a minimum sell price. A floor can be synthetically
replicated by a fully variable sell contract and a put option. A collar is a combination of a cap and a floor.
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Since electricity markets are typically highly connected with other commodity markets
(through the generation process, for example) – such as gas or oil – it is common to trade
commodity spread derivatives such as spark spread options or forwards. The spark spread
is the spread between power and gas prices, once adjusted for the generation efficiency rate
typical of modern gas-fired power plants. The spark spread is a good proxy for the gross
margin associated with this kind of power generation. It is therefore natural that spark spread
derivatives would be used to hedge and secure its variability.

Complex electricity derivatives are also typically embedded in traditional electricity sup-
ply contracts. Swing rights or tolling agreements are among the most important electricity
structured products.

Swing rights are typical options embedded in physical gas and electricity contracts. In
swing contracts, the buyer agrees to purchase up to a maximum volume of the underlying
commodity (gas or electricity) in a given period of time and at a fixed price. The contract is
often constrained by a minimum volume that the buyer has to take off in the same period.
Long-term agreements are typically equipped with more than one swing opportunity during the
global duration of the contract and often the global maximum and minimum volumes, which
can be taken, are smaller or greater, respectively, than the simple sum of the period maximum
and minimum volumes (representing non-trivial volume constraints). Penalty payments are
typically imposed if the volume constraints are exceeded in order to incentivize the buyer to
respect the limits imposed.

Swing contracts are normally defined by dividing the total delivery period [0, T] into N
sub-periods as follows:

0 ≤ T1 ≤ T2 ≤ … ≤ TN−1 ≤ T .

Over each of the N sub-periods, and over the entire duration of the contract, minimum and
maximum delivery quantities are established as follows:

� SQ = sub-period quantity
� LSQ = lower sub-period quantity
� MSQ = maximum sub-period quantity
� LGQ = lower global quantity
� MGQ = maximum global quantity.

The following relations should be respected by the contract buyer:

LSQ ≤ SQ ≤ MSQ

and

LGQ ≤
N∑

i=1

SQi ≤ MGQ.

The sub-period volume constraints are non-trivial with respect to the global volume con-
straints if

LGQ > N × LSQ
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and

MGQ < N × MSQ.

The purpose of the contract is to allow the buyer a certain degree of flexibility in the volume
which can be taken, since typically the gas and electricity consumer is not always in a situation
to know exactly, a priori, the quantity he is going to consume period by period or in total.
Since the underlying commodity is usually costly to store, the volume flexibility that the swing
right guarantees is very important and extremely valuable.

Tolling agreements are contracts which usually involve a power producer and a power
marketer (toller). In general, in a tolling contract the toller has the right (the option) to use
the power plant of the producer in order to transform a certain quantity of fuel into electricity.
On the other side, for this service, the power producer is entitled to receive a fixed tolling fee,
which is supposed to cover its fixed production costs and the energy transformation service
price (see Figure 4.4 for a graphical representation of the general scheme of a tolling contract).

The term of the tolling agreement is divided into sub-periods. At the beginning of each
sub-period the toller informs the power producer about the fuel quantity he wants to transform
into electricity for that period. Minimum and maximum period quantity levels, in addition
to swing rights, can be established in order to match the particular needs of both parties.
Tolling contracts are typically physical contracts. Hence, they are usually equipped with
ancillary clauses, which regulate rights and dues of the parties in case of asset default, fuel
misprocurement, transportation problems, etc.

It is also possible for the tolling agreement to be a purely financial one. In such a case the
toller does not physically take the electricity, but just receives the financial equivalent coming
from selling the electricity in the spot market.

By subscribing to a tolling agreement, the power producer remains responsible only for the
operational risks related to the generation activity, while the market risk due to the fluctuation
of fuel and electricity prices belongs to the toller (spark spread risk).

Such products are actively traded in electricity markets because they represent a natural
hedge to a power generation asset exposure. For this reason a tolling agreement typically
supports project financing initiatives in power generation in order to stabilize the cash flow of
the project.

4.1.4 Power Price Models

As power has become a commonly traded commodity with developed spot and derivatives
markets, power price modelling is increasingly a fundamental exercise for pricing and risk
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assessment issues. Price modelling is also important for forecasting purposes but in this section
the concentration will be on pricing and risk management needs, focusing on the presentation
of the most commonly used probabilistic models to describe spot and forward electricity
prices.

Typically, probabilistic models are reduced-form models, in the sense that the stochastic
variables involved do not have a particular and exact economical or financial meaning but
only a descriptive role. Purely probabilistic models are thought of and built to describe the
probabilistic properties (trajectorial and distributional) that a certain measurable phenomenon
displays. They have traditionally and extensively been used to model physical phenomena but
by the early 1970s their use had become common also in financial analysis, especially in the
fields of derivatives products and real asset valuation.

The class of stochastic processes which has been used until now for electricity price
modelling can be divided into two main categories: traditional and more advanced models.
Traditional modelling approaches have been inspired by and developed for financial mod-
elling applications other than electricity. For this reason, often they do not provide a realistic
description of typical electricity price features. In contrast, by advanced models is meant
all those models which have been developed explicitly to model electricity prices. Such
models are therefore able to provide a more realistic description even if their mathematical
complexity is higher. It is also important to distinguish between models for spot electricity
prices and those for forward prices, since price patterns and distributional features may be
extremely different.

4.1.4.1 E lectr ic i ty Spot Price Models Traditional spot price models belong typically
to the class of generic Itō processes:

dSt = 𝜇(t, St)dt + 𝜎(t, St)dWt

where W(t) is a standard Brownian motion; 𝜇 and 𝜎 are deterministic functions of time and
price.

Among this very generic class of processes, mean reversion is typically recognized as one
of the most important features that an electricity spot price model should be able to replicate.
Lognormal mean-reverting models basically provide this feature, maintaining the simplicity
of Itō processes.

dSt

St
= 𝜗

[
𝜇 (t) −

(
St

)]
dt + 𝜎

(
t, St

)
dWt.

According to this representation, the electricity log-price diffuses around a long-term
attractor, which likely has a periodic behaviour, where the speed of the reversion is deter-
mined by the constant parameter 𝜗. A generalized Brownian motion with a constant or
locally deterministic volatility parameter generally represents the martingale stochastic com-
ponent. The model of Lucia and Schwartz (2002) provides the first application of a lognormal
mean-reverting process in the energy field. Despite its simplicity, the class of mean-reverting
processes does not seem to be adequate for electricity spot price modelling mainly because
the linear diffusive dynamics is not able to replicate the typical spiky behaviour.



Electricity Markets and Products 191

Adding a jump component to the classical mean-reverting dynamics may help to improve
the overall result. As suggested by Cartea and Figueroa (2005), the introduction of a compound
Poisson stochastic jump component may improve the ability to replicate spikes:

dSt

St
= 𝜗[𝜇(t) − ln(St)]dt + 𝜎(t, St)dWt + dJt

with Jt =
N(t)∑

j=1

Yj

where N(t) is a Poisson counting process while Y(.) models the jump size distributional
properties.

This class of processes is considered by many people working in the electricity trading
sector as good, since it merges together the two main features of electricity spot price dynamics:
mean reversion and jumps. Unfortunately, the way in which this is done cannot be considered
particularly realistic. In fact, the mean-reversion intensity is constant for both normal and
spike regimes, while empirically we observe that the spike-reversion intensity is much more
significant than the standard diffusive mean reversion. This implies that when a positive jump
occurs, the reversion towards the normal regime is slower than that observed. Moreover, the
simple compound Poisson process J(t) is characterized by a constant jump frequency while it
is known that the probability of a spike occurring is not constant over time but, in fact, is often
cyclical since it depends on some price determinants, which are themselves periodical.

So, from the discussion to date, it is clear that electricity spot price dynamics are charac-
terized by periods of either normal or spiky behaviour. Hence, a natural way of representing
this feature mathematically is through the class of multiple regime processes. According to
this modelling approach, the electricity spot price is assumed to follow two different and
independent regimes. The first one, let us call it the ‘mean-reverting regime’, is intended to
describe the non-spiky behaviour of the dynamics, while the second one is intended to replicate
the ‘spiky regime’ of the process. The spikes in the second regime are modelled with a simple
lognormal behaviour whose mean and standard deviation are much higher than those of the
mean-reverting regime process:

dSt

St
=
{

𝜇
L(t)dt + 𝜎L(t)dWL

t → PL = 1 − 𝜃LUdt

𝜇
U(t)dt + 𝜎U(t)dWU

t → PU = 1 − 𝜃ULdt

where 𝜃AB represents the transition probability of switching from regime A to regime B in a
given time interval, while PA represents the probability of persisting in regime A within the
same time interval.

The trajectorial and distributional characteristics of regime switching models make them
extremely appealing for electricity spot price modelling, as well as the analytical tractability
that can be nicely exploited to obtain closed-form derivative pricing formulas as shown by
Deng (1999) and Kholodnyi (2001). However, in practice, parameter estimation is not that
easy since we do not know which regime reigns in each single instant of time (the regime
being a latent variable). Kalman’s filtering methodology (see Fusai and Roncoroni (2008) for
more details) may help to solve estimation problems, but any filtering procedure usually has
a big impact on estimation results, which are difficult to control.



192 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

The models presented so far have not been developed explicitly for electricity markets,
but have only been adapted to them. Some others have been thought of and built up specifi-
cally for modelling electricity spot prices. The Geman–Roncoroni model (2006) is a purely
mathematical model whose probabilistic structure is particularly suitable to realistically model
spiky behaviour. In this model, the electricity log-price process is represented by the unique
solution of the following stochastic differential equation:

d ln(St) = 𝜇i(t)dt + 𝜃
[
𝜇(t) − ln(St−)

]
dt + 𝜎dWt + h(t−)dJt

where 𝜇(t) is a periodic function of time; h(t) is a sign function, which determines the jump
direction; and J(t) is the jump component.

The Geman–Roncoroni process is a marked point process, hence it is a semi-martingale
and a Markov process. Note that it can also be thought of as a mean-reverting process
with positive jumps and a level-dependent mean/jump-reversion attribute. In the original
formulation, the jump-reversion rate depends on the threshold level T(t) of the sign function.
The introduction of this particular form of ‘jump-reverting’ component allows the model to
capture traditional mean reversion but also strong jump reversions which characterize spikes.

Another relevant contribution in this field is that provided by Barlow (2002). The Barlow
model is a simple but attractive supply/demand model, which is able to reproduce spikes
without introducing jumps as an external and independent source of randomness. The model
assumes that supply is non-random and independent of time and that demand is very inelastic
with respect to the price level. Assuming that demand can be expressed as an exponen-
tial function of price, an equilibrium price function can be obtained by equating supply
and demand. Assuming demand has a traditional mean-reverting dynamics expressed by an
Ornstein–Uhlenbeck process, Barlow derives electricity spot price dynamics of the following
form:

St = (1 + 𝛼Xt)
1∕𝛼, if 1 + 𝛼Xt > 𝜀0

St = 𝜀
1∕𝛼
0 , otherwise

where

dXt = −𝜆(Xt − a)dt + 𝜎dWt.

In its original form, Barlow’s model cannot be considered a realistic model for electricity
spot prices. Some corrections are necessary in order to better capture price and volatility
seasonalities.

Fiorenzani (2007) proposed an extension of Barlow’s approach. Exploiting the explanatory
power that demand (load) has on price, Fiorenzani proposes the following modelling approach:

St = f (Lt) + Yt
Xt = Lt − B(t)

where

dXt = 𝜆(a − Xt)dt + 𝜎dW1
t

dYt = −𝜃Ytdt + 𝜂dW2
t
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F IGURE 4.5 Load–price relation (Italian market IPEX and French market Powernext)

and f is a generic non-linear function that relates load (L(t)) to price and B(t) is a non-parametric
estimate of the load periodic component. Obviously, the model can also be expressed in a
logarithmic form in order to avoid negative values.

A priori, the optimal functional form of f is not determined since its shape depends on
the specific market we want to analyse, since it is supposed to represent the load versus price
non-linear relationship. As can be inferred from Figure 4.5, different markets can display
extremely different relationships between load and price. Moreover, f can also be assumed as
a function of time, as suggested by Burger (2004). An econometric analysis is not in the scope
of the present chapter. For an in-depth statistical analysis the interested reader can refer to
Weron (2006).

Load-based models are relatively simple to estimate (via maximum likelihood, ML) and
simulate by means of discretization schemes, producing nevertheless extremely realistic price
paths. Figure 4.6 provides an example of the application of a load-based model. The model’s
parameters have been estimated via ML and are reported in Table 4.1. The empirical spot
price path (upper graph) can be compared with a simulated path (middle graph) or an average
simulated path over the same time period (lower graph).

4.1.4.2 E lectr ic i ty Forward Price Models Electricity forward price modelling is as
important as spot price modelling. Forward products in electricity markets represent the pri-
mary hedging and trading products, hence their realistic modelling is something more than an
interesting exercise. If electricity spot price modelling deals with the stochastic representation
of a single price signal, forward price modelling deals with the simultaneous description of
different (per tenor and delivery period) electricity forward contracts.

Traditional electricity forward price modelling comes directly from interest rates models
such as the HJM approach4 or LIBOR models,5 however some adjustments are needed in
order to consider that electricity is delivered through a specific delivery period (see previous
section). One of the main characteristics that a specific forward price modelling approach

4See Heath et al. (1992).
5See Brigo and Mercurio (2006).



194 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

100

50

0
0 50 100 150 200 250 300 350

100

50

P
ri

c
e

 (
€

M
W

h
)

Hours of the period 09-05-2005 : 22-05-2005

0
0 50 100 150 200 250 300 350

Average Simul.

Simulated

Empirical

Simulated path vs Empirical

100

50

0
0 50 100 150 200 250 300 350

F IGURE 4.6 Simulated and empirical path (period II)

needs to have is inner consistency with the observed (and traded) forward prices, and for that
reason market models such as HJM or LIBOR have been historically preferred.

According to the HJM approach, electricity ‘instantaneous’ forward prices f (t, 𝜏) can be
theoretically modelled with the following equation:

df (t, 𝜏)
f (t, 𝜏)

= 𝜇 (t, 𝜏) dt +
n∑

j=1

𝜎j (t, 𝜏) dWj
t

TABLE 4.1 Parameters vector estimates of Fiorenzani’s model with f (L) = (1 + 𝛾1L)𝛾2 on Italian spot
market data

a∗ 𝝀 𝝈 𝜽 𝜼 𝜸(1) 𝜸(2)

Period I 0 0.06353
(0.002432)

192.81
(18.9147)

0.37475
(6.48E-07)

25.4083
(0.008414)

0.000143
(1.584E-04)

2.2799
(1.0995)

Period II 0 0.06046
(0.00118)

187.9
(9.98)

0.87913
(9.094E-07)

12.5984
(0.009217)

0.00014
(4.0E-04)

2.2221
(0.5275)

Period III 0 0.24461
(0.02523)

1387.96
(167.45)

0.357609
(9.191E-07)

24.7663
(0.007113)

0.000188
(1.48E-04)

2.0081
(1.0349)

Period I: from 07-02-2005 to 20-02-2005 (336 hourly observations).
Period II: from 09-05-2005 to 22-05-2005 (336 hourly observations).
Period III: from 24-10-2005 to 06-11-2005 (336 hourly observations).
∗In the proposed estimation exercise the parameter a has been deliberately imposed equal to zero in
coherence with the model specification and the short-term period of estimation proposed. In fact, in our
load-based model parameter a is supposed to capture long-term linear drift.
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Assuming only one stochastic factor and the absence of a non-zero drift function under
the pricing measure, the following is obtained:

df (t, 𝜏)
f (t, 𝜏)

= 𝜎 (t, 𝜏) dWt

giving

f (t, 𝜏) = f (0, 𝜏)exp

{
−1

2 ∫

t

0
𝜎

2(u, 𝜏)du +
∫

t

0
𝜎(u, 𝜏)dWu

}

with f (0, 𝜏) being the initial forward curve observed in the market today.
Under these modelling assumptions, all forward prices have independent and normally

distributed log returns with significant advantages for model parameter estimation and option
pricing.

From instantaneous forward instruments it is possible to then price electricity forward
contracts with discrete delivery period [𝜏(1), 𝜏(2)], following Benth et al. (2008), using the
following relationship, and with w (u) = 1 or w (u) = exp (−ru) depending on the contract’s
settlement rule:

F(t, 𝜏1, 𝜏2) =
∫

𝜏2

𝜏1

ŵ(u, 𝜏1, 𝜏2)f (t, u)du

where

ŵ(u, s, t) = w(u)

∫ t
s w(v)dv

.

Despite its simplicity and tractability, the Gaussian assumption is not always appropriate
for electricity forward price modelling. The sharp jumps in electricity spot price should be
reflected in forward prices, at least for short-term maturity and short delivery period contracts.
Hence, including jumps as follows is a natural extension of Gaussian HJM models:

df (t, 𝜏)
f (t−, 𝜏)

= 𝜎 (t, 𝜏) dWt + 𝜂 (t, 𝜏) dJt

with J(t) a generic jump process (typically a semi-martingale). Dealing with generic jump
processes is not always practical since distributional and path properties of the overall forward
price process may either be unknown or extremely complex. For that reason, usually Lévy-
based jump processes are used (e.g., normal inverse Gaussian (NIG) processes or generalized
hyperbolic processes) in order to reach a higher degree of mathematical tractability (see Benth
et al. (2008)). However, the ability to model forward prices in a more realistic way allowed
by non-Gaussian HJM models is often accompanied by increased complexity in parameter
estimation and price simulation.

This added complexity becomes particularly significant when one needs to model simul-
taneously more than one electricity forward market (a pretty typical problem in industrial
applications). In particular, it could be extremely difficult with multi-dimensional generic
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semi-martingale processes to correctly disentangle and represent the dependence structure
associated with continuous and discontinuous parts. Despite the fact that electricity spot and
forward prices may display different distributional and dynamic characteristics, which suggest
the use of different modelling approaches for them, it is extremely important to guarantee their
cross-consistency. It would be extremely dangerous to adopt a spot price modelling approach
which is totally inconsistent (in its assumptions and properties) with its forward counter-
part. As is known in general for commodity markets, spot and forward prices are related by
no-arbitrage relationships involving storage costs and convenience yields:

F (t, T) = S(t)exp [(r + c − y) (T − t)]

where c is the instantaneous storage cost and y represents the convenience yield introduced by
Geman and Vasicek (2001).

These parameters are almost impossible to estimate consistently in electricity markets, as
suggested by Eydeland and Wolyniec (2003). This difficulty prevents the derivation of forward
price dynamics from spot prices. On the contrary, some other approaches (see, e.g., Schwartz
and Smith (2000)) aim to derive spot dynamics from forward prices, exploiting the following
relationship:

lim
T→t

F (t, T) = S(t)

Using this second approach, for example, it is possible to show that Gaussian HJM forward
models, with time-decaying volatility functions, are consistent with traditional mean-reverting
spot processes. However, it is worth considering that the above stated limit relationship between
spot and forward prices is no longer valid if jump components are assumed present in spot and
forward dynamics.

4.1.5 Spot Price Analys is ( IPEX Case)

Hourly power prices (spot prices) usually display a complex structure, more complex than that
of forward prices or spot prices of many other commodities and financial assets. Figure 4.7
shows characteristic spot price behaviour (for baseload power) across a number of European
power as well as UD markets. The ‘stylized facts’ of the electricity spot price generating
process are clear to see: namely, periodicity or seasonality (from calendar season down to
weekday/weekend and intra-day granularity), strong mean reversion and occasional spikes (or
double jumps), which can be well represented by the class of mean-reverting Lévy models
(with subordinated jump processes) which have been used widely in the modelling and pricing
of default risk in the credit markets.

The peculiar nature of power spot prices is intrinsically related to all those physical
characteristics that were briefly described at the beginning of this chapter. Different from the
typical dynamics of many financial assets, hourly power prices are not only characterized by a
complex stochastic behaviour, but also tremendously impacted by a non-trivial periodic com-
ponent. In general, one can write electricity spot price dynamics as the sum (or composition)
of different components:

St = 𝛼(t) + 𝜇(t) + W(t) + J(t)
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F IGURE 4.7 Daily baseload prices from major European and American electricity exchanges

where

𝛼(t) is a linear drift component

𝜇(t) is a periodic component

W(t) is a probabilistic noise component

J(t) is a pure spike component.
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F IGURE 4.8 PUN (Italian electricity spot price) price plot

Each one of the generic components listed above is representative of a typical electricity
price behaviour: a linear tendency, a periodic component for the micro and macro price
frequency, a component for the description of the price variability (unpredictable behaviour)
in the ‘normal regime’ and a component for the description of unpredictable price behaviour
in extreme situations (spiky behaviour).

Quite often, in traditional financial data analysis, a lot of emphasis has been concentrated
on the study of random components of financial asset prices. This is because the deterministic
behaviour (especially the periodic behaviour) of financial asset prices is usually not significant
from a statistical point of view. In complete contrast, electricity spot price dynamics are
essentially characterized by a strong and complex periodic component, which has necessarily
to be analysed with the appropriate instruments and filtered out from the data set before
concentrating attention on the study of its statistical properties.

The detection of the periodic component of the price signal can be performed by classical
Fourier analysis.6 By means of the discrete Fourier transform one is able to analyse the
original price signal (time series) in its frequency domain, being able to clearly determine its
predominant periods. See Figure 4.8 for the example of a PUN (Italian electricity spot price)
price plot.

Once the proper frequencies are detected, the periodic component can be extracted using
parametric (e.g., by fitting the periodic component with a dummy equation or with a Fourier
polynomial) or non-parametric filtering methods (such as wavelet methods). The effectiveness
and impact of the filtering methodology can be appreciated by comparing the distributional
behaviour of the price signal before and after the filtering.

Figure 4.9 shows how the shape of the Italian electricity spot price (PUN) changes after
a simple dummy-based regression equation has been fitted to capture periodic behaviour and
removed from the original time series.7

6The interested reader can refer to Howell (2001) for a comprehensive description of classical Fourier
analysis.
7See Fiorenzani (2006) for more details about filtering methods applied to power price time series.
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F IGURE 4.10 PUN vs. PUN filtered (autocorrelation functions)

Traditional correlogram analysis can also be used to detect and evaluate the presence
of the periodic component within the price behaviour (see Figure 4.10). The analysis of the
autocorrelation functions displayed by a certain price series has always been a useful signal
for the presence of undetected periodic components or structural residual behaviours (such as
ARMA behaving residuals).8

It is evident from Figure 4.10 that the filtering process previously adopted led us towards
a non-trivial residual series, which has a clear autoregressive structure. ARIMA models can
then be used to analyse this stochastic component further. Simply by introducing three auto-
regressive components of 1st, 24th and 168th order we are able to explain up to 90% of the
realized variance of the signal with a significant reduction in the autocorrelation shape (see
Figure 4.11).

The final residual is effectively quite ‘white’ but not really Gaussian (see Figure 4.12).
Fat tails behaviour can be explained as signalling the presence of an undetected jump

component, which superposes the classical Gaussian random noise.

8See Verbeek (2000) for a detailed presentation of correlogram analysis of financial time series and
ARMA/ARIMA models.
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F IGURE 4.11 PUN vs. PUN filtered + AR (autocorrelation functions)

Obviously, the analysis performed here can also be done, by means of the same steps,
on log prices (taking the natural logarithm of the price series). The results should not appear
much different but, depending on the final scope of the analysis, the use of log prices can be
preferred. In particular, if our scope is price modelling for forecasting or simulating purposes,
price positivity is an essential feature we need to preserve. For that reason a direct analysis of
log prices may be preferred in this case.
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F IGURE 4.12 ARMA model residuals histogram

4.1.6 Forward Price Analys is (EEX Case)

Forward price analysis has an additional dimension on top of the time dimension – namely,
the maturity dimension of the forward contracts. For this reason, before using traditional time
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series analysis methods, one needs to identify the main factors that affect the forward curve
movement.

Principal components analysis (PCA) is a kind of analysis that applies well to groups of
highly correlated market variables (see Fusai and Roncoroni (2008) for more details on PCA).
PCA takes historical data on movements in the market variables and attempts to define a set
of components or factors that explain the movements.

A futures term structure of 12 contracts has been considered; in particular, the closing
prices of the first six monthly contracts, the third and fourth quarterly contracts, and the
calendar contracts up to four years ahead. This amounts to a data set of 987 closing prices for
each of the considered contracts. The start date for the data is 11/01/2005 and the end date
27/11/2008.

Figure 4.13 plots the factor loadings for the first three components identified using PCA,
and from these it is possible to notice some classical features of the forward curve movements.
The first component represents parallel shifts, all with the same signs – denoted by dark grey
bars in the chart. The second factor – denoted by black bars in the chart – represents a twist
of the term structure. Contracts between the first month and the third quarter move in one
direction and contracts with longer maturities show opposite dynamics. The third factor –
denoted by light grey bars in the chart – represents less structured dynamics. In particular, it
is possible to notice a high level of correlation between the movements of the first month and
the fourth-quarter power contract. In contrast, the third-quarter contract shows an uncorrelated
movement with respect to the fourth quarter, and so against the first-month movement.

The importance of each factor is measured by the standard deviation of its factor score.
The factors computed in this analysis are plotted in Figure 4.14, according to a ranking of
importance by variance measures.
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F IGURE 4.14 Proportion of curve’s variance explained by each factor score

For this example, the first three factors analysed explain almost 70% of the total variance.
It is not that much compared with a similar analysis that can be performed on other products
or markets. This is proof that power price dynamics are more complex than those of other
commodities or financial assets.

In particular, the presence of a seasonal component in the underlying price paths, as
analysed in the spot price analysis of the previous section, or the non-Gaussian behaviour
of the main risk factors of the curve may clarify why the PCA performed here shows that
at least eight factors are needed to explain 90% of the realized curve’s variance. In fact,
the presence of an undetected seasonal component in the curve behaviour can erroneously
induce the PCA analysis to attribute this unexplained movement to the stochastic behaviour
of the curve itself, despite it just being a deterministic one. On the contrary, it is worth
emphasizing that the main implicit distributional assumption of PCA is joint normality of
all the factors. If this assumption is not supported by the empirical data, PCA results can
be biased.

In the remainder of this section the scores series will be tested (for the first three meaningful
components detected) in order to check for the hypothesis of normality of the main components
and for the presence of seasonal behaviours in the autocorrelation paths. This analysis will
be performed through classical distributional and statistical tests. Figure 4.15 is a scores
histogram for the first principal component. The kurtosis value is above the zero level, denoting
a leptokurtic distribution, while the level of skewness coefficient shows a lightly left-skewed
distribution.

In testing the Gaussian hypothesis for the scores series through the Jarque–Bera statis-
tical test, the hypothesis of normality is rejected. One may be interested to also outline any
hidden recursive patterns, such as seasonal or autocorrelation effects, undetected by the PCA.
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So, autocorrelation analysis is performed to search for possible improvements in the PCA
analysis.

The correlogram of the first principal component’s scores does not show any meaningful
structural breakdowns of the confidence interval level (computed at 95% confidence level), as
reported in Figure 4.16.
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Partial autocorrelation analysis (that eliminates possible effects of linear dependence
between overlapping lags) shows only the limited, and not meaningful, presence of break-
downs of the confidence interval level (computed at 95% confidence level), as reported in
Figure 4.17.

Analytically powerful statistical tests such as the Box–Ljung test and the Box–Pierce test
confirm the null hypothesis: the absence of linear autocorrelation through the scores of the first
principal components (Table 4.2). This can also be interpreted as the absence of a potentially
undetected seasonal component in the curve dynamic behaviour.

The same analysis and tests have been performed for the other two principal components.
Similar results in terms of Gaussianity and absence of autocorrelation have been obtained for
them.

The analyses presented to date are just simple examples of the kinds of statistical analyses
that can be done on power price time series (both spot and forward) in order to understand their
behaviour and their fundamental relationships with other economic variables. Depending on
the scope of the analysis one wants to perform, different models can be constructed to predict,
describe or risk assess power prices.

TABLE 4.2 Box–Ljung and Box–Pierce tests or PC1

Box–Ljung test
𝜒-squared = 278.2411, d.f. = 300, p-value = 0.8115

Box–Pierce test
𝜒-squared = 237.6254, d.f. = 300, p-value = 0.9967
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4.2 RENEWABLES, INTRA-DAY TRADING AND CAPACITY
MARKETS

4.2.1 Renewables Expansion Targets

In this section we examine the implications of the large-scale integration and implicit ‘firming’9

of renewable electricity production, which has already been taking hold and which is mooted
to gather pace over the next decade and beyond. Figure 4.18 (from Cervigni and Niedrig,
2011) shows the ambitious renewables electricity production targets which have been set for
key European power markets over the next decade and beyond.

It is widely anticipated that the large-scale integration of renewables will lead to increased
volatility in day-ahead or spot prices and will lead to a significant increase in market risk for
legacy conventional thermal generators. The significantly increased but intermittent production
from renewables sources (especially wind and photovoltaic) will additionally require that
transmission control areas will increasingly have to adapt to the stochastic nature of renewables
production at very short notice, resulting in increased intra-day up to real-time trading (e.g.,
growth in the trading of 15-minute contracts) and/or increased procurement (and possible

9We extend the definition of ‘firming’ beyond the traditional meaning of the large-scale integration
of renewables production sources with, for example, large-volume CAES storage facilities or CCGT
generators (see, e.g., Mason and Archer, 2012). We broadly define the ‘firming’ term to also include any
capacity market innovation which encourages the provision of increased flexibility in dealing with the
intermittency of supply problem, and hence which accommodates the uptake of supply (or firming) from
the increasing share of renewables in the overall generation portfolio mix.
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activation) of control power capacity, especially short-notice, short-duration ‘minute reserve’
capacity.

In this section we look at the implications for both day-ahead and intra-day electricity
prices, as well as the effects on capacity market structures and prices. The objective is to better
understand how these markets have already changed and how they need to evolve further if
they are to fairly remunerate or incentivize developers for putting at risk the capital required
for the inevitable increase in peaking and/or storage assets which will be required to provide
the flexibility required in the renewables-dominated electricity markets of the future.

We also generalize our definition of ‘prices’ in both the electricity and capacity markets to
mean an analysis of the changes in price levels, price profiles (or shapes) and price volatilities
which have already occurred in both markets and which are expected to prevail into the future.
Finally, we focus on the German market because the large-scale integration and accommoda-
tion of renewables electricity production underway is arguably the most ‘politically prioritized’
of the renewables policies being advocated across the various European power market control
areas.

4.2.2 Growth in Intra-Day Trading

Figure 4.19 (from Cervigni and Niedrig, 2011) already shows a clear relationship being
established between increased solar production levels and the growth in trading of 15-minute
contracts during peak day-time hours in the German power market.

It is generally accepted that it is impossible to exactly forecast wind speed at the day-
ahead stage, but that forecasts do improve significantly and can become quite accurate a few
hours before real time. Given the priority feed-in and large-scale integration of renewables
(principally wind but also photovoltaic in jurisdictions such as Germany) mooted over the next
decade and beyond, it therefore seems likely that control areas/system operators will need to
increasingly adapt to such information – resulting in the increased procurement (and possible
activation) of control power capacity by system operators (in particular minute reserve) and
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increased intra-day up to real-time trading activity by generators. It seems inevitable therefore
that there will continue to be a marked increase in trading of intra-day blocks and real-
time electricity in order to mitigate the intermittency of this supply source (as illustrated in
Figure 4.18 and also in Figure 4.22 below).

4.2.3 Impl icat ions for Future Price Volat i l i ty and Price
Prof i les

Figure 4.20 (from Cervigni and Niedrig, 2011) points to the likelihood that a significant
proportion of conventional thermal plant capacity in Germany would not be needed in 2020
to cover off-peak demand in a high-wind environment.

In such periods Germany will likely be a net exporter of electricity (assuming a more
interconnected EU transmission network) and German day-ahead electricity prices will likely
trend very low (or perhaps even negative as long as renewable production continues to enjoy
a priority feed-in). Day-ahead prices, both peak and off-peak, would inevitably become more
volatile given the priority feed-in accorded to renewables production sources.

Figure 4.21 (from Cervigni and Niedrig, 2011) underscores the currently held wisdom
that the sharp increase in installed photovoltaic capacity mooted for 2020 (incorporated in the
solid red-coloured supply curve) has the potential to significantly lower German peak prices
in summer. The day-ahead hourly peak price profile can be expected to shift downwards and
indeed flatten under such a scenario, again making it difficult for legacy mid-merit and/or
peaking thermal generators, as well as storage assets, to cover marginal costs of production in
such a scenario.

Figure 4.22 points to a similar solar-driven flattening of day-time peak prices being
likely across the winter weeks 49–52, where demand coverage in 2020 has been simulated
based on the installed renewables capacity mooted for 2020 and based on 2003 weather data
corresponding to the 4-week interval shown.
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Figure 4.23 in fact confirms that such a flattening in the hourly peak price profile is indeed
already occurring, and is clearly being driven by increasing photovoltaic installed production
capacities. This will have implications for the viability of storage assets such as pumped hydro
or compressed air, which we discuss later in Section 4.2.5.

Hence, both the anticipated flattening of the hourly peak price profile and the increased
volatility expected in day-ahead hourly prices are interconnected and are likely to be a direct
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consequence of the increased integration of renewables production which has already been
committed to across European electricity markets for 2020 and beyond.

4.2.4 Reforms and Innovat ions in Capacity Markets

As Figure 4.19 illustrates, while the intermittency of the increasing supply from renewables
sources (in particular, wind and photovoltaic) has been a factor in explaining the significant
growth observed in intra-day trading in Germany in recent years, there have also been sig-
nificant reforms and innovations in the German capacity markets which have had an impact
on the structure, levels and volatilities of capacity market prices, in particular the day-ahead
market for short-duration ‘minute reserve’ capacity.

Haucap et al. (2012) conducted a vector autoregression (VAR) analysis of regulatory
reforms implemented in Germany’s minute reserve power market in the last 15 years. The
launch of a common web-based tendering platform to synchronize and standardize the four
separate control areas dates back to 1 December 2006, and this reform was followed by the
gradual interconnection and increased cooperation of the country’s four system operators
between December 2008 and July 2010. The former reform was aimed at increasing capacity
market efficiency by promoting competition and discouraging strategic bidding behaviour,
whereas the second reform was aimed at delivering a more efficient cooperative style of
‘netting’ reserve capacity requirements across the four separate control areas in the German
power market. By creating in effect a single market for control power in Germany, the overall
amount and cost of control power required could therefore be kept to a minimum, and this
reform objective appears to have been successful. Figure 4.24 shows that a clear ‘structural
break’ (further verified by Chow test statistics) in the time series of negative-balancing reserve
capacity prices occurred around the time of the first reform (1 Dec 2006). Although not clear
from Figure 4.24, calculations show that the volatility of absolute changes in reserve capacity
prices (i.e., in €/MW units) also fell in the period following the first reform.

Before discussing further the structure and profile of German capacity market prices, and
identifying why they might need to evolve in such a way as to encourage the provision of
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increased system flexibility in the face of the increasing integration of renewables, we first
provide a general description of the various types of capacity market structures one might
encounter in electricity markets.

4.2.4.1 Capacity Market Structures We need to distinguish between an energy-only
market and an electricity market which is augmented by a parallel market for ancillary services
such as the provision of operating reserve capacity and/or balancing power. In the former, the
market-clearing energy price ostensibly reflects the marginal cost of generation of the marginal
unit dispatched on the system, whilst additionally providing a margin sufficient to cover fixed
costs. In such a market a generator is not explicitly compensated for keeping firm or declared
capacity available as reserve – the generator is relying on potentially higher prices in the real-
time market for balancing or control power. In the latter form of capacity market a capacity
payment is paid separately for the provision of dedicated standby capacity which is declared
available, which may or may not then be called upon to supply or take energy from the system.
From the system operator perspective the capacity price is likely to be based on quantifying
the probability and value of lost load, whereas from the generator’s perspective the capacity
price must reflect the opportunity cost of not using the capacity to generate electricity for sale
in the day-ahead market. In the following discussion we focus on the latter type of ancillary
services reserve market.

In Germany and in all other member states of the European Network of Transmission
Operators for Electricity (ENTSO-E), three different types of reserve power/capacity exist.
Secondary and minute reserve control power can be activated from successful capacity bids
in regard to predetermined capacity which has been declared available, with a notice period
ranging from seconds up to 15 minutes. Whereas secondary control power is procured in
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monthly cycles and can be activated within a 30-second up to 5-minute notice period for
up to a 15-minute delivery intervals, minute reserve is procured by way of daily capacity
auctions, activated within a 15-minute notice period and ranging from a 15-minute minimum
delivery interval in quarter-hour intervals up to 4 contiguous hours for each of the 6 × 4-
hour intervals or time blocks which can be tendered separately at auction for the following
day. Primary control power capacity, which is called on first in the event of activation, is
also tendered for in monthly cycles and can be activated within 30 seconds of the frequency
event. The required volume of secondary control power and minute reserve which must
be procured by the transmission system operators (i.e., for frequency stabilization purposes
in the event of a real-time supply–demand imbalance) is defined in such a way that the
defined residual risk probability of a power surplus or deficit that cannot be balanced is
not exceeded.10

An interesting challenge resulting from the priority feed-in rights accorded to an increasing
renewables stack, and the corresponding growth in intra-day and real-time trading, will be the
optimization of within-day peaking or storage assets such as compressed air energy storage
(CAES) or pumped hydroelectric storage (PHES) facilities. In the particular case of a storage
asset, the primary source of revenue might well be the capacity market in the first instance,
where in the case of Germany’s capacity market described above the payment from the
system operator can include a ‘capacity price’ compensation for the standby provision of
positive or indeed negative-balancing reserve (which must be declared ‘available’) in the
cases of secondary and minute reserve control and a separate tariff or ‘energy price’ for
the ‘delivery’ of control power in the event of a ‘successful’11 capacity bid subsequently
being ‘activated’.

In the indicative levellized cost of energy (LCOE) calculations provided below we demon-
strate that such facilities are not currently sufficiently incentivized by energy-only market
system marginal prices (taking German day-ahead prices as the benchmark) and must addi-
tionally (or indeed principally) rely on day-ahead capacity markets combined with intra-day
and real-time trading revenues for the return of their fixed costs (again pointing to a likely
increase in future intra-day trading volumes).

4.2.4.2 Capacity Price Sett ing In liquid and well-developed bilateral markets (i.e.,
where liquid OTC and also exchange-based trading has long been established) capacity prices
ought to reflect the fair value of ownership claims on ‘firm’ (i.e., ‘declared available’) gener-
ation capacity. The fair-value payment for a claim on peaking or storage asset capacity (for
a particular block or hourly profile) ought to reflect the flexibility value, or optionality, of
the asset to deliver/accept power at short notice and for possibly a short-lived duration (at a
predetermined price) in the event a successful capacity bid is subsequently activated.

10http://www.amprion.net/en/control-energy.
11In Germany, offers for the day-ahead minute reserve auction must be submitted by 10.00 T-1 (i.e.,
day-ahead stage) and ‘successful’ bids for 6 × 4-hour blocks are then announced at 11.00 T-1. Depending
on whether the deemed-successful bid (the decision of the system operator being made independent of
the price offered for energy) is for positive or negative-balancing reserve, if activated (or deactivated
subsequent to an earlier activation notice) on T0, power must then be delivered to (or taken from) the
system in 15-minute granularity blocks. Given the 15-minute advance notification in either case, this
underscores the high level of dynamic flexibility required to trade successfully in this segment of the
capacity market.

http://www.amprion.net/en/control-energy
http://www.amprion.net/en/control-energy
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In our subsequent discussion we highlight the fact that the prevailing capacity market price
structure in markets such as Germany may not currently adequately reflect anticipated ‘scarcity
conditions’ (see Cervigni and Niedrig, 2011). Moreover, as things stand it may not adequately
reflect the future demands which could be placed on conventional thermal generators to more
flexibly respond to supply–demand imbalances resulting from the intermittent but prioritized
feed-in from an increasing share of renewable electricity sources in the overall generation
portfolio.

4.2.5 Provis ion and Remunerat ion of F lex ib i l i ty – Storage
Assets

In addition to the anticipated and sustained increase in intra-day trading, highly flexible
storage assets, such as CAES and PHES, will need to be commissioned if the inefficiencies
associated with spinning reserve and short-notice ramping of conventional thermal plant are
to be minimized. Consequentially, it is inevitable that there will need to be a corresponding
increase in the procurement of short-notice, short-duration capacity market contracts for the
provision of both positive and negative-balancing reserve, such as is facilitated in the German
day-ahead ‘minute reserve’ market.

Anticipating the effect that increased German wind and photovoltaic production may have
on the day-ahead peak versus off-peak spread by 2020 and beyond (Figure 4.23), a sizeable
proportion of the investment return on a flexible CAES or indeed PHES storage asset will
likely accrue from a strategy of bidding negative and/or positive capacity in the minute or
secondary-reserve capacity markets. As alluded to already, such a strategy would additionally
need to be flexibly combined with intra-day and real-time electricity trading to ensure energy
storage inventory levels are always appropriately primed to respond to short-notice activation
calls for negative or positive-balancing energy.

The intermittency of priority feed-in, renewable electricity sources therefore raises the
question of how and where such storage assets are to be fairly remunerated. Even the somewhat
crude analysis following will demonstrate that currently prevailing day-ahead electricity price
profiles12 do not offer a sufficient incentive for financiers to put at risk the capital necessary
to commission and profitably operate such facilities. Notwithstanding the inherent ability of
storage asset operators to be more attuned13 than most market participants to balancing risk
and corresponding system needs, we will show that even a daily cycled CAES storage facility
cannot expect to rely on ‘arbitraging’ intra-day block spreads to cover its fixed as well as
variable costs, both now and especially in the future.

4.2.5.1 CAES Storage Faci l i ty – A Level l i zed Cost of Energy Cost–Benef i t Analys is
The ‘cost-of-generation’ calculation below uses actual closing prices for EEX off-peak power
(€/MWhe), EEX NCG Gaspool spot gas (€/MWhth) and EUA CO2 emissions allowance prices
(€/tonne) for an indicative single day, 30 November 2012.

12As already alluded to, Cervigni and Niedrig (2011) convincingly argue that the spot or day-ahead price
profile might be expected to flatten across most of the hours, and that in such an environment generators
and storage operators should collect a greater part of their revenues from ‘providing flexibility’.
13Harris (2006) cites the fact that the ex-post load duration price curve is much steeper than the ex-ante
curve, and can be accessed by some participants after day-ahead prices have been set.
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Assumptions The CAES compression and generation trains have been configured such
that the rates of air compression and expansion are equal,14 permitting an equal number of
(continuous) compression and generation hours. Further assume the number of compression
hours to be 12 so that one can reference the traded day-ahead off-peak electricity blocks (0.00–
08.00 off-peak 1 and 20.00–24.00 off-peak 2) in the ‘variable cost-of-generation’ calculation
which follows.

Cervigni and Niedrig (2011), in assessing the interaction between supply and demand
for electricity in Germany for the future year 2020, conclude that there are strong grounds to
believe that a significant capacity shortfall of 15,000 MW will prevail. However, the capacity
shortfall will likely only be relevant for 10 hours/working day and for 30 days/year, since
demand on those days during off-peak hours can still be covered by conventional thermal
generators. Hence, the capacity shortfall is anticipated to relate to the 300 most expensive
hours in the pro-forma price–duration curve for 2020, and the ‘scarcity scenario’ envisaged
can be seen as in fact a ‘storage problem’.

Therefore, in the following calculation we assume that the levellized cost of a CAES
storage technology needed to yield a target internal rate of return of 10% over a 10Y investment
period is given by the sum of the €/MWh all-in variable cost of generation plus the total capital
expenditure or ‘capex’ requirement amortized over a 20Y operating period and then smeared
over the 300 most expensive hours for each year of operation to give an equivalent €/MWh
estimate.

All-In Variable Cost of Generation (€/MWh) Using, as an example, the actual EEX
electricity and gas closing prices on 30 November 12, and the CAES heat rate and efficiency
data cited in Lund et al. (2008), we can approximate the typical price differential of peak over
off-peak which would be required for the CAES storage asset to just cover its variable costs
of production.

Ignoring the cost of emissions15 (which would have approximated out to a unit cost of
€4/MWhe on 30 November 2012), the marginal cost of generating 1 MWhe from a CAES
electricity storage facility is given as:

[(Poff-peak + MCC)∕(𝜂C.𝜂T)] + Pgas.𝜂ratio + MCT

14Lund et al. (2008) use a 216-MW compressor, a 360-MW turbine and a 1478-GWh storage cavern to
optimize a CAES facility in which the number of compression and expansion hours is equal.
15Using Bloomberg instrument codes, the following calculation defines the UK spark spread – the
‘theoretical margin from producing power from natural gas’. The spread components include power
(ELUBM V13 Index £/MWh), fuel (NBPGM V13 Index p/therm) and additionally the cost of carbon
emissions (MOZ3 Comdty €/tonne). The formula used for the spark-spread calculation is (ELUBM
V13 Index – NBPGM V13 Index * 34.129693 * 0.01/0.49131 – (MOZ3 Comdty * FX1MEUGB Index
+ UK_Co2Tax) * 0.42000). The efficiency and carbon values used are efficiency (0.49131), heat rate
(6945 Btu/kWh), fixed cost (0) and CO2 adj. (0.42). Following Table 2 in ETSAP 2010, the CO2

emissions adjustment factor in the UK benchmark CCGT baseload spark-spread calculation would need
to be increased by about 40% to approximate the CO2 emissions impact of an open-cycle gas turbine
configuration (rather than a combined-cycle gas turbine mid- to baseload generator) which is utilized in
the generation train of a CAES facility. http://www.iea-etsap.org/web/E-TechDS/PDF/E02-gas_fired_
power-GS-AD-gct.pdf.

http://www.iea-etsap.org/web/E-TechDS/PDF/E02-gas_fired_power-GS-AD-gct.pdf
http://www.iea-etsap.org/web/E-TechDS/PDF/E02-gas_fired_power-GS-AD-gct.pdf
http://www.iea-etsap.org/web/E-TechDS/PDF/E02-gas_fired_power-GS-AD-gct.pdf
http://www.iea-etsap.org/web/E-TechDS/PDF/E02-gas_fired_power-GS-AD-gct.pdf
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where

Poff-peak = cost of day-ahead off-peak electricity (€/MWhe)

Pgas = cost of day-ahead gas (€/MWhth)

𝜂ratio = gas input to turbine (MWhth) per unit electricity output (MWhe)16

𝜂C = compressor efficiency (%), defined as the energy storage input divided by the power
input to the compressor

𝜂T = turbine storage efficiency, defined as the power output of the turbine divided by the
energy storage output17

MCC = variable cost of compressor (€/MWhe)

MCT = variable cost of turbine (€/MWhe)

If we take the day-ahead cost of the off-peak electricity block on the EEX on 30 November
2012 to have been €36.52/MWhe, €27.35/MWhth for the day-ahead gas price and the various
CAES compressor and turbine efficiency data used in Lund et al. (2008),18 we can estimate
the marginal cost of producing one unit of electrical energy from the CAES storage asset as
approximately €59/MWh, an approximate 61% premium of peak over off-peak price.

Comparing this with the block price for peak power witnessed on 30 November 2012 of
€54.0/MWh, it is clear that the CAES storage asset would have been unable to cover its marginal
or variable cost of operation (at least on the representative date shown) by ‘arbitraging’ the
intra-day spread between peak and off-peak electricity prices.

However, more striking evidence of the need for a storage asset to look to the capacity
markets to recover its investment costs is provided in the following, which first estimates the
levellized fixed cost of the investment required and then smears this cost over the 300 most
expensive peak hours when ‘scarcity conditions’ are most likely to prevail in the day-ahead
market for electricity.

Required ‘Capex’ Annuity This is the constant stream of annual free cash flows which
are required to repay the total investment cost over say a 20-year investment recovery period,
assuming an annualized internal rate of return of 10%. Taking an all-in estimate of €750/kW19

16This relates to the cost of the natural gas which is used to heat and expand the compressed air feed to
the generator turbine.
17It should be noted here that a big advantage of the modified gas turbine used in the CAES generation
train compared with a conventional open-cycle gas turbine peaking generator is that around two-thirds of
the gross capacity or nameplate power rating of the latter is needed to compress air, with the remaining
one-third driving the electrical generator. In the case of the CAES gas turbine, however, no compression
is needed during turbine operation because the required enthalpy is already included in the compressed
air.
18Lund et al. (2008) evaluated the financial performance of a CAES storage asset comprising a 216-MW
capacity compressor, a 360-MW turbine and a 1478-GWh air storage cavern, designed to allow equal
rates of air compression and expansion and an equal number of compression and expansion/generation
hours.
19This is an estimate of the capital cost per installed unit of capacity, and is likely to be towards the mid- to
high-end range of currently prevailing installed €/kW estimates for CAES plant. This admittedly contrasts
with the open-cycle gas turbine peaking plant estimate of €350/kW cited in Cervigni and Niedrig (2011),
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FIGURE 4.25 Levellized costs of energy for various renewables technologies.
Source: © 2013 Bloomberg Finance L.P. All rights reserved. Used with permission.

installed to construct a CAES cavern plant and install its associated compression and generation
train infrastructure, then using the Excel annuity pricing function we can estimate the required
annual cash flow as

= −PMT(.10, 20, 750 × 103) = €88, 000∕MW p.a.

If the required annual cash flow to cover fixed costs, or equivalently the internal cash
return, is smeared over the most expensive 300 hours annually when scarcity conditions are
likely to prevail, then this equates to an additional €293/MWh-equivalent.

Even from such a crude and incomplete analysis, it would appear that current day-
ahead electricity price profiles (at least in the German power market) are quite some distance
from pricing-in a sufficient incentive to encourage developers to invest in new-build storage
facilities.20 However, it should be noted that the 300-hour duration of ‘scarcity conditions’
mooted from 2020 onwards implies a very short load profile for the CAES to recover its fixed
costs, and hence this should be borne in mind when comparing the LCOE estimate for the
CAES storage asset with those estimates for the various renewable technologies shown in
Figure 4.25.

Nonetheless the message appears clear. Both now and into the future, storage operators
will likely have to look to the capacity markets as the natural way to earn the necessary

but the latter is considered the cheapest build option to deal specifically with the 300-hour scarcity
conditions scenario depicted.
20This is sometimes referred to as the ‘missing money’ problem in that the revenues obtained by
generators from selling electricity and ancillary services (such as reserve capacity or control power)
in the short-term and/or forward markets are insufficient to attract an ‘efficient’ level of investment in
generating and/or storage capacity. Another way of saying this is that the provision of flexibility is not
encouraged by current market and/or regulatory structures.
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revenues to make storage projects a viable proposition for investors. The calculations appear
to show that the CAES storage asset would be unlikely to ever recover its fixed costs by trading
in the day-ahead electricity markets alone.

Summary We have shown that the progressive large-scale integration of renewables in
European electricity markets will likely lead to a sustained increase in intra-day electricity
trading. With prices likely to become both increasingly volatile as well as showing significant
changes from the current profile or shapes witnessed in day-ahead hourly prices across the
off-peak and peak block periods in particular, there will be significant challenges and risks
ahead for the operators of legacy thermal generators and indeed for the developers of new-build
storage capacity.

In order that storage project financiers are sufficiently incentivized to provide the type
of flexibility required in such an environment, the structure and pricing of contracts in the
ancillary services reserve markets (for control power) in particular will need to reflect the
new dynamics and risks posed by the intermittency of supply from renewables production
sources. It can be expected that there will be an increase in the procurement of short-notice,
short-duration control power, and hence a corresponding increase in the volume of successful
bids activated by control area operators.

It is clear that current energy market prices do not appear to offer a sufficient incentive for
the development of storage solutions which have the requisite dynamic flexibility to respond
to the excess demand environment associated with scarcity conditions, or indeed to the excess
supply environment likely to result in high-renewable, low-demand scenarios. Although the
option of exporting excess supply is one possible solution, bidding near-zero or negative
auction prices in the day-ahead markets is likely to prove to be an undesirable solution to the
problems discussed. In short, what will be required is increased flexibility and dynamically
flexible storage assets will have a particularly important role to play under such a market
scenario.

4.3 RISK MEASURES FOR POWER PORTFOLIOS

This section is not intended to be a comprehensive presentation on risk measurement problems
and techniques for power portfolios. Since many technical issues have already been considered
and discussed, here the focus will just be on risk concepts and practical issues of electricity
portfolios that are fundamental to understand and govern.

4.3.1 Value-Based Risk Measures

We concentrate on synthetic risk measures for portfolios made up of liquid physical or financial
power products. In this situation, there is at any moment the possibility to liquidate or modify
the composition of the portfolio without incurring large liquidity costs. Hence, the economic
performance of this kind of business is determined mainly by the fluctuation of the portfolio’s
value more than by its realized payoff. Hence, the risk one runs is well represented by the
maximum potential drop (or some function of it) in market value that the portfolio may incur
in a given time horizon.
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Synthetic risk measures that focus on this point are called ‘value-based risk measures’.
Of course, the discussion here will mainly concentrate on the classical value at risk (VaR)
measure, as the most significant and intensively used value-based risk metric.

4.3.1.1 Value at Risk VaR has become widely used and popular among banks and finan-
cial institutions since the beginning of the 1990s. For this reason, in the energy field too it has
become popular to evaluate the market risks embedded in open trading positions by means
of VaR.

VaR effectively measures the market price risk exposure of an open position, condensing
risk factors such as electricity market price, volatility and correlation and potentially, in more
advanced cases, currency and interest rate risks. It is usually defined as ‘the minimum potential
loss that a trading portfolio may have over a holding period of m days, in the x% worst cases’.
This means that we may expect to lose more than the VaR figure, in the given holding period
of m days, only in x% of cases.

VaR is a simple and intuitive measure, which depends on two main arguments:

� the duration of the holding period (number of days); and
� the confidence interval level of x%.

The holding period usually reflects the number of days necessary to liquidate completely
the position without incurring any additional costs, and hence should be established propor-
tionally to market liquidity. Usually, for portfolios of exchange-traded instruments, this period
is something between 1 and 10 days. The level of the confidence interval reflects the level of
conservativeness. In fact, the greater x% is then the higher the risk measure and consequently
the lower the probability of having a worse economic result.

From a statistical point of view, VaR is a percentile measure. It measures the percentile
of the portfolio value variations corresponding to the selected confidence level. Formally, if X
is defined to be the portfolio fair value then

{VaR(x%) = c ∈ R+: Prob(−ΔX > VaR(x%)) = (1 − x%)}.

Typical confidence levels are 95%, 97.5% or 99%, since these levels correspond to well-
known values in the Gaussian distribution tables.

As mentioned, the VaR calculation is based on the concept of fair value (market value) of
the portfolio. Hence, VaR calculation methodologies are highly related to portfolio valuation
methods – especially when options and non-linear derivatives are present in the portfolio.

Traditional VaR calculation methods can essentially be divided into two groups: analyt-
ical and numerical (simulation-based) methods. Analytical methods were first presented and
used in traditional financial applications of VaR and are essentially based on some theoretical
assumptions. The main one is the assumption of ‘normality’ of asset returns. The normality
assumption is essential to obtain closed formulas for VaR calculations when managing a large
and well-diversified portfolio of financial assets but it is clearly not realistic for electricity
markets. However, the relaxation of this assumption makes the development of an analyti-
cal calculation method much more difficult and sometimes non-attainable. For this reason,
numerical methods should be preferred in the case of electricity derivative portfolios even if
the calculation time is much higher.
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The best way to circumvent the problems of analytical models is by means of simula-
tion. Using Monte Carlo simulation, one can price a wide range of derivative products and
consequently obtain quite accurate estimates of the potential changes in a portfolio’s value.
One can simulate a large number of scenarios for the relevant risk drivers (forward prices and
volatilities essentially) and for every scenario obtain a potential value change for the portfolio
itself. Given the large number of scenarios performed, a probability distribution function can
be estimated by means of parametric or non-parametric methods and the selected percentile
measure can be extracted.

If the portfolio is mainly composed of linear positions, the VaR calculation may be quite
quick since the simulation scenarios will reflect only forward curve shocks, while in the case of
highly structured portfolios the calculation may complicate significantly. Realistic modelling
of the joint stochastic behaviour of the relevant risk drivers is not a simple task. The main
difficulty is modelling the dependence structure relating to the risk variables, and unfortunately
there is not a simple solution for this.

The problem of simulating random draws from a multivariate and complex distribution
may be solved with the substitution of Monte Carlo simulation with historical simulation.
The historical simulation method consists of estimating VaR by means of historical daily
market variable movements over a quite large and significant time horizon. Knowing the
actual composition of the portfolio, it is possible to compute the VaR by means of calculating
the theoretical portfolio value for every single day of the historical sample. The main advantage
of the historical VaR method is that it is premised on an accurate estimate of the empirical
distribution of the major risk factors. Hence, all the problems mentioned above regarding
the correct simulation of realistic risk driver dynamics and dependence structure disappear.
However, a number of disadvantages arise. The first is the size of the historical sample. In
order to have a robust estimation of the distribution of portfolio value changes, a consistent
database of historical prices is necessary but not always available. Secondly, this approach can
only be applied to portfolios of liquid financial instruments, traded on organized exchanges,
since only in this case are financial time series available. The third important disadvantage
concerns the fact that historical VaR is a backward-looking measure, and the past does not
always give a good indication of the future.

VaR is certainly the risk measure adopted as best practice in the financial industry but this
does not mean that it always represents the best possible synthetic indicator of the economic
risk embedded in portfolios.

4.3.2 F low-Based Risk Measures

The economic performance of a portfolio made up exclusively of liquid financial products is
fully determined by its day-by-day value change. This is because every single day it is possible
to dynamically modify the structure of the portfolio itself, closing some positions or opening
new ones without incurring enormous transaction costs.

When one manages a heterogeneous portfolio of non-standard physical deals, it is not
often possible to liquidate a position without incurring expensive penalties or high liquidity
costs. Hence, a non-profitable physical deal cannot be closed upfront, realizing a negative
mark-to-market, but should be held in the portfolio till its natural maturity. The consequence
of this fact is that the economic performance of the portfolio is not related to day-by-day
portfolio value changes but is determined by its realized margin. Therefore, the risk of
the portfolio cannot be expressed by the potential drop in the portfolio value over a short
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period of time, but should be measured by some indicator of the uncertainty which charac-
terizes portfolio expected payoff over the whole portfolio tenor. Flow-based risk measures do
this job.

4.3.2.1 Prof i t at R isk The characterizing feature of profit at risk (PaR) is that it assumes
that markets are illiquid, and that as a consequence open positions are held to maturity. A
formal definition of PaR can be given as ‘the minimum potential loss that a portfolio may
suffer in the x% worst cases if held to maturity’.

The focus is clearly on the economic flow (payoff) produced by the portfolio and not on
its value. PaR is a risk measure suitable for monitoring and managing portfolios composed of
medium to long-term structured contracts. The PaR time horizon should be chosen in line with
the required purpose. Usually, the economic year is chosen by the management for a better
comparison with budget values and balance sheet results.

The PaR calculation requires the assessment of economic margins coming from business
activity that will generate economic results in the future. Typically, analytical methods are not
available for the calculation of PaR and scenario-based simulation approaches should be used.
Its assessment is done by simulating spot price scenarios for relevant commodities, evaluating
their path evolution up to the selected time horizon. Then the portfolio margin relative to
each of these scenarios is calculated and a probability distribution of the portfolio’s margin
obtained.

Since PaR measures the risk embedded in a portfolio of non-standard products, market
risk variables may not be the only relevant drivers that should be simulated. Volumetric clauses
and constraints should also be considered in order to have a fully comprehensive picture of
the overall portfolio risk.

According to its calculation, PaR is a suitable risk measure for all ongoing activities for
which the possibility of unwinding the position quickly is difficult. It may also be appropriate
when measuring the risk of real asset management activities such as power generation, fuel
procurement and storage origination, but in this case one has to remember that economic
performance and risk are not affected exclusively by changes in market risk drivers but also by
management strategy. Hence, the PaR calculation should also be based on simulation models
capable of capturing the impact of operational and strategic decisions (real option models).

PaR is a fundamental control tool for the whole value-creation chain, measuring risk
exposure and potential limit overruns, impacting on tactical decisions for risk reduction and
hedging implementation. Moreover, it may be used as an indicator for top management in risk
assessing medium to long-term investment decisions and commercial deals. PaR represents a
coherent framework for strategic decisions.

4.3.2.2 Cash F low at Risk The cash flow at risk (CFaR) approach answers the question
of how large the deviation between actual cash flow and the planned value (or that used in
the budget) is due to changes in the underlying risk factors. Effectively, it is a measure that is
quite similar to PaR in terms of calculation methodology and time horizon, but it focuses on
cash flow depreciation instead of economic margin depreciation. Sometimes the time delay,
which characterizes the economic and financial manifestation of events within the firm’s life,
leads the choice between PaR and CFaR as the most appropriate risk measure.

Of course, in the case of CFaR, analytical calculation methodologies are again not available
and simulation approaches (Monte Carlo or historical) prevail.
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4.3.3 Credit R isk for Power Portfo l ios

Credit risk is the single most important risk for many power companies. In general, credit risk
can be defined as the risk arising from an unexpected deterioration in the credit quality of one or
more counterparties. Credit risk measurement and management is one of the main challenges
facing industrial and financial companies today and it is not only related to trading activity.
The consolidated approach to measuring credit risk is simply expressed by the so-called
expected loss:

expected loss = loss given default × default probability.

Loss given default (LGD) is technically the amount of money (exposure) one loses if a
counterparty defaults today. In the power sector, especially when dealing with a portfolio made
up of physical and financial positions, this quantity is typically composed of the settlement
exposure and the replacement exposure. The settlement exposure is equivalent to the monetary
amount of power delivered but not yet paid and is related to the fact that financial regulation
of deals is usually temporally displaced with respect to physical delivery. If a counterparty
defaults today, it may be the case that there are invoices related to past deals not yet executed.
Settlement exposure is related to the payment terms of contracts and may be significant,
especially for physical transactions where one is involved as the seller.

Replacement exposure is related to the situation where a counterparty defaults and the
market value of the deal is positive for the company in question (i.e., negative for the counter-
party). This means that the company faces a drop in P&L if the counterparty defaults on the
contract. In physical contracts this amount is called the replacement exposure, just because it
represents the opportunity cost the company faces from replacing in the market the physical
power bought or sold. If settlement exposure is independent of market prices – since it only
depends on the contract’s price – replacement exposure is related to the mark-to-market of the
defaulted contract. Hence, at least theoretically, the replacement exposure should be zero at
the moment the deal closes.

Replacement exposure measures today’s market value of a specific contract or of a bunch
of contracts with a particular counterparty, but it does not reflect the potential value this contract
may reach up to its natural maturity. In order to consider this dimension of the credit risk,
one needs to replace the concept of replacement exposure with the concept of potential future
exposure (PFE). PFE expresses a measure of how things can go against a certain counterparty
and it is effectively the opposite to the concept of PaR.

Using PFE instead of replacement exposure, a higher value of expected loss is obviously
reached, just because one is considering a risk dimension not considered previously. On its cal-
culation, LGD can be modified by means of considering collateral that potentially guarantees
a part of the portfolio or recovery amount. Recovery amounts are highly uncertain in size and
time of effective settlement. Hence, it is prudentially better not to consider them. Collateral
that can be executed upon request in the case of contract default reduces proportionally the
exposure at default and consequently lowers the overall expected loss.

So, the previous equation can be reformulated as follows:

expected loss = (loss given default − collateral) × default probability.

Time has not been spent on discussing the other important component of the expected loss,
that is, the default probability. In the power sector, more than in other financial or non-financial
fields, many typical trading or commercial counterparties are not big listed companies. Hence,
traditional quantitative methods for the computation of the probability of default cannot be
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used straightforwardly. More commonly internal rating systems have to be employed, but this
issue is outside the scope of the present discussion.
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CHAPTER 5
Emissions Markets and Products

Marc Chesney, Luca Taschini and Jonathan Gheyssens

5.1 INTRODUCTION

Climate change is one of the greatest challenges facing our planet in the coming decades and
centuries. It has impacts on the environment, human health, our livelihoods, social relationships
and the global economy. It is now scientifically accepted that human production of carbon
dioxide and other greenhouse gases (GHGs) is directly related to global warming and therefore
impacting virtually every aspect of economic activity from agricultural outputs to energy
mix and consumption. In economic terms, air pollution and global warming are partially
the consequence of an absence of tradable prices for certain ‘public good’ environmental
resources, such as clean air. These would command the introduction of surrogate prices in the
form of unit taxes or marketable emission permits in order to provide the necessary signal to
use their resources optimally with limited negative externalities.

Emissions are not a traditional commodity. They cannot be stored like wheat or oil. They
do not justify a positive price based on their marginal productivity in a production function, like
metals or precious earth. Instead, their value (and price) is a human construct, an institutional
way to impose a price on a negative externality. Where most commodity models price the
commodity added value (from global demand), pricing models for emissions address the
crucial issue of a just penalty, a cost that could make sense to negate, or at least mitigate,
the social externalities borne by excessive GHG emissions.

The goal of this chapter is threefold:

1. Section 5.2 gives an overview of the science behind climate change and provides some
numbers on the social costs created by excessive GHG emissions. The section provides
a rapid introduction to the economics of externality and the fundamental concepts in use
to justify a fair tax. The emergence of cap-and-trade solutions as an efficient mechanism
to internalize the cost of carbon pollution is also described (in a perfect market, the least
costly abatement techniques are promoted for a certain set of emission reduction goals).
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2. From Section 5.3 on the Kyoto Protocol to Section 5.5 on the current state of institutional
regulations, we provide a detailed overview of the genesis and deployment of interna-
tional regulations designed to internalize the emission constraints. These sections briefly
describe the difficulty in choosing an appropriate strategy between command-and-control
measures (strict regulations), taxes and markets for emissions. A particular emphasis is
placed on the most successful scheme already implemented, the European Union Emis-
sions Trading Scheme (EU ETS), with a look at its possible future. The future regional
markets are also presented. They are, however, rapidly evolving and sometimes receding
and are still not mature enough to draw a stable profile of the international scene, which
changes every year. Compared with the much more mature markets depicted in the other
chapters of this book, the market and regulations for GHG emissions are still very much
driven by ever-changing political decisions. This adds a relatively unpredictable institu-
tional component, which continues to play a strong role in the pricing mechanisms of this
peculiar commodity.

3. Nonetheless, an array of current pricing models, acknowledging the commodity’s idiosyn-
crasies, have emerged to assess the value and price of emission permits. In this new and
promising field, approaches borrow from a large set of economic tools, ranging from
macroeconomic models to econometric estimation and stochastic equilibrium models.
Section 5.6 introduces the importance of the substitution principle between emission
permits and abatement technology, a principle which may create partial price correlation
between emissions, coal and gas (fuel switch). A short introduction is given to recent
stochastic equilibrium models, which allow us to model the emission permit prices in a
general and realistic uncertain setting with multiple firms. Readers interested in a more
complete coverage of the environmental investment strategies and models in an uncertain
context (including real options) should refer to the authors’ companion book to this chap-
ter, Environmental Finance and Investments (Chesney et al., 2013. With kind permission
of Springer Science+Business Media).

By the end of this chapter, the reader should have a better understanding of what sets
emissions trading apart from other ‘traditional’ commodities (intrinsically, institutionally and
in terms of pricing models) and the relationships between emissions permits and other energy-
based commodities. It should also be clear that these markets are still in their infancy and
very much dependent on political decisions that could modify certain principles or rules
of valuation. Dealing with emissions certainly invites us to be cautious about sudden and
unpredictable changes.

5.2 CLIMATE CHANGE AND THE ECONOMICS
OF EXTERNALIT IES

5.2.1 The Cl imate Change Issue

According to the Intergovernmental Panel on Climate Change (IPCC), global atmospheric
concentrations of CO2, CH4 and N2O have increased markedly as a result of human activity
since 1750 and in 2005 exceeded by far the natural range of the last 650,000 years (IPCC,
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2007). Between 1970 and 2005, GHG1 emissions due to human activity increased by 70%.
Global temperatures followed a similar pattern of increasing and accelerating warming. Eleven
of the years between 2000 and 2012 rank amongst the warmest years in the instrumental record
of global surface temperatures (since 1850), with almost permanent occurrences of positive
temperature anomalies.

Among the different GHGs, CO2 is the most important anthropogenic GHG responsible
for global warming, in terms of volume and absolute impact. Annual emissions of CO2 grew
by about 80% between 1970 and 2004, as a consequence of increased use of fossil fuels
and accelerated deforestation. Growth rates in CH4 and N2O emissions are mainly due to
agricultural expansion.

For the purpose of comparison, the IPCC defined in its third assessment (AR3) (IPCC,
2001), and again in its fourth assessment (AR4) (IPCC, 2007) a set of scenarios exploring
future developments for GHG emissions. According to the most recent estimates on fossil
fuel emissions, global emissions are currently following the IPCC’s most emission-intensive
scenario (A1FI), with heavy reliance on fossil technologies combined with very rapid economic
and population growth (see Figure 5.1).

To get a sense of the potential impact that the trend in past and future emissions could have
on global temperatures, the IPCC computed in its fourth assessment possible stabilization levels
in GHG concentration and the induced average increase in temperature associated with each of
them, along with an estimate of global sea-level rise reproduced here in Table 5.1. According to
the sensitivity projections of the IPCC, any commitment to limit the global average temperature
increase within a ±2◦C limit would force the stabilization of CO2 concentration around 350–
400 ppm. At the end of 2012, the latest concentration was estimated to be 396 ppm, slowly
increasing from the 375 ppm concentration recorded in 2005.

1The GHGs are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs),
perfluorocarbons (PFCs) and sulfur hexafluoride (SF6).
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TABLE 5.1 Concentration stabilization scenarios and impact on temperature increase and
sea-level rise

Scenario

CO2

concentration
at stabilization

CO2-e
concentration
at stabilization

Change in global
CO2 emissions
in 2050 (% of

2000 emissions)

Global average
temperature

increase (in ◦C)

Global average
sea-level rise

(in m)

I 350–400 445–490 −85 to −50 2.0–2.4 0.4–1.4
II 400–440 490–535 −60 to −30 2.4–2.8 0.5–1.7
III 440–485 535–590 −30 to +5 2.8–3.2 0.6–1.9
IV 485–570 590–710 +10 to +60 3.2–4.0 0.6–2.4
V 570–660 710–855 +25 to +85 4.0–4.9 0.8–2.9
VI 660–790 855–1130 +90 to +140 4.9–6.1 1.0–3.7

Source: IPCC (2007).

In the current context of increasing emissions levels, achieving a 350–400 ppm stabiliza-
tion level will require a set of mitigation measures, with different costs, areas of applicability
and timing. The IPCC has introduced in the stabilization scenarios a set of usable mitiga-
tion strategies, with increasing marginal costs: technology efficiency improvement, source of
energy switching (e.g., from coal to natural gas), development of renewable energies, demand
reduction and carbon capture and storage. However, due to the long absence of a market and
price for emissions, mitigation strategies have been difficult to adopt in the past. That is why
understanding the negative impact of externalities and the economic instruments to prevent
them is especially important.

5.2.2 The Economics of External i ty and GHG Pol lut ion

Environmental externality is the materialization of a simple market failure: when agents
conduct economic activities that engage imperfectly priced environmental assets, either as
inputs (excessive consumption) or outputs (pollution), they engage in socially excessive levels
of harmful activities. The policy implication of this result is economically clear. The costs
(at this stage, social or private) of polluting or depleting activities need to be internalized
and agents benefiting from these externalities need to be confronted with a price equal to the
marginal external cost of their polluting activities to induce a social optimum.

Such an incentive can take two main forms: either an institutionally forced control embod-
ied in laws and regulations (command-and-control) or a price incentive that can be centralized
(tax and subsidies, promoted first by Pigou (1920)) or decentralized through markets and
permits as described by Coase (1960) (for more detailed discussions about the benefits of
environmental instruments, see Baumol and Oates (1988) and Tietenberg (1985)).

Compared with the pure market approach devised by Coase, the promoted cap-and-trade
market for CO2 permits is a hybrid object: it combines a centralized component (the cap)
and a decentralized one (the trade), and as such it benefits (as it is undermined by) both. The
centralized component ensures the emergence of the market by creating a specific quantity
scarcity that becomes valuable. Without a cap, problems involving public goods (such as
global warming) would remain outside the market’s reach due to a lack of global coordination,
extremely high transaction costs and free-riding. The necessary creation of a quantity scarcity
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is the reason why the cap-and-trade market mechanism is often referred to as a quantity
instrument.

Once the cap is set, quantities are exchanged through permits in a decentralized manner,
as in a Coasian pure market. Companies are allocated initial permits, either through grand-
fathering or through auctions. They exchange them according to their respective needs and
abatement costs. In the very hypothetical classical setting (atomized agents, pure and perfect
market) the companies, as demonstrated by Coase,2 reach the least costly optimum: at equilib-
rium, the exchange of permits ensures enforced quantities for a price equal to the least costly
marginal cost of abatement. In different terms, whoever can reduce emissions at a lower cost
always has the opportunity to abate more and sell unused permits to those who face higher
abatement costs, without requiring governments to precisely know companies’ cost functions.
Moreover, by offering the opportunity to sell permits and generate profits, markets incentivize
technology changes and competitiveness towards clean activities.

In the recent debates surrounding the recourse to a price mechanism to limit emissions,
proponents of taxes and proponents of permits usually depict them as profoundly different,
almost opposing, instruments. However, this is contrary to the economic theory that in a
world of perfect knowledge, taxes are fully equivalent alternatives to marketable emissions.
An environmental authority can set a price (i.e., a tax) and adjust it such that emissions are
sufficiently reduced to prescribe environmental standards and reach the optimal pollution
quantity. Alternatively, it can issue the requisite number of permits directly and allow the
bidding of polluters to determine the market clearing price. The regulator can, in short,
set either price (tax) or quantity (emission cap) and achieve the desired result. This short
introduction does not, however, describe in enough detail some important differences between
the two approaches, especially in situations of information asymmetry. Readers interested in
a more detailed review of the ‘quantity/price’ debate are advised to refer to the seminal work
of Weitzman (1974) or to the more recent Parsons and Taschini (2012) and references therein.

5.3 THE KYOTO PROTOCOL

5.3.1 The United Nat ions Framework Convent ion
on Cl imate Change

The first scientific evidence of human activity affecting the world’s climate emerged during
the World Climate Conference (WCC) held in February 1979 in Geneva. For the first time,
a large group of politicians were concerned about human interference with the climate and
the environment. As a result of the global attention on climate change, the United Nations
Environmental Programme and the World Meteorological Organization established the IPCC
in 1988.

The key task of the IPCC was to assemble and assess scientific information on the impact
of the human carbon footprint. In 1990, the IPCC issued its first assessment report (AR1),
which reflected the views of 400 scientists on the threats posed by global warming. The
report stated that global warming was a real problem caused by humans. Further, the IPCC
urged the international community to take measures to curb GHG emissions. As a result,
throughout the second meeting of the WCC held in Geneva later that year, the IPCC called

2See also Crocker (1966), Dales (1968) and Montgomery (1972).
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TABLE 5.2 List of Annex I parties to the convention

Australia Austria Belarus Belgium Bulgaria
Canada Croatia Czech Republic Denmark Estonia
European Community Finland France Germany Greece
Hungary Iceland Ireland Italy Japan
Latvia Liechtenstein Lithuania Luxembourg Monaco
Netherlands New Zealand Norway Poland Portugal
Romania Russian Federation Slovakia Slovenia Spain
Sweden Switzerland Turkey Ukraine UK
USA

Source: UNFCCC.

for an international treaty to tackle climate change. For this purpose, the IPCC formed the
Intergovernmental Negotiation Committee (INC). The INC met first in February 1991 when
its representatives discussed and established the United Nations Framework Convention on
Climate Change (UNFCCC). The UNFCCC sets an overall framework for intergovernmental
efforts to address the challenge posed by climate change and entered into force in March
1994. By that date it was signed by 166 countries and only 10 years later that number rose
to 188 countries.3 This almost worldwide membership makes the convention one of the most
universally supported international agreements on the environment. Under this agreement,
concerned parties claim that a substantial rise in GHG emissions will affect terrestrial and
maritime ecosystems, resulting in an average rising of the temperature of the Earth’s surface
and atmosphere through an increase in the natural greenhouse-layer effect. Therefore, the
ultimate objective of the convention is to stabilize GHG concentrations in the atmosphere at a
level that will prevent dangerous anthropogenic interference with the climate system.4 Further,
all members should promote sustainable technologies to allow less harmful economic growth.
The convention is only a proposal, with no time constraint or mandatory emission cap for
the parties. Article 4 of the convention suggests that the parties should lower their emissions
to the levels of 1990. Further, the convention holds provisions for updates and leaves to the
Conference of Parties (COP) the task to set mandatory goals under the legal form of protocols.
The convention divides country members into three groups. The first one is called Annex
I parties. It includes industrialized countries which were members of the Organization for
Economic Cooperation and Development (OECD) in 1992 and countries with economies in
transition (EIT). Table 5.2 lists Annex I parties under the convention.

These countries should adopt climate change measures with the aim of reducing their
GHG emissions to 1990 levels. However, no legally binding targets are set by the convention.
The EIT countries are granted some flexibility in implementing commitments, in being allowed
to choose a year other than 1990 as their base year.

The second group is called Annex II parties. This group consists of the Annex I members
without the EIT countries. Members of this group can help developing countries finance
emission reduction activities. The scope of such an opportunity is twofold: fight the adverse

3Please refer to the UNFCCC website for an updated and detailed list. As of November 2012, UNFCCC
had 194 parties.
4UNFCCC – Article 2.
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effects of climate change in other regions and enhance the transfer of environmentally friendly
technology to EIT and developing countries. The third and last group, called Non-Annex
I, consists mostly of developing countries. These countries have no commitment to reduce
emissions under the convention. Developing countries are not part of these legally binding
targets. The reason behind this exclusion is that it was considered that the climate change
problems at the moment have been caused by the industrialization of developed countries in
the last decades.

The institutional body of the UNFCCC (and the Kyoto Protocol) is the UNFCCC sec-
retariat. It has been hosted in Bonn (Germany) since 1996. The secretariat is staffed by
international civil servants and supports all institutions involved in the climate change process,
particularly the COP (see Section 5.3.2), the subsidiary bodies and their bureau.

5.3.2 The Conference of Part ies and the Subsid iary Bodies

The supreme body of the convention is the COP, which meets at least once a year to assess
progress in dealing with climate change. The COP regularly reports progress in the implemen-
tation of the convention and makes public all policy instruments adopted under the convention.
Further, the COP takes all necessary decisions to promote the effective implementation of the
convention.5 Beside the COP, two subsidiary bodies have been introduced with the aim of
steering preparatory work for the COP:

� The Subsidiary Body for Scientific and Technological Advice (SBSTA), defined under
Article 9 of the convention, assists the COP with scientific and technological matters.
SBSTA identifies innovative technologies and provides assessments of the state of sci-
entific knowledge relating to climate change. It promotes the transfer of environmen-
tally friendly technologies and also carries out methodological work in specific areas
(LULUCF, REDD, HFC) including adaptation and vulnerability.

� The Subsidiary Body for Implementation (SBI), defined under Article 10, reports to
the COP about the overall effectiveness of the implementation of the convention. The
SBI examines national communications and emission inventories submitted by parties.
Furthermore, the SBI assists the COP during the preparation of its decisions with reviews
of the environmental state of the art.

5.3.3 The Kyoto Protocol

At the first conference of the UNFCCC, the negotiations for a protocol with binding targets
started. The Kyoto Protocol (KP) is the result of intensive negotiations at the third meeting
held by the COP in 1997 in Kyoto, Japan. The KP commits Annex I countries to individual,
legally binding targets to limit or reduce their GHG emissions.6 The KP entered into force in
February 2005 driven by Russia’s ratification and the first commitment period ran from 2008
and ended in 2012. In fact, as specified by Article 25 of the KP, the criteria to make the protocol
active is that at least 55 parties have signed the protocol. Or, under a different measure, at least

5Please refer to UNFCCC Article 7, 2.
6The KP covers six main GHGs: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydroflu-
orocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF6).
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TABLE 5.3 Quantified emission limitation as contained in Annex B of the Kyoto Protocol

Annex I parties
Emission reduction or
limitation (base year)

Australia, Austria, Belarus, Belgium, Bulgaria, Czech Republic,
Denmark, Estonia, European Community, Finland, France, Germany,
Greece, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg,
Monaco, Netherlands, Portugal, Romania, Slovakia, Slovenia, Spain,
Sweden, Switzerland, Turkey, UK and Northern Ireland

−8%

USA −7%
Canada, Hungary, Japan, Poland −6%
Croatia −5%
New Zealand, Russian Federation, Ukraine 0%
Norway +1%
Australia +8%
Iceland +10%

Source: UNFCCC.

55% of the total worldwide GHG emissions have to be covered. With the Russian ratification,
both criteria have been fulfilled. At the time of writing, 191 countries had ratified the protocol.

Under the KP, countries are separated into two different main groups: those committed
to binding targets (i.e., developed countries) and those that do not face mitigation targets,
referred to as Non-Annex I countries. Quite interestingly, out of 191 countries only 41 plus
the European Union (EU) are referred to as Annex I countries (see Table 5.2). However, these
countries alone account for 61% of GHG emissions. As of November 2012, 40 of the 41 Annex
I countries had ratified the KP (the exceptions being the USA and Canada, which decided in
2011 to stop fulfilling their obligations and withdraw from the KP).

Based on the claim that developed countries are largely responsible for past GHG emis-
sions, the KP places a heavier burden on Annex I countries. More precisely, these countries
commit to ensure that their GHG emissions do not increase above a certain percentage of a
specified base year by 2012 (see Table 5.3).7 As part of the quantified emission limitations,
every country has assigned amount units (AAUs). These units are calculated in tons of CO2
equivalent (CO2-e) and are allocated at the beginning of each commitment period. To ease the
accounting of the six different GHGs, offending gases are weighted by their global warming
potential (GWP, see previous section). Besides strict policy regulations, the KP establishes
three so-called flexible mechanisms in order to give the Annex I countries more flexibility to
reduce emissions. The KP demands that the use of the mechanisms is supplemental to domestic
actions and that these actions should constitute a significant element of the effort made by
each party included in Annex I to meet its quantified emission limitation and reduction. The
three flexible mechanisms of the KP are:

� Emission trading (as defined in Article 17 of the KP). Annex I parties can acquire AAUs
from other Annex I parties and use them for compliance under the KP.

7The targets differ per country; see KP Articles 3, 5–8 for a more detailed description.
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� Joint implementation (JI, as defined in Article 6 of the KP). The Annex B parties8

can contribute to their emission targets by investing in emission reduction projects in
other Annex B countries. These investments eventually result in emission reduction units
(ERUs) that can be used for compliance in the KP.

� Clean development mechanism (CDM, as defined in Article 12 of the KP). Annex I
parties can undertake emission reduction projects in developing countries (Non-Annex I),
which lead to CER credits. These credits can be used for compliance in the industrialized
countries. Contrary to AAUs and ERUs, CERs come from countries without emission
reduction requirements, therefore augmenting defined emission capacities for Annex I
countries.

These mechanisms should help all parties achieve GHG emission reductions at least cost.

5.3.4 The Road to Paris

In 2012, the Kyoto Protocol was extended for a second period by a limited group of countries,
including the EU. However the recent ambition of UNFCCC negotiations has been to establish
a new global agreement to succeed the Kyoto Protocol.

The general form of the agreement was settled in Durban in 2011. It would be ‘a protocol,
another legal instrument or an agreed outcome with legal force’, applicable to all parties (i.e.
developed and developing countries). The terms were to be agreed by 2015 and the agreement
would enter into force by 2020.

Further details were negotiated at successive meetings in Doha (2012), Warsaw (2013)
and Lima (2014). The agreement will be fundamentally different to the Kyoto Protocol.
Countries will be able to delineate the extent and nature of their commitments (or ‘Intended
Nationally Determined Contributions’ – INDCs), with no top-down review process, oversight
or verification. Each country will submit its INDC by June 2015, before the final form
agreement is negotiated in Paris in December 2015.

The shape of the Paris Agreement is likely to be soft and flexible, reflecting its bottom-
up nature. In part this is because climate change negotiations are still dominated by the
developing/developed country divide, arising from the UNFCCC’s core principle of common
but differentiated responsibilities between rich and poor countries. The developed world
continues to argue for legally binding cuts, whilst the developing world argues for softer
language, pointing to the developed world’s historic emissions and for poorer countries’ right
to develop in the same manner.

However developing countries such as China and India, which were not required to make
emission reduction commitments under the Kyoto Protocol, are now major emitters, even on
a per capita basis, and it is becoming clear that the Paris Agreement cannot reflect the same
structural divide between Annex I and non-Annex I parties. The joint announcement in 2014
that USA and China would limit their emissions within a clear time frame was groundbreaking;
it is to be hoped that the announcement will create momentum for other developing countries
to increase their ambitions in time for Paris.

8Annex B includes all KP countries that have agreed to a target for their greenhouse gas emissions,
including all Annex I countries (as amended in 1998) except for Turkey and Belarus.
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Finally, it is worth noting that a more flexible agreement could have some advantages. It
will be easier for the international climate change dialogue to respond to structural changes
in the world economy, such as the rise of the BRICs. Furthermore, it may be possible to scale
up emissions cuts over time, to meet the ‘ambition gap’ between current pledges and the
internationally agreed target of 2 degrees of warming.

5.4 THE EU ETS

5.4.1 Inst i tut ional Features

5.4.1.1 The European Direct ive Annex B signatories to the KP have a free hand to
determine the tools they set up in order to achieve their emissions targets. So, in 1997 the
EU engaged as a whole with an 8% reduction target of one of the most known anthropogenic
greenhouse gases: CO2. Because the EU was the legal entity in charge of achieving the
KP target, the European Commission (EC) proposed in 2001 the creation of a European-
wide instrument, the EU ETS, in order to help European countries to meet their national
commitments. The legal framework of the EU ETS is laid down in Directive 2003/87/EC
(see EUEPA (2003)). The EU ETS started in January 2005 and is divided into three phases.
Phase I ran from 2005 to 2007 and had the function of a pilot phase in which the scheme
was established. Phase II ran from 2008 to 2012, parallel to the Kyoto commitment period.
Phase III corresponds to the post-Kyoto period and runs from 2013 to 2020.

5.4.1.2 The Contents of the EU ETS For the first phase, emissions were initially capped
at 2.1 billion tons of CO2 annually. The cap covered emissions from more than 12,000
installations with the highest GHG emission levels, in the 25 then 27 countries of the EU. These
installations belonged to five industrial sectors: combustion (including electricity production,
district heating, cogeneration and refineries), metal, cement, glass–ceramics and paper–board
products. Emissions from households and transportation were notably not a part of the system.
The EU ETS is a classic cap-and-trade system as described in Section 5.2.2.

Allowances for emissions equal to the total cap are distributed annually to each country
(Section 5.4.2 describes in more detail the existing and employed allocation criteria). Then,
each member state has to develop a National Allocation Plan (NAP) that states the total
quantity of allowances allocated to each single installation. The NAPs are set at the beginning
of each phase of the EU ETS. In order to homogenize the distribution of the permits among the
different countries and industries and to increase supervision, an EU-wide target replaced the
current 27 national targets (and NAPs). To reach the global EU target of reducing emissions
by 21% below 2005 levels by 2020, allowances will be limited to a maximum of 1.72 billion
units,9 with total emission allowances cut by 1.74% annually as of 2013 and until 2020.

An allowance, called the emission unit allowance (EUA), gives the right to emit 1 ton
of CO2 during a specified period. Therefore, the amount of allowance allocated to each
installation constitutes the amount of CO2 emissions the installation can emit. Installations
are then free to trade permits throughout the EU, creating a market in allowances. Installations
have to report actual emissions annually by the end of March. By 30 April each year, each
participating installation has to surrender a number of allowances equal to the total emissions

9To be compared with the current allocation of 2.08 billion tons for the second trading period.
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from the installation during the preceding year. If the installation fails to surrender the necessary
permits, it has to pay a penalty. In Phase I, this penalty was €40 for each ton of CO2 emitted;
in Phases II and III it was increased to €100 for each ton of CO2. This penalty does not waive
the obligation to submit the missing allowances.

Among others, Ellerman (2003), Tietenberg (2006), Convery and Redmond (2007),
Kruger and Pizer (2004) and Chesney et al. (2013) provide a comprehensive discussion
on the EU ETS setup. Zapfel and Vainio (2002) overview how the debate on greenhouse gas
emissions trading has evolved in Europe since the adoption of the KP in 1997.

5.4.1.3 Banking and Borrowing Unused permits from Phase I have no redemption value.
However, the subsequent phases are characterized by unlimited banking and one year borrow-
ing. The bankability of emission permits is the ability to use them in periods subsequent to the
one in which they were allocated. This means that any incumbent envisaging to emit less CO2
than the amount of permits it owns has the possibility to store them instead of selling them
directly on the market. Saving can be motivated by expectations of production growth or of
an increase in the carbon constraints in the future that may bring about an increase in the price
of emission permits. Banking permits smooth the price evolution over the long term by pro-
viding incentives to achieve early emissions reductions. Borrowing provisions allow regulated
emitters to use part of their future allocations to cover their present emissions. In the envi-
ronmental economics literature, banking and borrowing provisions have been proposed with
the aim of enforcing the credibility of cap-and-trade schemes and allowing greater temporal
flexibility. Interested readers can refer to Rubin (1996) or Schennach (2000) for an analysis of
the consequences of banking and borrowing on the intertemporal trading of emission permits.

5.4.1.4 Nat ional Registr ies Each member state of the EU ETS is required to set up
a national registry to record the creation, transfer and surrender of allowances. Member
states report allocations and verified emissions at the installation level to a central registry in
Brussels called the Community Independent Transaction Log (CITL). The role of the CITL
is to gather information from national registries centrally to facilitate allowance tracking and
the assessment of installation compliance each year. Each registry operates through a link
established with the International Transaction Log (ITL) put in place and administered by the
UNFCCC secretariat. The ITL verifies registry transactions in real time to ensure they are
conducted in accordance with the set of rules agreed under the KP. In 2008, EU registries had
to switch their connections from the CITL to the ITL. The ITL has to conduct Kyoto checks on
transactions proposed by both EU and non-EU registries. In the case of transactions involving
EU registries, the ITL forwards information to the CITL so that it can conduct supplementary
checks defined under the EU scheme.

5.4.1.5 Internat ional Of fsets With the aim of increasing the number of low-cost com-
pliance alternatives within the EU ETS, European policy regulators recognized the use of
certificates from project-based mechanisms for compliance purposes. This has been made
possible by provisions for linking the EU ETS with the Kyoto flexible mechanisms, such
as the CDM and the JI.10 A second rationale behind such a linking directive is to stimulate

10CDM and JI mechanisms are described in the next sections.
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the demand for CERs originated by CDM projects and thus assist developing countries host-
ing these projects in achieving their sustainable development targets. As a result, the linking
directive opens the EU ETS to the CDM and JI projects, enabling relevant installation to
use CERs for compliance purposes. However, the revisions of Phase III greatly changed this
modus operandi in order to reduce the supply of ineffective (or hot air) offsets: the use of
flexible mechanism units (CDM/JI) is now conditional on the passage of a global agreement
pushing the required EU reduction to 30% by 2020. Without an agreement, the use of flexible
credits may be limited to 3% of member states’ total emissions in 2005.11 Under Phase III,
Kyoto credits are no longer de facto compliant with the EU ETS. CERs representing emission
reductions occurring before January 2013 had to be swapped with EUA for full fungibility.
CERs related to reductions occurring after December 2012 cannot be swapped but are consid-
ered fully equivalent with EUA of Phase III. Finally, future CERs coming from new projects
(registered after 31 December 2012) will be eligible if they are located in a least-developed
country.

5.4.2 Al locat ion Criter ia

As mentioned, each member state is required to develop a NAP that specifies the total number
of allowances that it intends to allocate for a specific period to every relevant installation. A
NAP should be based on objective and transparent criteria. Allocation criteria can be divided
into two groups: (i) allocation based on current or future activities (updating); (ii) allocation
based on historical activities (grandfathering).

Updating is an approach that is based on current or future activities as opposed to historical
activities. Basing future allocation on current emissions creates a disincentive to abate because
every unit of abatement comes at a cost not only in the current period but also causing reductions
in future allocations. Please refer to Böhringer and Lange (2005) for further discussion. Before
an approach is introduced it must be decided which allocation base will be used for the
allocation schemes, and upon which base year(s) the allocation schemes will be based. The
choice of the base year(s) clearly has an effect on how relevant companies are affected, as
discussed below. The allocation base determines which activities the allocations will be based
upon. One can distinguish allocation bases into three groups, as follows: (i) input based;
(ii) emission based; (iii) production or output based. Interested readers can refer to Aihman
and Zetterberg (2005) for a more detailed discussion.

5.4.2.1 Input-Based Al locat ion Input-based allocations are based upon the input of
resources for an installation. An example is the amount of energy that an installation uses. The
advantage of input-based allocation is that it is easy to monitor. The biggest disadvantage of
this approach is that it does not reward the efficiency of the installations. An efficient installa-
tion can produce, for instance, more electricity with the same amount of fossil fuel than a less
efficient installation. But with an input-based approach both installations would be allocated
the same amount of allowance for a given input unit.

11Provided that the additional quantity does not exceed 50% of EU-wide reduction between 2008 and
2020.
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5.4.2.2 Emission-Based Al locat ion Emission-based allocation means that allocations
are based upon emissions previously generated by the installation in a base year. This approach
has the advantage that it is simple to implement. Also, emissions are relatively easy to monitor
and measure once meters are installed. However, it does not reward early action by the
installation if a late base year is used. It also does not take into account changes in installations
which have taken place after the base year used for allocation.

The emission-based allocation for an installation is calculated as the installation’s share
of emissions in the whole sector multiplied by the total allocations to all installations in
the sector:

Ne
j,i =

Ebase
j

Ebase
s

× Ns,i

where j = 1,… , n is the jth installation and i = 1,… , T is the ith trading period of the
allocation. Ne

j,i corresponds to the amount of allocated permits at time i to installation j; Ebase
j

are the CO2 emissions of installation j in the base year; and Ebase
s are the total CO2 emissions

of the entire sector s in the base year. Unsurprisingly, the choice of the base year is an
extremely (politically) relevant issue. On the one hand, early actions (abatement investments)
implemented before the base year are not properly rewarded. On the other hand, business
growth or economic boom after the base year may be severely penalized. In the EU ETS,
historical-based allocation criteria have been used. In particular, most of the NAPs used the
year 1990 as the baseline reference. Ellerman and Montero (2007) overview the political
aspects associated with such a decision.

5.4.2.3 Product ion-Based Al locat ion In the production-based allocation, the output
(production) of an installation or a group of installations is multiplied by an emissions factor.
The result is then used as the base for the allocation of allowances. Emissions factors can be
actor-specific or specific for a group of installations. For instance, in production-based alloca-
tion with actor-specific emissions factors, the allocation for an installation is calculated as

Np
j,i =

Ebase
j

Pbase
s

× P prod.year
j × f j

where Pbase
s and P prod.year

j are the production of installation j in the base year and in the
current year, respectively. The total number of allocated allowances is adjusted with the scale
factor f j such that the total amount of allocated allowances corresponds to the allocation
of the entire sector s. With this approach, if the installation has a current higher production
output than in the base year, it receives more allowances.

5.4.2.4 Auct ion ing and Grandfathering Regardless of the allocation criteria, permits
can be auctioned off or freely distributed, so-called grandfathering. The environmental eco-
nomics literature typically prefers auctioning. The economic rationale behind such preference
is threefold. First, auctioning can lead to a more equal and fair final allocation. Companies that
have implemented abatement options in the past are rewarded for such early actions because
they will possibly purchase fewer allowances. Also, new participants in the permit market are
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treated the same way as older participants. Second, auctioning should avoid windfall prof-
its that are generally associated with grandfathering.12 Third, under textbook assumptions,
polluters reveal their abatement costs in an auctioning process. The fact that the revenues
from auctioning can be invested in the public sector is in reality the political rationale behind
auctioning.

Grandfathering was the most common allocation approach in Phases I and II of the EU
ETS. In particular, in Phase I member states had to allocate at least 95% of the allowances
free of charge. For the five-year period of Phase II, member states had to allocate at least 90%
of the allowances free of charge. Therefore there was an auctioning limit of 5% of allowances
in Phase I and of 10% of allowances in Phase II. However, most of the member states did
not take full advantage of the auctioning limit since auctioned allowances were recorded well
below the allowed limit in Phase I, as is similarly the case in Phase II.

5.4.3 Market Players and the Permit Markets

5.4.3.1 The Relevant Industr ies While the KP includes all the emissions of the six main
anthropogenic GHGs, regulators of the EU ETS chose to cap on a mandatory basis only CO2
emissions from major industrial installations belonging to five industrial sectors: combustion,
metal, cement, glass–ceramics and paper–board production. In 2012, the aviation sector was
added to increase the coverage of transport-based emissions. The sector represents the second-
largest emitting sector covered by the scheme, after the power sector. An enlargement of
the scope to include new sectors (petrochemical, ammonia and aluminium sectors) and two
new gases (N2O and PFCs) is highly probable. However, transport, shipping, agriculture
and forestry remain outside the scope of Phase III.13 In practice, the regulation does not
apply to the sectoral or company level, but to individual industrial installations. The smallest
industrial installations are not included. There follows a list of most of the relevant installations:
combustion installations with a thermal input exceeding 20 MW; mineral oil refineries; coke
ovens; metal ore roasting or siltering installations; installations for the production of pig iron
or steel; installations for the production of cement clinker; installations for the manufacture of
glass and glass fibre; installations for the manufacture of ceramic products; industrial plants
for the production of pulp, paper and board; airlines.

Excluding the aviation industries, the covered installations emit approximately 2 gigatons
of CO2 per year, about 40% of European GHG emissions. However, each sector has a different
pollution-intensity type of production. Table 5.4 lists the CO2-equivalent intensity of some
selected industrial sectors. The electricity sector is opportunely left out due to its different
mix-generation capacity. It is evident how European industry is affected differently by the EU
ETS. As a result, market players for permits are also quite different.

5.4.3.2 Market Players In general, one can distinguish four types of market players in
the EU ETS: governments; industrial sectors; energy sector; financial institutions. In their
role as regulators, governments organize the allocation of emission allowances. At the highest

12In theory, purchasing permits should oblige emitters to factor in the entire cost of permits and prevent
them benefiting from undue profits incurred by pass-through of the permit costs to final consumers.
13Shipping is considered for inclusion at a later stage. For sectors not covered by the EU ETS, an average
GHG reduction of 10% should be achieved, proportional to countries’ GDP.
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TABLE 5.4 GHG intensity from selected industrial
processes in tons of CO2-equivalent per ton of product

GHG intensity (tCO2-e/t prod.)

Steel 1.6–2
Aluminium 8.5
Cement 0.73–0.99
Ethylene 1.33
Ammonia 1.6–2.7
Petroleum refining 0.32–0.64
Pulp and paper 0.22–1.4

Source: Bernstein et al. (2007).

level, the EC approves or rejects NAPs. The EC also specifies guidelines for the flexibility
mechanisms of the KP. At a lower level, national regulators control and operate the national
registries that link into the central EU transaction log.

A prominent player is the energy sector. Due to the ongoing liberalization process of the
European electricity industry, most of the utilities already have well-developed trading desks.
Therefore, the inclusion of emission permits in their trading portfolios has been a relatively
natural step. The rest of the industrial sectors covered by the EU ETS are instead less active
on the market.

Because the access to the permit market is generally not restricted to covered installations,
financial institutions have been quite active players in Phase I and II of EU ETS. Financial
institutions include brokers, banks, insurers and private carbon funds. The rationale behind
not restricting the market to compliance agents stems from the need for liquidity in the market.
Financial institutions can play the role of intermediaries for a number of small emitters
who are not familiar with the markets and prefer delegating their allowance management to
a third party.

5.4.3.3 Markets for CO2 Emission Permits Concerning market platforms, trading of
EUAs on a forward basis began in spring 2003. A spot market was launched at the beginning of
2005 just prior to the launch of the first national registries in February 2005. Exchange-based
futures trading began in mid-2005. The volume of transactions has been increasing steadily.
In 2005, only 262 Mt trades were exchanged. In 2006, already 809 Mt were traded, with a
steady increase to 1,500 Mt in 2007 and 4,400 Mt of exchanged allowances in 2011. EUAs are
traded on several organized exchanges and outside them. In 2011, the market for allowances
was split between the biggest exchanges, which represented 42% of all EUA, CER and ERU
transactions, over-the-counter (OTC) (39%) and bilateral trades (12%):14

� The European Climate Exchange (ECX) in London, which is by far the biggest in terms
of volume and value. ECX is part of the Climate Exchange plc, which also includes the

14Interested readers can refer to Chesney et al. (2013) for a detailed description of the market platforms
in Europe.
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Chicago Climate Exchange (see next section). Launched in 2005 and based in London,
ECX uses the electronic trading platform and clearance services of ICE (the former Inter-
national Petroleum Exchange). In addition to the traditional EUA and CER futures, the
exchange offers spot prices (immediate settlement) for both types of contracts, option con-
tracts (European call and put), spread trading (calendar spreads and CER–EUA spreads)
and strip trading. To accommodate and lure OTC trading into the exchange, ECX also
offers exchange-for-physical (EFP) facilities, as well as exchange-for-swap (EFS) and
block trade facilities.

� Nord Pool, one of the largest power derivatives exchanges, provides marketplaces for
trading in physical and financial contracts in the Nordic countries (it is based in Oslo and
serves Finland, Sweden, Denmark and Norway). It was acquired by the NASDAQ OMX
group in 2008 and now serves as a platform for the carbon and energy offers of NASDAQ
OMX. Reflecting its precursory role in emission trading, the exchange was almost the
sole provider of exchanged CERs and the second platform for EUAs after ECX during
the first years that followed the launch of the EU ETS.

� The European Energy Exchange (EEX), founded in 2002 as a result of the merger of the
two German power exchanges Leipzig and Frankfurt. It trades spot and futures as well
as coal and natural gas contracts. In an attempt to consolidate its position in Continental
Europe, in 2007 EEX started a partnership with the derivative exchange EUREX to provide
for its clients’ emission trading capacities (using the EUREX electronic platform).

5.4.4 The Future of the EU ETS

In 2013, the EU ETS tightened its centralized cap. It is reduced by 1.74% each year of
the average annual level of the Phase II cap. To ensure that adequate mitigation efforts are
undertaken within European borders, access to UNFCCC project offsets is limited to no more
than 50% of the reduction required in the EU ETS.

The EU ETS will also incorporate three new directives designed to increase the perimeter
of regulation and to improve the mitigation process within the borders of the EU: (i) the partial
auctioning of allowances; (ii) the inclusion of the aviation industry; and (iii) a practice of
‘effort sharing’ for sectors not included in the EU ETS, plus additional measures to improve
the performance of the scheme.

� A proposed auctioning of around 30% of the total number of allowances in 2013. Fur-
thermore, 100% of allowances for the power sector should be auctioned. The target is a
progressive phase-out of the grandfathering practice, to reach a global 70% of allowances
auctioned by 2020 and a 100% auctioning by 2020. However, certain energy-intensive
sectors that are at risk of leakage (offshoring) continue to receive their allowances for
free.

� An Energy Efficiency Directive (EED) was proposed by the European Commission on
June 2011. This directive, whose aim is to save energy and to reach the EC’s self-imposed
target of a 20% cut in primary energy consumption by 2020, may create downward
pressure on EUA prices by providing a competing command-and-control measure to
reduce emissions.

� An enlargement of the scope of the scheme to include new sectors (petrochemical, ammo-
nia and aluminium sectors) and two new gases (N2O and PFCs).
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� The use of flexible mechanism units (CDM/JI) will be conditional on the passage of
a global agreement pushing the required EU reduction to 30% by 2020. Without an
agreement, the use of flexible credits may be limited to 3% of member states’ total
emissions in 2005.

� With the conjunction of the financial crisis at international level and multiple European
crises, verified emissions declined 2.4% year-on-year in 2011, after a significant and
continuous decline of emissions in 2008 and 2009. The new EED proposes setting aside
a certain share of EUAs to account for the weak demand for permits. According to the
World Bank15 and Deutsche Bank,16 ‘the decline translates into an additional surplus
of about 380 million EUAs in the scheme, now expected to be oversupplied by about
one billion tons until 2020’. As such, the idea of setting aside permits touches upon two
important limitations of the EU scheme: (i) the capacity to maintain a constant incentive
towards mitigation; and (ii) the ability for the scheme to have dynamic and conditional
rules instead of static ones.

5.5 REGIONAL MARKETS: A FRAGMENTED LANDSCAPE

5.5.1 Regional Markets

With the future international space partially left empty, countries and regions are in the process
of developing domestic solutions that differ in their scope and pace but almost always combine
elements of cap-and-trade schemes, baseline and credit mechanisms, carbon taxes, subsidies,
emission standards and renewable energy and energy efficiency certificates. Along with the
EU, which will remain the main player in the carbon field, multiple competing solutions will
emerge in the near future at the national or regional levels, creating a fragmented regulatory
environment with specific deadlines and requisites.

Here we provide a rapid overview of the most promising regulations in Annex B countries.
Chesney et al. (2013) discuss in more detail the landscape of current and future carbon markets.

� The United States
Considering the large uncertainties surrounding any new legislations for emission reduc-
tions, the US efforts are for now essentially spearheaded by the new AB 32 legislation in
California and its role in the Western Climate Initiative.

AB 32 requires California to cut greenhouse gas emissions to 1990 levels by 2020. It
also identifies a cap-and-trade programme as one of the strategies the state will employ to
reduce GHG emissions. During the programme’s first compliance period (2013–2014),
large stationary sources that emit at least 25,000 tCO2-e per year in the industry and
electricity sectors will be covered, including out-of-state generation (i.e., imports). As
a cost-control measure, AB 32 allows entities covered by the scheme to purchase and
use offsets for compliance purposes, but volumes are limited to 8% of annual emissions.
Offsets will come from a domestic offsets programme with the possibility of importing
international forest offsets. California also has a strong renewable energy mandate and a
requirement that the carbon content of the state’s vehicle fuels be cut by 10% by 2020.

15State and Trends of the Carbon Market 2012, World Bank.
16EU Emissions: 2011 VED Raises the Pressure, 4 April 2012.
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California is the leading member of the Western Climate Initiative (WCI), an associ-
ation of American and Canadian states which aim to reduce regional GHG emissions to
15% below 2005 levels by 2020. California and Québec (the other regional jurisdiction
that passed a cap-and-trade regulation) have worked towards linking their systems from
the start of their programmes in January 2013.

� New Zealand
In early 2011, a review of the NZ ETS commenced, as required by the Climate Change
Response Act 2002. The scope of the review included the following elements: coverage
of agriculture, allocation mechanisms for New Zealand units, whether or not to keep
the fixed-price cap of NZ$25 and the one-for-two obligation for emitters, and whether
synthetic greenhouse gases should be included in the ETS.

� Japan
The government of Japan considers the ETS component an important policy measure
for Japan to achieve its announced target of reducing GHG emissions by 25% by 2020
compared with 1990 levels. However, Japan has tied the development of an ETS to broad
international agreement, which has the foreseeable result of deferring its implementa-
tion. To compensate for the ETS deferral, other components (introducing a carbon tax
and establishing a feed-in tariff for all renewable energy sources) were to be passed
in 2011.

� China
In March 2011, China released its 12th Five-Year Plan of National Economic and Social
Development. This sets out a carbon-intensity reduction target of 17% and aims to cut
energy intensity by 16% by 2015. These targets are consistent with the 40–45% reduction
in carbon intensity from 2005 levels that was first announced at the Copenhagen Confer-
ence and reaffirmed at the Cancun Conference. As part of the 12th Five-Year Plan, China
will increase forest cover by 12.5 million hectares by 2015, improve GHG emissions and
energy monitoring systems, promote energy efficiency in industrial plants and buildings,
support the expansion of public rail transport infrastructure and continue the development
of non-fossil-fuel energy sources.

China is introducing pilot emission trading schemes in two provinces (Guangdong
and Hubei) and five cities (Beijing, Tianjin, Shanghai, Chongqing and Shenzhen) that
may be expanded to a national scheme by 2015.

5.5.2 Voluntary Markets

In addition to the regional initiatives, voluntary carbon initiatives have emerged rapidly to
offer companies and regional institutions a chance to offset their emissions. Benefiting from an
increased awareness of companies and some marketing and compliance strategies to internalize
carbon costs, the voluntary markets have progressed fast in terms of volume and value.
According to a recent report by Ecosystem Marketplace and New Carbon Finance, the volume
of voluntary permits went from 10 MtCO2-e in 2002 to 123.4 MtCO2-e in 2008 (doubling
its size from 2007), for a 2008 market value of US$705 million. However, it receded due to
the financial crisis and the numerous uncertainties surrounding the KP and the regulations of
the EU ETS and stabilized in 2011 around 79 Mt for immediate or future delivery. Overall
transaction volumes decreased 39% from 2010.

The voluntary market is somehow difficult to monitor closely because it encompasses a
large number of small, ad hoc projects traded OTC. Therefore, the numbers reported above
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correspond to a low boundary for the real numbers of total voluntary units exchanged. OTC
trades cover a large spectrum of projects, methodologies and purposes. Even with the help of
several consolidations over the past years, several standards are still used for the origination of
VERs. Among them, the prominent standards by order of volume importance were in 2011 the
Verified Carbon Standard (49% of OTC trades), the Gold Standard (9%), the Climate Action
Reserve Protocols (10%) and the American Carbon Registry Standard (4.5%). With a renewed
interest in renewables, markets have been targeting Asia and Africa as the main sources of
new energy and forestry projects.

Private companies are the primary buyers of voluntary units (66% of volume in 2008). As
this new market matures, more and more intermediaries (investment companies and liquidity
providers) have entered the markets, shifting the motivation from social responsibility to pure
investment. According to the World Bank, 80% of credits were transacted by voluntary buyers
(50% of them based in Europe) with the intent of retiring credits, while 59% were using
the credits to communicate on their corporate environmental and sustainable policies; 6% of
buyers used voluntary permits to ‘green’ their supply chain.

5.6 A NEW ASSET CLASS: CO2 EMISSION PERMITS

CO2 marketable permits can be considered as a pseudo-commodity whose price, as with
any standard commodity, is a function of demand and supply. In particular, the price of
CO2 emission permits reflects the expectations regarding the evolution of the equilibrium in
supply and demand. Supply in the EU ETS is determined by the allowances that result from
the combination of three major components. The first component is the initial allocation of
permits. Banking and borrowing provisions constitute the second component. Both of these
components are controlled by a regulatory authority and, therefore, they are generally well
assessed by the market. The third component involves the CDM credits (CERs) that could
be converted into emission permits valid for compliance in the EU ETS. The demand side
depends on the evolution of the CO2 emissions drivers of those installations covered by the
EU ETS. This includes (long- and short-term) pollution abatement options, economic growth,
energy-related prices and weather conditions.

As described in Section 5.4.1, the state of compliance is achieved when a relevant instal-
lation surrenders as many permits as its emissions for a given period of time. Conversely, a
penalty is levied. Keeler (1991) shows that the success of pollution control strategies, reliant
on market permits, depends deeply on the enforcement structure. The penalty in the EU ETS,
therefore, ensures a correct incentive to comply with the scheme. In a pollution-constrained
economy where polluting companies are subject to environmental regulations, the tighter the
cap (and the higher the penalty), the larger the amount of pollution abatement undertaken by
relevant companies. In particular, each firm faces a basic choice from two main abatement
alternatives: short-term or long-term abatement measures. In the short term, installations cov-
ered by the EU ETS have different compliance options. They can adjust their CO2 emissions
through a production adjustment in volume and the improvement of their production effi-
ciency (the quantity of CO2 emitted per unit produced). For instance, an electricity generator
can switch from cheap-but-dirty coal-fired production to expensive-but-clean gas-fired pro-
duction. Undertaking a pollution-abatement investment is justified if this strategy is cheaper
than purchasing emission permits. On the contrary, installations can buy CO2 emission per-
mits on the market to cover emissions exceeding their permit holding. Long-term abatement
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options encompass major changes of the production technology that, typically, correspond to
expensive and irreversible commitments lasting decades.

Currently, one can identify three main approaches in the literature for modelling the
price of CO2 emission permits in the EU ETS framework. The first focuses on the major
macroeconomic factors that affect the demand of emission permits, such as economic growth,
energy-related commodities and weather. A second approach is concerned with the tasks of
developing and applying statistical methods to the study of the economic principles behind
the price of CO2 emission permits. One can readily list several univariate (and a few multi-
variate) unconditional and conditional econometric investigations of CO2 price time series.
Finally, stochastic equilibrium models have been proposed for describing the price dynamics
of emission permits.

5.6.1 Macroeconomic Models

Several authors support the argument that permit prices respond to macroeconomic funda-
mentals. To prove this, they try to identify statistically which factors affect permit demand
(economic growth, abatement options, energy-related prices and weather) and supply (alloca-
tion of permits).17 Because the EU ETS regulates energy-intensive industries, the economic
rationale behind such models is extremely intuitive. A rise in the demand of CO2 permits typi-
cally follows an increase in the pollution emissions. Larger emissions are generally caused by
positive economic cycles, the experience of extreme weather conditions or an increase in the
(short- and long-term) abatement measures. Most of this literature has therefore concentrated
on the demand side and can be divided into three major categories.

5.6.1.1 Economic Growth As discussed in Ellerman and Joskow (2008), in a cap-and-
trade system, a deterioration of economic conditions reduces the demand for CO2 permits.
Consequently, the market for permits tends to be long. The installations can then sell their
permit surplus or bank it into the next period. Unsurprisingly, this is reflected in the price of
emission permits that should be relatively low. This is what we observed in the EU ETS during
the 2009 economic slowdown.

5.6.1.2 Weather Factors that influence electricity generation are bound to affect the
demand for allowances. For instance, a hot summer can lead to a higher demand for electricity
because of air-conditioning. When electricity is produced by fuel-fired power plants,
extremely hot summers or cold winters lead to higher CO2 emissions, increasing the demand
for permits. Using European weather data, Mansanet-Bataller et al. (2007) identify extreme
weather events as CO2 price drivers. Employing precipitations data, Houpert and de Dominicis
(2006) argue that rain is a non-negligible price driver in the EU ETS. High precipitation makes
it possible to use more non-CO2-emitting power sources and therefore reduces emissions in
energy production. When hydroelectric production is low, electricity has to be produced by
other means that are generally quite CO2 intensive, like coal or gas. In particular, most of
the Scandinavian countries rely heavily on hydroelectric power production. When rainfall
is scarce, a country like Norway for instance has to import electricity from neighbouring

17Most of this analysis is undertaken relying on principal components analysis or standard regression
techniques. Please refer to Section 5.6.2 for a more technical discussion on such econometric tools.
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countries, very likely Denmark. Danish electricity is in large part generated from coal-fired
plants, implying higher emissions. Yet in Scandinavian countries, cold and dry weather can
also lead to a water shortage in the winter because frozen water cannot be used for power pro-
duction. Conversely, when hydroelectric production is high (because of an increase in rainfall
or because of melting ice in spring), emissions are fewer compared with coal-fired power
production. However, too much rainfall may also cause off-time for hydroelectric installations.

5.6.1.3 Energy Prices and Abatement Opt ions Energy-related prices can unsurpris-
ingly exert a great influence on the demand for emission permits. For instance, if gas prices are
lower than coal prices, electricity will more likely be produced by gas-fired plants. The use of
gas in power generation emits fewer GHGs than the use of coal; therefore, a switch from coal
to gas implies a lower demand of emission permits. Looking at fuel switching, the studies of
Convery and Redmond (2007), Alberola et al. (2008) and Creti et al. (2012), among others,
highlight the importance of energy-commodity prices.18 As discussed above, fuel switching
may be considered a short-term abatement option. Installations may lower their emissions by
implementing long-term pollution abatement measures and improve their energy-efficiency
standards. Whether or not such measures are implemented also depends on the cost of these
technologies compared with the projected cost of allowances.

5.6.2 Econometric Invest igat ion of CO2 Permit Price
Time Series

Recently, in an effort to bridge the gap between theory and observed market price behaviour, an
increasing number of empirical studies have investigated the historical time series of the price of
emission permits. In the context of the EU ETS Phase I, the following classes of processes have
been applied to the permit price series: GARCH models (Paolella and Taschini, 2008; Benz and
Trück, 2008), regime-switching models (Benz and Trück, 2008), mix-normal GARCH-models
(Paolella and Taschini, 2008), jump-diffusion models (Daskalakis et al., 2009), and two-factor
models (Cetin and Verschuere, 2009). Given the emphasis of this chapter on continuous-time
stochastic processes, the major statistics relating to spot and futures prices are reported first.
An overview of the findings obtained using a discrete-time model (Paolella and Taschini,
2008; Benz and Trück, 2008) is presented. Then, the findings of Daskalakis et al. (2009)
are discussed and calibration results of two standard continuous-time dynamics (geometric
Brownian motion and mean-reverting process) are reported.

5.6.2.1 Key Stat ist ics for the EUA Price Table 5.5 reports the major statistics for the
futures with maturity December 2010 and December 2012, respectively, and for the spot
price in Phase I and Phase II, respectively, of the CO2 emission permits. Similarly, Table 5.6
considers log-returns. Figure 5.2 represents visually the price evolution registered on Bluenext
of the spot prices in Phase I from 24 June 2005 until 25 April 2008 and the spot prices in
Phase II from 21 April 2008 until 9 May 2011. Similarly, Figure 5.3 depicts the price evolution
registered on the European Climate Exchange of the futures with maturity December 2010
from 22 April 2008 until 29 November 2010 and futures with maturity December 2012 from

18Please refer to Chevallier (2011) for a more complete list of studies that investigate the allowance price
drivers in Phase I and II of the EU ETS.
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TABLE 5.5 Summary statistics of the futures and spot prices of the CO2 emission allowances

EUA10 EUA12 Spot I Spot II

Mean 16.79 17.99 10.36 15.92
Standard deviation 5.13 5.17 10.32 4.25
Skewness 1.30 1.49 0.33 1.37
Kurtosis 0.37 0.97 −1.51 0.95

EUA10 is the futures contract with maturity December 2010; EUA12 is the futures contract with maturity
December 2012; Spot I is the spot price in Phase I; and Spot II is the spot price in Phase II.
Source: ECX and Bluenext.

22 April 2008 until 9 May 2011. All prices are quoted in €/ton of CO2. The futures and spot
Phase I plots show an abrupt discontinuous shift in May 2006. At that time, after it became
clear that the total amount of expected pollution was overestimated, a significant market price
correction occurred. Then, due to banking restrictions, the spot price in Phase I decreased
towards zero. Whether in Phase I or II, spot and futures prices have often been characterized
by a relatively high degree of volatility. However, neither spot nor futures markets were
characterized by a good level of liquidity.

Paolella and Taschini (2008) investigate both the CO2 market related to the EU ETS and
the SO2 market related to the acid-rain programme in the USA. The SO2 returns exhibit a
high percentage of zero returns, which precludes the use of distributions like the Student’s
t or hyperbolic distribution in the GARCH case. A mixed-normal GARCH model for the
SO2 returns provides a good in-sample fit and competitive out-of-sample value at risk (VaR)
forecasts.

In terms of likelihood-based goodness-of-fit measures, the mixture models perform better
than the t-GARCH model, which in turn performs better than the standard normal-GARCH
model. For the CO2 price, the authors consider an AR(1)-GARCH(1,1) model with different
innovation distributions: a Student’s t, a symmetric and asymmetric stable Paretian distribution
and a generalized asymmetric t distribution. The best likelihood-based goodness-of-fit is pro-
vided by the GARCH model with a generalized asymmetric t innovation distribution. When a
VaR forecast is carried out, no model performs well at all risk levels. However, by using a para-
metric model which places more weight both on more recent returns and on negative returns,

TABLE 5.6 Summary statistics of the futures and spot log-returns of the CO2 emission allowances

EUA10 LR EUA12 LR Spot I LR Spot II LR

Mean 0 0 −0.01 0
Standard deviation 0.02 0.02 0.1 0.02
Skewness −0.13 −0.15 −0.67 −0.19
Kurtosis 1.91 2.53 15.82 2.31

EUA10 LR is the log-return of futures contracts with maturity December 2010; EUA12 LR is the log-
return of futures contracts with maturity December 2012; Spot I LR is the log-return of spot price in
Phase I; and Spot II LR is the log-return of spot price in Phase II.
Source: ECX and Bluenext.
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F IGURE 5.2 EUA Spot Phase I is the spot price of the emission
allowances in Phase I from June 2005 until April 2008 (upper
diagram). EUA Spot Phase II is the spot price of the emission
allowances in Phase II from April 2008 until May 2011 (lower
diagram)
Source: Bluenext.

a better VaR forecasting performance is achieved. Whereas Paolella and Taschini (2008)
model the returns’ time series, Benz & Trück (2008) analyse the adequacy of AR-GARCH
and regime-switching models to represent the spot price time series of CO2 emission permits
in the first phase of the EU ETS. The best in-sample fit to the spot price process is offered
by a regime-switching model with an autoregressive process for the base regime and a nor-
mal distribution for the spike regime. Performing an out-of-sample forecasting analysis for
the CO2 allowance log-returns in the different models, Benz and Trück (2008) detect only
very minor differences for the evaluated mean absolute error and the mean-squared error
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Source: European Climate Exchange.

measures in terms of point forecasts. For risk managers, however, the density and interval
forecasts are of more relevance. In this regard, the results showed that for one day-ahead den-
sity forecasts, the AR-GARCH and regime-switching models significantly outperform models
with constant variance; thus, they reject the adequacy of a simple normal distribution and
AR process.
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Analysing the dynamics of the spot prices in Phase I, Daskalakis et al. (2009) compared
six diffusion and jump diffusion continuous-time processes: geometric Brownian motion,
mean-reverting square-root process, mean-reverting logarithm process, constant elasticity of
variance, geometric Brownian motion process augmented by jumps and mean-reverting square-
root process augmented by jumps. They determined that the geometric Brownian motion
process augmented by jumps provides the best fit through maximum likelihood estimation.
Given the abrupt spot price drop in May 2006, the addition of jumps unsurprisingly improves
the performance significantly. Finally, the paper of Cetin and Verschuere (2009) exploits the
arbitrage relationship existing in the EU ETS at the end of the first phase between CO2 spot
contracts and CO2 forward contracts to derive the dynamics of the spot price of emission
permits. The authors obtain such results by imposing exogenous dynamics on the forward
contracts. Unfortunately, such a relation holds only when banking opportunities are not per-
mitted (a situation which characterized only the transition time between the first and second
phases of the EU ETS). Furthermore, the authors perform pricing analysis of digital options
under incomplete information. In other words, they price digital options under the (realistic)
assumption that the net amount of permits (i.e., the second factor) is not observable. For those
readers interested in the growing market of emission derivative contracts, a simple closed-form
pricing formula for European-style options is derived in Chesney and Taschini (2012).

5.6.2.2 Abatement in the Energy Sector: Fuel Switch Since Montgomery (1972),
research on the theoretical price dynamics of emission permits has concentrated on the sub-
stitution principle between emission permits and abatement technology. After Montgomery
(1972), such authors as Tietenberg (1985), Cronshaw and Kruse (1996) and Rubin (1996) also
showed that, in a deterministic setup, the permit price corresponds to the marginal cost of
abatement. In the context of the EU ETS, fuel switching is the cheapest abatement technology
that can also be implemented easily in the short run. Fuel switching corresponds to the option
to switch from coal- to gas-fired power generation. Gas-fired power production generates
fewer emissions per MWh of electricity than coal-fired power generation; therefore, a fuel
switch from coal to gas lowers emissions. Because coal and gas have different relative carbon
intensities, rising CO2 prices may make gas-fired power generation more competitive than
coal-fired generation. A fuel switch from coal to gas yields a reduction of CO2 emissions per
MWh of produced electricity, which implies that fewer emissions have to be covered with
EUAs. The price of gas compared with the price of coal affects the operating choices for the
power generation industry. If coal prices are low compared with the price of gas, more coal
will be used. Since coal produces more emissions than gas per 1 MWh of electricity, this leads
to higher emissions, therefore raising the demand for EUAs. If gas prices are low compared
with coal, then installations may switch to gas. Since gas has a lower carbon emission output
than coal, the demand for EUAs would fall.19

Let us define ec and eg as the CO2 emission factors of coal and gas, respectively. Also, let
hc and hg be the heating rates of coal and gas, respectively. Heating rates measure how much

19Taschini and Urech (2010) investigate the opportunity of an energy producer to switch from cheaper
but more emission-intensive coal to more expensive but less emitting gas-fired power plant when the
utility is a price-maker and the CO2 opportunity costs are explicitly internalized.
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F IGURE 5.4 Log of the fuel switch and log-price of emission permits in the
period from 29 September 2005 to 6 October 2008

fuel is consumed for the production of 1 MWh of electricity. Using these parameters and the
coal Ct and gas Gt time series, we can derive the historical path of the coal-to-gas switch price
Et as

Et =
hgGt − hcCt

ec − eg
, t = 0,… , T (5.1)

Aligning to conventional results in environmental economics and assuming Et to be the
medium- and long-term CO2 price benchmark, one can model it as being a proxy of the
marginal cost to fuel switch. Figure 5.4 represents log Et and the log-price of the emission
permits in Phase I.

For the calculation of the fuel switch price, NBP gas futures and API#2 coal prices
with maturity December 2008 are considered. The NBP gas prices are quoted in pence/therm
and are converted to €/therm.20 The API#2 coal contracts are quoted in $/ton and converted
to €/ton. The currency conversions are performed using exchange rates from the European
Central Bank. The total length of the series is 717 observations and the time period is from
29 September 2005 to 6 October 2008.

20Therm stands for 100,000 British thermal units (Btu).
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As mentioned, fuel switching is the most important short-run abatement measure for
fuel-fired power plants in the context of the EU ETS. The continuous-time fuel switch price
process can be modelled as a combination of two processes:

𝜀t = Pt + Xt (5.2)

where P(t) is a deterministic process and X(t) a stochastic process. The deterministic part
models the trend and seasonal fluctuations. Gas prices have a marked winter–summer sea-
sonality. Winter prices for gas are generally higher than summer prices. This is due to an
increase in gas heating demand. Furthermore, cold weather renders the conditions for produc-
tion and supply of gas difficult. Therefore, in general, the switching point is higher during the
winter months and switching from coal to gas is less likely to occur. The fuel switch price
is de-seasonalized using the seasonal trend loss (STL) procedure of Cleveland et al. (1990),
which provides trend and seasonal components that are robust to outliers. In Figure 5.5 the
decomposition of the series into seasonality, trend and remainder with the STL algorithm is
shown. Table 5.7 shows parameters for the STL algorithm.

TABLE 5.7 STL parameters

Value

Span (in lags) of loess window for seasonal extraction 7171
Span (in lags) of loess window for trend extraction 353
Span (in lags) of loess window for the low-pass filter 235
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TABLE 5.8 Summary statistics of the de-seasonalized log-returns.

Log-prices Log-returns

Number of observations 717 716
Mean −0.01 0
Standard deviation 0.05 0.01
Skewness −0.15 −0.16
Kurtosis 3.4 3.82
Jarque–Bera (p-value) 0.02 0
Shapiro test (p-value) 0 0

TABLE 5.9 Parameters for the GBM and OU model

GBM process OU process

𝜆 2.2520
𝜇 −0.0002 −0.0030
𝜎 0.0114 0.0243

Once the trend and seasonal components are removed from the time series, we are left
with the residual Xt:

Xt = 𝜀t − Pt, t = 0,… , T . (5.3)

Table 5.8 reports the summary statistics of Xt. As expected, the Jarque–Bera and Shapiro–Wilk
tests indicate the non-normality of the time series under investigation.

A geometric Brownian motion (GBM) process of the form

dXt = 𝜇1Xtdt + 𝜎1XtdWt (5.4)

and an Ornstein–Uhlenbeck (OU) process of the form

dXt = 𝜆(𝜇2 − Xt)dt + 𝜎2dWt (5.5)

are calibrated on the time series Xt, where Wt is a standard Brownian motion; 𝜇1 is the drift
term; 𝜎1 and 𝜎2 are the volatility terms; 𝜆 measures the speed of adjustment to the long-run
mean 𝜇2.21 Table 5.9 reports the calibration results.

Industry routinely switches fuels in response to relative prices or allowance shortages.
Fuel switching is a medium-term abatement option and, therefore, could be used as a proxy
for the allowance price over such a horizon. As such, the fuel-switching process can be used
for hedging and pricing purposes. For a review on pricing and hedging in the power industry,
see Fusai and Roncoroni (2008) and the relevant chapters in this book.

21A comprehensive historical overview on the use of GBM and OU in the literature can be found in
the last chapter of this book. A detailed description of the calibration procedure can be found in Brigo
et al. (2009). We refer to Daskalakis et al. (2009) and Chevallier (2011) for a discussion of the model
extensions.
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5.6.3 Stochast ic Equi l ibr ium Models

There are numerous deterministic and stochastic models describing the equilibrium price
dynamics of emission permits. A thorough discussion of selected models can be found in
Chesney et al. (2013). General findings and the relation between these models are discussed
in detail. The aim of this section is to provide an overview of the most recent stochastic
equilibrium price models.

Allowing for stochastic production and abatement costs, revenues from selling electricity
and emission quantities, Carmona et al. (2009) model the EU ETS in a general setting. In this
setting, the equilibrium price of emission permits equals the discounted penalty multiplied
by the probability of permit shortage (i.e., where the total pollution volume exceeds the total
amount of permits). The models of Seifert et al. (2008), Chesney and Taschini (2012) and
Grüll and Kiesel (2009) specify the process for the cumulative emissions in the framework of
Carmona et al. (2009). In the first paper the emission rate of the representative agent follows
an arithmetic Brownian motion, while in the other papers a firm’s emission rate follows a
geometric Brownian motion. This implies the total amount of pollution is described by the
integral over an arithmetic and a geometric Brownian motion, respectively. The approaches of
Chesney and Taschini (2012) and Grüll and Kiesel (2009) differ in the way such an integral
is approximated. In all these models, the price of emission permits reflects the expectations
regarding the evolution of the supply and demand dynamics. In particular, Carmona et al.
(2009) analyse the effect of windfall profits, Chesney and Taschini (2012) investigate the
effect of asymmetric information on the permit price and Grüll and Kiesel (2009) provide a
theoretically sound discussion around the permit price slump in 2006 in the EU ETS. Taschini
(2010) offers a comprehensive overview of other recent attempts at developing valid dynamic
price models for emission permits.

These models realistically depict the dynamic price formation of emission permits in
the EU ETS. However, they focus on showing theoretical properties of the cap-and-trade
scheme implemented under the EU ETS rather than calibrating the model parameters to
historical time series. With the objective of providing tractable pricing models for options on
emission permits, Carmona and Hinz (2009) were the first to address the complexity of the
calibration of the equilibrium model of Carmona et al. (2009). The authors introduce a simple
risk-neutral reduced-form model for the price of emission permits and calibrate it to historical
data. Grüll and Taschini (2011) extend the work of Carmona and Hinz (2009) by deriving
estimation methods for the calibration to real data of those competing equilibrium models
introduced in this paper. They first prove the existing relationship between the reduced-form
model of Carmona and Hinz (2009) and the full model of Chesney and Taschini (2012). Then,
they propose a new reduced-form model based on the full equilibrium models of Chesney
and Taschini (2012). Using futures prices in the EU ETS with maturity December 2007 and
December 2012, they calibrate reduced-form models and assess the in-sample performances
of their reduced-form model and the one proposed by Carmona and Hinz (2009). With
the aim of providing a comprehensive comparison among potentially competing models,
they also calibrate and compare two quite popular continuous-time stochastic processes
(geometric Brownian motion and normal inverse Gaussian).22 In the current price evolution
they show that reduced-form models perform relatively well at the end of a compliance period
(Phase I) compared with standard stochastic processes. However, reduced-form models are

22Refer to Section 5.6.2.2 for a discussion about the calibration of continuous-time stochastic processes.
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clearly outperformed by complex standard stochastic processes such as the normal inverse
Gaussian, especially at the beginning of Phase I and Phase II, as shown by Grüll and
Taschini (2011).

ABBREVIATIONS

AAU assigned amount unit
CDM clean development mechanism
CER certified emission reduction
COP conference of the parties
CO2 carbon dioxide
EC European Commission
ERU emission reduction unit
EUA emission unit allowance
EU ETS EU Emission Trading Scheme
GHG greenhouse gas
IPCC Intergovernmental Panel on Climate Change
JI joint implementation
NAP national allocation plan
OECD Organization for Economic Cooperation and Development
SO2 sulfur dioxide
UNFCCC United Nations Framework Convention on Climate Change
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CHAPTER 6
Weather Risk and Weather Derivatives

Alessandro Mauro

6.1 INTRODUCTION

Under the traditional view of neoclassical economics, the producible quantity of goods and
services is considered to be known once we know the levels of inputs and their productivity.
This assumption allows us to build a supply curve that defines, for any given price, the
quantity of the good that the individual producer, and the aggregate production system, will
be able to offer on the market. On the contrary, the demand curve is a mathematical function
and therefore deterministic, which expresses the quantity demanded at any price, based on
individual preferences. The market equilibrium will inevitably be reached at the intersection
of the supply curve with the demand curve, the juncture where you determine the quantity
traded and the market price. The price system then takes the role of market equilibrium setting
in an economy described as neoclassical.

Economic theory has subsequently recognized the possibility of fluctuations in the price
level, especially in markets where transactions occur frequently or where goods are even
continuously exchanged. Models have been developed attempting to explain and predict the
level of these prices, from which general modern risk management has evolved. Markets
and financial instruments were created with the aim of reducing or amplifying the exposure of
agents to the fluctuation of these prices. However, the economic discipline and risk management
continued to ignore volumetric risk – that is, the possibility that produced and/or demanded
quantities are not deterministic but random.

By using the theoretical apparatus of modern statistical theory, it is certainly possible to
make random the demand curve and the supply curve, resulting in final market equilibrium
uncertainty. This approach is ineffectual if we are unable to identify the causes that may
determine this randomness. Such causal identification, however, is often not possible because
of the complexity of the actions taken by agents in economic systems. An important exception
to this is weather-based markets.

Weather conditions have always influenced human activities. This influence, sometimes
positive and sometimes negative, has been reduced significantly in the modern era but still the
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F IGURE 6.1 Price risk and volumetric risk

production and consumption of goods and services continue to be closely linked to atmospheric
phenomena. Since meteorological conditions are characterized by (often extreme) uncertainty,
the level of production is consequently uncertain. This uncertainty, however, is not confined
to the production system because the demand for goods is also very often affected by weather
conditions.

The objective of this chapter is to analyse the relationship between atmospheric phenom-
ena and volumetric risk, focusing on the impact on the energy markets, which constitutes
such an important part of the modern economy. By way of introducing briefly the topics to be
discussed, it will be useful to refer to a schematic representation of the analysis we want to
perform. See Figure 6.1.

Academic and operational attention has traditionally been given to the right side of
Figure 6.1 – that is, the fluctuation of prices. For instance, it is possible nowadays to financially
hedge the market risk on major oil products (e.g., WTI and Brent crude oils) up to 10 years
ahead and beyond. In contrast to this usual focus, attention here will be on the left side of
Figure 6.1.

In Section 6.2 we analyse how volumetric risk can be interpreted in terms of movements
of demand and/or supply curves. We outline that such movements also have an effect on prices
and therefore it is necessary to combine the two factors in order to fully understand the impact
on revenues and costs.

In Section 6.3 we study the weather variable of atmospheric temperature. As suggested
by the analytical framework presented in Figure 6.1, there are often some dependency rela-
tionships linking the meteorological events to volumetric risk, in the form of

� physical/technical laws, so basically deterministic
� statistical dependencies, hence random
� qualitative relationships, hence very random.

Still in Section 6.3 we clarify the type of dependency that links the atmospheric tempera-
ture to the consumption of gas for domestic purposes, which is a statistical dependency.

In Section 6.4 we present financial instruments, known as weather derivatives, which
enable operators to reduce the potential impact of weather on supply or demand, especially in
the energy markets.
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F IGURE 6.2 Interaction between price risk and
volumetric risk

6.2 IDENTIF ICATION OF VOLUMETRIC RISK

The process of identifying sources of risk is the essential first step in any business risk analysis.
Often the process of identification cannot be separated from the analysis of market structure.
This is particularly true in the scope of this chapter, whose aim is to add volumetric risk to the
traditional analysis of price risk.

In this section, therefore, we undertake a theoretical analysis of the market structure in
terms of a traditional supply and demand curve. This analysis will better clarify the object of
study and avoid erroneous simplifications. For instance, a weather event can cause a reduction
in quantity supplied or demanded, but this is not necessarily bad news for the producer. In
fact, this may lead to an increase in the price of the good, hence offsetting the reduction in
the traded quantity. Consequently total revenues, as a result of adverse weather events, could
even increase.

From a neoclassical economic perspective, the goal is to maximize profits (i.e., the
difference between revenues and costs). Without loss of generality we assume the costs to
be fixed, in which case the firm must maximize revenues, or R = Q × P, where Q stands for
quantity and P for price. A simple example of the possible impact of volumetric risk on the
balance sheet of a company is presented in Figure 6.2.

The figure shows the change in total value of a quantity of a generic good starting with
a base case characterized by a quantity of 100 and a price of 28 (i.e., case 5). A variation
in the unit price of the goods, equal to –10% or +10%, with the same quantity (cases 2 and
8), simply reduces or increases the total value by 10%. The same result is obtained when the
quantity is reduced or increased by 10% at constant prices (cases 4 and 6). Therefore, in all
cases in which only one of the two possible variations occurs, the variability of the total value
is simply in the interval [–10%, +10%].

More interesting and realistic are the cases in which there is simultaneous realization of
the two effects. In such cases the variability of the total value increases, standing outside the
mentioned range. For example, the total result may be much lower if both changes are negative
(–19% in case 1) or much higher if both changes are positive (+21% in case 9).

It is easy to prove that the particular cases mentioned in Figure 6.2 can be generalized
with the following equation:

ΔV = Q0 × ΔP + ΔQ × P0 + ΔP × ΔQ (6.1)
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F IGURE 6.3 Price effect and quantity effect on the supply and
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where Q0 and P0 are the initial values for price and quantity, respectively, and ΔQ, ΔP and
ΔV are, respectively, the variations in the quantity, price and total value. The first term of
the equation defines a price effect, from which, because of its variability and unpredictability,
stems the price risk. The second term expresses a quantity effect, from which stems the
volumetric risk. Finally, the third term defines a price–quantity joint effect, which usually has
a negligible value when changes in the quantities and prices are not relevant. It is reiterated
that the objective is to study the volumetric risk element. Price risk has instead been largely
investigated in the past, both in theory and in practice. In fact, today many financial instruments
are traded in order to reduce this type of risk borne by economic agents.

Equation (6.1) can be represented in graphical terms, using the demand and supply curves
as shown in Figure 6.3.

Starting from the initial quantity–price pair (Q0, P0), the shaded area is representative
of the total change in value due to the shift of the demand curve from D1 to D2 position.
The three shaded areas represent the three effects mentioned above. It will soon be shown
that a more precise identification of the relative importance of the price–quantity effects and
risks depends on the characteristics of supply and demand curves, and the type of shocks to
which the market is exposed. For the sake of clarity, the analysis will be split into two parts,
distinguishing between shocks impacting the demand curve and the supply one.

6.2.1 Weather Events on the Demand Curve

The impact of a weather event on the demand curve is an exogenous factor with respect to the
quantity–price relationship, and as such involves a horizontal movement of the demand curve.

P

Inelastic supply curve Elastic supply curve

P

ΔP
ΔP

ΔQ ΔQ

Q Q

S SD2 D2
D1 D1

F IGURE 6.4 Demand curve shifting with inelastic (left) and elastic
(right) supply
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This situation is shown in Figure 6.4 where, without loss of generality, a contraction of the
demand curve is presented relative to two different types of supply curves.

Some consequential effects are independent of the shapes of curves. In fact, the shift of
the demand curve has an impact of the same algebraic sign on both the exchanged quantity
and price. That is, if the demand curve is shifted from D1 to D2, both the quantity traded and
the price will decrease. The opposite happens if demand expands. From the perspective of the
producer, when ignoring the costs, the effect is unambiguous: if demand drops then revenues
reduce, if instead demand expands then revenues will certainly increase.

Furthermore, it is necessary to analyse the shape of the supply curve. The left side of
Figure 6.4 represents an inelastic supply curve.1 The contraction in the demand curve leads
to a reduction of the price that is higher than the reduction of the exchanged quantity. To the
right instead is a more elastic supply curve. The contraction in the demand curve determines
a reduction in the quantity that is greater than the reduction of the selling price. It is easy
to adapt these findings, determined by the shape of the supply curve, to cases in which the
demand curve moves to the right due to positive external shocks.

Ultimately, the foregoing observations can be summarized in general terms by saying
that, if the demand curve moves, then:

� Price effect and quantity effect always have the same algebraic sign (cases 1 and 9 of
Figure 6.2).

� If the supply is inelastic, then the price effect exceeds the quantity effect.
� If the supply is elastic, then the quantity effect exceeds the price effect.

It is also confirmed by the observation of the previous section that normally the two
effects coexist. Only in two extreme cases does the prevalence of one of the two effects cancel
the other completely, and this is the case when the supply curve is completely elastic (i.e.,
horizontal curve: the curve elasticity, 𝜀, is infinite) or completely inelastic (i.e., vertical curve:
the curve elasticity, 𝜀, is zero). These cases are summarized in Table 6.1.

The first two lines (i.e., the case of the horizontal supply curve) represent the generalization
of cases 4 and 6 of Figure 6.2. The last two lines instead generalize cases 2 and 8.

TABLE 6.1 The effects of extreme supply curves

Supply curve Demand Quantity Price Marginal Price Volume
elasticity curve shift change change revenue risk risk

𝜀 ≈ ∞ (horizontal) contraction ΔQ < 0 MR < 0 null yes
expansion ΔQ > 0 ΔP = 0 MR > 0

𝜀 ≈ 0 (vertical) contraction ΔP < 0 MR < 0 yes null
expansion ΔQ = 0 ΔP > 0 MR > 0

1The elasticity of demand or supply curve is related to the change in quantity corresponding to a (small)
change in the price of the good. For completeness, it should be noted that, apart from a particular class
of curves (isoelastic curves), elasticity is a local measure and varies along the curve.



260 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

P P

ΔP ΔP

ΔQ

Q Q

D DS2 S2S1 S1

ΔQ

Inelastic demand curve Elastic demand curve
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6.2.2 Weather Events on the Supply Curve

In the previous section the impact of weather events on the demand curve was studied. Such
events also represent exogenous shocks to the supply curve, and can again be represented by
a horizontal shift of the supply curve. Figure 6.5 shows a contraction in the supply curve with
respect to two demand curves of different shape.

The discrepancy with respect to what was previously shown regarding movements of the
demand curve is immediately evident. The movements of the supply curve, whatever the form
of the demand curve, determine a quantity effect and a price effect with different algebraic
signs. In fact, they move in opposite directions: if the supply reduces, the market price increases
as the quantity exchanged is reduced (case 7 in Figure 6.2). The opposite is true if the supply
expands (case 3 of Figure 6.2). The total revenue is therefore uncertain and depends on the
characteristics of the demand curve.

In order to better understand this point, neglect the third term in definition (1.1) and divide
it by ΔQ, obtaining

ΔV
ΔQ

= P ×
[

1 + Q
P

× ΔP
ΔQ

]

In defining the elasticity of demand to price as

𝜀 (Q) ≡ −P
Q

× ΔQ
ΔP

the definition of marginal revenue (MR) is obtained – that is, the change in revenue resulting
from a small change in quantity:

MR ≡ P ×
[

1 − 1
|𝜀(Q)|

]
(6.2)
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TABLE 6.2 The effects of different demand curve elasticities

Demand curve Supply curve Quantity Price Marginal Price Volume
elasticity shifting change change revenue risk risk

|𝜀| = 1 indifferent ΔQ = |ΔP| MR = 0 equal
𝜀 ≈ ∞ (horizontal) contraction ΔQ < 0 MR = −P < 0 null yes

expansion ΔQ > 0 ΔP = 0 MR > 0
𝜀 ≈ 0 (vertical) contraction ΔP ≫ 0 MR ≫ 0 yes null

expansion ΔQ = 0 ΔP < 0 MR < 0

It is clear that the evolution of marginal revenue depends on the price of the good and the
elasticity of the demand curve.2 We distinguish, for example, the following special cases:

� 𝜀 = 1. Marginal revenue is zero, so the change in revenue is still null. Hence, the con-
traction of the supply curve leads to a reduction of the sold quantity, which is exactly
offset by an increase of the same size in the price (ΔQ = −ΔP). Therefore, price risk is
equivalent, with an opposite algebraic sign, to the volumetric risk.

� 𝜀 ≈ ∞. The demand curve is horizontal, that is infinitely elastic. This is the case of a
perfectly competitive market structure in which individual producers cannot influence
the market price, and therefore face a flat demand curve. In this situation, if the supply
curve moves left there is no change in price, while the quantity sold is anyway reduced.
Therefore, the marginal revenue is equal to P. That is, if the quantity sold is reduced by
one unit, the revenue decreases obviously by a monetary amount which is equal to the
unit price. In this case there is only volumetric risk in the market, and no price risk.

� 𝜀 ≈ 0. The demand curve is completely inelastic, that is vertical. The decline of the supply
curve leads to a change in quantity which is, however, null. On the contrary, the change
in price is significant and depends only on the extent of displacement of the offer curve.
In this case there is only price risk and zero volumetric risk.

Table 6.2 summarizes the three cases analysed.
Another special case, but still an interesting one, is that of a monopolistic market structure.3

A monopolist will decide independently at which point of the demand curve to produce, in
order to offer on the market an amount that maximizes his own profits. It is well known that
this amount is lower than that offered in a competitive market. Therefore, the choice of a
monopolist lies on an inelastic part of the demand curve, i.e. where |𝜀| < 1. In this situation,
any shift of the supply curve leads to a reduction in profits, as the marginal revenue is below
marginal cost. Therefore, any reduction or increase in sold quantities, due to weather events,
leads to a sub-optimal result for the monopolist. In fact, the resulting change in the price of the
goods is not worth the change in sold quantities, and therefore the profit is reduced while the
unit cost stays the same. In practice, however, manufacturers hold inventories of the produced

2From a theoretical point of view, the absolute value of elasticity is between zero and infinity. Often
the elasticity of demand for a good depends mainly on the existence (and the short-term availability) of
substitutes for such good.
3At this point it is necessary to drop the assumption of fixed costs, as the analysis of monopoly requires
the explicit consideration of profit (i.e., revenues and expenses simultaneously).
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goods. Therefore, in the case of reduced production quantities due to a shock, there will be
recourse to the stocks previously stored (i.e., reducing them). Conversely, if the shock is a
positive one, the surplus production will be stored.

6.2.3 Risk Measurement and Weather-at -R isk

The measurement of risk is the second key stage of modern risk management and is aimed
at evaluating the possible impact on the company accounts of the previously identified risks.
Recently, statistical and probability measures have been introduced. The most used is known
as value-at-risk (VaR) and measures the maximum possible loss at a given level of statistical
confidence.4 Even in the case of risk measurement, traditionally the focus has been solely
on the impact of price risk. In terms of the fundamental equation (1.1), the study of price
risk is only a particular case reducing the equation to ΔV = Q0 × ΔP. In this particular case,
the definition of VaR in the so-called parametric formulation (i.e., modelled with use of the
Gaussian probability distribution) is as follows:

VaRP = 𝛼c𝜎pQ0P (6.3)

where P is the price of the asset, 𝜎p the volatility of the price returns, 𝛼c is linked to the
confidence level chosen and finally the amount Q0 is fixed by assumption. This represents
the special cases previously analysed, in which the demand curve or supply curve is infinitely
inelastic – that is, vertical. In this case there is a possibility of change only in the price of
the good, due to the movement of the supply or demand curve; the exchanged quantity is
determined once and for all by the position of the other curve.

A symmetrical case is where there is volumetric risk but price risk is nil, as shown by the
VaR formulation in this case:

VaRQ = 𝛼c𝜎QQP0 (6.4)

Here price is fixed, while the quantity may vary, and in fact the quantity volatility 𝜎Q
appears in the equation. This case is applicable when, as we have seen previously, the demand
curve or supply curve is infinitely elastic and movements in one of the two curves have the
effect of only changing the quantity traded in the market but not the price, which remains
instead fixed and determined by the position of the horizontal curve.

As noted previously, the most realistic case is the coexistence of volumetric risk and price
risk – that is, when the demand curve and supply curve do not have extreme elasticities. In
this case, in which the general equation (6.1) is again valid, it can be shown that the definition
of VaR becomes:5

VaR =
√

VaR2
P + VaR2

Q + 2𝜌Q,PVaRPVaRQ (6.5)

The VaR definition becomes more complex and takes into consideration the correlation
between quantity effect and price effect, denoted here 𝜌Q,P.

4For a general introduction to value-at-risk see Dowd (1998) and Jorion (1997).
5For a formal proof, see Mauro (1999a), p. 99.
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This relationship again depends on the characteristics of the supply and demand curves.
In fact:

� If the correlation is positive, an increase (or decrease) in price is accompanied by an
increase (or decrease) in the exchanged quantity, as happens when the demand curve
shifts (see Figure 6.4).

� If the correlation is negative, an increase (or decrease) in price is accompanied by a
decrease (or increase) in the traded quantity, as happens when the supply curve shifts (see
Figure 6.5).

� The extreme cases, represented previously in Tables 6.1 and 6.2, imply a zero corre-
lation between price and quantity and a nil VaR for the quantity or price, leading to
a simplification of equation (6.5) to the special cases referred to in equations (6.3)
and (6.4).

The analysis of the preceding sections makes it clear that, beyond the special border-
line cases, normally price risk and volumetric risk will coexist. The objective of risk mea-
surement must then be to clarify and measure what can be the impact, in terms of prob-
ability, determined by the coexistence of the two identified risks. It should be noted that
price risk measurement, through the use of statistical measures such as VaR, is widespread.
Even in the market under consideration (i.e., the energy market) VaR has frequent appli-
cations.6 Nothing however hinders the application of this approach to volumetric risk, pro-
vided that time series of volume evolutions are available, in order to gauge the volatility in
equation (6.4).

Turning therefore to a more operational focus, global risk measurement must be done
using equation (6.5) and also assuming the earlier estimate of equations (6.3) and (6.4) for
the two standalone risks, plus the estimated correlation coefficient. These estimates require
the availability of historical series of price and quantity traded – that is, timely ordered pairs
(Q, P) are available.

Often, however, the evolution of the traded volume is a function of the level of another
underlying factor, which in turn should be identified and measured. In fact, the aim of this
chapter is to go one step further. The volumetric risk will not be considered in isolation or, in
other words, as a mere series of values, but rather as influenced by weather events, with which
causality is to be analysed. In the first instance this can be represented mathematically as

Qi = f (xi) (6.6)

We therefore analyse weather events which can be measured (i.e., xi) and where a func-
tional dependence between weather and traded quantity of the good (i.e., f(⋅)) can be identified.
In this case, the ‘visible’ effect will be that of volumetric risk, but the real source of uncer-
tainty in the market comes from meteorological factors. Consequently, when the existence of
functional dependence as per equation (6.6) is shown, from the concept of volumetric VaR
you should move to the concept of weather-at-risk.

6This is discussed in Mauro (1999a, b).
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6.3 ATMOSPHERIC TEMPERATURE AND NATURAL
GAS MARKET

In order to introduce the topics discussed in this section, it is useful to recall Figure 6.1. In
Section 6.1 we analysed the volumetric risk, which depends on the characteristic features
of the market, the latter being summarized by the characteristics of the supply and demand
curves. It has also been shown that volumetric risk does not come alone, but usually along
with price risk.

In this section we begin by analysing the nature and impact of weather (wind, rain, clouds,
fog, snow, etc.) on energy markets, highlighting the volumetric risks created. More specifically,
we study one particular atmospheric variable – air temperature. Other atmospheric variables
are humidity, wind speed, barometric pressure, etc.

6.3.1 Characterizat ion of the Air Temperature
Meteorolog ica l Variab le

There are several important physical phenomena that occur within the Earth’s atmosphere,
especially in the lower part called the ‘Troposphere’. Among the most important of these
are wind, precipitation (i.e., rain, snow, hail), sunshine and cloudiness, fog, hydrological
phenomena (i.e., water level in reservoirs, river flow), etc.

In past centuries, the quantitative measurement of these phenomena was introduced in
order to identify meteorological variables. Among these, for example, are barometric pressure,
humidity, wind speed, the level of rain, etc. One of the fundamental meteorological variables
for many human activities is the atmospheric temperature. This section is dedicated to the
study of this weather variable, bearing in mind that the paradigm of the present study is also
applicable to other meteorological variables.

In general, there is no unique measure of a weather variable. It is necessary to establish and
use conventions in order to determine the terms and scales of measurement. These conventions
are based, among other factors, on the pro-tempore available measuring instruments. Moreover,
measurement is never absolute, but is necessarily related to a particular place and a specific
moment in time at which the measurement takes place. Such measurement needs also to be
subject to chronological measurement; namely, the simultaneous recording of the time when
the survey and registration of the weather variable is taken.

As far as the atmospheric temperature is concerned, frequent observations are often made
during the day but data commonly available are the maximum and minimum temperatures,
measured during a predefined time interval. This interval may coincide with the solar day,
from 00.00 to 24.00, but this choice is just the result of convention.7 The use of algebraic

7In the UK, the Met Office measures the minimum temperature from 09.00am of the day before to
09.00am of the current day, and the maximum temperature from 09.00am of the current day to 09.00am
of the following day. In France, Météo-France measures the minimum temperature from 06.00pm of
the day before to 05:59pm of the current day, the maximum from 06.00am of the current day to
05:59am of the following day. In Germany, Deutscher Wetterdienst measures the minimum and maximum
temperatures from 00.00am to 11.59pm in the same day, while a competing company measures the
minimum temperature from 06.00pm of the day before to 06.00am of the current day and the maximum
from 06.00am to 06.00pm in the current day – see Dischel (2002). All times are in coordinated universal
time (UTC).
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F IGURE 6.6 Average daily temperature recorded at Milan Linate weather station

transformations of measured temperatures is also very frequent, typically the daily aver-
age temperature (i.e., the arithmetic mean temperature between the recorded maximum and
minimum values).

It is useful to represent the typical evolution of this measure through the seasons and
years, as in Figure 6.6.

Figure 6.6 specifically shows the evolution of the average daily temperature recorded
in Milan, in the meteorological station located at the airport of Linate. It is an obvious fact
that, at similar latitudes, summer is hot and winter is cold. The smooth and sinusoidal shape
depicted in Figure 6.6 is therefore not surprising. However, even with a superficial glance, it is
noted that every season and every year is partly, but not entirely, different from the others. The
single data points, and consequently the aggregated ones, are rather volatile. It is quite evident,
for example, that there are winters colder than others, and summers warmer than normal. In
order to further investigate these qualitative observations, in general it is very helpful to use
quantitative analysis. In this chapter, the focus is on statistical methodologies. Particularly
useful for the study of meteorological variables is time series analysis.8 In this area a very
important tool is the autocorrelation function (ACF), or rather the partial autocorrelation
function (PACF), which establishes the strength of linear dependence between data points
in the same series (hence the name ‘autocorrelation’ instead of ‘correlation’).9 We show in
Figure 6.7 the estimation of that function applied to the case of the daily average temperature
measured at Milan Linate meteorological station over a decade.

The figure shows a significant and very strong autocorrelation at the 1-day lag, with a
value that comes close to unity. This means that generally the level of the temperature today
is highly correlated with the temperature recorded yesterday, and similarly the temperature
tomorrow will be very well correlated with that today. However, in contrast, it is also clear

8For more information the reader is directed to, among other books, Pankratz (1991).
9The PACF allows the identification of the statistical significance of the lags in an autoregressive model.
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F IGURE 6.7 Partial autocorrelation function for the average daily temperature

from the figure that at the 2-day lag the linear dependence is very low, and probably not
statistically different from zero.10

What is faced is what statisticians call a stochastic process with limited memory. Indeed,
today’s temperature depends almost solely on the value of the same variable on the immediately
preceding day, but not that of 2 days earlier. Another relevant dependence, not shown in
Figure 6.7, is between today’s value and the values recorded at about the 365-day lag, that is
observations distant about 1 year from each other. This correlation represents the existence of
‘normal’ seasonal temperatures and it is consistent with the periodical evolution highlighted
in Figure 6.6. The characterization of the average atmospheric temperature has immediate
implications for forecasting purposes. Indeed, based on the analysis carried out we can say
that in order to get a prediction for the temperature 1 or 2 days forward, and based solely
on statistical data, one may (and must) simply use the temperature recorded in the days
immediately before and recorded about a year ago. Other values add no information and
therefore should not be used.

It is possible to prove this hypothesis with statistical methods, estimating an autoregressive
stochastic process.11 An autoregressive model on the average daily temperature (ADT(t)),
estimated on the basis of the data in Figure 6.6, takes the form

ADT (t) = 14.28
[99%]

+ 0.87
[99%]

×ADT (t − 1) + 0.11
[99%]

×ADT (t − 365) (6.7)

The equation shows the values of estimated parameters. The model is composed therefore
of a constant, a 1-day lag term and a 365-day lag term. The goodness-of-fit of the model

10This result, although generally true, also depends on the time horizon considered in the calculation and
the meteorological station of your choice. In Nelken (2000) it is shown that for Chicago-O’Hare station
the correlation is about 0.7 with 1-day lag and about 0.4 with 2-day lag. Hence, higher than in Milan
Linate station.
11An autoregressive stochastic process is a random process explaining the current values of a variable
using past values of the same variable.
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is partially shown by the high statistical significance of all the estimated parameters. The
estimated model helps explain much of the variability of the data, with a high R2-value equal
to 95.3%.12 We can say that the atmospheric temperature is a variable which can be predicted
with a low error, using purely statistical models, on a time horizon of 1 or 2 days.13

6.3.2 Degree Days

Having established these statistical properties of the average daily temperature, it is now useful
to introduce a transformation of this data. This is the degree-days index,14 an index widely
used in meteorology. It is defined by the following equation:

degree days = 18◦C − ADT (6.8)

It is, in fact, a simple difference between the average daily temperature and a fixed value of
18◦C. If this difference has a negative algebraic sign we have the cooling degree days (CDD)
and, when positive, the heating degree days (HDD). More precisely, referring to the ith day,
the two indices are defined as

CDD(i) = max [ADT(i) − 18◦C; 0]
HDD(i) = max [18◦C − ADT(i); 0]

(6.9)

and therefore the equation is always CDD + HDD = |ADT − 18◦C| . In order to better under-
stand the features of these two indices, it is useful to compare the behaviour against daily
temperature variation, as in Figure 6.8.

It appears that the HDDs may be a reference for the winter months. In fact, during the
summer months, the HDDs would not normally arise as the ADT would normally be above
18◦C. Conversely, the CDDs are the reference for the summer months, as usually there are
no CDDs during the winter. Figure 6.9 shows the trend of daily HDDs and CDDs recorded
during a calendar year in Milan Linate airport weather station.

Degree
days

HDD CDD

18°C ADT

F IGURE 6.8 HDD and CDD compared
with the average daily temperature

12Other models were estimated, but this is the one that represents the best estimate.
13Meteorological models provide estimates for a longer time horizon, but that still does not go beyond a
week or two. In fact, weather forecasts made in the middle latitudes have large margins of error.
14It is worth noting that other temperature indexes could be proposed, measured and calculated.
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F IGURE 6.9 Daily HDDs and CDDs recorded in Milan’s Linate airport in 2004

It can be seen that the number of HDDs is much higher than the CDDs, as the annual
average temperature was below 18◦C. Therefore, the 18◦C level is just a chosen reference in
definitions (6.8) and (6.9), and it is not the average atmospheric temperature.

The HDDs or CDDs are often not counted on a single day, but are instead cumulated over
a time interval:

HDD =
∑T

i=1
HDDi; CDD =

∑T

i=1
CDDi (6.10)

where the interval [1, T] may consist of one or more months, one or more seasons, or one or
more years. Using the data of Figure 6.9, Figure 6.10 shows the cumulative HDDs (in winter)
and CDDs (in summer) along year 2004 at Milan Linate airport weather station.

It can be seen from Figure 6.6 that each year presents a different weather pattern. In fact,
Figure 6.11 shows the gradual build-up of HDDs during the period October–March in the
years from 1960 to 2005.
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F IGURE 6.11 Cumulated HDDs in Milan Linate during the winters from 1960 to 2005

This representation of cumulated HDDs shows the variability of this index over the years,
the difference becoming progressively stronger moving towards the final stage of the winter
season. The two extreme curves represent the cumulatively coldest winter (2500 HDDs in
total) and the cumulatively warmest one (slightly higher than 1500 HDDs in total) during the
period, marking off a range nearly 1000 HDDs wide.

Even a shorter time horizon of observation does not subvert previous findings. Figure 6.12
reports the total value of the HDDs cumulated over the period 1 October to 31 March during
the years 1995–2004.
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Compared with the arithmetic average calculated over the period, amounting to about
1825 HDDs cumulated in each winter, the deviations are very significant in some years. Hence
the analysis based on degree days adds relevant information, which cannot be detected from the
raw data. In fact, from the average daily temperatures presented in Figure 6.6, yearly trends
do not look so dissimilar. In conclusion, cumulated HDDs indicate in a synthetic way the
extent to which a winter was warm or cold and allow quick comparisons of climate trends for
consecutive years. The same applies to CDDs.

So far what has been analysed and presented are meteorological indicators for a single
location only. It is often useful, as will be discussed in the next section, to create temperature
indexes relating to a set of cities or entire regions. This aggregation can be achieved by taking
into account simple arithmetic averages of temperatures, or average indices such as HDDs,
CDDs, etc. Sometimes it is even more useful to calculate weighted averages of these indices,
using variables representative of specific regions as weights. To name a few:

� the population living in cities or entire regions
� the number of people using heating oil or natural gas or electricity for home heating in a

city or a region.

These weights are related to the energy markets and the motivation will be clarified in the next
section.

6.3.3 Volumetric Risk in the Natural Gas Market

In Section 6.2 we studied how the impact of a weather event on demand and supply curves
creates volumetric risk. Following this, atmospheric temperature was characterized as a mete-
orological variable. Recalling Figure 6.1, the intention here is to consider a specific volumetric
risk and analyse its dependency on atmospheric temperature. The impact of this weather vari-
able on household natural gas consumption will also be analysed. The nature and strength of
this relation is summarized in Figure 6.13.
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F IGURE 6.13 Relationship between temperature and gas consumption
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The graph highlights a rather straightforward dependency relationship between tempera-
ture and natural gas consumption; namely, the lower the temperature, the greater the household
consumption of gas. This is because natural gas is typically used for domestic space heating
during the winter and much less in other uses such as cooking. The level of temperature is a
key factor that drives the consumption of gas. Moreover, for this risk factor we can cover the
entire paradigm of risk management (i.e., identification/measurement/hedging).15

From a statistical point of view, the relationship between temperature and gas consumption
is in general quite significant, beyond the specific case represented here. The slope of this curve
is one of the most prominent features and it is often called the ‘thermal gradient’. It represents
the increase (or decrease) in consumption corresponding to a decrease (or increase) by one
degree in temperature. The gradient changes depend on the aggregation of the consumers under
study and hence it is possible to estimate the gradient for a city, for a region or for an entire
national market. In the latter case, one needs to consider aggregate indices of temperatures, as
discussed previously.

As shown in Figure 6.13, if one considers the interpolation curve, the thermal gra-
dient gradually lowers in the case of high temperatures and consequently the consumption–
temperature correlation weakens (see the area highlighted with a dotted ellipse). The flattening
of the interpolation curve indicates that, for high temperatures, the consumption of gas remains
constant and becomes independent of the atmospheric temperature. In fact, during summer,
natural gas is used primarily for purposes other than space heating. This is the main reason
why the HDD calculation uses a reference temperature (i.e., 18◦C) as a point of discontinuity
between two quite different situations. In fact, the consumption–temperature correlation no
longer warrants attention in the calculation of HDD if the temperature is above 18◦C. Certainly
a more accurate statistical approach could be built around the estimation of the exact ‘bor-
derline’ temperature, thus changing and adapting the definition in equation (6.9) to specific
cases. However, the widespread use of a single level set at 18◦C enables the standardization
and simplification of information flow.16

The square shaded area in Figure 6.13 is also worth mentioning. At very low temperatures
the gradient is again reduced and often the correlation gets weaker. In fact, in the case of
extreme events, the dispersion of observations around the interpolation line will increase
and consequently the correlation between the two variables will decrease. The reason is that
for very low temperatures, the technical limits of the logistic infrastructure for gas storage
and transportation will be reached. This infrastructure is designed to meet pre-established
maximum consumption levels and, indirectly, maximum temperature levels. Beyond these
limits, gas supply must be interrupted to some users. There is also another consumption limit
for individual users. Obviously they are unable to heat the same house for more than 24 hours
a day!

It is possible to improve this analysis in many different directions. Especially for opera-
tional purposes it is important to conduct careful estimates of the consumption–temperature
relation. Limiting the discussion to just one example, it is often meaningful to separate week-
ends from working days and conduct separate estimations with two interpolating lines and

15In fact, it will be shown later that financial instruments have been developed in order to hedge this
‘temperature risk’.
16The cost of this simplification is a loss of information. For example, take into consideration two places
where their points of discontinuity are different and indeed different from 18◦C.
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two different thermal gradients. In fact, it is likely that the consumption behaviour during the
week is different from that during the weekend, as the number of hours spent at home may be
quite different in the two cases.

6.4 MODIF ICATION OF WEATHER RISK EXPOSURE WITH
WEATHER DERIVATIVES

In order to introduce the topics covered in this section, it is useful to briefly summarize
our previous findings. In Section 6.2, volume risk was discussed in general terms, placing it
in relation to the features and movements of supply and demand curves. In Section 6.3, it
was shown that volume risk, at least in the energy markets, can often be determined by the
randomness of weather conditions. In particular, we have studied the atmospheric temperature
as a weather variable and its impact on household consumption of natural gas. In terms of
modern risk management, these two sections addressed the identification and measurement of
risk. One last step is necessary to complete the process – that is, the modification in exposure
to risk. As a starting point, the theoretical background to this topic is introduced.

J.K. Arrow, Nobel Laureate for Economics in 1972, clarified the importance of financial
instruments in the optimal allocation of risk among economic agents.17 Starting from the
neoclassical theory of optimal resource allocation without uncertainty, Arrow extends these
findings to the conditions of subjective uncertainty – that is, when agents assign different
probabilities to the realization of different states of nature (i.e., possible future events). In a
market where there are freely tradable financial securities – that is, securities whose payments
are dependent on the state of nature realized ex-post – the optimal allocation of risk can
be achieved. Indeed, the exchange of financial securities allows an ex-ante transferring of
exposures to these states of nature. This will lead to a better allocation of risk exposures,
consistent with individual preferences, until the Pareto optimum is reached.18

We have already demonstrated the importance of volumetric risk together with price
risk. The lack of financial securities on weather-related volumetric risk would lead to a sub-
optimal allocation of risk. In fact, an initial endowment of weather risk would leave some
agents wishing to reduce their exposure and others instead wishing to increase it, and hence
ultimately both of these groups would be dissatisfied. The introduction and development of
financial instruments based on weather conditions (i.e., weather derivatives) is therefore based
on sound economic theory and has found relevant operational applications.

Many commonly traded securities are primitive financial instruments. An example of
such a type of security is the company share, which represents an ownership stake in a given
company, and therefore the share price represents the market value of the company. This type
of financial security cannot exist in the field of meteorology, as it makes no sense to even
discuss the price or value of weather. However, in financial markets, financial derivatives
instruments are also traded. The value of such derivative securities is linked to the value
of random variables, often called underlyings. Weather derivative instruments are therefore
derivatives for which the underlying is comprised of one or more meteorological variables.

17See Arrow (1964).
18Moreover, Arrow demonstrates that the existence and exchange of financial securities reduces the
number of markets which are necessary in an economic system.
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F IGURE 6.14 Monetary results for a HDD swap

6.4.1 Weather Derivat ives for Temperature-Related Risk

The simplest weather derivative is the fix-variable swap on degree days. In this case two
parties agree to exchange a monetary amount depending on the ex-post degree-days difference.
Figure 6.14 gives a graphical representation of the evolution of ex-post performance of a swap
on HDD.

On signing the contract, one party buys the swap while the other party sells the same
swap. The counterparties agree on the fixed contractual level of the HDD or strike, as HDDF
in the figure. They will also negotiate and agree on the notional amount – that is, the amount of
money to be exchanged ex-post for every HDD of difference against the predetermined HDDF.
Therefore, with K indicating the notional amount (here in EUR/HDD) and HDDV the realized
heating degree-days, it is possible to express the monetary result for the two counterparties
mathematically as

payoff = K × (HDDV − HDDF) (6.11)

Very frequently the payoff profile (6.11) is not determined with the HDD on just a single date.
Instead a cumulative HDD is used, that is the HDD summed over a period of time (e.g., a
month, a season, multiple seasons or a whole year).

It is useful to show how such a financial instrument can be used in order to effectively hedge
temperature risk. The analysis performed for Milan Linate station can once again be used,
assuming that a gas seller, according to an analysis similar to that illustrated in Figure 6.13, has
calculated that the temperature gradient for its sales is equal 10,000 scm/HDD. This means that,
for each additional HDD, gas sales and consumption will increase by 10,000 scm.19 Assuming
also that the profit margin is 0.05 EUR/scm, the monetary gradient is 500 EUR/HDD. The seller
gains 500 euros for each additional HDD, and vice versa. The seller, fearing a warm winter as
occurred in 1996–1997 or 2001–2002 (see Figure 6.11), enters into a weather derivative with
a bank under the following conditions.

� Financial instrument: Swap – the gas seller sells the swap, the bank purchases it.
� Reference weather station: Milan Linate airport.

19We use ‘scm’ to refer to a cubic metre measured under standard conditions.
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� Period of observation: 1 October 20xx to 31 March 20xy.
� Underlying: HDD, calculated on the average daily temperature and compared with 18◦C,

summed over the period of observation.
� Fixed HDD (i.e., HDDF = 1825).
� Notional amount: EUR 500/HDD.

From this description, it may be noticed that the contractual conditions are independent
of specific information/elements related to the business activities of the buyer or the seller,
say for example the thermal gradient. The strike is negotiated, in this case, in correspondence
with the average HDD in the period 1995–2004. Compared with this level, the profit margins
expected on the gas sales amount to EUR 912,500 (1825 × 500) during each winter. For the
sake of simplicity, a situation is considered whereby the volume risk, determined by weather
risks, has no impact on price levels. In this framework, revenues, costs and trade margins will
fluctuate only due to the uncertainty of the sold gas volume (see equation (6.4)). In Table 6.3,
two scenarios are considered for the ex-post registered HDD and the resulting payoff for both
parties is presented in each case.

The example is a numerical representation of Figure 6.14. In case A, the difference
between HDDV and HDDF is positive. The gas seller, having sold the swap, will have to pay
the payoff to the bank. Instead, in case B, the difference between HDDV and HDDF is negative,
and the gas seller will receive the payoff from the bank.

It is useful to correlate the HDD swap financial result with the business activity of the gas
seller. To carry out this analysis, it is necessary to clarify how the thermal gradient (supposed to
be 10,000 scm/HDD) can be calculated. Figure 6.13 will be used again, now placing the HDD
on the horizontal axis and showing the statistical regression line interpolating the observations
(Figure 6.15).

This estimation is done by means of a simple ordinary least squares (OLS) regression,
calculating the line that best describes the phenomenon observed. The line has the following
mathematical formulation:

gas sales = 𝛼 + 𝛽 × HDD + error (6.12)

The thermal gradient is simply the slope 𝛽 of the line, which in the example we assumed
equal to 10,000 scm for each HDD. We must bear in mind, however, that this is a statistical
relationship and as such subject to variability. This can be seen from the cloud of points, which
are scattered around the line but are generally not precisely on the line. Table 6.4 verifies the
effect of such randomness on the previous example.

In the hypothetical case B, the change in consumption due to a warmer than average
winter should be equal to –760,000 scm for a loss of profit equal to 38,000 euros for the gas

TABLE 6.3 Payoffs under two HDD scenarios

Payoff in euro for

HHDF HHDV Delta HDD Delta euro Gas seller Bank

Case A 1825 1937 112 56,000 −56,000 56,000
Case B 1825 1749 −76 −38,000 38,000 −38,000
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F IGURE 6.15 The relationship between HDDs and household gas
consumption

seller. In a hypothetical situation under no uncertainty, the positive result of the swap, equal to
38,000 euros, would fully compensate the loss on the business activity. However, Figure 6.15
shows that the relationship between gas consumption and HDD is not a deterministic one:
different levels of consumption may correspond to the same value of HDD. Cases B1 and
B2 in Table 6.4 show two plausible examples, considering the uncertainty in the relationship
between temperature and gas consumption. In fact it may happen that consumption is reduced,
in response to a warm winter, but by an amount higher than that suggested by the linear
relationship identified above; namely, the case of a combination of consumption and HDD
below the interpolating line. In case B1 the loss of margin for the seller, that is 41,000 euros,
exceeds the cash proceeds from the HDD swap, resulting in a residual loss of 3000 euros.
In case B2, however, consumption is reduced by an amount lower than that suggested by the
regression line, resulting in a residual income for the seller equal to 4500 euros.

These residual losses and gains are just two of the possible infinite outcomes of what
is classified as basis risk. This risk is faced every time an exposure to a given source of
risk is hedged with a derivative instrument whose underlying is different from this exposure,
but whose price evolution is deemed sufficiently similar for hedging purposes. This situation
is quite common in the financial world and particularly in commodity financial markets, as
the number of available derivative instruments is lower than the number of existing physical
commodities (and hence exposures) in the market.

TABLE 6.4 Payoffs under two HDD scenarios and basis risk

Payoff in euro for the gas seller

HHDF HHDV Delta HDD From SWAP From consumption variation Basis risk

Case B 1 1825 1749 −76 38,000 −41,000 −3,000
Case B 2 1825 1749 −76 −38,000 33,500 4,500
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The best situation would be the use of financial instruments that directly meet the original
exposure (i.e., uncertain gas consumption in this case). Failing that, the second best would
be the use of derivative instruments that have a temperature index as the underlying. Under
this second-best solution it becomes important to reduce, as far as possible, the mentioned
basis risk in order to increase the efficiency of hedging activity. In terms of Figure 6.15, this
is represented by the reduction of dispersion around the interpolating line.

This goal can be achieved by improving the quality of the data used for the statistical
analysis. First of all, it is advisable to use a temperature index that can discriminate significant
situations from insignificant ones. The use of HDD fits this purpose, excluding from consid-
eration temperatures above 18◦C. It is still possible to improve the significance of this index
by using as the threshold a value different from 18◦C, if statistical analysis shows that such a
value can better discriminate significant cases (i.e., gas consumption driven by temperature)
from insignificant ones. There are also various ways of improving the quality of the sample
used in gas consumption estimation.

For example, it is often wise to separate estimates for weekdays and weekends, because
the behaviour of households in these two cases will probably differ. Statistical estimation can
also help to detect anomalies in consumption records. Examples are the erroneous inclusion
of industrial gas users, or the non-constancy of the observed sample size. The latter can be the
result of the gradual inclusion of a greater number of customers, giving rise to a consumption
increase, which is of course not related to the atmospheric temperature.

6.5 CONCLUSIONS

Stemming from the clarification of the importance of volumetric risk together with price risk,
this chapter has demonstrated that the assessment of the former is possible when volumetric risk
is influenced by weather risk. In fact, we have conducted an in-depth study for a case of non-
deterministic influence – that is, the impact of atmospheric temperature on the consumption
of natural gas.

It is important to underline that there are many other cases in which weather conditions
have an impact on the energy market in general. Atmospheric temperature will influence the
consumption of other fuels used for heating, such as heating oil, but will also determine
the amount of electricity that can be produced in any thermal power plant around the world.
Moreover, other weather events are important in the context of energy transformation, and even
in a more radical way. In fact, most renewable energy sources are just based on the availability
of weather conditions and on the level of weather variables. It is almost obvious to note that
wind power depends on the availability of sufficient wind strength, as hydroelectricity does
not exist if water is not there.

Finally, through the linkage of weather events and variables to electricity production,
weather is also connected to emissions and emissions trading schemes. Scarcity of water
precipitation or lack of wind strength will imply, ceteris paribus, that a higher percentage of
demanded electricity will have to be produced by burning fossil fuels, hence increasing CO2
emissions.20

20These topics are summarized in Mauro (2007).
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NOMENCLATURE

P price
Q quantity
V value
ΔP price variation
ΔQ quantity variation
ΔV value variation
P0 initial price
Q0 initial quantity
D demand curve
S supply curve
MR marginal revenue
𝜀 elasticity of demand
VaR value-at-risk
𝜎p volatility of price returns
𝜌Q,P correlation between quantity and price
ACF autocorrelation function
PACF partial autocorrelation function
ADT average daily temperature
CDD cooling degree days
HDD heating degree days
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CHAPTER 7
Industrial Metals Markets

and Products
Alessandro Porru

7.1 GENERAL OVERVIEW

Industrial metals can be distinguished as ferrous or non-ferrous metals in relation to their
iron content. They are defined as ‘industrial’ to address their end use and distinguish them
from precious metals (gold and silver, platinum and palladium). The most important category
market-wise is that of non-ferrous metals, also called base metals: aluminium and aluminium
alloys, copper, lead, nickel, tin and zinc. Later in this book we will discuss the historical
importance and the physical features of these metals, which contributed to the formation of a
liquid market.

Other secondary metals will also be mentioned, as well as some recent efforts to develop
a market based on ferrous and ‘non-elemental’ metals. We will nevertheless observe that
steel (an alloy consisting of iron and carbon), which is heavily used in modern industry, also
struggled to develop a liquid financial market.

Unlike most commodities, where several exchanges challenge each other to attract liq-
uidity, base metals trading concentrates on the London Metal Exchange (LME). The history
of the LME goes together with that of the base-metals market. Therefore, this chapter starts
with a brief history of the LME. It follows with an overview of each metal’s characteristics,
consumption data and industry uses. Since the market is not based on non-ferrous metals alone,
and not exclusively on the LME, the most promising newcomer contracts and exchanges will
be discussed.

Sections 7.1.4 and 7.1.5 on instruments listed by the LME and traded over-the-counter
(OTC) are introductory to the content covered in Sections 7.2 and 7.3. The reader will learn
how trading is organized at the LME and how physical delivery takes place.

∗Views expressed are those of the author and do not represent his employer.

Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Edited by
Andrea Roncoroni, Gianluca Fusai and Mark Cummins.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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F IGURE 7.1 LME cash prices (a)

In the last decade, the market witnessed two important phenomena. First, the main role
played by China and its fast-growing economy that boosted the demand for metals and energy
products: the so-called ‘China effect’. Second, the increasing presence of institutional and
private investors that injected fresh money into the market: Section 7.1.6 is dedicated to these
new players.

These factors help explain the rallies observed in Figures 7.1 and 7.2, where the time
series are the LME official cash prices for the main six base-metal contracts.

At the end of 2005, the prices for all metals skyrocketed and, with the partial exception
of aluminium, a very strong bull market lasted until mid-2008 when the credit crunch and
the global crisis affected the markets. Starting from 2009, only copper prices recovered fast,
breaking the record level of 10,000 USD/MT in February 2011.

7.1.1 Brief H istory of the LME

The LME, founded more than 130 years ago in 1877, has always been an example of both
innovation and tradition. During the Roman Empire, copper and tin were extracted mainly
in South Wales and the largest deposits were based in Britain. For centuries, until ca. 1850,
the demand for copper and other metals grew at a slow pace and had always been sat-
isfied by European supply. In such a scenario, metal prices were quite stable and at the
beginning the primary role of traders was only to balance the local demand and supply. It
was during the reign of Elizabeth I that the first metal traders started to deal on a regu-
lar basis. The practice was to draw a ring in the dust on the floor where merchants dealt
and traded.
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FIGURE 7.2 LME cash prices (b)

With the industrial revolution, Great Britain turned from a net exporter of base metals into
the biggest importer from all over the world. This change further enhanced the development
of trading to the extent that it became a real need given the different origins of the imports.
Only in 1877 was the ring formalized, when the London Metals & Mining Company opened
its exchange in Lombard Court.

Importing from all over the world meant long delivery times and the LME allowed
merchants to forward-sell their loads in order to lock in their profits, thus guaranteeing their
selling prices. Later on, the development of steam ships and the invention of telegraphy helped
improve shipping times and the tracking of freight: the overall consequence was to improve
the scheduling capabilities of merchants and the delivery of loads. At the time, the most traded
metals were copper and tin and it took 3 months to ship the former from Chile and the latter
from Malaysia to London.

� The trading activity on the LME has hence concentrated on the 3-month forward: this is
the reason why it is still the most liquid contract today.

Since then, the LME has kept growing rapidly both in terms of volumes and popularity, with an
increasing number of traders using the London marketplace as a world benchmark for metals
prices. In addition to copper and tin, lead was introduced in 1903 and zinc in 1915.

The LME closed during the Great War and World War II. The Exchange reopened in
1954 with higher volumes and a more structured image, different categories of members were
introduced: some of them pure brokers and others dealers. In the 1970s, new contracts were
added to respond to the need for ‘new’ metals: aluminium first and then nickel were introduced
in 1978 and 1979, respectively. The first European warehouse was opened in Rotterdam. Today,
more than 400 warehouses are active all over the world.
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The first problems came in the 1980s, with the ‘tin crisis’ caused by the International Tin
Council (ITC). In order to avoid bankruptcy, the LME was forced to suspend tin trading for
6 months. The tin price collapsed because of the lack of demand, due to the limited uses of tin
in the past few decades and the strong supply coming from emerging countries. The 1980s also
brought positive changes as the LME developed its clearing functionality, thereby protecting
its clearing members from the risk of bankruptcy of other members. These steps helped the
LME to become a regulated market and grow in reputation, volume and confidence among the
main metal traders.

The 1990s also saw changes in the market with the introduction of two regional contracts
for aluminium alloy. The process of innovation at the LME is continuous and, in recent years,
new contracts have been developed such as plastics, steel, cobalt and molybdenum.

In the year 2000, the corporate structure of the LME changed and LME Holdings Limited
was founded: it incorporated the old LME Company and its members became shareholders
in the new company. This new structure, coupled with technological advances, permitted the
reduction of ring-dealing members in favour of more non-ring-dealing members. The latter
are players like investment banks or big manufacturing companies, which may operate from
locations different from London. Today in fact, even though trading on the ring is still in use,
trading can easily be done overseas through telephone and screens.

Although in most marketplaces the concept of a physical trading floor is no more in use,
the LME is unique in its attempt to mix innovation and tradition in a perfect blend. The LME
has been one of the first commodities exchanges to introduce an electronic trading platform:
the LMEselect.

� While LMEselect tracks the intra-day price movements of the main contracts (the 3-month
or ‘3M’), the Ring is still the source of official prices and the City’s last open-outcry
market.

In June 2012, the Board of LME Holdings Limited recommended the exchange share-
holders to sell the entire issued share capital of LME Holdings Limited to HKEx Limited
(Hong Kong Exchanges and Clearing) for £1388 million. The Board of LME Holdings Lim-
ited had received several bids, one of them notably being from the American giant, the
Intercontinental Exchange (ICE). In July 2012 the large majority of LME shareholders voted
in favour of acquisition by the HKEx: the change of ownership is expected to increase
the LME’s penetration in Asia and hence in one of the world’s fastest growing economies:
China. The following subsection will help us to understand how crucial China is in today’s
metals markets.

7.1.2 Non- ferrous Metals

When dealing with non-ferrous, base metals, generalizing can be very misleading. Often in
the media, as well as in some analyst reports, the base metals are referred to as a ‘complex’. In
reality each metal, though correlated, displays unique chemical features, different production
and consumption locations and specific industrial applications. In other words, the dynamics
of supply and demand change a lot case by case.

The following pages report for each metal the Latin name of the element, the LME contract
code (e.g., AHD for primary aluminium) together with some commonly used abbreviations
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(e.g., AL HG) and the regulated exchanges (worldwide) listing futures. Only the exchanges
showing trading activity at present have been mentioned. In the forward curve and volatility
sections, some of these markets will be compared in terms of arbitrage. Metals charts are
shown with the percentage distribution of production and consumption by country and area.
This is useful to get an idea of who are the biggest players in the market on the ‘buy side’ and
the ‘sell side’.

The role of China can easily be detected in these charts: the country very often holds
first place as the biggest single buyer or producer. Chinese GDP in the last decade grew
at an impressive pace and starting from 1998 the imports exceeded the exports. This is the
consequence of the rapid process of industrialization that creates high demand for many
commodities: oil, steel (and iron ore) and raw materials like base metals. The rallies observed
in recent years are strictly linked to the impact of China on the market: the so-called China
effect. It is no surprise that the Shanghai Futures Exchange is one of the most active trading
venues for base metals, together with the LME.

Finally, the pie charts in Figure 7.3 provide an immediate insight into the relevance of each
contract in the LME. In terms of open interest (the number of futures contracts outstanding
for a metal across all maturities), primary aluminium has no competitors: it is by far the most
traded metal followed by copper and zinc, lead and nickel. Aluminium alloys play a smaller
role, together with the new contracts on steel and minor metals. This ranking could actually
be misleading: the dollar value of these open interests should also be taken into account. In
fact, taking the end of October 2012 quotations as a reference, while one lot (25 metric tons)
of aluminium is worth 50,000 USD (at a price of 2000 USD/MT), one lot of nickel (6 metric
tons) is worth 96,000 USD (at a price of 16,000 USD/MT). The result of such a wide price
difference is that expensive metals like copper, nickel and tin have a higher relevance than that
suggested by simple open interest, with copper being in fact the most important contract in
terms of dollar value.

LME Futures Open Interest (lots)
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Author’s estimates on data and prices available as of 30 Oct 2012. 

F IGURE 7.3 Futures open interest (lots and USD value)
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High Grade Primary Aluminium
(Aluminium, AH, AL HG, ‘ALI’)

Main end uses:
Transportation, construction, packaging, electrical
transmission lines, machinery, cooking utensils.

Exchanges listing liquid futures:
LME (London Metal Exchange)
SHFE (Shanghai Futures Exchange)
TOCOM (Tokyo Commodity Exchange)
MCX India (Multi Commodity Exchange)
NCDEX (National Commodity & Derivatives Exchange, India)

LME specifications (from LME.com)
Primary aluminium with impurities no greater than in the registered designation P1020A in the North
American and International Registration Record.
Ingots, T-bars, sows.

Lot size: 25 MT
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Alloy and NASAAC Aluminium
(AA and NA)

Main end uses:
Automotive engine parts, structural applications.

Exchanges listing liquid futures:
LME (London Metal Exchange)

LME specifications (from LME.com)
Alloy: Aluminium alloy conforming to A380.1, 226 or AD12.1.

NASAAC: North American Special Aluminium Alloy Contract. Aluminium alloy conforming to the
‘LME NA380.1’ specification.

Lot size: 20 MT
Updated data to 2014 courtesy of Thomson Reuters Eikon.
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Copper
(Cuprum, CA)

Main end uses:
Electronic and electrical (wires, circuits,
electromagnets), construction, transportation,
machinery, piping, biomedical.

Exchanges listing liquid futures:
LME (London Metal Exchange)
COMEX (a division of CME, New York)
SHFE (Shanghai Futures Exchange)
MCX India (Multi Commodity Exchange)
NCDEX (National Commodity & Derivatives Exchange, India)

LME specifications (from LME.com)
Grade A copper conforming to BS EN 1978:1998 (Cu-CATH-1) .

Cathodes.

Lot size: 25 MT
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Lead
(Plumbum, PB)

Main end uses:
Batteries, chemicals, ammunitions, weight
(elemental lead).

Exchanges listing liquid futures:
LME (London Metal Exchange)
MCX India (Multi Commodity Exchange)
NCDEX (National Commodity & Derivatives Exchange, India)

LME specifications (from LME.com)
Lead of 99.97% purity (minimum) conforming to BS EN 12659:1999.

Ingots.

Lot size: 25 MT
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Nickel
(NI)

Main end uses:
Stainless steel, chemicals.

Exchanges listing liquid futures:
LME (London Metal Exchange)
MCX India (Multi Commodity Exchange)

LME specifications (from LME.com)
Nickel of 99.80% purity (minimum) conforming to B39-79 (2004).

Full plate cathode, cut cathodes, pellets, briquettes.

Lot size: 6 MT
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Tin
(Stannum, SN)

Main end uses:
Solders, tin plate, varnishes.

Exchanges listing liquid futures:
LME (London Metal Exchange)

LME specifications (from LME.com)
Tin of 99.85% purity (minimum) conforming to BS EN 610:1996.

Ingots.

Lot size: 5 MT
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Zinc
(Zincum, ZS)

Main end uses:
Galvanizing, brass, bronze, chemicals, medicine
(zinc compounds).

Exchanges listing liquid futures:
LME (London Metal Exchange)
SHFE (Shanghai Futures Exchange)
MCX India (Multi Commodity Exchange)

LME specifications (from LME.com)
Zinc of 99.995% purity (minimum) conforming to BS EN 1179:2003.

Ingots.

Lot size: 25 MT
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7.1.3 Other Metals

Steel is one of the most important commodities in the world in terms of dollar value of global
transactions. Together with iron ore, which is used to produce steel, it is only second to oil.
While the financial oil market is (amongst commodities) the biggest and most liquid in the
world, historically there have not been equivalent futures contracts on steel or iron ore.

� One reason is due to the so-called benchmark system: traditionally, the price of steel was
fixed between sellers (miners) and buyers (steel producers) once a year.

This system stood in place for over 40 years, almost eliminating price volatility. With fast-
growing demand and the China effect, the benchmark system collapsed in favour of free spot
prices. As the spot market on steel grew, the OTC forward market soon followed. Another
reason is that steel is an alloy produced in hundreds of different variants. This has always
represented an obstacle to contract standardization but, as the trading activity on the OTC
market started growing, several attempts have been made towards standardization.

One constant between almost all new contracts on steel and iron ore is that they are cleared.
In recent years, in fact, the OTC market on commodities has witnessed an unprecedented
migration to cleared contracts. The credit crunch undermined the stability of the market, since
OTC transactions are much less appealing compared with exchange-listed contracts if the
counterparty risk of default is high. As a result, traders and brokers are increasingly posting
OTC transactions on exchanges in order to benefit from the clearing house and offset their
credit exposure.

7.1.3.1 Steel Steel futures are now listed on the MCX and NCDEX (India), NYMEX
(New York), SHFE (Shanghai) and LME. The Shanghai-based exchange is probably the most
successful so far: both list contracts, Deformed Bar Steel and Wire Steel, are considered
quite liquid.

The LME initially introduced two contracts with different locations; namely, the Far East
and Mediterranean. Since only one (the Med) gathered enough liquidity, the two contracts
were merged (as of 2010) in the LME Steel Billet Futures. Approved warehouses for delivery
are in the USA, Europe, Middle East and Far East. The contract displays the same maturity
dates as for non-ferrous metals, and so the content of this section applies also to steel.

OTC activity is also rising in Europe around the CRU European hot rolled coil assessment.

7.1.3.2 Iron Ore The specification traded most on the OTC market is the Iron Ore CFR
China (62% Fe fines). The instrument is the average swap cash settled against the Steel Index
or the Platts steel assessments. Clearing of these contracts is provided by SGX AsiaClear (the
clearing facility for the Singapore Exchange) and LCH (London Clearing House, the same
clearer for the LME).

7.1.3.3 Minor Metals Cobalt and molybdenum are the latest newcomers on the LME.
The exchange launched them in February 2010. Both have several industrial applications:
alloys, batteries, catalysts and pigments. The contract displays the same maturity dates as for
non-ferrous metals.
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7.1.4 LME Instruments

On the LME, it is possible to trade both futures and options. As on most commodity exchanges
in the world, for example the NY COMEX (now under the CME umbrella) on which cop-
per futures and options are listed, the futures feature physical delivery and the options are
American style. Unlike most exchanges, the LME contracts work in a different way as
explained below.

7.1.4.1 Forwards Disguised as Futures Both forwards and futures contracts are the
obligation to deliver a determined quantity of an asset or commodity at a fixed price at a
specified date in the future. While a forward is a contract between two parties, futures are
listed and traded on exchanges. A futures is highly standardized, and a clearing house stays
between the parties to eliminate counterparty risk. The clearing house requires the holder
of a futures position to submit an initial margin and, on a daily basis, variation margins to
mark-to-market the value of positions. A forward, in contrast, is highly customizable to the
needs of the two parties who have to bear the counterparty risk. It is only at the final payment
date that the contract will be regulated if both the parties are solvent.

Futures on LME are a mix of two contracts. First of all, each operator’s positions on
futures remain open until the delivery date. Unlike on most futures exchanges, there is not in
fact netting of opposite positions. If, for example, a trader has bought 10 lots of copper for
delivery 1 year ahead, the subsequent sale of 10 lots on the same delivery date will be treated
as a different contract. The LME hence is not a cash-cleared market (Crabb, 1999).

� As a consequence, the variation margins of LME futures are discounted to take into
account the time to maturity of the futures.

The clearing of LME contracts is operated by the LCH, which applies the relevant discount
factors computed on the basis of prevailing interest rates on the market. In the example above,
if the 10 lots were sold 1 USD/MT higher than the purchase price, the trader would find in
his clearing account 1 (USD) × 10 (lots) × 25 (MT per lot) × 1y Df (1-year discount factor).
This is less than the 250 USD he would have on cash-cleared markets. The mark-to-market
of LME futures, from a financial point of view, is then comparable with that of a forward. In
the following sections we will see how this feature impacts on optimal hedging strategies and
futures option pricing.

The calculation of margins is operated by the LCH using the London SPAN® algorithm.
Initial margins are continuously updated on changing market conditions: absolute levels of
prices and volatility are the main drivers. Table 7.1 reports the scanning range assessment
(as of August 2010) for LME base metals futures. The scanning range is a worst-scenario
measure of risk: the requested initial margins are a function of that risk. For example, an initial
margin of 15,000 USD is roughly requested to enter in a position on one lot of copper (25 MT).
With a 3M contract at 7000 USD/MT the total notional of one lot is 175,000 USD and the
initial margin accounts for ∼9% of it.

The SPAN algorithm distinguishes between outright futures positions, on which the above
margins are requested, and calendar or inter-commodity spreads. With the latter positions being
less risky, different parameters are used to take into account correlation.

The LME distinguishes between clearing members and clients. Only the clearing mem-
bers interface with the clearing house and benefit from the full warranty operated by the LCH.
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TABLE 7.1 LME futures size and margins

Scanning Range (+/−)

Commodity Lot size Code $ Per Tonne $ Per Lot

Aluminium Alloy 20 tonnes AAD 140 2,800
Aluminium HG 25 tonnes AHD 165 4,125
Copper ‘A’ Grade 25 tonnes CAD 600 15,000
Cobalt 1 tonnes COD 4,500 4,500
Mediterranean Steel Billet 65 tonnes FMD 60 3,900
Molybdenum 6 tonnes MOD 6,000 36,000
NASAAC 20 tonnes NAD 150 3,000
Primary Nickel 6 tonnes NID 2,800 16,800
Lead 25 tonnes PBD 260 6,500
Tin 5 tonnes SND 1,600 8,000
Zinc 25 tonnes ZSD 230 5,750

Source: LCH (2010).

Clients, basically most of the operators who are not brokers (notice that not all brokers are
also clearing members), have contracts in place with clearing members. These contracts are
not directly guaranteed by the LCH: in theory, clients still have counterparty risk towards
their clearing brokers. In practice, the risk can be considered negligible since clearing mem-
bers are selected on the basis of financial capabilities and strictly controlled by the LCH
and LME. Besides, brokers are obliged to cross the trades done with clients on the LME
matching system: this provides full transparency to the trades and indirectly protects the
clients better.

Historically, the LME was an OTC market with a common fund established as the only
protection against defaults. Only in 1987, after the so-called ‘tin crisis’ which resulted in the
cascading default of many brokers, was the clearing house introduced. This feature explains
another peculiarity of the LME in respect of the broker dealer. In most markets the role of the
broker is limited to a third party which never bears market risk.

� Since the relation between clients and brokers is that of principal-to-principal, some LME
brokers are also dealers themselves and hold positions at risk.

The structure of tradable delivery dates, called prompt dates, is also a clear example
of the LME’s industry-tailored standardization. On the LME it is possible to trade futures
for delivery each business day up to 3 months. The first available delivery date is the cash,
otherwise referred to as the spot. As on the foreign exchange rate (FX) markets, the cash
delivers two business days after inception (i.e., t+2). The 3-month maturity (3M) is the most
traded on the LME. After the 3M, for 3 months further along, weekly prompt dates are available
on each Wednesday. After 6 months the monthly futures are listed that take delivery on the
third Wednesday of each month.

� Notice that the prompt dates are rolling maturity dates.



294 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

Today

T+2 T+3M T+6M 123M (AL HG, Copper)

63M (Lead, Nickel, Zinc)

27M (Alloy, NASAAC)

15M (Tin, Steel)

T+1

CASHT/N

Daily prompts Weekly prompts Monthly prompts

F IGURE 7.4 Delivery dates on LME.

Figure 7.4 displays the maturity set. This is valid for all dates except the monthly futures,
which have fixed maturity. Notice that while the monthly maturities are typical of most
commodity futures, the rolling maturities are typical of FX and interest rate markets.

� In practice, only the 3M and the cash contracts are traded outright whereas all other
maturities are traded as spreads to the 3M.

The 3M is hence pivotal to assess prices of the whole forward curve. These spreads are
called carries, referring to the action of carrying a position from one date to another. In LME
jargon the carries are traded in the following way.

� Borrowing – the action of buying a short-term and selling a long-term maturity.
� Lending – the action of selling a short-term and buying a long-term maturity.

This jargon is linked to the physical trading: a naked short seller has in fact to borrow from
someone else the metals to deliver, while the holder of stocks can instead lend metal to
the market.

When forward prices increase with time to maturity, the forward curve is said to be in
contango; when prices decrease with time the forward curve is instead in backwardation.

� On the basis of the above considerations, LME futures can be considered as forward
contracts that are cleared on a regulated market.

7.1.4.2 Execut ion and F ix ings On the LME, the execution of orders on futures can be
done in several ways. Open outcry on the ring, which still preserves some of the LME’s
century-old practices, provides full transparency to the price-fixing process. Brokers sit in
a small circle to form the ring: the trading day is divided into different scheduled phases,
four ring sessions, with strict rules of engagement. The trading activity not only results in
a fascinating old-school show for visitors but is also efficient and more organized than the
classic pits. See Figure 7.5.

Table 7.2 reports the exact timing of all the sessions and intervals. During the second ring
session, the LME official prices for each metal are fixed.

� The official cash and 3-month (3M) prices are the most important assessments. The fixing
is double: bid (buyer) and offer (seller) price. The offer price is also the official settlement
price.
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FIGURE 7.5 The LME ring
Source: LME. © London Metal Exchange. Reproduced with permission.

The inter-office trading links the open-outcry to the rest of the world. Brokers provide
price indications through electronic screens, chats and execution is often done via telephone.
The LME was one of the first exchanges to couple these traditional methods of trading with
electronic trading; LMEselect is the platform on which it is possible to trade the 3M contract
directly and in real time.

At 16:35 (London time) the afternoon Kerbs start: a session where each broker can have
more than one dealer seated or standing on the floor and all metals are traded together.

� At the end of this session the evaluation prices (also named evening evaluations) are fixed.
These are the assessments used by the LCH for the end-of-day margining of futures and
options.

The LME also runs the assessment of metal prices in other currencies: EUR, GBP and
JPY. For these currencies the official LME exchange rate versus USD is published.

7.1.4.3 Del ivery at LME A long/short position on the cash is subject to physical delivery.
A standing position can also be offset after the official cash price is fixed (second morning
ring) to avoid delivery: it is in fact possible to do this the next day, up until 12:20 (the so-called
Tom-Next).

In Section 7.1.2 we saw for the main contracts some basic specifications: the lot size
(number of metric tons) and the shape of deliverable material (ingots, bars, etc.). The stan-
dardization of LME futures is tailored to the needs of the industry and can display tolerance
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TABLE 7.2 Trading sessions at the LME

SESSION CONTRACT TIME START TIME END FIXING

GLOBAL INTEROFFICE ALL 24h/24h
LME SELECT ALL 1.00 AM 7.00 PM

STOCKS WARNING ALL 8.55 AM 9.05 AM

1ST MORNING RING STEEL 11.40 AM 11.45 AM
1ST MORNING RING NASAAC & ALUMINIUM A 11.45 AM 11.50 AM
1ST MORNING RING TIN 11.50 AM 11.55 AM
1ST MORNING RING ALUMINIUM PRIMARY 11.55 AM 12.00 PM
1ST MORNING RING COPPER 12.00 PM 12.05 PM
1ST MORNING RING LEAD 12.05 PM 12.10 PM
1ST MORNING RING ZINC 12.10 PM 12.15 PM
1ST MORNING RING NICKEL 12.15 PM 12.20 PM
1ST MORNING RING Cobalt and Molybdenum 12.20 PM 12.25 PM

INTERVAL ALL 12.25 PM 12.30 PM

2ND MORNING RING COPPER 12.30 PM 12.35 PM L
M

E
O

F
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P
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IC

E
S

(C
ash,3M

,
15M

,27M
)

2ND MORNING RING NASAAC & ALUMINIUM A 12.35 PM 12.40 PM
2ND MORNING RING TIN 12.40 PM 12.45 PM
2ND MORNING RING LEAD 12.45 PM 12.50 PM
2ND MORNING RING ZINC 12.50 PM 12.55 PM
2ND MORNING RING ALUMINIUM PRIMARY 12.55 PM 1.00 PM
2ND MORNING RING NICKEL 1.00 PM 1.05 PM
2ND MORNING RING STEEL 1.05 PM 1.10 PM

INTERVAL ALL 1.10 PM 1.20 PM

KERB ALL 1.20 PM 2.45 PM

INTERVAL ALL 2.45 PM 2.55 PM

1ST AFTERNOON RING NASAAC & ALUMINIUM A 2.55 PM 3.00 PM
1ST AFTERNOON RING LEAD 3.00 PM 3.05 PM
1ST AFTERNOON RING ZINC 3.05 PM 3.10 PM
1ST AFTERNOON RING COPPER 3.10 PM 3.15 PM
1ST AFTERNOON RING ALUMINIUM PRIMARY 3.15 PM 3.20 PM
1ST AFTERNOON RING TIN 3.20 PM 3.25 PM
1ST AFTERNOON RING NICKEL 3.25 PM 3.30 PM
1ST AFTERNOON RING STEEL 3.30 PM 3.35 PM

INTERVAL ALL 3.35 PM 3.40 PM

2ND AFTERNOON RING LEAD 3.40 PM 3.45 PM
2ND AFTERNOON RING ZINC 3.45 PM 3.50 PM
2ND AFTERNOON RING COPPER 3.50 PM 3.55 AM
2ND AFTERNOON RING ALUMINIUM PRIMARY 3.55 PM 4.00 PM
2ND AFTERNOON RING TIN 4.00 PM 4.05 PM
2ND AFTERNOON RING NICKEL 4.05 PM 4.10 PM
2ND AFTERNOON RING NASAAC & ALUMINIUM A 4.10 PM 4.15 PM

KERB ALL 4.15 PM 5.00 PM EVALUATIONS

Times effective as of November 2012.
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where needed to facilitate physical operations. For example, the weight of a deliverable lot
of aluminium is 25 MT with a 2% (more or less) tolerance. At the same time, the admissible
shapes are many: ingots weighing between 12 kg and 26 kg, T-bars weighing a maximum of
5% more than 750 kg, and so on.

Futures contracts are only rarely held until delivery: it happens for less than 5% of LME
open positions. LME futures are in fact benchmarks used by producers and consumers to
settle and hedge their physical contracts that could feature different qualities and locations. In
particular conditions anyway, for example in a tight spot market, buyers and sellers can use the
LME as a physical market of last resort. The operator having an open cash position already
knows ‘when’ to deliver: he is concerned with ‘what’ and ‘where’. It is possible to deliver the
brands authorized by the LME. Each brand must reflect the metal’s contract specifications, be
formally guaranteed by the brand producer, pass a physical test run by a designated consumer
and, finally, be approved by a committee.

� The material has to be delivered into LME’s approved warehouses.

The LME neither holds nor manages the warehouses but instead designates and regulates
them. The approved warehouses are many and located close to the biggest consumption
regions all over the world: Antwerp, Barcelona, Bilbao, Geneva, Hamburg, Liverpool and
Trieste are examples of European locations; Dubai, Singapore and Gwangyang are examples
of Asian locations; Chicago, Detroit, Los Angeles and New Orleans are examples of American
locations.

� The brand and the warehouses where the metal is to be delivered are the seller’s choice.

The buyer could then be delivered unwanted brands or take delivery at unsuitable locations.
This kind of uncertainty on the final delivery could in theory represent a threat to the status
of the international benchmark of the LME’s contracts. Warrants are used to mitigate this
uncertainty. An LME warrant is a ‘bearer’ document giving the holder the right to withdraw
a specified brand from a specified warehouse. When futures sellers deliver a brand into a
warehouse, a warrant is issued. The futures buyer receives the warrant: at this point he could
swap it with other holders, for example with one in a closer warehouse.

� An active secondary market has arisen around the warrant system. A two-warrant swap
is priced at a premium or discount in relation to the brand quality and the most requested
locations.

The LME, in order to regulate this market as well, has put in place LMEsword: an
electronic system that manages the transfers of warrants and stock reporting. The robustness
of the delivery process and the vast diffusion of delivery points all linked by the warrant system
is one reason the LME is a consolidated world benchmark.

7.1.4.4 Opt ions Two types of options can be traded on the LME: futures options and
TAPOs (traded average price options). The futures options, introduced in 1987, are American
style: the holder of the option has the right to exercise at any time before expiry. They are
written on monthly futures, with delivery on the third Wednesday and expiry on the first
Wednesday of the delivery month. When the option is exercised, the holder of the call (put)
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will buy (sell) the relevant futures at the option’s strike price for the quantity (in tons) of the
options held. In Section 7.3 we will outline the technicalities behind these types of options.

TAPOs were introduced in 1997 in response to the large success of Asian options
in the OTC market to replicate corporate exposure. TAPOs are commodity Asian options
automatically exercised and cash-settled. Asian options are described in more detail in
Section 7.1.5.3.

7.1.5 OTC Instruments

The OTC market involves bilateral trading between counterparties. There is virtually no limit
to the complexity of the derivative instruments traded, constrained only by the creativity and
pricing capabilities of traders and financial engineers. Rather than analyse the wide range of
complex structures, commonly referred to as exotics or exotic options, we will look at the most
traded instruments by companies wishing to hedge their portfolios. OTC base-metal trades
usually display a high degree of customization: as a consequence, investment banks are the
main liquidity providers of the instruments described below.

7.1.5.1 Swaps The commodity swap is a contract where two parties agree to swap a fixed
price for a floating price. One party will pay the fixed price and receive the floating price (and
vice versa for the other party). The floating price is normally the arithmetic average, over a
determined time period in the future, of the daily fixings of the commodity. The most used
fixings for base metals are the LME official cash and 3M settlements. The standard time period
is the monthly average: the daily average of the fixings on a calendar month.

� Such instruments, either swaps or options, written on averages are referred to as Asian.

In the limiting case where the pricing dates are reduced to one single day, the swap takes
the form of a forward. The swap (or forward), on the cash fixing with pricing date two business
days prior to the third Wednesday, replicates the LME monthly futures and is referred to as
the LME futures look-alike. The swaps and forwards could also be physically settled, but the
majority of trades on the OTC feature cash-settlement.

Asian swaps are very common also on energy markets, representing in many cases the
ideal hedge for corporates. A metal producer, for example, who has a continuous production
outflow, and hence an income from sales, is naturally long averages. At the same time,
consumers prefer to index their purchases to monthly averages in order to protect themselves
from the volatility of a single day fixing. For the same reason it is common between hedgers
to trade calendar spreads: for example, swapping a cargo pricing on a single date versus a
monthly average.

The payoff for the floating-price receiver, fixed-price payer (also referred to as the swap
buyer) can be written as:

Asian swap payoff (USD) =

[(
n∑

1

1
n

LME official fixingUSD

)

− KUSD

]

,



Industrial Metals Markets and Products 299

where n denotes the number of fixing days and KUSD is the strike expressed in USD. The left
side of the formula is the floating price, while K is the fixed price. The payoff for a swap seller
would be the reverse.

Two floating prices, instead of only one, could hold in the equation above: this would be
the case of a floating/floating swap. An example is the already-mentioned calendar spread. In
a floating/floating swap, the fixed price can be a premium or a discount of one leg against the
other.

7.1.5.2 Cross-Currency Swaps Since the official currency on the LME is the US dollar,
the operators having their balance sheets in different currencies have to hedge the associated
FX risk. This induces demand for swaps denominated in other currencies, like the European
euro (EUR), British pound (GBP) or Japanese yen (JPY). The floating price of the swap (in
USD) is converted, applying the currency conversion (at monthly or daily level) taking, for
example in the case of EUR, the European Central Bank (ECB) or LME official exchange
rates.

The payoff for the floating-price receiver, fixed-price payer can be written as:

Asian swap payoff (EUR) =

[(
n∑

1

1
n

LME official fixingUSD

EUR/USD exchange rate

)

− KEUR

]

,

where n again denotes the number of fixing days, KEUR is the strike expressed in EUR and
EUR/USD is the number of USDs for 1 EUR. The payoff for a swap seller would be the
reverse.

7.1.5.3 Asian opt ions Although Asian options are exotic, their use is widespread between
consumers and producers. In the Asian call (put) option the buyer has the right, but not the
obligation, to receive (pay) the floating price and pay (receive) the fixed price (the strike). The
option costs the buyer a premium, usually paid upfront, and the floating price is the arithmetic
average with the same characteristics as the swap. In the limiting case of single-day maturity
average, the Asian option becomes a European-style option. Asian options are, as a rule,
automatically exercised and cash-settled.

The payoffs can be written as:

Asian call payoff (USD) = max

[

0 ;

(
n∑

1

1
n

LME official fixingUSD

)

− KUSD

]

,

Asian put payoff (USD) = max

[

0 ; KUSD −

(
n∑

1

1
n

LME official fixingUSD

)]

,

where n is again the number of fixing days and KUSD is the strike expressed in USD.

7.1.5.4 Cross-Currency Opt ions Operators who do not want to bear the foreign
exchange risk on base metals often trade in composite and quanto options. Such cross-currency
options can be of any style, (European, American, Asian, etc.) and are collectively, and some-
what confusingly, referred to as quantos. The Asian euro composite on base metals, for
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example, is an option where both the premium and the strike are in EUR and the average price
of the metal in USD is converted by applying the same conversions seen for the multi-currency
swap.

The payoff for the call can be written as:

Asian composite EUR call payoff (EUR)

= max

[

0 ;

(
n∑

1

1
n

LME official fixingUSD

EUR/USD exchange rate

)

− KEUR

]

,

where n as before is the number of fixing days, KEUR is the strike expressed in EUR and
EUR/USD is the number of USD for 1 EUR.

An Asian euro quanto option instead has the strike and average price in USD but the
payoff is paid in EUR, applying a fixed exchange rate.

The payoff for the call can be written as:

Asian quanto EUR call payoff (EUR)

= max

[

0 ;

((
n∑

1

1
n

LME official fixingUSD

)

− KUSD

)

× KEUR∕USD

]

,

where KEUR∕USD is the fixed exchange rate agreed by the parties.
If, for example, KEUR∕USD = 1 and the final average of the metal’s fixings is 10 USD

higher than the strike (expressed in USD), then the call buyer would receive 10 EUR.
The Asian composite mirrors the cross-currency swap and is preferred by companies for

hedging purposes. The quanto option is instead more appealing for investors: it, in fact, totally
eliminates the currency risk while instead the payoff of a composite is still a function of the
foreign exchange rate. In Section 7.3 it will be considered how best to price and manage these
options.

7.1.5.5 Contract Example The contractual standard most used for the OTC transactions,
whether swaps or options, is the Commodity Definitions by the International Swaps and
Derivatives Association (ISDA). The definitions regulate the terms of the contracts – like the
price source, floating price description, disruption events and fallbacks; all of these rules are
constantly reviewed and updated.

In the following an example of a real term sheet for a swap transaction on LME zinc
is reported. The term sheet initially recalls the relevant ISDA definitions: in this case, those
published in 1993. The two parties enter into a cross-currency Asian swap in EUR with
Company X being the buyer (since it pays fixed price and receives floating price) and Bank
Y being the seller. Company X buys 100 tons on the average of September, October and
November, thus getting a total exposure on 300 tons. Each monthly swap is settled on the
fifth business day after the pricing period (see ‘settlement dates’). The underlying is the LME
zinc cash settlement price (hence the offer assessment), converted into EUR using the ECB
assessment. The agreed price is 2800 EUR/MT.

Lastly, note that the term sheet distinguishes between ‘business’ and ‘commodity’ days:
the first are used to compute the payment dates (t+5 in the term sheet) and use the TARGET
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calendar, while the latter are used to identify the pricing days of the swap and use the LME
calendar.

LME Zinc – Swap in EUR

Indicative Term Sheet

Indicative terms: Definitions contained in the 1993 ISDA Commodity Derivatives Definitions, as
supplemented by the 2000 Supplement to the 1993 ISDA Commodity Derivatives Definitions (the

‘Commodity Derivatives Definitions’) are used herein, unless otherwise specified.

Total Notional Quantity: 300 MT (100 MT each month)
Unit: Metric tonne
Commodity: Zinc
Trade Date: 19 Aug 2010
Effective Date: 01 Sept 2010
Termination Date: 30 Nov 2010
Calculation Period(s): Each month between, and including September and November
Settlement Date(s): Five business days following the last day of each relevant calculation

period

Fixed Amounts
Fixed Price Payer: Company X
Fixed Price: 2800 EUR/metric tonne

Floating Amounts
Floating Price Payer: Bank Y
Floating Price: Means the unweighted arithmetic mean of the relevant price for each

of the pricing dates during the relevant calculation period
Commodity Reference Price: ZINC – LME CASH. Each relevant price shall be converted into EUR

at the daily EUR/USD exchange rate
Specified Price: Settlement price
EUR/USD Exchange Rate Means for a pricing date the currency exchange rate between EUR

and USD expressed as number of USD per EUR as published by
the European Central Bank on Reuters Screen ECB37 on such
pricing date

Pricing Date(s): Each commodity business day during the relevant calculation period
Business Days: TARGET settlement days
Calculation Agent: Bank Y

7.1.6 A New Player: The Investor1

The traditional pattern of producers, sellers and traders dominating the LME arena has changed
a lot in the last decade. The LME, created to meet the hedging needs of its members, has seen
a huge increase of liquidity in the last few years, brought about by investment funds with
investment and speculative aims. In fact, it has only been in the recent past that a wide
range of investors have become interested in the LME, motivated mostly by speculation:

1The author wishes to thank Nicola Ventura for the contents of this section.
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many investors pop up on the market just with the intention of riding the latest commodity
supercycle. Investment funds that once were considered minor players in the commodity
spectrum are now the most influential in terms of volumes negotiated and open interest. At
the same time, commercial and investment banks started issuing base-metals-linked products
(bonds, certificates and warrants) that experienced a great commercial success between private
investors.

At the beginning of 2004, rumours circulated of investment funds (mostly based in the
USA) investing a small percentage of their assets under management in LME base metals.
Nowadays, fund managers are keener to disclose the amount of their yearly and periodical
investments made in the commodity asset class, and in base metals in particular. What surprises
more is not the willingness of fund managers to invest in commodities and in the LME
specifically, but the size of their investments. In terms of volumes negotiated and open interest
in futures and options, the weight of funds on the market today is huge: by comparing
all volumes negotiated at the beginning of 2004 with the numbers of the previous two to
three years, it is easy to spot the robust increase. There are different reasons behind this
sudden interest in investing funds on the LME. One of the main reasons is the historical
evidence of negative correlation between commodities and equities/bonds which underlines
the diversification power of an investment in commodities; this is coupled with the positive
correlation of commodity futures with inflation. The negative correlation between commodity
futures and the other asset classes is due, in significant part, to their different behaviour
over the business cycle (Gordon and Rouwenhorst, 2006). In addition, there is also a wide
range of other fundamental and geopolitical reasons: the depreciation of the US dollar and
the constant growth of emerging markets like China and India that pushed up the demand
for commodities and reduced inventories at critical levels. The immediate consequence of
these constant speculative money injections into the market is an unnatural increase in the
quotations of the main LME metals. In the last few years, non-ferrous metals prices, struck by
this wave of liquidity, jumped well over the value suggested by their fundamentals; the first
one was copper, whose price skyrocketed reaching new highs in early 2006, followed by zinc
and nickel quotations.

The increase in volumes brought by investment funds and banks is judged positively by
some players in the market, bringing as it does higher levels of liquidity. At the same time
others blame this kind of investment for being an obstacle to hedging, which is still the main
reason for trading on the LME.

The funds that first invested a percentage of their liquidity in commodities were based
in the USA, being followed a few years later by European and Asian funds. Since every
single country has its own regulation of investment pools, a global classification would be
hard to implement. In the US paradigm of investment funds, it is possible to distinguish two
macro categories according to their corporate structure and the way they work: mutual funds
and hedge funds. In addition to these two comprehensive groups, there are other classes of
subjects that are likewise very active in commodities: commodity index funds, exchange-
traded funds (ETFs) and exchange-traded commodities (ETCs); commodity trading advisors
(CTAs); commodity pool operators (CPOs); and pension funds. The first category of funds
that invested in LME in early 2004 were the CTAs, whose main feature is their active trading
strategy (both long and short) and their brief time horizon; later on, mutual funds and index
funds became active on the LME. Their main characteristics are the superior amount of money
to invest, a longer time horizon (3–5 years) and a passive trading strategy. Pension funds were
the last ones to enter the commodities market, playing an important role especially because of
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their size that permits them to invest large amounts of money, therefore impacting on a large
scale the entire LME complex.

7.1.6.1 Mutual Funds Mutual funds were one of the first investment pools ever created.
The first modern US mutual fund was founded in 1924, and today it is one of the most
common investment tools. A mutual fund can be considered as a particular kind of company
that pools money from many investors and invests collectively in a wide range of instruments
and securities, complying with the rules and objectives of the fund. Mutual funds sell to their
investors shares of the fund and in turn receive the money to invest in financial instruments. In
the vast majority of mutual funds, the investors are free to sell their shares anytime. In mutual
funds, differently from hedge funds, where there is no difference between the company that
manages the fund and the portfolio invested, the company that manages money is separated
from the assets managed and it is often able to manage more funds distinctly.

In the last few years the amount of investments made by mutual funds in commodities
has grown dramatically.

� They usually do not invest directly in commodity futures but use structured tools, for
example commodity indexed notes, ETFs or ETCs, and bonds linked to the performance
of a particular commodity or index.

7.1.6.2 Commodity Index Funds Index funds are a particular kind of mutual fund whose
aim is to benchmark the performance of an index. Commodity index funds are quite common
and their objective is to passively replicate the performance of the most common commodity
indexes (examples of commodity indexes are as follows: Standard & Poor’s Goldman Sachs
Commodity Index; Reuters Jefferies CRB Index; and Dow Jones UBS Commodity Index). The
main advantages of commodity index funds are their low management costs and consequently
lower fee structure. They recently became very popular amongst investors as their assets under
management grew at a fast pace year after year thanks to their good return performance and
transparency.

7.1.6.3 ETFs and ETCs An ETF, within the larger category of ETPs, is an investment fund
freely traded on exchanges, much like stocks. An ETF holds assets such as stocks, commodities
or bonds and trades at approximately the same price as the net asset value of its underlying
assets over the course of the trading day. Most ETFs passively track an index, such as the S&P
500 or the Dow Jones UBS Commodity Index. The ETPs tracking a commodity index are also
known as ETCs.

ETCs have grown in popularity in recent years because of their flexibility, low costs, tax
efficiency and stock-like features that enable every investor to freely buy or sell them in real
time on exchanges just like stocks (unlike shares of most mutual funds whose price is known
once a day). They are open-end funds: this means that (unlike futures and options) they do not
have a maturity date and are suitable for long-term investment periods. Figure 7.6 (elaborated
on data from etfsecurities.com) displays the growth in the total number of shares of some
ETCs in base metals issued by ETF securities.

7.1.6.4 Hedge Funds Hedge funds are a particular kind of fund whose main feature
is their use of alternative methods, strategies and financial instruments, with the primary
objective of achieving the highest possible absolute return. The universe of hedge funds is
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potentially unlimited: they are typically classified according to the trading strategy they use
or the underlyings in which they choose to invest.

Hedge funds, as a class, invest in a broad range of products including shares, debt and
commodities. They are open to a limited range of professional or wealthy investors who
meet certain criteria set by regulators, and are accordingly exempt from many regulations that
govern ordinary investment funds. The exempted regulations typically cover short selling, the
use of derivatives and leverage, fee structures and the rules by which investors can remove
their capital from the fund. Light regulation and the presence of performance fees are the
distinguishing characteristics of hedge funds. In Figure 7.7 the estimated value of assets under
management by hedge funds is plotted.

7.1.6.5 CTAs and CPOs Another type of fund within the hedge funds paradigm is the
so-called ‘commodity trading pool’. These investments funds pool money from a multitude
of investors and invest it in futures markets. They are structured in the same way as hedge
funds but, unlike hedge funds, are managed by CPOs. CPOs are specific subjects involved in
the administration and structuring of the fund. Usually they hire one or more CTAs in order to
exploit their experience in the management of investments.

CTAs and CPOs can be single individuals or companies, specialized in the active man-
agement of their customers’ money, and must be registered at the Commodity Futures Trading
Commission (CFTC) and the National Futures Associations (NFA). Like hedge funds, CTAs
also adopt a wide spectrum of strategies and investment tools; but unlike hedge funds their
main feature is the massive use of listed futures. One of the main features of CTAs is their
limited investment period (3–4 months) and a trading style mainly based on algorithmic and
technical signals.

7.1.6.6 Pension Funds Pension funds are funds built with the aim of providing retirement
income to employees. Amongst all the other investment funds, pension funds are probably the
ones with the largest assets under management. Because of their nature, pension funds have
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F IGURE 7.7 Hedge fund industry AUM

always invested in conservative assets and only recently are starting to invest a small part of
their capital in commodities in order to exploit the diversification benefits of commodities
as an asset class. Unlike CTAs and CPOs, whose main feature is their active trading style,
pension funds have a long-term ‘buy & hold’ investment horizon (15–30 years) and their main
purpose is to passively replicate the performance of the chosen asset class. Together with all
the other investment funds, pension funds have particularly joined in on commodities bull
market trends, particularly in the lead up to the financial crisis, giving such trends further
momentum.

7.1.6.7 Commodity-L inked Products Mainly structured as bonds, these products have
been issued and placed (both retail and private) in numbers by commercial banks and other
financial institutions. These instruments usually feature an investment bank, which structures
the embedded commodity option. The options are often exotic and written on several under-
lyings to increase the diversification of the investment: energy, agriculture, precious and base
metals. Amongst the base metals, aluminium and copper are the most widely used; they are
the only metals to guarantee sufficient liquidity on long-term forwards since bonds are usually
issued on 3 to 6-year tenors. LME fixings are the most used assessment for the spot prices.
As an alternative, sectorial sub-indices of the major commodity indices (e.g., S&P GSCI
Industrial Metal Excess Return) can be used.

7.2 FORWARD CURVES

The construction of a reliable forward curve is, in most situations, an essential condition for
taking trading and investment decisions as well as for corporate planning. The consumer who
wants to take advantage of a market in backwardation, or the miner who wants to lock in a
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contango, needs the forward curve, often for very long-term maturities. The wholesaler who
wants to match his buying and sales contracts needs to know exactly the time spreads between
maturities. The options trader who wants to price a calendar month Asian option needs to
know the metal price on every single day in the month to compute the average price.

These few examples give an idea of why the ideal forward curve assessment should have
the following characteristics.

� Being extremely accurate on the fair value: ‘mid’ prices for the liquid maturities (from
cash, to 3M to 15M at least).

� Being continuous at the daily level: the liquidity holes present in long-term futures must
be filled using proper interpolation. Prices should be assessed for each business day on
the curve.

� Being real time: continuous updating of prices during the trading day.
� Providing a realistic assessment of the bid–ask spread across the curve: the bid–offer

is a function of the liquidity of each maturity and is therefore not constant. It can be
considered a channel widening in long-term maturities.

The first two characteristics are relatively easy to achieve and represent daily practice
for most practitioners. The third and fourth ones require instead a constant presence on the
market.

At this stage, actual forward curve prices are being considered. Later, some considerations
will be made on the evolution of the curves and price scenarios.

Two considerations are due before giving a detailed description of how to gather market
information and build the necessary forward curve.

Bad news: each metal displays a unique forward curve
Although the base metals show high cross-correlation in spot prices, the forward curves rarely
present similar patterns. This is somewhat counter-intuitive for commodities of the same class:
for example, the oil trader knows that crude and his derivatives show similar characteristics in
the shape of the forward.

The forward curve of two commodities in fact may show common forward dynamics when
they have similar or derivative product specifications (e.g., gasoil is a distillate from crude
oil), are exchangeable in the industrial process (as is the case for some bio-diesel feeders) or
the market shares are the same (risk-adjusted) expectations for the future.

This is not the case for base metals. As already discussed, excluding the aluminium alloys
(alloy and NASAAC), each metal has distinctive chemical features and market/industrial
utilization.

Figures 7.8 and 7.9 depict the forward curves for aluminium HG, copper, nickel, lead,
zinc, tin and NASAAC on the same business day. On the x-axis are the monthly maturities
(third Wednesday). Each curve has a different length, given the different number of listed
maturities on the LME (see Section 7.1.4).

There is a sharp contrast between metals being in contango (aluminium HG and NASAAC)
and those in backwardation (copper, nickel). Zinc’s forward curve is also interesting: the curve
is in contango for the first 12 months and then in backwardation, almost reverting back to spot

news:each
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price levels. A very similar pattern is shared by lead, which in turn on the last part of the curve
shows a flat shape, although this should not be considered reliable since it may be the result
of poor open interest.

It is also interesting to compare aluminium HG and NASAAC: in this case, as one may
expect, the curve of the latter is very similar to the parent contract but shifted to a lower level
of price.
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Good news: the process of construction of the curve is the same for all base metals
Actually, not only base metals but also steels, minor metals and plastics are traded in the same
way on the LME. So, the rules and procedures covered in the following section can be applied
to all contracts.

7.2.1 Bui ld ing LME’s Curves in Pract ice

If one had a live bid–ask quotation of outright prices for all the maturities, one wouldn’t have
to build the forward curve. This is actually rarely the case for most commodities markets (not
only base metals) since liquidity typically concentrates on a few maturities (usually the shortest
ones). Indeed, it is the exception where the exchange appoints one or more market-makers
with the obligation to show continuous bids and offers. One example is gold futures traded on
COMEX: not a coincidence that it resembles more a currency than a commodity. To build the
forward curve, one should first gather all the market data available.

To summarize, we have the following possible inputs.

7.2.1.1 3M Contract This is quoted as an outright price. It is tradable electronically
through the LMEselect, via telephone through brokers and during ring sessions. The real-time
electronic quotation on LMEselect is crucial in order to have a continuously updated curve.
Indeed, the LMEselect attracts most volumes on the 3M, although some hedgers prefer to trade
with brokers and banks. In fact, players are reluctant to show their orders on the screen (and
hence to the whole market) when dealing large sizes.

The screen on 3M is also important to get a quick view of market depth. The screenshots
below are an example of books for copper and aluminium taken from an electronic trading
platform. At the time of the screenshot, it was possible to trade copper 3M with a bid–ask
spread of only 2 USD/MT: amounting to an ∼0.03% wide bid–ask. This is a very tight market
and is valid for only two lots on the bid (50 MT) and one on the offer (25 MT). If, for example,
one had to buy 30 lots (750 MT), one would have needed to buy at 6579.75, as shown in the
‘Accum’ column (accumulated volume). The difference between the first line price of 6577.00
and the volume-weighted average price accounts as slippage.

7.2.1.2 LME’s Clos ing Prices This is a valuable source of information since it provides
the evaluation (mid) prices for all the maturities. The LME runs this assessment daily for each
prompt date after the close of the afternoon ring-trading session (16:15 London time) and

news:the
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communicates the prices to the clearing house after the close of kerb trading (17:00 London
time). The LCH uses these prices as the basis for initial and variation margin calculations. The
closing prices are also known as evening evaluations.

Brokers usually send to their customers the closing assessment and strip all the relevant
spreads and carries out of it. Below is a sample report sent by brokers. In the left column there
is the LME’s closing assessment (outright prices) with the evidence of cash and 3M prompts,
while the other columns show the calculated calendar month rolls and 3M carries.

BROKER  XY DAILY REPORT COPPER
Monday dd/mm/yy

SpreadSpreadSpreadPriceLME CLOSING PRICES

6.494,75CASH Aug-10Jul-10 3 monthsJul-10   4,50 5,00Dec-11Dec-10  15,25 -

6.510,003M Sep-10Aug-10 3 monthsAug-10   4,25 170,00Dec-12Dec-11  10,75 -

Jul-10 Oct-10Sep-10   6.494,75 3 monthsSep-10     6,50 222,00Dec-13Dec-12      6,50 -

Aug-10 Nov-10Oct-10   6.499,25 Oct-103 months     3,50 227,00Dec-14Dec-13        - -

Sep-10 Dec-10Nov-10   6.503,50 Nov-103 months     2,50 190,00Dec-15Dec-14      3,50 -

Oct-10 Jan-11Dec-10   6.510,00 Dec-103 months     3,50 190,00Dec-16Dec-15      6,00 -

Nov-10 Feb-11Jan-11   6.513,50 Jan-113 months     3,50 ………      9,50

Dec-10 Mar-11Feb-11   6.516,00 Feb-113 months     3,50     13,00

Jan-11 Apr-11Mar-11   6.519,50 Mar-113 months     2,00     16,50

Feb-11 May-11Apr-11   6.523,00 Apr-113 months       -     18,50

Mar-11 Jun-11May-11   6.526,50 May-113 months       -     18,50

Apr-11 Jul-11Jun-11   6.528,50 Jun-113 months       -     18,50

May-11 Aug-11Jul-11   6.528,50 Jul-113 months-     1,50     18,50

Jun-11 Sep-11Aug-11   6.528,50 Aug-113 months-     2,00     17,00

Jul-11 Oct-11Sep-11   6.528,50 Sep-113 months-     3,00     15,00

Aug-11 Nov-11Oct-11   6.527,00 Oct-113 months-     4,50     12,00

Sep-11 Dec-11Nov-11   6.525,00 Nov-113 months-     6,50       7,50

Oct-11 Jan-12Dec-11   6.522,00 Dec-113 months-   12,00       1,00

Nov-11 Feb-12Jan-12   6.517,50 Jan-123 months-   12,00 -    11,00

Dec-11 Mar-12Feb-12   6.511,00 Feb-123 months-   13,00 -    23,00

….….…….….…….…
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These spreads are likely to represent the reference for trading the following morning: the
first bids and offers are likely to be around those ‘mid’ values.

� Given this premise, and having a live feed of 3M quotes, it is possible to build the
evaluation-adjusted forward curve: a ‘quick and dirty’ approximation of the actual for-
ward curve.

It will be enough to match the spreads present in the third column (3M spreads) with the
updated 3M quotes to get a rough idea of the whole forward curve. The resulting curve will be
consistent with the actual market curve in the absence of events changing its shape: for those
familiar with principal component analysis (PCA), this means considering only the parallel
shift in the curve movement.

7.2.1.3 Carries Although they can be quoted against any maturity pairs, most of the
trading concentrates on 3M against the monthly (third Wednesday) maturities and the other
‘pivot’ maturities like the TOM and the CASH.

� This reflects the common practice of trading outright the 3M, which is the most liquid
contract also available on screen, and then rolling the position to other maturities through
the carries.
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Carry Price Source Bid Ask Last Trade High Low

Tom-Next LMES -3.0 -1.5 -3.50 -3.10

→
→

→
→

→
→

→
→

→
→

→
→

→
→

→
→

↔
↔
↔

-0.20 -3.50

Cash-3 Mth RING -16.0 -14.0 -16.50 -1.25 -16.50 -16.50

Jul10-3 Mth TRAF -14.0 -14.0 -14.84 0.41 -15.00 -16.00

Aug10-3 Mth LMES -8.0 -5.0 -10.38 -0.13 -10.20 -11.00

Sep10-3 Mth LMES -6.0 -5.5 -6.00 0.25 -6.00 -6.50

Oct10-3 Mth LMES 0.0 0.3 0.25 0.00 0.50 --

3 Mth-Nov10 LMES -1.5 1.5 -3.50 0.00 -- --

3 Mth-Dec10 RING -7.0 -6.0 -6.00 0.00 -6.00 -7.00

3 Mth-Jan11 RING -8.5 -3.5 -9.75 -0.25 -- --

3 Mth-Feb11 LMES -12.3 -7.3 -12.75 0.25 -- --

3 Mth-Mar11 RING -15.3 -10.3 -15.50 1.00 -- --

3 Mth-Apr11 SGEN -20.5 -10.5 -17.50 1.00 -- --

3 Mth-May11 LMES -22.5 -12.5 -17.50 1.00 -- --

3 Mth-Jun11 LMES -16.5 -10.0 -16.00 1.38 -- --

3 Mth-Jul11 ICA -22.5 -12.5 -16.50 2.00 -16.15 -17.20

3 Mth-Aug11 LMES -21.5 -11.5 -14.50 2.50 -- --

3 Mth-Sep11 LMES -19.5 -9.5 -11.50 3.50 -- --

3 Mth-Oct11 BCG -19.0 -4.0 -8.00 4.00 -- --

3 Mth-Nov11 LMES -15.5 -0.5 -3.00 4.50 -- --

Change (USD)

F IGURE 7.10 Example of carries on copper

The market of carries is run by brokers and dealers, which can also show ‘on demand’
quotes for specific and illiquid carries. Software vendors and the brokers themselves offer
screen tools that aggregate these quotes.

Figure 7.10 is a practical example of a typical screen displaying the market on carries.
Tom-Next (T/N). Tom stands for ‘tomorrow’. This is the shortest tradable maturity: until

first ring close (12:20 London time) it is possible to roll positions delivering tomorrow (i.e.,
the day before the cash prompt). Tom-next represents exactly the roll between tomorrow and
the ‘next’ day, the cash. For those who forgot to roll their positions and do not want delivery,
it is the last chance to avoid going physical.

Starting with the above inputs, it is possible to build the forward curve. This is done
separately for maturities before and after the 3M.

Prompt dates before the 3M (date/3M) are quoted as prompt date vs. 3M
Example. A cash-3M quote (see the screenshot) –16.00/–14.00 (USD/MT) means that someone
is bidding (borrowing) the cash prompt 16.00 USD lower than the 3M and someone is offering
(lending) it 14.00 USD lower. This portion of the curve is hence in contango.

The 3M quotes shown previously are taken and used to calculate the cash outright prices:

BID ASK BID/ASK

3M 6575 6577 2 Usd

Cash-3M 16,00-       14,00-       2 Usd

CASH 6.559,00  6.563,00  4 Usd

BID ASK

3M

Cash-3M
+ +

Cash bid: 3M bid + cash/3M bid = 6575.00 − 16.00 = 6559.00



Industrial Metals Markets and Products 311

Explanation. To sell the cash one must hit the bid on the carry (hence selling at –16.00). This
will result in a short position on cash and a long on 3M. One now has to get rid of the long
position on 3M and therefore sell the 3M by hitting the bid (hence selling at 6575). Finally,
one will have a short position on the cash at a price level of 6559.

Cash ask: 3M ask + cash/3M ask = 6577.00 − 14.00 = 6563.00

Explanation. To buy the cash one must lift the offer on the carry (hence buying at –14.00).
This will result in a long position on cash and a short on 3M. One now has to get rid of the
short position on 3M. Therefore, buy the 3M taking the ask (hence buying at 6577). Finally,
one will have a long position on the cash at a price level of 6563.

Prompt dates after the 3M (3M/date) are quoted as 3M vs. prompt date
Example. A 3M-Oct11 quote of –19.00/–4.00 (USD/MT) means that someone is bidding the
Oct11 futures (third Wednesday) 4 USD higher than the 3M and someone is offering it 19 USD
higher (so the curve is in contango).

The 3M quotes shown previously are taken and used to calculate the Oct11 outright prices:

BID ASK BID/ASK

3M 6575 6577 2 Usd

3M-Oct11 19,00-           4,00-            15 Usd

Oct11 6.579,00      6.596,00     17 Usd

BID

3M

3M-Oct11 - -

ASK

Oct11 bid: 3M bid − 3M/Oct11 ask = 6575.00 − (−4.00) = 6579.00

Explanation. To sell the Oct11 contract one must take the ask on the carry (hence buying
at –4.00): this will result in a short position on Oct11 and a long one on 3M. One now
has to get rid of the long position on 3M. Therefore, sell the 3M hitting the bid (hence
selling at 6575). Finally, one will have a short position on the Oct11 contract at a price level
of 6579.

Oct11 ask: 3M ask + 3M/Oct11 bid = 6577.00 − (−19.00) = 6596.00

Explanation. To buy the Oct11 one must hit the bid on the carry (hence selling at –19.00): this
will result in a long position on Oct11 and a short on 3M. One now has to get rid of the short
position on 3M. Therefore, buy the 3M taking the ask (hence buying at 6577). Finally, one
will have a long position on the cash at a price level of 6596.

At the beginning of this section the importance of having the bid–ask across the curve was
underlined. In the two examples above, it can be seen that starting from a bid–ask of 2 USD
for the 3M, one obtained a 4 USD bid–ask for the cash and a 17 USD bid–ask for the Oct11
contract. Repeating the process for all maturities, one can build the whole current forward
curve for copper. Figure 7.11 shows the curve obtained. The bid–ask gradually widens on
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F IGURE 7.11 A complete forward curve on LME copper

the longest maturities, while being at the minimum at 3M (corresponding to Oct10). The mid
curve is derived as the mean between the bid and the ask values.

Carries can be checked through a quote from a broker or a dealer that always comes
with a size, giving an idea of slippage. This is even truer when it comes to the less liquid
base metals. The carries screenshot seen above for copper would look something like that in
Figure 7.12 for lead.

Carry Price Source Bid Ask Last Trade High Low

Tom-Next ADMI -0.7 -0.3 -0.50 0.05 -0.20 -0.60

Cash-3 Mth LMES -23.0 -22.0 -20.00 0.00 -- --

Jul10-3 Mth LMES 0.0 0.0 -20.00 -2.00 -20.75 -20.75

Aug10-3 Mth BIMI -13.4 -13.2 -13.40 -0.15 -13.00 -15.00

Sep10-3 Mth MANF -9.5 -8.3 -8.25 -0.25 -8.00 -9.00

Oct10-3 Mth RING -5.0 -0.2 -0.19 0.00 -- -1.00

3 Mth-Nov10 RING -6.0 -5.5 -5.50 0.00 -5.50 -5.50

3 Mth-Dec10 RING -10.6 -11.0 -10.55 0.45 -10.55 -10.55

3 Mth-Jan11 RING -17.5 -17.0 -16.50 -0.50 -- --

3 Mth-Feb11 YEST CLOSE -- -- -21.00 -0.50 -- --

3 Mth-Mar11 YEST CLOSE -- -- -25.00 -0.50 -- --

3 Mth-Apr11 YEST CLOSE -- -- -29.00 -0.50 -- --

3 Mth-May11 YEST CLOSE -- -- -33.00 -0.50 -- --

3 Mth-Jun11 YEST CLOSE -- -- -34.00 -0.50 -- --

3 Mth-Jul11 YEST CLOSE -- -- -37.00 -0.50 -- --

3 Mth-Aug11 YEST CLOSE -- -- -40.00 -0.50 -- --

3 Mth-Sep11 YEST CLOSE -- -- -42.00 -0.50 -- --

3 Mth-Oct11 YEST CLOSE -- -- -44.00 -0.50 -- --

3 Mth-Nov11 YEST CLOSE -- -- -44.00 -0.50 -- --

Change (USD)
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→
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→
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F IGURE 7.12 Example of carries on lead
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It is observed that screen quotes are available only for the shortest maturities: liquidity
for the longest ones would be given by brokers and dealers on demand.

� Therefore, a fully reliable, bid–offer, continuously updated forward curve on base metals
requires one operator to be constantly active on the market.

7.2.2 Interpolat ion

At the beginning of this chapter it was suggested that the optimal forward curve should be
continuous at the daily level. This is indeed important for many reasons. First of all the pricing
of an average swap requires as input all the prices of the business days within the pricing
period. Since on the exchange only the daily prompt dates up to the 3M are quoted, one
must interpolate the daily prices for maturities beyond 3M. A very simple method is linear
interpolation. The drawback of this method is that the first derivative is discontinuous on each
node of the curve. For this reason the more sophisticated spline interpolations of degree >1,
like the cubic and natural cubic spline, are often used.

Given a set of data points (xi,yi), for i = 1, …, k, a continuous spline interpolation curve
is obtained by concatenating interpolant functions of degree n between each pair of adjacent
data points (xi,yi), (xi+1,yi+1). The degree of n determines the type of interpolation. There are
k–1 interpolants.

Where n = 1, the k – 1 interpolants are linear (i.e., of the form y = mx + a) and are
equivalent to piecewise constant linear interpolation. Where n = 2, the k – 1 interpolants
are quadratic (i.e., of the form y = a + mx2 + hx) and the function is called a quadratic spline
interpolation. Where n = 3, one has cubic spline interpolation, and so on. The cubic spline
interpolation guarantees that the piecewise k – 1 cubic functions join each other smoothly at
each node (the interpolant is twice continuously differentiable at the nodes). See Rouah and
Vainberg (2007) for further details on Excel implementation.

In order to replicate the standard LME interpolation, it will be enough to use the piecewise
linear interpolation with some specific caution: as a matter of fact, this is the method used by
the LME. In our practical case, (xi,yi) would be the maturities (xi) on which price quotations
(yi) are available.

The i functions are:

Pi (x) = ai + mi (x − xi)

For each sub-interval (xi, xi+1) one must estimate the constants ai (with ai = yi being Pi(xi) = yi)
and the coefficients mi (with mi =

yi+1−yi

xi+1−xi
).

The chart in Figure 7.13 plots the results of piecewise linear interpolation obtained for
lead starting from the quotes available (main pillars).

The above interpolation would match the LME’s evening evaluation under the observation
of the following cautions.

� The curve has to start from a quotation of the cash.
� The quotation of 3M must also be included: notice that between Oct10 and Nov10 the

interpolation is split into two pieces.
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F IGURE 7.13 Price interpolation on lead curve

� The day count is based on calendar days within the month. The gaps in the curve are the
weekends: during these days the price virtually increases.

� The non-LME prompt days must be treated like holidays.

7.2.3 LME, COMEX and SHFE Copper Curve and Arbitrage

Copper is privileged amongst metals: futures contracts are quoted and liquid on various markets
across the world. Taking London time as reference, it is possible to trade early in the morning
on SHFE until 08:00, then activity gradually rises on LME and at 13:10 the pit on COMEX
also opens. These three markets nowadays are the most active but not unique: copper is listed
also on the MCX and NCDEX, both based in India.

The chemical specifications of copper good-to-delivery are similar between the three
futures contracts. SHFE also envisages the delivery of LME’s brands. Contract specifications
are instead different: this aspect, together with the different locations, may at times open up
arbitrage opportunities. Forward quotations are in fact seldom perfectly identical. It will be
shown how to build comparable forward curves. The arguments proposed can also be applied
to the other metals listed on different exchanges.

Commodity unit quotation. LME and SHFE quote copper in metric tons (MT) with only
a difference in the lot size (25MT for LME, 5MT for SHFE). COMEX copper is quoted in US
cents per pound. The appropriate unit conversion is needed to convert the quote into metric
tons:

1 lb = 453.592 g

Currency. LME and COMEX quote copper in USD, although COMEX prices are given
in cents. SHFE quotes are in Chinese Renminbi (yuan): the official currency of China.

� The exchange rate USD/CNY represents a first element of market distortion and a source
of theoretical arbitrage opportunities.
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F IGURE 7.14 Chinese Renminbi price chart

These opportunities can only be theoretical since the Renminbi has been pegged to the USD
for a long time and restrictions on currency transfers are in place. In June 2010 the People’s
Bank of China decided to de-peg the Renminbi from the USD and increase the rate flexibility.
See Figure 7.14.

Delivery location. Each exchange approves warehouses for delivery. The LME can exploit
several warehouses around the globe, which provides great logistic flexibility to operators and
physical arbitrageurs. In the past, the copper arbitrage was between LME and COMEX: this
arbitrage is very narrow though, since the contracts are both very liquid in USD and respective
warehouses are located nearby. The arbitrage LME/SHFE is nowadays the one offering more
opportunities: in this case warehouses are not so close and therefore freight costs are higher.

In Figure 7.15, copper spot prices on the three exchanges are converted to the LME
standard: prices in USD/MT. The time series of Shanghai spot prices embeds VAT: this is
removed in the chart to make prices comparable. As anticipated, LME and COMEX prices are
pegged to each other. One should expect the same feature on the forward market. The spreads
are plotted in the chart (right y-axis) and are a measure of the gross arbitrage. It is observed
that LME/SHFE is more often in positive territory: LME at a premium to SHFE. This reflects
the fact that China is a net importer of copper and the market is keener to import from LME
(buy LME and sell SHFE) rather than exporting to LME (buy SHFE and sell LME). When
the spread is negative (i.e., LME at a discount to SHFE), the imports rise and the arbitrage
window is closed rapidly.

There is an arbitrage opportunity – in arbitrage jargon, the window is open – when the
following holds:

SHFEcopper > (LMEcopper + CIF) × USD∕CNY × (1 + taxes),

where CIF is the cost of insurance and freight, taxes are VAT (value added tax) plus import
taxes.

� Differences in import/export taxes and VAT between countries can play a major role in
determining the profitability, and hence the direction, of the arbitrage.
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F IGURE 7.15 International copper spot prices

In particular, Chinese export tax and VAT policies (as well as the selective application of
VAT rebates) on refined copper and scraps has changed quite often in recent years; as a matter
of fact, they are used by the government as an effective tool to control the flow of exports from
and to the country.

Delivery period. The three futures enclose different delivery periods. Since the goal is
to build consistent forward curves, one must infer some hypothesis on the exact pricing day
for each monthly futures. The LME monthly futures delivery rule leaves no doubt since the
material is for delivery on a single day (the third Wednesday of the month). COMEX futures
are for delivery on any business day within the month. SHFE futures are for delivery between
the 16th and 20th business day of the month. Figure 7.16 represents visually the different
deliveries.

Since the contracts encompass the feature of seller’s choice, it is ultimately the seller’s
decision when to deliver. A rule of thumb is that the rational seller will deliver as soon as
possible in contango and as late as possible in backwardation. Under this assumption the
pricing date for COMEX futures can be set as the first business day of the month when in
contango and the last of the month when in backwardation. Interpolation can then be applied
to get all other maturity prices.

Finally, the three forward curves can be obtained. In Figure 7.17 COMEX and SHFE
prices are converted to the LME standard with quotes expressed in USD/MT and the monthly
prompts being the third Wednesday. Furthermore, SHFE prices are cleaned of the VAT effect.
Prices are taken at 8:00 am London time. LME’s forward curve is at a premium to SHFE’s ex-
VAT curve: this is consistent with the positive spread observable in the last part of Figure 7.15
on copper spot prices. COMEX copper is also slightly at a premium to LME: the differential
widens with time while being very narrow at the front end of the curve.
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F IGURE 7.16 Copper delivery periods

This is just the starting point for the analysis of a potential arbitrage: CIF costs and taxes
still have to be applied on top of these curves to identify real arbitrage opportunity.

Convexity bias. Since LME futures are actually forwards, the comparison with other,
more standard, metals futures should account for the possible convexity bias. COMEX futures
are in fact margined daily as the difference between the underlying’s price and the initial strike
without any discount factor. On margins, interest is accrued. A positive correlation between
futures prices and interest rates would result in compounded proceeds for a long futures
position: in fact, on rising (decreasing) metal prices both variation margins and the USD rate
used to calculate interest would increase (decrease). This effect, called convexity bias, would
make futures prices higher than forwards prices (with positive correlation). Nevertheless, since

COPPER: Fwd curve (10/08/10 08:00)
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there is little evidence of strong correlation between base metals prices and interest rates, this
effect is often neglected.

7.2.4 Contango L imit…
Base-metals traders always monitor forward curves, trying to exploit any imperfection or
mispricing. The presence of possible arbitrage is therefore very limited. At the same time,
when a possible arbitrage is durable on the market it is hard, albeit impossible, to capitalize
on this arbitrage.

In contango markets, a typical arbitrage trade is the cash and carry arbitrage. The trade
consists of buying the metal at a prompt date t and at the same time selling it at a forward date
T > t. If the forward price is higher than the spot price plus all the financing costs (assuming
one borrows money to buy the metal spot) – the warehousing, insurance and transport costs
(one needs to store the metal between t and T) – one would lock in a certain profit. This gross
profit (the effect of different taxation regimes would alter the net result) attracts traders who,
putting the trade on, progressively narrow the arbitrage until it disappears.

The cash and carry arbitrage hence represents the upper limit for the forward price:

F(t, T) < St e(r+u)(T−t),

where F (t, T) is the forward price at time t delivering at time T; S(t) is the spot price in t; r
is the risk-free rate; and u represents the storage costs in yield percentage terms (inclusive of
complementary costs like insurance and transport).

It will be shown in detail if and how this concept finds practical application on the LME.
As seen previously, the exchange provides a flexible and efficient way to manage physical
delivery through warrants and the LMEsword. The arbitrageur who is long a metal on the cash
will be delivered in t+2 the purchased tons into an authorized LME warehouse.

� The fact that brand and warehouse location for delivery are the seller’s choice does
not represent an issue for the arbitrageur: he could in fact deliver back into the same
warehouse at the forward date.

Under the above hypothesis, one can neglect transportation costs and rather focus on
storage costs at official warehouses. The above equation considers the storage costs as a
function of the spot price S(t) with costs increasing proportionally with prices. This may not
be the best representation for base metals. Each authorized warehouse has freedom to fix the
rates charged for each metal but, for the sake of transparency, the LME requires maximum
rates to be communicated to the market. Any change in the maximum rates has to be notified
3 months in advance. Table 7.3 is an extract of maximum rates published by the LME.

Figure 7.18 shows the average rates (average of all authorized warehouses) expressed in
USD per day from 2004 to 2010. It can be seen that the highest rates are charged for the most
expensive metals (nickel and tin), with the exception of aluminium alloys. At the same time it
is evident that rates are increasing year by year and are independent of market fluctuations.

These considerations lead us to prefer the formulation of storage costs as additive to the
price:

F(t, T) < (St + U)er(T−t)
.
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Combining the storage costs seen earlier together with the 1-year LIBOR rates (as proxy
for the risk-free rate r) and the LME cash prices, it is possible to compute the 1-year con-
tango limit in USD for each metal and compare it with the actual historical contango. In the
following, this analysis is performed for the period from 2007 to 2010. Figures 7.19–7.24
compare the actual 1y contango (USD/MT – right axis) with the theoretical contango limit
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F IGURE 7.24 Zinc contango limit

(USD/MT – right axis) as well as the 1y Libor rate (% – left axis). When the actual contango
is >0 USD/MT a contango market prevails, whereas when the actual contango is <0 USD/MT
backwardation prevails.

The charts present some considerations:

� First of all, as anticipated at the beginning of the chapter, the forward curve fluctuations
of each metal are unique and poorly correlated. Furthermore, the fluctuations of actual
contango are random across all metals.

� In the sample considered (42 months) it is impossible to identify a ‘structural’ contango
or backwardation. While metals like zinc and aluminium are in contango for most of the
days, tin is mostly in backwardation. Copper instead shows significant changes in the
curve’s inclination.

� The contango limit in general seems to hold. There are nevertheless interesting exceptions.

There are exceptions to this in aluminium and nickel during the last quarter of 2008.
During those days, actual contango was beyond the theoretical limit. But why did this apparent
arbitrage opportunity last for several weeks? The answer is that in practice, the cash and carry
trading was limited by the global credit crisis (i.e., the credit crunch), which culminated on
15 September 2008 with Lehman Brothers filing for Chapter 12 bankruptcy.

� It is the condition r = risk-free rate that is violated: each company has different ratings
and financing capabilities that result in an (r+premium) rate of financing.
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F IGURE 7.25 Contango limit and the credit crunch

To further investigate the impact of the credit crisis, an ad-hoc ‘Miners’ credit default
swap (CDS) index is built. The index takes the unweighted average of the 1-year CDSs for
three major international players active on industrial markets: Arcelor Mittal, Anglo American
plc and BHP Billiton.2 A CDS rate is not equal to a company’s funding rate but provides a
rough idea of its evolution: it is measured in basis points (bps). The higher the CDS, the higher
the additional spread over LIBOR required by the interbank market to finance the company.
Figure 7.25 shows the contango limit violation on nickel together with the ‘Miners’ CDS
index rate.

In the fourth quarter of 2008 the credit crunch was at its peak: the companies who were
long stocks started to sell their reserves in order to use the cash proceeds as an alternative
(self-)financing system. At the same time, a requisite for arbitrage is full access to the physical
market: often not the case for those financial institutions with the lowest funding rate.3

7.2.5 …and No-L imit Backwardat ion

While it has been relatively easy to set a theoretical limit for contango, the same limit is
impossible to calculate for backwardation. The holder of the physical commodity may yield
some extra return that the holder of an equivalent forward position cannot. This is, for example,

2The choice of mentioned companies is purely indicative and based on their relevance in the physical
market.
3For a detailed analysis of the topic, see Chris Harris in Geman (2005).
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the case for companies who consume or transform base metals and create value added out of
the production process. Even in situations of rising spot prices these companies sometimes
just cannot stop consuming the metals: perhaps because stopping the industrial process may
require too much time or because the finished products have already been sold.

The convenience of holding the physical commodity is called the convenience yield. Since
the demand for spot consumption of a commodity could in theory infinitely inflate spot prices,
the backwardation could, in theory, be infinite. When stocks are low, which means metal is
scarce on the spot market, the market is usually in backwardation. The tighter the market is
on spot, the more pronounced is the backwardation.

� Backwardation is in fact more the consequence of the fast rising of spot prices rather than
the lowering of forward prices.

In Figure 7.26 the 3M–cash spread is plotted. When the spread is negative the market is
in backwardation. The grey area shows the global inventories expressed in tons (right axis).
In the summers of 2007 and 2008, the level of inventories was very low: the backwardation
peaked. In the winters of 2006 and 2007, with stocks at reasonable levels, the market reverted
temporarily to contango. Starting from the fourth quarter of 2008 the stocks increased steadily
(part of the reason being linked to the aforementioned credit crunch) and the forward curve was
in contango. The correlation between stock levels and contango/backwardation is sensible.

The same data used for the chart in Figure 7.26 can be used to plot a scatter chart: the
x-axis is the 3M–cash spread (USD/MT) and the y-axis is the level of stocks (tons). The result
is shown in Figure 7.27. The grey points are the actual spread levels while the dashed red line
gives the calculated levels of the contango limit.
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F IGURE 7.27 The role of inventories – dispersion chart

The chart in Figure 7.27 provides an illustration of the relation between stocks and the
forward curve’s inclination. It is also possible to identify the relation as an exponential function
(solid black line), although the dispersion is not negligible. The resulting exponential function
is indeed consistent with the considerations made.

� The function is unbounded on the left side: the backwardation could in theory be infinite.
� The function is bounded on the right side: the contango limit works as an asymptote of

the function.

Looking back at recent years, one can find periods where the market on nickel experienced
extreme backwardation. One clear example involved the T/N maturity. As seen at the beginning
of the chapter, T/N is the shortest maturity on the curve: it is hence extremely sensitive to
variations of stock levels. Figure 7.28 shows the nickel cash price (USD/MT, left axis) together
with the level of T/N (USD/MT, right axis). The price of T/N, being the roll of just a single
trading day, is normally within a +50/–50 USD range. In July 2007 and August 2008 the
spread touched record levels of backwardation. As expected, this was happening in a scenario
of wildly rising cash prices.

To explain this kind of situation, it must be remembered that it is the seller of a forward
who has the obligation to deliver the metal. In a context of rising physical demand and general
growth in the economy (as occurred in those years), cash prices go up and stocks are consumed.
If sellers do not have the physical metal to deliver (also because of stock scarcity), when the
forward date comes to expiration they must borrow it (buy cash, sell forward). The borrowing
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F IGURE 7.28 The role of inventories – dispersion chart

effect is then to widen further the backwardation. The holder of stocks is best positioned in
this market scenario, explaining much of the ‘convenience’ behind the convenience yield.

Physical traders know very well that the market behaves in this fashion and can sometimes
try to ‘corner the market’.

� If the majority of available stocks or the supply of metal is controlled by a single operator
(or a cartel of operators), the market can be cornered. The operator, by simply not selling
its stocks, can artificially inflate the cash prices, hence increasing the dollar value of his
holdings.

This strategy does not always work: Yasuo Hamanaka of Sumitomo Corporation failed and
sunk in the attempt. For several years he tried to corner copper, to the extent that he gained
the nickname of ‘Mr Copper’, until 1996, when the size of losses suffered became too big to
be hidden. Sumitomo reported losses for 2.6 billion USD.

In order to prevent or limit such situations, the LME can adopt specific rules of lending
and impose obligations on stock holders: the Metal Lending Guidance.

Metal Lending Guidance paragraph 13.24 of Market Aberrations […] setting out
the behaviour required of the holders of dominant long positions in the Exchange’s
metal markets, including a clarification or explanation of that behaviour issued by
the Exchange from time to time…

LME Rulebook, Definitions
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Looking back at the practical example on nickel, points (1), (2) and (3) in Figure 7.28 are
the time steps of how in practice the exchange reacted to the aberrations on T/N.

1. The exchange first decided to introduce a cap of 300 USD to daily backwardation

16/08/2006

LME Imposes Backwardation Limit for Nickel

At 1700 hours today, the London Metal Exchange (LME) announced that the Special
Committee has imposed a backwardation limit of $300.00 per tonne per day in the
nickel market and that there will be a suspension of the Lending Guidance in respect
of those with nickel positions.

(LME press release)

2. Market reverted to normality and the cap was removed

10/11/2006

LME Removes Nickel Backwardation

The London Metal Exchange (LME) has today announced that the Special Committee has
lifted the backwardation limit in the nickel market.

(LME press release)

3. In May 2007, the market was again in distress for nearby delivery: demand for
nickel was fuelled by the substantial growth of stainless steel capacity in China.
LME tightened the Lending Guidance on nickel

06/06/2007

Modification of Lending Guidance

The Special Committee has decided to modify the Lending Guidance in respect of those
with nickel positions by introducing new levels at which the holder(s) of dominant
long positions are required to lend nickel.

(LME press release)

The new lending guidance dictates precise rules of lending and prices for holders of
dominant positions on nickel cash dates and warrants. The holder can be forced to reduce his
positions on warrant, TOM and cash (WTC) at a fixed price expressed as a percentage of the
cash price per day. In Table 7.4 an abstract from the new lending guidance is reported.

After the release of the new lending guidance the nickel cash price dropped, while at
the same time the backwardation reverted to normal levels. In those days, two players were
rumoured to be responsible for the squeeze on the spot market. The exchange did not officially
mention market abuses, but nevertheless the counter-measures taken worked well whatever
the causes of market distress.

7.2.6 Hedging the Curve in Pract ice

At the beginning of LME’s history, the only traded maturity was the 3-month. It subsequently
became possible to trade all the dates from the cash to 14 days beyond the 3-month. When the
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TABLE 7.4 LME lending guidance

Only one holder of
50% or more of
WTC positions

Existing Lending
Guidance Applies,
i.e. 50% – <80%
lend at 1∕2%
(changes after
5 days)

Existing Lending
Guidance Applies,
i.e. 80% – <90%
lend at 1∕4%
(changes after
5 days)

Existing Lending
Guidance Applies,
i.e. = or >90% lend
at level

Two holders of 25% or
more each of WTC
positions

25% – <40% lend
at 1∕2%

40% – <45% lend
at 1∕4%

= or >45% lend
at level

Three holders of 25%
or more each of
WTC positions

16.66% – <26.66%
lend
at 1∕2%

26.66% – <30% lend
at 1∕4%

= or >30% lend
at level

Four holders of 25% or
more each of WTC
positions

12.5% – <20% lend
at 1∕2%

20% – <22.5% lend
at 1∕2%

= or >22.5% lend
at level

Five holders of 25% or
more each of WTC
positions

10% – <16% lend
at 1∕2%

16% – <18% lend
at 1∕4%

= or >18% lend
at level

Source: LME press release 06/06/07.

metal industry started concerning itself with risk management, the trading activity on long-
term maturities rose. On the sell side of long-term contracts, there are for example mining
companies and banks involved in project finance. Both aim to reduce the variance of future
cash flows. On the buy side, there are big consumers like the motor industry. The objective is
to fix the level of costs in their future budgets.

In order to meet these needs, the exchange progressively extended the listed maturities up
to 15 months and 27 months: nowadays copper, primary aluminium and zinc are listed with
up to 123 monthly prompts. Liquidity is nevertheless decreasing with maturity, with the only
exception being the December contracts. Figure 7.29 shows this, taking the open interest as a
benchmark of a contract’s liquidity.

Although aluminium is the most traded metal on the LME, a hedger in 2010 looking
for trading maturities after Dec12 would have difficulties. In the following, the possible
alternatives for practical cases will be analysed.

7.2.6.1 Case 1: Hedging a Sing le Maturity Imagine being the trader in charge of hedg-
ing a big long position (25,000 tons, 1000 lots) with Dec14 aluminium futures. In this case,
selling the monthly prompt Dec14 contract would be the perfect hedge, but the issues are the
long tenor (and hence associated illiquidity) and the big position size. Table 7.5 shows some
possible alternatives for the execution.

The possible execution alternatives can be divided into two groups: trading directly the
required maturity or trading first a more liquid maturity (like the 3M in the example) and then
working the carries. The first choice leaves no residual risks at all but the bigger the size then
the higher the costs will be. The slippage would be the most relevant cost: in Section 7.2.1
it was shown how the bid–ask widens for longer maturities. The second choice should be
cheaper but leaves the trader with the risk of curve movements. This macro choice is subject
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F IGURE 7.29 Open interest and futures maturities

to the risk management policies and risk attitude of an individual company. First of all, it is
observed that the choice A3 is sub-optimal to other strategies: the directional risk is just too
high to justify the saved slippage. Compared with B1/B2, the standard deviation of 3M daily
changes is relatively higher than the standard deviation of the spread 3M–Dec14.

Figure 7.30 considers the generic rolling spread 3M–50M (one then gets a constant-
maturity spread and avoids the effect of time decay on the spread). The standard deviation is
computed over simple daily changes (USD) since it provides an immediate idea of the risk the
trader is bearing each day in keeping a naked position.

The main difference between A1 and A2 is the legal nature of the trade: an LME futures
contract versus an OTC swap. Execution of A1 leaves no counterparty risk but needs margins

TABLE 7.5 Hedging a single maturity

Execution Pros Cons

A1 Sell the Dec14 on the market
(brokers) the full size

No residual risks Cost of slippage, partial
fills, margins

A2 Sell the Dec14 OTC
(banks/dealers) the full size

No residual risks, full
size filled

Commissions,
counterparty risk

A3 Sell the Dec14 on the market
(brokers) in tranches

Slippage limited Directional risk for not
hedged tranches

B1 Sell the 3M the full size and
work the 3M–Dec14 spread

Slippage limited, full
size, anonymity

Basis risk 3M–Dec14

B2 Sell the 3M a proxy size and
work the 3M–Dec14 spread

Slippage limited, full
size, anonymity

Basis risk 3M–Dec14
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F IGURE 7.30 Standard deviations comparison

managing, whereas execution of A2 does not require initial margins but implies a bilateral
deal with counterparty risk. The other pros and cons are more subtle and concern the trader’s
execution style.

Execution of strategies B1 and B2 shares the same approach: firstly, hedge as proxy on
the 3M and then work the carry on Dec14. The only point of divergence is the percentage of
the full size to hedge on the 3M: it is common practice to hedge 100% of the size since it
is more straightforward than rolling the position on the 3M–Dec14. Nevertheless, this is not
always the best solution.

� When it is impossible to roll the proxy hedge to the proper maturity in a reasonably short
time, it is more efficient to use a hedge ratio.

One looks for the hedge ratio that minimizes the variance of a portfolio
∏

that is short a
liquid asset x and long htons of an illiquid asset y: the peculiarity here is that the asset is the
same (aluminium) on different maturities. The portfolio has variance

∏
VaR = 𝜎

2
x + h2

𝜎
2
y −

2h𝜌xy𝜎x𝜎y, where 𝜌xy is the correlation between the two underlyings and 𝜎x and 𝜎y are the
respective standard deviations of price changes. The hedge ratio that minimizes variance is:

h = 𝜌xy

𝜎y

𝜎x
.

In the practical example here, the hedge ratio in tons would be

htons = 𝜌3M,Dec14
𝜎Dec14

𝜎3M
Itons,



332 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

where Itons is the initial size (in tons) to hedge. This formula is commonly used for proxy
hedging on commodity futures as well as on stocks (e.g., the hedge of an illiquid stock with a
correlated stock index).

When dealing with LME futures, though, it must be remembered that they are more
like forwards than standard futures. The main difference lies in the fact that LME futures
margining is adjusted for the discount factor. The daily changes on a far maturity (like Dec14
in the example) will therefore be reduced by a far higher discounting. The optimal hedge ratio
has to be adjusted for the ratio of the discount factors:

htons = 𝜌3M,Dec14
𝜎Dec14

𝜎3M

DfDec14

Df3M
Itons,

where Df is the discount factor of the futures. This adjustment appears counter-intuitive at
first sight. To understand the subtle impact of Df, consider the case where 3M and Dec14 are
perfectly correlated (100%) and also have identical variance. In this case the hedge ratio would
be 100%: if our long position on Dec14 is 1000 tons then the proxy hedge would be 1000 tons.
Now assume Dec14 goes up 1 USD/ton on day 1 and as expected the 3M goes up 1 USD/ton
as well: the market value of the positions would be +1000 USD on Dec14 and –1000 USD
on the 3M that was sold for the hedge. The P&L is certainly not flat: in the clearer account,
one will have +1000 USD × DfDec14< –1000 USD × Df3M since the clearer (LCH) will apply
different discount factors DfDec14<Df3M to the variation margin. Using the Df adjustment in

the right part of the equation –1000 USD × DfDec14
Df3M

× Df3M, the P&L would effectively be zero.

� The discount factor adjustment is not constant: it is a function of r (the higher r the more
relevant the impact of Df adjustment) and time (as time passes the hedge ratio must be
adjusted).

Additionally, for the sake of precision, the rates r are not unique. Each discount factor
should be calculated on the basis of the market rate for that specific maturity. Rates have
indeed their own forward curves. Consider

Df3M = e−rT0−T3M
(T3M−T0),

where rT0−T3M
is the interest rate applied in the period (T0 − T3M) compounded in the time

period (T3M − T0).
It is useful to emphasize a couple of concepts on the hypothesis behind the calculation of

the hedge ratio before using it in practice. First, the estimates here are based on daily changes of
price, hence USD/MT, instead of daily percentage changes (%). Therefore, the notation 𝜎x and
𝜎y is not to be confused with the common meaning of volatility, that is the annualized standard
deviation of percentage return. Daily changes are used because the hedger is directly exposed
to the variation in dollar value of the contracts: the volatility does not in fact account for the
different contract dollar values of the position (Dec14) and the proxy hedge. The hedge ratio
h∗ with standard volatilities 𝜎∗x and 𝜎∗y as inputs should then be adjusted in the following way:

h∗ = 𝜌

𝜎
∗
y

𝜎∗x

Py

Px
,
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where Py and Px are the prices of y and x. If Py and Px are the average prices over the sample
of y and x, then h∗ ≅ h.

Second, this kind of formula is meant to use actual parameters. Since it is impossible to
know these values in advance, it is necessary to rely on estimates. It is common practice to
use historic estimates: there are several methods and models in the academic literature, from
the simplest moving average (used for the charts in this chapter) to the more complex family
of GARCH models. Different models have different underlying hypotheses that impact the
final output.

Another source of estimates could be the implied volatility and correlation. Starting from
available market data it is possible to reverse-engineer a pricing model and extract the pricing
parameters. In the example here, starting from the price of a European option on the Dec14
futures contract one could reverse-engineer Black’s model and get the implied volatility of the
forward. This second approach could actually be misleading since the implied volatilities and
correlations can be more instable than the historic ones. They are also generally considered
biased estimators since they embed the risk aversion of the market. Besides, an implied
parameter is the result of a specific model’s assumptions that, in practice, could be invalid.
For example, some of Black’s assumptions are: constant volatility, lognormal distribution of
prices, zero cost of transactions, etc.

In both cases (historical or implied), when using these concepts in practice it is important
to remember that the parameters are estimates and depend on the method of estimation and
the sample of data.

� The resulting hedge ratio is itself an estimate: the hedge ratio minimizes the variance in
the sample of data used but will decrease the futures P&L variance of the portfolio only
on average.

Going back to the practical example here, assume that on a sample of 3 years of daily
prices the following estimates are obtained:

𝜌 = 90%

𝜎3M = 40.50 (USD) and 𝜎Dec14 = 37.30 (USD)

DfDec14 = 0.84 and Df3M = 0.99

Itons = 25,000 tons

Therefore, the hedge ratio is

htons = 70.3% Itons = 17,582 tons.

The result is not surprising in that since the 3M is much more volatile than the Dec14,
and given the high correlation (which means that a great part of Dec14 variation is explained
by the 3M), one will sell only 17,582 tons instead of the initial 25,000 tons. The hedge ratio
without discount adjustment would have been 82.9%. The role of correlation is interesting.
With 𝜌 = 0% the hedge ratio would be zero since a proxy hedge would make no sense with
two uncorrelated assets. The variance of the portfolio is at its maximum when the correlation
is zero. At the opposite ends of the scale, a correlation of 𝜌 = +/–100% would imply a hedge
ratio equal to the ratio of the two volatilities since the dependent variable (Dec14) would be
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F IGURE 7.31 Hedging a volume profile in practice

totally explained by the independent (3M). This case is merely theoretical and would also
imply a null variance of the hedged portfolio. While one can be wrong in estimating the two
volatilities, one can be extremely wrong in estimating correlation.

7.2.6.2 Case 2: Hedging a Volume Prof i le Consider now the situation, frequent between
consumers, where the trader has the mandate to hedge a profiled consumption of aluminium on
several months (a strip). A profiled volume on several months, like that shown in the bar chart
of Figure 7.31, is common since the production processes can show seasonality: in August,
for example, production slows down. The bars have negative sign since consumers naturally
have a short exposure. For simplicity, in this example it will be assumed that the exposure is
on the third Wednesday futures. More often, in practice, strips of Asian swaps are used. The
core of the analysis would not change much.

Unlike in Case 1, here the trader has fewer alternatives: looking back at Table 7.5, A1 and
A3 are excluded since it is unrealistic to work simultaneously on long-term market futures with
different sizes. Option A2 instead remains available and in fact represents a typical request
from customers to market-makers. Alternative B1 does not require any extra analysis, while
B2 is more sophisticated. Since the initial hedge will be the proxy on the 3M, the proper hedge
ratio must be worked out. This can be seen as a compound case of the hedge ratio of Case 1:
more precisely, the sum of the hedge ratios of each maturity versus the 3M. The hedge ratio
(in tons) of a volume profile is then

Hstrip
tons =

n∑

i

hi =
n∑

i

𝜌3M,i
𝜎i

𝜎3M
Ii,

where hi is the ith hedge ratio (already in tons) of the ith month versus the 3M. The volume
profile is captured by each Ii (initial tons to hedge of ith month) and as a result the final Hstrip

tons
is a volume-weighted average of the single hedge ratios.
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7.2.6.3 Case 3: Better Hedging a Volume Prof i le Whatever the chosen execution
between B1 and B2, the trader has to face another issue after the initial hedge on 3M is
done – that is, on which maturities forward and how many tons to roll the initial hedge. In fact,
the need to reduce the basis risk arising from the initial 3M hedge, together with the lack of
liquidity on the entire strip, requires another (more refined) proxy hedge as a second step. The
choice of the maturities is driven by liquidity: looking back at the open interest of aluminium
one would pick Dec11, Dec12 and Dec13. Another proxy hedge will be put in place here:
the objective being to minimize the risk arising from the profiled short position through the
selective buying of the three maturities. This initial hedge, pictured in Figure 7.31 with the
three long bars, will then be decomposed into the final hedge symmetric to the exposure.

Dec11 is included, although not a maturity within the exposure. However, it is very
important since it allows one to hedge against movements in the more volatile part of the
curve. Given that the volatility of metals futures normally decreases with longer tenors, using
Dec12 as the first pillar would fail to capture the wild front-end fluctuations. To get a more
general picture of the risks involved in taking positions on the forward curve, consider the
changes in the curve’s shape as the combination of three shifts: the parallel shift, the tilt
(change of inclination or rotation) and convexity (bending of the curve). Under PCA, these
movements account for the first three components. The components are ordered by importance:
the first component (parallel shift) explains the majority of movements in a forward curve,
while the third one (convexity) explains the residual part of them. The fourth-order shift is
the sinusoid. In the graphs depicted in Figure 7.32, the sinusoid shift is given although it can
be considered extremely unlikely for base metals: the fungibility of metals virtually prevents
such patterns in reality. As a matter of fact, Cortazar and Schwartz (1994), analysing COMEX
copper futures between 1978 and 1990, found that the three factors explain ∼99% of total
return variance.
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The parallel shift can be hedged with a single contract: in the graph, the Dec12 contract
is taken for example but any other could be used. The tilt of the curve cannot be hedged by a
single contract: Dec11 and Dec13 are needed in order to capture the opposite movements on
the head and tail of the curve. Notice also that the hedge on Dec12 is useless since the curve
moves around that pillar. The convexity shift bends the curve centrally: the hedge on Dec12
is essential in contrast here. The three chosen contracts are hence the minimum hedge against
the first three components of forward curve changes.

The objective is to find the hedge ratios on the three maturities that minimize the variance
of the portfolio (

∏
) composed of the strip (short) and the three contracts (long). Following

the mean–variance analysis approach introduced by Markowitz in 1959, one can write the
variance of the portfolio as

∏
VaR

= w′ VR w,

where w = (wi,… , wn) is the vector of the n weights on the n months. Each weight is the total
position for each month – that is, the profiled volumes plus the hedging tons. VR is the n × n
covariance matrix of the n forward returns.

The exercise is to find the weights (tons) on the contracts Dec11, Dec12 and Dec13 that
are the solution of the minimization problem

min
{wDec11,wDec12,wDec13}

w′VRw.

Notice that the problem is unconstrained in that one is not interested in maximizing returns
(a perfect hedge has zero returns) and that the sum of wi is free. The covariance matrix VR is
symmetric and must be positive semi-definite (in order to always have non-negative variance
of portfolio value).

VR =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜎
2
Dec11 𝜎Dec11,Jan12 ... 𝜎Dec11,Dec13

𝜎Dec11,Jan12 𝜎
2
Jan12 𝜎Jan12,Feb12 ...

... ... 𝜎
2
i ...

𝜎Dec11,Dec13 ... ... 𝜎
2
Dec13

⎫
⎪
⎪
⎬
⎪
⎪
⎭

,

with 𝜎2
i the variance of forward i and 𝜎i,k = 𝜌i,k𝜎i𝜎k the covariance between the forwards i

and k. The matrix needs to be populated with the variance estimate for each forward and the
correlation estimate for each pair. An analytical solution is not immediate: for each month i,
a multiple regression should be run on the three hedging contracts, thus obtaining three betas
𝛽i,Dec11, 𝛽i,Dec12, 𝛽i,Dec13. As a result, the n × 3 betas would be estimated and used to compute
the three final hedge ratios.

It is possible to run minimization routines on selected software (e.g., Matlab© or Excel
Solver©): in this case, the portfolio variance would be set as a target to minimize, changing
the variables wDec11, wDec12, wDec13.

The considerations made for parameter estimation in Case 1 are valid here as well.
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7.3 VOLATIL ITY

This section is meant to be an introduction to base-metals volatility trading and analysis.
The topic of volatility models is both a vast and complex field that is properly debated
within academic literature. The applications range from pricing models for options to risk
management tools for assessing portfolio value at risk (VaR). In the following, the focus will
be on the specific features of metals options from the point of view of the trader rather than that
of the risk manager or the quantitative analyst. Taking as reference the most common option
models, some unique conventions of the LME will be pointed out, while also addressing how
to build a volatility surface and deliver some implied volatility analysis.

In the last few years the hedging demand coming from companies, bounded by stringent
accounting rules, has become more and more limited to the simplest of structures: that is
why the focus here will be on European and Asian options only. Where more sophisticated
instruments require more advanced models, it is common practice to refer to the much wider
literature on energy models.

At this stage some preliminary clarification on the terms and conventions that will be used
is useful. Volatility is meant generally as the measure of variability in the price of an asset. It
is normally associated with the standard deviation of price returns (%) over a specified time
period. In the following text, a time period of 1 year will be assumed and hence the focus will
be on annualized volatility. When volatility is calculated on a past set of data, it is said to be
actual or historical volatility. In what follows, the historical volatilities are calculated as the
simple standard deviation of daily price returns (%) or daily changes (chgs) over a specified
time range in the past. The focus will be on cumulative volatility only: the volatilities that refer
to the standard deviation from t0 to t1. This is specified to distinguish them from the concept
of local, instantaneous volatilities (Derman and Kani, 1994).

Implied volatility is the volatility that comes from the reverse-engineering of an option
price given a specific model and with all the other model inputs known. As a consequence,
different models could correspond to different implied volatilities. This point is expanded
upon here.

When computing implied volatilities data one should always be sure of the prevailing
model on the market: overlooking this will likely result in obtaining results that are not
comparable with the market or, worse, results that are effectively useless.

� This is crucial for the option trader since brokers sometimes directly quote implied
volatilities instead of option premia.

This practice, common in mature markets like that of currency options, is an advanced (and
efficient) way of trading volatility: only after the trade is agreed will the broker communicate
all the details together with the option premium. Imagine the unwise trader who buys an option
at an agreed volatility and only afterwards realizes the premium (and hence the option model)
is different from what he had figured out. This is the reason why on some markets the practice
is to express option quotes directly in implied volatilities while in others premiums are quoted:
the LME lies within the first category.

Where a prevailing pricing model is not available, options are quoted in premia to avoid
‘modelistic misunderstandings’: this is, for example, the case for WTI futures options. Those
options listed on NYMEX are American style and as traders may use several models and
methods to price them, quotes are given in premia terms.
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The topic of model dependence of implied volatility has gathered the attention of some
researchers. An example is the work of Britten-Jones and Neuberger (2000) that addresses a
method to obtain model-free implied volatilities.

7.3.1 A European Disguised as an American

Futures options are the most traded options on the LME. The exchange also offers monthly
average Asian options (TAPO), which show smaller traded volumes. It has already been
established that technically the futures on the LME are instead forwards. The American nature
of the LME options will be the focus here. The LME’s futures (or forward) options are officially
American – that is the buyer has the right, any time during the life of the option, to exercise
the option. The exercise of a call (put) futures option gives the buyer a long (short) position
on the underlying futures (the option month) at the option’s strike price (K). As an example,
the buyer of a Dec10 call on copper, with strike 7000 USD, could exercise the option any time
and convert the option position to a long Dec10 futures position struck at 7000.

The European option can instead be exercised only at maturity. The early exercise could be
convenient in some situations. Therefore, given the same characteristics (i.e., strike, maturity),
the American futures option is worth more than the European.

To understand how early exercise can be convenient, consider the case of a generic put
futures option with strike 1000 USD. If the underlying futures price goes down to 200 USD,
the put is said to be deep in-the-money (ITM). If one decides to exercise early then a short
position on the futures will be received at the level of 1000 USD. If the time to maturity is
short enough, say 30 days, so that there is low probability that the futures price will rise back
over the strike, the futures price changes will be equivalent to those of the option. In fact, if
the price were to fall to zero, both the option and the futures would provide a gross gain of
1000 USD. In Figure 7.34 the price of the American put (before maturity) is the grey line:
notice that below the threshold X the price of the put matches the final payoff line. Below X
the put is in fact so much ITM that keeping the put or exercising it into the short futures is
equivalent in terms of payoff.

At the date t0 of early exercise, the short futures at 1000 USD would have a positive
variation margin of 800 USD/MT (strike 1000 USD – price 200 USD). For a standard
American futures option one will receive this variation margin as cash upfront. The early
exercise will then yield 30 days of interest proceeds deriving from the cash received at t0:
below X the best strategy is hence to exercise the put early.

For a European futures option instead, one cannot exercise early by design. Therefore,
the value of the deep ITM put option is the net present value of the strike minus the price. If
in fact the price goes to zero, the option value is Ke−rt – see Figure 7.33.

Going back to the LME’s options, since the underlying futures is instead a forward,
the exercise of a deep ITM option will result in a forward whose variation margin is paid
discounted instead of upfront. In the example above, when the price of the futures falls to zero,
the put option can be exercised early but the proceeds are discounted. The value of an LME
put is therefore Ke−rt, like a European-style option.

� The LME’s American futures option is actually a European forward option.4

In practice, the LME’s options are rarely exercised early.

4A formal demonstration can be found in Sartorelli (2010).
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7.3.2 LME’s Clos ing Volat i l i t ies

The model commonly used to price futures options on the LME is the Black (1976) model
for commodity contracts. Starting from the framework of the Black and Scholes (B&S) model
for stock options, Fisher Black tailored the model to commodity contracts. The underlying
process is no longer on the spot price (S) but rather on the futures price (F) on which the
option is written. Most of the assumptions are common between the two models, such as the
price of futures being lognormal but with zero drift. Black proves in fact that a futures price,
under the risk-neutral measure, has an expected growth rate of zero from the intuition that
a futures requires zero investment.5 This approach is quite powerful: it can be applied to all
futures and does not require any extra assumption on convenience yields. Black’s model was
the first model on European futures options and is still widely used by practitioners because
of its simplicity. It has been shown in the previous section that futures options on the LME
may be considered European.

� Black’s model can therefore be used on the LME, ignoring the fact that options are
American style.

This is the approach used by the LCH in the London SPAN for assessing option prices. The
assessment process for LME options is quite unique. The exchange does not run an end-of-day
assessment of the closing prices for the options as happens almost everywhere else.

� The LME runs instead the assessment of closing volatilities for each metal on each
maturity. The LCH uses these volatilities as input for Black’s model to obtain option
prices and calculate margins.

5Actually, initial margin is required to enter into a futures position: incidentally, the clearing brokers
normally give up the interest proceeds on the margins.
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F IGURE 7.34 LME closing volatilities

This is a consequence of the fact that the LME option market is a volatility market rather
than a premium market. The exchange collects data from brokers expressed in volatilities. In the
following, some practical examples of broker quotes will be presented. Interestingly enough,
the option assessment has historically been based only on at-the-money (ATM) options: the
volatility skew was not considered. The volatility skew is, where present, the difference between
ATM implied volatility and implied volatilities on other strikes. One of the strongest hypotheses
of the Black and Scholes model (as well as Black’s) is that of constant volatility. In reality, what
is observable is both a non-flat volatility skew and a non-constant term-structure of volatility.

Figure 7.34 shows an example of LME closing volatilities used for margining on major
metals. The same considerations as for the forward curve are valid here as well. Each metal
has in fact its own implied volatility curve, with some key differences. The main difference is
the absolute level of implied volatility, with nickel and primary aluminium being respectively
the most and least volatile metals. Nickel, zinc and lead show similar shape and absolute levels
of volatility. Long-term (cumulated) volatility is expected to be lower than the front-end: this
is due to the viscosity of demand and supply in the short term. Any production disruption or
news hitting the market has an immediate impact on the front-end of the forward curve, while
the longer maturities are less affected since the market is expected to slowly adjust to the new
conditions. This is known as the Samuelson effect. It is observable in Figure 7.34, where all of
the term-structures show an initial rise of implied volatility and then a subsequent decline. As
a matter of fact, the data are taken after a period of particularly low volatility.

Figure 7.35 is an example of the volatility skew (across strike) observable on Dec10
copper. The flat skew used by the LCH for margining has the effect of distorting the official
option prices from the effective prices observable on the market. This implies that the requested
variation margins are different from those expected by traders: in fact, it is unlikely that there
are still traders pricing options (or calculating the mark-to-market of their books) using the



Industrial Metals Markets and Products 341

VOL SKEW 

31

32

33

34

35

36

37

38

39

+10D+25D50D–25D–10D

%
 V

O
L

Copper DEC10
LCH evaluation
Evaluation error

F IGURE 7.35 The volatility skew

constant volatility assumption. The mispricing is proportional to the vega of the option. The
vega is the sensitivity of an option price or a portfolio value to changes in the underlying’s
volatility 𝜎x. When the option, or the portfolio, is written on metals, common practice is to
measure it as the variation in USD of the option value at the 1% variation of implied volatility.

This issue was not neglected by the LME. After a (long) period of consultation with
operators and the analysis of different proposals, the exchange decided in 2008 to undertake
the following enhancements:

� To pass from ATM assessment to 50Δ (50% delta).
� To collect and publish option volatility wings. The published volatilities are now on the

delta space:

−10Δ − 25Δ + ∕ − 50Δ + 25Δ + 10Δ

In February 2011 the LCH implemented the skew for margining purposes (LCH, 2011).
The exchange decided to change the assessment from the ATM to the 50Δ: this is the volatility
for an option that is struck at a level such that the sensitivity of the option price to the underlying
(Δ) is 50%. Practically speaking, if for example the option is written on 100 tons, the delta
hedge (under the B&S model) will be exactly 50 tons. The delta is generally meant as the
delta forward (the forward hedge ratio) and not the delta spot (the spot hedge ratio). Similarly,
ATM means ATM forward.

� The 50Δ strike is considered pivotal in option trading because it corresponds to the option
with maximum vega.

The two quotations (ATM and 50Δ) are sometimes considered the same thing since in
some cases the option with strike ATM has delta of 50%. This is actually a rough approximation
since the ATM delta may be substantially different from 50%. As evidence, Figure 7.36 shows
the computed Δ% for call and put ATM options on copper (data set as of 13/08/10).
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7.3.3 St icky Str ike, St icky Delta and Skew

The closing volatilities for each metal, each maturity and the five delta gradations are now
available from the LME. This represents a suitable starting point to build a volatility surface.
Table 7.6 is a practical example. Here, for example, a Dec10 copper option, with a delta of

TABLE 7.6 Copper closing implied volatilities

LME COPPER closing volatilities (as of 13/08/10)

Contract −10Δ −25Δ 50Δ +25Δ +10Δ

Sep-10 3.95 2.37 29.86 (0.48) 0.09
Oct-10 3.96 2.45 31.85 (0.47) 0.16
Nov-10 4.06 2.51 33.40 (0.44) 0.20
Dec-10 4.07 2.55 34.26 (0.43) 0.22
Jan-11 4.01 2.48 34.09 (0.34) 0.28
Feb-11 4.02 2.46 34.02 (0.31) 0.46
Mar-11 4.01 2.45 34.01 (0.31) 0.48
Apr-11 3.95 2.44 33.91 (0.30) 0.48
May-11 3.92 2.42 33.83 (0.28) 0.34
Jun-11 3.90 2.42 33.78 (0.27) 0.36
Jul-11 3.81 2.38 33.59 (0.25) 0.39
Aug-11 3.77 2.34 33.52 (0.24) 0.41
Sep-11 3.75 2.34 33.39 (0.23) 0.41
Oct-11 3.70 2.33 33.21 (0.23) 0.42
Nov-11 3.68 2.32 33.13 (0.21) 0.44
Dec-11 3.65 2.30 33.08 (0.20) 0.44
Jan-12 3.48 2.15 32.88 (0.15) 0.47
Feb-12 3.45 2.13 32.77 (0.14) 0.47
[…] […] […] […] […] […]
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50%, would be priced on a volatility of 34.26%, while an option with a delta of 10% would
be priced with a 34.26% + 4.07% = 38.33% volatility. The ‘Vol skew’ given in Figure 7.35 is
obtained from these data: the Dec10 volatility is particularly skewed on the left (i.e., lowest
strikes).

The LME publishes volatilities across deltas for each third Wednesday monthly maturity
(remember, implied volatilities are deducted from monthly futures options). This is indeed not
the only possible choice. The volatility surface is a three-dimensional space (x, y, z) whereby

i. the strike (x-)axis can be expressed in terms of
� x1 – deltas (as per LME choice)
� x2 – moneyness (usually as percentage moneyness in respect of ATM)
� x3 – USD strike (the final USD strike of the underlying option)

ii. the time (y-)axis can be expressed in terms of
� y1 – third Wednesdays (as per LME choice)
� y2 – rolling forward maturities (e.g., 1 day, 1 week, 1 month, 3 months, 6 months,

1 year, 2 years, etc.)
� y3 – other customized configurations

iii. the z-axis gives the volatilities, normally expressed in annualized percentage volatility.

The configuration choice should not only correctly reflect the actual volatility market but
also minimize the daily routine of updating the surfaces. The surface should in fact reflect
the expected behaviour of implied volatility in respect of the underlying price movements.
Consider that at t0, when the surface is initially fitted to actual market data, the x1, x2 and x3
configurations must be consistent with each other. Ideally one could (and most commercial
risk-management software includes this feature) switch the volatility from one configuration
to another. Imagine that one is now at a later time t1 and the underlying price has moved 1%
up: how would one expect the volatility skew to change? Obviously now the ATM strike is
1% higher and also the 50Δ strike is higher.

If the whole skew is supposed to shift to the right, so that the ATM and 50Δ volatility at
t1 is the same as at t0, the volatility is said to be sticky delta. The assumption is that implied
volatility is indifferent in the short term to price changes and follows the delta. Said another
way, if the ATM volatility level changes between t0 and t1, the driver is a change in the
supply/demand of implied volatility. The sticky delta approach is equivalent for volatility in
deltas and in moneyness.

If the skew is supposed to stand unchanged at the same strikes, so that the ATM volatility
at t1 is the same as at t0, the volatility is said to be sticky strike. The assumption is that any strike
has its ‘own’ volatility level. Said another way, if the ATM volatility level changes between t0
and t1, it could be the consequence of the underlying price change.

If a market belongs strictly to one of the two regimes (i.e., sticky delta or sticky strike),
failing to configure the volatility accordingly will imply extra work to adjust the volatilities as
the underlying moves. Moreover, the change of 𝜎 (volatility) in t1 directly affects both portfolio
P&L (through the vega) and portfolio sensitivity to the underlying (since Δ is itself a function
of 𝜎). Traders are very careful of this effect: the change of B&S delta induced by changes
in implied volatility or the skew (also known as shadow gamma) can in fact undermine the
effectiveness of delta hedging under the B&S framework.

To distinguish whether it is the volatility changing or the price moving is not an easy task,
since both change continuously in parallel with changes in the other model parameters. An
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Dec10 Copper Skew in Delta
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F IGURE 7.37 Copper skew in delta (left) and strike (right)

analysis of the evolution of the implied volatility skew in the past can suggest which, if any,
regime is prevailing.

The two charts in Figure 7.37 are built on the basis of the same set of data: the implied
volatility skew of copper Dec10, published by the LME, on four different dates. The left chart
plots the skews with deltas on the x-axis while the right chart plots the same volatilities with
absolute (USD) strikes on the x-axis. The sample period experienced a progressive drop of
implied volatilities: the 50Δ volatility passes from 40.68% to 33.75%. The vertical grey line
on the right chart identifies the Dec10 absolute prices: the volatility falls at any step regardless
of whether the price goes up or down. We could not therefore ascribe this behaviour to any
of the regimes but rather to a global weakening of the volatility market. Looking at the right
chart, it is quite hard to identify a pattern in the evolution of the skew in terms of the falling
volatility. Also, the shape of the floating skew is not constant: the first observation is flatter than
the last one. The situation in the left chart seems completely different. The shape of the skew
is clearly constant across the four observation dates: the whole skew is shifted progressively
lower as the ATM (or better, 50Δ) volatility drops. In this example, while both sticky strike
and delta regimes fail to capture the movement of ATM volatility, the skew is constant in the
delta space with changing ATM volatility.

The choice of how to configure the y-axis is linked to the behaviour of the volatility term-
structure as time passes. If, in the absence of news affecting in any way the option market, the
whole term-structure of volatility is expected to roll on – passing from t0 to t1 – the optimal
configuration is y2 as given earlier. Said another way, one would expect the volatility, for
example of the 3M rolling maturity, to be constant.

If instead the higher volatility of the spot, in the absence of news affecting the option
market, is supposed to converge to the lower levels of the long term, the correct configuration
is y1. Said another way, one would expect the volatility, for example of the Dec10 maturity,
to be constant. The correct configuration allows the trader to capture (and hence manage) the
sensitivity of his option or portfolio to time decay. The change of an option premium (or a
portfolio P&L) from t0 to t1 is called theta and it is also a function of 𝜎. Figure 7.38 provides
a graphical explanation of the alternatives. Here again, perhaps even more than in the case
of the skew, it is quite hard to distinguish which regime, if any at all, is being followed by
volatility. The choice is therefore up to the trader’s perception and sometimes is reduced to a
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matter of mere convenience: y1 is already consistent with LME closing volatilities while y2
has to be deduced.

The charts seen so far, on copper, display a negative skew: implied volatilities increase at
lower strikes (with the exception of deep out-of-the-money (OTM) +10Δ calls). This is the
result of a strong demand for buying OTM put options. The market is more scared of price
falls than price jumps and looks to put contracts for protection. The higher probability of large
price falls is called the leverage effect. This is a phenomenon typical of stock markets where
a decrease of price, reducing the market capitalization of a company and hence worsening
its debt/equity ratio, could initiate further selling. The stock markets are also subject to panic
selling at falling prices. Commodity markets are instead expected to feature the opposite
behaviour, with volatility increasing at higher prices (inverse leverage effect). Previously, in
fact, it was shown that the level of stocks is inversely correlated to spot prices, such that low
stocks spark higher volatility. Under this hypothesis, one would expect the skew to be positive or
at least a smile (implied volatility is higher on both the left and the right of ATM). The analysis
of correlation between prices and implied volatility helps to solve the puzzle. Figure 7.39
shows copper 3M prices over the period (late) 2005–(early) 2009, together with the implied
ATM volatility and the correlation between the two series. Until mid-2007 the correlation was
constantly positive. At the top of the credit crunch (i.e., last quarter of 2008) prices dropped and
the volatility reached the highest levels (70%). The 100-day rolling correlation (computed on
% changes) reached –60% in that period. Again in 2010 the correlation became negative: the
negative skew observed for June and August 2010 is therefore consistent with this behaviour.

7.3.4 Bui ld ing the Surface in Pract ice

Similar to what was seen in Section 7.2.1, the surface has to be continuous both on time and
on strikes to make it possible to price any kind of option. The Asian option, for example,
needs as input (in most non-toy pricing models) the volatilities for each business day in the
pricing period. Taking the closing volatilities by the LME as initial input, one has to deal with
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F IGURE 7.39 Copper prices and implied volatility

interpolation to build the volatility surface. The LME had itself considered developing the
interpolation method for the surface. However, since there are many available methodologies
and since none has been identified as best, the LME finally decided to leave it to the preference
of single operators.

The interpolation can be implemented with the moneyness x-axis in terms of strikes or
deltas: in both cases the volatility is just a means to the final goal of evaluating the option
premiums. In order to prevent the building of an inconsistent volatility surface, the resulting
premiums should not be arbitrageable. The basic arbitrage bounds to respect are:

� The premium of a zero-strike call (K = 0) is the discounted value of the underlying forward
while the premium of a zero-strike put is zero: call (K = 0) = FTDfT and put (K = 0) = 0.

� Between two options of the same type (call/put) with the same maturity, the one with
the strike that is more in-the-money has the highest premium. This is also called the
non-negative vertical spread.

� Between three options of the same type (call/put) with the same maturity, with three
different strikes (K, K + x, K − x; x > 0) , the total premium of the options struck at K + x
and K − x is higher than twice the premium of the option struck at K. This is also called
the non-negative butterfly spread. In respect of the calls, the condition is: call (K + x) +
call (K − x) − 2 × call (K) ≥ 0.

� Between two options of the same type (call/put) and the same moneyness, the one with the
longest maturity has the highest premium. This is also called the non-negative calendar
spread.

The last condition is based on the consideration that option prices should not decrease
with increased time to expiration. This condition can be weaker, or even not hold at all, on
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commodity markets since it relies on the fungibility of the underlying across the different
maturities. Where the commodity is not fungible, each futures maturity has to be treated as a
separate instrument with its own skew.

� Base metals show a certain degree of fungibility across time and space since they can be
stored and are not perishable goods.

As a consequence, the no-arbitrage condition above is normally respected by market quota-
tions: in practice, volatilities can also be interpolated across maturities.

Piecewise linear interpolation, splines and parameterized models, like the widely used
SABR and SVI (Gatheral, 2004) are between the methods commonly used to interpolate a
skew through the available quoted volatilities for a maturity. The interpolation can be run on
option premia (an easy way to respect non-arbitrage conditions), strikes, moneyness and delta.
Figure 7.40 shows an application on LME closing volatilities. The interpolation methods used
are those described in Section 7.2. The original deltas of the LME (–10Δ, –25Δ, 50Δ, +25Δ,
+10Δ) are converted into put deltas (10Δ, 35Δ, 50Δ, 75Δ, 90Δ) in order to implement the
interpolation.

Volatility can also be interpolated across maturities between the traded pillars. In this
case, one method involves interpolating the ATM term-structure first and then building the
skews as functions of the closer pillars (e.g., applying the same SVI parameterization fitted on
the closest traded maturity). The straight interpolation across maturities for each delta (or for
moneyness) is to be avoided since the skew for prompt dates is normally much more convex
than long-term ones; it is likely to produce arbitrageable volatilities.

Once the favoured interpolation method is chosen and the volatility surface set up, it is
necessary to keep the volatilities up-to-date.

� All the volatility trading activity on the LME is ‘on voice’. There are no available quotes
‘on screen’.
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The intra-day volatility changes must therefore be tracked via broker or dealer quotes. The
following are some real quotes from brokers:

Broker John Smith (1): Dec10 Zn ATMs 38.5/40.5 100 × 200

Broker John Smith (2): Dec10 Zn ATMs 39.5/40.5 100 × 200

Broker John Smith (3): Dec10 v Dec11 Zn ATM 2.75/3.25

These are basic quotes on ATM options on zinc. The maturity is Dec10 and the quotes
refer to futures options (TAPO would otherwise be stated for Asian options). The quote is
expressed in implied volatility terms: 38.50% bid and 40.50% offer. Observe that between (1)
and (2) there is an improvement on the bid. 100 × 200 refers to the size in lots. For zinc, the
broker always quotes (3) a calendar spread option: Dec10 vs. Dec11. Both options are ATM.
Volatility on Dec10 is higher than on Dec11.

Broker Mario Rossi: Jun11 Ali 25d rr 0.20/1.00 (puts)

This is a quote for a risk reversal (rr) – that is, a long call and short put – both written at
the 25Δ strike. ‘(puts)’ means the put is over, that is the volatility of the put is higher than the
volatility of the call by 0.20% on the bid and 1.0% on the offer.

Broker John Doe: Dec 10 Cu 7300 straddle 33/33.75 50 × 100 per leg

This quotation refers to a straddle – that is, a long call and short put – both written at the
same strike of 7300 USD. The volatility is 33% bid and 33.75% offer.

7.3.5 Considerat ions on Vega Hedging

In the following, some practical considerations will be made on the pricing of OTC options
and their impact on vega hedging. In Section 7.3.5.4 an example of volatility arbitrage will be
shown, together with the practical obstacles to implementing the strategy.

7.3.5.1 Asian Opt ions The pricing of Asian options represents a challenging task. The
source of problems lies in the fact that the B&S assumption of lognormal prices cannot be
applied to arithmetic averages. The average of lognormally distributed variables is, in fact,
not lognormal: its true distribution is yet to be found. A vast literature is available on this
issue, proposing solutions under different approaches: approximations of the true distribution
and numerical methods6. One example is the famous Kemna and Vorst (1990) approximation,
one of the first models for Asians. The arithmetic average option is approximated using the
geometric average since the latter is lognormally distributed. Under this approach the Asian
can be priced with Black’s formula with modified mean and reduced variance. This model
is too simplistic and in practice the models used are far more sophisticated. Practitioners
commonly use Monte Carlo methods as a way to get round the problem.

6A review of pricing procedures for Asians, together with VBA algorithms, is presented by the editors
(Fusai and Roncoroni, 2008).
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In the choice of model or method, the option trader aims to reach a compromise between
pricing accuracy and operative efficiency. The option’s fair value should be as accurate as
possible in order to avoid the risk of being arbitraged by the market. At the same time, for
many base metals the volatility market is quite illiquid: implied volatility bid–ask spreads of
3% and 4% are not unusual, for example, on metals like nickel and tin. Such a wide bid–ask
makes the fair value of an option difficult to identify since traders do not trade at mid-volatility.
The pricing error induced by an approximation model could therefore be negligible compared
with the difference in price using the bid instead of the offer implied volatility. This could
be the case for options displaying high vega: for example, long-term ATM options (which
are also illiquid on the LME). At the same time, the pricing of deep OTM options, which in
turn display lower vega, can be distorted by uncertainty on the skew: in fact, options with
Δ < 25% are rarely traded on any of the base metals. Under this framework, the operator
who trades frequently might prefer the faster (in terms of computational speed) model over
the more accurate one. For this reason, closed-form formulas are preferred over Monte Carlo
simulations that are quite time-consuming.

The Asian option is considered, between the exotic options, one of the easier to hedge.
This is true under the condition that the model outputs correct sensitivities. The option prac-
titioner is in fact also concerned with the sensitivities coming from the model: delta and vega
in primis.

As seen, the base-metal Asian option is written on spot (LME cash fixings): it can be
viewed as an option on a basket of n underlyings, where n is the number of pricing days. Each
pricing day can be considered a lognormally distributed independent forward date to which,
as seen previously, is assigned a specific volatility. The n independent forwards are correlated
with each other and, since they are points on the curve of the same metal, the correlation is
usually very high (>90%). With these inputs it is possible to compute the first two moments
of the average (that is the basket): mean and variance. These two moments can be used to fit
a lognormal density function, which can then be used to price the Asian option with the usual
B&S tools. This is Levy’s (1992) version of the moment-matching method. Other versions use
different density functions to be fitted on more moments.

The moment-matching approach helps to explain some of the essential features one would
expect from a proper model:

� The entire term-structure of forwards is an input of the model.
� The option delta is broken down across all the n fixing days. This result can be obtained if

the previous condition is satisfied. The delta of calendar month Asian options is roughly
constant across the fixing days: the option can then easily be delta hedged using the
corresponding Asian swap.

� The entire term-structure of volatility, within the option pricing period, is an input of (or
fitted by) the model. Models are sometimes formulated taking as input a single volatility
parameter 𝜎 under the assumption of constant volatility. It is crucial to consider instead
the 𝜎n volatilities of the n independent forwards to take into account the term-structure of
volatility.

� The skew should also be taken into account. Because of the slope of the forward term-
structure, the n forwards feature different moneyness to the strike. An ATM Asian, for
example, is only on average ATM: if the curve is in backwardation, the front-end maturities
will be ITM while the back-end ones will be OTM.
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� The option vega is divided across all the n forwards. If the single volatility parameter 𝜎
were used, the model would mistakenly assign the vega exposure, typically, to the last
fixing date.

� Correlation between the forwards is also an input of (or fitted by) the model. The cross-
correlation of base-metal forwards is normally quite high and constant compared with
other, less fungible, commodities. Nevertheless, as the pricing period of the Asian length-
ens, the correlation between the front end and the back end decreases. The result is
the increased variance of the average. Models with constant 100% correlation tend to
underestimate premiums.

Notice that vega is not necessarily constant across the n forwards. Consider the case where
both the metal forward curve and volatility curve are in backwardation: the front end of the
pricing period would feature both higher prices and higher volatilities than the back end. A
change in volatility would hence impact the variance of the average much more in the front
than the back end.

The main drawback of Levy’s moment-matching is the lognormal approximation. In
recent years there have been some more advanced models proposed that find the exact fair
value of Asians under the true density function. Of these, notably Fusai et al. (2007) proposed
a closed-form formula for Asian options on spot prices that captures term-structure effects. A
possible way to hedge vega is represented by LME monthly futures options. The single-day
vegas can thus be bucketed into the third Wednesday maturities.

7.3.5.2 Composite Opt ions The most common solution used to price composite options
is that of adjusting the volatility of the underlying to take into account the change of currency
(Rainer, 1992):

𝜎S,FX =
√
𝜎

2
S,USD + 𝜎2

FX − 2𝜌S,FX𝜎S,USD𝜎FX

where 𝜎S,FX is the volatility of the commodity expressed in another currency, 𝜎S,USD is the
original volatility in the domestic currency, 𝜎FX is the volatility of the exchange rate and 𝜌S,FX
is the correlation between the commodity and the exchange rate. The FX rate is quoted as the
number of domestic currency units for one unit of foreign currency (for a metal composite
in EUR, this would be the number of USDs for 1 EUR). The composite option will then be
priced normally as if the commodity were expressed in the other currency. For example, to
price a composite EUR on copper, one may input the forward price of copper converted into
EUR, the strike in EUR, the EUR interest rate and the modified volatility above. The role
of correlation is crucial in the determination of volatility in a composite. A positive correla-
tion, between the metal and FX rate, decreases the metal’s volatility in the foreign currency.
Figure 7.41 pitches the shape of volatility in EUR at different correlation levels. The metal’s
starting volatility is 25%, while the EUR/USD volatility is 12%. Point A indicates a break-even
point – that is, the correlation level (20%) at which the composite volatility is the same as the
metal’s volatility in USD.

Hedging the vega of this option implies hedging the commodity volatility and two addi-
tional parameters: the exchange volatility and the correlation. While the market on FX volatility
is extremely liquid, almost no market at all exists on the correlation of base metals versus FX
rates. Moreover, the option features two deltas: on the underlying and on the FX rate. The FX
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F IGURE 7.41 Volatility and currency correlation

rate is not negligible at all: it is proportional to the currency equivalent of the underlying delta
(so that for a 25Δ option, it would be roughly half that of a 50Δ option).

� The delta hedging should hence be dynamic both on the commodity and the FX rate.

7.3.5.3 Quanto Opt ions In the pricing of a composite, in addition to the volatility, all
the parameters have to be converted into EUR. This is not the case for a quanto option since
the floating price in USD will be compared with the strike in USD. The input parameters
in the pricing model would be in the domestic currency for the volatility and the strike while
the payoff would be discounted by interest rates on the foreign currency. To take into account
that the payoff is paid at a fixed FX rate, it is the forward price of the underlying that needs to
be adjusted:

Fquanto
T = FT e

𝜌S,FX𝜎S,USD𝜎FXT

where Fquanto
T is the quanto adjusted forward of the commodity in respect of a foreign

currency, FT is the forward price quotation in the domestic currency, 𝜎S,USD is the volatility in
the domestic currency, 𝜎FX is the volatility of the FX rate, 𝜌S,FX is the correlation between the
commodity and the FX rate, and T is the time to maturity of the forward. The FX rate is given
as the number of domestic currency units for one unit of foreign currency. Since all parameters,
except 𝜌S,FX, are by definition positive then in case of positive correlation, Fquanto

T > FT , while

for negative correlation, Fquanto
T < FT . As a consequence, a quanto call option struck ATM in

respect of FT would instead be ITM for 𝜌S,FX > 0 or OTM for 𝜌S,FX < 0. Here again there
will be sensitivities to 𝜎FX and 𝜌S,FX: in this case though they will not directly impact on the
underlying volatility, which remains in USD for LME’s base metals, but rather on the level of
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the forward. Increasing volatilities or correlation will make the forward steeper and the option
more in-the-money or out-of-the-money.

� Interestingly, the FX rate does not appear either in the final payoff or the quanto forward:
at inception there is no delta to hedge on the FX rate.

7.3.5.4 COMEX–LME Volat i l i ty Arbitrage In Section 7.2 an analysis was performed on
the arbitrage opportunities in trading spot and forward copper between COMEX, SHFE
and LME. COMEX also lists copper futures options. The option trader could hence try to
exploit possible arbitrage opportunities on implied volatilities. COMEX and LME spot prices
are highly correlated with each other, giving little or no room for physical arbitrages: the
volatility of the price process should then be considered the same for both contracts. Where
the implied volatility for the same maturity could diverge significantly, the arbitrageur could
bet on volatility convergence by buying options on the cheapest exchange and selling options
on the other. This kind of trade is in practice far more complex than it may seem. There are
several issues to face.

� The bid–offer spread: imagine that the Dec10 implied volatility on COMEX is 2% higher
than LME’s. One therefore sells options in NY and buys in London, both ATM (in order
to get the maximum exposure to vega). Thus the bid–offer is paid. If the bid–offer is >2%,
the expected gain goes to zero. Additionally, copper options are less liquid on COMEX
than LME.

� The option style: LME’s options are European while COMEX’s are American. So one
is trying to arbitrage not only two different exchanges but also two different financial
instruments.

� The delta hedging effectiveness: the sold and bought options must be delta hedged
continuously, otherwise risk from price differentials is introduced. Delta hedging in the
real world is discrete. It is effective in replicating the option premium only on average.
In practice, the variance of the strategy could be several times higher than 2%.

� The skew: movements in the underlying cause options to go in or out-of-the-money. The
strategy is therefore also sensitive to the skew of the markets. Moreover, American options
behave differently from European when deep ITM.

The considerations above require the observed implied volatility differences to be sufficient
to justify the risk of the trade.
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CHAPTER 8
Freight Markets and Products

Manolis G. Kavussanos, Ilias D. Visvikis and Dimitris N. Dimitrakopoulos

8.1 INTRODUCTION

The market agents operating in the international shipping market face substantial business
risks due to the high volatility, cyclicality and seasonality in rates and prices. These risks may
be classified broadly into the following categories: business risk, credit risk, technical risk and
financial risk. The purpose of this chapter is to outline the major business and financial risks
that principals (ship owners and charterers) in the various sectors of the shipping industry are
facing and highlight the modern methods and products that are currently available for efficient
risk management in shipping.

The chapter starts with an overview of the shipping industry in terms of market segmen-
tation (dry bulk, tanker and container ship), the different types of cargo transported under the
different trading freight routes and the supply and demand economics of each subsector. The
empirical regularities in the freight markets are then presented as: (a) seasonality is distinct
between different submarkets, between contracts of different duration and between different
market conditions prevailing in shipping markets; (b) freight rates of larger vessels are more
volatile and bear higher relative risks compared with smaller vessels; and (c) freight contracts
of longer duration are less volatile compared with shorter period contracts.

These regularities point to some ‘traditional’ risk management strategies, such as: (a)
freight rate risks in the larger sectors may be mitigated by investing in smaller vessels; (b)
freight rate risks can be reduced by operating vessels under long-term time-charter rather than
spot contracts; and (c) the mix of investors’ portfolios in terms of both charter contracts and
investments in different ship segments should be reviewed constantly. However, as the above
strategies are useful but may prove to be expensive, non-existent or inflexible at times, it is
concluded that derivatives products can provide more efficient solutions to such problems.

The shipping derivatives markets are then introduced, as their existence makes risk man-
agement cheaper, more flexible and available to parties exposed to adverse movements in
freight rates, bunker fuel prices, vessel prices, exchange rates, interest rates and other vari-
ables affecting the cash-flow positions of shipping companies. More specifically, the high
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fluctuations (volatility) of freight rates constitute a major source of business risk for both ship
owners and charterers. The chapter continues by presenting the underlying assets that can be
used to write dry-bulk, tanker and container-ship freight derivatives products. An introduction
to forward freight agreements (FFAs), freight futures, cleared (‘hybrid’) FFAs and freight
options is given, presenting the various contracts, markets and uses of these products. Two
practical examples on the application of freight derivatives are also given.

The chapter next describes the pricing of freight derivatives, as well as their hedging
effectiveness and risk measurement (including value-at-risk and expected shortfall). The non-
storable nature of the underlying asset (freight service) of freight derivatives implies that spot
and derivatives prices are not linked by a cost-of-carry (storage) relationship, as in financial
and agricultural derivatives markets. Thus, derivatives prices on freight rates are driven by the
expectations of market agents regarding the spot prices that will prevail at the expiry of the
derivative contract. It is shown that freight derivatives prices are equal to the expected value
of the spot (underlying) freight asset at the settlement date plus a stochastic error term. It is
also shown that the FFA market satisfies its price discovery function, as forward prices today
can help discover spot prices at the expiry of the FFA contract. In terms of optimal hedge
ratios, the results for out-of-sample hedging effectiveness indicate that naı̈ve hedge ratios
produce the highest variance reductions. The chapter then presents the application of value-at-
risk and expected shortfall techniques in measuring freight rate risk in the shipping industry,
through some practical examples. Finally, the previous published empirical work in the area
of freight derivatives is presented in order to give the reader an overview of the available
literature.

The chapter concludes with an overview of the remaining shipping derivatives products;
namely, the bunker fuel, vessel value, foreign exchange and interest rate derivatives. Of
course, there are many more issues that remain unexplored and it is hoped that this chapter
will help researchers focus on the relevant issues for further work in this area. Moreover, given
the practical illustrations, it should also be of value to practitioners dealing with shipping
markets.

8.2 BUSINESS RISKS IN SHIPPING

8.2.1 The Sources of Risk in the Shipp ing Industry

The purpose of this chapter is to outline the major business risks that principals (ship owners
and charterers) in the various sectors of the shipping industry are facing and highlight the
modern methods and products that are currently available for efficient risk management in
shipping. Market agents operating in the international shipping market face substantial business
risks due to the high volatility, cyclicality and seasonality in rates and prices. These risks may
be classified broadly into the following categories (adapted from Kavussanos and Visvikis,
2006a):

� Business risk depends of the volatility of freight rates, voyage costs (including brokering
commission, fuel costs, port charges, tugs, canal dues), operating costs (including man-
ning, repairs and maintenance, stores and lubes, insurance and administration), vessel and
scrap prices, interest rates and foreign exchange rates. Figure 8.1 presents the Baltic Dry
Index (BDI), which shows that freight rates in the dry-bulk sector of the shipping industry
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FIGURE 8.1 Baltic Dry Index (2000–2014)
Source: Thomson Reuters Eikon.

have fluctuated significantly from 10,844 in May 2008 down to 703 in February 2012;
which recovered somewhat in the latter part of 2013 but dropped back again in 2014.
This high volatility in freight rates constitutes the largest source of risk in the industry,
as it represents the main income for ship owners and the major transportation cost for
charterers.

� Credit (or counterparty) risk occurs when the counterparty does not fulfil its legal
obligations that arise for a contractual agreement (e.g., loan, bond, derivative contract,
etc.).

� Technical risk arises when a vessel breaks down, which could lead to environmental
(pollution) risks.

� Financial risk depends on the way the company’s investments are financed and on its
financial leverage (gearing) level.

Consider an international investor who wants to enter the shipping industry. He must take
the following investment decisions.

(i) First, he has to compare the risks and returns of alternative investments and different assets
when formulating his portfolio. He can choose to enter shipping due to the possibility of
high returns and/or portfolio diversification.

(ii) He then has to decide if he will enter shipping by buying or leasing vessels. If he buys
the assets (vessels) and becomes a ship owner, then he also assumes operational risk by
owning the assets.

(iii) The next decision to be taken is on the types of vessel to be purchased; that is, tankers, dry
bulk, container ships, gas carriers or other. The choice of vessel requires the identification
of market opportunities, the comparative advantage of this type of vessel, as well as the
risk appetite of the investor.
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(iv) Once he owns the vessels, a ship owner must decide which shipping routes and geo-
graphical areas (Atlantic or Pacific) to operate them in and what kind of charter party
contracts (voyage, time charter, other) to agree upon.1

(v) Market timing – when to buy the vessels and when to sell them – is another impor-
tant decision. The ‘buy low/sell high’ asset play paradigm has dominated shipping for
decades.

(vi) How to finance the purchased vessels is the next decision. Besides the traditional bank
shipping loans, which constitute the majority of funding in the industry, other alternative
ways of ship finance include public and private issue of equity and/or debt, mezzanine
finance, etc.

(vii) Finally, following the fluctuations of freight and bunker prices, the investor must decide
on a risk management strategy in order to minimize the risks. Decisions must also be
taken on whether to use financial derivatives products to hedge those risks.

8.2.2 Market Segmentat ion in the Shipp ing Industry

It is argued that 95% of world trade, volumetrically, is carried by ocean-going vessels. Figure
8.2 presents the development of international seaborne trade, with major commodities trans-
ported by sea, from 1986 to 2012. As can be seen, total seaborne trade has approximately
trebled during this period.

The maritime industry contains several sectors, according to the cargos transported and the
types of vessel that carry those cargos. Such sectors include dry bulk, wet bulk (tanker), cruise
ship and liner, among others. In each sector, different types of vessel operate, corresponding
to the different economic conditions that exist, which generate the demand for the shipping
service. The liberalization of international trade and the discovery of new sources of material
have led to the construction of specialized types of vessel of various sizes, which carry
different types of commodity between different parts of the world. As argued by Kavussanos
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Source: Clarkson’s Research Studies.

1In voyage charters the ship owner is paid in US$/ton to transport commodities from port A to port B
and all costs are paid by the ship owner. In time charters the ship owner earns hire, in US$/day, every 15
days or every month and operates the vessel under the instructions of the charterer who pays the voyage
costs.
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and Visvikis (2006a), ‘specialized markets have developed for each of these vessels, with
common driving forces, but also distinct features in terms of factors affecting demand, supply,
and as a consequence risk and return profiles’.

Therefore, bulk cargos include liquid and dry cargos, where liquid cargos include crude
oil, oil products and chemicals and dry cargos include: (i) majors (iron ore, grain, coal, bauxite
and phosphates); (ii) minors (steel, steel products, sugar, cement, salt, gypsum, sulphur, non-
ferrous metal ores, forest products, wood chips and chemicals; and (iii) specialist bulk cargos
(refrigerated cargo, heavy lift, cars, timber, etc.).

The economics of the different shipping sectors are different. In the liner sector, oligopolis-
tic conditions exist as the suppliers of the freight service are organized in conferences, produc-
ing tariffs which shippers have to accept. Shippers, in contrast, are many but with small cargo
transportation needs and, as such, do not have the power to negotiate and fix freight rates. In the
dry-bulk and tanker markets, on the contrary, conditions of perfect competition exist as there
are many buyers (charterers) and sellers (ship owners) of freight services, with no barriers to
entry or exit, transacting in well-organized and homogeneous freight markets. The charterers
compete among themselves to fix (hire) vessels, which will transport their cargos. Equally,
there are many ship owners and ship managers that compete among themselves to secure
employment for their vessels. Tables 8.1 and 8.2 present the submarkets that are distinguished
for dry-bulk and tanker shipping, respectively.

8.2.3 Empir ica l Regular i t ies in Freight Rate Markets

A number of regularities regarding freight markets have been documented in the economic
literature for the first time in a series of papers by Kavussanos (1996a,b, 1997, 1998, 2003).
These include the findings that: (i) freight rates are determined by the interaction of demand
and supply for freight services and as a consequence are highly volatile; (ii) they are cycli-
cal and seasonal; (iii) seasonality is distinct between different submarkets of dry-bulk and
tanker sectors, between contracts of different duration and between different market condi-
tions prevailing in shipping markets – see Kavussanos and Alizadeh (2001, 2002); (iv) broadly
speaking, freight rates of larger vessels are more volatile and bear higher relative risks com-
pared with smaller vessels in both the dry-bulk and tanker sectors; and (v) freight contracts of
longer duration are less volatile compared with shorter-period contracts.

8.2.3.1 Freight Risks and Returns in Shipp ing Subsectors Table 8.3 presents the
mean values and relative volatilities2 of monthly freight rate data for spot, 1-year and 3-year
time-charter rates for different vessel sizes in the dry-bulk and in the tanker sector of the
shipping industry.

It can be observed that almost all relative volatilities of spot (voyage) rates and of 1 and
3-year time-charter (period) rates are smaller (less volatile) for smaller-sized vessels compared
with those of larger ones. This is true for both the dry-bulk and tanker sectors. This is expected,
as smaller vessels are more flexible in terms of the number of trades they are involved in and the
number of ports they can approach and, as a consequence, this flexibility translates into lower
relative volatility in the freight rates of smaller compared with larger ones. In the dry-bulk
sector, a clear ranking of freight volatilities seems to exist according to the duration of the

2Relative volatility is defined as the standard deviation of the variable divided by its own mean value.
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TABLE 8.3 Summary statistics of spot, 1-year and 3-year time-charter rates for dry-bulk and tanker
vessels

Panel A: Dry-bulk vessels

Voyage (spot) rates 1-Year T/C rates 3-Year T/C rates

Mean
($/ton)

Relative
volatility

Mean
($/day)

Relative
volatility

Mean
($/day)

Relative
volatility

Capesize 12.35 84 20,872 43 19,902 32
Panamax 17.50 64 14,521 35 12,390 21
Handy 29.78 62 13,032 26 12,347 16

Panel B: Tanker vessels

Voyage (spot) rates 1-Year T/C rates 3-Year T/C rates

Mean
(WS)

Relative
volatility

Mean
($/day)

Relative
volatility

Mean
($/day)

Relative
volatility

VLCC 59.20 25 27,064 26 29,846 15
Suezmax 82.48 19 20,773 21 22,210 13
Aframax 101.42 15 15,069 13 16,201 9
Handysize 157.40 14 12,601 5 13,398 5

Note: Sample covers September 2009 to September 2012. Mean is the arithmetic average. Relative
volatility is the standard deviation over the mean value ×100. WS stands for Worldscale rate.

freight contract for each vessel size. Specifically, it seems that the longer the duration of the
contract, the smaller the volatility of the freight rate, indicating that longer-duration contracts
bear less risk compared with shorter ones. The results are not so clear-cut in the tanker sector.

8.2.3.2 Vessel Value Risks and Returns in Shipp ing Subsectors The mean and rel-
ative volatility measures for different types of new-build and 5-year-old second-hand vessels,
as well as for their scrap prices and earnings for the dry-bulk and tanker sectors, are computed
in Table 8.4. Volatilities of earnings for larger vessels are higher than those of smaller ones,
within the dry-bulk and tanker sectors. Moreover, new-build, second-hand and scrap prices for
larger vessels seem to show higher relative volatilities than prices of smaller vessels. Smaller-
sized vessels are geared so that they can load and unload cargo in ports without sophisticated
handling facilities and they can approach more ports compared with larger vessels. Moreover,
smaller vessels can switch between different trades more easily. Thus, risk-averse investors
that wish to reduce their investment risk may wish to invest in smaller (larger) vessels – for
example, Panamax or Handysize (Capesize) – if they want to reduce (increase) the risk in their
portfolio of assets.

Kavussanos (1997, 2003) introduced the concept of time-varying volatilities (risks) in
freight rates and vessel prices and compared them between the different sectors of shipping,
but also between contracts of different duration. In each market, not only is the average value
of freight rates affected by the state of the market, but also the risks vary with changing market
conditions. Moreover, the risks of vessel prices are also time-varying and are affected, apart
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TABLE 8.4 Risk comparisons of prices of new-build, 5-year-old, scrap prices and earnings for
dry-bulk and tanker vessels

Panel A: Dry-bulk vessels

Capesize Panamax Handy

Relative Relative Relative
Mean volatility Mean volatility Mean volatility

Earnings 19,684 75 11,388 65 10,789 54
New-build

prices
35.74 20 26.42 16 23.00 14

Second-hand
prices

30.29 35 20.57 28 17.95 22

Scrap prices 3.60 40 2.30 37 1.33 25

Panel B: Tanker vessels

VLCC Suezmax Aframax

Relative Relative Relative
Mean volatility Mean volatility Mean volatility

Earnings 33,770 68 24,750 67 21,456 58
New-build

prices
82.67 18 54.15 15 42.55 12

Second-hand
prices

62.15 21 41.53 20 33.52 18

Scrap prices 6.32 38 4.53 35 3.21 35

Source: Kavussanos and Visvikis (2006a).
Note: Mean figures for second-hand, scrap and new-build prices are in US million dollars.

from their own past values and past values of shocks to long-run equilibrium in each market,
by factors such as time-charter rates, interest rates and oil prices.

8.2.3.3 Freight Rate Seasonal i ty in Shipp ing Subsectors Freight rate seasonality
arises because of factors that influence the demand for shipping services. Kavussanos and
Alizadeh (2001, 2002) show that these seasonalities are transmitted to dry-bulk and tanker
freight rates. More specifically, in dry-bulk shipping spot freight rates increase significantly
during the spring months of March and April for all sized vessels. During the autumn months
of October and November, Panamax spot rates rise, while during the summer months of June
and July, there is a seasonal decline in spot rates across all three vessel sizes.

The seasonal pattern in 3-year and 1-year time-charter rates shows that there is a seasonal
increase in time-charter rates during spring and a decline in rates for all sizes during June
and July. Moreover, the results suggest that the degree of seasonal fluctuation of shipping
freight rates declines as the duration of contract increases. When seasonality is compared
between different market conditions, results for all types of charter indicate that seasonal
fluctuations are or become significant in ‘good’ market conditions. However, such differences
become smaller as the duration of the contract rises from 1 to 3 years. Finally, Kavussanos
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and Alizadeh (2002) present similar results for seasonal patterns in the tanker market. They
find that there are significant seasonal patterns in tanker freight rates, which vary by market
condition.

8.2.3.4 Correlat ion and Portfo l io D iversi f icat ion in Shipp ing Subsectors All the
above indicate that there are significant risk–return differences in freight rates and shipping
prices in different subsegments of dry-bulk and tanker shipping. This points to possibly
significant risk reductions in portfolio formations of vessels from different sectors of bulk
shipping. To establish this we consider next the correlation coefficients in freight rates between
different segments of dry-bulk and tanker shipping. We know from Markowitz (1952) that if
the correlation coefficients between returns on assets are low, inclusion of these assets in a
portfolio reduces the total risk of the portfolio, thereby achieving significant diversification
effects.

Consider Table 8.5, which presents freight rate correlations in levels (panel A) and in
logarithmic first differences (panel B) between the three major subsegments of the dry-bulk
sector – namely, the Baltic Capesize Index (BCI), the Baltic Panamax Index (BPI) and the
Baltic Supramax Index (BSI) and those of the tanker sector – namely, VLCC, Suezmax
and Aframax vessels carrying crude oil (dirty) and Panamax and Handysize vessels carrying
products of crude oil (clean). These are described in detail in Section 8.3.

TABLE 8.5 Freight rate correlations in segments of dry-bulk and tanker markets

Panel A: Correlations of freight rates in levels

VLCC Suezmax Aframax Panamax Handysize
BCI BPI BSI dirty dirty dirty clean clean

BCI 1
BPI 0.965 1
BSI 0.962 0.988 1
VLCC dirty 0.325 0.267 0.289 1
Suezmax dirty 0.171 0.124 0.139 0.832 1
Aframax dirty 0.210 0.169 0.193 0.736 0.878 1
Panamax clean 0.086 0.104 0.135 0.456 0.386 0.380 1
Handysize clean 0.310 0.322 0.344 0.542 0.542 0.591 0.552 1

Panel B: Correlations of freight rates logarithmic first differences

VLCC Suezmax Aframax Panamax Handysize
BCI BPI BSI dirty dirty dirty clean clean

BCI 1
BPI 0.513 1
BSI 0.372 0.512 1
VLCC dirty 0.111 0.070 0.115 1
Suezmax dirty −0.011 −0.020 0.028 0.419 1
Aframax dirty −0.123 −0.034 0.109 0.297 0.421 1
Panamax clean 0.016 0.023 0.004 0.013 0.013 0.020 1
Handysize clean 0.013 0.031 0.044 0.071 0.044 0.113 0.025 1

Note: BCI, Baltic Capesize Index; BPI, Baltic Panamax Index; BSI, Baltic Supramax Index.
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As expected, the strongest correlations are exhibited in freight rate levels between the
different segments of the dry-bulk sector, with correlations ranging between 96.5% and 98.8%.
This is an expected outcome, as a Panamax vessel for instance can substitute a Capesize vessel
and a Supramax vessel can substitute a Panamax vessel in most trades. The corresponding
correlation coefficients between the ‘dirty’ tanker trades range from 73.6% to 87.8%, while
between the Panamax and Handysize ‘clean’ trades the value is much lower, standing at 55.2%.
In contrast, correlation coefficients between dry-bulk and tanker subsegments are rather low
and only range in value from 8.6% to 34.4%, pointing to very different behaviour between
the dry-bulk and tanker segments of the shipping industry. However, when considering the
corresponding correlation coefficient figures for the logarithmic changes in freight rates, their
values are reduced significantly and are very low in most cases compared with correlations
examined for levels of freight rates. Specifically, between subsectors of dry-bulk shipping
these correlations take values between 37.2% and 51.3%. Between tanker dirty trades the
coefficients are even lower, while when these correlation coefficients are examined between
tanker and dry-bulk trades they are close to zero or even negative in some cases.

It seems that the dry-bulk sector freight rates are not related so much to the tanker sector
rates. This is expected, as each of these two sectors represent distinct market segments of the
shipping industry. As a consequence, a ship owner investing in more than one segment of dry-
bulk shipping brings about risk diversification effects to the income part of his investments,
arising from his portfolio of vessels. Moreover, if he decides to include vessels from the tanker
sector in his portfolio these risk reductions are even greater.

8.2.4 Tradit ional R isk Management Strategies

The results so far suggest that:

(i) Freight rate risks in the larger sectors of the dry-bulk and tanker sectors of the shipping
industry may be mitigated by investing in smaller vessels. This is because freight rates and
prices of ships for larger vessels seem to show higher volatilities than smaller ones, and
correlation coefficients of freight rates and vessel prices amongst segments of shipping
are low.

(ii) Spot (voyage) rates are more volatile than time-charter (period) rates. As a consequence,
owners and ship management companies can reduce freight rate risks by operating vessels
under long-term time-charter rather than spot contracts.

(iii) Freight and ship price risks are time-varying. As a consequence, the mix of the investors’
portfolios in terms of both charter contracts and investments in different ship segments
should be reviewed constantly to create optimal solutions that fit their risk–return profiles.

(iv) There are seasonal movements of dry-bulk and tanker rates. For instance, on average, the
dry-bulk freight rates increase in certain months (March and April) and drop in others
(June and July). This information may be used to dry-dock vessels in periods when rates
are expected to fall and adjust speeds to increase productivity during peak seasons.

The above strategies are useful but may prove to be expensive, non-existent or inflexible
at times. For instance, it consumes time and resources to buy and sell vessels and go in and out
of freight contracts of different duration in order to switch between segments of shipping and
charter parties. Long-term charters may be difficult for ship owners to find when the market is
in decline. The opposite is true for the charterers when the market is improving. In addition,
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the counterparties (ship owner or charterer) may decide to discard the agreement when the
conditions turn too much against them, damaging their reputation and brand name. Derivatives
products, analysed next, can provide more efficient solutions to the above problems.

8.3 FRE IGHT RATE DERIVATIVES

8.3.1 Risk Management in Shipp ing

Derivatives instruments are financial contracts, creating rights and obligations, the effect of
which is to transfer risk to some other party willing to bear it. These contracts are determined by
reference to or derived from underlying spot or physical markets. By using derivatives, market
participants can secure (stabilize) their future income or costs and reduce their uncertainty and
unforeseen volatility. The existence of financial derivatives contracts has helped to alleviate
the problems of the previous section with respect to risk management in the business of
shipping. They have provided real gains for market participants in shipping, as their existence
has made risk management cheaper, more flexible and available to parties exposed to adverse
movements in freight rates, bunker fuel prices, vessel prices, exchange rates, interest rates and
other variables affecting the cash-flow position of the shipping company (see Kavussanos and
Visvikis, 2006a, 2007, 2011).

More specifically, the high fluctuations (volatility) of freight rates constitute a major
source of business risk for both the ship owner and the charterer. For the charterer wishing to
hire in vessels for transportation requirements, increasing freight rates lead to higher costs. In
contrast, for the ship owner seeking employment for his vessels, lower freight rates involve
less income from hiring out the vessels. Freight derivatives contracts can be used to hedge
this freight rate risk. Freight derivatives contracts, compared with time-chartering a vessel,
are more effective instruments for managing freight market risks. This is because ship owners
retain operational control of their vessels and at the same time are benefiting from favourable
spot market conditions. Charterers, in contrast, are free from any operational risks which are
present in time-charter agreements. Also, there is no physical delivery involved with freight
derivatives. They simply settle in cash upon conclusion of the agreed terms (Kavussanos and
Visvikis, 2008).

8.3.2 The Underly ing Ind ices of Freight Rate Derivat ives

8.3.2.1 Dry-Bulk Freight Rate Ind ices For derivatives contracts to be written on an
underlying asset, an independent price for this asset must exist. This is important in order
to enable the derivatives contracts to be settled against this price. The Baltic Exchange has
undertaken the task of constructing such indices for the industry. Freight derivatives are cash-
settled against the value of a freight index. The Baltic Exchange appoints panellists, which are
major ship brokers. They are assigned the task of reporting actual or estimated freight rates
on individual routes, where vessels are employed on a daily basis. These primary data are
then utilized by the Baltic Exchange to build the freight indices. Provision is made that the
composition of these indices could be altered over time, in line with developments in world
trades and shipping, in order to continue to reflect changing trading patterns.

The Baltic Exchange has gradually launched a number of distinct sectoral indices. These
indices include: the BPI, launched in 1998; the BCI, introduced in 1999; the BSI, launched
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TABLE 8.6 BCI route definitions, 2012

Routes Vessel size (dwt) Cargo Route description Weights

C2 160,000 Iron ore Tubarao (Brazil) to Rotterdam (Netherlands) 10%
C3 160,000 Iron ore Tubarao to Qingdao (China) 15%
C4 150,000 Coal Richards Bay (S. Africa) to Rotterdam 5%
C5 160,000 Iron ore W. Australia to Qingdao 15%
C7 150,000 Coal Bolivar (Colombia) to Rotterdam 5%
C8_03 172,000 T/C Gibraltar/Hamburg transatlantic round voyage 10%
C9_03 172,000 T/C Continent/Mediterranean trip to Far East 5%
C10_03 172,000 T/C Pacific round voyage 20%
C11_03 172,000 T/C China–Japan trip Mediterranean/Continent 15%

Source: Baltic Exchange.

in 2005; and the Baltic Handysize Index (BHSI), introduced in 2006 for the dry-bulk sector.
Tables 8.6 to 8.9 show the compositions of the dry-bulk sector indices (BCI, BPI, BSI and
BHSI) as they stood in 2012.

Table 8.6 shows the composition of the BCI. It comprises spot and time-charter routes,
coded C2 to C11, involving vessel sizes which range from 150,000 dwt to 172,000 dwt,
carrying iron ore and coal in the routes described fully in the fourth column of the table. The
latter correspond to seaborne trade patterns. Moreover, the weights assigned to each route
(shown in the last column of the table) reflect the importance of the route in the composition
of the index.

The composition of the BPI is shown in Table 8.7. Just as with the BCI, the table shows
the vessel sizes, the cargos carried, the routes that the vessels engage in, as well as the weights
assigned to each route, reflecting the state of the Panamax market as it stood in 2012.

Table 8.8 presents the composition of the BSI. The Supramax vessels (as well as the
Handysize and Handymax vessels) can carry on the different routes all bulk cargos, including
grains, coal and iron ore. Typically, Handysize vessels can also carry steel products.

Table 8.9 shows the composition of the BHSI. It comprises smaller Handysize vessels of
28,000 dwt and as such covers a different market segment from the BSI.

8.3.2.2 Tanker Freight Rate Ind ices In an effort to create an independent index for the
tanker freight markets, the Baltic Exchange launched in January 1998 the Baltic International
Tanker Route (BITR) index. By October 2001, the BITR was split into two separate indices

TABLE 8.7 BPI route definitions, 2012

Routes Vessel size (dwt) Cargo Route description Weights

P1A_03 74,000 T/C Transatlantic round voyage 25%
P2A_03 74,000 T/C Skaw/Gibraltar to Far East 25%
P3A_03 74,000 T/C Japan–South Korea to Pacific round voyage 25%
P4_03 74,000 T/C Far East/NOPAC–Australia/South Korea pass 25%

Source: Baltic Exchange.
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TABLE 8.8 BSI route definitions, 2012

Routes Vessel size (dwt) Route description Weights

S1A 52,000 Antwerp/Skaw trip Far East 12.5%
S1B 52,000 Canakkale (Turkey) trip Far East 12.5%
S2 52,000 Japan–South Korea/NOPAC or Australia round voyage 25%
S3 52,000 Japan–South Korea trip Gibraltar/Skaw range 25%
S4A 52,000 US Gulf–Skaw/Passero 12.5%
S4B 52,000 Skaw/Passero range–US Gulf 12.5%
S5 52,000 West Africa via ECSA to Far East 0%
S9 52,000 West Africa via ECSA–Skaw/Passero 0%

Source: Baltic Exchange.
Note: Supramax vessels carry bulk cargos, such as grains and coal.

TABLE 8.9 BHSI composition, 2012

Routes Vessel size (dwt) Route description Weights

HS1 28,000 Skaw/Passero trip Recalada–Rio de Janeiro 12.5%
HS2 28,000 Skaw/Passero trip Boston–Galveston 12.5%
HS3 28,000 Recalada–Rio de Janeiro trip Skaw/Passero 12.5%
HS4 28,000 US Gulf trip via US Gulf or NCSA to Skaw/Passero 12.5%
HS5 28,000 SE Asia trip via Australia to Singapore–Japan 25%
HS6 28,000 South Korea–Japan via NOPAC to Singapore–Japan 25%

Source: Baltic Exchange.

which exist until today – the Baltic Dirty Tanker Index (BDTI) and the Baltic Clean Tanker
Index (BCTI) – bundling separately the dirty and clean routes, respectively. This modification
came in recognition of the fact that dirty and clean markets are separate entities and must be
treated accordingly.

The BDTI includes dirty vessels which carry the black or dirty cargos, such as crude oil,
heavy fuel oils, asphalt, etc. The BCTI includes clean vessels which carry the refined white or
clean products, such as gasoline, jet fuels, diesel oil, kerosene, naphtha, leaded and unleaded
oil, etc. Tables 8.10 and 8.11 present the BDTI and BCTI compositions as they stood in 2012,
respectively.

8.3.2.3 Conta iner Freight Rate Ind ices The underlying assets of the container freight
derivatives consist of the routes of the Shanghai Containerized Freight Index (SCFI) of the
Shanghai Shipping Exchange (SSE) and of the World Container Index (WCI), which is a joint
venture between Drewry Shipping Consultants and Cleartrade Exchange.

The SSE, on 16 October 2009, launched a revised version of the SCFI, replacing the
original index published by the exchange on 7 December 2005.3 The new index, as seen in

3In 1998 and 2001 the SSE, respectively, issued China (Export) Containerized Freight Index (CCFI) and
China (Coastal) Bulk Freight Index (CBFI). In 2005, for the purpose of reflecting the momentum of the
Shanghai container liner service market more accurately, the SSE further developed the SCFI.
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TABLE 8.10 BDTI composition, 2012

Vessel Type of
Routes size (mt) vessel Route description

TD1 280,000 VLCC Middle East to US Gulf; Ras Tanura
(South Arabia) to Loop (USA)

TD2 260,000 VLCC Middle East Gulf to Singapore; Ras
Tanura to Singapore

TD3 260,000 VLCC Middle East Gulf to Japan; Ras Tanura
to Chiba (Japan)

TD4 260,000 VLCC West Africa to US Gulf; Off Shore
Bonny (Nigeria) to Loop

TD5 130,000 Suezmax West Africa to USAC; Off Shore Bonny
to Philadelphia (USA)

TD6 135,000 Suezmax Black Sea/Mediterranean; Novorossiyk
to Augusta

TD7 80,000 Aframax North Sea to Continent; Sullom Voe
(UK) to Wilhelmshaven (Germany)

TD8 80,000 Aframax Kuwait to Singapore; Mena al Ahmadi
(Kuwait) to Singapore

TD9 70,000 Panamax Caribbean to US Gulf; Puerto La Cruz
(Venezuela) to Corpus Christi (USA)

TD10D 50,000 Panamax Caribbean to USAC; Aruba (Antilles)
to New York

TD12 55,000 Panamax ARA to US Gulf; Antwerp (Belgium)
to Houston (USA)

TD14 80,000 Aframax South East Asia to EC Australia; Seria
to Sydney

TD15 260,000 VLCC West Africa to China; Serpentina FPSO
and Off Shore Bonny to Ningpo

TD16 30,000 Handysize Black Sea to Mediterranean; Odessa to
Augusta

TD17 100,000 Aframax Baltic to UK Continent; Primorsk to
Wilhelmshaven

TD18 30,000 Handysize Baltic to UK Continent; Tallinn to
Amsterdam

TD19 80,000 Aframax Cross Mediterranean/Ceyhan to Lavera
VLCC-TCE – VLCC Time-charter equivalent average of the

rates derived from TD1 and TD3
Suezmax-TCE – Suezmax Time-charter equivalent average of the

rates derived from TD5 and TD6
Aframax-TCE – Aframax Time-charter equivalent average of the

rates derived from TD7, TD8, TD9,
TD11, TD14 and TD17

Source: Baltic Exchange.
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TABLE 8.11 BCTI composition, 2012

Routes
Vessel

size (mt)
Type of
vessel Route description

TC1 75,000 Aframax Middle East Gulf to Japan; Ras Tanura to
Yokohama (Japan)

TC2_37 37,000 Handysize Continent to USAC; Rotterdam to
New York

TC3_38 38,000 Handysize Caribbean to USAC; Aruba to New York
TC5 55,000 Panamax Middle East to Japan; Ras Tanura (South

Arabia) to Yokohama
TC6 30,000 Handysize Algeria/Euromed; Skikda (Syria)/Lavera

(France)
TC9 22,000 Handysize Baltic to UK Continent; Ventspils to Le

Havre
TC8 65,000 Panamax AG to UK Continent; Jubail to Rotterdam
TC14 38,000 Handysize US Gulf to Continent; Houston to

Amsterdam
Baltic Exchange tanker routes (BITR-Asia)
TC4 30,000 Handysize Singapore to Japan; Singapore to Chiba

(Japan)
TC7 30,000 Handysize Singapore to EC Australia; Singapore to

Sydney
TC10 40,000 Handysize South Korea to NOPAC West Coast
TC11 40,000 Handysize South Korea to Singapore
TC12 35,000 Handysize Naptha Sikka (WCI) to Japan

Source: Baltic Exchange.
Note: TC4, TC7, TC10, TC11 and TC12 routes are excluded from BCTI and reported as standalone
routes (BITR-Asia) with a publishing time of 16:00 hrs Singapore time.

Table 8.12, is based on spot ocean freight rates (including surcharges), quoted in US$/TEU
(twenty foot equivalent units) and US$/FEU (forty foot equivalent units – for the US West
Coast and East Coast services) of the Shanghai export container transport market. The rates
are collected and published every Friday at 15:00 (Beijing time) from 30 panellists (15 from
liner companies4 and 15 from shippers and freight forwarders5) and include 15 individual
shipping routes. According to the market, the new SCFI met the needs of carriers, freight

4The liner companies are: CMA-CGM, COSCO, China Shipping, Hanjin, Shanghai Haihua Shipping
Co., Hapag-Lloyd, Jin Jiang Shipping, ‘K’ Line, Maersk, MOL, NYK Line, OOCL, Pacific International
Lines, Sinotrans Shipping and SITC Shipping.
5The shippers/freight forwarders are: Orient International Logistics, UBI Logistics (China), JHJ Inter-
national Transportation Co., SIPG Logistics Co., Shanghai Orient Express International Logistics Co.,
Shanghai Huaxing International Container Freight Transportation Co., Shanghai Jinchang Logistics Co.,
Shanghai Shenda International Transportation Co., Shanghai Viewtrans Co., Shanghai Richhood Inter-
national Logistics Co., Shanghai Ever-leading International, Shanghai Asian Development Int’l Trans
Pu Dong Co., Sunshine-Quick Group, COSCO Logistics (Shanghai) and Sinotrans Eastern Co., Ltd.
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TABLE 8.12 SCFI composition, 2012

Line service Unit Weighting Route description

1 USD/TEU 20% Europe (base port)
2 USD/TEU 10% Mediterranean (base port)
3 USD/FEU 20% USWC (base port)
4 USD/FEU 7.5% USEC (base port)
5 USD/TEU 7.5% Persian Gulf and Red Sea (Dubai)
6 USD/TEU 5.0% Australian/New Zealand (Melbourne)
7 USD/TEU 2.5% East/West Africa (Lagos)
8 USD/TEU 2.5% South Africa (Durban)
9 USD/TEU 2.5% South America (Santos)

10 USD/TEU 5.0% West Japan (base port)
11 USD/TEU 5.0% East Japan (base port)
12 USD/TEU 5.0% Southeast Asia (Singapore)
13 USD/TEU 2.5% Korea (Pusan)
14 USD/TEU 2.5% Taiwan (Kaohsiung)
15 USD/TEU 2.5% Hong Kong (Hong Kong)

Source: Shanghai Shipping Exchange.
Notes: The freight rate includes ocean freight and surcharges.
Base port: Mediterranean Sea – Barcelona/Valencia/Genoa/Naples; Europe – Hamburg/Antwerp/
Felixstowe/Le Havre; USWC – Los Angeles/Long Beach/Oakland; USEC – New York/Savannah/
Norfolk/Charleston; West Japan – Osaka/Kobe East Japan, Tokyo/Yokohama.

owners and forwarders and traders, while at the same time providing the underlying asset of
container derivatives.6

WCI is one of the two indices (together with SCFI) that are used for container FFAs.
The WCI, assessed by Drewry Shipping Consultants and published by Cleartrade Exchange,
reports actual spot container freight rates for major East–West trade routes. The WCI, as shown
in Table 8.13, consists of 11 route-specific indices, representing individual routes expressed in
US$/FEU. The 12 panellists are transport intermediaries (freight forwarders) based in Europe,
North America and Asia. The panellists report the freight rates on which they are moving
cargo, with a number of major shipping lines. Panellists provide up to four market assessments
each (the rate which that panellist has agreed with a major carrier) per week and for each route.

The methodology for estimating the route-specific indices of the WCI is as follows
(www.worldcontainerindex.com): (i) the median of all rates submitted is calculated; (ii) any
rate more than 20% above or below this median is discarded; (iii) the remaining rates are sorted
into reports for the specific carriers monitored; (iv) the mathematical average rate for each
carrier monitored is reported; (v) the mathematical average of all individual carrier averages is
calculated, which is the final WCI for that route for that week. According to WCI, besides being
used for the settlement of container FFAs, facilitating risk management and price discovery, the
index can also be used for index-linked container contracts (ILCCs), which are long-term con-
tracts whose rates fluctuate with market conditions and for benchmarking spot rates and trends.

6On 18 January 2010, Clarkson Securities Limited announced the trade of the first OTC container freight
swap agreement (CFSA), settled against the SCFI.

http://www.worldcontainerindex.com
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TABLE 8.13 WCI composition, 2012

Line service Route Weighting Representative trade

1 Shanghai–Rotterdam 23.5% Far East to North Europe
2 Rotterdam–Shanghai 10.7% North Europe to Far East
3 Shanghai–Genoa 13.0% Far East to Mediterranean
4 Genoa–Shanghai 4.4% Mediterranean to Far East
5 Shanghai–Los Angeles 22.7% Far East to US West Coast
6 Los Angeles–Shanghai 11.0% US West Coast to Far East
7 Shanghai–New York 8.3% Far East to US East Coast
8 Los Angeles–Rotterdam 0.30% US West Coast to North Europe
9 Rotterdam–Los Angeles 0.50% North Europe to US West Coast

10 New York–Rotterdam 2.5% US East Coast to North Europe
11 Rotterdam–New York 3.0% North Europe to US East Coast

Source: Cleartrade Exchange.

8.3.3 The Freight Derivat ives Market

8.3.3.1 Forward Freight Agreements (FFAs) The FFA contracts, which appeared in
1992, were the first over-the-counter (OTC) freight derivatives products. They are private
principal-to-principal contracts-for-difference (CFDs) between a seller and a buyer to settle a
freight rate, for a specified quantity of cargo or type of vessel, for usually one or a combination
of the major trade routes of the dry-bulk or tanker sectors of the shipping industry. Since FFAs
are tailor-made to suit the needs of their users, they have become very popular with market
participants wishing to hedge freight rate fluctuations (see, e.g., Kavussanos and Visvikis,
2003a,b).

The underlying instruments of FFA contracts are routes or baskets of routes from the BCI,
BPI, BSI and BHSI for the dry-bulk sector, routes from BCTI and BDTI for the tanker sector
and routes from the SCFI and WCI for the container sector. In OTC derivatives markets each
party accepts credit (counterparty) risk from the other party. The primary advantage of an
OTC market is that the terms and conditions of the contract are tailored to the specific needs
of the two parties. This gives investors flexibility by letting them introduce their own contract
specifications in order to cover their specific needs.

Voyage-based dry-bulk freight derivatives contracts on a particular route of the Baltic
indices are settled on the difference between the contracted price and the average spot price
of the route over the last seven working days of the settlement month. Time-charter-based
dry-bulk contracts are settled on the difference between the contracted price and the average
price over the calendar settlement month. If freight rates fall below the agreed rate, the buyer
of FFAs (charterer) pays the difference between the agreed FFA price and the settlement spot
price; if rates increase, then the buyer of FFAs receives the difference. The opposite is true for
the seller of FFAs (ship owner).

In the tanker market, a tanker FFA contract is an agreement between two parties to fix a
freight rate in Worldscale units (or in a time-charter equivalent – TCE) on a predetermined
tanker route, over a time period, at a mutually agreed price. Settlement takes place at the end
of each month, where the fixed forward price is compared against the monthly average of
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F IGURE 8.3 Dry-bulk and tanker FFA trading volume (Q1 2008–Q2 2012)
Source: ICAP Shipping, Baltic Exchange. Reproduced with permission.

the spot price of the tanker route selected. Yet again, if the seller’s price is lower than the
settlement price then the seller will compensate the buyer of the FFA contract.

Principals with physical exposure to container box rates can utilize container swaps
(CFSAs) to manage the volatility in the container market. A CFSA is a cash-settled agreement
between two parties to transport a specific volume of containers on a particular trade route
at a specified future date, but at a box rate agreed today. The settlement price at expiry of
the contract is calculated as the average index-measured box rate over the contract period.
For end-users and commodity traders (shipping liners and operators), CFSAs hedge the risk
of increasing (decreasing) box-rate costs (revenues) in a rising (falling) market. CFSA rates
are published in US$/FEU for the US routes and US$/TEU for all other routes, these are ‘all
in rates’ that include ancillary fees such as bunker surcharge (for more information, see the
website of the Container Freight Derivatives Association – CFDA).

To see how FFAs can be used for hedging purposes, assume that a ship owner (or charterer)
feels that the freight market in a specific route, with a specific vessel/cargo size, might move
adversely in the near future. He can approach a freight derivatives broker to sell (buy) FFA
contracts, written on the route–vessel/cargo type. The ship owner’s broker will search to find a
charterer with opposite expectations to the ship owner, thereby wishing to buy (sell) FFAs and
negotiate the terms of the contract. If an agreement is reached then the FFA contract is fixed.

Figure 8.3 shows the evolution of cleared and OTC FFA trades. The growth in cleared
FFAs (in comparison with OTC) over the period is clear, as currently all FFA trades are cleared.
The bilateral (non-cleared) dry-bulk trading volume from more than 200 million tons in Q3
2008 goes close to nothing in Q4 2008. The shift is smoother for the tanker FFA market, but
the result is the same as from about 40 million tons it goes to almost nothing. In other more
mature markets, such as exchange rate markets, derivatives trading is several times higher than
that of the underlying commodity. This reflects the potential in the freight derivatives market.

8.3.3.2 Freight Futures Freight futures contracts are also available, and currently trade
in the organized exchange of the Chicago Mercantile Exchange (CME Group – formerly
New York Mercantile Exchange, NYMEX); they are cleared in its associated clearing-house
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TABLE 8.14 CME Group freight futures

Baltic
routes Coding Sector Route description

Cargo
size (mt)

Type of
contract

Settlement
index

Panel A: Dirty tanker futures
TD3 TL VLCC Middle Eastern

Gulf to Japan
260,000 Futures Baltic

TD5 TI Suezmax West Africa to
USAC

130,000 Futures Baltic

TD7 TK Aframax North Sea to
Europe

80,000 Futures Baltic

Panel B: Clean tanker futures
TC2 TM MR Europe to USAC 37,000 Futures Baltic
TC4 TJ MR Singapore to Japan 30,000 Futures Platts
TC5 TH LR 1 Ras Tanura to

Yokohama
55,000 Futures Platts

TC6 TCS MR Algeria to Euromed 30,000 Futures Baltic
TC12 FRS Sikka (West Coast

India) to Chiba
35,000 Futures Baltic

Panel C: Dry-bulk futures
– CFU Capesize Time-charter

Average
– Futures Baltic

– PFU Panamax Time-charter
Average

– Futures Baltic

– SFT Supramax Time-charter
Average

– Futures Baltic

– HFT Handysize Time-charter
Average

– Futures Baltic

Source: CME Group.

(ClearPort).7 In May 2005, tanker freight derivatives were launched and since 2010, dry-bulk
freight derivatives have been traded on the electronic platform of the CME Group. These
contracts are cleared in ClearPort, and as such, transactions executed on the exchange do not
carry credit risk. They use as underlying commodities the freight routes of the Baltic Exchange
and of Platts in some cases.8 Table 8.14 presents the specifications of the underlying indices:
they are the three dirty tanker routes TD3, TD5 and TD7, shown in panel A of the table;
the four clean tanker routes TC2, TC4, TC5 and TC6, presented in panel B; and the four
time-charter average baskets, presented in panel C of the same table.

7The International Maritime Exchange (IMAREX) in Oslo, which has traded and cleared freight futures
and options since 2001, is another organized freight derivatives exchange. Marex Group acquired
IMAREX’s Spectron Group Ltd to become Marex Spectron in May 2011 and NASDAQ OMX Stock-
holm AB, which is a part of NASDAQ OMX Group Inc., acquired the Norwegian Options and Futures
(NOS) clearing-house in July 2012.
8Platts is a provider of energy news, price benchmarks, energy intelligence and decision-support services
to the industry. It covers the petroleum, petrochemical, electricity, natural gas, coal, metals, nuclear
power, bunker fuels and freight rate markets.
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TABLE 8.15 LCH.Clearnet cleared hybrid forwards

Routes Sector Route description Cargo size (mt)

Panel A: Tanker forwards
TD3 VLCC Middle Eastern Gulf to Japan 250,000
TD5 Suezmax West Africa to USAC 130,000
TD7 Aframax North Sea to USAC 80,000
TD19 Aframax Cross Mediterranean 80,000
TC2 MR Continent to USAC 37,000
TC4 MR Singapore to Japan 30,000
TC5 LR1 ME to Japan 55,000
TC6 MR Algeria to Euromed 30,000
Panel B: Dry voyage routes
C3E Capesize Tubarao to Qingdao 150,000
C4E Capesize Richard Bay to Rotterdam 150,000
C5E Capesize West Australia to Qingdao 150,000
C7E Capesize Bolivar to Rotterdam 150,000
Panel C: Dry time-charter basket routes
CTC Capesize Capesize 4 T/C routes average –
PTC Panamax Panamax 4 T/C routes average –
STC Supramax Supramax 6 T/C routes average –
HTC Handymax Handymax 6 T/C routes average –
Panel D: Dry trip time-charter routes
P1A Panamax Transatlantic round voyage
P2A Panamax Continent trip Far East –
P3A Panamax Transpacific round voyage –
Panel E: Dry Time-charter voyage routes
S7 Supramax East Coast India to China –
Panel F: Index
BDI – Baltic Exchange Dry Index –

Source: LCH.Clearnet.

8.3.3.3 Cleared Hybrid FFAs One way to deal with the credit risk issue of the OTC
FFA contracts is to clear them in a clearing-house, while retaining their trading OTC. These
contracts are hybrid FFAs, in the sense that they are OTC agreements but cleared through
a clearing-house. Thus, they maintain the flexibility of the FFAs and, for a fee, have credit
risk eliminated through mark-to-market clearing, like in freight futures. These hybrid FFAs
are cleared in the London Clearing House Clearnet (LCH.Clearnet) and in the Singapore
Exchange AsiaClear (SGX AsiaClear).

In December 2003, LCH Limited merged with Clearnet S.A. to form LCH.Clearnet Group.
During September 2005, LCH.Clearnet launched a clearing and settlement platform for OTC
FFAs. Table 8.15 presents the hybrid FFA contracts cleared on LCH.Clearnet. They include
tanker FFAs (crude and refined products) written on four dirty and four clean routes, presented
in panel A of the table.

In the dry-bulk sector, there are four dry-bulk voyage FFAs, written on Capesize voyage
routes C3E, C4E, C5E and C7E, presented in panel B of the table; four dry-bulk time-charter
baskets on Capesize, Panamax, Supramax and Handysize vessels, shown in panel C; three



376 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

TABLE 8.16 SGX AsiaClear cleared hybrid forwards

Routes Sector Route description Cargo size (mt)

Panel A: Tanker forwards
TD3 VLCC Middle Eastern Gulf to Japan 260,000
TC4 MR Singapore to Japan 30,000
TC5 LR 1 Middle Eastern Gulf to Japan 55,000
Panel B: Dry voyage forwards
C3 Capesize Tubarao/Beilun and Baoshan 150,000
C4 Capesize Richard Bay/Rotterdam 150,000
C5 Capesize West Australia/Beilun-Baoshan 150,000
C7 Capesize Bolivar/Rotterdam 150,000
Panel C: Dry time-charter basket forwards
CTC Capesize Capesize T/C routes average –
PTC Panamax Panamax T/C routes average –
STC Supramax Supramax T/C routes average –
HTC Handysize Handysize T/C routes average –
Half-day CTC Capesize Capesize T/C routes average –
Half-day PTC Panamax Panamax T/C routes average –
Half-day STC Supramax Supramax T/C routes average –
Half-day HTC Handysize Handysize T/C routes average –
Panel D: Dry trip time-charter forwards
P2A Panamax Skaw to Gibraltar/Far East –
P3A Panamax Transpacific round to Japan –

Source: SGX AsiaClear.
Note: A full-day contract refers to 1 day, while a half-day contract refers to 1/2 day = 1 lot.

dry-trip time-charter FFAs on Panamax time-charter P1A, P2A and P3A routes, shown in
panel D; one dry time-charter voyage FFA on Supramax S7 route, shown in panel E; and a
contract written on BDI, shown in panel F of the table.

In May 2006, SGX launched SGX AsiaClear, its OTC clearing facility for energy
and freight derivatives. Clearing for the SGX AsiaClear facility is supported by Singapore
Exchange Derivatives Clearing Limited. Table 8.16 presents the FFA contracts cleared on
SGX AsiaClear. They include three tanker FFAs written on the dirty TD3 route and the clean
TC4 and TC5 routes, presented in panel A of the table; four dry voyage FFAs written on
Capesize voyage routes C3, C4, C5 and C7, presented in panel B of the table; four full-day
and four half-day dry-bulk time-charter baskets on Capesize, Panamax and Supramax vessels
(launched on November 2007) and on Handysize vessels (launched on June 2009), shown
in panel C of the table; and two dry-trip time-charter FFAs written on Panamax time-charter
P2A and P3A routes, shown in panel D of the table. These hybrid FFAs seem to combine
the best of futures and forwards into one contract. That is, counterparty risk is removed and
yet they retain their flexibility in terms of adjusting their terms according to the needs of the
counterparties.9

9It should be noted that, at the time of writing, according to market sources more than 95% of FFA trades
are cleared in one of the available clearing-houses for freight derivatives.
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TABLE 8.17 CME Group tanker freight options

Baltic
routes Coding Sector Route description

Cargo
size (mt)

Type of
contract

Settlement
index

TD3 TDT VLCC Middle Eastern
Gulf to Japan

260,000 Options Baltic

TC2 TCW MR Europe to USAC 37,000 Options Baltic
TC5 TCF LR 1 Ras Tanura to

Yokohama
55,000 Options Platts

TC12 FRS Sikka (West Coast
India) to Chiba

35,000 Options Baltic

Source: CME Group.

TABLE 8.18 LCH.Clearnet dry-bulk freight options

Routes Sector Route description

CTO Capesize T/C average
PTO Panamax T/C average
STO Supramax T/C average
HTO Handysize T/C average

Source: LCH.Clearnet.

8.3.3.4 Freight Opt ions Freight options contracts are available either in OTC or in orga-
nized exchanges on individual routes of the dry-bulk and tanker indices, as well as on baskets
of time-charter routes. These options are Asian-type puts (floors) or calls (caps), as they settle
on the difference between the average spot rate over a defined period of time and an agreed
strikeprice.10 A ship owner anticipating falling freight rates will buy a put option, agreeing
thus to sell his freight service in the future at a strike or exercise price agreed today. He
would exercise the option to sell at the agreed price if the market freight rate falls below the
agreed price, otherwise he will let the option expire worthless and vice-versa for the charterer.
Both the charterer and the ship owner would pay a premium to purchase these options. The
downside cost is known in advance and is equal to the option’s premium. The upside potential
in a call option is unlimited, just as in the case of FFAs and freight futures.

The CME Group offers one dirty tanker freight option on route TD3 and three clean
tanker freight options on routes TC2, TC5 and TC12, as shown in Table 8.17. Tanker freight
options are settled against the Baltic Exchange quotes, with the exception of route TC5, where
a Platts assessment is used.

During February 2008, LCH.Clearnet launched its dry freight options clearing service,
by offering time-charter basket contracts on Capesize, Panamax, Supramax and Handysize
vessels. Table 8.18 presents the three option contracts at LCH.Clearnet. The dry-bulk options

10An Asian option is an option that is exercised against an average over a period of time. Asian options
are often used in thinly traded, volatile commodity markets to avoid problems with price manipulation
of the underlying commodity near or at maturity.
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TABLE 8.19 Baltex freight derivatives

Routes Sector Route description

Panel A: Dry-bulk voyage
C3 Capesize Tubarao to Qingdao
C4 Capesize Richards Bay to Rotterdam
C5 Capesize West Australia to Qingdao
C7 Capesize Bolivar Roads to Rotterdam
Panel B: Dry-trip time-charter
P1A (P1E) Panamax Transatlantic round voyage
P2A Panamax Skaw/Gibraltar to Far East
P3A Panamax Japan-SK/Pacific round voyage
C8 Capesize Gibraltar/Hamburg transatlantic round voyage
C9 Capesize Continent/Mediterranean trip to Far East
S7 Supramax East Coast India to China
Panel C: Dry-bulk time-charter average baskets
– Capesize 4T/C time charter
– Panamax 4T/C time charter
– Supramax 6T/C time charter
– Handysize 6T/C time charter

Source: Baltic Exchange.
Note: P1E refers to the mean of the daily Baltic Exchange spot price assessments in the expiry month.

at LCH.Clearnet are European style and are exercised automatically on the expiry day if they
are ‘in-the-money’. They are cash-settled and are measured in US$/day (1 lot = 1 day).

8.3.3.5 Freight Derivat ives Trading Screens One of the latest developments in the
market is the establishment of online trading screens for freight derivatives contracts. Such
examples are the Baltic Exchange trading screen (The Baltex) in London and the Cleartrade
Exchange (CLTX) in Singapore, both launched in June 2011. Baltex is a multilateral trading
facility (MTF) for dry-bulk freight derivatives, created by the Baltic Exchange and approved
and regulated by the UK’s Financial Service Authorities (FSA) and the Swiss financial author-
ity (FINMA). A change in derivatives regulation, as well as an increase in liquidity and
transparency, brought about the need to create such solutions. Baltex has been developed to be
used by both traders and brokers. Traders can nominate brokers on individual trades, or set up
a default broker and allow their broker to input prices on their behalf, or work prices nominated
to them. The Baltex facilitates a straight-through-clearing (STC) process at LCH.Clearnet and
NOS Clearing.

Table 8.19 presents the instruments that trade on Baltex, which constitute individual
routes, time-charter baskets, spreads, combos and options. More specifically, Capesize routes
C3, C4, C5 and C7; time-charter trip forward routes C8, C9, P1A, P2A, P3A and S7; and
Capesize 4T/C, Panamax 4T/C, Supramax 6T/C and Handysize 6T/C time-charter average
baskets are shown in panels A to C, respectively.

The CLTX offers an execution venue for OTC cleared freight derivatives. It is regulated
by the Monetary Authority of Singapore (MAS) and operates as a recognized market operator
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TABLE 8.20 Cleartrade Exchange freight derivatives

Routes Sector Route description

Panel A: Dry-bulk voyage
C3E Capesize Tubarao to Qingdao
C4E Capesize Richards Bay to Rotterdam
C5E Capesize West Australia to Qingdao
C7E Capesize Bolivar Roads to Rotterdam
Panel B: Dry-trip time-charter
P1A (P1E) Panamax Transatlantic round voyage
P2A (P2E) Panamax Skaw/Gibraltar to Far East
P3A (P3E) Panamax Japan-SK/Pacific round voyage
S7 Supramax East Coast India to China
Panel C: Dry-bulk time-charter average baskets
CTC Capesize T/C time charter
PTC Panamax T/C time charter
STC Supramax T/C time charter
HTC Handysize T/C time charter
Panel D: SCFI container routes
CNW (US$/TEU) – Shanghai to North West Europe
CMD (US$/TEU) – Shanghai to Mediterranean
CSW (US$/FEU) – Shanghai to US West Coast
CSD (US$/FEU) – Shanghai to US East Coast
Panel E: WCI container routes (US$/FEU)
CSL – Shanghai to Los Angeles
CSN – Shanghai to New York
CSR – Shanghai to Rotterdam
CSG – Shanghai to Genoa
CLS – Los Angeles to Shanghai
CRS – Rotterdam to Shanghai
CGS – Genoa to Shanghai
CNR – New York to Rotterdam
CRN – Rotterdam to New York
CLR – Los Angeles to Rotterdam
CRL – Rotterdam to Los Angeles

Source: Cleartrade Exchange.
Notes: P1A, P2A, P3A refer to the mean of the last seven Baltic Exchange spot price assessments in the
expiry month.
P1E, P2E, P3E refer to the mean of the daily Baltic Exchange spot price assessments for every trading
day in the expiry month.
C3E, C4E, C5E, C7E refer to the mean of the daily Baltic Exchange spot price assessments for every
trading day in the expiry month.

(RMO). CLTX works on a membership basis and is open to participation from inter-dealer
brokers, traders/principals and general clearers. Table 8.20 presents the available dry-bulk
derivatives (panels A to C), which can be cleared on LCH.Clearnet and NOS Clearing; the
container derivatives on SCFI (panel D), which can be cleared on LCH.Clearnet; and the
container derivatives on WCI (panel E).
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TABLE 8.21 The two possible outcomes of an FFA time-charter hedge

April
Physical market FFA market
Freight rate of route P2A: $77,500/day
Freight income/cost: $3,487,500 (=

$77,500/day × 45 days)

FFA December price: $77,500/day
Value of FFA: $3,487,500 (= $77,500/day ×

45 days)
First scenario: Freight rates increase Second scenario: Freight rates decrease

June: Physical market
Freight rate: $298,500/day
Freight income: $4,432,500 (= $98,500/day ×

45 days)

Freight rate: $70,500/day
Freight income: $3,487,500 (= $70,500/day ×

45 days)
The ship owner (charterer) gains (loses)

$945,000
(= $4,432,500 – $3,487,500)

The ship owner (charterer) loses (gains)
$315,000

(= $3,172,500 – $3,487,500)

June: FFA market
FFA February price: $99,500/day
Value of FFA: $4,477,500 (= $99,500/day ×

45 days)

FFA February price: $69,500/day
Value of FFA: $3,127,500 (= $69,500/day ×

45 days)
The ship owner (charterer) loses (gains)

$990,000
(= $3,487,500 – $4,477,500)

The ship owner (charterer) gains (loses)
$360,000

(= $3,487,500 – $3,127,500)

Portfolio of spot and FFA positions
Net loss (profit) for ship owner (charterer):

$45,000
(= $945,000 – $990,000)

Net profit (loss) for ship owner (charterer):
$45,000

(= $360,000 –$315,000)
Brokerage fees: $8719 (= 0.25% × $3,487,500)

8.3.4 Examples of Freight Derivat ives Trading

This section presents examples of how FFAs and freight options contracts may be used in
practice to hedge freight rate risk.

8.3.4.1 FFA Time-Charter Trade Suppose, in April, a ship owner sees FFA rates at higher
levels than initially anticipated. As he will have a vessel available for fixture at the end of June,
the owner wants to lock into a bid of $77,500/day in the FFA market for a Skaw/Gibraltar
to Far East time charter (BPI Route P2A) for 45 days. His physical exposure is $3,487,500
(= $77,500/day × 45 days). On the other side of the transaction, there might be a charterer who
aims to manage his risk of rising freight rates. Table 8.21 presents the two possible outcomes,
two months later, in June.

Under the first scenario, presented in the first column of the table, freight rates increase
against the ship owner’s expectations to $98,500/day. In this case, the ship owner gains
$945,000 (= $4,432,500 – $3,487,500) in the physical time-charter market, while in the FFA
market he realizes a loss of $990,000 (= $3,487,500 – $4,477,500). From the other side, the
charterer loses $945,000 in the physical time-charter market, while in the FFA market he
realizes a gain of $990,000. Thus, the net loss of this portfolio for the ship owner is $45,000
(= $945,000 – $990,000), which is equal to the profit of the charterer.
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Brokerage fees of $8719 (= $3,487,500 × 0.25%) are paid by both parties to the broker.
Thus, when FFA transactions costs are also taken into account, the ship owner’s loss becomes
$53,719 (= $45,000 + $8719), while the charterer’s gain is reduced to $36,281 (= $45,000 –
$8719).

Under the second scenario, shown in the second column of the same table, the ship owner’s
expectations are correct; that is, freight rates fall to $70,500/day. In this case, the ship owner
(charterer) loses (gains) $315,000 (= $3,172,500 – $3,487,500) in the spot market, while in
the FFA market he realizes a gain (loss) of $360,000 (= $3,487,500 – $3,127,500). From the
other side, the charterer gains $315,000 in the spot market, while in the FFA market he realizes
a loss of $360,000. Thus, the net profit of this portfolio position, of spot and FFA trades, for
the ship owner is $45,000 (= $360,000 – $315,000), which is equal to the loss of the charterer.
When FFA transactions costs are also taken into account, the ship owner’s gain is reduced to
$36,281 (= $45,000 – $8719), while the charterer’s loss is increased to $53,719 (= $45,000 +
$8719).

If the ship owner had not decided to execute this FFA trade, he would have lost $315,000.
Instead, not only did he manage to cover the losses from the physical market, but he also ended
up making a gain of $36,281 from the overall portfolio position after transactions costs. From
the charterer’s point of view, who decided to hedge in the FFA market against possible freight
rate increases, his expectations did not materialize, yielding a loss in the combined portfolio
position of $53,719. However, by covering these losses from the gains in the physical market,
he managed through the FFA trade to stabilize his costs at more or less today’s levels.

8.3.4.2 Freight Opt ions Trade Suppose that during February a ship owner knows that
he will have a Capesize vessel of 150,000 dwt open for fixture in late June on route C4 of the
BCI (Richards Bay to Rotterdam). He is likely to transport 140,000 mt of coal to receivers in
Rotterdam. The current freight rate is $33.5/ton. If the ship owner is able to charter his vessel
immediately, his freight income would be $4,690,000 (= $33.5/ton × 140,000 mt). However,
as the actual fixture will take place during June, he decides to hedge freight rate risk by buying
a June put option for route C4.

His broker advises him that there is a suitable counterparty (such as a bank or financial
institution) willing to write him a June put option with a strike price of $40.0/ton at a premium
of 70 cents/ton. Therefore, the total premium that the ship owner will pay to the seller of the
put is $98,000 (= $0.70/ton × 140,000 mt). Table 8.22 presents the outcomes of the hedge
under two market scenarios.

Under the first scenario, suppose that freight rates increase to $42.6/ton at the end of
June. The ship owner experiences gains in the spot market of $1,274,000 (= $5,964,000 –
$4,690,000). Since the spot price ($42.6/ton) is higher than the strike price ($40.0/ton), the
put option is not exercised. A loss of $98,000 results in the paper market, which is equivalent
to the option’s premium. Thus, the overall portfolio position of the ship owner yields a freight
income of $5,866,000 (= $5,964,000 – $98,000).

Under the second scenario, suppose that freight rates decrease to $32.5/ton. As a conse-
quence, the ship owner experiences a loss in the spot market of $140,000 (= $4,550,000 –
$4,690,000). Because the spot price ($32.5/ton) is lower than the strike price ($40.0/ton), the
put option is exercised giving a payoff of $952,000 [= ($40.0/ton – $32.5/ton) × 140,000 mt –
$98,000].

Combining the freight income of $4,550,000 received in the physical market with the
profit of $952,000 made in the options market results in an overall portfolio position for the
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TABLE 8.22 Ship owner’s freight options hedge

4-Month hedge using options
Physical market Options market

February
Freight rate: $33.5/ton
Cargo size: 140,000 mt
Freight income: $4,690,000 (= $33.5/ton ×

140,000 mt)

Action: Buy June put option
Put strike price: $40.0/ton
Premium: 70 cents/ton

Ship owner buys June put at a total cost of $98,000 (= 0.7/ton × 140,000 mt)

30 June: Rising market
Freight rate: $42.6/ton
Freight income: $5,964,000 (= $42.6/ton ×

140,000 mt)
Gain in the physical market: $1,274,000

(= $4,690,000 – $5,964,000)

Spot price ($42.6/ton) > strike price
($40.0/ton)

Action: Put option is not exercised
Payoff from option: $98,000 (premium)

Total freight income (including option premium): $5,964,000 – $98,000 = $5,866,000

30 June – alternative scenario: Falling market
Freight rate: $32.5/ton
Freight income: $4,550,000 (= $32.5/ton ×

140,000 mt)
Loss in the physical market: $140,000

(= $4,690,000 – $4,550,000)

Spot price ($32.5/ton) < strike price
($40.0/ton)

Action: Exercise the put option
Payoff from option: $952,000
[= ($40.0/ton – $32.5/ton) × 140,000 mt –

$98,000]
Total freight income (including option premium): $4,550,000 + $952,000 = $5,502,000

ship owner of $5,502,000. As can be seen from these payoffs, if the freight market moves
against the ship owner, the purchased put option reduces his losses in the physical market by a
substantial amount. If the freight market remains firm, the put option is not exercised and his
cash-flow is simply reduced by the option’s premium.

8.4 PRIC ING, HEDGING AND FREIGHT RATE RISK
MEASUREMENT

8.4.1 Pric ing and Hedging Ef fect iveness of Freight
Derivat ives

8.4.1.1 Pric ing of FFAs As argued in Kavussanos and Visvikis (2006a, 2008), a
special feature of the freight derivatives market is that the underlying commodity is a service,
which cannot be stored. Working (1960), amongst others, developed the theory governing the
relationship between spot and derivatives prices of continuously storable commodities, while
Eydeland and Geman (1998), Geman and Vasicek (2001) and Bessembinder and Lemmon
(2002) developed the theory of non-storable commodities, by examining the electricity deriva-
tives markets. The non-storable nature of the FFA market implies that spot and FFA prices are
not linked by a cost-of-carry (storage) relationship, as in financial and agricultural derivatives
markets. Thus, derivatives prices on freight rates are driven by the expectations of market
agents regarding the spot prices that will prevail at the expiry of the derivative contract.
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For a storable commodity, it is argued that the price of a forward contract, written on the
commodity, must be equal to the spot price of the commodity today plus the financial and
other costs (e.g., storage and insurance) to carry it forward in time:

Ft,T = St + CT−t (8.1)

where Ft,T is the price of a forward contract at time t, maturing at time period T; St is the spot
price of the underlying commodity in period t; and CT–t are the costs of carrying the commodity
forward in time between period t and T. If the forward price is overpriced (underpriced) then
arbitrageurs can simultaneously sell (buy) the forward contract, buy (sell) the underlying
commodity and store it until the expiry of the contract. At expiry, reversing these positions
will produce a risk-free profit. However, in practice this equality may break for a number of
market factors, such as the existence of regional supply and demand imbalances, regulatory
changes, market microstructure effects, market distortions created by market participants with
large positions, etc. Such a situation would thus create arbitrage opportunities for market
participants.

Kavussanos and Visvikis (2004, 2006a) point out that freight services, as the underlying
commodity of freight derivatives, are not storable. This violates the usual arbitrage arguments,
presented above, that led to the pricing of derivatives contracts in storable commodities. In
fact, it is shown that in this case, the pricing of FFA and freight futures contracts takes the
following form:

Ft,T = E(ST ) + ut; ut ∼ i.i.d.(0, 𝜎2) (8.2)

where Ft,T is the FFA price formed at period t for settlement at period T, E(ST) denotes
the expected value of the spot (underlying) freight asset at the settlement date and ut is an
independent and identically distributed stochastic error term with a mean value of zero and
variance 𝜎2.

Kavussanos and Visvikis (2004) show that the FFA market satisfies its price discovery
function. That is, forward prices today can help discover spot prices at the expiry of the FFA
contract. Thus, the identification of riskless arbitrage opportunities in non-storable commodi-
ties, and therefore market efficiency, becomes a research issue.

8.4.1.2 Hedging Ef fect iveness of FFAs Financial derivatives have been introduced in
order to provide instruments for businesses to reduce or control the unwanted market risk of
price changes, by transferring it to others more willing to bear it. This function of derivatives
markets is performed through hedging the spot (physical) position by holding an opposite
position in the derivatives (paper) market. An important issue, in this process of hedging risks,
is the calculation of the correct number (the hedge ratio) of forward contracts to use for each
cash position held.

Kavussanos and Visvikis (2010) answer this issue for principals wishing to engage in
freight rate risk management in the Capesize sector, through the use of the FFA markets on
Capesize route C4 (Richards Bay to Rotterdam) and on the Capesize average time-charter
basket (CTC). This is achieved by estimating different models that produce both constant
and time-varying hedge ratios and comparing the hedging outcomes, so as to select the model
which takes into account the properties of both spot and FFA prices. The hedging effectiveness
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of dynamic (time-varying) hedge ratios is compared and contrasted both in-sample and out-
of-sample with that of constant hedge ratios. The selection criterion for the optimum model
to use is the variance (risk)-reduction statistic, which compares the variance of the hedged
portfolio from each model with that of the unhedged position.

Results for in-sample hedging effectiveness indicate that both in route C4 and in the CTC
basket time-varying hedge ratios perform better, in terms of increasing hedging effectiveness,
in comparison with constant hedge ratio models. These results reveal that the arrival of new
information affects the relationship between spot and FFA prices, and therefore, time-varying
hedging models display better performance. In contrast, the results for out-of-sample hedging
effectiveness indicate that both in route C4 and in the CTC basket naı̈ve hedge ratios (taking
an FFA position with the same size as the spot position – i.e., setting the hedge ratio equal to
1) produce the highest variance reductions. This result validates the practice of using positions
in the FFA markets, which are equal in magnitude with the underlying freight rate exposures.

Overall, the results reveal that shipping companies with Capesize vessels operating world-
wide and trading companies that transport commodities to different parts of the world can use
the FFA contracts effectively to reduce their freight rate risk, since the variability of their
cash-flows can be explained significantly by the fluctuations of the FFA rates.

8.4.2 Value-at -R isk (VaR) in Freight Markets

8.4.2.1 Introduct ion to VaR Shipping is a particularly risky industry with its prices being
significantly volatile. To this end, economic agents active in shipping cannot afford to ignore
the financial risks associated with their activities. The management of these risks should be
an integral part of the economic decision process of shipping market participants. This is
because, through the practice of risk management, market agents can reduce uncertainty in
their economic activities and optimize investment decisions by setting limits, mitigating losses
through diversification and optimizing the timing of their investments. Additionally, companies
may increase the shareholders’ wealth by reducing the volatility in their cash-flows; this aids
the better allocation of resources and reduces the probability of default. Consequently, with
the use of risk management, corporate threats such as catastrophic losses, misallocation and
under-utilization of resources can be minimized. A fundamental step towards the management
of risks is the measurement of risk.

Although risk management offers many tools for expressing the downside risk11 due to
adverse market movements, during the last decade the evolutions in the risk management
landscape have led to the development and establishment of a representative and informative
measure of market risk – that is, the VaR framework. VaR is a simple and intelligible summary
statistic that quantifies the downside risk exposure of an asset or portfolio to market factors.
VaR expresses the maximum expected loss over a given time horizon, under normal market
conditions, attributable to changes in the market price of the financial instruments.

More specifically, VaR is the loss corresponding to the (100 – X)th percentile of the
distribution of the change in value of the portfolio over the next N days. VaR is therefore a
technique for measuring the market risk of a particular position or portfolio of instruments,
such as cash instruments, derivative instruments and borrowing and lending. By VaR analysis,

11Such tools include the variance, which expresses the deviations of outcomes over a mean, the semi-
variance, which measures the variability of returns below the mean and the expected absolute deviation.
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financial institutions, corporate treasurers, fund/portfolio managers and companies have a
rigorous and straightforward-to-understand method for quantifying and reporting their risk.

Currently, the methodology of VaR is adopted by most financial institutions, investment
and commercial banks, institutional investors and regulators. In 1995, the Basel Committee
on Banking Supervision and in 1996, the Capital Adequacy Directive (CAD) of the European
Union allowed banks to use their internal VaR models to calculate their capital requirements for
market risk. Basel II still promotes the use of VaR models and extends their use in calculating
capital reserve requirements.

It is worth noticing that the risk metric of VaR is not limited to the estimation of risk but
is interrelated tightly with other layers of the risk management process, such as those of risk
reporting, limit setting, performance evaluation and risk budgeting. Thus, VaR can become a
valuable tool for controlling and managing market risk.

8.4.2.2 Calcu lat ion of VaR The methodologies for calculating VaR can be grouped into
two broad categories: parametric and non-parametric methodologies. Parametric methods
make a parametric assumption regarding the evolution of risk factors, such as normally dis-
tributed or Student’s t-distributed risk factors, whereas non-parametric methods are free from
parametric assumptions. Most parametric VaR models make inferences about the projected
losses by imposing the assumption that risk factors belong to a location scale distribution
– that is, distributions which are defined completely by their first two moments. Under this
framework VaR is defined by

VaR1−a
t+1 = �̂�t+1 − Φ−1(a) ⋅ �̂�t+1 ⋅

√
T (8.3)

where Φ−1 denotes the standardized quantile of the assumed distribution, �̂�t+1, �̂�t+1 are
the estimated/forecasted location and scale parameters, respectively and T is the investment
horizon. Thus, under the parametric umbrella of VaR modelling, the estimation of VaR reduces
to choosing a proper distribution for the projected risk factors or returns and estimating the
moment parameters.

Figure 8.4 illustrates graphically the parametric 99% VaR estimate of a portfolio whose
profit/loss probability distribution function follows a standard normal distribution.12 Assuming
that one currency unit is invested in this portfolio (i.e., 1 dollar), the 99% VaR of the portfolio
equals 2.33 dollars; that is, the probability mass left to the vertical line of 99% VaR is equal
to 1%.

8.4.2.3 Examples of Parametric Est imat ion of VaR in Shipp ing The systematic mea-
surement of risk in the shipping industry was introduced by Kavussanos and Dimitrakopoulos
(2007a,b, 2011), who analysed thoroughly the most appropriate models of risk measurement
in the various segments of the dry-bulk and tanker subsectors of ocean shipping. Other studies
in the literature considering the issue of risk measurement, in a less systematic manner, include
Angelidis and Skiadopoulos (2008) and Tsolakis (2005). Here we provide examples of the
use of VaR to measure freight rate risk for single vessels and for more than one vessel under
ownership or management.

12The standard normal distribution has unit variance and zero mean, thus according to equation (8.3) the
99% VaR equals the first percentile of the standard normal distribution, which is equal to 2.33.
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distributed portfolio.

Case 1. VaR Estimation for a Freight Exposure Reciprocating from the Ownership of
a Single Vessel A simple method for the estimation of VaR is the random walk method,
which assumes that the sample period’s volatility estimate (𝜎) is the best proxy of next period’s
volatility (�̂�t+1). That is,

�̂�t+1 = 𝜎 (8.4)

Normality of the distribution of returns is assumed, and hence 𝜎 is obtained from

𝜎 =

√√√√ 1
T − 1

T∑

t=1

(rt − r̄)2 (8.5)

where rt is the return on the asset at time t, r̄ is the sample mean return and N is the number
of observations in the sample.

To see how this works, consider the following example. Assume that on 24 December
a ship owner finds a spot fixture on his Capesize vessel operating on route C3 (Tubarao to
Baoshan) at 8.85 $/ton. Thus, his initial exposure is $1,327,500 (= 150,000 mt × 8.85 $/ton).
At the same time, he is interested in estimating a threshold for the possible decline in his
revenues after 15 days, when the fixture will terminate, and a new fixture will be negotiated,
say on 8 January at the prevailing freight rate. For this purpose, he decides to estimate VaR,
in order to obtain an estimate for the potential decline in his revenues. As the previous year
was particularly lucrative and the ship-owner has a high tolerance towards risk, he decides to
estimate a relatively high threshold corresponding to a 99% VaR.
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Assuming that the date 24 December corresponds to time t and that the time point on
8 January corresponds to time t+T, where T is the journey time, according to the random walk
VaR method the 99% VaR on 8 January, estimated on 24 December, is obtained as follows.
First, a historical sample of the most recent 50 freight rate changes (i.e., rt, rt−1,… , rt−49) is
used to estimate the standard deviation. This is then plugged into equation (8.3) in order to
obtain the VaR. For instance, assume that the standard deviation forecast obtained from the
equation equals 1.4%. Then the 99% VaR for the Capesize vessel is:

VaR0.99
t+15 = Φ−1

0.01 ⋅ �̂�t+1

√
T = −2.33 × 0.014 × 150,000

√
15 = $19,271.55

That is, the maximum potential decline in revenues that shall not be exceeded 99% of the time
is $19,271.55. This does not represent a substantial decline in the income of the owner; he is
likely not to use derivatives for hedging purposes.

However, assume that, according to the ship owner’s calculations, such a decline is not
sustainable, as he could not cover the operating costs or the debt undertaken for the funding of
the purchase of the vessel and the ship owner anticipates a large decline in freight rates in the
near future. In order to avoid such distressing circumstances the ship owner may resort to the
shipping derivative markets to hedge in full or partially the exposure. For instance, the ship
owner could sell dry voyage forward contracts on route C3 or buy put options. Additionally,
the VaR could be used as a criterion for the selection of the routes to operate vessels that fit
the risk profile of the ship owner best. For example, if the employed vessel can be used for the
transfer of commodities in different routes, the ship owner may estimate VaR on each of these
routes and choose those which yield sustainable VaR with reasonable profit opportunities.

Case 2. VaR Estimation for a Freight Exposure Reciprocating from Vessel Portfolio
Ownership In order to estimate VaR for a portfolio of vessels there are principally two
approaches. The first involves using covariances (as the standard deviation alone does not take
into account the correlations and the possible diversification effects) and employing freight rate
changes with frequency equal to the duration of the corresponding trip. The second approach
involves combining the freight cash-flows reciprocating from the operation of the vessels to
derive the net cash-flow and estimate VaR by applying the procedure illustrated in Case 1 on
the net cash-flow series. According to the first approach, the VaR for a portfolio of vessels can
be estimated from

VaR1−a
t+1 = W′ × Σ × W ∗ Φ−1(a) × position (8.6)

where W is a vector of weights consisting of the dwt of each vessel as a percentage of the total
dwt of the fleet, W′ is the transpose of W and Σ is the variance–covariance matrix of the series
of freight price changes corresponding to the routes that each vessel is engaged in.

To illustrate, assume that the ship owner owns two Capesize vessels operating on routes
C3 (Tubarao in Brazil to Baoshan in China) and C12 (Gladstone in Australia to Rotterdam in
the Netherlands). Further, assume that on 6 February the ship owner agrees spot fixtures on
the Capesize vessels operating on route C3 at 23.19 $/ton and on route C12 at 14.45 $/ton.
Thus, his initial exposure is $5,646,000 [= 150,000 mt × (23.19 $/ton + 14.45 $/ton)]. Then
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the 99% VaR when the fixture will terminate and a new fixture will be negotiated is obtained
from

VaR1−a
t+15 =

√

(%dwt1 %dwt2) ×
(
𝜎11 𝜎12
𝜎21 𝜎22

)
×
(

dwt1
dwt2

)
× Φ−1

0.01 × 300,000

=

√
(
0.5 0.5

)
×
(

0.0517 0.0243
0.0243 0.0255

)
×
(

0.5
0.5

)
× −2.33 × 300,000

= −$21, 966.6

where 𝜎11 and 𝜎22 are the variances of freight rate changes of each of the vessels operating on
routes C3 and C12, respectively; 𝜎12 = 𝜎21 is the covariance between freight rate changes of
the vessels operating on routes C3 and C12; and dwt1 and dwt2 are the weights (proportions)
of each vessel employed on routes C3 and C12, respectively. Variance estimates are obtained
from equation (8.5) and covariance estimates are obtained from

𝜎ij =
T∑

t=1

(rit − r̄i)(rjt − r̄j)∕T − 1 (8.7)

where, i, j refer to vessels operating on routes C3 and C12, respectively. Note that when
estimating VaR for many vessels, the frequency of the freight price changes of each series
used corresponds to the duration of the trip that the corresponding vessel is engaged in. That
is, for the vessel operating on route C3, 15-day freight price changes are used and for the
vessel operating on C12, 12-day freight price changes are used. That is, the last observation
of the sample of returns used for the estimation of VaR according to equation (8.6) is – for
route C12 – the return for the period t until t–15 and – for route C3 – the return for the period
t until t–12, where t corresponds to 6 February. The previous period’s return observation for
route C12 is the return for the period t–15 until t–30 and for route C3 the return for the period
t–15 until t–27 and so on until a sample of 50 returns for each of the route series is obtained.

The above example could be extended to a multivariate setting, including many vessels
in the portfolio. Specifically, VaR for a portfolio of n assets can be estimated as follows:

VaR1−a
t+15 =

√√√√√√√(%dwt1 %dwt2 … %dwtn) ×
⎛
⎜
⎜
⎝

𝜎11 … 𝜎1n
⋮ ⋱ ⋮
𝜎n1 ⋯ 𝜎nn

⎞
⎟
⎟
⎠
×
⎛
⎜
⎜
⎜
⎝

%dwt1
%dwt2

⋮
%dwtn

⎞
⎟
⎟
⎟
⎠

×Φ−1
0.01 × position

(8.8)

According to the second approach, VaR is estimated from equation (8.3) but, instead of
using freight price changes of each of the vessels employed, a single series of net cash-flows
reciprocating from the payoff of the vessels employed is used, in order to obtain VaR according
to equation (8.8). Beyond the uses of VaR illustrated in the first example, VaR can also be
used to evaluate different investment plans. For instance, the VaR can be used to aid the choice
between alternative vessel portfolios with the same expected return or evaluate the efficiency
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of different freight managers. Finally, investments can be allocated according to their VaR and
expected returns.

8.4.3 Expected Shortfa l l (ES) in Freight Markets

During the past decades, VaR has proliferated in the financial industry as a market risk
metric that has gained general acceptance and widespread adoption from market agents and
regulators. Despite its acceptance, VaR has also received criticism. Specifically, it has been
criticized heavily on two main fronts: first, for having limited informational content and
second, for not being a coherent risk metric.

The limited information content of the VaR metric relates to the fact that it does not
provide risk-taking agents with information regarding loss when the loss exceeds the VaR
level. For example, assume that the estimated daily 99% VaR of a vessel portfolio is $1.2m.
Then, according to VaR, the risk-taking agent is 99% confident that the daily maximum loss
will not exceed $1.2m. However, VaR provides no information on the magnitude of the loss
for the 1% probability that the loss will exceed the VaR.

The incoherency of the VaR metric relates to the work of Artzner et al. (1997), who
put forth some desirable properties that risk metrics should have. Risk metrics which have
these properties are known as coherent. VaR is not a coherent risk metric, as in some cases
it fails to fulfil one of these properties known as the property of sub-additivity. The property
of sub-additivity requires the risk measure of a portfolio to be equal to or less than the sum
of the individual VaRs of the portfolio’s assets. This property is violated when the profit and
loss distribution is extremely fat tailed or when very low confidence levels are used for the
estimation of VaR. In such cases the overall VaR of the portfolio may appear to be larger than
the sum of individual assets’ VaRs, creating in this way a delusive sense of security.

The ES risk metric13 has been developed as a response to the above criticism of the VaR
metric. The ES rectifies the aforementioned two problems associated with the risk metric of
VaR, as ES constitutes a coherent risk metric that answers the question: ‘if VaR is breached,
then how much would we lose on average?’ ES measures the expected value of the shortfall of
portfolio returns, with respect to some benchmark, under the condition that a shortfall occurs.
Analytically,

ES = Et(rt
||rt < Tht,a) (8.9)

where E is the expectations operator and Tht,a a threshold of interest. Possible choices for the
specification of the threshold are the required rate of return for liabilities or the estimated VaR.

In the case where VaR is used for specifying the threshold, ES can be estimated analytically
by taking the expectation of the respective VaR model conditional on a shortfall occurring.
However, there is not always a closed-form solution for the estimation of ES. To make the
estimation of ES possible, when there is no closed-form solution Dowd (2002) proposes an
alternative procedure, which can be followed in order to estimate the ES. According to this
procedure, the tail of the projected profit and loss distribution is sliced n times and a single
VaR is estimated for each slice. ES is then calculated as the arithmetic average of the VaR of

13Different names have been given to the expected shortfall, such as conditional VaR, expected tail loss
and tails conditional VaR, among others.
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all slices. In order to increase the accuracy of ES estimation a large number of slices has to be
used. An example of ES estimation is presented next.

8.4.3.1 An Example of ES Est imat ion Assume that the risk manager of Case 2 expects
that due to adverse market conditions the estimated 99% VaR will be breached. Thus, the loss
over the investment horizon of the exposure will exceed the –$21,966.6, leading to a shortfall
in the estimation of market risk. By calculating the risk metric of ES the risk manager may
have an estimate of the average of this shortfall. In other words, with ES the risk manager will
have available an estimate of the expected loss if the loss exceeds the estimated VaR. In order
to estimate ES the following procedure can be used:

(i) Slice the tail in n pieces of equal probability. Let n be 5000 then increments of 0.0002%
have to be used to curtail the tail. The first slice is on 99%, the second on 99.0002%, the
third on 99.0004% and the 5000th on 99.9998%.

(ii) Estimate VaR for each slice by following the procedure illustrated in Case 2. In place
of the 99th percentile of the standard normal distribution, the relevant percentile of each
slide is used. For example:

99% VaR (for the first slice): $21,966.6

99.0002% VaR (for the second slice): $21,967.3

…
99.9998% VaR (for the 5000th): $43,543.1

Thus, 5000 VaRs need to be estimated starting from a confidence level of 99% and ending
at 99.9998%, with increments of 0.0002%.

iii. ES is estimated as the average of these 5000 VaRs. Taking the average of the 5000
estimated VaRs yields an ES of $25,163.9. Thus, the risk-taking agent expects that the
average loss (if the loss exceeds the 99% VaR level) will be $25,163.9.

8.4.4 Empir ica l Ev idence on Freight Derivat ives

Relatively limited research has been conducted on freight derivatives in comparison with
derivatives on other ‘commodities’, partially due to the unavailability of data until recently.
The aim of this section is to present the previous published work in the area and not to analyse
each paper exhaustively. For thorough surveys of the available empirical literature on freight
derivative markets, see Kavussanos and Visvikis (2006b, 2008).

8.4.4.1 Market Surveys on the Use of FFAs Dinwoodie and Morris (2003) surveyed
the attitudes of tanker ship owners and charterers towards freight hedging and their risk
perceptions of FFAs. They argue that although FFAs are widely viewed as an important
development, some respondents are unaware of their function and the majority had not used
them. Many ship owners also fear that FFAs might expose their risk management policies
to counterparties. Finally, most argue that improved ‘technical’ education is essential for
widespread acceptance of FFAs.

Kavussanos et al. (2007) explored the importance of hedging by analysing the general
attitudes and common perceptions of the use of shipping derivatives by Greek ship owners
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involved both in dry-bulk and tanker trades. The results indicate that: (i) risk management
and shipping derivatives are at an early stage of development and understanding in the Greek
shipping market; (ii) the traditional ways of thinking must be changed and replaced with
modern risk management concepts; (iii) liquidity and credit (counterparty) risk are considered
to be major obstacles in the use of shipping derivatives; (iv) they consider education to be of
paramount importance; and (v) there seems to be a positive view of the future of shipping
derivatives in Greece.

8.4.4.2 Price Discovery in FFA Markets Kavussanos et al. (2004a) examined the first
aspect of the price discovery function14 of the Panamax FFA market, namely if FFA contract
prices are unbiased estimators of the spot prices of the underlying asset that will be realized
at the expiration date of the contract. They report that FFA prices 1 and 2 months prior to
maturity are unbiased predictors of the realized spot prices in all investigated routes. However,
the efficiency of FFA prices 3 months prior to maturity gives mixed evidence, with some
Panamax routes being unbiased estimators while others are biased estimators of the realized
spot prices.

Kavussanos and Visvikis (2004) investigated the second dimension of the price discovery
role of derivatives markets; that is, the lead–lag relationship between FFA and spot freight mar-
kets, both in terms of returns and volatilities. Return results indicate that there is a bidirectional
causal relationship between spot and FFA prices in all routes, implying that FFA prices can be
equally important sources of information as spot prices are. However, the results from causality
tests suggest that causality from FFA to spot returns is stronger than in the other direction
in most investigated Panamax routes. Moreover, the results of volatility spillovers indicate
that on most routes FFA rates contribute to the volatility of the relevant spot rates. Overall
the results indicate that market participants can have a better assessment of risk-management,
ship-chartering and budget-planning decisions by utilizing the information available on the
FFA market as a price discovery vehicle.

Alizadeh et al. (2007) examined if the implied forward 6-month time-charter rates in the
dry-bulk freight market, which are derived through the difference between time charters with
different maturities based on the term-structure model, are efficient and unbiased predictors of
actual future time-charter rates. They report that implied forward rates are found to be unbiased
predictors of future time-charter rates. However, despite the finding of unbiasedness, on
average, chartering strategies based on technical analysis are able to generate economic profits.

Kavussanos et al. (2010) examined cross-market linkages and spillover effects between
FFAs and futures contracts on the commodities transported by Panamax vessels. Results
indicate that there are significant spillover effects between freight and commodity derivatives
markets. These relationships run stronger from the commodity futures markets to FFA markets.
Market participants can monitor changes in the futures markets of the commodities transported
by Panamax vessels to enhance their decisions on FFA markets.

8.4.4.3 Hedging in FFA Markets Besides the aforementioned study of Kavussanos and
Visvikis (2010), Samitas and Tsakalos (2010) investigated the significance of the use of
financial derivatives in shipping firms and their impact on firm value. Results indicate that

14Price discovery refers to the use of one price series (e.g., derivatives returns) for determining (predicting)
another price series (e.g., spot returns).
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derivatives minimize the risk exposure of shipping firms and guarantee their growth. In another
study, Prokopczuk (2011) considered the pricing and hedging of single-route dry-bulk freight
futures contracts on the IMAREX market. Results show that the inclusion of a second stochastic
factor significantly improves the pricing and hedging accuracy. Goulas and Skiadopoulos
(2012), after examining if the IMAREX freight futures market is efficient over daily and
weekly time horizons, concluded that IMAREX is not efficient over the shorter daily horizon.
Finally, Tezuka et al. (2012) derived equilibrium spot price and forward curve formulae for
shipping markets, allowing for non-storability. From the forward curve formula, the authors
obtain forward hedge ratios that can explain the risk attitude of non-homogeneous market
participants.

8.4.4.4 Forecast ing Performance of FFAs Batchelor et al. (2007) tested the perfor-
mance of several time-series models in predicting Panamax spot and FFA rates. The results
indicate that FFA prices can enhance the forecasting performance of spot prices, as condition-
ing spot returns on lagged FFA returns generates more accurate forecasts of spot prices for all
forecasting horizons (up to 20 days ahead). Thus, market participants can design more efficient
investment trading strategies by selecting the appropriate time-series model for forecasting
purposes.

8.4.4.5 The Impact of FFA Trading on Spot Market Volat i l i ty The issue of whether
derivatives trading increases or reduces volatility in the spot market has been the subject of
considerable empirical analysis. Kavussanos et al. (2004b) investigated the impact of FFA
trading on spot Panamax market price volatility. The results suggest that FFA trading has
reduced the spot price volatility of all investigated routes, had a decreasing impact on the
asymmetry of volatility (market dynamics) and substantially improved the quality and speed
of information flow. Thus, it appears that there has been an improvement in the way that news
is transmitted into prices following the onset of FFA trading.

8.4.4.6 Microstructure Ef fects in FFA Markets Batchelor et al. (2005) examined if
there is a positive relationship between expected volatility and bid–ask spreads in the FFA
Panamax market as the greater the variability in price, the greater the risk associated with
performance of the function of the brokers.15 The results indicate that there is a positive
relationship between bid–ask spreads and expected price volatility in most investigated Pana-
max routes. Market participants using information on the behaviour of bid–ask spreads can
have a better insight into the timing of their FFA transactions and the future direction of the
FFA market as a widening bid–ask spread corresponds to an anticipation of increased future
volatility.

8.4.4.7 Measuring Freight Market Risk Kavussanos and Dimitrakopoulos (2007a,b,
2011) formalized a market risk measurement framework for the shipping business. Two
alternative risk metrics were proposed: VaR and ES. They provide an evaluation assessment of
alternative VaR and ES forecasting models for short- and medium-term freight risk exposures
for the tanker sector. The comparative analysis of the alternative VaR and ES forecasting

15One significant transaction cost in derivatives trades is the bid–ask spread (= buy (bid) price – sell
(ask) price).
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models indicates that the GARCH and the historical or filtered historical simulation approaches
perform best for forecasting short-term (daily) risk. On the contrary, the most reliable method
for estimating long-term risk exposures is the empirically scaled historical simulation model.

Angelidis and Skiadopoulos (2008) applied several parametric and non-parametric VaR
methods in the dry-bulk and wet-bulk sectors and argued that the simplest non-parametric
methods can be used to measure freight market risk and that the freight rate risk is greater
in the wet-bulk market. Lu et al. (2007), using index data from the dry-bulk market, found
the generalized error distribution (GED) exponential E-GARCH-VaR model to be able to
efficiently measure market risk.

8.4.4.8 Forward Freight Rate Dynamics Koekebakker and Adland (2004) investigated
the forward freight rate dynamics by modelling them under a term-structure model. They
transformed time-charter rates into average-based forward freight rates. They then assumed
that there exists a continuous forward freight rate function that correctly prices the average-
based forward freight rate contracts. Results indicate that the volatility of the forward curve
is bumped, with volatility reaching a peak for freight rates with roughly 1 year to maturity.
Moreover, correlations between different parts of the term structure are in general low and
even negative.

Adland et al (2007) investigated the volatility structure of the forward freight rate func-
tion in the IMAREX tanker freight futures market. They report a volatility structure that is
increasing over a horizon of several weeks and then sharply declining in the time to maturity
of the contracts. It is suggested that this is a reflection of the expected short-term positive
autocorrelation and long-run mean reversion of tanker spot freight rates.

8.4.4.9 Pric ing Freight Opt ions Koekebakker et al. (2007) proposed a mathematical
framework for Asian freight options modelling, which is an extension of the framework put
forward in Black (1976). It is argued that FFAs are lognormal prior to the settlement period,
but this lognormality breaks down in the settlement period. They suggest an approximate
dynamics structure in the settlement period for the FFA, leading to closed-form option pricing
formulae for Asian call and put options written on the spot freight rate indices.

8.5 OTHER DERIVATIVES FOR THE SHIPPING INDUSTRY

8.5.1 Bunker Fuel Derivat ives

Ship owners (when the vessel is under a voyage contract) and charterers (when the vessel
is operated under a time-charter contract) are not only exposed to the risk of changes in
freight rates, but are also affected by fluctuations in operational costs. These costs include
fuel, manning, repairs and maintenance, stores and lubes, insurance, administration, broking
commission, fuel costs, port charges, tugs, canal dues, etc. However, fuel costs represent around
50–60% of the total costs of running a vessel. The rest of the costs are fairly predictable as
they rise in line with inflation. Thus, the bunker fuel price is the most important variable (due
to its high volatility) to control on the cost side for risk management purposes as changes in
this variable could have a significant impact on ship owners’ cash-flows.

Figure 8.5 shows the historical fluctuations in price for IFO380cst bunker fuel in three
major ports from January 2005 to December 2012. It can be observed than bunker prices move
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F IGURE 8.5 Bunker fuel IFO380 prices in three major ports (Jan 2005–Aug 2012)
Source: Clarkson’s Research Studies.

together, indicating that they are driven by the world oil price. However, there are differences in
price fluctuations between ports as local market conditions determine prices in each location.

Ship owners, vessel operators and charterers can use forward bunker agreements, bunker
futures, bunker swaps and bunker options to manage bunker price risk. A forward bunker
contract is an OTC agreement between a seller and a buyer to exchange a specified quantity
of a certain quality of bunker, at an agreed price, at a certain delivery location and time in
the future. Settlement is made on the difference between the forward price and the price of
bunkers at the delivery point, although physical delivery is also possible. Since the contracts
are OTC, each party accepts credit risk from the other party.

Since September 2006, SGX AsiaClear has cleared bunker fuel derivatives contracts on:
Singapore fuel oil 180cst (3.5% sulphur), Singapore fuel oil 380cst (4.0% sulphur), balance-of-
month Singapore fuel oil 180cst (3.5% sulphur) and Singapore fuel oil 380cst (4.0% sulphur).
Balance-of-month fuel oil forwards are traded as individual day contracts in the current month.
The final settlement price of these contracts is derived from the arithmetic average of Platts’
daily spot assessment prices from the contract date till the last business day of the contract
month. The contract size for bunker derivatives is 1000 mt, the minimum price fluctuation
is US$0.01/mt and the position limits are set to 300 contracts. The regular-sized full-month
Singapore fuel oil 180cst and Singapore fuel oil 380cst contracts are cash-settled using the
arithmetic average of Platts’ daily spot assessments in the contract month.

Alternatively, a bunker swap contract can be used whereby a floating price for bunkers is
exchanged for a fixed price for bunkers, over a specified period, for a defined volume per period.
There, the buyer exchanges a floating price for a fixed price. This is an OTC arrangement,
which involves no transfer of the physical commodity but credit risk is an important issue.
Swaps on bunkers are typically written against assessments of the spot bulk market supplying
the relevant bunkering ports. The difference between the floating price (usually Platts’ rates)
and the fixed price is settled in cash. The net result, when combined with transactions in the
physical market, is the outcome of hedging through the swap market.

Finally, OTC bunker Asian options can be used to hedge fuel oil risk. Asian options
are popular within bunker hedging because the averaged settlement moderates short-term
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fluctuations and price spikes, common within the bunker market. Suppose a ship owner wants
to protect himself against rising bunker prices and at the same time he wants the flexibility to
buy bunkers at a lower price if they fall. He can buy a call option, at a premium, giving him
the right to buy bunkers in the future at the fixed (exercise) price of the option. In contrast,
bunker suppliers may want to protect themselves against a drop in bunker prices but also wish
to retain the flexibility to capitalize on price increases. By buying a put option they secure the
right to sell at a predetermined strike price.

8.5.2 Vessel Value Derivat ives

Because vessels are the main asset which ship owners hold in order to provide their freight
service to the market, and since the sums involved in holding these assets are the largest item
in the ship owner’s cash-flow, changes in their value can make all the difference to running a
shipping company with a profit or loss.

The sale and purchase forward agreements (SPFAs) are OTC forwards contracts. These
contracts are settled in cash against the Baltic sale and purchase assessments (BSPAs), which
cover three dry-bulk (Capesize, Panamax, Super Handy) and three tanker (VLCC, Aframax,
MR Product Tanker) model vessel types. All BSPA valuations are made on 5-year-old vessels
and are based on professional assessments made by panellists assigned by the Baltic Exchange.
BSPA prices are reported every week following the same procedures developed by the Baltic
Exchange for the dry and tanker freight indices. SPFAs can be traded in multiples of lots,
where one lot represents 5% of the vessel’s value, with one vessel representing 20 lots of 5%
each. Settlement of the SPFA contracts is against the 4-week average of the BSPA prices of
the expiration month of the contract. However, according to market sources, the SPFA market,
until the time of writing, remains illiquid with no trades at all.

8.5.3 Foreign Exchange Rate Derivat ives Contracts

Another source of risk, which affects the ship owner’s cash-flow, is the exchange rate risk. This
emanates from fluctuations in the value of an asset or liability as a consequence of changes in
exchange rates. In the shipping industry, because of its global nature, cash-flow transactions
involve more than one currency somewhere. For example, payments to a Japanese yard for
a new-build vessel are in yen but the reserves of the ship owner are in US$; the payment of
a loan, for a vessel acquisition, may be issued in a different currency from the ship owner’s
reserves; management costs are typically paid in some domestic currency, whereas revenues
are in US$. Thus, large fluctuations in exchange rates constitute a considerable source of risk
for market agents operating in the shipping industry. In order to hedge foreign exchange rate
risk, the following derivatives contracts may be used:

(i) Currency forwards are tailor-made contracts, with quantities and time to maturity matched
to the needs of the company.

(ii) Currency futures are traded on exchanges and are highly liquid. They have the benefit
of there being a secondary market, which allows for positions to be closed before the
maturity date of the contract. They are standardized in terms of time to expiration and
contract sizes.

(iii) Currency swaps offer companies the ability to borrow against long-term foreign currency
exposures when direct access by the company to foreign debt markets is costly.
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(iv) Currency options allow companies to hedge against currency movements in one direction
while retaining exposure in the other. There are strategies with combinations of options
that can cover many other situations.

8.5.4 Interest Rate Derivat ives Contracts

Companies in the highly capital-intensive shipping industry can borrow from banks up to 80%
of the value of a vessel or issue public or private debt (say in the form of bonds) in order to be
able to finance their fleet investment plans. The cost of capital borrowed changes as interest
rates in the world economy change. This, in turn, brings about fluctuations in the cash-flow
positions of the shipping company. This interest rate risk relates to the management of liabilities
for the shipping company. Interest rate derivatives, irrespective of whether they are exchange-
traded (such as interest rate futures and options on underlying cash instruments like T-bonds,
T-notes, T-bills or Eurodollars) or OTC traded (such as forward rate agreements – FRAs,
interest rate swaps and options) involve the exchange of cash payments based on changes
in market interest rates. Market participants in shipping may use interest rate derivatives to
protect the value of their financial assets and to lock in favourable interest rates for the finance
of their investments through loans and bonds.

8.6 CONCLUSION

This chapter has presented the various sources and ways of measuring and managing risks
– including freight rate, bunker fuel price, vessel value, exchange rate and interest rate risks
– for shipping companies with ocean-going vessels. Following an exposition of the market
segmentation of shipping markets, their empirical characteristics investigated in the literature
are presented. They point to there being significant opportunities of risk reduction by invest-
ments in different vessel sizes and types and by choosing to operate vessels in several types
of freight contracts. However, the traditional strategies for risk management presented here
can be costly and have been argued to be less flexible and less efficient compared with using
derivatives for risk management purposes.

Following a presentation of the underlying to freight derivative contracts – freight rate
indices constructed by the Baltic Exchange – the various freight derivatives contracts have
been presented. They include both exchange-traded and OTC futures, forwards and options
contracts, with settlement mainly on values of the Baltic indices. Examples are provided on
how they can be used in practice for risk management purposes. A decision tool for using
freight derivatives constitutes the VaR class of models. Their use in shipping freight markets
is illustrated. Section 8.5 is devoted to a literature review and an outline of the empirical
regularities revealed through a number of research papers. Of course, there are many more
issues that remain unexplored and it is hoped that this chapter can help researchers focus on
the relevant issues for further work in this area. Moreover, given the practical illustrations, it
should also be of value to practitioners dealing with shipping markets.
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CHAPTER 9
Agricultural and Soft Markets

Francis Declerk

9.1 INTRODUCTION: STAKES AND OBJECTIVES

9.1.1 Stakes

Agricultural and soft product prices have strong business and social impacts: decisions of
production, consumption and trade; food prices and world hunger. Beyond professionals
(producers, manufacturers, distributors and retailers), consumers and particularly poor people
are very sensitive to increases and volatility in agricultural commodity prices.

9.1.2 Object ives

The objective is to explain the dynamics of market prices and the management specificity of
hedging tools.

9.1.2.1 Price Volat i l i ty is Common Volatility in agricultural commodity prices is com-
mon, while price stability is rare. Risks taken by commodity producers and processors are high.

Commercial agreements following the World Trade Organization (WTO) framework and
agricultural policies (such as the US Farm Bill and the EU Common Agricultural Policy)
affect commodity price mechanisms. When agricultural commodity prices are quoted in US
dollars, a professional operating outside the USD zone bears some risk due to the volatility of
currency rates.

9.1.2.2 Di f ferent Ways to Manage Price F luctuat ion Risks In addition to the political
protection afforded by the Common Agricultural Policy (CAP), such as the intervention price
for grain, producers and processors have devised several ways to mitigate the impacts of
commodity price volatility:

� securing public regulation with an adequate trade policy, farming policy (CAP in the EU,
Farm Bill with loan rates in the USA), and/or anti-dumping policy;

� self-absorbing volatility through reserves, credit lines and/or product diversification;

Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Edited by
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� using insurance against weather problems (hail, floods, etc.);
� pooling risk in forming cooperatives or sales groups in order to sell a given commodity

collectively every week and thus ensure they trade at the season’s average price;
� subscribing to insurance;
� using over-the-counter (OTC) contracts such as forward contracts at a fixed price negoti-

ated with suppliers and clients, options and/or swaps;
� using the futures markets, which are organized and regulated.

The first grain exchange futures market was the Chicago Board of Trade (CBOT), which
offered forward contracts as early as 1848. A wheat futures contract was launched in 1865.
Grain exchanges then began to open in Europe. Since the CAP protection was lowered in
2000, agricultural futures markets have expanded tremendously in the EU.

The first objective is to understand how price mechanisms are formed on international
markets and are influenced by commercial and agricultural policies. The second objective is
to understand commercial techniques used on international commodity wholesale markets.
The third objective is to identify the principles, role and mechanisms of futures markets and
to understand how hedgers, arbitragers and speculators may use futures markets.

This chapter focuses on agri-food physical commodity (spot/cash) markets and hedging
with futures markets.

9.2 AGRICULTURAL COMMODITY SPECIF IC ITY AND
FUTURES MARKETS

This section provides an overview of agri-food futures markets. It focuses mainly on agricul-
tural commodity markets. It defines commodity markets and competition, forward and futures
contracts. It provides a short history of futures markets, price volatility and supply–demand
balance.

9.2.1 Agricu l tural Commodity Speci f ic i ty

Agricultural commodities have unique specificity: long-term production process, impact of
weather on harvests, perishability and storability of living products, sanitary conditions, short-
term inelastic supply and demand.

Long-term production process. It takes quite a long time to produce agricultural com-
modities: most grains require 6 to 9 months from sow to harvest, while, cow starts producing
milk when it is 2 years old. So, producers bear supply risk (quantity and price) over a long
time. Furthermore, they always adjust supply to demand with a long delay.

Impact of weather on supply. Weather has a major impact on the quantity and quality
of harvest and then supply to markets. Uncertainty about forthcoming weather up to harvest
increases supply risks.

Perishability of living products. A lot of agricultural and food products, such as fruit
and vegetables or milk, are so perishable that they must be processed quickly: they are
not appropriate for futures contracts since products cannot be transferred to any purchaser,
just to a nearby processor. Alternatively, grains and oilseeds are among the less perishable
agricultural products: they are easily storable and may be preserved for food safety purposes
with appropriate equipment. They are traded on futures markets.
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F IGURE 9.1 King effect: short-term inelastic demand leading to high
price increase when supply is reduced

Sanitary conditions. Food safety laws must be conformed with in order to produce safe
food. So, agricultural products must be preserved from deterioration. Grains must be preserved
from humidity, insects and any chemical products. Epidemics may impede the trade of animals:
for instance, any country without foot and mouth disease does not allow imports of cattle from
countries where the disease has been reported.

Inelastic short-term supply and demand. These lead to strong price movements in case
of an unexpected quantity supplied or demanded. For example, when a small harvest involves
supply reduction then prices increase strongly. Similarly, when a large harvest leads to supply
increase then prices tumble.

This phenomenon is the King effect (see Figure 9.1). Charles Davenant (1699) quoted
King’s calculation in 1696 (King, reprinted in 1936). For goods facing inelastic demand, such
as staples without a good substitute, maximizing sales on the market implies restrictions on the
quantity supplied. This explains policies decided in agriculture for sugar in 1968 and milk in
1984 according to the CAP of the European Economic Community (EEC) in order to stabilize
farmers’ revenues.

Observing a high agricultural price most producers will produce more, leading to a strong
decrease in price and vice-versa. The long delay in supply adjustment to demand leads to pro-
duction cycles, like the cobweb phenomenon mentioned by Ezekiel (1938) – see Figure 9.2.
After harvesting grain in July, farmers form their production decisions in observing current
market prices: they must decide quickly since most grains must be sowed in early autumn.
The time lag between planting and harvesting may be about 8 to 10 months: so, produc-
tion decisions are made according to the previous harvest without modification according to
forthcoming market prices, except for non-harvesting decisions. The quantity produced in a
given year depends on decisions made the previous year. The quantity demanded in a given
year depends on the current price at that time. Nerlove (1958) expresses the hypothesis of
adaptive expectations made by producers who learn from their historical experience. However,
producers’ forecasts are not systematically wrong as mentioned by Muth (1961), who pro-
vided the hypothesis of rational expectations. Producers are able to understand the impact of
their feedback in the future. However, history (weather, policy decisions) never repeats itself
exactly, new errors are made leading to cyclical price variation.
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F IGURE 9.2 Cobweb phenomenon, due to lagged supply adjustment to
demand

The cobweb phenomenon due to lagged supply adjustment is illustrated as follows.
Assume that the initial quantity supplied, q0, differs from the equilibrium quantity as a
consequence of weather conditions such as drought or floods. The initial price, p0, is such that
the quantity supplied, q0, is also the quantity demanded, p0A0. The price, p0, is a signal for
producers who will supply p0B1 for the next period. Then, the market price falls to p1, and the
quantity demanded is p0C1. This equals the quantity supplied, p0B1. Again, the price, p1, is a
signal for producers who will supply p1D2, for the next period. The process goes on, forming
a cobweb.

At every period, the quantity demanded equals the quantity supplied. There is no unsold
supply and there is no shortage. However, the price varies from period to period. Convergence
towards price equilibrium is shown, because the slope of the demand curve is inferior, in
absolute value, to the slope of the supply curve. This means that the slope of the demand curve
is less steep than the slope of the supply curve. If the slope of the demand curve is steeper than
the slope of the supply curve, the price will diverge as shown in Figure 9.3.

9.2.2 Volat i l i ty of Agricu l tural Markets

Prices on commodity markets fluctuate widely (see Figure 9.4), roughly by a factor of 1 to 3.
The price volatility of agricultural commodities is structural, chiefly because of the weather
uncertainty that affects production, but there are several other factors of uncertainty – such as
the level of commodity inventories, changes in demand, sudden political decisions (embargoes,
subsidies, taxes, quotas, etc.) – and sometimes excessive speculation which is not adequately
monitored.

9.2.3 Forward Contract and Futures Contract

A lot of commodity futures contracts are derived from forward contracts used by commodity
operators, for example for grain or edible oil. Futures contracts may exist for a commodity
because there is an underlying product on the physical market (spot or cash). The price of
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the futures contract depends on prevailing conditions on the physical market. Commercial
agreements following the WTO framework and agricultural policies (US Farm Bill, EU CAP
etc.) may also affect commodity price mechanisms on markets.

A forward contract is an OTC contract by which two parties (a given seller and a given
buyer) agree upon a price (fixed today) for delivery of a given quantity of goods in the future
(at a given date).
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F IGURE 9.4 Nominal annualized historic volatility: cereal commodities 1957–2009 (Jan–May
average)
Source: OECD/FAO 2010 (Figure 2.3, p. 58).
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TABLE 9.1 Forwards and futures contracts: similarities and differences

Forward contract Futures contract

Terms of the contract Freely written by the two
contractors

Standardized contracts by the
exchange organization

System of negotiation By phone Electronic system
Termination Difficult before the delivery date

of the contract
Easy to sell or buy back before

the delivery date because of
the liquidity in a formally
organized market where
suppliers and demanders meet

Manipulation Quite easy, depending on the
strength of market operators

Very difficult because huge
volumes are traded

Guarantee of payment None Payment guaranteed by the
market organization’s clearing
house

Transaction
information

Private Public

Prices Unknown, not released Publicly released

A futures contract is a contract by which an operator agrees with any counterparty
contacted through a futures market organization upon a price (set today) for buying or selling
a given quantity of goods for delivery at a specified date in the future (the delivery date). For
the operator, the futures market organization substitutes its name for the counterparty’s name.
Futures markets are organized and regulated to avoid manipulation. At all times, supply and
demand meet in order to determine prices and execute quick transactions.

See Table 9.1 for a comparison of forwards and futures contracts.

9.2.4 Major Agricu l tural Futures Markets and Contracts

Futures markets originated in the 17th century with the rice market in Osaka.
The first futures markets for agricultural commodities were established in the USA in the

19th century.

� 1848: Opening of the CBOT with forward contracts.
� 1865: Wheat futures contract introduced at the CBOT.
� 1885: Corn (maize) futures contract introduced at the CBOT; opening of the Bourse de

Commerce de Paris.

A futures markets revival started in 1972.

� 1972: Financial futures contract on currencies introduced at the Chicago Mercantile
Exchange (CME).

� 1977: US T-bond futures contract introduced at the CBOT to manage interest rate risks.
� 1982: Opening of the London International Financial Futures Exchange (LIFFE).
� 1986: Opening of the Marché à Terme International de France (MATIF) in Paris.



Agricultural and Soft Markets 405

� 1988: Incorporation of the Bourse de Commerce de Paris into MATIF.
� During the 1980s: Launch of futures contracts on indices, freight, etc.

Since 1990 several futures exchanges have merged.

� 1999: Paris Bourse was formed through a merger between MATIF, SBF and MONEP.
� 2000: Amsterdam, Brussels and Paris futures exchanges merged to form Euronext Futures

Exchange.
� 2001: Euronext bought Lisbon and the LIFFE.
� 2007: NYSE acquired Euronext to form NYSE-Euronext.
� 2007: The CME acquired the CBOT to form the CME group.
� 2008: The CME group acquired the New York Mercantile Exchange (NYMEX).
� 2013: The ICE–NYSE merged, selling Euronext in 2014 but keeping LIFFE. Then the

LIFFE soft commodity (sugar, coffee and cocoa) contracts now belong to the ICE group.

The current major agricultural futures exchanges are:

� CME group (Globex electronic platform), USA, with contracts on soybean, corn, cotton,
wheat, rice, milk, butter, cheddar, feeder cattle, live cattle, lean hogs, frozen pork bellies.

� Multi-Commodity Exchange (MCX) at Mumbai, India, set up in 2003 with contracts on
cotton, Robusta coffee, oils, sugar, soybean, maize, wheat, barley, potatoes, peas, etc.

� Dalian Commodity Exchange, China, set up in 1993 with contracts on non-GMO soybean,
palm oil.

� NYSE Euronext, UE, with contracts on Robusta coffee, cocoa, rapeseed grain and rape-
seed oil, milling wheat, feed wheat, raw sugar, white sugar.

� ICE group, USA/Canada, including the New York Board of Trade (NYBOT) and Winnipeg
Commodity Exchange, with contracts on soft commodities such as Arabica coffee, frozen
concentrated orange juice (FCOJ), canola, barley, cotton.

� Zhengzhou Commodity Exchange, China, set up in 1990 with contracts on rice, corn,
cotton, soybean.

� Risk Management Exchange at Hanover, Germany, set up in 2008 with contracts on hogs,
piglets, potatoes, wheat.

9.2.5 Roles of Futures Markets

Futures markets have four major roles: they transfer price fluctuation risks, they discover a
single price, they are a source of public information for decision-making and they guarantee
delivery and payment.

9.2.5.1 Transfer of Price F luctuat ion Risks Futures markets provide tools (contracts)
to transfer price fluctuation risks between commodity producers, commodity processors,
traders (merchants) and speculators.

9.2.5.2 Discovery of a Sing le Price Futures markets are economic tools to discover a
single price for all operators (sellers and buyers) of a given product.

Supply and demand for a commodity is centralized by the futures market. The futures
market synthesizes the expectations of operators (sellers and buyers) for a given product. It
provides the best anticipation of future prices.
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9.2.5.3 Source of Informat ion for Decis ion-Making The volumes traded and prices
formed on futures exchanges are publicly released immediately. The futures markets derive
from physical cash markets. In order to understand futures markets, it is necessary to understand
the physical cash markets for the underlying assets.

Public information about prices and volumes on futures markets may thus be used by
everyone worldwide, even non-users of futures markets.

9.2.5.4 Guarantee of Del ivery and Payment For every transaction undertaken on an
organized market:

� buyers are afraid that sellers will not deliver the goods,
� sellers are afraid that buyers will not pay.

The futures markets guarantee delivery by sellers and payment by buyers. To achieve this,
an initial deposit and a margin call system are enforced for every operator in the market.

9.2.6 Inst i tut ions Related to Futures Markets

The futures market encompasses several organizations which fulfil different and complemen-
tary functions.

9.2.6.1 Futures Exchange A futures exchange is the (possibly virtual) place where the
trading of contracts is organized (with pits in the case of auctions). It operates under the
regulation of the state where it is registered.

9.2.6.2 Clearing House The clearing house of a futures exchange has several different
functions:

� It is a back-office for management of all the payments (initial deposit and margin calls)
in order to guarantee proper execution of recorded transactions.

� Then it becomes the counterparty for every transaction.
� It checks deliveries of products.
� It monitors transaction compliance, paying particular attention to speculation.

9.2.6.3 Regulatory Inst i tut ions Regulatory institutions are responsible for launching
and controlling contracts. Contracts are supervised by national authority: the Commodity
Futures Trading Commission (CFTC) in the USA, the Financial Services Authority (FSA) in
the UK, the Autorité des Marchés Financiers (AMF) in France, etc.

9.2.7 Commodity Futures Contracts

Commodity futures contracts are designed as tools to be used by commercial sellers and buyers
to mitigate their risks of commodity price volatility.

9.2.7.1 Standardized Contracts Futures exchanges provide standardized commodity
futures contracts in order to attract large volumes and obtain market liquidity and depth.
Liquidity refers to buyers’ and sellers’ ability to find a counterparty easily. Market depth
means that an operator may enter and exit the market without a major change in price. Futures
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exchanges organize the launching and trading of contracts. When a contract goes to delivery,
the futures exchange organizes the delivery of underlying commodities.

Futures contract trades:

� a given (large) quantity of a product;
� a given quality of a product, often the most standard quality on the physical market;
� at given dates of delivery (maturity dates);
� at given places of delivery.

9.2.7.2 Quotat ion Anyone wishing to buy and sell futures must contact a registered broker
appointed by the clearing members at the futures exchange. For an auction market, every order
is shouted out in the pit: everybody must be able to hear every price announced, see the type
of order (buy or sell) and know when a transaction is made.

The main information shown on the quotation screen is:

� ‘open’ = first price traded
� ‘last’ = last price traded
� ‘settlement price’ = official closing price
� ‘open interest’ = total amount of contracts in existence after the close of trading that day.

These contracts may go to delivery.

9.2.7.3 Margin Cal ls and Clearing The clearing house is responsible for balancing the
transactions and flows of money between buyers and sellers. It organizes the security of all
transactions up to their clearing of contracts. It assumes the financial responsibility as if it
was the opposite side of every transaction: payment is guaranteed for sellers and delivery is
guaranteed for buyers.

In order to secure every transaction, every operator has to pay initial deposit and margin
calls. An initial deposit is required as a security or performance bond. Its amount depends on
the type of operation (hedging, arbitrage or speculation) and price volatility. It may be worth
3–10% of the value of the contract. This amount is usually the maintenance level. Furthermore,
in case of negative evolution of price, the contract is riskier and some margin call is required
to offset such additional risk. Margin calls are based on the last official price of the day, called
the settlement price.

As an example, two operators may take positions on the milling wheat futures market,
one going long in buying and the other going short in selling 10 contracts at €240 per ton. A
milling wheat futures contract concerns 50 t. So the transaction amounts to €120,000.

A contract is cleared either before maturity in taking an opposite position on the market
or at maturity in delivering/being delivered the goods.

9.2.7.4 Two Examples of Commodity Futures Contracts in Europe Two major agri-
cultural commodity contracts in Europe are the rapeseed and milling wheat futures contracts.

Example 9.2.1 Rapeseed futures contract at Euronext

1. Trading unit per contract: 50 metric tons quoted in €/t.
2. Underlying asset: rapeseed of double zero varieties, of any origin, of sound, fair &

tradable quality with the following specifications.
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3. Specifications: oil content = 40%, moisture = 10% max., impurities = 3% max., oleic
acidity = 2% max., erucic acid = 2% max., glucosinolates = 25 micromoles max.

4. Delivery months: February, May, August, November (X), 6 delivery months any time with
a quotation period over 14 to 18 months.

5. Delivery: FOB barge at Belleville, Metz-Frouard, Bülstringen, Vahldorf, Magde-
burg/Mittelkanal, Wurzburg/Main and Gent.

6. Tick: the tick is the minimum price fluctuation. It is 0.2 €/ton, i.e. 12.5 €/contract.

Example 9.2.2 Milling wheat futures contract at Euronext
Creation: 27 March 1998 by MATIF – Paris

1. Trading unit per contract = 50 metric tons.
2. Underlying asset = milling wheat, of any origin, of sound, fair & tradable quality with

the following specifications.
3. Specifications:

specific weight = 76 kg/hl min.
moisture = 15% max.
broken grains = 4% max.
sprouted grains = 2% max.
impurities = 2% max.

4. Electronic price quotation in euros per metric ton with instant conversion into US dollars.
5. Delivery months: August (Q), November (X), January (F), March (H), May (K) and July

(N).
6. Delivery months any time, with a quotation period of 14 to 18 months.
7. Port authorized for delivery on expiry of a futures contract: Port of Rouen (Seine),

incograin no. 23 & technical addendum no. 2.
8. Transfer of goods: river FOB.
9. Tick: the tick is the minimum price fluctuation. It is 0.2 €/tonne, i.e. 12.5 €/contract.

9.2.8 The Operators

There are three types of operators on futures markets: hedgers, arbitragers and speculators. A
given operator may be a hedger and/or an arbitrager and/or a speculator.

Hedgers are interested in the physical goods and spot markets, and use futures markets to
reduce the risks arising from price fluctuations. They are afraid of commodity price volatility
and want to mitigate risks by fixing a firm price on futures markets. Hedgers are risk-averse
and enter the futures markets to secure their operating margins. They are usually commodity
producers, processors or merchants acting on both spot and futures markets.

Arbitragers take advantage of price distortions on the market. They have a risk-neutral
attitude. Many banks which provide services for clients on futures exchanges have developed
strong information technology tools to observe market prices and use arbitrage techniques.

Speculators enter the futures markets to take risks with the sole aim of making profits.
They are risk-takers and provide liquidity for the market. Every type of economic agent may
speculate. Speculators are useful, as they make it easier for hedgers to find a counterparty. For
example, rapeseed and wheat producers usually enter into futures contracts maturing just after
harvest time because they want to clear their position when they sell their agricultural products
at harvest. Processors, in contrast, buy agricultural products since they manufacture food every
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day, and therefore do not want to be counterparties in transactions involving large amounts
of commodities at harvest time. Speculators are thus welcome as counterparties because they
facilitate the formation of transactions. If a market is not liquid, it is dead.

As long as futures market prices are connected to spot markets, speculation is not exces-
sive. When this is not the case, it may signal excessive speculation and the futures market is
no longer useful to hedgers, since futures transactions could increase risks. Speculation may
lead to market manipulation, which kills the market. Speculation must therefore be monitored
by futures exchanges.

9.2.9 Monitor ing Hedging: Sett lement

A position on the futures market may be settled in one of two ways:

1. By clearing the position when the operator offsets his position by taking an opposite
position:

A short hedger, a commodity producer, sells and buys back his futures contract.
A long hedger, a commodity processor, buys and sells back his futures contract.
The futures contract is settled before maturity.

2. By delivery of the product at the places of delivery stipulated in the futures contract.

9.2.10 Account ing and Tax Rules

The International Accounting Standard (IAS 39) for derivatives – like futures contracts – was
released in 2004, but some parts of the standard are still challenged by professionals. IAS 39
is similar to current US accounting standards.

In the USA, unrealized capital gains/losses are reported in the income statements when
margin calls are paid because:

� Quotations on futures markets are known at all times.
� Contracts may be settled at any time.

9.3 DEMAND AND SUPPLY, PRICE DETERMINANTS AND
DYNAMICS

This section focuses mainly on the determinants of demand and supply for agricultural com-
modities: determinants, the specificity and dynamics. It analyses the features of major agri-
cultural markets.

9.3.1 Supply and Demand for Agricu l tural Commodit ies: The
Determinants

The determinants of a commodity ‘supply–demand’ balance on physical markets can be
considered on the following scales:

� On the world market, as is the case for oilseeds (soybean, rapeseed, sunflower, etc.).
� On the EU market, as is the case for milling wheat, with modification due to the CAP:

certificates with export rights under exportation subsidies or taxes, and certificates with
import rights subject to a levy (which may be positive, nil or negative).
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On the supply side, the major factors of instability are the following.

� Changes in decisions concerning production: increase, reduction or stop.
� Variations in weather conditions (drought, frost, floods, tornadoes, etc.).
� Sanitary problems: plant diseases and animal epidemics.
� Farm methods and practices.
� Research in plant and animal biology/biotechnology.
� Changes in available arable soils: availability of water, damages (erosion, pollution),

increase in urban and industrial areas.
� Variations in yields.
� Changes in transportation costs, preservation costs and storage costs.
� The political environment, which may involve incentives (minimum price, subsidies,

aids), limits (tax, quotas, land set aside, etc.) and prohibitions (import threshold price,
etc.).

� Agriculture, food and health policy decisions about food uses of agricultural products and
international trade.

� Exchange rate volatility.
� Social and political risk in a region/country.

On the demand side, the major factors of instability are the following:

� Changes in demand for food, which depends on world demographics (variations in popula-
tion size and population structure by age), type of diet (food habits, changes in preferences)
and income of the population in every region.

� Changes in the demand for animal feed (epidemics, etc.).
� Food aid policies.
� Changes in non-food and non-feed demand: energy (biofuels), industries.
� Changes in costs of transportation, preservation and storage.
� Policy decisions to subsidize or tax, rules and regulations on international trade.
� Volatility of currency rates.
� Social and political risks in a particular region/country.

Several of these factors depend neither on demanders (industry especially) nor on suppliers
(producers). Furthermore, producing agricultural products requires time – months, sometimes
years – and supply adjusts with a time lag to sudden changes in demand. Consequently, price
fluctuations cannot be avoided on agricultural markets. Agri-food commodity prices are very
volatile, and price stability is very rare. Many factors contribute to fluctuation in market prices.
(See Figure 9.5).

Owing to natural conditions (subsoil soil and climate), the size and purchasing power of
the population, technological conditions of production and human education, some countries
are global net importers or exporters. From 2010 to 2012, the USA was the largest agricultural
and food world exporter followed by the EU. Brazil was the third largest supplier while China
and Argentina competed for the fourth position (see Figure 9.6).

From 2010 to 2012, the EU was by far the largest agricultural and food world importer.
The USA was second, followed immediately by China which strongly increased its imports.
Japan and Russia are behind. See Figure 9.7.
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http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf.
http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf.
http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf
http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf
http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf.
http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf.
http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf
http://ec.europa.eu/agriculture/trade-analysis/map/2013-1_en.pdf
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Agricultural imports
and exports

×3+ exports

imports = exports

×2 exports net exporter

net importer×2 imports

Dala from CIA World Factbook,
World Bank

Chris Kirk, interactives editor of Slate.com

– +

SHARE +

×3+ imports

F IGURE 9.8 Net agricultural importing and exporting countries
Source: Kirk, C., Maps: Agriculture in the US and around the world, Slate, 2013.
http://www.slate.com/articles/technology/future_tense/2012/06/a_map_of_farmers_in_the_u_s_and_
world_.html; http://www.indexmundi.com/blog/wp-content/uploads/2013/02/agricultural-imports-
and-exports.png.

As a result, over the 2010–2012 period the USA, Brazil and Argentina were large net
exporters and the EU was also a net exporter while China, Japan and Russia were net importers
of agricultural and food products (Figure 9.8).

Nearly all American countries are net food exporters. Argentina is the biggest net food
exporter exporting about $23 in food for every $1 it imports. Major net food importers are
Middle Eastern countries some, Asian countries, and developing African countries.

9.3.2 Agricu l tural Market Prices, Fa i lures and Pol ic ies

Agricultural markets may not operate well and policy tools may be useful to fix failures.
Agricultural and commercial policies may also influence market prices; and some policy tools
may distort market prices.

The equilibrium market price is the price which clears the market. It means that every
supplied product is demanded, no less and no more. A bid price is the highest price that a buyer
(demander) is willing to pay for the commodity. An ask price is the lowest price accepted by a
seller (supplier). When there is a difference between the bid price and the ask price, it is called
the spread (see Figure 9.9).

Market failure exists in case of:

� lack of operators leading to risk of monopolistic power;
� lack of information about supply, inventories, demand leading to wrong price;
� lack of infrastructure to move the goods.

http://www.slate.com/articles/technology/future_tense/2012/06/a_map_of_farmers_in_the_u_s_and_world_.html
http://www.slate.com/articles/technology/future_tense/2012/06/a_map_of_farmers_in_the_u_s_and_world_.html
http://www.slate.com/articles/technology/future_tense/2012/06/a_map_of_farmers_in_the_u_s_and_world_.html
http://www.slate.com/articles/technology/future_tense/2012/06/a_map_of_farmers_in_the_u_s_and_world_.html
http://www.indexmundi.com/blog/wp-content/uploads/2013/02/agricultural-imports-and-exports.png.
http://www.indexmundi.com/blog/wp-content/uploads/2013/02/agricultural-imports-and-exports.png.
http://www.indexmundi.com/blog/wp-content/uploads/2013/02/agricultural-imports-and-exports.png
http://www.indexmundi.com/blog/wp-content/uploads/2013/02/agricultural-imports-and-exports.png
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F IGURE 9.9 Formation of market price (related to orders made by suppliers and
demanders)

Policy may be useful in case of market failure leading to market prices that are biased, and
then wrong signals for suppliers to invest and produce and for demanders to buy and process.
Prices on the agricultural commodity market may be distorted because of commercial and
agricultural policies.

Commercial agreements may affect price formation on markets. Instruments such as
import tariffs, export or import quotas and others lower or increase market prices. The right or
not to use some of these tools may be negotiated in the framework of the WTO. For instance,
according to WTO agreements, export subsidies are banned from January 2013.

Agricultural policies may also influence market prices. Investment and production subsi-
dies, guaranteed floor prices (cf. payment-in-kind US programme or EU intervention price for
grains), production quotas, embargoes, etc. affect market prices.

A major criterion focused specifically on price distortions is the producer nominal pro-
tection coefficient (NPC). The producer NPC is measured by the producer domestic prices
(including support payments per unit of output) as a percentage of border prices. For the
OECD countries it was 1.10 in 2010, indicating that OECD farmers received prices that were
on average 10% above international levels. The indicator fell from 1.49 in 1987–88, indicating
that OECD farmers were receiving prices 49% above world prices at that time, to 1.31 in
1995–97 and to 1.11 in 2008–10. See Figure 9.10. However, some OECD countries such as
Norway, Japan, South Korea, Switzerland or Turkey have decreased their price support levels
but their domestic prices still remain a lot higher than world prices. The USA, Australia and
New Zealand have kept low price support levels over the period. The EU have decreased their
price support level, with average domestic prices remaining slightly above average market
prices.

Support levels in emerging countries are below the OECD average: Russia, Ukraine
and China have taxed some domestic commodity producers. However, over the 2000s,
Brazil, China, Russia and Ukraine have increased their price support levels to world level
or above.
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F IGURE 9.10 Producer nominal protection coefficient by country, 1995–97 and 2008–10
The producer NPC measures the producer domestic price (including support payments per unit of
output) as a percentage of border price. Countries are ranked according to 2008–10 levels.
1. The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli

authorities. The use of such data by the OECD is without prejudice to the status of the Golan
Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international
law.

2. EU15 for 1995–2003; EU27 from 2007.
3. Austria, Finland and Sweden are included in the OECD total for all years and in the EU from 1995.

The Czech Republic, Hungary, Poland and the Slovak Republic are included in the OECD total for
all years and in the EU from 2004. Chile and Israel are included in the OECD total from 1995.

4. For Ukraine, 1995–97 is replaced by 1996–97.
Source: OECD, PSE/CSE database, in OECD (2011), Figure 2.7, p. 58.

Some commodities are affected more by policy measures and distortions as is the case for
sugar, whose international trade accounts for about 28% of world production, and rice, whose
international market is small since trade only represents less than 8% of world production.
See Figure 9.11.

The milk market is also impacted by national policies to protect numerous breeders from
the market power of a smaller number of dairy processors. Since milk is produced daily by
milk cows or sheep or goats, it is high perishable; milk producers must transfer milk every
day or every other day to the milk processor. Milk producers have a limited choice of dairy
manufacturers with plant near enough to collect their milk. However, most protections were
removed in the 2000s and the EU decided to remove its production quotas in 2015. Grains and
oilseeds are impacted less by policies.
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F IGURE 9.11 OECD: single commodity transfers, 1995–97 and 2008–10
Commodities are ranked according to 2008–10 levels. Top bar corresponds to 1995–97, bottom bar
to 2008–10.
Source: OECD, PSE/CSE database, in OECD (2011), Figure 2.8, p. 60.

9.3.3 The Price Dynamics of Seasonal and Storable
Agricu l tural Commodit ies

Major agricultural commodities traded on international markets are seasonal and storable, such
as sugar, grains, oilseeds, coffee, cocoa, citrus, palm oil, etc. According to most economists
(Haley, 2013), deviations around medium- and long-term pricing trends of seasonal and
storable agricultural commodities should result from world surpluses and deficit computed as
total production minus total consumption. However, things are more complex. Major determi-
nants affecting price movements in the long-term are:

1. The production cost (including the effects of exchange rates) of the leading producing
and exporting countries, so that return on cost of production must be positive most years.

2. The supply–demand imbalance measured by the year-to-year change in surplus/deficit,
by change in inventory carry over and by stockholding dynamics.

3. The risks related to errors in forecasting supply and demand balances/imbalances in recent
years.
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The return on production cost of major operators in leading producing and exporting
countries must be positive. According to neoclassical economic theory, long-term equilibrium
price equals marginal cost of production. So, analysing the production costs in leading pro-
ducing and exporting countries is helpful. Production costs include the effects of exchange
rates when production costs are formed in countries whose currency differs from the selling
currency on international markets, usually the US dollar. For illustration, the return on cost of
production for Brazilian sugar (Haley, 2013) and for Vietnamese Robusta coffee and US corn
(author’s confidential source from an industry researcher) must be positive in the long term
and provides an indication of long-term world price level. Over the 2000s, costs of agricultural
production and logistics have increased strongly due to increases in energy prices. Changes in
exchange rates also affect production costs, as observed for increasing costs of Brazilian sugar
expressed in US dollars in comparison with costs expressed in Brazilian currency, the real,
from 2002 to 2010. When there is a dominant exporter with constant returns to scale technol-
ogy in production and with no other major exporter with lower cost, changes in its production
costs expressed in world market currency are transmitted to the world market (Haley, 2013).

The supply–demand imbalance affects world market price. It may be characterized by
two measures: the year-to-year change in surplus/deficit and by stockholding dynamics.

� The year-to-year change in surplus/deficit is expected to be inversely related to price
changes. It is also affected by the ability of users to substitute a commodity for another.

� Stockholding behaviour influences the magnitude of surplus and deficit on international
trade, imports and exports. Then, it is possible to measure the impact of stock depletion
and replenishment on world price. Stockholding dynamics is featured by the stock/use
ratio and the ability of producers to adjust to demand. The stock/use ratio is the stock of a
given commodity as a proportion of world consumption. The dynamics of the stock/use
ratio is impacted by the ability and decision of producers to adjust to demand in a context
of competing crops. As a result, expected inventory carry over is also a key variable.

The risks related to errors in forecasting supply and demand balances/imbalances in recent
years generate costs. Then, market prices include a premium when there is a recent history
of deficit which is larger than initially forecasted. In opposition, when there is a previous not
predicted surplus, there is a market price discount.

The three elements mainly explain the price dynamics of storable and seasonal agricultural
commodities (Figure 9.12).

9.3.4 The Features of Major Agricu l tural and Soft Markets

Markets are platforms (electronic and/or physical places) where goods are traded. In the
agricultural and food sector, beyond the farm input market, there are four types of markets:
domestic commodity market, international commodity market, industrial goods market and
fast-moving consumer goods market.

Agricultural production is achieved by millions of farmers dispersed in regions. When
agricultural and soft commodities are harvested, they must be collected rapidly to be preserved
in safe and sanitary conditions by processors. Sales are made on domestic commodity markets.
Then a few large traders, usually carriers, will buy in regions with excess supply to sell in
regions with excess demand. Sales are made on international commodity markets.
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F IGURE 9.12 The price dynamic determinants of seasonal and storable agricultural commodities
Source: Author’s figure from Haley (2013).

In a second processing stage, manufacturers process food ingredients that are sold for a
third processing stage in order to produce packaged food goods. These fast-moving consumer
goods will be sold to retailers in order to reach final consumers who are scattered in cities and
villages.

Operators trade on markets along the agricultural and food chain where they are individ-
ually and collectively responsible for sanitary food conditions (Figure 9.13).

Since a given agricultural commodity is usually produced in different countries, it is also
traded in different places. Investors have to take up the challenge of multiple trading platforms
based on different regulatory environments. As a consequence, markets are fragmented.

International Traders and Carriers of Agricultural and Soft Commodities Among com-
panies trading agricultural commodities on international markets, four leading groups – Archer
Daniels Midland (ADM), Bunge, Cargill and Louis Dreyfus – known as the ABCD traders
have prevailed for more than a century (see Table 9.2). They originate agricultural commodi-
ties from regions with excess supply to deliver in regions with excess demand. The ABCD
companies buy, carry, store and sell mainly grain, oilseeds and sugar and some other com-
modities. So they have developed strong management skills and equipment in international
trading, sourcing, transporting, storing and processing bulk agricultural commodities that are
perishable and that must be maintained in good sanitary conditions. They are also more and
more vertically integrated in the first processing stage of agricultural products into ingredients.
Trading offices are usually in the USA and Geneva, Switzerland. The international market for
grains and oilseeds is mainly oligopolistic.
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F IGURE 9.13 Operators trading on markets along the agricultural and food chain

Cargill is the largest world trader and processor of agricultural commodities, with about
140,000 employees in 65 countries. It generated net sales of US$136.7 billion, operational cash
flows of US$4.2 billion and US$2.3 billion net earnings from continuing operations for the
2013 fiscal year ending in May (source: http://www.cargill.com). Founded in 1865 by Cargill
and MacMillan, Cargill is a family-owned company whose 85% of equity capital belongs to
the descendants of the two founders. It is headquartered in Minnesota, USA. It is involved in
trading and processing grain, oilseeds, sugar, cocoa, cotton, beef meat, poultry and eggs. Its
trading and risk management activities are located in the USA (Minneapolis and Miami) and
Geneva, Switzerland.

ADM’s net sales amounted to US$89 billion in 2012, from which it generated operat-
ing cash flows of US$2.9 billion and adjusted earnings before interest, taxes, depreciation

TABLE 9.2 ABCD, the largest traders and carriers of agricultural commodities

Company Net sales in US$ billion Year Status

Cargill 137 ending in May 2013 family-owned company
ADM 89 2012 public company
Bunge 61 2012 public company
LDC 57 2012 family-owned company

ADM = Archer Daniels Midland.
LDC = Louis-Dreyfus Commodities.
Source: www.cargill.com, www.adm.com, www.bunge.com, www.ldcommodities.com.

www.cargill.com
http://www.cargill.com
www.adm.com
http://www.adm.com
www.bunge.com
http://www.bunge.com
www.ldcommodities.com
http://www.ldcommodities.com
http://www.cargill.com
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and amortization (EBITDA) of US$1.7 billion (source: http://www.adm.com). It has 30,000
employees. It operates in more than 75 countries. ADM was founded in 1902 by Archer and
Daniels. It is a public company listed and traded on the New York Stock Exchange and the
Frankfurt Stock Exchange. Its headquarters are in Illinois, USA. It is involved in turning
oilseeds, corn, wheat and cocoa into products for food, animal feed, industrial and energy uses
with 265 processing plants.

Bunge’s net sales amounted to US$61 billion in 2012 and it generated operating cash
flows of US$2.9 billion, gross profit of US$2.6 billion and net income of US$36 million with
over 35,000 employees in 40 countries (source: http://www.bunge.com). Founded in 1818 in
the Netherlands, it is now headquartered in the USA. It is a public company listed and traded
on the New York Stock Exchange. Bunge is the largest trader in South America.

Louis-Dreyfus Commodities delivered about US$57 billion in sales, US$2.3 billion in
gross margin and US$1.1 billion in net income (excluding its sugarcane milling business
Biosev’s contribution) with 20,000 employees (38,000 with Biosev) in 53 countries in 2012
(source: http://www.ldcommodities.com and http://www.louisdreyfus.com). 80% of its equity
capital belongs to Louis-Dreyfus group. Founded in 1851 in France by Léopold Louis-Dreyfus,
Louis-Dreyfus group is a family-owned company whose business is run by descendants.
Louis-Dreyfus Commodities is headquartered in Rotterdam, The Netherlands. In 2012, Louis-
Dreyfus entered the capital of the Malaysian Felda and became the largest producer of palm
oil. Biosev is the second largest producer of ethanol.

After World War II, other trading companies have emerged such as Glencore (founded
in 1974 by Marc Rich and based in Switzerland), Noble, Wilmar International, Ed&F Man,
Sucden, Ecom, Armajaro, Vitol, Mitsubishi, AgroTrade, Olam, Sinar Mas, etc.

Commodities Traded on International Markets The agricultural commodities most traded
on international markets are grains (wheat and corn), oilseeds (soybean and palm), sugar,
coffee and cocoa. Rice is the most widely consumed grain in the world, but less than 8% of
rice production is traded on international markets (see Table 9.3).

Animal and meat products are not so exposed to international markets, mainly due to
sanitary barriers and subsequent bans declared by governments. As sick animal which enters
a country may be contagious and spread disease quickly to other animals. Furthermore, some

TABLE 9.3 World exports relative to production in 2012

Commodity Export/production ratio

Raw sugar 27.6%
Soft wheat 29.6%
Corn 10.8%
Milled rice 7.6%
Soybean 35.9%
Rapeseed 19.5%
Green coffee bean 78.7%
Palm oil 71.0%
Cotton 38.0%

Source: Author’s calculations from ERS-USDA data, 2013.

http://www.adm.com
http://www.adm.com
http://www.bunge.com
http://www.bunge.com
http://www.ldcommodities.com
http://www.ldcommodities.com
http://www.louisdreyfus.com
http://www.louisdreyfus.com
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animal diseases may be transferred to human beings. So, the international market for animals
is limited.

It is possible to analyse the features of major agricultural markets such as the sugar market,
the wheat market and the coffee market.

In the present subsection, the top line on every figure with price quotes mentions the
following information from left to right.

� The last day of quote: for example ‘01/31/2014’.
� The figure after the letter ‘C’ (for closing) indicates the closing price on that day.
� The figure after the letter ‘0’ (for open) indicates the opening price on that day.
� The figure after the letter ‘H’ (for high) indicates the highest price on that day.
� The figure after the letter ‘L’ (for low) indicates the lowest price on that day.

On every figure with price quotes, thin curves crossing monthly price quotes provide
moving averages.

� 12-week moving averages for the curve which is the closest to the thick monthly price
curve.

� 6-month moving averages for the curve which is the middle of the thin 12-week and
1-year moving average curves.

� 1-year moving averages for the curve which is the most flattened price curve.

Small sticks at the bottom of every figure indicate the volume of transactions each month and
the thin line shows the open interest that expresses the number of contracts that may go to
maturity. They measure the importance of the activity on the contract.

On international markets, most agricultural and soft commodities are quoted in US dollars.
While domestic production costs and processing costs are expressed in domestic currencies,
exchange rates affect supply and demand.

The euro/US dollar rate moved between US$1.17 and 1.60 per euro over the January
2005 to December 2013 period (Figure 9.13). Such volatility was a lot lower than price
fluctuations observed on agricultural and soft markets. However, some other currencies, such as
the Brazilian peso and the Indian rupiah, experienced large fluctuations vis-à-vis the US dollar.
Furthermore, agricultural production costs include fertilizers, pesticides and transportation
costs that are strongly impacted by oil price and price volatility.

From January 2005 to December 2013, the oil price fluctuated with a low at US$35 a
barrel in 2009 and a peak at US$147 a barrel in July 2008 (Figure 9.14a,b). So the oil price
fluctuated from about 1 to 4, which was a lot more than the euro/US dollar fluctuation.

9.3.4.1 The Sugar Market , Strongly Impacted by Pol ic ies Among agricultural and
soft markets, the sugar market may be the most impacted by national policies.

Products and Uses Sugar production may come from sugar beets in countries with temperate
climate and from sugar cane in countries with temperate climate and warm climate countries.
Beets and cane may also be used to produce biofuels like ethanol. Other co-products are
alcohol and animal feeds.

Sugar from cane and beet is saccharose. It is used as ‘table sugar’ directly consumed
at home or as an ingredient in agri-food (confectionery, pastry, cookies, etc.), chemical and
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F IGURE 9.14A Value of one euro expressed in US dollars, on the CME
Source: http://futures.tradingcharts.com/chart/E6/M?anticache=1393575372.

pharmaceutical industries. However, mainly in the soft drink industry, sugar is in strong
competition with isoglucose which is extracted from corn.

Consequently, since sugar may be used to produce ethanol, the sugar and petroleum
markets are connected. And, since sugar and isoglucose are sweeteners, the sugar and corn
markets are also connected. When corn prices increase, sugar market price is affected by
incremental demand due to substitution and vice-versa.

Over the last 50 years, sugar production from cane has increased tremendously from
31 million tons in 1960–61 to 143 million tons in 2012–13, a 4.6-fold increases (Table 9.4;
Figure 9.15). Over the same period, sugar production from beet only increased from 18 to 24
million tons, only a 1.5-fold increase. In 2012–13, 80% of world sugar production came from
cane and 20% from beet. In 2005, only 74% of sugar was refined from cane. Up to now sugar
cane production has been more efficient than sugar beet production. Sugar beets are mainly
produced in Europe and France is the leading world producer. With the production quota and
guaranteed prices for domestic consumption, the EU has constrained its production. However,
strong efforts in sugar beet genetics and sugar refining have been made to decrease costs
roughly 2% per year in order to be more competitive. With the removal of the EU production
quota in 2015, EU sugar refining companies have announced a plan to increase production in
order to reduce their average costs.

http://futures.tradingcharts.com/chart/E6/M?anticache$=$1393575372.
http://futures.tradingcharts.com/chart/E6/M?anticache$=$1393575372
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FIGURE 9.14B Light crude oil price at the NYMEX, in US dollars per barrel

Market Structure In 2012, production and exportation were dominated by Brazil while the
USA and EU were net importers. However, the world market is strongly distorted by policies
from most countries.

The International Sugar Organization (ISO, 2013) released key figures about the sugar
sector in 2012:

� The 10 largest producers provided 77% of world production (Figure 9.16). The major
producers were Brazil, India, the EU and China. Three countries (Brazil, India and

TABLE 9.4 World raw sugar production, in million tons

Year Sugar from cane Sugar from beet

1960–61 31 24
1970–71 42 30
1980–81 55 33
1990–91 73 42
2000–01 95 37
2010–11 134 32
2011–12 137 40
2012–13 143 38

Source: F.O. Licht, 2013.
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F IGURE 9.15 Raw sugar production from cane and beet
Source: Author’s figure from F.O. Licht data, 2013.

the EU) produced 47% of world production and five countries (Brazil, India, the EU,
China and Thailand) produced 60% of world production. Production is scattered over
different continents.

� The 10 largest consumers accounted for 63% of world consumption (Figure 9.17). The
major consumers were India, the EU, China, Brazil and the USA.

� The major importers were the EU, Indonesia, the USA and China (Figure 9.18).
� Brazil strongly increased its sales and exportations during the 2000s. Brazil has become

by far the major exporter with 51% of all exports in 2012, which is about four times more
than Thailand, the second largest exporter (Figure 9.19).

The leading world sugar trader is Sucden (France). Other major trading companies are
Cargill, Bunge, Louis Dreyfus Commodities, etc.

Rank Producer Million tons World market share
1 Brazil 40.3 22%

2 India 26.6 15%

3 EU 18.5 10%

4 China 14.6 8%

5 Thailand 9.5 5%

6 USA 8.4 5%

7 Mexico 6.0 3%

8 Pakistan 5.2 3%

9 Russia 5.2 3%

10 Australia 4.5 2%

Top ten 138.7 77%

Others 42.3 23%

World 181.0 100%

Brazil 22%

India 15%

EU 10%
China 8%

Thailand 5%

USA 5%

Mexico 3%

Pakistan 3%

Russia 3%

Australia 2%

Others 23%

Raw sugar producers: 
world market share in 2012

F IGURE 9.16 Raw sugar producers in 2012
Source: Author’s calculations from ISO data, 2013.
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Rank Consumer Million tons World market share
1 India 24.6 14%

2 EU 19.6 11%

3 China 15.41 9%

4 Brazil 13.6 8%

5 USA 10.5 6%

6 Russia 5.9 3%

7 Indonesia 5.7 3%

8 Pakistan 5.1 3%

9 Mexico 4.4 3%

10 Egypt 3.1 2%

Top ten 107.9 63%

Others 62.8 37%

World 170.7 100%

India 14%

EU 11%

China 9%

Brazil 8%

USA 6%
Russia 3%Indonesia 3%

Pakistan 3%

Mexico 3%

Egypt 2%

Others 37%

Raw sugar consumers:
world market share in 2012

F IGURE 9.17 Raw sugar consumers in 2012
Source: Author’s calculations from ISO data, 2013.

The major sugar refinery companies are SüdZucker AG (Germany), Associated
British Foods plc, Raizen, (Brazil), Tereos (France), Mitr Phol Sugar Corp (Thailand),
Nordzucker GmbH & Co. KG (Germany), Thai Roong Ruang Sugar Group (Thailand),
Wilmar International Ltd (Singapore), Louis Dreyfus Commodities (The Netherlands),
Pfeifer & Langen KG (Germany). Most companies operate in different countries. (Source:
http://www.bloomberg.com/news/2011-11-04/suedzucker-leads-the-top-10-sugar-producing-
companies-table-.html.)

Policy Sugar is a very policy-distorted commodity (Mitchell, 2004). Sugar markets are
affected by production quotas, import controls and government-guaranteed prices in many
parts of the world: the EU, Japan, the USA and many other countries. Protectionist policies
originated from the early 1800s when European countries producing sugar beets could not
compete with cane beet-producing countries in warmer areas. Up to now, EU, Japanese and
US production is not competitive. Sugar is politically important since it is a basic staple

Rank Importer Million tons World market share
1 EU 3.5 7%

2 Indonesia 3.1 6%

3 USA 2.6 5%

4 China 2.5 5%

5 UAE 1.9 4%

6 Algeria 1.6 3%

7 South Korea 1.6 3%

8 Malaysia 1.6 3%

9 Bangladesh 1.4 3%

10 Japan 1.4 3%

Top ten 21.3 43%

Others 28.7 57%

World 50.0 100%

EU 7%

Indonesia 6%

USA 5%

China 5%

United Arab 

Emirates 4%

Algeria 3%

South Korea 

3%
Malaysia 3%

Bangladesh 3%

Japan 3%

Others 57%

Raw sugar importers:
world market share in 2012

F IGURE 9.18 Raw sugar importers in 2012
Source: Author’s calculations from ISO data, 2013.

http://www.bloomberg.com/news/2011-11-04/suedzucker-leads-the-top-10-sugar-producing-companies-table-.html
http://www.bloomberg.com/news/2011-11-04/suedzucker-leads-the-top-10-sugar-producing-companies-table-.html
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Rank Exporter Million tons World market share
1 Brazil 25.6 51%
2 Thailand 6.6 13%
3 Australia 3.5 7%
4 Guatemala 1.9 4%
5 UAE 1.8 4%
6 Mexico 1.7 3%
7 EU 1.5 3%
8 Cuba 0.9 2%
9 India 0.8 2%

10 Colombia 0.7 1%
Top ten 45.0 90%
Others 5.0 10%
World 50.0 100%

Brazil 51%

Thailand 13%

Australia 7%

Guatemala 4%

United Arab 

Emirates 4%

Mexico 3%
EU 3%

Cuba 2%
India 2%

Colombia 1% Others 10%

Raw sugar exporters:
world market share in 2012

F IGURE 9.19 Raw sugar exporters in 2012
Source: Author’s calculations from ISO data, 2013.

consumed by almost all the population. Some countries such as Turkey have adopted even
higher protection. China keeps domestic sugar prices close to US prices with the help of import
restrictions. India, the second largest producer and the third largest exporter in 2012 (ISO,
2013), protects its domestic producers mainly with import tariffs.

The USA protects its producers with a deficiency payment mechanism and allows import
quotas mainly from Caribbean countries. The US sugar programme uses price supports,
domestic marketing allotments and tariff-rate quotas to influence the amount of sugar available
to the US market. The programme supports US sugar prices above comparable levels in the
world market. The US Department of Agriculture (USDA) provides loans to sugar cane and
beet producers and processors that guarantee a minimum price regardless of market conditions.
At the maturity of the loan (often after 9 months), sugar producers and processors have to
decide either to provide sugar to the government to repay the loan if the market price is low
or sell their sugar on the market if the market price is higher than the USDA loan amount.
Currently, the loan rate is 18.75 US cents per pound for raw cane sugar and 24.09 US cents
per pound for refined beet sugar. See Figure 9.20.

In 2006, under pressure from the WTO, the EU decided to reform its production quota
system, decreasing the minimum price by 36% over 5 years. As a result, from a net exporter
the EU has become a net importer and among the two largest importers. In 2013, the EU
production quota amounted to 13.3 million tons. The EU minimum price production under
quota was fixed at:

� 335.2 €/ton (that is, 19.77 US cents/lb) for raw sugar while the world price fluctuated
between 320 €/ton (that is, 18.87 US cents/lb) in September 2012 and 473 €/ton (that is,
27.93 US cents/lb) in October 2011 on the ICE;

� 404.4 €/ton (that is, 23.85 US cents/lb) for white sugar while the world price fluctuated
between 424 €/ton (that is, 25 US cents/lb) on September 2012 and 539 €/ton (that is,
31.79 US cents/lb) in September 2012 on the LIFFE.

Out-of-quota sugar is sold at world market price. In 2011, the EU Commission observed
that sugar beet growers and processors had strongly improved their productivity and could
sustain their business with regard to sugar cane producers and processors. Finally, in 2013,



Agricultural and Soft Markets 427

0

US World

U.S. raw sugar price, duty free paid, New York, monthly

World raw sugar price, montly

Ja
n
-6

0

Ju
l-
6
1

Ju
l-
6
4

Ja
n
-6

3

Ju
l-
6
7

Ja
n
-6

6

Ju
l-
7
0

Ja
n
-6

9

Ju
l-
7
3

Ja
n
-7

2

Ju
l-
7
6

Ja
n
-7

5

Ju
l-
7
9

Ja
n
-7

8

Ju
l-
8
2

Ja
n
-8

1

Ju
l-
8
5

Ja
n
-8

4

Ju
l-
8
8

Ja
n
-8

7

Ju
l-
9
1

Ja
n
-9

0

Ju
l-
9
4

Ja
n
-9

3

Ju
l-
9
7

Ja
n
-9

6

Ju
l-
0
0

Ja
n
-9

9

Ju
l-
0
3

Ja
n
-9

2

Ju
l-
0
6

Ja
n
-0

5

Ju
l-
0
9

Ja
n
-0

8

Ja
n
-1

1

10

20

30

C
e
n

ts
 p

e
r 

p
o

u
n

d

40

50

60

F IGURE 9.20 World vs. US sugar prices

the EU decided to remove its production quota system by the year 2017, but EU farmers and
processors would like a 3-year delay to increase their competitiveness. Major EU producers
are France, Germany, Poland and the UK. Furthermore, since 1975 less developed countries
(LDCs) have benefitted from quota-free and duty-free access to the EU market. The removal
of EU external trade protection will let African, Caribbean and Pacific (ACP) countries and
LDCs compete with other exporters, mainly Brazil.

India, the first consumer and second largest consumer of sugar, became a net importer in
the 2009–10 marketing year when the world price increased while its population was increasing
strongly. To become a net exporter again maybe in 2013–14, India has encouraged domestic
production with three types of minimum price paid to farmers. A minimum statutory price
has been paid by processors to sugarcane farmers. Such minimum price is paid irrespective
of the quality of the cane. It distorts market pricing. A state advised price (SAP) has taken
differences in regional production costs and productivity into account. A fair and remunerative
price (FRP) has been managed by the central government. Owing to different price support
schemes per region, Zimmermann and Zeddies (2002) observed that the Indian market was
partitioned into different sub-markets. Owing to domestic policy protections provided by most
countries, they also estimated that only about 20% of world sugar production is traded under
free market conditions.

Price Level and Volatility There are two major futures contracts trading sugar: raw sugar
#11 on the ICE in New York (Figure 9.21) and the white sugar contract on the LIFFE
(ICE group) in London. Other futures contracts exist, such as the National Commodity and
Derivatives Exchange in Mumbai, India.

Brazil’s production has played a major role in the world sugar market. Haley (2013)
showed how higher production costs in Brazil and growing ethanol use in Brazil explained the
higher world price during the 2000s.
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F IGURE 9.21 Sugar #11 monthly prices on the ICE in US cents per pound
Source: Futures trading charts at http://futures.tradingcharts.com/chart/SU/M?anticache=1393575957.

Over the 2004–13 decade, sugar prices evolved from 8 to 35 US cents per pound, which
is an increase from 1 to 4. Volatility may be very strong within a year. Price volatility was
mainly due to policy-induced production swings in India (McConnell et al., 2010).

Conclusion The world sugar market is strongly distorted by national sugar policies enforced
in many countries. Over the 2000s, Brazil has increased its position as a dominant producer
and exporter: its production and logistics costs are milestones for operators.

9.3.4.2 Grain Markets: Cooperat ion to Avoid Hunger? Grains are major sources of
energy to feed human beings and animals. According to the USDA, the three major cereals in
the world are corn (36% of total cereals), wheat (31%) and rice (20%): rice in Asia, corn in
the Americas and wheat in Europe. Cereal production has shaped areas of population in the
world. See Figures 9.22 and 9.23.

The 1929 economic crisis led to persistent problems of oversupply and low prices, and the
spread of agricultural protectionism. Grains are so important to feed the world that multilateral
grain cooperation started in 1934 with an International Wheat Agreement negotiated between
wheat exporting and importing countries, involving mandatory price ranges and supply and
purchase commitments. It was also decided to set up an international agency, which became
the International Wheat Council in 1949. In 1985 it extended its activities to coarse grains
(corn, barley, sorghum, rye, millet, triticale) and became the International Grains Council

http://futures.tradingcharts.com/chart/SU/M?anticache$=$1393575957.
http://futures.tradingcharts.com/chart/SU/M?anticache$=$1393575957
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F IGURE 9.22 World production, consumption and stocks of grain
The left scale in million tons is used for the curves related to world grain production and
consumption. The right scale in million tons is used for the bars related to world grain
stocks.
Source: International Grains Council, December 2012, http://www.igc.int/en/Default.aspx.
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F IGURE 9.23 Total grain stock-to-use ratios
Source: International Grains Council, December 2012, http://www.igc.int/en/Default.aspx.
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(IGC). Rice was added in 2009. Today, the IGC gathers and releases information about world
production, consumption and trade in order to monitor and adjust grain policy. However, unlike
the 1934 agreement, it places no limits on members’ exports or production.

The 2008 and 2010 jumps in grain prices triggered new cooperation among the G20
countries in June 2011 with the setting up of the ‘Agricultural Market Information System’
(AMIS) in the hands of the Food and Agriculture Organization (FAO) to collect data for more
agricultural commodities.

According to the International Grain Council (December 2012), ‘For grains, the supply
and demand trends result in a contraction in both the absolute level of inventories beyond
2014/15 and the stocks-to-use measure, changes in which give a very broad indication of
market tightness. The stock-to-use ratio for total grains is expected to decline to 16% by
2017/18, from 18% at the end of 2012/13. The tighter outlook will leave markets more
vulnerable to price gains, as well as volatility, in the event of poor crops.’

EU Policy for Grains With the implementation of the WTO Uruguay Round Agreement on
Agriculture signed in 1994 in Marrakesh, Morocco, the EU reduced its expenditure on export
subsidies by 36% and the volume of subsidized export by 21%. In 2005, the WTO agreement
in Hong Kong required that all agricultural export subsidies should be strongly reduced by
2011 and phased out by the end of 2013. There are also some import tariffs that are compatible
with the WTO agreements.

Within these constraints, the European Commission may fix refunds which enable EU
exporters to compete on the lower-priced world market. These may also be fixed by tender. No
export refunds have been granted on grains since September 2006 and grain-based processed
products since 2007.

The EU may intervene in markets by purchasing grains from farmers and traders at
an intervention price which is a minimum guaranteed price of €101.31 per ton between
1 November and 31 May for common wheat, barley, corn, sorghum and durum wheat. So,
the EU intervention price is the price of last resort for farmers and traders. Grain held in
intervention stores is sold by tender onto the domestic market or for export or released for EU
food aid to people in distress.

The EU intervention system was abolished for rye in 2004–05. The EU reduced guar-
anteed intervention quantities to zero for corn from 2009–10, durum wheat from 2009–
10, barley from 2010–11 and rice from 2009–10. The EU maintains the right to reintro-
duce intervention mechanisms. (http://gain.fas.usda.gov/Recent%20GAIN%20Publications/
Grain%20and%20Feed%20Annual_London_EU-27_4-4-2013.pdf).

9.3.4.3 The Soft Wheat Market , Crucia l to Feed Urban Populat ions Soft wheat –
commonly called wheat – is a crucial staple providing energy to feed people in cities. It is used
for food aid by western countries. In the past, the lack of wheat to feed the world led to riots (in
several African capital cities in 2008) and was the immediate cause of several revolutions such
as the 1789 French Revolution in Paris. Rural populations may cultivate fields and gardens to
get enough food while urban populations cannot.

World wheat production and consumption has increased with the rise in urban population.
According to the United Nations (2010), a major demographic shift occurred in 2010. For the
first time in history, the world population was more urban than rural. In 2011 in China, after
30 years of strong economic development, the urban population surpassed the rural population.
Furthermore, the UN anticipates that the world’s urban areas will continue to draw some of the

http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_London_EU-27_4-4-2013.pdf
http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_London_EU-27_4-4-2013.pdf
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rural population and will absorb all the population growth over the next four decades, mainly
in the developing world. 78% of the inhabitants of the more developed regions lived in urban
areas in 2011, and just 47% of those in the less developed regions. From 2011 to 2050, the
world population is expected to pass from 7.0 billion to 9.3 billion inhabitants. However, in
2050 it is expected to be 67% urban, passing from 3.6 billion in 2011 to 6.3 billion urban
people (United Nations, 2012).

From 1934, the governments of major nations have paid a lot of attention to carry-over
stocks in order to forecast prices and possible shortages to care for their urban populations.

Products and Use Wheat has become a critical staple in the world, not only in Northern
America and Europe. Food aid usually includes wheat exports, so African countries which did
not consume wheat have experienced a change of dietary habits.

There are two types of soft wheat: milling wheat and feed wheat. When its protein content
is high because of the characteristics of varietals and dry weather conditions before harvest,
wheat is called milling wheat. It may be processed into flour to make bread and pastry.
Otherwise, wheat is used for animal feed and agro-industries. In Europe wheat is a major
input to process starch and to produce biofuels. In the USA, due to its climate, corn is more
productive than wheat. So, US starch-processing plants and biofuel plants use corn.

The major substitutes for soft wheat are:

� corn for animal feeds and the starch industry,
� oil for the fuel markets.

But wheat is the commodity used to feed urban populations.

Market Structure Wheat production is reaching 700 million tons per year. Wheat is the
most important crop in Europe and Central Asia. However, due to strong weather differences
from year to year (risk of drought or floods), production in the ‘Black Sea countries’ (including
Russia, Ukraine and Kazakhstan, even if this last country does not have any border with the
Black Sea) and Australia fluctuate a lot from year to year, so these countries may be big
or small exporters… and disturb the strategies of operators in other exporting countries. In
contrast, wheat production is a lot more regular in Western Europe, particularly within its
French wheat loft. See Figure 9.24.

In 2009 the governments of Russia, Ukraine and Kazakhstan discussed the creation of
the Black Sea grain pool to export a potential 70 million tons in good years. Up to now, the
initiative has not been implemented.

In 2012 the top 10 wheat-producing countries accounted for 79% of world production
(Figure 9.25). The EU, China, India and the USA were the largest producers. Those countries
were also the largest consumers (Figure 9.26). In 2012 the top 10 wheat-consuming countries
accounted for 71% of world consumption. The top three wheat consumers are China, the EU
and India. Increasing urban populations and growing purchasing power in South Asia over the
2000s resulted in increasing consumption of grain and meat (chicken meat in India, chicken
and pig meat in China)… and chicken and pigs are fed with wheat or corn.

From year to year, China and India consume their production and are net importers or
exporters. In contrast, the USA and the EU are the two largest exporters.

From the mid-1990s the USA has produced about 10% of world wheat and has been the
worlds leading wheat exporter (Figure 9.27). The EU and Canada also export every year. So,
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F IGURE 9.24 World production, consumption and stocks of wheat
The left scale in million tons is used for the curves related to world wheat production
and consumption. The right scale in million tons is used for the bars related to world
wheat stocks.
Source: International Grains Council, http://www.igc.int/en/Default.aspx.

the USA, the EU and Canada are the main competitors, disturbed by the erratic surpluses
or deficits of Australia (due to a very irregular yield caused by severe droughts some years)
and the three ‘Black Sea countries’ (due to extremely changeable weather with severe frosts,
floods or droughts some years). In 2012 those seven countries accounted for 54% of world
exports: competition is fierce.

Egypt is the largest importer of wheat (Figure 9.28). Brazil, Indonesia, Japan and Algeria
follow.

Rank Producer Million tons World market share
1 EU 133 19%

2 China 121 17%

3 India 95 14%

4 USA 62 9%

5 Russia 38 5%

6 Canada 27 4%

7 Australia 22 3%

8 Pakistan 23 3%

9 Turkey 16 2%

10 Ukraine 16 2%

Top ten 552 79%

Others 143 21%

World 695 100%

EU 19%

China 17%

India 14%USA 9%

Russia 5%

Canada 4%

Australia 3%

Pakistan 3%

Turkey 2%

Ukraine 2%

Others 21%

Wheat producers:
world market share in 2012

F IGURE 9.25 Wheat producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

http://www.igc.int/en/Default.aspx
http://www.igc.int/en/Default.aspx
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Rank Consumer Million tons World market share
1 China 125 18%

2 EU 121 17%

3 India 85 12%

4 USA 38 6%

5 Russia 34 5%

6 Pakistan 24 3%

7 Egypt 19 3%

8 Turkey 18 3%

9 Iran 16 2%

10 Ukraine 12 2%

Top ten 491 71%

Others 205 29%

World 696 100%

China 18%

EU 17%

India 12%
USA 6%Russia 5%

Pakistan 3%

Egypt 3%

Turkey 3%

Iran 2%

Ukraine 2%

Others 29%

Wheat consumers:
world market share in 2012 

F IGURE 9.26 Wheat consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Million tons World market share
1 USA 27 13%

2 EU 22 11%

3 Canada 19 9%

4 Australia 19 9%

5 Russia 11 5%

6 Ukraine 7 3%

7 Kazakhstan 7 3%

8 India 7 3%

9 Argentina 4 2%

10 Turkey 3 2%

Top ten 126 61%

Others 80 39%

World 206 100%

USA 13%

EU 11%

Canada 9%

Australia 9%

Russia 5%

Ukraine 3%Kazakhstan 3%
India 3%

Argentina 2%

Turkey 2%

Others 39%

Wheat exporters:
world market share in 2012 

F IGURE 9.27 Wheat exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Importer Million tons World market share
1 Egypt 9 6%

2 Brazil 8 5%

3 Indonesia 7 5%

4 Japan 7 5%

5 Algeria 6 4%

6 EU 6 4%

7 South Korea 6 4%

8 Nigeria 4 3%

9 Mexico 4 3%

10 China 3 2%

Top ten 58 41%

Others 85 59%

World 143 100%

Egypt 6%
Brazil 5%

Indonesia 5%

Japan 5%

Algeria 4%

EU 4%

South Korea 

4%
Nigeria 3%

Mexico 3%

China 2%

Others 59%

Wheat importers:
world market share in 2012

F IGURE 9.28 Wheat in importers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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The ABCD traders are the main carriers in the wheat business. However in Europe, they
source wheat from and also compete with French elevators: the French union of agricultural
cooperatives In-Vivo, two grain coops Vivescia and Axereal and the Soufflet merchant family.
Vivescia, Axereal and Souflet are heavily invested in the wheat milling industry and other
cereal-processing industries such as the malt industry, throughout Europe and also around the
world: the three groups Vivescia, Soufflet and Axereal belong to the top five malt processors.

Policy The US Food, Conservation and Energy Act of 2008 (2008 Farm Act) provides wheat
producers access to marketing loan benefits, direct payments (DPs), counter-cyclical payments
(CCPs) and average crop revenue election (ACRE) payments. In addition, many producers
may benefit from subsidized crop and revenue insurance available under previous legislation,
as well as from new permanent disaster assistance. Moreover, wheat producers are affected
by conservation and trade programmes. US loan rates are set in the legislation. For wheat, the
rate is $2.75 per bushel for crop years 2008–09 and $2.94 per bushel for crop years 2010–12.
The US government provides direct payments to producers according to historical acreage at
the rate of 52 cents per bushel for crop year 2008, for 85% of base acres in crop years 2008
and 2012 and 83.3% in crop years 2009–11, and a producer’s historical payment yield for the
farm.

Public support differs a lot among the biggest exporting countries: the EU, the USA and
Canada provide substantial support while Australia removed almost all support systems. On
the contrary, Argentina has taxed its grain exportations.

The EU intervention price for grains decreased from €163.49 per ton in 1992 to €101.31
per ton in 2002 and has remained at that level. As a result, the EU minimum wheat price went
down and merged with the world price in 2002. Since 2002 the price has fluctuated from 1 to
2.5, especially in 2007–08 and 2010. Furthermore, wheat is a critical staple to feed people.
So in the past, when governments feared some shortage to feed their population, they put
embargoes on exports as India did in 2008 and Russia in August 2010. Such sudden policy
decisions troubled market operators who feared shortages. Then, world wheat prices jumped
immediately and tremendously.

Price Level and Volatility The above-mentioned political decisions strongly impacted wheat
price and volatility. From an historical point of view, the wheat contract on the CBOT (CME
group) was the first agricultural contract designed in 1865. For about 150 years, it has been a
hedging instrument for wheat producers and users. CBOT wheat prices have prevailed, being
a reliable signal first in the USA and then worldwide. With 27.4 million wheat contracts traded
in 2012, the CBOT contract leads the market. Other wheat contracts have been launched during
the last 15 years.

Hence, in 2012, 25.8 million wheat contracts were traded on the Zhengzhou Commodity
Exchange in China. The contract was launched in 1993. 7.5 million contracts were made
on the milling wheat #2 contract on the Paris (MATIF) NYSE-Euronext futures exchange
(Figure 9.29). The contract opened in 1998 has become a leader in driving prices for food
and animal feed world operators since the underlying wheat has a higher protein content than
the CBOT contract. Furthermore, the Paris-based wheat contract (Figure 9.30) serves as a
guidepost for other agricultural commodities produced and sold in Europe, such as barley, oats
and rye.

On 6 June 2012, the CME group launched a wheat futures contract tied directly to milling
wheat from the Black Sea region with 10 delivery ports in Russia, Ukraine and Romania



Agricultural and Soft Markets 435

Mar 27 1998

1
0
0

1
5
0

2
0
0

C
o
u
rs

 e
n
 €

/t

2
5
0

3
0
0

Jan 01 2000 Jan 01 2002 Jan 01 2004
Date

Jan 01 2006 Jan 01 2008 Jan 01 2010

F IGURE 9.29 Milling wheat #2 contract prices over the 2000s on the Paris Euronext
Futures Exchange, in euros per ton
Source: Agritel with data from NYSE-Euronext. Reproduced by permission of AGRITEL.

(Figure 9.31). But free trade conditions may be problematic to attract hedgers and speculators
because of embargoes decided by governments in the region. Since 2007, Kazakhstan has
suspended wheat exports once, Russia twice and Ukraine three times. It means that a buyer
could not get delivery of the commodity during the period of embargo.

Conclusion On the supply side, the wheat market is much disputed on international markets
among some regular exporting countries like the USA, Canada and Europe. Furthermore,
sometimes these countries are troubled by large exports from the Black Sea countries (Russia,
Ukraine and Kazakhstan) and Australia, whose production is very erratic due to climatic
conditions.

On the demand side, the wheat market depends on the evolution of population size and
dietary habits. Demand has also been affected by policy incentives to produce biofuels.

From a human and political viewpoint, wheat is a critical staple to feed people. In
addition to permanent policy regulations enforced in several countries, when governments
feared some shortage to feed their population they decided to introduce an embargo on exports
and enforce it quickly. Such sudden policy decisions strongly impacted market price levels and
volatility.

9.3.4.4 The Corn Market , with Braz i l ian Exports Overtaking US Exports in 2012
As mentioned above, corn is the most cultivated cereal but mainly located in the Americas.

Products and uses Corn is a major source of human food (tortillas, isoglucose, edible oil,
gluten, etc.), animal feeds and non-food ingredients (ethanol, starch, etc.). If corn is central
in the Mexican cuisine with sweetcorn and tortillas, it is used for many other types of food:
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F IGURE 9.30 Milling wheat prices from 2005 to 2012 on the Paris Euronext Futures Exchange,
in euros per ton
Source: Agritel with data from NYSE-Euronext. Reproduced by permission of AGRITEL.

popcorn, porridge, soft drinks and beer. Its hydrogenation leads to high-fructose corn syrup as
a sweetener used in soft drinks. Corn is also fermented with other ingredients to produce beer.
Corn is a major source of energy in animal feeds for cattle, pigs, chicken, etc. Over time, corn
has become an ingredient for a lot of non-food uses in the paper industry, renewable plastic
industry, biofuel (ethanol) industry, etc.

The major corn substitutes are:

� wheat for animal feeds and the starch industry;
� sugar cane and beet in the soft drink and ethanol industries;
� oil for fuel markets.

So the corn market is related to other commodity markets for food, feeds and biofuels.

Market Structure The world production of corn reached almost 950 million tons in 2012,
even though the US harvest dropped by 13% in 2012 compared with 2011 (Figure 9.32).

In 2012 the USA and China accounted for 59% of world corn production. Brazil has
become the third producer, with a strong increase from the mid-2000s. In 2012 the EU was
the fourth producer, but consumes more than its production. Argentina was the fifth producer,
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FIGURE 9.31 Milling wheat monthly price on the CBOT (CME group), in US cents per bushel
Source: Futures trading charts at http://futures.tradingcharts.com/chart/ZW/M?anticache=
1393577462.

but is a small consumer so it exports a lot. The top five producers provided 79% of world
production. See Figure 9.33.

In 2012 the USA and China accounted for 60% of world consumption of corn. The EU
and Brazil followed. See Figure 9.34.

The international trade of corn represents 11% of world production. Before 2012, the
USA was the largest exporter of corn in the world. But due to severe drought in the mid-west,
US production was not sufficient to retain leadership on the international market. Brazil and
Argentina exported more corn than the USA. Brazilian and Argentinean exports have increased
strongly over the 2000s. However, in 2013 the US harvest seemed promising according to the
IGC and the USA is expected to recover its leadership (Figure 9.35).

While those three American countries are the major exporters, Asian and European
countries are major importers. In 2012 Japan, the EU and South Korea accounted for 39% of
world imports. Japan accounted for 17% and has been quite stable since 1982 with volumes
imported of 13 to 15 million tons per year. In contrast, Chinese imports have been erratic. In
2012 China was the second world producer and consumer, behind the USA (Figure 9.36).

Non-GMO corn is not much present on international markets, while the USA, Brazil
and Argentina mainly produce GMO corn. Owing to some national legislation, most EU
countries do not produce GMO corn, while they import GMO corn to feed animals. Notice
that sweetcorn produced in Europe as food for people is GMO-free. In 2011, GMO sweetcorn
appeared massively in the USA.

http://futures.tradingcharts.com/chart/ZW/M?anticache$=$1393577462
http://futures.tradingcharts.com/chart/ZW/M?anticache$=$1393577462
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F IGURE 9.32 World production, consumption and stocks of corn
The left scale in million tons is used for the curves related to world corn production and
consumption. The right scale in million tons is used for the bars related to world corn
stocks.
Source: International Grains Council, http://www.igc.int/en/Default.aspx.

Policy The EU policy for grain is as mentioned above.
The US 2008 Farm Act provides quite similar policy tools for corn and wheat, except for

the amount. For corn, the minimum effective corn price was $2.23 per bushel – the sum of
the direct payment (28 cents) and the national loan rate ($1.95). The maximum payment rate
for corn is 40 cents per bushel – the target price ($2.63) minus the minimum effective price

Rank Producer Million tons World market share
1 USA 274 34%

2 China 206 25%

3 Brazil 77 9%

4 EU 59 7%

5 Argentina 27 3%

6 Ukraine 21 3%

7 Mexico 22 3%

8 India 22 3%

9 Canada 13 2%

10 South Africa 12 2%

Top ten 731 90%

Others 80 10%

World 811 100%

USA 34%

China 25%

Brazil 9%

EU 7%

Argentina 3%

Ukraine 3%

Mexico 3%

India 3%

Canada 2%

South Africa 2%
Others 10%

Corn producers:
world market share in 2012         

F IGURE 9.33 Corn producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

http://www.igc.int/en/Default.aspx
http://www.igc.int/en/Default.aspx
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Rank Consumer Million tons World market share
1 USA 267 34%

2 China 207 26%

3 EU 69 9%

4 Brazil 53 7%

5 Mexico 28 4%

6 India 17 2%

7 Japan 15 2%

8 Canada 12 2%

9 South Africa 11 1%

10 Indonesia 11 1%

Top ten 688 88%

Others 95 12%

World 783 100%

USA 34%

China 26%

EU 9%

Brazil 7%

Mexico 4%
India 2%

Japan 2%

Canada 2%

South Africa 1%

Indonesia 1%
Others 12%

Corn consumers:
world market share in 2012 

F IGURE 9.34 Corn consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Million tons World market share
1 Brazil 22 25%

2 Argentina 19 22%

3 USA 18 20%

4 Ukraine 14 15%

5 India 5 5%

6 Paraguay 2 2%

7 Russia 2 2%

8 EU 2 2%

9 South Africa 2 2%

10 Serbia 1 1%

Top ten 85 97%

Others 3 3%

World 88 100%

Brazil 25%

Argentina 22%

USA 20%

Ukraine 15%

India 5%

Paraguay 2%

Russia 2%

EU 2%
South Africa 2% Serbia 1%

Others 3%

Corn exporters:
world market share in 2012 

F IGURE 9.35 Corn exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Importer Million tons World market share
1 Japan 15 17%

2 EU 11 13%

3 South Korea 8 10%

4 Mexico 7 8%

5 Taiwan 4 5%

6 Iran 4 5%

7 Egypt 4 4%

8 Colombia 3 4%

9 Malaysia 3 4%

10 China 3 4%

Top ten 61 72%

Others 23 28%

World 84 100%

Japan 17%

EU 13%

South Korea 
10%

Mexico 8%
Taiwan 5%Iran 5%

Egypt 4%

Colombia 4%

Malaysia 4%

China 4%

Others 28%

Corn importers:
world market share in 2012 

F IGURE 9.36 Corn importers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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($2.23). The payment amount equals the product of the payment rate, a producer’s historical
payment acres (85% of base acres) and a producer’s historical counter-cyclical payments yield,
which may differ from the direct payment yield.

In contrast, Argentina, which was traditionally the second largest exporter, has a 20% tax
on corn exports. The Argentinean government policies aim to keep 8–9 million metric tons
in the country for domestic use. Any production beyond that will be exported under a licence
system that gives Argentinean corn a price advantage over US exports. Limited grain storage
infrastructure and tax on exports create a disincentive for farmers to hold grain and to increase
corn plantings.

With the success of the extension programme to improve production practices, Brazil-
ian farmers have increased plantings and yield over the 2000s to fulfil the objective of
ethanol production. Furthermore, with the depreciation of their domestic currency against
the US dollar, Brazilian competitiveness strongly increased fostering new plantings and
exports.

There exists a controversy about environmental policy for biofuels for two major reasons:

1. Brazilian land dedicated to corn expanded at the expense of pasture and tropical forests,
inducing less biodiversity. Brazilian forest is a large ‘reservoir’ for world biodiversity
conservation.

2. US, Brazilian, Argentinean and EU farmland used to produce corn for biofuel could be
used for food and make food prices lower, so more affordable for poor urban populations.

Price Level and Volatility For about 150 years, corn has been traded on the CBOT (CME
group), which is by far the major corn market.

In 2012 the US harvest was poor, with a 13% decrease leading to a 55% decrease in US
corn exports. In 2012, 6.5% of US corn production was exported instead of 12.5% in 2011
and about 15–18% previously. In 2012, Brazilian and Argentinean exports represented about
22% and 19% of their production, respectively.

So, US exports account for a relatively small portion of demand for US corn. But as the
largest world exporter, except for the year 2012, the USA has dominated the world corn trade.
International corn prices mainly reflect US prices, which are very dependent on weather in
the mid-west around Chicago. In 2012, drought was responsible for a 17-year low yield in the
USA. In August 2012, when traders realized that the harvest would be so poor, corn prices
reached a record US$8.43 3

4
a bushel on the CBOT. By September 2013, the corn harvest was

expected to be excellent while government subsidies for biofuels were reduced. So prices went
down below US$5 per bushel. See Figure 9.37.

Price volatility is mainly due to the uncertainty of weather impact on harvests and global
demand for meat in Asia and subsidies for biofuels in the EU and the USA.

Conclusion Corn exports mainly originate from the Americas. The USA is the largest
producer, with about 40% of world production. Brazilian production amounts to 20–26% of
US production. Argentina only produces 7–10% of the volume produced by the USA. But
Brazil and Argentina may continue to dispute the US leadership for exportation, as they did
in 2012.
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FIGURE 9.37 Corn monthly price on the CBOT (CME group), in US cents per bushel
Source: Futures trading charts at http://futures.tradingcharts.com/chart/CN/M?anticache=1393578051.

China is the second largest producer but mainly consumes its production. Japan, the EU
and South Korea are the major importers.

9.3.4.5 The Rice Market , an Asian Market Disturbed by US Exports Rice is the
major staple in Asia, the most populated continent.

Product and Use Rice is predominantly used to feed the population.

Market Structure The world production of rice amounted to about 475 million tons in 2012
(Figure 9.38). However, the international rice market only concerned 7–8% of the production,
a very low rate compared with the 30% rate for wheat and 11% rate for corn.

Rice is mainly produced and consumed in Asia, even though African consumption has
increased strongly during the 2000s. China, India, Indonesia, Bangladesh, Vietnam, Thailand,
the Philippines and Myanmar are the top eight producers and consumers. See Figures 9.39
and 9.40.

Rice is mainly consumed in countries where it is produced, except for Thailand and the
USA. In 2012 the USA was the 12th producing country, but the fourth exporter. Thailand was
the sixth producing country, but the second exporter. Since 2011, Thailand has lost its 30-year

http://futures.tradingcharts.com/chart/CN/M?anticache$=$1393578051.
http://futures.tradingcharts.com/chart/CN/M?anticache$=$1393578051
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F IGURE 9.38 World production, consumption and stocks of rice
The left scale in million tons is used for the curves related to world rice production and
consumption. The right scale in million tons is used for the bars related to world rice
stocks.
Source: International Grains Council, http://www.igc.int/en/Default.aspx.

leadership as world top rice exporter mainly due to government domestic price support. The
Thai government has purchased domestic rice at a higher price than the world price. It has
stored rice. So, India has become the largest exporter. Notice that since 1998 Vietnam has
strongly increased its production. In 2012 it became the third largest exporter. See Figure 9.41.

The major importers are Asian: China, Indonesia, Iran, Iraq, except for Nigeria which is
the second largest importer. See Figure 9.42.

Rank Producer Million tons World market share
1 China 143 30%

2 India 104 22%

3 Indonesia 38 8%

4 Bangladesh 34 7%

5 Vietnam 27 6%

6 Thailand 20 4%

7 Philippines 11 2%

8 Myanmar 11 2%

9 Brazil 8 2%

10 Japan 8 2%

Top ten 404 85%

Others 72 15%

World 476 100%

China 30%

India 22%Indonesia 8%

Bangladesh 7%

Vietnam 6%

Thailand 4%

Philippines 2%

Myanmar 2%

Brazil 2%

Japan 2%

Others 15%

Milled rice producers:
world market share in 2012

F IGURE 9.39 Milled rice producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

http://www.igc.int/en/Default.aspx
http://www.igc.int/en/Default.aspx
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Rank Consumer Million tons World market share
1 China 144 32%

2 India 96 21%

3 Indonesia 40 9%

4 Bangladesh 35 8%

5 Vietnam 20 4%

6 Philippines 12 3%

7 Thailand 11 2%

8 Myanmar 10 2%

9 Japan 8 2%

10 Brazil 8 2%

Top ten 383 85%

Others 70 15%

World 453 100%

China 32%

India 21%Indonesia 9%

Bangladesh 8%

Vietnam 4%

Philippines 3%

Thailand 2%

Myanmar 2%

Japan 2%

Brazil 2%

Others 15%

Milled rice consumers:
world market shares in 2012

F IGURE 9.40 Milled rice consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Million tons World market share
1 India 9 25%

2 Vietnam 7 20%

3 Thailand 7 19%

4 USA 3 10%

5 Pakistan 3 8%

6 Cambodia 1 3%

7 Uruguay 1 2%

8 Egypt 1 2%

9 Brazil 1 2%

10 Myanmar 1 2%

Top ten 34 94%

Others 2 6%

World 36 100%

India 25%

Vietnam 20%

Thailand 19%

USA 10%

Pakistan 8%

Cambodia 3%

Uruguay 2%

Egypt 2%

Brazil 2%

Myanmar 2% Others 6%

Milled rice exporters:
world market share in 2012

F IGURE 9.41 Milled rice exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Importer Million tons World market share
1 China 3 8%

2 Nigeria 3 7%

3 Indonesia 1 3%

4 Iran 2 4%

5 Iraq 1 4%

6 Saudi Arabia 1 3%

7 Philippines 1 4%

8 EU 1 3%

9 Ivory Coast 1 3%

10 Malaysia 1 3%

Top ten 15 43%

Others 21 57%

World 36 100%

China 8%

Nigeria 7%

Indonesia 3%

Iran 4%

Iraq 4%

Saudi Arabia 
3%

Philippines 4%

EU 3%

Ivory Coast 3%
Malaysia 3%

Others 57%

Milled rice importers:
world market share in 2012

F IGURE 9.42 Milled rice importers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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F IGURE 9.43 Rough rice monthly price on the CBOT (CME group), in US cents per bushel
Source: Futures trading charts at http://futures.tradingcharts.com/chart/RI/M?anticache=1393579221.

Policy The Asian countries learnt how to coordinate their policy in 2009 after their disorga-
nized decisions on export embargoes in 2007–08.

Asian countries have adopted programmes to be self-sufficient (Dawe, 2010, 2013). With
subsidies, they store rice to secure the food supply in their numerous and very populated urban
areas.

Price and Price Volatility Rice is quoted mainly on the CBOT (CME group), see Fig-
ure 9.43, and also on the Zhengzhou Commodity Exchange and the Tokyo Grain Exchange.

In 2007–08, when wheat and corn prices increased, India and Vietnam – followed by
Egypt and Cambodia – were afraid of an increase in rice domestic price and decided on an
export embargo on rice. Also afraid of shortage, the Philippines imported more rice than
expected. Speculators perceived a possible way to make profit by entering the rice market.
Rice prices and price volatility went up from US$10 to 24 a bushel. Only in May 2008 –
when China and Thailand indicated that they had a large surplus of rice – was there no longer
uncertainty and fear of shortage. Prices went back near their previous level.

After the 2007–08 crisis, the ASEAN Food Security Information System (AFSIS) was
set up by the FAO and Asian governments to prevent risks of misleading information that
may trigger wrong governmental decisions. Furthermore, a programme of rice storage was
decided on and implemented for local food security. Speculators were less attracted. Such

http://futures.tradingcharts.com/chart/RI/M?anticache$=$1393579221.
http://futures.tradingcharts.com/chart/RI/M?anticache$=$1393579221
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governmental cooperation resulted in disconnecting world rice prices from other world grain
(wheat and corn) prices over the 2010–12 period.

Conclusion The international rice market is small and dominated by China, Thailand and
India. But it is troubled by the USA, which is the fourth exporter. Since 2009, Asian countries
have increased their rice stocks and coordinated their policy actions with success over the
2010–12 years.

9.3.4.6 The Soybean Oi lseed Market , with the USA and Braz i l Export ing to China
and the EU Oilseeds are major sources of protein to feed human beings and animals. Soy-
beans are the major protein crops, followed by rapeseed. Oilseeds are also sources of edible
oil. In 2012, soybean oil was the second largest consumed edible oil after palm oil.

Products and Uses Soybeans provide protein and also edible oil and oil as biodiesel.
Soybean as a food source of proteins is mainly consumed as soybean recipes such as tofu,
miso, tempeh, etc. Soybean meal is also a major source of protein for animals: cattle, pigs,
chickens, etc.

As a source of protein and edible oil, soybean is in competition with other oilseeds.
Used for biodiesel, soybean is a substitute for ethanol coming mainly from corn, wheat and a
substitute for other energies: oil petroleum, gas and coal.

Market Structure The world production of soybean amounted to about 268 million tons in
2012. The international market for soybean amounted to 36% of the world production: a high
proportion. The three major producers – USA, Brazil and Argentina – accounted for more
than 80% of world production in 2012. See Figure 9.44.

The four major consumers – China, the USA, Brazil and Argentina – accounted for 75%
of world consumption in 2012. China imported almost two-thirds of world imports. The EU
follows with a 5% world market share of consumption. See Figure 9.45.

Rank Producer Million tons World market share
1 USA 82 31%

2 Brazil 82 31%

3 Argentina 50 19%

4 China 13 5%

5 India 12 4%

6 Paraguay 9 3%

7 Canada 5 2%

8 Uruguay 3 1%

9 Ukraine 2 1%

10 Bolivia 2 1%

Top ten 261 97%

Others 8 3%

World 268 100%

USA 31%

Brazil 31%

Argentina 19%

China 5%

India 4%

Paraguay 3%

Canada 2%

Uruguay 1%

Ukraine 1% Bolivia 1%
Others 3%

Soybean oilseed producers:
world market share in 2012

F IGURE 9.44 Soybean oilseed producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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Rank Consumer Million tons World market share
1 China 76 29%

2 USA 48 18%

3 Brazil 39 15%

4 Argentina 36 14%

5 EU 13 5%

6 India 12 4%

7 Mexico 4 1%

8 Paraguay 3 1%

9 Japan 3 1%

10 Russia 3 1%

Top ten 235 89%

Others 30 11%

World 265 100%

China 29%

USA 18%

Brazil 15%

Argentina 14%

EU 5%

India 4%

Mexico 1%

Paraguay 1%

Japan 1%

Russia 1% Others 11%

Soybean oilseed consumers:
world market share in 2012

F IGURE 9.45 Soybean oilseed consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

In 2012 the USA still produced more than Brazil but exported less and lost its world
leadership for the first time. Brazil exported 39%, the USA 38% and Argentina 8% of world
exports. Together, Brazil, the USA and Argentina accounted for 85% of world exports. See
Figure 9.46.

China and the EU accounted for 75% of world imports. Both countries import soybean as
a major source of protein for animal feeds. See Figure 9.47.

The ABCD traders are the major carriers of soybeans from the USA, Brazil and Argentina
to China and the EU.

Policy The removal of price distortions for oilseeds was designed by the ‘Blair House
Agreement’ – a memorandum of understanding on oilseeds – negotiated by the USA and the
EU during the GATT Uruguay Round in 1992. So, for more than 20 years, the USA and the

Rank Exporter Million tons World market share
1 Brazil 38 39%

2 USA 36 38%

3 Argentina 8 8%

4 Paraguay 6 6%

5 Canada 4 4%

6 Uruguay 3 3%

7 Ukraine 2 2%

8 China 0 0%

9 Bolivia 0 0%

10 Russia 0 0%

Top ten 96 100%

Others 0 0%

World 96 100%

Brazil 39%

USA 38%

Argentina 8%

Paraguay 6%
Canada 4%

Uruguay 3%

Ukraine 2%
China 0% Bolivia 0%

Russia 0%

Others 0%

Soybean oilseed exporters:
world market share in 2012

 

F IGURE 9.46 Soybean oilseed exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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Rank Importer Million tons World market share
1 China 59 62%

2 EU 12 13%

3 Mexico 3 4%

4 Japan 3 3%

5 Taiwan 2 3%

6 Thailand 2 2%

7 Indonesia 2 2%

8 Egypt 2 2%

9 Vietnam 1 1%

10 Turkey 1 1%

Top ten 88 92%

Others 3 3%

World 95 100%

China 62%

EU 13%

Mexico 4%

Japan 3%

Taiwan 3%

Thailand 2%

Indonesia 2%

Egypt 2%
Vietnam 1% Turkey 1%

Others 3%

Soybean oilseed importers:
world market share in 2012

F IGURE 9.47 Soybean oilseed importers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

EU have no longer had any specific support measures for oilseeds. Import tariffs for the main
protein crops are set at zero. The only policies allowed are direct payments to farmers without
any link to volumes produced and market prices.

As with corn, there is a controversy about the increase in Brazilian land planted with
soybean at the expense of pasture and tropical forests, resulting in weaker biodiversity.

Price Level and Volatility Soybean grains have been quoted on the CBOT (CME group)
since 1936, see Figure 9.48. Futures contracts of soybean oil and soybean meal were launched
in 1950. So, oil crushers may mitigate the risks of fluctuating gross profit margin using the
three futures contracts.

The prices of soybean grains is related to the price of other oilseeds as a source of protein
and edible oil and the price of energy, via the demand for biodiesel as a substitute for other
energies. Over the 2004–13 period, the price of soybean grains fluctuated between US cents
570 and 1800 a bushel, that is a fluctuation of 1 to 3. Price volatility was high in times of
uncertainty about harvest in 2008 and 2010 and Asian demand for pig meat and chicken fed
with soybeans.

Conclusion In 2012 for the first time, the US lost it corn export leadership. The USA and
Brazil are competing for leadership on the international soybean market. Argentina is the third
exporter. Corn is imported mainly by China, followed by the EU.

9.3.4.7 The Rapeseed Oi lseed Market , in the Hands of Canadian Exporters The
world production of rapeseed amounted to about 63 million tons in 2012, with a strong
increase over the preceding decades. In 2012 rapeseed oil was the third largest consumed
edible oil after palm oil and soybean oil.

Products and Uses Rapeseed is an oilseed mainly used as a source of protein for human
beings and animals. It is also produced to make biodiesel.
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F IGURE 9.48 Soybean oilseed monthly price on the CBOT (CME group), in US cents per bushel
Source: Futures trading charts of http://futures.tradingcharts.com/chart/SB/M?anticache=1393580283.

Market Structure Contrary to soybean which is produced in warm areas, rapeseed is pro-
duced in regions with temperate climate. In 2012 the three largest producers – the EU, Canada
and China – accounted for about 75% of the rapeseed production. India and Australia followed,
and the top five producers generated 91% of rapeseed world production. See Figure 9.49.

The three largest consumers are the same countries – the EU, China and Canada –
accounting for about 73% of rapeseed consumption in 2012. See Figure 9.50.

Canada dominates the international market. In 2012 Canada made 60% of world exports.
Australia followed with 25%. So, Canada and Australia made 85% of rapeseed world exports.
See Figure 9.51.

The major rapeseed importers were the EU and China, with about 26% and 25% of world
imports, respectively. Japan followed with 20% and Mexico with 12% of world rapeseed
imports. So, the top four importers accounted for about 83% of total imports in 2012. See
Figure 9.52.

Policy As for soybeans the rapeseed markets are not very distorted by policy due to the Blair
House Agreement already mentioned.

9.3.4.8 Price Level and Volat i l i ty The major futures contract is quoted on the IE Futures
Canada (ICE group), mainly known by its former name until 2007 – the Winnipeg Commodity
Exchange (Figure 9.53). The rapeseed futures contract started in 1963 at the heart of the region

http://futures.tradingcharts.com/chart/SB/M?anticache$=$1393580283.
http://futures.tradingcharts.com/chart/SB/M?anticache$=$1393580283
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Rank Producer Million tons World market share
1 EU 19 31%

2 Canada 13 21%

3 China 14 22%

4 India 7 11%

5 Australia 4 6%

6 Ukraine 1 2%

7 Russia 1 2%

8 USA 1 2%

9 Belarus 1 1%

10 Pakistan 0 1%

Top ten 62 99%

Others 1 1%

World 63 100%

EU 31%

Canada 21%

China 22%

India 11%

Australia 6%

Ukraine 2%

Russia 2%
USA 2%

Belarus 1% Pakistan 1%
Others 1%

Rapeseed producers:
world market share in 2012

F IGURE 9.49 Rapeseed producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Consumer Million tons World market share
1 EU 23 36%

2 China 17 27%

3 Canada 7 11%

4 India 7 11%

5 Japan 2 4%

6 Mexico 1 2%

7 Russia 1 2%

8 USA 1 2%

9 Pakistan 1 1%

10 United Arab Emirates 1 1%

Top ten 61 96%

Others 3 4%

World 64 100%

EU 36%

China 27%

Canada 11%

India 11%

Japan 4%

Mexico 2%
Russia 2%

USA 2%

Pakistan 1%
United Arab 

Emirates 1% Others 4%

Rapeseed consumers:
world market share in 2012

F IGURE 9.50 Rapeseed consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Million tons World market share
1 Canada 7.15 60%

2 Australia 2.90 25%

3 Ukraine 1.35 11%

4 USA 0.17 1%

5 EU 0.10 1%

6 Kazakhstan 0.05 0%

7 Paraguay 0.04 0%

8 Belarus 0.02 0%

9 Russia 0.02 0%

10 Chile 0.01 0%

Top ten 11.83 100%

Others 0.00 0%

World 11.83 100%

Canada 60%

Australia 25%

Ukraine 11%

USA 1%
EU 1%

Kazakhstan 0%

Paraguay 0% Belarus 0% Russia 0%

Chile 0%

Rapeseed exporters:
world market share in 2012

F IGURE 9.51 Rapeseed exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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Rank Importer Million tons World market share
1 EU 3.10 26%

2 China 2.90 25%

3 Japan 2.35 20%

4 Mexico 1.45 12%

5 United Arab Emirates 0.55 5%

6 Pakistan 0.50 4%

7 USA 0.39 3%

8 Canada 0.15 1%

9 Turkey 0.13 1%

10 Bangladesh 0.10 1%

Top ten 11.62 99%

Others 0.10 1%

World 11.72 100%

EU 26%

China 25%Japan 20%

Mexico 12%

United Arab 
Emirates 5%

Pakistan 4%

USA 3%
Canada 1%

Turkey 1% Bangladesh 1%

Others 1%

Rapeseed importers:
world market share in 2012 

F IGURE 9.52 Rapeseed importers 2012
Source: Author’s calculations from ERS-USDA data, 2013.

F IGURE 9.53 Rapeseed monthly price on the Winnipeg Commodity Exchange (ICE group), in
Canadian cents per metric ton
Source: Futures trading charts. http://futures.tradingcharts.com/chart/CA/M?anticache=1393581103.

http://futures.tradingcharts.com/chart/CA/M?anticache$=$1393581103.
http://futures.tradingcharts.com/chart/CA/M?anticache$=$1393581103
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Jul 03 2006 Jul 02 2007 Jul 01 2008 Jul 01 2009 Jul 01 2010 Jul 01 2011 Jul 02 2012

F IGURE 9.54 Rapeseed prices 2005–2012 in euros per ton
Source: AGRITEL. Reproduced by permission of AGRITEL.

in excess supply: Manitoba, Canada. A challenging futures contract is the NYSE-Euronext
‘MATIF’ rapeseed contract opened in 1994 in Paris, France when the EU removed its price
protection policy. Then, EU farmers and crushers were motivated to ask for a local contract.
The contract is now quoted in euros per metric ton (see Figure 9.54).

The price of rapeseed is strongly related to the price of soybean oilseed and also other
oilseeds as a source of protein and edible oil and the price of energy. Over the 2004–13 period,
the price of a metric ton of rapeseed grains fluctuated between Canadian cents 250 to 700 in
Winnipeg, between €180 and €520 in Paris. That is a 1 to 3 price fluctuation, as with soybean
oilseed.

Conclusion The rapeseed market depends mainly on the soybean market and Canadian
exports.

9.3.4.9 The Palm Oi l Market with 98% of Exports Made by Indonesia and Malaysia
Palm oil as an agricultural commodity is mainly produced in two countries, Indonesia and
Malaysia.

Product and Uses Palm oil is a tropical plant. It is used for cooking, for the preparation of
ready-to-eat dishes by food processors and to produce biodiesel. Palm oil is the most consumed
of all edible oils. Substitutes for palm oil are other oils like soybean oil and rapeseed oil.
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Palm oil is the most consumed oil in the world. It has replaced trans fatty acids (trans
fats) during the 1990s and 2000s. However, palm oil has more saturated fat than soybean and
rapeseed oil. Trans fatty acids and saturated fats may contribute to an increase in unfavourable
levels of LDL cholesterol and apolipoprotein B. Soybean and rapeseed oils contain more
monounsaturated and polyunsaturated fatty acids that are better against bad cholesterol. So,
complementarities and substitutions among sources of edible vegetal oil are at stake in taking
food-processing constraints into account.

Since the mid-1990s strong expansion of palm plantations in Indonesia and Malaysia
has occurred at the expense of tropical forests. Monocultural crops are not favourable to
biodiversity, while the biodiversity of tropical forests is high. So, deforestation has triggered
environmental non-governmental organizations (NGOs) and media attention.

Market Structure From the 1990s, Indonesia and Malaysia have strongly increased their
production to meet demand growth from final consumers who cook, food processors and
biodiesel manufacturers. In 2012 Indonesia and Malaysia accounted for 52% and 34% of
world palm oil production. Together they produced 86% of world production. Among the top
10 producing countries, they accounted for 53% and 35% of production (Figure 9.55).

The consumption of palm oil is widespread in the most populated countries. In 2012
India, Indonesia, China and the UE accounted for 54% of world consumption. The top four
consuming countries accounted for 54% of world consumption: India accounted for 16%,
Indonesia for 15%, China for 12% and the EU for 11%. Notice that the USA is not among the
top 10 consumers since they mainly consume domestic soybean oil. See Figure 9.56.

In 2012 exports of palm oil represented 73% of world production. Indonesia accounted
for 50% and Malaysia for 43% of world exports. With 93% of world exports, Indonesia and
Malaysia dominate the palm oil market. See Figure 9.57.

In 2012 the top 10 importers represented 77% of all imports. Among them, India accounted
for 39%, China for 7% and the EU for 7%. The other countries only accounted for 5% or less
of world palm oil imports. See Figure 9.58.

The major palm oil processors are Cargill, Unilever and Agro Astra.

Policy The market for palm oil is free.

Rank Producer Million tons World market share
1 Indonesia 29 52%

2 Malaysia 19 34%

3 Thailand 2 4%

4 Colombia 1 2%

5 Nigeria 1 2%

6 Papua New Guinea 1 1%

7 Ecuador 1 1%

8 Honduras 0 1%

9 Ivory Coast 0 1%

10 Brazil 0 1%

Top ten 54 97%

Others 2 3%

World 56 100%

Indonesia 52%

Malaysia 34%

Thailand 4%

Colombia 2%

Nigeria 2%

Papua New 

Guinea 1%

Ecuador 1% Honduras 1%
Ivory Coast 1%

Brazil 1%

Others 3%

Palm oil producers:
world market share in 2012

F IGURE 9.55 Palm oil producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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Rank Consumer Million tons World market share
1 India 8 16%

2 Indonesia 8 15%

3 China 6 12%

4 EU 6 11%

5 Malaysia 3 6%

6 Pakistan 2 4%

7 Thailand 2 3%

8 Nigeria 1 3%

9 Egypt 1 2%

10 Bangladesh 1 2%

Top ten 38 74%

Others 14 26%

World 52 100%

India 16%

Indonesia 15%

China 12%

EU 11%Malaysia 6%

Pakistan 4%

Thailand 3%

Nigeria 3%

Egypt 2%

Bangladesh 2%

Others 26%

Palm oil consumers:
world market share in 2012

F IGURE 9.56 Palm oil consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Million tons World market share
1 Indonesia 20 50%

2 Malaysia 17 43%

3 Papua New Guinea 1 2%

4 Thailand 0 1%

5 United Arab Emirates 0 1%

6 Honduras 0 1%

7 Benin 0 1%

8 Ivory Coast 0 1%

9 Ecuador 0 1%

10 Guatemala 0 1%

Top ten 40 100%

Others 0 0%

World 40 100%

Indonesia 50%

Malaysia 43%

Papua New 

Guinea 2%

Thailand 1%

United Arab 

Emirates 1%

Honduras 1% Benin 1%
Ivory Coast 1% Ecuador 1%

Guatemala 1%

Palm oil exporters:
world market share in 2012

F IGURE 9.57 Palm oil exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Importer Million tons World market share
1 India 20 39%

2 China 4 7%

3 EU 4 7%

4 Pakistan 2 5%

5 Malaysia 2 4%

6 Egypt 2 5%

7 Bangladesh 2 3%

8 USA 2 3%

9 Singapore 1 3%

10 Iran 1 2%

Top ten 40 77%

Others 12 23%

World 52 100%

India 39%

China 7%
EU 7%Pakistan 5%

Malaysia 4%

Egypt 5%

Bangladesh 3%

USA 3%

Singapore 3%

Iran 2%

Others 23%

Palm oil importers:
world market share in 2012

F IGURE 9.58 Palm oil importers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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F IGURE 9.59 Palm oil monthly price on Bursa Malaysia Derivatives Berhad in US cents per
metric ton
Source: CME group at http://www.cmegroup.com/international/partnership-resources/bursa-
resources.html.

F IGURE 9.60 Palm oil price on Bursa Malaysia Derivatives Berhad in Malaysian ringgit per ton
Source: Bloomberg Finance L. P.

http://www.cmegroup.com/international/partnership-resources/bursa-resources.html.
http://www.cmegroup.com/international/partnership-resources/bursa-resources.html.
http://www.cmegroup.com/international/partnership-resources/bursa-resources.html
http://www.cmegroup.com/international/partnership-resources/bursa-resources.html
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Price There exists a Crude Palm Oil Futures (CPO) contract at the Bursa Malaysia Deriva-
tives Berhad (BMD). Since September 2010, it has been in partnership with the CME group
which owns 25% of the shares. The final settlement of CPO contracts is determined by averag-
ing the Bursa Malaysia Derivatives Berhad Crude Palm Oil Futures (FCPO) daily settlement
prices for each of the last five trading days of the CPO futures contract. See Figure 9.59.

Conclusion The palm oil market has expanded strongly during the 1900s and 2000s. Its
expansion is mainly constrainted by nutritional concerns and environmental issues about the
right balance between monocultural crops and the biodiversity of tropical forests.

9.3.4.10 The Coffee Market , from Southern Exporters to Northern Importers
Coffee is only produced in tropical countries which export to the USA and Europe. Other
major tropical agricultural products providing beverages are cocoa and tea.

Products and Uses There are two major varieties of coffee: Arabica making up about two-
thirds of green coffee production and Robusta making up about one-third of green coffee
production. Coffee is a tropical plant which is very sensitive to frost. Frost occurs occasionally
in July and August on Brazilian mountains where many coffee plantations are located. Coffee
beans are roasted to produce the most popular hot beverage, coffee.

Market Structure About 70 countries produce coffee beans in tropical countries. Among
them, the exporting members of the International Coffee Organization (ICO) are responsible
for over 97% of world production (source: The ICO, http://www.ico.org). The ICO provides
statistics on the international coffee trade.

The coffee manufacturers buy green beans and roast them to produce coffee. The major
manufacturers of coffee are Nestlé, Mondelez, Kraft and Sara Lee/Douwe Egbert, which
dominate the market. Other processors are De Master Blenders, Smuckers, Massimo Zanetti,
Starbucks, Tchibo, Lavazza, etc. Since consumption may evolve according to price, taste and
forms of consumption, processors make arbitrage in blending Arabica and Robusta coffees
whose price difference evolves over time. In order to secure their procurement, many of them
have adopted programmes to train farmers in order to get a better quality of beans and a more
regular yield.

Arabica is mainly produced and exported by Latin American countries (Brazil, Colombia,
Honduras, etc.), but also Ethiopia. Robusta is mainly grown and exported by Asian countries
(Vietnam, Indonesia) and Brazil.

In 2012 the top 10 countries producing green coffee accounted for 83% of world produc-
tion. The two biggest producers were Brazil and Vietnam, which accounted for 33% and 18%
of world production, respectively. Brazil is the traditional leader, while Vietnam is a relatively
new producer whose massive plantations started in the 1990s. See Figure 9.61.

In 2012 the 10 largest countries consuming coffee accounted for 82% of world consump-
tion. The major coffee consumers were the EU with 33%, the USA with 17%, Brazil with
14% and Japan with 5%. So, 50% of world coffee consumption was due to consumers living
in the EU or US. See Figure 9.62.

International trade concerns about 85% of world production. In 2012 the major exporting
countries were Brazil and Vietnam, which accounted respectively for 31% and 26% of the
volume traded by the 10 largest exporters. In 2012 the major importing countries were the EU,

http://www.ico.org
http://www.ico.org
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Rank Producer Million 60 kg bags World market share
1 Brazil 49.2 33%

2 Vietnam 26.0 18%

3 Indonesia 8.3 6%

4 Colombia 7.7 5%

5 Ethiopia 6.3 4%

6 Honduras 5.6 4%

7 India 5.2 4%

8 Peru 5.2 4%

9 Guatemala 4.4 3%

10 Mexico 4.3 3%

Top ten 122.2 83%

Others 25 17%

World 147.2 100%

Brazil 33%

Vietnam 18%
Indonesia 6%

Colombia 5%

Ethiopia 4%

Honduras 4%

India 4%

Peru 4%

Guatemala 3%

Mexico 3%

Others 17%

Green coffee producers:
world market share in 2012

F IGURE 9.61 Green coffee producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Consumer Million 60 kg bags World market share
1 EU 45.7 33%

2 USA 23.4 17%

3 Brazil 20.0 14%

4 Japan 6.96 5%

5 Russia 3.70 3%

6 Canada 3.39 2%

7 Philippines 3.66 3%

8 Ethiopia 3.05 2%

9 Indonesia 2.38 2%

10 Switzerland 2.17 2%

Top ten 114.48 82%

Others 25 18%

World 139.48 100%

EU 33%

USA 17%
Brazil 14%

Japan 5%

Russia 3%

Canada 2%

Philippines 3%

Ethiopia 2%

Indonesia 2%

Switzerland 2%

Others 18%

Green coffee consumers:
world market share in 2012

F IGURE 9.62 Green coffee consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Million 60 kg bags World market share
1 Brazil 29.8 26%

2 Vietnam 24.4 21%

3 Indonesia 7.4 6%

4 Colombia 7.3 6%

5 Honduras 5.3 5%

6 India 5.2 4%

7 Peru 5.2 4%

8 Guatemala 4.0 3%

9 Ethiopia 3.1 3%

10 Uganda 3.0 3%

Top ten 94.9 82%

Others 21.0 18%

World 115.9 100%

Brazil 26%

Vietnam 21%

Indonesia 6%
Colombia 6%

Honduras 5%

India 4%

Peru 4%

Guatemala 3%

Ethiopia 3%

Uganda 3%

Others 18%

Green coffee exporters:
world market share in 2012

F IGURE 9.63 Green coffee exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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Rank Importer Million 60 kg bags World market share
1 EU 43.7 38%

2 USA 23.1 20%

3 Japan 6.6 6%

4 Russia 3.7 3%

5 Canada 3.4 3%

6 Philippines 3.3 3%

7 Algeria 2.3 2%

8 Switzerland 2.2 2%

9 South Korea 1.7 2%

10 China 1.0 1%

Top ten 90.9 80%

Others 23.0 20%

World 113.9 100%

EU 38%

USA 20%Japan 6%

Russia 3%

Canada 3%

Philippines 3%

Algeria 2%

Switzerland 2%

South Korea 

2%

China 1%

Others 20%

Green coffee importers:
world market share in 2012

F IGURE 9.64 Green coffee importers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

the USA and Japan, which accounted respectively for 38%, 20% and 6% of the volume traded
by the 10 largest importers. So, Brazil and Vietnam export 47% of world exports to the EU,
the USA and Japan, which import 64% of world imports. See Figure 9.64.

Policy Until the 1990s, centralized marketing systems organized by state agencies prevailed
in major West and Central African countries producing coffee, cocoa and cotton. They were
marketing boards in English-speaking countries and caisse de stabilization in French-speaking
countries. Every government had an export monopoly, whilst it purchased commodities at a
fixed price from domestic farmers. However, the system proved not to be as efficient as
expected due to speculation and problems of organization.

The producing countries have almost fully liberalized the production and trade of coffee
over the 1980s and 1990s. Only due to strong pressure from farmers, some large producing
countries such as Brazil and Colombia subsidize farmers through purchasing programmes that
were set up in years of oversupply and low price. Vietnam has enhanced the plantation of
coffee trees.

Price Level and Volatility Coffee futures contracts are designed with warehouse delivery
in harbours of consuming countries. Arabica coffee is mainly traded on the ICE in New York
with delivery of green beans from one of 19 countries of origin in a licensed warehouse to one
of several ports in the USA and Europe, with stated premiums/discounts for ports and growths
(Figure 9.65).

Robusta coffee is traded on the LIFFE (ICE group) in London. Delivery is possible in 60
kg bags to a warehouse in London or other ports: Amsterdam, Antwerp, Barcelona, Bremen,
Felixstowe, Genoa-Savona, Hamburg, Le Havre, Marseilles-Fos, New Orleans, New York,
Rotterdam or Trieste.

The delivery process is as follows:

� Licensed warehouses are owned by private companies.
� Coffee has to be in a licensed warehouse before the delivery day as it has to go through

the certification process (the grade of the bean is tested and the flavour is evaluated).
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F IGURE 9.65 Arabica coffee monthly prices on the ICE, in US cents per pound
Source: Futures trading charts at http://futures.tradingcharts.com/chart/CF/M?anticache=1393582403.

� The issuer has until the last day of the month to deliver the certified coffee to the warehouse
and the stopper has ownership of the coffee as soon as the issuer has notified the exchange
of the delivery and the stopper has paid the amount required.

� The stopper can leave the coffee in the licensed warehouse but will have to pay the
warehouse rent.

� A certain number of discounts and premiums are applied to the price received or paid for
the coffee.

Consumption has increased over time. However, from 2011 production has exceeded
consumption and world prices have decreased. By the end of 2013 Brazilian production is
expected to soar above historic records while stocks are piling. So, Arabica coffee prices are
depressed, amounting to 116 US cents per pound at the end of September 2013 from a peak
of 300 US cents per pound at the beginning of 2011, that is a 60% decrease.

In 2013 Arabica prices were decreasing faster than Robusta prices. Over the years 2010–
12, the production of Robusta coffee was greater than consumption and Vietnamese production
was also expected to be excellent. However, Robusta carry-over stocks were less important than
Arabica carry-over stocks. So, the premium for Arabica over Robusta was lower and lower.

Coffee price volatility depends mainly on the impact of summer frost in Brazil, the largest
producer and exporter.

http://futures.tradingcharts.com/chart/CF/M?anticache$=$1393582403.
http://futures.tradingcharts.com/chart/CF/M?anticache$=$1393582403
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Conclusion Coffee is a commodity mainly produced by Southern countries and exported to
Northern countries which are the largest consumers. Brazil is the major producer and holds a
dominant position on Arabica coffee. Consequently, world price levels and volatility are very
dependents on Brazilian harvests that are sensitive to frosts in summer. Vietnam has become
the second largest exporter and leads the Robusta market.

9.3.4.11 The Cocoa Market where the Ivory Coast and Ghana Export to the EU and
the USA Some agricultural commodities are mainly produced in one or two countries. This
is the case with cocoa, which is mainly produced in the Ivory Coast and Ghana.

Product and Uses Cocoa is a tropical bean which is roasted to produce chocolate and cocoa
butter. Chocolate is used in pastry, sweets, desserts and ice-cream. Also as a hot beverage.

Market Structure From 1990 cocoa production has increased over time to reach about 3500
tons in 2005–06 according to UNCTAD, based on International Cocoa Organization (ICCO)
data (Figures 9.66 and 9.67).
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F IGURE 9.66 World production of cocoa beans, in thousand tons
Source: UNCTAD based on data from the International Cocoa Organization, quarterly bulletin of
cocoa statistics.
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F IGURE 9.67 World cocoa bean production, grindings and supply/demand balance in thousand tons
from 1960/61 to 2005/06
Source: UNCTAD based on data from the International Cocoa Organization, quarterly bulletin of cocoa
statistics.

Cocoa statistics mainly come from the ICCO, which released its last report in 2010 with
export–import data up to 2007–08. The ERS-USDA provides more recent data, but only about
production.

In 2012 the Ivory Coast and Ghana harvested 37% and 22% of world production, respec-
tively. Together, they accounted for 59% of world cocoa production and exports. The Ivory
Coast and Ghana accounted respectively for 40% and 24% of the production of the top eight
producing countries. The top four producers – the Ivory Coast, Ghana, Indonesia and Nigeria –
accounted for 76% of world production in 2012 (source: ERS-USDA), see Figure 9.68. The
same four countries were major exporters, with 82% of world exports in 2007–08 (Source:
ICCO), see Figure 9.69.

On the demand side in 2007–08, the UE accounted for 53% of world imports and the
USA 15%. Together, they accounted for 68% of all imports. Among the top six importers the
UE accounted for 64% of imports and the USA 18%, followed by Malaysia, Russia, Canada
and Japan (Figure 9.70).

The major traders and grinders of cocoa are Cargill, ADM, Armajaro, Barry-Callebaut
and Cémoi, which have logistics facilities in West Africa. The market for industrial chocolates
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Rank Producer Thousand tons World market share
1 Ivory Coast 1486 37%

2 Ghana 879 22%

3 Indonesia 450 11%

4 Nigeria 235 6%

5 Brazil 220 5%

6 Cameroon 190 5%

7 Ecuador 190 5%

8 Papua New Guinea 39 1%

Top 8 3689 91%

Others 373 9%

World 4062 100%

Ivory Coast 

37%

Ghana 22%

Indonesia 11%

Nigeria 6%

Brazil 5%

Cameroon 5%

Ecuador 5%

Papua New 
Guinea 1%

Others 9%

Cocoa bean producers:
world market share in 2012

F IGURE 9.68 Cocoa bean producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Thousand tons World market share
1 Ivory Coast 1247 38%

2 Ghana 675 21%

3 Indonesia 526 16%

4 Nigeria 217 7%

5 Cameroon 170 5%

6 Ecuador 111 3%

7 Togo 87 3%

8 Papua New Guinea 50 2%

9 Dominican Republic 36 1%

10 Guinea 18 1%

Top ten 3138 96%

Others 141 4%

World 3279 100%

Ivory Coast 

38%

Ghana 21%

Indonesia 16%

Nigeria 7%

Cameroon 5%
Ecuador 3%

Togo 3%

Papua New 

Guinea 2%

Dominican 
Republic 1%

Guinea 1%
Others 4%

Cocoa bean exporters:
world market share 

in 2005/06 - 2006/07 - 2007/08 

F IGURE 9.69 Cocoa bean exporters in 2012
Source: Author’s calculations from ICCO data, 2010.

Rank Importer Thousand tons World market share

1 EU 2623 53%

2 USA 719 15%

3 Malaysia 320 6%

4 Russia 179 4%

5 Canada 144 3%

6 Japan 116 2%

Top 6 4101 83%

Others 850 17%

World 4951 100%

EU 53%

USA 15%

Malaysia 6%

Russia 4%

Canada 3%

Japan 2%

Others 17%

Cocoa bean importers:
world market share 

in 2005/06 - 2006/07 - 2007/08 

F IGURE 9.70 Cocoa bean importers in 2012
Source: Author’s calculations from ICCO data, 2010.
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and speciality cocoas is led by Barry Callebaut with a market share above 50%; the other
major players are Cargill, ADM, Blommer, etc. (source: Barry Callebaut).

The consumer branded chocolate market is dominated by large international food compa-
nies such as Mondelez International, Kraft Foods, Nestlé, Mars and Hershey, which accounted
for 64% of the market. The other main consumer chocolate manufacturers, such as Ferrero,
Lindt & Sprüngli, Peter’s Chocolate (Cargill group) and Valrhona (Soparind-Bongrain group),
are major suppliers of high-quality and prestige chocolates.

Policy Until the 1990s, centralized marketing systems were dominant in major West and
Central African cocoa-producing countries. From a peak price in 1984, the international market
price of cocoa declined. It was decided to store cocoa in order to squeeze the market and push
the world price upwards. The Ivory Coast maintained its domestic price at a constant level
even though the international price went below this. The state had to borrow money to buy
domestic cocoa beans and store them. However, near bankruptcy due to increasing debt, the
Ivorian government had to sell its stored cocoa in 1987. Furthermore, the government agency
could not avoid losses on the international market and surpluses used by ministries. So in 1999
the market was liberalized in the Ivory Coast, which fully privatized its marketing structures.

In 1992 Ghana partially liberalized its cocoa market, which was fully controlled by the
state-owned Cocobod, a marketing board with fixed floor price paid for all domestic purchases.
Ghana introduced competition in domestic marketing by allowing private licensed agents to
purchase cocoa from farmers. Other cocoa-producing countries, such as Nigeria, Cameroon,
Brazil, Indonesia and Malaysia, have liberalized their markets.

Price Level and Volatility Cocoa is traded on the NYMEX, which belongs to the CME
group. The cocoa futures contract has settlement procedures at maturity. By contrast, the
London based ICE cocoa contract proposes delivery in five US ports (Figure 9.71).

In the 2000s the cocoa price was sensitive to strong political disorders and in the Ivory
Coast, civil war led to lack of production care and logistics disorder, making procurement
difficult and more costly. Uncertainty about the ability to carry cocoa beans out of the country
caused strong price volatility.

Conclusion With 59% of world production and exports, the Ivory Coast and Ghana dominate
the export of cocoa beans to the EU and the USA. This does not mean that the price can be
manipulated by their governments. In the 1980s, when export state agencies exported cocoa,
the Ivory Coast stored cocoa beans in order to create a shortage and increase the price, but
it failed to squeeze the market because the state could no longer borrow money to buy from
domestic farmers and store beans.

9.3.4.12 The Cotton Market , with WTO Disputes about Subsid ized US Product ion
and Exports The cotton market is at the heart of policy issues between the USA and
emerging countries.

Product and Uses Cotton is a tropical plant whose capsules contain cellulose fibre. Cotton
provides natural, soft and fluffy textiles. Cotton competes with other natural fibres, like silk,
flax or hemp, and synthetic fibres.
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FIGURE 9.71 Cocoa monthly prices on the ICE, in US cents per pound
Source: Futures trading charts at http://futures.tradingcharts.com/chart/CC/M?anticache=1393583207.

Market Structure In 2012 China produced 29% of the world production of cotton. India
followed with 22%. So, China and India accounted for 51% of world production and also
used it for domestic consumption. The USA was the third world producer with 14%, but
its production has declined since 2005 when the WTO agreement on cotton obliged the US
government to reduce production subsidies. Pakistan and Brazil were the fourth and fifth
world producers, with 8% and 5% of world production respectively. The top five producers
accounted for 77% of world production. The other main producers are Australia with erratic
production, Uzbekistan, Turkey, Turkmenistan and Burkina Faso. See Figure 9.72.

In 2012 China and India were the main consumers of cotton, with 50% of world con-
sumption. Pakistan, Turkey and Brazil followed. The top five consumers accounted for 77%
of world consumption (Figure 9.73).

In 2012 the international cotton market concerned 38% of production. The USA was the
largest exporter of cotton with 13.3 million bales, a 34% market share. Since 2005, with a
peak at 17.7 million bales, US exports have declined. In the USA the volume of cotton is
measured in bales of about 17 cubic feet (0.48 cubic metres), weighing 480 pounds (226.8
kilograms). The other major exporters are India with 18%, Australia with 15%, Uzbekistan and
Brazil. The top three exporters accounted for 57% of world exports and the top five for 74%.
The other main exporters are Burkina Faso, Mali, Turkmenistan, Greece and Malaysia. See
Figure 9.74.

http://futures.tradingcharts.com/chart/CC/M?anticache$=$1393583207.
http://futures.tradingcharts.com/chart/CC/M?anticache$=$1393583207
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Rank Producer Million 480 lb Bales World market share
1 China 35 29%

2 India 27 22%

3 USA 17 14%

4 Pakistan 9 8%

5 Brazil 6 5%

6 Australia 5 4%

7 Uzbekistan 5 4%

8 Turkey 3 2%

9 Turkmenistan 2 1%

10 Burkina Faso 1 1%

Top ten 108 89%

Others 13 11%

World 121 100%

China 29%

India 22%
USA 14%

Pakistan 8%

Brazil 5%

Australia 4%

Uzbekistan 4%

Turkey 2%

Turkmenistan 
1%

Burkina Faso 

1%
Others 11%

Cotton producers:
world market share in 2012

F IGURE 9.72 Cotton producers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Consumer Million 480 lb Bales World market share
1 China 36 31%

2 India 22 19%

3 Pakistan 22 19%

4 Turkey 6 5%

5 Brazil 4 3%

6 Bangladesh 4 3%

7 USA 3 3%

8 Vietnam 2 2%

9 Indonesia 2 2%

10 Mexico 2 2%

Top ten 104 89%

Others 13 11%

World 117 100%

China 31%

India 19%Pakistan 19%

Turkey 5%

Brazil 3%

Bangladesh 3%

USA 3%

Vietnam 2%

Indonesia 2%

Mexico 2%
Others 11%

Cotton consumers:
world market share in 2012

F IGURE 9.73 Cotton consumers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

Rank Exporter Million 480 lb Bales World market share
1 USA 13.3 29%

2 India 7.2 16%

3 Australia 6.0 13%

4 Brazil 4.3 9%

5 Uzbekistan 3.2 7%

6 Burkina Faso 1.2 2%

7 Turkmenistan 1.2 3%

8 Greece 1.1 2%

9 Mali 0.9 2%

10 Malaysia 0.9 2%

Top ten 39.2 85%

Others 7.0 15%

World 46.2 100%

USA 29%

India 16%

Australia 13%

Brazil 9%

Uzbekistan 7%

Burkina Faso 

2%

Turkmenistan 

3%

Greece 2%
Mali 2%

Malaysia 2%

Others 15%

Cotton exporters:
world market share in 2012

F IGURE 9.74 Cotton exporters in 2012
Source: Author’s calculations from ERS-USDA data, 2013.
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Rank Importer Million 480 lb Bales World market share
1 China 20.0 43%

2 Turkey 3.8 8%

3 Bangladesh 3.6 8%

4 Vietnam 2.4 5%

5 Indonesia 2.4 5%

6 Pakistan 2.2 5%

7 Thailand 1.5 3%

8 India 1.5 3%

9 South Korea 1.3 3%

10 Mexico 0.9 2%

Top ten 39.7 85%

Others 7.0 15%

World 46.7 100%

China 43%

Turkey 8%Bangladesh 8%
Vietnam 5%

Indonesia 5%

Pakistan 5%

Thailand 3%

India 3%

South Korea
3%

Mexico 2%

Others 15%

Cotton importers:
world market share in 2012

F IGURE 9.75 Cotton importers in 2012
Source: Author’s calculations from ERS-USDA data, 2013.

In 2012 China was the major importer, with 43% of all world imports. China was followed
by Turkey and Bangladesh, with 8% each of world imports. The top three importers accounted
for 59% of world imports.

Policy Until the 1990s, major West and Central African countries had centralized marketing
systems with state agencies with export monopoly.

In 2002 Brazil complained to the WTO about US domestic production subsidies.
Furthermore, in 2003 a group of four least-developed African countries – Benin, Burkina
Faso, Chad and Mali – also claimed for the reduction of US cotton subsidies through negotia-
tions. In March 2005, at the WTO, the Dispute Settlement Body (DSB) adopted the Appellate
Body Report, which is an Agreement on Subsidies and Countervailing Measures. In October
2005, the United States Commodity Credit Corporation (CCC) ceased issuing export credit
guarantees under the supplier credit guarantee programme. So, since 2005, US production and
exports have decreased. However, the USA may have continued to provide marketing loans
and counter-cyclical payments to US upland cotton producers. Direct payments are provided
to US cotton producers. In 2009 Brazil introduced a new complaint against US subsidies at
the WTO. The dispute was still pending in 2013.

In addition to concerns over subsidies, the cotton industries of some countries are criticized
for employing child labour and damaging workers’ health by exposure to pesticides used in
production. In Uzbekistan, men and children are forced to harvest cotton for free.

Price Level and Volatility Cotton futures contracts with settlement procedures at maturity
are traded on the NYMEX.

Cotton #2 futures contracts, with delivery on five US ports, are traded on the ICE Fig-
ure 9.76, previously known as the New York Board of Trade, which leads the soft commodity
exchange.

Conclusion The cotton market is very competitive. It involves economic development stakes
for emerging countries in Asia, Africa and South America. Brazil asked the WTO to solve its
dispute with the USA, which was accused of unfair production subsidies.
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F IGURE 9.76 Cotton #2 monthly prices on the ICE, in US cents per pound
Source: Futures trading charts at http://futures.tradingcharts.com/chart/CT/
M?anticache=1393584917.

9.4 HEDGING AND BASIS MANAGEMENT

This section presents short hedging and long hedging to illustrate how commercial operators
deliver or use agricultural commodities. In hedging, price risk fluctuation is reduced to basis
risk fluctuation. Basis risk fluctuation may be managed by operators.

9.4.1 Short Hedging for Producers

Short hedging is presented in order to assess the advantages and limitations of futures contracts
for a milling wheat producer selling on the physical cash market.

9.4.1.1 The Princ ip le of Short Hedging Any wheat seller on physical spot markets is
afraid of a possible drop in wheat prices. He holds a long position on the physical market. In
order to mitigate his price risk, he will take an opposite risk, a short risk on futures markets in
going short: he makes a short hedge.

The producer will sell futures contracts to lock in his selling price:

Now → Later
To sell → To buy futures contracts
futures contracts and to sell physical wheat on the physical spot market

http://futures.tradingcharts.com/chart/CT/M?anticache$=$1393584917
http://futures.tradingcharts.com/chart/CT/M?anticache$=$1393584917
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9.4.1.2 Example: Context In October of year N a farmer sows milling wheat over 50
hectares (ha) and expects a minimum yield of 6 t/ha harvested in July N+1, i.e. 300 t. (For
information, 1 t = 1 metric ton = 1000 kg.)

� Price on futures markets for delivery in August year N+1= 260 €/t.
� Expected price on the spot (physical) market in July year N+1 ‘at the farm gate’ =

245 €/t.

The basis is therefore:

Basis = Futures price − Spot price = +15€∕t

The farmer thinks this price is good and is afraid of any drop in wheat prices. Because
he wants to lock in the price, the farmer will undertake a short hedge by selling six futures
contracts. Hence, the farmer goes short on the futures market in order to offset his long position
on the physical spot market.

Four possible cases are described below.

Scenario 1: If the price of wheat decreases The price of wheat may decrease by 40 €/t as
shown here.

Time Spot Market Futures Market Basis

October year N expected next July to sell August year N+1 expected basis
245 €/t 260 €/t +15 €/t

July year N+1 to sell to buy August year N+1 actual basis
205 €/t 220 €/t +15 €/t

The hedging results in the following price received by the farmer:

Price on the physical spot market 205 €/t
+ Profit on futures contracts 40 €/t

= Net price received by the producer 245 €/t, which is the expected price.

A second explanation shows that the hedge may be viewed in another way, as follows:

Price locked in selling on the futures market 260 €/t
− Actual basis −15 €/t

= Net price received by the producer 245 €/t, which is the expected price.

Scenario 2: If the price of wheat increases The price of wheat may increase by 30 €/t as
shown here.
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Time Spot Market Futures Market Basis

October year N expected next July to sell August year N+1 expected basis
245 €/t 260 €/t +15 €/t

July year N+1 to sell to buy August year N+1 actual basis
275 €/t 290 €/t +15 €/t

The hedging results in the following price received by the farmer:

Price on the physical spot market 275 €/t
+ Profit on futures contracts −30 €/t

= Net price received by the producer 245 €/t, which is the expected price.

A second explanation shows that the hedging may be viewed in another way, as follows:

Price locked in selling on the futures market 260 €/t
− Actual basis −15 €/t

= Net price received by the producer 245 €/t, which is the expected price.

Scenario 3: If the basis decreases (by 4 €/t) The price of wheat may decrease by 40 €/t and
the basis may decrease by 4 €/t as shown here.

Time Spot Market Futures Market Basis

October year N expected next July to sell August year N+1 expected basis
245 €/t 260 €/t +15 €/t

July year N+1 to sell to buy August year N+1 actual basis
209 €/t 220 €/t +11 €/t

The hedging results in the following price received by the farmer:

Price on the physical spot market 209 €/t
+ Profit on futures contracts 40 €/t

= Net price received by the producer 249 €/t, which is 4 €/t more than expected.

It is also: the selling futures price minus the actual basis, as explained below:

Price locked in selling on the futures market 260 €/t
− Actual basis −11 €/t

= Net price received by the producer 249 €/t

The extra 4 €/t, in comparison with the expected price, is the variation of the basis.
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Scenario 4: If the basis increases (by 5 €/t) The price of wheat may decrease by 40 €/t and
the basis may increase by 5 €/t as shown here.

Time Spot Market Futures Market Basis

October year N expected next July to sell August year N+1 expected basis
245 €/t 260 €/t +15 €/t

July year N+1 to sell to buy August year N+1 actual basis
200 €/t 220 €/t +20 €/t

The hedging results in the following price received by the farmer:

Price on the physical spot market 200 €/t
+ Profit on futures contracts 40 €/t

= Net price received by the producer 240 €/t, which is 5 €/t lower than expected.

It is also the selling futures price minus the actual basis, as explained below:

Price locked in selling on the futures market 260 €/t
− Actual basis −20 €/t

= Net price received by the producer 240 €/t

The missing 5 €/t, in comparison with the expected price, is the variation of the basis.

9.4.2 Long Hedging for Processors

The advantages and limitations of futures contracts for a wheat processor buying on the
physical cash market: long hedging.

9.4.2.1 The Princ ip le of Long Hedging Any purchaser of wheat on a physical market is
afraid of a possible price increase. He holds a short position on the physical market. In order
to mitigate his price risk, he will take an opposite risk, a long risk on futures markets in going
long: he makes a long hedge.

The commodity user will buy futures contracts to lock in his buying price:

Now → Later
To buy → To sell futures contracts
futures contracts and to buy physical wheat on the physical spot market

9.4.2.2 Example: Context In January of year N, a wheat miller plans to buy 6000 tons of
wheat in April of year N:

� Price on futures market for delivery in May of year N = 250 €/t.
� Expected price on the physical spot market in January of year N for a delivery ‘at the

milling gate’ in April of year N = 226 €/t.
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The basis is therefore:

Futures Price − Physical Spot Price = 24€∕t

The miller considers this a good price, and is afraid of any increase in wheat prices. He
wants to lock in the price. Long hedging, to buy 120 wheat futures contracts.

Scenario 1: If the price of wheat increases The price of wheat may increase by 35 €/t as
shown here.

Time Spot Market Futures Market Basis

January year N expected in April Buy May year N expected basis
226 €/t 250 €/t +24 €/t

April year N Buy Sell May year N actual basis
261 €/t 285 €/t +24 €/t

Price paid on the physical cash market 261 €/t
− Profit on futures contracts −35 €/t

Net price paid by the processor 226 €/t, which is the expected price at the wheat
miller’s gate.

Scenario 2: If the price of wheat decreases The price of wheat may decrease by 33 €/t as
shown here.

Time Spot Market Futures Market Basis

January year N expected in April Buy May year N expected basis
226 €/t 250 €/t +24 €/t

April year N Buy Sell May year N actual basis
193 €/t 217 €/t +24 €/t

Price paid on the physical cash market 193 €/t
− Profit on futures contracts −(33) €/t

Net price paid by the processor 226 €/t, which is the expected price at the wheat miller’s gate.

Scenario 3: If the basis increases (by 6 €/t) The price of wheat may increase by 35 €/t and
the basis may increase by 6 €/t as shown here.

Time Spot Market Futures Market Basis

January year N expected in April Buy May year N expected basis
226 €/t 250 €/t +24 €/t

April year N Buy Sell May year N actual basis
255 €/t 285 €/t +30 €/t
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Price paid on the physical cash market 255 €/t
− Profit on futures contracts −35 €/t

Net price paid by the processor 220 €/t, which is 6 €/t lower than expected.

It is also the buying futures price minus the actual basis:

Price locked in buying on the futures market 250 €/t
− Actual basis −30 €/t

= Net price paid by the processor 220 €/t

The missing 6 €/t, in comparison with the expected price, is the variation of the basis.

Scenario 4: If the basis decreases (by 4 €/t) The price of wheat may increase by 35 €/t and
the basis may decrease by 7 €/t as shown here.

Time Spot Market Futures Market Basis

January year N expected in April Buy May year N expected basis
226 €/t 250 €/t +24 €/t

April year N Buy Sell May year N actual basis
268 €/t 285 €/t +17 €/t

Price paid on the physical cash market 268 €/t
− Profit on futures contracts −35 €/t

Net price paid by the processor 233 €/t, which is 7 €/t higher than expected.

It is also the buying futures price minus the actual basis:

Price locked in buying on the futures market 250 €/t
− Actual basis −17 €/t

= Net price paid by the processor 233 €/t

The extra 7 €/t, in comparison with the expected price, is the variation of the basis.

9.4.3 Management of Basis Risk

This section focuses on the management of basis risk mainly for seasonal, storable agricultural
commodities.

9.4.3.1 Hedging and Basis Risk Recall that in hedging, the basis is the difference
between the futures market price and the physical cash price at the gate of the operator’s
facilities:

Basis = Futures price − Physical spot price
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TABLE 9.5 Impact of changes in the basis on hedging

Short Hedging (Producer) Long Hedging (Processor)

Lower Basis Price received is HIGHER Price paid is HIGHER
Higher Basis Price received is LOWER Price paid is LOWER

When the price is locked in on futures markets, the product’s price increases or decreases have
no effect. Only a basis fluctuation can modify the price that has been locked in (See Table
9.5). Price risk is reduced to basis risk.

As the maturity of a contract approaches, the basis tends towards zero.
Any commodity producer who sells commodity on the physical market undertakes short

hedging:

Net price received by the producer = Selling price on the futures market − Actual basis

For any short hedger, when the basis decreases the price received is higher than expected. A
short hedger bears the risk that the basis goes up.

Any commodity user who purchases commodity on the physical market undertakes long
hedging:

Net price paid by the purchaser = Buying price on the futures market − Actual basis

For any long hedger, when the basis increases the price paid is lower than expected. A long
hedger bears the risk that basis goes down.

The risk of price fluctuation is reduced to some risks of basis fluctuation. A commercial
operator using physical spot markets and hedging on futures contracts needs to know and
monitor changes in the basis in order to anticipate future movements and mitigate risks
further.

9.4.3.2 Meaning of Basis Risk for Seasonal and Storable Products Basis is specific
to an operator in the cash market using futures contracts for hedging purpose. There are as
many bases as operators on the market.

Basis is a spread due to space, time, form, convenience yield and speculation that may be
excessive sometimes.

� Time causes storage costs: the time difference between the futures contract maturity and
the date at which the operator locks in the cash market causes storage costs.

� Space causes transportation costs: the space difference between the futures contract place
of delivery and the gate of the operator in the cash market causes transportation costs.

� Form causes quality costs: the form difference between the product quality required by
the futures contract and the quality of the commodity in the cash market causes quality
costs.

� Uncertainty in physical supply causes convenience yield: uncertainty in physical supply
due to an unexpected lack of quantity or quality at the time of delivery of outstanding
futures contracts leads to a high premium for available goods. Such a premium for holding
the goods in a cash market is called the convenience yield.
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F IGURE 9.77 Basis convergence for seasonal and storable commodities between two crop years

� Uncertainty and rumours cause speculation on futures markets, which may not be related
to cash markets. Financial investors may hold positions in futures markets due to rumours
since it is easy to enter and exit such liquid markets in comparison with cash markets that
are not liquid.

For seasonal and storable commodities such as cereals and oilseeds, between two crop years—-
as the month of delivery approaches – the basis converges towards zero (see Figure 9.77). The
cost of storage goes down day after day and finally becomes null on the day of delivery of the
futures contract. Theoretically, only the cost of transportation and quality may remain. For the
place of delivery and on the day of delivery of the futures contract, only the quality cost may
remain since the quality of the commodity harvested may differ from the standard quality of
the futures contract.

Futures exchanges always check the basis convergence, particularly as the futures contract
expires (see Figure 9.78). A persistent price gap and lack of convergence hurt hedgers who are
no longer well protected. The ability of producers and commodity users to protect themselves
from price volatility is then impaired. The operators on physical markets may no longer rely
on futures markets to price their commodity and manage their price risks over time.

Large gaps are pricing disparities that may be due to speculation on futures contracts.
Such speculation must be explained: the commodity quality in the potato case presented below,
excessive long positions by financial investors or other reasons.

All futures exchanges pay strong attention to the basis gap and convergence. They may
have to adapt their regulation (contract design, position limits, etc.) in order to preserve the
effectiveness of futures contracts for hedgers.

The sugar basis for a MATIF contract maturing in October 1995 fits the theoretical model
for seasonal storable agricultural products (see Figure 9.79).

Risk of Bad and Unstable Correlation: The Potato Case The potato futures contract seems
problematic due to strong speculation about the preservation of tubers in case of dry weather in
July. A dry early summer may cause the catalysis of starch in tubers to be harvested. Tubers that
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F IGURE 9.78 Futures and cash price between harvests
Source: Leuthold et al. (1989), Figure 7–1, p. 125.

are harvested in September or October may be rotten: uncertainty fuels speculation on futures
markets for long maturity contracts because potato producers may have to sell their products
quickly. So, the futures market price and spot price may evolve differently. The potato market
may be subject to speculation on the preservation of tubers harvested. As a consequence, the
potato futures market does not seem a good tool for hedging. See Figure 9.80.
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F IGURE 9.79 Futures price, spot price and basis for sugar on
MATIF contract maturing in October 1995
Source: Voyer (1995), Figure 6.
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Risk of Bad and Unstable Correlation when Using Other Product Futures Market For
many products, there is no futures contract available. So, some professionals try to hedge
their production of barley using milling wheat futures contracts, since they are substitutes.
However, they are not perfect substitutes: their coefficient of correlation is low and unstable.
As a consequence, such a practice is very risky. Milling wheat futures contracts are not a good
tool for hedging barley price volatility. See Figure 9.81. When the basis is unstable, the basis
risk becomes very strong.

Risk with Futures Contract whose Basis Convergence is Not Observable The observation
of basis convergence depends on the characteristics of futures contracts with regard to products
sold on cash markets at delivery points of futures contracts.

Most grain and oilseed futures contracts were designed according to local production
features, including FOB delivery in local places. So, basis convergence may be tracked.
However, soft commodities such as coffee and cocoa, traded with US and UK futures contracts,
were designed for standard quality products stored in warehouses at various ports of destination
with CIF delivery, not at tropical zones of production. Owing to progress in production and
US/European consumers’ demands, products on US and European cash markets are more and

HARVEST 2000 2001 2002 2003 2004 2005 2006 2007

Number of observations 124 247 251 251 256 254 250 134

Coefficient of correlation −0.68 0.42 0.12 0.44 0.46 0.01 0.43 0.79

F IGURE 9.81 Correlation between milling wheat futures contract and barley spot market
Source: Declerk, ESSEC Business School.
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more often premium quality and certified products. There are no longer basic quality products
on export markets in the USA or Europe. So, basis convergence is not easily observable.

9.4.3.3 Contango and Backwardat ion Contango means a full carry market. The price
difference between contracts with two different delivery months is the full cost of carrying the
commodity from the delivery month of the first contract to the next.

For a non-perishable commodity, carrying costs include interest, insurance and storage,
less income from leasing out the commodity if possible (for gold). This is the amount by which
the price of a commodity for future delivery is higher than:

� the spot price,
� or a far future delivery price higher than a nearer future delivery.

Backwardation is the amount of money required for future delivery of an item if lower
than the amount required:

� for immediate delivery of that item,
� for a nearer future delivery.

It leads to an inverted basis.

Which events may cause an inverted basis?

� Weather, such as frost in winter, may lead to very high spot prices when lorries are not
allowed on roads, when boats are not allowed on rivers. Such an event is very temporary,
futures market prices may not move. So, the basis may be inverted.

� Strikes on harbours may also lead to high spot prices and cause an inverted basis.
� A delayed harvest of wheat due to rain in England or Northern France leads to high spot

prices and causes an inverted basis.
� The expectation of a large harvest also leads to an inverted basis.

9.4.3.4 Basis Variat ions for Seasonal and Non-storable Products The basis fluc-
tuates every day according to cost fluctuations and operators’ expectations. But day-to-day
fluctuations are small and the basis varies only a little for a given day from year to year. The rel-
ative stability of the basis explains why futures markets are so helpful. Note: For non-storable
products, the basis depends on the supply and demand at any moment.

9.4.3.5 Residual R isk: Hedge Rat io The risk of a wrong hedge ratio is a major residual
risk when hedging. It is presented here.

Notations:

𝜋 Return on a portfolio including the asset S and the asset F
S Asset negotiated on a (physical) spot market
F Asset negotiated on a futures market
XS Quantity of S, number of assets S
XF Quantity of F, number of assets F
E(RS) Expected return per unit of the cash asset S, that is E(S) − S
E(RF) Expected return per unit of the futures asset F, that is E(F) − F
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The operator’s objective is to maximize the expected utility of profit, here expressed in
the form of return:

Max E(U(Rp) = E(Rp) + 𝜆𝜎2

with respect to XS and XF with:
𝜆 = coefficient of risk aversion.

� When an operator is risk-averse, he does not like risk: 𝜆 is negative.
� When an operator accepts no risk, he is strongly risk-averse: 𝜆 tends

to −∞.
� When an operator is perfectly willing to bear risk: 𝜆 is very low and tends to 0.

E(Rp) = expected return of the portfolio made up of the two assets S and F

E(Rp) = E(XSRS + XFRF)
E(Rp) = XSE(RS) + XFE(RF)

𝜎
2 = variance of the profit of the portfolio made-up of the two assets S and F

𝜎
2 = X2

S
𝜎

2
RS

+ X2
F𝜎

2
RF

+ 2XsXFC𝜎RS
𝜎RF

with:
variance of the profit from the asset on the (physical) spot market = Var (RS) = 𝜎2

RS

variance of the profit from the asset on the futures market = Var (RF) = 𝜎2
RF

C = coefficient of correlation between the profit from the asset on the spot market and the
profit from the asset on the futures market

The covariance of the profit from the asset on the spot market and the profit from the asset
on the futures market is thus

Cov(RsRF) = C𝜎RS
𝜎RF

The objective function is thus

Max E[U(Rp)] = XSE(RS) + XFE(RF) + 𝜆
[
X2

S
𝜎

2
RS

+ X2
F𝜎

2
RF

+ 2XsXFC𝜎RS
𝜎RF

]

with respect to XS and XF.
The parameters XS and XF are found from the Lagrangian, that is the first derivative with

respect to each parameter XS and XF is zero and the second derivative with respect to each
parameter XS and XF is negative.

dE
[
U(Rp)

]

dXS
= E(RS) + 2𝜆XS𝜎

2
RS

+ 2𝜆XFC𝜎RS
𝜎RF

= 0 (9.1)

dE
[
U(Rp)

]

dXF
= E(RF) + 2𝜆XF𝜎

2
RF

+ 2𝜆XSC𝜎RS
𝜎RF

= 0 (9.2)
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So,

XS =
−E(RS)

2𝜆𝜎2
RS

−
C𝜎RS

𝜎RF

𝜎
2
RS

XF

XF =
−E(RF)

2𝜆𝜎2
RF

−
C𝜎RS

𝜎RF

𝜎
2
RF

XS

The hedge ratio is

XF =
−E(RF)

2𝜆𝜎2
RF

−
C𝜎RS

𝜎RF

𝜎
2
RF

XS =
−E(RF)

2𝜆Var(RF)
−

Cov(RSRF)

Var(RF)
XS

It is the quantity XF of asset F on the futures market which hedges (offsets, reduces) the
price fluctuation risk of the quantity XS of asset S on the physical spot market. The hedge ratio
comprises two factors:

[

−
c𝜎RS𝜎RF

𝜎
2
RF

XS

]

=
[
−

Cov(RS, RF)

Var(RF)
XS

]
pure hedge factor

[
−E(RF)

2𝜆𝜎2
RF

]

=
[

−E(RF)

2𝜆Var(RF)

]
= speculative factor

Conclusions:

1. Optimal hedge ratio: pure hedge
When an economic agent wants no risk at all, he is totally risk-averse: 𝜆 tends

to −∞.
Therefore the speculative factor tends to 0, so XF = the pure hedge factor.

XF =
[
−

Cov(RS, RF)

Var(RF)
XS

]
=

[

−
c𝜎RS

𝜎RF

𝜎
2
RF

XS

]

=

[

−
c𝜎RS

𝜎RF

XS

]

XF∕XS =
[
−

Cov(RS, RF)

Var(RF)

]
=

[

−
c𝜎RS

𝜎RF

𝜎
2
RF

]

=

[

−
c𝜎RS

𝜎RF

]

For a hedger wishing to minimize his price fluctuation risk, the hedge (XF/XS) depends
on the relative variability (𝜎RS

, 𝜎RF
) of 𝜎2

RF
returns for the futures and physical cash market

positions, and their correlation c.
A hedge XF = −XS then (XF / XS = −1) is only appropriate if the f futures and

physical cash market positions have the same standard deviation (𝜎RS
= 𝜎RF

) and are
perfectly correlated. The hedger takes a futures position of an equal amount to his physical
position, but in the opposite direction. For example, a farmer who expects to harvest
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50 tons of standard quality wheat will sell one futures contract for 50 tons of standard
quality wheat.

Level of risk: pure hedging means minimizing the risk on the portfolio, Var(Rp)

Var(Rp) = X2
S
𝜎

2
RS

+ X2
F𝜎

2
RF

+ 2XsXFC𝜎RS
𝜎RF

MinVar(Rp)

XS, XF
⇒

dVar(Rp)

dXF
= 2XFVar(RF) − 2XSCov(RS, RF) = 0

So, XF = −XS
Cov(RS, RF)

Var(RF)
= pure hedge factor. The risk of price fluctuation is

fully hedged that is reduced to zero.

2. Optimal hedge when the correlation is positive and lower than 1
When the price fluctuations on the spot market and the futures markets are positively

correlated, that is, when Cov(Rs, RF) = C𝜎Rs
𝜎RF

> 0. Then the hedge is undertaken by
taking an opposite position on the futures market to the position taken on the spot
(physical) market.

Example: An operator who holds a long position on the spot (physical) market (a
producer) will enter the futures market with a short position in selling futures contracts.

The hedge ratio may differ for 1 ton on the futures market and 1 ton on the spot
(physical) market. This situation may occur when there is no futures market for a given
feed commodity. In such a case an operator who is considering buying/selling barley on
the spot (physical) market may hedge his position on the futures market for fodder wheat
since there is no futures contract for fodder barley.

3. Speculator’s hedge ratio

The speculative factor may be larger than the pure hedge factor for an operator who
loves risk: 𝜆 becomes small, slightly negative and tends to zero. The expected profit from the
asset on the futures market is equal to its final value minus its initial value, that is E(RF) =
[E(F1) − F0].

The speculative factor has the sign of E(RF) = [E(F1) − F0]. If the price on the futures
market is a lot higher than the price on the spot (physical) market, the expected profit on the
futures market per unit of asset F is very positive, that is [E(F1) ≫ F0] => E(RF) ≫ 0.

Sometimes, this expected profit may be so positive that the speculative factor is higher
than the pure hedge factor. A speculator takes a position on the futures market which is similar
to his position on the spot (physical) market. For instance, a farmer speculates twice when he
buys futures contracts for potatoes. He is speculating both on his harvest to be sold on the spot
(physical) market and on the contracts he has bought on the futures market. He holds a long
position twice.

9.4.3.6 Residual R isks: Quant i ty and Qual i ty Risks Due to Poor Harvest Mainly due
to weather conditions, harvested volumes are uncertain until harvest is achieved. If producers
have hedged more volumes than actual volumes harvested, they are in a speculative position
for missing quantity in the cash market.
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Mainly due to weather conditions, the quality of harvest may be below the requirements
of futures contracts. For instance, a milling wheat contract requires a minimum specific weight
of 76 kg/hl in both cash and futures markets. In case of rain at harvest time, as may be the case
in European countries along the North Sea and the English Channel, wheat may not be suitable
to make bread. Producers in those regions may harvest a product that cannot be sold as milling
wheat. Such a good can only be sold as feed wheat whose price is a lot lower. Producers face
speculative price risk, which is worth the difference between milling and feed wheat prices.

9.4.3.7 Other Residual R isks: Fret Risks and F inancia l R isks Commodity transac-
tions may include fret management risk. Financial risks related to commodity transactions may
include cash management risks, risks of exchange rate fluctuation and risks of interest rate
fluctuation. Cash management risks arise from the financing of margin calls every evening.
Credit lines must be secured with the banker. Usually, the banker only provides a limited
amount of credit or asks for collateral: assets, cautions. So, in case of high price volatility,
margin calls may reach such amounts. Risks of exchange rate fluctuation may be hedged by
exchange rates futures contracts, options, etc. Risks of interest rate fluctuation (on inventories
and cash) may be hedged by interest rate futures contracts, options, etc.

9.5 THE F INANCIAL IZATION OF AGRICULTURAL MARKETS
AND HUNGER: SPECULATION AND REGULATION

The financialization of the agricultural commodity markets has emerged in the second part of
the 2000s. Financial investors have invested heavily in commodity futures contracts, directly
or indirectly through index funds… The major question is: Did it affect agricultural prices so
that the market price does not reflect supply and demand on physical markets? Did agriculture
and food market prices become a false signal for producers and users? Did it contribute to a
strong increase in price so that hunger and malnutrition increased over the world?

9.5.1 Factors Affect ing the Volat i l i ty of Agricu l tural
Commodity Prices

Volatility appears because of uncertainty when a price is formed on markets. According
to Balcombe (2009), agricultural commodity market prices are volatile for many reasons,
including natural shocks. The major factors of uncertainty are: fluctuating production output,
lagged supply adjustment to demand, short-run price inelasticity in both demand and supply,
poor quality of information about inventories, unexpected change in demand, sudden policy
decisions, shocks on other markets, unstable exchange rates, the financialization of agricultural
markets and, sometimes, rumours that lead to excessive speculation. These points are detailed
below.

� Fluctuating production output: natural shocks such as weather, diseases, pests, etc., lead
to variable agricultural production output. The impact of droughts, heavy rainfall and
floods on production yield can cause a very significant increase or decrease in the level
of inventory carry over.

� Lagged supply adjustment to demand: the long agricultural production cycle leads to
lagged adjustment of supply to changes in demand.
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� Very low price demand elasticity and price supply elasticity: this contributes to an amplifi-
cation of price movements. In the short run, supply is almost stable but even if commodity
prices fluctuate, it is not possible to produce more grain. All that can be done is to avoid
harvesting. If the supply is abundant, it is only possible to set aside part of the production:
policymakers do this with fruit and vegetables.

Furthermore, commodities have few substitutes. Demand for agricultural staples is
also inelastic: it does not fluctuate even if prices go up or down, since there is almost no
substitute. For instance, wheat millers are willing to pay more for quality milling wheat
and this contributes to high price fluctuations. Compound feeders and non-food users may
find other commodities as substitutes, but the substitution rate may be low.

� Poor quality of information about inventories: this leads to uncertainty about inventories
in terms of quantity, quality (degree of preservation) and availability (within a week or
a month). Some countries do not provide reliable information on their grain inventories:
asymmetric information leads to market failure. Furthermore, it is difficult to assess the
preservation of some commodities such as potatoes. Information may be out-of-date or
unreliable.

� Unexpected change in demand: the forecast demand for food and feed is usually accurate
since it depends mainly on demography (which is quite well known), purchasing power
and degree of malnutrition (hunger, obesity, etc.). However, the demand for biofuel
may fluctuate since it depends mainly on policy decisions, particularly in the USA and
Europe.

� Sudden policy decisions (embargoes, subsidies, quotas, etc.): these can strongly affect
prices. New tax rules for biofuels will immediately modify the supply–demand balance.
The Russian embargo on wheat exports announced on 5 August 2010, with effect from
15 August, disrupted markets: prices went up because of fears that harvests would be
worse than anticipated, but also that inventories would be lower than expected. Such
uncertainties and fears led to increasing price volatility.

Market rules and regulations provide a framework to ease trade between suppliers and
demanders. At the international level, the Codex alimentarius Commission defines mini-
mum quality requirements, including sanitary quality, for agricultural and food products.
International commodity agreements regulating supply through quotas and buffer stocks
have been removed for most commodities. According to Tothova (2011, p. 26), national
management of inventories is central, since low stocks often exacerbate uncertainties and
make rumours of shortage more credible.

Generally, during political negotiations, tensions between stakeholders are sources
of volatility. The adjustment of supply to demand under new constraints and opportunities
takes time, and this affects market prices.

� Shocks in other markets such as oil and currency markets influence agricultural markets
(Balcombe, 2009). Oil prices are input costs for farm production. They have an effect on
agricultural selling prices used to make biofuels: energy and agricultural markets are now
linked. Co-movements of agricultural and oil prices are observed (Tothova, 2011, p. 23).
Agricultural products are also more or less substitutes for each other. Consequently, the
price volatility of a product impacts agricultural prices.

� Unstable exchange rates: most commodities are negotiated in US dollars on international
markets, but outside the US dollar zone farmers sell their products in domestic currency,
food processors buy agricultural products in domestic currency and exchange rates are
volatile.
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� The financialization of agricultural markets: these markets’ assets have attracted financial
investors since 2007. As a result, commodity markets are more closely linked to financial
markets.

� In high uncertainty situations, suppliers and demanders do not have reliable information
to approach equilibrium in forming prices. In times of uncertainty, rumours seem more
credible and may lead to excessive speculation. Speculation may come from different
types of operators: commercial operators (producers, manufacturers) actively involved in
physical markets and non-commercial operators, i.e. ‘speculators’.

From the moment he decides to sow grain until he sells it, a farmer holds a speculative
long position. As soon as he decides to sow rapeseed, a farmer holds a speculative long position
because he faces price fluctuation risks, with the hope of a higher price and fear of a price
drop. Before purchasing agricultural products, food manufacturers face the speculative risk of
price volatility, with the hope of a lower price and fear of an increase in prices. Farmers and
manufacturers usually enter the futures markets to lock in their agricultural price in order to
mitigate their price volatility risk: they are hedgers. But they may also sometimes speculate
on the futures markets.

Operators with no activity in the physical cash commodity markets enter the futures
markets and take risks in the hope of making profit. Such risk-takers are called speculators.
High uncertainty about supply and demand – in terms of quantity and quality, in a given
location at a given point in time in the future – is an incentive for speculators to enter markets
and buy (or sell) contracts with distant maturity. They are effectively making a bet that they
will be able to make a profit by buying back (or selling back) these contracts. They never
intend to actually deliver or take delivery of the goods, since they have no business activity on
physical cash markets.

When there is fear and risk of stock shortage before harvest time due to low carry-
over levels, holding a commodity is a ‘plus’ which is subject to speculation. The risk raises
commodity prices and provides a convenience yield for operators owning the goods. This
happens when the harvest is uncertain in terms of quantity and quality. It also happens when
the harvest is delayed due to bad weather and stock carry-over levels are low. In such situations
uncertainty rises about the ability to manage low stock carry over in order to meet very short-
term demand … and it is not possible to produce more agricultural products such as grain in
the short run. Low-inventory periods are also periods of high volatility on commodity markets
(Deaton and Laroque, 1992; Chavas and Kim, 2006; Balcombe, 2009).

Volatility appears because of uncertainty when a price is formed on markets. Uncertainty
puts buyers and sellers in a situation where there is no consensus about price. Agricultural
price volatility showed strong increases with high price spikes in 2008 and 2010. In 2008,
specific new shocks affected grain markets:

� an unexpected surge in Asian demand for meat, and therefore for grain;
� the effect of EU and US policies subsidizing the production of biofuel even with high

market prices for grain, contributing to further price increases;
� a poor grain harvest in many regions while inventories were at low levels of less than

80 days of consumption (IGC, 2010);
� the financialization of agricultural commodities as an asset class in investors’ portfolios.

Volatility can concern price increases or decreases.
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Speculation is Essential for Market Liquidity In bearing risks, speculators contribute to
market liquidity. They provide counterparties for hedgers who are constantly seeking to reduce
their price volatility risks. The role of speculators is to bring liquidity in order to ease transac-
tions, which means the adjustment of supply and demand, particularly in commodity futures
markets. However, this adjustment involves risks: prices may go up or down. Speculators help
the market by bearing such risks.

Usually, farmers want to sell contracts with the earliest possible maturity after harvest
in order to hedge (that is, reduce price fluctuation risk). Price volatility is reduced to basis
fluctuation risk. Basis fluctuation risk is a residual risk due to the unstable correlation between
the futures market price and the physical (cash) price for hedgers, here farmers. Food proces-
sors, however, do not want to buy futures contracts maturing just after harvest. They prefer to
hedge commodities month after month, depending on their purchases of agricultural products
on physical (cash) markets. A processor will thus seek to reduce his price fluctuation risk and
his basis fluctuation risk.

A lack of counterparties for post-harvest maturities could therefore strongly depress prices.
The market needs speculators taking risks by entering the futures market in hope of profit.
Risk-takers are needed to help price formation such that supply and demand are balanced not
only at that period, but also every day. Speculators bear price fluctuation risks and thus ease
optimal allocation of the resources traded between suppliers and demanders.

A market is liquid or dead. Liquidity risk is the risk of not finding a counterparty easily,
at a price close to the last transaction price. Such a risk results from a lack of operators on the
futures market, and may be caused by:

� Small price fluctuations, which do not attract hedgers and speculators.
� Small volumes traded by commodity producers and processors on physical (cash) markets.

In such a case there are not enough hedgers who could also enter futures markets. This
means that the prices formed on futures markets do not show good correlation with the
physical fundamentals of supply and demand. As a result, the risk of basis fluctuation
could increase strongly.

A minimum level of speculation is essential to ensure the agricultural futures markets
operate properly.

Speculation can be Excessive and Detrimental The market needs speculators, but not
too many. Speculation may be excessive if the prices formed in futures markets no longer
reflect the equilibrium between supply and demand in physical markets. A speculative bubble
may occur, with prices based only on rumours and speculation. Agricultural producers and
processors may no longer trust such a futures market, and be unwilling to enter the futures
market. Excessive speculation can thus kill markets.

9.5.2 F inancia l i zat ion: Impact of Non-commercia l Traders
on Market Price

Many studies have focused on agricultural commodities. Some results are provided. As exhib-
ited in Figure 9.82, in 2002 the Standard & Poor’s Goldman Sachs Commodity Index (S&P
GSCI) evolved differently from the Stoxx EU index and the WTI oil price.
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F IGURE 9.82 Evolution of commodity (oil and GSCI) vs. Stoxx EU in 2002,
more than 10 years ago
Source: UNCTAD, http://unctad.org/en/PublicationsLibrary/presspb2012d1_en.pdf.

But in 2012, all the indices exhibited the same pattern: commodity prices and stock prices
are moving together (Figure 9.83).

According to UNCTAD, financial investments in OTC commodity derivatives, and par-
ticularly oil, have increased over the 2000s (Figure 9.84).

According to UNCTAD, the coefficient of correlation between commodity and equity
indices has become closer to 1 from the mid-2000s (Figure 9.85).

9.5.3 The F inancia l i zat ion of Grain Markets and Speculat ion

In 2011 the Permanent Subcommittee on Investigations of the US Senate reported observations
made by the CFTC on the wheat futures contract on the CME, the largest wheat market in the
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world. Focused on the open long interest, it observed that the amount of outstanding wheat
futures contracts purchased by index traders (i.e., speculators) increased sevenfold from about
30,000 daily outstanding contracts at the beginning of 2004 to about 220,000 contracts in
mid-2008. Index traders held 35–50% of the open long interest. They held 20–30% in the
other US wheat markets.
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F IGURE 9.85 Coefficient of correlation between commodity and equity indices,
1986–2012
UNCTAD secretariat calculations, based on Bloomberg.
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Source: UNCTAD, http://dgff.unctad.org/chapter2/2.6.html.
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In 2011 the Permanent Subcommittee on Investigations of the US Senate reported that
‘the large number of wheat futures contracts purchased by swap dealers and index traders is
the prime reason for higher prices in the wheat futures markets relative to the cash market’.
Since financial investors do not operate in the physical spot market, their investment in futures
contracts has been so high that the gap between futures prices and spot prices, namely the basis,
has become larger and more persistent over the 2000s. The basis did not converge as expected
at contract maturity for places of delivery of futures contracts. For soft red winter wheat at
Chicago, the average daily basis between the nearest maturity and the physical price on place
of delivery was $0.25 per bushel from 2000 to 2005. During the second semester of 2008, it
was between $1.50 and $2.00 (see Figure 9.87). The analysis of supply and demand in the spot
market alone cannot explain such a gap. In addition, the basis has not converged at futures
contract expiration, but has increased from about $0.13 per bushel in 2005 to $0.35 in 2006
and $1.53 in 2008 (see Figure 9.88), that is a 10-fold increase for a threefold price increase.
The CFTC also noticed a larger presence of index traders: from 2006 to early 2008, they held
between 33% and 50% of outstanding long positions. From mid-2008, they accounted for
more than 55% of long open interest.

The Subcommittee pointed out that the CFTC did not monitor speculation properly during
the late 2000s. The CFTC continued to waive some position limits for index traders and swap
dealers over the 2000s, even though speculation was large enough and questions arose about
possible excessive speculation. A position limit puts a maximum number of agricultural futures
contracts that can be held by a single trader. A position limit is a tool to monitor market fairness
and manage liquidity to avoid dominant positions by a single trader.
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Source: Permanent Subcommittee on Investigations, US Senate, in IATP (2011), p. 79.

Economic research on grain futures markets has resulted in the following findings:

� Uninformed traders adopt speculative investment strategies which bring liquidity to mar-
kets. They contribute to the price adjustment of supply and demand (De Long et al.,
1990).

� Often, volumes of speculation increase as volumes traded by hedgers (producers and
manufacturers) increase. Working (1960) argues that the level of speculation must be
compared with the level of hedgers. For nine agricultural commodities, Sanders et al.
(2008) have shown that the level of speculation was not excessive on futures markets
during the period 2006–08.

� Sanders et al. (2009) found that long-only index funds may be beneficial in markets
traditionally dominated by short hedging and have no significant impact on agricultural
commodity prices. However, over the period 2005–08, volumes traded by index funds
increased 10-fold. With data from June 2006 and December 2009, Irwin and Sanders
(2010, 2011) confirm that index funds have not impacted speculation significantly. Irwin
and Sanders (2010, 2011) found no evidence of a direct empirical link between index
fund trading and commodity futures prices, casting doubt on the common belief that index
funds fueled the 2008 price spike.

� Financial investors may have amplified price movements for some period of time. Index
funds are long only. Usually their prospectus mentions that they commit themselves in
holding a balance of various commodities, often dominated by energy and minerals with
agricultural commodities as a minor component. Agricultural commodities only account
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for 12.2% of the S&P GSCI (De Schutter, 2010). So their long position may influence
grain markets, even though decisions are not related to market fundamentals.

� ‘Herding behaviour’ in periods of strong upward prices attracts many speculators since
market access is easy.

� However, futures markets have worked with delivery of goods executed. Furthermore,
in the late 2000s, investors were searching for better yields in an environment with low
stock and bond returns. It is more difficult to get research results about the opaque and
unregulated OTC trading (IATP, 2011).

Nevertheless, speculative bubbles exist: for a few weeks the price volatility is high, and
prices may go up or down. Pricing seems difficult. Then the bubble bursts and the price reverts
to reflecting supply and demand fundamentals in the physical market. A speculative bubble
may be suspected when the market price rises or falls so rapidly that all operators are convinced
such a movement can last, even though it cannot be explained by market fundamentals: harvest,
inventories, demand. Sometimes, a price may rise very sharply before falling back. For instance
in the EU, the milling wheat price was €181/t in early July 2007, went up to €290/t in February
2008 and then dropped to €200/t in April 2008 in a context of strong price volatility. Such
price jumps for wheat harvested in July 2007 show that the market operators did not have
appropriate information to form prices according to the fundamentals of demand and supply.
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TABLE 9.6 2012 performance of the largest commodity hedge funds and stock markets

S&P 500 equities 16%
US Treasuries Index 2.10%
Commodity hedge funds (Newedge) −3.70%
Hedge fund BCM −5%
Hedge fund Clive Capital LLP −9%
Hedge fund Vermillion −10%

Source: The Financial Times, 7 February 2013, p. 25.

Speculation is Fueled by Uncertainty and Rumours Some market operators may benefit
from rumours and uncertainty:

� Financial businesses earn fees on transactions, they need to attract operators. Hedge funds
invest in trading in case of increasing or decreasing price: high price volatility is a helpful
argument to attract investors. Brokers can take advantage of uncertainty and rumours as
an incentive to attract investors who do not want to miss some expected profit that may
seem quick to achieve.

� Producers, including exporting states, want price increases and may ease them in by
communicating production risks.

� Consumers, including importing states, prefer price decreases and may ease them in by
announcing possible product substitutions for other products or a reduction in commodity
use due to new recipes and efficiency gains.

9.5.4 Bubble or Not , Agricu l tural Commodit ies have Become
an Asset Class

In 2012, while stock markets recovered, several hedge funds experienced losses and decided
to lower their exposure to commodities. See Tables 9.6, 9.7.

Ethics and reputation reasons have motivated some banks to stop their food commodity
funds. Even though empirical research found little evidence of increase or greater volatility
in food prices due to speculation, non-government organizations have exerted pressure on
banks. They have told them that food commodity funds are ‘speculating on hunger’ on the
premise that investment in such funds contribute to push up food prices and ultimately hunger,
social and political instability. Some banks decided to shut their food commodity funds. The
French BNP-Paribas, which shut three commodity funds exposed to agricultural commodities
in 2011, closed its last one in 2012 even though it only accounted for 0.08% of its total
assets. In early 2013 the French Crédit Agricole closed three agricultural funds and the UKs

TABLE 9.7 Commodity hedge funds, total annual returns from 2002 to 2012 (in %)

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Annual total returns 44% 27% 23% 13% 22% 16% 3% 6% 8% −1.5% −3.7%

Source: The Financial Times 7 February 2013, p. 25.
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Barclays Bank announced that it will stop speculating on food commodities. In 2012 several
German banks, such as Commerzbank and Deka-Bank, reduced their activity in agriculture and
food commodities while German LBB Invest stopped it. Since research found little empirical
evidence that financial investors were responsible for increases in food prices and greater
volatility, some banks decided to continue to offer commodity funds. Agricultural derivatives
have become an asset class and will remain.

9.5.5 Price Volat i l i ty and Regulat ion

This section focuses on the management of price volatility through regulation. The 2008
financial crisis triggered regulatory financial reforms, with the Dodd–Frank act passed in 2010
in the USA and strong evolution of the European Market Infrastructure Regulation (EMIR) and
the Market in Financial Instruments (MiFid) Directive 2004/39/EC in the EU. They provide
general frameworks for comprehensive risk assessment and regulations to be designed for the
different financial services and instruments, including agricultural commodity derivatives.

The Dodd–Frank act is being implemented. The CFTC is issuing regulations to diminish,
eliminate or prevent excessive speculation on agricultural commodity derivative markets:
position limits, clearing of OTC derivatives through central clearing houses, capital deposit
for OTC dealers.

In August 2012 the EU regulation no. 648/2012 enforced similar rules on OTC derivatives
with central counterparties (CCPs) and required trade repositories (TRs), including the duty
to make certain data available to the public and relevant authorities. The EMIR was amended
and enforced in March 2013. It imposed new rules for trading companies and for financial
instruments. Financial counterparties and non-financial counterparties above some clearing
threshold have clearing obligations, risk mitigation techniques and reporting obligations to the
European Securities and Market Authority (ESMA). EU member states are harmonizing the
rules and regulations of investment services and activities. Investment firms are required to be
allowed to operate in the EU and are registered to the ESMA. Rules and regulations are being
put in place.

Policymakers may improve operations on agricultural and soft futures markets by acting
on the following levers:

1. Harmonizing national regulations and agricultural commodity markets The prices
formed in agricultural commodity futures markets are the benchmark food prices for
7 billion people. Transaction security and food safety require harmonized regulation of
the various futures exchanges. The G20 meeting on agriculture in June 2011 ended with
such an agreement, but with no penalty for non-application. There is thus nothing to stop a
government from introducing an embargo. The embargo on wheat exports decided by the
Russian government in August 2010 immediately increased uncertainty about available
supply on international markets and led to a sharp increase in price.

2. Policies on biofuels Some policy decisions distort the formation of market price. For
example, subsidies or a lower tax rate on biofuels distort market price formation: the
demand for agricultural products used for biofuels (corn, sugar cane, wheat) does not
depend on price – even in case of increasing price due to supply shortfall, the demand
for biofuel is similar. Governments could adjust their subsidies as a function of market
price level and supply level. This is already done with water in the USA and Europe:
in case of drought, irrigation is limited or forbidden for farmers and even washing cars
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TABLE 9.8 Regulation and commitments of traders

US futures contracts EU futures contracts

Regulatory
institution

A unique institution: the Commodity
Futures Trading Commission
(CFTC).

A governmental authority per
country.

Commitment of
traders (COT)

The first COT started in 1962.
Weekly, every trader must declare its:
� buy or sell side position or arbitrage
� operation as commercial operator

(producer/merchant/processor/user)
or non-commercial operator by
mentioning swap dealer or managed
money or other.

Transparency: the market institution
releases traders’ positions every
week on its website.

No report by trader, except
for NYSE Euronext futures
contracts and options on
coffee, cocoa, sugar and
feed wheat since October
2011. For these contracts,
every trader must declare
its position and type of
operation weekly as
enforced by the CFTC.

Delivery or
settlement at
contract maturity

Delivery of the goods or cash
settlement.

Delivery of the goods.

Source: CFTC, http://www.cftc.gov/MarketReports/CommitmentsofTraders/index.htm; NYSE
Euronext, https://globalderivatives.nyx.com/en/nyse-euronext-publish-weekly-commitments-traders-
reports.

may be forbidden for inhabitants in order to save water and use it for the primary needs:
beverages. Similarly, in case of severe frost, electricity companies enforce some contracts
made with plants who no longer consume electricity in order to save it and use it for
more urgent demands. Furthermore, in case of high grain market prices the processing of
biofuels could be reduced.

3. Improving liquidity management Futures exchanges must manage market liquidity
adequately:
� To attract sufficient risk-takers, speculators, so that each operator finds a counterparty

easily without having to accept a less favourable price. Then price formation is easy.
� To monitor the volatility level in establishing trading position limits on commercial

operators and on non-commercial traders. This would help the price to reflect the
balance between the supply and demand of the agricultural commodities underlying
physical futures.

Unfortunately, it is not possible to quantify the proportion of desired and undesired
speculation, because acts of speculation cannot be distinguished from acts of hedging.

The procedures used by futures exchanges can be improved with further require-
ments:

� Mandatory weekly reporting of volumes and positions (long or short) by type of
operator, to adjust the initial margin call (deposit) of collateral by type of operator –
professional operators in the physical market (producers, processors, traders), swaps,
index funds. This is the case in the USA, and since October 2011 for coffee, cocoa,
white sugar and feed wheat contracts on the NYSE Euronext. However, an operator
can intervene at times to hedge risk, sometimes involving risk-taking in speculating.

http://www.cftc.gov/MarketReports/CommitmentsofTraders/index.htm;
http://www.cftc.gov/MarketReports/CommitmentsofTraders/index.htm
https://globalderivatives.nyx.com/en/nyse-euronext-publish-weekly-commitments-traders-reports.
https://globalderivatives.nyx.com/en/nyse-euronext-publish-weekly-commitments-traders-reports.
https://globalderivatives.nyx.com/en/nyse-euronext-publish-weekly-commitments-traders-reports
https://globalderivatives.nyx.com/en/nyse-euronext-publish-weekly-commitments-traders-reports
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� Mandatory reporting of the type of transaction by each operator – hedging, arbitrage,
risk-taking. This is not currently required, but would make it possible to adjust the
initial deposit guarantee according to the degree of risk-taking.

� Banning operators from having a position equivalent to 30% or 40% or more of the
open interest of a futures contract, at least in the 6 months leading up to expiry of the
futures contract. This would ensure no operator can be in a position to influence the
price. Currently, this is applied in the USA, but not necessarily elsewhere in Europe
and Asia.

� Checking convergence between the price of a futures contract at maturity in the place
of delivery of the product and the cash price of the product on the physical market in
the same place at the same time.

A futures contract is governed by the rules of the country where it is established.
Regulation differs from country to country (see Table 9.8). US commodity futures markets
have existed for more than 150 years and are more regulated than most markets in
Europe and Asia. Futures markets may thus have contracts subject to different regulations
according to the country where they are established. Regulation could be harmonized
across countries. There are major differences between US and EU regulations. The USA
has tried to improve its regulations over more than 150 years since the CBOT set up
a wheat futures market in 1865, while EU and Asian grain futures contracts are only
20 years old or less.

4. Improving information and transparency on the quantity and quality of crops and
inventories Currently, there are many uncertainties about the quantities and qualities of
commodity inventories. Uncertainty prevents operators from having accurate price expec-
tations. It fuels speculation, which can lead to excessive volatility. Prices may then rise
too high or fall too low, with poor signal quality, and become a source of speculation
that could be detrimental to all, affecting production and investment in agriculture. Each
country has a responsibility to its own people and the international community to make
sincere and true information available in a transparent manner. In June 2011, the G20
focused on food security. The member countries committed to coordinated food produc-
tion and information sharing. They decided to harmonize their international agricultural
policy decisions and set up an ‘Agricultural Market Information System’ (AMIS). AMIS
is a new instrument overseen by the FAO to collect data about agricultural production,
inventories, demand and international trade. However, some countries do not have reliable
records of harvests and stocks in terms of quantity, quality and availability. Furthermore,
some may prefer to avoid transparency in order to develop their own import or export
strategy.

5. Improving knowledge to identify potentially excessive speculation The seasonal prod-
ucts of the futures markets, such as cereals (especially corn and wheat in the USA, wheat
in the EU) and oilseeds (including soybeans and rapeseed) are the commodities that work
best, but there are imperfections. While prices may seem exaggerated – sometimes too
high, sometimes too low – researchers have so far been unable to distinguish the impact
of speculators from other explanatory factors, including among others: uncertainty over
the volume and quality of crops and stock, uncertainty caused by potential changes in
political decisions (quotas or export embargoes, subsidy/tax exemption for production of
biofuels), uncertainty about changes in eating habits in emerging markets, thin markets
with too few buyers and sellers. On 27 September 2012 the European Parliament voted
in favour of introducing mandatory limits on speculation in commodity derivatives.
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9.5.6 Ongoing Research about Speculat ion and Regulat ion

Ongoing research is done on speculation: is it excessive or not? This situation calls for further
study:

� What is the impact of funds that invest in futures contract and the impact of algorithm
trading, also known as high-frequency trading, on volatility?

� What is the impact of funds (particularly index funds investing in bundles of commodities)
on the financialization of agricultural commodity markets?

� How can we secure the convergence of basis and the correlation of futures contracts prices
and physical cash prices for commodities?

� What is the impact of position limits for commercials and non-commercials (financial
investors) on price level and volatility?

� How can we improve the analysis of basis convergence for agricultural commodities?

Some types of volatility on agricultural markets are particularly problematic:

� What can we do for highly perishable products like fresh milk whose volatility hurts
dairy farmers and processors? Furthermore, milk production quotas will be removed in
2015 so uncertainty will increase. Managing uncertainty and risk may be studied in such
a context. Are other economic tools, such as contracting, better suited for fresh products
like fresh milk, fresh fruit and vegetables?

� The futures markets for certain grains (e.g., malting barley) and oilseeds (e.g., sunflower)
have low volumes because they concern only a small volume of production, mainly for
own consumption in producing countries.

9.6 CONCLUSION ABOUT HEDGING AND
FUTURES CONTRACTS

Commodity futures contracts provide useful tools to commercial operators to discover com-
modity price and to reduce their risks of price volatility.

9.6.1 Hedging Process

Commercial operators hedge to mitigate the risks of price volatility on physical markets.
Then, they reduce price fluctuation risks to basis fluctuation risks and some residual risks. The
hedging process may be summed up as follows.

1. Risk identification:
� product risk (basis risk including time, transportation and quality risk, hedge ratio,

quantity risk);
� cash management risk when dealing with margin calls;
� exchange rate risk;
� interest rate risk.

2. Analysis of the overall economic situation in order to anticipate general trends affecting
the identified risks.
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3. Internal regulations to allow use of futures contracts for hedging purposes over 17 to 19
months.

4. Choice of hedging instruments and analysis of sensitivity to any change in the economic
situation.

5. Execution of hedging and clearing of positions.
6. Monitoring of the operations (positions on physical spot markets and futures markets),

sensitivity analysis.
7. Results of the operations.

9.6.2 Key Success Factors for Agricu l tural Commodity
Futures Contracts

The key success factors for agricultural commodity futures contracts are as follows:

1. Commodity price volatility and market transparency Futures contracts are useful
when there is commodity price volatility. Then, commodity commercials (producers and
users) want to mitigate price volatility risks to protect their costs and profit margins.
Speculators are keen on taking risks so that they provide counterparties on the market and
contribute to market liquidity. Market transparency is crucial to get trust from investors,
hedgers and speculators.

2. Motivated, well-trained professionals Motivated and well-trained professionals are
ready to hedge using commodity futures contracts. For instance, during summer 1992 the
French oilseeds industry organization (Organisation interprofessionnelle des oléagineux,
ONIDOL), asked MATIF-Euronext to set up a futures contract for rapeseed. The contract
was launched on 28 October 1994 and was successful because it met a need for risk
reduction by sellers and buyers of rapeseed. ONIDOL organized a training programme to
train those sellers and buyers.

3. Fungible, undifferentiated, homogeneous, storable standardized commodity with
established grades and standards Contract is designed for the most common standard
quality, at the most usual place of delivery on the physical market. It helps in gathering
large amounts of supply and demand. Established grades and standards ease price quality
differences to connect futures contracts delivery with the cash market. Furthermore,
commodities of different qualities must be fungible in order to get large volumes, as is
the case for grains. However, it is not possible to blend the wool with fibres of a different
quality in order to obtain an intermediate quality: that explains why it may be difficult
to set up successful contracts. When a commodity is not storable for some days, it is not
easy to freely sell it everywhere without some process of preservation. That explains why
there is no futures market for fresh milk while there are futures markets for milk powder.

4. Existing forward contracts A futures contract has the same general features as a forward
contract. A futures contract is standardized and transacted through a futures exchange
while a forward contract is customized by the two parties. A futures contract is a stan-
dardized forward contract in which an operator (buyer, seller) accepts the standardized
terms of commodity product, grade, quantity of physical good per contract, location and
maturity in the framework of a futures exchange: it only takes market price at a given
instant. Consequently, commodity commercial operators, who use forward contracts, may
adopt futures contracts easily as is the case in the grain sector.

5. Large volumes in competitive cash markets without any operator large enough to influence
price
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Large volumes of commodities are necessary to attract many buyers and sellers and
get enough liquidity to trade.

6. No suitable existing futures contract as a substitute for cross-hedging
7. Free market without government interference or excessive regulation

9.6.3 Conclus ion and Prospects

Agricultural commodity prices are volatile mainly due to the impact of weather, the long-
term process of production and sticky demand to feed people and animals. Major determinants
affecting price movements in the long term are: (1) the production cost of the leading producing
and exporting countries, so that the return on cost of production must be positive most years;
(2) the supply–demand imbalance measured by the year-to-year change in surplus/deficit and
by stockholding dynamics measured by the stock-to-use ratio and producers’ ability to adjust
to demand; and (3) the risks related to errors in forecasting supply and demand balances
in previous years. In conclusion, standardized, organized and regulated commodity futures
contracts are extremely useful instruments for commodity professionals to reduce the risks of
price volatility and then costs.

Regulation is crucial to monitor market liquidity: (1) speculation is a necessity for com-
modity price formation and to help hedgers find a counterparty and (2) speculation in excess
must be avoided in managing position limits by non-commercial operators (index traders, swap
dealers and other financial investors) through transparent commitments of traders. Regulation
may be improved particularly in Asia and Europe, where regulatory institutions may take
advantage of US experience over 150 years with the commitment of traders to declare their
position limits every week and their types of trade (hedging, arbitrage or speculation).

Excessive speculation is not only the responsibility of futures exchanges. Agricultural
markets would be more efficient if states could reduce uncertainty. The AMIS data bank can
only collect relevant data about agricultural production, inventories, demand and international
trade if states are transparent. Furthermore, states may avoid isolated policy decisions without
harmonization with other states for decisions – such as export embargoes, subsidies or tax
exemptions for biofuels – that may contribute to increasing uncertainty. Agricultural futures
market prices must provide reliable signals to producers and commodity users to make appro-
priate decisions on investments and price volatility protection. They contribute to the efficiency
of agriculture and food businesses. The efficiency of agricultural futures markets is crucial
since it affects food prices for all human beings.
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CHAPTER 10
Foreign Exchange Markets

and Products
Antonio Castagna

10.1 THE FX MARKET

The foreign exchange (FX) market is an over-the-counter (OTC) market where each participant
trades directly with others; there is no exchange, though we can identify some major geographic
trading centres: London (the primary centre, where majors market makers are located; its
importance increased in the last few years), New York, Tokyo, Singapore, Sidney. This means
that trading activity is 24 hours a day, though in practice during London working hours the
market has the greatest level of liquidity. Needless to say, the FX market experiences fierce
competition amongst participants.

10.1.1 FX Rates and Spot Contracts

Definition 10.1.1 FX rate. An exchange (FX) rate is the price of one currency in terms of
another currency; the two currencies make a pair. The pair is named by a label comprising
two tags of three characters: each currency is identified by its tag. The first tag in the exchange
rate is the base currency, the second is the numeraire currency. So the FX is the price of the
base currency in terms of the numeraire currency.

The numeraire currency can be considered as domestic: actually, in what follows we
will refer to it as that. The base currency can be regarded as an asset whose trading generates
profits and/or losses in terms of the domestic currency. In what follows, the base currency will
also be referred to as the foreign currency. We would like to stress that these denominations
are not made from the perspective of the trader, who can actually be located anywhere and
for whom the foreign currency may turn out to indeed be the domestic currency, from a ‘civil’
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point of view. To avoid any possible confusion, for an economic operator we will define the
currency in which profits and losses and the balance sheet are denominated as internal; the
remaining currencies other than the internal are defined as external, with respect to the same
operator.

Example 10.1.1 The euro/US dollar FX rate is identified by the label EURUSD and it denotes
how many US dollars are worth 1 euro. The domestic (numeraire) currency is the US dollar
and the foreign (base) currency is the euro.

The FX rates are expressed as a five-digit number, without regard to the number of
decimals; the fifth digit is named a pip – 100 pips make a figure. As an example, major FX
rates for spot contracts (we will define ‘spot’ below) as of 29 October 2007 are shown in
Figure 10.1. For benchmark purposes with more contemporary rates, the lower panel of Figure
10.1 gives key FX rates as of 5 November 2014. Regular trades, amongst professional market
operators, are for fixed amounts of the base currency. We define the spot contract as follows:

Definition 10.1.2 Spot. Two counterparties entering into a spot contract agree to exchange
the base currency amount against an amount of the numeraire currency equal to the spot FX
rate. The settlement date is usually two business days after the transaction date (but it depends
on the currency).

10.1.2 Outr ight and FX Swap Contracts

Outright (or forward) contracts are a simple extension of a spot contract, as is manifest from
the following definition:

Definition 10.1.3 Outright. Two counterparties entering an outright (or forward) contract
agree to exchange, at a given expiry (settlement) date, the base currency amount against an
amount of the numeraire currency equal to the (forward) exchange rate.

It is quite easy to see that the outright contract differs from a spot only by the settlement
date, which is shifted forward in time up to the expiry date in the future. An FX rate, at which
the transaction will be executed, is different from the spot rate so the problem of its calculation
arises. The calculation of the forward FX price can easily be tackled by means of the following
arbitrage strategy.

Strategy 10.1.1 Assume that we have an XXXYYY pair and that the spot FX rate is St at
time t, whereas F(t, T) is the forward FX rate for the expiry at time T. At time t, we execute the
following:

� Borrow one unit of foreign currency XXX.
� Change one unit of XXX (foreign) against YYY and receive St YYY (domestic) units.
� Invest St YYY in a domestic deposit.
� Close an outright contract to change the terminal amount back into XXX, so that we will

receive St
1

Pd(t,T)
1

F(t,T)
XXX.

� Pay back the loan of one YYY plus the interests.
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FIGURE 10.1 FX Spot Rates as of 29th October 2007 (upper panel; Source: Bloomberg) and 5th

November 2014 (lower panel; Source: Thomson Reuters Eikon)

To avoid arbitrage the final amount St
1

Pd(t,T)
1

F(t,T)
XXX must be equal to the value of the loan

of 1 XXX at time T, which can be calculated by adding the interests to the notional amount.

This strategy can be translated formally as:

St
1

Pd(t, T)
1

F(t, T)
= 1

1
Pf (t, T)

,
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which means that we invest the St YYY units in a deposit traded in the domestic money market,
yielding at the end St

1
Pd(t,T)

(Pd(t, T) is the price of the domestic pure zero-coupon bond), and
change it back into XXX currency at the F(t, T) forward rate equal to 1 XXX units invested in
the foreign money market (Pf (t, T) is the price of the foreign pure zero-coupon bond). Hence

F(t, T) = St
Pf (t, T)

Pd(t, T)
. (10.1)

In the market outright, contracts are quoted in forward points:

Fpts(t, T) = F(t, T) − St.

Forward points are positive or negative, depending on the interest rate differential, and they
are also a function of the level of the spot rate. They are added (algebraically) to the spot
rate when an outright is traded, so as to get the fair forward FX rate. In Figure 10.2, forward
points as of 6 November 2007 for a 3-month delivery are shown: they are also the same points
used in FX swap contracts, which will be defined below. For benchmark purposes with more
contemporary rates, the lower panel of Figure 10.2 gives key FX rates as of 5 November 2014.
The base currency is the euro and forward points are referred to each (numeraire) currency
listed against the euro: in the column ‘Arb. rate’ the forward implied no-arbitrage rate for the
euro is provided. It is implied from equation (10.1) to calculate the forward FX rate so as to
match the market level of the latter.

For the sake of clarity and to show how forward FX rates are actually calculated, we
provide the following example.

Example 10.1.2 Assume we have the market data as in Figure 10.2: we want to check
how the forward points for the EURUSD are calculated. We use formula (10.1) to calculate
the forward FX rate, but we apply the money market conventions for capitalization and for
discounting (i.e., simple compounding):

F(0, 3M) = 1.4522

(
1 + 4.875% 92

360

)

(
1 + 4.4435% 92

360

) = 1.45378

where 3M stands for ‘3-month expiry’. Hence, the FX swap points are straightforwardly
calculated:

Fpts(0, 3M) = F(0, 3M) − S0 = 1.45378 − 1.4522 = 0.00158

so that both the forward FX rate and forward points are verified with what is shown in the
figure.

The FX swap is a very popular contract involving a spot and an outright contract:

Definition 10.1.4 FX swap. Two counterparties entering into an FX swap contract agree to
close a spot deal for a given amount of the base currency, and at the same time they agree
to reverse the trade by an outright (forward) with the same base currency amount at a given
expiry.
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FIGURE 10.2 FX Forward Points as of 6th November 2007 (upper panel; Source: Bloomberg)
and 5th November 2014 (lower panel; Source: Thomson Reuters Eikon)

From the definition of an FX swap, the valuation is straightforward: it is the sum of a
spot contract and a forward contact. So we just need the spot rate and the forward points. The
outright is mainly traded by speculators and hedgers in the FX market, whereas the FX swap
is more a treasury product, traded in the interbank market to move funds from one currency to
another without any FX risk (for par contracts) and hedge or get exposure to the interest rate
risks in two different currencies.
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10.1.3 FX Opt ion Contracts

FX options are no different from the usual options written on any other asset, apart from some
slight distinctions in the jargon. The definition of a plain vanilla European option contract is
the following:

Definition 10.1.5 European plain vanilla FX option contract. Assume we have the pair
XXXYYY. Two counterparties entering a plain vanilla FX option contract agree on the follow-
ing, according to the type of option traded.

� Type XXX call YYY put: the buyer has the right to enter at expiry a spot contract to buy
(sell) the notional amount of the XXX (YYY) currency, at the strike FX rate level K.

� Type XXX put YYY call: the buyer has the right to enter at expiry a spot contract to sell
(buy) the notional amount of the XXX (YYY) currency, at the strike FX rate level K.

The spot contract at expiry is settled on the settlement date determined according to the rules
for spot transactions. The notional amount N in the XXX base currency is exchanged against
N × K units of the numeraire currency. The buyer pays a premium at the inception of the
contract for their right.

In the following sections we will examine how to calculate the fair premium of an option.
A very rough taxonomy for FX options is presented in Table 10.1. Besides, it is worth noticing
that the difference between first generation and second generation exotics is due to the time
sequence of their appearance in the market rather than their level of complexity.

It is worth describing the option contract in more detail, and the market conventions and
practices related to it.

10.1.3.1 Exercise The exercise normally has to be announced by the option’s buyer at
10.00 am New York time: options are denoted NY cut in this case, and they are the standard

TABLE 10.1 Taxonomy of FX options

Group Name Exercise Monitoring

Plain vanilla Call/put E/A E
First generation exotic Digital E E
First generation exotic Knock in/out barriers E/A E/C/D
First generation exotic Double knock in/out barriers E/A E/C/D
First generation exotic One touch/no touch/ A C/D

Double no touch/double touch
First generation exotic Asian E/A D
First generation exotic Basket E/A D
Second generation exotic Window knock in/out barriers E/A E/C/D
Second generation exotic First in then out barriers E/A E/C/D
Second generation exotic Forward start plain/barriers E/A E/C/D
Second generation exotic External barriers E/A E/C/D
Second generation exotic Quanto plain/barriers E/A E/C/D

Exercise: European (E), American (A). Monitoring: At expiry (E), continuous (C), discrete (D).
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options traded in the interbank market. The counterparties may agree also on a different time,
such as 3.00 pm Tokyo time: in this case we have the Tokyo cut. The exercise is considered
automatic when the option is in-the-money (i.e., is worth exercising) for a given percentage
of the strike price at expiry (e.g., for a call option, the FX spot is higher than the strike
by an amount of 1.5% of the strike level). These details are typically provided in the ISDA
master agreement signed between two professional counterparties when they decide to start
a relationship involving trading derivative contracts. In the other cases the exercise has to be
announced explicitly.

10.1.3.2 Expiry Date and Sett lement Date The expiry date for an option can be any
date on which at least one market place is open: then the settlement date is set according to the
settlement rules used for spot contracts. It is the date when the decision whether to exercise
the option has to be announced.

10.1.3.3 Premium The option’s premium is paid on the spot settlement date correspond-
ing to the trade date. It can be paid in one of either currencies of the underlying pair and it can
be expressed in four different ways, which we list below.

1. Numeraire currency units (pnumccy). For some pairs this is the standard way premiums are
expressed for plain vanilla options in the interbank market after the closing of the deal. It
is worth noting also that this is the natural premium one calculates by means of a pricing
formula. The actual premium to pay is calculated by multiplying the currency units times
the notional amount (in base currency units): N × pnumccy.

2. Numeraire currency percentage (pnumeccy%). This is the standard way premiums are
expressed and quoted for exotic (one touch, double no touch, etc.) options in the inter-
bank market, when the payout is a numeraire currency amount. It can be calculated by
dividing the premium in numeraire currency units by the strike: pnumccy% = pnumccy

K
× 100.

The actual premium to pay is equal to the notional amount in numeraire currency units
(N × K) times the numeraire currency percentage premium: Nnumccy ×

pnumccy%
100

.
3. Base currency units (pbaseccy). This way of quoting may be useful when the numeraire

currency amount is fixed for all the options to be entered in a given strategy (e.g., in a
EUR call USD put spread). It can be calculated by dividing the premium in numeraire
currency units by the spot FX rate and then by the strike: pbaseccy =

pnumccy

StK
. The actual

premium to pay is equal to the notional amount, expressed in numeraire currency (that is
N × K) times the base currency units premium: Nnumccy × pbaseccy.

4. Base currency percentage (pbaseccy%). This is the standard way premiums are expressed
and quoted for exotic (barrier) options, and in the case of some pairs also for plain vanilla
options, in the interbank market. It can be calculated by dividing the premium in numeraire
currency units by the spot FX rate: pbaseccy% = pnumccy

St
× 100. The actual premium to pay

is equal to the notional amount times the base currency percentage premium: N × pbaseccy%
100

.

In Table 10.2 we report some market conventions for option premiums: usually the numeraire
currency premium is multiplied by a factor such that it is expressed in terms of pips (see above
for the definition of pips). We will see later on that the way in which markets quote premiums
has an impact on the building of volatility matrices, so that it is not just a curiosity one may
lightly neglect.
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TABLE 10.2 Market conventions for option premiums for some pairs

Pair pnumccy pbaseccy%

EURUSD USD pips
EURCAD CAD pips
EURCHF EUR%
EURGBP GBP pips
EURJPY EUR%
EURZAR EUR%
GBPCHF GBP%
GBPJPY GBP%
GBPUSD USD pips
USDCAD USD%
USDCHF USD%
USDJPY USD%
USDZAR USD%

Example 10.1.3 Assume we want to buy 2,000,000 EUR call USD put struck at 1.3500,
with a reference EURUSD spot rate equal to 1.2800. The notional amount in USD is
2,000,000 × 1.3500 = 2,700,000. The premium can be quoted in one of the four ways we
have examined and we have:

1. If the premium is in numeraire currency units and pUSD = 0.0075 US dollars per one
EUR unit of option, we will pay 2,000,000 × 0.0075 = 15,000 USD.

2. If the quotation is expressed as a numeraire currency percentage, the premium is pUSD% =
0.0075
1.3500

× 100 = 0.5550% (rounded to the nearest quarter of 0.01%) for one USD unit of

option dollar, and we pay 0.5550 × 2,700,000
100

= 14,985 USD (the small difference from
15,000 is due to rounding conventions).

3. If the quotation is expressed as base currency units, the premium is pEUR = 0.75
1.2800×1.3500

=
0.00435 EUR per one USD unit of option dollar, and we pay 0.55 × 2,700,000

100
= 11,750

EUR.
4. Finally, if the premium is in base currency percent, it is pEUR% = 0.0075

1.2800
× 100 = 0.5875%

of the EUR notional (rounded to the nearest quarter of 0.01%) and we pay 0.5875 ×
2,000,000

100
= 11,750 EUR.

10.1.3.4 Market Standard Pract ices for Quot ing Opt ions FX options can be dealt
for any expiry and also for any level of strike price. Amongst professionals, options are quoted
according to some standards. We will briefly review these.

Firstly, options are usually quoted for standard dates, though it is possible to ask a market
maker for an expiry occurring on any possible date. Secondly, quotations are not in terms of
(any of the four above) premiums, but in terms of implied volatilities, that is to say in terms
of the volatility parameter to plug into the Black–Scholes (BS) model (given the values of
all other parameters and the level of the FX spot rate, retrievable from the market). Once the
deal is closed, the counterparties may agree to actually express the premium in any of the four
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ways listed above, though the standard is in numeraire currency pips (pnumccy). Thirdly, strike
prices are quoted in terms of Delta1 of the option: this means that before closing the deal, the
strike level is not determined yet in absolute terms. Once the deal is closed, given the level
of the FX spot rate and of the implied volatility agreed upon (the interest rate levels will be
taken from the money market), the strike will be set at a level yielding the BS Delta the two
counterparties were dealing. If not otherwise specified when asking for a quote, the option is
considered to be traded Delta-hedged (‘with Delta exchange’), that is a spot trade offsetting
the BS Delta exposure is closed along with the option’s transaction.

For popular exotic options,2 some other conventions are in force in ordinary market
activity. For barrier options, contrary to the plain vanilla type, strikes and barrier levels are
asked for in absolute terms by specifying the reference spot FX rate and also an ATM implied
volatility level. The quote will be assumed to be valid for those levels and it will be provided
in terms of premium as a percentage of the base currency notional. Also for barrier options it
is assumed that the deal includes a Delta-hedge transaction and in most cases a Vega-hedge3

transaction (by dealing a spot contract and an ATM straddle4 to offset the related exposures).
The amounts dealt in those transactions are calculated according to the BS model, using as
inputs the reference FX spot and implied volatility levels.

Other very common exotics are the bet options5, that is one touch, no-touch, double-no-
touch, double touch, digitals. They are quoted as a percentage of the notional amount (which
is the payout of the bet, usually in base currency), given reference levels of the FX spot and
implied volatility. After agreement on the price, the deal will include the Delta-hedge and the
Vega-hedge transactions (to be defined according to the BS model).

10.1.4 Main Traded FX Opt ions Structures

Although the FX option market is very liquid for options with any kind of strike level and
expiry, nonetheless it is possible to identify some structures that are very popular amongst
professional market participants. We will understand why later on, when we examine how
to manage the volatility risk of an options portfolio, and we will also study the features and
behaviour of their risk exposure.

The first structure is the ATM straddle (STDL hereon): that is the sum of a (base currency)
call and a (base currency) put struck at the at-the-money level. The strike is chosen so that,
given the expiry, a put and a call have the same Delta but with different signs. This implies
that no Delta-hedge is needed when trading the straddle. We will see later on how to retrieve
this strike.

The ATM implied volatility quoted in the FX option market is that referred to a 0 Delta
STDL strike and hence it is the implied volatility to plug in the BS formula when trading
an ATM STDL. The amount of an ATM STDL is traded as the sum of the (base currency)
amounts of two component options. In Figure 10.3, the payoff at expiry of a long ATM STDL
position is shown.

1The Delta of an option will be defined in Section 10.2, where the BS model is presented.
2The definition for each of the options we mention below will be given in the sections devoted to their
analysis.
3The Vega will be defined in Section 10.2.
4This structure is described later on in this section.
5More details about the definition of bet options can be found in Section 10.4.
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F IGURE 10.3 Payoff at expiry of a long ATM straddle, struck at KATM = 100

Besides ATM STDL, there are at least two other structures frequently traded: these are
the 25% Delta risk reversal (RR hereon) and the 25% Delta Vega-weighted butterfly (VWB
hereon).

The RR is a structure set up when one buys a (base currency) call and sells a (base
currency) put, both featured with a symmetric Delta (long RR) or the reverse (short RR). The
Delta can be chosen at any level, but 25% is the most liquid level: so the call and the put to
be entered in the RR will have a strike level yielding a 25% Delta, without considering the
sign (actually for puts it will be negative). The RR is quoted as the difference between the
two implied volatilities required in the BS formula to price the two legs of the structure; we
indicate this price in volatility as rr. A positive number means that the call is favoured and that
its implied volatility is higher than the implied volatility of the put; a negative number implies
the opposite. For example, if the 3-month 25% Delta rr for the EURUSD pair is −0.5%, then
the implied volatility of the EUR call is 0.5% lower than the EUR put (both struck at a level
yielding 25% in absolute terms). At time t, we can write the price (in implied volatility’s terms)
of a 25% Delta RR with maturity in T as:

rr(t, T; 25) = 𝜎25C(t, T) − 𝜎25P(t, T), (10.2)

where 𝜎(t, T) is the implied volatility at t for an option expiring at T and struck at the level
indicated in the subscript.

The amount of an RR is typically denominated in terms of base currency units and is
referred to the amount of base currency call that will be traded against the equal amount of
base currency put. The payoff at expiry of a long position in an RR structure is shown in
Figure 10.4.

The VWB is the other notable structure. It is built up by selling an ATM STDL and buying
a symmetric Delta strangle, if one wishes to be long the VWB; on the contrary, by buying the
straddle and selling the strangle, one is short the VWB. The strangle is just the sum of a (base
currency) call and put, both struck at a level yielding the specified level of Delta (without
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F IGURE 10.4 Payoff at expiry of a long risk reversal. Base currency call struck
at K25C = 115 and base currency put struck at K25P = 85

any consideration of its sign); the 25% Delta is the most traded VWB. Since the structure, as
already mentioned, has to be Vega-weighted and since the Vega of the straddle is greater than
the Vega of the strangle, then the quantity of the former has to be smaller than the quantity of
the latter. Indicating as vwb the butterfly’s price in volatility terms, at time t we can write the
price of a 25% Delta VWB expiring in T as:

vwb(t, T; 25) = 0.5(𝜎25C(t, T) + 𝜎25P(t, T)) − 𝜎ATM(t, T). (10.3)

This is how quotations for VWB appear in the interbank market.
The amount of the VWB is, as usual, expressed in terms of base currency units and is

referred to the amount of the ATM STDL (with the same convention as above) that is traded
against the Vega-weighted amount of strangle (whose total is evenly split between the 25%
Delta call and the 25% Delta put). Figure 10.5 shows the payoff at expiry of a long VWB
position.

Later, we will use the ATM STDL, RR and VWB to build the volatility matrix.

10.2 PRIC ING MODELS FOR FX OPTIONS

The basic model to price FX options, which is also used extensively in market trading activity,
is the Black–Scholes model. This is not a perfect model and it has to be replaced by the
stochastic volatility model if one wants to properly take into account the volatility smile
shown in the market by option quotes. We will not examine these models here, but refer to
Castagna (2010) for a more in-depth analysis and also for some market approaches to include
the smile in the price of exotic options.
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F IGURE 10.5 Payoff at expiry of a long Vega-weighted butterfly. The ATM straddle is struck at
KATM = 100, the strangle’s base currency call is struck at K25C = 115 and base currency put struck at
K25P = 85. We assume that the strangle’s amount is 1.5 times the straddle for the structure to have a
Vega equal to zero

10.2.1 The Black–Scholes Model

The pricing formula for FX plain vanilla options within the BS economy was derived for
the first time by Black and Scholes (1973), though it was generalized by Merton (1973)
and this generalization is used to evaluate FX options (actually, just for historical precision’s
sake, the application of the BS framework to the FX markets was studied by Garman and
Kohlhagen, 1983).

Assume that at time t we want to price a European FX option expiring at time T; the
spot FX rate is St. Evaluating the present risk-neutral expectation of the terminal payoff (i.e.,
max[ST − K, 0] for a call and max[K − ST , 0] for a put), we have:

(St, t) = Bl(St, t, T , K, Pd(t, T), Pf (t, T), 𝜎,𝜔)

= Pd(t, T)[𝜔F(t, T)Φ(𝜔d1) − 𝜔KΦ(𝜔d2)]
(10.4)

where

d1 =
ln F(t,T)

K
+ 𝜎

2

2
(T − t)

𝜎

√
T − t

d2 = d1 − 𝜎
√

T − t

and Φ(x) is the normal cumulative distribution function calculated in x.6 We are still working
in a deterministic interest rate setting, so that Dn

t ∕Dn
T = Pn(t, T) for n = {d, e}. Formula (10.4)

6The evaluation ofΦ(x) can be performed by means of numerical integration or analytical approximations,
see for example Abramowitz and Stegun (1972).



Foreign Exchange Markets and Products 511

can be used to price call options by setting the parameter 𝜔 = 1; if one needs to price a put
then 𝜔 = −1. The FX spot rate enters into the formula via the FX forward price (outright):

F(t, T) = St
Pf (t, T)

Pd(t, T)

where the prices of the zero-coupon bond maturing at the option’s expiry can be retrieved and
calculated from the money market rates. The parameter 𝜎 is the implied volatility and it is
equal to

𝜎 =

√
∫ T

t 𝜍2
s ds

T − t
.

This is important because it is a tool to express the market prices of the options, since the BS
formula is monotone in 𝜎. In the next sections much room will be devoted to the analysis of
the implied volatility and the implications of market practices related to it. In what follows,
to lighten the notation, we will omit the arguments of the Bl function where this can be done
with no loss of precision.

Although the BS model suffers from many flaws, it is still used very much for quoting
purposes. In the FX options market, option prices are quoted in terms of implied volatilities;
the Delta-hedge to be exchanged between counterparties is calculated according to the BS
formula, and this is true also for the Vega-hedge for exotic options trading. Finally, in many
cases, the model is also employed to run trading books. A detailed discussion on the derivatives
and sensitivities of the BS formula for FX options is given in Castagna (2010).

10.3 THE VOLATIL ITY SURFACE

A stylized fact in the FX market is that options are quoted depending on their Delta, and not
their strike as in other options markets. This basically reflects the sticky Delta rule, according
to which implied volatilities do not vary, from one day to the next, if the related moneyness
remains the same. To state it differently, when the underlying exchange rate moves, and the
Delta of an option changes accordingly, a different implied volatility then has to be inserted
into the corresponding BS formula.

If the sticky Delta rule is adopted, implied volatilities are mapped, for each expiry, with
respect to the Delta of the option. An example of such a method to represent the volatility
smile is given in Table 10.3: for a given expiry, implied volatilities are provided for given
levels of (base currency) put and call Deltas.

TABLE 10.3 Example of sticky Delta matrix

Δ Put Δ Call

10.0% 20.0% 30.0% 40.0% ATM 40% 30% 20% 10%

1m 10.30 10.20 10.10 10.00 9.90 10.00 10.10 10.20 10.30
2m 10.40 10.30 10.20 10.10 10.00 10.10 10.20 10.30 10.40
3m 10.50 10.40 10.30 10.20 10.10 10.20 10.30 10.40 10.50
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TABLE 10.4 Taxonomy of barrier options

Barrier Call/Put Bets

w/r to moneyness standard/reverse –
w/r to the starting FX rate up/down–in&out–first in then out –
number single/double touch/double-touch
cancel/activate in/out /no
monitoring frequency continuous/discrete continuous/discrete
monitoring period /window /window

A method to build the volatility surface, based on market quotes of the ATM STDL and
the 25% Delta RR and VWB, is given in Castagna (2010).

10.4 BARRIER OPTIONS

Barrier options are the most commonly traded kind of exotic options in the FX market. They
are employed in structures devised for hedging the FX risk of the cash-flows of a corporate
and as tools to take exposures on sophisticated views on the FX spot rates by speculators. We
will start with a taxonomy of the different kinds of barrier options, including the touch-type
exotics products in this broad category.

10.4.1 A Taxonomy of Barrier Opt ions

Let us start with the barrier options. The main feature, common to all these kind of exotic
contracts, is the presence of a barrier whose breaching triggers a given event (see Table 10.4).

Definition 10.4.1 Barrier FX option contract. An XXXYYY barrier option is a contract in
all respects equal to an otherwise identical plain vanilla option, the only difference being that
the terminal payoff is contingent on the knocking of a predefined level by the underlying FX
spot rate.7

More specifically, knock-in options pay the terminal value only if during the life of the
contract the barrier is breached at least once, whereas knock-out options pay their value at expiry
only if the barrier level is never touched. If the barrier is set at a level in whose correspondence
the terminal value of the option is out-of-the-money, the contract is considered a standard
barrier, whereas if the terminal value is in-the-money then the contract is denoted as a reverse
barrier. The position of the trigger level with respect to the starting FX rate identifies up or
down barriers.

It is possible to set more barriers, both with a knock-in or a knock-out feature (respectively
double knock-in and double knock-out), but nothing prevents setting one of the barriers as a
knock-in and the other as a knock-out level (knock-in knock-out). Besides, the knock-out level
can be contingent on breaching the knock-in level (first-in-then-out).

7Actually some second-generation barrier options have a payoff contingent on a second FX rate or
another financial variable (external barriers).
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The monitoring frequency of the barrier is generally continuous, although it can be
preferred by some customers to set the monitoring on a discrete frequency, usually on the
basis of a more or less official fixing. For example, for parity involving the euro, the daily
ECB fixing can be used. Less frequent monitoring, such as weekly or monthly observations,
is much less common. With respect to the life of the contract, the barrier can be monitored
from the start-up to a given time or from a given time up to the expiry, or only for a specified
period after the start and before the expiry. In these cases we have window barriers. When the
trigger level is monitored only at the expiry of the contract, the barrier is named at-expiry: it
is rather straightforward to realize that in this case the only meaningful position of the barrier
is where the option expires in-the-money. More convoluted combinations of the observation
period are possible, but extremely rare in the FX market.

The breaching of the barrier may also produce or cancel the payment of a given amount
of money. This kind of contract is often referred to as a bet.

Definition 10.4.2 Bet FX option contract. An XXXYYY bet option is a contract paying a
given amount denominated in one of the two currencies involved in the underlying pair 8

contingent on the knocking of a predefined level by the underlying FX spot rate. Payment may
occur at the time the barrier is breached or at expiry.

In one-touch and double-touch contracts the breaching of the barrier (or, respectively, one
of the two barriers) triggers the payment of the notional amount. The payment may occur at
the very time the level is touched (at-hit) or at the end of the contract (at-expiry). The no-touch
and double-no-touch contracts pay the notional amount if during the life of the contract the
level of the barrier has never been touched by the underlying FX rate (or, respectively, the
levels of the two barriers have never been touched).

10.5 SOURCES OF FX RISK EXPOSURE

FX risk can be defined as the variation in value, in terms of the internal currency, of cash-
flows, assets and liabilities denominated in an external currency. The sources of FX risk can
be identified as follows:

� Cash-flows originated by international trades, for example sales and purchases of goods
and services.

� Purchases of inputs and services employed in the production process paid in a foreign
currency.

� Cash-flows related to financial contracts and obligations.
� Cash-flows deriving from assets and liabilities, denominated in an external currency, and

the value of these in the balance sheet (we include here also the investments in foreign
firms, in production plants located abroad, etc.).

A firm producing goods and/or services typically has exposures originated by international
trades and by the purchase of commodities (e.g., raw materials, energy, etc.) and services, rather

8It is nevertheless possible to have a payment denominated in any other currency.
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than by assets and liabilities, although the third and fourth sources of risk cannot be excluded
totally since they may, for instance, negotiate a loan denominated in a foreign currency. For
a financial institution, FX exposures are typically originated by financial contacts and assets
and liabilities.

To hedge FX risk exposures, first a firm has to forecast:

� The future amount of goods and services exported or imported and the prices at which
they are bought or sold.

� The costs of inputs (e.g., oil) and services and their quantities needed in the production
process.

� The cash-flows and the value related to assets and liabilities and financial contracts and
obligations.

Forecasts unfortunately may not always be precise and often they are based on assumptions
that are more or less easy to define, especially for the first two points. It is beyond the scope of
this work to examine the methodologies and the tools that a firm has at its disposal to perform
such a task, so we assume that the forecasts are given and they are reliable within a reasonable
degree of certainty. On the contrary, it is much easier to predict the cash-flows related to the
third point (cash-flows related to financial contracts), since they may be inferred from the deals’
clauses or somehow guessed with a given level of confidence. In what follows, we dwell on
the FX risk a firm has to cope with, starting with some examples and then examining possible
hedging strategies. We will somewhat arbitrarily name the firms involved in the production
of goods and services as companies and the firms involved in the financial industry as banks.
These names are just used to distinguish the economic operators needing to hedge the FX risk
from those producing the tools to hedge it.

We classify companies operating in the international trade activity into two categories:

� Importers. They buy goods and services from international providers and producers, and
they may be exposed to FX risk if the prices are denominated in an external currency.
A typical example is a European importer that pays goods and/or services in US dollars.
An importing company is short the external currency when the payment dates occur,
since it will have to pay for goods and services in the external currency and will have to
convert the internal currency to cover this shortage. The risk is that the external currency
appreciates more than expected and hence the company will pay more than expected, in
terms of internal currency.

� Exporters. They sell goods and services to international clients and they may be exposed
to FX risk if the prices are denominated in an external currency. Similarly to the example
above, a European exporter sells the goods and/or services it produces at a price set in
US dollars. An exporting company is long the external currency when it receives the
payments, since it will be paid for goods and services in the external currency and will
have to convert them into the internal currency. The risk is that the external currency
depreciates more than expected and hence the company will receive less than expected,
in terms of internal currency.

Generally importing and exporting companies can predict, within a period of 1 year, the
amount of goods and services they will buy or sell, normally on a quarterly basis (or even
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TABLE 10.5 Forecasts of FX exposures in US dollars of an exporting company

Quarter US$ Expected EURUSD EUR

Mar 3,000,000 1.0825 −2,771,363
Jun 5,000,000 1.0875 −4,597,701
Sep 4,000,000 1.0900 −3,669,724
Dec 3,000,000 1.0925 −2,745,995

more frequently) and the paid or received cash-flows denominated in the external currency, so
that it is possible to determine the FX exposures and hence the risks borne.

Example 10.5.1 Assume an exporting company forecasts on 1 January to sell in the next
year a given amount of its production to foreign clients and to receive an amount equal to
US$15,000,000, which is bucketed at the end of each quarter as shown in Table 10.5, where
expected levels of the EURUSD for the same dates are also shown: they could simply be
set equal to the FX forward prices dealing in the market, or alternatively they can be rates
predicted by the company.

The company is long dollars at the end of each quarter and it has to hedge the risk related
to these exposures. Assuming that the company is happy with the expected revenues given the
predicted FX rates, if the US dollar depreciates (i.e., the EURUSD FX spot rate rises), then
the company will lose money since it will convert the cash-flows by selling dollars and buying
euros at higher levels. The amount of euros that have to be bought when converting from US
dollars is shown in the final column of Table 10.5.

Assume now that the company is an importer so that it will pay the cost of the goods
and services bought abroad in US dollars according to its forecasts shown in Table 10.6. The
amount in dollars at risk has now the opposite sign with respect to an exporting company,
since in this case the position is short dollars. The corresponding amount of euros, which is
needed to buy the amounts of US dollars, is shown in the final column. If the EURUSD declines
(i.e., the US dollar appreciates), then the company will lose money since it will need more
euros than expected to buy the US dollar.

Example 10.5.1 can be paradigmatic also for companies that have to pay for production
inputs denominated in external currency. In this case, they have a higher risk to bear since
sometimes the prices of some inputs, such as commodities or energy, are typically less pre-
dictable than the value of the imports and the exports. In fact, while some prices can be set at
a predefined level by an agreement between the provider and the client, some other prices are

TABLE 10.6 Forecasts of FX exposures in US dollars of an importing company

Quarter US$ Expected EURUSD EUR

Mar −7,000,000 1.0825 6,466,513
Jun −4,000,000 1.0875 3,678,161
Sep −5,000,000 1.0900 4,587,156
Dec −1,000,000 1.0925 915,332
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TABLE 10.7 Forecasts of FX exposures in US dollars for a purchase of heating oil over 1 year

Quarter Oil quantity Expected oil price US$ Cost Expected EURUSD EUR Cost

Mar 5,000,000 1.7706 −8,853,000 1.0825 8,178,291
Jun 6,000,000 1.7981 −10,788,600 1.0875 9,920,552
Sep 4,000,000 1.8746 −7,498,400 1.0900 6,879,266
Dec 6,000,000 1.9661 −11,796,600 1.0925 10,797,803

Quantity expressed in gallons; oil price in US dollars per gallon.

just set by all market participants and their volatility has to be considered as a risk of its own,
to be managed as well. Consider the following example.

Example 10.5.2 Assume a European company has to buy, for production purposes, 21 million
gallons of heating oil in the next year, and it plans the purchase as shown in Table 10.7. The
expected oil prices in each quarter can be based on company forecasts or, alternatively, taken
from futures prices (e.g., trading on the NYMEX). The short exposure in US dollars at the end
of the four quarters in this case is a function also of the price of the heating oil, so that the
amount of dollars to hedge is more volatile than the amount of the exposures originated by the
international trades. The FX exposures will change adversely for the company if both the US
dollar appreciates with respect to the euro (i.e., the spot EURUSD declines) and the heating
oil price increases.

From Example 10.5.2 it is clear that a company which has to pay production inputs
denominated in an external currency faces the same risks as an importing company, since it
has to buy the amount of external currency to fulfil the payments. The difference is only in
the higher or lower dispersion of the expected future exposures, which depend on the ability
to accurately predict the quantities and prices.

When prices denominated in the external currency can only be partially controlled by the
company, or are completely out of the company’s control, as may be the case in Example 10.5.2,
then the hedging can be performed in two steps, by combining a forward contract on the
commodity (or energy product)9 and a forward contract on the relevant FX pair. We first
define a forward contract on a commodity.

Definition 10.5.1 Commodity forward contract. The counterparty that is long in a forward
contract will buy at the expiry a given amount of the underlying commodity at the fixed forward
price. The short counterparty will be obliged to sell the amount at the predefined price.

It is beyond the scope of this chapter to examine thoroughly how to derive a forward price
on a commodity. Anyway, for completeness sake we give the formula without entering into
details: let Et be the price of the commodity at time t (denominated in YYY currency units), T

9From now on we will simply use the term ‘commodity’, on the understanding that it means either a
commodity or an energy product.



Foreign Exchange Markets and Products 517

the expiry date of the forward contract, rY
t and bt respectively the instantaneous interest rates

for the YYY currency and the convenience yield. Then, the fair forward price is:

FG(t, T) = Ete
∫ T

t (rY
s −bs)ds

. (10.5)

The price can be derived via a no-arbitrage argument similar to that adopted to define an
FX forward price. If we assume deterministic (although time-dependent) interest rate and
convenience yield, then a forward price is equal to a futures price.

The hedging strategy when prices are out of the control of the company can now be
described as follows:

1. Hedge the price, denominated in external currency, at which the transaction will be
executed via a commodity forward or futures.

2. The resulting FX exposure is now fixed and its value in the internal currency is determined
only by the level of the FX rate. Hedge this exposure by the available FX hedging strategies
(e.g., an FX forward).

In the example above, the company can hedge the price of heating oil by buying futures on
the NYMEX, thus locking in the purchase price at the end of each quarter. The US dollar
exposures are now more stable and can be monitored and hedged separately.

The FX exposures originated by the other sources can be managed in a similar way, so
that at the end we can always come up with a risk configuration corresponding to that of an
importing or exporting company. It is for this reason that in what follows we only refer to
these, and in each case one should refer to their typical exposures as shown in Example 10.5.1.

10.6 HEDGING FX EXPOSURES EMBEDDED IN ENERGY AND
COMMODITY CONTRACTS

Commodity and energy prices are generally expressed in US dollars so that market operators,
whose reference currency is a different one (e.g., the euros), have to deal with FX risk when
they trade.

The FX risk can be hedged in different ways and some features have been devised so as
to make contracts more or less FX risk-free. We define two of them, typically traded amongst
commodity or energy traders.

Definition 10.6.1 Composite commodity forward contract. A counterparty entering into a
long position in a composite forward contract will buy at the expiry a given amount of the
underlying commodity, whose price is denominated in YYY currency units, at the fixed forward
price denominated in XXX currency. The other counterparty, being short, will sell the amount
at the predefined price. The contract is generally, but not necessarily, cash settled.

The composite contract will allow the buyer (or the seller), who is exposed to an FX risk
when trading in the commodity, to remove the FX risk by implicitly setting at the inception
the FX rate of the pair XXXYYY (or YYYXXX, depending on market convention) used to
convert the commodity’s price from YYY units to XXX units.
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Definition 10.6.2 Quanto commodity forward contract. A counterparty entering into a long
position in a quanto forward contract will receive (pay) at the expiry the positive (negative)
difference between the price of the underlying commodity prevailing in the market at that date
and a defined forward price. The price of the underlying commodity and the forward price are
denominated in YYY currency units, but their difference is considered denominated in XXX
as for settlement purposes. The counterparty being short, in turn, will receive (pay) if the
difference is negative (positive). The contract is cash settled.

Given the three types of forward contracts we have defined above (standard, composite
and quanto), we have three possible ways to convert the forward price denominated in a given
currency YYY, into another currency XXX. We analyse these in the next paragraph.

10.6.1 FX Forward Exposures and Conversions

Assume we have a commodity whose price at time t is Et, denominated in the currency YYY
(e.g., US dollars). Its dynamics is given by:

dEt =
(
rY

t − bt

)
Etdt + 𝜍E

t EtdzE
t . (10.6)

The notation is the same as defined above for rY
t and bt, whereas 𝜍E

t is the instantaneous
variance of the process Et. Assume for simplicity that parameters are constant. Let St be the
exchange rate, where the base currency XXX is the internal currency (e.g., euros) and the
numeraire currency YYY is the external currency. We have seen the dynamics for St above.

Remark 10.6.1 We assume that the exchange rate is XXXYYY, so that the internal (for the
trader) currency XXX is the base currency of the pair. This means that the price Et in YYY
for a market operator whose profits/losses are denominated in XXX units is equal to Et∕St in
XXX terms. We have chosen this situation in the following analysis since this is the (rather
common) case of a trader located in Europe who has to deal in the EURUSD pair to convert
commodities’ US dollar prices. Thus we have made things slightly more complicated than the
other possible case when the pair is YYYXXX and the YYY price Et is EtSt in XXX terms.

We buy one unit of the commodity at time T, and we should pay the price ET . Assume we
are market agents whose profits and losses are denominated in XXX currency: we are clearly
exposed to FX risk10 and we may deal with the conversion of the terminal value of the forward
exposure into XXX by trading one of the three forward commodity contracts described, whose
payoffs CFw(T , T) at time T are:

1. Standard conversion at the forward date T by a spot contract traded in T at the exchange
rate ST :

CFw(T , T) = 1
ST

(ET − KYYY ). (10.7)

10Besides, we are surely also exposed to the risk related to the movements of the price of the underlying
commodity.
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2. Conversion via a composite forward contract:

CFwC(T , T) =
(

1
ST

ET − KXXX

)
. (10.8)

The forward price KXXX is in XXX units and set at the inception of the contract.
3. Conversion via a quanto forward contract, expressed in XXX units:

CFwQu(T , T) = 1
S0

(ET − KYYY ) XXX. (10.9)

The forward price KYYY is in YYY units, but the entire payoff is simply considered
denominated in XXX units instead of YYY units. 1

S0
is a multiplier usually set equal to

the FX spot rate at the contract’s inception, although it can be equal to any value.

We examine separately each of the conversion methods and how to obtain them by dealing in
FX and commodity forward contracts.

10.6.1.1 Standard Conversion at Expiry To obtain a standard conversion at expiry, we
simply start the following replication strategy:

� buy at t (today) e−b(T−t) units of the commodity to end up with exactly one commodity
worth ET on the delivery date T;

� sell a zero-coupon bond of face value KYYY maturing at time T (or, alternatively said,
borrow the present value of KYYY ).

The value of the forward contract in YYY units at t is:

CFwY (t, T) = e−b(T−t)Et − KYYY e−rY (T−t)

whereas its value in XXX units at t is obtained by converting it at the current FX rate St:

CFwX(t, T) = 1
St

(e−b(T−t)Et − KYYYe−rY (T−t)).

The commodity forward price that gives a zero value to the contract at inception is: FE(t, T) =
Ete

(rY−b)(T−t). So the value in XXX units at t of the forward contract converted at T at the rate
ST is simply the forward value in YYY units converted into XXX units:

CFwX(t, T) = 1
St

e−rY (T−t)(FE(t, T) − KYYY ). (10.10)

It is easy to check also that the fair forward price converted at expiry is simply the standard
forward price FE(t, T) converted into XXX units by dividing it by St.

The standard conversion implies no protection from the FX risk, as is clear from equa-
tion (10.10), where the dependence of the contract’s value in XXX terms on the FX rate is
manifest. In XXX terms both the commodity’s forward price FE(t, T) and the amount to be
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paid are affected by the FX spot rate. In conclusion, the standard conversion is such that the
sign of the terminal payoff is independent of the terminal FX spot rate, whereas the magnitude
of the payoff depends upon it.

10.6.1.2 Composite Contract To obtain the payoff of a composite contract we need to
implement the following replication strategy:

� a long position in one forward contract on the commodity;
� a long position in a forward contract to buy an amount FE(t, T) YYY and to sell an amount

FE(t, T)∕ST XXX of currencies;
� a long position in a XXX zero-coupon bond with face value FE(t, T)∕FS(t, T);
� a short position in a XXX zero-coupon bond with face value KXXX .

The value of the strategy in XXX units at T is:

(ET − FE(t, T))
1

ST
+
(

1
ST

− 1
FS(t, T)

)
FE(t, T) + FE(t, T)

FS(t, T)
− KXXX =

ET

ST
− KXXX ,

which is exactly the payoff at T that we want to replicate (see equation (10.8)).
By recalling that forward contracts are worth zero at inception, at time t we have:

CFwX
C(t, T) = e−rX (T−t)

(
FE(t, T)

FS(t, T)
− KXXX

)
. (10.11)

FE(t, T) has been derived above, whereas by Ito’s lemma11 we have that 1∕FS(t, T) =
1∕STe[(rX−rY−(𝜎S)2)(T−t)] (where the FX rate’s integrated variance is 𝜎S = 𝜍

S, since we assume
constant parameters), so that the composite forward price making nil the value of the contract
at inception is:

FX
C(t, T) = KXXX = FE(t, T)

FS(t, T)
=

Et

St
e(rX−b−(𝜎S)2)(T−t)

. (10.12)

As is possible to imply from equation (10.11), the composite contract’s value (expressed
in XXX terms) partially depends on the FX spot rate in the sense that the commodity’s forward
price (in XXX terms) is affected by the FX rate, but the strike price KXXX is specified in XXX
terms from the inception and no FX risk is inherent in it. This means that the magnitude and
sign of the terminal payoff both depend on the FX spot rate.

It may appear that the composite contract is not an effective hedging tool as far as FX
risk is concerned. It should be stressed, though, that if we have an opposite position at the
expiry T in the underlying commodity, then its value in XXX terms fully offsets the variable

component of the composite forward contract’s value ( FE(T ,T)
FS(T ,T)

= ET

ST
), and we are left with a

11The FX rate dynamics is commanded by an SDE with a risk-neutral drift 𝜇 = rY − rX . We change
the notation, slightly by adding a superscript S to the instantaneous variance, to distinguish it from the
commodity’s variance, which will be denoted by 𝜎E = 𝜍

E.
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fixed price KXXX to pay or to cash in. Then the composite forward contract offers complete
FX protection when traded for hedging purposes.

10.6.1.3 Quanto Contract The quanto forward contract is more difficult to replicate since
there is no simple buy-and-hold strategy producing a payoff of (1∕S0)ET XXX at expiration.
The only viable strategy is to create a synthetic portfolio of traded assets such that it is always
worth (1∕S0)E XXX, having an exposure of (1∕S0) XXX to the commodity and zero exposure
to the YYY currency. To do that, at each time t < s < T we rebalance the portfolio according
to the following rules:

� invest (1∕S0)Es units of XXX currency;
� borrow (Ss∕S0)Es units of YYY currency;
� buy Ss∕S0 units of the commodity.

Thus, we have to implement a dynamic trading strategy which depends on the movements of
the commodity and on the FX spot rate. This synthetic security is then used in a standard static
strategy:

� a long position in e−rQu(T−t) of the synthetic security, where rQu is the yield granted by
the synthetic portfolio worth (1∕S0)Es (we will discuss this below);

� a short position in an XXX zero-coupon bond with face value KYYY∕S0.

The value of the contract in XXX units at time t is:

CFwX
Qu(t, T) = (1∕S0)(e−rQu(T−t)Et − KXXXe−rX (T−t)). (10.13)

It can be shown (see next remark) that rQu = rX − rY + b − 𝜌𝜎S
𝜎

E (where 𝜎E = 𝜍
E is the

constant commodity’s price variance and 𝜌 is the correlation between the FX spot rate and the
commodity), so that the quanto forward price is:

FX
Qu(t, T) = Ete

(rX−rQu)(T−t)
.

It is easy to check from equation (10.13) that the terminal value of the quanto forward contract
(which is by definition in XXX units) is independent of the FX spot rate. Hence, both the
sign and the magnitude of the quanto forward contract’s payoff are totally protected from the
FX risk.

It may appear that the quanto forward contract is the perfect instrument to hedge the FX
risk related to the commodity’s price denominated in YYY units. Nevertheless, this is not
the case: if we are exposed at the expiry T to the underlying commodity, then its value in
XXX terms depends on the terminal FX spot rate ST used to convert it from YYY units. This
means that if we have an opposite position in a quanto forward its variable part ET XXX is not
offsetting ET YYY = ET∕ST XXX, so that the total position is not immune from FX risk. The
quanto forward is not the best suited contract to hedge forward exposures to the commodity
and it could be more useful for speculation.
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10.6.2 FX-L inked Energy Contracts

As mentioned above, since commodity prices are US dollar denominated and many market
operators have their profits and losses computed in another currency, typical commodity
contracts have features intended to protect the counterparties from FX risk. We will examine
two types of contract common in the commodity and energy markets. These contracts are
generally traded with no FX protection but we will consider the variants with FX protection
clauses.

10.6.2.1 FX-L inked Formula Contract In energy markets the underlying can be a for-
mula that combines, according to given parameters, several distinct products. Then contracts
can be written on this virtual underlying, such as forwards or swaps, and they can be FX linked,
meaning that they include a protection from FX risk. An example of an FX-linked formula
contract for gas is the following:12

Example 10.6.1 FX-linked formula contract
Buyer: A Inc.
Seller: B Inc.
Quantity: 1200.00 GJ/d (gigajoules per day)
Time Unit: Daily
Total Supply Period: From 06:00 hours CET 01 OCT 09 to 06:00 hours CET 01 OCT 10
The contract price P applicable to the quantities will be determined on a monthly basis
according to the formula

Pm = P0 + ΔPm + P1

where

P0 = PAUG08 = 694.555 EURcent∕GJ

P1 = 86.111 EURcent∕GJ

ΔPm = 315.092 × 0.95 × (Im − I0) EURcent∕GJ

I0 = IOCT08 = 2.038

Im = 0.41 ×
GASOILm

21.914
+ 0.46 ×

BTZm

14.107
+ 0.13 ×

BRENTm

18.250

GASOILm is the average, associated with the period elapsing between the ninth and the
first month prior to the update, of the monthly averages of ‘CIF Med Basis Genoa/Lavera
quotations’ of gas oil 02, published by Platt’s Oligram Report, expressed in US dollars per
metric tonne, converted into EUR/kg considering the exchange rate obtained as an arithmetic
average of the daily values of the EUR/US$ exchange rate determined by the ECB in the
supply month.

BTZm is the average, referred to the period elapsing between the ninth and the first month
prior to the update, of the monthly averages of ‘CIF Med Basis Genoa/Lavera quotations’ of
LSFO (low-sulphur fuel oil), published by Platt’s Oligram Report, expressed in US dollars per
metric tonne, converted into EUR/kg considering the exchange rate obtained as an arithmetic

12The example is based on the termsheet of a real contract.
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average of the daily values of the EUR/US$ exchange rate determined by the ECB in the
supply month.

BRENTm is the average, with the period elapsing between the ninth and the first month
prior to the update, of the monthly averages of ‘Spot Crude Assessments International quota-
tions’ of Brent, published by Platt’s Oligram Report–Price Average Supplement, expressed in
US dollars per barrel changed into US dollars per metric tonne with a conversion factor of
7.4 barrels per metric tonne, converted into EUR/kg considering the exchange rate obtained
as an arithmetic average of the daily values of the EUR/US$ exchange rate determined by the
ECB in the supply month.

Basically this contract allows the buyer to fix the price of a gas supply over a 1-year
period according to the formula provided in the contract, by considering the average prices
of the single components during the last 9 months. Additionally, there is a conversion rule to
determine the conversion from US dollars to euros, thus offering FX protection to the buyer:
the exchange rate used is the average of the ECB fixings over the last month. The average
converted to euros is calculated each month and paid to the seller. One may notice that the
averaging rules refer to two different periods for the energy products entering into the formula
and for the EURUSD spot rate.

We would like to know which are the exact exposures to the energy components and to
the EURUSD pair, embedded in the terms above. The best way to analyse the contract is to
focus on a single component, disregarding for the moment all conversions and multiplying
factors. Let Et be one of the energy products entering into the formula (e.g., BRENT), and NE

m
be the number of observations needed for the average AE

m. The average for the month m, at
time t, can be written as:

AE
m(t) = Em

nE
m

NE
m

+ 1
NE

m − nE
m

EQ
⎡
⎢
⎢
⎣

NE
m∑

i=nE
m+1

Eti

⎤
⎥
⎥
⎦

NE
m − nE

m

NE
m

= Em

nE
m

NE
m

+ 1
NE

m

Et

NE
m∑

i=nE
m+1

e(rY−b)(ti−t),

where nE
m is the number of observations for the energy product already occurred and Em is

their average. A similar formula can be written for the FX rate (nS
m is the number of past

observations for the FX spot rate and Sm is their average):

AS
m(t) = Sm

nS
m

NS
m

+ 1
NS

m − nS
m
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⎡
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⎣

NS
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⎥
⎥
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nS
m
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m

+ 1
NS
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NS
m∑
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e(rY−rX )(ti−t)
.

According to the contract’s rule for the conversion into EUR, the energy value in EUR units
entering into the price formula is:

E
X,FC

m (t) = AE
m(t)∕AS

m(t). (10.14)
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This formula resembles slightly the forward price entering into a composite contract, although
in this case the averaging period of the energy product’s formula and of the EURUSD refer to
two different ranges (previous 9 months for the former and previous 1 month for the latter).
Additionally, the very mechanics of the rule imply that no correlation between the energy

prices and the FX spot rate enters into the computation for E
X,FC

m .
We can easily calculate the hedging quantities from the formula above (we still neglect

all multiplying factors of the price formula). The quantity of energy product to hold is the
(reverse sign) Delta with respect to the energy price:

ΔE
t =

𝜕E
X,FC

m (t)

𝜕Et
= 1

AS
m(t)

1
NE

m

NE
m∑

i=nE
m+1

e(rY−b)(ti−t)
.

This quantity indicates the variation of the formula contract’s value, in XXX currency, given
a change in the energy product Et, which is in YYY. If we trade in Et to hedge/replicate the
contract, then we have a P&L in YYY, so the Delta in YYY has to be multiplied by St to be
equivalent to XXX units:

ΔE
t = St

𝜕E
X,FC

m (t)

𝜕Et
=

St

AS
m(t)

1
NE

m

NE
m∑

i=nE
m+1

e(rY−b)(ti−t)
.

If futures are available on the product then we can perform the Delta-hedging by trading
it. Assume the futures price is Ht and that its expiry is at time T ′. As we are working with
constant parameters, we have that the futures price is equal to the forward price, so that:

ΔH
t =

𝜕E
X,FC

m (t)

𝜕Ht
= 𝜕E

X,FC
(t)

𝜕Et

𝜕Et

𝜕Ht
= ΔE

t
eb(T ′−t)

erY (T′−t)
.

The Delta with respect to the FX spot price is:

ΔS
t = 𝜕E

X,FC
(t)

𝜕St
= −

AE
m(t)

(AS
m(t))2

1
NS

m

NS
m∑

i=nS
m+1

e(rY−rX )(ti−t)
.

We are calculating the Delta with respect to the FX spot rate of E
X,FC

(t), which is expressed
in the XXX currency (euros in our example) and is exposed to variations in the XXX currency
(euros): so the Delta indicates the quantity of YYY currency (US dollars) to trade assuming
that the exchange rate is 1∕St. Since in the market the actual traded exchange rate is St that
generates profits and losses into YYY units (US dollars) we convert the Delta variations into
YYY units (US dollars) so as to determine the amount of XXX units (euros) to trade for
hedging purposes:

ΔS
t = −St

AE
m(t)

(AS
m(t))2

1
NS

m

NS
m∑

i=nS
m+1

e(rY−rX )(ti−t)
.
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To make the hedging correct we have to take into account the conversions and multiplying
factors. In the example above, if the energy component is BRENT we multiply each Delta
quantity above by 315.092 × 0.95 × 0.13

18.250
. The total hedge is performed for each component

of the price formula.

10.6.2.2 FX-L inked Swap Contract The buyer of a commodity swap pays a fixed (swap)
price against receiving the price of a commodity at a set of given dates. The difference is
typically netted and the contract is cash settled. The floating price can also be an average of the
commodity’s prices over some specified period and it may offer FX protection by including
predefined conversion rules as in the following example.

Example 10.6.2 FX-linked energy swap contract
Trade Date: 01 Sep 09
Commodity Type: Oil Brent
Total Quantity: 40,000.00 U.S. Bbl/Period
Fixed Price Payer: A Inc.
Floating Price Payer: B Inc.
Effective Date: 01 Sep 2009
Termination Date: 30 Nov 2010

Start Date End Date Payment Date Size BBL Start Date End Date Payment Date Size BBL

01/09/09 30/09/09 07/10/09 2430 01/05/10 31/05/10 07/06/10 2800
01/10/09 31/10/09 06/11/09 2850 01/06/10 30/06/10 07/07/10 2480
01/11/09 30/11/09 07/11/09 3275 01/07/10 31/07/10 06/08/10 2050
01/12/09 31/12/09 08/01/10 3670 01/08/10 31/08/10 07/09/10 1650
01/01/10 31/01/10 05/02/10 3675 01/09/10 30/09/10 30/10/10 1240
01/02/10 28/02/10 05/03/10 3650 01/10/10 31/10/10 05/11/10 820
01/03/10 31/03/10 09/04/10 3590 01/11/10 30/11/10 07/12/10 420
01/04/10 30/04/10 07/05/10 3250

Calculation Period: Each consecutive calendar month, from and including the effective date
to the end including the termination date
Fixed Price: 51 EUR per US barrel
Floating Price: For each determination period, the average of the closing settlement price(s)
on the Intercontinental Petroleum Exchange for the nearby ICE Brent futures contract con-
verted to EUR (referenced below). The daily floating prices will be converted to EUR/BBL using
the daily USD/EUR conversion rate as published by the European Central Bank (currently
Reuters page ‘ecb37’). If, as of any pricing day, a USD/EUR conversion rate is unavailable,
then for the purposes of this transaction the prior business day USD/EUR conversion rate
shall be used to calculate the final daily floating prices. All such conversions shall be rounded
to four decimal places. The final floating price to be rounded to three decimal places
Commodity Reference Price: OIL-BRENT-ICE
Currency: USD
Roll Adjustment: In order to use the correct floating price quotations, the nearby month
quotation specified in the floating price will be used except for the expiration date of the
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cash commodity’s underlying delivery month’s futures contract. On such a date the applicable
pricing quotation will be rolled to the following month’s (the next nearby) quotation
Settlement Date(s): The last trading day of each determination period
Payment Date(s): 5 TARGET business days after each settlement date

The contract has a duration of 13 months and each month the reference size of the
underlying Brent oil is variable. The fixed price is set in EUR, although the oil price is in USD.
For this reason, a conversion rule is also provided for the floating price: this is computed, at
the end of each calculation period, as the average of the previous month’s (futures settlement)
prices converted into EUR every day at the ECB fixing for the EURUSD. The payments are
netted and the contract is cash settled.

We analyse the contract focusing on a single swaplet (in our case it is the payment referring
to a 1-month period) assuming a unit notional amount: Nm is the number of observations needed

for the average E
X,SC

m . It is easy to check that the FX-linked swaplet is an average of composite
forward contracts, as examined above. Actually the average for the month m, at time t, can be
written as:

E
X,SC

m (t) = Em
nm

Nm
+ 1

Nm − nm
EQ

[ Nm∑

i=nm+1

Eti
∕Sti

]
Nm − nm

Nm

= Em
nm

Nm
+ 1

Nm

Et

St

Nm∑

i=nm+1

e(rX−b−(𝜎S)2)(ti−t),

(10.15)

where nm is the number of observations already occurred and Em is their average.
We can calculate the hedging quantities from equation (10.15). The quantity of energy

product to hold is the (reverse sign) Delta with respect to the energy price (considering also
the fact that it has to be multiplied by St, see above the Delta for the formula contract):

ΔE
t =

𝜕EX,SC
m (t)

𝜕Et
= 1

Nm

Nm∑

i=nm+1

e(rX−b−(𝜎S)2)(ti−t)
.

If futures Ht are available on the product with expiry T′, then we have that ΔH
t = ΔE

t
eb(T′−t)

erY (T′−t)
.

The Delta with respect to the FX spot price, in the standard (according to market conven-
tions) XXX amount, is:

ΔE
t =

𝜕EX,SC
m (t)

𝜕St
= − 1

Nm

Et

St

Nm∑

i=nm+1

e(rX−b−(𝜎S)2)(ti−t)
.

Hence we have the amounts of underlying asset (in the contract in the example: Brent oil) and
of the XXX currency to trade for hedging purposes, clearly each of them multiplied by the
notional amount. The entire swap is hedged by summing over all individual swaplets.

We present an example of dynamic hedging of a formula contract and a swap contract.

Example 10.6.3 We consider two stylized contracts: a formula contract and a swap contract,
whose underlying is the BRENT oil futures; each contract’s payoff is based on the average
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of the BRENT price, calculated over a period of 1 month (22 business days), converted into
euros. The rule to convert the USD denominated average price into a EUR denominated price
is the same as we have analysed above; we assume that each contract is based on the average
price calculated over the same period.

For simplicity, and without any loss of generality, we assume no conversion factors both
in the formula and swap price and we set interest rates and convenience yield equal to zero,
whereas the volatility of the EURSUD spot rate is 10% on a yearly basis: we need this to
calculate the Delta with respect to the FX rate.

The dynamic replica/hedging is performed by setting up a portfolio of an amount of cash
equal to the contract’s fair price at inception and a continuously (actually, daily in our case)
updated quantity of BRENT and EUR/USD spot contracts. The time series we use are from
market prices for the month of August 2009 and they are shown in Table 10.8 with summary
statistics regarding their average, volatility (expressed on a yearly basis) and correlation.

TABLE 10.8 Time series for EURUSD spot rate, inverse of the EURUSD, Brent oil in US dollars
and converted into euros

Observation no. EURUSD USDEUR BRENT Oil BRNT/E-U

1 1.4342 0.6973 69.6500 48.5637
2 1.4232 0.7026 67.7300 47.5899
3 1.4287 0.6999 67.6600 47.3577
4 1.4259 0.7013 67.1200 47.0720
5 1.4307 0.6990 66.8200 46.7044
6 1.4336 0.6975 66.5300 46.4076
7 1.4519 0.6888 69.4200 47.8132
8 1.4573 0.6862 69.8300 47.9174
9 1.4591 0.6854 69.8600 47.8788

10 1.4576 0.6861 67.6900 46.4394
11 1.4623 0.6839 67.4400 46.1191
12 1.4636 0.6832 67.3500 46.0167
13 1.4701 0.6802 71.6700 48.7518
14 1.4715 0.6796 71.5500 48.6239
15 1.4724 0.6792 71.3200 48.4379
16 1.4677 0.6813 68.6900 46.8011
17 1.4781 0.6765 70.5300 47.7167
18 1.4775 0.6768 67.9900 46.0169
19 1.4684 0.6810 64.8200 44.1433
20 1.4676 0.6814 65.1100 44.3649
21 1.4616 0.6842 65.5400 44.8413
22 1.4581 0.6858 65.4900 44.9146

Average Yr. Volatility
EURUSD 1.4555 8.66%
USDEUR 0.0008 8.66%
BRENT Oil 68.1732 49.38%

Corr BRNT U-E −8.16%
Covar BRNT U-E −0.35%
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TABLE 10.9 Performance of the dynamic hedging/replica of a formula contract

Observation Delta FX Amount P&L FX P&L FX Delta P&L Oil P&L Oil
no. EUR USD USD EUR Oil USD EUR

1 −48.5637 69.6500 1.0000
2 −45.4534 64.6892 0.5342 0.3754 0.9542 −1.9200 −1.3491
3 −43.1121 61.5942 −0.2500 −0.1750 0.9091 −0.0668 −0.0468
4 −40.7326 58.0806 0.1207 0.0847 0.8634 −0.4909 −0.3443
5 −38.3659 54.8901 −0.1955 −0.1367 0.8185 −0.2590 −0.1810
6 −36.0734 51.7148 −0.1113 −0.0776 0.7733 −0.2374 −0.1656
7 −34.8165 50.5500 −0.6601 −0.4547 0.7304 2.2350 1.5393
8 −32.7278 47.6942 −0.1880 −0.1290 0.6855 0.2994 0.2055
9 −30.5438 44.5665 −0.0589 −0.0404 0.6401 0.0206 0.0141

10 −27.8421 40.5827 0.0458 0.0314 0.5941 −1.3890 −0.9529
11 −25.6408 37.4945 −0.1309 −0.0895 0.5492 −0.1485 −0.1016
12 −23.4883 34.3774 −0.0333 −0.0228 0.5037 −0.0494 −0.0338
13 −21.9799 32.3127 −0.1527 −0.1039 0.4590 2.1759 1.4801
14 −19.7713 29.0934 −0.0308 −0.0209 0.4133 −0.0551 −0.0374
15 −17.5562 25.8498 −0.0178 −0.0121 0.3675 −0.0951 −0.0646
16 −15.1596 22.2498 0.0825 0.0562 0.3209 −0.9666 −0.6586
17 −12.3256 18.2185 −0.1577 −0.1067 0.2765 0.5905 0.3995
18 −10.8483 16.0284 0.0074 0.0050 0.2303 −0.7022 −0.4753
19 −8.5723 12.5875 0.0987 0.0672 0.1833 −0.7301 −0.4972
20 −6.4304 9.4372 0.0069 0.0047 0.1374 0.0532 0.0362
21 −4.2751 6.2484 0.0386 0.0264 0.0913 0.0591 0.0404
22 −2.1328 3.1098 0.0150 0.0103 1.5302 −0.0046 −0.0031

Total −1.0372 −0.7079 −1.6811 −1.1961

Initial Cash 48.5637 EUR
P&L + Initial Cash 46.6597 EUR
Contract Payoff 46.8406 EUR

The performance of the formula contract dynamic replica/hedging is shown in Table 10.9.
It is started by an amount of cash equal to the fair contract price at inception (since we are
assuming zero interest rates and convenience yield, this is simply equal to the price of the
Brent oil converted into euros). It is easy to check that the dynamic hedging strategy yields a
final result slightly lower than the actual payoff of the contract. We will examine in the next
paragraph the sources of this replication error.

The dynamic replica/hedging performance is also tested for a swap contract and the
results are given in Table 10.10. Also in this case the dynamic strategy underperforms slightly
with respect to the final contract payoff: the reasons for this are also examined in the next
paragraph.

10.6.2.3 Sources of Error in Dynamic Repl ica/Hedging The dynamic replica/hedging
we showed in the previous example is not perfect due to the second-order derivatives, Gamma
and cross-Gamma, of the contracts.
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TABLE 10.10 Performance of the dynamic hedging/replica of a swap contract

Observation Delta FX Amount P&L FX P&L FX Delta P&L Oil P&L Oil
no. EUR USD USD EUR Oil USD EUR

1 −48.5441 69.6220 0.9996
2 −45.4093 64.6266 0.5340 0.3752 0.9542 −1.9192 −1.3485
3 −43.0368 61.4867 −0.2498 −0.1748 0.9088 −0.0668 −0.0468
4 −40.6391 57.9473 0.1205 0.0845 0.8633 −0.4907 −0.3442
5 −38.2003 54.6532 −0.1951 −0.1363 0.8179 −0.2590 −0.1810
6 −35.8495 51.3938 −0.1108 −0.0773 0.7725 −0.2372 −0.1655
7 −34.7632 50.4728 −0.6560 −0.4519 0.7271 2.2325 1.5376
8 −32.6622 47.5986 −0.1877 −0.1288 0.6816 0.2981 0.2046
9 −30.4608 44.4453 −0.0588 −0.0403 0.6362 0.0204 0.0140

10 −27.4352 39.9895 0.0457 0.0313 0.5908 −1.3806 −0.9472
11 −25.1506 36.7777 −0.1289 −0.0882 0.5453 −0.1477 −0.1010
12 −23.0039 33.6685 −0.0327 −0.0223 0.4999 −0.0491 −0.0335
13 −22.1561 32.5717 −0.1495 −0.1017 0.4545 2.1596 1.4690
14 −19.8885 29.2660 −0.0310 −0.0211 0.4090 −0.0545 −0.0371
15 −17.6115 25.9312 −0.0179 −0.0122 0.3636 −0.0941 −0.0639
16 −14.8896 21.8534 0.0828 0.0564 0.3181 −0.9562 −0.6515
17 −13.0124 19.2336 −0.1549 −0.1048 0.2727 0.5854 0.3960
18 −10.4576 15.4511 0.0078 0.0053 0.2273 −0.6927 −0.4688
19 −8.0256 11.7848 0.0952 0.0648 0.1818 −0.7204 −0.4906
20 −6.0496 8.8784 0.0064 0.0044 0.1364 0.0527 0.0359
21 −4.0764 5.9581 0.0363 0.0248 0.0909 0.0586 0.0401
22 −2.0416 2.9768 0.0143 0.0098 0.0455 −0.0045 −0.0031

Total −1.0302 −0.7031 −1.6654 −1.1853

Initial Cash 48.5441 EUR
P&L + Initial Cash 46.6557 EUR

Contract Payoff 46.8382 EUR

For the formula contract we calculate the Gamma and cross-Gamma as the first and mixed
derivatives of the ‘pure’ Deltas (i.e., without multiplying them by the FX spot rate, see the
computations and the discussion above):
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Example 10.6.4 With reference to the example of dynamic replica/hedging 10.6.3, we have
that the FX Gamma, at the beginning of the contract, has the following values for different
levels of the EURUSD rate:

EURUSD
1.4042 1.4142 1.4242 1.4342 1.4442 1.4542 1.4642

50.31 49.25 48.22 47.21 46.25 45.29 44.37

The Gamma is also not constant as time goes by. The time evolution of the FX Gamma, as the
number of observations increases, is:

Days
1 10 20

47.21 13.23 0.3638

The cross-Gamma at the beginning of the period and its time evolution is:

EURUSD
1.4042 1.4142 1.4242 1.4342 1.4442 1.4542 1.4642

−1.42 −1.41 −1.40 −1.39 −1.38 −1.38 −1.37

Days
1 10 20

−1.39 −0.41 −0.01

For the swap contract we have that Gamma and cross-Gamma, computed w.r.t. the ‘pure’
Deltas, are:
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Example 10.6.5 We still refer to Example 10.6.3: we have that the FX Gamma of an FX-linked
swap contract, at the beginning of the period, has the following values:

EURUSD
1.4042 1.4142 1.4242 1.4342 1.4442 1.4542 1.4642

35.31 34.81 34.32 33.85 33.38 32.92 32.47
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The time evolution of the FX Gamma, as the number of observations increases, is:

Days
1 10 20

33.85 18.82 4.12

The cross-Gamma at the beginning of the period and its time evolution is:

EURUSD
1.4042 1.4142 1.4242 1.4342 1.4442 1.4542 1.4642

−0.71 −0.71 −0.70 −0.70 −0.69 −0.69 −0.68

Days
1 10 20

−0.70 −0.41 −0.09

Remark 10.6.2 It should be stressed that the Gamma and the cross-Gamma of both the
formula and the swap contracts are different from zero because we are working in the case
where the energy product has a price in YYY units and this has to be converted into XXX units
via an FX rate XXXYYY: E∕S. If the conversion involves an FX rate whose base currency is
YYY, then the converted price is E × S: this case would yield zero Gamma also with respect to
the FX rate and clearly zero cross-Gamma as well. Such a situation would occur, for example,
if the trader has a P&L in Japanese yen and the FX rate used to convert the energy price from
US dollars to yen is the USDJPY.

Remark 10.6.3 The FX conversion provided for by the two contracts is such that while the
formula contract shows no dependence on the volatility parameters associated with the energy
price or the FX spot rate, the swap contract depends on the volatility of the exchange rate, as is
manifest from equation (10.15). It should be noted, though, that the impact of the FX volatility
on the swap price is rather limited, since it enters only in the exponential and it is multiplied
by the time to expiry. Besides, the dependence would disappear should we be working in
the situation where a YYYXXX FX rate is used for the conversion (see the considerations in
Remark 10.6.2).

10.6.2.4 Hedging the Formula with the Swap Contract It may happen in trading activ-
ity that you have a book containing both swap contracts and formula contracts (or even other
kinds of more exotic contracts). If both types of contract have the same underlying commodity
and offer protection against the same FX pair, it is interesting to analyse how a market operator
may hedge one of them (say the formula contract) with the other one (the energy swap). To that
end we assume a simplified situation where both contracts have the same averaging periods
associated with the energy product and the FX. We also consider the formula contract with
a single component. Needless to say this is not a typical situation, as the examples above
show, but it allows us to point out the sources of hedging mismatch between the two types of
contract. The analysis can readily be extended to incorporate increased complexity.
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From the analysis above, we can infer that the (single-period, single-component) formula
contract is a payoff of the kind13

E
X,FC

m (T) = EQ[f (E)]
1

EQ[f (S)]
,

where f (x) is the average rule (basically the number of periods to consider for the average).
A (single-period) swap contract, with all other contract features equal to the formula

contract, is a payoff of the kind

E
X,SC

m (T) = EQ[f (E∕S)].

Now, if we try to hedge the formula contract with a swap contract, we will experience hedging
errors due to two causes; the first a relationship of probability theory

EQ[f (E∕S)] = EQ[f (E)]EQ
[

1
f (S)

]
+ cov[f (E), 1∕f (S)]

and the second Jensen’s inequality
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We can write the inequality above as EQ
[ 1

f (S)

]
= 1

EQ[f (S)]
+ 𝜖, where 𝜖 is a positive quantity.

Considering these two relationships, we can then rewrite the formula contract price as

E
X,FC

m (T) = EQ[f (E)]EQ
[

1
f (S)

]
− EQ[f (E)]𝜖.

We substitute in the swap price formula and finally get

E
X,SC

m (T) = E
X,FC

m (T) + EQ[f (E)]𝜖 + cov[f (E), 1∕f (S)]. (10.16)

The hedging performance can easily be inferred by inspection of (10.16):

� If the realized covariance between the average of the inverse FX spot rate and the average
of the energy product E is zero (cov[f (E), 1∕f (S)] = 0), then the swap contract over-
hedges the formula contract by the additive factor EQ[f (E)]𝜖, whose magnitude depends
on the actual average of the inverse FX spot rate S and of the energy product E.

� If the realized covariance between the average of the inverse FX spot rate and the average
of the energy product E is positive (cov[f (E), 1∕f (S)] > 0), then the swap contract over-
hedges the formula contract.

13We do not consider any conversion and multiplying factors.
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� If the realized covariance between the average of the inverse FX spot rate and the average
of the energy product E is negative (cov[f (E), 1∕f (S)] < 0), then the swap contract under-
hedges, perfectly hedges or over-hedges the formula contract if, respectively, EQ[f (E)]𝜖 <
|cov[f (E), 1∕f (S)]|, EQ[f (E)]𝜖 = |cov[f (E), 1∕f (S)]| or EQ[f (E)]𝜖 > |cov[f (E), 1∕f (S)]|.

After this brief review of the methods to deal with the FX exposure embedded in com-
modity contracts we examine a number of structures specifically designed to hedge an FX
exposure, in a way completely independent of the source. Recalling what we have said before,
it is always possible to hedge the forward commodity exposure with a standard commodity
forward contract and then manage the forward FX exposure independently. The following
structures can be traded when this strategy is adopted.

10.7 TYPICAL HEDGING STRUCTURES FOR
FX RISK EXPOSURE

In this section we examine several alternative structures to hedge FX exposures. For each
of them we provide the building blocks (i.e., plain vanilla or exotic options) underlying it; a
description of the payoff and the different events affecting it, the specific needs it satisfies,
the main variations if they exist, a practical example and finally the pros and the cons. In the
examples, the hedging performance of the different structures will be related to an FX exposure
revalued at the FX forward rate traded in the market for the relevant expiry: this allows us to
appraise the structure’s profits and losses compared with the simplest possible hedge operated
by an FX forward contract. We assume that the (either exporting or importing) company will
hedge its FX risks by trading with a bank, that will produce and sell the structures.

We would just like to stress that the list below of possible hedging strategies is not at
all exhaustive. Many other structures can be devised, with a higher degree of complexity and
also with other kinds of exotic options involved. We chose the strategies below because they
are the most commonly proposed by banks to their customers and also because in most cases
they do meet the needs of customers in hedging FX risk. They can be considered evergreen,
compared with others that are linked more to fads and contingent economic situations.

10.7.1 Col lar Pla in Vani l la

10.7.1.1 Descript ion The plain vanilla collar is the name usually adopted in the non-
professional market for risk-reversal. As such, when one buys this structure, there is a long
(buy) position of a base currency call option, struck at level K1 and a simultaneous short (sell)
position of a put option, struck at level K2 (< K1). Both options expire on the same date and
have the same notional amount. If one is selling the structure, the bought option should be
sold and the sold one should be bought.

The structure is typically negotiated at zero cost, so that no premium payment is due by
either party at inception. To make this possible, strike levels have to be higher (K1) and lower
(K2) than the forward rate at the expiry date. The payoff at maturity of a long (short) collar
can be identified by the following events related to the terminal value of the FX spot rate ST :

� If the underlying FX spot rate is lower than K2 (ST < K2), then the company buys (sells)
the underlying base currency notional amount at K2.
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� If the underlying FX spot rate is between K2 and K1 (K2 < ST < K1), then no obligation
exists between the bank and the company.

� If the underlying FX spot rate is higher K1 (ST > K1), then the company buys (sells) the
underlying base currency notional amount at K1.

10.7.1.2 Needs the Structure Sat isf ies The plain vanilla collar is specifically suited
to exporting companies that wish to reduce their exposure to FX risk related to the future
incoming foreign denominated cash-flows. In this case, the profits and losses originating from
the hedged position have a lower and an upper limit determined by the options’ strikes (K1 and
K2). Clearly a short collar position (i.e., short the base currency call option and long the base
currency put option) matches the needs of an importing company that has to hedge a future
outgoing cash-flow (the opposite of the exporting company’s one).

10.7.1.3 Main Variat ions If the strike levels are inverted (K1 < K2), that is equivalent
to saying that both options building the structure are ITM at the inception of the contract,
one may get the same result as before but the resulting hedged position is different from the
standard case. In fact, the hedged position for an exporting company will be equivalent to a
long base currency call spread (compared with the long put spread). Similarly, the hedged
position of an importing company will be a long put spread in the inverted collar (compared
with the long call spread).

Example 10.7.1 Assume that an exporting company wants to hedge its future FX exposure
in 3 months in EURUSD, since it will receive US dollars (and hence it will have to buy euros).
It opens a long position in a plain vanilla collar, with the following conditions.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put, strike K1 = 1.1150, expiring in 3 months.
� Short position: EUR put USD call strike K2 = 1.0450, expiring in 3 months.

The payoff at expiry of the collar is shown in Figure 10.6. No profit or loss occurs within
the range delimited by the two strike levels. The company starts earning a profit above 1.1150
and on the opposite side it starts losing money below 1.0450. In Figure 10.7 the payoff at
expiry of the hedged position is shown. It is easily recognizable, with the profile being similar
to that of a long EUR put USD call spread position.

0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22

FX spot rate

Payout
at expiry

F IGURE 10.6 Payoff at expiry of a long plain vanilla collar
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F IGURE 10.7 Payoff at expiry of an FX spot exposure of an exporting company
hedged by a plain vanilla collar payoff. Red dotted line: FX exposure. Blue dotted line:
collar payoff. Green line: hedged position

Assume now that the same exporter wants to hedge its position by a collar with inverted
strikes, at the following conditions.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put, strike K1 = 1.0450, expiring in 3 months.
� Short position: EUR put USD call strike K2 = 1.1150, expiring in 3 months.

The payoff at expiry of such a variation of the plain vanilla collar is shown in Figure 10.8: the
main difference with respect to the standard collar case is that within the range delimited by
the two strikes, the profits and losses are not nil. The payoff resulting from the hedged position
is shown in Figure 10.9 and it is manifestly similar to a EUR call USD put spread position
this time.

0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22

FX spot rate

Payout
at expiry

F IGURE 10.8 Payoff at expiry of a long inverted strike plain vanilla collar
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F IGURE 10.9 Payoff at expiry of an FX spot exposure of an exporting company hedged by an
inverted strike plain vanilla collar. Red dotted line: FX exposure. Blue dotted line: collar payoff.
Green line: hedged position

The preference to hedge by means of a standard collar or an inverted strike collar depends
on the counterparty’s expectations on the future levels of the FX spot rate.

10.7.1.4 Pros and Cons

� The plain vanilla collar, compared with a simple (buy or sell) forward contract, allows the
buyer (or seller) to keep some profits arising from a favourable variation of the FX spot
rate, but the hedging operates at levels worse than the FX forward rate at inception if the
movement is adverse.

� The strategy can be traded at zero cost (though this is not required and some combinations
of strikes entailing a net premium payment, due by the bank or by the company, can be
negotiated as well).

� When one observes the profit and loss profile at expiry of an exporting company’s hedged
position (i.e., long the collar and an incoming (outgoing) numeraire (base) currency cash-
flow), it is similar to a long position in a put spread, which allows limited profits when the
base currency depreciates and limited losses when it appreciates. The hedged position of
an importing company (i.e., short the collar and an outgoing (incoming) numeraire (base)
currency cash-flow), on the contrary, is similar to a call spread, giving the company the
possibility to earn limited profits if the base currency appreciates, with limited losses in
the opposite case.

10.7.2 Leveraged Forward

10.7.2.1 Descript ion A long leveraged forward is built from a long (buy) position in a
base currency call option and a short (sell) position in a base currency put option, both struck
at the same level K but with a different base currency notional amount equal to, respectively,
N1 and N2, with N1 < N2. Since the structure is usually traded at zero cost, the strike level
will be lower the greater is the amount of the sold option. A short leveraged forward is built
by reversing the bought (sold) option to a sold (bought) one. The strike in this case will be
higher, the greater is the amount of the sold option.
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The following events may occur at the expiry of a long (short) leveraged forward:

� If the terminal FX spot rate is lower than the strike (ST < K), the company buys (sells)
the amount N2 of base currency at a level equal to K.

� If the terminal FX spot rate is higher than the strike (ST < K), the company sells (buys)
the amount N1 of base currency at a level equal to K.

10.7.2.2 Needs the Structure Sat isf ies The leverage forward is suitable for export-
ing/importing companies that need to attain a terminal FX spot rate more favourable than the
FX forward rate prevailing in the market at the inception of the contract. This is counterbal-
anced by an asymmetric hedging of the FX spot exposure, which is a function of the difference
between the two notional amounts N1 and N2.

The future exposure of the company is normally between the two amounts N1 and N2.
In one extreme case, if the future cash-flow is equal to N1, then the buyer (seller) of the
structure has a perfect hedge against upward (downward) movements of the FX spot rate, but
they are exposed to downward (upward) movements of the FX spot rate by an amount equal
to (N2 − N1). In the other extreme case, if the future cash-flow is equal to N2, then they are
partially hedged against a rising (declining) FX spot rate by an amount N1 < N2, but they have
no exposure to a declining (rising) FX spot rate. An exposure lower than N2 and greater than
N1 will produce a mixed result between the two extreme cases.

Example 10.7.2 An exporting company hedges its future FX exposure in 3 months, when it
will have to buy N1 EUR against USD, by a long position in a leveraged forward as follows.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put strike K = 1.0600 expiring in 3 months, with a base

currency notional amount N1.
� Short position: EUR put USD call strike K = 1.0600, expiring in 3 months, with a base

currency notional amount N2 = 2 × N1.

The payoff at expiry of the leveraged forward is shown in Figure 10.10: it is like a long position
in the EURUSD opened at the level K, for an asymmetric amount equal to N1 when the FX spot
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F IGURE 10.10 Payoff at expiry of a long leveraged forward
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F IGURE 10.11 Payoff at expiry of an FX spot exposure of an exporting company hedged
by a leveraged forward. Red dotted line: FX exposure. Blue dotted line: leveraged forward
payoff. Green line: hedged position

rate is above the strike (ST > K) and the double when it is below (ST < K). In Figure 10.11
the payoff at expiry of the hedged position is shown: its profile resembles a short EUR put
USD call position.

10.7.2.3 Pros and Cons

� The leveraged forward allows the company to fix a spot rate at maturity better than the
market forward rate for the same date, at the cost of an asymmetric hedge of the exposure.

� The structure can be (not necessarily) dealt at zero cost.
� If we examine the profit and loss profile at expiry of the company’s hedged position,

we observe that for an exporter it is similar to a short contract in a (base currency) put
option if the notional amount of the FX exposure is equal to N1, or to a short (base
currency) call option if the FX exposure is equal to N2. For an importer, analogous
considerations can be made, with the position this time being similar but with a short call
option profile.

10.7.3 Part ic ipat ing Forward

10.7.3.1 Descript ion A long (short) participating forward is built from a long position
in a base currency call (put) option and a short position in a base currency put (respectively,
call) option, both expiring on the same date and struck at the same level K, but with different
base currency notional amounts N1 and N2, with N1 > N2. Since the structure is usually traded
at zero cost, the strike K will be higher (lower, for a short position in the structure), the greater
is the notional amount of the bought option.

At expiry the following events may occur for a long (respectively, short) position in a
participating forward:

� If the terminal FX spot rate is lower than the strike (ST < K), then the company buys
(respectively, sells) the base currency notional amount N2 at a level K.

� If the terminal FX spot rate is higher than the strike (ST > K), then the company buys
(respectively, sells) the base currency notional amount N1 at a level K.
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10.7.3.2 Needs the Structure Sat isf ies This structure is suggested for those compa-
nies wishing to eliminate their FX risk related to future cash-flows, yet keep open opportunities
to gain profit from favourable movements of the FX spot rate, at least for a fraction of the
original FX exposure.

Example 10.7.3 Assume an exporting company wants to hedge its future FX exposure,
short N1 EUR against USD, in 3 months with a long position in a participating forward
as follows.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put strike K = 1.0900 expiring in 3 months, with a base

currency notional amount N1 = 2 × N2.
� Short position: EUR put USD call strike K = 1.0900, expiring in 3 months, with a base

currency notional amount N2.

The payoff at expiry of the participating forward is shown in Figure 10.12: it is very
similar to a leveraged forward in that it is like a long position in the EURUSD opened at
the level K, for an asymmetric amount equal to N2 when the FX spot rate is below the strike
(ST < K) and the double when it is above (ST > K). In Figure 10.13 the payoff at expiry of the
hedged position is shown: its profile resembles a long EUR put USD call position.

Assume now that the same company wants to hedge its FX exposure in 3 months when it
has to buy N2 euros against US dollars. The payoff of the hedged position is in Figure 10.14
and it is equivalent to one of a EUR call USD put option.

10.7.3.3 Pros and Cons

� The participating forward forces the company to fix an FX spot rate worse than the FX
forward rate prevailing in the market for the same expiry. This cost is compensated by a
residual positive exposure to favourable variations of the underlying FX rate.

� The strategy is usually zero cost, but it is possible for the company to even receive a net
premium.
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F IGURE 10.12 Payoff at expiry of a long participating forward
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F IGURE 10.13 Payoff at expiry of an FX spot exposure (equal to the sold EUR put USD call
notional amount) of an exporting company hedged by a participating forward. Red dotted line: FX
exposure. Blue dotted line: participating forward payoff. Green line: hedged position

� If we examine the profit and loss profile of the hedged position at expiry, it is immediately
obvious that for an exporter (importer) it corresponds to that of a long base currency put
(respectively, call) option in the case that the notional amount of the FX exposure is equal
to N1, or to one of a base currency call (put) in case the FX exposure is equal to N2.

10.7.4 Knock-Out Forward

10.7.4.1 Descript ion A long (short) position in a knock-out forward is set up by buying
a base currency call (put) option and simultaneously selling a base currency put (respectively,
call) option, struck at the same level K and both with a knock-out barrier set at the same value
B above (below) the strike level, B > K (B < K). The base currency notional amount is equal
for both options. As usual, since the structure is meant to be sold at zero cost, the enhancement
of the buying (selling) price of the base currency amount at expiry, with respect to the forward
price prevailing in the market at inception, is greater, the nearer to the starting FX spot rate
the barrier level is set.
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F IGURE 10.14 Payoff at expiry of an FX spot exposure (equal to the bought EUR call USD put
notional amount) of an exporting company hedged by a participating forward. Red dotted line: FX
exposure. Blue dotted line: participating forward payoff. Green line: hedged position
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At the expiry of the contract, for a long (respectively, short) position in the knock-out
forward, the following events may occur:

� If the underlying FX spot rate never breaches the barrier level B until expiry, then
the company buys (respectively, sells) the base currency notional amount at the strike
price K.

� If the underlying FX spot rate breaches the barrier level B at least once, any time up until
the expiry of the contract, then the company cannot buy (sell) the base currency amount
at strike level K, but it will have to trade at the market level prevailing on the maturity
date. Hence it will be exposed to the original FX risk.

10.7.4.2 Needs the Structure Sat isf ies The long knock-out forward is suitable for
exporting companies that wish to appreciably enhance the terminal buying price with respect
to the forward rate prevailing at the inception of the contract. This remarkable enhancement
is counterbalanced by the risk of losing the hedge if the barrier level is breached at any time
during the life of the contract. The short knock-out forward satisfies the same needs, with the
same counterbalancing risks, for importing companies.

Example 10.7.4 An exporting company wants to hedge its future FX exposure, short EUR
against USD, in 3 months with a long position in a knock-out forward as follows.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put strike K = 1.0600 expiring in 3 months, with a knock-out

barrier at B = 1.1000.
� Short position: EUR put USD call strike K = 1.0600, expiring in 3 months, with a knock-

out barrier at B = 1.1000.

The payoff at expiry of the knock-out forward is shown in Figure 10.15: the sudden drop
in gains above the barrier level 1.1000 is a consequence of the fact that after the barrier is
touched, the company has no right to buy euros at 1.0600. Actually, we should consider that
if the structure has been knocked-out before the expiry date, the gains in the range defined
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F IGURE 10.15 Payoff at expiry of a long knock-out forward
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F IGURE 10.16 Payoff at expiry of an FX spot exposure of an exporting company hedged by a
knock-out forward. Red dotted line: FX exposure. Blue dotted line: knock-out forward payoff.
Green line: hedged position

by the strike and barrier (i.e., between 1.0600 and 1.1000), do not exist. In Figure 10.16, we
observe the the payoff profile at expiry of the hedged position: the profit is limited and above
the barrier 1.1000 it drops to negative levels, that is a loss is incurred, due to the vanishing
of the protection. The same considerations as above also apply here: if the knock-out occurs
before the expiry, the profit below the barrier level 1.1000 does not exist and the company is
just fully exposed to the original FX risk.

10.7.4.3 Main Variat ions

� The knock-out forward can be designed so that the monitoring of the barrier level breach-
ing is not continuous (i.e., at any time until expiry) but discrete according to a predefined
schedule. As an example, rather common in reality, we may consider, for the FX spot rate
against the euro, the daily European Central Bank fixing (the so-called ECB37 fixing)
and monitor the long (short) position in the structure as follows:
– If the daily ECB37 fixing never prints a value above (below) the barrier level, every

day until the expiry of the contract, then the company buys (sells) the euro notional
amount at the strike level K.

– If the daily ECB37 fixing prints a value above (below) the barrier level, at least one day
up until the expiry of the contract, then the company loses the right to buy (sell) at the
strike level K and in this case it will have to trade at the FX spot rate prevailing on the
maturity date.

� It is possible to monitor the barrier only at expiry, so that for a long (short) knock-out
forward the following may occur on the expiry date:
– If the terminal FX spot rate level is below (above) the barrier level B, then the company

buys (sells) the euro notional amount at the strike level K.
– If the terminal FX spot rate level is above (below) the barrier level B, then the company

loses the right to buy (sell) at the strike level K and in this case it will have to trade at
the FX spot rate prevailing on the maturity date.
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10.7.4.4 Pros and Cons

� The knock-out forward allows the company to set a terminal FX spot rate remarkably
more favourable than the forward rate dealing in the market at inception, but the hedging
of FX risk is limited in that it may vanish if the barrier level is breached (according to the
predefined monitoring schedule).

� The structure may be traded at zero cost, though this is not necessarily required.
� The greater risk borne by the company is due to the fact that, in order to achieve a terminal

rate much better than the forward price, the barrier level must be set at an ‘in-the-money’
level, relating to the long option in the structure. In this way the protection from adverse
FX spot movements disappears just when it is needed most.

10.7.5 Knock- In Forward

10.7.5.1 Descript ion A long (short) knock-in forward is built with a long (buy) position
in a base currency plain vanilla call (put) option and a short (sell) position in a base currency
put (call) option, struck at the same level K and expiring on the same date as the first option,
but with a knock-in barrier set at the level B. This structure is commonly sold at zero cost, so
that the strike rate is increasingly worse than the forward price prevailing in the market, the
further the knock-in level is set from the starting level of the FX spot rate at inception.

At expiry, for a long (short) position in a knock-in forward, the following events may
occur:

� If the underlying FX spot rate is greater (lower) than the strike level ST > K (ST < K),
then the company buys (sells) the base currency notional amount at the strike level K.

� If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K)
and it never reaches the barrier level B during the life of the contract, then the company
buys (sells) the base currency notional amount at the terminal FX spot rate level ST .

� If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K)
and it reaches at least once the barrier level B any time during the life of the contract,
then the company buys (sells) the base currency notional amount at the strike level K.

10.7.5.2 Needs the Structure Sat isf ies The knock-in forward is recommended for
companies aiming to hedge FX risk on a given date and have a chance to profit from favourable
movements of the FX spot rate, up to the breaching of the barrier level. To achieve this goal
the company is keen on setting a strike level worse than the forward price available in the
market at the start of the contract.

Example 10.7.5 An exporting company wants to hedge its future FX exposure, short EUR
against USD, in 3 months with a long position in a knock-out forward as follows.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put strike K = 1.0900 expiring in 3 months.
� Short position: EUR put USD call strike K = 1.0900, expiring in 3 months, with a knock-in

barrier at B = 1.0000.
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F IGURE 10.17 Payoff at expiry of a long knock-in forward

Figure 10.17 shows the payoff at expiry of the knock-out forward: the profile is flat at
zero value in the range delimited by the strike price (K = 1.0900) and the knock-in barrier
(B = 1.0000). For terminal FX spot values above the upper limit, the structure yields profits,
whereas it suffers losses below the barrier level. In Figure 10.18, the profit and loss profile is
shown for the hedged position: it is easy to see that the company takes advantage of downward
FX spot movements in the range between the strike and the barrier, earning increasing
profits up to the barrier level and then losing all gains below the barrier. In any case, the
protection is guaranteed since for any other FX spot level a fixed and small cost is borne by
the company.

10.7.5.3 Main Variat ions

� The knock-in forward can be designed so that the monitoring of the barrier level breaching
is not continuous (i.e., at any time until expiry) but discrete according to a predefined
schedule, similar to a knock-out forward. As an example, we may still consider, for the
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F IGURE 10.18 Payoff at expiry of an FX spot exposure of an exporting company hedged by a
knock-in forward. Red dotted line: FX exposure. Blue dotted line: knock-in forward payoff. Green line:
hedged position
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FX spot rate against the euro, the daily European Central Bank fixing and monitor a long
(short) position in the structure as follows:
– If the underlying FX spot rate is greater (lower) than the strike level ST > K (ST < K),

then the company buys (sells) the base currency notional amount at the strike level K.
– If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K)

and the ECB37 fixing never prints below the barrier level B, any day up until the expiry,
then the company buys (sells) the base currency notional amount at the terminal FX
spot rate level ST .

– If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K)
and the ECB37 fixing prints below the barrier level B at least one day during the life
of the contract, then the company buys (sells) the base currency notional amount at the
strike level K.

� It is possible to monitor the barrier only at expiry, so that for a long (short) knock-in
forward the following may occur on the expiry date:
– If the underlying FX spot rate is greater (lower) than the strike level, ST > K (ST < K),

then the company buys (sells) the base currency notional amount at the strike level K.
– If the underlying FX spot rate is lower (greater) than the strike level and greater (lower)

than the barrier level B < ST < K (K < ST < B), then the company buys (sells) the base
currency notional amount at the terminal FX spot rate level ST .

– If the underlying FX spot rate is lower (greater) than the barrier level ST < B (ST > B),
then the company buys (sells) the base currency notional amount at the strike level K.

10.7.5.4 Pros and Cons

� The knock-out forward allows the company to keep open opportunities to gain profits
from favourable movements in the FX spot rate.

� The structure may be traded at zero cost, though this is not necessarily required and the
Company may also receive (or pay) a net premium.

� The main drawback of the knock-in forward is that the company has to accept a terminal
FX spot rate worse than the forward price prevailing in the market at inception.

10.7.6 Knock- In Knock-out Forward

10.7.6.1 Descript ion A long (short) position in a knock-in knock-out forward is attained
by buying (selling) a base currency call option with a knock-out barrier B1 above (below) the
strike level K and by simultaneously selling a base currency put (call) option struck at the
same level as before K, but with a knock-in barrier B2 below (above) the strike level. Both
options have the same expiry date and the same base currency notional amount.

At expiry the long (short) position in the structure will produce the following outcomes:

� If the underlying FX spot rate is greater (lower) than the strike level ST > K (ST < K)
and it never reaches the upper (lower) knock-out barrier level B1 during the life of the
contract, then the company buys (sells) the base currency notional amount at the strike
rate level K.

� If the underlying FX spot rate is greater (lower) than the strike level ST > K (ST < K)
and it reaches at least once the upper (lower) knock-out barrier level B1 any time during
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the life of the contract, then the company buys (sells) the base currency notional amount
at the terminal FX spot rate level ST .

� If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K) and
it never reaches the lower (upper) knock-in barrier level B2 during the life of the contract,
then the company buys (sells) the base currency notional amount at the terminal FX spot
rate level ST .

� If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K)
and it reaches at least once the lower (upper) knock-in level barrier level B2 any time
during the life of the contract, then the company buys (sells) the base currency notional
amount at the strike level K.

10.7.6.2 Needs the Structure Sat isf ies The knock-in knock-out forward is advisable
for those companies that wish to hedge their FX exposures and at the same time keep open
opportunities to gain from favourable movements up to the knock-in barrier level B2. Different
from the knock-in case, the knock-in knock-out forward does not necessarily force the company
to accept a terminal FX rate worse than the forward rate available in the market at inception,
but to counterbalance this benefit the knock-out feature will make the hedging ineffective if
the level B1 is breached.

Example 10.7.6 An exporting company wishes to hedge its future FX exposure, short
EUR against USD, in 3 months with a long position in a knock-in knock-out forward
as follows.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put strike K = 1.0700, with a knock-out barrier B1 =

1.1500, expiring in 3 months.
� Short position: EUR put USD call strike K = 1.0700, with a knock-in barrier B2 = 1.0000,

expiring in 3 months.

Figure 10.19 shows the payoff at expiry of the knock-in knock-out forward: the profile is
rather complex, being flat when the terminal FX spot rate is between the strike level K = 1.0700
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F IGURE 10.19 Payoff at expiry of a long knock-in knock-out forward
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F IGURE 10.20 Payoff at expiry of an FX spot exposure of an exporting company hedged by a
knock-in knock-out forward. Red dotted line: FX exposure. Blue dotted line: knock-in knock-out
forward payoff. Green line: hedged position

and the knock-in barrier B2 = 1.0000, and positive between the strike level K = 1.0700 and
the knock-out barrier B2 = 1.1500. If the spot rate breaches the upper barrier, then the
profit disappears, whereas below the knock-in barrier the structure suffers a sudden loss that
increases as the FX spot rate declines. In Figure 10.20, the profit and loss profile of the
hedged position similarly looks complex: the company takes advantage of downward FX spot
movements in the range between the strike and the lower barrier, earning increasing profits up
to the barrier level and then losing all gains below the barrier. In the region above the strike
price, no profits and losses occur until the upper barrier is reached, then the hedged position
starts losing money as a consequence of losing its hedging effectiveness.

10.7.6.3 Main Variat ions

� The knock-in knock-out forward can be designed so that the monitoring of the barrier
level breaching is not continuous (i.e., at any time until expiry) but discrete according to
a predefined schedule, similar to the previous structures involving barrier options. As a
common example we consider, for the FX spot rate against the euro, the daily European
Central Bank fixing and monitor the long (short) position in the structure as follows:
– If the underlying FX spot rate is greater (lower) than the strike level ST > K (ST < K)

and the ECB37 fixing never prints above (below) the knock-out barrier level B1, any
day up until expiry, then the company buys (sells) the base currency notional amount
at the terminal FX spot rate level K.

– If the underlying FX spot rate is greater (lower) than the strike level ST > K (ST < K)
and the ECB37 fixing prints above (below) the knock-out barrier at least one day
during the life of the contract, then the company buys (sells) the base currency notional
amount at the terminal FX spot rate level ST .

– If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K)
and the ECB37 fixing never prints below the knock-in barrier level B2, every day up
until the expiry, then the company buys (sells) the base currency notional amount at the
terminal FX spot rate level ST .

– If the underlying FX spot rate is lower (greater) than the strike level ST < K (ST > K)
and the ECB37 fixing prints below the knock-in barrier level B2 at least one day during
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the life of the contract, then the company buys (sells) the base currency notional amount
at the strike level K.

� It is possible to monitor the barrier only at expiry, so for a long (short) knock-in knock-out
forward the following may occur on the expiry date:
– If the underlying FX spot rate is greater (lower) than the strike level ST > K (ST < K),

then the company buys (sells) the base currency notional amount at the strike level K.
– If the underlying FX spot rate level is greater (lower) than the knock-out barrier level

B1, then the company buys (sells) the euro notional amount at the terminal FX spot rate
level ST .

– If the underlying FX spot rate is lower (greater) than the strike level and greater (lower)
than the barrier level B2 < ST < K (K < ST < B2), then the company buys (sells) the
base currency notional amount at the terminal FX spot rate level ST .

– If the underlying FX spot rate is lower (greater) than the knock-in barrier level ST < B2
(ST > B2), then the company buys (sells) the base currency notional amount at the
strike level K.

10.7.6.4 Pros and Cons

� The knock-in knock-out forward allows the company to keep open opportunities to gain
profits from favourable movements of the FX spot rate.

� The structure may be traded at zero cost.
� The strike price is not necessarily worse than the forward price dealing in the market at

inception.
� The main drawback of the structure is that the company may lose the hedging of its FX

exposure if the knock-out barrier is breached according to the monitoring schedule.

10.7.7 Resettable Forward

10.7.7.1 Descript ion A long (short) position in a resettable forward is built by buying
(selling) a base currency call option (put) and by simultaneously selling (buying) a base
currency put (call) option, both struck at the same level K1 and with a knock-out barrier B
above (below) the strike level K1. Additionally, the structure entails buying (selling) one more
base currency call option (put) and simultaneously selling (buying) one more base currency
put (call) option, both struck at the same level K2 and with a knock-in barrier level equal to the
previous knock-out one B. All options have the same expiry date and the same base currency
notional amount.

The barrier level B is set at the same level so that, when breached, the structure as a whole
is still alive with the strike price K1 switching to K2. More specifically, for a long position in
a resettable forward we may have the following outcomes at expiry:

� If the underlying FX spot rate never breaches the upper (lower) barrier level B during the
life of the contract, then the company buys (sells) the base currency notional amount at
the strike rate level K1.

� If the underlying FX spot rate reaches at least once the upper (lower) barrier level B
any time during the life of the contract, then the company buys (sells) the base currency
notional amount at the strike level K2.
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F IGURE 10.21 Payoff at expiry of a long resettable forward

10.7.7.2 Needs the Structure Sat isf ies The resettable forward is suitable for those
companies that wish to improve their terminal spot rate with respect to the forward price
prevailing in the market at the start of the contract. To achieve this result, they are willing to
accept a worse terminal spot rate compared with the forward price if the FX spot rate touches
the barrier level during the life of the contract.

Example 10.7.7 An exporting company hedges its future FX exposure, short EUR against
USD, in 3 months by a long position in a resettable forward as follows.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put strike K1 = 1.0500, with a knock-out barrier B1 =

1.1200, expiring in 3 months.
� Short position: EUR put USD call strike K1 = 1.0500, with a knock-out barrier B1 =

1.1200, expiring in 3 months.
� Long position: EUR call USD put strike K2 = 1.1000, with a knock-in barrier

B1 = 1.1200, expiring in 3 months.
� Short position: EUR put USD call strike K2 = 1.1000, with a knock-in barrier B1 =

1.1200, expiring in 3 months.

In Figure 10.21, we can see the payoff at expiry of the resettable forward: basically it
is similar to a long position in EUR, with a ‘restart’ of the profits when the FX spot rate is
above the barrier level B = 1.1200. This is reflected in a rather simple profit and loss profile
of the hedged position, shown in Figure 10.22: a constant profit up to the barrier level and,
for higher FX spot rate levels, a limited and constant loss.

10.7.7.3 Main Variat ions

� The resettable forward, like all other structures involving barrier options examined above,
can be designed so that the monitoring of the barrier level breaching is not continuous (i.e.,
at any time until expiry) but discrete according to a predefined schedule, similar to before.
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F IGURE 10.22 Payoff at expiry of an FX spot exposure of an exporting company hedged by a
resettable forward. Red dotted line: FX exposure. Blue dotted line: resettable forward payoff. Green
line: hedged position

For the FX spot rate against the euro, the typical option is to observe the daily European
Central Bank fixing and monitor the long (short) position in the structure as follows:
– If the ECB37 fixing never prints above (below) the barrier level B, any day up until the

expiry, then the company buys (sells) the base currency notional amount at the strike
rate level K1.

– If the ECB37 fixing prints above (below) the barrier at least one day during the life of
the contract, then the company buys (sells) the base currency notional amount at the
strike rate level K2.

� It is possible to monitor the barrier only at expiry, so for a long (short) resettable forward
the following may occur on the expiry date:
– If the underlying FX spot rate is lower (greater) than the barrier level ST < B (ST > B),

then the company buys (sells) the base currency notional amount at the strike level K1.
– If the underlying FX spot rate level is greater (lower) than the barrier level ST > B

(ST < B), then the company buys (sells) the euro notional amount at the strike level K2.

10.7.7.4 Pros and Cons

� The resettable forward allows the company to set a terminal FX rate better than the
forward rate available at the inception of the contract.

� The main drawback is that the terminal rate worsens with respect to the forward rate if
the barrier level is breached according to the monitoring schedule.

� Compared with other structures allowing for an improved terminal FX spot rate with
respect to the forward, the resettable forward never loses its hedging effectiveness, even
when the barrier is touched (although in this case the strike switches to a less favourable
level).

� The structure can be traded at zero cost.

10.7.8 Range Resettable Forward

10.7.8.1 Descript ion A long (short) position in a range resettable forward is set up by
buying (selling) a base currency call (put) option and by simultaneously selling (buying) a base
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currency put (call) option, both struck at the same level as before (K1) and with double knock-
out barrier levels B1 and B2 above and below the strike level K1. Additionally, the company
should buy (sell) one more base currency call option (put) and it should simultaneously sell
(buy) one more base currency put (call) option, both struck at the same level K2 and with
double knock-in barriers set at levels equal to the previous knock-out ones B1 and B2. All
options have the same expiry date and the same base currency notional amount.

The barrier levels B1 and B2 are set at the same levels so that, when either of them is
breached, the structure as a whole is still alive with the strike price K1 switching to K2. We
have the following outcomes at expiry for a long position in a range resettable forward:

� If the underlying FX spot rate breaches neither the upper barrier B1 nor the lower barrier
B2 during the life of the contract, then the company buys (sells) the base currency notional
amount at the strike rate level K1.

� If the underlying FX spot rate reaches at least once the upper barrier B1 or the lower
barrier B2 any time during the life of the contract, then the company buys (sells) the base
currency notional amount at the strike level K2.

10.7.8.2 Needs the Structure Sat isf ies The range resettable forward is very similar to
the resettable forward and so it is recommended for those companies that wish to improve the
terminal spot rate with respect to the forward price prevailing in the market at the start of the
contract. Also in this case, this result implies that the company will trade at a worse terminal
spot rate compared with the forward price if the FX spot rate touches one of the barrier levels
during the life of the contract.

Example 10.7.8 We consider the case of an exporting company wishing to hedge its future
FX exposure, short EUR against USD, in 3 months with a long position in a range resettable
forward as follows.

� FX spot price at expiry (ST): 1.0800.
� FX price for a 3-month expiry forward contract F(0, 3M): 1.0765.
� Long position: EUR call USD put strike K1 = 1.0400, with double knock-out barriers B1 =

1.0000 and B2 = 1.1200, expiring in 3 months.
� Short position: EUR put USD call strike K1 = 1.0400, with double knock-out barriers

B1 = 1.0000 and B2 = 1.1200, expiring in 3 months.
� Long position: EUR call USD put strike K2 = 1.1100, with double knock-in barriers B1 =

1.0000 and B2 = 1.1200, expiring in 3 months.
� Short position: EUR put USD call strike K2 = 1.1100, with double knock-out barriers

B1 = 1.0000 and B2 = 1.1200, expiring in 3 months.

Figure 10.23 shows the payoff at expiry of the range resettable forward: it is similar
to a long position in a resettable forward, with the only difference that losses are generally
lower between the strike price K1 and the lower barrier B1. Profits are zeroed when the FX
spot rate is above the upper barrier level B2 = 1.1200, then they start to increase with higher
levels of the terminal spot rate ST . The profit and loss profile of the hedged position, shown in
Figure 10.24, is very simple to interpret: a limited constant gain within the range delimited by
the two barrier levels and a limited constant loss outside the same range.
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F IGURE 10.23 Payoff at expiry of a long range resettable forward

10.7.8.3 Main Variat ions

� The monitoring of the barrier levels breaching can be continuous (i.e., they can be touched
at any time until expiry) or discrete according to a predefined schedule. For the FX spot
rate against the euro, the monitoring frequency can be daily and linked to the European
Central Bank fixing; in this case a long (short) position in the structure produces the
following outcomes.
– If the ECB37 fixing never prints above the upper barrier B1 or below the lower barrier

B2, any day up until the expiry, then the company buys (sells) the base currency notional
amount at the strike rate level K1.

– If the ECB37 fixing prints above the upper barrier B1 or below the lower barrier B2
at least one day during the life of the contract, then the company buys (sells) the base
currency notional amount at the strike rate level K2.

� It is possible to monitor the barrier only at expiry, so for a long (short) range resettable
forward we have the following on the expiry date:
– If the underlying FX spot rate is within the range delimited by the two barrier levels

B2 < ST < B1, then the company buys (sells) the base currency notional amount at the
strike level K1.

0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18

FX spot rate

Payout
at expiry

F IGURE 10.24 Payoff at expiry of an FX spot exposure of an exporting company hedged by a
resettable forward. Red dotted line: FX exposure. Blue dotted line: range resettable payoff. Green
line: hedged position
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– If the underlying FX spot rate level is outside the range delimited by the two barrier
levels, ST > B1 or ST < B2, then the company buys (sells) the euro notional amount at
the strike level K2.

10.7.8.4 Pros and Cons

� The range resettable forward allows the company to set a terminal FX rate better than the
forward rate available at the inception of the contract.

� One of the drawbacks is that the terminal rate worsens with respect to the forward rate if
one of the barrier levels is breached according to the monitoring schedule.

� Compared with a resettable forward, the range resettable forward improves the terminal
FX spot rate more since there are two barriers triggering the switch of the strike price and
hence a greater probability of trading at the expiry date at a level worse than the forward
rate available at inception.

� The structure can be traded at zero cost.
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CHAPTER 11
An Introduction to Stochastic Calculus

with Matlab® Examples
Laura Ballotta and Gianluca Fusai

G iven the technical nature of the quantitative applications covered in Part II, we open
with a comprehensive introduction to stochastic calculus. Readers who are competent in

stochastic calculus are encouraged to proceed and explore the chapters that follow. Those less
competent with stochastic calculus will find this chapter beneficial before progressing.

The aims of this chapter are:

1. To introduce the concept of Brownian motion.
� What are W(t) and dW(t)?
� What are the properties of W(t)?

2. To explain the meaning of the stochastic differential equation

dX = 𝜇(X, t)dt + 𝜎(X, t)dW(t).

3. To explain the meaning of the stochastic integral. For example:
� To give meaning to

X(t) = X(0) +
∫

t

0
𝜇(Xs, s)ds +

∫

t

0
𝜎(Xs, s)dWs.

� The properties of X(t): distribution, expected value, variance.
� How to construct a (continuous) martingale.

4. To explain Itô's formula.
� For example, how to relate

dS = 𝜇Sdt + 𝜎SdW

to

d ln S =
(
𝜇 − 𝜎

2

2

)
dt + 𝜎dW.
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5. Examples of common stochastic differential equations:
� arithmetic Brownian motion;
� geometric Brownian motion;
� mean-reverting Gaussian model (Vasicek);
� mean-reverting square-root model (CIR);
� constant elasticity of variance model (CEV);
� stochastic volatility model (Heston).

6. Examples of jump processes:
� Poisson process;
� Poisson compound process;
� Gamma process;
� jump diffusion process (Merton);
� jump diffusion process (Kou double exponential);
� time changed Brownian motion (variance Gamma model).

11.1 BROWNIAN MOTION

In this section we define Brownian motion (BM) and present its main properties. Let us recall
that a stochastic process (s.p.) is a family of indexed random variables (r.v.’s). Usually, but not
necessarily, the index refers to time. If we use the time index, as we will do, this means that
at each instant of time (if the stochastic process is continuous in time) or at discrete times (if
the stochastic process is discrete in time) we have to draw a r.v. Once we have extracted them,
we observe a path or a trajectory of the s.p. We also remark that to fully characterize the s.p., we
have to specify the distribution of the r.v.’s at different times as well as their time-dependence
properties, that is how the r.v. that will be extracted in 1 month will affect the value of the
r.v. that will be extracted in 2 months. The simplest process in continuous time is Brownian
motion. We start by considering this process.

A comprehensive introduction to the BM, SDEs and their properties with a range of
financial applications can be found in Stochastic Calculus for Finance II by Shreve.

11.1.1 Def in ing Brownian Mot ion

Fact 11.1.1 (Brownian Motion) The stochastic process W := {W(t) : t ≥ 0} is called
Brownian motion if:

(i) W(0) = 0.
(ii) For s ≤ t, W(t) − W(s) is independent of the past history of W until time s, that is the

Brownian motion has increments which are independent of the 𝜎-field  (s) generated by
the process up to time s.

(iii) For 0 ≤ s ≤ t, W(t) − W(s) and W(t − s) have the same distribution, which is Gaussian
with mean zero and variance (t − s), that is

W(t) − W(s) ∼ W(t − s) ∼  (0, t − s).

Hence, the Brownian motion has stationary increments.
(iv) W has continuous sample paths: W(t), t ≥ 0 is a continuous function of t (a.s.).
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11.1.1.1 The Odd Propert ies of Brownian Mot ion

� W(t) is continuous in t (by definition), that is its trajectories do not show sudden jumps.
� W(t) is not monotone in any interval, no matter how small the interval is (like in a fractal

structure). This property means that, even over very small time intervals, we cannot say
if the BM is increasing or decreasing.

� W(t) is nowhere differentiable. This property means that we cannot predict what the
change in BM will be over the next time interval.

� W(t) is a process of unbounded variation, that is the length of its path is infinity. This
property is a consequence of the two previous properties. BM paths are so irregular that
if you try to measure their length you do not obtain a finite measure.

� W(t) is a process of bounded quadratic variation. Quadratic variation, as we will see
shortly, is a measure of the volatility of the process. Therefore, even being a very irregular
process, BM at each finite time has a finite volatility.

� Brownian motion has the Markov property. In practice, this means the process does not
remember how it got to the current state.

� 𝔼(W(t)W(s)) = min(s, t). This property, discussed later, is telling us that the time depen-
dence of the Brownian motion depends on what happened up to min(s, t).

� The BM will eventually hit any and every real value no matter how large, or small. The
BM paths are so dispersed that the BM can reach any desired level in finite time with
positive probability.

� Once a BM hits a value, it immediately hits it again infinitely often.

11.1.1.2 Density of Brownian Mot ion at Di f ferent Time Horizons

Fact 11.1.2 (Density Function of Brownian Motion) We have:

W(t) − W(s) ∼  (0, t − s).

Therefore, the density function of the increment of the BM between time s and time t is

𝜙0,
√

t−s(x) = 1
√

2𝜋(t − s)
exp

⎛
⎜
⎜
⎝
−1

2

(
x

√
t − s

)2⎞
⎟
⎟
⎠

, x ∈ ℜ.

Remark 11.1.1 We observe that W(t) = W(t) − W(0), from which it follows that W(t) ∼
 (0, t). The dispersion of the BM, as measured by the variance, increases with the time
horizon t − s. This is shown in Figure 11.1.

11.1.1.3 The (Auto) -Covariance Funct ion

� The (auto)-covariance function of a stochastic process X having expectation 𝜇X is defined
as

cX(t, s) = cov(Xt, Xs) = E((Xt − 𝜇X(t))(Xs − 𝜇X(s))), t, s ∈ T .

� The variance function of X is just cX(t, t).
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F IGURE 11.1 Density of Brownian motion at different time horizons.

Fact 11.1.3 (Covariance Function of Brownian Motion) A Brownian motion has covari-
ance function given by

cW (t, s) = min(t, s).

Proof: The (auto)-covariance function of the BM

� Let us consider two time instants, t and s, t < s. We have

cW (t, s) = cov(W(t), W(s))

= cov(W(t), (W(s) − W(t)) + W(t))

= cov(W(t), (W(s) − W(t))) + cov(W(t), W(t))

= 0 + cW(t, t)

= t.

� With a similar reasoning, if we take t and s with s < t, we have

cW (t, s) = s.

� Therefore

cW (t, s) = min(t, s).
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11.1.1.4 Mart ingale Property

Remark 11.1.2 A stochastic process X = (X(t) : t ≥ 0) is a martingale relative to the prob-
ability measure ℙ if the following conditions are satisfied:

(i) 𝔼|X(t)| <∞ for all t ≥ 0;
(ii) 𝔼[X(t)| (s)] = X(s) for all s ≤ t.

� In other words, a martingale is a random process whose future variations are completely
unpredictable given the current information set.

� For this reason, the best forecast of the change in X over an arbitrary interval is zero, that
is 𝔼[X(t) − X(s)| (s)] = 0.

� A martingale represents a fair game: given the knowledge we have, on average the return
produced by the bet is what we invested in it.

Fact 11.1.4 (Martingale Property) The Brownian motion is a martingale.

Proof: The martingale property of the BM We check that the Brownian motion satisfies
the two properties of a martingale process. Hence:

� For the first property, direct calculations show that

𝔼|W(t)| =
∫

0

−∞

−y
√

2𝜋t
exp

⎛
⎜
⎜
⎝
−1

2

(
y
√

t

)2⎞
⎟
⎟
⎠

dy +
∫

∞

0

z
√

2𝜋t
exp

⎛
⎜
⎜
⎝
−1

2

(
z
√

t

)2⎞
⎟
⎟
⎠

dz

= 2
∫

∞

0

z
√

2𝜋t
exp

⎛
⎜
⎜
⎝
−1

2

(
z
√

t

)2⎞
⎟
⎟
⎠

dz

=
√

2t
𝜋
< ∞.

� Let us consider two time instants, s and t, s < t. We have

𝔼[W(t)| (s)] = 𝔼[W(t) − W(s) + W(s)| (s)] = 𝔼[W(t) − W(s)] + W(s) = W(s).

11.1.1.5 Markov Property

Remark 11.1.3 Let  (t) denote the 𝜎-field generated by the process up to time t. The process
{X}t≥0 has the Markov property if, for t ≥ s, the conditional distribution of X(t) given  (s) is
the same as the conditional distribution of X(t) given X(s):

P(X(t) ≤ y| (s)) = P(X(t) ≤ y|X(s)), a.s.

� In practice, this means the process does not remember how it got to the current state x.

Fact 11.1.5 (Markov Property) Brownian motion has the Markov property.

� This property is also important for simulating Brownian motion, because we can iteratively
add to the last simulated value of the Brownian motion a new simulated increment. The
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increment of the BM in the time interval (t, t + dt) does not depend on the past history
up to t. Therefore, the value of the process at time t + dt will be given by the value up to
time t plus the independent increment in (t, t + dt).

11.1.1.6 Simulat ion of Brownian Sample Paths In order to simulate a Brownian
motion sample path W(t) on the interval [0, T]:

1. Choose an integer n and let Δt = T
n

, so that ti = iΔt, for i = 0, 1,… , n.
2. Generate a sequence 𝜀1,… , 𝜀n of i.i.d. standard normal r.v.’s

(a) Generate a sequence U1,… , Un of uniform r.v.’s in the interval (0, 1).
(b) Set 𝜀i = Φ−1(Ui), where Φ−1(x) is the inverse cumulative distribution of the standard

Gaussian distribution.
(c) Set dWi = 𝜀i

√
Δt.

3. Finally, recursively construct the sample path of the BM letting
� W(0) = 0;
� W(ti) = W(ti−1) + dWi, i = 1,… , n.

Remark 11.1.4 Notice that the simulation of the BM as described above is convenient if
you are using a spreadsheet or programming language like C, VBA. This is illustrated in
Figure 11.2. If you are using Matlab a different approach, avoiding cycles, is preferred, see
Figure 11.3 and the accompanying code.

F IGURE 11.2 Simulating the Brownian motion: Excel example.



An Introduction to Stochastic Calculus with Matlab® Examples 563

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%SIMULATING THE BROWNIAN MOTIONS%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nsimul=500; %Assigning the number of simulated paths
%time to maturity (expiry), number of steps,
%time step (dt) and observation times (timestep)
expiry=1, nsteps=250;
dt=expiry/nsteps; timestep=[0:dt:expiry]’;
%Simulate increments of the BM setting:
dw=randn(nsteps,nsimul) * dt0.5;
%Simulate Wiener process:
%(use cumulative sum of the increments):
cdW=[zeros(1,nsimul); cumsum(dw)];
%Plot simulated paths:
h=figure(’Color’, [ 1 1 1]); plot(timestep, cdW)
title(’Simulated Paths of the Wiener Process’);
xlabel(’Time (years)’)
%print the figure
print(h,’—dpng’,’FigBMPaths.jpg’)
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F IGURE 11.3 Simulated paths of the Brownian motion.
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11.1.1.7 Tota l Variat ion

� Given a partition of the interval [x0, xn], the variation of a function f (x) measures the total
amount of up and down motion:

TV(f ) =
N∑

i=0

|f (xi) − f (xi−1)|.

� The notion of unbounded variation plays an important role in stochastic calculus since
continuous stochastic processes used to represent asset prices have trajectories with
unbounded variation, that is they are very irregular.

� Heuristically, functions of bounded variation are not excessively irregular. In fact, any
smooth function will be of bounded variation.

Fact 11.1.6 (Total Variation of Brownian Motion) The Brownian motion has unbounded
total variation, that is

TV(W) =
N∑

i=1

|ΔW(ti)| → +∞

as N → +∞, where t0, t1, ..., tN represent a discrete partition of the interval [0, t].

11.1.1.8 Quadrat ic Variat ion

� Quadratic variation is a measure of volatility.
� Given a partition of the interval [t0, tn], the quadratic variation of a function f (t) is given

by

QV(f ) =
N∑

i=0

(f (ti) − f (ti−1))2
.

� QV plays a major role in stochastic calculus, but is hardly ever met in standard calculus
due to the fact that smooth functions have zero quadratic variation. This makes sense if
QV is a measure of volatility.

� For example, if we consider a continuously differentiable function, QV is zero. The

function X(t) = at has QV equal to
∑N

i=1(aΔti)
2 = a2NΔt2 = a2N

( t
N

)2
→ 0 as N → ∞.

Fact 11.1.7 (Quadratic Variation of Brownian Motion) The quadratic variation of BM
over the time interval [0, t] tends to t:

QV(W) =
N∑

i=1

(ΔW(ti))
2 → t

as N → +∞, where t0, t1, ..., tN represent a discrete partition of the interval [0, t].
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F IGURE 11.4 Total variation (left) and quadratic variation (right) of the BM.

Simulating the Total Variation and Quadratic Variation of BM

� Figure 11.4 illustrates, by simulation, that:
– The total variation of the BM grows without limits as we refine the partition of the

interval (0,1) (left panel).
– The quadratic variation converges to the length of the interval as we refine the partition

of the interval (0,1) (right panel).
� The Matlab code to generate Figure 11.4 is as follows.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%COMPUTING BY SIMULATION TOTAL VARIATION %%%%%%%%%%%%%%%%%%%%
%%%%AND QUADRATIC VARIATION OF THE BM %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
i=1; expiry=1;
for jstep=50:50:10000 %increase the number of steps (refine the partition)

dt=expiry/jstep; %reduce the time step
dW=[zeros(1,nsimul); randn(jstep,1)*dtˆ0.5]; %simulate BM
TV(i)=sum(abs(dW)); %compute total variation
QV(i)=sum(dW.ˆ2); %compute quadratic variation
i=i+1;

end
h = figure(’Color’,[1 1 1]);
plot([50:50:10000], TV,’.’)
title(’BM has unbounded total variation’); xlabel(’Number of steps (Fixed
time interval=1yr)’)

h = figure(’Color’,[1 1 1]);
plot([50:50:10000], QV,’.’,[50:50:10000], expiry,’*’)
legend(’Simulated QV’, ’Theoretical QV’)
title(’BM has bounded quadratic variation’); xlabel(’Number of steps (Fixed
time interval=1yr)’)
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TABLE 11.1 The cell contents represent the
product of the quantities appearing in the first
row and in the first column. We have set equal
to 0 the quantities that are of order dtn, n > 1

× dt dW(t)
dt 0 0

dW(t) 0 dt

11.1.1.9 Propert ies of the Increments of BM In the following we set equal to 0 quan-
tities that are o(dt), that is go to zero faster than dt:

1. dW(t) =  (0, dt) (by definition);
2. 𝔼t(dW(t)) = 0 (by definition);
3. 𝔼t(dW(t)dt) = 0 (by the linearity of the expectation);
4. 𝔼t(dW2(t)) = dt (this is the second moment of the increment of the BM, that is

Gaussian);
5. 𝕍art(dW2(t)) = 𝔼t(dW4(t)) − 𝔼t(dW2(t))2 = 3dt2 − dt2 = o(dt) (by the normality of

dW);
6. dW2(t) = dt (this follows by (4) and (5));
7. 𝔼t((dW(t)dt)2) = 𝔼t(dW2(t))dt2 = dt3 = o(dt) (this follows by (4));
8. 𝕍art(dW(t)dt) = 𝔼t((dW(t)dt)2) − 𝔼t((dW(t)dt))2 = 𝔼t(dW2(t))dt2 − o(dt) = o(dt);
9. dW(t)dt = o(dt) (this follows by (3) and (8)).

10. We can synthetize the above results using Table 11.1

11.2 THE STOCHASTIC INTEGRAL AND STOCHASTIC
DIFFERENTIAL EQUATIONS

11.2.1 Introduct ion
� The Itô or stochastic integral is one way of defining sums of uncountable and unpredictable

random increments over time:

∫

T

0
𝜎(X(s), s)dW(s)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

sum of i.i.d. noises

≈
n−1∑

j=0

𝜎(X(tj), tj)
⏟⏞⏞⏟⏞⏞⏟

vol scaling factor in tj

[W(tj+1) − W(tj)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

.

noise in [tj,tj+1]

� Recall that the sample paths of BM are nowhere differentiable and have unbounded
variation.

� This has major consequences for the definition of a stochastic integral with respect to
Brownian sample paths.

Fact 11.2.1 (Problem in Defining the Stochastic Integral) If ∫ T
0 f (s)dg(s) exists as a

Riemann–Stieltjes integral for all continuous functions f on [0, T], then g necessarily has
bounded variation. Unfortunately, the BM has unbounded variation.
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11.2.2 Def in ing the Stochast ic Integral
� The last observation tells us that if our aim is to define the stochastic integral ∫ T

0 f (s)dW(s)
for all continuous deterministic functions f on [0, T], the pathwise integration suggested
by the Riemann–Stieltjes integral approach fails since it does not allow the integration of
a large class of integrable functions f .

� We will define the integral as a probabilistic average. This will lead us to the so-called Itô
stochastic integral.

� We define the Itô stochastic integral as a mean square limit of suitable Riemann–Stieltjes
sums. This is equivalent to saying that the variance of the random error 𝜀n = Xn − X goes
to zero as we refine the partition.

� This has the disadvantage that we lose the intuitive interpretation of an integral which is
naturally provided by a pathwise integral.

Definition 11.2.1 (Mean Square Convergence) Let us consider a sequence of random
numbers X1, X2,… , Xn, with Xn ∈ L2, that is 𝔼(X2

n ) < ∞. We say that the sequence of
r.v. Xn converges in mean square to the random variable X, and we write Xn L2

.→X iff
limn→∞ 𝔼(| Xn − X |2) = 0.

11.2.3 The It ô Stochast ic Integral as a Mean Square L imit
of Sui tab le Riemann–St ie l t jes Sums

� Let:

1. 𝜎(u) be an adapted process, that is 𝜎(u) is known once we know the whole history of
the Brownian motion up to time t;

2. 𝜎(u) be square integrable, that is E(∫ T
0 𝜎

2(u)du) < ∞.

� Then the following limit:1

lim
∥Π∥→0

n∑

j=1

𝜎(tj−1)[W(tj) − W(tj−1)] = I
𝜎
(0, T)

exists (in the mean square sense) and is independent of the partitions used to take the
limit.

� By definition, this limit is the Itô integral of 𝜎 with respect to BM over [0, T].

Example 11.2.1 Let us consider the Itô integral of the identity function with respect to BM
over [0, T]. Given a partition 𝜏n = 0 = t0 < t1 < ... < tn−1 < tn = t, we define the Riemann–
Stieltjes sums

Sn =
n∑

j=1

(W(tj) − W(tj−1)).

1In the limit here, the notation ∥ Π ∥→ 0 means that we are refining more the partition of the interval
(0, T).
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As Sn is a telescopic sum, then Sn = W(T) and therefore

∫

T

0
dW(u) = W(T) − W(0) = W(T).

11.2.4 A Mot ivat ing Example: Comput ing ∫ t
0 W(s)dW(s)

� Given a partition 𝜏n = 0 = t0 < t1 < ... < tn−1 < tn = t, let us define the Riemann–
Stieltjes sums

Sn =
n∑

j=1

W(tj−1)(W(tj) − W(tj−1)).

� Using the binomial formula for (W(tj) − W(tj−1))2, Sn can be written as

Sn = W2(t)
2

− 1
2

n∑

i=1

(W(tj) − W(tj−1))2 = W(t)
2

− 1
2

QVn(W)(t).

� But if we refine the partition 𝜏n, then QVn(W)(t) → t, so that

𝕍ar

(
Sn −

W2(t) − t
2

)
→ 0,

that is Sn converges in mean square to W2(t)−t
2

, which we can take as the value of the

integral ∫ t
0 W(s)dW(s).

11.2.4.1 Example: Comput ing ∫ t
0 W(s)dW(s) by Simulat ion The following code illus-

trates the one-to-one relationship between ∫ t
0 W(s)dW(s) and its value W2(t)−t

2
. See also Fig-

ure 11.5: the line in the plot has a unit slope and goes through the origin. This confirms, by

simulation, that the integral, albeit being a random variable, can be written as W2(t)−t
2

.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%Computing Integral[W(s) dW(s),fs,0,Tg]%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
expiry=1;
nstep=10000;
nsimul=100;
dt=expiry/nstep; %reduce the time step
dW=randn(nstep,nsimul)*dt0.5; %simulate BM
W=[zeros(1,nsimul); cumsum(dW)];
[sum(W(1:end—1,:).*dW)’ (W(end—,:).2—expiry)’/2]
h = figure(’Color’,[1 1 1]);
plot(sum(W(1:end—1,:).*dW)’, (W(end—1,:).2—expiry)’/2,’.’)
xlabel(’(W(t)2—t)/2’)
title(’nint 0tW(s)dW(s)’)
print(h,’—dpng’,’FigStocIntegral.jpg’)
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F IGURE 11.5 Relationship between ∫
t

0 W(s)dW(s) and its value W(t)2−t

2
.

11.2.5 Propert ies of the Stochast ic Integral

Fact 11.2.2

� 𝔼[I
𝜎
(0, T)] = 0.

� 𝔼[I2
𝜎
(0, T)] = 𝔼[∫ T

0 𝜎
2(u)du] (Itô isometry).

� The Itô integral is Gaussian, for any deterministic integrand function 𝜎(t) = 𝜎(t) (by
definition).

� I
𝜎
(0, T) is a ℙ-martingale.

Proof: Properties of the stochastic integral The above-mentioned properties can be shown
using the definition of Brownian motion, the fact that the integrand function is an adapted
process and the properties listed in Section 11.1.1.9.

� We use the tower property of the conditional expectation, so that

𝔼[I
𝜎
(0, T)] =

∫

T

0
𝔼[𝜎(u)dW(u)]

=
∫

T

0
𝔼[𝔼u(𝜎(u)dW(u))]

=
∫

T

0
𝔼[𝜎(u)𝔼u(dW(u))] = 0,

where the last equality follows from property 2 of Section 11.1.1.9.
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� Given a partition 𝜏n = 0 = t0 < t1 < ... < tn−1 < tn = t, consider the Riemann–Stieltjes
sums

Sn =
n∑

j=1

𝜎(tj−1)(W(tj) − W(tj−1)).

It follows that

S2
n =

n∑

j=1

𝜎
2(tj−1)(W(tj) − W(tj−1))2 +

∑

j

∑

i≠j

𝜎(tj−1)𝜎(ti−1)(W(tj) − W(tj−1))(W(ti) − W(ti−1)).

Without loss of generality, assume ti < tj. We note that

𝔼
(
S2

n

)
= 𝔼

[
n∑

j=1

𝔼tj−1

(
𝜎

2(tj−1)(W(tj) − W(tj−1))2
)
]

+𝔼

[
∑

j

∑

i≠j

𝔼tj−1

(
𝜎(tj−1)𝜎(ti−1)(W(ti) − W(ti−1))(W(ti) − W(ti−1))

)
]

= 𝔼

[
n∑

j=1

𝜎
2(tj−1)(tj − tj−1)

]

,

where the last equality follows from the definition of Brownian motion. The result follows.
� We note that I

𝜎
(0, T) = I

𝜎
(0, t) + I

𝜎
(t, T). Then

𝔼t[I𝜎(0, T)] = I
𝜎
(0, t) + 𝔼t[I𝜎(t, T)]

= I
𝜎
(0, t) + 𝔼t

[

∫

T

t
𝔼u(𝜎(u)dW(u))

]

= I
𝜎
(0, t).

Remark 11.2.1 As the Itô integral is a zero mean process, the Itô isometry implies that

𝕍ar
(
I
𝜎
(0, T)

)
= 𝔼

[

∫

T

0
𝜎(u)2du

]
.

Why is this result relevant in finance? It is related to the interpretation of the implied
volatility of an option as the average variance of the underlying stock return over the remaining
life of the option!

Important Properties of the Stochastic Integral

I
𝜎
(0, t) is a stochastic process with continuous sample paths

I
𝜎
(0, t) is a martingale w.r.t. to Brownian filtration

I
𝜎
(0, t) has zero expectation

𝔼(I
𝜎
(0, t)) = 0

I
𝜎
(0, t) satisfies the isometry property

𝕍ar(I
𝜎
(0, t)) = 𝔼

[
∫ t

0 𝜎
2(u, w)du

]

For constants 𝛼 and 𝛽, I
𝜎
(0, t) is linear

I
𝛼𝜎1+𝛽𝜎2

(0, t) = 𝛼I
𝜎1

(0, t) + 𝛽I
𝜎2

(0, t)
For adjacent intervals 0 ≤ t ≤ T

I
𝜎
(0, T) = I

𝜎
(0, t) + I

𝜎
(t, T)
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11.2.6 I t ô Process and Stochast ic Di f ferent ia l Equat ions

Fact 11.2.3 An Itô process is a stochastic process of the form

X(t) = X(0) +
∫

t

0
f (X(u), u)du +

∫

t

0
𝜎(X(u), u)dW(u),

where X(0) is a random variable and f (X(t), t), 𝜎(X(t), t) are adapted processes satisfying some
regularity conditions.

The Itô process X(t) can also be written in differential form (as a shorthand notation)
{

dX(t) = f (X(t), t)dt + 𝜎(X(t), t)dW(t),
X(0) = X.

Meaning of f (X(t), t) and 𝝈(X(t), t)

� We observe that

𝔼t(dX(t)) = f (X(t), t)dt,

𝕍art(dX(t)) = 𝜎
2(X(t), t)dt,

hence we can interpret
– f (X(t), t)dt as the expected instantaneous change in X over the time period (t, t + dt);

f (X(t), t) is called the DRIFT COEFFICIENT.
– 𝜎

2(X(t), t)dt as the variance of the instantaneous changes; 𝜎(X(t), t) is called the DIF-
FUSION COEFFICIENT.

11.2.6.1 Example: ABM with Determin ist ic Volat i l i ty

� Arithmetic Brownian motion is an Itô process defined as

X(t) = X(0) +
∫

t

0
𝜇(s)ds +

∫

t

0
𝜎(s)dW(s).

� By virtue of the properties of the stochastic integral, it follows that

X(t) ∼ 
(

X(0) +
∫

t

0
𝜇(s)ds,

∫

t

0
𝜎

2(s)ds

)
.

� The conditional distribution of X(t) given  (s) is

X(t) | (s) ∼ 
(

X(s) +
∫

t

s
𝜇(s)ds,

∫

t

s
𝜎

2(u)du

)
.

� The expressions of the variance obtained above are obtained using the Itô isometry.
� The corresponding stochastic differential equation is

dX(t) = 𝜇(t)dt + 𝜎(t)dW(t).
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Example 11.2.2 Let us assume that 𝜇(t) = 𝜇 ∈ ℝ and 𝜎(t) = 𝜎 > 0, then the ABM is given by

X(t) = X(0) + 𝜇t + 𝜎W(t)

or, equivalently,

dX(t) = 𝜇dt + 𝜎dW(t).

From the above, the facts listed in the following table hold.

Arithmetic Brownian Motion: Facts

The SDE
dX(t) = 𝜇dt + 𝜎dW(t), X(0) = x0

The solution
X(t) = X(0) + 𝜇(t − 0) + 𝜎(W(t) − W(0))

The distribution of X(t)
X(t) ∼  (X(0) + 𝜇t, 𝜎2t)

The moments of X(t)
𝔼0(X(t) − X(0) − 𝜇t)p = (𝜎

√
(t))p (p − 1)!! if p is even

The auto-covariance of X(t)
cX(t, s) = 𝜎

2 min(t, s)

11.2.6.2 Mat lab: S imulat ing Arithmet ic Brownian Mot ion Sample paths of the ABM
are presented in Figure 11.6 (see also the accompanying code). Figure 11.7 shows the distri-
bution of the ABM at different time horizons.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%SIMULATING THE ARITHMETIC BROWNIAN MOTIONS%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Assigning the number of simulated paths
%(nsimul), time to maturity (expiry), number of steps
%(nsteps), time step (dt) and observation times (timestep):
%and model parameters
nsimul=10000, expiry=1, nsteps=250;dt=expiry/nsteps;
timestep=[0:dt:expiry]’; mu=0.2; sigma=0.3;
%Simulate increments ABM dX:
dX=mu*dt+sigma*randn(nsteps,nsimul)*dt\ˆ0.5;
%Simulate ABM process: cumulate increments
cdX=[zeros(1,nsimul); cumsum(dX)];
%Compute Expected Value
EcdX=timestep*mu;
%Plot simulated paths:
plot(timestep, cdX, timestep, EcdX)
title(’Simulated Paths of the Arithmetic Brownian Process ABM(0.2, 0.3)’)
xlabel(’Time’)

%Plot distribution of the ABM at different dates:
bmmin=-0.8; bmmax=1.5;
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subplot(3,1,1); hist(cdX(50,:),100);xlabel(’ABM’)
xlim=[bmmin,bmmax];title(’Density at time 0.2 years’)
subplot(3,1,2); hist(cdX(125,:),100);xlabel(’ABM’)
xlim=[bmmin,bmmax];title(’Density at time 0.5 years’)
subplot(3,1,3); hist(cdX(end,:),100);xlabel(’ABM’)
xlim=[bmmin,bmmax];title(’Density at time 1 years’)

11.2.7 Solv ing Stochast ic Integrals and/or Stochast ic
Di f ferent ia l Equat ions

� We have shown the equivalence between stochastic integrals and stochastic differential
equations.

� Consequently, finding the solution to a stochastic integral is equivalent to finding a solution
to the corresponding stochastic differential equation.

� As illustrated in Section 11.2.4, finding this solution can be quite complicated.
� However, there is a very useful tool for this task: Itô’s lemma. This will be introduced in

Section 11.3.
� In the remainder of this section, we want to summarize some useful facts about SDEs and

their solution.

11.2.7.1 Determin ist ic vs. Stochast ic Di f ferent ia l Equat ions

Deterministic

� Differential form

dx(t) = f (x(t), t)dt.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Simulated Paths of the Arithmetic Brownian Process ABM(0.2, 0.3)

Time

F IGURE 11.6 Example: Sample paths of the ABM(0.2,0.3).
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F IGURE 11.7 Simulated distribution of the ABM(0.2,0.3) at different horizons.

� Integral form

x(t) = x(0) +
∫

t

0
f (x(u), u)du

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

.

Riemann Integral

Stochastic

� Differential form

dX(t) = f (X(t), t)dt + 𝜎(X(t), t)dW(t). (11.1)

� Integral form

X(t) = X(0) +
∫

t

0
f (x(u), u)du

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Riemann Integral

+
∫

t

0
𝜎(X(u), u)dW(u)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

.

Stochastic Integral

(11.2)

11.2.7.2 Examples of Stochast ic Di f ferent ia l Equat ions A few examples of SDEs are
given in Table 11.2, where we also provide the deterministic version.
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TABLE 11.2 Examples of deterministic and stochastic differential equations

Deterministic Stochastic Name

dx = 𝜇dt dX(t) = 𝜇dt + 𝜎dW(t) arithmetic Brownian motion

dx = 𝜇xdt dX(t) = 𝜇X(t)dt + 𝜎X(t)dW(t) geometric Brownian motion

dx = 𝜇xdt dX(t) = 𝜇X(t)dt + 𝜎X𝛽+1(t)dW(t) constant elasticity of variance (CEV)
dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎dW(t) Ornstein–Uhlenbeck (Vasicek)

dx = 𝛼(𝜇 − x)dt dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎
√

X(t)dW(t) square root (Cox–Ingersoll–Ross)
dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎X(t)dW(t) lognormal with mean reversion

dx = 𝜇xdt dX(t) = 𝜇X(t)dt +
√

v(t)X(t)dW(t)
dv(t) = v(t)dt + 𝜅v(t)dW(t) stochastic volatility (Hull–White model)

dv(t) = 𝛼(𝜇 − v(t))dt + 𝜅
√

v(t)dW(t) stochastic volatility (Heston model)

11.2.7.3 Existence and Uniqueness of the Solut ion

Remark 11.2.2 (Definition of Solution) X(t) is called a strong solution of the SDE (11.1) if
for all t > 0, X(t) is a function F(t, (W(s), s ≤ t)) of the given Brownian motion W(t), integrals
∫ t

0 f (x(u), u)du and ∫ t
0 𝜎(X(u), u)dW(u) exist and the integral equation (11.2) is satisfied.

Fact 11.2.4 (Existence and Uniqueness) Assume the initial condition X(0) has finite second
moment, 𝔼(X2(0)) <∞, and is independent of W(t), t ≥ 0 and that, for all t ∈ [0, T] and
x, y ∈ R, the coefficient functions f (x, t) and 𝜎(x, t) satisfy the following conditions:

1. They are continuous.
2. They satisfy a Lipschitz condition with respect to the first variable:

|f (x, t) − f (y, t)| + |𝜎(x, t) − 𝜎(y, t)| ≤ K|x − y|.

Then the Itô stochastic differential equation (11.1) has a unique solution X on [0, T].

In the following, we will assume that the considered SDEs also admit a unique solution.

11.3 INTRODUCING IT Ô ’S FORMULA

� The main tool in stochastic calculus is Itô’s formula, a stochastic Taylor formula.
� Given the Itô process X(t):

dX = 𝜇(X, t)dt + 𝜎(X, t)dW,

let g ∈ C2 (i.e., g is a function whose second-order partial derivatives are continuous):

Y = g(t, X).
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� We can think of g as the price of a derivative written on X(t), and we aim to find the
dynamics of the derivative price.

� What is the stochastic differential of the process Y(t)?
� In order to answer this question, let us recall the basic calculus rules with BM:

× dt dW(t)
dt 0 0

dW(t) 0 dt

� Therefore, we have

(dX)2 = (𝜇dt + 𝜎dW)2

= 𝜇
2(dt)2 + 2𝜇𝜎dtdW + 𝜎2(dW)2

= o(dt) + o(dt) + 𝜎2dt

= 𝜎
2dt.

11.3.1 A Fact from Ordinary Calcu lus
� Let us consider the function x = f (t) with f a continuously differentiable function. We

can write

dx(t) = f ′(t)dt.

� Let us now introduce y = g(x) with g also being a continuously differentiable function.
Then

y′(t) =
dy

dt
=

dg

dx
× dx

dt
= g′(x(t))f ′(t).

� We are looking for the dynamics of dy. We have

dy(t) = y′(t)dt = g′(x(t))f ′(t)dt = g′(x(t))dx(t),

and over a time period [0, T], we have

y(T) = y(0) +
∫

T

0
dy(t) = y(0) +

∫

T

0
g′(x(t))dx(t).

� How does this result translate when we deal with stochastic differential equations? We
derive Itô’s formula.

11.3.2 I t ô ’s Formula when Y = g(x), g(x) ∈ C2

� Let us consider the SDE dX(t) = 𝜇(X, t)dt + 𝜎(X, t)dW(t), and let us set y = g(x).
– What is the SDE for Y?
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� Considering the second-order Taylor series expansions (and using the fact that (dX)2 =
𝜎

2dt):

dY = g′(X)dX + 1
2

g′′(X)(dX)2

= g′(X)dX + 1
2

g′′(X)(𝜎2(X, t)dt)

= g′(X)(𝜇(X, t)dt + 𝜎(X, t)dW(t)) + 1
2

g′′(X)(𝜎2(X, t)dt)

=
(

g′(X)𝜇(X, t) + 1
2
𝜎

2(X, t)g′′(X)
)

dt + 𝜎(X, t)g′(X)dW(t).

� The additional term in the drift is due to the rule (dW)2 = dt.

Therefore, we can say that

Fact 11.3.1 (Itô’s Lemma for Y = g(X)) The SDE for Y = g(X) when dX(t) = 𝜇(X, t)dt +
𝜎(X, t)dW(t) is given by

dY(t) =
(

g′(X)𝜇(X, t) + 1
2
𝜎

2(X, t)g′′(X)
)

dt + 𝜎(X, t)g′(X)dW(t).

Remark 11.3.1 In contrast to the deterministic case, when X(t) is a Brownian motion or an
Itô process, the contribution of the second-order term in the Taylor expansion is not negligible
since Brownian motion has finite quadratic variation. This fact is the reason for the deviation
from the classical chain rule.

11.3.3 Guid ing Princ ip le
� Write out the Taylor series expansion of g with respect to all its arguments:

1. Take this Taylor series expansion out to first order for every argument that has zero
quadratic variation.

2. Take the expansion out to second order for every argument that has nonzero quadratic
variation.

3. Since the variation of order three of each argument is zero and the covariation of W(t)
and t is zero, the other terms can be neglected.

11.3.4 I t ô ’s Formula when Y(t) = g(t, X), g(t, X) ∈ C1,2

� Let us consider dX(t) = 𝜇(X, t)dt + 𝜎(X, t)dW(t), and let us set Y(t) = g(t, X).
� Considering the second-order Taylor series expansions, we have

dY(t) =
𝜕g(t, X)
𝜕t

dt +
𝜕g(t, X)
𝜕x

dX + 1
2
𝜕

2g(t, X)

𝜕x2
(dX)2

=
𝜕g(t, X)
𝜕t

dt +
𝜕g(t, X)
𝜕x

(𝜇(X, t)dt + 𝜎(X, t)dW) + 𝜎
2(X, t)

2
𝜕

2g(t, X)

𝜕x2
dt.

� We can now formulate the general form of Itô’s lemma.
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Fact 11.3.2 (Generalized Itô’s Lemma for Y(t) = g(t, X)) The SDE for Y(t) = g(t, X) ∈ C1,2

when dX(t) = 𝜇(X, t)dt + 𝜎(X, t)dW(t) is:

dY(t)(t) =
(
𝜕g(t, X)
𝜕t

+ 𝜇(X, t)
𝜕g(t, X)
𝜕x

+ 1
2
𝜎

2(X, t)
𝜕

2g(t, X)

𝜕x2

)
dt + 𝜎(X, t)

𝜕g(t, X)
𝜕x

dW(t).

𝔼(dY(t)) = Drift(dY(t))dt =
(
𝜕g(t, X)
𝜕t

+ 𝜇(X, t)
𝜕g(t, X)
𝜕x

+ 1
2
𝜎

2(X, t)
𝜕

2g(t, X)

𝜕x2

)
dt.

Volatility(dY(t)) = Diffusion(dY(t))
√

dt = 𝜎(X, t)
𝜕g(t, X)
𝜕x

√
dt.

� Itô’s lemma gives us a tool to derive stochastic differential equations of stochastic pro-
cesses obtained as a function of another Itô process.

Example 11.3.1 Let us consider the process Y(t) = W2(t), where W(t) is a BM. By Itô’s
lemma, the SDE of Y = g(W) = W2 is

dY(t) = 2W(t)dW(t) + dt.

� At the same time, Itô’s lemma can provide a way to solve a given SDE by suitably
choosing an auxiliary process with a simpler SDE.

Example 11.3.2 Let us consider the process X(t) = ∫ t
0 W(t)dW(t), or equivalently dX(t) =

W(t)dW(t). From the SDE of the process Y(t) = W2(t) obtained above, it follows that

dX(t) = 1
2

(dY(t) − dt).

By integrating both sides, it follows that X(t) = W2(t)∕2 − t∕2, which verifies the result given
in the example of Section 11.2.4. Indeed

X(t) = X(0) +
∫

t

0
dX(s)

= X(0) + 1
2

(

∫

t

0
dY(s) −

∫

t

0
ds

)

= X(0) + 1
2

(Y(t) − Y(0) − t)

= 0 + 1
2

(W2(t) − t).

11.3.5 The Mult ivariate I t ô ’s Lemma when Z = g(t, X, Y)
� Let us consider two Brownian motions W1(t) and W2(t).
� Their increments dW1(t) and dW2(t) satisfy

𝔼(dW1(t)dW2(t)) = 𝜌dt.
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� Here the coefficient 𝜌 is interpreted as the instantaneous correlation coefficient between
the increments of the two Brownian motions.

� The multiplicative rules in the multivariate case become

× dt dW1(t) dW2(t)
dt 0 0 0

dW1(t) 0 dt 𝜌dt
dW2(t) 0 𝜌dt dt

� We have

dX(t) = 𝜇(X, t)dt + 𝜎(X, t)dW1(t),

dY(t) = 𝜇(Y , t)dt + 𝜎(Y , t)dW2(t).

We consider a function of time t, and of the two variables X and Y , Z = g(t, X, Y) say.

� What is the SDE for Z = g(t, X, Y)?

� Considering the multivariate second-order Taylor formula, we have

dZ =
𝜕g(t, x, y)

𝜕t
dt +

𝜕g(t, X, Y)
𝜕X

dX +
𝜕g(t, X, Y)

𝜕Y
dY

+1
2
𝜕

2g(t, X, Y)

𝜕X2
(dX)2 + 1

2
𝜕

2g(t, X, Y)

𝜕Y2
(dY)2

+
𝜕

2g(t, X, Y)
𝜕Y𝜕X

dXdY .

� Let us use the multiplicative rules of the above table:

(dX)2 = 𝜎
2(X, t)dt,

(dY)2 = 𝜎
2(Y , t)dt,

and

dXdY = 𝜌𝜎(X, t)𝜎(Y , t)dt.

Fact 11.3.3 (Multivariate Itô’s Lemma) Given Z = g(t, X, Y), the SDE for Z is

dZ = 𝜇(Z, t)dt +
𝜕g(t, X, Y)

𝜕X
𝜎(X, t)dW1(t) +

𝜕g(t, X, Y)
𝜕Y

𝜎(Y , t)dW2(t),

where

𝜇(Z, t) =
𝜕g(t, x, y)

𝜕t
+
𝜕g(t, X, Y)

𝜕X
𝜇(X, t) +

𝜕g(t, X, Y)
𝜕Y

𝜇(Y , t)

+1
2
𝜕

2g(t, X, Y)

𝜕X2
𝜎

2(X, t) + 1
2
𝜕

2g(t, X, Y)

𝜕Y2
𝜎

2(Y , t)

+𝜌
𝜕

2g(t, X, Y)
𝜕X𝜕Y

𝜎(X, t)𝜎(Y , t).
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11.3.5.1 Examples

� Let us consider two examples of the multivariate Itô’s formula:
– the product XY;
– the ratio Y∕X.

� These are important when X and Y are GBM processes and for example we model oil
prices, quoted in USD, and the USD/EUR currency rate and we are interested in the
dynamics of oil prices expressed in EUR.

Fact 11.3.4 (Product Z = XY)

dZ
Z

= dX
X

+ dY
Y

+
(dX

X

)(dY
Y

)
.

Fact 11.3.5 (Ratio Z = Y∕X)

dZ
Z

= dY
Y

− dX
X

−
(dX

X

)(dY
Y

)
+
(dX

X

)2
.

Example 11.3.3 (Volatilities of Products) We have two processes under the same measure:

dX
X

= 𝜇X + 𝜎XdWX ,

dY
Y

= 𝜇Y + 𝜎YdWY .

The SDE for the product Z = XY is given by

dZ
Z

=
(
𝜇X + 𝜇Y + 𝜌𝜎X𝜎Y

)
dt + 𝜎XdWX + 𝜎YdWY .

𝔼
(dZ

Z

)
=
(
𝜇X + 𝜇Y + 𝜌𝜎X𝜎Y

)
dt,

𝕍ar
(dZ

Z

)
=
(
𝜎

2
X + 𝜎2

Y + 2𝜌𝜎X𝜎Y

)
dt,

𝕍ol
(dZ

Z

)
=
√
𝜎

2
X + 𝜎2

Y + 2𝜌𝜎X𝜎Y

√
dt.

Example 11.3.4 (Volatilities of Ratios) We have two processes under the same measure:
dX
X

= 𝜇X + 𝜎XdWX ,

dY
Y

= 𝜇Y + 𝜎YdWY .

The SDE for the ratio Z = Y∕X is given by

dZ
Z

=
(
𝜇Y − 𝜇X − 𝜌𝜎X𝜎Y

)
dt + 𝜎Y dWY − 𝜎XdWX .

𝔼
(dZ

Z

)
=
(
𝜇Y − 𝜇X − 𝜌𝜎X𝜎Y

)
dt,

𝕍ar
(dZ

Z

)
=
(
𝜎

2
X + 𝜎2

Y − 2𝜌𝜎X𝜎Y

)
dt,

𝕍ol
(dZ

Z

)
=
√
𝜎

2
X + 𝜎2

Y + 2𝜌𝜎X𝜎Y

√
dt.
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11.4 IMPORTANT SDEs

In this section we review the most important SDEs in finance, such as:

� geometric Brownian motion (GBM);
� Vasicek mean-reverting process;
� Cox–Ingersoll–Ross mean-reverting process;
� constant elasticity of variance (CEV) model;
� stochastic volatility (SV) Heston model;
� Brownian bridge (BB).

11.4.1 The Geometric Brownian Mot ion GBM(𝝁,𝝈)

Fact 11.4.1 (Geometric Brownian Motion) The SDE with drift 𝜇X and diffusion coefficient
𝜎X (i.e., 𝜇(X, t) = 𝜇X and 𝜎(X, t) = 𝜎X) given by

dX(t) = 𝜇X(t)dt + 𝜎XdW(t)

is said to be the geometric Brownian motion with coefficients 𝜇 and 𝜎 and is denoted by
GBM(𝜇, 𝜎).

� Compared with the ABM process, which has constant coefficients, the GBM process has
affine coefficients.

� In particular, this guarantees that the process remains always positive if it starts from a
positive value (good news if you need to model market prices!).

� Our aim is to use Itô’s lemma to solve the above SDE.

11.4.1.1 Solv ing the ODE dX(t) = 𝝁X(t)dt

� We would like to solve the SDE dX(t) = 𝜇X(t)dt + 𝜎X(t)dW(t).
� Let us see what’s happening with the ordinary differential equation, that is the deter-

ministic version:

dx(t) = 𝜇x(t)dt.

– We let y(t) = ln x(t).
– Then, dy(t) = 1

x(t)
dx(t).

– Therefore dy(t) = 𝜇dt, that is y(t) = y(0) + 𝜇t.
– It follows that ln x(t) = ln x(0) + 𝜇t.

Fact 11.4.2 (Solving the ODE dx(t) = 𝜇x(t)dt) The solution of the ODE dx(t) = 𝜇x(t)dt is

dx(t) = 𝜇x(t)dt ⇒ x(t) = x(0)e𝜇t
.
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11.4.1.2 Solv ing the SDE dX = 𝝁Xdt + 𝝈XdW

� We want to solve the SDE dX(t) = 𝜇X(t)dt + 𝜎X(t)dW(t).
� By analogy with the ODE dX(t) = 𝜇X(t)dt, let us look for the SDE of Y(t) = g(x) = lnX(t).
� Using Itô’s lemma, we have

dY(t) =
(
𝜕g(t, X)
𝜕t

+ 𝜇X
𝜕g(t, X)
𝜕X

+ 𝜎
2X2

2
𝜕

2g(t, X)

𝜕X2

)
dt + 𝜎X

𝜕g(t, X)
𝜕x

dW(t)

=
(

0 + 𝜇X
1
X
− 1

2
𝜎

2X2 1
X2

)
dt + 𝜎X

1
X

dW(t)

=
(
𝜇 − 1

2
𝜎

2
)

dt + 𝜎XdW(t).

� This means that Y(t) follows an ABM(𝜇 − 1
2
𝜎

2, 𝜎) process, with solution

Y(t) = Y(0) +
(
𝜇 − 1

2
𝜎

2
)

t + 𝜎(W(t) − W(0)),

and therefore

lnX(t) = lnX(0) +
(
𝜇 − 1

2
𝜎

2
)

t + 𝜎(W(t) − W(0)),

X(t) = X(0)e

((
𝜇− 1

2
𝜎

2
)

t+𝜎(W(t)−W(0))
)

.

� It follows that

lnX(t) ∼ 
(
lnX(0) +

(
𝜇 − 1

2
𝜎

2
)

t, 𝜎2t
)

and

X(t) ∼ 
(
lnX(0) +

(
𝜇 − 1

2
𝜎

2
)

t, 𝜎2t
)
.

� In particular, we have

𝔼0(x(t)) = X(0)e𝜇t
.

Remark 11.4.1 Notice that the SDE

dX(t) = 𝜇X(t) + 𝜎X(t)dW(t)

is equivalent (e.g., they have the same solution) to the SDE

d lnX(t) =
(
𝜇 − 1

2
𝜎

2
)

dt + 𝜎dW(t).

In general, the first SDE is useful to model prices, whilst the second one is used to model
log-returns.

Simulated trajectories of the GBM are shown in Figure 11.8 (see accompanying code);
the resulting distribution originated at different time horizons are presented in Figure 11.9.
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Simulated Paths of the Geometric Brownian Process GBM(0.2, 0.3)
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F IGURE 11.8 Sample paths of the GBM(0.2,0.3).

Geometric Brownian Motion: Facts

The SDE
dX(t) = 𝜇X(t)dt + 𝜎X(t)dW(t), X(0) = x0

The solution

X(t) = X(0)e
(
𝜇− 1

2
𝜎

2
)

t+𝜎(W(t)−W(0))

The distribution of X(t)

X(t) ∼ 
(
lnX(0) +

(
𝜇 − 1

2
𝜎

2
)

t, 𝜎2t
)

The moments of X(t)

𝔼0 (X(t)n) = X(0)nen(𝜇− 1
2
𝜎

2)t+ n2
𝜎

2

2
t

In particular, if n = 1
𝔼0(X(t)) = X(0)e𝜇t

11.4.1.3 Mat lab Implementat ion: S imulat ing GBM

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%SIMULATING THE GEOMETRIC BROWNIAN MOTIONS%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%Assigning the number of simulated paths
%(nsimul), time to maturity (expiry), number of steps
%(nsteps), time step (dt) and observation times (timestep):
%and model parameters
nsimul=100, expiry=1, nsteps=250;
dt=expiry/nsteps;
timestep=[0:dt:expiry]’;
mu=0.2; sigma=0.3;
%Simulate increments ABM dX:
dX=mu*dt+sigma*randn(nsteps,nsimul)*dtˆ0.5;
%Simulate ABM process: cumulate increments
cdX=[zeros(1,nsimul); cumsum(dX)];
gbm=exp(cdX);
%Compute Expected Value
Egbm=exp(timestep*mu);
%Plot simulated paths:
plot(timestep, gbm, timestep, Egbm,’black.’)
title(’Simulated Paths of the Geometric Brownian Process GBM(0.2, 0.3)’)
xlabel(’Time (years)’)
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Density at time 0.2 years
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0 0.5 1 1.5 2 2.5 3 3.5
0
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1

1.5
Density at time 1 years

F IGURE 11.9 Density of the GBM(0.2,0.3) at different horizons.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%Plot GBM densities at different time horizons%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
gbmmin=0; gbmmax=3.5;
[N, X]=hist(gbm(50,:),100);
pdfgbm50=N/(sum(N)*(X(2)-X(1)));
h=figure(’Color’,[1 1 1])
subplot(3,1,1); bar(X, pdfgbm50)
xlim([gbmmin,gbmmax]);title(’Density at time 0.2 years’)

[N, X]=hist(gbm(125,:),100);
pdfgbm125=N/(sum(N)*(X(2)-X(1)));
subplot(3,1,2); bar(X, pdfgbm125)
xlim([gbmmin,gbmmax]);title(’Density at time 0.5 years’)

[N, X]=hist(gbm(end,:),100);
pdfgbmend=N/(sum(N)*(X(2)-X(1)));
subplot(3,1,3); bar(X, pdfgbmend)
xlim([gbmmin,gbmmax]);title(’Density at time 1 years’)
print(h,’-dpng’,’LecBMFigGBMDens.jpg’)

11.4.1.4 Remark: GBM with Determin ist ic Dri f t and Volat i l i ty

� The SDE

dX(t) = 𝜇(t)X(t)dt + 𝜎(t)X(t)dW(t)

is equivalent to the SDE

d lnX(t) =
(
𝜇(t) − 1

2
𝜎

2(t)
)

dt + 𝜎(t)dW(t).

� The solution of both equations is

X(t) = X(0)e
∫ t

0

(
𝜇(s)− 1

2
𝜎

2(s)ds
)
+∫ t

0 𝜎(s)dW(s)
,

or equivalently

lnX(t) = lnX(0) +
∫

t

0

(
𝜇(s) − 1

2
𝜎

2(s)
)

ds +
∫

t

0
𝜎(s)dW(s).

� Moreover

lnX(t) ∼ 
(
lnX(0) +

∫

t

0

(
𝜇(s) − 1

2
𝜎

2(s)
)

ds,
∫

t

0
𝜎

2(s)ds

)
,

X(t) ∼ 
(
lnX(0) +

∫

t

0

(
𝜇(s) − 1

2
𝜎

2(s)
)

ds,
∫

t

0
𝜎

2(s)ds

)
.
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� In particular, we observe that

𝔼(X(t)) = X(0)e∫
t

0 𝜇(s)ds
.

� This result can be useful if we interpret X(t) to be the price of some commodity and we
observe in the market a term structure of futures prices written on X, say F0(t).

� Maybe we are interested in a GBM process for X that takes the observed futures curve as
expected value, that is

𝔼(X(t)) = F0(t).

� This is possible if we impose

X(0)e∫
t

0 𝜇(s)ds = F0(t).

� Therefore, we can write

X(t) = F0(t)e−
1
2
∫ t

0 𝜎
2(s)ds+∫ t

0 𝜎(s)dW(s)
.

� If we are interested in the differential form, we observe that it must also hold that

∫

t

0
𝜇(s)ds = ln

(
F0(t)

X(0)

)
,

and then by differentiating with respect to t:

𝜇(t) =
F′

0(t)

F0(t)
.

� The SDE of X(t) now becomes

dX(t) =
F′

0(t)

F0(t)
X(t)dt + 𝜎(t)X(t)dW(t).

Example: Simulation of the oil price according to a GBM fitting the futures term structure

� To make concrete the discussion, let us consider Table 11.3 containing the term structure
of futures prices on Light Sweet Crude Oil traded at CME on 12 March 2013.

� Given the very short maturity of the April contract (only 8 days), we can set

X(0) = 91.94.

� Then we can iteratively simulate X according to

X(ti) =
F0(ti)

F0(ti−1)
X(ti−1)e−

1
2
𝜎

2(ti−ti−1)+𝜎(W(ti)−W(ti−1)), i = 1, ...,

where ti refers to the expiry dates of different futures contracts, so that t0 = 8∕365,
t1 = 41∕365, t2 = 70∕365, …, t13 = 373∕365.
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TABLE 11.3 Light Sweet Crude Oil (WTI) futures prices quoted at CME as of 12 March 2013. The
first column refers to the contract month; the second to the product code; the third provides the exact
expiry date of the contract; the fourth column gives the quoted futures price the last column contains
the actual number of days to expiration.

Contract Month Product Code Settlement Open Days

APR 2013 CLJ13 20-mar 91.94 8
MAY 13 CLK13 22-apr 92.46 41
JUN 13 CLM13 21-may 92.75 70
JLY 13 CLN13 20-jun 92.79 100
AUG 13 CLQ13 22-jul 93.2 132
SEP 13 CLU13 20-aug 93.13 161
OCT 13 CLV13 20-sep 92.76 192
NOV 2013 CLX13 22-oct 92.13 224
DEC 13 CLZ13 20-nov 91.99 253
JAN 14 CLF14 19-dec 91.91 282
FEB 2014 CLG14 21-jan 92 315
MAR 2014 CLH14 20-feb 91.25 345
APR 2014 CLJ14 20-mar 91.11 373

� As volatility parameter, let us set

𝜎 = 0.2284,

corresponding to the annualized volatility of log-oil price increments in 2012.
� If we run 100,000 MC simulations, we can verify that the restriction imposed by the

futures term structure is satisfied. In Table 11.4 we compare, for each future date t, the
futures price F0(t) with the expectation 𝔼0(X(t)). The agreement is very good.

� A sample of simulated paths is illustrated in Figure 11.10.

TABLE 11.4 The first column refers to the time to maturity (in days) of the different futures
contracts; the second column refers to the expected value of the GBM process, i.e. 𝔼(X(t)); the third
column is the futures price quoted today for maturity t

t (days) 𝔼0(X(t)) F0(t)

8 91.94 91.94
41 92.445 92.46
70 92.7386 92.75

100 92.7702 92.79
132 93.1911 93.2
161 93.1345 93.13
192 92.7703 92.76
224 92.1132 92.13
253 91.9431 91.99
282 91.8659 91.91
315 91.951 92
345 91.2335 91.25
373 91.0994 91.11
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F IGURE 11.10 Simulated GBM paths fitting on average the term structure of futures
prices (blue dotted points).

11.4.2 The Vasicek Mean-Revert ing Process
� An empirical property of several economic variables such as interest rates, inflation rates

and even commodity prices is the tendency towards lower levels (higher levels) when
they are too high (low).

� This property is called mean reversion and can be modelled using a so-called mean-
reverting (MR) process. The effect of mean-reversion is described in Figure 11.11.

� A Gaussian mean-reverting process is described by the following SDE:

dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎dW(t), 𝛼 > 0.

� This model has been introduced in finance by Vasicek to model the instantaneous short
rate. It is also named the Ornstein–Uhlenbeck process.

� We observe that

𝔼t[dX(t)] = 𝛼(𝜇 − X(t))dt,

so that, assuming 𝛼 > 0, 𝔼t[dX(t)] > 0 when X(t) < 𝜇. That is, we expect an increase
(decrease) in the interest rate level when we are below (above) the level 𝜇.

� The higher the value of 𝛼, the faster the return towards the level 𝜇. 𝛼 is called the speed
of reversion, whilst 𝜇 determines the long-run mean level.
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State
Variable

High values of the
state variable: there is a
tendency to decrease

Long
Run
Reversion
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Time

Low values of the
state variable: there is a
tendency to increase

F IGURE 11.11 Mean reversion and expected change in the state
variable (here an interest rate).

� The distribution of X at any future time is Gaussian, so it allows for negative values.
� An extension that guarantees positive interest rates has been proposed by Cox, Ingersoll

and Ross (CIR model).

11.4.2.1 A Note: The Ordinary Di f ferent ia l Equat ion dx(t) = 𝜶(𝝁− x(t))dt

� We would like to solve the SDE in the Vasicek model. Let us start by considering the
deterministic version:

dx(t) = 𝛼(𝜇 − x(t))dt.

� This is a first-order ordinary differential equation. The procedure to solve it is standard.
We recall it here.

� We proceed through the following steps:
– Let y(t) = g(t, x) = e𝛼tx(t).
– Then, dy(t) = 𝛼e𝛼txdt + e𝛼tdx(t).
– Therefore, dy(t) = 𝛼e𝛼tx(t)dt + e𝛼t

𝛼(𝜇 − x(t))dt.
– Therefore, dy(t)(t) = e𝛼t

𝛼𝜇dt.
– Finally, y(t) = y(0) + 𝛼𝜇 ∫ t

0 e𝛼sds = y(0) + 𝜇(e𝛼t − 1).

Fact 11.4.3 (Solving the ODE dx(t) = 𝛼(𝜇 − x(t))dt) The ode dx(t) = 𝛼(𝜇 − x(t))dt admits
solution

x(t) = e−𝛼ty(t) ⇒ x(t) = e−𝛼tx(0) + 𝜇(1 − e−𝛼t).

This is illustrated in Figure 11.12 and the accompanying Matlab code.
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F IGURE 11.12 Solution of the equation dx = 𝛼(𝜇 − x)dt changing the initial condition x0.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%MEAN REVERSION%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;expiry=10;
timestep=linspace(0,expiry,100)’;
mu=100; alpha=1;
X0=100; sol1=mu+(X0–mu)*exp(–alpha*timestep);
X1=120; sol2=mu+(X1–mu)*exp(–alpha*timestep);
X2=80; sol3=mu+(X2–mu)*exp(–alpha*timestep);
%Plot solutions:
h=figure(’Color’, [ 1 1 1])
plot(timestep’, [sol1, sol2, sol3],’.’)
xlabel(’Time (years)’)
legend(’Model 1: x 0=100, nmu = 100, nalpha = 1’, ...

’Model 2: x 0=120, nmu = 100, nalpha = 1 ’,...
’Model 3: x 0=80, nmu = 100, nalpha = 1’)

print(h,’–dpng’,’LecBMFigMeanReversion.png’)
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11.4.2.2 Solv ing the SDE dX(t) = 𝜶(𝝁− X(t))dt + 𝝈dW(t)

� We need to solve

dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎dW(t). (11.3)

� By analogy with the previous ODE, let us define

Y(t) = g(t, Xt) = e𝛼tX(t)

and apply Itô’s lemma.
� Then

dY(t) =

⎛
⎜
⎜
⎜
⎜
⎝

𝜕g(t, X)
𝜕t

⏟⏟⏟

𝛼e𝛼tX

+𝛼(𝜇 − X)
𝜕g(t, X)
𝜕X

⏟⏟⏟

e𝛼t

+1
2
𝜎

2 𝜕
2g(t, X)

𝜕X2
⏟⏞⏟⏞⏟

0

⎞
⎟
⎟
⎟
⎟
⎠

dt + 𝜎
𝜕g(t, X)
𝜕X

⏟⏟⏟

e𝛼t

dW(t)

= (𝛼e𝛼tX + 𝛼(𝜇 − X)e𝛼t)dt + 𝜎e𝛼tdW(t)

= 𝛼𝜇e𝛼tdt + 𝜎e𝛼tdW(t).

� Therefore

Y(t) = Y(0) +
∫

t

0
𝛼𝜇e𝛼sds +

∫

t

0
𝜎e𝛼sdW(s)

= Y(0) + 𝜇(e𝛼t − 1) +
∫

t

0
𝜎e𝛼sdW(s).

Fact 11.4.4 The solution of the SDE (11.3) is

X(t) = e−𝛼tY(t) = e−𝛼tX(0) + 𝜇(1 − e−𝛼t) + 𝜎
∫

t

0
e−𝛼(t−s)dW(s).

In addition, we also have that

X(t) ∼ 
(
𝔼0(X(t)),𝕍ar0(X(t))

)
,

𝔼0(X(t)) = e−𝛼tX(0) + 𝜇(1 − e−𝛼t),

𝕍ar0(X(t)) = 𝜎
2
∫

t

0
e−2𝛼(t−s)(s)ds = 𝜎

2

2𝛼

(
1 − e−2𝛼t) ,

where, in order to compute the variance, we have exploited the Itô isometry.
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11.4.2.3 The (Auto) -Covariance Funct ion

� Let us consider two time instants, t and s, t < s. We have for t < s (but similarly for s < t)
that cX(t, s) is given by

cX(t, s) = cov

(
𝜎
∫

t

0
e−𝛼(t−u)dW(u), 𝜎

∫

s

0
e−𝛼(t−u)dW(u)

)

= 𝜎
2cov

(

∫

min(t,s)

0
e−𝛼(t−u)dW(u),

∫

min(t,s)

0
e−𝛼(s−u)dW(u)

)

= 𝜎
2e−𝛼(t+s)cov

(

∫

t

0
e𝛼udW(u),

∫

t

0
e𝛼udW(u)

)

by the isometry property

= 𝜎
2e−𝛼(t+s)

∫

t

0
e2𝛼ud(u)

= 𝜎
2 e−𝛼(s−t)

2𝛼
.

� With a similar reasoning, if we take t and s with s < t, we have

cX(t, s) = 𝜎
2 e−𝛼(t−s)

2𝛼
.

Fact 11.4.5 The auto-covariance function of the Vasicek model is given by

cX(t, s) = 𝜎
2 e−𝛼|t−s|

2𝛼
.

This result can be exploited to generate simultaneously the entire trajectory of the Vasicek
model: we can simulate the full path by drawing samples from a multivariate normal distribu-
tion with the above covariance matrix.

11.4.2.4 Mat lab: S imulat ion of the Vasicek Model Here we simulate the Vasicek
model exploiting the solution in Fact 11.4.4. A sample of simulated paths is illustrated
in Figure 11.13, whilst distributions originated at different time horizons are presented in
Figure 11.14.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%SIMULATING THE VASICEK MODEL%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;close all
%Model: dr = a * (b – r ) * dt + sg * dW
%Assign Inputs
r0=0.05; a=10; b=0.07; sg=0.1; nstep=200; horizon=1;
nsimul=1000; dt=horizon/nstep;
%Compute the variance of the increments
vol2=(1–exp(–2*a*dt))/(2*a);
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rall=[];
for j=1:nsimul

%Initialize the interest rate vector
r=zeros(nstep+1,1); r(1)=r0;
%Simulate the increments
dW=randn(nstep,1)*vol2ˆ0.5;
%Start iteration
for i=1:nstep

r(i+1)=b+exp(–a*dt)*(r(i)–b)+sg*dW(i);
end
%store the simulated path
rall=[rall, r]

end
%Plot the sample path
h=figure(’Color’,[1 1 1])
plot([0:nstep]*dt,[rall, b+(r0–b)*exp(–a*[0:nstep]*dt)’]);
xlabel(’Time’)
legend(’Simulated path’,’Expected path’)
title(’Simulated path of the Vasicek model dr=a(b–r)dt+sg*dW’)
print(h,’–djpg’,’LecBM SimVasicek new.jpg’)
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F IGURE 11.13 Parameters: r0 = 0.05; 𝛼 = 10; 𝜇 = 0.07; 𝜎 = 0.1; nstep = 200; horizon = 1.
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Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%VASICEK densities at different time horizons%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

%Assign parameters

mu=0.09; sg=0.05; alpha=0.8;rt=0.04;
horizon=[0.25 0.5 0.75 1 5];

%Compute Exp. Value and variance

meanVas=mu+exp(–alpha*horizon).*(rt–mu);
varVas=sg*sg*(1–exp(–2*alpha*horizon))/(2*alpha);
range=linspace(mu–3*sg/(2*alpha)ˆ0.5,...

mu+3*sg/(2*alpha)ˆ0.5,200);

pdfV=[];
for i=1:length(horizon)
meanV=meanVas(i);
stdV=varVas(i).ˆ0.5;
pdfVas=pdf(’norm’, range,meanV,stdV);

pdfV=[pdfV;pdfVas];
end

h=figure(’Color’,[1 1 1])

plot(range,pdfV)

title(’Pdf of the short rate at different times’)

legend(’0.25 yrs’,’0.5 yrs’,’0.75 yrs’,’1 years’,’5 yrs’)

print(h,’–dpng’,’LecBMFigpdfVasicek.jpg’)
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F IGURE 11.14 Density of the MR(0.09,0.8,0.05) at different horizons.
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Mean-Reverting process MR(𝛼,𝜇, 𝜎): Facts

The SDE
dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎dW(t), X(0) = x0

The solution
X(t) = e−𝛼tX(0) + 𝜇(1 − e−𝛼t) + 𝜎 ∫ t

0 e−𝛼(t−s)dW(s)
The distribution of X(t)

X(t) ∼  (𝔼0(X(t)),𝕍ar0(X(t)))
The mean of X(t)

𝔼0(X(t)) = e−𝛼tX(0) + 𝜇(1 − e−𝛼t)
The variance of X(t)

𝕍ar0(X(t)) = 𝜎
2 ∫ t

0 e−2𝛼(t−s)(s)ds = 𝜎
2

2𝛼
(1 − e−2𝛼t)

The stationary distribution of X(t), (t → ∞)

X(t) ∼ 
(
𝜇, 𝜎

2

2𝛼

)
if 𝛼 > 0

The auto-covariance of X(t)

cX(t, s) = 𝜎
2

2𝛼
e−𝛼|t−s|

11.4.2.5 Extension: MR with Determin ist ic Volat i l i ty

� We can generalize the Vasicek model to a deterministic time-varying volatility.
� The SDE becomes

dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎(t)dW(t).

� It has solution

X(t) = X(0) + 𝜇(1 − e−𝛼t) +
∫

t

0
𝜎(s)e−𝛼(t−s)dW(s).

� The solution has the following properties (variance and covariance are computed using
the isometry property):

X(t) ∼ 
(
𝔼0(X(t)),𝕍ar0(X(t))

)
,

𝔼0(X(t)) = X(0) + 𝜇(1 − e−𝛼t),

𝕍ar0(X(t)) =
∫

t

0
𝜎

2(s)e−2𝛼(t−s)ds,

ℂov0(X(t), X(s)) =
∫

min(t,s)

0
𝜎

2(u)e−2𝛼(t+s−2u)du.

11.4.3 The Cox–Ingersol l–Ross (CIR) Model

The SDE is given by

dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎
√

X(t)dW(t).

This model has been introduced by Cox, Ingersoll and Ross to model the dynamics of the
instantaneous interest rate. The peculiar form of the diffusion coefficient has been chosen
to ensure that the process does not achieve negative values, still preserving the analytical
tractability.
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A detailed discussion of the properties of the square-root process can be found in: A.
Cairns, Interest Rate Models. An Introduction. Princeton University Press, Princeton, NJ,
2004.

11.4.3.1 Solv ing the SDE dX(t) = 𝜶(𝝁− X(t))dt + 𝝈
√

X(t)dW(t)

� The SDE for the short rate is given by

dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎
√

XdW(t).

� This model shares with the Vasicek one the form of the drift term, so that it allows for
mean reversion and interest rates cannot explode.
– The mean-reversion property implies also that the interest rate displays a steady-state

distribution.
� The difference with respect to the Vasicek model is the appearance of the square root term√

X in the diffusion term:
– this ensures that the process remains non-negative in every instant of time and a zero

rate of interest can become positive again.
– The level of absolute variance increases with increasing interest rates.

� Unfortunately, this SDE does not admit an explicit solution, such as for the Vasicek model.
� This model is less tractable than the Vasicek one: the distribution of X is related to the

non-central chi-square distribution.
� We can obtain a few properties of the solution such as expected value, variance and

distribution.
� To do this, we exploit Itô’s lemma.

11.4.3.2 Comput ing the Expectat ion of the CIR Model

� In particular, the expectation of X(t), 𝜇X(t) = E(X(t)), is the same as in the Vasicek model
and is obtained by solving the ODE

d𝜇X(t) = 𝛼(𝜇 − 𝜇X(t))dt.

� Therefore, we have

𝜇X(t) = 𝔼0(X(t)) = e−𝛼tX(0) + 𝜇(1 − e−𝛼t).

� We observe that for large times t, we have

𝜇X(t) → 𝜇.

11.4.3.3 Comput ing the Variance of the CIR Model

� To compute 𝕍ar0(X(t)), we proceed as follows:
1. Let us define

Y(t) = X2(t).
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2. Let us find the SDE for Y(t) by applying Itô’s lemma:

dY(t) = (2X(t)𝛼(𝜇 − X(t)) + 𝜎2X(t))dt + 2X(t)𝜎
√

X(t)dW(t)

= (2X(t)(𝛼𝜇 + 𝜎2) − 2𝛼Y(t))dt + 2X(t)𝜎
√

XdW(t).

3. Let us compute 𝜇Y (t) = 𝔼0(Y(t)) by solving the ODE

d𝜇Y (t) =
(
2𝜇X(t)(𝛼𝜇 + 𝜎2) − 2𝛼𝜇Y (t)

)
dt.

4. This can be done by writing

d𝜇Y (t) + 2𝛼𝜇Y (t)dt = 2𝜇X(t)(𝛼𝜇 + 𝜎2)dt

and recognizing in the first term the derivative of e2𝛼t
𝜇Y (t).

5. So, multiply both sides by e2𝛼t
𝜇Y (t), integrate and get 𝜇Y (t).

6. Finally, the variance of X(t) is obtained as 𝜇Y (t) − 𝜇2
X(t):

𝕍ar0(x(t)) = X(0)

(
𝜎

2

𝛼

)(
e−𝛼t − e−2𝛼t) + 𝜇

(
𝜎

2

2𝛼

)
(1 − e−𝛼t)2

.

7. Observe that for large times, we have

𝕍ar0(x(t)) → 𝜇
𝜎

2

2𝛼
.

11.4.3.4 The Distr ibut ion of the Short Rate in the CIR Model

� In order to get an intuition on the distribution of the short rate, let us consider the SDE

dX(t) = −𝛼
2

X(t)dt + 𝜎

2
dW(t).

� The properties of X(T) are known, being Gaussian with mean m(T) = e−
𝛼(T−t)

2 X(0) and
variance s2(T) = 𝜎

2(1 − e−𝛼(T−t))∕(4𝛼).
� Therefore, we can write X(T) = s(T)Z(T) + m(T), where Z(T) is a standard Gaussian

random variable.
� Therefore, if we define

R(t) = X2(t) = s2(t)

(
Z(t) + m(t)

s(t)

)2

,

we can say that R(t)∕s(T) will have a non-central chi-square distribution with 1 degree of
freedom and parameter of non-centrality m(t)∕s(t) (see Appendix A).

� Now, let us apply Itô’s lemma to R(t):

dR(t) = 𝛼(𝜇 − R(t))dt + 𝜎
√

RdW(t),

where 𝜇 = 𝜎
2∕(4𝛼). Therefore, R(t) follows a square-root process.
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� This shows that the distribution of the solution of the square-root process above will
have a non-central chi-square distribution with 1 degree of freedom and parameter of
non-centrality m(T)∕s(T).

� However, if we generalize to

R(t) =
d∑

i

X2
i (t),

where the Xi are d i.i.d. processes like above with coefficients 𝛼i and 𝜎i, R will still have
a non-central chi-square distribution but now with d degrees of freedom.

� The definition can be generalized to a non-integer number d.

Fact 11.4.6 (Distribution of X in the CIR Model) Given X(t), the distribution of

X(T)∕k

is a non-central chi-square distribution with d degrees of freedom and non-centrality parameter
𝜆, where

d = 4𝛼𝜇

𝜎2
, 𝜆 = 4𝛼X(t)

𝜎2(e𝛼(T−t) − 1)
, k = 𝜎

2(1 − e−𝛼(T−t))
4𝛼

.

The distribution of the CIR process is shown in Figure 11.15 (see also accompanying Matlab
code).
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F IGURE 11.15 Density of the short rate in the CIR model at different horizons T . 𝛼 = 0.1,
𝜎 = 0.01, r(t) = 0.03, 𝜇 = 0.05.
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Fact 11.4.7 (Stationary Distribution of X in the CIR Model) The stationary distribution
of X(t) for large t is Gamma, with density function

𝜔
𝜈X(t)𝜈−1e−𝜔X(t)

Γ(𝜈)
,

where

𝜔 = 2𝛼
𝜎2

, 𝜈 = 2𝛼𝜇

𝜎2

and Γ(x) is the Gamma function. In addition, the stationary mean and variance are respectively
equal to 𝜇 and 𝜎2

𝜇∕(2𝛼).

Fact 11.4.8 (The Feller Positivity Condition) If

2𝜅𝜇

𝜎2
> 1 (11.4)

then X will never reach zero.

See Figure 11.16 for an illustration.
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F IGURE 11.16 Short rate density in the CIR model when the Feller condition (11.4) is violated.
𝛼 = 0.01, 𝜎 = 0.05, r(t) = 0.03, 𝜇 = 0.05.
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F IGURE 11.17 Simulated paths of the CIR model. Parameters: 𝛼 = 0.01, 𝜎 = 0.05, r(t) = 0.03,
𝜇 = 0.05.

11.4.3.5 Simulat ing the CIR Model

� We can simulate the CIR model in at least three different ways.

1. Euler simulation: we replace dW(t) by 𝜖(t)
√

dt, where 𝜖(t) is a standard Gaussian
random variable:

X(t + dt) = X(t) + 𝛼(𝜇 − X(t))dt + 𝜎
√

X(t)dt𝜖(t). (11.5)

A sample trajectory is shown in Figure 11.17 (see also accompanying Matlab
code).

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%THE PDF OF THE SHORT RATE IN THE CIR MODEL%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%CIR Parameters
alpha=0.03; sigma=0.02; rt=0.04; mu=0.03;
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tau=[1 5 10 15 20]; %time horizon
%compute d,k
d=4 *alpha *mu/sigmaˆ2;
rT=linspace(0,0.08,200);
for i=1:length(tau)

lambda=4*alpha* rt/(sigma2 *(exp(alpha*tau(i))–1));
k=sigma2 *(1–exp(–alpha*tau(i)))/(4*alpha);
pdfncchi2(i,:)=pdf(’ncx2’,rT/k,d,lambda)/k;

end
h=figure(’Color’, [ 1 1 1])
plot(rT,pdfncchi2,’.’)
xlabel(’x’)
legend(’T–t=1’,’T–t=5’,’T–t=10’,’T–t=15’,’T–t=20’)
title(’The density of the short rate in the CIR model’)
print(h,’–djpeg’,’FigshortrateCIR.jpg’)

2. Gaussian approximation using exact moments: in the Euler discretization we use
the exact mean and the exact standard deviation, rather than the discretized version of
the drift and diffusion coefficient:

X(t + dt) = e−𝛼dtX(t) + 𝜇(1 − e−𝛼dt) +
√
𝕍art(X(t + dt))𝜖(t), (11.6)

where

𝕍art(X(t + dt)) = X(t)

(
𝜎

2

𝛼

)
(e−𝛼dt − e−2𝛼dt) + 𝜇

(
𝜎

2

2𝛼

)
(1 − e−𝛼dt)2

.

A sample trajectory is shown in Figure 11.18 (see also accompanying Matlab code).

3. Exact simulation: we iteratively simulate from a non-central chi-square distribution
changing the non-centrality parameter according to the current level of X:

X(t + dt) = k𝜒2
d,𝜆, (11.7)

where

d = 4𝛼𝜇

𝜎2
, 𝜆 = 4𝛼X(t)

𝜎2(e𝛼dt − 1)
, k = 𝜎

2(1 − e−𝛼dt)
4𝛼

.

So at each time step, we have to simulate a non-central chi-square distribution. This can
be done using the Matlab command icdf (‘ncx2’, rand, d, lambda). A sample trajectory
is shown in Figure 11.19 (see also accompanying Matlab code).
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F IGURE 11.18 Simulated paths of the CIR model with exact moments. Parameters: 𝛼 = 0.01,
𝜎 = 0.05, r(t) = 0.03, 𝜇 = 0.05.

� The third method, albeit exact, is the most expensive and is very slow, as shown in the
following table where we provide the CPU time (in seconds) to simulate one path with
200 time steps:

Method CPU (s)

Euler 0.008382
Gaussian 0.010881
Exact 61.87

� Therefore, we suggest using the second method, Gaussian discretization with exact
moments. It allows us to achieve a good trade-off between accuracy and computational
time.
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F IGURE 11.19 Simulated paths of the CIR model sampling from the non-central chi-square
distribution. Parameters: 𝛼 = 0.01, 𝜎 = 0.05, r(t) = 0.03, 𝜇 = 0.05.

Square-Root Mean-Reverting Process MR(𝛼,𝜇, 𝜎): Facts

The SDE
dX(t) = 𝛼(𝜇 − X(t))dt + 𝜎

√
X(t)dW(t), X(0) = x0

The solution of the SDE
is not explicit

The distribution of X(t)
X(t) ∼ k × 𝜒 2

d,𝜆

The mean of X(t)
𝔼0(X(t)) = e−𝛼tX(0) + 𝜇(1 − e−𝛼t)

The variance of X(t)

𝕍ar0(X(t)) = X(0)
(
𝜎

2

𝛼

) (
e−𝛼t − e−2𝛼t

)
+ 𝜇

(
𝜎

2

2𝛼

)
(1 − e−𝛼t)2

If 2𝛼𝜇 > 𝜎2, the stationary distribution
(t → ∞) of X(t) is Gamma

X(t) ∼ 𝜔
𝜈X(t)𝜈−1e−𝜔X(t)

Γ(𝜈)
, if 𝛼 > 0

The stationary mean of X(t), (t → ∞).
𝜇

The stationary variance of X(t), (t → ∞)

𝜇
𝜎

2

2𝜅
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Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%SIMULATING THE CIR MODEL: EULER DISCRETIZATION %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nstep=200; horizon=1; nsimul=100
dt=horizon/nstep;
rall=[];
for j=1:nsimul

r=zeros(nstep+1,1); r(1)=rt;
for i=1:nstep

r(i+1)=r(i)+ alpha*(mu–r(i))*dt+...
sigma *sqrt(r(i)*dt)*randn;

end
rall=[rall, r];

end
h=figure(’Color’,[1 1 1])
plot(dt*[0:nstep]’,rall)
xlabel(’Time’)
title(’Simulating the CIR model via Euler discretization’)
print(h,’–djpeg’,’FigshortrateCIR Euler.jpg’)

11.4.4 The Constant E last ic i ty of Variance (CEV) Model
� The CEV model has dynamics

dX(t) = 𝜇X(t)dt + 𝜎X𝛽+1(t)dW(t). (11.8)

� For 𝛽 > 0 (𝛽 < 0) the local volatility, defined as SDev(dX)
X

= 𝜎X𝛽 , increases (decreases)
monotonically as the asset price increases.

� Therefore, the so-called leverage effect, that is the inverse relationship between spot price
and volatility, can be recovered by taking 𝛽 < 0.

� For example, Rubinstein and Jackwerth (1996) find that typical values of the CEV elas-
ticity implicit in the S&P 500 stock index option prices are strongly negative and as low
as 𝛽 = −4. They term the corresponding model unrestricted CEV.

� The unrestricted CEV process is used to model the volatility smile effect in the equity
index options market.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%SIMULATING THE CIR MODEL: GAUSSIAN APPROXIMATION %%%%%
%%%WITH EXACT MEAN AND VARIANCE%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
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clc
alpha=0.01; sigma=0.05; rt=0.03; mu=0.05;
nstep=200; horizon=1;nsimul=100
dt=horizon/nstep;
rall=[];
for j=1:nsimul

r=zeros(nstep+1,1); r(1)=rt;
for i=1:nstep

m=exp(–alpha*dt)*r(i)+mu*(1–exp(–alpha*dt));
v=r(i)*(sigma*sigma/alpha)*...
(exp(–alpha*dt)–exp(–2*alpha*dt))...
+mu*(sigma*sigma/(2*alpha))*...
(1–exp(–alpha*dt))ˆ2;

r(i+1)=m + sqrt(v)*randn;
end
rall=[rall, r];

end
h=figure(’Color’,[1 1 1])
plot(dt*[0:nstep]’,rall)
xlabel(’Time’)
title(’Simulating the CIR model with exact moments’)

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%SIMULATING THE CIR MODEL: EXACT METHOD%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; clc

%CIR Parameters

alpha=0.01; sigma=0.05; rt=0.03; mu=0.05;
nstep=200; horizon=1; nsimul=20;
dt=horizon/nstep;
r=zeros(nstep+1,1); r(1)=rt;
rall=[];
%compute d,k

d=4 *alpha *mu/sigmaˆ2;

k=sigmaˆ2 *(1–exp(–alpha*dt))/(4*alpha);

for j=1:nsimul
r=zeros(nstep+1,1); r(1)=rt;
for i=1:nstep

lambda=4*alpha* r(i)/(sigmaˆ2 *(exp(alpha*dt)–1));

r(i+1,:)=icdf(’ncx2’,rand,d,lambda)*k;
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end

rall=[rall, r];

end

h=figure(’Color’, [ 1 1 1])

plot(dt*[0:nstep]’,rall)

xlabel(’Time’)

title(’Simulating the CIR model via Exact Simulation’)

� The CEV name is due to the fact that if we define the elasticity of a function f (x) as

Ef (x) =
𝜕f (x)
𝜕x

x
f (x)

,

and we set

f (x) = 𝕊𝔻ev
(dX

X

)
= 𝜎X𝛽 ,

then

Ef (x) = 𝛽,

in other words, it does not depend on X (i.e., it is constant).
� The CEV model admits as particular cases:

– The O–U Gaussian process when 𝛽 = −1.
– The GBM process when 𝛽 = 0, i.e. the elasticity is zero.
– The squared root (SR) process when 𝛽 = −1∕2.

� The CEV SDE does not admit a closed-form solution, however the transition probability
density over a time frame of length Δ

p(X, 𝜉;Δ) := e−rΔ p0

(
X, e−rΔ

𝜉;
1

2r𝛽

(
e2r𝛽Δ − 1

))
,

with

p0(X, 𝜉;Δ) = 𝜉
−2𝛽− 3

2 X
1
2

𝜎2|𝛽|Δ
e
− X−2𝛽+𝜉−2𝛽

2𝜎2𝛽2Δ I 1
2|𝛽|

(
X−𝛽

𝜉
−𝛽

𝜎2𝛽2Δ

)
,

where I
𝜈

is the modified Bessel function of the first kind of order 𝜈.
� In Figure 11.20 we plot the density function of the CEV process for different values of
𝛽. In Figure 11.21 we plot the corresponding implied volatility curve. In particular, large
negative values of 𝛽 generate very steep implied volatility curves, as often observed in
the option market.
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F IGURE 11.20 Density function of the CEV model for different values of 𝛽.

11.4.5 The Brownian Bridge

Fact 11.4.9 (Brownian Bridge) Let W(t) be a Brownian motion. Fix s > 0 and T > 0 with
s < T, a ∈ ℝ and b ∈ ℝ. We define the Brownian bridge from a to b on [s, T] to be the process
B(t) satisfying the SDE

dXt =
b − X(t)

T − t
dt + dW(t), (11.9)

with initial condition at time s B(s) = a.

11.4.5.1 A Note: The Ordinary Di f ferent ia l Equat ion dx(t) = (b − x(t))∕(T − t)dt

� We would like to solve the SDE of the Brownian bridge. Let us start by considering the
deterministic version:

dx(t) = b − x(t)
T − t

dt.
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F IGURE 11.21 Implied volatility in the CEV model for different values of 𝛽.

� We proceed through the following steps:
– Let y(t) = g(t, x) = (T − s)∕(T − t)x(t).
– Then, dy(t) = b(T − s)∕(T − t).
– Finally, y(t) = y(s) + b(t − s)∕(T − t).

We can conclude:

Fact 11.4.10 (Solving the ODE dx(t) = (b − x(t))∕(T − t)dt) The ODE dx(t) = (b −
x(t))∕(T − t)dt admits the solution

x(t) = a + (b − a)
t − s
T − s

.
11.4.5.2 Solv ing the SDE dXt = (b − X(t))∕(T − t)dt + dW(t)

� We need to solve

dXt =
b − X(t)

T − t
dt + dW(t).
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� By analogy with the previous ODE, let us define

Y(t) = g(t, X(t)) = T − s
T − t

X(t)

and apply Itô’s lemma. Then it follows that:

dY(t) =
(

X(t)
T − s

(T − t)2
+ T − s

T − t
b − X(t)

T − t

)
dt + T − s

T − t
dW(t)

= b
T − s

(T − t)2
+ T − s

T − t
dW(t).

� Therefore

Y(t) = a + b
t − s
T − s

+ (T − s)
∫

t

s

1
T − u

dW(u).

Fact 11.4.11 (Solving the SDE dXt =
b−X(t)

T−t
dt + dW(t)) The solution of the SDE (11.9) is

X(t) = a + t − s
T − s

(b − a) + (T − t)
∫

t

s

1
T − u

dW(u).

Further

X(t) ∼ 
(
𝔼0(X(t)),𝕍ar0(X(t))

)
,

𝔼0(X(t)) = a + t − s
T − s

(b − a),

𝕍ar0(X(t)) = (t − s)(T − t)
T − s

,

cX(t, z) = (t ∧ z − s) (T − t ∨ z)
T − s

.

� The function a + t−s
T−s

(b − a), as a function of t, is the line from (s, a) to (T , b).
� To this line, we add the Brownian bridge from 0 to 0 on [s, T].
� This generates a process that begins at a at time s and terminates at b at time T .

Remark 11.4.2 Notice that the process

X(t) = a + t − s
T − s

(b − a) + (T − t)
∫

t

s

1
T − u

dW(u)

is equivalent (e.g., they have the same distribution, mean, variance and (auto)-covariance) to

X(t) = a + t − s
T − s

(b − a) + (Wt − Ws) −
t − s
T − s

(WT − Ws).
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11.4.5.3 Mat lab Implementat ion: S imulat ing Brownian Mot ions (Part 2) The pri-
mary use for the Brownian bridge in finance is as an aid to Monte Carlo simulation, since
the Brownian bridge X(t) represents a Brownian motion on the time interval [s, T], starting at
Ws = a and conditioned to arrive at b at time T .

� To see this, consider a time partition such that ti < tj < tk.
� Let

X = W(tj) − W(ti),

Y = W(tk) − W(tj),

Z = W(tk) − W(ti) = X + Y .

� Then X and Y are independent; moreover, X ∼ 
(
0, 𝜎2

X

)
, Y ∼ 

(
0, 𝜎2

Y

)
and Z ∼


(
0, 𝜎2

Z

)
, where 𝜎2

X = tj − ti, 𝜎
2
Y = tk − tj and 𝜎2

Z = tk − ti = 𝜎
2
X + 𝜎2

Y .
� Therefore, the conditional density of X given Y is

fX|Z(x) =
fX(x)fY (y)

fZ(z)

= 1

B
√

2𝜋
e
− 1

2

(
x−Az

B

)2

,

where A = 𝜎
2
X∕𝜎

2
Z and B = 𝜎X𝜎Y∕𝜎Z .

� Hence, we can claim conditioning on the knowledge of the process value at time tk,
Wtj

− Wti
∼  (Az, B2).

� From this, it follows that

Wtj
=

tk − tj
tk − ti

Wti
+

tj − ti
tk − ti

Wtk
+

√
(tk − tj)(tj − ti)

tk − ti
𝜀, 𝜀 ∼  (0, 1). (11.10)

� But this is the Brownian bridge from Wti
to Wtk

on [ti, tk].

Hence, we can simulate the value of the Brownian motion at each time step over [0, T] by
using the Brownian bridge according to the following steps:

� Simulate first the value of Brownian motion at time T . Set b equal to this value and set
a = 0.

� Simulate W(t1), using (11.10).
� Set a = W(t1) and repeat for all tj ∈ (0, T).

Resulting sample trajectories are shown in Figure 11.22 (see also accompanying Matlab
code).
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F IGURE 11.22 Brownian motion via Brownian bridge.

11.4.6 The Stochast ic Volat i l i ty Heston Model (1987)
� Stochastic volatility models are widely used in investment banks and financial institutions.
� The model is sufficiently complex to explain the volatility smile in the option market.
� The dynamics of the log-price is

s(t) = log S(t),

ds(t) =
(
𝜇 − 1

2
v(t)

)
dt +

√
v(t)dWs(t),

dv(t) = k (𝜃 − v(t)) dt + 𝜀
√

v(t)dWv(t).

� The correlation between the two Brownian motions affecting the dynamics of the two
state variables is

𝔼(dWs(t)dWv(t)) = 𝜌dt.



612 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

� The model parameters are:

k = mean-reversion speed

𝜃 = long-run variance

𝜀 = volatility of variance

𝜌 = correlation coefficient between the underlying and volatility.

� The parameter restrictions are

S0, v0, k, 𝜃, 𝜀 > 0, 𝜌 ∈ [−1, 1].

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%SIMULATING THE BROWNIAN BRIDGE %%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Assigning the number of simulated paths

%(nsimul), time to maturity (expiry), number of steps

%(nsteps), time step (dt) and observation times (timestep)

clear all;

nsimul=10000, expiry=1, nsteps=250;
dt=expiry/nsteps;
timestep=[0:dt:expiry]’;
Wt=zeros(nsteps+1,nsimul);
%Simulate the Brownian motion at T:

eY = randn(1,nsimul);

Wt(nsteps+1,:)= sqrt(expiry).*eY;

%Simulate the Brownian motion W(t):

for j=2:nsteps
deltat1=(nsteps+1–j)/(nsteps+1–j+1);
eYt = randn(1,nsimul);

Wt(j,:)=deltat1*Wt(j–1,:)+...
(1–deltat1)*Wt(nsteps+1,:)+...

sqrt(deltat1*dt)*eYt;

end

Bb=Wt;
%Plot simulated paths:

h=figure(’Color’,[1 1 1])

plot(timestep, Bb)

title(’Simulated Paths of the BM via Brownian Bridge’)

xlabel(’Time (years)’)

� The variance process is always positive and cannot reach 0, if:

𝜀
2 ≤ 2𝜅𝜃 (Feller condition).
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11.4.6.1 The Characterist ic Funct ion of the Log-Price

� The Heston model fits in the class of affine models: drift and covariance are linear in the
state vector (x, v).

� The Heston model has no jump component.
� Heston’s characteristic function can be computed in closed form:

𝜓
H(u; st, vt, r, T − t) = 𝔼t

[
eiusT

]
= eC(u,T−t)+D(u,T−t)v+i𝜙st ,

C(u, 𝜏) = iu(r − q)𝜏 + k𝜃
𝜀2

(
(k − i𝜌𝜀u − d)𝜏 − 2 ln

1 − ge−d𝜏

1 − g

)
,

D(u, 𝜏) = 1
𝜀2

(k − i𝜌𝜀u − d)
1 − e−d𝜏

1 − ge−d𝜏
,

where

i =
√
−1,

𝜏 = T − t,

d =
√

(i𝜌𝜀u − k)2 + 𝜀2(iu + u2),

g = k − i𝜌𝜀u − d
k − i𝜌𝜀u + d

.

� The density function is given by

fH(s(T), v(t), 𝜏) = 1
𝜋 ∫

∞

0
Re

[
e−ius(T)

𝜓
H (u; s(t), v(t), r, 𝜏)

]
du.

This is illustrated in Figures 11.23–11.26 for different value of the model parameters.

� The call option price is given by

cH

(
S, v = 𝜎

2
t

)
= SP1 − KP(t, T)P2,

where

Pj =
1
2
+ 1
𝜋 ∫

∞

0
Re

[
e−iu lnKfj (x, v, 𝜏; u)

iu

]

du, j = 1, 2.

Here S = stock price, 𝜏 = T − t = time to maturity, K = strike price, Re() is the real part
of a complex variable, x = ln(S) and P(t, T) = e−r(T−t) is the discount factor,

fj(x, v, 𝜏,𝜙) = exp(Cj(𝜙, 𝜏) + Dj(𝜙, 𝜏)v + iux),

i =
√
−1, Cj(𝜙, 𝜏) and Dj( 𝜙,𝜏) are functions (given in the Heston paper) that depend on

𝜏 and the model parameters, but not on x and v.
� The put option price can be computed via put–call parity.

The resulting implied volatilities are shown in Figures 11.27–11.30 for different values of the
model parameters.
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11.4.6.2 Heston Model : Main F ind ings

� For ATM options, the SV model gives the same result as the BS model.
� We need

– a negative correlation between the two processes in order to generate an asymmetric
distribution;

– a higher volatility of volatility to give a higher kurtosis in the distribution.
� Introducing a non-zero correlation, the mispricing of OTM options is considerably

reduced. This is also true in terms of hedging error.
� The SV model does not generate considerable kurtosis and skewness in a short period.
� To accurately fit short-term options we need to add a jump component to the return

equation.

11.5 STOCHASTIC PROCESSES WITH JUMPS

� Brownian motion is a process which is continuous in time and space.
� As a consequence, it cannot capture extreme movements.
� Brownian motion is, in fact, Gaussian – that is, it has symmetric distribution with zero

excess kurtosis.
� Extreme movements, originating skewness and excess kurtosis, can be captured by allow-

ing, for example, discontinuity in space (i.e., introducing jumps).
� Possible examples of such processes are:

� jump diffusion processes, like the Merton JD or Kou JD;
� time-changed Brownian motions, like the VG process.

� The construction of these processes requires some preliminary facts, listed in the following
section.

In the rest of this chapter, we assume the following:

� The dynamics of the log-price is

s(t) = log S(t),

where

s(t) = at + X(t).

� X(t) is the stochastic process of interest.

11.5.1 Prel iminaries

11.5.1.1 The Poisson Process

Fact 11.5.1 A Poisson process is an increasing, positive stochastic process N(t) on ℕ with
independent and stationary increments which are Poisson distributed with instantaneous rate
of arrival 𝜆 > 0. In other words, for any 0 < s < t the following hold:

1. N(0) = 0;
2. N(t) − N(s) is independent of the information set  (s) generated up to time s;
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3. N(t) − N(s) ∼ N(t − s) ∼ Poi(𝜆(t − s)).

Moreover, the characteristic function of N(t) is

𝜙N(u; t) = e𝜆t(eiu−1),

where i =
√
−1 is the imaginary unit. Further,

𝔼(N(t)) = 𝜆t

and

𝕍ar(N(t)) = 𝜆t.

Hence, we note the following:

� It follows from properties 1 and 3 above that N(t) ∼ Poi(𝜆t).
� It follows from the definition of the Poisson distribution (see Appendix A) that the

increments can only take values 1 or 0 according to whether an arrival occurs or not.
� Hence, the Poisson process counts the arrivals in a system, like calls at a call centre or

shocks in the market.
� By definition of a Poisson distribution, there cannot be more than one jump per time

period.
� Hence, the Poisson process can only generate a finite number of jumps over a finite time

horizon.
� For this reason, the Poisson process is said to have finite activity.

11.5.1.2 The Compound Poisson Process In order to gain some additional flexibility
in modelling the size (severity) of the jumps, the Poisson process can be used to construct a
more flexible process by assigning a specific distribution to the severities.

Fact 11.5.2 A compound Poisson process is a stochastic process Y(t) of the form

Y(t) =
N(t)∑

k=1

Zk,

where {Zk}k∈ℕ is a sequence of i.i.d. random variables which are assumed independent from
the Poisson process N(t).

Moreover, the compound Poisson process has characteristic function

𝜙Y (u; t) = e𝜆t(𝜙Z (u)−1),

where 𝜙Z(u) denotes the characteristic function of the random variable Z. It follows that

𝔼(Y(t)) = 𝜆𝔼(Z)t

and

𝕍ar(Y(t)) = 𝜆𝔼(Z2)t.
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We can think of the compound Poisson process as follows:

� At time t a jump occurs.
� When this happens, the Poisson process increases by 1 unit.
� At the same time, a random draw Z is taken from a given distribution to quantify the jump

size and it is summed up to the value of the process at the previous time point.
� The compound Poisson process has finite activity, like the Poisson process.

11.5.1.3 The Gamma Process Alternative processes which capture jump arrivals and
size simultaneously, like the compound Poisson process, are available. One example is given
by the Gamma process.

Fact 11.5.3 A Gamma process is a positive, non-decreasing stochastic process Y(t) with
independent and stationary increments which follow a Gamma distribution (see Appendix A),
that is:

� Y(0) = 0;
� Y(t) − Y(s) is independent of the information set up to time s < t;
� Y(t) − Y(s) ∼ Y(t − s) ∼ Γ(𝛼(t − s), 𝜆).

The characteristic function of the Gamma process is

𝜙Y (u; t) =
(

𝜆

𝜆 − iu

)𝛼t
,

therefore

𝔼(Y(t)) = 𝛼

𝜆
t

and

𝕍ar(Y(t)) = 𝛼

𝜆2
t.

Remark 11.5.1 The Gamma process differs from the compound Poisson process in two
aspects.

1. The Gamma process has infinite activity, as there can be an infinite number of jumps of
very small size in a finite time period.

2. In the Gamma process case it is not possible to separare the rate of arrival of the jumps
from their distribution.

Sample trajectories of the Poisson process and Gamma process are illustrated in Figure 11.31
(see also accompanying Matlab code).
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F IGURE 11.31 Simulated paths of the Poisson process N(t) ∼ Poi(𝜆t) for 𝜆 = 5 (top panel); the
compound Poisson process with Gaussian jump severities with parameters 𝜆 = 5, 𝜇Z = −0.05,
𝜎Z = 0.1 (middle panel); the Gamma process G(t) ∼ Γ(𝛼t, 𝜆), with parameters 𝛼 = 5, 𝜆 = 10
(bottom panel).

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SIMULATING JUMP PROCESSES %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Assigning the number of simulated paths
%(nsimul), time to maturity (expiry), number of steps
%(nsteps), time step (dt) and observation times (timestep):
clear all; nsimul=5, expiry=1, nsteps=250;
dt=expiry/nsteps; timestep=[0:dt:expiry]’;
%Assigning parameters
lambdaP=5; muZ=–0.05; sigmaZ=0.1; alpha=5; lambdaG=10;
%Simulate increments of the Poisson process
dN=poissrnd(lambdaP*dt,[nsteps,nsimul]);
%Simulate Poisson process (use cumulative sum of the increments):
cdN=[zeros(1,nsimul); cumsum(dN)];
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%1. Simulate increments of the CPP for Gaussian jump sizes
dJ=muZ*dN+sigmaZ*sqrt(dN).*randn(nsteps,nsimul);
%2. Simulate CPP process (use cumulative sum of the increments):
cdJ=[zeros(1,nsimul); cumsum(dJ)];
%3. Simulate increments of the Gamma process:
dG=gamrnd(dt*alpha,1/lambdaG,[nsteps,nsimul]);
%4. Simulate Gamma process (use cumulative sum of the increments):
cdG=[zeros(1,nsimul); cumsum(dG)];
%Plot simulated paths:
h=figure(’Color’, [ 1 1 1])
subplot(3,1,1); plot(timestep, cdN);xlabel(’Time (years)’)
title(’Simulated Paths of the Poisson Process’)
subplot(3,1,2); plot(timestep, cdJ);xlabel(’Time (years)’)
title(’Simulated Paths of the Compound Poisson Process’)
subplot(3,1,3); plot(timestep, cdG); xlabel(’Time (years)’)
title(’Simulated Paths of the Gamma Process’)
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F IGURE 11.32 Sample trajectories of a stock price S(t) in the cases in which X(t) is either an
arithmetic Brownian motion or a jump-diffusion process of the form Xt = 𝜇t + 𝜎Wt +

∑Nt
k=1 Zk. In

this example, the jump size Z is Gaussian (Merton, 1976). The process X is obtained from the
arithmetic Brownian motion (the continuous parts are identical) by superimposing the compound
Poisson process.
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11.5.2 Jump Di f fus ion Processes

Fact 11.5.4 (Jump Diffusion Process) A jump diffusion process is a stochastic process X(t)
with independent and stationary increments which is obtained as the sum of an arithmetic
Brownian motion and an independent compound Poisson process, that is

X(t) = 𝜇t + 𝜎W(t) +
N(t)∑

j=1

Zk,

where 𝜇 ∈ ℝ, 𝜎 > 0 and

� W(t) is a Brownian motion,
� N(t) is a Poisson process with instantaneous rate of arrival 𝜆 > 0 and independent of

W(t),
� {Zk}k∈ℕ is a sequence of i.i.d. random variables, which are independent of both the

Brownian motion and the Poisson process.

We can further ‘specialize’ the compound Poisson part of the JD process by specifying
the distribution of the jump severities. Common choices for this distribution in financial
applications are the Gaussian distribution and the exponential distribution.

A simulated path of the geometric Brownian motion and of the same process by superim-
posing a compound Poisson process is given in Figure 11.32.

11.5.2.1 The Merton Jump Di f fus ion Process

Fact 11.5.5 Let us assume that the jump severities follow a Gaussian distribution, that is
Z ∼ 

(
𝜇Z , 𝜎2

Z

)
. Then, the JD process X(t) is a Merton JD process.

� The process takes its name from Robert Merton who first used it for financial applications.
� The choice of modelling dynamics using a JD process is quite common in financial

applications due to the following observation:
– stock prices appear to have small continuous movements most of the time (due, for

example, to a temporary imbalance between demand and supply);
– sometimes though they experience large jumps upon arrival of important information

with more than just a marginal impact.
� By its very nature, important information arrives only at discrete points in time and the

jumps it causes have finite activity.

Properties of the Merton JD process

� 𝔼X(t) = (𝜇 + 𝜆𝜇Z)t.
� 𝕍ar(X(t)) =

(
𝜎

2 + 𝜆
(
𝜇

2
Z + 𝜎2

Z

))
t.
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� The indices of skewness and excess kurtosis are respectively

𝕊kew(t) =
𝜆𝜇Z

(
𝜇

2
Z + 3𝜎2

Z

)

(
𝜎2 + 𝜆

(
𝜇

2
Z + 𝜎2

Z

))3∕2 √
t
,

𝔼𝕂urt(t) =
𝜆

(
𝜇

4
Z + 6𝜇2

Z𝜎
2
X + 3𝜎4

Z

)

(
𝜎2 + 𝜆

(
𝜇

2
Z + 𝜎2

Z

))2
t
.

� The Matlab script get_moments_JD allows the user to compute these quantities.

Interpretation of the parameters

� 𝜇 = drift of the process.
� 𝜎 = volatility of the Brownian motion.
� 𝜆 = rate of arrival of the jumps; it controls the level of excess kurtosis.
� 𝜇Z =mean of the jump sizes; it controls the sign of the skewness index. Hence, the Merton

jump diffusion has a distribution which is skewed to the left if 𝜇Z < 0 and skewed to the
right if 𝜇Z > 0.

� 𝜎Z = volatility of the jump sizes.

Matlab Code

function m=get_moments_JD(mu, sg, lambda, muZ, sgZ, t)

m(1,:)= (mu+lambda*muZ)*t; %mean
m(2,:)= (sg*sg+lambda*(muZ.ˆ2+sgZ.ˆ2))*t; %variance
numsk= lambda.*muZ.*(muZ.ˆ2+3*sgZ.ˆ2);
densk=(sg.ˆ2+lambda.*(muZ.ˆ2+sgZ.ˆ2))ˆ1.5*t.ˆ0.5;
m(3,:)=numsk./densk;%skewness
numk= lambda.*(muZ.ˆ4+6*muZ.ˆ2.*sg.ˆ2+3*sgZ.ˆ4);
denk=(sg.ˆ2+lambda.*(muZ.ˆ2+sgZ.ˆ2))ˆ2*t;
m(4,:)=numk./denk;%excess kurtosis

Parameter fitting

� The simplest method (straightforward but not very accurate) to fit the parameters is to use
the method of moments procedure.

� It consists of minimizing the distance between sample moments (such as sample mean,
sample variance, sample skewness and sample kurtosis) with theoretical ones.

� For example, over year 2012, the log-return series of crude oil prices was characterized
by the sample moments in Table 11.5.
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TABLE 11.5 Sample moments of daily log-price changes in oil price in year 2012

Mean Variance Skewness Excess Kurtosis

−0.0003 0.0144 0.1417 4.3605

� We can solve for the MJD parameters such that theoretical moments fit those in
Table 11.5. This can be done through the following commands in the Matlab command
window:

Matlab Code

%fitting parameters
>>x0(1)=0; x0(2)=0.05; x0(3)=0.5; x0(4)=0.01; x0(5)=0.17
>>[xopt fval]= fminsearch(@(x) sum(((get_moments_JD(x(1), x(2), x(3),
x(4), x(5),1)-ms’).ˆ2)),x0)

>>mJD=get_moments_JD(xopt(1), xopt(2), xopt(3), xopt(4), xopt(5),1)

We obtain the parameter estimates as in Table 11.6.

Simulating the Merton JD process

� The simulation procedure for the trajectories of the Merton jump diffusion process is
based on the following two observations:
1. The increments of the Poisson process are independent and follow a Poisson distribu-

tion with rate 𝜆(tj+1 − tj).
2. Conditioned on the number of jumps occurring from tj to tj+1, the sum of the jump

severities is Gaussian with given mean and variance.
� Hence, the simulation algorithm can be organized as follows:

Step 1. Simulate the continuous part of the JD diffusion process, that is the ABM, on the
given time partition.

Step 2. Simulate the number of jumps occurring from tj to tj+1, that is N ∼ Poi(𝜆(tj, tj+1)).

Step 3. Generate Z ∼  (0, 1); set J = 𝜇ZN + 𝜎Z

√
NZ.

Step 4. Sum the ABM and J.

� Simulated paths are illustrated in Figure 11.33. A comparison between the density of the
MJD model and the Gaussian with the same mean and variance is given in Figure 11.34.

TABLE 11.6 Calibrated parameters of the MJD model to sample moments of
daily log-price changes in oil price for year 2012

𝜇 𝜎 𝜆 𝜇Z 𝜎Z

−0.0037 0.0407 0.5373 0.0064 0.1541
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F IGURE 11.33 Simulated paths of the Merton jump diffusion process. Parameters:
𝜇 = −0.0003, 𝜎 = 0.0425, 𝜆 = 0.5175, 𝜇Z = 0.0064, 𝜎Z = 0.1520.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SIMULATING THE MERTON JD Process %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Assigning the number of simulated paths
%(nsimul), time to maturity (expiry), number of steps
%(nsteps), time step (dt) and observation times (timestep):
clear all; nsimul=50, expiry=1, nsteps=250;
dt=expiry/nsteps; timestep=[0:dt:expiry]’;
%Assigning parameters
mu=–0.0003; sigma=0.0425; lambda=0.5175;
muZ=0.0064; sigmaZ=0.1520;
%Simulate increments of the ABM
dW=mu*dt+sigma*sqrt(dt).*randn(nsteps,nsimul);
%Simulate increments of the CPP
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dN=poissrnd(lambda*dt,[nsteps,nsimul]);
dJ=muZ*dN+sigmaZ*sqrt(dN).*randn(nsteps,nsimul);
dX=dW+dJ;
%Simulate MJD process (use cumulative sum of the increments):
cdX=[zeros(1,nsimul); cumsum(dX)];
%Plot simulated paths:
h=figure(’Color’, [ 1 1 1])
plot(timestep, cdX);xlabel(’Time (years)’)
title(’Simulated Paths of the Merton JD Process’)

11.5.2.2 The Kou Process In the case of the Kou process, the jump sizes follow a
double-exponential distribution with parameters (p, 𝜂1, 𝜂2), that is their density function is
given by

p𝜂1e−𝜂1y1(y≥0) + (1 − p)𝜂2e𝜂2y1(y<0), 𝜂1, 𝜂2 > 0, p ∈ [0, 1].
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horizon and superimposed Gaussian density with the same mean and variance. Top right: QQplot
of simulated returns. Bottom left: Left tail of the simulated returns versus Gaussian tail. Bottom
right: Right tail of the simulated returns versus Gaussian tail. Parameters as in Table 11.6.
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Properties of the Kou JD process

� 𝔼(X(t)) = (𝜇 + 𝜆(p∕𝜂1 − (1 − p)∕𝜂2))t.
� 𝕍ar(X(t)) =

(
𝜎

2 + 2𝜆
(
p∕𝜂2

1 + (1 − p)∕𝜂2
2

))
t.

� The indices of skewness and excess kurtosis are respectively

𝕊kew(t) =
6𝜆

(
p∕𝜂3

1 − (1 − p)∕𝜂3
2

)

(
𝜎2 + 2𝜆

(
p∕𝜂2

1 + (1 − p)∕𝜂2
2

))3∕2 √
t
,

𝔼𝕂urt(t) =
24𝜆

(
p∕𝜂4

1 + (1 − p)∕𝜂4
2

)

(
𝜎2 + 2𝜆

(
p∕𝜂2

1 + (1 − p)∕𝜂2
2

))2
t
.

Interpretation of the parameters

� 𝜇 = drift of the process.
� 𝜎 = volatility of the Brownian motion.
� 𝜆 = rate of arrival of the jumps; it controls the level of excess kurtosis.
� p = probability of an upward jump.
� 𝜂1 = parameter of the exponential distribution controlling the upward jumps; therefore,

the upward jumps have mean 1∕𝜂1.
� 𝜂2 = parameter of the exponential distribution controlling the downward jumps; therefore,

the downward jumps have mean 1∕𝜂2.

11.5.3 Time-Changed Brownian Mot ion

An alternative way of constructing stochastic processes with jumps is to consider an arithmetic
Brownian motion on a time scale which is not governed by the standard calendar time, but by
a random clock. These processes are called time-changed Brownian motion.

Fact 11.5.6 A time-changed Brownian motion is a process of the form

X(t) = 𝜃G(t) + 𝜎W(G(t)), 𝜃 ∈ ℝ, 𝜎 > 0,

where W(t) is a Brownian motion and G(t) is a positive, increasing stochastic process inde-
pendent of W. The law of increments of the process G is what allows us to characterize the
resulting process X.

Constructing time-changed Brownian motion has particular economic appeal as:

� This construction finds its rationale in the following – uncertainty in price changes
is originated by the time at which the next investor enters the market with a trans-
action altering the current price values, and the amount by which this current price
is changed. The random clock models the time at which the next transaction will
take place; the ‘size’ of the price change is instead captured by the Brownian motion
component.

� Empirical evidence shows that stock log-returns are Gaussian but only under trade time,
rather than standard calendar time.
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� Further, the time-change construction recognizes that stock prices are largely driven
by news, and the time between one piece of news and the next is random as is its
impact.

� Finally, this construction offers a high degree of mathematical tractability as, once we
operate under business time, log-returns are once again Gaussian and therefore the results
derived for the Black–Scholes model still hold.

A time-changed Brownian motion commonly used in finance is the variance Gamma
process.

11.5.3.1 The Variance Gamma Process

Fact 11.5.7 Let us assume that G is a Gamma process with parameters 𝛼 = 𝜆 = k−1, for any
positive constant k, so that 𝔼G(t) = t and 𝕍ar(G(t)) = kt. Then, X(t) is a VG process.

We note the following:

� The parameters of the Gamma process are chosen so that 𝔼(G(t)) = t, that is the process
chosen as random clock is an unbiased representation of calendar time.

� The VG process has infinite activity; specifically it is characterized by an infinite number
of jumps of small size in a finite time period.

� The VG process has finite variation, so it is characterized by a finite number of jumps of
big size in a finite time period.

Other examples of time-changed Brownian motion used for financial applications are the
normal inverse Gaussian and the CGMY process.

Properties of the VG process

� The probability density function is

2
e𝜃x∕𝜎2

kt∕k𝜎
√

2𝜋Γ(t∕k)

(
x2

𝜃2 + 2𝜎2∕k

) t
2k
− 1

4
K t

k
− 1

2

(
|x|
𝜎2

√
𝜃2 + 2𝜎2∕k

)
. (11.11)

� The characteristic function of the VG process is

𝜙X(u; t) =
(

1 − iu𝜃k + u2 𝜎
2

2
k

)− t
k

. (11.12)

� The expected value is

𝔼(X(t)) = 𝜃t.
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� The variance is

𝕍ar(X(t)) = (𝜎2 + 𝜃2k)t.

� The indices of skewness and excess kurtosis are respectively

𝕊kew(t) = (3𝜎2 + 2𝜃2k)𝜃k

(𝜎2 + 𝜃2k)3∕2
√

t
,

𝔼𝕂urt(t) = (3𝜎4 + 12𝜎2
𝜃

2k + 6𝜃4k2)k

(𝜎2 + 𝜃2k)2t
.

� The above quantities are computed via the Matlab function get_moments_VG.

Interpretation of the parameters

� 𝜃 ∈ ℝ: mean of the VG process; it also controls the sign on the skewness index. Hence,
the VG process has distribution skewed to the left if 𝜃 < 0 and skewed to the right if
𝜃 > 0. If 𝜃 = 0, the process has symmetric distribution.

� 𝜎 > 0: controls the variance of the VG process. If 𝜎 = 0, the VG process reduces to the
Gamma process.

� k > 0: variance rate of the Gamma process. It controls the level of excess kurtosis.

Matlab Code

function m=get_moments_VG(theta, sg, kappa,t)

m(1,:)= theta*t; %mean
m(2,:)= sg*sg*t+theta*theta*kappa*t; %variance
numsk= (3*sgˆ2+2*thetaˆ2*kappa)*theta*kappa;
densk=(sgˆ2+thetaˆ2*kappa)ˆ(3/2)*t.ˆ0.5;
m(3,:)=numsk./densk%skewness
numk=(3*sgˆ4+12*sgˆ2*thetaˆ2*kappa+6*thetaˆ4*kappaˆ2)*kappa;
denk=(sg*sg+theta*theta*kappa)ˆ2*t;
m(4,:)=numk./denk;%kurtosis

Simulation of the VG process The simulation procedure of the variance Gamma process is
based on the following two observations:

1. The increments of the Gamma process are independent and follow a Gamma distribution
Γ((tj+1 − tj)∕k, 1∕k).

2. Conditioned on the increments of the Gamma clock, the increments of the VG process
are Gaussian with given mean and variance.
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F IGURE 11.35 Simulated paths of the VG process. Parameters: 𝜃 = −0.4, 𝜎 = 0.3, 𝜅 = 0.25.

Hence, the simulation algorithm can be organized as follows:

Step 1. Simulate the increments from tj to tj+1 of the Gamma clock, that is G ∼ Γ((tj+1 −
tj)∕k, 1∕k).

Step 2. Generate Z ∼  (0, 1); set X = 𝜃G + 𝜎
√

GZ.

A sample trajectory is shown in Figure 11.35 (see also accompanying Matlab code).

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SIMULATING THE VARIANCE GAMMA %%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Assigning the number of simulated paths
%(nsimul), time to maturity (expiry), number of steps
%(nsteps), time step (dt) and observation times (timestep):
clear all;
nsimul=50, expiry=1, nsteps=250; dt=expiry/nsteps;
timestep=[0:dt:expiry]’;
%Assigning parameters
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theta=–0.4; sigma=0.3; kappa=0.25;
%Simulate increments of the Gamma process:
dG=gamrnd(dt/kappa,kappa,[nsteps,nsimul]);
%Simulate increments of the ABM on the Gamma clock scale
dX=theta*dG+sigma*sqrt(dG).*randn(nsteps,nsimul);
%Simulate VG process (use cumulative sum of the increments):
cdX=[zeros(1,nsimul); cumsum(dX)];
%Plot simulated paths:
h=figure(’Color’, [ 1 1 1])
plot(timestep, cdX)
title(’Simulated Paths of the VG Process’)
xlabel(’Time (years)’)

11.5.4 F ina l Remark: L évy Processes
� All the processes presented in this section share the feature of independent and stationary

increments.

10

8

6

4

2

0

G

VG
MJD

G

VG
MJD

G

0.8

0.6

0.4

0.2

0

0.4

0

0.5

1

1.5

0.3

0.2

0.1

0
–2 –1 0

–0.5 0.50 –1 10

log-return log-return

log-return

Horizon (days):1 Horizon (days):10

Horizon (days):20 Horizon (days):90

log-return

1 2 –2 0 2 4–4

VG
MJD

G

VG
MJD

F IGURE 11.36 The pdf of Gaussian (G), variance-Gamma (VG) and Merton
jump-diffusion (MJD) processes at different time horizons. Parameters are chosen to fit sample
moments of daily log-returns of oil prices in 2012.
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� Brownian motion shares the same feature as well.
� They differ in the distribution chosen to model these increments.
� A process with independent and stationary increments is called a Lévy process.
� Lévy processes are widely used in financial applications.
� All processes can be made more rich in terms of features they can capture by assuming, for

example, time-dependent parameters, or by using more complex processes as stochastic
clocks.

� For example: the instantaneous volatility of any of the processes presented above is
constant. This assumption can be relaxed by assuming time-dependent parameters. How-
ever, the resulting more general process will no longer have independent and stationary
increments.

� The main problem with Lévy processes is that they cannot capture the volatility clus-
tering effects, which can be captured by other models such as stochastic volatility
models.

� Lévy processes and the stochastic volatility model complement each other: jump processes
have a relative advantage in analytical tractability and they better capture short-term
behaviour of financial time series, whilst stochastic volatility models have a richer time-
dependence structure and are more useful to model long-term behaviour.

� Figure 11.36 compares the MJD, the VG and the Gaussian pdf at different horizons
(1, 10, 20 and 90 days). We can see that the three densities approach one another as the
time horizon lengthens. This is due to the nature of independence of the increments of the
three processes. This allows the central limit theorem to operate: in practice, the skewness
and the kurtosis fade away very quickly.
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CHAPTER 12
Estimating Commodity Term

Structure Volatilities
Andrea Roncoroni, Rachid Id Brik and Mark Cummins

12.1 INTRODUCTION

This chapter introduces two leading methods used in estimating the term structure of volatility
in energy and commodity futures markets. The first of these methods is the Kalman filter
and the second is principal components analysis. Technical definitions are provided and the
methods are illustrated using historical futures data.

12.2 MODEL ESTIMATION USING THE KALMAN FILTER

The literature in financial modelling offers a large number of models to draw on in determin-
ing commodity prices. Several papers are based on spot prices, where the spot price is for
immediate delivery of a commodity, while others are based on forward or futures prices, where
delivery or cash settlement occurs at a date in the future. The no-arbitrage relationship between
futures and spot prices introduces the concept of convenience yield. This new variable allows
us to reproduce the term structure of futures prices from a spot price model. However, this
variable is not observable in the market and so must be measured from observable market price
information. The convenience yield only has an economic interpretation and can be linked
with the level of inventories. Spot price and convenience yield as a pair have been well studied
by Gibson and Schwartz (1990), Schwartz (1997), Casassus and Collin-Dufresne (2005) and
many others. In this context, since the convenience yield is unobservable, and indeed for some
markets a liquid spot price may not be readily observable either, one may need to introduce
filtering techniques in order to estimate the parameters of a given price model specification.
Our first objective in this chapter is to describe the Kalman filter through an estimation of the
parameters of the Gibson–Schwartz model.
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Andrea Roncoroni, Gianluca Fusai and Mark Cummins.
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Studies of systems in signal processing, where signals can be determined by non-
observable variables, led to the development of state-space methods such as the Kalman
filter (Kalman, 1960). Such methods provide optimal estimation of the value of a state vector
from noisy observations for linear dynamic systems. Hence, these methodologies differentiate
between two kinds of variables: observed variables and hidden or latent variables. State-space
methods allow us to estimate the latent variables of the system as a function of the observed
variables, with some noise measures. The Kalman filter is a powerful mathematical tool
since it can be applied in many fields. More specifically, researchers in energy finance utilize
it in estimating the parameters of spot price/convenience yield commodity price models –
with convenience yield being the unobservable. In particular, the application of Kalman filter
methods to the estimation of term structure models has been investigated by Schwartz (1997),
Schwartz and Smith (2000) and many others. Indeed, the logarithm of the futures price which
is observable is often considered to be a linear function of spot price, convenience yield
and interest rates. In this context, it is natural to introduce this filtering technique. We detail
the general concept and apply it for illustrative purposes to the Gibson–Schwartz model as
described in Schwartz (1997).

In general, the Kalman filter consists of detecting information represented by a signal
polluted by some noise. More precisely, it aims to optimally estimate the state of a linear
system given information linked to this system. This is why the Kalman filter is often used to
estimate non-observable parameters. In particular, the filtering problem involves considering
a non-observable process xk that describes the state of a system and, at time tk, trying to
collect information on an observable process zk, which is a combination of a function of the
non-observable process and some noise. That is,

zk = h(xk) + vk.

The statistical characteristics of vk are known and, at time tk, we have all the information from
(z0,… , zk); our goal is then to get the most information on xk by deriving its estimator.

The model considers a causal and a deterministic evolution. Causal evolution is the change
of the system due to past and present phenomena. Deterministic evolution corresponds to a
given initial condition, giving the model a unique scenario. This evolution can be represented
by an ordinary differential equation taking account of some perturbations.

12.2.1 Descript ion of the Methodology

We introduce the Gibson–Schwartz model under the historical measure, with s(t) the spot price
and 𝛿(t) the instantaneous convenience yield according to the standard theory of storage:

ds(t)∕s(t) = (𝜇 − 𝛿(t))dt + 𝜎1dw1(t),

d𝛿(t) = 𝜅(𝛼 − 𝛿(t))dt + 𝜎2dw2(t),

𝜌dt = dw1(t) × dw2(t),

where w1 and w2 are two Brownian motions with correlation 𝜌. Moreover, the coefficient 𝜇,
the volatility of the logarithm of the spot price 𝜎1, the mean reversion speed 𝜅, the long-run
equilibrium level 𝛼, the volatility of the convenience yield 𝜎2 and the correlation 𝜌 are constant.
This model exhibits an important behaviour which can be observed in commodity markets,
called backwardation. We say that a market is in backwardation when for two futures contracts
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with different maturities in this market, the futures price with shortest maturity is greater than
the one with longest maturity. When the opposite occurs, we say that the market is in contango.
One of the main assumptions of this model is the mean-reversion pattern of the spot price
s(t), which has been exhibited in different commodity markets in Gibson and Schwartz (1990)
and Schwartz (1997). The mean-reversion feature is indirectly induced by the dynamics of the
instantaneous convenience yield 𝛿(t). Indeed, commodity markets exhibit high correlation 𝜌
on the Brownian motions of the two factors. When the spot price s(t) is high, the convenience
yield 𝛿(t) is high. Since the convenience yield factor is mean-reverting, the spot price tends to
return a long-run equilibrium value.

Transitioning to the risk-neutral probability measure, the two factors can be written as
follows:

ds(t)∕s(t) = [r − 𝛿(t)]dt + 𝜎1d𝜔1(t), (12.1)

d𝛿(t) = 𝜅[�̂� − 𝛿(t)]dt + 𝜎2d𝜔2(t),

where r is the interest rate assumed to be constant; �̂� := 𝛼 − 𝜆𝜎2∕𝜅, where 𝜆 is the market price
of risk for the convenience yield; and 𝜔1 and 𝜔2 are two Brownian motions with correlation
𝜌, defined under the risk-neutral measure.

We introduce the Kalman filter to the Gibson–Schwartz model, whereby the state variables
are assumed to be the spot price (which in practical market terms may be assumed to be illiquid
and effectively unobservable) and the convenience yield, with the observed data assumed to
be readily available liquid futures prices. We consider the following general framework. Let
x(t) ∈ ℝp and z(t) ∈ ℝm, respectively representing the state and measure variables. The couple
(x(t), z(t)) is a continuous stochastic process. Hence, the variable x(t) is not observable and
the process z(t) is available from the market at time t with some noise. Moreover, we link the
two processes as follows:

z(t) = h(x(t)) + v(t),

where z(t) is the observation, x(t) is the state process and v(t) is some known noise. This aligns
with the representation of the previous section. This equation is called a measure equation and
describes the dependence between the observations z(t) and the state variables x(t). In general,
x(t) follows a dynamic system. The objective is to find an optimal estimator x̂(t) of the state
vector from the available measure over a period [0, t] : {z(𝜏), 𝜏 ∈ [0, t]}.

We now derive the relationship between the spot price and convenience yield and the
futures prices under the Gibson–Schwartz model. Since r is supposed to be constant, futures
and forward contracts are equal. The futures prices satisfy a partial differential equation which
has an explicit solution.

Proposition 12.2.1

F(t, T) = s(t)e−𝛿(t) 1−e−𝜅T

𝜅
+A(T) (12.2)

where T is the time-to-maturity of the futures contract and

A(T) :=

(

r − �̂� +
𝜎

2
2

2𝜅2
− 𝜌

𝜎1𝜎2

𝜅

)

T +
𝜎

2
2

4
1 − e−2𝜅T

𝜅3
+

(

�̂�𝜅 + 𝜌𝜎1𝜎2 −
𝜎

2
2

𝜅

)
1 − e−𝜅T

𝜅2
.
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TABLE 12.1 Variables under the Gibson–Schwartz model

Variables Formula

State variables

(
log(s(t))

𝛿(t)

)

Observed variables
⎛
⎜
⎜
⎝

log(F(t, T1))

⋮

log(F(t, Tm))

⎞
⎟
⎟
⎠

Proof. See Jamshidian and Fein (1990).

It is natural to introduce the logarithm of the futures prices F(t, T), since this is a linear
function of the spot price s(t) and the convenience yield 𝛿(t) in Eq. (12.2). Table 12.1 sum-
marizes the application of the Gibson–Schwartz model for a set of fixed times to maturity,
T1,… , Tm.

Remark 12.2.1 Notice that the dimension of the state variable, which we denoted by p in
the general framework, is equal to 2 in this case since we only have the spot price s(t) and the
convenience yield 𝛿(t) as the latent variables.

For the sake of simplicity, we now work with discrete models. The discrete version of the
previous model can be written as follows. We consider the following discretization of time:
0 = t0 < ⋯ < tk <⋯ < tn = t. Define xk ∈ Rp and zk ∈ Rm as respectively representing the
state and measure variables at tk. The goal is to estimate the state of a dynamic system from
partial observations with some noise,

zk = h(xk) + vk,

where {zk, k = 0,… , n} is available and vk are some additional noise.
We assume that measurement errors are additive and normally distributed. The variance–

covariance matrix of the measurement errors can take various forms. We only focus on the
following Gaussian linear system:

xk+1 = Fkxk + fk + wk,

zk = Hkxk + hk + vk.

The process wk is a Gaussian white noise with covariance matrix QW
k . The initial condition of

the state variable x0 is Gaussian, whereby its mean is equal to x̄0 and its covariance matrix is
QX

0 . The process vk is also a Gaussian white noise with covariance matrix QV
k . More precisely,

we assume that QV
k = 𝜒

′Id, where Id is the identity matrix 𝜒 . We also suppose that the
initial conditions of the state variable x0 and the noise (v0, w0) are independent. Moreover, the
following information (z0,… , zk) is available at each tk. In particular, for the Gibson–Schwartz
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model, let x(t) := log(s(t)). We discretize Eq. (12.1). The transition equation becomes

x(t + Δt) = x(t) +

(

r − 𝛿(t) −
𝜎

2
1

2

)

Δt + 𝜎1𝜖1(t)
√
Δt,

𝛿(t + Δt) = 𝛿(t) + 𝜅(�̂� − 𝛿(t))Δt + 𝜎2𝜖2(t)
√
Δt,

𝜌 = Corr(𝜖1, 𝜖2),

where

(
𝜖1(t)
𝜖1(t)

)
⇝ N

(
0,

(
1 𝜌

𝜌 1

))
.

The equation measurement applying the Euler discretization of Eq. (12.2) becomes

log(F(t, T)) = x(t) − 𝛿(t)
1 − e−𝜅T

𝜅
+ A(T).

Now, we can write the system of measurement and the system of state variables. The observed
variables are the logarithm of the futures prices

zt =
⎛
⎜
⎜
⎝

log(F(t, T1))
⋮

log(F(t, Tm))

⎞
⎟
⎟
⎠
.

The state variables are the logarithm of the spot price and convenience yield

xt =
(

x(t)
𝛿(t)

)
.

Hence, the parameters of the measurement equation are

Hk =
⎛
⎜
⎜
⎜
⎝

1, − 1−e−𝜅Tj

𝜅

⋮ ⋮

1, − 1−e−𝜅Tm

𝜅

⎞
⎟
⎟
⎟
⎠

, hk =
⎛
⎜
⎜
⎝

A(T1)
⋮

A(Tm)

⎞
⎟
⎟
⎠
.

The system equation has the following parameters:

Fk =
(

1 −Δt
0 1 − 𝜅Δt

)
,

fk =
([

r − 𝜎2
1∕2

]
Δt

𝜅𝛼Δt

)
.

The covariance matrices of the errors are

QV
k = diag(𝜒1,… ,𝜒m),

QX
k =

(
𝜎

2
1Δt 𝜌𝜎1𝜎2Δt

𝜌𝜎1𝜎2Δt 𝜎
2
2Δt

)
.
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Remark 12.2.2 The previous matrices do not depend on time tk.

The parameters to estimate in the Gibson–Schwartz model are the coefficient 𝜇, the
volatility 𝜎2 of the spot price s(t), the mean-reversion speed 𝜅 of the convenience yield 𝛿(t),
the long-run equilibrium level 𝛼 of 𝛿(t), the volatility 𝜎2 of 𝛿(t), the market price of risk 𝜆, the
correlation 𝜌 and the variance generated from the noise errors 𝜒1,𝜒2,… ,𝜒m.

We consider 𝜃 as the set of all these parameters to be estimated. The filtering method
consists of optimally and recursively estimating the stochastic process xk from the available
information zk at time tk. The problem requires giving some initial conditions and a set of
observations z, finding the conditional law of xk given all the past information {z0,… , zk}.
The optimal value is found by applying the minimum of the variance criterion using the
partial information we have about xk on (z0,… , zk). Since we suppose that the processes are
Gaussian, we only need the first two moments: the mean x̂k and covariance Pk to define its law.
We wish x̂k to be a function depending only on the observation from the previous estimation
of x̂k and covariance matrices. Therefore,

x̂k := 𝔼[xk|(z0,… , zk)],

Pk := 𝔼[(xk − x̂k) × (xk − x̂k)′|(z0,… , zk)],

and
x̂−k := 𝔼[xk|(z0,… , zk−1)],

P−
k := 𝔼[(xk − x̂−k ) × (xk − x̂−k )′|(z0,… , zk−1)].

Supposing knowledge of the conditional law of the process xk−1 given (z0,… , zk−1), the
Kalman filter considers two steps in order to evaluate xk given (z0,… , zk). The first step is called
the prediction step, whereby the conditional law of xk is derived from the past information
(z0,… , zk−1). The second step, named the correction step, brings new information to the past
information (z0,… , zk−1) by introducing zk. Let us introduce the innovation ik ∈ ℝm,

ik = zk − 𝔼[zk|(z0,… , zk−1)],

= zk − [Hkx̂−k + hk].

One can show that:

Proposition 12.2.2 The innovation ik is a Gaussian process independent of the observations
(z0,… , zk−1). Its mean and covariance are respectively 0 and

QI
k = HkP−

k H′
k + QV

k .

Proof. See Appendix.

The next proposition details the conditional law of xk.

Proposition 12.2.3 Under the condition that QI
k

is invertible for all k, the processes {x̂k}
and {Pk} are defined as follows.
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1. Prediction step:

x̂−k = Fkx̂k−1 + fk,

P−
k = FkPk−1Fk + QW

k .

2. Correction step:

x̂k = x̂−k + Kk[Zk − (Hkx̂k−1 + hk)],

Pk = [ik − KkHk]P−
k ,

where

Kk = P−
k H′

k

[
HkP−

k H′
k + QV

k

]−1
.

Kk is called the Kalman gain with the initial condition and

x̂−0 = x̂0

= 𝔼[x0],

P0 = QX
0 .

Proof. See Kalman (1960).

Since ik is Gaussian, we can apply the maximum likelihood estimator.

Proposition 12.2.4 The log-likelihood function is given by

L(𝜃) = −NM
2

log(2𝜋) − 1
2

N∑

k=1

[
Mk log(2𝜋) + log ||Q

I
k
|| + i′k

[
QI

k

]−1
ik
]
.

Proof. Prediction errors ik of the Kalman filter are normally Gaussian distributed with
zero mean and covariance matrix QI

k
. Hence, parameters can be estimated with the maximum

likelihood method. Since ik and QI
k depend upon 𝜃, the optimal parameter is chosen to maximize

the likelihood function. Therefore, ik can be used to evaluate the likelihood function.

The estimation procedure is recursive and it is calculated at each time tk as part of the
Kalman filter. The next proposition highlights an important property on Pk and P−

k and reduces
the complexity of the algorithm.

Proposition 12.2.5 The conditional covariances Pk and P−
k are independent of (z0,… , zk−1).

Proof. Consequence of Proposition 12.2.2.

Pk and P−
k are independent of the observation. Therefore, Pk can easily be computed from

the beginning since its expression does not depend on the observations.
We summarize the algorithm. The Kalman filter differentiates two kinds of variables:

observed and latent variables. Under the Gibson–Schwartz model, the latent variables are the
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spot price and convenience yield. The filter consists of estimating the state of a dynamic system
governed by the following equations: one or several measure equations, describing how the
observable variables denoted zk are generated by the non-observed variables denoted xk and
some noise. The transition equation is the next discrete-time distribution of the state variables,
where 𝜃 contains the unknown parameters of the model, (i.e., the set of parameters). One or
several state equations describing how the latent variables are generated: the measurement
equation. The Kalman filter aims to obtain information on xk from the observed data. The
algorithm is divided into two steps: the prediction (update of time) and the correction (update
of measures) of the state variable. At time k − 1, we have an estimation of the hidden variable
xk−1 and its variance Pk−1 with some value for 𝜃. During the prediction step, we find an
estimation of x̂−

k and P−
k . At time tk, we get information on the data: zk.Using this information,

we derive x̂k and Pk. To estimate the parameter 𝜃, we maximize the log-likelihood function L
of the previous proposition.

Remark 12.2.3 The initial parameters x0 and P0 are not determined. However, many
books give some insights into deriving the initial values. In general, x0 is chosen from
an understanding of the state variable. P0 represents confidence on x0. In the literature
it is shown that a large coefficient on this matrix increases the convergence speed of the
algorithm.

12.2.2 Case Study: Est imat ing Parameters on Crude Oi l

Crude oil dominates the energy market. The oil futures market is one of the most mature and
liquid energy markets. Its price exhibits high volatility and a mean-reverting pattern. Our data
consists of West Texas Intermediate (WTI) futures contracts for physical delivery of crude
oil quoted on the New York Mercantile Exchange (NYMEX) in 2005.1 We use daily data
(Δt = 1∕252) for the period between 2 January 2005 and 29 December 2005. More precisely,
we consider futures contracts with the first 18-month maturities. Figure 12.1 illustrates the
WTI futures prices. One can observe three broad regimes: low price from January to March
2005; high price from April to September 2005; low price for the remainder of the year.
Figure 12.2 shows the price of the 1-month and 9-month futures contracts. Comparing the two
futures contracts, the figure suggests that the market is in contango for most of the period.

The Kalman filtering algorithm is implemented in Matlab. Table 12.2 describes the estima-
tion of the Gibson–Schwartz parameters on four futures contracts in 2005: 1-month, 3-month,
9-month and 18-month futures contracts.

Figures 12.3 and 12.4 respectively plot the state variables spot price s(t) and conve-
nience yield 𝛿(t) extracted from the Kalman filter. The two figures suggest a high correlation
between the couple (s(t), 𝛿(t)), which is confirmed by the value of the correlation 𝜌 = 0.8635.
Figures 12.5 and 12.6 provide the distribution of the volatilities 𝜎1 and 𝜎2 estimated from
simulated data of the model using the estimated parameters of Table 12.2.

1The year 2005 is chosen as it draws on previous work done by the authors and the case study is presented
purely for illustration of the Kalman filtering technique. This year is also characterized by three broad
regimes in the price series (see Figure 12.1): low price from January to March 2005; high price from
April to September 2005; low price for the remainder of the year.
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TABLE 12.2 Estimated parameters

Parameter 𝜎1 𝜎2 𝜌 𝜅 𝜇 𝜆 𝛼

Estimated value 0.3000 0.2099 0.8635 1.1973 0.4250 0.0126 0.0843
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We wish to plot the volatility term structure and compare it with the empirical volatility.
The next proposition allows us to compute the volatility term structure under the Gibson–
Schwartz model.

Proposition 12.2.6 The variance of the log return of the futures price, denoted 𝜎2(t, T), is

𝜎
2(t, T) = 𝜎

2
1 − 2𝜌𝜎1𝜎2

[
1 − e−𝜅T

𝜅

]
+ 𝜎2

2

[
1 − e−𝜅T

𝜅

]2

.

Proof. See Appendix.
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The variance of the log return of the empirical futures 𝜎2
emp(t, T) can easily be computed

as follows:

𝜎
2
emp(t, T) = Var[logF(t + Δt, T) − logF(t, T)].

Figure 12.7 shows the recovery of the volatility structure of the futures return from the Gibson–
Schwartz model in 2005 and compares this to the empirical term structure. Both term structures
can be seen to match very closely. Oil futures exhibit an important pattern: the Samuelson
effect, whereby as the time-to-maturity increases, the volatility of the log-return decreases,
since the trading volume is much higher for short contracts.

12.3 PRINCIPAL COMPONENTS ANALYSIS

In the section we focus on the determination of risk factors in the volatility term structure. In
many cases, we face a large number of time series with no readily available information on
the dependencies in the data. Data analysis provides us with a suite of robust techniques that
allow us to explore the data. Principal components analysis (PCA) belongs to the group of
descriptive techniques within the factorial framework. PCA transforms any large sample into
a smaller sample with fewer variables. It is then easier to work with the reduced number of
variables and to understand the sample summarized by these reduced factors. In particular,
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PCA allows us to build orthogonal factors from the correlation matrix of the multidimensional
time series. Working with a matrix X ∈ M(n, m) having m observations and m variables, PCA
aims to determine a reduced number of factors which are a linear combination of X. The idea
is to build a number of factors lower than the number of variables m.

In finance, PCA was applied first in interest rate theory. More generally, unpredictable
prices, indices or interest rates represent sources of risk for an agent who works in the financial
markets. Measuring these risks explicitly needs a very large numbers of factors. However, many
financial instruments are correlated and so the risk factors can be reduced. PCA has become an
important tool to reduce risk factors. It has been applied in interest rate markets, commodity
markets and also more generally in asset management. The aim here is to describe PCA and
illustrate its use with an example.

12.3.1 PCA: Technica l Presentat ion

We consider a set of data {F(ti, xj)}i=1…n,j=1…m. For example, assume F(t, x) is a crude oil
futures price at time t and maturing in x months. We define its return (rij) as follows:

rij :=
F(ti, xj) − F(ti−1, xj)

F(ti−1, xj)
.

The return can be represented by the matrix R ∈ M(n, m), where

R =
⎛
⎜
⎜
⎝

r11 … r1m
⋮ ⋮ ⋮

rn1 … rnm

⎞
⎟
⎟
⎠
.

PCA disentangles two elements. Each column of R represents futures price returns for a given
maturity over time, whereas each row corresponds to the futures price returns for all the
maturities at a given point in time. Hence, we introduce uj ∈ ℝn, j ∈ {1,… , m}, such that

uj =
⎛
⎜
⎜
⎝

r1j
⋮

rnj

⎞
⎟
⎟
⎠

,

and vi ∈ ℝm, i ∈ {1,… , n}, such that

vi =
⎛
⎜
⎜
⎝

ri1
⋮

rim

⎞
⎟
⎟
⎠
.

The vectors {v1,… , vn} and {u1,… , um} are respectively called the population and the
variables. One individual within the population is represented by a given futures returns term
structure at a given point in time. The futures price returns maturing in a given number of
months correspond to a variable.

PCA introduces an important element that measures the dispersion of the total population
around its centre of mass, called inertia and defined as follows:

ĩ := 1
m

m∑

j=1

||uj||
2,
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F IGURE 12.8 Examples of axes that minimize distortions

where ||u|| denotes the Euclidean norm of the vector u. If the inertia ĩ is high, the population is
scattered. If the value is low, the population is concentrated. When the inertia is equal to zero,
individuals are almost the same. By rewriting the previous equation that defined the inertia,
one can easily show that

ĩ = 1
m

m∑

j=1

(
n∑

i=1

r2
ij

)

,

which can be written as the sum of the empirical variance of vi,

ĩ =
n∑

i=1

Var(vi).

Remark 12.3.1 Note that for the covariance of futures returns matrix Σ,

ĩ = Trace(Σ).

Inertia with respect to an axis Δ can be defined as the sum of the distance between
individuals and the axis Δ. Projected data on a subspace defined by some axes may imply
a distorted reality and may lose some information. The role of PCA is to find a subspace
that minimizes this distortion. The idea is to propose a methodology which finds axes that
minimize inertia with respect to these axes. Figure 12.8 illustrates this idea and shows the axes
that we have to define in order to capture the maximum independent information. One can
show the following result:

Proposition 12.3.1 The axes realizing the previous conditions are the eigenvectors of Σ.
Moreover,

Σ = Π × Λ × Π′
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where Π and Λ := diag(𝜆i) are respectively the set of eigenvectors and the set of eigenvalues
such that 𝜆1 > 𝜆2 >⋯ > 𝜆m.

Proof. See Jolliffe (2002).

The inertia is exactly the sum of the eigenvalues,

ĩ =
m∑

j=1

𝜆j.

The kth contribution of the new variable can be represented as

𝜆k∑m
j=1 𝜆j

.

Hence, the contribution of the first p factors is defined as

∑p
k=1 𝜆k

∑m
j=1 𝜆j

.

To build the volatility term structure of the futures price, we suppose that the futures
prices follow a defined stochastic differential equation. The next proposition allows us to
express the volatilities of the futures price return as a function of the eigenvalues {𝜆j} and
eigenvectors {𝜋kj}.

Proposition 12.3.2 Suppose that F(t, x) is governed by the following stochastic differential
equation:

dF(t, x)
F(t, x)

=
p∑

k=1

𝜎k(x) × d𝜔k(t),

for independent Wiener processes 𝜔k(t), k = 1,… , p. Therefore,

𝜎k(xj) = 𝜋kj

√
𝜆j, j = 1,… , m, k = 1,… , p.

Proof. See Basilevsky (1994).

Remark 12.3.2 p is generally chosen for a given contribution of the first p risk factors.
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F IGURE 12.9 First axis of PCA: level

To summarize, we disentangle three important steps for the PCA. First, we compute the
correlation matrix Σ. Second, we compute its eigenvalues and eigenvectors, Π := (𝜋kj) and
Λ := (𝜆j) such that 𝜆1 > 𝜆2 > ⋯ > 𝜆m. Finally, we derive the volatilities.

PCA studies in finance generally highlight three main factors: (i) the first is commonly
referred to as the ‘level’ factor, determining the trend of the term structure and typically
interpreted as capturing parallel shifts (Figure 12.9); (ii) the second is commonly referred to
as the ‘slope’ factor, characterized by opposite signs on the extrema and interpreted as the
slope of the term structure (Figure 12.10); and (iii) the third is commonly referred to as the

F IGURE 12.10 Second axis of PCA: slope
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FIGURE 12.11 Third axis of PCA: curvature

‘curvature’ factor, characterized by identical signs at the extrema of the term structure but
an opposite sign in the middle and determining the twisting or bending of the term structure
(Figure 12.11).

12.3.2 Case Study: R isk Analys is on Energy Markets

Our data consists of two samples.
Sample 1: WTI futures contracts for physical delivery crude oil quoted on NYMEX.

The units of trade are US dollars per barrel. We use daily data between 1 January 1990 and
31 May 2007 as illustrated in Figures 12.12 and 12.13. The market clearly alternates between
contango and backwardation.

Sample 2: Henry Hub natural gas futures contracts for physical delivery natural gas traded
on NYMEX. The units of trade are US dollars per million British thermal units. We use daily
data between 1 January 1990 and 31 May 2007 as illustrated in Figure 12.14.

We perform the PCA on both markets. Figures 12.15 and 12.16 respectively show the first
three factors on the oil and gas markets.

Table 12.3 provides the cumulative contributions of the three factors for each of the two
samples. For WTI, it can be seen that 95% of the volatility term structure is explained by the
first factor, while the contribution reaches 99.22% for the first two factors and reaches the even
higher value of 99.71% when the first three factors are considered. In contrast, for the Henry
Hub futures, the contribution of the first three factors comes to less than 90%.

This low contribution may be due to the seasonality pattern on the volatility, as exhibited
in Figure 12.16. Hence, we propose to apply the PCA on the different months. We perform
the PCA on the two samples for each month. Tables 12.4 and 12.5 give the results for the WTI
and Henry Hub markets respectively.
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TABLE 12.3 Cumulative contributions of the two samples

Cumulative contribution Factor 1 Factor 2 Factor 3

Sample 1 (WTI) 0.9564 0.9922 0.9971
Sample 2 (Henry Hub) 0.7779 0.8421 0.8813

TABLE 12.4 Monthly cumulative contributions: WTI

Factor 1 2 3

January 0.9492 0.9946 0.9983
February 0.9455 0.9907 0.9981
March 0.9474 0.9909 0.9982
April 0.9487 0.9825 0.9948
May 0.9612 0.9934 0.9984
June 0.9584 0.9945 0.9984
July 0.9582 0.9915 0.9982
August 0.9582 0.9915 0.9982
September 0.9604 0.9930 0.9978
October 0.9510 0.9949 0.9989
November 0.9666 0.9954 0.9988
December 0.9737 0.9957 0.9987
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TABLE 12.5 Monthly cumulative contributions: Henry Hub

Factor 1 2 3

January 0.8476 0.9298 0.9789
February 0.7682 0.8785 0.9514
March 0.8089 0.9486 0.9744
April 0.7858 0.9566 0.9794
May 0.7728 0.9370 0.9783
June 0.8143 0.9418 0.9852
July 0.8054 0.9323 0.9830
August 0.7603 0.9357 0.9689
September 0.7003 0.9285 0.9641
October 0.7962 0.9362 0.9769
November 0.8007 0.9292 0.9741
December 0.8066 0.9107 0.9697

Contributions are higher and change over the months for the two markets. Moreover, the
first three factors explain at least 95% of the futures price movements in both samples in each
month.

12.4 CONCLUSION

In this chapter, we describe two methods commonly used in estimating the volatility term
structure in energy and commodity markets. The first tool aims to estimate the parameters of
a spot price–convenience yield model using the Kalman filter. In particular, we describe the
method on the Gibson–Schwartz model. An application is given for WTI crude oil. In this case
study, the volatility term structure generated by the model and the empirical term structure are
shown to match closely.

The second tool captures the risk factors of price movements using a data reduction
technique. The methodology is based on PCA and allows us to reduce the dimensionality of
the data. This is achieved by transforming into new variables that are uncorrelated and ordered
in terms of their contribution. A case study on WTI and Henry Hub futures is presented,
showcasing the strength of this estimation tool.

APPENDIX

Proof. (Proposition 12.2.2).

ik = zk − [Hkx̂−k + hk]

= Hk[xk − x̂−k ] + vk.

Hence, its mean and covariance are respectively 0 and

QI
k = Cov(ik, ik)

= HkP−
k H′

k + QV
k .
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Proof. (Proposition 12.2.6).

We write the dynamics of the futures price under the historical measure (Id Brik, 2011)

d logF(t, T) =
[
𝜇 − r + 𝜆

𝜅

e−𝜅T − 1
𝜅

]
dt

− 1
2

(

𝜎
2
1 − 2𝜌𝜎1𝜎2

[
1 − e−𝜅T

𝜅

]
+ 𝜎2

2

[
1 − e−𝜅T

𝜅

]2
)

dt

+ 𝜎1d𝜔1(t) − 𝜎2

[
1 − e−𝜅T

𝜅

]
d𝜔2(t).

By discretizing the previous formula, we obtain

logF(t + Δt, T) − logF(t, T) =
[
𝜇 − r + 𝜆

𝜅

e−𝜅T − 1
𝜅

]
Δt

− 1
2

(

𝜎
2
1 − 2𝜌𝜎1𝜎2

[
1 − e−𝜅T

𝜅

]
+ 𝜎2

2

[
1 − e−𝜅T

𝜅

]2
)

Δt

+ 𝜎1𝜖1(t)
√
Δt − 𝜎2

[
1 − e−𝜅T

𝜅

]
𝜖2(t)

√
Δt,

where 𝜖1(t) and 𝜖2(t) are two normal processes and Cov(𝜖1(t), 𝜖2(t)) = 𝜌. Therefore, the first
two moments are

𝔼[logF(t + Δt, T) − logF(t, T)] =
[
𝜇 − r + 𝜆

𝜅

e−𝜅(T−t) − 1
𝜅

]
Δt

− 1
2

(

𝜎
2
1 − 2𝜌𝜎1𝜎2

[
1 − e−𝜅T

𝜅

]
+ 𝜎2

2

[
1 − e−𝜅T

𝜅

]2
)

Δt,

𝕍ar[logF(t + dt, T) − logF(t, T)] = E

[(
𝜎1𝜖1(t)

√
Δt − 𝜎2

[
1 − e−𝜅T

𝜅

]
𝜖2(t)

√
Δt

)2
]

= E

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
2
1𝜖

2
1(t) − 2𝜌𝜎1𝜎2

[
1 − e−𝜅T

𝜅

]
𝜖1(t)𝜖2(t)

− 𝜎2
2

[
1 − e−𝜅T

𝜅

]2

𝜖
2
2(t)

⎤
⎥
⎥
⎥
⎥
⎦

Δt

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
2
1𝔼

{
𝜖

2
1(t)

}
− 2𝜌𝜎1𝜎2

[
1 − e−𝜅T

𝜅

]
𝔼{𝜖1(t)𝜖2(t)}

− 𝜎2
2

[
1 − e−𝜅T

𝜅

]2

𝔼
{
𝜖

2
2(t)

}

⎤
⎥
⎥
⎥
⎥
⎦

Δt.

Using the properties of white noises, 𝔼{𝜖2
1(t)} = 𝔼{𝜖2

2(t)} = 1 and 𝔼{𝜖1(t)𝜖2(t)} = 𝜌, we
conclude.
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CHAPTER 13
Nonparametric Estimation of Energy

and Commodity Price Processes
Gianna Figà-Talamanca and Andrea Roncoroni

13.1 INTRODUCTION

Random changes in several financial figures such as stock data market indices and commodity
prices are commonly represented by a diffusion process X of the following form:

dX(t) = 𝜇(X(t))dt + 𝜎(X(t))dW(t), (13.1)

where W is a one-dimensional standard Brownian motion, 𝜇(⋅) and 𝜎(⋅) are assumed to be
regular functions in order to guarantee the existence and uniqueness of a weak solution to
equation (13.1). Most model specifications assume parametric forms for both these functions,
which are called the drift and the diffusion coefficient of process X, respectively. A possible
extension of the above model is obtained by adding a jumping part in the dynamics of process
X, that is

dXt = 𝜇(X (t−))dt + 𝜎(X (t−))dW (t) + YdJ (t) . (13.2)

Here J is a compensated jump process with intensity𝜆(x), that is, J (t) − 𝜆 (X (t)) is a martingale,
and Y is a random jump size whose distribution pY is assumed to be independent of that of
J and W.

We aim at testing the consistency of the diffusion model described in equation (13.1) with
changes in the log-price of several commodities; this is done by applying kernel methods to
estimate the infinitesimal conditional moments of the process, as suggested by Stanton (1997),
and computing confidence intervals based on simulations for these estimated moments. Our
empirical analysis proves that continuous diffusion models are unable to describe the features
displayed by commodity data in several cases. We then resort to the model in equation (13.2)
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and use the results of Johannes (1999, 2004) and Bandi and Nguyen (1999, 2003) to estimate
the drift, the diffusion and the intensity function of the process in a nonparametric form.

We organize the chapter as follows. Section 13.2 introduces the main issue of estimating
diffusion processes by finite sample data and describes the estimation techniques for both
continuous and mixed-jump models. Section 13.3 resumes the outcomes of the nonparametric
estimation for crude oil, corn, copper and gold log-prices.

13.2 ESTIMATION METHOD

Assume at first that the dynamics of the process X is described by the continuous diffusion
process in equation (13.1); it is shown in Stanton (1997), as well as in several other papers,
that the drift coefficient represents the instantaneous average speed of the process at each point
in time, conditional on its value. That is:

lim
Δt→0

1
Δt

𝔼[X (t + Δt) − X (t)|X (t) = x] = 𝜇(x). (13.3)

Similarly, the diffusion coefficient represents the instantaneous average centred moment of
order two of the process at each point in time, conditional on its value:

lim
Δt→0

1
Δt

𝔼[ (X (t + Δt) − X (t))2|||X (t) = x] = 𝜎
2(x). (13.4)

Further, higher-order moments for these figures are null. That is:

lim
Δt→0

1
Δ
𝔼[ (X (t + Δt) − X (t))r||X (t) = x] = 0, r > 2. (13.5)

On the contrary, if the dynamics of process X is described by a mixed-diffusion process
as in equation (13.2), the corresponding relations between model coefficients and process
properties are (see Johannes, 1999, 2004)

lim
Δt→0

1
Δt

𝔼[X (t + Δt) − X (t)|X (t) = x] = 𝜇(x), (13.6)

lim
Δt→0

1
Δt

𝔼[ (X (t + Δt) − X (t))2|||X (t) = x] = 𝜎
2(x) + 𝜆(x)𝔼Y [Y2], (13.7)

lim
Δt→0

1
Δ
𝔼[ (X (t + Δt) − X (t))r||X (t) = x] = 𝜆(x)𝔼Y [Yr] , r > 2. (13.8)

The key point in these expressions is that jumps allow us to model time series displaying
instantaneous increments with nonzero moments of order r > 2.

Statistical estimation of both diffusion processes such as (13.1) and jump-diffusion pro-
cesses such as (13.2) aims to obtain the functions 𝜇(⋅), 𝜎(⋅) and 𝜆 (⋅) as well as the jump size
distribution pY (y) , which are consistent with observed data with respect to some criterion to be
defined. In particular, nonparametric estimation derives these functions in a pointwise manner,
that is, for each value x chosen in a suitable interval of the real line, without any reference to
parametric families. Of course, the functions 𝜇(⋅), 𝜎(⋅) and 𝜆(⋅) are required to satisfy suitable
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regularity conditions to ensure that the resulting process is well-defined as the unique solution
of the corresponding stochastic differential equation (see, e.g., ∅ksendal, 2003 and Protter,
1995, among others).

A possible method to estimate a diffusion process nonparametrically, introduced by
Stanton (1997), is to define its coefficients by means of a finite-sample version of the left-hand
sides in expressions (13.3), (13.4) and (13.5). To this end we assume that each available time
series x1, x2,… , xn is collected at a sufficiently small time span Δ and estimate infinitesimal
conditional moments by their finite-sample counterparts obtained by kernel methods.

More precisely, we obtain finite-sample estimates for the conditional moments by kernel
convolutions

M1(x) =

n∑

t=1
K
(

xt−x
h

)
(xt+1 − xt)

Δ
n∑

t=1
K
(

xt−x
h

) , (13.9)

M2(x) =

n∑

t=1
K
(

xt−x
h

)
(xt+1 − xt)

2

Δ
n∑

t=1
K
(

xt−x
h

) (13.10)

and, in general, for r > 2:

Mr(x) =

n∑

t=1
K
(

xt−x
h

)
(xt+1 − xt)

r

Δ
n∑

t=1
K
(

xt−x
h

) . (13.11)

In the above expressions, the kernel function K is a symmetric probability density on the real
axis expressing the influence a point at zero has on all other points in its domain; the mean
variation of the process starting at a level x, for instance, is obtained by weighting all sample
variations xt+1 − xt obtained in the past. If we define

𝜔t(x) =
K
(

xt−x
h

)

n∑

t=1
K
(

xt−x
h

) , t = 1, 2,… , n,

we can write the approximate moments in equations (13.9), (13.10) and (13.11) as

Mr(x) =
n∑

t=1

(xt+1 − xt)
r

Δ
𝜔t(x), r ≥ 1.

Hence, the kernel function provides weights which depend on the level x and on a
parameter h, called the bandwidth, which determines the smoothing behaviour of the kernel
(see Silverman, 1986 and James and Webber 2000 for more details).
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Usually K is assumed to be a standard Gaussian density so that the larger the distance
between xt and x, the lower the impact of sample increment xt+1 − xt on the average increment
of the process starting at level x. Conversely, the closer xt to the actual level x, the higher the
importance of the sample increment xt+1 − xt in explaining the average increment from x.

In case the sample is generated by a continuous diffusion process, Mr should be zero
for r > 2 and M1 and M2 are estimates of the drift and the squared diffusion coefficient,
respectively. That is:

𝜇(x) = M1(x),

𝜎
2(x) = M2(x).

For a mixed-jump diffusion, M2 is the sum of the instantaneous squared diffusion term and
the product of the jump size second-order moment times the jump intensity, according to
expression (13.7); higher moments may be nonzero and should be computed to complete the
estimation procedure. In this case we still have

𝜇(x) = M1(x).

If we further assume that the jump size Y has a centred normal distribution with variance
𝜎

2
Y , formulae (13.7), (13.8), (13.10) and (13.11) lead to the following approximated equalities

for finite-sample conditional moments:

M2(x) ≃ 𝜎
2(x) + 𝜆(x)𝜎2

Y , (13.12)

M4(x) ≃ 3𝜆(x)𝜎4
Y , (13.13)

M6(x) ≃ 15𝜆(x)𝜎6
Y , (13.14)

where 𝜎2(x), 𝜆(x) and 𝜎2
Y are the true coefficient function values at x.

By taking the ratio between the sixth and the fourth sample kernel moments, we get

𝜎
2
Y (x) =

M6(x)

5M4(x)

which depends on the value x; as a first-order estimate for the constant variance of the jump
size we take the sample average of this quantity, namely

𝜎
2
Y = 1

n

n∑

t=1

M6(xt)

5M4(xt)
.

Given this value, the jump intensity may be derived by equality (13.13) as

𝜆(x) =
M4(x)

3𝜎4
Y
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F IGURE 13.1 Crude oil (top) and corn (bottom) log-prices from May 2006 to March 2009

and the squared diffusion term is finally obtained as

𝜎
2(x) = M2(x) − 𝜆(x)𝜎2

Y ,

from relation (13.12).
Under technical assumptions reported in Bandi and Nguyen (2003), these estimators can

be proven to be consistent and asymptotically normal.

13.3 EMPIRICAL RESULTS

We apply the above estimation procedure to daily prices of crude oil, corn, copper and gold
from May 2006 to March 2009 (1000 observations) – see Figures 13.1 and 13.2. The selected
commodities are representative of different sectors in the commodity market: crude oil, traded
on the NYMEX, is an example of energy commodities; corn, traded on the CBOT, is an
example of agricultural products; copper and gold, traded on the COMEX, are examples of
industrial and precious metals, respectively.

Our aim is to simultaneously detect whether daily time series of the price of such com-
modities are generated by a continuous diffusion model and to identify the functional forms
in the dynamics of the corresponding log-price process X.
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F IGURE 13.2 Gold (top) and copper (bottom) log-prices from May 2006 to March 2009

For each time series x1, x2,… , xn, with n = 1000 and Δ = 1∕252, we compute kernel
sample moments M1(x), M2(x), M3(x) and M4(x) for all values x in the interval [xmin, xmax],
where xmin and xmax denote respectively the minimum and maximum values for observed log-
prices. For the calculation of the above sample moments we adopt a Gaussian kernel defined
as

K(x) = 1
√

2𝜋
exp(−x2

2
)

and select a different bandwidth, depending on the standard deviation s of log-price daily
changes, for each moment to be computed, as suggested by Johannes (1999, 2004). These
values are reported in Table 13.1

The above choice for the bandwidth is consistent with Chapman and Pearson (2000) and
Bandi and Nguyen (1999, 2003), where the authors suggest oversmoothing the drift function
with respect to the diffusion coefficient.

High-order sample moments can be used to test for a continuous diffusion process against
a jump-diffusion one; if these estimates lie inside the corresponding confidence bands obtained,
as described below, by simulation, the null hypothesis of a continuous diffusion may not be
rejected.
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TABLE 13.1 Bandwidth values, where s is the annualized
standard deviation of the Euribor daily changes

Moment Mk Bandwidth h

M1 1.25s
M2 0.4s
M3,4,5,6 0.75s

In order to obtain confidence bands we simulate m paths of the continuous diffusion
process defined by equation (13.1) with 𝜇(x) := M1(x) and 𝜎

2(x) := M2(x); each path, for
j = 1, 2,… , m, is treated as a single sample from which we compute kernel sample moments
M(j)

1 (x), M(j)
2 (x), M(j)

3 (x) and M(j)
4 (x) by applying equations (13.9), (13.10) and (13.11), respec-

tively. A shortcut aimed at avoiding an excessively intensive computation is to evaluate kernel
weights once for all paths, for example, by using the original data set. We thus end with m
values for M(j)

1 (x), M(j)
2 (x), M(j)

3 (x) and M(j)
4 (x) with j = 1, 2,… , m; the 10th and 90th percentiles

of these values give the lower and upper band for the corresponding sample moments of a
diffusion, that is whether our time series comes from a diffusion process with drift M1(x) or
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F IGURE 13.3 First (top) and second (bottom) sample conditional moment estimates (+) for crude
oil log-prices with simulated confidence bands (∗) for the null of a diffusion. The simulated median
value (◦) is reported as a benchmark
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F IGURE 13.4 Third (top) and fourth (bottom) sample conditional moment estimates (+) for crude
oil log-prices with simulated confidence bands (∗) for the null of a diffusion. The simulated median
value (◦) is reported as a benchmark.

a squared diffusion M2(x) we expect the sample moments to lie within the lower and upper
band with probability 0.8. The median of the simulated sample moments is also computed as
a benchmark.

In Figures 13.3 to 13.10 sample moment estimates of order 1 to 4 are reported with
corresponding simulated confidence bands, respectively, for crude oil, corn, copper and gold
log-prices.

It is evident from Figures 13.4, 13.6, 13.8 and 13.10 that the simple diffusion model is
rejected for all analyzed data sets since both the third and fourth sample moments lie outside
the confidence bands for several values of the log-price x.

In Figures 13.11 to 13.14 we report the estimated values for the drift function 𝜇(x), the
diffusion function 𝜎(x) and the jump intensity function 𝜆(x) assuming that the dynamics of
the log-prices is described by model (13.9). The drift function is well represented by a linear
decreasing function for all analysed commodities. In particular, a linear fitting gives a slope
of −0.19, −0.38, −0.24, and −0.12 for the crude oil, corn, copper and gold log-price drift
functions, respectively. The jump intensity function is decreasing for corn and copper, while
it decreases at first and then increases for crude oil, with a minimum attained in middle values
of the log-price and the converse for gold log-prices, where a maximum is attained for middle
values of x. The diffusion function shows the highest variability across the analysed data sets.
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F IGURE 13.11 Nonparametric estimates for the drift function (top), the diffusion function
(middle) and the jump intensity (bottom) for the crude oil log-price process
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F IGURE 13.12 Nonparametric estimates for the drift function (top), the diffusion function
(middle) and the jump intensity (bottom) for the corn log-price process
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F IGURE 13.13 Nonparametric estimates for the drift function (top), the diffusion function
(middle) and the jump intensity (bottom) for the copper log-price process
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In the case of crude oil log-prices the diffusion function attains its minimum at centre values
for x as one would expect from a stock. For corn log-prices the diffusion function, after a small
increase for small values of x, remains almost constant around 0.22; this is indeed reasonable
for an agricultural product the variability of which is probably due to weather anomalies
generating jumps rather than to market activities. For the two analysed metals, our outcomes
show an oscillating diffusion coefficient. It may be of interest to notice that in the case of gold
data a maximum is attained around middle values of the log-prices x both for the diffusion
coefficient and the jump intensity function.

The estimated deviation 𝜎Y of the jump size is 0.0066, 0.0342, 0.0059 and 0.0270 for
crude oil, corn, copper and gold log-prices, respectively. These estimates are reliable since the
ratio M6(x)

5M4(x)
does not vary much with respect to x. The highest absolute jumps are evidenced

in the corn data set, followed by gold log-prices.
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CHAPTER 14
How to Build Electricity

Forward Curves
Ruggero Caldana, Gianluca Fusai and Andrea Roncoroni

14.1 INTRODUCTION

The electricity forward curve (EFC) ft (⋅) quoted in a given market at a point in time t is a
mathematical function associating with each day in the future a price for the commitment to
deliver one megawatt-hour for every hour of that specific day. In other terms, it is the term
structure of electricity forward prices as quoted with daily granularity across the maturity
dimension, which is represented by the dotted argument “⋅” in the expression ft (⋅).1

EFCs are particularly useful for marking to market (i.e., pricing compatibly with market
quotes) a standing portfolio of electricity-related positions of an industrial company or financial
institution. Another important instance is the modelling of electricity price dynamics for the
purpose of pricing contingent claims or monitoring the net exposure of a company. Strictu
sensu any EFC is a purely mathematical abstraction in that actual market quotes refer to
commitments to deliver over a time period as opposed to a single day. Popular maturities for
which electricity exchanges provide traders with quotes are:

� full day
� week

1We here use the term “maturity” to mean either a specific point T in future time, that is T > t =
standing time, or the time period x := T − t elapsing between standing time t and a future time T .
The exact connotation of the term usually appears clear from the context. In case of ambiguity, we
will distinguish between “maturity” T and “time-to-maturity” x. Correspondingly, an electricity forward
curve may be defined either on the maturity or on the time-to-maturity axis. The relation of the two
possible representations is f maturity

t (T) = f time-to-maturity
t (T − t).

Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Edited by
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� month
� quarter
� calendar year.

We may shortly say that each of these maturities is “quoted by the market”. However, several
tailor-made contracts which trade over-the-counter (OTC) actually involve maturities other
than those quoted by exchanges. Moreover, OTC quotes provided by brokers may refer to
overlapping delivery periods. These facts make it arduous, if not impossible, to model price
or valuing contracts consistently with available market quotes.

The most popular strategy to solve the issue has been borrowed from fixed income markets.
There it is common practice to build a term structure of interest rates compatible with a number
of instruments, usually coupon bond prices or money market and interest rate swaps, and then
use it as a primitive source of information to carry out the task in hand. In the case of electricity
markets, one may build an EFC playing the role of “middleman”, conveying market information
embedded in quoted contracts into a single source of information. However, implementing this
strategy on electricity price data requires tackling a number of issues idiosyncratic to electricity
markets – such as daily granularity, spikes in the observed price and time periodicity pattern
at varying frequencies, among others.

Disposing of a rational assessment of an EFC with daily granularity allows the user to
accomplish a wide variety of tasks, including:

1. Pricing forward contracts for arbitrary delivery times or periods.
2. Calibrating arbitrage models of electricity prices aimed at pricing contingent claims.
3. Forecasting spot price evolution up to assessing a market price of risk.
4. Defining trading rules based on market price discrepancies.

This chapter illustrates a practical and effective algorithm to build an electricity forward
curve with daily granularity compatible with market quotes stemming from exchange-traded
as well as OTC quotations. The outline is as follows. Section 14.2 briefly reviews the literature
in the field, focusing on the elements lacking in existing methodologies for the purpose of
accomplishing the task in hand. Section 14.3 introduces us to the energy markets, focusing on
the electricity segment, and describes the mechanics of electricity forward contracts. Section
14.4 provides the reader with a self-contained description of the method put forward by Benth
et al. (2007). Section 14.5 delves into the core of the subject by explaining how to estimate a
periodical price component and convey this piece of information into a quantitative assessment
of a term structure forward price with daily granularity. Section 14.6 concludes the discussion.
The power of our method is illustrated through a detailed example based on market data
referring to the European Energy Exchange (EEX).

14.2 REVIEW OF THE L ITERATURE

Fitting a yield curve to market data is a topic that has been studied extensively in the fixed
income market. The two most popular approaches are either to fit to observed yields a para-
metric function by regression, or by a spline. A thorough analysis of estimation techniques
and a survey of yield curve interpretation in fixed income markets are provided by Anderson
and Deacon (1996). The seminal paper in this field is that of McCulloch (1971), who develops
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a cubic spline technique of fitting a smooth discount function to observations on the price of
bonds with varying maturities and coupon rates. Adams and van Deventer (1994) improved
on this, introducing a new approach. By defining the criterion for the best fitting yield curve to
be “maximum smoothness” for the forward rate curve, they arrived at a powerful curve-fitting
technique. Lim and Xiao (2002) shows that the result in Adams and van Deventer (1994) was
sub-optimal and provide a correct solution for the maximum smoothness fitting problem.

Fleten and Lemming (2003) first applied a curve-fitting method in the energy market:
they smoothened an electricity futures curve based on a bottom-up model called the MPS
model. The MPS model calculates weekly equilibrium prices and production quantities based
on fundamental factors for demand and production (e.g., temperature, fuel costs, snow levels,
capacities). The approach of Fleten and Lemming (2003) is nonparametric, in the sense that
they derive a sequence of daily (or any other appropriate time resolution) forward prices
minimizing the least-squares distance to the output from the MPS model. The optimization is
constrained on the bid–ask spreads of market prices and the curve is appropriately smoothened
by a penalty term. Hildman et al. (2011) propose a practical framework to estimate hourly,
daily and yearly energy price profiles, based on the median estimation, instead of the mean
value. Some statistical methods are used in the curve-fitting procedure: hourly and daily data
used for the estimation are normalized in order to minimize the seasonality bias and the
LAD-Lasso method to prevent overfitting.

To the best of our knowledge, the most important work concerning how to fit forward
price curves in the energy market is that of Benth et al. (2007). The authors combine a seasonal
specification with smoothing techniques in line with existing work from fixed income markets.
Using the “maximum smoothness” criterion of Adams and van Deventer (1994), they derive a
smooth curve modelling the forward price as the sum of a seasonality function and a polynomial
spline. The method of Benth et al. (2007) will be described briefly in Section 14.4.

14.3 ELECTRIC ITY FORWARD CONTRACTS

Electricity is often referred to as a flow commodity due to its highly limited storability: electrical
power is useful for practical purposes provided it can be delivered over a whole period of time.
Deregulated power markets have internal mechanisms aimed at balancing supply and demand.
For day-ahead delivery, these take the form of daily auctions for delivering power over a
specified hour on the next day. Some contracts prescribe physical delivery, that is others are
cash settled.

We consider electricity contracts with physical delivery, that is contracts with actual
energy delivery as part of the contract fulfilment. Physical markets split into three segments.
One is the day-ahead market, where power trades for each of the 24 hours of the next day. The
second is the real-time market, used to balance energy injections and withdrawals in real time.
The third segment somewhat closes the gap between the day-ahead market and the real-time
market and is called the intra-day market. Once the day-ahead market is closed for bids, the
day-ahead price is derived for each hour next day. Since this price plays the role of a common
reference variable for many financial energy contracts, we briefly describe the mechanics of
the day-ahead market.2

2For a detailed discussion of day-ahead, real-time and intra-day markets, with particular attention to the
case of the Nordic market, see Benth et al. (2008).
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On day-ahead markets, hourly power contracts are traded daily for physical delivery in
the next day’s 24-hour period, from midnight to 1 a.m., from 1 a.m. to 2 a.m. and so on until
11 p.m. to the midnight of the following day. In the morning of day n, say, agents submit
their bids for either purchasing or selling electricity on the following day. Each bid consists
of price, volume and hour of delivery. Upon closing at noon, a day-ahead price is announced
for each hour on the following day. From a financial viewpoint, that is the forward price
negotiated on day n for delivery at a specific hour h within day n + 1. Financial contracts on
electricity are cash-settled contingent claims written on the day-ahead price. The day-ahead
price is monitored over a specified delivery period. The contract is settled in cash against the
day-ahead price during, or at the end of, the delivery period. Trading occurs until the last
day prior to delivery starting. In general, market participants typically close their positions
beforehand.

We now move to a formal description of electricity forward contracts. In standard financial
markets, a forward contract is a security whereby the holder receives full delivery of some
underlying S on a future day T for a price ft (T) negotiated at inception, say time t < T . That
price is fixed in such a way that the initial value of the commitment is zero. This is referred to
as the time t forward price.

Let S(t) denote the electricity day-ahead price quoted at time t. A standard financial
argument leads to the following relation between spot and forward prices:

ft(T) = 𝔼t[S(T)],

where the expectation is taken under a risk-neutral measure and is made given the information
available at t. However, prices f (T) := ft (T) are not quoted in electricity markets. Instead,
quotations are posted for forward prices related to delivery occurring over time periods, much
like it occurs in a swap agreement.

Consider a forward contract settled over a time period [𝜏b, 𝜏e] and paying at maturity. In a
settlement at maturity the payment of the whole amount is due at the end of the delivery period
𝜏

e. By definition of a forward contract, the strike F has to be set so that the contract is of zero
cost at the time t we enter into it. So for settlement at maturity,3 and assuming deterministic
interest rates, we have

e−r(𝜏e−t)𝔼

[

∫

𝜏
e

𝜏b
(S(u) − F)du

]

= 0,

which leads to

F(𝜏b, 𝜏e) = 1
𝜏e − 𝜏b ∫

𝜏
e

𝜏b
f (u)du.

3There is another kind of payout possible for forward contracts, called instant settlement. In an instant
settlement the contract pays (S(u) − F)Δu at time u ∈ [𝜏b, 𝜏e]. However for small delivery periods, it
makes a small difference whether the money is settled at the end of the period or on a daily basis, as
proved in Benth et al. (2008).
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From now on, we refer to f and F as (instantaneous) financial forward and average forward
prices, respectively. This continuous-time description ought to be modified to account for
discrete-time settlement. This latter may involve a number of days or blocks of hours. Baseload
forward contracts refer to settlement periods comprising all the hours in a given day. Baseload
forward contracts are the most popular kind of electricity forward contract. Another typical
time block consists of peak hours, namely those on which electricity demand is the highest in
a day. Peakload forward contracts refer to settlement periods comprising peak hours between
a starting day and an ending day. Despite the importance of the peakload forward in energy
markets, we do not consider this kind of contract to build the EFC.

Let  denote the set of days defining a delivery period. We may express the baseload
average forward price F in terms of financial forward prices for daily delivery:

F = 1
♯

∑

T∈
f̂ (T),

where:

� The operator “♯” counts the number of elements in its argument.
� f̂ (T) is the standing financial forward price for delivering 1 megawatt-hour over the entire

day T . This number represents the arithmetic average of the hourly forward quotes over
the 24 hours in the day:

f̂ (T) = 1
1 day ∫

T+1 day

T
f (u)du.

14.4 SMOOTHING FORWARD PRICE CURVES

We describe the Benth et al. (2007) method for building an instantaneous financial forward
price curve

(
f (u) , u ≥ t0

)
compatible with average forward prices observed in the markets

at a point in time t0. Assume one observes m baseload average forward prices F(𝜏b
k , 𝜏e

k )
(k = 1,… , m). Delivery periods can be gathered in a set:4

 =
{[
𝜏

b
1 , 𝜏e

1

]
,
[
𝜏

b
2 , 𝜏e

2

]
,… ,

[
𝜏

b
m, 𝜏e

m

]}
.

As long as these intervals may overlap, we order time endpoints and relabel them as increasing
t1,… , tn, where the time unit is the day. If forward contract settlement periods are long (e.g.,
a calendar year), the seasonality may be obscured in the quoted market price. This means we
must specify a seasonal function based on more information than can be read off from the
market prices.

4Benth et al. (2007) propose a procedure to constrain the curve between the bid and ask prices. We do
not treat this case, limiting our description to a curve obtained from mid or closing price quotations.
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We model the standing financial forward price curve as the sum of two components: one
is a function Λ meant to reproduce overlapping periodical patterns (e.g., seasonal components)
exhibited by the curve; the other an adjustment function 𝜀 allowing for the curve to fit observed
average forward prices. The (instantaneous) financial forward price for maturity u ∈ [t0, tn]
reads as

f (u) = Λ(u) + 𝜀(u; x),

where both Λ and 𝜀 are suitable continuous functions and x denotes a vector of parameters
identifying a specific 𝜀 within a set of regular functions. These latter are assumed to be
twice continuously differentiable polynomial splines of order four with zero-valued first-order
derivative at the rightmost endpoint of the domain. That is:

𝜀(u; x) =
⎧
⎪
⎨
⎪
⎩

a1u4 + b1u3 + c1u2 + d1u + e1, u ∈ [t0, t1],
a2u4 + b2u3 + c2u2 + d2u + e2, u ∈ [t1, t2],

⋮
anu4 + bnu3 + cnu2 + dnu + en, u ∈ [tn−1, tn],

𝜀
′(tn; x) = 0.

Moreover, the splines are assumed to be twice continuously differentiable and with zero
derivative in tn. A specific 𝜀 is determined by the vector

x =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1
b1
.

.

dn
en

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

solving the maximal smoothing quadratic programming problem:

min
x ∫

tn

t0

[𝜀′′(u; x)2]du (14.1)

subject to continuity and smoothness constraints at knots points:

(aj+1 − aj)u
4
j + (bj+1 − bj)u

3
j + (cj+1 − cj)u

2
j + (dj+1 − dj)uj + ej+1 − ej = 0, (14.2)

4(aj+1 − aj)u
3
j + 3(bj+1 − bj)u

2
j + 2(cj+1 − cj)uj + dj+1 − dj = 0,

12(aj+1 − aj)u
2
j + 6(bj+1 − bj)uj + 2(cj+1 − cj) = 0,

with j = 1,… , n − 1, as well as average forward price-fitting conditions:

F(𝜏b
i , 𝜏e

i ) = 1
𝜏e

i − 𝜏b
i
∫

𝜏
e
i

𝜏
b
i

(𝜀(u; x) + Λ(u)) du, (14.3)
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for i = 1,… , m. Benth et al. (2007) show that this problem can be cast as a linear system of
algebraic equations whose solution x∗ leads to uniquely identifying the instantaneous financial
forward curve

f (u) = Λ (u) + 𝜀(u; x∗)

for all u ∈ [t0, tn].

14.5 AN ILLUSTRATIVE EXAMPLE: DAILY FORWARD CURVE

We describe the construction of a daily forward curve of electricity prices in the German
market (EEX). Assume the evaluation date is set to t0 = 22 May 2012. Baseload forward
quotations refer to traded contracts for a variety of delivery periods. These include days,
weeks, weekends, months, quarters and calendar years. Prices are expressed in euros per
megawatt-hour (€/MWh). We report these data in Table 14.1.

The key idea is to estimate the periodical component Λ of the forward curve by using
information on periodical patterns exhibited by time series of spot prices.

We begin by recording EPEX German day-ahead daily prices over the time period ranging
from 1 January 2005 to 22 May 2012. This set, which we denote by  , comprises 2579 days.
Next, we devise a procedure to detect data outliers in such a way that the OLS analyses to
follow are as robust as possible to input data. Following Truck et al. (2007), we apply the
nonparametric filter proposed in Hodrick and Prescott (1997), henceforth HP, to the time series
of daily prices. Any HP filter depends on a numerical parameter 𝜆 whose setting is left to
the user. In our case, we adopt the optimal selection put forward in Pedersen (2001) for the

TABLE 14.1 EEX forward market data

Start date End date Fmkt

22/05/12 22/05/12 42.750
23/05/12 23/05/12 42.450
24/05/12 24/05/12 38.380
25/05/12 25/05/12 36.980
26/05/12 27/05/12 28.350
02/06/12 03/06/12 27.500
28/05/12 03/06/12 35.125
04/06/12 10/06/12 36.850
11/06/12 17/06/12 39.400
18/06/12 24/06/12 40.625
25/06/12 01/07/12 40.210
01/07/12 31/07/12 40.175
01/08/12 31/08/12 38.775
01/09/12 30/09/12 44.475
01/09/12 31/12/12 50.600
01/01/13 31/03/13 51.900
01/01/13 31/12/13 48.725
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F IGURE 14.1 Hodrick–Prescott filtered trend, price outliers, and resulting time series of
“normal” daily spot prices

purpose of filtering out any component exhibiting periods exceeding a selected number. We
decided to set this latter equal to one month. The resulting filtered series is then compared
with the input series.

An outlier is any market quote deviating from the value indicated by the filtered trend at
the same time by more than three times the standard deviation of the sample set comprising all
the discrepancies between observed prices and values of the filtered trend at the same dates.
If this is the case for one datum, then this latter is replaced by a “normal” value defined as the
value of the HP filtered series at the same point in time. We note that this filtered trend serves
the sole purpose of identifying data outliers: in particular, no use is made of determining the
actual trend of quoted prices. Figure 14.1 reports all the outliers that have been detected in the
EPEX German market for the period under consideration. From this graph, we clearly see that
the number of outliers fades away with the level of maturity of the market. The time series
of ‘normal’ daily spot prices S (t) resulting from the replacement procedure described is now
represented as the sum of three components:

S(t) = trend (t) + seasonality (t) + noise (t). (14.4)

We want to extract the seasonality component to analyse and estimate it using a suitable
parametric function Λ(t). To do so, we first estimate the trend component and then fit Λ(t)
to the detrended series. The trend component is assumed to reproduce cyclical paths related
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F IGURE 14.2 Filtered trend H(t) and EPEX German daily price time series S(t)

to macroeconomic events affecting electricity price movements. For this reason, it can be
estimated conveniently by using an HP filter with parameter 𝜆 compatible with filtering out
frequencies with period exceeding one year and a half. Figure 14.2 exhibits the cyclical trend
we estimated on EPEX German market price data, which we denote by H. The resulting
detrended series

Z(t) := S(t) − H(t),

for t ∈  , feeds our seasonal components analysis.
We consider a parametric set of functions aimed at reproducing components with period

up to one year. We perform a periodogram analysis delivering and ranking periods of recurrent
components exhibited by the time series of detrended prices Z (t). Figure 14.3 shows results
for the EPEX German market. A suitable class comprises a semiannual component paired
with dummy variables for days in the week and months:

Λ(t) = a cos
( 4𝜋

365
t + b

)
+ Dday(t)d + Dmonth(t)m. (14.5)

Hereby d and m denote the corresponding parameter vectors for the daily (day = 1,… , 7)
and monthly (month = 1,… , 12) dummy variables Dday(t) and Dmonth(t). For the purpose of
estimation, official holidays are treated as a “Sunday”. As long as the seasonality function Λ(t)
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F IGURE 14.3 Periodogram of the detrended time series Z

is defined based on a continuous representation of time, as in Benth et al. (2007), we need to
integrate this quantity to allow for fitting data on a finite set of dates  . The daily seasonality
reads as

Λ̂(t) := 1
1 day ∫

t+1 day

t
Λ(u)du

for day t ∈  . Let 𝜃 gather all parameters identifying a specific function Λ̂ (t) within the
proposed class. The fitting problem delivering a numerical assessment for the periodical trend
may be cast as the least-squares minimization problem

min
𝜃

||e−𝛼(max( )−t)(Z(t) − Λ̂(t))||22, , (14.6)

for a suitable weighing coefficient 𝛼. A few experiments not reported here show that a reason-
able value for this quantity is 0.4. The resulting periodical trend is shown in Figure 14.4. This
figure shows a few interesting properties of the electricity price series under investigation:

1. On average, monthly prices are lower during December, January, July and August.
Analysing the time series, we observe that the values estimated for February are heavily
affected by the persistence of high spot prices during February 2012.
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F IGURE 14.4 The periodic function Λ̂ (t) computed over a calendar year

2. The weekly seasonality is well captured by the chosen seasonality function, showing a
lower price during Sundays and holidays than during weekdays.

The estimated seasonality function Λ enters the optimization problem (14.1)–(14.3), which in
turn delivers an instantaneous forward curve f . We remark that base load forward contracts
have been considered as input to the problem. The corresponding daily forward price curve
computes by averaging over single days, as in

f̂ (t) = F(t, t + 1 day) = 1
1 day ∫

t+1 day

t
f (u)du. (14.7)

Observe that (14.7) represents a prediction under a risk-neutral probability measure of the
future daily spot price, so f̂ (t) can also be used to estimate the daily risk premia. The daily
curve computed for the EEX market example with data in Table 14.1 is shown in Figure 14.5,
which exhibits the daily forward price curve compared with the baseload average forward
quotations. The latter are easily seen as the average of the values taken from the former, as we
pointed out earlier.
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F IGURE 14.5 Daily forward price curve (oscillating path) and baseload average forward quotes
(piecewise constant path)

14.6 CONCLUSION

We propose a method to build a rational estimate of the electricity forward price curve.
This method combines the proposal of Benth et al. (2007) with a skilled analysis of the
periodical patterns exhibited by daily price time series. Our analysis shows that historical
price path provides relevant information improving estimation of forward price curve with
daily granularity. The method proposed here nests inside the general scheme put forward by
Caldana et al. (2015), who provide forward price curves construction under varying granularity
with solid foundation.
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CHAPTER 15
GARCH Models for Commodity Markets

Eduardo Rossi and Filippo Spazzini

15.1 INTRODUCTION

In this chapter we focus on volatility modelling with special attention paid to the features
of volatility of commodities. In general, an important contribution to the understanding of
modern financial markets has been the study of the volatility of asset returns. Volatility is
considered a measure of risk, and the riskiness of any financial asset is a crucial element
in determining its equilibrium price. In its broader sense, volatility can be interpreted as a
measure of variability over a period of time. This chapter is devoted to present models for the
expectation of volatility.

The autoregressive conditional heteroscedasticity (ARCH, hereafter) class of models have
been developed to provide a convenient and accurate methodology to forecast volatility. In
particular, this class of models is able to capture several empirical regularities observed in
financial data. In brief, some stylized facts common to many financial time series are:

� Asset prices are generally nonstationary. Returns are usually stationary. Some financial
time series are fractionally integrated.

� Return series usually show no or little autocorrelation.
� Serial independence between the squared values of the series is often rejected, pointing

towards the existence of nonlinear relationships between subsequent observations.
� Volatility of the returns series appears to be clustered.
� Normality has to be rejected in favour of some thick-tailed distribution.
� Some series exhibit the so-called leverage effect, that is changes in stock prices tend to be

negatively correlated with changes in volatility. A firm with debt and equity outstanding
typically becomes more highly leveraged when the value of the firm falls. This raises
equity returns volatility if returns are constant. Black, however, argued that the response
of stock volatility to the direction of returns is too large to be explained by leverage alone.
It is now widely agreed that this asymmetry has little to do with actual financial leverage.

� Volatilities of different securities very often move together.

Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Edited by
Andrea Roncoroni, Gianluca Fusai and Mark Cummins.
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F IGURE 15.1 WTI front-month futures daily log-returns

To provide an example of the empirical regularities mentioned above, we display in Figure 15.1
the daily log-returns of West Texas Intermediate (WTI) front-month futures. As is apparent,
the log-returns exhibit periods of low and high variability coupled with the presence of some
outliers. This produces higher kurtosis than that observed in the Gaussian case, as is also evident
from the kernel density plot in Figure 15.2. Further, the sample autocorrelation function, in
Figure 15.3, of log-returns and squared log-returns makes it evident that daily returns are
uncorrelated whereas squared returns appear to be significantly correlated.

The ARCH model and its generalizations are employed to model the processes of returns
volatility of a large set of financial assets, like: fixed-income products, exchange rates, indi-
vidual stocks and stock index returns, commodity derivatives. In the discrete-time ARCH
class of models, the expectations are formulated in terms of directly observable variables,
while the discrete- and continuous-time stochastic volatility models both involve latent state
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F IGURE 15.3 Sample autocorrelation function of WTI daily log-returns and squared log-returns

variable(s). In recent years, the number of new proposed ARCH models has grown dramati-
cally, and new parameterizations are still being proposed. However, Engle (2002b) identifies
as the most influential models the generalized autoregressive conditional heteroscedasticity
(GARCH) model by Bollerslev (1986) and the exponential GARCH (EGARCH) model by
Nelson (1991). Numerous surveys of the extensive ARCH literature also exist; for example,
Andersen and Bollerslev (1998), Andersen et al. (2006), Bauwens et al. (2006), Bera and
Higgins (1993), Bollerslev and Ghysels (1996), Bollerslev and Mikkelsen (1996), Degian-
nakis and Xekalaki (2004), Diebold (2004), Diebold and Lopez (1995), Engle (2001, 2004),
Engle and Patton (2001), Pagan (1996), Palm (1996), Shephard (1996) and Teräsvirta (2009).

These reviews and the textbook treatments reveal an ever-increasing list of acronyms and
abbreviations used to describe the plethora of models and procedures that have been developed
over the years. For instance, Bollerslev (2009) – as a complement to these more traditional
surveys – provides a reference guide to the long list of ARCH acronyms.

Initial developments in econometric modelling of volatility were tightly parametric, but
the recent literature has moved in less parametric, and even fully nonparametric, directions.
We don’t discuss this line of research here. However, it should be noted that the nonparametric
approaches to volatility modelling, which are generally free from functional form assumptions,
afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency
of the underlying returns increases) (for a survey, see Andersen et al., 2009).

GARCH models have also been successfully employed for the analysis and forecasting
of commodity returns volatility. Kroner et al. (1995), using daily data for cocoa, corn, cotton,
gold, silver, sugar and wheat, found that volatility forecasting with market-based informa-
tion combined with a GARCH(1,1) specification of the volatility yields better forecasts of
commodity prices than can be obtained from market expectations or time series models alone.

Baillie et al. (2007) find that the volatility of daily futures returns for six important com-
modities (corn, soybeans, cattle, hogs, gasoline and gold) is well described as fractionally
integrated GARCH, whereas the mean returns exhibit very small departures from the martin-
gale difference property. Several years of high-frequency intraday commodity futures returns
are also found to have very similar long memory in volatility features as the daily returns.
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Kang et al. (2009) evaluated the forecasting capability of a number of GARCH-class
models, like the integrated GARCH (IGARCH), the component GARCH (CGARCH) and
the FIGARCH for better capturing volatility persistence and concluded that CGARCH and
FIGARCH models better capture persistency over other models.

Alom et al. (2012) examine the asymmetry and persistency in the volatility of a set
of petroleum futures price returns – namely crude oil, heating oil, gasoline, natural gas
and propane – within the framework of a set of nonlinear GARCH-type models. The study
reveals that over the sample period (1995–2010), all futures price returns show persistent
and asymmetric effects of shocks to the volatility but the level of persistency and degree of
asymmetry differ from product to product.

Furthermore, volatility modelling has important consequences for risk management. For
example, Giot and Laurent (2003) calculated Value-at-Risk (VaR) measures for daily spot
prices of Brent crude oil and WTI crude oil covering the period 20 May 1987 to 8 March 2002.
Focusing on market risk over a 1-day time horizon, they found that the skew student absolute
power ARCH (APARCH) model performed best on these data.

Another interesting example is provided by Hung et al. (2008). They adopt the GARCH
model with heavy-tailed distribution to estimate 1-day-ahead VaR for WTI crude oil, Brent
crude oil, heating oil, propane and New York conventional gasoline regular, and further
compare the accuracy and efficiency with alternative GARCH specifications.

The rest of this chapter is organized as follows. In Section 15.2 we illustrate ARCH and
GARCH models and their main features. The IGARCH model is introduced in Section 15.3
while the component model is discussed in Section 15.4. Asymmetric GARCH models and
periodic extensions are presented in Sections 15.5 and 15.6, respectively. Section 15.7 is
dedicated to the nesting parameterizations. In Section 15.8, long memory is briefly introduced
and long-memory GARCH models are discussed. Estimation and inference are illustrated in
Sections 15.9 and 15.10, respectively. The multivariate models are presented in Section 15.11.
Section 15.12 contains two empirical applications, one analyses and estimates the volatility
of electricity prices while the second focuses on risk management application of GARCH
models. In Section 15.13 we present the GARCH modelling with Eviews® and Matlab®.

15.2 THE GARCH MODEL: GENERAL DEF IN IT ION

Let {𝜀t(𝜃)} denote a discrete-time stochastic process with conditional mean and variance
parameterized by the finite-dimensional vector 𝜃 ∈ Θ ⊆ ℜm, where 𝜃0 denotes the true value.
We assume, for the moment, that 𝜀t(𝜃0) is a scalar. Let Et−1[⋅] ≡ E[⋅|Φt−1] denote the con-
ditional expectation when the conditioning set is composed of the past values of the process
along with other information available at time t − 1 (denoted by Φt−1) and analogously for the
conditional variance, that is Vart−1[⋅] ≡ Var[⋅|Φt−1].

Definition 15.2.1 (Bollerslev et al., 1996) The process {𝜀t(𝜃0)} follows an ARCH model if

Et−1[𝜀t(𝜃0)] = 0 t = 1, 2,… (15.1)

and the conditional variance

𝜎
2
t (𝜃0) ≡ Vart−1[𝜀t(𝜃0)] = Et−1

[
𝜀

2
t (𝜃0)

]
t = 1, 2,… (15.2)

depends nontrivially on the 𝜎-field generated by the past observations: {𝜀t−1(𝜃0), 𝜀t−2(𝜃0),…}.
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Let {yt(𝜃0)} denote the stochastic process of interest with conditional mean

𝜇t(𝜃0) ≡ Et−1(yt) t = 1, 2,… (15.3)

By the time convention, both 𝜇t(𝜃0) and 𝜎2
t (𝜃0) are measurable with respect to the time t − 1

information set. Define the {𝜀t(𝜃0)} process by

𝜀t(𝜃0) ≡ yt − 𝜇t(𝜃0). (15.4)

It follows from equations (15.1) and (15.2), that the standardized process

zt(𝜃0) ≡ 𝜀t(𝜃0) 𝜎2
t (𝜃0)−1∕2 t = 1, 2,… (15.5)

will have conditional mean equal to zero (Et−1[zt(𝜃0)] = 0) and a time-invariant conditional
variance equal to one.

We can think of 𝜀t(𝜃0) as being generated by

𝜀t(𝜃0) = zt(𝜃0) 𝜎2
t (𝜃0)1∕2

where 𝜀2
t (𝜃0) is an unbiased estimator of 𝜎2

t (𝜃0). Let’s suppose zt(𝜃0) ∼ NID(0, 1) and inde-
pendent of 𝜎2

t (𝜃0):

Et−1
[
𝜀

2
t

]
= Et−1

[
𝜎

2
t

]
Et−1

[
z2

t

]
= Et−1

[
𝜎

2
t

]

because z2
t |Φt−1 ∼ 𝜒

2
(1). The median of a 𝜒2

(1) is 0.455, so Pr{𝜀2
t <

1
2
𝜎

2
t } >

1
2

. The proxy 𝜀2
t

introduces a potentially significant error into the analysis of small samples of𝜎2
t , t = 1, 2,… , T ,

although the error diminishes as T increases.
If the conditional distribution of zt is time invariant with a finite fourth moment, the fourth

moment of 𝜀t is

E
[
𝜀

4
t

]
≥ E

[
z4

t

]
E

[
𝜀

2
t

]2

by Jensen’s inequality.1 The equality holds true for a constant conditional variance only. If
zt ∼ NID(0, 1), then E[z4

t ] = 3 and the unconditional distribution for 𝜀t is therefore leptokurtic:

E
[
𝜀

4
t

]
≥ 3E

[
𝜀

2
t

]2
,

E
[
𝜀

4
t

]
∕E

[
𝜀

2
t

]2
≥ 3.

1Jensen’s inequality. Let X and g(X) be integrable random variables, then

E[g(X)] ≤ g(E[X])

if g(⋅) is concave, or

E[g(X)] ≥ g(E[X])

if g(⋅) is convex.
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Furthermore, the kurtosis can be expressed as a function of the variability of the conditional
variance. In fact, if 𝜀t|Φt−1 ∼ N(0, 𝜎2

t ):

Et−1
[
𝜀

4
t

]
= 3Et−1

[
𝜀

2
t

]2
,

E
[
𝜀

4
t

]
= 3E

[
Et−1

(
𝜀

2
t

)2
]

= 3
[
E

(
𝜀

2
t

)]2 + 3E
[
Et−1

(
𝜀

2
t

)2
]
− 3

{
E

[
Et−1

(
𝜀

2
t

)]}2
.

It follows that the kurtosis can be expressed as

k =
E

[
𝜀

4
t

]

[
E

(
𝜀

2
t

)]2
= 3 + 3

E
{

Et−1

[
𝜀

2
t

]2 }
−

{
E

[
Et−1

(
𝜀

2
t

)]}2

[
E

(
𝜀

2
t

)]2

= 3 + 3
Var

{
𝜎

2
t

}

[
E

(
𝜀

2
t

)]2
.

Another important property of the ARCH process is that it is conditionally serially uncorrelated.
Given that

Et−1[𝜀t] = 0

we have that, with the law of iterated expectations:

Et−h[𝜀t] = Et−h[Et−1(𝜀t)] = Et−h[0] = 0.

This orthogonality property implies that the {𝜀t} process is conditionally uncorrelated:

Covt−h[𝜀t, 𝜀t+k] = Et−h[𝜀t𝜀t+k] − Et−h[𝜀t]Et−h[𝜀t+k]

= Et−h[𝜀t𝜀t+k] = Et−h[Et+k−1(𝜀t𝜀t+k)]

= E[𝜀tEt+k−1[𝜀t+k]] = 0.

15.2.1 The ARCH(q) Model

The ARCH(q) model introduced by Engle (1982) is a linear function of past squared distur-
bances:

𝜎
2
t = 𝜔 +

q∑

i=1

𝛼i𝜀
2
t−i. (15.6)

In this model, to assure a positive conditional variance, the parameters have to satisfy the
following constraints: 𝜔 > 0 and 𝛼1 ≥ 0, 𝛼2 ≥ 0,… , 𝛼q ≥ 0. Defining

𝜎
2
t ≡ 𝜀

2
t − vt
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where Et−1(vt) = 0, we can write equation (15.6) as an AR(q) in 𝜀2
t :

𝜀
2
t = 𝜔 + 𝛼(L)𝜀2

t + vt

where 𝛼(L) = 𝛼1L + 𝛼2L2 +…+ 𝛼qLq (with L the lag operator, i.e. xt−1 = Lxt). The process is
weakly stationary if and only if

∑q
i=1 𝛼i < 1; in this case the unconditional variance is given by

E
(
𝜀

2
t

)
= 𝜔∕(1 − 𝛼1 −…− 𝛼q). (15.7)

The process is characterized by leptokurtosis in excess with respect to the normal distribution.
In the case, for instance, of ARCH(1) with 𝜀t|Φt−1 ∼ N(0, 𝜎2

t ), the kurtosis is equal to

E
(
𝜀

4
t

)
∕E

(
𝜀

2
t

)2 = 3
(
1 − 𝛼2

1

)
∕

(
1 − 3𝛼2

1

)
(15.8)

with 3𝛼2
1 < 1; when 3𝛼2

1 = 1 we have

E
(
𝜀

4
t

)
∕E

(
𝜀

2
t

)2 = ∞.

In both cases we obtain a kurtosis coefficient greater than 3, characteristic of the normal
distribution.

15.2.2 The GARCH(p,q) Model

In order to model in a parsimonious way the conditional heteroscedasticity, Bollerslev (1986)
(and Taylor (1986) independently) proposed the GARCH(p,q) model

𝜎
2
t = 𝜔 + 𝛼(L)𝜀2

t + 𝛽(L)𝜎2
t , (15.9)

where 𝛼(L) = 𝛼1L +…+ 𝛼qLq, 𝛽(L) = 𝛽1L +…+ 𝛽pLp. GARCH(1,1) is the most popular
model in the empirical literature:2

𝜎
2
t = 𝜔 + 𝛼1𝜀

2
t−1 + 𝛽1𝜎

2
t−1. (15.10)

In order to ensure that the conditional variance is well defined in a GARCH(p,q) model, all
the coefficients in the corresponding linear ARCH model of infinite order should be positive.
Rewriting the GARCH(p,q) model as an ARCH(∞):

𝜎
2
t =

(

1 −
p∑

i=1

𝛽iLi

)−1 [

𝜔 +
q∑

j=1

𝛼j𝜀
2
t−j

]

= 𝜔
∗ +

∞∑

k=0

𝜙k𝜀
2
t−k−1. (15.11)

2The GARCH model belongs to the class of deterministic conditional heteroscedasticity models in which
the conditional variance is a function of variables that are in the information set available at time t.
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𝜎
2
t ≥ 0 if𝜔∗ ≥ 0 and all 𝜙k ≥ 0 . The non-negativity of𝜔∗ and 𝜙k is also a necessary condition

for the non-negativity of 𝜎2
t . In order to make 𝜔∗ and {𝜙k}∞k=0 well defined, let’s assume that:

i. The roots of the polynomial 𝛽(x) = 1 lie outside the unit circle and 𝜔 ≥ 0. This is a
condition for 𝜔∗ to be finite and positive.

ii. 𝛼(x) and 1 − 𝛽(x) have no common roots.

These conditions are establishing that neither 𝜎2
t ≤ ∞ nor {𝜎2

t }
∞
t=−∞ is strictly stationary.

For the simple GARCH(1,1) almost sure positivity of 𝜎2
t requires (Nelson and Cao, 1992),

along with conditions (i) and (ii), that

𝜔 ≥ 0, 𝛽1 ≥ 0, 𝛼1 ≥ 0. (15.12)

For the GARCH(1,q) and GARCH(2,q) models these constraints can be relaxed, for example
in the GARCH(1,2) model the necessary and sufficient conditions become

𝜔 ≥ 0,

1 > 𝛽1 ≥ 0,

𝛽1𝛼1 + 𝛼2 ≥ 0,

𝛼1 ≥ 0. (15.13)

For the GARCH(2,1) model the conditions are

𝜔 ≥ 0,

𝛼1 ≥ 0,

𝛽1 ≥ 0,

𝛽1 + 𝛽2 < 1,

𝛽
2
1 + 4𝛽2 ≥ 0. (15.14)

These constraints are less stringent than those proposed by Bollerslev (1986):

𝜔 ≥ 0 𝛽i ≥ 0 i = 1,… , p 𝛼j ≥ 0 j = 1,… , q. (15.15)

The conditions for GARCH(2,2) have been studied by He and Teräsvirta (1999). These results
cannot be adopted in the multivariate case, where the requirement of positivity for {𝜎2

t }
means the positive definiteness of the conditional variance–covariance matrix. In order for
the GARCH parameters 𝛽1,… , 𝛽p to be identified, at least one of the ARCH coefficients 𝛼i
must be nonzero. In fact, if 𝛼1 = … = 𝛼q = 0 the conditional and unconditional variances
of 𝜀t are equal and 𝛽1,… , 𝛽p are unidentified nuisance parameters. From the point of view
of the maximum likelihood estimation of a GARCH(p,q) model, we need to recursively
calculate {𝜎2

t }
∞
t=0 starting from 0 applying equation (15.9), assuming arbitrary values for the

pre-sample period {𝜎2
−1,… , 𝜎2

−p, 𝜀2
−1,… , 𝜀2

−q}. The conditions (15.15) guarantee that {𝜎2
t }

∞
t=0

is not negative given arbitrary non-negative values for {𝜎2
−1,… , 𝜎2

−p, 𝜀2
−1,… , 𝜀2

−q}. On the
contrary, the conditions which guarantee that 𝜔∗ ≥ 0 and 𝜙k ≥ 0 (15.13) for the GARCH(1,2)
model and (15.14) for the GARCH(2,1) model) do not. This problem can be solved by choosing
the starting values that maintain non-negative {𝜎2

t }
∞
t=0 with probability 1, given non-negative
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𝜔
∗ and {𝜙k}∞k=0. Nelson and Cao (1992) suggest picking arbitrarily 𝜀2 ≥ 0 and setting 𝜀2

t = 𝜀
2

for t from −1 to ∞ and 𝜎2
t = 𝜎

2 for 1 − p ≤ t ≤ 0, where

𝜎
2 =

(

1 −
p∑

i=1

𝛽i

)−1 [

𝜔 + 𝜀2
q∑

j=1

𝛼j

]

= 𝜔
∗ + 𝜀2

∞∑

k=0

𝜙k.

Doing so we have a sequence {𝜎2
t } ≥ 0 for all t ≥ 0 with probability 1, as

𝜎
2
t = 𝜔

∗ +
t−1∑

k=0

𝜙k𝜀
2
t−k−1 +

∞∑

k=t

𝜙k𝜀
2
.

Supposing that
∑p

i=1 𝛽i +
∑q

j=1 𝛼j < 1, we can set 𝜎2 and 𝜀2 equal to their common uncondi-
tional mean:

𝜎
2 ≡ 𝜀

2 ≡ 𝜔∕

(

1 −
p∑

i=1

𝛽i −
q∑

j=1

𝛼j

)

.

In the stationary GARCH, Engle and Mezrich (1996) introduce variance targeting, namely
they replace the intercept 𝜔 in equation (15.9) by (1 −

∑
j 𝛼j −

∑
i 𝛽i)𝜎

2. The estimate of 𝜎2,

that is 𝜎2 =
∑T

t=1 𝜀
2
t , is substituted for 𝜎2 before estimating the other parameters. The model

contains one parameter less than the standard GARCH(p,q) model.

15.2.3 The Yule–Walker Equat ions for the Squared Process

The process {𝜀2
t } has an ARMA(m,p) representation

𝜀
2
t = 𝜔 +

m∑

j=1

(𝛼j + 𝛽j)𝜀
2
t−j +

(

𝜐t −
p∑

i=1

𝛽i𝜐t−i

)

where m = max(p, q), Et−1[𝜐t] = 0, 𝜐t ∈ [−𝜎2
t ,∞[. Thus the classical results of ARMA models

can be applied. In particular, we can study the autocovariance function (see Bollerslev, 1988),
that is:

𝛾
2(k) = Cov

(
𝜀

2
t , 𝜀2

t−k

)
,

𝛾
2(k) = Cov

[

𝜔 +
m∑

j=1

(𝛼j + 𝛽j)𝜀
2
t−j +

(

𝜐t −
p∑

i=1

𝛽i𝜐t−i

)

, 𝜀2
t−k

]

,

𝛾
2(k) =

[
m∑

j=1

(𝛼j + 𝛽j)Cov
(
𝜀

2
t−j, 𝜀

2
t−k

)]

+ Cov

[

𝜐t −
p∑

i=1

𝛽i𝜐t−i, 𝜀
2
t−k

]

. (15.16)
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When k is big enough, the last term on the right of expression (15.16) is null. The sequence of
autocovariances satisfies a linear difference equation of order max(p, q), for k ≥ p + 1:

𝛾
2(k) =

[
m∑

j=1

(𝛼j + 𝛽j)𝛾
2(k − j)

]

.

This system can be used to identify the lag order m and p, that is the p and q order if q ≥ p
and the order p if q < p. The autocorrelation function of 𝜀2

t , if it exists, decays slowly, albeit
still exponentially. For the ARCH model, the decay rate is too rapid compared with what is
typically observed in financial time series, unless the maximum lag q is long.

15.2.4 Stat ionarity of the GARCH(p,q)

The process {𝜀t} which follows a GARCH(p,q) process is a martingale difference sequence.
In order to study second-order stationarity, it is sufficient to consider that

Var[𝜀t] = Var[Et−1(𝜀t)] + E[Vart−1(𝜀t)] = E
[
𝜎

2
t

]

and show that it is asymptotically constant in time.

Proposition 15.2.1 A process {𝜀t} which satisfies a GARCH(p,q) model with non-negative
coefficients𝜔 ≥ 0, 𝛼i ≥ 0 i = 1,… , q, 𝛽i ≥ 0 i = 1,… , p is covariance stationary if and only if

𝛼(1) + 𝛽(1) < 1. (15.17)

This is a sufficient but not necessary condition for strict stationarity. Every weakly station-
ary GARCH process is also strictly stationary. Since ARCH processes are thick tailed, the
conditions for covariance stationarity are often more stringent than the conditions for strict
stationarity. When 𝛼(1) + 𝛽(1) < 1 the weakly stationary solution is unique and coincides with
the unique stationary solution.

For the strictly stationary solution consider 𝜀
2
t = z2

t 𝜎
2
t . The GARCH(1,1) can be

written as

𝜎
2
t = 𝜔 + 𝜎2

t−1

(
𝛼1z2

t−1 + 𝛽1
)
. (15.18)

Recursive substitution leads to the expression of the GARCH(1,1) model as

𝜎
2
t = 𝜔

[

1 +
∞∑

k=1

k∏

i=1

(
𝛽1 + 𝛼1z2

t−i

)
]

. (15.19)

Denoting

At = 𝛽1 + 𝛼1z2
t ,

Bt = 𝜔,

Yt = 𝜎
2
t+1,

it follows that Yt = 𝜎
2
t+1 is the solution of the random recurrence equation Yt = AtYt−1 + Bt

where {At, Bt} is i.i.d. Every strictly stationary solution {𝜎2
t } of equation (15.18) can be
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expressed as an appropriate function of the driving process {zt}, so that the stationarity of
{𝜎2

t } implies the stationarity of {𝜎2
t , zt} and hence of {𝜀t, 𝜎t}. In this way the existence of

strictly stationary solutions of the GARCH(1,1) process can be reduced to the study of strictly
stationary solutions of (15.18) (see Lindner, 2009). The solution {Yt} of the random recurrence
equation (with i.i.d. coefficients) is a sequence of random variables. Every solution satisfies

Yt = AtYt−1 + Bt

= AtAt−1Yt−2 + AtBt−1 + Bt

= …

=

(
k∏

j=0

At−i

)

Yt−k−1 +
k∑

i=0

(
i−1∏

j=0

At−j

)

Bt−i

for all k ∈ N ∪ {0}, with
∏−1

j=0 At−j = 1 for the product over an empty index set. For the
stationary solution to exist,

lim
k→∞

(
k∏

j=0

At−i

)

Yt−k−1 = 0 a.s.

and
∑k

i=0(
∏i−1

j=0 At−j) Bt−i converges almost surely as k → ∞. In the GARCH(1,1) and
ARCH(1) case,

𝜎
2
t+1 = Yt =

(
k∏

i=0

At−i

)

𝜎
2
t−k + 𝜔

k∑

i=0

(
i−1∏

j=0

At−j

)

. (15.20)

Since this is a sum of non-negative components, it follows that
∑∞

i=0
∏i−1

j=0 At−j converges

almost surely for each t, and hence that
∏k

i=0 At−i converges almost surely to 0 as k → ∞. If

{𝜎2
t+1} is strictly stationary, then (

∏k
i=0 At−i) 𝜎

2
t−k converges, in distribution and probability, to

0 as k → ∞. It follows that there is at most one strictly stationary solution 𝜎2
t = Yt−1, given by

Yt = 𝜔

∞∑

i=0

(
i−1∏

j=0

At−j

)

. (15.21)

Thus, the existence of a strictly stationary GARCH(1,1) or ARCH(1) process implies a.s.
convergence of

∏k
i=0 A−i to 0 as k → ∞. But also the converse holds, which implies that

a strictly stationary solution of the GARCH(1,1)/ARCH(1) process exists if and only if∏k
i=0 A−i converges a.s. to 0 as k → ∞.

Nelson (1990) shows that when 𝜔 > 0, 𝜎2
t < ∞ a.s. and {𝜀t, 𝜎

2
t } is strictly stationary if

and only if E[ln(𝛽1 + 𝛼1z2
t )] < 0. Given that

E
[
ln

(
𝛽1 + 𝛼1z2

t

)]
≤ ln

[
E

(
𝛽1 + 𝛼1z2

t

)]
= ln(𝛼1 + 𝛽1)
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when 𝛼1 + 𝛽1 = 1, the model is strictly stationary. Thus E[ln(𝛽1 + 𝛼1z2
t )] < 0 is a weaker

requirement than 𝛼1 + 𝛽1 < 1. For the ARCH(1), with 𝛼1 = 1, 𝛽1 = 0 and zt ∼ i.i.d.(0, 1),

E
[
ln

(
z2

t

)]
≤ ln

[
E

(
z2

t

)]
= ln(1).

Thus, the integrated ARCH(1) is strictly but not covariance stationary. In order to analyse
the conditions for the existence of strictly stationary solutions of GARCH(p,q) we have to
extend the random recurrence equation to the multidimensional case (see Bougerol and Picard,
1992a). Strict stationarity of multivariate random recurrence equations is studied in terms of the
top Lyapunov exponent. Bougerol and Picard (1992b) have shown that irreducible recurrence
equations with i.i.d. coefficients {At, Bt}, such that E[ln+ ‖A0‖] <∞ and E[ln+ ‖B0‖] < ∞,
admit a non-anticipative strictly stationary solution if and only if the top Lyapunov exponent
associated with {At} is strictly negative. Bougerol and Picard (1992a) showed that a
GARCH(p,q) process admits a strictly stationary solution if and only if the top Lyapunov
exponent associated with the sequence {At} is strictly negative. This solution is unique.

15.2.5 Forecast ing Volat i l i ty with GARCH

A GARCH(p,q) can be represented as an ARMA process, given that 𝜀2
t = 𝜎

2
t + 𝜐t, where

Et−1[𝜐t] = 0, 𝜐t ∈ [−𝜎2
t ,∞]:

𝜀
2
t = 𝜔 +

max(p,q)∑

j=1

(𝛼j + 𝛽j)𝜀
2
t−j +

(

𝜐t −
p∑

i=1

𝛽i𝜐t−i

)

𝜀
2
t ∼ARMA(m,p) with m = max(p, q). Forecasting with a GARCH(p,q) (Engle and Bollerslev,

1986):

𝜎
2
t+k = 𝜔 +

n∑

i=1

[
𝛼i𝜀

2
t+k−i + 𝛽i𝜎

2
t+k−i

]
+

m∑

i=k

[
𝛼i𝜀

2
t+k−i + 𝛽i𝜎

2
t+k−i

]

where n = min{m, k − 1} and by definition summations from 1 to 0 and from k > m to m are
both equal to zero. Thus,

Et

[
𝜎

2
t+k

]
= 𝜔 +

n∑

i=1

[
(𝛼i + 𝛽i)Et

(
𝜎

2
t+k−i

)]
+

m∑

i=k

[
𝛼i𝜀

2
t+k−i + 𝛽i𝜎

2
t+k−i

]
.

In particular, for GARCH(1,1) and k > 2:

Et

[
𝜎

2
t+k

]
=

k−2∑

i=0

(𝛼1 + 𝛽1)i
𝜔 + (𝛼1 + 𝛽1)k−1

𝜎
2
t+1

= 𝜔
[1 − (𝛼1 + 𝛽1)k−1]

[1 − (𝛼1 + 𝛽1)]
+ (𝛼1 + 𝛽1)k−1

𝜎
2
t+1

= 𝜎
2[1 − (𝛼1 + 𝛽1)k−1] + (𝛼1 + 𝛽1)k−1

𝜎
2
t+1

= 𝜎
2 + (𝛼1 + 𝛽1)k−1 [

𝜎
2
t+1 − 𝜎

2]
.

When the process is covariance stationary, it follows that Et[𝜎
2
t+k] converges to 𝜎2 as k → ∞.
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15.3 THE IGARCH(p,q) MODEL

Definition 15.3.1 The GARCH(p,q) process characterized by the first two conditional
moments:

Et−1[𝜀t] = 0,

𝜎
2
t ≡ Et−1

[
𝜀

2
t

]
= 𝜔 +

q∑

i=1

𝛼i𝜀
2
t−i +

p∑

i=1

𝛽i𝜎
2
t−i

where 𝜔 ≥ 0, 𝛼i ≥ 0 and 𝛽i ≥ 0 for all i and the polynomial

1 − 𝛼(x) − 𝛽(x) = 0

has d > 0 unit root(s) and max{p, q} − d root(s) outside the unit circle is said to be:

i. Integrated in variance of order d if 𝜔 = 0.
ii. Integrated in variance of order d with trend if 𝜔 > 0.

The integrated GARCH(p,q) (IGARCH) models, both with and without trend, are there-
fore part of a wider class of models with a property called ‘persistent variance’ in which the
current information remains important for the forecasts of the conditional variances for every
horizon. So we have the GARCH(p,q) model when (necessary condition)

𝛼(1) + 𝛽(1) = 1.

To illustrate, consider the IGARCH(1,1) which is characterized by

𝛼1 + 𝛽1 = 1.

The process can be expressed as:

𝜎
2
t = 𝜔 + 𝛼1𝜀

2
t−1 + (1 − 𝛼1)𝜎2

t−1,

𝜎
2
t = 𝜔 + 𝜎2

t−1 + 𝛼1
(
𝜀

2
t−1 − 𝜎

2
t−1

)
0 < 𝛼1 ≤ 1. (15.22)

For this particular model the forecast of the conditional variance k steps ahead is:

Et

[
𝜎

2
t+k

]
= (k − 1)𝜔 + 𝜎2

t+1.

Nelson (1991) showed that when an IGARCH process is started at some finite time point,
its behaviour depends on the intercept 𝜔. If 𝜔 > 0 then the unconditional variance of 𝜀t
grows linearly with time. If 𝜔 = 0 the realizations from the process collapse to zero almost
surely. The parameter 𝛽1 affects the pace of this convergence. It is important to notice that the
unconditional variance of 𝜀t when the conditional variance follows the IGARCH model does
not exist. In the case of GARCH(1,1) the possible explanation for the fact that the estimate
of 𝛼1 + 𝛽1 is close to one is that there is a switch in the intercept of a GARCH model during
the estimation period (Diebold, 1986; Lamoureux and Lastrapes, 1990). This means that the
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underlying GARCH process is not stationary. The IGARCH(1,1) in expressions (15.22) can
also be written in the ARIMA(0,1,1) form:

(1 − L)𝜀2
t = 𝜔 + 𝜐t − 𝛽1𝜐t−1, (15.23)

where 𝜐t = 𝜀
2
t − 𝜎

2
t is a martingale difference sequence with respect to 𝜎2

t .

15.4 A PERMANENT AND TRANSITORY COMPONENT MODEL
OF VOLATIL ITY

Engle and Lee (1999) suggested that the high persistence and long memory in volatility may
be due to a time-varying long-run volatility level. The finding of a unit root in the volatility
process indicates that there is a stochastic trend as well as a transitory component in stock
return volatility. The decomposition of the conditional variance of asset returns in a permanent
and transitory component is a way to investigate the long-run and the short-run movement of
volatility in the stock market (Engle and Lee, 1999). Using the variance targeting representation
of the GARCH(1,1) model, we can write

𝜎
2
t = (1 − 𝛼1 − 𝛽1)𝜎2 + 𝛼1𝜀

2
t−1 + 𝛽1𝜎

2
t−1

= 𝜎
2 + 𝛼1

(
𝜀

2
t−1 − 𝜎

2) + 𝛽1

(
𝜎

2
t−1 − 𝜎

2)
.

The last two terms have expected value zero. This model is extended to allow the possibility
that volatility is not constant in the long run. Let qt be the permanent component of the
conditional variance, the component model for the conditional variance is defined as

𝜎
2
t = qt + 𝛼1

(
𝜀

2
t−1 − qt−1

)
+ 𝛽1

(
𝜎

2
t−1 − qt−1

)
. (15.24)

The constant volatility 𝜎2 has been replaced by the time-varying trend qt and its past value.
Using the lag operator

(1 − 𝛽1L)𝜎2
t = [1 − (𝛼1 + 𝛽1)L]qt + 𝛼1𝜀

2
t−1

with

qt = 𝜔 + qt−1 + 𝜙
(
𝜀

2
t−1 − 𝜎

2
t−1

)
.

The forecasting error 𝜀2
t−1 − 𝜎

2
t−1 serves as a driving force for the time-dependent movement

of the trend. The difference between the conditional variance and its trend, 𝜎2
t−1 − qt−1, is the

transitory component of the conditional variance.
The multistep forecast of the trend is just the current trend plus a constant drift. In fact,

Et−1[qt+k] = 𝜔 + Et−1[qt+k−1] + 𝜙Et−1

[
𝜀

2
t+k−1 − 𝜎

2
t+k−1

]
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but Et−1(𝜀2
t+k−1) = Et−1(𝜎2

t+k−1) such that Et−1[𝜀2
t+k−1 − 𝜎

2
t+k−1] = 0. Thus,

Et−1[qt+k] = 𝜔 + 𝜔 + Et−1[qt+k−2] + 𝜙Et−1

[
𝜀

2
t+k−2 − 𝜎

2
t+k−2

]

= k𝜔 + qt. (15.25)

From equation (15.24), the forecast at time t − 1 is

Et−1

(
𝜎

2
t+k

)
− Et−1(qt+k) = (𝛼1 + 𝛽1)

(
Et−1

(
𝜎

2
t+k−1

)
− Et−1(qt+k−1)

)

= (𝛼1 + 𝛽1)k (
𝜎

2
t − qt

)
.

The forecast Et−1(𝜎2
t+k) − Et−1(qt+k), when 𝛼1 + 𝛽1 < 1, will eventually converge to zero as

the forecasting horizon extends into the remote future:

Et−1

(
𝜎

2
t+k

)
− Et−1(qt+k) = 0 as k → ∞. (15.26)

Therefore there will be no difference between the conditional variance and the trend in the
long run. This is the motivation for qt being called the permanent component of the conditional
variance. Combining expressions (15.26) and (15.25), the long-run forecast of the conditional
variance is just the current expectation of the trend plus a constant drift,

Et−1

(
𝜎

2
t+k

)
= k𝜔 + qt as k → ∞.

When the component model is extended to include non-unit-root processes, we have the
general component model

𝜎
2
t = qt + 𝛼1

(
𝜀

2
t−1 − qt−1

)
+ 𝛽1

(
𝜎

2
t−1 − qt−1

)
, (15.27)

qt = 𝜔 + 𝜌qt−1 + 𝜙
(
𝜀

2
t−1 − 𝜎

2
t−1

)
, (15.28)

where qt still represents the persistent component of the conditional variance, as long as
𝜌 > (𝛼1 + 𝛽1). The multistep forecast of the conditional variance and the trend are

Et−1

(
𝜎

2
t+k

)
− Et−1(qt+k) = (𝛼1 + 𝛽1)k (

𝜎
2
t − qt

)
(15.29)

and

Et−1[qt+k] = (1 − 𝜌k)
(1 − 𝜌)

𝜔 + 𝜌kqt, (15.30)

for 𝜌 < 1 and (𝛼1 + 𝛽1) < 1. If 𝜌 > (𝛼1 + 𝛽1), the transitory component in equation (15.29)
decays faster than the trend in equation (15.30) so that the trend will dominate the forecast
of the conditional variance as the forecasting horizon extends. The conditional variance will
eventually converge to a constant since the trend itself is stationary,

Et−1
(
𝜎

2
t+k

)
= Et−1(qt+k) = 𝜔

1 − 𝜌
as k → ∞.
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By rewriting equation (15.24) as

𝜎
2
t = (1 − 𝛼1L − 𝛽1L)qt + 𝛼1𝜀

2
t−1 + 𝛽1𝜎

2
t−1

and equation (15.28) as

(1 − 𝜌L) qt = 𝜔 + 𝜙
(
𝜀

2
t−1 − 𝜎

2
t−1

)
(15.31)

and multiplying (15.27) by (1 − 𝜌L), the general component model reduces to

(1 − 𝜌L) 𝜎2
t = (1 − 𝜌L)

[
(1 − 𝛼1L − 𝛽1L)qt + 𝛼1𝜀

2
t−1 + 𝛽1𝜎

2
t−1

]
. (15.32)

Substituting (15.31) into (15.32),

(1 − 𝜌L) 𝜎2
t = (1 − 𝛼1 − 𝛽1)𝜔 + (𝜙 + 𝛼1)𝜀2

t−1 − (𝜌𝛼1 + (𝛼1 + 𝛽1)𝜙)𝜀2
t−2

+ (𝛽1 − 𝜙)𝜎2
t−1 + (𝜙(𝛼1 + 𝛽1) − 𝛽1𝜌)𝜎2

t−2.

A GARCH(2,2) process represents the underlying data-generating process for the conditional
variance defined in the general component model. When 𝜌 = 𝜙 = 0, the general component
model will reduce to the GARCH(1,1). In conclusion, the GARCH(1,1) only describes a single
dynamic component of the conditional variance.

15.5 ASYMMETRIC MODELS

The GARCH model has been generalized and extended in various directions to increase the
flexibility of the original model. The original GARCH specification assumes the response to a
shock to be independent of the sign of the shock and just be a function of the size of the shock.
However, a stylized fact of financial volatility is that bad news (negative shocks) tends to have
a larger impact on volatility than good news (positive shocks). That is, volatility tends to be
higher in a falling market than in a rising market. Black (1976) attributed this effect to the fact
that bad news tends to drive down the stock price, thus increasing the leverage (i.e., the
debt-to-equity ratio) of the stock and causing the stock to be more volatile. Based on this
conjecture, the asymmetric news impact on volatility is commonly referred to as the leverage
effect. Thus, the alternative parameterizations to the standard GARCH model aim at accommo-
dating the asymmetry in the response. In this section we present the most popular asymmetric
models in the literature.

15.5.1 The EGARCH(p,q) Model

The simple structure of equation (15.9) imposes important limitations on GARCH models
(Nelson, 1991).

� The negative correlation between stock returns and changes in returns volatility; that is,
the volatility tends to rise in response to ‘bad news’ (excess returns lower than expected)
and to fall in response to ‘good news’ (excess returns higher than expected). GARCH
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models, however, assume that only the magnitude and not the positivity or negativity of
unanticipated excess returns determines feature 𝜎2

t . If the distribution of zt is symmetric,
the change in variance tomorrow is conditionally uncorrelated with excess returns today
(Nelson, 1991). If we write 𝜎2

t as a function of lagged 𝜎2
t and lagged z2

t , where 𝜀2
t = z2

t 𝜎
2
t :

𝜎
2
t = 𝜔 +

q∑

j=1

𝛼jz
2
t−j𝜎

2
t−j +

p∑

i=1

𝛽i𝜎
2
t−i (15.33)

it is evident that the conditional variance is invariant to changes in sign of the zt’s.
Moreover, the innovations z2

t−j𝜎
2
t−j are not i.i.d.

� Another limitation of GARCH models results from the non-negativity constraints on 𝜔∗

and 𝜙k in (15.11), which are imposed to ensure that 𝜎2
t remains non-negative for all t with

probability one. These constraints imply that increasing z2
t in any period increases 𝜎2

t+m
for all m ≥ 1, ruling out random oscillatory behaviour in the 𝜎2

t process.
� The GARCH models are not able to explain the observed covariance between 𝜀2

t and 𝜀t−j.
This is possible only if the conditional variance is expressed as an asymmetric function
of 𝜀t−j.

� In the GARCH(1,1) model, shocks may persist in one norm and die out in another, so
the conditional moments of GARCH(1,1) may explode even when the process is strictly
stationary and ergodic.

� GARCH models essentially specify the behaviour of the square of the data. In this case a
few large observations can dominate the sample.

The asymmetric models provide a mechanism that produces the so-called leverage effect,
that is an unexpected price drop increases volatility more than an analogous unexpected price
increase. The exponential GARCH(p,q) model (EGARCH(p,q)) put forward by Nelson (1991)
provides a parameterization where 𝜎2

t depends on both size and sign of lagged residuals. The
model is defined as follows:

ln
(
𝜎

2
t

)
= 𝜔 +

q∑

i=1

𝛼i[𝜙zt−i + 𝜓(|zt−i| − E|zt−i|)] +
p∑

i=1

𝛽i ln
(
𝜎

2
t−i

)
(15.34)

with 𝛼1 ≡ 1, E|zt| = (2∕𝜋)1∕2 given that zt ∼ i.i.d. N(0, 1), where the parameters 𝜔, 𝛽i , 𝛼i are
not restricted to be non-negative. Let us define

g(zt) ≡ 𝜙zt + 𝜓[|zt| − E|zt|]

by construction where {g(zt)}∞t=−∞ is a zero-mean, i.i.d. random sequence. The components
of g(zt) are 𝜙zt and 𝜓[|zt| − E|zt|], each with mean zero. If the distribution of zt is symmetric,
the components are orthogonal, though they are not independent. Over the range 0 < zt < ∞,
g(zt) is linear in zt with slope 𝜙 + 𝜓 and over the range −∞ < zt ≤ 0, g(zt) is linear with slope
𝜙 − 𝜓 . Thus, g(zt) allows for the conditional variance process {𝜎2

t } to respond asymmetrically
to rises and falls in stock price. The term 𝜓[|zt| − E|zt|] represents a magnitude effect. If
𝜓 > 0 and 𝜙 = 0, the innovation in ln(𝜎2

t+1) is positive (negative) when the magnitude of zt

is larger (smaller) than its expected value. If 𝜓 = 0 and 𝜙 < 0, the innovation in ln(𝜎2
t+1) is
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now positive (negative) when returns innovations are negative (positive). A negative shock to
the returns which would increase the debt-to-equity ratio and therefore increase uncertainty
of future returns could be accounted for when 𝛼i > 0 and 𝜙 < 0. As in the standard GARCH
case, the first-order model is the most popular EGARCH in practice.

A number of authors, for example Nelson (1991), have found that standardized residuals
from estimated GARCH models are leptokurtic relative to the normal, see also Engle and
Gonzalez-Rivera (1991). Nelson (1991) assumes that zt has a GED distribution (also called
the exponential power family). The density of a GED random variable normalized to have
mean zero and variance one is given by

f (z; 𝜐) =
𝜐 exp

[
−

(
1
2

)
|z∕𝜆|𝜐

]

𝜆2(1+1∕𝜐)Γ(1∕𝜐)
, −∞ < z < ∞, 0 < 𝜐 ≤ ∞

where Γ(⋅) is the gamma function and

𝜆 ≡ [2(−2∕𝜐)Γ(1∕𝜐)∕Γ(3∕𝜐)]1∕2

with 𝜐 a tail thickness parameter. When 𝜐 = 2, z has a standard normal distribution. For
𝜐 < 2, the distribution of z has thicker tails than the normal (e.g., when 𝜐 = 1, z has a double
exponential distribution) and for 𝜐 > 2, the distribution of z has thinner tails than the normal
(e.g., for 𝜐 = ∞, z is uniformly distributed on the interval [−31∕2, 31∕2]). With this density, we

obtain that E|zt| =
𝜆21∕𝜐Γ(2∕𝜐)

Γ(1∕𝜐) (Hamilton, 1994).

He et al. (2002) noted that the decay of autocorrelations of squared observations of
the first-order EGARCH model is faster than exponential in the beginning, before it slows
down towards an exponential rate. Moreover, Malmsten and Teräsvirta (2004) showed that the
EGARCH(1,1) with normal errors is not sufficiently flexible for characterizing series with high
kurtosis or slowly decaying autocorrelations. The choice of distribution of the standardized
errors is particularly important in this case. Assuming normal errors means that the first-order
autocorrelation of squared observations increases quite rapidly as a function of kurtosis for any
fixed 𝛽1 before the increase slows down. Nelson (1991) suggested using the GED for these
errors, while the choice of t-distribution may imply infinite unconditional variance for {𝜀t}.
As in the case of GARCH(1,1), choosing an error distribution with fatter tails than the normal
increases the kurtosis and, at the same time, lowers the autocorrelations of squared observations
or absolute values.

15.5.2 Other Asymmetric Models

The asymmetric GARCH(p,q) (AGARCH) model (Engle, 1990):

𝜎
2
t = 𝜔 +

q∑

i=1

𝛼i(𝜀t−i + 𝛾i)
2 +

p∑

i=1

𝛽i𝜎
2
t−i (15.35)

Here, negative values of 𝛾 imply that positive shocks will result in smaller increases in future
volatility than negative shocks of the same absolute magnitude.
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The nonlinear AGARCH(1,1) (NAGARCH) model by Engle and Ng (1993):

𝜎
2
t = 𝜔 + 𝛼1

(
𝜀t−1

𝜎t−1
+ 𝛾

)2

+ 𝛽1𝜎
2
t−1. (15.36)

The Glosten et al. (1993) model (GJR-GARCH):

𝜎
2
t = 𝜔 +

p∑

i=1

𝛽i𝜎
2
t−i +

q∑

i=1

(
𝛼i𝜀

2
t−1 + 𝛾iS

−
t−i𝜀

2
t−i

)
, (15.37)

where S−t = I(𝜀t < 0), with I(⋅) an indicator function obtaining value one when the argument
is true and zero otherwise.

The QGARCH(p,q) by Sentana (1995):

𝜎
2
t = 𝜎

2 +𝚿′xt−q + x′t−qAxt−q +
p∑

i=1

𝛽i𝜎
2
t−i, (15.38)

when xt−q = (𝜀t−1,… , 𝜀t−q)′. The linear term (𝚿′xt−q) allows for asymmetry. The off-diagonal
elements of the symmetric parameter matrix A account for interaction effects of lagged values
of xt on the conditional variance. The conditional variance 𝜎2

t is positive if and only if A in
the quadratic form is positive definite. The QGARCH nests several asymmetric models. The
generalized augmented ARCH (AARCH), which is an extension of the AARCH model by Bera
et al. (1992), assumes 𝚿 = 0. The ARCH(q) model corresponds to 𝚿 = 0, 𝛽i = 0, i = 1,… , q
and A diagonal. The asymmetric GARCH model assumes A to be diagonal. The linear standard
deviation model corresponds to 𝛽i = 0, 𝜎2 = 𝜌

2, 𝚿 = 2𝜌𝜙 and A = 𝜙𝜙
′:

𝜎
2
t = (𝜌 + 𝜙′xt−q)2

.

The threshold GARCH (TGARCH) introduces a threshold effect into the volatility:

𝜎t = 𝜔 +
q∑

i=1

(𝛼i,+𝜀
+
t−i − 𝛼i,−𝜀

−
t−i) +

p∑

i=1

𝛽i𝜎t−i, (15.39)

where

𝜀
+
t−i = max {𝜀t−i, 0}

and

𝜀
−
t−i = 𝜀t−i − 𝜀+t−i.

Under the constraints

𝜔 > 0, 𝛼i,+ ≥ 0, 𝛼i,− ≥ 0, 𝛽i ≥ 0

the variable 𝜎t is always strictly positive and represents the conditional standard deviation
of 𝜀t. The GJR-GARCH model can be considered a variant of the TGARCH, obtained by squar-
ing the variables in equation (15.39), see Franq and Zakoı̈an (2010). Through the coefficients
𝛼i,+ and 𝛼i,−, the current volatility depends on both the modulus and the sign of past returns.
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15.5.3 The News Impact Curve

The news has an asymmetric effect on volatility. In the asymmetric volatility models, good
news and bad news have different predictability for future volatility. The news impact curve
(NIC), introduced by Pagan and Schwert (1990) and christened by Engle and Ng (1993),
characterizes the impact of past return shocks on the return volatility which is implicit in a
volatility model. Holding constant the information dated t − 2 and earlier, we can examine
the implied relation between 𝜀t−1 and 𝜎2

t . All lagged conditional variances are evaluated at
the level of the unconditional variance of the stock return. The NIC relates past return shocks
(news) to current volatility. This curve measures how new information is incorporated into
volatility estimates.

For the GARCH model the NIC is centred on 𝜀t−1 = 0. In the case of EGARCH model
the curve has its minimum at 𝜀t−1 = 0 and is exponentially increasing in both directions but
with different parameters.

GARCH(1,1):

𝜎
2
t = 𝜔 + 𝛼𝜀2

t + 𝛽𝜎
2
t−1.

Given that 𝜎2
t−1 = 𝜎

2, the NIC has the following expression:

𝜎
2
t = A + 𝛼𝜀2

t−1,

A ≡ 𝜔 + 𝛽𝜎2
.

EGARCH(1,1):

ln
(
𝜎

2
t

)
= 𝜔 + 𝛽 ln

(
𝜎

2
t−1

)
+ 𝜙zt−1 + 𝜓(|zt−1| − E|zt−1|)

where zt = 𝜀t∕𝜎t. The NIC is

𝜎
2
t =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

A exp
[
𝜙 + 𝜓
𝜎

𝜀t−1

]
, 𝜀t−1 > 0

A 𝜀t−1 = 0

A exp
[
𝜙 − 𝜓
𝜎

𝜀t−1

]
, 𝜀t−1 < 0

A ≡ 𝜎
2𝛽 exp

[
𝜔 − 𝜓

√
2∕𝜋

]

with 𝜙 < 0, 𝜓 + 𝜙 > 0. Thus, it is evident from the NIC that the EGARCH allows good and
bad news to have a different impact on the volatility, while the standard GARCH does not.
Moreover, it allows big news to have a greater impact on the volatility than in the GARCH
model. EGARCH would have higher variances in both directions because the exponential
curve eventually dominates the quadrature.

For the AGARCH(1,1) model (Engle, 1990)

𝜎
2
t = 𝜔 + 𝛼(𝜀t−1 + 𝛾)2 + 𝛽𝜎2

t−1
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the NIC is

𝜎
2
t = A + 𝛼(𝜀t−1 + 𝛾)2 (15.40)

A ≡ 𝜔 + 𝛽𝜎2

𝜔 > 0, 0 ≤ 𝛽 < 1, 𝜎 > 0, 0 ≤ 𝛼 < 1.

It is asymmetric and centred at 𝜀t−1 = −𝛾 .
Finally, for the GJR-GARCH model

𝜎
2
t = 𝜔 + 𝛼𝜀2

t + 𝛽𝜎
2
t−1 + 𝛾S−t−1𝜀

2
t−1

the NIC is

𝜎
2
t =

{
A + 𝛼𝜀2

t−1, 𝜀t−1 > 0
A + (𝛼 + 𝛾)𝜀2

t−1, 𝜀t−1 < 0

A ≡ 𝜔 + 𝛽𝜎2

𝜔 > 0, 0 ≤ 𝛽 < 1, 𝜎 > 0, 0 ≤ 𝛼 < 1, 𝛼 + 𝛽 < 1.

These differences between the NICs of the models have important implications for portfo-
lio selection and asset pricing. Since predictable market volatility is related to market premium,
the two models imply very different market risk premiums. Differences in predicted volatility
after the arrival of some major news leads to a significant difference in the current option price
and to different dynamic hedging strategies.

15.6 PERIODIC GARCH

One stylized fact that emerges from the analysis of commodity prices is that volatility is
characterized by seasonal patterns. Periodic models for the volatility process constitute an
alternative representation for the seasonal patterns observed in volatility. Periodic GARCH
models have been introduced by Bollerslev and Ghysels (1996) and used for the analysis of
periodicity in volatilities by Franses and Paap (2000) and Taylor (2004), among others, and
in stochastic volatility models by Tsiakas (2006). Let yt be the log-return observed S times
intradaily, for a total number of observations which is T . The periodic GARCH P-GARCH(p,q)
process (Bollerslev and Ghysels, 1996) {yt}, defined on some probability space (Ω,,), is
a time-varying coefficient model for the conditional variance of the returns:

𝜎
2
t = Var

[
yt|Φs

t−1

]
t = 1,… , T (15.41)

where Φs
t−1 is a modified Borel 𝜎-field filtration in which the Borel 𝜎-field filtration, based

on the realization of the {yt} process up to time t − 1, is augmented by a process defining the
stage of the periodic cycle at each point in time. The most straightforward P-GARCH model
is obtained when the periodic cycle is purely repetitive. The conditional variance 𝜎2

t is:

𝜎
2
t = 𝜔s +

p∑

i=1

𝛽is𝜎
2
t−i +

q∑

j=1

𝛼js𝜀
2
t−j t = 1,… , T; s = 1,… , S (15.42)
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where S is the number of periods. In order to have 𝜎2
t positive almost surely, restrictions

have to be imposed on 𝜔s, 𝛽is and 𝛼js. These can easily be verified on a case-by-case basis
following Nelson and Cao (1992). An example of such a repetitive cycle would be the intraday
pattern observed in market activity associated with the regular opening and closing of financial
markets.

15.6.1 Period ic EGARCH

In the periodic EGARCH (P-EGARCH) process, the logarithm of the conditional variance
process is modelled as

ln
(
𝜎

2
t

)
= 𝜔s +

p∑

i=1

𝛽is ln
(
𝜎

2
t−i

)
+

q∑

j=1

𝛼jsgs(zt−j) t = 1,… , T; s = 1,… , S (15.43)

or using the lag operator:

(1 − 𝛽s(L)) ln
(
𝜎

2
t

)
= 𝜔s + 𝛼s(L)gs(zt−1) (15.44)

where

gs(zt) = 𝜓s[|zt| − E(|zt|)] + 𝛾szt

and

𝛼s(L) = 1 + 𝛼1sL +…+ 𝛼qsL
q,

𝛽s(L) = 𝛽1sL +…+ 𝛽psL
p
.

The P-EGARCH(1,0) process

ln
(
𝜎

2
t

)
= 𝜔s + 𝛽1s ln

(
𝜎

2
t−1

)
+ gs(zt−1)

is weakly stationary if and only if

||||||

S∏

s=1

𝛽1s

||||||
< 1. (15.45)

15.7 NESTING MODELS

The proliferation of GARCH models has inspired some authors to define families of GARCH
models that would accommodate as many individual models as possible. The nesting shows
the connection between models and permits standard nested tests to determine the relative
quality of each of the model fits. In general, these nesting models are based on transformation
of the conditional standard deviation. Taylor (1986) and Schwert (1989) first suggested ARCH
models for the conditional standard deviation:

𝜎t = 𝜔 +
q∑

i=1

𝛼i|𝜀t−i| +
p∑

i=1

𝛽i𝜎t−i. (15.46)
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Their argument follows Davidian and Carroll (1987) who show in a regression framework
that variance estimators based on absolute residuals are robust to outliers. Because of Jensen’s
inequality, large shocks have a smaller effect on the conditional variance than in the standard
GARCH model. Nelson and Foster (1994) show that a GARCH extension of the Taylor/Schwert
model is a consistent estimator of the near diffusion processes; furthermore, they show that in
the presence of leptokurtic distributions the absolute value GARCH is a more efficient filter
of the conditional variance than standard GARCH.

The nonlinear GARCH by Higgins and Bera (1992), defined as

𝜎
𝛿

t = 𝜔 + 𝛼1|𝜀t−1|
𝛿 + 𝛽1𝜎

𝛿

t−1, (15.47)

can be thought of as an extension of the conditional standard deviation model; it parameterizes
the conditional standard deviation raised to the power 𝛿 as a function of the lagged condi-
tional standard deviations and the lagged absolute innovations raised to the same power. This
formulation obviously reduces to the standard GARCH(p,q) model for 𝛿 = 2.

The first nesting model that appeared in the literature was the asymmetric power
APGARCH(p,q) by Ding et al. (1993); this model is defined as follows:

𝜎
𝛿

t = 𝜔 +
q∑

i=1

𝛼i(|𝜀t−i| − 𝛾i𝜀t−i)
𝛿 +

p∑

j=1

𝛽j𝜎
𝛿

t−j (15.48)

where

𝜔 > 0, 𝛿 ≥ 0

𝛼i ≥ 0, −1 < 𝛾i < 1, i = 1,… , q

𝛽j ≥ 0, j = 1,… , p.

This model imposes a Box–Cox transformation of the conditional standard deviation process
and the asymmetric absolute residuals. The asymmetric response of volatility to positive and
negative ‘shocks’ is the well-known leverage effect. If we assume the distribution of 𝜀t is
conditionally normal, then the condition for existence of E[𝜎𝛿t ] and E|𝜀t|𝛿 is

1
√

2𝜋

q∑

i=1

𝛼i{(1 + 𝛾i)
𝛿 + (1 − 𝛾i)

𝛿}2
𝛿−1

2 Γ
(
𝛿 + 1

2

)
+

p∑

j=1

𝛽j < 1.

If this condition is satisfied, then when 𝛿 ≥ 2 we have 𝜀t covariance stationary. Karanasos and
Kim (2006) study the autocorrelation structure of the general APGARCH(p,q) model. This
generalized version of the GARCH model includes seven other models as special cases:

1. ARCH(q) model, just let 𝛿 = 2 and 𝛾i = 0, i = 1,… , q, 𝛽j = 0, j = 1,… , p.
2. GARCH(p,q) model, just let 𝛿 = 2 and 𝛾i = 0, i = 1,… , q.
3. Taylor (1986), Schwert (1989) conditional standard deviation model, just let 𝛿 = 1 and
𝛾i = 0, i = 1,… , q.

4. GJR-GARCH model, just let 𝛿 = 2.
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When 𝛿 = 2 and 0 ≤ 𝛾i < 1:

𝜎
2
t = 𝜔 +

q∑

i=1

𝛼i(|𝜀t−i| − 𝛾i𝜀t−i)
2 +

p∑

j=1

𝛽j𝜎
2
t−j

= 𝜔 +
q∑

i=1

𝛼i(|𝜀t−i|
2 + 𝛾2

i 𝜀
2
t−i − 2𝛾i|𝜀t−i|𝜀t−i) +

p∑

j=1

𝛽j𝜎
2
t−j,

𝜎
2
t =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜔 +
q∑

i=1

𝛼
2
i (1 + 𝛾i)

2
𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j, 𝜀t−i < 0

𝜔 +
q∑

i=1

𝛼i(1 − 𝛾i)
2
𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j, 𝜀t−i > 0

𝜎
2
t = 𝜔 +

q∑

i=1

𝛼i(1 − 𝛾i)
2
𝜀

2
t−i +

q∑

i=1

𝛼i{(1 + 𝛾i)
2 − (1 − 𝛾i)

2}S−i 𝜀
2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j,

𝜎
2
t = 𝜔 +

q∑

i=1

𝛼i(1 − 𝛾i)
2
𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j +

q∑

i=1

4𝛼i𝛾iS
−
i 𝜀

2
t−i.

If we define

𝛼
∗
i = 𝛼i(1 − 𝛾i)

2,

𝛾
∗
i = 4𝛼i𝛾i

then we have

𝜎
2
t = 𝜔 +

p∑

i=1

𝛼
∗
i 𝜀

2
t−i +

q∑

j=1

𝛽j𝜎
2
t−j +

p∑

i=1

𝛾
∗
i S−i 𝜀

2
t−i

which is the GJR-GARCH model.
When −1 ≤ 𝛾i < 0 we have

𝜎
2
t = 𝜔 +

q∑

i=1

𝛼i(|𝜀t−i| − 𝛾i𝜀t−i)
2 +

p∑

j=1

𝛽j𝜎
2
t−j,

𝜎
2
t =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜔 +
q∑

i=1

𝛼i(1 − 𝛾i)
2
𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j, 𝜀t−i > 0

𝜔 +
q∑

i=1

𝛼i(1 + 𝛾i)
2
𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j, 𝜀t−i < 0
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𝜎
2
t = 𝜔 +

q∑

i=1

𝛼i(1 + 𝛾i)
2
𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j +

q∑

i=1

𝛼i{(1 − 𝛾i)
2 − (1 + 𝛾i)

2}S+i 𝜀
2
t−i

= 𝜔 +
q∑

i=1

𝛼i(1 + 𝛾i)
2
𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j −

q∑

i=1

4𝛼i𝛾iS
+
i 𝜀

2
t−i

where S+i = 1 − S−i . Let

𝛼
∗
i = 𝛼i(1 + 𝛾i)

2,

𝛾
∗
i = −4𝛼i𝛾i

then we have

𝜎
2
t = 𝜔 +

q∑

i=1

𝛼
∗
i 𝜀

2
t−i +

p∑

j=1

𝛽j𝜎
2
t−j +

q∑

i=1

𝛾
∗
i S+i 𝜀

2
t−i

which allows positive shocks to have a stronger effect on volatility.
5. Zakoiän (1994) TARCH model, let 𝛿 = 1 and 𝛽j = 0, j = 1,… , p. We have

𝜎t = 𝜔 +
q∑

i=1

𝛼i(|𝜀t−i| − 𝛾i𝜀t−i)

= 𝜔 +
q∑

i=1

𝛼i(1 − 𝛾i)𝜀
+
t−i −

q∑

i=1

𝛼i(1 + 𝛾i)𝜀
−
t−i.

Defining

𝛼
+
i = 𝛼i(1 − 𝛾i),

𝛾
−
i = 𝛼i(1 + 𝛾i)

we have

𝜎t = 𝜔 +
q∑

i=1

𝛼
+
i 𝜀

+
t−i −

q∑

i=1

𝛾
−
i 𝜀

−
t−i.

If we let 𝛽j ≠ 0, j = 1,… , q then we get a more general class of TARCH models.
6. Higgins and Bera (1992) NGARCH model, let 𝛾i = 0, i = 1,… , p.

Hentschel (1995) defines the following model:

𝜎
𝜆

t − 1

𝜆
= 𝜔 + 𝛼𝜎𝜆t−1f 𝜈(zt−1) + 𝛽

𝜎
𝜆

t−1 − 1

𝜆
(15.49)

where 𝜆 > 0 and

f 𝜈(zt) = |zt − b| − c(zt − b).
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The parameter 𝜆 determines the shape of the transformations. For 𝜆 > 1 the transformation of
𝜎t is convex, while for 𝜆 < 1 it is concave. The parameter 𝜈 serves to transform the absolute
value function f (⋅). The special cases are obtained by appropriately choosing the parameters
𝜆, 𝜈, b and c. The transformation f 𝜈(⋅) controls the impact of shocks, 𝜀t, on the transformed con-
ditional standard deviation, 𝜎t. The Box–Cox-type transformation of the 𝜎t makes it possible
to nest a large number of GARCH models by allowing 𝜆 → 0. In particular, when 𝜆 = 𝜈 = 1
the model becomes

𝜎t = �̃� + 𝛼𝜎t−1[|zt−1 − b| − c(zt−1 − b)] + 𝛽𝜎t−1, (15.50)

which is defined by Hentschel as the absolute value GARCH. A positive value of b causes
a rightward shift of the NIC, and so one obtains asymmetry. But asymmetry can also be
obtained by a rotation of the NIC. By allowing slopes of different magnitudes on either side of
the origin, an NIC of this type also produces an asymmetric variance response. The rotation
is governed by the parameter c: c > 0 corresponds to a clockwise rotation, which means that
negative shocks increase the volatility more than positive shocks. The EGARCH model, the
GJR-GARCH model and the threshold model by Zakoiän (1994) feature rotated NICs. When
the shift and rotation are combined in one NIC, they can either reinforce or offset each other.
The models (of order one) nested in Hentschel’s model are:

1. EGARCH model with 𝜆 = 0, 𝜈 = 1, b and c free, using lim
𝜆→0(𝜎𝜆t − 1)∕𝜆 = log 𝜎t.

2. GJR-GARCH model in (15.37) with 𝜆 = 𝜈 = 2 and b = 0 with free c.
3. TGARCH model in (15.39) with 𝜆 = 𝜈 = 1, b = 0.
4. GARCH model in (15.9) with 𝜆 = 𝜈 = 2 and b = c = 0.
5. NAGARCH model in (15.36) with 𝜆 = 𝜈 = 2 and c = 0. In this model the NIC is shifted

to the right by the distance b.
6. APGARCH model in (15.48) with 𝜆 = 𝜈, b = 0.
7. Nonlinear GARCH in (15.47) with 𝜆 = 𝜈, b = c = 0.

The GARCH model, the NAGARCH model and the GJR-GARCH model differ only in their
restrictions on b and c.

The augmented GARCH model by Duan (1997) is based on an auxiliary process, which
can be loosely interpreted as a Box–Cox transformation of conditional variance. The auxiliary
autoregressive process is defined in terms of some transformation of the error component of
the observation system. The augmented GARCH(1,1) is defined as:

𝜀t = zt𝜎t zt ∼ D(0, 1), (15.51)

𝜙t = 𝜔 + 𝜁1,t−1𝜙t−1 + 𝜁2,t−1, (15.52)

𝜎
2
t =

{
|𝜆𝜙t − 𝜆 − 1|1∕𝜆 if 𝜆 ≠ 0
exp{𝜙t − 1} if 𝜆 = 0

(15.53)

where (𝜁1,t, 𝜁2,t) is a strictly stationary sequence of random vectors with a continuous distribu-
tion, measurable with respect to the available information until t. The assumption of continuous
distribution is important because it precludes the possibility of assigning a positive mass to the
explosion point, that is 𝜆𝜙t − 𝜆 + 1 = 0 when 𝜆 < 0. 𝜀t is an augmented GARCH(1,1) process
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if it satisfies equations (15.51)–(15.53) and

𝜁1,t = 𝛼1 + 𝛼2|𝜀t − c|𝛿 + 𝛼3 max (0, c − 𝜀t)
𝛿 , (15.54)

𝜁2,t = 𝛼4
|𝜀t − c|𝛿 − 1

𝛿
+ 𝛼5

max (0, c − 𝜀t)
𝛿 − 1

𝛿
. (15.55)

The function f (z; 𝛿) = (z𝛿 − 1)∕𝛿 for any 𝛿 ≥ 0 is the Box–Cox transformation so that f (z; 1) =
(z − 1) and lim

𝛿→0 f (z; 𝛿) = ln 𝛿. The augmented GARCH(1,1) nests as special cases several
GARCH models, like the GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1). This process
is strictly stationary under a simple sufficiency condition.

He and Teräsvirta (1999) define another family of GARCH models:

𝜎
2𝛿
t =

q∑

i=1

g(zt−i) +
p∑

i=1

ci(zt−i)𝜎
2𝛿
t−i 𝛿 > 0, (15.56)

where {g(zt−i)} and {ci(zt−i)} are sequences of i.i.d. random variables. The standard
GARCH(p,q) model is obtained by setting g(zt) = 𝜔∕q and c(zt−i) = 𝛼iz

2
t−i + 𝛽i, i = 1,… , q

in equation (15.56). The GJR-GARCH, the absolute value GARCH, the quadratic GARCH
and the power GARCH model belong to this family.

15.8 LONG-MEMORY GARCH MODELS

In applications it often occurs that the estimated sum of the parameters in the GARCH(1,1)
model, 𝛼1 + 𝛽1, is close to unity. In other words, it turns out that an IGARCH(1,1) model
provides a reasonable approximation to the time data-generating process. A disturbing fact
of IGARCH(1,1) is that this means assuming the unconditional variance of the process to be
modelled does not exist. Furthermore, in the IGARCH model the implied effect of a shock
for the optimal forecast of the future conditional variance will be to make the corresponding
cumulative impulse response weights tend to a nonzero constant, so that the forecasts will
increase linearly with the forecast horizon. This implies that the pricing of risky securities,
including long-term options and futures contracts, may show extreme dependence on the initial
conditions, or the current state of the economy. However, this extreme degree of dependence
seems contrary to observed pricing behaviour. Taylor (1986), Dacorogna et al. (1993) and Ding
et al. (1993) all report the presence of apparent long memory in the empirical autocorrelations
for absolute and squared returns of various financial asset prices. These studies provide clear-
cut evidence in favour of models with autocovariances decaying slowly with the lag as k−𝛾 ,
for some 0 < 𝛾 < 1.

While the empirical analysis suggests that the long-range dependence is a feature of
squared and absolute returns, there is no general agreement on the possible causes of this styl-
ized fact. Granger and Ding (1996) have shown that contemporaneous aggregation of stable
GARCH(1,1) processes can result in an aggregate process that exhibits hyperbolically decay-
ing autocorrelations. While this property appears to be consistent with long memory, Zaffaroni
(2007) has shown that the autocorrelation function is summable, which is inconsistent with
it being classified as a long-memory process. A related argument of Andersen and Bollerslev
(1997) shows how the contemporaneous aggregation of weakly dependent information flow
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processes can produce the property of long memory in volatility. A further justification is
provided by Müller et al. (1997), who suggest that long memory in volatility can arise from
the reaction of short-term dealers to the dynamics of a proxy for the expected volatility
trend (coarse volatility), which causes persistence in the higher-frequency volatility (fine
volatility) process.

While the above papers were concerned with the underlying causes of long-memory
volatility, other studies have essentially been more sceptical about the validity of the finding of
the long-memory property in volatility. In particular, it has been suggested that various types
of structural change can explain the extreme persistence of volatility, and can also generate
a series that appears to have long memory. In particular, Mikosch and Starica (1998) and
Granger and Hyung (2004) have presented theoretical and simulation evidence that spurious
long memory can be detected from a time series with breaks. Moreover, while Granger and
Hyung (2004) have found that an occasional-breaks model provides an inferior forecasting
performance compared with a long-memory model for S&P500 absolute returns, for the
same series Starica and Granger (2005) have found that a nonstationary model allowing for
breaks in the unconditional variance can outperform a long-memory model in forecasting,
but not at short horizons. Furthermore, Diebold and Inoue (2001) have shown how Markov
switching processes could generate long memory in the conditional mean, while Granger and
Teräsvirta (1999) have shown that a process which switches in sign has the characteristics of
long memory. The possible occurrence of structural breaks in conditional variance processes,
generating extreme persistence of the IGARCH form, was originally suggested by Lamoureux
and Lastrapes (1990) and Diebold (1986).

Long-range dependence or long memory (sometimes also referred to as strong dependence
or persistence) denotes the property of time series to exhibit persistent behaviour. The concept
of long memory was originally developed by Hurst (1951). Long memory can be defined in
terms of decay rates of long-lag autocorrelations. In particular, a stationary process has long
memory (or long-range dependence) if there exists a real number d and a constant c

𝜌
> 0

such that

lim
k→∞

𝜌(k)

c
𝜌

k2d−1
= 1

where 𝜌(k) is the autocorrelation at lag k and d is the long-memory parameter. The auto-
correlations of a long-memory process are not summable. A stationary and invertible ARMA
process has autocorrelations which are geometrically bounded, that is |𝜌(k)| ≤ cm−k where
0 < m < 1 and hence a short memory process. An alternative, although not equivalent, defini-
tion of long-range dependence can be given by using the spectral density f (𝜆) of the process:

lim
𝜆→0+

f (𝜆)

cf |𝜆|−2d
= 1 0 < cf < ∞.

The spectral density f (𝜆) has a pole and behaves like a constant cf times 𝜆−2d at the origin.
A popular approach to the modelling of long memory is represented by the ARFIMA class
introduced by Granger and Joyeux (1980) and Hosking (1981). They generalize the class of
ARIMA models by allowing a fractional degree of differencing. In the discrete-time long-
memory fractionally integrated I(d) class of processes, the propagation of shocks to the mean
occurs at a slow hyperbolic rate of decay as opposed to the extremes of I(0) exponential
decay associated with the stationary and invertible ARMA class of processes, or the infinite
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persistence resulting from an I(1) process. The ARFIMA(k,d,l) class of models for the discrete-
time real-valued process {yt} is defined by (see Granger and Joyeux, 1980; Hosking, 1981):

a(L)(1 − L)dyt = b(L)𝜀t, (15.57)

where a(L) and b(L) are polynomials in L of orders k and l, respectively, and {𝜀t} is a mean-
zero, serially uncorrelated process. All the roots of a(L) and b(L) lie outside the unit circle.
The process is defined to be I(d). The fractional differencing operator, (1 − L)d, has a binomial
expansion. Using a Taylor–MacLaurin expansion in z = 0:

(1 − z)d = 1 − dz + d(d − 1)
2!

z2 +…

=
∞∑

j=0

(
d
j

)
(−1)jzj

where
(

d
j

)
= d!

(d − j)!j!
.

The coefficients of the powers of Lj decay slowly, being asymptotically proportional to j−(1+d).
Given that

Γ(j + 1) = j! = jΓ(j)

where Γ(j) is the Gamma function:

Γ(j) =
∫

∞

0
xj−1 exp (−x)dx j > 0,

we can also write
(

d
j

)
= d!

(d − j)!j!
=

Γ(j − d)
Γ(−d)Γ(j + 1)

and it follows that

(1 − L)d =
∞∑

j=0

(
d
j

)
(−1)jzj

=
∞∑

j=0

Γ(j − d)
Γ(−d)Γ(j + 1)

Lj

=
∞∑

j=0

𝜙jL
j

= F(−d, 1, 1; L),

where F(−d, 1, 1; L) is the hypergeometric function defined as

F(m, n, s; x) = Γ(s)Γ(m)−1Γ(n)−1
∑

j=0,∞
Γ(m + j)Γ(n + j)Γ(s + j)−1Γ(j + 1)−1xj

.
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Provided that Var(𝜀t) < ∞ and −0.5 < d < 0.5, the {yt} process is weakly stationary and
invertible and will possess unique infinite moving average and autoregressive representations.
For d < 1 the process is mean reverting. While for 1∕2 < d < 1, yt will not be covariance
stationary it will nevertheless still be mean reverting. The ARFIMA model disentangles
the short-run and the long-run dynamics, by modelling the short-run behaviour through the
conventional ARMA lag polynomials a(L) and b(L) while the long-run characteristics are
captured by the fractional differencing parameter d.

15.8.1 The F IGARCH Model

The FIGARCH process, proposed by Baillie et al. (1996), combines many of the features of
the fractionally integrated process for the mean together with the regular GARCH process
for the conditional variance. The FIGARCH model implies a slow hyperbolic rate of decay for
the lagged squared innovations in the conditional variance function, although the cumulative
impulse response weights associated with the influence of a volatility shock on the optimal
forecasts of the future conditional variance eventually tend to zero, a property the model shares
with weakly stationary GARCH processes. The FIGARCH model offers a competing view
to the one according to which changes in parameters in a GARCH model are the main cause
of the slow decay in the autocorrelations. However, the long-memory property (and even the
existence of a stationary regime) of FIGARCH has not been established theoretically (see
Giraitis et al., 2000). The GARCH(p,q) process is ARMA(m,p) for 𝜀2

t , where m = max(p, q):

[1 − 𝛼(L) − 𝛽(L)]𝜀2
t = 𝜔 + [1 − 𝛽(L)]vt (15.58)

where vt = {𝜀t − 𝜎2
t } is a martingale difference sequence. In the covariance stationary GARCH

model the effect of the past squared innovations on the current conditional variance decays
exponentially with the lag length. When the autoregressive polynomial 1 − 𝛼(x) − 𝛽(x) con-
tains a unit root, we have the IGARCH(p,q) model which is defined as

𝜙(L)(1 − L)𝜀2
t = 𝜔 + [1 − 𝛽(L)]vt (15.59)

where

𝜙(L) ≡ [1 − 𝛼(L) − 𝛽(L)](1 − L)−1

is of order m − 1, m = max (p, q). The FIGARCH is simply obtained by replacing the (1 − L)
operator with the fractional differencing operator. Analogously to the ARFIMA(k,d,l) process
for the mean, the FIGARCH(p,d,q) for {𝜀t} is naturally defined by

𝜙(L)(1 − L)d
𝜀

2
t = 𝜔 + [1 − 𝛽(L)]vt (15.60)

where 0 < d < 1 and all the roots of 𝜙(L) and [1 − 𝛽(L)] lie outside the unit circle. This means
that the process for {𝜀2

t } is an ARFIMA(m − 1,d,p). Given that vt ≡ 𝜀
2
t − 𝜎

2
t , an alternative

representation for the FIGARCH(p,d,q) model is

[1 − 𝛽(L)]𝜎2
t = 𝜔 + [1 − 𝛽(L) − 𝜙(L)(1 − L)d]𝜀2

t , (15.61)

𝜎
2
t = [1 − 𝛽(1)]−1

𝜔 + 𝜆(L)𝜀2
t (15.62)
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where

𝜆(L) ≡ 1 − [1 − 𝛽(L)]−1
𝜙(L)(1 − L)d (15.63)

and 𝜆(L) = 𝜆1L + 𝜆2L2 + 𝜆3L3 +… The FIGARCH(p,d,q) is well defined and 𝜎2
t > 0, a.s.

∀t, if all the coefficients in the infinite ARCH representation are non-negative, that is 𝜆k > 0
for k = 0, 1, 2,… For 0 < d ≤ 1 the F(−d, 1, 1, ; L = 1) = 0, so that 𝜆(1) = 1. Consequently,
the second moment of the unconditional distribution of 𝜀t is infinite and the FIGARCH
process is not weakly stationary, a feature it shares with the IGARCH class of processes.
Baillie et al. (1996) argue that since the higher-order lag coefficients in the infinite ARCH
representation of any FIGARCH model may be dominated in absolute value sense by the
corresponding IGARCH coefficients, it follows that the FIGARCH(p,d,q) class of processes
is strictly stationary and ergodic for 0 ≤ d ≤ 1.

However, the proof of existence of a stationary solution to (15.62) given in Baillie et al.
(1996) does not seem to be correct (see Giraitis et al., 2007). The question of the existence of
a stationary solution to the FIGARCH equation (the ‘FIGARCH problem’) is open at present
and seems very hard to solve. See Giraitis et al. (2000), Mikosch and Starica (2000, 2003) for
discussion and controversies surrounding the FIGARCH case. The FIGARCH(p,d,q) model
nests the covariance-stationary GARCH(p,q) model for d = 0 and the IGARCH(p,q) model for
d = 1. Allowing for values of d in the interval between zero and unity gives an added flexibility
that may be important when modelling long-term dependence in the conditional variance.

Considerable care should be exercised in interpreting persistence in nonlinear models. In
this context, in which the conditional variance is parameterized as a linear function of past 𝜀2

t ,
the persistence is simply characterized in terms of the impulse response coefficients for the
optimal forecast of the future conditional variance as a function of the time t innovation, vt:

𝛾k ≡
𝜕Et

[
𝜀

2
t+k

]

𝜕vt
−

Et

[
𝜀

2
t+k−1

]

𝜕vt
.

In more general conditional variance models the 𝛾i’s will depend on the time t information set.
For the FIGARCH models the impulse response coefficients are independent of t. The impulse
response coefficients may be found from the coefficients in the 𝛾(L) lag polynomial:

(1 − L)𝜀2
t = (1 − L)1−d

𝜙(L)−1
𝜔 + (1 − L)1−d

𝜙(L)−1[1 − 𝛽(L)]vt

≡ 𝜁 + 𝛾(L)vt. (15.64)

The long-run impact of past shocks for the volatility process may now be assessed in terms of
the limit of the cumulative impulse response weights. In fact

k∑

i=0

𝛾i =
k∑

i=0

[
𝜕Et

(
𝜀

2
t+i

)

𝜕vt
−

Et

(
𝜀

2
t+i−1

)

𝜕vt

]

=
𝜕Et

(
𝜀

2
t+k

)

𝜕vt
, (15.65)

but

𝜆k =
𝜕Et

(
𝜀

2
t+k

)

𝜕vt
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then

𝛾(1) = lim
k→∞

k∑

i=0

𝛾i = lim
k→∞

𝜆k

= F(d − 1, 1, 1; 1)𝜙(1)−1[1 − 𝛽(1)]. (15.66)

For the covariance-stationary GARCH(p,q) model and the FIGARCH(p,d,q) model with
0 < d < 1, shocks to the conditional variance will ultimately die out in a forecasting sense.
Whereas shocks to the GARCH process die out at a fast exponential rate, for the FIGARCH
model 𝜆k will eventually be dominated by a hyperbolic rate of decay. Thus, even though the
cumulative impulse response function converges to zero for 0 ≤ d < 1, the fractional differ-
encing parameter provides important information regarding the pattern and speed with which
shocks to the volatility process are propagated.

In contrast, for d = 1, F(d − 1, 1, 1; 1) = 1; the cumulative impulse response weights will
converge to the nonzero constant 𝛾(1) = 𝜙(1)−1[1 − 𝛽(1)]. Thus, from a forecasting perspec-
tive, shocks to 𝜎2

t of the IGARCH model persist indefinitely. For d > 1, F(d − 1, 1, 1; 1) = ∞,
resulting in an unrealistic explosive conditional variance process and 𝛾(1) being undefined.

As an example, consider the GARCH(1,1) model

𝜎
2
t = 𝜔 + 𝛼1𝜀

2
t−1 + 𝛽𝜎

2
t−1

in ARMA form

(1 − 𝜙1L)𝜀2
t = 𝜔 + (1 − 𝛽1L)vt

where 𝜙1 ≡ 𝛼1 + 𝛽1. The impulse response weights for this model are given by the coefficients
in the polynomial

𝛾(L) = (1 − L)(1 − 𝜙1L)−1(1 − 𝛽1L)

where

𝛾0 = 1,

𝛾1 = 𝜙1 − 𝛽1 − 1,

𝛾k = (𝜙1 − 𝛽1)(𝜙1 − 1)𝜙k−2, k > 2.

The cumulative impulse response weights equal

𝜆k = (𝜙1 − 𝛽1)𝜙k−1
1 , k > 1

and in the limit 𝛾(1) = 0, provided that 0 < 𝜙1 < 1. Hence, the effect of a shock to the forecast
of the future conditional variance tends to zero at a fast exponential rate. In the IGARCH(1,1)
model, that is 𝜙1 = 1,

(1 − L)𝜀2
t = 𝜔 + (1 − 𝛽1L)vt
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the coefficients of 𝜆(L) are given by

𝜆k = (1 − 𝛽1), ∀k > 1;

the cumulative impulse response weights equal the nonzero constant 𝛾(1) = 1 − 𝛽1. The
FIGARCH(1,d,0) model is

(1 − 𝜙1L)d
𝜀

2
t = 𝜔 + (1 − 𝛽1L)vt.

It is possible to show that the cumulative response coefficients in the infinite ARCH represen-
tation for the FIGARCH(1,d,0) model

𝜆(L) ≡ 1 − (1 − 𝛽1L)−1(1 − L)d

equal

𝜆k = [1 − 𝛽1 − (1 − d)k−1]Γ(k + d − 1)Γ(k)−1Γ(d)−1

for k > 1 and𝜆0 = 1. Thus, provided that𝜔 > 0, the condition 0 ≤ 𝛽1 < d ≤ 1 is both necessary
and sufficient to ensure that the conditional variance in the FIGARCH(1,d,0) model is positive
a.s. for all t. Furthermore it follows (by Sterling’s formula) that for high lags k,

𝜆k = [(1 − 𝛽1)Γ(d)−1]kd−1
.

In contrast to the covariance-stationary GARCH(1,1) model or the IGARCH(1,1) model,
where shocks to the conditional variance either dissipate exponentially or persist indefinitely,
for the FIGARCH(1,d,0) model the response of the conditional variance to past shocks decays
at a slow hyperbolic rate.

15.8.2 The F IEGARCH Model

As the estimates of the standard GARCH(p,q) model often indicate an approximate unit root
in the autoregressive polynomial, when estimating the EGARCH(p,q) model in (15.34) the
largest root of the estimated polynomial 1 − 𝛽(x) is very close to unity. However, as noted
by Nelson (1991), the EGARCH(p,q) model could be extended to allow for fractional orders
of integration also. Bollerslev and Mikkelsen (1996) factorize the autoregressive polynomial
[1 − 𝛽(L)] = 𝜙(L)(1 − L)d where all roots of 𝜙(x) = 0 lie outside the unit circle, so that the
model may be written as

ln (𝜎2
t ) = 𝜔 + 𝜙(L)−1(1 − L)−d[1 + 𝛼(L)]g(zt−1) (15.67)

where 𝛼(L) = 𝛼1L + 𝛼2L2 +…+ 𝛼qLq. The FIEGARCH(p,d,q) formulation obviously nests
the conventional EGARCH model for d = 0 and the integrated EGARCH model for d = 1.
By analogy to the ARFIMA class of models for the conditional mean, {ln (𝜎2

t )} is covariance
stationary and invertible for d in the interval between −0.5 and 0.5. Shocks to the optimal
forecasts for future values of ln (𝜎2

t ) will dissipate for all values of d < 1. Moreover, in contrast
to the FIGARCH formulation, the parameters for the FIEGARCH do not have to satisfy any
non-negativity constraints in order for the model to be well defined.
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15.9 ESTIMATION

In comparison with other volatility models (e.g., standard stochastic volatility model) GARCH
models are simpler to estimate, which has greatly contributed to their popularity. The volatility
being a function of the past observations, the likelihood function has an explicit form which
makes it easy to handle (see Francq and Zakoı̈an, 2009). Least-squares and quasi-maximum-
likelihood estimations in ARCH models were considered in the seminal paper by Engle (1982).
The asymptotic properties of the quasi-maximum-likelihood estimator (QMLE) has received
broad interest in the last 20 years. The first papers limited their scope to ARCH (see Weiss,
1986) or GARCH(1,1) models (Lee and Hansen, 1994; Lumsdaine, 1996). The QMLE of
the general GARCH(p,q) model is studied in Berkes and Horváth (2003, 2004), Berkes et al.
(2003), Francq and Zakoı̈an (2004) and Hall and Yao (2003). Straumann (2005) presents a
comprehensive monograph on the estimation of GARCH models.

15.9.1 L ike l ihood Computat ion

The procedure most often used in estimating 𝜃0 ∈ Θ in ARCH models involves the max-
imization of a likelihood function constructed under the auxiliary assumption of an i.i.d.
distribution for the standardized innovation zt(𝜃). Let f (zt(𝜃); 𝜂) denote the density function
for zt(𝜃) ≡ 𝜀t(𝜃)∕𝜎t(𝜃), with mean zero and variance one, where 𝜂 is the nuisance parameter,
𝜂 ∈ H ⊆ Rk. Let (yT , yT−1,… , y1) be a sample realization from an ARCH model as defined
by equations (15.1) to (15.5), and 𝜓 ′ ≡ (𝜃′, 𝜂′) the combined (m + k) × 1 parameter vector
to be estimated for the conditional mean, variance and density functions. The log-likelihood
function for the tth observation is then given by

lt(yt;𝜓) = ln{f [zt(𝜃); 𝜂]} − 1
2
ln

[
𝜎

2
t (𝜃)

]
t = 1, 2,… (15.68)

The term − 1
2
ln[𝜎2

t (𝜃)] on the right-hand side is the Jacobian that arises in the transformation
from the standardized innovations, zt(𝜃), to the observables yt (f (yt;𝜓) = f (zt(𝜃); 𝜂)|J|, where

J = 𝜕zt

𝜕yt
= 1

𝜎t(𝜃)
). The conditional log-likelihood function for the full sample equals the sum of

the conditional log likelihoods in (15.68):

LT (yT , yT−1,… , y1;𝜓) =
T∑

t=1

lt(yt;𝜓). (15.69)

The maximum likelihood estimator for the true parameters 𝜓 ′
0 ≡

(
𝜃
′
0, 𝜂′0

)
, say �̂�T , is found

by the maximization of equation (15.69). Assuming the conditional density and the 𝜇t(𝜃) and
𝜎

2
t (𝜃) functions to be differentiable for all 𝜓 ∈ Θ × H ≡ Ψ, the maximum likelihood estimator

is the solution to

ST (yT , yT−1,… , y1; �̂�) ≡
T∑

t=1

st(yt; �̂�) = 0 (15.70)
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where st ≡
𝜕lt(yt,𝜓)
𝜕𝜓

is the score vector for the tth observation. In particular, for the conditional
mean and variance parameters

𝜕lt(yt,𝜓)

𝜕𝜃
= f [zt(𝜃); 𝜂]−1f ′[zt(𝜃); 𝜂]

𝜕zt(𝜃)

𝜕𝜃
− 1

2

[
𝜎

2
t (𝜃)

]−1 𝜕𝜎
2
t

𝜕𝜃
(15.71)

where f ′[zt(𝜃); 𝜂] ≡ 𝜕f (zt(𝜃);𝜂)
𝜕zt

and

𝜕zt(𝜃)

𝜕𝜃
= 𝜕

𝜕𝜃

⎛
⎜
⎜
⎜
⎝

𝜀t(𝜃)
√
𝜎

2
t

⎞
⎟
⎟
⎟
⎠

=
− 𝜕𝜇t

𝜕𝜃

√
𝜎

2
t − 1

2

(
𝜎

2
t

)−1∕2 𝜕𝜎
2
t

𝜕𝜃
𝜀t(𝜃)

𝜎
2
t

= −
𝜕𝜇t

𝜕𝜃

(
𝜎

2
t (𝜃)

)−1∕2 − 1
2

(
𝜎

2
t (𝜃)

)−3∕2 𝜕𝜎
2
t

𝜕𝜃
𝜀t(𝜃)

where

𝜀t(𝜃) ≡ yt − 𝜇t(𝜃).

In practice, the solution to the set of m + k nonlinear equations in (15.70) is found by numerical
optimization techniques.

In order to implement the maximum likelihood procedure, one needs to make an explicit
assumption regarding the conditional density in equation (15.68). The most commonly
employed distribution in the literature is the normal:

f [zt(𝜃); 𝜂] = (2𝜋)−1∕2 exp
{
−

zt(𝜃)2

2

}
.

Since the normal distribution is uniquely determined by its first two moments, only the
conditional mean and variance parameters enter the log-likelihood function in equation (15.69);
that is, 𝜓 = 𝜃. The log-likelihood for the tth observation is

lt(𝜃) = −1
2
ln(2𝜋) − 1

2
zt(𝜃)2 − 1

2
ln

(
𝜎

2
t

)
.

It follows that the score vector in (15.71) takes the form

st = −zt
𝜕zt

𝜕𝜃
− 1

2

(
𝜎

2
t (𝜃)

)−1 𝜕
(
𝜎

2
t (𝜃)

)

𝜕𝜃

=
𝜕𝜇t(𝜃)

𝜕𝜃

𝜀t(𝜃)

𝜎
2
t (𝜃)

+ 1
2

(
𝜎

2
t (𝜃)

)−1 𝜕𝜎
2
t (𝜃)

𝜕𝜃

[
𝜀

2
t (𝜃)

𝜎
2
t (𝜃)

− 1

]

. (15.72)



722 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

As discussed in McCullough and Renfro (1999) and Brooks et al. (2001), there are several
practical issues to consider in the maximization of the Gaussian log-likelihood:

LT (yT , yT−1,… , y1; 𝜃) =
T∑

t=1

lt(𝜃)

= −T
2
ln (2𝜋) − 1

2

T∑

t=1

𝜀
2
t (𝜃)

𝜎
2
t (𝜃)

− 1
2

T∑

t=1

ln
(
𝜎

2
t (𝜃)

)
. (15.73)

The conditional log-likelihood in (15.73) is used in practice since the unconditional distribution
of the initial values is not known in closed form (Diebold and Schuermann, 1993 gave a
computationally intensive numerical procedure for approximating the exact log-likelihood).
When 𝜎2

t (𝜃) is modelled as a GARCH(p,q), starting values for the model parameters 𝜔, 𝛼i,
i = 1,… , q and 𝛽j, j = 1,… , p need to be chosen and an initialization of 𝜀2

t and 𝜎2
t must be

supplied. If for simplicity Et−1[yt] = 𝜇, the sample mean of yt is usually used as the starting
value for 𝜇, zero values are often given for the conditional variance parameters other than 𝜔
and 𝛼1, and 𝜔 is set equal to the unconditional variance of yt. For the initial values of 𝜎2

t a
possible choice is

𝜎
2
t = 𝜀

2
t = 1

T

T∑

t=1

𝜀
2
s t ≤ 0,

where the initial values for 𝜀s are computed as the residuals from a regression of yt on a constant.
Once the log-likelihood is initialized, it can be maximized using numerical optimization
techniques.

15.10 INFERENCE

15.10.1 Test ing for ARCH Ef fects

Testing for the presence of ARCH effects has been considered extensively in the literature. A
simple and frequently used test for the null hypothesis

H0 : 𝛼1 = 𝛼2 = … = 𝛼q = 0

against the alternative

H1 : 𝛼1 ≥ 0, 𝛼2 ≥ 0,… , 𝛼q ≥ 0

with at least one strict inequality is the Lagrange multiplier (LM) test proposed by Engle (1982).
The test is based upon the score and information matrix under the null computed assuming
that the standardized innovation zt is Gaussian distributed. When normality is assumed, an
asymptotically equivalent statistic would be TR2 where R2 is the squared multiple correlation
of the regression of 𝜀2

t on an intercept and q lagged values of 𝜀2
t . The statistic will be

asymptotically distributed as chi-square with q degrees of freedom when the null hypothesis
is true. This will be an asymptotically locally most powerful test.
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Lumsdaine and Ng (1999), however, argue that the LM test may reject if there is general
misspecification in the conditional mean equation (15.10). They show that such misspecifi-
cation causes the estimated residuals 𝜀t to be serially correlated which, in turn, causes 𝜀2

t to
be serially correlated. Therefore, care should be exercised in specifying the conditional mean
equation (15.10) prior to testing for ARCH effects.

Lee and King (1993) derive a locally most mean powerful (LMMP)-based score test for
the presence of ARCH and GARCH disturbances. The test is based on the sum of the scores
evaluated at the null hypothesis and nuisance parameters replaced by their ML estimates.
In the absence of nuisance parameters, the test is LMMP. The sum of the scores is then
standardized by dividing by its large sample standard error. The resulting test statistic has an
asymptotic N(0, 1) distribution. The test statistics used to test against an ARCH(q) process can
also be used to test against a GARCH(p,q) process. In small samples, the test appears to have
better power than the LM test and its asymptotic critical values were found to be at least as
accurate.

Wald and likelihood ratio (LR) criteria could be used to test the hypothesis of conditional
homoscedasticity, for example against a GARCH(1,1) alternative. The statistic associated
with H0 : 𝛼1 = 𝛽1 = 0 against H1 : 𝛼1 ≥ 0 or 𝛽1 ≥ 0, with at least one strict inequality, does
not have a 𝜒2 distribution with two degrees of freedom as the standard assumption that
the true parameter value under H0 does not lie on the border of the parameter space does
not hold.

15.10.2 Test for Asymmetric Ef fects

If a negative return shock causes more volatility than a positive return shock of the same size,
the GARCH model underpredicts the amount of volatility following bad news and overpredicts
the amount of volatility following good news. Furthermore, if large return shocks cause more
volatility than a quadratic function allows, then the standard GARCH model underpredicts
volatility after a large return shock and overpredicts volatility after a small return shock.

Engle and Ng (1993) put forward three diagnostic tests for volatility models: the sign bias
test, the negative size bias test and the positive size bias test. These tests examine whether
we can predict the squared normalized residual by some variables observed in the past which
are not included in the volatility model being used. If these variables can predict the squared
normalized residual, then the variance model is misspecified. The sign bias test examines the
impact of positive and negative return shocks on volatility not predicted by the model under
consideration. The negative size bias test focuses on the different effects that large and small
negative return shocks have on volatility which are not predicted by the volatility model. The
positive size bias test focuses on the different impacts that large and small positive return
shocks may have on volatility, which are not explained by the volatility model.

To derive the optimal form of these tests, we assume that the volatility model under the
null hypothesis is a special case of a more general model of the following form:

log
(
𝜎

2
t

)
= log

(
𝜎

2
0t(𝛿

′
0z0t)

)
+ 𝛿′azat (15.74)

where 𝜎2
0t(𝛿

′
0z0t) is the volatility model hypothesized under the null, 𝛿0 is a (k × 1) vector of

parameters under the null, z0t is a (k × 1) vector of explanatory variables under the null, 𝛿a
is an (m × 1) vector of additional parameters, zat is an (m × 1) vector of missing explanatory
variables.
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This form encompasses both the GARCH and EGARCH models. For the GARCH(1,1)
model

𝜎
2
0t(𝛿

′
0z0t) = 𝛿

′
0z0t,

z0t ≡
[
1, 𝜎2

t−1, 𝜀2
t−1

]′
,

𝛿0 ≡ [𝜔, 𝛽, 𝛼]′,

𝛿a = [𝛽∗,𝜙∗,𝜓∗]′,

zat =
[
log

(
𝜎

2
t−1

)
,
𝜀t−1

𝜎t−1
,

(
|𝜀t−1|
𝜎t−1

−
√

2∕𝜋
)]′

.

The encompassing model is

log
(
𝜎

2
t

)
= log

[
𝜔 + 𝛽𝜎2

t−1 + 𝛼𝜀
2
t−1

]
+ 𝛽∗ log

(
𝜎

2
t−1

)
+ 𝜙∗ 𝜀t−1

𝜎t−1
+ 𝜓∗

(
|𝜀t−1|
𝜎t−1

−
√

2∕𝜋
)

when 𝛼 = 𝛽 = 0 is an EGARCH(1,1) while with 𝛽∗ = 𝜙
∗ = 𝜓

∗ = 0 it is a GARCH(1,1) model.
The null hypothesis is 𝛿a = 0. Let zt be the normalized residual corresponding to obser-

vation t under the volatility model hypothesized. That is, zt ≡
𝜀t

𝜎t
. The LM test statistic for

H0 : 𝛿a = 0 in (15.74) is a test of 𝛿a = 0 in the auxiliary regression

z2
t = z∗′0t𝛿0 + z∗′at𝛿a + ut (15.75)

where z∗0t ≡ 𝜎
−2
0t (

𝜕𝜎
2
t

𝜕𝛿0
), z∗at ≡ 𝜎

−2
0t (

𝜕𝜎
2
t

𝜕𝛿a
). Both

𝜕𝜎
2
t

𝜕𝛿0
and

𝜕𝜎
2
t

𝜕𝛿a
are evaluated at 𝛿a = 0 and 𝛿0 (the

maximum likelihood estimator of 𝛿0 under H0). If the parameter restrictions are met, the
right-hand-side variables in (15.75) should have no explanatory variables power at all.3 Thus,
the test is often computed as

𝜉LM = TR2

where R2 is the squared multiple correlation of (15.75) and T is the number of observations
in the sample. The LM statistic is asymptotically distributed as a chi-square with m degrees
of freedom when the null hypothesis is true, where m is the number of parameter restrictions.

Under the encompassing model (15.74), (
𝜕𝜎

2
t

𝜕𝛿a
) evaluated under the null is equal to4

𝜎
2
0tzat,

hence z∗at = zat and z∗0t
= z0t∕𝜎2

t . The regression actually involves regressing z2
t on a constant

z∗0t and zat.

3However, for highly nonlinear models, the numerical optimization algorithm generally does not guar-
antee exact orthogonality of 𝜐2

t to z∗0t. Engle and Ng (1993) propose regressing y2
t on z0t alone, and use

the residuals from this regression (which are now guaranteed to be orthogonal to z0t) in place of 𝜐2
t in

(15.75).
4In fact,

𝜎
2
t = 𝜎

2
0t(𝛿

′
0z0t) exp(𝛿′azat),

𝜕𝜎
2
t

𝜕𝛿a

= 𝜎
2
0tzat exp(𝛿′azat)

under the null, 𝛿a = 0,
𝜕𝜎

2
t

𝜕𝛿a
= 𝜎

2
0tzat.
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In practice, variables in zat have to be chosen to test the presence of asymmetric effects.
Engle and Ng (1993) propose a series of complementary tests based on the variables St−1,
S−t−1𝜀t−1 and S+t−1𝜀t−1. The optimal form for conducting the sign bias test is

ẑ2
t = a + b1S−t−1 + 𝛾

′z∗0t + et

where ẑt = �̂�t∕�̂�t and S−t−1 = I(𝜀t < 0). The regression for the negative size bias test is

ẑ2
t = a + b2S−t−1𝜀t−1 + 𝛾 ′z∗0t + et

and for the positive size bias test

ẑ2
t = a + b3S+t−1𝜀t−1 + 𝛾 ′z∗0t + et

with S+t−1 = 1 − S−t−1. The t-ratios for b1, b2 and b3 are the sign bias, the negative size bias and
the positive size bias test statistics, respectively. The joint test is obtained by adding the three
variables in the variance equation (15.74) under the maintained specification:

ẑ2
t = a + b1S−t−1 + b2S−t−1𝜀t−1 + b3S+t−1𝜀t−1 + 𝛾 ′z∗0t + et.

The test statistic is TR2. If the volatility model is correct then b1 = b2 = b3 = 0, 𝛾 = 0 and et
is i.i.d. If z∗0t is not included the test will be conservative; the size will be less than or equal to
the nominal size and the power may be reduced.

15.11 MULTIVARIATE GARCH

Economics and finance present problems (e.g., the standard portfolio allocation problem, the
risk management of a portfolio of assets, the pricing of derivative contracts based on more
than one underlying asset, etc.) whose solutions need the specification and estimation of a
multivariate distribution. In particular, the object of interest is often the conditional covariance
matrix. The N-vector of asset returns rt has a conditional distribution

rt|Φt−1 ∼ D(0,Σt) t = 1,… , T (15.76)

where D is a continuous distribution. Σt is the conditional variance–covariance matrix assumed
to be time-varying. Any multivariate volatility model has to ensure that the diagonal elements
of Σt are strictly positive and that Σt is positive definite. The literature puts forward different
parameterizations.

Firstly, one desirable feature of any parameterization is the feasibility of the estimation for
increasing N, that is the number of assets. Unfortunately, this is not always the case. Secondly,
any model specification should be general enough to allow for covariance spillovers and
feedbacks. We can classify the existing multivariate GARCH models into three main strands:

1. direct generalizations of the univariate GARCH model of Bollerslev (1986) (VEC, BEKK
and factor models);

2. linear combinations of univariate GARCH models ((generalized) orthogonal models and
latent factor models);

3. nonlinear combinations of univariate GARCH models (constant and dynamic conditional
correlation (DCC) models, copula-GARCH models).
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Here we present only two alternative specifications, the BEKK and the DCC models, which
can be considered benchmarks. The BEKK model specifies the conditional covariance matrix
directly, whereas the DCC focuses on the conditional correlation matrix.

15.11.1 BEKK Parameterizat ion of MGARCH

The BEKK (from ‘Baba, Engle Kraft and Kroner’; see Engle and Kroner, 1995) representation
of a multivariate GARCH(1,1) model is

Σt = CC′ + Art−1r′t−1A′ + BΣt−1B′, (15.77)

where C is a lower-triangular matrix. Given that Σ0 is positive definite and either C or B are
full rank, the parameterization guarantees the positive definiteness of the conditional variance
matrix Σt; see Engle and Kroner (1995). Obvious restrictions are to assume that the matrices
A and B are diagonal or scalar.

15.11.2 The Dynamic Condit ional Correlat ion Model

In the dynamic conditional correlation GARCH, introduced by Engle (2002a), the conditional
variance–covariance matrix is written as

Σt = HtRtHt t = 1,… , T

where Rt is the conditional correlation matrix and the standardized returns are defined as

𝜀t = H−1
t rt t = 1,… , T

where Ht = diag{𝜎1t,… , 𝜎Nt} with

𝜎it = Vart−1[rit]
1∕2 i = 1,… , N t = 1,… , T

with the 𝜎2
it modelled as univariate GARCH processes. The conditional variance–covariance

matrix of 𝜀t is the conditional correlation matrix of the asset returns:

Et−1(𝜀t𝜀
′
t ) = H−1

t ΣtH
−1
t = Rt = {𝜌ij,t} t = 1,… , T

with

𝜌ij,t =
qij,t

√
qii,tqjj,t

,

where the qij are modelled as

qij,t = 𝜌ij + 𝛼(𝜀i,t−1𝜀j,t−1 − 𝜌ij) + 𝛽(qij,t−1 − 𝜌ij). (15.78)

In matrix form:

Qt = (1 − A − B)Q + A(𝜀t−1𝜀
′
t−1) + B(Qt−1), (15.79)

where Q is estimated by S = 1
T

∑
t 𝜀t𝜀

′
t and A and B are two scalars. The matrix Qt = {qij,t}

is positive definite as long as it is a weighted average of positive definite and semidefinite
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matrices. However, Aielli (2011) suggests modifying the standard DCC in order to correct the
asymptotic bias, which is due to the fact that 1

T

∑
t �̂�t�̂�

′
t does not converge to Q.

Finally, the DCC model specification is:

𝜎
2
it = 𝜔i + 𝛼ir

2
it−1 + 𝛽i𝜎

2
it−1, (15.80)

Qt = (1 − A − B)Q + A(𝜀t−1𝜀
′
t−1) + B(Qt−1), (15.81)

Rt = diag{Qt}−1∕2 Qt diag{Qt}−1∕2
. (15.82)

15.12 EMPIRICAL APPLICATIONS

15.12.1 Univariate Volat i l i ty Model l ing

In this section, we illustrate how GARCH models can be employed in the analysis of volatility
of commodity returns. The first example is based on the Northern Italy zonal day-ahead
electricity prices (PZ Nord) between 2 January 2009 and 28 February, 2013, equalling 1520
daily observations. The Italian day-ahead power market is based on competitive auctions
for every hour of delivery during the following day. The Italian market is separated into
geographical zones according to the bottlenecks in the transmission grid. The auction algorithm
solves a market coupling problem and different zonal prices are observed only in case of
congestion in the relevant part of the transmission grid. The daily prices used in this analysis
are therefore the arithmetic average of the 24-hourly prices for every calendar day, the so-called
daily baseload price.

In Figure 15.4, percentage log-returns are shown. Volatility clustering is evident as long as
the presence of extreme movements, in particular in the first part of the sample, is characterized
by a tighter supply–demand balance. The descriptive statistics in Table 15.1 depict a series
that features kurtosis larger than that of the standard normal density, moderate skewness and
the presence of extreme movements.
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F IGURE 15.4 Daily returns: percentage changes in log-prices
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TABLE 15.1 Descriptive statistics of daily
percentage log-returns of PZ Nord

Daily log-returns

Mean −0.0032
Standard deviation 14.0337
Skewness 0.5959
Kurtosis 6.6182
Max 83.8663
Min −56.7580

The spectrum estimate in Figure 15.5 illustrates the periodic behaviour of the log-returns.
It is evident that three cycles are present with a period of 7, 3.5 and 2.33 days, respectively.
This is consistent with the typical periodicity of daily electricity prices, which tend to be lower
during weekends.

Thus, the conditional mean of the log-returns (yt) is found to be well approximated by a
multiplicative seasonal ARMA(1,1) × (3,1):

(1 − 𝜙1L)(1 − Φ1L7 − Φ2L14 − Φ3L21)rt = c + (1 + 𝜃1L)(1 + Θ1L7)𝜀t. (15.83)

The distributional assumption behind the likelihood function is that the return innovations are
conditionally normal. The Gaussian maximum likelihood estimates are reported in Table 15.2.
The residuals, that is 𝜀t, turn out to be leptokurtic, as shown by the Q–Q plot displayed in
Figure 15.6.

The presence of time-varying conditional heteroscedasticity is also confirmed by the
ARCH tests reported in Table 15.2 which clearly reject the null hypothesis of no ARCH effect.
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F IGURE 15.5 The estimated spectrum of the daily PZ Nord log-returns (Bartlett window is
set to 80)
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TABLE 15.2 Maximum likelihood estimates of multiplicative ARMA(1,1) × (3,1) and ARCH test
computed with different number of lags (in parentheses)

Coefficient Std error z p-Value

c 0.002 0.003 0.856 0.392
𝜙1 0.258 0.027 9.468 0.000
Φ1 0.977 0.022 44.758 0.000
Φ2 −0.064 0.026 −2.475 0.013
Φ3 0.080 0.018 4.403 0.000
𝜃1 −0.830 0.016 −50.644 0.000

Θ1 −0.953 0.008 −124.924 0.000

ARCH(7) 153.513 0.000
ARCH(10) 175.397 0.000
ARCH(14) 191.743 0.000
ARCH(21) 197.538 0.000

The estimated spectrum of the multiplicative seasonal ARMA-squared residuals as specified
in (15.83) is displayed in Figure 15.7. The peak in correspondence of frequency zero can be the
outcome of long-range dependence. Further, there is also evidence of a seasonal component
with a period of 7 days. Thus, we consider alternative specifications of the conditional variance
in order to evaluate which model can capture the salient features of the data at hand.
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F IGURE 15.6 Q–Q plot of the residuals of the multiplicative
seasonal ARMA(1,1) × (3,1)
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F IGURE 15.7 The estimated spectrum of multiplicative seasonal
ARMA(1,1) × (3,1) squared residuals (Bartlett window is set to 80)

Estimation results for a number of alternative GARCH-type specifications are shown in
Table 15.3. We consider the following models:

1. GARCH(1,1)

(1 − 𝛽L)𝜎2
t = 𝜔 + 𝛼𝜀2

t−1.

2. GJR-GARCH(1,1)

(1 − 𝛽L)𝜎2
t = 𝜔 +

(
𝛼𝜀

2
t−1 + 𝛾S−t−1𝜀

2
t−1

)

where S−t−1 = I(𝜀t−1 < 0).
3. APGARCH(1,1)

𝜎
𝛿

t = 𝜔 + 𝛼(|𝜀t−1| − 𝛾𝜀t−1)𝛿 + 𝛽𝜎𝛿t−1.

4. FIGARCH(1,d,1)

(1 − 𝛽L)𝜎2
t = 𝜔 + [1 − 𝛽L − 𝜙L(1 − L)d]𝜀2

t .

5. PLM-EGARCH(1,d,0)

(1 − 𝛽L)(1 − L7)d (
ln 𝜎2

t − 𝜔
)
= 𝜓(|zt−1| − E|zt−1|) + 𝛾zt−1. (15.84)

In Table 15.3, the Ljung–Box portmanteau statistics for serial correlation in the standard-
ized return innovations ẑt show that all models produce similar results for 10 and 50 lags while,
when we consider 200 lags, the FIGARCH performs slightly better. The picture is completely
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TABLE 15.3 Conditional variance model estimates. Robust standard errors in parentheses and
p-values of the t ratio in square brackets. The values of the Ljung–Box portmanteau statistic for up to
Kth-order serial dependence in the standardized residuals, ẑt = �̂�t∕�̂�t and squared standardized
residuals, ẑ2

t are denoted QK(ẑt) and QK(ẑ2
t ), respectively. The table reports the p-value of the

seasonality test, namely an F test of the regression of the standardized squared residual (ẑ2
t ) on a set of

23 dummies, one for each day of the week. The table reports the value of the maximized log-likelihood
function and the Akaike and Schwarz (or Bayesian) information criteria

PLM-
GARCH(1,1) GJR(1,1) APGARCH(1,1) FIGARCH(1,d,1) EGARCH(1,d,0)

𝜔 5.233 5.244 5.221 10.881 4.375
(2.003) (2.033) (2.149) (4.473) (0.126)
[0.009] [0.010] [0.015] [0.015] [0.000]

𝛼 0.170 0.170 0.174
(0.036) (0.038) (0.036)
[0.000] [0.000] [0.000]

𝛽 0.799 0.798 0.819 0.524 0.729
(0.040) (0.041) (0.041) (0.201) (0.046)
[0.000] [0.000] [0.009] [0.000]

𝛾 0.010 0.010 −0.083
(0.064) (0.075) (0.043)
[0.882] [0.899] [0.056]

𝛿 1.416
(0.400)
[0.000]

𝜙 0.251
(0.143)

1.750
[0.080]

𝜓 0.6598
(0.102)
[0.000]

d 0.499 0.214
(0.172) (0.039)
[0.004] [0.000]

T 1497 1497 1497 1497 1497
Q10(ẑt) 9.423 13.342 13.241 9.508 12.278

[0.492] [0.205] [0.211] [0.485] [0.267]
Q50(ẑt) 66.070 65.880 65.614 70.836 72.097

[0.063] [0.065] [0.068] [0.028] [0.022]
Q200(ẑt) 269.709 269.590 269.235 252.500 254.352

[0.001] [0.001] [0.001] [0.007] [0.006]
Q10(ẑ2

t ) 12.245 12.441 13.422 5.493 6.457
[0.269] [0.257] [0.201] [0.886] [0.775]

Q50(ẑ2
t ) 68.886 69.696 69.934 60.036 42.113

[0.039] [0.034] [0.033] [0.080] [0.778]
Q200(ẑ2

t ) 246.370 250.205 244.756 219.180 174.778
[0.014] [0.009] [0.017] [0.123] [0.900]

Seasonality test: 0.000 0.000 0.000 0.000 0.021
Log-likelihood −5590.288 −5590.271 −5588.470 −5593.870 −4096.669
AIC 11188.575 11190.542 11188.939 11193.740 8205.338
BIC 11209.820 11217.098 11220.807 11209.674 8281.073
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F IGURE 15.8 The estimated conditional variance with
FIGARCH(1,d,1)

different if we look at the Ljung–Box test for the autocorrelation in the squared standardized
residuals, that is ẑ2

t , where for GARCH, GJR-GARCH, APGARCH models the null, when
50 and 200 lags are considered, is rejected. However, in GARCH-type models, p-values from
standard 𝜒2 distributions are not reliable, but the statistics are still useful for model compar-
ison. The table also shows the maximized log-likelihood, the Akaike and Schwarz (Bayesian)
information criteria, reported as AIC and SIC, respectively. The models have similar values
so it is difficult to distinguish among them on the basis of the reported information criteria.
The point estimates suggest the absence of the leverage effect, as captured by the parameter
𝛾 , which is always not statistically significant. Instead, for what concerns the long memory,
the fractional integration parameter in the FIGARCH model turns out to be highly significant
(Figure 15.8 displays the conditional variance estimated with FIGARCH(1,d,1)). The first
four models (i.e., GARCH, GJR-GARCH, APGARCH and FIGARCH) are clearly unable to
catch the periodic patterns in volatility, as shown by the rejection of the null hypothesis of the
seasonality test.

Finally, we consider the periodic long memory EGARCH (PLM-EGARCH) introduced
by Bordignon et al. (2009), which is based on fractional seasonal filtering (1 − LS) of
the log-conditional variance with S = 7. The parameter 𝜓 of the news impact function is
strongly significant, while the 𝛾 parameter, which takes a negative value corresponding
to a leverage effect, is significant at the 10% level. The estimated fractional differencing
parameter d̂ = 0.214 is strongly significant. The diagnostic tests in Table 15.3 show that the
PLM-EGARCH provides an adequate fit of the long-memory component of the log-volatility
as testified by the Ljung–Box statistics on ẑt and ẑ2

t . Moreover, even though it does not com-
pletely fit the periodic pattern in volatility it performs much better than the alternative models
considered here.
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15.12.2 A Simple Risk Measurement Appl icat ion: A
Bivariate Example with Copulas

The second illustration of the methodologies presented in the remainder of this chapter
will be devoted to a simple risk managment application of GARCH models. We focus our
attention on two futures products exchanged on the Intercontinental Exchange London, ICE
Brent and ICE gasoil futures. This choice is driven not only by their paramount importance
for the commodity industry, but also by the fact that the spread between crude oil and gasoil,
the so-called gasoil crack, is one of the most liquid and traded spreads and this allows us to
show the centrality of correctly modelling the dependence between different price series in a
multivariate setting.

The prices of Brent, gasoil and gasoil crack are reported in Figure 15.9. A long position in
the gasoil crack can be acquired by buying gasoil futures and selling the corresponding Brent
futures. Since gasoil is traded in USD per metric ton while Brent in US$ per barrel, in order to
compute the spread between the two commodities the conventional conversion factor of 7.45
barrel per metric ton is used. Moreover, gasoil trades in lots of 100 metric tons while Brent
trades in lots of 1000 barrels, hence the minimum crack quantity is 4 lots (made up of 4 gasoil
lots and 3 Brent lots).

Jan−00 Jan−05 Jan−10 Jan−15
0

50

100

150
ICE Brent Futures, Front Month ($/bbl)

Jan−00 Jan−05 Jan−10 Jan−15
0

500

1000

1500
ICE Gasoil Futures, Front Month ($/mt)

Jan−00 Jan−05 Jan−10 Jan−15
0

20

40

ICE Gasoil Crack Futures, Front Month ($/bbl)

F IGURE 15.9 Prices of ICE Brent and gasoil front-month futures. Sample from January 2000 to
February 2013
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F IGURE 15.10 Daily log-returns of ICE Brent and gasoil front-month futures.
Roll dates have been excluded. Sample from January 2000 to February 2013

Figure 15.10 shows the daily log returns of Brent and gasoil futures, whereas some
descriptive statistics are reported in Table 15.4. In our analysis we use front-month futures
and exclude roll dates (i.e., the dates on which the front-month futures go into delivery and
are replaced as front-month products by the futures delivering in roughly a month). It is
interesting to notice how these commodity series present some of the distinctive features of
more traditional financial time series, such as heteroscedasticity, volatility clustering and excess
kurtosis. Our sample runs from early 2000 to February 2013, for a total of 3200 trading days.

The first part of our application is a univariate exercise in which we use two mainstream
GARCH models (the plain GARCH described in equation (15.9) and the asymmetric GJR

TABLE 15.4 Descriptive statistics of daily
log-returns of Brent and gasoil front-month futures.
Standard deviation is annualized

Daily log-returns

Brent Gasoil

Mean 0.0006 0.0006
Standard deviation 0.3547 0.3254
Skewness −0.2617 −0.1622
Kurtosis 6.1353 5.5770
Max 0.1271 0.1126
Min −0.1444 −0.1416
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TABLE 15.5 Univariate GARCH VaR backtesting

Brent futures 1-day 99% VaR

Unconditional coverage p-Value Engle–Manganelli test

GARCH N 0.0127 0.0003
GARCH t 0.0118 0.0114
GJR-GARCH N 0.0104 0.9859
GJR-GARCH t 0.0095 0.9721

Gasoil futures 1-day 99% VaR

Unconditional coverage p-Value Engle–Manganelli test

Gaussian GARCH 0.0136 0.1840
GARCH t 0.0104 0.1775
Gaussian GJR-GARCH 0.0141 0.2071
GJR-GARCH t 0.0113 0.3532

described in equation (15.37)) in a VaR forecasting exercise. As the conditional mean spec-
ification we use an autoregressive model of order 1 which is enough to capture the slight
autocorrelation present in our returns series. We estimate the models with a rolling estimation
window of 1000 trading days and forecast the 99% VaR of a long position in Brent and gasoil
futures for a holding period of one day. We then compare these daily VaR forecasts with the
actual mark-to-market variations of our single asset portfolios to assess the ability of each
model to adequately forecast the relevant quantile of the mark-to-market distribution. The
VaR forecast properties are assessed by means of the simple unconditional coverage ratio
(since a good 99% VaR forecasting model should allow roughly 1% of VaR violations) and
the dynamic quantile test introduced by Engle and Manganelli (2004).

Since VaR forecasting boils down to a single quantile forecast, in order to distinguish the
contribution of the volatility specification from the contribution of the distribution assumed
for the innovations, we estimate our models considering both Gaussian and Student’s t
distributions.

The results of this univariate exercise are reported in Table 15.5 whereas Figures 15.11
and 15.12 show the 99% VaR. The VaR of the gasoil portfolio can be adequately predicted by
each one of our model and distribution combinations, while the situation is more interesting
in the Brent case. In fact, Brent futures volatilities present a marked asymmetry and the GJR-
GARCH shows superior predictive ability with respect to its symmetric counterpart, being
able to avoid the autocorrelation in VaR violations that triggers the rejection of the simple
GARCH model as an adequate VaR forecasting model.

The same VaR forecasting exercise can of course be implemented in a bivariate setting. In
this case our portfolio will be a long position in the gasoil crack, built up from a long position
in gasoil futures and a short position in Brent futures. Figure 15.13 shows the conditional
correlation obtained from a DCC-GARCH model, see equation (15.82): the correlation is
clearly dynamic, with the lowest levels reached during the period of financial turmoil following
the 2008 crisis.

However, analysing the scatterplots (Figure 15.14) of daily returns in the two subsamples
2000–2006 and 2007–2012 we notice how, in the second part of the sample, joint crashes tend
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F IGURE 15.11 Daily percentage log-returns of ICE Brent and daily 99%
VaR forecast (lower line) obtained from an AR(1)–GJR GARCH model
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F IGURE 15.12 Daily percentage log-returns of ICE gasoil and daily 99%
VaR forecast (lower line) obtained from an AR(1)–GJR GARCH model
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F IGURE 15.13 Gaussian DCC-GARCH(1,1) conditional correlation plot

to materialize with higher probability than that predicted by a bivariate Gaussian distribution,
suggesting the possibility of tail dependence. As a further investigation of this hypothesis,
Figure 15.15 reports the exceedence correlations between the two log-returns series, discussed
in Ang and Chen (2002), and visually suggests the fact that Brent and gasoil returns have a
stronger than Gaussian dependence away from the median. Moreover, this quantile dependence
analysis shows a marked asymmetry in the tails of the multivariate distribution: there is a
higher probability of joint crashes than under the multivariate Gaussian hypothesis. This
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F IGURE 15.14 The daily return scatterplots of oil and gasoil. Left panel shows the 2000–2005
sample: the red dashed line is the empirical 95% quantile, the blue solid line is the 99% quantile. Right
panel shows the 2006–2012 sample
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F IGURE 15.15 The quantile dependence analysis shows a marked asymmetry
in the tails of the multivariate distribution: there is a higher probability of joint
crashes than under the multivariate Gaussian hypothesis

implies that assuming a multivariate Gaussian distribution in our bivariate example will lead
to a substantial underestimation of joint crashes probability. A viable strategy consists of
specifying a conditional multivariate distribution using copula theory, which allows for a
greater flexibility.

Let us assume that the vector of daily returns rt is modelled as

rt = 𝜇t + ut t = 1,… , T

where Et−1[rt] = 𝜇t. The copula theory provides an easy way to deal with the (otherwise)
complex multivariate modelling. The essential idea of the copula approach is that a joint
distribution can be factorized into the marginals and a dependence function called a copula.
Therefore, we assume that the vector of innovations ut has a bivariate distribution G(ut;𝜓),
with continuous density function and parameter vector 𝜓 . By the Sklar (1959) theorem, the
joint distribution G(u1,t, u2,t;𝜓) can be expressed as follows:

G(u1,t, u2,t;𝜓) = C(F1,t(u1,t; 𝛿1), F2,t(u2,t; 𝛿2); 𝛾) (15.85)

that is the joint distribution G(.) is the copula C(⋅; 𝛾) of the innovation marginal distributions,
so F1,t(u1,t; 𝛿1) and F2,t(u2,t; 𝛿2), where 𝛾 , 𝛿1 and 𝛿2 are the copula and the marginal parameters,
respectively. The copula couples the marginal distributions together in order to form a joint
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TABLE 15.6 Bivariate portfolio VaR forecast results. The DCC model is estimated with marginal
volatilities modelled as a GJR model. The Gaussian and SJC copulas are coupled with marginal
volatilities estimated with Student’s t densities

Gasoil crack 1-day 99% VaR

p-Value Engle–Manganelli test

2000–2006 2007–2013

Gaussian DCC-GJR 0.1440 0.0032
GJR t + Gaussian copula 0.4278 0.0675
GJR t + SJC copula 0.2188 0.4734

distribution. The dependence relationship is entirely determined by the copula, while scaling
and shape (mean, standard deviation, skewness and kurtosis) are determined by the marginals
(see Sklar, 1959; Joe, 1997; Nelsen, 1999). Copulae can therefore be used to obtain more
realistic multivariate densities than the traditional joint normal one, which is simply the
product of a normal copula and normal marginals. The marginal distributions do not need to
be in any way similar to each other, nor is the choice of copula constrained by the choice of
marginal distributions (see Patton, 2009).

To provide evidence that the dependence structure is indeed non-Gaussian, we performed
a bivariate VaR forecasting using three different models. The first is the classic DCC-GARCH,
which assumes multivariate Gaussian innovations. The second is a copula model in which
the univariate GJR-GARCH with Student’s t innovations is linked to a Gaussian copula. This
second model has the advantage of far greater flexibility in the marginal models, since the
univariate distributions need not be the same as in classical multivariate models. Finally, the
third model shares the univariate specification of the second, but the dependence modelling
is done with a symmetrized Joe Clayton copula (see Patton, 2006, eq. (15)), which is able
to capture asymmetric tail dependence. One important computational drawback of copula
models is that VaR is not available in closed form and needs to be computed through
simulations.5

The results of the bivariate VaR backtest are reported in Table 15.6. The differences
between the two subsamples are striking: in the first part of the sample, in fact, even the
simplest Gaussian model can provide reliable VaR forecasts. After 2007, in contrast, the
increase in tail dependence renders Gaussian models less precise in VaR forecasting since
their underestimation of joint extreme events leads to a clustering of VaR violations during
turbulent market periods (and conversely to unnecessarily higher VaR forecasts during calmer
periods). The combination of these two facts implies an extremely inefficient capital allocation
with potentially fatal consequences: our hypothetical trading firm in fact would end up with
too little allocated capital when it was needed most and would allocate too much capital when
the risk of its portfolio was lower.

5The interested reader can find an exhaustive presentation of VaR methods using copulas in Embrechts
et al. (2003).
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15.13 SOFTWARE

In this section we present some simple examples of the implementation of GARCH models
with Eviews® and Matlab®. Eviews® allows a very fast implementation of several GARCH
models through a simple graphical interface. Figure 15.16 shows the steps needed to import
time series data from an Excel worksheet: the import section is available under the File >
Import > Import from file... menu.

Once the data have been imported into an Eviews® workfile, it is possible to transform
the price data (in this case front-month WTI prices spanning the 1986–2013 period) into
log-returns issuing the command series returns=dlog(value), where value is the
name of the series containing the price time series. To obtain the descriptive statistics reported
in Figure 15.17 it is necessary to open the relevant series from the workfile and then navigate
through the View > Descriptive Statistics & Tests > Histogram and Stats
menu.

As is evident from the descriptive statistics panel, WTI returns display the usual features
of financial returns, namely negative skewness, excess kurtosis and a sharp rejection of the
Gaussian distribution hypothesis. Moreover, an inspection of the returns chart in Figure 15.17
suggests the possibility of ARCH effects, given the evident volatility clustering. In order
to further analyse the time series it is necessary to estimate an equation for the conditional
mean. This can be performed from the Quick > Estimate Equation... menu as shown

F IGURE 15.16 Excel import interface in Eviews®
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FIGURE 15.17 Descriptive statistics panel

in Figure 15.18, in which we issue the command to estimate a simple AR(1) model on the
returns time series.

Figure 15.19 reports the estimation output, in which it appears evident that the returns
do not possess any meaningful memory structure. In contrast, the correlogram of squared
residuals shown in Figure 15.20 points to an underlying ARCH model, as confirmed by the
battery of heteroscedasticity tests available under the View > Residual Diagnostics >
Heteroskedasticity Tests... menu shown in Figure 15.21.

In order to estimate a GARCH model in Eviews® it is necessary to select the ARCH
estimation method in the Estimate Equation panel shown in Figure 15.18. The GARCH
menu is reported in Figure 15.22. It is possible to estimate GARCH, TARCH, EGARCH,
PARCH and component ARCH models using Gaussian, Student’s t and GED distributions
for the innovations. After the estimation is complete, it is possible to retrieve the conditional
volatility shown in Figure 15.23 under the menu View > Garch Graph > Conditional
Standard Deviation. Finally, Figure 15.24 reports the correlogram of the standardized
residuals squared, which confirms how an AR(1)–GARCH(1,1) model with Student’s t innno-
vations is able to completely characterize the data-generating process of our data set.



F IGURE 15.18 Interface to specify the conditional mean equation, in this case
an AR(1) model

F IGURE 15.19 AR(1) model estimation output
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FIGURE 15.20 AR(1)-squared residual correlogram

In Matlab® there are several commands which allow the user to estimate ARMAX/
GARCH models. The Econometric ToolboxTM has the following functions:

� garchfit estimates ARMAX/GARCH model parameters;
� garchinfer infers ARMAX/GARCH model innovations;
� garchplot plots ARMAX/GARCH model responses;
� garchpred forecasts ARMAX/GARCH model responses;
� garchsim simulates ARMAX/GARCH model responses.

For example, to define an AR(1)–GARCH(1,1) model specification we can use the following
command:

spec = garchset('VarianceModel', 'GARCH', 'R', 1, 'P', 1, 'Q',
1).
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F IGURE 15.21 ARCH tests available in Eviews®

Then the following command:

[Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(spec
,Series)

estimates the model assuming the variable Series contains the time series of the returns used
in the estimation. The outputs are:

� Coeff – GARCH specification structure containing the estimated coefficients.
� Errors – Structure containing the estimation errors (that is, the standard errors) of the

coefficients.
� LLF – Optimized log-likelihood objective function value associated with the parameter

estimates.
� Innovations – Innovations (that is, residuals) time series column vector.
� Sigmas – Conditional standard deviation vector corresponding to Innovations.
� Summary – Structure of summary information about the optimization process.

We refer the interested reader to the Matlab® online documentation.6

To calculate multiperiod forecasts from the estimated model, the following function can
be used:

[SigmaForecast,MeanForecast,SigmaTotal] = garchpred(Spec,Series,
NumPeriods).

6Available at http://www.mathworks.it/it/help/matlab/index.html.

http://www.mathworks.it/it/help/matlab/index.html
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FIGURE 15.22 GARCH menu in Eviews®

The inputs of the garchpred function are:

� Spec – Specification structure for the conditional mean and variance models. See
garchset.

� Series – Matrix of observations of the underlying univariate return series of interest for
which garchpred generates forecasts. Each column of Series is an independent path.
The last row of Series holds the most recent observation of each path.

� NumPeriods – Positive scalar integer representing the forecast horizon of interest,
expressed in periods compatible with the sampling frequency of the input innovations
column vector Series.

The outputs are:

� SigmaForecast – Matrix of conditional standard deviations of future innovations (model
residuals) on a per-period basis. The standard deviations derive from the minimum mean
square error (MMSE) forecasts associated with the recursive volatility model, for example
'GARCH', 'GJR' or 'EGARCH', specified for the 'VarianceModel' parameter in Spec.
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F IGURE 15.23 AR(1)–GARCH(1,1) conditional volatility

For GARCH(p,q) and GJR(p,q) models, SigmaForecast is the square root of the MMSE
conditional variance forecasts. For EGARCH(p,q) models, SigmaForecast is the square
root of the exponential of the MMSE forecasts of the logarithm of conditional variance.

� MeanForecast – Matrix of MMSE forecasts of the conditional mean of Series on
a per-period basis. MeanForecast is the same size as SigmaForecast. The first row
contains the forecast in the first period for each path of Series, the second row contains
the forecast in the second period, and so on.

� SigmaTotal – Matrix of MMSE volatility forecasts of Series over multiperiod holding
intervals. SigmaTotal is the same size as SigmaForecast. The first row contains
the standard deviation of returns expected for assets held for one period for each path of
Series, the second row contains the standard deviation of returns expected for assets held
for two periods, and so on. The last row contains the standard deviations of the cumulative
returns obtained if an asset was held for the entire NumPeriods forecast horizon.
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FIGURE 15.24 AR(1)–GARCH(1,1) standardized residual correlogram

The following code snippet shows a simple Matlab® script to estimate and forecast from
an AR(1)–GARCH(1,1) model:

1 %Convert price vector to log-returns
2 wtiret = price2ret(wti);
3

4 %Compute ACF and PACF of returns series
5 autocorr(wtiret)
6 title('ACF with Bounds for Raw Return Series')
7

8 parcorr(wtiret)
9 title('PACF with Bounds for Raw Return Series')

10
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11 %Compute ACF of squared returns
12 autocorr(wtiret.ˆ2)
13 title('ACF of the Squared Returns')
14

15 %Use lbqtest to test the absence of serial correlation
16 [H,pValue,Stat,CriticalValue] = lbqtest(wtiret-mean(wtiret),

[10 15 20]',0.05)
17

18 %Use lbqtest on the squared returns series to test for ARCH effects
19 [H,pValue,Stat,CriticalValue] = lbqtest((wtiret-mean(wtiret)).ˆ2,

[10 15 20]',0.05)
20

21 % Engle's ARCH test
22 [H,pValue,Stat,CriticalValue] = archtest(wtiret-mean(wtiret),

[10 15 20]',0.05)
23

24 %Specify an AR(1)-GARCH(1,1) model
25 spec = garchset('VarianceModel', 'GARCH', 'R', 1, 'P',1, 'Q', 1);
26

27 % Estimate the specified model
28 [estimatedspec,errors,LLF,innovations,sigmas,summary] = garchfit

(spec,wtiret);
29

30 %Display estimated parameters and associated standard errors
31 garchdisp(estimatedspec,errors)
32

33 %Plot residuals and estimated conditional volatilities
34 garchplot(innovations,sigmas,wtiret)
35

36 %Compute 10 step ahead forecasts
37 [sigmaForecast,meanForecast,sigmaTotal] = garchpred(estimatedspec,

wtiret,10);

Moreover, the scripting capabilities of Matlab® allow the user to easily define the log-
likelihood function for any kind of model specification, which can then be optimized using
the functions contained in the Optimization ToolboxTM.
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CHAPTER 16
Pricing Commodity Swaps with

Counterparty Credit Risk: The Case of
Credit Value Adjustment

Marina Marena, Gianluca Fusai and Chiara Quaglini

16.1 INTRODUCTION

16.1.1 Energy Company Strategies in Derivat ive
Instruments

The expansion of the liberalized physical commodity markets has led to the development of
financial derivative instruments linked to energy commodities; this was followed by an increase
in the number of energy companies acting as market operators both with hedging and trading
purposes. It is acknowledged by energy companies that their activities expose them to relevant
market and credit risks. For this reason the companies should measure, manage and limit these
risks to maintain both the stability of cash flows, generated by the assets and contracts in the
portfolio, and the company economic–financial balance. The most used derivative instrument
for hedging purposes by oil, gas and power producers is the commodity swap. The floating
leg of the commodity swap is usually indexed to oil products.

Since the commodity swap is an instrument traded over the counter (OTC), which is not
managed by a central clearing house, it is necessary to estimate and quantify within the pricing
activity the counterparty credit risk. This can be done by entering specific agreements such as
the margining agreement, the exchange futures for physical, the additional collateralization or
simply by adjusting the OTC derivative instrument risk-free value with a metric called credit
value adjustment (CVA).

The purpose of this chapter is to illustrate the CVA computation with reference to an
energy commodity swap contract. The analysis is performed using a popular commodity model
introduced by Schwartz and Smith (2000). In addition, this paper also analyses the current
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international accounting framework for derivative instruments, focusing on the cash flow hedge
included in IAS 39 and, for CVA, reporting the exposure draft on Offsetting Financial Assets
and Financial Liabilities recently announced by the IASB and FASB, providing an example
of how to assess the hedge effectiveness of a specific derivative instrument.

The rest of this chapter is organized as follows. In Section 16.2 we provide an accurate
description of the company energy policy, which is a document written by energy firms on
managing market and credit risks arising from trading and hedging activities. Section 16.3
analyses the main features of an energy commodity swap, which is the derivative instru-
ment most used by energy firms for hedging purposes. Section 16.4 introduces the Schwartz
and Smith commodity pricing model in order to describe the stochastic dynamics of the oil
forward curve. Section 16.5 illustrates in detail how to calibrate, simulate and price a com-
modity swap resorting to this model. Section 16.6 takes a closer look at the counterparty
credit risk, providing the definition and its quantitative estimation. Section 16.7 performs
a sensitivity analysis to understand how changes in key model parameters affect the swap
value and the CVA computation. Finally, Section 16.8 discusses the general international
accounting framework for derivative instruments and CVA, providing an example of hedging
effectiveness.

16.2 COMPANY ENERGY POLICY

Many energy companies develop a document called energy risk policy which defines the
guidelines related to the governance, the managing risk strategy and the risk control on the
commodity activities of the company. In particular, the risk policy commonly identifies as
financial risks:

� the market risk (unexpected changes in commodity prices, exchange rates or interest
rates);

� the liquidity risk (inability to fulfil the financial obligations in the short term);
� the credit risk (commercial/financial counterparty default or downgrading);
� the operational risk (fraud or equipment failure);
� the country risk (economic and political instability of the country where the company

trades or invests).

For each unidentified financial risk, the policy provides a detailed definition, a list of risk
management goals and a description of risk measurement methodologies. Here, we focus on
how energy companies handle commodity risk (included in the market risk category) and
credit risk.

16.2.1 Commodity Risk

16.2.1.1 Def in i t ion and Risk Management Goals Commodity risk is defined as the
possibility of an economic margin fluctuation due to a commodity market price variation.
Strong volatility of the economic margin can impact negatively on company earnings and
cause the company to fail to reach its long-term goals defined in the business plan. The policy
usually refers to the volatility of the commodities actively traded by the company or the
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commodities included in the pricing indexation formula. An energy company usually trades
the following commodities:

� oil and refined oil products
� natural gas and liquefied natural gas
� coal
� power
� environmental certificates (e.g., carbon credit, green and white certificates).

The main goals of market risk management are to maintain stable the cash flows generated
by the company’s assets and contracts and to protect the asset fair value from depreciation.
The policy also describes all the hedging activities that the company intends to undertake in
order to pursue the aforementioned goals. The hedging activity is conducted by buying or
selling authorized categories of energy derivatives. The most common ones are the following:

� commodity forwards
� commodity futures
� commodity swaps or contracts for differences
� commodity options (European, American and Asian)
� green and white certificates, carbon credit.

The abovementioned financial instruments must present a limited loss profile. Generally,
short selling or any other anticipatory hedge activities are forbidden for hedging purposes.

16.2.1.2 Risk Measurement Methodology The commodity risk measurement method-
ology adopted by energy companies depends on the portfolio purpose. Regarding trading
portfolios, the best practices are value at risk (VaR) and cash flow at risk (CFaR). The two
methodologies are both characterized by a holding period of one day and a confidence level
equal to 95%. Concerning the industrial portfolio, the most popular methodology is the profit
at risk (PaR), with a holding period of one or more years and a confidence level equal to 95%.

16.2.2 Credit R isk

16.2.2.1 Def in i t ion and Risk Management Goals Credit risk is generally classified as
counterparty risk related to both physical and financial contracts. Financial counterparty risk is
defined as the possibility that the counterparty of an OTC financial contract will default prior to
the expiration of the contract without fulfilling the contract’s obligations, hence deteriorating
the company’s economic margin. The most important credit risk management tools aimed at
the mitigation of credit risk are the following:

� Price adjustment (CVA or DVA). This is a value, positive or negative, which represents
the market value of the credit risk of an instrument. This adjustment must be added to the
risk-free market value of the contract.

� Margining agreement. This is a legally binding contract between the parties of a trade.
It requires fixing a bilateral credit threshold – if the credit risk exceeds the limit, the
counterparty must provide margin payments (subject to a minimum transfer amount)
directly to or into a margining account.
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� Exchange futures for physical (EFP). This is an off-market transaction in which one
exchange, on the payment of a fee, offers to transfer an OTC physical transaction in
a regular futures contracts position (shifting short futures contracts from one party’s
account to the other). In other words, one contracting party buys a commodity from the
other counterparty at an agreed predetermined price, receiving short futures contracts in
return.

� Additional collateralization. Here, one contracting party can demand additional protection
against increased credit risk due to a downgrading of the counterparty.

16.2.2.2 Risk Measurement Methodology The two most widespread credit risk mea-
surement metrics are the expected loss (the product of the credit exposure and the default
probability) and the potential future exposure (the maximum credit exposure estimated to
occur over a specified period of time with a given confidence level).

16.3 A FOCUS ON COMMODITY SWAP CONTRACTS

Energy companies usually buy forward commodities such as gas and oil directly from the
producer at a variable price linked to an indexing pricing formula defined at the contract’s
inception. Following the liberalization of energy markets, the companies have to sell refined
product or power to their client at the market price. The competition across companies pushes
the market price down, narrowing the economic profit or even turning it to negative. So, in
order to avoid economic losses and to keep margins stable, this category of contract is often
used.

16.3.1 Def in i t ion and Main Features of a Commodity Swap

Commodity swaps are customizable and financially settled instruments traded OTC. Together
with futures and forward contracts, swaps are instruments without optionality and, for this
reason, they are easy to price. The standard fixed-for-floating swap agreement defines a
sequence of settlement dates in the future and, on each of the settlement dates, it involves
an exchange of cash flows: one counterparty (the so-called payer) pays the fixed price
whereas the other counterparty (the so-called receiver) pays the floating price linked to a
specified commodity indexation formula. When a swap contract involves net payments, that
is only one payment will be made on each settlement date, it becomes a contract for dif-
ference. Hence, if the fixed price is above the floating price, the so-called payer pays the
difference; vice versa, if the floating amount is above the fixed price, the payer receives the
difference.

16.3.1.1 The Oi l -L inked Indexat ion Formula Wholesalers make large capital invest-
ments which are required for exploring, producing and developing activities needed to satisfy
the demand. The commodity gas is not sold as gas but its price is determined by an oil-linked
formula that in the past guaranteed a competitive price compared with oil, the most liquid
traded commodity. The formula is of the form

Pgas = 𝛼Xxyz + 𝛽Yxyz,
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F IGURE 16.1 ICE Brent daily quotes and monthly averages.

where:

� 𝛼 and 𝛽 are constant coefficients;
� X and Y are the monthly oil prices (e.g., gas oil or fuel oil);
� x is the averaging period (e.g., 6/9 months);
� y is the time lag of the price fixing – for example, if we set it equal to 0, the price for

month k is the averaging period that ends with month k–1;
� z is the recalculation frequency – for example, if we set it equal to 1, the formula is applied

every month and we set a new price for the following month.

16.3.1.2 Example For a better understanding, let us consider a concrete example. Figure
16.1 illustrates the ICE Brent daily quotes in the period 1 April 2010 to 31 August 2010 and the
corresponding monthly averages ranging from April to August. If we assume two settlement
months, July and August, and an indexation formula of the form Brent301, the floating payment
exchanged in July will be the result of the averages of April ($85.77), May ($77.03) and June
($75.70). Hence, the variable leg would be equal to $79.5. To set a new price for the following
settlement month, that is August, we repeat the procedure computing the average between the
monthly averages of May ($77.03), June ($75.70) and July ($75.35), which gives as a result
$76.03. The computations are illustrated in Figure 16.2.

76.03

85.77 77.03

79.50

75.7 75.35 77.15

August
t

JulyJuneMayApril

Settlement Months

F IGURE 16.2 Calculation of the payoffs.



760 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

16.4 MODELL ING THE DYNAMICS OF OIL SPOT PRICES AND
THE FORWARD CURVE

Energy companies use current spot and forward oil prices to perform the marking to mar-
ket of their financial and physical products. The market forward curve provides the market
expectation (the so-called risk-neutral expectation) regarding future spot prices. However, for
pricing and risk management, we not only need to know the expected future spot prices but
their dispersion around their average values as well; much better if we could know the full
probability distribution of futures spot prices. Clearly this is an impossible task, so we can use
a model that is able to take into account the most important features we observe in oil spot
prices and based on it, build a hypothetical probability distribution.

A reliable model should be able to fit typical features of oil prices, such as mean reversion,
non-perfect correlation between futures contracts with different tenors and a decaying term
structure of volatility (i.e., the volatility of percentage changes in futures prices having different
time to maturity). With respect to the mean-reversion pattern, it can be said that oil prices may
temporarily rise or decline because of shocks caused by temporary supply/demand imbalances.
However, in the long run, oil prices should revert to an equilibrium level which can be
interpreted as the marginal cost of production. Non-perfect correlation refers to the fact that
futures price changes do not have the same size and can even have opposite sign, generating in
this way a change in the slope and curvature of the term structure. Finally, the term structure
of volatility captures the fact that the volatility of a contract with different maturities can be
different. In general, the longer the maturity, the lower the volatility.

Figure 16.3 illustrates the changes in term structure of oil prices over time. Figure 16.4
shows a typical shape of the term structure of volatility.

Finally, Table 16.1 provides the correlation matrix of changes in log-futures prices. We
can appreciate, for example, that the correlation between changes in the 1-month futures prices
and the 12-month ones turns out to be quite high (i.e., 94.04%) but not perfect. This suggests
that more than one driving factor is necessary to describe the dynamics of the term structure
and two factors may be enough. In addition, one factor should add more volatility to the short
end of the term structure.

16.4.1 The Schwartz and Smith Pric ing Model

This section introduces a popular dynamic stochastic model that can be used to price a
commodity swap and compute the credit risk exposure of the two counterparties. The model
we consider is the short-term/long-term model developed by Schwartz and Smith (2000).
This model is parsimonious in its number of parameters but still able to capture the above-
mentioned features of futures prices, such as mean reversion, non-perfect correlation in futures
price changes with different tenors and the decaying shape of the volatility term structure.

Schwartz and Smith assume that the logarithm of spot price S(t) is the sum of two
components:

ln S(t) = 𝜒(t) + 𝜁 (t).

Here, 𝜒(t) represents short-term deviations in price due, for example, to supply disruption
or unusual weather changes, whilst 𝜁 (t) is the equilibrium price level, which reflects the
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FIGURE 16.3 Movements of the term structures of oil futures prices from January 2008 to May
2009.

exhaustion of existing supply, the technology improvements for the exploration, production
and discovery of the commodity, the inflation and political/regulatory effects as well.

In order to describe the short-term component dynamics, Schwartz and Smith use the well-
known Vasicek model to describe the short-term interest rate evolution. The process is also
called a mean-reverting Ornstein–Uhlenbeck process and postulates the following risk-neutral
stochastic dynamics for 𝜒(t):

d𝜒(t) = (−𝜆
𝜒
− k

𝜒
𝜒(t))dt + 𝜎

𝜒
dW

𝜒
(t)

with initial condition 𝜒(0) = 𝜒0. The equilibrium price level 𝜁 (t), representing the long-
term dynamics, is governed by an arithmetic Brownian motion process with drift d𝜁 (t) =
𝜇
𝜁
dt + 𝜎

𝜁
dW

𝜁
(t), 𝜁 (0) = 𝜁0.

The two state variables are assumed to be jointly normally distributed. In particular, the
conditional expectation of the two state variables at a future time T given their value at time t
is given by

Et(𝜒(T)) = 𝜒(t)e−k
𝜒

(T−t) − 𝜆𝜒

k
(1 − e−k

𝜒
(T−t)),

Et(𝜁 (T)) = 𝜁 (t) + 𝜇
𝜁
(T − t),
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F IGURE 16.4 Term structure of volatility of oil futures prices. Here, volatility is defined as the
standard deviation of the logarithmic changes of futures prices having different time to maturity.

and the covariance matrix is equal to:

Covt (𝜒(T), 𝜁 (T)) ≡ Σ(t, T) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎
2
𝜒

2k
𝜒

(
1 − e−2k

𝜒
(T−t)) 𝜌

𝜒 ,𝜁𝜎𝜒𝜎𝜁

k
𝜒

(
1 − e−k

𝜒
(T−t))

𝜌
𝜒 ,𝜁𝜎𝜒𝜎𝜁

k
𝜒

(
1 − e−k

𝜒
(T−t))

𝜎
2
𝜁
(T − t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

TABLE 16.1 Correlation matrix of changes in log futures prices having different times to maturity
(labels of rows and columns)

1m 3m 6m 9m 12m

1m 100.00% 98.12% 96.60% 95.16% 94.04%
3m 98.12% 100.00% 99.34% 98.06% 97.01%
6m 96.60% 99.34% 100.00% 99.58% 98.96%
9m 95.16% 98.06% 99.58% 100.00% 99.83%

12m 94.04% 97.01% 98.96% 99.83% 100.00%



Pricing Commodity Swaps with Counterparty Credit Risk: The Case of Credit Value Adjustment 763

The parameter set 𝜃 = (k
𝜒

, 𝜆
𝜒

, 𝜎
𝜒

,𝜇
𝜁
, 𝜎
𝜁
, 𝜌
𝜒 ,𝜁 ) can be interpreted as follows:

� k
𝜒

is a constant that determines the convergence speed of the process 𝜒(t) to the

(risk-neutral) long-run level −𝜆
𝜒

k
𝜒

. Indeed, the long-run expected value of 𝜒(T) is

lim
T→∞

Et(𝜒(T)) = −𝜆𝜒

k
𝜒

.

� 𝜎
𝜒

and 𝜎
𝜁

are the volatilities of the changes in the two state variables.
� 𝜌

𝜒 ,𝜁 is the correlation between the two state variables.
� 𝜇

𝜁
is the drift of the ABM process for equilibrium log-prices.

The log-forward curve at any given time t is given by:

lnF(t, T;𝜒(t), 𝜁 (t), 𝜃) ≡ lnF(t, T) = e−k
𝜒

(T−t)
𝜒(t) + 𝜁 (t) + 𝜇

𝜁
(T − t)

−
𝜆
𝜒

k
𝜒

(
1 − ek𝜒 (T−t)) + A(T − t),

where

A(t) = 1
2

(
(
1 − e−2k

𝜒
t) 𝜎

2
𝜒

2k
𝜒

+ 𝜎2
𝜁
t + 2

(
1 − e−k

𝜒
t) 𝜌𝜒 ,𝜁𝜎𝜁𝜎𝜒

k
𝜒

)

.

The most important implications of the above model are:

1. mean reversion of the futures price dynamics;
2. changes in futures prices of different tenors do not have perfect correlation;
3. the term structure of volatilities is, for long maturities, decaying.

16.4.1.1 Model Cal ibrat ion The Schwartz and Smith two-factor model can be calibrated
by collecting historical data and then using some filtering technique, such as the Kalman filter,
to jointly estimate the model parameters and the unobservable factors.1 The advantage of this
procedure is that it allows us to fully identify the model either in the real world or under the
risk-neutral measure. However, it is computationally intensive. A more practical approach is
to perform, at the starting date t = 0, an implied calibration solving the following nonlinear
least-squares problem:

�̂� = argmin
M∑

j=1

wj(F
mkt(0, Tj) − Ftheo(0, Tj; 𝜃))2

where:

� 𝜃 = (k
𝜒

, 𝜆
𝜒

, 𝜎
𝜒

,𝜇
𝜁
, 𝜎
𝜁
, 𝜌
𝜒 ,𝜁 ) is the set of model parameters.

� Fmkt(0, T) is the observed quoted market futures price to the observation date.

1Full details of the filtering approach can be found in the Schwartz and Smith original paper, pages
901–904, and Chapter 12 of this Handbook.
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� Ftheo(0, T; 𝜃) is the theoretical forward price, given in the formula above, dependent on
the parameter set 𝜃 and the current value of the two state variables.

� wi are the weights attached at each maturity. This allows us, for example, to give more
relevance to quotations we believe to be more liquid or representative of the market.

� M is the number of maturities considered.

Given that the two state variables are not directly observable we can include them in
the calibration procedure, treating them as if they were additional unknown parameters to
be estimated. This means that the parameter set to be estimated is augmented to 𝜃

AUG =
(𝜒0, 𝜁0, k

𝜒
, 𝜆
𝜒

, 𝜎
𝜒

,𝜇
𝜁
, 𝜎
𝜁
, 𝜌
𝜒 ,𝜁 ).

16.5 AN EMPIRICAL APPLICATION

In this section we detail the steps we followed for pricing and evaluating a commodity swap
contract traded between an energy company and an investment bank. The tenor of the swap is
approximately one year.

16.5.1 The Commodity Swap Features

The derivative instrument that we aim to price presents the following terms:

Transaction: Swap

Trade Date: 1 April 2010

Commodity: ICE Brent Component

Total Notional Quantity: 21,590 MWh

Effective Date: 1 January 2011

Termination Date: 31 March 2011

Settlement Date: 5th Business day following the end of each calculation period

Fixed Leg

Fixed Price Payer: Bank XYZ

Fixed Amount: Fixed price ∗ Notional quantity per calculation period

Floating Leg

Floating Price Payer: Energy Company ZYX

Floating Price: Power formula, 0.71 ∗ Brent901 in EUR/MWh

Floating Amount: Floating price ∗ Notional quantity per calculation period

Pricing Dates: Each commodity business day during each relevant determination period

16.5.1.1 Commodity Reference Price ICE Brent. The average of the monthly averages
of the daily settlement prices per barrel of Brent crude oil on the ICE of the futures contract for
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TABLE 16.2 Calculation and payment schedule of the swap

Notional quantity
per application
period (MWh) Calculation period Determination period Settlement date

7440 Jan 2011 1 Apr 2010 to 31 Dec 2010 07 Feb 11
6720 Feb 2011 3 May 2010 to 31 Jan 2011 07 Mar 11
7430 Mar 2011 1 Jun 2010 to 28 Feb 2011 07 Apr 11

the first nearby month of the 9 months preceding the relevant calculation period. Each average
is converted into euros using the FX conversion factor.

FX conversion factor. The monthly average of the daily foreign exchange rate USD/EUR
during the relevant calculation period. The exchange rate is calculated by the ECB. The
payment schedule is reported in Table 16.2.

16.5.2 Cal ibrat ion of the Theoret ica l Schwartz and Smith
Forward Curve

The data set we use for calibration is provided by the Bloomberg data service and consists of
12 values of monthly ICE Brent futures quotes (with monthly maturities from 1M to 12M).
The expiry dates of all the monthly futures contracts can be downloaded from the Calendar
section on the ICE website. Futures prices, expressed in dollars per barrel, are reported in
Table 16.3.

We calibrate the Schwartz and Smith model at the trade date of the contract (1 April 2010),
choosing the parameters that allow us to match the theoretical futures prices to the ICE Brent
futures market curve observed in the market on the trade date. This procedure, also called the
‘implied method’, consists of a nonlinear least-squares minimization, as described previously.
Figure 16.5 illustrates the market and the fitted theoretical curve (top panel) and the pricing
errors in USD (lower panel).

Table 16.4 reports the calibrated parameter estimates of the Schwartz and Smith two-factor
model, together with their 90% confidence interval, estimated by bootstrap resampling.

Both the speed of mean reversion, k
𝜒

, and the coefficient of correlation, 𝜌x𝜁 , between
the two state variables appear to be significantly different from 0. The drift of the long-term
process, 𝜇

𝜁
, and −𝜆

𝜒
turn out to be positive. This result is mainly due to the upward shape

of the term structure of futures prices. It is also worth mentioning the long-term factor. This
indicates that market oil prices deviate from their mean level more in the short term than in the
long term. Finally, on the valuation date the state variables were estimated to be 𝜒0 = 1.044
and 𝜁0 = 3.3850, respectively. These values correspond to a current spot price of $83.8457
(= exp(1.0440 + 3.3850)).

16.5.2.1 Pric ing the Swap Contract A swap contract is fair if the present values of
the two legs are equal, so that the net value of the contract is zero at inception. If Et(Pi) is
the (risk-neutral) estimate at time t of the indexed floating payoff Pi exchanged against the
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TABLE 16.3 Futures term structure on the inception date of the swap

ICE Brent Crude Oil

Trade date Delivery month Termination of trading Settlement prices

01-apr-10 May10 15-apr-10 84.01
01-apr-10 Jun10 14-may-10 84.55
01-apr-10 Jul10 15-jun-10 84.99
01-apr-10 Aug10 15-jul-10 85.35
01-apr-10 Sep10 16-aug-10 85.59
01-apr-10 Oct10 15-sep-10 85.79
01-apr-10 Nov10 14-oct-10 85.96
01-apr-10 Dec10 15-nov-10 86.11
01-apr-10 Jan11 16-dec-10 86.26
01-apr-10 Feb11 14-jan-11 86.42
01-apr-10 Mar11 11-feb-11 86.58
01-apr-10 Apr11 16-mar-11 86.73
01-apr-10 May11 14-apr-11 86.87
01-apr-10 Jun11 16-may-11 86.98
01-apr-10 Jul11 15-jun-11 87.09
01-apr-10 Aug11 14-jul-11 87.19
01-apr-10 Sep11 16-aug-11 87.28
01-apr-10 Oct11 15-sep-11 87.37
01-apr-10 Nov11 14-oct-11 87.46
01-apr-10 Dec11 15-nov-11 87.55
01-apr-10 Jan12 15-dec-11 87.64
01-apr-10 Feb12 16-jan-12 87.73
01-apr-10 Mar12 14-feb-12 87.81
01-apr-10 Apr12 15-mar-12 87.89
01-apr-10 May12 13-apr-12 87.97
01-apr-10 Jun12 16-may-12 88.05
01-apr-10 Jul12 14-jun-12 88.10
01-apr-10 Aug12 16-jul-12 88.15
01-apr-10 Sep12 16-aug-12 88.20
01-apr-10 Oct12 13-sep-12 88.24
01-apr-10 Nov12 16-oct-12 88.28

swap fixed price at the settlement date Ti, then the present value of the floating leg (assuming
deterministic interest rates, as we will do throughout this chapter) is given by

n∑

i=1

Et(Pi) × df (t, Ti) × V(Ti),

where df (t, T) is the discount factor at time t of 1 euro due at time T (present value of 1 euro).
The present value of the fixed payments is given by

F ×
n∑

i=1

df (t, Ti) × V(Ti),
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TABLE 16.4 Calibrated parameters by fitting the model term structure to the observed one. The
lower and upper bounds of the 90% confidence interval are estimated by the bootstrap method

Parameters NLS estimates Lower bound Upper bound

𝜒0 1.0385 1.0342 1.0432
𝜁0 3.3906 3.3859 3.3947
𝜇
𝜁

0.0208 0.0180 0.0238
k
𝜒

0.9333 0.9160 0.9494
𝜆x –0.9104 –0.9200 –0.8997
𝜎x 0.4761 0.4519 0.5020
𝜎
𝜁

0.0076 0.0003 0.0138
𝜌
𝜒 ,𝜁 0.2052 0.2040 0.2062
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where V(Ti) is equal to the total notional. The fair value of the swap at time t for the party that
is receiving floating and paying fixed (the so-called payer swap) is given by

n∑

i=1

Et(Pi) × df (t, Ti) × V(Ti) − F ×
n∑

i=1

df (t, Ti) × V(Ti).

This is zero if the fixed price F = F(t; T1,… , Tn) satisfies

F ×
n∑

i=1

df (t, Ti) × V(Ti) =
n∑

i=1

Et(Pi) × df (t, Ti) × V(Ti).

The formula above states that the present value of the payments on the fixed leg must be
equal to the present value of the expected payments on the floating leg. Solving this formula
with respect to the fixed price F gives us the fair fixed price for a new swap starting in t:

F = F(t; T1, ...Tn) =

n∑

i=1
Et(Pi) × df (t, Ti) × V(Ti)

n∑

i=1
df (t, Ti) × V(Ti)

.

In the contract under examination, we have n = 3. The computation of the expected value
of the floating payments requires the expected discounted payoff. Let us introduce the quantity
Avg(m, y) that refers to the arithmetic average of oil spot prices observed in month m of year
y. This arithmetic average is computed according to the contractual formula

Avg(m, y) = 1
n(m, y)

n(m,y)∑

l=1

S(tl(m, y)) × FX(tl(m, y)),

where tl(m, y) refers to the trading day l in month m of year y, n(m, y) is the number of trading
days in month m of year y, and S(t) and FX(t) are respectively the oil spot price and the spot
currency rate observed in the market on trading day t. Assuming a deterministic evolution
of the currency rate, or that we can hedge currency risk away in the forward market, we can
replace, in the above expression, the spot currency rate by the forward currency rate we observe
in the market on the inception date. Forward currency rates on the inception date are provided
in Table 16.6 later. The market-based expected value can be computed by now replacing the
oil spot price with the calibrated term structure of oil futures prices and the spot currency rate
with the forward one. Therefore, at the inception date t = 0 we have

E0(Avg(m, y)) = 1
n(m, y)

n(m,y)∑

l=1

F(0, tl(m, y);𝜒0, 𝜁0, 𝜃) × FX(0, tl(m, y)).
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The determination of the fair value of the floating payments requires now the calculation
of the following quantities:

E0(P1) =

12∑

m=4

E0 (Avg (m, 2010))

9
× 0.71,

E0(P2) =

12∑

m=5

E0 (Avg (m, 2010)) + E0 (Avg (1, 2011))

9
× 0.71,

E0(P3) =

12∑

m=6

E0 (Avg (m, 2010)) +
2∑

m=1

E0 (Avg (m, 2011))

9
× 0.71.

At inception, the market value of the swap to the payer of the fixed price is therefore

v(0) =
3∑

i=1

E0(Pi)df (0, Ti)V(Ti) − F
3∑

i=1

df (0, Ti)V(Ti),

and it is zero if the fixed price is chosen according to

F =

3∑

i=1

E0(Pi)df (0, Ti)V(Ti)

3∑

i=1

df (0, Ti)V(Ti)

.

The computation of the fixed price requires the model calibrated parameters, the term
structure of the discount factors and the term structure of the currency forward rates. Discount
factors have been obtained by a standard bootstrap procedure using euro LIBOR and EUR
swap rates. The discount term structure is given in Table 16.5. The term structure of currency
forward rates is given in Table 16.6. In both cases, data have been obtained from Bloomberg.

The fixed price that provides a zero value of the swap at inception turns out to be 44.76
EUR. The detailed computations are provided in Table 16.7.

Given the three expected payoffs (last column of Table 16.7), the fixed price is obtained
by taking the ratio between:

a. The sum of the products of the values in columns 4-5-6-7-8 of Table 16.7; this sum is
equal to 957,527.

b. The sum of the products of the values in columns 4 and 5 of Table 16.7; this sum is equal
to 21,388.

The ratio between these two numbers gives the fixed price of 44.76 EUR. The correctness
of the computations can be verified by referring to Table 16.8.
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TABLE 16.5 Market (LIBOR and swap) rates, spot rates and discount factors

Term Structure of Discount Factors

Market date Market rate Spot rate Discount factor Source

06-apr-10 0.325 0.325 Cash Rate
14-apr-10 0.344 0.344 0.999933 Cash Rate
07-may-10 0.400 0.400 0.999667 Cash Rate
07-jun-10 0.501 0.501 0.999152 Cash Rate
07-jul-10 0.635 0.635 0.998397 Cash Rate
09-aug-10 0.743 0.743 0.997447 Cash Rate
07-sep-10 0.838 0.838 0.996451 Cash Rate
07-oct-10 0.945 0.945 0.995219 Cash Rate
08-nov-10 0.987 0.987 0.994140 Cash Rate
07-dec-10 1.033 1.033 0.993047 Cash Rate
07-jan-11 1.088 1.088 0.991757 Cash Rate
07-feb-11 1.129 1.129 0.990495 Cash Rate
07-mar-11 1.170 1.170 0.989262 Cash Rate
07-apr-11 1.214 1.214 0.987841 Cash Rate
07-oct-11 1.280 1.282 0.981077 Swap Rate
10-apr-12 1.465 1.467 0.971182 Swap Rate
08-apr-13 1.804 1.812 0.947515 Swap Rate
07-apr-14 2.118 2.135 0.918951 Swap Rate
07-apr-15 2.392 2.421 0.887264 Swap Rate
07-apr-16 2.644 2.689 0.852838 Swap Rate
07-apr-17 2.841 2.900 0.818617 Swap Rate
09-apr-18 3.012 3.087 0.783955 Swap Rate
08-apr-19 3.153 3.244 0.750214 Swap Rate
07-apr-20 3.274 3.379 0.717251 Swap Rate
07-apr-21 3.370 3.488 0.685802 Swap Rate
07-apr-22 3.462 3.594 0.654610 Swap Rate
07-apr-25 3.654 3.819 0.570000 Swap Rate
08-apr-30 3.782 3.957 0.460145 Swap Rate
09-apr-35 3.758 3.881 0.385892 Swap Rate
09-apr-40 3.677 3.721 0.334101 Swap Rate
11-apr-45 3.604 3.581 0.291753 Swap Rate
07-apr-50 3.542 3.463 0.256178 Swap Rate
07-apr-55 3.516 3.418 0.220417 Swap Rate
07-apr-60 3.490 3.367 0.190898 Swap Rate

Column 1 of Table 16.8 gives the expected floating payoff, while column 2 gives the fixed
payoff at the different settlement dates; these numbers have been obtained by multiplying the
fixed price by the notional given in column 5 of Table 16.7. Then, in the third column of Table
16.8, we have the net payoff at each settlement date. Finally, the last column gives the present
value and then in the last cell of Table 16.8 we sum the present value of the differences and
obtain the confirmation of a zero value of the swap.

Away from inception, the swap contract can assume positive or negative values depending
on the evolution of the term structure of futures prices as well as currency rates and interest



Pricing Commodity Swaps with Counterparty Credit Risk: The Case of Credit Value Adjustment 771

TABLE 16.6 Term structure of EUR/USD currency forward rates

Currency Forward Curve

Term Dates TTM Bid Ask Mid

Spot 0 0.7359000
ON 06/04/2010 0.0137 0.735803 0.736009 0.7359059
TN 07/04/2010 0.0164 0.735802 0.736002 0.7359019
SP 07/04/2010 0.0164 0.735800 0.736000 0.7359000
SN 08/04/2010 0.0192 0.735799 0.735999 0.7358989
1W 14/04/2010 0.0356 0.735792 0.735999 0.7358955
2W 21/04/2010 0.0548 0.735786 0.735995 0.7358905
3W 28/04/2010 0.0740 0.735788 0.735991 0.7358895
1M 07/05/2010 0.0986 0.735777 0.735982 0.7358795
2M 07/06/2010 0.1836 0.735768 0.735974 0.7358710
3M 07/07/2010 0.2658 0.735765 0.735977 0.7358710
4M 09/08/2010 0.3562 0.735804 0.736025 0.7359145
5M 07/09/2010 0.4356 0.735854 0.736081 0.7359675
6M 07/10/2010 0.5178 0.735882 0.736124 0.7360030
9M 07/01/2011 0.7699 0.735938 0.736219 0.7360785
1Y 07/04/2011 1.0164 0.735773 0.736082 0.7359275

TABLE 16.7 Computation of the fixed price of the swap

Calculation Period

Settlement Start End df(0,T)
Notional

V(T) Weighting
Average FX

rate

Expected
average
Brent
price

07/02/2011 01/04/2010 31/12/2010 0.99177 7440 0.710 0.7359 85.4308
07/03/2011 03/05/2010 31/01/2011 0.99068 6720 0.710 0.7360 85.6950
07/04/2011 01/06/2010 28/02/2011 0.98942 7430 0.710 0.7360 85.9134

Fixed Leg 44.77

rates. This fact opens up a problem of risk management of the contract. In addition, if the
contract becomes too valuable, the risk that the counterparty that is losing will no longer be
able to fulfil its obligations will increase. In order to fully appreciate how large this risk can
be, we need to understand how big the fluctuations of the swap value can be. Monte Carlo
simulation can help us in doing this. This is discussed in the next section.

TABLE 16.8 Computation of the fair value of the swap at inception

Floating Fixed Expected payoff PV(expected payoff)

€332,319 €333,091 −€972 −€964
€300,914 €300,857 €57 €56
€333,561 €332,643 €918 €908

Fair value €0.00
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16.5.3 The Monte Carlo Simulat ion of O i l Spot Prices

In this section we illustrate how to simulate the state variables and the futures term structure,
given the calibrated parameters. This allows us to simulate as well the daily simulated net cash
flows (profits or losses) on the swap contract and to find the time evolution of the fair value of
the contract. This is important for measuring the potential loss due to counterparty default, as
we will discuss shortly.

Before presenting the simulation scheme, we have to notice that the two counterparties
– the bank and the energy company – both operate in the Eurozone and the swap payoff is
paid in euros, whilst the oil price dynamics is in dollars. Therefore, all the simulated spot
prices (in dollars) need to be converted into euros. We do this by using the term structure of
forward exchange rates $/€ listed on 1 April 2010, see Table 16.6. This amounts to assuming
that the currency risk has been fully hedged in the forward market. If this is not the case, we
should also postulate a stochastic process for the currency rate and simulate it jointly with the
short-term and long-term components of the commodity process.

16.5.3.1 Simulat ing Forward Prices In order to estimate the value of the contract at
a generic date, we can simulate step by step the two state variables through the following
procedure. Let us define K + 1 valuation dates 0 = t0, t1,… , tK . With initial conditions given
by the estimated values 𝜒0 and 𝜁0, the two state variable dynamics can be simulated recur-
sively, without any discretization error, by using the following bivariate stochastic difference
equation:

𝜒(tk) = 𝜒(tk−1)e−k
𝜒

(tk−tk−1) −
(

1 − e−k
𝜒 (tk−tk−1)

)
𝜆𝜒

k
𝜒

+ 𝜂1(tk),

𝜁 (tk) = 𝜁 (tk−1) + 𝜇
𝜁
(tk − tk−1) + 𝜂2(tk),

where 𝜂 is a vector of Gaussian noises, distributed with zero mean and covariance matrix equal
to Σ(tk−1, tk).

The term structure of futures prices at time tk with maturity T is then obtained by applying
the futures price expression for F(tk, T), given previously. In particular, the simulated oil spot
price at time tk is

ln S(tk) = 𝜒(tk) + 𝜁 (tk).

Therefore, we proceed as follows:

1. Assign the initial values of the state variables.
2. At each time step, simulate the vector 𝜂 from a bivariate Gaussian random variable2 with

zero mean and covariance matrix Σ(tk−1, tk) and then update the values of the two state
variables using the two stochastic difference equations.

3. At each time step, insert into the theoretical futures price formula the simulated values of
the two state variables. Thus, we can obtain a simulated term structure of futures prices.

2The simulation of a bivariate normal random vector can be performed via the Cholesky decomposition
of the covariance matrix, and by simulating independent Gaussian random variables. See Appendix of
the present Handbook on A quick Review of Distributions Relevant in Finance.
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F IGURE 16.6 Monte Carlo paths of long-term (left panel) and short-term (right panel)
processes. The thick line represents the mean value.

This curve is dollar denominated, so it needs to be converted into euros using the currency
forward term structure.

4. Given the simulated term structure, price the swap contract by replacing the unknown
amounts with their estimated values, according to the futures term structure. This step
will be discussed in more detail later.

5. Repeat steps 2–3, up to the final settlement date of the contract.

The full procedure can be repeated a large number of times, 100,000 times say. Figure
16.6 shows some simulated paths of the short-term and long-term processes at any given date
t. Figure 16.7 illustrates possible simulated trajectories of the oil spot prices at each date over
the period 1 April 2010 to 28 February 2011. Figure 16.8 represents the evolution of a bunch
of simulated front forward curves.

16.5.4 The Computat ion of Brent Forward Curves at Any
Given Valuat ion Date

Pricing the swap under consideration requires computing the monthly averages that enter the
contract’s payoff. For instance, let us consider the first payoff of the commodity swap and let



F IGURE 16.7 Monte Carlo paths of spot prices over the contract’s life. The thick line
represents the mean value
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TABLE 16.9 Computation of the payoff on 1 November 2010, considering both historical and
simulated prices

Settlement Months

Jan
t

DecNovOctSeptAugJulyJuneMayApril

53.99 54.69 58.96 63.98 61.31

historical

62.01 59.01 65.83

60.66

Sim n°1 Forecasting

66.99

us suppose it is on 1 November 2010 (the 152nd day out of 264 trading days). The settlement
date of the first payoff is 7 February 2011 and its value is given by the average of the oil
monthly prices of April 2010, May 2010, June 2010, July 2010, August 2010, September
2010, October 2010, November 2010 and December 2010. Regarding the months preceding
November, that is April 2010, May 2010, June 2010, July 2010, August 2010, September
2010 and October 2010, their monthly values are obtained by averaging the observed daily
historical prices. Therefore, we have to simulate the daily prices from 1 November 2010 to
31 December 2010. Then, we have to compute the monthly averages of the forecasted daily
prices for the months of November and December. Furthermore, each monthly average must
be converted into euros; the monthly exchange rate is computed as the average of the currency
forward rates observed at the inception date of the contract.

Table 16.9 illustrates how the first payoff is computed on 1 November 2010, considering
a possible scenario of the monthly values for November and December given by the first
simulation. In this case the value of the payoff is equal to €60.66.

The calculation of the fair value of the floating payments requires the computation of the
expected discounted payoff at any given date t and along each simulated path j, that is we
need to estimate

Et

(
Pj

1

)
=

12∑

m=4

Et(Avgj(m, 2010))

9
× 0.71,

Et

(
Pj

2

)
=

12∑

m=5

Et(Avgj(m, 2010)) + Et(Avgj(1, 2011))

9
× 0.71,

Et

(
Pj

3

)
=

12∑

m=6

Et(Avgj(m, 2010)) +
2∑

m=1

Et(Avgj(m, 2011))

9
× 0.71,

where:

� j refers to the different simulations, j = 1, ...., M;
� t are the daily trading dates ranging from 1 April 2010 to 28 February 2011

(t = 1,… , 264);
� 0.71 is the weighting coefficient of the Brent formula;
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� Avgj(m, y) refers to the arithmetic average of oil spot prices observed in month m of year
y in simulation j. This arithmetic average is computed according to the formula

Avgj(m, y) = 1
n(m, y)

n(m,y)∑

l=1

Sj(tl(m, y)) × FX(0, tl(m, y)),

where tj(m, y) refers to day l in month m of year y, n(m, y) is the number of trading days
in month m of year y and FX(0, T) is the forward currency rate observed in the market at
inception date for expiry T.

At time t, the expected value of the monthly average is computed using the prevailing
term structure of futures prices. Therefore:

Et(Avgj(m, y)) = 1
n(m, y)

n(m,y)∑

l=1

F(t, tl(m, y);𝜒 j(t), 𝜁 j(t), 𝜃) × FX(0, tl(m, y)),

where F(t, tl(m, y);𝜒 j(t), 𝜁 j(t), 𝜃) is the model futures price in simulation j. The market value
of the swap to the payer of the fixed price in simulation j at time t is given by

vj(t) =
3∑

i=1

Et

(
Pj

i

)
df (t, Ti)V(Ti) − F

3∑

i=1

df (t, Ti)V(Ti),

where F is the fixed price agreed on between the two counterparties at the inception date and
Ti, i = 1,… , 3 refer to the settlement dates of the different payoffs. The discount factor at
time t for maturity T, df (t, T), is computed as the forward discount factor using the market
interest rate curve (euros) referred to 1 April 2010, available on Bloomberg at the trade date.
In particular, if df (0, T) is the discount curve at inception, then df (t, T) = df (0, t)∕df (0, T).

Notice that the above market value expression is valid provided t ≤ T1. If T1 < t ≤ T2
then the simulated market value is

vj(t) =
3∑

i=2

Et

(
Pj

i

)
df (t, Ti)V(Ti) − F

3∑

i=2

df (t, Ti)V(Ti).

Finally, if T2 < t ≤ T3, then

vj(t) = Et

(
Pj

3

)
df (t, T3)V(T3) − Fdf (t, T3)V(T3).

Figure 16.9 shows the time evolution of the fair value of the contract and for different
simulations. It can be noticed that the fair value of the contract is zero at its inception.
Thereafter, it can become positive or negative depending on the evolution of the futures prices
term structure. As we approach the settlement dates, the uncertainty in the settlement amounts
reduces. In particular, from 28 February 2011 onwards, all payoffs have already been set and
the fair value becomes constant (apart from a discounting effect). Moving ahead in time, closer
to the ‘half life’ of the contract, it is evident that the value of the net cash flows increases when
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F IGURE 16.9 Monte Carlo simulation of net cash flows over the contract’s life. The thick line
represents the mean value.

the difference between the floating and the fixed leg is positive (the energy company is bearing
a loss, while the bank is making a profit) or decreases when the difference between the two
legs is negative (the energy company is making a profit, while the bank is bearing a loss).

16.6 MEASURING COUNTERPARTY RISK

If we operate with derivative contracts managed by a clearing house, the credit risk linked to
a counterparty not fulfilling its obligations is negligible. On the contrary, the credit risk might
increase for commodity derivative instruments traded OTC. The importance of assessing
the counterparty credit risk in the OTC derivatives market has gained more interest after
the financial crisis that began in 2007. For this reason, energy companies might take into
consideration the counterparty credit risk (CCR) if they want to negotiate accurately the price
of a commodity swap with another operator.

The most popular measure used by companies in order to adjust the default-free value of
an instrument to incorporate the credit risk is the CVA. This is a metric which has the purpose
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of quantifying the exposure to default, commonly defined as the difference between the risk-
free price of the derivative contract and the risky price. This value can also be considered as
the cost of hedging the default risk. The exposure to a given counterparty on a swap position
is the amount that would be lost by that counterparty in the event of default by the other
counterparty. We follow the general method for computing credit risk adjustments when both
counterparties are defaultable, as follows. One first calculates the market value at time T, XT
say, of default losses to counterparty A that are caused by any default of counterparty B that
occurs before the default of A. (If the counterparty A defaults first then, under standard master
agreements, there is no default loss to A caused by the default of B because all contracts
are settled at the time of the default by A.) Similarly, one can calculate the market value YT
of losses to the counterparty B through any default by the counterparty A that occurs before
default by B. After accounting for the collateral, the difference, if positive, XT − YT , multiplied
by the percentage loss given default (LGD) is the net market value of the default losses to party
A, as of time T. The risk-neutral expectation of this loss is then discounted, and this amount
is summed over all potential default dates, T. We write

CVA(A|B) = E0(Present value of the loss to A, given default of B).

The CVA can be calculated as unilateral or bilateral adjustment. As far as the former
is concerned, the counterparty that performs the valuation considers itself as default free.
Bilateral CVA takes into account the default by either counterparty and is interpreted as

bCVA(A, B) = CVA (A|B) − CVA (B|A) .

In order to enter into an uncollateralized transaction with a zero initial value, a counterparty
A will receive from B its bilateral CVA, if it is positive, or will pay it if negative. On the contrary,
if the transaction is collateralized, there is no need to compute the CVA.

The CVA of an OTC derivative contract with a given counterparty is therefore defined
as the market value of the credit risk due to any failure to perform on agreements with that
counterparty. Furthermore, it can be defined also as the difference between a risk-free contract
(portfolio) and the contract (portfolio) that includes in its valuation the counterparty default
risk.

The computation of the loss takes into account that, if counterparty B will default, A will
have a loss if the value of the contract is positive to A. So, the loss to A given by the default
of B at time t will be equal to

(1 − RB)max(VA(t), 0),

where RB is the so-called recovery rate of party B, that is the fraction of the loss that is
recovered by A during the judicial procedure, and VA(t) is the value to A of the derivative
contract. Similarly, the loss to B, given the default of A, will be equal to

(1 − RA)max(VB(t), 0),

where RA is the recovery rate of party A and VB(t) is the value to B of the swap contract at
time t. Clearly, in a bilateral contract VB(t) = −VA(t). Figure 16.10 shows BNP and Edison
loss paths.
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F IGURE 16.10 Monte Carlo paths of BNP (Edison) losses in the case of Edison (BNP) default.

The value of the CVA can be either positive or negative, depending on which of the two
counterparties is most likely to default and the relative balances due or receivable to each other.
Generally, if the counterparties show a similar high credit rating, for instance a double or triple
A, they are able to offset the effects of the counterparty default and the bilateral CVA will be
small. If the rating of the two sides is very different, the CVA adjustment will be significant
and will be posted from the riskier party to the less risky party. This feature is analysed in more
detail in Section 16.7. Another possibility consists of collateralizing the derivative transaction.

16.6.1 CVA Calculat ion

In order to compute the CVA of the commodity swap, we have to determine the market
value of all future potential losses to the energy company due to the default by the bank (and
vice versa) during the contract’s life. For any given date t, t ∈ {t0, t1,… tK}, we calculate
the contract net exposure of all future potential losses to the energy company due to the
default by the bank, max(VA(t), 0). The unrecovered amount, that is the effective loss, will
be (1 − RB)max(VA(t), 0). Similarly, the contract net exposure of all future potential losses to
the bank caused by a default of the energy company is max(VB(t), 0). Again, the unrecovered
loss will be (1 − RA)max(VB(t), 0).
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The above losses are nothing else but the payoff of a call option to purchase (sell) the
contract of value V(t) at time t. The expected discounted loss to A due to the default of B in
the time interval (tk−1, tk) can be computed by the following (risk-neutral) expectation:

E0
(
(1 − RB)max(VA(tk), 0)1{A survives up to tk}1{B survives up to tk−1 and defaults in tk}df (0, tk)

)
,

where 1{x} is equal to 1 if the event x is true and 0 otherwise. If we assume independence
between default event, contract value and deterministic recovery fraction and interest rates,
then the expected loss can be computed as

(1 − RB)E0(max(VA(tk), 0))E0(1{A survives up to tk})E0(1{B survives up to tk−1 and defaults in tk})df (0, tk).

If we let Q(t, T) be the survival probability up to time T, upon survival at time t, we can write
the expected loss due to the counterparty default on the time interval time

(
tk−1, tk

]
as

(1 − RB)E0(max(VA(tk), 0)) QA(0, tk) QB(0, tk−1) (1 − Q(0, tk−1, tk)) df (0, tk),

where Q(0, tk−1, tk) is the forward survival probability at time tk, conditional upon survival at
time tk–1, as of time 0, and is given by

Q(0, tk−1, tk) =
Q(0, tk)

Q(0, tk−1)
.

The evaluation of the credit exposure requires a preliminary estimate of the underlying
risk-neutral probabilities of default. These numbers are computed by using price data for credit
derivatives (such as credit default swaps and bond prices) depending on the availability and
quality of the data. The calibration procedure is described below. For this purpose we can
use the market value of the two counterparties’ credit default swap (CDS) spreads quoted on
1 April 2010 to extract implied default probabilities.

16.6.1.1 Extract ing Impl ied Defaul t Probabi l i t ies The CDS spread is the premium
paid quarterly by the protection buyer (an operator that buys insurance in order to protect
himself against the default of a loan he holds) to the protection seller and it is quoted in basis
points per annum of the contract notional amount. To calibrate risk-neutral default probabilities
using CDS data, we adopt the following standard approximation. Let CDSA denote the CDS
quoted spread for a given entity A and let LGDA be the loss given default of entity A, both
referring to a maturity as close as possible to the one under consideration. If we assume that
default occurs on coupon payment dates3 and that there are m coupon dates per year, then the

per-coupon-period risk-neutral default probability PDA

(
0, 1

m

)
satisfies4

CDSA

m
= LGDAPDA

(
0,

1
m

)
.

3For default between coupon dates, a more complicated formula can be used. See, for details, Duffie and
Singleton (2003).
4More accurate estimations of the default probability are possible, similar to the bootstrapping procedure
to extract spot rates from swap rates. See for example O’Kane and Turnbull (2003).
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This formula states that the expected payment made by the protection buyer is equal to the
CDS spread, while the product between the default probability and the loss given default
represents his expected payoff.

The per-coupon-period risk-neutral survival probability can be computed as

QA

(
0,

1
m

)
= 1 − PDA

(
0,

1
m

)
.

A CDS spread typically provides the protection seller with quarterly payments, that is
m = 4. Therefore, the quarterly risk-neutral default probability is computed according to the
formula

PDA

(
0,

1
4

)
= CDS

4
(
1 − RA

) .

For example, if the CDS spread is 100 b.p. and we assume a recovery rate of 0.4, the
quarterly default probability turns out to be

PDA

(
0,

1
4

)
=

100∕10000

4 (1 − 0.4)
= 4.16%.

The quarterly survival probability will be 1 − 4.16% = 95.83%, whilst the yearly survival
probability turns out to be

QA(0, 1) = (1 − 0.0416)4 = 84.35%

and the one-year default probability is 15.65%. If we assume that the default event occurs with
a constant intensity over time, we will have that

QA (0, t) = QA (0, 1)t
.

The formula above provides a quick and effective approach to extract the default proba-
bilities from CDS quotations.

16.6.1.2 Calcu lat ing the Counterpart ies ’ Expected Losses We consider the case
where both parties are exposed to default, so that we need to compute the bilateral adjustment
bCVA. This involves some mandatory steps. First of all, we calculate the surviving probability
of both the bank and the energy company at a future time t. In our analysis we considered,
for example, the CDS spread of BNP Paribas (party A) and Edison SPA (party B) quoted on
1 April 2010. These have been obtained from Bloomberg and are equal to 38 and 52 basis
points, respectively. The one-year survival probabilities of the two parties are 99.9983% and
99.9982%, respectively.

Afterwards, the expected loss to the bank at time tk for the company defaulting in the time
interval (tk−1, tk] is

(1 − RB)E0(max(VA(tk), 0)) (0.999982) tk (0.999976) tk−1 (1 − 0.999976) tk−tk−1df (0, tk).
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TABLE 16.10 Monte Carlo estimates of market value exposures for both
counterparties. Standard errors are reported in parentheses

Counterparties Expected market value exposures

BPN €321.263 (1.5)
Edison €232.018 (0.86)

We can compute E0(max(VA(tk), 0)) by Monte Carlo simulation, that is

E0(max(VA(tk), 0)) =

M∑

s=1
max(Vs

A(tk), 0)

M
,

where M is the number of Monte Carlo simulations to compute the expected exposure at the
grid time tk. We set M = 100,000.

Summing over the different subperiods in the contract life, we get

CVA(A|B) =
K∑

k=1

(1 − RB)E0(max(VA(tk), 0)) (0.999982)tk (0.999976)tk−1

× (1 − 0.999976)tk−tk−1df (0, tk).

Similarly, we also have

CVA(B|A) =
K∑

k=1

(1 − RA)E0(max(VB(tk), 0))(0.999976)tk−1

× (1 − 0.999982)tk−tk−1 (0.999982)tk df (0, tk).

The CVA estimates are reported in Table 16.10.
The expected bilateral credit cost to BNP is €89.244; the one-way CVA for BNP is

€321.263.

16.6.2 Swap Fixed Price Adjustment for Counterparty Risk

The bCVA is often used for pre-deal contract pricing activity. Given the value of the CVA and
the value of the contract on 1 April 2010, which were approximately equal to zero, we can
compute the adjusted fixed price of the commodity swap at the contract’s inception date. The
credit risk adjusted value of the swap for the fixed payer A at the inception date is

AV(0) =
3∑

i=1

Et(Pi)df (0, Ti)V(Ti) − F(0)
3∑

i=1

df (0, Ti)V(Ti) − bCVA(A|B).
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TABLE 16.11 bCVA(bank|energy) for different CDS spreads (columns refer to the bank and rows
refer to the energy company)

15 52 100 150

15 –0.048 229.314 523.245 828.210
38 –140.118 89.244 383.178 688.150

100 –523.616 –294.259 –0.324 304.658
150 –828.745 –599.398 –305.471 –0.489

We can obtain the adjusted fixed swap price AF by setting AV(0) = 0. This occurs if

AF(0; T1, T2, T3) =

3∑

i=1

Et(Pi)df (0, Ti)V(Ti) − bCVA(A|B)

3∑

i=1

df (0, Ti)V(Ti)

= F(0; T1, T2, T3) − bCVA(A|B)
3∑

i=1

df (0, Ti)V(Ti)

.

In our example, the adjusted fixed price equals €44.556. The difference between the
adjusted and the unadjusted fixed price can be positive or negative depending on the sign of
the bilateral CVA. In our example, F = 44.7703, AF = 44.7661, so the delta price is –€0.0042.
The net credit loss adjustment is positive for A, therefore the adjusted fixed price paid by A
will be lower than the unadjusted one. This difference appears to be small, mainly because the
CDS spread we used as input to compute the survival probabilities was low and similar across
counterparties.

Therefore, to better appreciate the credit risk exposure of the contract we recomputed
the bilateral CVA under different values of the CDS spreads. The CDS spreads quoted by
Bloomberg on 1 April 2010 were approximately 38 bps for the bank and 52 bps for the energy
company, and they are reported in Tables 16.11 and 16.12, which show the bCVA and the delta
price for different CDS spreads.

As can be appreciated from the tables, the higher the CDS spread difference between the
two counterparties, the higher the bCVA (in absolute value) and the delta price. Figure 16.11
illustrates the counterparties’ loss distributions over the contract’s life. Not surprisingly, the
distribution is not normal but heavily skewed.

TABLE 16.12 Delta price for different CDS spreads (columns refer to the bank and rows refer to the
energy company)

15 52 100 150

15 0.000 –0.011 –0.024 –0.039
38 0.007 –0.004 –0.018 –0.032

100 0.024 0.014 0.000 –0.014
150 0.039 0.028 0.014 0.000
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Density Functions of the Expected Losses to the Fixed and Floating Payer
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F IGURE 16.11 BNP Paribas (fixed payer) and Edison (floating payer) expected loss
distributions.

16.6.3 Right- and Wrong-Way Risk

In the computation of the CVA, it is typical to assume independence between the default
probability of the counterparty and the exposure at default. However, the default of the energy
company is likely to be negatively correlated with the price of oil: the higher the oil price,
the less likely the default of the oil company. Since the bank receives floating oil and pays
fix, if oil prices are high, its exposure at default turns out to be high. On the contrary, the
company default will be less likely. This phenomenon is called right-way risk and should
reduce the CVA. In contrast, if the default of the energy company, for whatever reason, were
more likely when the oil price rises, the bank would be exposed to so-called wrong-way risk,
which increases the CVA value. This would be the case, for example, of an airline company.
In order to quantify this effect, we recall that the expected loss to the bank can be computed as

CVA(A|B)

=
K∑

k=1

E0

[
(1 − RB)max(VA(tk), 0)1{A survives up to tk}1{B survives up to tk−1 and defaults in tk}df (0, tk)

]
,

where A refers to the bank and B refers to the energy company.
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If we assume that

� the recovery rate is deterministic,
� interest rates and default events are independent,
� the bank’s default is independent of the exposure,

then we get

CVA(A|B)

= (1 − RB)
K∑

k=1

E0
[
max(VA(tk), 0) 1{B survives up to tk−1 and defaults in tk}

]
QA(0, tk) df (0, tk).

In order to compute the expectations, we introduce a default intensity model. The default
time is modelled as the first jump of an inhomogeneous Poisson process with stochastic default
intensity following a Cox–Ingersoll–Ross process:5

d𝜆(t) = k
𝜆

(
𝜇
𝜆
− 𝜆(t)

)
dt + 𝜎

𝜆

√
𝜆(t)dW

𝜆
(t),

with

k
𝜆
,𝜇

𝜆
, 𝜎
𝜆
, 𝜆(0) > 0.

The intensity turns out to be positive if the so-called Feller condition is satisfied:

k
𝜆
𝜇
𝜆
≥ 𝜎

2
𝜆
.

The default probability can be computed (see Fang et al., 2012) by

Prt

(
𝜏B > s

)
= E

(
e∫

s
t 𝜆(u)du

)
= ea(t,s)+b(t,s)𝜆(t)

where, setting 𝛾 = 1
2

√
k2
𝜆
+ 2𝜎

𝜆
, we have:

b (t, s) = − sinh (𝛾 (s − t))
𝛾 cosh (𝛾 (s − t)) + 0.5k

𝜆
sinh (𝛾 (s − t))

,

a (t, s) = 𝛾e0.5k
𝜆

(s−t)

𝛾 cosh (𝛾 (s − t)) + 0.5k
𝜆
sinh (𝛾 (s − t))

.

We calibrate the parameters 𝜃CIR =
(
k
𝜆
,𝜇

𝜆
, 𝜎
𝜆
, 𝜆0

)
, appearing in the default probability

expression above, to that extracted from the CDS spreads as illustrated in O’Kane and Turnbull
(2003). See Table 16.13.

5See the chapter on stochastic differential equations of the present Handbook.
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TABLE 16.13 CIR calibrated parameters

Parameters NLS estimates

k
𝜆

0.297
𝜇
𝜆

0.029
𝜎
𝜆

0.131
𝜆0 0.004

Following Brigo et al. (2008), we correlate the default intensity to the commodity prices
by correlating the corresponding Brownian shocks. We have:

corr (d𝜆(t), dS(t)) =
𝜎
𝜒
𝜌
𝜒𝜆

+ 𝜎
𝜁
𝜌
𝜁𝜆

√
𝜎2
𝜒
+ 𝜎2

𝜁
+ 2𝜌

𝜒𝜁
𝜎
𝜒
𝜎
𝜁

.

If we assume:

𝜌
𝜒𝜆

= 𝜌
𝜁𝜆

= 𝜌
𝜆
,

then the correlation parameter between the default intensity and the commodity factors is
given by

𝜌
𝜆
= corr (d𝜆(t), dS(t))

√
𝜎2
𝜒
+ 𝜎2

𝜁
+ 2𝜌

𝜒𝜁
𝜎
𝜒
𝜎
𝜁

𝜎
𝜒
𝜌
𝜒𝜆

+ 𝜎
𝜁
𝜌
𝜁𝜆

.

To compute the expectations in the CVA formula, we jointly simulate the short-term
commodity process, the long-term commodity process and the default intensity.

We use an Euler discretization scheme with daily time step:

𝜒(tk) = 𝜒(tk−1) − (𝜆
𝜒
+ k

𝜒
𝜒(tk−1))(tk − tk−1) + 𝜎

𝜒

√
(tk − tk−1)Z𝜒tk ,

𝜁 (tk) = 𝜁 (tk−1) + 𝜇
𝜁
(tk − tk−1) + 𝜎

𝜁

√
(tk − tk−1)Z𝜁tk ,

𝜆(tk) = 𝜆(tk−1) + k
𝜆
(𝜇
𝜆
− 𝜆+(tk−1))(tk − tk−1) + 𝜎

𝜆

√
𝜆+(tk−1)(tk − tk−1)Z𝜆tk ,

where

𝜆
+(tk) = max(𝜆(tk−1), 0)

and Z = (Z𝜒tk , Z𝜁tk , Z𝜆tk ) is a vector of normal random variables with mean zero and instantaneous
correlation matrix given by

Corr ≡

⎡
⎢
⎢
⎢
⎣

1 𝜌
𝜒𝜁

𝜌
𝜆

𝜌
𝜒𝜁

1 𝜌
𝜆

𝜌
𝜆

𝜌
𝜆

1

⎤
⎥
⎥
⎥
⎦

.
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Let Γ denote the so-called hazard function:

Γ(t) =
∫

t

0
𝜆 (u) du.

We can set

Γ(tk) = Γ(tk−1) + 𝜆(tk−1)(tk − tk−1).

The simulation of the default time can be done by drawing a uniform random variable U
on [0,1] and setting

𝜏B = inf{t > 0 : exp(−Γ(t)) < U}.

We investigate the impact of the correlation parameter between the default intensity and
the commodity factors on the CVA. For different correlation coefficients, we re-price the swap
and compute the CVA(A|B) using 200,000 Monte Carlo simulations. The results are reported
in Figure 16.12. In our example, the relevant scenarios have negative correlation coefficients.
More generally, Figure 16.12 shows that wrong- and right-way risk can have an important
effect on the CVA.
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Credit value adjustment under different correlation levels
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A
(A
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)

F IGURE 16.12 Credit value adjustments for different correlation parameters between the
default intensity and the commodity factors.
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The independence case corresponds to 𝜌 = 0, the case previously examined. As 𝜌 goes
from negative to positive values, right-way risk becomes wrong-way risk and, as a consequence,
the CVA increases. The change in the CVA can be very significant: if 𝜌 = −0.9 we have a CVA
approximately equal to 100, whilst if 𝜌 = 0.9 the CVA can reach the value of 600. If 𝜌 has a
high negative value, it means that there is a strong negative correlation between the exposure
on default and the energy default event: the higher the exposure for the bank, the less likely
the default of the energy company, and vice versa. Therefore the CVA will be low. If 𝜌 has a
high positive value, it means that there is a strong positive correlation between the exposure
on default and the energy default event: the higher the exposure for the bank, the more likely
the default of the energy company, and vice versa. Therefore the CVA will be high.

16.7 SENSIT IV ITY ANALYSIS

In this section, we investigate the impact of changes of different model parameters on the
current term structure of futures prices, bilateral CVA and delta price. Sensitivity analysis is a
useful tool in order to ascertain which model variables account for most of the bilateral CVA
variability. We shift each parameter, one at a time, while keeping all the others constant. Then
we re-price the swap and re-compute the bilateral CVA.

Figure 16.13 shows the impact of each parameter on the term structure of futures prices.
The most critical parameters are the short-term process parameters and the drift of the long-
term process.

Table 16.14 reports the sensitivity results in euros. In particular, the scenarios for the
shifts correspond to the upper and lower bound of the 90% confidence interval of the bootstrap
distribution of each parameter. The CVA turns out to be particularly sensitive to the volatility
parameters and to the long-run level of the short-term factor, the volatility of the short-term
factor being the most influential parameter.

16.8 ACCOUNTING FOR DERIVATIVES AND CREDIT VALUE
ADJUSTMENTS

(a) Framework Energy companies operate in markets both by entering into purchases (or
sales) of energy physical contracts and by buying derivative contracts aimed at managing the
commodity price volatility. Markets, commodity prices, interest and exchange rates expose
energy companies to high risks relating to the assets’ value change. For this reason, within the
energy sector an increase of derivative contracts aimed at the mitigation of commodity price
changes risk is expected.

The accounting identification rules used for recording on the balance sheet each different
contract typology should take into consideration the qualification given by the accounting stan-
dards. The standards that have high impact on energy company activities and their economic
results are the following:

� IAS 32
� IAS 39
� IFRS 7
� IFRS 9
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F IGURE 16.13 Sensitivity analysis for the term structure of futures prices. We consider the
scenarios corresponding to the lower and upper bounds of the 90% confidence interval of each
parameter, while keeping constant all other parameters.

In order to analyse the accounting framework for the financial instrument – the commodity
swap – that we priced in previous chapters, hereafter we focus our attention on the accounting
methodology called ‘cash flow hedge’ included in the IAS 39.

(b) IAS 39 The IAS 39, chapter 4, identifies four different categories of financial instruments.
Each of the following categories applies different registration criteria:

� financial assets and liabilities at fair value
� held-to-maturity investments
� loans and receivables
� available for sales.

In particular, within the first of the categories must be registered both the held-for-trading
assets and the hedging derivatives not designated for hedge accounting.

(c) Hedge accounting The hedge accounting departs from IAS 39. It can be used only if
the derivative contract has a hedging purpose. The definition of a hedging purpose implies a
match between the financial flows generated by the hedging instrument and those generated by
the hedged item (efficiency test). However, in the utilities business, the complexity of hedge
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TABLE 16.14 Sensitivity analysis for the bilateral CVA and the delta price (Δ). For each parameter,
we consider the scenarios corresponding to the lower and upper bounds of the 90% confidence interval,
estimated by bootstrap resampling, while keeping all other parameters constant. The middle row reports
the calibrated parameter value, for comparison

Parameters Scenario bCVA bCVA change (%) Δ (BP)

𝜇
𝜁

0.0180 89.06843 –0.20% –42
0.0208 89.24428 — —
0.0238 91.27499 2.28% –43

𝜅
𝜒

0.9160 91.69712 2.75% –43
0.9333 89.24428 — —
0.9494 90.75802 1.70% –42

𝜆x –0.9200 94.05655 5.39% –44
–0.9104 89.24428 — —
–0.8997 88.80474 –0.49% –42

𝜎x 0.4519 83.62756 –6.29% –39
0.4761 89.24428 — —
0.5020 95.84081 7.39% –45

𝜎
𝜁

0.0003 93.22639 4.46% –44
0.0076 89.24428 — —
0.0138 86.16046 –3.46% –40

𝜌
𝜒 ,𝜁 0.2040 88.00408 –1.39% –41

0.2052 89.24428 — —
0.2062 90.31082 1.20% –42

accounting rules together with their application burden might not always lead to classifying
as a hedging the activities that are operationally defined as hedging. This issue is mainly
due to either the complexity of the factors included in the price indexation formulas or to
the demonstration of retrospective and prospective efficiency in high-volatility markets being
subject to valuation elements (components).

Hedge accounting rules The IAS 39 distinguishes among three different accounting
methodologies:

1. fair value hedge
2. cash flow hedge
3. hedges of a net investment in a foreign operation.

(d) Cash flow hedge (Cfh) The cash flow hedge is defined by IAS 39 as the hedging of
an exposure to cash flow volatility due to a particular risk associated with a specific asset
or liability. The purpose of the hedging activity is to stabilize future flows and the economic
margins. The future cash flows deriving from different kinds of operations, such as long-term
contracts, are defined as hedged items. Accordingly, within the IAS 39 framework, the future
cash flows generated by the hedged item are not to be accounted for on the balance sheet
at the inception of the hedge. On the contrary, the fair value of the hedging instrument is
recognized in the balance sheet (equity). The fair value changes (gains and losses) of the
hedging instrument that are proved to be effective in order to compensate the fluctuation of the
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future cash flows are registered directly in a separate component of equity, while the ineffective
portion is accounted for immediately in the income statement. Finally, the fair value changes,
previously accounted for in the equity, should be transferred to the P&L account in the same
period in which the cash flows originating from the hedged item will influence the income
statement. This is done to ensure that offsetting profits or losses generated by the derivative
instrument and by the hedged item affect the profit in the same period.

If the hedging item is a derivative instrument, the ineffective value changes are registered
in the income statement only if they represent an over-hedging. A hedging relation is qualified
for cash flow hedge accounting only if it meets some specific restrictive conditions. The most
important three conditions are the following:

� Documentation of the hedge at hedge initiation. This documentation identifies the hedging
instrument, the hedged item, the nature of the hedged risk and the process followed by
the energy company in assessing the efficiency of the hedging operation.

� Nature of the risk being hedged, defined in a specific section of the aforementioned formal
documentation.

� Degree of hedging effectiveness. The hedging operation should continuously show a high
level of efficiency in offsetting the cash flow changes related to the hedged risk. The
effectiveness must be periodically monitored.

The level or degree of effectiveness that a hedging operation has in compensating the
changes in the fair value or cash flow attributed to the hedge item is assessed by two tests, the
prospective and the retrospective one. IAS 39 requires that test results are delimited in a range
from 80% to 125%.

Regarding the retrospective effectiveness, the test is typically performed either on a period-
by-period or a cumulative basis using the hypothetical derivative method. The most popular
acceptable methodology for assessment of hedge efficiency is the dollar offset method. The
valuation, according to the offset method, is done by an offset ratio that compares the fair
value or cash flow modifications of the hedging instrument and the changes of the same values
related to the underlying asset to hedge.

16.8.1 Example of Hedge Ef fect iveness

In this section we want to provide an example of how to assess hedge effectiveness. First of
all we have to identify:

� The underlying asset – a long-term energy purchase contract.
� The hedging instrument – a commodity swap derivative.

Then, we evaluate our hedge operation at inception, 15 November 2010 and on a specific
value date, 1 March 2011.

(a) Valuation at inception Table 16.15 shows the specifications of the hedged item for each
reference month (January, February and March 2011): the calculation periods used for the
determination of the Brent901 prices, the volumes purchased by the energy company period
by period, the amounts exchanged (computed as the product between prices and quantities)
and the present value of those amounts. All the values in the table are expressed in dollars and
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TABLE 16.15 Specifications and full fair value related to the hedged item

1. Underlying physical contract hedged item

Calc.
Period –
Start

Calc.
Period –

End
Month

Ref.
Price
Brent

Volume
(MWh)

Settlement
Figure
(k $)

Present
Value –

Settlement
Figure (k $) df

01/04/2010 31/12/2010 gen-11 80.76 7.440 601 599 0,9976803
01/05/2010 31/01/2011 feb-11 80.91 6.720 544 542 0,9966977
01/06/2010 28/02/2011 mar-11 82.05 7.430 610 607 0,9954853

Full Fair Value 21.590 1.754 1.748

the cash flows are paid on these settlement dates: 7 February 2011 (ref. month, January 2011),
7 March 2011 (ref. month, February 2011), 7 April 2011 (ref. month, March 2011). The last
row of the table shows the full fair value of the contract (in dollars) and the present value of
the full fair value of the contract at inception, 15 November 2010. The full fair value (full FV),
which is the present value (PV) of the full FV, is computed as the sum of all settlement figures
(PV of settlement figures).

Within the dollar offset framework, we evaluate the hedge effectiveness by making a com-
parison between the fair value changes of the actual commodity swap (the hedging instrument)
and the fair value changes of a hypothetical swap derivative that shares the same specifications
with the long-term asset (that is, the same notional quantity and month references). Thus, the
hypothetical derivative is expected to perfectly compensate the cash flows generated by the
hedged item. The fixed price of the hypothetical swap is found by equating the PVs of the two
full fair values (the hedged item’s full FV and the hypothetical derivative full FV). The obtained
fixed price turns out to be $81.25. See Table 16.16.

Table 16.17 provides the details for the hedging instrument (that is, the actual commodity
swap):

� the commodity swap fixed price is $81.05;
� the differences between the fixed and the floating price for each reference month;
� the settlement figures (the products between the difference and the volumes at each

reference month).

TABLE 16.16 The hypothetical derivative fixed leg

3. Hypothetica1 Derivative

Optimum
Price-solver
($/MWh)

Volume
(MWh)

Settlement Figure
(k $)

Present Value –
Settlement Figure

(k $)

81.25 7.440 605 603
81.25 6.720 546 544
81.25 7.430 604 601

21.590 1.754 1.748
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TABLE 16.18 Valuation of the physical contract on 1 March 2011

1. Underlying physical contract-hedged item

Calc.
Period –
Start

Calc.
Period –

End
Month

Ref.
Price
Brent

Volume
(MWh)

Settlement
Figure
(k $)

Present
Value –

Settlement
Figure (K $) df

01/04/2010 31/12/2010 gen-11 – – – – –
01/05/2010 31/01/2011 feb-11 82.50 6.720 554 554 0.9998630
01/06/2010 28/02/2011 mar-11 85.29 7.430 634 633 0.9992300

Full Fair Value 14.150 1.188 1.188

The sum of all the settlement figures (discounted settlement figures) gives as a result
the total full fair value of the hedging instrument (PV of the full fair value of the hedging
instrument).

(b) Valuation on 1 March 2011 Table 16.18 shows the valuation of the physical contract
on 1 March 2011.

The floating payment referred to January 2011 has already been regulated on 7 February
2011. This is the reason why there is no price for that reference month. The fair value of
the contract is now equal to $1,188,000. On this valuation date, it is noticeable that the
‘hypothetical swap’ value is no longer equal to zero. In fact, the full fair value of the fixed
leg of the hypothetical derivative is lower than that of the physical floating leg (it stands at
$1,150,000). See Table 16.19.

Also the full fair value of the actual swap has changed, as shown in Table 16.20. It has
decreased dramatically from –$4000 registered on 15 November 2010 to –$41,000 on 1 March
2011.

At this point we have determined all the inputs to compute the offset ratio. The formula
we apply is the following:

Offset ratio (OR) = ΔFVhedged item∕ΔFVhedging instrument.

TABLE 16.19 Valuation of the hypothetical derivative on 1 March 2011

3. Hypothetical Derivative

Optimum Price –
solver ($/MWh)

Volume
(MWh)

Settlement
Figure (K $)

Present Value –
Settlement Figure (k $)

– – – –
81.25 6.720 546 546
81.25 7.430 604 603

14.150 1.150 1.149
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TABLE 16.21 Representation of the inputs for the computation of the offset ratio

Inception Date 01/03/2011 Δ Offset Ratio%

Fair value hedged item ($/1000) 1.754 1.188.13 566.10
Fair value fixed leg hypothetical ($/1000) 1.754 1.149.71 604.51
Fair value differences ($/1000) −0.00 38.41 −38.41 104%
Fair Value derivative instrument ($/1000) −4.33 −41.24 36.91

The hedge is effective if the absolute value of the above ratio falls in the range 80% to
125%.

Table 16.21 shows a few key values registered at inception (first column):

� the full fair values of both the legs of the hypothetical derivative (1.754k$ and 1.754k$);
� the difference between the fair values of the hypothetical derivative instrument legs (0.00);
� the fair value of the commodity swap (–4.33k$);

The same pivotal values are reported also for the value date (1 March 2011):

� the full fair values of both the legs of the hypothetical derivative (1.188,13k$ and
1.149,71k$);

� the difference between the fair values of the hypothetical derivative instrument legs
(38.41k$);

� the fair value of the commodity swap (–41.24k$).

The third column of the table contains the differences of the fair values registered at
inception and at the valuation date. The offset ratio is computed as |−38.41k$|

|−36.91k$|
, so it is equal to

104% and therefore well inside the boundaries defining the hedge effectiveness. In conclusion,
we can see that our hedging operation is effective.

16.8.2 Account ing for CVA

Accordingly with the exposure draft announced by both the IASB and the FASB on 28 January
2011 regarding the Offsetting Financial Asset and Liabilities, the CVA (and also the DVA)
should be accounted for by following some steps. First of all, at contract inception the CVA
need not be measured and registered on the balance sheet even if, generally, aggressive traders
account for it in their pricing activity. Secondly, during every subsequent valuation date of
the derivative instrument, the CVA should be determined as an adjustment against the gross
fair value of a financial contract and aggregated to a separate account at portfolio level, for
example for each counterparty.

Furthermore, the CVA should be considered on the hedging instrument while performing
the effectiveness test. Before starting the test, the gross CVA should be allocated to the
individual trades based on the gross exposure of each trade. Concerning the hedged item, the
CVA should be considered only if any contractual cash flow is still collectible from such a
hedged item and as soon as the hypothetical derivative simulates the hedged item, the CVA is
not attributed to it.
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As stated by the abovementioned exposure draft, paragraph 6: ‘An entity shall offset a
recognised financial asset and a recognised financial liability and shall present the net amount
in the statement of financial position when the entity:

(a) has an unconditional and legally enforceable right to set off the financial asset and
financial liability; and

(b) intends either:
(i) to settle the financial asset and financial liability on a net basis, or

(ii) to realise the financial asset and settle the financial liability.’

In order to meet the disclosure information regarding the rights of set-off and related
arrangements, the 12th paragraph of the exposure draft states that: ‘… an entity shall dis-
close, as the minimum, the following information separately for financial assets and financial
liabilities recognised at the end of the reporting period by class of financial instruments:

(a) the gross amounts (before taking into account amounts offset in the statement of financial
position and portfolio-level adjustments for the credit risk of each of the counterparties
or the counterparties’ net exposure to the credit risk of the entity);

(b) showing separately:
(i) the amounts offset in accordance with the criteria in paragraph 6 to determine the net

amounts presented in the statement of financial position;
(ii) the portfolio-level adjustments made in the fair value measurement to reflect the effect

of the entity’s net exposure to the credit risk of counterparties or the counterparties’
net exposure to the credit risk of the entity; and

(iii) the net amount presented in the statement of financial position…’

16.9 CONCLUSIONS

The expansion of the liberalized physical commodity markets has led to the development
of OTC financial derivative instruments linked to energy commodities such as forwards and
swaps; this was followed by an increase in the number of energy companies acting as market
operators – both with hedging and trading purposes. The increasing use of OTC instruments
not managed by a central clearing house has highlighted the importance of evaluating and
quantifying the counterparty credit risk within pricing activity mainly by a metric defined as
CVA, the credit value adjustment.

In this chapter we first detailed the main features of an energy commodity swap derivative
instrument, outlining the determination of the floating leg. Then, we presented a two-factor
pricing model developed by Schwartz and Smith and used it to price a real energy com-
modity swap. To fully consider all relevant aspects, we discussed how to use the model to
assess the counterparty credit risk, via computation of the so-called credit value adjustment.
We investigated the right-way risk impact on the CVA, that is the effect of the correlation
parameter between the default intensity and the commodity factors on the credit adjust-
ment. We performed a sensitivity analysis in order to assess the impact that a change of
estimated Schwartz and Smith model parameters has on the CVA and on the adjusted fixed
price. In the light of this analysis, we can state that the CVA and the change in the fixed
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price are both particularly sensitive to the volatility parameters and to the long-run level
of the short-term factor, the volatility of the short-term factor being the most influential
parameter.

Finally, we presented and discussed the international accounting framework for swap
derivative instruments and for the CVA. First, we described the cash flow hedge – an accounting
methodology embedded in IAS 39 – providing also an example of hedge effectiveness using
the dollar offset method, and then we outlined the accounting methodology reported in the
exposure draft issued by the IASB and FASB (2011).
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CHAPTER 17
Pricing Energy Spread Options

Fred Espen Benth and Hanna Zdanowicz

17.1 SPREAD OPTIONS IN ENERGY MARKETS

Consider a power producer operating a gas-fired power plant. The producer generates income
from selling electricity in the market, at the expense of gas. Simply put, the producer generates
electricity only at times when this is profitable, and switches off the plant otherwise. Hence,
the producer earns the power price less production costs when this is positive, and nothing
otherwise. The production costs will be proportional to the cost of purchasing gas, where the
proportionality factor is referred to as the heat rate. The heat rate converts gas into the energy
equivalents of power, taking into account also the efficiency of the power plant. In Figure 17.1
we plot the income on a given day for the producer, as a function of power and production
costs.

Mathematically, the figure illustrates the function

max(P(T) − hG(T), 0),

where P(T) is the price of electricity, G(T) the price of gas at time T and h is the heat rate.
Traditionally, gas has been measured in terms of British thermal units (Btu), while power is
measured in megawatts (MW). The heat rate converts the energy content of Btu into MW,
and multiplies this by the efficiency rate of the power plant. The efficiency rate tells us how
many units (measured in MW) of gas are required to produce a unit of power. If we fix the
production cost hG(T), then the profit as a function of the power price P(T) will be the same
as from a European call option on the power price with strike hG(T).

The producer’s income from power generation over a time period [T1, T2] will be

T2∑

T=T1

max (P(T) − hG(T), 0) .

Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Edited by
Andrea Roncoroni, Gianluca Fusai and Mark Cummins.
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F IGURE 17.1 Profit function from running a gas-fired power plant.

This can be viewed as a strip of European call options written on the difference P(T) − hG(T),
or, on the spread between electricity and gas. In the marketplace, this difference is termed the
spark spread.

Let us take power and gas prices in the German EEX market as a case. In Figure 17.2 we
plot the daily power price P(t) (light grey curve) along with the heat-rate-adjusted gas price
hG(t) (dark grey curve) for 2011. Weekends and public holidays are excluded, and prices on
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F IGURE 17.2 Daily spot prices for power (light grey) and natural gas (dark grey) traded at the
German EEX market. Gas prices are converted into power with an efficiency factor (heat rate) of
49.13%. The spark spread truncated at zero is plotted in black.
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‘trading days’ only are plotted. We show baseload power prices computed from averaging
over the hourly spot prices, measured in euro/MWh. Further, the daily average spot price for
natural gas traded on the same market is plotted, scaled by a heat rate of h = 1∕49.13%. As the
natural gas prices are denominated in euro/MWh at the EEX, the heat rate will here contain
only the efficiency factor of the gas-fired power plant. Our choice is to use an efficiency factor
of 49.13%, which is in accordance with the number used in both UK and German spark spread
tables.1 The efficiency factor for a given gas-fired power plant ranges typically from 25% up
to around 55% in Germany. As is evident from the plot, for most of the days in 2011 the
gas-fired power plant yields a positive income since the power price is above the fuel costs
hG(t). However, on some days the production costs are above the power price, and the plant
will lose money if it is not shut down. In black, we have plotted the spark spread truncated
at zero, which is equal to the actual daily income per unit of power produced given that the
power plant is not producing whenever it is not profitable. Summing up the black curve yields
the total income per unit power produced by operation of the power plant. Thus, the payoff
from owning the strip of European calls on the spark spread.

If the power plant has a very low rate of efficiency, the heat rate will become bigger and
therefore the production costs much higher. This would be seen as an upscaling of the dark
grey curve in Figure 17.2, resulting in more days of negative spark spread, or zero production.

The owner of a gas-fired power plant is in effect holding a strip of spark spread options.
If the power plant is fueled by coal instead, the income can be viewed as holding a strip
of dark spread options, being the difference between the power and coal price. Valuation of
these derivatives provides us with a price for the power plant. This approach can be used in
a real option valuation if one considers building a gas or coal-fired power plant (see Fusai
and Roncoroni, 2008 for an extensive discussion and empirical study of spark spread option
valuation).

In the market, power plants are also bought and sold virtually. Tolling agreements are
financial derivatives which give the owner the right to operate a power plant virtually. For
example, a tolling agreement on a gas-fired power plant yields an income stream proportional
to that from a physically operated plant, as the holder of the tolling agreement will “produce”
at maximum rate when this is profitable and not “produce” at all when the power price is
below hG(T).

In the European Union, a gas or coal-fired power plant must hold certificates to be allowed
to emit carbon dioxide resulting from production. These certificates are traded on a market, the
EU Emissions Trading Scheme, and induce an additional production cost. Indeed, the income
from such a plant becomes

T2∑

T=T1

max(P(T) − hG(T) − C(T), 0),

where C(T) is the carbon dioxide emission price. Thus, we have a spread option on three
assets, which again we can view as a spread between power and the production cost, now
being the sum of the gas and emission price.

1This is in accordance with figures presented at Wikipedia, article http://en.wikipedia.org/wiki/
Spark spread, visited in January 2013.

http://en.wikipedia.org/wiki/Spark_spread
http://en.wikipedia.org/wiki/Spark_spread
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The power markets are gradually becoming more and more integrated. For example, new
cables connecting the NordPool to the German EEX market are planned to be built. The value
of such connection lines is given by the spread between Nordic and German power prices.
Similarly, through LNG and pipelines, the gas markets worldwide are increasingly integrated,
influencing the power markets as well.

From these examples, we can organize the various derivatives written on price differences
into cross-commodity options and geographical spread options. The former class include
options on the difference between two commodities related to the energy market, including
power, gas, coal, oil and emissions. The latter are options on price differences within the same
energy segment, but between different geographical marketplaces (e.g., EEX and NordPool
power markets). Other, more classical financial options include calendar spreads, which we also
find in the energy markets as options written on forwards with different delivery times. More
recently, demand or volume-triggered spreads have emerged, where the payout from the option
is dependent on specific weather events (such as lower-than-average wind speeds or warmer-
than-average temperatures).2 We encourage the reader to visit Carmona and Durrleman (2003)
for an extensive survey of other spread options relevant to the energy markets, in particular
the crack spread options traded at NYMEX, being options written on the difference between
prices of refined oil qualities.

The remainder of this chapter is devoted to analysing the price of spread options in energy
markets. Closely linked to pricing is the question of hedging the options, which we will also
address. Our starting point will be a relatively general exponential price model for two energy
commodities (power and gas, say), being a bivariate geometric Brownian motion with time-
dependent drifts and volatilities. Such a model will include spot and forward price dynamics
in many relevant situations occurring in the context of energy markets. The classical Margrabe
formula for the price of an option to exchange one asset with another (or, in our context, a
call option on the spread between the two assets) will be extended to our model. Furthermore,
we extend the famous approximation formula of Kirk (1996) as well. In addition, we provide
the reader with an introduction to another approximation formula suggested by Bjerksund
and Stensland (2006), being a slight twist on Kirk’s approach. Furthermore, a new approach
based on Taylor expansion along the strike is suggested as an alternative approximation. In this
procedure, the Margrabe formula appears as a zero-order approximation of a call spread option
with non zero strike. The higher-order terms are analytically available, and conveniently, the
error in this approximation can be quantified. Numerical examples illustrate the theory. We
discuss spread options on spot and forwards, as both situations are easily accommodated in
our general model.

The forthcoming analysis is organized as follows. In the next section we present the bivari-
ate geometric Brownian motion model for the joint price dynamics of two energy commodities.
We extend the Margrabe formula to price a call spread option with zero strike based on these
dynamics. Different examples relevant for spread options in energy markets are presented.
Then, in Section 17.3, hedging parameters for this option are derived, including the deltas and
the gammas. The case of non zero strike spread options is analysed in Section 17.4, where
we start off by introducing Kirk’s approximation. The Bjerksund–Stensland approximation
formula is discussed next. Finally, we introduce the approximation based on Taylor expansion
of the option price as a function of the strike.

2We refer to Benth et al. (2012) for more on such options, also known as quanto options.
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17.2 PRIC ING OF SPREAD OPTIONS WITH ZERO STRIKE

In 1976, Margrabe (see Margrabe, 1978) published his famous formula for the price of a so-
called exchange option. He considers the value of the optionality to exchange one asset with
another, which in our context is simply a call on the spread between two energy commodities
with strike zero. Assuming that the prices of two assets follow a bivariate geometric Brownian
motion, Margrabe derives a Black–Scholes-like formula for the price.

In energy markets, a slightly extended version of the Margrabe formula is required. We
suppose that the energy commodity price dynamics (power and gas, say) follow a bivariate
geometric Brownian motion with time-dependent expected return and volatility, formulated in
the pricing measure Q directly. Mathematically, this is expressed as

dP(t)
P(t)

= 𝜇P(t) dt + 𝛾P(t) dWP(t), (17.1)

dG(t)
G(t)

= 𝜇G(t) dt + 𝛾G(t) dWG(t), (17.2)

where𝜇P,𝜇G, 𝛾P and 𝛾G are time-dependent functions and WP, WG are two correlated Brownian
motions, that is 𝔼[dWP(t)dWG(t)] = 𝜌(t) dt for a time-dependent function −1 < 𝜌(t) < 1. We
note that 𝜌 = 0 corresponds to WP and WG being independent Brownian motions. Our dynamics
model the returns of the two energy commodities, where the expected returns 𝜇k can vary with
time as can the volatilities 𝛾k and correlation 𝜌, k = P, G.

We recover the classical framework of Margrabe by simply letting 𝜇k(t) = r > 0, the
risk-free interest rate, 𝛾k(t) = 𝜎k > 0, k = P, G, the volatilities, and a constant correlation
𝜌(t) = 𝜌. The stochastic dynamics of the two price variables will in this case be a classical
two-dimensional geometric Brownian motion in the risk-neutral world.

In Figure 17.3 we show daily simulated values of the bivariate geometric Brownian
motion dynamics for three different choices of correlation. For the sake of illustration, we
have chosen constant parameters, with the drifts being equal to zero and both P and G having
30% annual volatility. Letting the starting values be 100, we see in the top plot the dynamics
for a correlation being 𝜌 = −0.9. Compared with the positively correlated case of 𝜌 = 0.9
depicted at the bottom, the price dynamics are much more spread out. The independent case
based on 𝜌 = 0 is plotted in the middle.

The general bivariate geometric Brownian motion with time-dependent parameters will
facilitate a number of relevant situations in energy. For example, if we are interested in the
spread of forwards, a typical case in energy (and commodities in general) is the occurrence
of the Samuelson effect in the volatility structure of the forward price, in the sense that
the volatility decreases with time to maturity.3 This requires a model with a time-dependent
volatility function. Recall on the contrary that the drift will be zero for forward prices, as
they trade at no cost. Further, if one has in mind the valuation of a power plant, it might be
reasonable to assume that P and G are spot prices. Prices may show seasonal variations due to
the impact of weather in demand (temperature) or supply (rain, wind and/or sun). As a power
spot cannot in general be stored, the seasonality may appear in the expected return even under

3The ‘Samuelson effect’ was introduced by Samuelson (1965), and explained as a result of more
information gradually becoming available about the underlying commodity as delivery approaches.
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F IGURE 17.3 Two geometric Brownian motions being negatively correlated (top), independent
(middle) and positively correlated (bottom).

the pricing measure Q. Also, market prices of risk may have seasonal patterns, which we can
build into the drift when we model under Q. Spot volatilities may also be deterministically
varying for the same reasons, of course. We will come back to this in a moment, with a more
detailed discussion.

From the no-arbitrage theory of finance, we know that any option will have a price given
by the present expected value of the payoff, where the expectation is taken under the pricing
measure. For us, this means that the price V(t) at time t ≥ 0 of a spread option with zero strike
and exercise at time T ≥ t is

V(t) = e−r(T−t)𝔼Q [max(P(T) − hG(T), 0) |P(t), G(t)] . (17.3)
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Note that we condition on the current prices P(t) and G(t) of the two energy commodities. The
heat rate h is naturally assumed to be positive.

We present the extended Margrabe formula in the next proposition:

Proposition 17.2.1 The price of the spread option is

V(t) = P(t)e∫
T

t (𝜇P(s)−r) dsN(d1) − hG(t)e∫
T

t (𝜇G(s)−r) dsN(d2) ,

with d2 = d1 −
√

∫ T
t 𝛾2(s) ds,

d1 =
ln(P(t)∕G(t)) − ln h + ∫ T

t (𝜇P(s) − 𝜇G(s) + 1
2
𝛾

2(s)) ds
√

∫ T
t 𝛾2(s) ds

,

𝛾
2(s) = 𝛾

2
P(s) − 2𝜌(s)𝛾P(s)𝛾G(s) + 𝛾2

G(s),

and N(⋅) being the cumulative standard normal distribution function.

Recall that N(x) is the probability that a normally distributed random variable with mean
zero and variance one is less than x. It is implemented in most spreadsheets and software
packages and can be computed directly. The term ∫ T

t 𝛾
2(s) ds is the integrated (squared)

volatility from current time up to time of exercise of the option. We can interpret 𝛾(s) as the
volatility of the spread at time s.

Let us suppose for a moment that we are in the classical Margrabe case, with P and G
being two assets that can be liquidly traded and a heat rate h = 1. Then, under the pricing
measure Q, we will have that 𝜇P(s) = 𝜇G(s) = r. If we let 𝜌(s) = 𝜌, 𝛾P(s) = 𝜎P and 𝛾G(s) = 𝜎G
be constants in addition, we recover the Margrabe formula

V(t) = P(t)N(d1) − G(t)N(d2) , (17.4)

with

d1 =
ln(P(t)∕G(t)) + 1

2
𝜎

2(T − t)

𝜎

√
T − t

and d2 = d1 − 𝜎
√

T − t, for 𝜎2 = 𝜎
2
P − 2𝜌𝜎P𝜎G + 𝜎2

G. We observe that the extended Margrabe
formula in Proposition 17.2.1 has an explicit dependency in d1 on the difference in drift
𝜇P(s) − 𝜇G(s) between the two energies, a term which is naturally not occurring in the classical
Margrabe formula.

In energy markets, like the markets for electricity in northern Europe, say, there is a
seasonal pattern in prices. In the cold season, prices are generally higher than in the summer,
due to demand for heating. In the Nordic electricity market NordPool, prices are very sensitive
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to temperature in the winter, while more stable in the summer season. This leads to spot price
models (under the market probability) which can be modelled as

dP(t)
P(t)

= 𝜇P(t) dt + 𝛾P(t) dBP(t) .

Hence, the volatility 𝛾P and expected return 𝜇P can vary with season. For example, one might
think of a high volatility in winter compared with summer, and a strong positive drift in the
autumn yielding increasing prices, while being negative in the late spring. We introduce a
pricing measure Q which shifts the drift by a market price of risk 𝜃P(t), that is

dP(t)
P(t)

= (𝜇P(t) + 𝜃P(t)) dt + 𝛾P(t) dWP(t) .

To model possible seasonal effects, we allow the market price of risk also to be time-dependent.
Note that the ‘risk-neutral’ dynamics of the discounted power spot does not become a mar-
tingale4 under Q, which is a distinctive feature of pricing measures in power markets.5 We
further remark that the drift and market price of risk in the Q dynamics may include storage
costs and the convenience yield if we consider energy commodities like gas, coal and oil, say.

Suppose now that we would like to price the effect of having an interconnecting cable
between the NordPool market and the German EEX market. We analyse the situation from
the perspective of a Nordic producer with access to the cable. The producer has a possibility
to sell power in the German market, whenever prices there are attractive. This is a call option
on the spread between EEX and NordPool spot price, and if we suppose that the spot price in
Germany is given by P and the NordPool price by G, having the dynamics under Q

dG(t)
G(t)

= (𝜇G(t) + 𝜃G(t)) dt + 𝛾G(t) dWG(t) ,

we can apply the Margrabe formula with 𝜇k(t) = 𝜇k(t) + 𝜃k(t), k = P, G. In this case, we find
that

d1 =
ln(P(t)∕G(t)) − ln h + ∫ T

t (𝜇P(s) − 𝜇G(s) + 𝜃P(s) − 𝜃G(s) + 1
2
𝛾

2(s)) ds
√

∫ T
t 𝛾2(s) ds

.

Thus, both the difference in drift and the difference in the market price of risk will play a role
in the price determination.

4A martingale is a stochastic process for which future predictions are given by today’s value. In particular,
the discounted spot price is a martingale if its expected future value is constant.
5An extensive discussion about pricing measures in power and energy markets is provided by Benth
et al. (2008).
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F IGURE 17.4 Volatility of the forward price dynamics in equation (17.5).

Consider next the case of a spread option written on two forwards. Let us suppose
that a forward contract with delivery at time 𝜏 on the power P has forward price dynamics
given by

dP(t, 𝜏)
P(t, 𝜏)

=
{
𝜎P1 + 𝜎P2e−𝛼P(𝜏−t)} dWP(t) , (17.5)

for t ≤ 𝜏 and positive constants 𝜎ki, 𝛼k, k = P, G, i = 1, 2. These dynamics can be related to
the two-factor Schwartz–Smith model6 of spot price dynamics, where 𝜎P1 is the volatility of
the long-term factor of the spot, and 𝜎P2 exp(−𝛼P(𝜏 − t)) accounts for the variations due to
short-term fluctuations in the spot price. These short-term fluctuations are assumed to be mean-
reverting at a speed 𝛼P, with a volatility 𝜎P2, resulting in a Samuelson effect in the volatility of
the forward. In Figure 17.4 we plot the volatility of the forward as a function of time to maturity
𝜏 − t. In this example we have chosen 𝜎P1 to be 20% (annually), whereas 𝜎P2 is 50% annually.
The mean-reversion speed 𝛼P is chosen to be a reasonably fast one. We see that the volatility
is exponentially increasing towards 𝜎P1 + 𝜎P2 = 70% as time to maturity goes to zero. In
contrast, when we are far from maturity (that is, the time to maturity is large), the forward
volatility is essentially equal to 𝜎P1 = 20%, the long-term volatility of the spot. We define the
dynamics for G(t, 𝜏) similarly. Hence, 𝜇P(s) = 𝜇G(s) = 0, 𝛾k(t) = 𝜎k1 + 𝜎k2 exp(−𝛼k(T − t))
for k = P, G. Finally, we suppose a constant correlation 𝜌(t) = 𝜌. Assume the spread option
has exercise time T ≤ 𝜏. To apply Margrabe’s formula, we need to compute ∫ T

t 𝛾
2(s) ds. To

this end, introduce the notation

𝜁P,G(x, y) = e−
1
2

(𝛼P+𝛼G)x
(

1 − e−
1
2

(𝛼P+𝛼G)y
)
. (17.6)

6The Schwartz–Smith model appeared in Schwartz and Smith (2000), and has later been used extensively
in many commodity markets, including energy and power.
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We find from a direct (and admittedly tedious) computation that the “integrated volatility”
becomes

∫

T

t
𝛾

2(s) ds = (𝜎2
P1 − 2𝜌𝜎P1𝜎G1 + 𝜎2

G1)(T − t)

+2
𝜎P1𝜎P2

𝛼P
𝜁P,P(𝜏 − T , T − t) − 2𝜌

𝜎P1𝜎G2

𝛼G
𝜁G,G(𝜏 − T , T − t)

−2𝜌
𝜎P2𝜎G1

𝛼P
𝜁P,P(𝜏 − T , T − t) +

𝜎G1𝜎G2

𝛼G
𝜁G,G(𝜏 − T , T − t)

+
𝜎

2
P

2𝛼P
𝜁P,P(2(𝜏 − T), 2(T − t)) −

2𝜌𝜎P𝜎G

𝛼P + 𝛼G
𝜁P,G(2(𝜏 − T), 2(T − t))

+
𝜎

2
G

2𝛼G
𝜁G,G(2(𝜏 − T), 2(T − t)). (17.7)

Thus, we obtain a formula for the price of a spread call option on forwards:

V(t) = e−r(T−t) {P(t)N(d1) − hG(t)N(d2)
}
. (17.8)

Here,

d1 =
ln(P(t)∕G(t)) − ln h + 1

2
∫ T

t 𝛾
2(s) ds

√
∫ T

t 𝛾2(s) ds
,

and d2 = d1 −
√

∫ T
t 𝛾2(s) ds. We observe that this formula is analogous to the Black-76

formula7 for call options written on forwards. We remark that 𝜏 − T is the time between the
exercise of the spread option, T , and the time of delivery 𝜏 of the forward. In many cases
𝜏 = T , and we simply find that

𝜁P,G(0, y) = 1 − e−
1
2

(𝛼P+𝛼G)y
.

The difference T − t measures the time left until exercise of the option. If 𝛼k(T − t) is large
for k = P, G, we find that

𝜁P,G(x, y) ∼ e−
1
2

(𝛼P+𝛼G)x
.

This may happen either if T − t is large, or if the reversion rate 𝛼k is big, k = P, G.
In markets for gas and electricity, the forward and futures contracts deliver over a given

period of time. For example, in the EEX market one can enter forward contracts which deliver
electricity over a specific month, January say. Rather than receiving the “spot” at a delivery

7The Black-76 formula is the famous Black–Scholes formula for call options on forwards. See Black
(1976) for the precise statement.
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time 𝜏, a long position in the forward will result in delivery of 1 MW electricity over each
hour in the month of January. The contracts are settled financially, so the total value of the
delivery is (there are 31 × 24 = 744 hours in January)

744∑

𝜏=1

P(𝜏) .

The forward price is denoted in euro/MWh, which corresponds to a forward on the average
spot price over the delivery period. In Benth and Koekebakker (2008), Heath–Jarrow–Morton
dynamics for a power forward price for a contract with delivery over the period [𝜏1, 𝜏2] are
proposed to be

dP(t, 𝜏1, 𝜏2)

P(t, 𝜏1, 𝜏2)
=
(
𝜎P1 + 𝜎P2e−𝛼P(𝜏1−t)) dWP(t) , (17.9)

stated under the pricing probability Q. We note that the dynamics are similar to the fixed
delivery forward considered above. However, the interpretation of 𝜎P2 is different. In fact,
Benth and Koekebakker (2008) suggest modelling the volatility of P(t, 𝜏1, 𝜏2) as the average
over the delivery period of the volatility structure 𝛾P(t, 𝜏) = 𝜎P1 + 𝜎P2 exp(−𝛼P(𝜏 − t)). We
find this average to be

1
𝜏2 − 𝜏1 ∫

𝜏2

𝜏1

𝛾P(t, 𝜏) d𝜏 = 𝜎P1 +
𝜎P2

𝛼P(𝜏2 − 𝜏1)
(1 − e−𝛼P(𝜏2−𝜏1))e−𝛼P(𝜏1−t)

.

By defining

𝜎P2 =
𝜎P2

𝛼P(𝜏2 − 𝜏1)
(1 − e−𝛼P(𝜏2−𝜏1))

we obtain the volatility structure of P(t, 𝜏1, 𝜏2) stated in equation (17.9). We note in passing that
Benth and Koekebakker (2008) found evidence of seasonality in the volatility term structure,
which calls for additional time-dependent terms.

We continue with a discussion of the sensitivity of the option price with respect to the
correlation 𝜌 between the two energies. We analyse this in case the correlation is a constant,
𝜌(t) = 𝜌. To emphasize the dependency on 𝜌, we denote for the time being the spread call
option price at time t by V(t, 𝜌). We recall V(t, 𝜌) from Proposition 17.2.1, and differentiating
the integrated volatility function with respect to 𝜌 gives

d
d𝜌 ∫

T

t
𝛾

2(s) ds = −2
∫

T

t
𝛾P(s)𝛾G(s) ds ,

which is negative as the volatilities 𝛾P and 𝛾G are naturally supposed to be positive. Hence,
the total variance will decrease with an increasing correlation. A reasonable guess is thus that
the spread option price decreases as well, and this is indeed true. A direct (but rather technical
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and cumbersome) differentiation yields

𝜕V(t, 𝜌)
𝜕𝜌

= −P(t)N′(d1)e∫
T

t (𝜇P(s)−r) ds
∫ T

t 𝛾P(s)𝛾G(s) ds
√

∫ T
t 𝛾2(s) ds

,

with d1 and 𝛾(s) as in Proposition 17.2.1. Hence, we have for 𝜌, 𝜌′ ∈ (−1, 1) with 𝜌 < 𝜌′,

V(t,−1) > V(t, 𝜌) > V(t, 𝜌′) > V(t, 1) .

The more correlated the two energies are, the more the prices are collected together and the
spread variation becomes smaller. This naturally leads to cheaper options. On the contrary, a
strongly negative correlation will create a high variation in the spread, and thus more expensive
option prices. Recall the simulated price series of two correlated geometric Brownian motions
in Figure 17.3, where we clearly see how the prices are more collected together when they are
positively correlated compared with negative correlation.

In Figure 17.5 we plot the spread option price as a function of correlation.
We have used constant volatilities of 30% annually in this example, with drifts being equal

to the risk-free rate, which is set to zero. We have assumed one month until exercise of the
option. A decreasing price for increasing correlation is clearly visible. The span of prices is
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F IGURE 17.5 The spread option price as a function of correlation 𝜌 between the
Brownian motions.
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rather big, ranging from around 7 for 𝜌 = −1 down to 1 for 𝜌 = 1. Interestingly, the price is
concave in 𝜌, telling us that it has an increasing sensitivity to uncertainty in the correlation,
the higher the correlation is.

We observe that in the boundary cases for 𝜌 = ±1, the total variance becomes

∫

T

t
(𝛾P(s) ∓ 𝛾G(s))2 ds .

Obviously, in the degenerate case of 𝛾P = 𝛾G, the formula for 𝜕V(t, 𝜌)∕𝜕𝜌 above does not hold
for 𝜌 = 1, as we divide by zero. But recalling Figure 17.5 we see that the limit 𝜌 → 1 gives a
price.

17.3 ISSUES OF HEDGING

In this section we are concerned with the hedging of a spread call option. In the classical
Margrabe context, it is assumed that the two assets P and G are liquidly tradeable, and we can
find the hedging position in the two assets by the deltas of the price V with respect to P and
G. The deltas provide information about the elasticity of the value of the option with respect
to the underlying assets.

A direct differentiation of the price function V given in Proposition 17.2.1 yields the
deltas

𝜕V(t)
𝜕P(t)

= e∫
T

t (𝜇P(s)−r) dsN(d1) ,

𝜕V(t)
𝜕G(t)

= −he∫
T

t (𝜇G(s)−r) dsN(d2) .

Here, d1 and d2 are defined as in Proposition 17.2.1. In a perfectly liquid market, these deltas
give the actual number of the two underlyings to hold in order to replicate a spread call option.

In energy markets, liquidity is typically a major issue and perfect hedging is not feasible.
Approximative hedges must be found, taking the limitations of the market into account. For
example, if P is the spot price of power, it is not at all possible to use delta hedging since
electricity is not storable in general. One may also think of the situation where the spot is a
physically traded commodity like gas and where storage facilities are required to construct a
hedge. In these cases one can seek other tradeable instruments in order to build a hedge. A
reasonable choice is to use forwards with a short time to delivery, which will be positively
correlated with the spot price. We discuss this in more detail.

Conveniently, one may restate the spread option price in Margrabe’s formula in terms of
forwards. If P and G defined in equations (17.1) and (17.2) are the spot prices of two energy
commodities under some pricing measure Q, we find the forward prices with a delivery time
𝜏 to be, respectively,

fP(t, 𝜏) := 𝔼Q[P(𝜏) |P(t)] = P(t) exp
(

∫

𝜏

t
𝜇P(s) ds

)
, (17.10)

fG(t, 𝜏) := 𝔼Q[G(𝜏) |G(t)] = G(t) exp
(

∫

𝜏

t
𝜇G(s) ds

)
. (17.11)
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Recall that we can intepret 𝜇k as consisting of the interest rate r (cost of financing) and a
convenience yield and/or cost of carry factor 𝛿k by

𝜇k(s) = r + 𝛿k(s) , k = P, G .

This is in line with the theory of forward pricing in commodity markets.8

From Proposition 17.2.1 we see by direct insertion that the option price on the spread
between the spot energy commodities can be rephrased as

V(t) = e−r(T−t)
{

fP(t, 𝜏)e− ∫ 𝜏T 𝜇P(s) dsN(d1) − hfG(t, 𝜏)e− ∫ 𝜏T 𝜇G(s) dsN(d2)
}

(17.12)

for 𝜏 ≥ T . Here, d2 = d1 −
√

∫ T
t 𝛾2(s) ds and

d1 =
ln(fP(t, 𝜏)∕fG(t, 𝜏)) − ln h + ∫ 𝜏T (𝜇G(s) − 𝜇P(s)) ds + 1

2
∫ T

t 𝛾
2(s) ds

√
∫ T

t 𝛾2(s) ds
.

Hence, we may use the forward contracts fP(t, 𝜏) and fG(t, 𝜏) with delivery 𝜏 after the exercise
time T in a portfolio to hedge the spread option on P(𝜏) and G(𝜏).

We can similarly treat the situation where it is more convenient to use forwards with
delivery 𝜏 prior to exercise of the spread T . For example, we could apply a roll-over strategy
where we use contracts with delivery 𝜏 up until t = 𝜏, and then roll over to a new pair of
forwards with later delivery. Also, we can easily accommodate the situation where we can
choose different delivery times 𝜏P and 𝜏G for the two energy forwards fP and fG.

The representation of the spread option price in terms of forward prices is not surprising,
since we can in fact consider the spread option on the spot prices as a spread option on the
forwards. To this end, recall that for 𝜏 ≥ T , we have

P(T) = fP(T , 𝜏)e− ∫ 𝜏T 𝜇P(s) ds

and similarly for G(T). Hence, the spread option has a payoff function that can be written as

max (P(T) − hG(T), 0) = max
(

fP(T , 𝜏)e− ∫ 𝜏T 𝜇P(s) ds − hfG(T , 𝜏)e− ∫ 𝜏T 𝜇G(s) ds, 0
)
.

Hence, we have a spread on the forwards, appropriately ‘discounted’ by 𝜇P and 𝜇G. Obviously,
the price of this spread on forwards is equal to V(t) as in equation (17.12).

8For an economical introduction to forward pricing in commodity markets, in particular energy, the
reader is referred to Geman (2005). Here a treatment of storage and convenience yield, as well as the
classical theory of contango and backwardation, is provided in the context of forward markets.
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We end this section with explicit computations of the Greeks gamma and cross gamma.
It holds that

𝜕
2V(t)

𝜕P(t)2
= e∫

T
t (𝜇P(s)−r) ds

√
∫ T

t 𝛾2(s) ds

𝜑(d1)

P(t)
,

𝜕
2V(t)

𝜕G(t)2
= h

e∫
T

t (𝜇G(s)−r) ds

√
∫ T

t 𝛾2(s) ds

𝜑(d2)

G(t)
,

𝜕
2V(t)

𝜕P(t)𝜕G(t)
= − e∫

T
t (𝜇P(s)−r) ds

√
∫ T

t 𝛾2(s) ds

𝜑(d1)

G(t)
,

where 𝜑 denotes the density function of a standard normal distribution. One may also derive
other Greeks explicitly for the spread option.

17.4 PRIC ING OF SPREAD OPTIONS WITH NONZERO STRIKE

Margrabe’s formula is not valid for spread call options where the strike is nonzero, that is, for
options with payout at exercise

max(P(T) − hG(T) − K, 0), (17.13)

where the strike K is some real number. Note that as the difference between P(T) and hG(T)
may become negative, it is relevant to consider strikes K being negative as well as positive.

Recall the introductory example of a coal/gas-fired power plant paying emission costs,
which we argued could be valued as a strip of spread calls. Considering one such option, with
exercise time T , it will have the payoff

max(P(T) − hG(T) − C(T), 0) . (17.14)

One can reduce the pricing of such a trivariate spread option to a spread option with payoff
as in (17.13) where the strike is K = 1.

Let the carbon emission price be given as a geometric Brownian motion of the form

dC(t)
C(t)

= 𝜇C(t) dt + 𝛾C(t) dWC(t) (17.15)

under the pricing measure Q. Here, WC is a Brownian motion which is correlated both to WP
and WG. We introduce the notation 𝜌PG(t), 𝜌CP(t) and 𝜌CG(t) for the three different correlations
(all being functions with values between −1 and 1), and remark that we must have

𝜌
2
CP(t) + 𝜌2

CG(t) + 𝜌2
PG(t) ≥ 1 + 2𝜌CP(t)𝜌CG(t)𝜌PG(t)
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to ensure a well-defined trivariate correlated Brownian motion (WP, WG, WC). If this condition
is not satisfied, the covariance matrix for the three variables will not be positive-definite. We
have the following result:

Proposition 17.4.1 The price at time t of a trivariate spread with payoff as in (17.14) is

V(t) = C(t)e∫
T

t (𝜇C(s)−r) ds𝔼Q̃

[
max

(
P̃(T) − hG̃(T) − 1, 0

)
| P̃(t), G̃(t)

]
,

where P̃(t) = P(t)∕C(t), G̃(t) = G(t)∕C(t) and the dynamics of P̃ and G̃ are, respectively,

dP̃(s)

P̃(s)
= 𝜇P(s) ds + �̃�P(s) dW̃P(s) ,

dG̃(s)

G̃(s)
= 𝜇G(s) ds + �̃�G(s) dW̃G(s) ,

with 𝜇i(s) = 𝜇i(s) − 𝜇C(s),

�̃�
2
i (s) = 𝛾

2
i (s) − 2𝜌Ci(s)𝛾C(s)𝛾i(s) + 𝛾2

C(s) ,

for i = P, G, and two Q̃-Brownian motions W̃P and W̃G being correlated by

𝜌PG(s) =
𝜌PG(s)𝛾P(s)𝛾G(s) − 𝜌CP(s)𝛾P(s)𝛾C(s) − 𝜌CG(s)𝛾G(s)𝛾C(s) + 𝛾2

C(s)
√
�̃�P(s)

√
�̃�G(s)

.

The pricing formula above introduces two new energy price dynamics, P̃ and G̃, being
bivariate geometric Brownian motions. In fact, these energies are simply the original price
dynamics using the carbon emission price as numeraire. The expected return and volatility of
the two energies are modified by the carbon return and volatility. In conclusion, by appropri-
ately recasting the dynamics of the two energies, any trivariate spread option can be viewed
as a spread option with nonzero strike.

Given the exponential models for the dynamics of P and G in equations (17.1) and (17.2),
there exists no analytical pricing formula for spread call options when K ≠ 0. Hence, one must
resort to numerical pricing,9 or deriving efficient approximation methods. In this section we
will focus on the latter, and introduce and discuss some existing and some new ways to tackle
the pricing problem of spread options with nonzero strikes. Our goal is to obtain formulas
which are able to approximate the exact price

V(t, K) = e−r(T−t)𝔼 [max (P(T) − G(T) − K, 0) |P(t), G(t)] (17.16)

reasonably well in an efficient manner.

9For example, Monte Carlo simulations or numerical solution of partial differential equations, see Fusai
and Roncoroni (2008) for these methods applied to spread options.
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17.4.1 Kirk ’s Approximat ion Formula

The idea of Kirk (1996) is to suppose that G(T) + K is log-normally distributed. In our context,
we obtain the following approximative formula for the spread call option price generalizing
Kirk’s formula:

ṼKirk(t, K) = e∫
T

t (𝜇P(s)−r)dsP(t)N(d1) − e∫
T

t (𝜇G(s)−r)ds(hG(t) + K)N(d2) , (17.17)

where d2 = d1 − 𝜎(t, T),

d1 =
ln P(t)

hG(t)+K
+ ∫ T

t (𝜇P(s) − 𝜇G(s)) ds + 1
2
𝜎

2(t, T)

𝜎(t, T)
, (17.18)

and

𝜎
2(t, T) =

∫

T

t
𝛾

2
P(s)ds − 2

hG(t)
hG(t) + K ∫

T

t
𝜌(s)𝛾P(s)𝛾G(s)ds +

(
hG(t)

hG(t) + K

)2

∫

T

t
𝛾

2
G(s)ds.

(17.19)

Note that if we let K = 0, we recover Margrabe’s formula in Proposition 17.2.1. Furthermore,
letting 𝜇P(s) = 𝜇G(s) = r, constant correlation 𝜌(t) = 𝜌, and the volatilities being constants
𝛾k(s) = 𝜎k > 0 for k = P, G, we recover the original Kirk’s approximation formula

ṼKirk(t, K) = P(t)N(d1) − (hG(t) + K)N(d2)

with d2 = d1 − 𝜎
√

T − t,

d1 =
ln P(t)

hG(t)+K
+ 1

2
𝜎

2(T − t)

𝜎

√
T − t

,

and

𝜎
2 = 𝜎

2
P − 2

hG(t)
hG(t) + K

𝜌𝜎P𝜎G +
(

hG(t)
hG(t) + K

)2

𝜎
2
G .

Bjerksund and Stensland (2006) suggest a modification of Kirk’s approximation method.
They allow for a different parameter attached to the strike K, namely, the spread call option
value is approximated by the formula

ṼBS(t, K) = e∫
T

t (𝜇P(s)−r)dsP(t)N(d1) − e∫
T

t (𝜇G(s)−r)dshG(t)N(d2) − e−r(T−t)KN(d3). (17.20)
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Here,

d1 =
ln P(t)

hG(t)+K
+ ∫ T

t (𝜇P(s) − 𝜇G(s))ds + 1
2
𝜎

2
1(t, T)

𝜎(t, T)
,

d2 =
ln P(t)

hG(t)+K
+ ∫ T

t (𝜇P(s) − 𝜇G(s))ds + 1
2
𝜎

2
2(t, T)

𝜎(t, T)
,

d3 =
ln P(t)

hG(t)+K
+ ∫ T

t (𝜇P(s) − 𝜇G(s))ds + 1
2
𝜎

2
3(t, T)

𝜎(t, T)
,

and 𝜎(t, T) given in equation (17.19) as in Kirk’s formula, and

𝜎
2
1 (t, T) =

∫

T

t
𝛾

2
P(s)ds − 2

hG(t)
hG(t) + K ∫

T

t
𝜌(s)𝛾P(s)𝛾G(s)ds +

(
hG(t)

hG(t) + K

)2

∫

T

t
𝛾

2
G(s)ds,

𝜎
2
2 (t, T) = −

∫

T

t
𝛾

2
P(s)ds + 2

∫

T

t
𝜌(s)𝛾P(s)𝛾G(s)ds + hG(t)

hG(t) + K

(
hG(t)

hG(t) + K
− 2

)

∫

T

t
𝛾

2
G(s)ds,

𝜎
2
3 (t, T) = −

∫

T

t
𝛾

2
P(s)ds +

(
hG(t)

hG(t) + K

)2

∫

T

t
𝛾

2
G(s)ds .

If we set K = 0, the Bjerksund–Stensland approximation coincides with the Margrabe formula
in Proposition 17.2.1. We can also in this case recover the original Bjerksund–Stensland
approximation introduced by assuming constant coefficients and 𝜇G = 𝜇P = r.

We consider some empirical examples to illustrate the performance of the two approxi-
mations. Suppose that we have two forwards, with price dynamics having volatilities given by
𝛾k(t) = 𝜎k1 + 𝜎k2 exp(−𝛼k(𝜏 − t)) for t ≤ 𝜏 , k = P, G and 𝜏 being the delivery time of the for-
wards. The correlation 𝜌(t) between the two Brownian motions WP and WG will be a constant.
For simplicity, we let the parameter values in the specification of the forwards be the same, so
that 𝛼k = 𝛼 and 𝜎ki = 𝜎i, for k = P, G and i = 1, 2. The ‘long-term’ level of the volatility is set
to 20% annually, corresponding to 𝜎1 = 0.0126 on a daily scale. The ‘short-term’ volatility is
assumed to be 50% annually, corresponding to 𝜎2 = 0.0316 on a daily scale. Here we let the
number of trading days in a year be 250. The parameter 𝛼 can be associated with a speed of
mean reversion in the short-term variations factor of a Schwartz–Smith spot model, and we
assume this to be 𝛼 = 0.139, which corresponds to a half-life of 5 days.10 Finally, we let t = 0,
and P(0) = hG(0) = 100 for simplicity. In the examples, we consider a call option on the spread

10Clewlow and Strickland (2000) introduce the concept of half-life for a mean-reverting process as a
measure for how fast the process returns to its mean value. The half-life is defined as the average time
it takes the process to return half-way back to its mean after a random shock. A high speed of mean
reversion will imply that a shock is rapidly wiped out.
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F IGURE 17.6 Plots of the approximative prices of Kirk and Bjerksund–Stensland as a function of
the strike K along with the benchmark prices simulated by Halton quasi-Monte Carlo. The correlations
are set to 𝜌 = 0.9,−0.9,−0.5 and 𝜌 = 0.5 going clockwise from the upper left-hand plot.

between the two forwards, with strike K ranging from −10 to 10. The delivery time 𝜏 of the
forwards will be in the middle of a given month, while exercise of the options will take place
at the beginning of the month so that 𝜏 − T = 10 days (assuming five trading days in a week).
We simulate benchmark prices for the various strikes based on quasi-Monte Carlo simulations
using the Halton low-discrepancy sequence of numbers. We simulate until an accuracy in the
first two decimal places is reached. In the panel of plots in Figure 17.6 we show the resulting
benchmark prices along with the approximations of Kirk and Bjerksund–Stensland. The upper
two plots show prices for correlations 𝜌 = 0.9 (left) and 𝜌 = −0.9 (right), whereas the lower
two plots show the corresponding prices for 𝜌 = ±0.5. The option prices are decreasing with
the strike and concave. Since a negative correlation makes the difference P(T) − hG(T) more
spread out, the prices become more expensive than for positively correlated commodities.
This is in line with our theoretical finding that the derivative of Margrabe’s option price with
respect to correlation is negative.

It is impossible on the graphs to distinguish the approximative prices from the benchmark.
In the panel of plots presented in Figure 17.7 we show the relative errors (in percent) of the
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F IGURE 17.7 Plots of the relative error in percent of Kirk and Bjerksund–Stensland as a function of
the strike K. The correlations are set to 𝜌 = 0.9,−0.9,−0.5 and 𝜌 = 0.5 going clockwise from the
upper left-hand plot.

two approximation methods. The Bjerksund–Stensland method works better overall than Kirk,
in particular for positive strikes. Both methods are very good for negative strikes, where the
error seems to be minor (but increasing with a decreasing strike). However, for strikes bigger
than 0 we observe an increase in the error with the strike, especially for the strongly positive
correlated case where the two methods underprice around 2–3%. In the other cases, the error
is around 0.3% at most, showing that the two approximations work well for smaller and/or
negative correlations.

17.4.2 Approximat ion by Margrabe Based on Taylor
Expansion

We want to investigate a new and alternative approximation of the spread option price for K ≠ 0
based on Taylor expansion. The idea is to view the price V(t, K) as a function of the strike, and
Taylor expand this around K = 0. Such an approximation will involve the derivatives of the
price with respect to the strike, and turns out to have the Margrabe formula as the zero-order
approximation.
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The Taylor representation of order N with remainder is given by

V(t, K) =
N∑

n=0

V(n)(t, 0)
n!

Kn + V (N+1)(t, K̃)
(N + 1)!

KN+1
. (17.21)

Here, V(n) is the nth derivative of V(t, K) with respect to K, using the convention that V(0) = V .
Moreover, in the error term we have |K̃| ≤ |K|.

Note that the zero order term is

V(0)(t, 0) = V(t, 0) = e−r(T−t)𝔼[max(P(T) − hG(T), 0) |P(t), G(t)] ,

which leads us back to the Margrabe formula in Proposition 17.2.1. The derivative of V(t, K)
at K = 0 is

V (1)(t, 0) = −e−r(T−t)N(d3) ,

with

d3 =
ln(P(t)∕G(t)) − ln h + ∫ T

t (𝜇P(s) − 𝜇G(s) − 1
2

(𝛾2
P(s) + 𝛾2

G(s))) ds
√

∫ T
t 𝛾2(s) ds

(17.22)

where 𝛾(s) is defined in Proposition 17.2.1. Hence, by appealing to the first-order Taylor
approximation of V(t, K) and again Proposition 17.2.1, we find

Ṽ1(t, K) = e∫
T

t (𝜇P(s)−r) dsP(t)N(d1) − e∫
T

t (𝜇G(s)−r) dshG(t)N(d2) − e−r(T−t)KN(d3). (17.23)

Here, d1 and d2 are defined in Proposition 17.1, and d3 in equation (17.22). This provides
us with a first-order approximation of V(t, K). The structure of Ṽ1(t, K) is similar to that
of Bjerksund–Stensland, however, it is important to note that in the latter approximation
also d1, d2 and d3 depend on K, which is not the case for Ṽ1(t, K). Indeed, the first-order
Taylor approximation is linear in K, while the approach of Bjerksund–Stensland is highly
nonlinear.

Let us consider a numerical example based on the first-order Taylor approximation Ṽ1(t, K)
given in equation (17.23). We place ourselves in the same setting as described in the empir-
ical example of the previous subsection, and apply the Halton quasi-Monte Carlo simulated
prices as benchmarks. Note that from Figure 17.6 the price of a call spread decreases with
the strike K and is concave. As the first-order Taylor price Ṽ1(0, K) is based on approxi-
mating the price by following the gradient at K = 0, we are likely to have an increasing
price error when moving away from the zero strike. This is indeed what we see in Figure
17.8. However, we find a very good approximation for strikes near zero. It is also important
to note that the Taylor approximation is always below the true price as this is a concave
function. The gradient at K = 0 naturally passes zero at a positive value of K, and giving
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F IGURE 17.8 Plots of the first-order Taylor approximation V1(0, K) as a function of the strike K
along with the benchmark prices simulated by Halton quasi-Monte Carlo. The correlations are set to
𝜌 = 0.9,−0.9,−0.5 and 𝜌 = 0.5 going clockwise from the upper left-hand plot.

negative prices for larger strikes. This is clearly unreasonable as the true prices must be
positive.

As noted, the first-order Taylor approximation is linear in K, whereas both Kirk and
Bjerksund–Stensland are nonlinear approximations. These seem to capture the curvature of the
prices as a function of K much better, at least in the numerical examples we have considered.
On the contrary, we can add a second-order term in the Taylor approximation to obtain a
function being concave as well. This would require knowledge of Ṽ(2)(t, 0), which is not as
simple as V(0)(t, 0) and Ṽ(1)(t, 0), unfortunately. It can be calculated as

Ṽ (2)(t, 0) = e−r(T−t)
∫

∞

−∞
e−xfP,G(x, x) dx , (17.24)

where fP,G is the bivariate normal probability density function of lnP(T) and lnG(T), given
P(t) and G(t). We recall from probability theory that if (X, Y) are two bivariate normally
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distributed variables with mean 𝜇X and 𝜇Y and variances 𝜎2
X and 𝜎2

Y , respectively, then their
probability density function is

gX,Y (x, y) = 1

2𝜋𝜎X𝜎Y

√
1 − 𝜌2

× exp

(

− 1
2(1 − 𝜌2)

(
(x − 𝜇X)2

𝜎
2
X

− 2𝜌
(x − 𝜇X)(y − 𝜇Y )

𝜎X𝜎Y
+

(y − 𝜇Y )2

𝜎
2
Y

))

,

where the correlation between X and Y is 𝜌. From equations (17.1) and (17.2), we find that
lnP(T) and lnG(T) given P(t) and G(t) have means

𝜇X = lnP(t) +
∫

T

t
(𝜇P(s) − 1

2
𝛾

2
P(s)) ds ,

𝜇Y = ln h + lnG(t) +
∫

T

t
(𝜇G(s) − 1

2
𝛾

2
G(s)) ds,

and variance–covariance matrix

(
𝜎

2
X 𝜌𝜎X𝜎Y

𝜌𝜎X𝜎Y 𝜎
2
Y

)

=
⎛
⎜
⎜
⎝

∫ T
t 𝛾

2
P(s) ds ∫ T

t 𝜌(s)𝛾P(s)𝛾G(s) ds

∫ T
t 𝜌(s)𝛾P(s)𝛾G(s) ds ∫ T

t 𝛾
2
G(s) ds

⎞
⎟
⎟
⎠

,

identifying 𝜎2
X , 𝜎2

Y and the correlation 𝜌. The second-order Taylor approximation of V(t, K)
becomes

Ṽ2(t, K) = e∫
T

t (𝜇P(s)−r) dsP(t)N(d1) − e∫
T

t (𝜇G(s)−r) dshG(t)N(d2) − e−r(T−t)KN(d3)

+e−r(T−t)K2
∫

∞

−∞
e−xfP,G(x, x) dx. (17.25)

The last integral can be computed analytically, but the expression is too long and technical to
be included here.

The advantage of the Taylor method is, as said earlier, that the error is accessible – which
can be investigated from an analytical point of view. Such an analysis is lacking for the Kirk
and Bjerksund–Stensland methods. Indeed, the error for the first-order Taylor price Ṽ1(0, K)
can be estimated from Ṽ (2)(0, K̃) for |K̃| ≤ |K|, while the second-order approximation has an
error which involves Ṽ (3)(t, K̃). Error estimates provide precise statements about the domain
of validity of the method. However, if such are lacking, as for Kirk and Bjerksund–Stensland,
only empirical studies can provide confidence in the methodology.

17.4.3 Other Pric ing Methods

We would like to briefly mention two other methods to approximate spread call options with
strikes different from zero. The first method models the spread of the underlying commodities
directly, while the other uses the Fourier transform.
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Somewhat following the idea of Kirk, one may ask for distributional approximations of
the spread P(T) − hG(T). A simple idea would be to suppose that the spread is normally
distributed, and compute the mean and variance from the specifications of P(T) and G(T).
Defining S(T) to be this normally distributed random variable, it is an easy exercise to compute
the approximative spread call option price from the expression

Ṽ(t, K) = e−r(T−t)𝔼 [max(S(T) − K, 0) | S(t)] ,

which is the same as computing Bachelier’s price of a call option with strike K.11 We remark
that S(t) will be given in terms of P(t) and G(t), while the mean and variance can be analytically
computed in terms of the parameters of the two commodities.12

An empirical version of this way of approaching the valuation of spread call options is to
model the spread directly. Based on statistical analysis of the spread data, one fits a suitable
stochastic process and uses this to price a call option.13 The disadvantage with this approach
is that one loses the explicit connection with the marginal commodities P and G, which only
enters implicitly in the statistical estimation of the spread.

Transform-based valuation of derivatives is popular in quantitative finance.14 In our
context, one can derive an integral representation of the spread option price based on the
Fourier transform of the payoff function max(x − y − 1, 0) and the characteristic function
of the logarithmic prices lnP(T) and lnG(T).15 This paves the way for efficient numerical
pricing using the fast Fourier transform. Even more, as the method is based on knowledge of
the characteristic function of the logarithmic prices, one can go beyond Gaussian models as
treated here. Price dynamics based on bivariate jump processes can be handled in many cases,
a class of models which is relevant in energy markets.16
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CHAPTER 18
Asian Options: Payoffs and

Pricing Models
Gianluca Fusai, Marina Marena and Giovanni Longo

I n this chapter, we describe and compare alternative procedures for pricing Asian options.
Asian options are derivatives contracts written on an average price. More precisely, prices

of an underlying security (or index) are recorded on a set of dates during the lifetime of the
contract. At the option’s maturity, a payoff is computed as a deterministic function of an
average of these prices. As reported by Falloon and Turner (1999), the first contract linked to
an average price was traded in 1987 by Bankers & Trust in Tokyo, hence the attribute ‘Asian’.

Asian options are quite popular among commodity derivative traders and risk managers.
This is due to several reasons.

Primarily, Asian options smooth possible market manipulations occurring near the expiry
date. In general, the longer the averaging period, the smoother the path. This is shown in
Figures 18.1 and 18.2. The first figure shows three simulated paths of the underlying and of
its average: the strong oscillations in the underlying path disappear as we consider the time
average. The second figure presents simulated paths of the two quantities and the simulated
distributions one year in the future: the one that refers to the arithmetic average appears much
less dispersed than the one referring to the underlying.

Secondly, Asian options provide a suitable hedge for firms facing a stream of cash flows.
This is the case, for instance, with commodity end-users that are financially exposed to
average prices. Asian-style options, and other options written on alternative definitions of
average prices, are effective hedging devices in commodity markets. Eydeland and Wolyniec
(2003) provide an example of how these derivatives play an important role in price risk
management performed by local delivery companies in the gas market. Moreover, oil markets
often use these securities to stabilize cash flows that stem from meeting obligations to clients.

A few examples of Asian options traded on organized markets are:

� The New York Mercantile Exchange (NYMEX) and Intercontinental Exchange (ICE)
offer several average price products which are linked to energy products, e.g. Brent

Handbook of Multi-Commodity Markets and Products: Structuring, Trading and Risk Management. Edited by
Andrea Roncoroni, Gianluca Fusai and Mark Cummins.
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F IGURE 18.1 Simulated paths of spot price and its time (arithmetic) average
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TABLE 18.1 Average price options traded at NYMEX

WTI Average Price Option
Underlying Futures
Light Sweet Crude Oil Futures (CL)
Contract Unit
On expiration of a call option, the value will be the difference between the average daily settlement

price during the calendar month of the first nearby underlying Light Sweet Crude Oil Futures and
the strike price multiplied by 1000 barrels, or zero, whichever is greater. On expiration of a put
option, the value will be the difference between the strike price and the average daily settlement
price during the calendar month of the first nearby underlying Light Sweet Crude Oil Futures
multiplied by 1000 barrels, or zero, whichever is greater.

Price Quotation
US dollars and cents per barrel
Option Style
Average Price non-early exercisable option
Minimum Fluctuation
$0.01 per barrel
Expiration of Trading
Trading ends the last business day of the calendar month
Listed Contracts CME ClearPort and Open Outcry: 72 consecutive months CME Globex:

1 consecutive month
Strike Prices
Twenty strike prices in increments of $0.50 (50) per barrel above and below the at-the-money strike

price, and the next 10 strike prices in increments of $2.50 above the highest and below the lowest
existing strike prices for a total of at least 61 strike prices. The at-the-money strike price is nearest
to the previous day’s close of the underlying futures contract. Strike price boundaries are adjusted
according to the futures price movements. In addition, options trading can be conducted in strike
price increments of $0.01.

Settlement Type
Financial
Exchange Rule
These contracts are listed with, and subject to, the rules and regulations of NYMEX

Source: http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contractSpecs_options
.html#prodType=AVP.

Average Price Options and WTI (West Texas Intermediate) Average Price Options. Details
are provided in Tables 18.1 and 18.2.

� The London Metal Exchange (LME) offers Traded Average Price Options (TAPOs) based
on the LME Monthly Average Settlement Price (MASP) for several metals, such as for
copper grade A, high-grade primary aluminium, standard lead, primary nickel, special
high-grade zinc, aluminium alloy and tin. Because many users in the industry price their
physical material on the basis of the LME MASP, brokers developed off-exchange average
price option products, known as Asians, which quickly became popular, particularly with
large producers. To meet this growing demand, the LME developed the TAPO contracts.
TAPO contracts complement existing LME futures and traded options contracts. Details
for a copper TAPO contract are provided in Table 18.3.

� The Chicago Mercantile Exchange (CME) launched trading for three new cash-settled
petroleum crack spread average price options contracts in July, 2009. These new average

http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contractSpecs_options.html#prodType=AVP
http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contractSpecs_options.html#prodType=AVP
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TABLE 18.2 Average options on Brent traded at ICE

ICE Brent Average Price Option
Description
The Brent Average Price Option is based on the underlying ICE Brent 1st Line Future (I) and will

automatically exercise into the settlement price of the 1st Line Future on the day of expiry of the options
contract.

Contract Symbol I
Hedge Instrument: The delta hedge for the Brent Average Price Option is the ICE Brent 1st Line Swap Future

(I)
Contract Size
1000 barrels
Unit of Trading
Any multiple of 1000 barrels
Currency
US dollars and cents
Trading Price Quotation
One cent ($0.01) per barrel
Settlement
Price Quotation: One tenth of one cent ($0.001) per barrel
Minimum Price Fluctuation
One tenth of one cent ($0.001) per barrel
Last trading day
Last trading day of the contract month
Option Type
Options are Asian-style and will be automatically exercised on the expiry day if they are in-the-money. The

swap future resulting from exercise immediately goes to cash settlement, relieving market participants of
the need to concern themselves with liquidation or exercise issues. If an option is out-of-the-money it will
expire automatically. It is not permitted to exercise the option on any other day or in any other
circumstances than the last trading day. No manual exercise is permitted.

Expiry
19:30 London Time (14:30 EST). Automatic exercise settings are pre-set to exercise contracts which are one

minimum price fluctuation or more ‘in-the-money’ with reference to the relevant reference price. Members
cannot override automatic exercise settings or manually enter exercise instructions for this contract. The
reference price will be a price in USD and cents per barrel equal to the average of the settlement prices as
made public by ICE for the Brent 1st Line Swap Future for the contract month. When exercised against, the
Clearing House, at its discretion, selects sellers against which to exercise on a pro rata basis.

Option Premium / Daily Margin
The premium on the Brent Average Priced Option is paid/received on the business day following the day of

trade. Net Liquidating Value (NLV) will be re-calculated each business day based on the relevant daily
settlement prices. For buyers of options, the NLV credit will be used to off set their Original Margin (OM)
requirement; for sellers of options, the NLV debit must be covered by cash or collateral in the same manner
as the OM requirement. OM for all options contracts is based on the options delta.

Strike Price Intervals
Minimum $0.50 increment strike prices: $1.00 strikes from $20 to $240; $0.50 strikes, 20 strikes above and

below ATM. The at-the-money strike price is the closed interval nearest to the previous business day’s
settlement price of the underlying contract.

Contract Series
Up to 72 consecutive months
Final Payment Date
Two Clearing House business days following the last trading day. Business Days: Publication days for ICE.

Source: https://www.theice.com/productguide/ProductSpec.shtml;jsessionid=2A767FBF878E8F31AD
ADC5ED9B70B639?specId=11523783.

https://www.theice.com/productguide/ProductSpec.shtml;jsessionid=2A767FBF878E8F31ADADC5ED9B70B639?specId=11523783
https://www.theice.com/productguide/ProductSpec.shtml;jsessionid=2A767FBF878E8F31ADADC5ED9B70B639?specId=11523783
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TABLE 18.3 LME traded average price options (TAPO’s) on copper specifications

TAPO Contract Specifications
Contract Metals
Copper grade A, high-grade primary aluminium, standard lead, primary nickel, special high-grade

zinc, aluminium alloy and tin.
Contract Date
The business day on which the contract is traded
Contract Period
Calendar months up to 27 months forward for copper grade A, high-grade primary aluminium,

primary nickel, special high-grade zinc, and 15 months forward for standard lead, aluminium
alloy and tin. Contracts can be traded daily up to and including the penultimate business day of
the current month.

Option Type
Calls and puts based on the monthly average settlement price (MASP). No early exercise. Fixed

period: The period between the first business day of the current month and the last business day of
the month (inclusive).

Strike Price
$1 gradations
Currency
US dollars
Minimum Tick Size
0.01 USD (one cent)
Premium Payment
Next business day after the contract is traded.
Exercise
The exercise process is automatic once the LME monthly average settlement price is made official.

A TAPO contract that is ‘in-the-money’ generates two futures trades per member which are equal
and opposite in tonnage. One trade corresponds to the MASP and the other to the original strike
price of the option.

Settlement Date
Settlement is two business days after exercise. The futures trades settle as per LME rules and

regulations.
Margining
Like all existing LME contracts, TAPOs are margined using the SPAN methodology.
MASP
The arithmetic average of all settlement prices determined during the fixing period. This becomes an

official LME price on the last day of the current month at 3.00 pm.

Source: http://www.lme.com/en-gb/trading/contract-types/tapos/.

options are the gasoil–Brent crude oil crack spread options, the heating oil–crude oil crack
spread options, and the RBOB–crude oil crack spread options.

� The freight options currently traded are contracts to settle the difference between the
average spot freight rate over a prespecified period of time and an agreed strike price.
Freight options in the dry bulk market are traded on the Baltic Capesize Index (BCI), Baltic
Panamax Index (BPI) and Baltic Supramax Index (BSI). The Baltic indices are calculated
on a daily basis by the Baltic Exchange based on data supplied by a panel of independent
international shipbrokers, and are reported in the market at 13:00 h London time. Freight

http://www.lme.com/en-gb/trading/contract-types/tapos/
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TABLE 18.4 Payoff structures of European and Asian options. S(T) is the underlying price at option
maturity T , whilst A(T) stands for some form of averaging of the underlying asset price – see equations
(18.1) and (18.2)

Type Call Put

European options (S(T) − K)+ (K − S(T))+

Fixed-strike Asian options (A(T) − K)+ (K − A(T))+

Floating strike Asian options (S(T) − A(T))+ (A(T) − S(T))+

options on a Baltic index settle the difference between the arithmetic average of the spot
Baltic assessments over the trading days of the settlement month and an agreed strike
price. The options are executed between two counterparties through a broker primarily
as an OTC contract, though the majority of the trades are subsequently cleared through a
clearing house and quoted in terms of implied volatility.1

� Other examples include commodity-linked bonds on average bond prices and Asian-
style catastrophe (CAT) insurance options with payoffs depending on the accumulated
catastrophic losses, see Chang et al. (2010).

18.1 PAYOFF STRUCTURES

The payoff structure of plain vanilla European options, fixed and floating strike Asian options,
is illustrated in Table 18.4. The quantity A in this table represents the (possibly weighted)
arithmetic average of spot prices over a given time frame up to the option expiry. If we let S(t)
be the underlying spot price at time t, then A is given by

A(T) := A(0, T) =
N∑

i=0

w(ti)S(ti), (18.1)

where T = tN refers to the option expiry and ti, i = 0,… , N, with t0 = 0, refer to the so-called
monitoring dates, that is, the dates at which the underlying price is taken for entering in the

1Implied volatilities of Baltic options assessments, i.e. implied volatility for an at-the-money option
in the Dry Bulk Option market submitted by brokers at 17.30 (London), are published by the Baltic
Exchange (see the website www.balticexchange.com). Options are at-the-money, i.e. strikes are set equal
to the prevailing forward freight agreement rate. Market prices can be recovered, in line with market
practice, by inserting the quoted volatility in the Asian option price formula of Turnbull and Wakeman
and Levy, to be discussed later in this chapter. The market quotes are for forward start freight call options
on the BCI, BPI and BSI for the next four quarters (+1Q, +2Q, +3Q, +4Q) and the next two calendar
years (+1CAL and +2CAL). Each quarter contract consists of three options that expire at the end of
each month in the quarter of interest, whereas a calendar contract is a strip of 12 monthly options. If
on 4 January 2008 an investor holds the BCI+1Q, this contract comprises three freight options which
settle at the end of April 2008, May and June 2008. The settlement prices of each of these options are
given by the average of the BCI spot rates over the trading days of the respective settlement month. The
main characteristics of freight market indexes are illustrated in Chapter 8. Additional information can be
found in Nomikos et al. (2013).

www.balticexchange.com
www.balticexchange.com
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computation of the average, wi is the weight attributed to each observation (with the constraint
that the sum of weights equals 1). The most common weighting scheme is equally, that is
w(ti) = 1∕(N + 1). In general, the first monitoring date is the trade date.

It is common practice to price Asian options assuming that the average is recorded
continuously over the option lifetime rather than at discrete dates. Therefore, the sum in
formula (18.1) is replaced by an integral as follows:

A(T) =
∫

T

0
w(u)S(u)du. (18.2)

Few variants to the above expression are possible, for example a partial average option
for which the time interval taken into account for the average calculation is a subset of the full
life of the option. In a forward starting option, the calculation of the average starts at a later
instant with respect to the trade date, so that the time-to-maturity period is always larger than
the time averaging periods. In the partial averaging case, (18.1) becomes

A(tk, tm) =
m∑

i=k

w(ti)S(ti)

where 0 < k < m < N and in the forward starting case, (18.1) becomes

A(tk, tN) =
N∑

i=k

w(ti)S(ti).

In the continuous monitoring case, the partial averaging and the forward starting options
are respectively defined as ∫ tm

tk
w(u)S(u)du and ∫ T

tk
w(u)S(u)du.

Market practice assumes that the underlying asset price evolves according to Black–
Scholes lognormal dynamics. Unfortunately, given this model setup, the average depends on
a sum of correlated lognormal variates and the probability distribution of the average does
not admit a simple analytical expression. Consequently, numerical approximations need to
be developed for the purpose of pricing arithmetic Asian options. We review these in the next
section.

18.2 PRIC ING ASIAN OPTIONS IN THE
LOGNORMAL SETTING

This section illustrates the most common procedures for pricing Asian options in the Black–
Scholes lognormal setting, that is assuming that the risk-neutral process for the underlying
asset is a geometric Brownian motion satisfying

dS(t) = (r − q) S(t) dt + 𝜎S(t) dW(t), S0 = s0, (18.3)
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where W(t) is a standard Brownian motion, r is the continuously compounding rate of interest,
q the continuous dividend yield and 𝜎 is the instantaneous percentage price volatility. It is
convenient also to notice that (see Chapter 12)

S(t) = s0e
(

r−q− 𝜎
2

2

)
t+𝜎W(t)

. (18.4)

Given that the most common weighting is equally, we also have

A(T) =
s0

T ∫

T

0
e
(

r−q− 𝜎
2

2

)
u+𝜎W(u)du (continuous monitoring),

or

A(T) =
s0

N + 1

N∑

i=0

e
(

r−q− 𝜎
2

2

)
ti+𝜎W(ti) (discrete monitoring).

In both cases, continuous and discrete monitoring, the fixed strike Asian option fair price
is given by

e−rT Ẽ0 (A(T) − K)+ , (18.5)

where Ẽ0 denotes expectation under the risk-neutral probability measure. The pricing problem
consists of finding the distribution function of A(T).

If the option is into the averaging period, the above expectation can be computed by
adjusting the strike price to take into account the average observed so far. In practice, if we
let T1 be the length of the averaging period so far, and T − T1 the length of the remaining
averaging period, the option price is given by

e−r(T−T1)ẼT1
(A (0, T) − K)+ . (18.6)

The average price can be decomposed as

A(0, T) =
T1

T
A(0, T1) +

T − T1

T
A(T1, T).

Substituting this expression in (18.6), we obtain

e−r(T−T1) T − T1

T

(
ĒT1

(
A(T1, T) − X̂

)+)
,

where the modified strike price X̂ is

X̂ = T
T − T1

(
X −

T1

T
A(0, T1)

)
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and A(0, T1) is the average realized so far. In particular, if X̂ is negative, that is

T1

T
A(0, T1) > X,

it means that the call option at maturity will be exercised for sure: the average so far is so
high that the remaining averaging period cannot make the option become out-of-the-money at
maturity (vice versa, the put option will not be exercised for sure). Therefore, the call option
value will be

e−r(T−T1) T − T1

T

(
ĒT1

(
A(T1, T) − X̂

))
,

whilst the put option will be worthless. The computation of the expectation of the average is
discussed in Boxes 18.1 and 18.2, depending on the monitoring convention. The extension to
Asian options on futures prices is considered in Box 18.3.

Albeit there exist very accurate procedures to compute the expectation in (18.5) under
a geometric Brownian motion, we restrict attention here to those that combine accuracy and
implementation simplicity. To do this we briefly illustrate:

1. Approximation of the average distribution by fitting integer moments (Ju, 2002; Levy,
1992; Milevsky and Posner, 1998; Turnbull and Wakeman, 1991).

2. Computation of lower bound for the price (Rogers and Shi, 1992; Thompson, 1998).
3. Monte Carlo simulation (see, e.g., the discussion in Fu et al., 1998).

The first method derives a probability distribution sharing a number of moments with the
distribution of the price average. The second approach aims to calculate tight lower bounds
for the exact option price. The third prices an Asian option resorting to simulation.

Other procedures, which are very accurate but whose implementation is not straight-
forward, such as the eigenfunction method in Lewis (1998), the numerical solution of the
pricing partial differential equation (PDE) (Rogers and Shi, 1992; Vecer, 2001), the upper
bound provided by Thompson (1998) and Rogers and Shi (1992), numerical inversion of a
single Laplace transform (Geman and Yor, 1993; Lewis, 2002; Shaw, 1998) or of a double
transform (Cai and Kou, 2012; Fusai, 2004) are not illustrated here. A detailed comparison
among these procedures can be found in Fusai and Roncoroni (2008), chapter 15.

18.2.1 Moment Matching

Moment matching is the most popular approach for pricing Asian options. The average price is
assigned an arbitrary probability density function constrained to match a number of moments
of A(T). Unfortunately, this method does not provide any assessment of the approximation
error. This procedure consists of two steps:

1. Derive a closed-form expression for the moments of A(T)

𝜇n = Ẽ0
[
An

T

]
.
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Expressions for their computation are provided in Boxes 18.1 and 18.2, depending on the
monitoring convention we adopt.

2. Choose and fit an arbitrary density function to a number of selected moments. Specifically,
we consider lognormal and Edgeworth series approximations.

BOX 18.1 MOMENTS OF A(T) IN THE CONTINUOUSLY
MONITORED CASE

If we consider the continuously monitored case, we have that (see Geman and Yor, 1993)

𝜇n :=
sn

0

Tn
n!
𝜆2n

{
n∑

j=0

d(𝛾∕𝜆)
j exp

[(
𝜆

2j2

2
+ 𝜆j𝛾

)
T

]}

, (18.7)

where

d(𝛽)
j = 2n

∏

0≤i≤n
i≠j

[(𝛽 + j)2 − (𝛽 + i)2]−1,

𝜆 = 𝜎, 𝛾 =
r − q − 𝜎2∕2

𝜎
. (18.8)

Care has to be taken in computing moments when r = q. In particular, notice that if
r = q, then 𝜇1 = s0 and

𝜇2 = 2e𝜎
2T − 2(1 + 𝜎2T)

𝜎4T2
.

For higher moments, a practical approach is to use the above expressions (18.7)–(18.8)
setting r = q + 0.000001.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%COMPUTING MOMENTS OF THE ARITH AVERAGE%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dj=djbeta(n, beta, j)
term = 1;
for i = 0:n

if abs(i - j)>0
term = term * (1 / ((beta + j) ˆ 2 - (beta + i) ˆ 2));

end
end

dj = term * (2 ˆ n);

function mn=moment_n(n, v, lambda, t)
term = 0;
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fac = 1;
for j = 0:n %Step -1

term = term + ...
djbeta(n, v / lambda, j) * ...

exp((lambda * lambda * j * j / 2 + lambda * j * v) * t);
if (j > 0)

fac = fac * j;
end

end
mn = fac * term / (lambda ˆ (2 * n));

By way of illustration, let us suppose that r = 0.05, q = 0, 𝜎 = 0.2, Δ = 1∕12 (i.e.
1 month) and T = 1, so that m = 0.0025. We have

n 1 2 3 4

𝜇n 1.0254 2.1034 3.2367 4.4281

BOX 18.2 MOMENTS OF A(T) IN THE DISCRETELY
MONITORED CASE

In the following, we exploit a recursive formulation to compute the moments of A(T).
Given (18.4), let us define the log-price increment over a time step of length Δ

ZΔ
k ≡ mΔ + 𝜎XΔ

k , k = 1,… , N,

where m = r − q − 𝜎
2

2
, Δ = T∕N and XΔ

k is the increment of the Brownian motion, so

that XΔ
k ∼  (0,Δ). We are interested in the moments of

N∑

k=0

SΔk = s0 + s0eZ1 + s0eZ1+Z2 +⋯ + s0eZ1+⋯+ZN

= s0
(
1 + eZΔ

1
(
1 + eZΔ

2
(
⋯

(
1 + eZΔ

N
))))

.

Starting from LΔ
T ≡ eZΔ

1 and introducing recursively the quantities

LΔ
k ≡ eZΔ

k
(
1 + LΔ

k+1

)
, k = N − 1,… , 1, (18.9)
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we have A(T) ≡ S0
(
1 + LΔ

1

)
∕(N + 1). Recursion (18.9) translates into a formula for the

moments of the arithmetic average. Indeed, from the independence of ZΔ
k and LΔ

k+1 as

well as from the definition of ZΔ
k , we obtain

Ẽ
{(

LΔ
k

)n} = Ẽ
{(

eZΔ
k
(
1 + LΔ

k+1

))n}
(18.10)

= Ẽ
{

enZΔ
k
}

Ẽ
{(

1 + LΔ
k+1

)n}
(18.11)

= Ẽ
{

enZΔ
k
}

Ẽ

{
n∑

q=0

n
q

(
LΔ

k+1

)q

}

(18.12)

= 𝜙Δ (n)
n∑

q=0

n
q

Ẽ
{ (

LΔ
k+1

)q }
, (18.13)

where

𝜙Δ(n) = Ẽ
(
enZΔ

k
)
= e(r−q− 𝜎

2

2
)Δn+ 1

2
𝜎

2Δn2
.

The recursion starts with

Ẽ
{(

LΔ
N

)n}
≡ Ẽ

{
enZΔ

1
}
= 𝜙Δ(n). (18.14)

The moments of the arithmetic average can be computed as follows:

Ẽ
(
(A(T))n) = Ẽ

(
Sn

0

(
1 + LΔ

1

)n

(N + 1)n

)

=
Sn

0

(N + 1)n

n∑

j=0

(
n
j

)
Ẽ
{(

LΔ
1

)j
}
. (18.15)

By way of illustration, let us suppose that r = 0.05, q = 0, 𝜎 = 0.2, Δ = 1∕12 (i.e.
1 month) and T = 1, so that m = 0.0025. In addition, we have

𝜙(1) = 1.0042, 𝜙(2) = 1.0117, 𝜙(3) = 1.0228, 𝜙(4) = 1.0373.

We can create the following table, which in each row provides the first four moments of
LΔ

k , k = 12,… , 1 at each time step.
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Month n = 0 n = 1 n = 2 n = 3 n = 4

0 1 1 1 1 1
1 1 1.004175 1.011735 1.022755 1.037347
2 1 2.012544 4.067261 8.25413 16.82108
3 1 3.025122 9.199047 28.11916 86.40204
4 1 4.041928 16.43998 67.28876 277.1516
5 1 5.062980 25.82335 132.6866 686.8423
6 1 6.088295 37.38291 231.4961 1445.835
7 1 7.117891 51.15282 371.1677 2719.374
8 1 8.151787 67.16767 559.4264 4710.006
9 1 9.189999 85.46251 804.279 7660.109

10 1 10.23255 106.0728 1114.022 11854.55
11 1 11.27945 129.0346 1497.25 17623.5
12 1 12.33072 154.3842 1962.864 25345.33

For example, in the last row we can read the first four moments of L1. They are computed
from the moments in the previous row via

Ẽ{(L1)1} = 1 × 1 + 1 × 11.2794 = 12.3307,

Ẽ{(L1)2} = 1 × 1 + 2 × 11.2794 + 1 × 129.0346 = 154.3842,

Ẽ{(L1)3} = 1 × 1 + 3 × 11.2794 + 3 × 129.0346 + 1 × 1497.2503 = 1962.8637,

Ẽ{(L1)4} = 1 × 1 + 4 × 11.2794 + 6 × 129.0346 + 4 × 1497.2503 + 1

× 17623.5018 = 25345.3255.

The first four moments of A(1) can then be computed as follows (let us assume that
s0 = 1):

Ẽ{(A(1))1} = 1 + 12.3307
13

= 13.3307
13

,

Ẽ{(A(1))2} = 11 × 1 + 2 × 12.3307 + 1 × 154.3842
132

= 180.0456
132

,

Ẽ{(A(1))3} = 11 × 1 + 3 × 12.3307 + 3 × 154.3842 + 1 × 1962.8637
133

= 2464.0083
133

,

Ẽ{(A(1))4} = 11 × 1 + 4 × 12.3307 + 6 × 154.3842 + 4 × 1962.8637 + 1 × 25345.3255
134

= 34173.4080
134

.

18.2.1.1 Lognormal Approximat ion (Turnbul l–Wakeman–Levy formula) In this
approximation, see Levy (1992) and Turnbull and Wakeman (1991), we assume that the
average A(T) is lognormally distributed with mean m and variance v2. The parameters m and
v2 are chosen to match exactly the mean and variance of the arithmetic average, given in
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Boxes 18.1 and 18.2. Owing to its simplicity, this approximation has gained large popularity.
The approximated Asian call option price turns out to be given by the modified Black–Scholes
formula

clog = s0em+v2∕2−rT (d1) − e−rT (d2), (18.16)

where

m = 2 log𝜇1 −
1
2
log𝜇2, v2 = log𝜇2 − 2 log𝜇1,

(18.17)
d1 =

ln(s0∕K) + m + v2

v
, d2 = d1 − v.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%PRICING ASIAN OPTIONS VIA LOGNORMAL DISTRIBUTION%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function res= AsianCalllog(Spot, strike, rf, sigma, t)

%Compute the first two moments of the Average

m1 = moment_n(1, (rf - sigma * sigma / 2) / sigma, sigma, t) / t;

m2 = moment_n(2, (rf - sigma * sigma / 2) / sigma, sigma, t) / t ˆ 2;

%Fit the parameters of the lognormal density

m = 2 * log(m1) - log(m2) / 2;

v = sqrt(log(m2) - 2 * log(m1));

%Compute the Levy approximation

d1 = (log(Spot / strike) + m + v * v) / v;

d2 = d1 - v;

esp = m + v * v / 2 - rf * t;

nd1 = normcdf((log(Spot / strike) + m + v * v) / v,0,1);

nd2 = normcdf((log(Spot / strike) + m + v * v) / v - v,0,1);

%The result

res = Spot * exp(esp) * nd1 - exp(-rf * t) * strike * nd2;

18.2.1.2 Edgeworth Series Approximat ion The lognormal approximation only cap-
tures the mean and variance of the average. In order to fit the third and fourth moment as
well, that is, skewness and kurtosis of the average, Turnbull and Wakeman (1991) proposed
to adopt a fourth-order Edgeworth series expansion of the true (but unknown) distribution of
A(T) around the lognormal. This approximation works as follows.
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Let kn be the difference in the nth cumulant2 between the exact distribution f and the
approximate lognormal distribution l, namely kn = 𝜒n(f ) − 𝜒n(l). We have:

𝜒1 (f ) = 𝜇1,

𝜒2 (f ) = 𝜇2 − 𝜇2
1,

𝜒3 (f ) = 𝜇3 − 3𝜇2𝜇1 + 2𝜇3
1,

𝜒4 (f ) = 𝜇4 − 4𝜇3𝜇1 − 3𝜇2
2 + 12𝜇2𝜇

2
1 − 6𝜇4

1 .

Parameters m and v2 are set according to expression (18.17), so that k1 = k2 = 0, while the
cumulants of the approximating lognormal distribution can be computed as

𝜒n (l) = exp
(

nm + 1
2

n2v2
)

, n = 1, 2, 3, 4.

The approximate Asian option price is given by

cedg = clog + e−rT s0

T

[
−

k3

6

𝜕flog(y; m, v2)

𝜕y
+

k4

24

𝜕
2flog(y; m, v2)

𝜕y2

]

y=TK∕s0

, (18.18)

where clog is defined in formula (18.16) and flog(y; m, v2) is the lognormal density with param-
eters m and v2:

flog
(
y; m, v2) = 1

√
2𝜋v2y

exp
(
−

(ln y − m)2

2v2

)
, y > 0.

The main problem of the Edgeworth series is that increasing the number of matched
moments does not guarantee an improvement in the resulting approximation. Since the distri-
bution of A(T) is not univocally determined by its moments, the approximation (18.18) may
even lead to a negative-valued density.3

To overcome this problem, Ju (2002) considers the Edgeworth series for approximating the
distribution of lnA(T) with a normal distribution, and he obtains the following approximation:

cJu = clog + e−rT K

[
z1n(y) + z2

𝜕n(y)
𝜕y

+ z3
𝜕

2n(y)

𝜕y2

]

y=ln(K∕s0)
, (18.19)

2Cumulants of a random variable are defined as coefficients in the Taylor expansion of the logarithm of
the moment-generating function about the origin, and are related to moments.
3In the context of Asian options, a discussion of the conditions under which the Edgeworth expansion is
positive and unimodal can be found in Ju (2002).
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where clog is given in (18.16), n(y) = n(y; m, v2) is the Gaussian density with mean m and
variance v2 given in (18.17):

n(y; m, v2) = 1
√

2𝜋v2
exp

(
−

(y − m)2

2v2

)
,

and derivatives are computed as

𝜕n(y; m, v2)

𝜕y
= −

(y − m)

v2
n(y; m, v2),

𝜕
2n(y; m, v2)

𝜕y2
=

(m2 − v2 − 2my + y2)

v4
n
(
y; m, v2)

.

The remaining coefficients are as follows:

z1 = −𝜎4T2
(

1
45

+ x
180

− 11x2

15120
− x3

2520
+ x4

113400

)

− 𝜎6T3
(

1
11340

− 13x
30240

− 17x2

226800
+ 23x3

453600
+ 59x4

5987520

)
,

z2 = −𝜎4T2
(

1
90

+ x
360

− 11x2

30240
− x3

5040
+ x4

226800

)

+ 𝜎6T3
(

31
22680

+ 11x
60480

− 37x2

151200
− 19x3

302400
+ 953x4

59875200

)
,

z3 = 𝜎
6T3

(
2

2835
− x

60480
− 2x2

14175
− 17x3

907200
+ 13x4

124700

)
,

x = rT .

Other approximations based on the moments are given for example in Milevsky and
Posner (1998), but they do not appear to be very accurate and therefore we do not consider
them.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PRICING ASIAN OPTIONS USING THE JU APPROXIMATION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res=AsianCallJu(Spot, strike, rf, sigma, t)
%parameters
rt = rf * t;
sgt = sigma * sqrt(t);
k = t* strike/ Spot;
y = log(strike / Spot);
%Compute the first two moments of the average
m1 = moment_n(1, (rt - sgt * sgt / 2) / sgt, sgt, 1);
m2 = moment_n(2, (rt - sgt * sgt / 2) / sgt, sgt, 1);
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%compute m and vˆ2 (here just v)
meanlog = 2 * log(m1) - log(m2) / 2;
v = log(m2) - 2 * log(m1);
%additional terms
z1 = -(t ˆ 2) * (sigma ˆ 4) * (1 / 45 + rt / 180 - ...

11 * rt * rt / 15120 - (rt ˆ 3) / 2520 + (rt ˆ 4) / 113400) - ...
(t ˆ 3) * (sigma ˆ 6) * (1 / 11340 - 13 * rt / 30240 - ...
17 * rt * rt / 226800 + 23 * (rt ˆ 3) / 453600 + ...
59 * (rt ˆ 4) / 5987520);

z2 = -t * t * (sigmaˆ 4) * (1 / 90 + rt / 360 - ...
11 * rt * rt / 30240 - (rt ˆ 3) / 5040 + (rt ˆ 4) / 226800) + ...
(t ˆ 3) * (sigma ˆ 6) * (31 / 22680 + 11 * rt / 60480 - ...
37 * rt * rt / 151200 - 19 * (rt ˆ 3) / 302400 + ...
953 * (rt ˆ 4) / 59875200);

z3 = (t ˆ 3) * (sigma ˆ 6) * (2 / 2835 - rt / 60480 - ...
2 * rt * rt / 14175 - 17 * (rt ˆ 3) / 907200 + ...
13 * (rt ˆ 4) / 124700);

n = exp(-(y - meanlog) * (y - meanlog) / (2 * v)) / sqrt(2 * pi * v);
dn = -n * (y - meanlog) / v;
d2n = n * (meanlog ˆ 2 - v - 2 * v * y + y ˆ 2) / v ˆ 2;
correction = z1 * n + z2 * dn + z3 * d2n;

%compute the price according to the lognormal approximation
calllog = AsianCalllog(Spot, strike, rf, sigma, t);

%Ju approximation
res= calllog + exp(-rt) * strike * correction;

BOX 18.3 ASIAN OPTIONS ON FUTURES PRICES

As illustrated in the introduction, in organized commodity and energy markets traded
average options are based on futures or forward prices rather than on spot. This is
equivalent to assuming that the cost-of-carry on the underlying asset is zero (i.e., the
dynamics of the lognormal futures price is now dF = 𝜎FdW(t)). If we use a moment-
based formula for pricing the option, we observe that, the futures price being a martingale,
the expected value of the average is equal to the current futures price and therefore we
have to compute only the variance of the average. For example, Haug (2006) shows that
the Turnbull and Wakeman formula becomes

e−rT (FN(d1) − KN(d2)), (18.20)
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where

d1 =
ln (F∕X) + T𝜎2

A∕2
√

T𝜎2
A

, d2 = d1 −
√

T𝜎2
A,

and

T𝜎2
A = ln

(
2e𝜎

2T − 2(1 + 𝜎2T)

𝜎4T2

)

.

18.2.2 Lower Price Bound

Rogers and Shi (1992), Thompson (1998) and Nielsen and Sandman (2003) obtain lower and
upper bounds for the Asian option price. For a lower bound, the idea is simple and powerful.
Consider the random variable

X =
s0

T ∫

T

0
e(r−𝜎2∕2)s+𝜎Ws ds − K.

The Asian option price is given by Ẽ0(X+). Using the iterated rule for conditional expectations,
the fact that X+ ≥ X and the positiveness of X+, we have

Ẽ0(X+) = Ẽ0[Ẽ0(X+|Z)] ≥ Ẽ0[Ẽ0(X|Z)+] := clow,

for any conditioning variable Z. Rogers and Shi (1992) propose using Z = ∫ T
0 Ws ds, and

provide an analytical expression for the lower bound clow.4 Thompson (1998) obtained the
same lower bound via a simpler expression

c ≥ clow = e−r

(

∫

1

0
s0e𝛼t+𝜎2t∕2

(
−𝛾∗ + 𝜎t(1 − t∕2)

1∕
√

3

)
dt − K

(
−𝛾∗

1∕
√

3

))

, (18.21)

where 𝛼 = r − 𝜎2∕2 and the option maturity T has been standardized to 1.5 Here  (x) denotes
the standard normal cumulative function and 𝛾∗ is the unique solution to the equation

∫

1

0
s0 exp

(
3𝛾∗𝜎t(1 − t∕2) + 𝛼t + 1

2
𝜎

2(t − 3t2(1 − t∕2)2)

)
dt = K. (18.22)

4They also discuss how to measure the accuracy of the lower bound.
5For a general T , r and 𝜎 must be replaced by rT and 𝜎

√
T , respectively.
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Computation of 𝛾∗ can be done using standard root finder routines (e.g., the bisection method).
A Matlab script providing the implementation of the above formula is given here.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%ASIAN PRICE LOWER BOUND%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [asian_premium_lower]=...
get_AsianCall_Lower(spot, strike, t, sigma, rf)

%Scale parameters
rft=rf*t; sigmat=sigma*sqrt(t);
A = (rf - sigma * sigma / 2);

%find optimal value of gamma
gstar = get_gamma(spot,strike, rf, sigma);

arg2 = (-gstar) / (1 / (3 ˆ 0.5));

%discount factor
df=exp(-rft);

%lower bound
asian_premium_lower = ...

(quadgk(@(s) spot * exp(A * s + sigmat * ...
sigmat * s / 2) .* ...
normcdf((-gstar + sigmat * s .* (1 - s / 2)) ...
/ (1 / (3 ˆ 0.5)),0,1),0,1) ...
-strike*normcdf(arg2))*df;

%%Auxiliary function: Find optimal value of gamma
function res =get_gamma(spot, strike, rf , sigma)

sg2half=0.5*sigma*sigma;
A = (rf - sg2half);

res =fsolve(@(trialGamma) ...
spot*quadgk(@(t) ...
(exp(A * t + sg2half*t .*(1-3*t.*(1-t/2).*(1-t/2)) ...
+ 3*sigma*trialGamma*t.*(1-t/2))),0,1)-strike,0.0);

18.2.3 Monte Carlo Simulat ion

Monte Carlo simulation is a popular pricing technique due to its flexibility in dealing with
complex payoffs and sophisticated dynamics. However, it is much slower with respect to alter-
native methods in achieving an acceptable precision. Indeed the accuracy can be ameliorated
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by increasing the number of simulations, but this also increases the computational cost. For
this reason, it is often implemented by adopting reduction of variance techniques. This issue is
indeed highly related to the pricing of Asian options and all Monte Carlo simulations proposed
in the literature have been applying one of the variance reduction techniques. The basic crude
Monte Carlo scheme is as follows:

1. Fix the number N of monitoring dates and the time step Δ = T∕N, so that the monitoring
dates are ti = i × Δ.

2. Starting from S(0) = s0, simulate the spot prices at times iΔ along the jth path discretizing
the solution (18.4):

S(j) (iΔ) = S(j) ((i − 1)Δ) × e
(

r− 𝜎
2

2

)
Δ+𝜎

(
W(j)(iΔ)−W(j)((i−1)Δ)

)
, i = 1,… , N, (18.23)

with j = 1,… , m where m is the number of simulations. The increment W (j) (iΔ) −
W(j) ((i − 1)Δ) is simulated according a  (0,Δ) . For example, we can set

W(j) (iΔ) − W (j) ((i − 1)Δ) =
√
Δ × Φ−1(u(j)

i

)
, (18.24)

where u is a uniform(0,1) random variable and Φ−1 is the inverse cumulative distribution
function of the standard normal distribution.

3. Update the average according to

A(j) (iΔ) = i − 1
i

× A(j) ((i − 1)Δ) + S(j) (iΔ)
i

, A(j)(0) = s0. (18.25)

4. Compute the discounted Asian option payoff in the jth path:

𝜋
(j) = e−r×N×Δ(A(j)(nΔ) − K)+. (18.26)

5. The option price is estimated by repeating steps 2 to 4 m times and discounting the payoff
along each path and then averaging across simulations:

ĉ = 1
m

m∑

j=1

𝜋
(j)
. (18.27)

6. We can evaluate the accuracy of the estimate by computing the standard error:

se =
√
�̂�2

m
, (18.28)

where

�̂�
2 = 1

m

m∑

j=1

(𝜋(j) − ĉ)2
.
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7. The confidence interval at a given confidence level 𝛼, say 𝛼 = 95%, is given by

ĉ ± z1− 𝛼

2
× se,

where z
𝛼

is the quantile at the level 𝛼 of the standard normal distribution.

A spreadsheet implementation of the above scheme is given in Figure 18.3. Cells B4:F13
refer to simulated standard normal random variables.6 Cells G3:K13 refer to the simulation
of m = 5 stock price paths over the next 10 days, according to equations (18.23) and (18.24).
Cells L3:P13 refer to the simulation of the price average along time, see equation (18.25).
In cells L18:P18 we compute the Asian option payoff for each simulated path, see equation
(18.26). Finally, in cells L20 and L21 we average the payoffs across simulations, see equation
(18.27), and then we discount it. Finally, we also compute the standard error of the estimate,
see equation (18.28).

In Box 18.4, we illustrate how to modify the above Monte Carlo procedure in order to
simulate the spot price consistently with the observed market forward curve.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%Asian Price by MC Simulation%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [asian_mc, asian_mc_a, se, se_a]=...
get_AsianCall_MC(spot, strike, t, sigma, rate_cc, div_cc, ...

nsimul, ndates)

rf=rate_cc;
df=exp(-rf*t);

%Assigning Time step
dt=t/ndates;
timestep=[0:dt:t]’;

%Simulate increments dW
dW=randn(ndates,nsimul)*dtˆ0.5;

%Simulate increments dlog-Price
dlogS=(rf-div_cc-sigma*sigma/2)*dt+sigma*dW;

%Simulate log-prices
logS=log(spot)+[zeros(1,nsimul);

cumsum(dlogS)];

%Get spot price paths
prices=exp(logS);

6The generation of the Gaussian random variable can be done in Excel using the cell formula
=NORM.S.INV(RAND()).
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%Get time average
avg=sum(prices,1)./(ndates+1);

%Payoff
payoff =max(avg-strike,0)*df;

%Asian price
asian_mc=mean(payoff);

%Standard error of MC estimate
se=std(payoff)/sqrt(nsimul);

TABLE 18.5 Monte Carlo price estimates and standard errors for an arithmetic average option
varying the number m of simulations. Parameters: S(0) = 8.2, K = 8.5, r = 3%, 𝜎 = 50%, T = 0.5,
N = 8

m 10,000 20,000 40,000 80,000 160,000

MC 0.7776 0.7652 0.7553 0.7662 0.7661
s.e. 0.0117 0.0081 0.0057 0.0041 0.0029
ratio of s.e. 1.44 1.42 1.41 1.41

In Table 18.5 we report for different number m of simulations the MC estimate and the
corresponding standard error. Notice that as we double the number of simulations the standard
error reduces by a factor approximately equal to

√
2, as expected. Indeed, the standard error

decreases as 1∕
√

m. So in order to reduce by a factor of 10 the standard error, we need to
increase by a factor of 102 the number of simulations. This can be quite computationally
intensive.

BOX 18.4 HOW TO INCLUDE FORWARD CURVES IN THE
MONTE CARLO SIMULATION?

To simulate the spot price taking into account the information in the futures curve is
particularly relevant in commodity markets where the futures term structure can show
peculiar shapes, due to seasonality effects. An example is shown in Figure 18.4, where
the evolution of the natural gas term structure in March 2007 is illustrated. For this
reason, it would be important, if we decide to price Asian options via Monte Carlo, to
take into account the futures term structure shape. This can be done according to the
following procedure:

� Let F (0, T) be the forward price quoted at time 0 for maturity T .
� It is well known that under the risk-neutral measure

Ẽ0 (S (T)) = F (0, T) .
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F IGURE 18.4 Natural gas forward curve evolution between 1 March and
31 March 2007

� If we assume a GBM process for the underlying with constant volatility, we have

S (T) = F (0, T) × e−
𝜎

2

2
T+𝜎W(T)

.

� Given that we have forward quotations F(0, Ti) for different maturities Ti, we can
write

S(Ti) = F(0, Ti) × e−
𝜎

2

2
Ti+𝜎W(Ti),

S(Ti+1) = F(0, Ti+1) × e−
𝜎

2

2
Ti+1+𝜎W(Ti+1),

and therefore

S(Ti+1)

S(Ti)
=

F(0, Ti+1) × e−
𝜎

2

2
Ti+1+𝜎W(Ti+1)

F(0, Ti) × e−
𝜎2

2
Ti+𝜎W(Ti)

.

In the presence of a forward curve F (0, T) , the simulation of the GBM process can
be performed according to

S(Ti+1) = S(Ti) ×
F(0, Ti+1)

F(0, Ti)
× e−

𝜎
2

2
(Ti+1−Ti)+𝜎(W(Ti+1)−W(Ti)),
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starting from s0 and using the fact that

W(Ti+1) − W(Ti) ∼  (0, Ti+1 − Ti).

The procedure:

1. Assign 𝜎, and the forward curve.
2. Assign the monitoring dates and interpolate the forward curve at these dates; com-

pute the ratios

f (i + 1) =
F(0, Ti+1)

F(0, Ti)
.

3. Simulate the increments

𝜖(i + 1) = −𝜎
2

2
(Ti+1 − Ti) + 𝜎(W(Ti+1) − W(Ti)).

4. Starting from the initial date (T0 = 0), S
(
T0

)
= F (0, 0), compute the simulated

prices

S(Ti+1) = S(Ti) × f (i + 1) × e𝜖(i+1)
.

5. Update the computation of the average and at maturity compute the Asian option
payoff.

6. Repeat the previous steps a large number of times and then average the discounted
payoff.

18.2.3.1 Improving the Accuracy of Monte Carlo Simulat ion The accuracy of the
above basic Monte Carlo simulation scheme can be improved by resorting to variance reduction
techniques. The most common ones in the context of Asian option pricing are

� antithetic variate, and
� control variate.

Antithetic variate attempts to reduce the variance of the simulation error by intro-
ducing negative dependence between pairs of replications. In fact, this method works well if
the covariance between the payoffs in the standard path and in the antithetic one is negative.
Unfortunately, the preservation of negative correlation in the payoffs is not always guaranteed,
so sometimes this procedure can be ineffective. Control variate exploits information about
the errors in estimates of known quantities to reduce the error in an estimate of an unknown
quantity. Both techniques are illustrated briefly in Boxes 18.5 and 18.6.
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BOX 18.5 IMPROVING MONTE CARLO VIA VARIANCE
REDUCTION: ANTITHETIC VARIATE

This procedure is based on the fact that if u(j)
i ∼ U (0, 1) (i.e., we do a random extraction

from a standard uniform random variable), then

W(j)(i) − W (j)(i − 1) =
√
Δ × Φ−1(u(j)

i

)
∼  (0,Δ) .

It is also true that

−(W(j)(i) − W (j)(i − 1)) = −
√
Δ × Φ−1(u(j)

i

)
∼  (0,Δ) ,

that is, dW and its opposite −dW have the same Gaussian distribution (the mean is
assumed to be zero). This observation can be exploited to better sample from the Gaussian
distribution with respect to using two independent draws.

The idea of antithetic simulation consists of using both random numbers to get the
so-called antithetic path

S(j) (iΔ) = S(j) ((i − 1)Δ) × e
(

r−q− 𝜎
2

2

)
Δ+𝜎

(
W(j)(i)−W(j)(i−1)

)
, i = 1,… , N,

S(j)
A (iΔ) = S(j)

A ((i − 1)Δ) × e
(

r−q− 𝜎
2

2

)
Δ+𝜎

(
W(j)

A (i)−W (j)
A (i−1)

)
, i = 1,… , N,

where

W (j)
A (i) − W(j)

A (i − 1) = −(W(j)(i) − W(j)(i − 1)).

The Asian option price is then computed using both paths

e−r×N×Δ

m

m∑

j=1

(A(j)(n) − K)+ +
(
A(j)

A (n) − K
)+

2
,

where A(j) and A(j)
A are the time averages computed according to the standard path and to

the antithetic one.
To grasp the benefit of this method, let us consider the following parameter set: S(0) =

8.2, K = 8.5, r = 3%, 𝜎 = 50%, T = 0.5, N = 8, with 100,000 and 200,000 simulations
respectively. We have the results in the following table.

100,000 MC runs 200,000 MC runs

Method Price s.e. Seconds Price s.e. Seconds

Crude MC 0.76663 0.003671 0.7 0.76182 0.00257 3.6
Antithetic 0.76615 0.00194 1.3 0.762289 0.00136 6.5
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We complete here the previous Matlab script including antithetic simulation.

%Antithetic Simulation
dlogS_a=(rf-q-sigma*sigma/2)*dt-dW;
logS_a=log(spot)+[zeros(1,nsimul);

cumsum(dlogS_a)];
prices_a=exp(logS_a);
avg_a=sum(prices_a,1)./(ndates+1);
payoff_a =max(avg_a-strike,0)*df;

asian_mc_a=(mean(payoff_a)+mean(payoff))/2;
se_a=std((payoff_a+payoff)/2)/sqrt(nsimul);

A simulated path and its antithetic path for the underlying and the average are
illustrated in Figure 18.5.
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F IGURE 18.5 Simulated and antithetic path for the underlying and its time average
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BOX 18.6 IMPROVING MONTE CARLO VIA VARIANCE
REDUCTION: CONTROL VARIATES

Let us suppose that we need to estimate Ẽ (Y), where Y represents some payoff function.
Using MC simulation we generate m i.i.d. replicas of Y , Y(j) say, and we estimate the
above expected value by

Ȳ = 1
m

m∑

j=1

Y (j)
.

The accuracy of this estimate can be measured by the variance of the estimator, that
is 𝜎2∕m (the square root of this quantity is called the standard error of the MC estimate).
Let us now suppose that on each replication we can calculate another output, say Z(j)

along Y(j). Moreover, let us suppose that Ẽ(Z) is known.
Then for any fixed number b we can calculate the additional quantity

Y (j)(b) = Y(j) − b(Z(j) − Ẽ(Z)),

which still provides an unbiased estimate of Ẽ(Y). Each Y (j)(b) has variance 𝜎2
Y (b):

𝜎
2
Y (b) ≡ Ṽar(Y (j)(b)) = Ṽar(Y (j) − b(Z(j) − Ẽ(Z)))

= 𝜎
2
Y + b2

𝜎
2
Z − 2b𝜎YZ .

The control variate estimator is given by

Ȳ(b) = 1
m

m∑

j=1

Y (j)(b),

and has variance

𝜎
2
Y (b)

m
.

The optimal value of b that minimizes the variance of the control variate estimator is

b∗ =
𝜎YZ

𝜎
2
Z

,

where 𝜎YZ is the covariance of the (simulated) values of Y and Z and 𝜎2
Z is the variance

of the control variate. The variance of Ȳ (b∗) relative to the variance of Ȳ is

𝜎
2
Y (b∗)

𝜎
2
Y

= 1 − 𝜌2
ZY .
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We can make the following remarks:

� The higher the correlation 𝜌ZY between Z and Y , the higher will be the reduction in
the variance. Notice that very high negative correlations can be of some help.

� If the computational effort per replication is roughly the same with and without a
control variate, then 1 − 𝜌2

ZY measures the computational speed-up resulting from
the use of a control; in other words, the number of simulations of Y (j) required
to achieve the same variance as m replications of the control variate estimator is
N∕(1 − 𝜌2

ZY ).
� Given that the ratio 1∕(1 − 𝜌2

ZY ) approaches 1 very fast as |𝜌ZY | decreases away
from 1, in order to be effective the control variate must have a very high degree of
correlation with Y .

� In practice, b∗ must be estimated. We can run some preliminary simulation and
estimate it using the sample counterparts.

The main issue in the implementation of the control variate technique is to find a
convenient control variate. For arithmetic Asian options, it turns out that a good control
variate is given by the geometric average GT , defined as

GT = e
1
T
∫ T

0 ln S(u)du (18.29)

in the continuous monitoring case, and

GT =

(
N∏

k=0

SΔk

) 1
N+1

, (18.30)

in the discrete one. The payoff of a geometric fixed strike call option is then (GT − K)+.
For typical values of the volatility parameter, the correlation between geometric and
arithmetic average is very high, as we can verify via Monte Carlo simulation, from
the following table (here 𝜎 refers to the volatility of the underlying asset and 𝜌 to the
correlation between arithmetic and geometric average):

𝝈 𝝆 (A(T), G(T))

1% 1
10% 0.9998
50% 0.9960
100% 0.9820

The strong correlation between geometric and arithmetic average is shown via
simulation in Table 18.6, for different volatility levels.
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In order to make the CV procedure effective, we also need a closed-form formula for
Ẽ(GT − K)+. If the asset evolves according to a GBM process, geometric Asian options
can be priced in closed form according to the formula

cgeo = s0e(m−r)T (d1) − Ke−rT (d2), (18.31)

with

d1 =
ln

(
s0
K

)
+

(
m + v2

2

)
T

v
√

T
, d2 = d1 − v

√
T .

Here, m depends on the monitoring frequency:

� discrete time monitoring

m = 1
2

(
r − (N + 2)

6(N + 1)
𝜎

2
)

, v =
√

2N + 1
6(N + 1)

𝜎; (18.32)

� continuous time monitoring

m = 1
2

(
r − 𝜎

2

6

)
, v = 𝜎

√
3
. (18.33)

Notice that in the above formula, the quantity v2 refers to the variance of the log-geometric
average and that the discrete monitoring version tends to the continuous one as we let
the number of monitoring dates go to infinity, that is N → ∞.

We therefore have the following algorithm:

1. Simulate the arithmetic and the geometric average.
2. Compute the Monte Carlo estimate of the two Asian options, MCArit and MCGeo

say.
3. Assuming b = 1, the control variate estimate is given by

CVAsia = MCArit − MCGeo + cgeo.

18.3 A COMPARISON

We discuss here the effectiveness of the alternative procedures described so far. A more
detailed discussion and numerical examples can be found in Fusai and Roncoroni (2008).
The experiment conducted here is under different sets of input parameters, as reported in
Table 18.6. Numerical results are given in Table 18.7. In this table, we also add an upper
bound, computed according to the procedure described in Fusai and Roncoroni (2008). The
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F IGURE 18.6 Simulated values of the geometric and arithmetic average for different volatility
levels. The black line is the 45◦ line; notice that the arithmetic average is always higher than the
geometric one, so this also provides a lower bound to the exact price

quantity 𝜎
√

T determines the accuracy of the method: in general, the lower its value, the more
difficult it is to find an accurate numerical method (in some sense, this is curious because one
is supposed to believe the contrary). However, the accuracy of the lower bound and of Monte
Carlo simulation improves at smaller values of the parameter 𝜎 (or lower volatility or smaller
time to maturity). Interestingly, the lower bound provides an exact approximation up to the
third digit of Ju’s method (and in Case 4 the two methods provide the same result up to the

TABLE 18.6 Parameter set

Example s0 K r 𝝈 T 𝝈
√

T

1 1.9 2 0.05 0.5 1 0.5
2 2 2 0.05 0.5 1 0.5
3 2.1 2 0.05 0.5 1 0.5
4 2 2 0.02 0.1 1 0.1
5 2 2 0.18 0.3 1 0.3
6 2 2 0.0125 0.25 2 0.3535
7 2 2 0.05 0.5 2 0.7071
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TABLE 18.7 Approximate prices for an Asian option under alternative numerical methods

MC SE
Example Lower Levy Edge Ju crude crude MC CV SE CV Upper

1 0.1931 0.1954 0.1948 0.1929 0.1951 0.0037 0.1938 0.0022 0.1938
2 0.2463 0.2498 0.2451 0.2462 0.2491 0.0043 0.2445 0.0024 0.2470
3 0.3061 0.3106 0.3014 0.3061 0.3097 0.0048 0.3095 0.0026 0.3069
4 0.0560 0.0561 0.0560 0.0560 0.0554 0.0008 0.0561 0.0004 0.0560
5 0.2184 0.2198 0.2175 0.2184 0.2138 0.0026 0.2182 0.0011 0.2185
6 0.1722 0.1735 0.1735 0.1722 0.1693 0.0028 0.1718 0.0016 0.1724
7 0.3498 0.3592 0.3639 0.3497 0.3445 0.0065 0.3446 0.0038 0.3526

MC = Monte Carlo, Lower = R–S–T lower bound, Levy = moment matching (lognormal approxima-
tion), edge = moment matching (Edgeworth series expansion), Ju = moment matching using normal
series expansion, MC crude = plain Monte Carlo, SE crude = standard error plain Monte Carlo, MC
CV = control variate Monte Carlo, SE CV = standard error control variate Monte Carlo, Upper =
upper bound. We have run 1000000 MC simulations with 500 steps per year.

fourth digit). Edgeworth approximation sometimes returns a price estimate below the lower
bound, showing that raising the number of fitted moments does not necessarily provide a better
approximation. The Monte Carlo estimate, if the number of simulations is not large enough,
can fall outside the lower–upper range.

18.4 THE FLEXIBLE SQUARE-ROOT MODEL

Commodity-linked derivatives should be priced consistently with all market price information
available at the valuation time. In particular, traders need models which produce prices taking
into account three sets of information:

1. The quoted forward/futures prices of the commodity, provided they are available.7

2. A time-varying volatility coefficient, a feature allowing our model to fit either the term
structure of implied volatilities or a time-dependent, that is, seasonal, spot price historical
volatility.

3. Spot price dynamics exhibiting mean reversion in their trend, a quality shown by some
important classes of commodity prices, among which we cite agriculturals and energy-
related products such as electricity and gas.

These features usually reflect properties related to the physical use of the commodity for
industrial or consumption processes.

The specialized literature has examined these issues in great detail. Routledge et al.
(2000) underline the impact of periodical components on the price dynamics of most com-
modities. Eydeland and Wolyniec (2003) show that the predictable component of electricity
price dynamics is bound by weather and consumption-related features. Todorova (2004) notes

7For the purpose of our analysis, we assume interest rates are deterministic. This amounts to treating
forward and futures prices as equivalent.
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F IGURE 18.7 Futures curves for a sample of energy and agricultural
commodities

that oil and gas markets show seasonal components affecting expected future spot prices, while
Richter and Sorensen (2000) and Lien and Koekebakker (2004) find strong evidence of sea-
sonality effects upon agricultural commodity prices. For most commodities, mean reversion is
a stylized fact empirically accepted by several studies. In energy markets, the relevance of this
property may vary across products and over time within the same commodity. For instance,
Bessembinder et al. (1995) find clear evidence of mean reversion across 11 commodity mar-
kets, pointing out strong patterns for agriculturals and crude oil (see also Pindyck, 2001), and
weak patterns for metals. Schwartz (1997) and Casassus and Collin-Dufresne (2005), among
others, confirm the existence of a mean-reversion property in crude oil, copper, gold and silver.
The case of electricity markets is rather peculiar. Geman and Roncoroni (2006) discover the
existence of two competing mean-reversion effects in most US power markets: one is the
traditional smooth reversion to average prices; the other stems from the spiky behaviour of
electricity spot prices during periods of capacity congestion.

Figure 18.7 displays futures curves for light, sweet crude oil, natural gas and heating
oil as quoted at NYMEX on 1 March 2007, and corn as reported by CBOT on 1 December
2006. The time-dependent component is plainly visible in the reported graphs. In particular,
corn exhibits a clear seasonal pattern, which should be considered while pricing options on
averages. Table 18.8 gives the implied volatility for different maturities for three different
commodities and natural gas. Their periodical component is shown in Figure 18.8.

We now present a simple, yet effective method to make the spot dynamics include all price
information implied by the quoted forward/futures curve, if any. This task can be achieved
by letting the risk-neutral drift of spot price dynamics be time dependent. Moreover, the spot
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TABLE 18.8 Term structures of implied volatilities for different commodities and maturities. Data
from 4 October 2013

Month 1st 2nd 3rd 6th 12th 18th 24th 30th 60th

Crude 18.94 19.74 19.63 19.55 18.6 16.87 16.94 19.41 19.66
Heating oil 17.51 18.01 18.15 17.36 15.55 15.55 15.55 17.62 18.08
Natural gas 28.63 29.14 29.48 27.35 25.6 21.43 21.12 28.74 29.21

price volatility is allowed to reproduce any time pattern assigned by the user. We remark that
the importance of assuming a time-varying drift goes beyond the ability to fit a quoted for-
ward/future curve. For instance, Cartea and Williams (2008) point out that gas price dynamics
exhibit a time-varying historical trend and market price of risk. Therefore, estimating these
quantities may represent a viable alternative to directly fitting the risk-neutral price drift to
forward quotes. This option can be useful whenever forward/futures quotes are not available
or their reliability is limited by, say, liquidity constraints.
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F IGURE 18.8 Periodical component affecting the volatility of three energy commodities. Data
from 4 October 2013
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18.4.1 General Setup

We adopt the same setup as before, so the time horizon [0, T] is split into a number N + 1
of Δ-spaced monitoring dates 0,Δ,… , NΔ = T (the equally spaced assumption is made only
for notational convenience, but it can easily be released). Our goal is to compute analytical
formulae for fixed maturity options whose payoff structure depends on

∑N
j=0 wjSjΔ (

∑
j wj = 1).

The option can be priced following a three-step algorithm devised by Fusai et al. (2008),
which we now sketch here for the reader’s convenience.

To this end, we start by assuming that the moment generating function (mgf) corresponding
to the joint probability density of the pair consisting of the spot price SNΔ and the cumulated
spot price

∑N
j=0 wjSjΔ under the selected monitoring rule is known. This function is defined as

(𝛾 ,𝜇) → v0,x (N,Δ; 𝛾 ,𝜇) := Ẽ0
(
e−𝛾SnΔ−𝜇

∑N
j=0 𝛼jSjΔ

)
.

Table 18.9 illustrates instances of this function which correspond to traded options in the
energy markets.

The fixed strike Asian-style option price can then be written as

CT
0,x (k) = e−rT

(
1

2𝜋
√
−1 ∫

al+
√
−1∞

al−
√
−1∞

e𝜇k
v0,x (Δ, N; 0,𝜇)

𝜇2
d𝜇 +

N∑

j=0

𝛼jF0,jΔ − K

)

(18.34)

where x is the starting spot price (x = s0) and al is a positive free parameter. If the analytical
computation of the above integral in the complex plane is not possible, numerical evaluation
is required. The use of the Fourier–Euler algorithm proposed by Abate and Whitt (1992) leads

TABLE 18.9 Moment generating functions relevant for a sample set of popular plain vanilla and
Asian-style energy derivatives

Option 𝜸 𝝁 𝜶j mgf v0, x (N,𝚫; 𝜸,𝝁)

Standard
European

any 0 — Ẽ0[e−𝛾SNΔ ]

Fixed
strike
std. Asian

0 any 1

N+1 Ẽ0

[
e
−

𝜇

N+1

∑N
j=0 SjΔ

]

Fixed
strike
vol. weighted

0 any
Vj

∑
i Vi Ẽ0

[
e
−

𝜇
∑

i Vi

∑N
j=0 VjSjΔ

]

Floating
strike
std. Asian

any −𝛾 1

N+1
1

N+1
Ẽ0

⎡
⎢
⎢
⎢
⎣

e
−𝛾

(
SnΔ−

1

N+1

∑N
j=0 SjΔ

)
⎤
⎥
⎥
⎥
⎦
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to the following numerical inversion formula:

−1
⎡
⎢
⎢
⎣

vN,Δ
0,s0

(0,𝜇)

𝜇2

⎤
⎥
⎥
⎦

(k) ≈
M∑

m=0

(M
m

)
2−mdP+m (k) ,

with

dP (k) = eal∕2

2k
Re

⎛
⎜
⎜
⎜
⎝

vN,Δ
0,s0

(
0, al

2k

)

𝜇2

⎞
⎟
⎟
⎟
⎠

+ eal∕2

k

P∑

j=1

(−1)j Re

⎛
⎜
⎜
⎜
⎝

vN,Δ
0,s0

(
0, al+2j𝜋i

2k

)

𝜇2

⎞
⎟
⎟
⎟
⎠

,

where Re(x) is the real part of x, and P and M are suitable constants. We suggest adopting the
following parametric setting: al = 18.4, M = 25, N = 15 (see Fusai and Roncoroni, 2008 for
details).

The floating strike Asian-style option price can be priced by a similar formula, see Fusai
et al. (2008). Option Greeks, such as Delta and Gamma, can be obtained by differentiating
the Fourier transform of the option price with respect to the standing spot price x. Finally, we
refer to the above-mentioned paper for the discussion of the continuous monitoring version.

The price dynamics that makes it possible to exploit the above procedure is the square-root
process (see Chapter 12). We consider here the diffusion case, whilst the extension to allow
for the inclusion of jumps is given in Marena et al. (2013).

In particular, the following two spot price dynamics make possible the explicit computation
of the mgf.

� Specification 1. Square-root process with time-varying drift and volatility:

dSt = 𝜃tStdt + 𝜎t

√
StdWt, (18.35)

S0 = x,

where
� the time-varying drift is chosen to fit the market observed term structure of forward

prices F(0, t) observed at time 0 for maturities t up to time T = NΔ by setting

𝜃T = 𝜕T ln F(0, T)
x

= 𝜕T lnF(0, T); (18.36)

�
(
𝜎t

)
t≥0 is a deterministic time-varying spot price volatility. 𝜎2

t represents the time t
variance of instantaneous price variations per unit of price value St and is expressed in
1∕time units;

�
(
Wt

)
t≥0 is a standard Brownian motion;

� x is the spot price, which can be estimated using F(0, 0).
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F IGURE 18.9 Simulated dynamics of the spot prices (top panels) and their time average
(bottom panels). On the left, we simulate the dynamics according to model (18.35), whilst on the
right dynamics (18.37) are simulated. The solid red curves refer to the market forward curve

� Specification 2. Square-root mean-reverting process with a time-varying trend:

dSt = 𝛽(𝜂t − St)dt + 𝜎t

√
StdWt, (18.37)

where the additional parameters are
� 𝛽, the mean-reversion constant frequency expressed in 1∕time units;
� (𝜂t)t≥0, a deterministic time-varying price trend spot quotes revert to, that is selected

such that the model fits the forward/futures price curve quoted in the market, by
imposing

𝜂(T) = F(0, T) + 1
𝛽
𝜕TF(0, T). (18.38)

Figure 18.9 shows simulated paths of the natural gas dynamics (18.35) and (18.37) and
of their time-averaged prices. Both dynamics are fully consistent with the observed term
structure of natural gas futures prices up to 5 years in the future (the futures curve refers
to market quotes on 18 January 2014 at CME). However, the mean-reverting model does
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F IGURE 18.10 Volatility of log-returns in the SR models (18.35) and (18.37)

limit the probability of having future spot prices that deviate largely from the forward curve.
Large deviations are instead possible in the model without mean reversion. In other words,
the mean-reversion property generates a volatility of the log-return prices that tend to stabilize
to a constant value as we consider longer and longer horizons, whilst without mean reversion
the volatility increases with the time horizon. This is illustrated in Figure 18.10. Notice that
in the mean-reverting model the seasonal shape of the forward curve affects the volatility of
log-returns.

In both specifications, the drift terms are selected so that the dynamics is consistent with
the market observed (or eventually the user’s specified) forward price curve (F0,T , T ≥ 0)
quoted in the market, that is the restriction

Ẽ0(ST ) = F(0, T) (18.39)

is satisfied. In addition, in both specifications, the drift restrictions that allow us to fit the
market forward curve, that is the expressions (18.36) and (18.38), only apparently require a
(numerical) differentiation with respect to the maturity. Indeed, see expressions (18.45) and
(18.46) below, where this is not the case because the computation of the moment generating
function turns out to require the values of the forward curve itself and not of its derivatives
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as well. Finally, we remark that the dynamics in (18.35) with constant parameters has been
introduced by Dassios and Nagaradjasarma (2006), whilst (18.37) was introduced first by Cox
et al. (1985) in order to model interest rate dynamics.

Proposition 18.4.18 provides the expression for the mgf in the case of time-dependent
spot price drift and volatility.

Proposition 18.4.1 Under commodity spot price dynamics (18.35), the moment generating
function of the pair (SnΔ,

∑N
j=0 𝛼jSjΔ) given the information available at time 0 is:

v𝜃0,x (N,Δ; 𝛾 ,𝜇) = e−Λ
𝜃

0
(Δ;𝛾 ,𝜇)x, (18.40)

where the function Λ𝜃j (Δ; 𝛾 ,𝜇) satisfies the recursive equation

Λ𝜃j (Δ; 𝛾 ,𝜇) = A𝜃jΔ
(
Δ;Λ𝜃j+1 (Δ; 𝛾 ,𝜇)

)
+ 𝜇𝛼j,

for j = N − 1, N − 2,… , 1, 0, with starting value

Λ𝜃N (Δ, 𝛾 ,𝜇) = 𝛾 + 𝜇𝛼N .

Here A𝜃 is defined as

A𝜃t (Δ; 𝛾) =
𝛾

F0,t+Δ
F0,t

1 + 𝛾

2
F0,t+Δ ∫ t+Δ

t
𝜎

2
s

F0,s
ds

, (18.41)

and y = S (t). In addition, as byproduct, we obtain the moment generating function of the spot
price

Ẽt(e
−𝛾St+Δ) = v𝜃0,x(1,Δ; 𝛾 , 0) (18.42)

and of the arithmetic average

Ẽt

(
e−𝜇

∑N
j=0 𝛼jSjΔ

)
= v𝜃0,x (N,Δ; 0,𝜇) . (18.43)

If we replace in formula (18.34), the expression of the mgf in (18.42), we can price plain
vanilla options according to the square-root process. If instead we use (18.43), we can price
fixed strike Asian options. The expression of the joint mgf is relevant for pricing floating strike
options, not considered here.

A practical illustration of the procedure is given in Box 18.7, where the pricing of an
Asian option consistent with the market forward curve and the market term structure of
implied volatility is considered. Notice that implied volatility usually refers to percentage

8The proof can be found in Fusai et al. (2008).
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volatility of log-returns. In order to obtain the volatility to be used in the square-root model,
we can use the following transformation:

𝜎GBMS = 𝜎SR

√
S,

so that

𝜎SR = 𝜎GBM

√
S.

This transformation is implemented in the numerical example considered in Box 18.7.

BOX 18.7 PRIC ING ASIAN OPTIONS IN A FLEXIBLE
FRAMEWORK

We provide here the Matlab code for the implementation of the pricing procedure. A
numerical example is also presented.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%Implement the Asian Price SQUARE Root Model%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res=...
Asian_SR(strike, FwdCurve, VolCurve, r, t, n, mAW, nAW, AAW )

%Computing the expected value of the arithmetic average
dt=t/n;
momasia=sum(int_FwdCurve(dt*[0:n], FwdCurve))/(n+1);

%Inversion of Laplace transform
eul=AW_LTinversion(@(mu)...

SR_LT_Avg_dt(mu, FwdCurve, VolCurve, t, n), strike, ...
mAW, nAW, AAW);

%Pricing Formula
res=exp(-r*t)*(eul + momasia - strike);

%Laplace transform wrt strike of the asian option in the
%discrete monitoring case CIR model
function res=SR_LT_Avg_dt(mu, FwdCurve, VolCurve, t, n)

res=SR_DoubleLT_dt(0, mu, FwdCurve, VolCurve, t, n)/muˆ2;

%%%Moment Generating Function of the SR Process
function res=SR_DoubleLT_dt(gam, mu, FwdCurve, VolCurve, t, n)

res=exp(-int_FwdCurve(0, FwdCurve)*...
Lambdafunction(t/n, gam, mu, FwdCurve, VolCurve, n));
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%%%Function Lambda in Proposition 1
function aDiscr=Lambdafunction(dt, gam, mu, FwdCurve, ...

VolCurve, n)
aDiscr = gam + mu/(n + 1);
for j = n - 1:-1:0

aDiscr =Afunction(j*dt,(j+1)*dt, aDiscr, FwdCurve, ...
VolCurve) ...

+ mu/(n + 1);
end

%%%Function A in Proposition 1
function res=Afunction(t, T, gam, FwdCurve, VolCurve)

den= 1 + 0.5*gam*int_FwdCurve(T,FwdCurve)*...
quadgk(@(x) (int_VolCurve(x, VolCurve).ˆ2)./...

int_FwdCurve(x,FwdCurve), t, T);
num=gam*int_FwdCurve(T,FwdCurve)/int_FwdCurve(t,FwdCurve);

res=num./den;

%%%Interpolating the forward curve
function iFwdCurve = int_FwdCurve(t, FwdCurve)
pp=interp1(FwdCurve(:,1),FwdCurve(:,2),’pchip’,’pp’);
f = @(x) ppval(pp,x);
iFwdCurve=f(t);

%%%Interpolating the volatility curve
function iVolCurve = int_VolCurve(t, VolCurve)
pp=interp1(VolCurve(:,1),VolCurve(:,2),’pchip’,’pp’);
f = @(x) ppval(pp,x);
iVolCurve=f(t);

%%%Inversion of the Laplace transform
function euler1=AW_LTinversion(LTf_s, tvar, m, n, A)
%downloaded from
%http://www.columbia.edu/˜ww2040/6711F12/tools.html
%and modified by Gianluca Fusai
a=zeros(m+n+1,1); S=zeros(n+m+1,1);

anot=exp(A/2)*arrayfun(LTf_s,A/(2*tvar))/(2*tvar);
anot=anot+exp(A/2)*real(arrayfun(LTf_s,(A/2+1i*pi)/tvar)...

*exp(1i*pi))/tvar;

k=[1:(m+n+1)];
a=exp(A/2)*real(arrayfun(LTf_s, (A/2+(1+k)*1i*pi)/tvar)...

http://www.columbia.edu/%CB%9Cww2040/6711F12/tools.html
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*exp(1i*pi))/tvar;
S(1)=anot-a(1);

for k=2:n+m+1
S(k)=S(k-1)+((-1)ˆk)*a(k);

end

euler1=S(n);
for k=1:m

euler1=euler1+nchoosek(m,k)*S(n+k);
end
euler1=(2ˆ(-m))*euler1;

Let us consider the following example:

%A Numerical Example
%Parameters: risk free rate and time to maturity
r=0.0525; ttm=1;
%Parameters LT inversion
mAW=12; nAW=20; AAW=18.4;
%Market Forward Curve
ng_fwd=[0 7.1409
0.074 7.288
0.1534 7.405
0.2438 7.52
0.3233 7.635
0.4055 7.73
0.4959 7.785
0.5726 7.88
0.663 8.45
0.7452 9.01
0.8247 9.3
0.9151 9.295
0.9945 9.075;

%Term Structure of Percentage Volatility
ng_vol=[0. 13.8
0.0833333 16.8
0.166667 14.1
0.25 16
0.333333 16.8
0.416667 20.4
0.5 22.7
0.583333 26.7
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0.666667 22.5
0.75 18.7
0.833333 18.4
0.916667 16.1
1 13.8];

%Pricing for different monitoring dates and strike at 1
strike=mean(ng_fwd(:,2)); %fix strike approximately at-the-money

%Change GBM vol into SR vol
ng_vol(:,2)=(ng_vol(:,2)/100)*sqrt(max(ng_fwd(:,2)))

res(1)=Asian_SR(strike, ng_fwd, ng_vol, r, ttm, 12, mAW, nAW, AAW)
res(2)=Asian_SR(strike, ng_fwd, ng_vol, r, ttm, 24, mAW, nAW, AAW)
res(3)=Asian_SR(strike, ng_fwd, ng_vol, r, ttm, 36, mAW, nAW, AAW)
res(4)=Asian_SR(strike, ng_fwd, ng_vol, r, ttm, 48, mAW, nAW, AAW)

We have the results in the following table:

N 12 24 36 48

Premium 0.3602 0.3648 0.3661 0.3667
MC 0.3652 0.3628 0.3593 0.3564

An analytical expression for the mgf is available in the mean-reverting case as well and is
given in the following proposition 18.4.2:9

Proposition 18.4.2 Under spot price dynamics (18.37), the moment generating function of
the pair (SNΔ,

∑N
j=0 𝛼jSjΔ) given the information available at time 0 is

v𝛽0,x (n,Δ; 𝛾 ,𝜇) = e
−Λ𝛽0(Δ;𝛾 ,𝜇)x−

∑N−1
j=0 B𝛽jΔ

(
Δ;Λ𝛽

j+1

(
Δ;𝛾 ,𝜇

))
, (18.44)

where the function Λ𝛽j (Δ; 𝛾 ,𝜇) satisfies the recursive equation

Λ𝛽j (Δ; 𝛾 ,𝜇) = A𝛽jΔ
(
Δ;Λ𝛽j+1 (Δ; 𝛾 ,𝜇)

)
+ 𝜇𝛼j,

9The proof can be found in Fusai et al. (2008).
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for j = N − 1, n − 2,… , 0, with starting value

Λ𝛽N (Δ, 𝛾 ,𝜇) = 𝛾 + 𝜇𝛼N .

Here A𝛽jΔ and B𝛽t are respectively given by

A𝛽t (Δ; 𝛾) = 𝛾e−𝛽Δ

1 + 𝛾

2
∫ t+Δ

t 𝜎2
s e−𝛽(t+Δ−s)ds

, (18.45)

B𝛽t (Δ; 𝛾) = 𝛾F0,T − F0,tA
𝛽

t (Δ; 𝛾) − 1
2 ∫

t+Δ

t
F0,s𝜎

2
s A𝛽s (Δ; 𝛾)2 ds, (18.46)

and y = S (t). In addition, the moment generating function of St+Δ is 𝜈𝛽t,y (1,Δ; 𝛾 , 0), whilst the

moment generating function of the arithmetic average is v𝛽0,x (N,Δ; 0,𝜇).

18.4.2 Numerical Results

In the original paper by Fusai et al. (2008) a few numerical tests have been conducted in order
to examine:

� The discrepancy of prices stemming from the alternative assumptions of a discrete vs.
continuous monitoring rule. For barrier options, Fusai et al. (2006) showed that price
differences can be very large in spite of a relatively high monitoring frequency. For Asian
options, the story is a bit different. As expected, price differences between discrete and
continuous monitoring rules decrease as long as the number of monitoring dates increases.
In addition, the convergence of the discretely monitored option price to the continuously
monitored one is almost linear in the monitoring frequency, much faster than is known to
occur for barrier options; that is, approximately like 1∕

√
N.

� The impact of including market information about the forward prices in the spot price
dynamics for the purpose of pricing Asian-style options. This analysis is conducted using
quotes taken from the Natural Gas Market at NYMEX. It turns out that a non-flat forward
curve produces highly significant option price deviations from figures obtained in the case
where such information is not accounted for by the underlying spot price model.

� The price differences between square-root and lognormal model. Option prices using the
square-root model specification accurately approximate quotes stemming from the model
assuming lognormal dynamics, provided the volatility coefficient is adequately chosen
to reproduce prices of plain vanilla at-the-money options. This fact constitutes a major
result since the new flexible method allows us to price Asian-style option prices in real
time, with great accuracy and allowing for time-varying volatility, fitting a forward curve.
Vice versa, numerical approximation for the geometric Brownian motion case requires
intensive calculations and much greater computational time. This result is quite robust
across the examined spectrum of parameters, the only case where significant discrepancies
are observed related to deeply out-of-the-money options.
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� Finally, the impact of including information about the time structure of historical volatility
in the pricing device. A test on corn price data quoted at CBOT is performed. It turns out
that using this information may result in significant price discrepancies compared with the
quotes obtained using the market model represented by the geometric Brownian motion.
These results suggest that when pricing Asian-style options in market contexts where
a seasonal component strongly affects the evolution of spot price volatility, one should
include this information as precisely as possible. This remark is particularly important for
several commodity markets, such as energy and agriculturals, where the time variation of
volatility is significantly pronounced.

18.4.3 A Case Study

In this final section we consider as a case study the computation of the fair value of Asian-
style options taking into account market information. We consider the forward curve on Brent
as quoted on 24 December 2013 at ICE. Values across all delivery months are reported in
Table 18.10, where we indicate the exact day of trading termination and the time to maturity
of the contract as expressed in year units.

Our final goal is to assess Asian-style option prices under a realistic market setting in the
square-root model with mean reversion.

We begin by defining values for each of the input quantities indicated in step 0 of the
pricing algorithm stated earlier. Our base case assumes that:

� Current time is 24 December 2013.
� Options expire on 14 March 2014 (the average is computed over 59 working days),

13 June 2014 (124 working days) and 13 November 2014 (233 working days).
� Averages are computed based on daily monitoring, that is, Δ = 1∕250 years.
� Strike index K is assumed to match the at-the-money level, defined as

Avg0,N := 1
N + 1

N∑

j=0

F(0, jΔ),

where N = T∕Δ.
� For each maturity, interest rate r is linearly interpolated from LIBOR quotes on value date.

Quotes are given in Table 18.11. Interpolated values at option maturities are respectively
0.2096%, 0.2797% and 0.4071%. These values are converted to continuous compounding
using the conversion formula ln(1 + LIBOR).

� Mean-reversion frequency is set equal to 𝛽 = 0.1 p.a.
� Current spot price is set equal to the shortest maturity futures price, i.e. 111.99 USD.
� Spot price volatility of log-returns under the GBM assumption is assumed equal to 0.20,

a typical value for crude oil (see e.g., the implied volatility quotes in Table 18.8). This
figure is transformed into spot price volatility in the square-root model according to

S × 0.2 =
√

S × 𝜎SR,
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TABLE 18.10 Crude Oil Futures prices quoted on 24 December 2013 at ICE

Delivery Maturity (mm/dd/yy) Days to expiry Settlement Volume

Feb14 1/16/14 23 111.99 26179
Mar14 2/13/14 51 111.65 7590
Apr14 3/14/14 80 111.33 2495
May14 4/15/14 112 110.95 936
Jun14 5/15/14 142 110.54 2538
Jul14 6/13/14 171 110.08 221
Aug14 7/16/14 204 109.55 125
Sep14 8/14/14 233 109.05 245
Oct14 9/15/14 265 108.55 47
Dec14 11/13/14 324 107.59 1862

Source: https://www.theice.com/productguide/ProductSpec.shtml?specId=219#data.

so that

𝜎SR =
√

S × 0.2 =
√

111.99 × 0.2

and we set 𝜎SR = 2.

We price the Asian option using the analytical method described above. To benchmark our
results we consider Monte Carlo simulation. In particular, given that with respect to the GBM
dynamics no exact solution of the considered square-root stochastic equations is possible, we
discretize the mean-reverting dynamics according to the Euler scheme using a time step Δ:

S(t + Δ) = S(t) +
(

∫

t+Δ

t
𝜂(s)ds − 𝛽S(t)Δ

)
+ F(0, t + Δ) − F(0, t) + 𝜎

√
S(t)𝜖(t)

√
Δ,

where 𝜖(t) is a sequence of i.i.d. standard Gaussian random variables. In particular, notice that
the term ∫ t+Δ

t 𝜂(s)ds can be approximated as follows:

∫

t+Δ

t
𝜂(s)ds = ∫ t+Δ

t

(
F(0, s) + 𝜕sF(0, s)

)
ds

= (F(0,t+Δ)+F(0,t))Δ
2

+ F(0, t + Δ) − F(0, t).

TABLE 18.11 US$ LIBOR rates across varying times-to-maturity. Quotes as
of 24 December 2013

3m (93 days) 6m (185 days) 12m (370 days)
0.24585 0.34940 0.58360

https://www.theice.com/productguide/ProductSpec.shtml?specId=219#data
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TABLE 18.12 Asian-type option prices (exact and Monte Carlo estimate) for the mean-reverting
model, varying the strike and the time horizon

Confidence interval
Days Strike Exact MC estimate (3 std. errors)

59 111.8683 1.9389 1.9403 1.9129 1.9676
124 111.5131 2.7947 2.8104 2.7706 2.8501
233 110.7821 3.7801 3.8022 3.748 3.8564

TABLE 18.13 Values of the forward curve at different horizons when it is set at a constant value.
These values are used for pricing Asian options in Table 18.14

Days 59 124 233

min 111.56 110.793 109.05
avg 111.868 111.513 110.782
max 111.99 111.99 111.99

In conclusion, the Euler discretization allows us to simulate the spot price path according
to

S(t+Δ)= S(t)+
(

(F(0, t+Δ)+F(0, t))
2

− 𝛽S(t)

)
Δ+F(0, t+Δ)−F(0, t)+ 𝜎𝜖(t)

√
S(t)Δ.

Pricing results are given in Table 18.12. Exact and Monte Carlo estimates (100,000
simulations, time step Δ = 1∕365) agree quite well: exact prices always fall inside the three
standard errors confidence interval.

The relevance of incorporating the market forward curve is examined in Tables 18.13 and
18.14 where different assumptions on the forward curve are examined. In particular, for each
maturity, we price the Asian option using the market observed forward curve and we compare
the price obtained assuming that the forward curve is flat at three different levels: the minimum
forward price up to the option expiry, the average forward price up to the option expiry and
the maximum forward price up to the option expiry. These values are reported in Table 18.13,
whilst the corresponding Asian option prices are given in Table 18.14.

Finally, Table 18.15 shows that option prices decrease with an increase in the speed at
which prices tend to revert back to their long-term trend. In fact, higher mean reversion reduces
underlying price dispersions, so reducing the likelihood of ending up in-the-money.

TABLE 18.14 Asian option prices in the SR mean-reverting model at different horizons under
different shapes of the forward curve: flat at the minimum (min)/average (avg)/maximum (max) level
and the market observed one (market). Values are given in Table 18.13

Days 59 124 233

min 1.7868 2.4422 2.9551
avg 1.8506 2.6848 3.6281
market 1.9389 2.7947 3.7801
max 1.9998 3.0377 4.4083



874 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

TABLE 18.15 Asian option price vs. speed of mean reversion

𝛽 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Price 3.7801 3.6919 3.6068 3.5246 3.4452 3.3686 3.2945 3.2229 3.1536 3.0867

Further extensions might encompass pricing of Asian-style options written on a basket of
prices and empirical examination of implied calibration of the model on plain vanilla quotes
and comparison between model and market assessment of Asian options. Interesting results
for basket options with possible applications to Asian options have been proposed in Caldana
et al. (2014).

18.5 CONCLUSIONS

It is commonly held that pricing Asian-style options under the market model represented by a
geometric Brownian motion is a difficult task. First, no closed-form expression exists for the
fair option value. Second, information embedded within the standing market forward curve is
neglected during the valuation process. Finally, prices are derived irrespective of the seasonal
path exhibited by the spot price volatility or mean-reversion properties.

In this chapter, we have discussed standard models for pricing Asian options and more
recent modelling achievements, particularly useful for pricing options in commodity markets
where traders must quickly produce quotes compatible with the market view expressed in
terms of forward prices, typically showing a seasonal behaviour and with a mean-reversion
feature.

For the sake of completeness, we would like to mention more recent work by Cerny and
Kyriakou (2011), Fusai and Meucci (2008), Fusai and Kyriakou (2014) and Marena et al.
(2013). They consider the pricing of discrete monitoring Asian options in a more general
framework allowing jumps and stochastic volatility. Finally, Ballotta et al. (2014) consider the
hedging problem of Asian options in a non-Gaussian setting.
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CHAPTER 19
Natural Gas Storage Modelling

Álvaro Cartea, James Cheeseman and Sebastian Jaimungal

19.1 INTRODUCTION

When demand for a commodity is seasonal, whilst its production is relatively more stable and/or
with a different seasonal pattern, being able to store it helps to reduce large price fluctuations
as well as providing security of supply in unforeseen scenarios. Therefore, having access to
storage is desirable but the costs to build the facility are very large and irreversible. The need
of the market to smooth out price fluctuations, both between seasons as well as unexpected
short-term deviations, and to ensure security of supply will determine the willingness to pay
for such a facility.

The gas market is a good example of such a commodity and a key question is how much
a gas storage facility is worth. The answer depends on many factors, some of which rely
upon engineering specifications and others on financial characteristics of the commodity. For
example, the rate of injection and withdrawal is a key determinant in the value of storage,
but the higher these injection and withdrawal rates are, the more expensive it is to build and
maintain. In contrast, the behaviour of gas prices over long- and short-term horizons is also
decisive in the value of storage. Over long time scales, the value of storage is higher the more
pronounced is the seasonality in gas prices and similarly, over short time scales, the higher the
volatility of gas prices the more valuable is the storage facility.

In this chapter we show how to value a storage facility using least-squares Monte Carlo
(LSMC). We present a toy model to understand how to employ the LSMC algorithm and
then show how to incorporate realistic constraints into the valuation, including: the maximum
capacity of the storage, injection and withdrawal rates and costs, and market constraints such
as bid–ask spreads in the spot market and transaction costs.
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19.2 A SIMPLE MODEL OF STORAGE, FUTURES PRICES,
SPOT PRICES AND CONVENIENCE YIELD

Storage costs and capacity have an immediate effect on spot and futures prices. Let us think of
a simple example to illustrate the connection between storage and futures (in Section 19.3 we
analyse in detail the valuation of a gas storage facility). Assume that there is enough storage
capacity to cover demand over a long horizon, say for example one year, and storage costs
are 1 pence per therm per year of storage. Assume further that today’s spot price of gas is
St = 30 pence/therm and that the risk-free rate is 0%. What is the ‘reasonable price’ for a
futures contract that delivers one therm of gas in T = 12 months’ time?

Any futures price different from 31 pence/therm would seem straightforward to arbitrage.
If it costs 1 pence to store the commodity for 12 months, and the foregone interest rate is 0%,
it is possible to replicate the futures by buying the gas today and storing it until time T = 12
months in the future. In this example we might want to make the extra assumption that storage
capacity is large enough so that there is no ‘fear’ that spot supplies might unexpectedly dry
up, triggering a shrinkage in supply and consequently making spot prices undergo an upward
hike around time T .

In the example above, it is clear that storage costs and capacity have a bearing on futures
prices (one can make the same claim the other way around, that futures prices affect the price of
storage). In this section we explore, in a simple setting, the relationship between storage, spot
prices, storage prices, expected spot prices, convenience yield and futures prices. Throughout
this section we follow the discussion in Pindyck (2001).

The price of storage is equal to the marginal value of storage, which is calculated like the
price of any other good: by demand and supply forces. In a competitive framework, the price
that an investor is willing to pay for storage depends on the marginal profits he or she can obtain
by holding an extra unit of gas in the storage. The flow of benefits to inventory holders from a
marginal or extra unit of gas inventory is known in the literature as the marginal convenience
yield. In this context we interpret convenience yield as the flow of benefits to the holder of
a commodity inventory. These benefits arise from the use of inventories to reduce production
and marketing costs, and to avoid stockouts, see Pindyck (2001) and Roncoroni (2010).

Denote by Ψt the price of storage (i.e., the marginal convenience yield) and by Nt the
gas inventory levels at time t. We know that the demand for storage will depend on the price
charged to investors to hold a unit of inventory. Therefore, the demand for storage can be
written as Nt(Ψt) and it is reasonable to assume that increases in the price of storage lead to
a decrease in the inventory levels, that is N′

t (Ψt) < 0. Moreover, since the value of storage is
expected to be low when the total stock of inventories is large, but can rise quickly when the
stock becomes very small, it is also reasonable to assume N′′

t (Ψt) < 0.
In Figure 19.1 we depict two plausible inverse demand functions for storage Ψ(Nt).

Another way to interpret the convexity shown by the demand function is the following. When
storage levels are very low, for example Nt is close to 0, the economy places considerable value
on these stocks and the value of an additional unit of gas in the storage capacity is deemed
to be very valuable. Similarly, when the amount of gas in storage is very high, an additional
unit of gas will be of very little value. Put differently, the value of storage is decreasing in the
amount Nt held in the facility and the marginal benefits from storage are also decreasing in
Nt; this is what gives us the convex shape of the demand curve shown in Figure 19.1.

There are many factors that can affect the demand for storage and in turn the price charged
for it. Everything else being equal, in an economy with higher volatility of gas prices, storage is
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F IGURE 19.1 Demand for storage N at price Ψ.

more valuable or desirable than storage in an economy with low volatility of gas prices. After
all, storage is used as a buffer to smooth out times of low and high demand (or equivalently
low or high spot prices).

Thus, let us assume that the economy is at a steady state, where volatility of gas prices is
𝜎1 and demand for storage is Ψ1(N), as shown in Figure 19.1. Assume further that for this level
of volatility the equilibrium price and quantity held in storage are Ψ1(N1) and N1, respectively.
What happens if the gas market undergoes a permanent change and the volatility of prices
jumps up to a new level 𝜎2 > 𝜎1?

We depict the new situation with the demand curveΨ2(N) in the same figure. Comparing it
to Ψ1(N), we see that with the increase in gas price volatility the price for storage has increased
for all levels of N. We can explain this shift up in the demand curve in many different ways.
For instance, investors know that in a more volatile market they would extract more value from
gas inventories. Another intuitive explanation is to observe that because the economy uses
storage as a buffer to smooth gas consumption, it will be willing to pay more for the ability to
smooth gas consumption when volatility of prices is higher.

But what is the new equilibrium level for inventories in the steady state? So far we have
established that when the economy learns that there has been a permanent increase in the
volatility level of prices, demand for storage increases. We can also argue that the economy
will require higher levels of inventories, say N2 > N1, to mitigate the extra volatility of prices.
To see this we can see the intuition explaining the direction of the inventory adjustment by
looking at an extreme case with very low volatility in gas prices. Imagine that price volatility
drops to zero. This means that gas prices become a constant (not random), therefore one would
expect that the economy places very little, or zero value, on storage.

Figure 19.2 depicts the price and inventory level adjustment as a consequence of the
permanent increment in the volatility of gas prices. We must appreciate that the financial
markets adjust quicker than the physical market. Although the market knows that the new
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F IGURE 19.2 Price and inventory level adjustment after a permanent increase in gas price volatility.

level of inventories must be N2, it will take time to build up the stocks. However, the marginal
convenience yield does adapt immediately to the new market situation and the price for storage
jumps from Ψ1(N1) to Ψ2(N1), and then it gradually falls to Ψ2(N2).

19.3 VALUATION OF GAS STORAGE

Central to the problem of gas storage is its financial valuation, not only for investment decisions
but also for operating strategies and hedging decisions for those wishing to trade around such
assets. There are two approaches to the valuation of storage: intrinsic and extrinsic.

Intrinsic Valuation The value of a storage facility, like any option, is its premium, which is
made up of two parts, intrinsic and extrinsic. Relating this to a standard American option, we
have that the intrinsic value is the payoff from immediate exercise and the extrinsic value is
the additional time value of the option, the possibility of increasing the payoff. The simplest
approach to valuing storage is to compute the intrinsic value given the futures curve at the
valuation date. This is the optimal combination of futures contracts which can be put in place,
while respecting all the physical constraints of the storage facility, to extract value from the
calendar spreads of the futures curve. This is somewhat equivalent to deciding when to exercise
an American call option by looking at the current futures curve. That is, by picking the highest
in-the-money value on the curve and entering into a futures contract to sell for F(t, 𝜏) on date
𝜏, in the knowledge that we can exercise our option on that date and buy the stock at the strike
price making a profit of F(t, 𝜏) − K, where 𝜏 is our chosen exercise date and K the strike price.
In this static valuation we ignore any possibility of the futures curve changing over time.

A rolling intrinsic valuation is similar to above, but we allow for stochastic changes in
the futures curve throughout the duration of the contract. In practice we enter into the static
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futures position indicated by an intrinsic valuation, but if the futures curve changes such that
we can adjust our positions to increase the intrinsic value then we do so. Again in terms of the
American option example above, we proceed as for the intrinsic valuation but if the futures
curve changes such that we can increase F(t, 𝜏) − K by changing our planned exercise date
and futures position then we do so.

Extrinsic Valuation The extrinsic value represents the optionality in the physical asset and
together with the intrinsic value this makes up the premium. The extrinsic value is that of the
flexibility of the storage, the ability to trade the daily volatility. An extrinsic valuation will
give a value higher than both intrinsic methods, and can increase the value of storage from a
few percent over the intrinsic to multiples of the intrinsic value depending upon the physical
constraints of the facility and the dynamics of the underlying.

Two main methods of extrinsic valuation exist: trinomial tree forests, see for instance
Manoliu (2004) and LSMC, see Longstaff and Schwartz (2001). Both are recursive, spot-
based procedures and will fully value the storage premium based on creating an optimal
strategy for the operation of the facility. While the tree method is undoubtedly the fastest, we
are limited in as much as we can only practically use a geometric Brownian motion or single-
factor mean-reverting model as the underlying. LSMC, however, is totally detached from the
underlying price model and can be applied to any price path and can easily be extended to
consider problems based around multiple commodity price simulations. For other methods
and implementations, see Fusai and Roncoroni (2008), Jackson et al. (2007) and Jaimungal
and Surkov (2011).

19.3.1 Least-Squares Monte Carlo

Longstaff and Schwartz (2001) originally applied the algorithm to valuing Bermudan options.
Subsequently it has been extended and applied as a method for pricing swing options by Ibáñez
(2004), and further to storage valuation by Carmona and Ludkovski (2007) and Boogert and
de Jong (2008).

Reviewing the algorithm as presented in Longstaff and Schwartz (2001), we see that the
intuition behind the least-squares approach is best appreciated through the original application,
an American-style option. The holder of such an option may exercise at any time prior to
maturity, and at every potential exercise time the decision whether to exercise or not depends
upon assessing the value of continuing without exercising, the continuation value, against
that of exercising immediately, the intrinsic value. Longstaff and Schwartz use a simple least-
squares regression of the simulated future cashflows on the current simulated stock prices to
obtain this continuation value as a conditional expectation and hence the optimal exercise time
that maximizes the option value.

As in any Monte Carlo simulation of a path-dependent derivative, the time to maturity is
discretized, into k discrete potential exercise times 0 < t1 ≤ t2 ≤ … ≤ tk = T and the decision
on whether to exercise or not is taken at every point by comparing the intrinsic value with
the value of continuation. Using the notation from Longstaff and Schwartz (2001) we have
that when C(𝜔, s; t, T) is the path of cashflows generated by the option, conditional on the
option having not been exercised at or prior to time t and on the holder of the option following
the optimal stopping strategy for all s (t < s ≤ T), and where 𝜔 is a sample path, the value
of continuation at time ti can be expressed as the risk-neutral expectation of the discounted
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future cashflows. We denote this continuation value as Cont(𝜔; ti) and the above argument is
represented formally as

Cont(𝜔; ti) = 𝔼ℚ

[
k∑

j=i+1

e−r(tj−ti)C(𝜔, s; t, T)
||||
ti

]

,

where r is the risk-free rate and ℚ the risk-neutral pricing measure.
LSMC works recursively through the discretized times using least-squares regression

to estimate the conditional expectation at tk−1, tk−2,… , t1. The LSMC is a recursive process
since at each time the decision to exercise could change all subsequent cashflows and therefore
C(𝜔, s; ti, T) is not necessarily the same as C(𝜔, s; ti−1, T). The initial step is always to define
the cashflows at the final timestep tk and for an American option this is the intrinsic value of
the option at maturity.

Longstaff and Schwartz give an example using the set of Laguerre polynomials as the
basis functions for the regression and with these polynomials, the estimate of Cont(𝜔; ti) is
represented as

ContM(𝜔; ti) =
M∑

j=0

ajLj(X),

where aj and Lj are constant coefficients and the Laguerre polynomial terms respectively, M
the number of basis functions and X the underlying spot prices. They report that if M > 2,
the accuracy of the algorithm is not significantly dependent on the type or number of basis
functions used, but more recent research shows that accuracy does depend on the choice of
basis functions, see Stentoft (2004).

In Longstaff and Schwartz (2001), ContM(𝜔; ti) is estimated by regressing the discounted
values of C(𝜔, s; ti, T) on the basis functions for the paths which are in-the-money, since the
decision on whether to exercise or not is only required if the option has an intrinsic value greater
than zero. Using only in-the-money paths reduces the number of basis functions required for
an accurate estimation of the continuation values.1 With the conditional expectation estimated
we can decide if exercise is optimal at ti for each in-the-money path by comparing the intrinsic
value against ContM(𝜔; ti). The algorithm continues recursively until we have the optimal
decision for each point. We then discount the cashflow from each exercise point and take the
average to find the value of the American put option, thus

CA
t = 1

n

p=n∑

p=0

−e−r(𝜏p−t)(K − S
𝜏p

),

where n is the number of paths.
It is important to note that when optimal exercise is indicated at ti the subsequent cashflows

are altered to zero, as if exercise has taken place at ti then by definition it cannot take place

1In a storage problem we cannot make this simplifying assumption as all the cashflows which can be
zero, positive or negative, must be considered.
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at times ti < t ≤ T . It is these altered cashflows which feed into the next iteration where
ContM(𝜔; ti−1) is estimated.

19.3.2 LSMC Greeks

In addition to the above algorithm for calculating the price of an American option we also have
the opportunity to obtain the delta of the option at minimal additional computational expense.
Instead of perturbing the underlying by a small amount, which would require re-running the
algorithm, we make use of the following general theory. Writing the value of the American
option, with strike K, optimal exercise time 𝜏 and maturity T , as the usual expected discounted
payoff we have

CA
t = e−r(𝜏−t)𝔼ℚ[C(S

𝜏
, 𝜏; K, T)|t];

the delta is of course the differential of this expression with respect to the current spot St. For
a call, differentiating inside the expectation and letting  denote the Heaviside function gives
us the expression for the delta of the option as

𝜕CA
t

𝜕St
= e−r(𝜏−t)𝔼ℚ

[
−

S
𝜏

St
(S

𝜏
− K)

]
, (19.1)

which in terms of an LSMC simulation works as follows. We create a new LSMC matrix in
which, for every point that is indicated as an optimal exercise, we enter −1 and all other points
are zero. If this is our ‘stopping rule’ matrix then the delta of the option is the average of the
discounted ratio S

𝜏
∕St across all the simulated paths p, as below:

𝜕CA
t

𝜕St
= 1

n

p=n∑

p=0

−e−r(𝜏p−t)
S
𝜏p

St
.

Furthermore, differentiating (19.1) again with respect to St gives us the following expression:

𝜕
2CA

t

𝜕S2
t

= e−r(𝜏−t)𝔼ℚ

[(
S
𝜏

St

)2

𝛿(S
𝜏
− K)

]
, (19.2)

here 𝛿(⋅) is the dirac delta function (the derivative of the Heaviside function) for the gamma of
the option, which can again be calculated from a single run of the LSMC algorithm; for other
recent approaches see Piterbarg (2005) and Kaniel et al. (2008).

19.3.3 Extending the LSMC to Price Gas Storage

Here we discuss how to use the LSMC approach in the valuation of gas storage; for other
extensions and the pricing of gas interruptible contracts, see Cartea and Williams (2008). If,
for example, the LSMC is used to price American-style options, the algorithm would require
a matrix of two dimensions, time and number of simulated paths, where on each path an
estimate of the optimal exercise time, a stopping rule for the option, is obtained. In application
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to multiple exercise problems we must create a third dimension, for swing options this is the
number of exercise rights. We then proceed as follows, say we have a swing option with N
upswing rights then we create a standard two-dimensional LSMC matrix corresponding to
each N, N − 1,… , 1 rights remaining and working recursively, our initial step is to set the
final cashflow conditions. These are different from the American option as we have multiple
exercise opportunities and therefore if we have N rights remaining, the final N timesteps in the
Nth matrix must be assumed to be exercise points; intuitively, if the holder of a swing option
is three days away from maturity and has three exercise rights left he will try to exercise on
every day. The continuation values are estimated and then we must make the optimal exercise
decision, but we must compare values from across the third dimension of our LSMC matrix.

Say we have N swing rights remaining, if we want to decide whether to exercise one of
our N rights at time ti, then we compare the value of not exercising and continuing with N
rights with the value of exercising and continuing with N − 1 rights. Introducing ContN

M(𝜔; ti)
as the continuation value with N rights remaining at time ti, and recalling that 𝜔 is a sample
path, we exercise a swing option with N rights remaining at time ti if

ContN
M(𝜔; ti) < I(𝜔; ti) + ContN−1

M (𝜔; ti),

where I(𝜔; ti) is the intrinsic value of exercising. That is, if the value of exercising one of our
swing rights, I(𝜔; ti), in addition to the value of continuing with one less right, ContN−1

M (𝜔; ti),
exceeds the value of not exercising and continuing with the current number of rights, then we
exercise one right.

The many possible constraints of swing options, penalty functions, maximum number
of upswings and downswings, all add complexity to the problem and change the way the
algorithm proceeds. For instance, if a penalty is payable when the maximum number of
swings is not reached then the final cashflow may be negative as it may be optimal to pay the
penalty rather than suffer a loss from exercising.

19.3.4 Toy Storage Model

To simplify both the development of the LSMC code and the understanding of the theory,
we present as an illustration a toy model before proceeding to a model with full physical
constraints. Our model is as follows, we take eight simulated gas day-ahead price paths (recall
that these are denoted by 𝜔) discretized into four daily timesteps (shown in Table 19.1). Our
LSMC matrix will then have three dimensions: simulation path, time and inventory level of
the storage facility. The inventory level is discretized into three levels: full, half full and empty
(100%, 50%, 0%). At any one time we can only inject or withdraw one unit (prices shown
are per unit too) and the maximum capacity of the storage is two units. We assume that the
storage contract commences with the facility empty and at the end of the contract we return
the storage facility empty.

At each timestep for each volume level and simulated path our decision is whether to
buy and inject one unit of gas, take no action or withdraw and sell one unit of gas from the
inventory we are holding in the facility. Our rational decision is to take whichever action cor-
responds to maximizing our expected cashflow at the current timestep. It can be shown that the
maximization problem is simply the comparison of three options: inject the maximum amount,
do nothing or withdraw the maximum amount. Hence we have the following expressions to
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TABLE 19.1 Toy price paths

t0 t1 t2 t3

25.0 150.2 83.7 42.5
25.0 27.5 40.4 9.4
25.0 52.9 72.3 42.9
25.0 26.0 39.0 76.2
25.0 58.8 100.6 99.1
25.0 116.8 104.3 18.9
25.0 12.6 73.6 32.4
25.0 63.3 17.0 68.8

evaluate:

Cashflowinj = −St + Contt(V + vinj), (19.3)

Cashflownull = Contt(V), (19.4)

Cashflowwdraw = St + Contt(V − vwdraw), (19.5)

where St are the simulated prices at timestep t, V the inventory level of the storage facility, vinj
and vwdraw the maximum daily allowable amount of injection and withdrawal respectively and
Contt(v) the expected value at time t of continuing at volume level v.

In (19.3) we show the cashflow from buying (injecting) plus the expected value of con-
tinuing at the next volume level up, (19.4) represents neither injecting nor withdrawing and
continuing at the current volume level and (19.5) is the cashflow from selling (withdraw-
ing) then continuing at the next volume level down. Our operational decision will then be
determined by the optimal volume action, v which maximizes:

max
v

[
Cashflowinj, Cashflownull, Cashflowwdraw

]
. (19.6)

As the LSMC algorithm is a backwards induction the first step is to define the values in
the cashflow matrix on the last days of trading. At the 100% level we withdraw and sell the
maximum amount possible, one unit per day, at the current spot price on the two days prior to
the end of the contract period in order to return the facility empty. At 50% we withdraw and
sell on the final day and at 0% inventory we take no action. In Table 19.2 we show the LSMC
matrix after this first step.

Starting at t2, for volume levels of 50% and 0%2 we discount the cashflows of the final
timestep t3 back one step and regress them on a second-order polynomial function of the spot
price at t2. On substitution of the spot prices back into the resulting polynomial we obtain
our continuation values Contt(V). Table 19.3 gives an example of the regression at the 50%
inventory level, Contt2 (50%). Y are the discounted cashflows from t3 and X are the t2 spot
prices (as in Longstaff and Schwartz (2001) we assume a discount factor of 0.94176). The
regression yields Y = 85.330 − 1.545X + 0.012X2 and the continuation values are 𝔼[Y|X].

2As the cashflow is already defined for the 100% volume level at t2.
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TABLE 19.2 Final cashflow conditions for discretized volume levels

100% 50% 0%

t0 t1 t2 t3 t0 t1 t2 t3 t0 t1 t2 t3

—– —– 83.7 42.5 —– —– —– 42.5 —– —– —– 0.0
—– —– 40.4 9.4 —– —– —– 9.4 —– —– —– 0.0
—– —– 72.3 42.9 —– —– —– 42.9 —– —– —– 0.0
—– —– 39.0 76.2 —– —– —– 76.2 —– —– —– 0.0
—– —– 100.6 99.1 —– —– —– 99.1 —– —– —– 0.0
—– —– 104.3 18.9 —– —– —– 18.9 —– —– —– 0.0
—– —– 73.6 32.4 —– —– —– 32.4 —– —– —– 0.0
—– —– 17.0 68.8 —– —– —– 68.8 —– —– —– 0.0

At time t2 and 50% volume level the maximization becomes (on substituting (19.3), (19.4)
and (19.5) into (19.6)):

max
v

[
−St2

+ Contt2 (100%), Contt2 (50%) + St2
, Contt2

(0%)
]
. (19.7)

In (19.8), (19.9) and (19.10) we take a specific numerical example for the second price
path, we have

− St2
+ Contt2

(100%) = −40.4 + 42.5, (19.8)

Contt2(50%) = 42.5, (19.9)

St2
+ Contt2

(0%) = 40.4 − 0.0. (19.10)

Hence the optimal decision is to take no action and continue at the 50% level. As we see in
Table 19.4, we enter zero in the cashflow matrix.

As above, we execute a regression for each volume level and then the maximizations for
each level; this gives us the optimal action for each point in our matrix. Translating these
actions into cashflow we obtain the amended cashflow matrix, shown in Table 19.4, where at

TABLE 19.3 Continuation value regression at t2 for 50%
volume level

t2 prices Continuation at t2

Y X 𝔼[Y|X]

40.0 83.7 40.1
8.9 40.4 42.5

40.4 72.3 36.3
71.7 39.0 43.3
93.3 100.6 51.3
17.8 104.3 54.7
30.5 73.6 36.6
64.8 17.0 62.5
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TABLE 19.4 t2 cashflow for discretized volume levels

100% 50% 0%

t0 t1 t2 t3 t0 t1 t2 t3 t0 t1 t2 t3

—– —– 83.7 42.5 —– —– 83.7 0.0 —– —– 0.0 0.0
—– —– 40.4 9.4 —– —– 0.0 9.4 —– —– −40.4 9.4
—– —– 72.3 42.9 —– —– 72.3 0.0 —– —– 0.0 0.0
—– —– 39.0 76.2 —– —– 0.0 76.2 —– —– −39.0 76.2
—– —– 100.6 99.1 —– —– 100.6 0.0 —– —– 0.0 0.0
—– —– 104.3 18.9 —– —– 104.3 0.0 —– —– 0.0 0.0
—– —– 73.6 32.4 —– —– 73.6 0.0 —– —– 0.0 0.0
—– —– 17.0 68.8 —– —– 0.0 68.8 —– —– −17.0 68.8

t2 a positive cashflow indicates that withdrawing (selling) is optimal, a negative value indicates
that injecting (buying) is optimal and obviously zero cashflow indicates no action is taken.

Note that at the subsequent timestep t3 the cashflow is altered to reflect the values from
the volume level we have jumped to at the previous iteration, for example in the first price path
at the 50% volume level the optimal behaviour is to sell at 83.76 at t2 and reduce our volume
level to 0%. Therefore, the cashflow at t3 is altered to 0.0, which is the t3 value at 0% from the
previous iteration (Table 19.2).

Before we move to the next iteration we must recalculate our continuation values with
the amended cashflows at the current iteration. In our regression, in the next iteration Y will
be the sum of the t2 and t3 values discounted back to t1 and X the spot price at t1. We repeat
this process until we reach t0 and arrive at the final cashflow matrices for all volume levels.
The value of the storage, when the contract commences with the facility empty, is then the
average of the sum of discounted cashflows from each row shown in Table 19.5. Table 19.6
shows the inventory levels corresponding to this cashflow and Table 19.7, the operating rule
for the storage facility.

Figures 19.3 and 19.4 represent the data in Tables 19.5 and 19.6, respectively. In Tables
19.6 and 19.7 and Figure 19.4 we see that on every path we must inject (buy) at the first

TABLE 19.5 t0 cashflow for 0% volume level

0%

t0 t1 t2 t3

−25.0 150.2 0.0 0.0
−25.0 −27.5 40.4 9.4
−25.0 0.0 72.3 0.0
−25.0 −26.0 39.0 76.2
−25.0 0.0 100.6 0.0
−25.0 116.8 0.0 0.0
−25.0 −12.6 73.6 32.4
−25.0 63.3 −17.0 68.8
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TABLE 19.6 t0 inventory level for 0% volume level

0%

t0 t1 t2 t3

50% 0% 0% 0%
50% 100% 50% 0%
50% 50% 0% 0%
50% 100% 50% 0%
50% 50% 0% 0%
50% 0% 0% 0%
50% 100% 50% 0%
50% 0% 50% 0%

timestep, increasing the inventory level to 50% and that all paths obey the final condition of
zero inventory.

19.3.5 Storage LSMC

A storage facility is much like a swing option with an up and down swing option for every
day of the contract, for instance, on any day we may buy gas and inject it into storage or
withdraw gas and sell it to the market. The injection and withdrawal limits are governed by
‘ratchets’, see Figure 19.5, which are volume dependent and unique to each type of storage
facility. These occur as the inventory level increases and it becomes harder to inject more gas
and as the inventory level decreases and it becomes harder to withdraw more gas.

Our action is also governed by minimum and maximum inventory levels that apply
across the duration of the storage contract, and initial and final conditions which stipulate the
inventory state in which the facility is obtained and must be returned. There may also be a
penalty, dependent on the volume level and spot price for breaking any of these constraints.
The type of facility may also dictate fixed injection and withdrawal costs which pay for the
additional energy required to operate in injection or withdrawal mode. In addition to the

TABLE 19.7 t0 operation rule for 0% volume level

0%

t0 t1 t2 t3

inj wdraw —– —–
inj inj wdraw wdraw
inj —– wdraw —–
inj inj wdraw wdraw
inj —– wdraw —–
inj wdraw —– —–
inj inj wdraw wdraw
inj wdraw inj wdraw
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F IGURE 19.3 Toy model price paths. The eight simulated spot price paths
on which we base the storage operation.
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F IGURE 19.5 Example of physical ratchets, from Gray and Khandelwal
(2004).

physical constraints we are also governed by market constraints such as a bid–ask spread,
transaction costs and of course the discount rate.

To value a storage facility we again set up a three-dimensional LSMC matrix, with the third
dimension being the volume of gas in the storage facility. In this way we can accommodate
the above constraints by making the appropriate comparisons with continuation values across
the different volume levels.

So, working recursively from maturity back to time zero, at inventory level V , we compare
three possible actions: inject volume vi and continue at inventory level V + vi, take no action and
continue at inventory level V , or withdraw volume vw and continue at inventory level V − vw.
Obviously the physical constraints above – ratchets, maximum and minimum inventory levels
and the initial and terminal constraints – define the allowed sets of vi and vw from which we
can choose.

To summarize we value a storage facility subject to the following constraints:

� Vmax, the maximum capacity of the storage facility.
� Vi, the inventory level at which the storage contract is initiated.
� Vf , the inventory level at which the storage contract must be returned at the end of the

contract.
� vinj(V) and vwdraw(V), the ratchets (i.e., the inventory-level-dependent injection and with-

drawal rates); simulated as represented in Figure 19.6.
� Cinj and Cwdraw, fixed injection and withdrawal costs in pence per therm.
� BA, Ctrans and r, the market constraints, bid–ask spread, transaction costs and the discount

rate respectively.

19.3.6 Swing Opt ions

If we allow N withdrawals which in total are equal to the full volume of the facility, and no
injections, then we simulate a swing option with N downswing rights (put rights). Specific
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F IGURE 19.6 Simulated ratchets, volume-dependent injection and withdrawal
profiles.

numerical comparison with the results from table 3.1 in Ibáñez (2004) are given in Table 19.8,
where we have a strike price of 40 and a risk-free rate of 0.0488, again under a standard
log-normal process. We see a close match to the swing values for in- and at-the-money values
of S but some divergence in the results for out-of-the-money values of S and higher numbers
of swing rights. This could be a result of only simulating at 12 exercise points.

19.3.7 Closed-Form Storage Solut ion

When the underlying spot price process is the following single-factor model from Weston
(2004).

dSt

St
= ln

(
S̄
S

)
dt + 𝜎dWt,

TABLE 19.8 Percentage difference between LSMC (12 exercise points and 100,000 simulations,
50,000 antithetic) values and those from Ibáñez (2004) for a swing put option with N rights

S 𝝈 T N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

35 0.25 0.25 0.215 0.385 0.334 0.249 0.287 0.270
35 0.50 0.25 0.142 0.006 0.200 0.310 0.401 0.505
40 0.25 0.25 −0.660 −0.428 0.501 0.464 0.543 0.918
40 0.50 0.25 −0.287 0.055 −0.104 0.408 0.648 0.855
45 0.25 0.25 −1.314 0.518 1.267 1.627 2.598 3.417
45 0.50 0.25 −0.605 1.105 2.070 1.175 0.770 2.651
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we have the following closed-form Bellman equation for a storage problem defined at three
timesteps:

V1(x, S) = max
a1

[(
𝛽S̄ − S

)
a1

]
+ 𝛽S̄

(
x − xmin

)

+𝛽S̄(xmax − xmin)

(
𝛽N

(
ln 𝛽
𝜎

+ 𝜎

2

)
− N

(
ln 𝛽
𝜎

− 𝜎

2

))
, (19.11)

where S̄ and 𝜎 are the mean and volatility of the underlying respectively, S is the initial
underlying value, 𝛽 is a discount factor suitable for the system being modelled and N the
number of timesteps. xmax and xmin are the maximum and minimum storage limits and a1 is the
amount we may add or subtract from the initial amount in storage, x. A simplifying assumption
in the derivation of this closed-form solution is that xmin − x > amin and xmax − x < amax; this
in effect allows us to sell all the gas in storage on the last timestep or indeed to fill the storage
facility completely in any one single timestep.

We set the underlying of our LSMC algorithm to (19.11) and, taking 𝛽 = 1 (equivalent
to a risk-free discount rate of zero), we present a comparison of the values from (19.11), the
Bellman equation against those from the LSMC algorithm with a range of exercise frequencies
and values of S and S̄. In Figure 19.7 we see convergence towards the closed-form value for
increased exercise frequency.

19.3.8 Monte Carlo Convergence

In Figure 19.8 we show that as we increase the number of sample paths simulated in the
LSMC algorithm, from 10 to 105, the calculated value of an American put option converges
to the value calculated by finite difference from Longstaff and Schwartz (2001). The upper
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and lower bounds are a 95% confidence interval, which is 1.6% of the option value with 105

sample paths.
Early exercise options can be exercised on any day prior to maturity and as such it would

be intuitive to think that we must discretize the time dimension in our LSMC matrix to at least
represent this daily frequency. In the case of storage it is physically possible to exercise the
right to inject or withdraw every day of the contract and therefore it would seem necessary to
simulate every day to achieve the correct valuation.

In Figure 19.9 we show the LSMC calculated value of an American option for a range
of simulated exercise opportunity frequencies, from monthly to daily, and in Figure 19.10 a
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similar comparison for a storage value simulation. For the American case we see that the value
converges to the finite difference value at a weekly frequency (the frequency used in Longstaff
and Schwartz (2001)), and moreover further increases in frequency do not reduce the size of
the confidence interval or improve the convergence. This is due to the fact that the American
option has only one exercise opportunity.

In the case of storage this convergence does not emerge and the value increases with the
frequency; we note that the size of the confidence interval, with only 100 simulated paths, is
less than 5% of the storage value, and does not alter with increased frequencies. Both these
results are to be expected as we require a simulation of every day to fully value the flexibility
of the facility and the strong mean reversion of the simulated underlying reduces the variance
across multiple simulations.

19.3.9 Simulated Storage Operat ions

In this section we present some basic tests of the performance of the LSMC algorithm in
determining the optimal operation of a storage facility with various simplistic underlying price
paths. Our storage facility has a total capacity of 1 Bcf, approximately equivalent to 1 × 106

MMBtu, with fixed maximum daily injection and withdrawal rates of 10,000 MMBtu. The
facility is received empty and must be returned empty. The contract duration is 1 year and the
risk-free rate is 6%.

In Figures 19.11, 19.12 and 19.13 we represent the gas price as a stepped function
and see that the algorithm replicates a bang-bang operation policy, maximizing the value
of the storage, under the volumetric constraints and the initial and terminal conditions. In
Figure 19.11 we also show the inventory path under simulated ratchets and we see that
they require us to start injecting earlier and to withdraw for longer, decreasing the amount
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F IGURE 19.11 Storage operation with and without ratchets and
with step function gas price (dashed line).

by which negative cashflows from the injection phase are discounted and increasing the
discount on the positive cashflows from the withdrawal phase, hence lowering the value of the
storage.

If we now simulate the price path as mean reversion to a constant drift then we obtain
the results in Figures 19.14 and 19.15 respectively for positive and negative drifts. In the
case of a positive drift the storage operation is similar to the bang-bang policies but further
refinement is seen in small adjustments in the volume level to take advantage of the volatility
of the underlying. With negative drift we see a rapid cycling of the gas in storage as we
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F IGURE 19.13 Storage operation with double step function gas price (dashed
line).

cannot benefit from the negative drift by selling first as we commence at zero inventory
level.

Finally, in Figure 19.16 we introduce a seasonal element to the underlying, and observe
that the optimal policy is as an overall calendar spread (buy summer, sell winter) with smaller
daily adjustments to trade the volatility.
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19.3.10 Storage Value

19.3.10.1 Typica l Storage Contract We value a contract on a storage capacity of 1 mil-
lion therms with daily injection and withdrawal rates of 100,000 therms, we receive and
must return the facility empty. We value a contract duration of 1 year, with a daily trading
frequency and zero interest rates, across a range of contract start dates from 1 January to
30 June 2008. In Figure 19.17 we show the intrinsic value and the premium with and without
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F IGURE 19.17 Storage valuation in pence, intrinsic and extrinsic with and without jumps,
LSMC valuation with 1000 paths.

jumps added to the price process; we also show the futures curve to which the spot price was
calibrated.

In Figure 19.17 we see that the most basic indicator of the storage value, the intrinsic
value, is constant across the contract start dates. The intrinsic value is the optimal combination
of futures contracts given a static view of the futures curve on a particular date, and subject
to the physical constraints of the storage facility. As the gas futures curve is dominated by a
repeating seasonal pattern, the relative difference in prices across the year is constant as we
change the start date of our storage contract. This results in a constant intrinsic value regardless
of any contango or backwardation inherent in the market.

In the range of winter start dates, where we see a higher spot price, the premia (with and
without jumps) are lower than spring and summer start dates. When we start a storage contract
with zero inventory our first action can only be to inject gas. If we start the contract in winter we
wait until the low summer prices to fully fill our facility, then selling the following winter. If,
in contrast, we start a contract in the summer then the situation is reversed and we immediately
fill our storage and sell the following winter. Throughout the duration of both these cases
we trade not only the overall calendar spread but the daily volatility as well. The calendar
spread is constant regardless of when the contract starts as it depends only on the relative
difference of summer and winter prices. This implies that the difference in storage premia
across the year must arise from the way in which the daily volatility is traded, specifically
from the increased flexibility of having more gas at an earlier date in the case of a summer start
contract.
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In respect of the jumps, our path simulation with jumps gives spot prices in the range of
150–200 pence per therm, and approximately 7 jumps per year. This is in comparison with
normal prices in the range of 7–100 pence per therm. With this comparison in mind we see
that the majority of the extrinsic value comes from the volatility of the price process rather
than the jumps, as the extrinsic value shows an increase of 2.5 × 107 over the intrinsic value,
whereas the extrinsic value with jumps shows only a further 1 × 107 increase.
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CHAPTER 20
Commodity-Linked Arbitrage

Strategies and Portfolio Management
Viviana Fanelli

The aim of an investor or a speculator who operates in the markets is to select and apply
successful investment strategies that enable profit to be made, more or less in line with his
risk profile. An individual could trade in specific assets, for example when physical assets for
industrial processes are needed or for hedging or simply for speculation, or he could select and
manage a portfolio of assets again for hedging or simply for broad-based, diversified investing.
Recently there has been growing interest in commodity markets; on the one hand because they
offer arbitrage opportunities that can be exploited using appropriate trading rules, while on
the other hand because, given their intrinsic risk–return characteristics, commodities provide
diversification of risk for traditional portfolios.

This chapter is divided into two parts. In the first part, a detailed discussion of commodity-
linked arbitrage strategy is carried out. First, the efficient market hypothesis theory is illustrated,
as formulated by Fama (1970) and according to later reinterpretations. Some of the assumptions
underlying the efficient market hypothesis do not hold in commodity markets that reveal
temporary inefficiencies. These inefficiencies give rise to arbitrage opportunities that can be
identified through statistical methods, some of which are presented in this chapter. Several
trading techniques are reviewed, from the most basic and classic strategies defined within the
technical analysis class, to the more modern strategies defined within the statistical arbitrage
class. Finally, using commodity market data empirical analyses have been carried out to
implement trading strategies and verify their reliability.

The second part of the chapter deals with the description of commodity characteristics
and with portfolio optimization. First, commodities are classified by asset type and the main
commodity investment classes are presented. Then, the characteristics of commodity futures
returns and risk premiums are discussed. Finally, through a portfolio risk–return analysis it
is shown how commodities represent a good diversifier of portfolio risk and possible risk
measures are described that can be used in portfolio optimization with commodities.
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20.1 COMMODITY-L INKED ARBITRAGE STRATEGIES

20.1.1 The Ef f ic ient Market Hypothesis

Extensive literature is devoted to the study of the so-called efficient market hypothesis, with
results that sometimes support the hypothesis, while others reject it. According to a formulation
of Fama (1970), a market is efficient if prices always fully reflect all available information.
His study focuses on the capital market role and market mechanisms and his conclusions are
based on extensive analysis and discussion of the theoretical and empirical literature of the
previous 25 years regarding the efficiency of the market. Fama distinguishes three distinct
categories of market efficiency, which are verified on the basis of empirical tests concerning
the adjustment of stock prices to information available on the market: weak form efficiency,
semi-strong form efficiency and strong form efficiency. There is weak form efficiency if the set
of information available to investors contains only historical prices. Efficiency is in semi-strong
form if the set also includes all information publicly available. Efficiency is in strong form if
the set also includes private information to which only certain types of investors have access.
Fama himself acknowledges that this latest version of efficiency is definitely false because it
assumes that information costs and trading costs are zero, so it is regarded as a benchmark in
determining the level of costs. He also argues that the hypothesis of market efficiency is tested
jointly as equilibrium model and model of asset pricing. That is, the pricing model defines
the appropriate way in which information is reflected in the price, so any anomalies in the
behaviour of returns may be due either to a market failure or to a bad market equilibrium
model. In particular, Fama (1970) defines the random walk model for the determination of
expected returns as an extension of the fair game efficient markets model. In this way, he
establishes the price process characteristics and the equilibrium conditions that must be tested
for market efficiency.

LeRoy (1989) makes a clear analysis on the definition of efficient markets and supports
the concept that market efficiency can be deduced from the mechanisms of equilibrium price
formation in competitive markets in which agents are rational individuals. In particular, oper-
ators have access to all available information and the process of equilibrium price formation
does not give rise to any possible applications of profitable trading strategies. In mathematical
terms, prices follow martingales. Some empirical evidence, however, reveals that investors do
not always behave rationally, reacting in the same manner to new information. They overreact
at times, pushing prices away from their fair market value, so that only by taking opposite
positions to the previous negotiations can equilibrium be restored. This phenomenon gives
rise to the so-called reversals, possible market inefficiencies, investigated by Niederhoffer and
Osborne (1966).

Fama (1970) defends the validity of the efficient market hypothesis and suggests that
even when price changes are not serially independent, but there is a convincing economic
explanation of this dependence, then the market is still efficient. Fama (1976) then proposes a
new definition of capital market efficiency. The conditions that must be verified for efficiency
are twofold: all information relevant to the determination of prices is known and there are
rational expectations, namely agents know the structure of the model and the values of the
parameters.

A critical review of the efficient market hypothesis is made by Fama (1991). He changes
the categories in which he had classified the tests for market efficiency in 1970. Instead of
weak form tests, he defines tests for return predictability, which include not only tests about
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the ability to forecast the past return, taking into account the dividend yield and interest rates,
but also about the cross-sectional predictability of returns, consisting of the analysis of the
asset pricing model used and its anomalies. He substitutes the semi-strong form tests with
event studies and the strong form tests with tests for private information.

20.1.2 Risk Arbitrage Opportuni t ies in Commodity Markets

As pointed out in the previous section, according to the efficient market hypothesis, a market is
efficient if prices incorporate all currently available information. The assumptions underlying
the efficient market hypothesis are no transaction costs, costless information, all market par-
ticipants as rational individuals, and all implications for both current prices and distributions
of future prices generally accepted by all market participants, that is rational expectations of
the ex-post rational prices exist. In a perfectly efficient market no profitable trading strategies
can be applied because traders could never earn abnormal returns.

Obviously the assumptions that transaction and information costs are equal to zero are
unrealistic in actual markets and in order to preserve market efficiency these costs should be
absorbed by possible extra returns so that equilibrium prices would always be guaranteed.
Regarding commodity markets, some empirical evidence from the literature of temporary
market inefficiency is discussed and results from profitable trading rule implementations are
shown to offer arbitrageurs and hedgers useful and practical investment tools.

In the following, some examples from the literature of historical market inefficiencies are
shown: two in the agricultural sector, two in the metal sector, three in the energy sector and
the last example refers to an arbitrage opportunity existing between the oil futures market and
the shipping freight market.

Regarding the agricultural sector, possible arbitrage opportunities exist between the soy-
bean futures market and related futures markets. Johnson et al. (1991) test market inefficiency
of the soy complex futures price spread, that is a processing (crushing) spread of soybean,
soyoil and soymeal, using a combination of profit margin rules. In particular, if positive profit
margins, that is gross crushing margins exceed processing costs, are implied by soy complex
futures prices, then a trader takes a normal soybean crush position, that is long soybean,
short soymeal and short soyoil. This strategy is consistent with market mechanisms. In fact,
positive profit margins are an incentive for the crusher to crush soybean so that supplies of
meal and oil and their prices increase in relation to soybean supply and price, resulting in
a corresponding change in the soy complex spread. Furthermore, the gross crushing margin
moves towards crushing costs, alternatively long-run arbitrage occurs. The authors find that
only nearby soy complex futures spreads trading guarantees an efficient market, because at
trade lengths longer than 5.5 months, arbitrage opportunities and profitable trading exist. Liu
(2005) examines the relations among the hog, corn and soybean futures markets in order
to find any market inefficiency. He considers the so-called hog spread obtained by taking a
short position on hog futures and long positions on corn and soybean futures. He studies the
cointegration relation among the three futures prices by applying the Johansen (1988, 1991)
methodologies and accounting for seasonality and time trends and he finds that the three series
are cointegrated, indicating the presence of a mean-reverting tendency to a long-run equilib-
rium for the hog spread. Then the author applies trading simulations that generate significant
profits net of transaction costs, suggesting that some inefficiencies exist in the three futures
markets because prices, that should reflect all available information and expectations, do not
capture the mean-reverting tendency, therefore providing arbitrage opportunities.
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With regard to the metal sector, in the 1980s Ma and Soenen (1988) find arbitrage
opportunities existing between gold and silver futures markets. In fact they analyse the parity
relationship between silver and gold spot prices and verify that it persists also on futures
markets. Profitable trading opportunities derive from temporary disparities and they are more
favourable in future markets than spot markets as the transaction costs are more moderate.
Kenourgios and Samitas (2004) investigate the hypothesis of market efficiency for the copper
futures market and the hypothesis that futures prices are unbiased estimators of future spot
prices using cointegration and error correction models. They find that for the period considered,
January 1989–April 2000, the copper futures market is not efficient in both the short and long
run and futures prices are not unbiased estimates of future spot prices.

Regarding the energy sector, the historical empirical evidence of arbitrage opportunities
in petroleum futures markets is considered. Girma and Paulson (1999) use cointegration theory
to investigate the economic and statistical relationship among crude oil, unleaded gasoline and
heating oil futures prices. They find that price time series are cointegrated and so the crack
spreads 3:2:1, 1:1:0 and 1:0:1 converge to a long-run equilibrium. Arbitrage opportunities
derive from temporary mispricing between crude oil and its refined products and they are
identified and exploited to profit by applying the trading rule 5-day and 10-day moving
averages. Poitras and Teoh (2003) design a filter-based day trading strategy to individuate
trading signals for the crack spread. In particular, they suggest that because the opening price
for the crude oil futures market is five minutes earlier than the opening time for the end-product
futures markets, the opening price of crude oil is driven by factors specific to that individual oil
complex component. So, crack spread values can exhibit significant overnight price reversal
and then the open-to-close reversal is exploited during the day to profit. Asche et al. (2003)
study the relationships between crude oil and its refined products, applying the multivariate
cointegration methodology according to Johansen (1988). They also find that there exists a
long-run relationship between the prices of crude oil and end products, except between prices
of crude oil and heavy oil. Consequently, a long-run relationship exists among refined products
themselves. Furthermore, they point out that crude oil is a weak exogenous variable, meaning
that the price of crude oil determines the price of its refined products, but it is not true the other
way round. Even from this study it can be deduced that some market inefficiencies in relative
pricing can be exploited to realize arbitrage profits.

Finally, the relationship among tanker freight rates, physical crude oil (UK Brent and
Nigerian Bonny) and crude oil futures (WTI) is explored by Alizadeh and Nomikos (2004).
The cost-of-carry relation links the physical (spot) price with the WTI futures price through the
cost of transportation, the tanker freight rate, that, if the market is efficient, should explain the
physical crude and WTI futures price differentials. Actually they use a vector error correction
model and find that there exists a long-run relationship only between freight rates and oil
prices, and not between freight rates and physical–financial differentials. This results in the
existence of arbitrage opportunities often due to regional supply, demand imbalance, regulatory
changes and some market distortions. They simulate profitable trading strategies to exploit
these arbitrage opportunities.

According to the literature, the most common methodology used to investigate the exis-
tence of arbitrage opportunities on commodity markets is based on cointegration techniques.
Cointegration is used to analyse the long-run equilibrium among futures prices. If price time
series are cointegrated and have stationary cointegrating regression residuals, the relative
prices are stationary as well and revert to a ‘normal’ level. The deviations from the long-run
equilibrium or normal level or average can be considered as mispricings and they can be
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exploited as arbitrage opportunities. In fact, an arbitrageur at a favourable point of time can
invest in the mispricing and reverse his position when, according to the mispricing property
of stationarity, its dynamics mean-revert. Two or more price time series that are individually
integrated to the same order of integration and are nonstationary at the price level are cointe-
grated if there exists a linear combination of a lower order. The most popular method of testing
cointegration is the cointegration regression introduced by Granger (1983). The regression
coefficients are estimated by the ordinary least-squares method, but in order for the time series
to be cointegrated, the regression residual must be stationary. Assume that P0

t is the target time
series that is regressed upon a set of time series, called the cointegrating series, P1

t , P2
t ,… , Pn

t ,
such that

P0
t = 𝛽0 + 𝛽1P1

t + 𝛽2P2
t +…+ 𝛽nPn

t + 𝜖t

where 𝜖t are the regression residuals and 𝛽i with i = 0, 1,… , n are the regression coefficients.
The stationarity of the time series can be checked by the Dickey–Fuller test (DF) and the
augmented Dickey–Fuller test (ADF) that look for unit roots in the price time series. In order
to define an arbitrage strategy with the mispricing time series, investors have to know if the
time series is stationary, namely if it deviates from the particular nonstationary dynamics of
the random walk. A theoretical problem about the low power of classical statistical tests like
DF and ADF to clearly identify the behaviour of the time series dynamics is well known in the
econometrics field. There is a more robust test of the variance ratio to verify if the dynamics
of the time series deviate from the random walk behaviour. This is used by Burgess (1999)
in his study investigating the statistical arbitrage opportunities in stock markets. The strength
of the variance ratio test is that its application to time series over time gives the possibility of
finding out if the dynamics of the time series is trending or mean-reverting. The variance ratio
statistic is defined as the normalized ratio of the long-term variance calculated over a period 𝜏
to single-period variance. If the variance ratio statistic is calculated over the price time series,
the variance ratio function is automatically obtained. Values of variance ratio bigger than
one for any 𝜏 suggest that the price series is positively serially correlated and has a trending
behaviour; meanwhile, values of variance ratio less than one for any 𝜏 suggest that the price
series is negatively serially correlated and has a mean-reverting behaviour.

The variance ratio test is applied here to study the relationship existing between the
Brent futures first month traded at the Intercontinental Exchange (ICE – formerly the Interna-
tional Petroleum Exchange (IPE)) in London and the prices of some related distillates:1 the
‘Rotterdam Premium Gasoline unleaded Fob Cargoes’ (PUR) quote by Platt’s as a light dis-
tillate, the gas oil future first month traded on ICE as a middle distillate product and finally
the North West Europe (NWE) ‘Low Sulphur Fuel Oil cargoes’(LSFO), the NWE ‘High Sul-
phur Fuel Oil Barger’ (HSFO) and the NWE ‘Cts180 Bunker Fuel Oil’ as heavy distillate
products. A portfolio is considered that is characterized by the virtual refinery model, based
on the production relation between the crude, that is the input for the refinery and the prod-
ucts that represent the output. The considered data set is formed by the time series that span
from 25/10/2000 to 19/10/2009, all prices quoted weekly in US dollars per barrel (bbl).2 The
Brent futures price is regressed on the refined product prices and the resulting cointegration

1This analysis is carried out with the collaboration of Andrea Bucca, Manager, Corporate Risk Manage-
ment, Glencore International Ltd, London.
2Gretl and Excel software were used for the analysis.
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TABLE 20.1 Cointegration regression for Brent and distillates

Variable Coefficient Std Error t-Statistic Probability

Coefficient −0.000995663 0.15801813 −0.006300942 0.994975371
LSFO −0.143760525 0.035937055 −4.000342461 7.38121E-05
HSFO 1.109299632 0.08714746 12.72899557 5.80452E-32
Cst180 −0.673658848 0.073211454 −9.201549972 1.28414E-18
PUR 0.204821928 0.011393414 17.97722201 5.48275E-55
Gas Oil 0.477137322 0.011549116 41.31375233 4.463E-156

regression coefficients are presented in Table 20.1. Figure 20.1 displays the variance ratio
(VR) profile obtained for the residuals, which are called mispricings. It can be observed that
all VR values are less than one and the VR function is decreasing. Therefore, the deviation
of the mispricing process from a random walk is strong and the mispricing clearly follows a
mean-reverting process, evidencing the presence of predictability that can be used to define
profitable trading strategies.

20.1.3 Basic Quant i tat ive Trading Strategies

The arbitrage opportunities that arise on commodity markets are of notable interest to investors
and speculators that study and develop quantitative methods and trading strategies. The basic
quantitative trading strategies referred to here come from the field of technical analysis.
Technical analysis is a discipline that aims to interpret the movements of the market in order
to profit from trading assets. It emerged more than 100 years ago to meet the demand for
an analytical tool for trading, which set aside the fundamental aspects of the quoted assets.
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The major base assumption is that all relevant information is not publicly available in time
to operate successfully on the market. Prices are observed systematically to understand the
dynamics of the market, and increases and decreases in prices are no longer analysed on the
basis of the cause and effect relation, as is done in fundamental analysis, but only for effect.
Prices reflect all fundamental, political and psychological elements known to the market, in
short they reflect the demand and supply equilibrium in any moment. Technical analysts seek
to identify some typical situations and financial behaviour on the market that affect asset
quotations and that systematically repeat themselves over time. This means analysts assume
the existence of trends that are a lagged response of the market prices to the underlying factors
governing those prices. Analysts in such a way exploit their expectation on prices to buy or
sell assets and make profits.

Technical analysis techniques adapt well to commodity futures markets (Alexander, 2008)
where transaction costs are low and do not erode profitability. These costs have been estimated
in the study of Locke and Venkatesh (1997) to vary in a range between 0.0004% and 0.033%.

It is suggested here that the basic trading rules used to formulate more advanced trading
strategies are: filter rules, support and resistance rules, moving averages and channel break
outs. In order to show how these strategies work if applied to commodity markets, reference
is made to the analysis carried out by Brandoni and Roncoroni (2008).3 They consider seven
daily time series from 2002 to 2008, comprising closing prices of some commodity futures:
crude oil (CO), copper (HG), gold (GD), unleaded gasoline (XB), natural gas (NG), silver
(SI) – most traded on NYMEX – and the time series of the peakload calendar futures of the
European Energy Exchange (EEX). The buy-and-hold strategy is applied to these data and its
results are compared with those obtained by applying the other strategies mentioned above.
In order to evaluate the profitability of the trading rules, the following performance indicators
defined in Fusai and Roncoroni (2008) are calculated. The first indicator is the total net profit
(TNP), given by the difference between the total gross profit and the total gross loss obtained
from applying the strategy. The second indicator is the profit factor (PF), calculated as the
ratio of the winning trade gross profit over the losing trade gross loss. This measure calculates
how many dollars are gained for each dollar lost, namely it measures the risk of the single
strategy. Long-term operators generally use the strategy only if the profit factor is greater than
2. Also, the total number of trades has to be considered and it should be between 10 and
20 trades per year. Furthermore, it is useful to calculate the average trade (AT), that is the
average net profit across all trades, the average winning/losing trade (AWT/ALT), that is the
average profit/loss across all winning/losing trades, and also the ratio between the average
winning trade and the average losing trade as an additional measure of the trading rule risk.
In order to evaluate the risk of the trading strategy, the maximum losing trade (MLT) and the
maximum winning trade (MWT) are determined. In general, if the total profit is linked to only
one win that exceeds 25% of the total profit, then the strategy is risky. The same consideration
can be made about the maximum loss. Finally, a significant historical performance measure
is the maximum drawdown (MADD), which represents the top cumulative loss an investor
would have incurred if he had gone long a moment before reaching the maximum peak. The
maximum drawdown therefore represents the largest margin necessary to cover the highest
possible loss produced by the strategy. Other indicators, which are not but could be considered,
are the maximum number of consecutive losses or the one-way break-even trading measure.

3The numerical results were obtained using Matlab software.
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TABLE 20.2 Buy-and-hold strategy over the period 1/2002–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 43.68 0.58 1.058 0.8685 −0.92
EEX 51.72 0.306 1.152 0.49 −0.51
HG 106.75 0.586 1.041 3.09 −3.23
GC 471.3 0.288 1.117 4.95 −5.09
XB 106.473 0.614 1.020 6.21 −6.64
NG 4.61 0.727 1.031 0.17 −0.17
SI 5520.577 1.046 12.99 −15.69

TABLE 20.3 Buy-and-hold strategy over the period 1/2002–12/2005

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 37.98 0.318 1.135 0.60 −0.60
EEX 36.92 0.198 1.378 0.32 −0.30
HG 150.35 0.182 1.257 1.42 −1.27
GC 239.7 0.152 1.191 2.80 −2.79
XB 311.81 0.333 1.122 5.50 −5.33
NG 8.76 0.537 1.116 0.17 −0.15
SI 435.5 0.328 1.136 6.57 −7.31

The data are analysed on two subperiods, [2002, 2005] and [2006, 2008], with the scope to
verify an eventual change of the trading rule performance over the subperiods. Tables 20.2 to
20.4 contain the results of the performance indicators obtained by applying the buy-and-hold
strategy to the time series over the entire period and over the two subperiods.

The filter technique was used for the first time by Alexander (1961, 1964). It is a mechan-
ical rule which attempts to identify movements in stock trends by applying some criteria for
trading. In particular, an x% filter defines the following rule. If the market moves up x% or
more, meaning that the price of the observed asset rises above this percentage, there is a signal
to buy and the long position is maintained until it moves down x% or more, that is the asset
price decreases at least x% from a subsequent high. Analogously, the signal to sell is when

TABLE 20.4 Buy-and-hold strategy over the period 1/2006–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 3.33 0.587 1.007 1.25 −1.36
EEX 18.33 0.306 1.077 0.68 −0.71
HG −44.25 0.586 0.978 5.48 −5.76
GC 218 0.288 1.079 7.99 −8.13
XB −214.4 0.614 0.926 7.18 −8.49
NG −3.6 0.605 0.949 0.19 −0.20
SI 89.5 0.577 1.010 21.80 −27.19
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TABLE 20.5 Filter strategy over the period 1/2002–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 49.160 0.405 1.291 4.744 −2.641
EEX 81.67 0.150 1.645 2.22 −0.92
HG 92.65 0.710 1.127 24.86 −9.97
GC 616.6 0.333 1.367 16.07 −8.28
XB −6.099 0.552 0.994 41.04 −24.78
NG −7.385 0.870 0.869 0.66 −0.39
SI 385.1 0.484 1.062 37.07 −20.73

the closing price of the asset moves down x% or more and the short position is maintained
until the price rises x% above the subsequent low, at which time the position is closed out to
go long. Alexander (1961, 1964) studies stock and commodity price movements and argues,
using empirical tests, the idea that in speculative markets price changes appear to follow a
random walk over time, according to the perfect market hypothesis, but, indeed, once a trend
is initiated it tends to persist so that filters produce profits. Fama and Blume (1966) analyse the
dynamics of 30 securities belonging to the Dow Jones Industrial Average, applying filters to
the time series of data from 1950 to 1960. They conclude that even though some filters generate
extra profits compared with the buy-and-hold strategy, the consideration of transaction costs
denies any profitable results for an active management of the positions. The empirical results
for a 5% strategy applied on the above data are shown in Tables 20.5, 20.6 and 20.7. From the
performance of the filter rule reported in the tables, the profit for crude oil, electricity and gold
is greater than the profit obtained by applying the buy-and-hold strategy, but the profit factor
lower than 2 indicates a strategy that is too risky for all commodities. Furthermore, the number
of trades is so much higher that it eliminates the advantage deriving from profits once transac-
tion costs have been considered. From the analysis over the single subperiods, the 5% filter rule
seems interesting for the unleaded gasoline due to its high profit factor, but actually this result
depends on the fact that there is only one trade that affects the gross profit by more than 75%.

The channel break-out rule is based on the fact that price moves according to a trend, and
it is possible to delimit its movement, tracing out a trendline that connects lows in a rising
market or highs in a declining market with the channel line parallel to the trendline. Then
the price zigzags back and forth between the two lines of the channel. The rule developed

TABLE 20.6 Filter strategy over the period 1/2002–12/2005

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 3.680 0.380 1.051 2.636 −1.775
EEX 26.350 0.150 1.652 1.452 −0.663
HG 2 0.377 1.007 3.11 −1.79
GC 73.4 0.333 1.136 8.76 −4.77
XB 158.36 0.130 7.252 45.92 −8.44
NG −1.753 0.717 0.939 0.62 −0.37
SI 93 0.299 1.055 19.668 −10.474
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TABLE 20.7 Filter strategy over the period 1/2006–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO −5.04 0.594 0.980 3.015 −1.626
EEX 58.03 0.120 1.688 2.906 −1.110
HG −99.60 0.559 0.915 13.862 −7.832
GC 547.70 0.193 1.486 22.955 0.193
XB −236.87 0.668 0.855 16.829 −9.230
NG −7.36 0.796 0.731 0.647 −0.428
SI 294 0.484 1.066 55.505 −32.938

by Sullivan et al. (1999) says to buy when the closing price exceeds the upper limit of the
channel given by the maximum price over an established time interval without taking into
consideration the actual closing price, and to sell when the price moves below the lower limit
obtained as a percentage of the indicated maximum. The long and short positions are kept for a
fixed number of days, during which every other signal is ignored. This means that the financial
operator does not have an active position on the market. Tables 20.8, 20.9 and 20.10 display
the values of the performance indicators for the channel break-out rule. Interesting results for
crude oil, unleaded gasoline and electricity can be found by referring to Table 20.10, but they
are linked to few winning trades that affect the gross profit with a percentage greater than 25%.

The support and resistance can be seen as the lines of a channel in correspondence to
which prices react. In particular, a support represents a level at which the concentration of
the asset demand is so high that it pulls the prices up. On the contrary, at the resistance level the
high concentration of supply pulls the prices down. A simple trading rule is to buy when the
closing price exceeds the maximum occurring in a fixed period, and to sell if the closing
price is below the minimum realized in the fixed period. Some percentage filter could be
introduced for this rule in order to limit the influence of false signals from the market. The
empirical results regarding the performance indicators are given in Tables 20.11, 20.12 and
20.13. Comparing these values with those of Tables 20.2, 20.3 and 20.4, it can be deduced that
the support-and-resistance strategy is more profitable than the buy-and-hold strategy.

The last rule analysed is the moving average. Moving averages are the most commonly
used trading rules in technical analysis. They are trend-following indicators and consist of the
average of the closing prices for the designated number of preceding periods. The adopted

TABLE 20.8 Channel break-out rule over the period 1/2002–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 60.840 0.579 2.007 5.051 −3.020
EEX 59.83 0.153 4.086 3.77 −2.42
HG 98.4 0.347 1.369 21.49 −12.13
GC 208.5 0.206 1.550 32.63 −19.94
XB 115.639 0.584 1.205 28.27 −24.47
NG 6.646 0.883 1.632 0.75 −0.42
SI 206.8 0.589 1.247 54.93 −44.05
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TABLE 20.9 Channel break-out rule over the period 1/2002–12/2005

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 27.820 0.579 0.835 2.318 −2.775
EEX 32.850 0.072 19.352 2.665 −0.90
HG 52.65 0.224 2.266 7.85 −2.97
GC 15.8 0.206 1.099 16.01 −14.57
XB 0.52 0.497 1.002 21.52 −18.61
NG 1.145 0.742 1.139 0.72 −0.64
SI 158 0.383 1.653 36.455 −22.05

TABLE 20.10 Channel break-out rule over the period 1/2006–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 61.08 0.159 3.255 8.015 −3.386
EEX 25.42 0.142 2.471 6.100 −2.88
HG 56.05 0.347 1.261 54.200 −30.71
GC 162.60 0.172 1.773 62.167 −30.06
XB 154.15 0.242 1.630 36.251 −34.94
NG 0.70 0.698 1.129 0.679 −0.49
SI 217 0.372 1.365 115.929 −84.90

TABLE 20.11 Support and resistance rule over the period 1/2002–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 53.820 0.557 1.798 13.477 −4.498
EEX 68.9 0.288 4.492 8.00 −3.29
HG 146.6 0.593 1.480 50.24 −27.78
GC 42.1 0.376 1.093 70.84 −34.91
XB 76.233 0.647 1.129 83.27 −36.87
NG −6.707 0.960 0.692 2.51 −1.09
SI −187.5 0.615 0.883 236.53 −89.26

TABLE 20.12 Support and resistance rule over the period 1/2002–12/2005

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO −16.440 0.557 0.447 4.423 −2.701
EEX 40.460 0.141 / 8.092 /
HG 56 0.383 2.018 22.20 −9.17
GC −62.5 0.376 0.682 33.45 −21.81
XB −49.73 0.522 0.776 43.15 −27.79
NG −3.621 0.867 0.579 2.49 −0.61
SI −173 0.498 0.602 65.375 −39.482
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TABLE 20.13 Support and resistance rule over the period 1/2006–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 67.14 0.329 2.897 17.088 −8.848
EEX 21.77 0.288 1.917 15.173 −3.393
HG 69.85 0.593 1.279 64.080 −50.110
GC 36.80 0.357 1.133 104.733 −55.480
XB 298.76 0.360 2.438 101.319 −41.566
NG −6.12 0.857 0.542 2.416 −1.909
SI −162 0.615 0.862 336.733 −167.486

rule is known as double crossover. A buy signal occurs when the short-term moving average
crosses over the long-term moving average. A short selling signal is when the short-term
moving average crosses under the long-term moving average. In implementing this rule an
arithmetic moving average is used or alternatively an exponential moving average. The rule
can be modified by introducing two different types of filters to avoid false trading signals.
A percentage filter requires that the difference between the short-term and long-term moving
averages is higher than a fixed value. A temporal filter that provides buying and selling signals
remains valid for a minimum number of days. The moving average strategy (5, 20) is applied to
the data, meaning that the short-term moving average is calculated over 5 days, the long-term
one over 20 days. As can be seen from Tables 20.14, 20.15 and 20.16, the profit factors of
crude oil, unleaded gasoline and electricity are higher compared with the corresponding values
for the buy-and-hold strategy, in particular if one refers to the results of Table 20.16.

In order to verify the reliability of the analysed trading rules, a bootstrapping technique is
used. Bootstrapping is a statistical method of resampling to approximate the sample distribution
of a statistic. It allows us to build a confidence interval and calculate the p-values test when
the statistical distribution is known. According to bootstrapping, 500 time series have been
simulated on the basis of the GARCH(1,1) model and then the different profitable trading rules
have been applied. The simulated returns of the strategy are calculated and the percentage of
simulated strategies that have a mean return greater than those obtainable with the empirical
series is estimated. This percentage represents the p-value, that is the probability that the
chosen GARCH(1,1) model gives a mean return analogous to the empirical ones. The results of
bootstrapping are given in Table 20.17. The p-values demonstrate that the extra profit obtained

TABLE 20.14 Moving average (5,20) rule over the period 1/2002–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 95.210 0.427 1.806 5.335 −2.273
EEX 106.58 0.137 4.040 4.29 −1.17
HG 243.35 0.601 1.460 22.72 −7.45
GC −16.6 0.378 0.980 24.65 −14.07
XB 522.433 0.475 1.593 36.93 −17.62
NG 7.095 0.656 1.275 0.94 −0.44
SI −427.4 0.603 0.827 61.71 −41.76
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TABLE 20.15 Moving average (5,20) rule over the period 1/2002–12/2005

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 10.630 0.427 1.225 2.760 −1.434
EEX 34.300 0.137 3.539 2.988 −0.844
HG −80.45 0.601 0.604 6.82 −4.06
GC 42.2 0.165 1.195 14.36 −6.76
XB −106.08 0.475 0.806 20.93 −17.60
NG 1.803 0.656 1.141 0.77 −0.39
SI −204 0.542 0.744 29.675 −23.447

TABLE 20.16 Moving average (5,20) rule over the period 1/2006–10/2008

Total Maximum Profit Average Average
Commodity net profit drawdown factor winning trade losing trade

CO 86.74 0.218 2.267 8.623 −3.604
EEX 70.08 0.132 4.506 5.629 −1.538
HG 341.25 0.390 2.098 40.756 −16.361
GC −54.80 0.356 0.909 38.950 −22.226
XB 548.25 0.378 2.681 58.290 −17.163
NG 1.12 0.520 1.085 0.955 −0.508
SI −267 0.518 0.840 116.642 −66.668

TABLE 20.17 Bootstrapping statistic results

Moving average rule

Commodity N∗ Mean

CO (I per) 48 9.60%
CO (II per) 98 19.60%
EEX (I per) 26 5%
EEX (II per) 15 3%
XB (I per) 57 11%
XB (II per) 25 5%

Support and resistance rule

Commodity N∗ Mean

CO (I per) 251 50%
CO (II per) 143 29%
EEX (I per) 82 16%
EEX (II per) 169 34%
XB (I per) 247 49%
XB (II per) 138 28%

∗Number of series with returns greater than those calculated on the historical data.
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from the application of the moving average rule cannot be generated by a GARCH(1,1) model,
whereas they are more significant for the support-and-resistance rule.

It is important to stress that in the studies developed in this chapter, the problem of data
snooping is not considered. According to White (2000), data snooping occurs when a data
set is used more than once for purposes of inference or model selection. Using the same
data more times in the same analysis group can lead to obtaining satisfactory results that are
simply due to chance rather than to the accuracy of the adopted method. This problem is difficult
to address in practice because typically only a single time series is available for analysis.

20.1.4 A General Stat ist ica l Arbitrage Trading Methodology

The first practice of statistical arbitrage pairs trading dates back to the 1980s, when a group
of mathematicians, physicists and computer scientists, led by the Wall Street quant Nunzio
Tartaglia, used statistical techniques to develop quantitative arbitrage strategies for trading
securities in pairs. Their methodology consists of selecting two securities that have similar
characteristics and whose prices tend to move together. These assets are often selected on the
basis of intuition, economic fundamentals, long-term correlations or simply past experience.
When a short-term mispricing in the pairs emerges, this is interpreted as an arbitrage
opportunity that is exploited by selling the higher-priced security and buying the lower-priced
security with the expectation that the mispricing vanishes. This trading strategy was called
‘Pairs Trading’.

In the 1990s the growing requirement of models that could properly describe sophisticated
trading strategies was satisfied with the emergence of the so-called statistical arbitrage models.
For years the interest of professionals and academics had been focused on the development
of new statistical arbitrage strategies, until 2002 when the weak performance of the models,
principally due to the consequences of the dramatic changes in market dynamics after the crisis
of 2000, caused a loss of confidence in statistical arbitrage methods. Pole (2007) suggests that a
new interest in statistical arbitrage models came about in 2006, when the use of more accurate
and advanced algorithms spread.

Statistical arbitrage, indicated as StatArb, can be described as the attempt to profit from
pricing inefficiencies, which are identified using mathematical and statistical tools. According
to Burgess (1999), a statistical arbitrage is a generalization of the traditional zero-risk or pure
arbitrage. In the latter case, fair-price relationships between asset pairs with identical cash
flows are constructed and pure arbitrage opportunities are identified when prices deviate from
these relationships. Burgess (1999) suggests that on markets, zero-risk opportunities do not
exist, due to several uncertain factors such as uncertain future dividend rates, market volatility
during the short time required to carry out the lock-in trades, failure to ‘fill’ all legs of the
trade, causing a residual ‘unhedged risk’ and the ‘basis risk’. Basis risk is due to fluctuations
in the differences between spot and futures prices prior to the expiry date. It is, on the one
hand, a source of uncertainty when positions on securities have to be marked to market at
current prices by operators due to exchange regulations and companies’ internal requirements.
On the other hand, it is a source of opportunity because an arbitrageur can assume positions
on some securities and revert the trades before the expiry date, when profits are realized. So
the so-called statistical arbitrage opportunities rely on the statistical properties of the security
mispricings whose dynamics fluctuate around a stable level.
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For Bondarenko (2003), the definition of statistical arbitrage opportunity derives from
the concept of pure arbitrage opportunity. A pure arbitrage opportunity is a zero-cost trading
strategy by which gains are received with no possibility of losses. Instead, a statistical arbitrage
opportunity is a zero-cost trading strategy for which the expected payoff is positive and the
conditional expected payoff in each state of the economy is non-negative, meaning that the
strategy payoff can be negative in some elementary states, as long as the average payoff in
each final state is non-negative.

A statistical arbitrage methodology based on quantitative methods is proposed by many
authors, like Burgess (1999), Vidyamurthy (2004), Elliott et al. (2005), Do et al. (2006) and
Bertram (2010). Their studies aim to exploit the rising arbitrage opportunities on stock markets.
Generally, a statistical arbitrage methodology consists of three steps.

1. Statistical mispricing dynamics investigation: assets are selected so that their prices are in
long-run equilibrium and the deviations from this equilibrium, called statistical mispric-
ings, have potentially predictable components in their dynamics. Tests are implemented
for evaluating the potentially predictable components.

2. Predictive models development: statistical and quantitative methods are used to formulate
models that identify arbitrage opportunities forecasting changes in mispricing dynamics.

3. Statistical trading strategies implementation: appropriate trading rules are implemented to
profit and performance indicators are calculated to evaluate the reliability of the adopted
strategy.

20.1.4.1 Stat ist ica l Mispric ing Dynamics Invest igat ion The first step of the method-
ology consists of constructing the so-called statistical mispricing time series that contain some
predictable components. A target commodity or a target set of commodities is identified and
its value is replicated with a portfolio of other selected commodities. The composition of the
portfolio is determined by the use of cointegration regression. By means of cointegration the
time series are selected in such a way that their combinations are stationary, and therefore a
relationship of long-run equilibrium, the so-called fair-price relationship among commodities,
is defined. The deviations from this fair-price relationship represent the statistical mispricings.
The use of a price combination, that is relative prices, instead of the absolute price has a
financial meaning that comes from the theory of asset pricing models, such as CAPM (Capital
Asset Pricing Model) and APT (Arbitrage Pricing Theory). According to this theory, changes
in asset prices are due both to a systematic component, common to each asset and representing
the exposure to market-wide risk, and to a residual or idiosyncratic component that depends
on the specific characteristics of the asset. The cointegration linear composition of the rel-
ative mispricings acts to nullify the nonstationary systematic components, leaving only the
stationary-specific components. Namely, because the prices of the selected commodities share
a common long-term equilibrium, a weighted sum of their time series forms a long–short port-
folio which has the common component return equal to zero. This means that the mispricing,
considered as a portfolio of commodities, is statistically independent of and then immunized
against market-wide risks. Consequently, the mispricing portfolio dynamics are affected only
by specific component dynamics of commodity that are potentially predictable.

The trading of only one target commodity is considered here, along with the replication
portfolio of its value. All the commodities are chosen in the set of all possible commodities.
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At a generic time t, the value of the target commodity is indicated by T(t) and the value of
the replication portfolio, which is a synthetic asset, is denoted by X(t). For any time t ≥ 0, the
following fair-price relationship holds:

X(t) = E[T(t)|C(t)] = T(t), (20.1)

representing a long-term relationship among variables, where E[⋅|C(t)] denotes the expectation
conditional on the price vector of commodities, C(t), at time t. It follows from equation (20.1)
that the statistical mispricing at time t is given by the deviation from the fair-price relationship

M(t) = T(t) − X(t). (20.2)

The methodology most commonly adopted to construct the series of the statistical mispricings
is based on cointegration techniques. The synthetic asset X(t) is obtained as a linear
combination of n commodities, whose prices are Ci(t) with i = 0, 1,… , n, that is

X(t) =
∑

i

𝛽iC
i(t), i = 0, 1,… , n (20.3)

where 𝛽i with i = 0, 1,… , n are the respective weights and, in particular, 𝛽0 is the constant.
Bearing in mind the relation (20.1), the coefficients 𝛽i are estimated by a cointegration
regression of the time series of the target price T(t) against the historical prices of the
commodities comprising the replication portfolio. Finally, the value of the corresponding
statistical mispricing portfolio, for each t, is obtained by substituting (20.3) back into (20.2):

M(t) = T(t) −
∑

i

𝛽iC
i(t), i = 0, 1,… , n, (20.4)

consisting of the commodities {T , C1, C2,… , Cn} according to the weights {1,−𝛽1,
−𝛽2,… ,−𝛽n}, meaning that the mispricing portfolio assumes a long position on the target
commodity and short positions on the commodities comprising the replication portfolio.

It can be concluded that at a generic time t, M(t) represents the excess value of the target
price compared with the value of the replication portfolio and it can be seen as a ‘stochastically
de-trended’ version of the original target price with respect to the observed time series. Hence,
M(t) behaves as a proxy of nondirectly observed risk factors, which determine a stochastic
trend that is common to many market prices.

Then, statistical and quantitative tools are used to individuate arbitrage opportunities
which can be exploited to profit. In particular, one has to verify that the mispricing dynamics
contain predictable components that allow us to predict a mean-reverting behaviour so that
using appropriate trading strategies, an operator can focus on getting the investment timing
right, relying on the fact that in the long run the mispricing corrects. There exist several
statistical methods to test the existence of predictability in the mispricing dynamics.

One method is to analyse the autocorrelation function of the mispricing time series in
order to study its short-term effects and find out whether the future value of the time series
is related to the past value and hence the presence of a predictable component; in particular,
mean-reverting behaviour is sought. The stationarity of the time series may be verified through
the ADF test, but because of its very low power in identifying the deviation of time series from
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random walk behaviour, the variance ration test, described in Section 20.1.2, can be used to
demonstrate that mispricing dynamics follow mean reversion, such as that described by the
following Ornstein–Uhlenbeck process:

dM(t) = −𝜌(M(t) − 𝜇)dt + 𝜎dW(t). (20.5)

In (20.5) all the parameters are positive and 𝜇 represents the equilibrium or mean value
supported by fundamentals, 𝜎 is the degree of volatility around it caused by shocks, and 𝜌 is
the rate by which these shocks dissipate and the variable reverts towards the mean. This model
allows us to make predictions for the mispricing and consequently trading strategies can be
developed on the simulated mispricing, so that the strategy performance can be evaluated.

A different methodology to study the existence of predictability conditions fulfilled by
the spread dynamics of cross combinations of petroleum futures contracts, crude oils and
related products is used by Alizadeh and Nomikos (2008). The stationarity of the relationship
between different pairs of futures prices is investigated by using a vector error correction model
(VECM) (Johansen, 1988). The error correction term represents the spread between the log-
futures prices, with the short-run price dynamics expressed by the lagged cross-market terms,
while the long-run price processes are reflected in the cointegration vector. For the cointegrated
pairs, the Granger causality test is implemented to determine whether one time series is useful
in forecasting another one (Granger, 1969). Their results reveal that the relationship between
petroleum futures prices can be used to develop trading strategies and determine the timing of
profitable investing.

20.1.4.2 Predict ive Models Development In the first step of the statistical arbitrage
methodology, possible arbitrage opportunities on commodity markets are investigated through
the construction of mispricing time series that hold some predictable components. In the second
step, models for forecasting the mispricing dynamics are formulated. Building such models
involves tackling problems such as high noise, low degree of prior knowledge, small sample
sizes and potential time variation, that is nonstationarity, in the underlying data-generating
processes. So it becomes important to develop a model that captures most features of the
mispricing dynamics contained in the deterministic mispricing components themselves. In
particular, predictive models aim to model mispricing dynamics as a function of the information
contained in the level of the mispricing itself, in past mispricing changes and in other external
variables which can either directly influence mispricing evolution or serve to modulate the
information contained in other variables. According to Burgess (1999), in general, the steps
to follow for developing a predictive/forecasting model are:

1. selection of the information set;
2. model specification – variable selection and specification of parameterized functional

form;
3. parameter estimation;
4. backtesting – eventual model reformulation and returning to step two;
5. model application.

The best model minimizes the bias of the model caused by the assumptions and restrictions
made at each step and the variance of the model due to data sample selection in the phase of
parameter estimation. The two approaches mostly used are the stochastic approach, whereby



918 HANDBOOK OF MULTI-COMMODITY MARKETS AND PRODUCTS

the dynamics of mispricing are described by stochastic processes, and the artificial neural
network approach, whereby mathematical algorithms learn about market predictions and
forecast the future mispricing dynamics. In both cases, statistical trading rules generate trading
signals conditioned upon the output of forecasting models.

Regarding the models based on stochastic modelling, as described in the previous para-
graph, mispricing dynamics are usually represented as mean-reverting processes (i.e., equation
(20.5)). Concerning this, Elliott et al. (2005) model the spread between two stocks belonging
to the same financial sector by a mean-reverting Gaussian Markov chain model. In particular,
the spread is observed in Gaussian noise. The parameters of the processes are estimated by
filter methods and calibrated to market data. A trading strategy is formulated considering the
state process of the model and the observation process, which is a noisy observation of some
state processes and represents the observed spread.

An example of predictable models that can be used in statistical arbitrage trading and
based on artificial neural networks (ANN) is described by Kulkarni and Haidar (2009). Using
an ANN model, no assumptions on mispricing dynamics are made and so general deterministic
components of dynamics are captured. For this reason, ANN model both direct nonlinearities
and also interaction effects without having to know them in advance. One can describe the
ANN model as a mapping model, that is it maps the information available in the market to
the desirable target, an output that represents the forecast with a certain grade of accuracy.
Basically the model imitates the market: historical and current information is the input that
market participants react to, according to their understanding, positions, speculations, analysis,
etc. All the market participant activities are aggregated to form the output, usually represented
by the closing price. A well-formulated ANN model should guarantee in-sample accuracy,
the ability to perform with new market data and consistency of the network output. Kulkarni
and Haidar (2009) use a three-layer feedforward network with a backpropagation algorithm to
forecast crude oil prices for the short term. Furthermore, they find that futures prices of crude
oil contain new information about the oil spot price direction.

20.1.4.3 Stat ist ica l Trading Strategies Implementat ion The third step of the method-
ology consists of defining some trading rules based on the predictive model developed at the
second step. Either basic trading rules can be used, like those described in Section 20.1.3,
or combinations of them in creative strategies tailored to suit specific markets. Trading rules
provide signals for buying or selling the spread/mispricing and furthermore they determine
the timing of the transactions.

Alizadeh and Nomikos (2008) use the moving average as a basic quantitative rule for their
trading strategy. They consider the spread between log futures prices of petroleum products
and calculate four moving averages on the time series obtained. One moving average is fast,
that is it is calculated on the short term (MA(1)) while the other three moving averages are
slow, that is calculated on the long term (MA(4), MA(8), MA(12)). The difference between one
slow moving average and the fast moving average represents the indicator of buying or selling
in the petroleum futures spread. If this difference is positive, there is a buy signal, otherwise if
negative, there is a sell signal. As for every trading strategy, the evaluation of transaction costs
has particular importance, so the authors assume, according to the past literature, a transaction
cost of 0.2% for every trip of initiating and reversing the trade. They evaluate the performance
of the strategies, related to different combinations of moving averages, on the basis of the
annualized mean return, the standard deviation and the Sharpe ratio, that is the ratio of average
return and standard deviation. The values of the moving average (MA) strategy performance
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indicators are compared with the indicator values of the benchmark buy-and-hold strategy.
In general, the mean returns of the MA strategies are higher than those of the benchmark
strategy, while the standard deviations are lower, meaning that the Sharpe ratios indicate that
most of the MA strategies outperform the buy-and-hold strategy. In addition, another indicator
of performance is given by the historical cumulative returns, allowing one to decide which
strategy is advantageous to adopt in terms of benefits obtained.

The study developed in Section 20.1.2 around a portfolio characterized by the virtual refin-
ery model is reconsidered. Using a large sample of data spanning 25/10/2000 to 19/10/2009,
the data is split into two parts: data from 25/10/2000 to 26/12/2005 are used for developing
the model through an in-sample analysis; data from 02/01/2006 to 19/10/2009 are used for
testing the model and evaluating its out-of-sample performance. The mispricing portfolio,
whose value at time t is indicated by M(t), is obtained by applying the cointegration technique
described in Section 20.1.2 to in-sample analysis data. As in Burgess (1999), a statistical
arbitrage trading strategy (SATS) is defined that not only states the sign of the mispricing
portfolio transaction, but also defines the transaction magnitude depending on the size of the
mispricing as follows:

SATS = −M(t)

{
if M(t) < 0, the mispricing portfolio must be bought
if M(t) > 0, the mispricing portfolio must be sold.

The strategy described above is applied both to the in-sample and to the out-of-sample
data and the performance compared to assess the functioning of the model from a forecasting
perspective. The strategy is implemented using Excel and Matlab software. Each week t the
return of the strategy SATR is calculated by the following formula:

SATR(t) = SATS(t)
ΔM(t)

Abs[M(t)]
− c|ΔM(t)|, (20.6)

where ΔM(t) represents the variation of the mispricing value between two successive periods,
Abs[M(t)] is the sum of all the mispricing portfolio components taking in absolute values and
c is the percentage transaction cost. For the measurement of the trading performance for each
year, the following three performance indicators are used:

� Total return, given by the cumulative profit of the strategy over the past time period.
� Sharpe ratio, which indicates the amount of profitability per unit of risk and is calculated

as the ratio of the annualized mean profitability of the strategy to its annualized standard
deviation of the profit.

� Percentage profitable weeks, obtained as the percentage of periods corresponding to
positive SATR(t) values.

The results for the in-sample data are illustrated in Table 20.18, while those for the
out-of-sample data are in Table 20.19.

From this simple analysis, it can be seen that the forecasting model performs well for the
out-of-sample years, in line with the results obtained in-sample. This statement is confirmed
by Figure 20.2, which shows the paths over the reference period 2005–2009 of the actual Brent
futures prices and the forecasted prices calculated using the estimated regression parameters.
Furthermore, one can assert that the fair-price relationship built from the in-sample analysis
holds over time.
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TABLE 20.18 In-sample performance of the SATS

Year 2001 2002 2003 2004 2005

Total return 12.79% 6.43% 6.52% 10.63% 21.94%
Sharpe ratio 2.01 2.03 1.95 1.90 0.03
Profitable weeks 58.33% 57.69% 59.62% 61.54% 57.69%

TABLE 20.19 Out-of-sample performance of the SATS

Year 2006 2007 2008 2009

Total return 19.94% 27.13% 162.17% 13.53%
Sharpe ratio 1.85 1.11 0.81 1.12
Profitable weeks 52.17% 50.94% 52.94% 42.86%

In Figure 20.3 it is shown how the trading strategy works, in particular the SATS curve
gives the signal for buying or selling the mispricing according to the rule defined above.

In order to illustrate the effectiveness of the implemented strategy, consider the results
for years 2008 and 2009 displayed in Table 20.19. One expects a total return of 162.17%
for year 2008, much greater than that of 13.53% expected for year 2009. This profitability
scenario is confirmed by the presence of a higher percentage of profitable days for 2008 with
respect to 2009. The opposite conclusion is drawn if one considers the index of the Sharpe
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ratio as an indicator of performance, because it is lower for 2008 than 2009. In fact, the
amplitude and oscillation frequency of the graph of the strategy (Figure 20.3) reflect a higher
variability of profits due to the volatility of the Brent future price being greater in 2008 than
in 2009. Consequently, an optimal strategy can be developed and updated daily, taking into
consideration the model forecasts and the expected values of the three indices of performance
(total return, Sharpe ratio and profitable periods), so that any trading decision will be taken in
line with the specific risk profile.

20.2 PORTFOLIO OPTIMIZATION WITH COMMODIT IES

20.2.1 Commodit ies as an Asset Class

Academics and practitioners currently treat commodities as a particular asset class in a port-
folio context. According to the definition of asset class, commodities are characterized by a
homogeneous risk–return profile, that is high internal correlation, and a heterogeneous risk–
return profile towards other asset classes, that is low external correlation (as will be seen in the
next paragraphs). However, the particular characteristic of this asset class is that commodities
like energy, livestock or grain do not generate continuous cash flows, so that it is not possi-
ble to assess the reward received and the risk assumed from the purchase of a commodity.
Consequently, commodity prices cannot be determined by the net present value method or
discounting future cash flows, but may be derived from the intersection of supply and demand
on specific markets and by considering inventories.
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One can distinguish different ways of investing in this asset class and they can be classified
according to Geman (2005) as follows:

Purchasing the physical commodity in the spot market. The transaction can be either
direct or through an intermediary but in either case it is not easy to implement. The purchase
of precious metals is the sole exception due to their low current costs and the fact that they
do not require storage capacity, but with the drawback that a portfolio consisting of precious
metals does not guarantee an efficient diversification.

Purchasing stocks of commodity-related companies. Through this kind of investment
one obtains indirect exposure to commodities, which introduces a noise component to the
investment due to the characteristics of specific natural resource companies, to the inherent
risks and to other external factors that influence share prices.

Purchasing commodity futures. One makes a direct investment in a specific commodity
taking a long or short position in futures contracts written on it. Futures contracts are traded
on exchanges through the intermediation of a clearing house that manages the margin system.
Only investors that have built an account with a broker can execute transactions on the
exchange.

Purchasing commodity options. The underlying of the options can be a spot price or
futures price and the investor can develop a buy-and-hold strategy or an active strategy trading
the option before its maturity when this is convenient.

Investing in commodity futures indexes and commodity-related notes. Index investment
is an easy and passive investment in commodities that gets exposure to a specific sector.
Commodity-related notes are linked to major commodity indexes, such as the DJ-AIG or
GSCI, and are issued by investment banks, financial institutions or individual commodity
producers that raise capital and invest it in indexes or commodity index derivatives.

Different kinds of investors operate on commodity markets. There are physical traders or
commercial investors that use futures markets to manage position exposure related to actual
flows of goods and seek to hedge their production and consumption. For example, in soft
commodity markets commercial producers and users of agricultural products trade with the
aim of earning returns from an under-explored asset class in times of high inflation and low
interest rates. On the one hand, investment in soft commodities provides liquidity in derivatives
markets and makes price discovery more efficient. On the other hand, it increases commodity
price volatility.

Domanski and Heath (2007) identify some kinds of financial investors. There are financial
traders that focus on exploiting arbitrage opportunities using traditional arbitrage strategies.
Arbitrage opportunities can, for example, arise as a consequence of commercial investors
acting on futures markets. In fact, the futures price can deviate from the relevant spot price
plus the cost of carry, that is the cost of financing a position in the spot market, causing
arbitrage opportunities.

Then there are financial investors that apply long-term strategies to passively manage
portfolios. Often, long-only futures strategies are put in place in order to allow diversification
into a commodity portfolio at a relatively low cost. Another reason that pushes investors to
assume a long position in commodity futures is the possibility of earning positive roll returns
when the market is in backwardation. The profitability of these strategies depends on the
persistence of factors that cause backwardated markets.

Other investors are instead interested in short-term investments, such as hedge funds.
Hedge funds are highly leveraged portfolios of investments that are actively managed using
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various trading strategies. They trade commodities, but also stocks, futures, derivatives or
structured products, and take long or short positions in global and domestic markets. Fusaro
and Vasey (2006) discuss the existence and the growing importance of energy and environ-
mental hedge funds. The environmental hedge funds, also called green hedge funds, represent
investment opportunities in emerging environmental financial markets. In recent years, the
entrance of the energy hedge funds, stuffed with expert traders from other markets, in com-
modity markets produced relevant returns. As a result, many ex-traders and investment banks
created new hedge funds. Furthermore, existing funds, especially larger macro funds, intro-
duced new exposure to energy markets. In the face of high risk-adjusted returns, Till and
Gunzberg (2006) suggest that a commodity investor supports an idiosyncratic risk related to
the specific commodity and macro risks that include those risks that create unplanned correla-
tions. In particular, Fusaro and Vasey (2006) believe that in addition to the price risk (typical
hedge fund risk), an energy hedge fund supports volumetric risk, operational risk, geopolitical
risk, event risk, regulatory risk, weather risk, tax risk, and the like.

Finally, there are speculators that make a profit when prices either rise or fall rapidly,
taking advantage of the divergence between futures and expected future spot prices. But
speculators also have the important role of taking offsetting positions to companies that trade
in commodities futures or hold physical commodities to hedge against rapid rises and falls
in price. However, many market participants operate for both speculation and commercial
trading, so that no robust and well-founded definition of speculation allows us to separate
speculative activity from hedging and other commercial trading activities.

20.2.2 Commodity Futures Return Characterist ics

Commodity markets are regularly affected by supply–demand imbalance. The only way to
equilibrate supply and demand is via changes to either the inventory level or the price. When
the short-run excess demand for most commodities cannot be satisfied by immediate new
supplies, inventories are sold up to capacity to buyers. In this situation the price will possibly
increase or might remain constant until sufficient inventories are rebuilt. If inventories are
lacking, prices will suddenly rise within a few days. The market reacts in the opposite way to
an ample supply of stored inventories or to a price decrease. This asymmetrical pattern is the
reason behind one of the return characteristics: positive skewness.

In order to deal with the risk of spot prices and the lack of physical commodities,
investment in commodities is typically done through futures markets. A futures price represents
a bet on the future spot price. In fact, by entering into a futures contract an investor assumes
the risk of unexpected movements in the future spot price, in exchange for receiving a risk
premium, given by the difference between the current futures price and the expected future
price. In mathematical terms, we can state that at date t the risk premium rp(t) for an investor
that observes the futures price F(t, T) for delivery at date T > t is

rp(t) = F(t, T) − E[S(T)|t],

where S(T) is the spot price at time T and E[⋅|t] denotes the expected value under the real
probability measure conditional on the information available at time t, t.

The first theory that supported investment in commodity futures was the theory of normal
backwardation (Keynes, 1930). Commodity futures are in some ways analogous to insurance
contracts. The theory posits a world where producers of commodities would seek to hedge
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the price risk of their output. Speculators would be long futures in order to provide insurance
against the risk of futures price fluctuations in exchange for a risk premium. In particular, long
speculators would fix a futures price which is below the spot price expected at maturity of the
futures contract. The risk premium is calculated by ‘backwardating’ the futures price relative
to the expected future spot price.

The value of a futures contract at origination is zero, whereas long and short investors
post collateral that will be used for the daily settlement of profits and losses. The collateral is
typically calculated as a fraction of the notional value of the future position. One can assume
a fully collateralized commodity futures investment and according to the literature (Booth
and Fama, 1992; Erb and Harvey, 2006; Kat and Oomen, 2006a), the total return received by
investors at a generic date t ≥ 0 can be decomposed into three components:

� collateral return, CRt;
� spot return, SRt;
� roll return, RRt;

so that we can state

Total return received = CRt + SRt + RRt.

The collateral return is also called the cash return because typically the whole futures
position is collateralized by cash and the investor receives the return at the spot interest rate.
Other times, collateralization is obtained by purchasing risk-free investments.

The spot return is a relative change in commodity spot prices. Spot prices are volatile and
are driven by the supply and demand characteristics of the particular commodity market. If
S(t) is the spot price at time t, the spot return is

SRt =
S(t) − S(t − 1)

S(t − 1)
.

The roll return stems from the procedure of rolling over the market exposure in commodity
futures when an investor decides to maintain his futures position after the maturity date of the
contract. In this case, the expiring futures is sold and a yet-to-expire contract is bought. If
the futures price curve is in backwardation, that is futures prices decline with time to maturity,
the roll return, calculated as the relative difference between the futures price and the spot price,
is positive. When the curve is in contango, that is futures prices rise with time to maturity, the
roll return is negative and a loss is incurred. Given the futures price at time t with delivery at
date T > t, F(t, T), the roll return is

RRt =
F(t, T) − S(t)

S(t)
.

The sum of the spot return and the roll return represents the excess return.
Finally, if a portfolio combines different commodities, another return component should

be considered: diversification or rebalancing return. The behaviour of the constituents’ prices
over time determines the weights of the constituents within the portfolio. The weights are
positive if the performance is good, negative if bad. So, the return of the equally weighted
portfolio exceeds the average returns for its constituents. The diversification return is defined
as the difference between the rebalanced portfolio geometric return and the weighted average
geometric return of the portfolio constituents.
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The characteristics of commodity returns are now analysed using historical data.4 Seven
time series of commodity futures logarithm returns have been analysed; namely, the time
series of crude oil (CO), copper (HG), gold (GD), unleaded gasoline (XB), natural gas (NG),
silver (SI) traded on the NYMEX and the time series of the peakload calendar futures of the
European Energy Exchange (EEX). The daily time series span from 2002 to 2008 and consist
of the closing prices of the futures contracts more actively traded in the market. Time series
of futures logarithmic returns are constructed by rolling contracts over on the first day of the
expiry month of the nearby contract. Table 20.20 displays the results of the statistical analysis
carried out on the time series considered. Annualized average returns, 𝜇, are positive for all the
commodities and crude oil and natural gas exhibit the maximum daily returns. The values of
the annualized standard deviation, 𝜎, confirm the results obtained by Kat and Oomen (2006a)
regarding the variability of commodity prices. Kat and Oomen (2006a) carry out an exhaustive
and interesting univariate analysis of futures returns of 42 commodities. They find that energy
commodities are more volatile than other commodities, such as gold. Additionally, comparing
the behaviour of the commodity prices during the different phases of the business cycle, they
suggest that energy commodities have the highest volatility during recessions. However, they
argue that the volatility of commodity futures is not excessive and comparable with that of US
large cap stocks.

It is known that commodities have positive exposure to supply shocks, so it can be
commonly thought that futures returns are positively skewed. In contrast, all the considered
time series are negatively skewed with the exception of natural gas. Kat and Oomen (2006a)
also find that 24 out of 42 commodities are negatively skewed. Commodities belonging to the
agricultural sector mostly present distributions that are positively skewed. Furthermore, the
skewness in commodity futures returns might be considered minimal and insignificant.

Regarding the kurtosis of the returns distribution, values in Table 20.20 show that five
of the seven time series analysed are leptokurtic, except those of crude oil and unleaded
gasoline that are platykurtic. These results are in line with those of Kat and Oomen (2006a).
The Jarque–Bera test checks the deviation of the distribution from a normal distribution. The
results suggest each time series has a normal distribution.

Finally, looking at the data concerning the autocorrelation, that is the coefficient 𝜌(i) with
lags of days i = 1,… , 5, it can be deduced that, for one day lag, five out of the seven time
series show a negative autocorrelation p(1). A negative coefficient of one day lag means that
the futures return of one day is connected with the return of the next day in the sense that a rise
in one day is more likely to be followed by a fall in the next day and vice versa. The mechanism
that works when the autocorrelation coefficient is positive is exactly the opposite. A rise (fall)
is more likely followed by a rise (fall) the next day. Extending the lag time, a link between
more distant returns can be obtained. Kat and Oomen (2006a) find positive autocorrelation
for most commodity futures returns and they suggest it might be symptomatic of behavioural
biases, prolonged impact of shocks, contagion in events, etc.

20.2.3 Risk Premiums in Commodity Markets

One of the main reasons for investing in an asset and holding it passively in a portfolio is
the possibility of earning risk premiums. At least, this works for stocks and bonds, and in the

4Reference is made to statistical results obtained in Brandoni and Roncoroni (2008).
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literature many authors have examined and investigated the existence of risk premiums for
commodities.

As discussed in the previous section, commodity total return is equal to the sum of three
components: collateral return, spot return and roll return. Assuming that the investor uses
T-bills or high-grade floating rate notes as collateral, the collateral return will be equal to the
short rate. Thus, if the sum of the spot return and the roll return represents the futures return,
the excess return over the short rate on a fully collateralized commodity investment equals the
futures return (Kat and Oomen, 2006a), that is

Excess return = spot return + roll return = futures return.

Therefore, the risk premium on a collateralized futures investment is equal to the expected
futures return. Clearly, only when futures prices do not correctly reflect expected future spot
prices do risk premiums exist, because the deviation of the futures price from the expected
future spot price causes the expected roll return and the expected spot return does not offset
to zero.

While stocks and bonds almost surely offer a risk premium, for commodity futures
investments it is necessary to hedge demand in order to pull the futures price away from the
expected future spot price. In this way, futures volatility is likely to increase and, consequently,
the expected return will be positive or negative depending on the hedging pressure direction.
According to different commodities and to different years, hedging pressure varies and can
impact mostly on supply or demand, generating respectively a positive or negative expected
futures return. Sometimes zero or even negative risk premiums can characterize commodity
futures, and reasonably they should not be attractive assets for any portfolio allocation. Despite
this though, they will be considered as long as the lack of expected return is compensated by
significant positive skewness and low or even negative correlation with other asset classes.

In the literature, empirical studies have been carried out to investigate the existence and
nature of commodity risk premiums. Dusak (1987) analyses the existence of risk premiums for
wheat, corn and soybean futures over the period 1952–1967 and within the CAPM framework.
She finds that both risk premium and beta measuring systematic risk are close to zero, but she
uses a database that is limited in scope.

Bodie and Rosansky (1980) provide an analysis of the return rates of commodity futures
traded in the United States from 1950 to 1976 and find evidence of positive excess return for
22 of the 23 individual commodities evaluated, but with marginal statistical significance.

Gorton and Rouwenhorst (2006) use 36 commodity futures to construct an equally
weighted index and investigate its monthly returns over the period between July 1959 and
December 2004 in order to study commodity futures proprieties as an asset class. The risk
premium of the index when the commodity futures are fully collateralized is about 5% per
annum, whereas for individual commodities the presence of positive risk premium varies.

Doran (2005) estimates the risk premium of natural gas through a new methodology. He
uses a parametric model with stochastic volatility, which has separate arrivals and volatility
jumps, to describe the evolution of forward prices in natural gas. The instantaneous parameter
estimates and quasi-Monte Carlo simulations are used to combine the risk-neutral and real-
world distributions in order to find estimated ex-post realized volatilities and option prices.
Minimizing the differences between the estimated and actual ex-post volatilities and option
prices, he solves for the market price of risk. He finds a negative risk premium for natural
gas contracts.
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Kat and Oomen (2006a) consider 142 different commodity futures trading on 26 different
exchanges in eight different countries, covering the period January 1965–February 2005. They
report only the results of the study developed on 42 out of 142 daily settlement prices. They find
the majority of commodities do not offer a risk premium, 13 out of 42 have negative futures
returns, especially agricultural commodities. On the contrary, energy commodities exhibit
positive excess returns. They also analyse the behaviour of commodity prices according to
different phases of the business cycle. They find that, for example, during the start of a
recession phase, energy, meat and livestock perform well, whereas agricultural commodities
and metals exhibit their worst returns. Energy and soybean complexes perform badly during
the end of a recession. Furthermore, as an economy grows strongly, inflation and interest rates
push up and consequently, commodity returns are likely to be different in different monetary
and inflationary environments. They argue that energy and industrial metals tend to perform
particularly well in a restrictive monetary environment and particularly badly in an expansive
monetary environment. Meat and livestock give bad results in a restrictive environment. Oats,
cocoa, orange juice and Azuki beans perform worst during the start of a recession and best at
the end. Others, like energy, behave in exactly the opposite way.

20.2.4 Commodit ies as a Portfo l io D iversi f ier

An exercise of portfolio management mainly consists of two phases, the first concerns the
selection of assets that will be included in the portfolio, while the second is characterized by the
portfolio management strategy (active or passive). The following will only deal with the first
phase. During this phase, the assets are selected in order that the performance of the portfolio
meets certain criteria of optimality, maximizing return and minimizing risk. In particular, in
this first stage the fundamental goal is to analyse the relationship between returns on the asset
classes considered and within each asset class so as to construct a well-diversified portfolio.

Many authors in the literature, such as Gorton and Rouwenhorst (2006), Erb and Harvey
(2006), Kat and Oomen (2006b), have analysed and studied the properties and characteristics
of commodities, in particular commodity futures, and they have deduced that commodities are
a good candidate to diversify a portfolio in which there are traditional assets, such as stocks
and bonds.

In general, comparing the commodity index S&P GSCI and a market stock index, com-
modity futures contracts are highly volatile. Gorton and Rouwenhorst (2006) construct an
equally weighted index of commodity futures considering various commodities and compare
its performance with those of the S&P 500 total return index for stocks and the Ibbotson
corporate bond total return index for bonds during the period from July 1959 to December
2004. The authors observe that stocks and commodity futures have approximately the same
average annualized return that outperforms that of bonds, but, on the contrary, their returns are
more volatile than those of bonds.

One can classify commodities into five main categories (Kat and Oomen, 2006b): grain
and oil seeds, softs, meat and livestock, energy and metals. Commodity futures tend to exhibit
high correlation between different types of commodities that belong to the same category
and low correlation between commodities of different category groups. An exception is softs,
characterized by low internal dependency. Consequently, portfolio diversification is promoted
by investing across different category groups.

A very significant characteristic is that commodity futures are negatively correlated with
stocks and bonds. Kat and Oomen (2006b) attribute this feature to two reasons: contrary to
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stocks and bonds, commodities generate positive returns to shock events and they perform in
the opposite way with respect to stocks and bonds through the different phases of the business
cycle (expansion and recession). The correlation between stocks and commodity futures varies
over the different phases of the business cycle and according to the commodity category. In
general, it is weakly positive or negative. The correlation for energy increases towards the end
of periods of expansion and decreases, even becoming negative, towards the end of recessions,
with the exact opposite phenomenon occurring for metals. The correlation between commodity
futures and bond returns is also very weak and tends to be relatively low towards the end of
expansion periods and relatively high during recession.

Finally, commodities provide a hedge against inflation due to the differing relationship that
exists between commodities and inflation relative to that between stocks or bonds and inflation.
In fact, for example, when there is strong economic growth, there is an upward pressure
on commodities, producer and consumer prices and interest rates leading to a reduction in
the growth potential of company profits. In addition, the value of stock and bond returns
diminishes, being calculated through the discounted cash flows method, whereas commodities
maintain their high value. This means that high inflation impacts negatively on stock and bond
returns, but positively on commodities. This is also due to the fact that commodity prices
(food, energy) are one of the components of the price index used for measuring inflation.
Furthermore, it is important to stress that commodities are a reliable hedge against unexpected
inflation (change in inflation rate). If one considers the subdivision of commodity return into
spot return and roll return, the unexpected inflation is positively correlated with the spot return,
while the dependence between inflation and roll return is insignificant. Greer (2000) argues
that unexpected general inflation, which affects market movements, causes a drop in bond
and stock prices but an increase in futures prices, such that commodity futures indexes go up
in value. This means that stock and bond returns are positively correlated with unexpected
inflation, whereas commodity futures indexes are negatively correlated.

Jensen and Mercer (2002) study the performance of a typical portfolio, consisting of US
equities, foreign equities, corporate bonds and treasury bills, upon adding commodity futures
and according to different monetary policies of the Federal Reserve. They show that the
benefits of an allocation strategy with commodity futures accrue during periods of restrictive
monetary policy. They highlight that benefits vary across different types of futures contracts;
one can earn large returns from metals, energy and agricultural futures during periods of
restrictive monetary policy, whereas one can profit from livestock contracts when the Federal
Reserve follows an expansive monetary policy.

In conclusion, given all the features of commodity futures described above, an allocation in
commodities yields diversification benefits for a portfolio, whether consisting of commodities
belonging to different category groups and/or consisting of traditional assets (stocks, bonds,
cash). But in the phase of portfolio selection, an investor should consider not only the fact
that the risk of the portfolio decreases with the addition of commodities, but also that the risk
premium offered by commodities is poor or negative, with the exception of energy, so that
low gains are likely. In this context, portfolio optimization is used to find the proper portfolio
composition according to a return/risk analysis.

20.2.5 Risk–Return Opt imizat ion in Commodity Portfo l ios

In the previous section, reference was made to the portfolio selection problem and the poten-
tially important role commodities can play in diversifying risk, with the aim being to select
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investment assets that collectively have lower risk than any individual asset. The concept of
diversification as a means of increasing the expected return of the portfolio, while reducing
volatility, is the foundation of Modern Portfolio Theory (MPT), founded more than 50 years
ago. The pioneer of MPT is Markowitz (1952), who theorized the mean–variance approach
to solve the problem of optimal portfolio allocation. Mean–variance optimization requires
three sets of input for the asset classes that belong to a given opportunity set: returns, stan-
dard deviations and correlations. The result of the mean–variance optimization is a set of
efficient asset allocations whose coordinates form the efficient frontier in the mean–variance
plane. Efficient allocations maximize expected return for a given level of risk, or equivalently,
minimize risk for a given level of return. One can describe a mean–variance problem in the
following way. Consider n assets with the expected value and the variance of the ith asset
return being respectively 𝜇i and 𝜎ii = 𝜎

2
i , and with the covariance between the ith asset and the

jth asset being 𝜎ij, with i, j = 1, 2,… , n (i not equal to j). The vector w⊤ = [w1,… , wi,… , wn]
indicates the portfolio allocation, that is the composition of the portfolio such that the amount
wi is proportional to the wealth allocated to the ith asset and

∑n
i=1 wi = 1. The optimization

problem can equivalently take one of the two following formulations:

min 𝜎2
p (w)

w∈
⇔ max𝜇p(w)

w∈

𝜇p(w) = 𝜇 𝜎
2
p (w) = 𝜎2

p (20.7)
n∑

i=1

wi = 1
n∑

i=1

wi = 1

where 𝜇p and 𝜎2
p are respectively the expected return and the variance of the portfolio return

and  is the opportunity set of the allocations that fulfil the condition
∑n

i=1 wi = 1. More
precisely in problem (20.7), given a level of return 𝜇, the investor aims to find the allocation

w that minimizes the portfolio risk, or conversely, given a level of risk 𝜎2
p , the investor

maximizes the portfolio return. The expected return 𝜇p and the variance 𝜎2
p can be expressed

as 𝜇p =
∑n

i=1 wi𝜇i and 𝜎2
p =

∑n
i=1

∑n
j=1 wiwj𝜎ij. If the weight wi assumes a negative value,

the ith asset is short-sold. The allocations that solve problem (20.7) are efficient allocations.
Markowitz’s mean–variance optimization is the primary tool utilized by investors for investing
in assets and finding efficient allocations. MPT is used here to demonstrate that by including
commodities in a portfolio of traditional assets (bonds, stocks), the efficient frontier obtained
by solving problem (20.7) dominates, in that it is always above, the efficient frontier of the
traditional portfolio itself. Comparison is made between the efficient frontiers with and without
the commodities asset class and the allocations that are historically optimal are found. Once
two efficient portfolios are found, then to draw the efficient frontiers the two fund theorem is
applied, which states that all the portfolios on the Markowitz efficient frontier can be obtained
as a one-parameter family of linear combinations of any two of them. Thus, varying the
parameter, that is the weights of the two portfolios, one calculates different pairings of mean
and variance. Market proxies are considered in order to create exposure to stock markets and
bond markets. The proxies for asset classes are market indexes: S&P 500 for US stocks, MSCI
EAFE for international stocks, Lehman Bond Composite-U.S. for US bonds, Lehman Bond
Composite-Global for international bonds and Dow Jones-AIG Commodity Index (DJ-AIGCI)
for commodities. DJ-AIGCI is an index composed of futures contracts on commodities over



Commodity-Linked Arbitrage Strategies and Portfolio Management 931

19 raw materials and designed to provide a benchmark-diversified commodity futures market.
It is conceivable that the following analysis can be conducted taking into account specific
commodities, perhaps using benchmark indexes as proxies. Furthermore, cross-commodity
portfolios can be studied. The considered time series are monthly and about 10 years long,
from January 2001 to August 2010. Table 20.21 shows the values of the mean returns and the
matrix of variance–covariance.

Figure 20.4 plots the efficient frontiers of portfolios with and without the commodities
asset class in the plane (𝜎p,𝜇p). The frontier with the commodities asset class dominates the
frontier without it. This means that commodities are effectively a good diversifier as, for a
given level of risk, including commodities in a traditional portfolio of bonds and stocks allows
one to reach a higher level of return.

An analogous but more detailed analysis is carried out by Idzorek (2006). He studies
the role of commodities in a strategic asset allocation. He creates an exposure to stocks and
bonds and to inflation through market proxies, such as market indexes. The mean–variance
approach is used to investigate and compare, using historical data, the efficient frontiers
with and without the commodities asset class. Furthermore, Idzorek (2006) uses three other
approaches to demonstrate the advantage achieved by combining investments in commodities
and traditional assets. The first approach developed is the CAPM, which is commonly not
considered applicable to the commodities asset class due to the lack of market capitalization.
In fact, the CAPM is a general equilibrium model that considers the investment in a portfolio
given by a combination of a risk-free asset and a market portfolio. The market portfolio
contains all the assets existing in the market according to their capitalization. In the CAPM
theory, the return of any asset is decomposed into two components: the portion correlated
with the market and associated with nondiversifiable risk, and the portion uncorrelated with
the market and associated with idiosyncratic and diversifiable risk. If we represent the CAPM
as a univariate factor model, the return of the kth asset at time t, rk

t , is obtained using the
following formula:

rk
t = xk

t + 𝛽
k
t rM

t ,

where xk
t is the component associated with idiosyncratic risk and 𝛽

k
t rM

t represents the
component associated with nondiversifiable risk, 𝛽k

t being a measure of the sensitivity of
rk

t to variations of the market return rM
t . After having developed a technique to estimate

the commodity market capitalization, Idzorek (2006) creates forward-looking efficient
frontiers with and without commodities. Then, using the building block methodology and the
Black–Litterman model (Black and Litterman, 1992) he obtains similar results.

The mean–variance approach of Markowitz is also used by Yu (2003) to develop a model
for evaluating the risk of profit-making arising in deregulated multi-pooled electricity markets.
In fact, in these markets fringe producers and bigger producers have to face short-term, spatial
market risk and in the paper no oligopolistic strategies can be adopted. The Markowitz
model is extended as a mixed-integer programming model to include constraints that take
into account transaction costs and other practical constraints (for example physical plant
constraints). Through the estimation of the correlation of geographically separated markets
and the consideration of wheeling administration, the author captures the spatial dynamic. He
studies the cases of New York Power Pool and Pennsylvania–Maryland Power Pool and finds
an efficient frontier that is neither smooth nor concave due to the additional constraints.
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F IGURE 20.4 Efficient frontiers comparison

MPT is widely used in the literature to solve problems of allocation in different physical
or financial contracts for electricity generators or purchasers, and in order to manage price
risk, delivery risk and volumetric risk, or simply to minimize costs or maximize profits.

Liu and Wu (2007) consider the case of the generation companies (Gencos) that in dereg-
ulated electricity markets have to manage the risks of price and delivery in order to guarantee
their profits. The risk management takes place through portfolio diversification; trading energy
through both different physical trading approaches (spot markets, contract markets) and finan-
cial trading approaches (futures contracts, swaps, options, etc.). So, basically, the two kinds
of risks faced are the risk of price fluctuations on spot markets and the delivery risk due to
transmission congestion. The authors analyse an energy system based on locational marginal
pricing. One way suggested by Liu and Wu (2007) to solve the problems for a Genco of
maximizing the expected return and simultaneously minimizing the variance of the return of a
portfolio that allocates energy between spot and bilateral contract markets is via the following
quadratic programming exercise:

max
wi

U = E[rC] − 1
2

A𝜎2(rC) (20.8)

s.t.
n+1∑

i=1

wi = 1

wi ≥ 0.

In (20.8), U is the utility function of the Genco, E[rC] is the expected return of the portfolio,
given by the combination of the expected energy contract returns, 𝜎2(rC) is the variance of the
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portfolio return, wi, i = 1,… , n + 1, is the weight of the ith contract in the portfolio, and A is
the weighting factor that reflects the decision maker’s preference for or aversion to risk. If A is
positive the decision maker is risk averse, a negative A indicates risk loving and if A is equal
to zero, he/she is risk neutral. It should be highlighted that trading approaches for the Genco
include risk-free contracts that refer to a local counterparty, risky contracts between Genco and
a nonlocal counterparty and risky spot deals. Furthermore, if a congestion in the transmission
system happens, the Genco has to pay all or part of the congestion charge, which is given by
the product of the spot price difference between the two locations involved and the transmitted
energy (MWh), all according to specific market rules. The congestion rate is included as a
factor in nonlocal bilateral contract return–variance evaluation. Then, PJM market data are
used to illustrate the presented approach of allocating energy between markets.

Huisman et al. (2009) study the problem of electricity purchasers in deregulated markets,
which must provide electricity to a company or a pool of clients according to their future
expected electricity consumption. So electricity purchasers aim to manage a portfolio of
contracts (day-ahead contracts, forwards, futures, swaps, etc.) and direct or indirect investments
in energy production facilities in order to minimize expected costs, while trying to limit the
variance of these contracts. In particular, Huisman et al. (2009) consider a purchaser that has
the opportunity to enter, at time t, either in a peak contract or in an off-peak contract. A peak
contract delivers 1 MW of electricity in all the peak hours of day T at a price fixed at time
t < T , whereas an off-peak contract delivers 1 MW in all the off-peak hours of day T at a
fixed price. The authors propose the following mean–variance optimization problem to find
the optimal allocations in peak and off-peak forward contracts:

min
𝜃o,𝜃p

Et{C(T)} (20.9)

s.t. vart{C(T)} ≤ 𝜎
2
max.

In (20.9), the number of off-peak contracts 𝜃o and the number of peak contracts 𝜃p that
minimize the total costs C(T) for a generic purchaser are found. Total costs consist of the
costs of off-peak and peak forward contracts and the costs of the purchase in the day-ahead
market for the requested electricity that is left and not provided by futures contracts. Then,
total costs are uncertain because they depend on the volumes and day-ahead prices. The
constraint of problem (20.9) is that the costs variance vart{C(T)} must be below a maximum
level of variance established by the purchaser, 𝜎2

max. The optimal allocation for the purchaser
is found in two steps. In the first step, the set of optimal allocations that satisfy all producers
is obtained and based on the difference in risk premiums per unit of day-ahead risk as a
measure of relative costs of hedging risk in the day-ahead markets. In the second step, the
purchaser chooses among the optimal allocations those that are in accordance with his risk
profile. Finally, the authors discuss the managerial uses and implications of their model.

It is important to stress that there are problems that can be more properly tackled by
choosing a risk measure different from portfolio variance. In such cases, Value at Risk (VaR)
or Conditional Value at Risk (CVaR) should be used. VaR measures the maximum expected
portfolio loss over a holding period and according to a confidence level c. VaR is the absolute
value of the quantile of the left tail of the portfolio return (rp) distribution corresponding to
the confidence level c:

VaRc(rp) ≡ |Qrp
(1 − c)|,

where Qrp
is the quantile of the return distribution.
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A VaR constraint is included in the problem formulated by Oum and Oren (2009) in order
to maximize the hedged profit of load serving entities (LSEs). An LSE has the obligation to
serve load to consumers. The LSE is exposed to two types of risk: the price risk deriving
from trading electricity on the wholesale spot market and so from the uncertainty of its prices,
and the volumetric risk due to the required load variation. The authors build a self-financing
hedging portfolio consisting of a risk-free bond, a forward contract and a spectrum of call and
put options with different strike prices. The proposed problem is the following:

max
x(p)

E[Y(x)] (20.10)

s.t. EQ[x(p)] = 0

VaRc(Y(x)) ≤ V0,

where Y(x) is the hedged profit, E[⋅] and EQ[⋅] denote the expectation under the objective/real
probability measure and risk-neutral measure, respectively, x(p) is the payoff function of an
exotic option used for hedging the LSE revenue and that is replicated using standard derivatives,
such as forwards, calls and puts, p is the electricity price and V0 is a fixed level of risk that is
not exceeded. The profit of the LSE depends on two correlated variables, price and demand,
so solving analytically problem (20.10) becomes difficult. Oum and Oren (2009) propose an
approximation method that restricts the search for the optimal VaR constrained portfolio on
the mean–variance efficient frontier.

A robust portfolio optimization technique using liquidity-adjusted VaR (L-VaR) as risk
measure is proposed by AlJanabi (2012). The author analyses, from a portfolio manager’s
perspective, the optimal commodity portfolio selection problem under normal and adverse
distributional assumptions. He implements different long trading scenarios or a combination
of long/short commodity trading strategies. The suggested technique is used for minimizing
L-VaR under budget constraints that are formulated considering a realistic and meaningful
financial situation and applications.

One main drawback of the VaR is that it does not promote diversification. Furthermore,
optimizing an allocation by minimizing the VaR does not consider the distributional properties
beyond the c-quantile. So, regardless of the distribution at the left of the VaR the optimization
result does not change. Finally, the VaR is easily determined if the return distribution is
normal, whereas it becomes difficult if it is not clearly identifiable, especially if it is discrete,
nonconvex, nonsmooth and with multiple local extremes. As an alternative to VaR, the risk
measure used is CVaR.

CVaR is a coherent measure of risk (Artzner et al., 1999). It can be defined as the expected
value of the portfolio return conditional that the return is less than the quantile corresponding
to the confidence level c, that is

CVaRc(rp) ≡ E[rp|rp ≤ Qrp
(1 − c)]. (20.11)

A return–risk optimization portfolio problem can be formulated in the following way:

min
wi

CVaRc(rp) (20.12)

s.t. rp ≥ 𝜇,
∑

i

wi = 1

wi ≥ 0, ∀i = 1,… , n,
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where wi, i = 1,… , n, are the portfolio weights and rp is the portfolio return. The parameter 𝜇
represents a boundary for portfolio returns, so that all allocations that fulfil the constraints of
problem (20.12) are feasible portfolios and among these portfolios, the efficient portfolios can
be identified by minimizing the CVaR. So problem (20.12) is a generalization of the Markowitz
mean–variance optimization problem. An example of mean–risk optimization of electricity
portfolios minimizing CVaR is the model developed by Eichhorn et al. (2004). They maximize
the mean book value of a portfolio consisting of physical components and energy derivatives
at the end of the optimization horizon, and simultaneously minimize the risk measured by
CVaR. They apply their methodology to solve the problem for a municipal power utility.

SYMBOLS

T(t) the price of a target commodity at time t
X(t) the price of a synthetic asset at time t
M(t) the value of the statistical mispricing at time t
C(t) the price vector of commodities at time t
E[⋅] the expectation
SATS statistical arbitrage trading strategy
rp(t) the risk premium at time t
F(t, T) the futures price at time t for delivery at date T > t
S(t) the spot price at time t
rk

t the return of the kth asset at time t
VaRc value at risk at the confidence level c
CVaRc conditional value at risk at the confidence level c
wi the weight of the ith asset in the portfolio
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CHAPTER 21
Econometric Analysis of Energy and

Commodity Markets: Multiple
Hypothesis Testing Techniques

Mark Cummins

21.1 INTRODUCTION

As with other areas of empirical finance, the econometric analysis of energy and commodity
markets involves applying a suite of appropriate econometric tests to a range of appropriate
time series, cross-sectional or panel data. Such empirical studies, by their very nature, suffer
from the well-established problem of data snooping bias, whereby there is a non-negligible
likelihood that statistically significant results may be identified by random chance alone rather
than as a result of any underlying statistical relationships. White (2000) describes data snooping
bias as resulting from a given set of data being used more than once for purposes of inference
or model selection, whereby any statistically significant results are due to chance rather than
to any merit inherent in the methodology. In the statistical and econometric literature, this
phenomenon is more commonly referred to as the multiple comparisons problem that results
from multiple hypothesis testing. Although the problem is well established in the literature,
much of the empirical finance work to date (across all market classes, including energy and
commodities) either ignores or is unaware of the problem.

Rather than present a comprehensive literature review, the interested reader is instead
directed to the work of Romano et al. (2010), who provide a detailed exposition of the issues
pertaining to multiple hypothesis testing, outlining the recent key literature in the area. How-
ever, relevant literature will be referenced throughout the following sections, which showcase
the application of multiple hypothesis-testing techniques to control for the multiple compar-
isons problem within a range of energy and commodity applications. Multiple hypothesis
testing procedures can broadly be categorized as p-value-based approaches that assume the
existence of and work on a set of available p-values and resampling-based approaches that uti-
lize bootstrapping (often as part of a recursive methodology) to identify statistical significance
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on the basis of some defined criterion for the hypothesis testing (e.g., mean daily log returns,
mean Sharpe ratio outperformance, etc.). Full details of these concepts, along with specific
control procedures from the literature, are presented in this chapter. Specifically, three studies
are presented that serve to showcase the issue of multiple hypothesis testing from a practical
perspective for both academics and industry participants alike. The studies may be described
as follows:

� Energy–Emissions Market Interactions. The first study is the work of Cummins (2013a)
analysing the interactions between the energy (i.e., oil, gas, coal and power) and emissions
markets that serves in part to establish how integrated the markets have become in
recent years. In theory, the energy markets should serve as a driver of emissions prices.
However, there is conflicting evidence of this in the literature, which is fuelled in no small
part by the issues surrounding Phase I and Phase II of the European Union Emissions
Trading Scheme (EU ETS), such as the oversupply of allowances, the global recession,
uncertainty (at the time) over the structure of Phase III, etc. This study investigates such
energy and emissions market interactions, applying vector autoregression and Granger-
causality testing to a large system of energy and emissions data. In so doing, the multiple
comparisons problem described above presents itself. A suite of p-value class procedures
are applied to control for the multiple comparisons problem in this case, giving greater
statistical confidence around the conclusions drawn.

� Emissions Market Interactions. The second study is the work of Cummins (2013b),
which looks specifically at market interactions within the EU ETS. In particular, the
study focuses on European Union Allowance (EUA) and Certified Emissions Reduction
(CER) units, both of which are allowable instruments (although CERs only to a limited
extent) for compliance purposes under the EU ETS. EUA and CER forward curves are
constructed from a comprehensive set of emissions data and vector autoregression and
Granger-causality testing employed to analyse the statistical relationships. The multiple
comparisons problem again surfaces as a result of this testing framework. As with the
previous study, a suite of p-value class procedures is applied to control for the multiple
comparisons problem in this context.

� Quantitative Spread Trading in Oil Markets. The third study is the recent work of
Cummins and Bucca (2012), which looks at quantitative spread trading in the crude
oil and refined products markets. Specifically, the authors apply an innovative statistical
arbitrage trading model to a large range of common-commodity and cross-commodity
spreads, including calendar, locational and crack spreads. The multiple comparisons
problem presents itself again here as the overall objective is to identify, with statistical
confidence, profitable trading strategies from the range of trading strategies implemented.
However, unlike the two previous studies, a suite of resampling class procedures is
applied in order to control for the multiple comparisons problem in this instance, where
the criterion used for the hypothesis testing is the mean daily log return.

21.2 MULTIPLE HYPOTHESIS TESTING

As outlined previously, multiple hypothesis testing (MHT) procedures can broadly be catego-
rized as p-value-based approaches that assume the existence of and work on a set of available
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p-values and resampling-based approaches that utilize bootstrapping (often as part of a recur-
sive methodology) to identify statistical significance on the basis of some defined criterion
(see, e.g., White, 2000; Hansen, 2005; Romano and Wolf, 2007, 2010; and, for empirical
applications, Sullivan et al., 1999; Hsu and Kuan, 2005; Qui and Wu, 2006; Park and Irwin,
2007; Marshall et al., 2008; Cummins and Bucca, 2012). Within both classifications of MHT
procedure, specific procedures are developed around one of four key criteria for controlling
the multiple comparisons problem. These key criteria are: (i) the generalized familywise error
rate, (ii) the per-familywise error rate, (iii) the false discovery proportion and (iv) the false dis-
covery rate. The literature has evolved over recent decades, and in particular over recent years,
towards more generalized procedures that offer the advantage of greater power over earlier
procedures, where power is loosely defined, as in Romano et al. (2010), as the ability to reject
a null hypothesis when it is false, as should be done. Earlier procedures in the literature suffer
from excessive conservativeness, in the sense that in attempting to control for false discoveries
(i.e., rejection of true null hypotheses) such procedures make it very difficult to identify true
discoveries (i.e., rejection of false null hypotheses). Recent generalized procedures seek to
relax this constraint and so increase the power of the testing.

Before proceeding to discuss the three empirical studies outlined in Section 21.1, the
following subsections present a formal definition for each of the generalized familywise error
rate, per-familywise error rate, false discovery proportion and false discovery rate criteria in
turn. In preparation for the generalized procedures to be described later, a brief discussion is
also given on the difference between single-step and stepwise procedures, the latter forming
the basis of more recent and superior generalized techniques.

21.2.1 General i zed Fami lywise Error Rate

Before introducing the generalized concept, first note that the familywise error rate (FWER)
is defined as the probability that at least one or more false discoveries occur. Consistent with
the notation of Romano et al. (2010), the following definition is made:

FWER ≡ P{reject at least one null hypothesis H0,i : i ∈ I},

where H0,i, i = 1,… , s, is a set of null hypotheses (s ≥ 1) and I is the set of true null hypotheses.
So the FWER describes the probability of making at least one false discovery. Controlling the
FWER involves setting a significance level 𝛼 and requiring that FWER ≤ 𝛼. So, for example,
if the significance is set at 1% then controlling the FWER means ensuring that the probability
of making one or more false discoveries from the family of multiple hypothesis tests is less
than or equal to 1%. However, this approach is particularly conservative given that it does
not allow even for one false discovery and so as a result is criticized for lacking power. The
greater the total number of hypotheses s, the more difficult it is to make true discoveries.

To deal with these weaknesses, the concept of the generalized FWER has been considered
in the literature. The generalized FWER seeks to control for k (where k ≥ 1) or more false
discoveries and, in so doing, allows for greater power in MHT applications. The generalized
k-FWER is defined as follows:

k-FWER ≡ P{reject at least k null hypothesis H0,i : i ∈ I}.
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Controlling the k-FWER involves setting a significance level𝛼 and requiring that k-FWER ≤ 𝛼.
The choice of k is set by the user and the greater this choice then the greater the power in
identifying true discoveries, at the expense of potentially making some false discoveries. So,
for example, consider a problem that implements 1000 hypothesis tests simultaneously. If k is
chosen to be 10 (representing 1% of the tests considered) and the significance level is set at
1% then controlling the k-FWER means ensuring that the probability of making 10 or more
false discoveries from the family of multiple hypothesis tests is less than or equal to 1%. See
Romano et al. (2010) for a full discussion.

21.2.2 Per-Fami lywise Error Rate

The per-familywise error rate (PFER) is a measure that is directly related to the familywise
error rate and is defined as follows:

PFER ≡ E (F) ,

where F denotes the number of false rejections identified by an MHT procedure and E (⋅) is the
expectations operator, such that E (F) is the expected value of F. So the PFER describes the
expected number of false discoveries from the application of an MHT procedure. Controlling
the PFER involves setting a rejection threshold level 𝜆 ∈ [0,∞) and requiring that PFER ≤ 𝜆.
The choice of 𝜆 is set by the user and the greater this choice then the greater the power
in identifying true discoveries, although at the expense of potentially making some false
discoveries.

An issue with the PFER is that controlling for the multiple comparisons problem in this
way allows for little to be concluded about the realized value of F. This is because the PFER
focuses on the expected number of rejections. In contrast, the k-FWER allows one to be
confident at the (1 − 𝛼) level that there are at most (k − 1) false discoveries among the rejected
hypotheses. See Romano et al. (2010) for a full discussion.

21.2.3 False Discovery Proport ion

The false discovery proportion (FDP) is formally defined as follows:

FDP ≡
{FR

TR
, TR > 0

0, TR = 0
,

where FR denotes the number of false rejections and TR denotes the total number of rejections
under an MHT procedure. Controlling the FDP involves setting a proportion level 𝛾 and a
significance level 𝛼 and requiring that

P {FDP > 𝛾} ≤ 𝛼.

So the FDP describes the ratio of false rejections to the total number of rejections achieved,
which can naturally run from 0% to 100%. The choice of proportion 𝛾 is made by the user
depending on the level of power required. See Romano et al. (2010) for a full discussion.
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21.2.4 False Discovery Rate

The false discovery rate is defined as follows:

FDR ≡ E (FDP) .

So the FDR represents the expected false discovery proportion and controlling the FDR
involves setting a proportion level 𝛾 ∈ [0, 1) and requiring that FDR ≤ 𝛾 . Similar to the issue
raised with the PFER, the FDR is such that it allows for little to be concluded about the realized
FDP. This is because the FDR focuses on the expected false discovery proportion. In contrast,
the FDP allows one to be confident at the (1 − 𝛼) level that the proportion of false discoveries
among all rejected hypotheses is at most 𝛾 . See Romano et al. (2010) for a full discussion.

21.2.5 Sing le-Step and Stepwise Procedures

The generalized MHT procedures presented in the forthcoming sections will be based on
either the generalized familywise error rate or the false discovery proportion. As outlined
in the previous sections, the generalized nature of the procedures means that they have the
attractive property of greater power compared to earlier, more conservative procedures in the
literature. The majority of the MHT procedures employed have an additional property that
makes them even more attractive. This is the stepwise property of the procedures, whereby
the process of rejecting hypotheses involves a sequence of steps that allow for the recursive
rejection of hypothesis tests. The steps involve the adjustment of the critical values against
which hypothesis tests are rejected, which contrasts to the earlier single-step procedures
that apply a single critical value across all hypotheses in determining those to be rejected.
The stepwise adjustment procedure involves decreasing the critical values to be applied to
the remaining hypotheses at a given step based on information from those hypotheses already
rejected in previous steps. The stepwise procedures stop when no more hypotheses are rejected.

Of the stepwise procedures, there are two classifications: stepdown and stepup. The former
classification involves procedures that work down from the most significant hypothesis to the
least significant hypothesis. The latter classification involves procedures that work up from
the least significant hypothesis to the most significant hypothesis. The procedures used in the
sections to come are exclusively stepdown. See Romano et al. (2010) for a full discussion.

21.3 ENERGY–EMISSIONS MARKET INTERACTIONS

This section provides a brief synopsis of the recent work of Cummins (2013a), who examines
the interaction between the EUA emissions market and some of the main European and global
energy markets. Such interactions have been studied in the literature by a number of authors
and the next subsection provides a brief review.

21.3.1 L i terature Review

Since the launch of the EU ETS, there has been an exponential increase in the number
of papers on emissions markets. The majority of these papers focus on the performance
and/or the structural features of the EU ETS, such as Zetterberg et al. (2004), Betz and Sato
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(2006), Grubb and Neuhoff (2006), Hepburn et al. (2006), Neuhoff et al. (2006), Convery and
Redmond (2007) and Ellerman and Buchner (2008). Other papers have focused on the factors
affecting the price of CO2, such as Mansanet-Bataller et al. (2007), Alberola et al. (2008)
and Mansanet-Bataller and Pardo (2009), while a further body of literature has focused on the
modelling of emission prices, such as Benz and Truck (2009).

Boutaba (2008) investigated interactions among the European carbon markets that trade
EUAs and CERs, using data from the following markets: European Climate Exchange, Nordic
Power Exchange, Powernext, European Energy Exchange, Energy Exchange Austria and
SendeCO2. The results of the cointegration testing indicate that a number of cointegrating
relationships exist between the different markets and, hence, a high degree of price transmis-
sion. Powernext, Nordic Power Exchange and Energy Exchange Austria are shown to have
leading roles as short-term channels of causality from changes in the carbon markets.

An analysis of the relationship between the EU ETS and the Clean Development Mecha-
nism is given by Nazifi (2010), in particular, the dynamic interaction between EUA and CER
prices. Cointegration tests conclude that EUA and CER prices did not appear to be cointe-
grated. Granger-causality tests conclude that CER prices do not have a statistically significant
effect on EUA prices. However, a Granger-causality relationship was found from EUA prices
to CER prices. Chevallier (2010) also investigated the inter-relationship between EUA and
CER price series, using a much longer data set than Nazifi (2010). It was found that EUA and
CER affect each other significantly through a vector autoregression (VAR) model, extending
the results of Nazifi (2010).

Bunn and Fezzi (2007) examine the interactions between emissions markets and a range
of energy markets. The authors show evidence of statistically significant interactions between
emissions, gas and electricity prices. Chemarin et al. (2008) and Fell (2008) study French
and Nordic electricity markets respectively, examining the interplay with emissions markets.
Keppler and Mansanet-Bataller (2010) analyse the relationship in a similar style study using
daily carbon, energy and weather data spanning the Phase I and Phase II periods of the EU
ETS. Based on Phase I, carbon futures prices Granger-cause spot prices. Furthermore, the
clean spark spread (CSS), clean dark spread (CDS) and unexpected temperature changes are
shown to Granger-cause carbon future prices. For Phase II, evidence is provided that both
the CSS and CDS have bidirectional causality with carbon futures. Carbon futures prices are
found to Granger-cause gas prices. Nazifi and Milunovich (2010) provide evidence that the
Dec 2008 EUA futures contract exerts a causal effect on gas prices and that electricity prices
exert a causal effect on spot carbon.

21.3.2 Data Descript ion

For the analysis to follow, EUA price data were acquired from the ICE European Climate
Exchange (ECX), which is the leading marketplace for trading emissions in Europe. All of the
energy price series were obtained through the Reuters Xtra 3000 trading platform. Daily data
are used over the sample period 8th Apr 2008 to 4th Jun 2010. For the EUA price data, the
futures contracts with annual settlement dates ranging from Dec 2010 to Dec 2014 are used.
All prices are quoted in euros per ton of CO2e.

The most widely recognized and relevant prices to Europe for oil, natural gas, coal
and electricity are used. Brent and West Texas Intermediate (WTI) front-month prices are
considered for oil. For natural gas, front-month prices for the National Balancing Point (NBP)
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TABLE 21.1 List of energy markets

Brent Oil European Power Exchange (EPEX) – France
West Texas Intermediate (WTI) Oil European Energy Exchange (EEX) – Germany
National Balancing Point (NBP) Natural Gas –

UK
Anglo-Dutch Energy Exchange (APX) –

UK/Netherlands
Henry Hub (HH) Natural Gas – USA Italian Power Exchange (GME) – Italy
API 2 (Northwest Europe) Coal Polish Power Exchange (POX) – Poland
API 4 (South Africa’s Richards Bay) Coal OMEL – Spain

Energy Exchange (EXAA) – Austria

in the UK and, as a global benchmark, Henry Hub in the USA are considered. For coal, front-
month prices for the API 2 Northwest Europe index and the API 4 South Africa Richards Bay
index are used in the analysis. For electricity, there are seven different regional markets taken
into account; namely, Austria, France, Germany, Italy, Poland, Spain and the Netherlands. In
these cases base, peak and off-peak electricity prices are used. The regional focus and the
segmentation of prices into base, peak and off-peak are central to the analysis. Table 21.1
provides a summary list of the energy markets. Descriptive statistics are presented in Tables
21.2 and 21.3.

21.3.3 Test ing Framework

For the empirical analysis in this section, vector autoregression modelling and Granger-
causality testing is implemented, with multiple hypothesis testing procedures employed to
control for the multiple comparisons problem that exists in this setup. The following subsec-
tions provide the specific details of each.

21.3.3.1 Vector Autoregression To describe the dynamic relationship between the
energy and emissions market, a VAR model is used. In general terms, consider a system
of N variables of interest and let Yt ≡ {y1,t,… , yN,t} be a set of observations of this system
at time t. The VAR(p) model describes the relation between Yt and its lags up to order p.
Formally, the VAR(p) model is defined as follows:

Yt = Υ + Γ1Yt−1 +⋯ + ΓpYt−p + 𝜀t,

where Υ is an (N × 1) vector of constants, Γj, j = 1,… , p, are (N × N) matrices of constant
coefficients and 𝜀t is an (N × 1) vector of independent random variables following a multi-
variate normal distribution N (0,Σ).

From the description of the energy and emissions data in Section 21.3.2, there are 32
variables in total for the VAR specification. To determine the optimal lag order for this VAR
model, information criterion tests are used. Specifically, the Akaike information criterion
(AIC), Bayesian information criterion (BIC) and Hanna–Quinn criterion (HQC) tests are
implemented and the lag order is chosen where there is consistency between at least two
of these tests. The information criterion tests show that the optimal lag is one in this case,
with consistency between all three tests. So the system variable Yt is described by a VAR(1)
model. Given that the VAR model requires stationarity in the system variable, the log returns
associated with the energy and emissions time series are used as inputs.
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TABLE 21.2 Descriptive statistics I

Variable Mean Median Minimum Maximum

WTI ($/bbl) 78.2795 73.5000 33.8700 145.290
Brent ($/bbl) 78.1286 73.5250 36.6100 146.080
HH ($/mmBtu) 5.88509 4.79900 2.50800 13.5770
NBP (Sterling pence/therm) 43.6531 34.8100 18.2500 85.2600
API4 ($/tonne) 89.5875 80.7500 53.5000 189.500
API2 ($/tonne) 99.4685 77.8250 54.6500 224.000
EPEX B (euro/MWh) 54.7200 48.5710 15.1310 118.162
EPEX P (euro/MWh) 65.5564 57.2430 14.8670 152.265
EPEX OP (euro/MWh) 41.2901 37.7790 10.1910 85.7550
EEX B (euro/MWh) 51.8948 45.0350 7.21000 117.350
EEX P (euro/MWh) 61.8950 52.7800 9.47000 151.150
EEX OP (euro/MWh) 41.9285 38.2550 1.19000 84.3700
APX B (euro/MWh) 53.1934 46.5900 21.0400 118.590
APX P (euro/MWh) 62.7674 55.2900 20.5300 152.340
APX OP (euro/MWh) 38.8819 37.6200 7.40000 119.970
GME B (euro/MWh) 73.5086 69.3550 28.9100 119.390
GME P (euro/MWh) 90.0288 85.3250 30.9100 159.220
GME OP (euro/MWh) 57.0971 55.5000 21.4600 90.4200
POX B (euro/MWh) 47.7881 45.5400 24.3100 81.2900
POX P (euro/MWh) 53.9054 48.9250 24.6600 101.280
POX OP (euro/MWh) 40.5588 39.1550 19.1600 64.5100
OMEL B (euro/MWh) 44.7249 37.9350 2.47000 79.6500
OMEL P (euro/MWh) 47.8839 40.4550 2.07000 86.4300
OMEL OP (euro/MWh) 41.6104 36.7150 3.40000 73.8100
EXAA B (euro/MWh) 52.6487 46.0400 13.1500 119.000
EXAA P (euro/MWh) 63.9116 55.0350 22.9000 153.000
EXAA OP (euro/MWh) 41.5963 38.1500 11.0300 84.9900
EUA Dec-10 (euro/MWh) 17.3320 14.8800 8.43000 31.7100
EUA Dec-11 (euro/MWh) 18.0062 15.4950 8.90000 32.9000
EUA Dec-12 (euro/MWh) 18.9361 16.3850 9.43000 34.3800
EUA Dec-13 (euro/MWh) 20.2992 17.6000 11.3000 36.4300
EUA Dec-14 (euro/MWh) 21.3764 18.7800 12.3000 37.7800

21.3.3.2 Granger Causal i ty Granger causality seeks to establish if there is a causal link
between variables under consideration. In its most general form, it asks the question whether
yj,t is explained by lags of the variable yi,t up to order p, that is, yi,t−1, yi,t−2,… , yi,t−p. Within
the VAR framework, this is said to be the case if any one of the regression coefficients of
the lagged terms is deemed statistically significant for a chosen confidence level. The null
hypothesis is that the regression coefficients of the lagged terms are simultaneously zero.
Table 21.4 summarizes the null hypotheses and associated implied restrictions on the VAR
system.

21.3.3.3 p-Value-Based MHT Procedures In Section 21.3.4, it will be shown that the
VAR and Granger-causality testing lead to 2080 hypothesis tests being performed simulta-
neously. This is a clear case of the multiple comparisons problem. Given the availability of
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TABLE 21.3 Descriptive statistics II

Variable Std. deviation C.V. Skewness Ex. kurtosis

WTI 27.3161 0.348957 0.674559 −0.284088
Brent 26.5431 0.339736 0.779906 −0.166577
HH 2.69462 0.457873 1.33988 0.762525
NBP 17.6216 0.403673 0.521157 −1.18824
API4 32.5672 0.363524 1.20133 0.446173
API2 44.4216 0.446590 1.31149 0.318713
EPEX B 20.1879 0.368931 0.806209 −0.212018
EPEX P 25.8479 0.394285 0.916241 0.101776
EPEX OP 15.3542 0.371861 0.712083 −0.246221
EEX B 19.2285 0.370529 0.957099 0.226878
EEX P 24.8369 0.401275 1.09006 0.637668
EEX OP 14.5246 0.346413 0.718419 0.0427895
APX B 20.2066 0.379871 0.926595 0.0346629
APX P 23.9158 0.381023 0.994198 0.452386
APX OP 13.2402 0.340522 1.06959 3.20861
GME B 17.6960 0.240733 0.457865 −0.515635
GME P 23.7680 0.264004 0.640601 0.0478782
GME OP 14.0402 0.245900 0.317852 −0.623075
POX B 11.5225 0.241116 0.699953 −0.242605
POX P 15.4163 0.285988 0.846362 −0.242476
POX OP 8.27625 0.204055 0.506744 −0.0670837
OMEL B 16.0982 0.359939 0.293987 −0.627397
OMEL P 17.5388 0.366278 0.345009 −0.567726
OMEL OP 15.0230 0.361040 0.222147 −0.620893
EXAA B 19.4318 0.369083 1.02864 0.353212
EXAA P 25.0036 0.391222 1.19774 0.819074
EXAA OP 14.2937 0.343629 0.799118 −0.0220681
EUA Dec-10 5.63185 0.324940 0.966338 −0.548518
EUA Dec-11 5.78585 0.321326 0.967768 −0.554651
EUA Dec-12 5.95077 0.314255 0.959457 −0.553310
EUA Dec-13 6.11639 0.301313 0.967888 −0.516939
EUA Dec-14 6.14750 0.287584 0.974413 −0.465382

p-values from the hypothesis testing, p-value-based MHT procedures are used to control for
the multiple comparisons problem. Two classes of generalized procedure will be used in par-
ticular; the first class seeks to control the generalized familywise error rate, while the second
class seeks to control the false discovery proportion. Two specific procedures from each class
of generalized procedures will be described below and used for the empirical analysis. The
study allows for a direct comparison of the alternative k-FWER and FDP procedures.

TABLE 21.4 Granger causality: hypotheses and implied restrictions

Null hypotheses Implied restrictions

Lags of yi,t do not explain current yj,t, i, j = 1,… , N Γ1 (j, i) = ⋯ = Γp (j, i) = 0
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Before discussing the generalized k-FWER procedures, two common techniques for
controlling the more conservative FWER are presented; namely, that of Bonferroni (see
Romano et al., 2010) and that of Holm (1979). Assume that for the set of hypothesis tests
H0,i, i = 1,… , s, there are available p-values p̂i, i = 1,… , s. The Bonferroni method controls
for the FWER by adjusting the significance level such that hypothesis H0,i is deemed rejected
if and only if (iff)

p̂i ≤ 𝛼∕s.

Criticisms against the Bonferroni method include its conservativeness and that it represents a
single-step procedure. Holm (1979) proposes an improved stepdown procedure, whereby for
the ordered p-values that run from the most significant down to the least significant, that is,
where p̂(1) ≤ p̂(2) … ≤ p̂(s), the ordered hypothesis H0,(i) is rejected iff

p̂(i) ≤ 𝛼(i) ≡ 𝛼∕ (s − i + 1) .

It is important to emphasize the subtle difference in notation introduced here. H0,i is the
ith hypothesis test considered and p̂i is the associated p-value. In contrast, H0,(i) is used to
denote the ith hypothesis when all hypotheses are ordered in terms of significance from the
most significant up to the least significant, with p̂(i) denoting the associated ordered p-value.
Although the Holm (1979) procedure is a stepwise procedure that offers greater power over
the single-step Bonferroni procedure, the approach is still conservative in its control of the
FWER.

As described in Section 21.2, these weaknesses are dealt with using generalized
approaches. Generalized k-FWER versions of the Bonferroni and Holm methods are intro-
duced next for this purpose. The generalized Bonferroni method is defined by Romano et al.
(2010) whereby the significance level is adjusted such that hypothesis H0,(i) is deemed rejected
iff

p̂(i) ≤ 𝛼(i) ≡ k ⋅ 𝛼∕s.

This procedure has the advantage of being much less conservative than the Bonferroni method
and also being robust to the dependence structure of the hypothesis tests. This procedure will
herein be referred to as the GB (for ‘generalized Bonferroni’) procedure.

A limitation of the GB methodology is that it is still a single-step method. Lehmann and
Romano (2005) therefore propose a stepdown method that generalizes the method of Holm
(1979) by means of defining the following set of cut-off values for comparison against the
ordered p-values p̂(i), i = 1,… , s:

𝛼(i) ≡

{
k𝛼
s

, i ≤ k
k𝛼

s+k−i
, i > k

.

This procedure also has the advantage of being robust to the dependence structure of the
hypothesis tests, with the additional advantage of being a superior stepwise procedure. The
procedure will herein be referred to as the GH (for ‘generalized Holm’) procedure and repre-
sents the second k-FWER procedure to be used in this study.
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Turning next to the FDP, recall that it is formally defined as follows:

FDP ≡
{FR

TR
, TR > 0

0, TR = 0
,

where FR denotes the number of false rejections and TR denotes the total number of rejections.
Lehmann and Romano (2005) develop a stepdown procedure that controls the FDP, whereby
for a given proportion 𝛾 and significance level 𝛼,

P {FDP > 𝛾} ≤ 𝛼.

The procedure is again recursive and rejects in this case the null hypothesis H0,(i) iff p̂(i) ≤ 𝛼
′

(i),
where the cut-off values are defined as follows:

𝛼
′

(i) ≡ 𝛼(i)∕C,

where

𝛼(i) =
(⌊𝛾i⌋ + 1) 𝛼

s + ⌊𝛾i⌋ + 1 − i

and

C ≡ C(⌊𝛾s⌋+1) =
⌊𝛾s⌋+1∑

j=1

(1∕j) .

In the above, the notation ⌊x⌋ is used to denote the largest integer lower than x. This procedure
is specifically designed by the authors to be robust to the dependence structure of the p-
values and is seen as an extension of a special-case version of the procedure with C = 1. This
methodology will herein be referred to as the LR (for ‘Lehmann–Romano’) procedure.

One issue with the LR procedure described above is that it is quite conservative in its
normalization by the factor C; an issue which Romano et al. (2010) admit may deter researchers
from its use. To address this conservativeness, Romano and Shaikh (2006) propose an improved
stepdown procedure, whereby higher cut-off values are defined as follows:

𝛼
′′

i ≡ 𝛼i∕D,

where 𝛼i is the same as for the LR procedure, and

D ≡ D (𝛾 , 𝛼, s) = max
|I|

S (𝛾 , 𝛼, |I|) ,

S (𝛾 , 𝛼, |I|) ≡ |I|
N∑

j=1

𝛽j − 𝛽j−1

j
,

N ≡ N (𝛾 , 𝛼, |I|) = min
{
⌊𝛾s⌋ + 1, |I| ,

⌊
𝛾

(
s − |I|
1 − 𝛾

+ 1

)⌋
+ 1

}
,
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and where

𝛽0 ≡ 0,

𝛽m ≡
m

max
{

s + m −
⌈

m
𝛾

⌉
+ 1, |I|

} , m = 1,… , ⌊𝛾s⌋ ,

and

𝛽⌊𝛾s⌋+1 ≡
⌊𝛾s⌋ + 1

|I|
.

The term |I| is the number of elements in I, where as per Section 21.2, I denotes the set of true
null hypotheses. |I| is naturally bounded between zero and the total number of hypothesis tests,
s, under consideration. In practice, the above procedure involves circulating through all the
possible values for |I| within these bounds, from which the maximum value of S (𝛾 , 𝛼, |I|) may
be determined. This procedure is again robust to the dependence structure of the p-values and
offers a greater possibility of rejecting hypotheses in the search for true discoveries compared
with the LR procedure. The procedure is herein referred to as the RS (for ‘Romano–Shaikh’)
procedure.

So, in summary, this section outlines two MHT procedures within the class of generalized
familywise error rate procedures, that is the GB and GH procedures, and two MHT procedures
within the class of false discovery proportion procedures, that is the LR and RS procedures.
Applying this suite of MHT procedures allows for an empirical comparison of the alternative
approaches.

21.3.4 Empir ica l Results

The specific choices for the GB and GH procedures used are k = 20, such that no more than
2.5% of the tests represent false discoveries, and 𝛼 = 5% as the significance level. The specific
choices for the LR and RS procedures used are 𝛾 = 5% for the proportion parameter and
𝛼 = 5%, such that the FDP ensures P {𝛾 > 5%} ≤ 𝛼 = 5%. The results from applying the four
MHT procedures to the VAR and Granger-causality testing are presented in Tables 21.5 and
21.6. Each tick symbolizes that a given hypothesis test is significant under a given MHT
procedure.

The GB and GH procedures both identify 76 VAR coefficients and 76 Granger-causality
relationships as being statistically significant from the 2080 simultaneous hypothesis tests
conducted. Given that the lag order of the VAR model is one, that is a VAR(1) model is used,
the Granger-causality results coincide as expected with the VAR regression coefficient results
exactly, with the former allowing for easy interpretation of the direction of causality. Some
very interesting relationships are identified, with all bar one being within the power markets;
the one exception is a link between the Henry Hub and NBP gas markets. Most interestingly,
over the sample period Apr 2008–Jun 2010, covering approximately the first half of Phase II of
the EU ETS, no statistically significant relationship is established between emissions ‘markets’
and any of the energy markets. This is contradictory to the theory that energy prices should act
as drivers of emissions prices and is also counter to much of the reported literature. However,
it is emphasized again that this study explicitly accounts for the multiple comparisons problem
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TABLE 21.5 VAR results post-MHT

VAR relationship Coefficient p-Value GB GH LR RS

NBP–HH(−1) 0.194 7.263E-05 ✓ ✓
EPEX B–EPEX OP(−1) –0.116 5.188E-04 ✓ ✓
EPEX B–OMEL OP(−1) 0.270 1.852E-03 ✓ ✓
EPEX P–EPEX P(−1) –0.939 4.807E-05 ✓ ✓
EPEX P–EPEX OP(−1) –0.141 7.324E-04 ✓ ✓
EPEX P–OMEL OP(−1) 0.333 2.087E-03 ✓ ✓
EPEX OP–EPEX OP(−1) –0.178 3.313E-05 ✓ ✓
EEX P–EPEX OP(−1) –0.135 2.210E-03 ✓ ✓
EEX OP–EEX B(−1) 1.489 1.124E-05 ✓ ✓ ✓
EEX OP–EEX P(−1) –1.187 1.544E-09 ✓ ✓ ✓ ✓
EEX OP–EEX OP(−1) –1.059 2.220E-16 ✓ ✓ ✓ ✓
EEX OP–POX P(−1) 8.137 2.197E-03 ✓ ✓
EEX OP–POX OP(−1) 5.124 1.505E-03 ✓ ✓
APX B–EPEX OP(−1) –0.107 8.175E-04 ✓ ✓
APX B–APX B(−1) –0.554 1.503E-05 ✓ ✓
APX OP–APX OP(−1) –0.301 3.992E-06 ✓ ✓ ✓ ✓
GME P–GME P(−1) –2.564 3.161E-04 ✓ ✓
POX B–EPEX OP(−1) –0.068 7.774E-05 ✓ ✓
POX P–EPEX OP(−1) –0.090 1.645E-05 ✓ ✓
OMEL B–APX B(−1) –0.475 1.316E-03 ✓ ✓
OMEL B–APX P(−1) 0.411 1.673E-04 ✓ ✓
OMEL B–OMEL B(−1) –0.484 5.181E-05 ✓ ✓
OMEL B–OMEL P(−1) 0.457 6.573E-14 ✓ ✓ ✓ ✓
OMEL B–EXAA B(−1) –0.935 4.848E-07 ✓ ✓ ✓ ✓
OMEL B–EXAA P(−1) 0.654 1.954E-08 ✓ ✓ ✓ ✓
OMEL B–EXAA OP(−1) 0.317 1.504E-03 ✓ ✓
OMEL OP–OMEL P(−1) 0.267 1.122E-06 ✓ ✓ ✓ ✓
OMEL OP–OMEL OP(−1) –0.544 1.083E-09 ✓ ✓ ✓ ✓
OMEL OP–EXAA B(−1) –0.882 2.213E-07 ✓ ✓ ✓ ✓
OMEL OP–EXAA P(−1) 0.548 2.533E-07 ✓ ✓ ✓ ✓
OMEL OP–EXAA OP(−1) 0.366 6.391E-05 ✓ ✓
EXAA B–EPEX B(−1) 0.659 7.425E-04 ✓ ✓
EXAA B–EPEX P(−1) –0.618 3.394E-04 ✓ ✓
EXAA B–EPEX OP(−1) –0.136 1.487E-05 ✓ ✓
EXAA P–EPEX OP(−1) –0.161 1.667E-05 ✓ ✓
EXAA OP–EPEX P(−1) –0.522 1.110E-03 ✓ ✓
EXAA OP–EPEX OP(−1) –0.113 1.054E-04 ✓ ✓
EXAA OP–EXAA OP(−1) –0.491 5.310E-10 ✓ ✓ ✓ ✓

∗Source: Cummins (2013a).

in its application of the MHT procedures. Within each of the regional power markets, with the
exception of Poland, several relationships and causal effects are shown to exist between and
amongst base, peak and off-peak prices. Moreover, there appear to be several cross-regional
relationships and causal effects in the European power markets. In particular, French power
prices are shown to have a causal effect on the German, Polish and Austrian power markets,
whereas Spanish power prices are shown to have a causal effect on the French power market.
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TABLE 21.6 Granger causality results post-MHT

Granger causality p-Value GB GH LR RS

HH ⇒ NBP 7.263E-05 ✓ ✓
EPEX OP ⇒ EPEX B 5.188E-04 ✓ ✓
OMEL OP ⇒ EPEX B 1.852E-03 ✓ ✓
EPEX P ⇒ EPEX P 4.807E-05 ✓ ✓
EPEX OP ⇒ EPEX P 7.324E-04 ✓ ✓
OMEL OP ⇒ EPEX P 2.087E-03 ✓ ✓
EPEX OP ⇒ EPEX OP 3.313E-05 ✓ ✓
EPEX OP ⇒ EEX P 2.210E-03 ✓ ✓
EEX B ⇒ EEX OP 1.124E-05 ✓ ✓ ✓
EEX P ⇒ EEX OP 1.544E-09 ✓ ✓ ✓ ✓
EEX OP ⇒ EEX OP 2.220E-16 ✓ ✓ ✓ ✓
POX P ⇒ EEX OP 2.197E-03 ✓ ✓
POX OP ⇒ EEX OP 1.505E-03 ✓ ✓
EPEX OP ⇒ APX B 8.175E-04 ✓ ✓
APX B ⇒ APX B 1.503E-05 ✓ ✓
APX OP ⇒ APX OP 3.992E-06 ✓ ✓ ✓ ✓
GME P ⇒ GME P 3.161E-04 ✓ ✓
EPEX OP ⇒ POX B 7.774E-05 ✓ ✓
EPEX OP ⇒ POX P 1.645E-05 ✓ ✓
APX B ⇒ OMEL B 1.316E-03 ✓ ✓
APX P ⇒ OMEL B 1.673E-04 ✓ ✓
OMEL B ⇒ OMEL B 5.181E-05 ✓ ✓
OMEL P ⇒ OMEL B 6.573E-14 ✓ ✓ ✓ ✓
EXAA B ⇒ OMEL B 4.848E-07 ✓ ✓ ✓ ✓
EXAA P ⇒ OMEL B 1.954E-08 ✓ ✓ ✓ ✓
EXAA OP ⇒ OMEL B 1.504E-03 ✓ ✓
OMEL P ⇒ OMEL OP 1.122E-06 ✓ ✓ ✓ ✓
OMEL OP ⇒ OMEL OP 1.083E-09 ✓ ✓ ✓ ✓
EXAA B ⇒ OMEL OP 2.213E-07 ✓ ✓ ✓ ✓
EXAA P ⇒ OMEL OP 2.533E-07 ✓ ✓ ✓ ✓
EXAA OP ⇒ OMEL OP 6.391E-05 ✓ ✓
EPEX B ⇒ EXAA B 7.425E-04 ✓ ✓
EPEX P ⇒ EXAA B 3.394E-04 ✓ ✓
EPEX OP ⇒ EXAA B 1.487E-05 ✓ ✓
EPEX OP ⇒ EXAA P 1.667E-05 ✓ ✓
EPEX P ⇒ EXAA OP 1.110E-03 ✓ ✓
EPEX OP ⇒ EXAA OP 1.054E-04 ✓ ✓
EXAA OP ⇒ EXAA OP 5.310E-10 ✓ ✓ ✓ ✓

∗Source: Cummins (2013a).

The Spanish power market appears to be influenced by power prices on the Anglo-Dutch and
Austrian power exchanges. The Polish power markets are shown to have a causal effect on
German power prices.

In contrast to the results of the GB and GH procedures, the LR and RS procedures
identify far fewer statistically significant relationships; the LR procedure identifying 22 VAR
coefficients and 22 Granger-causality relationships and the RS procedure identifying 24 VAR
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coefficients and 24 Granger-causality relationships. Despite the generalized and stepwise
nature of the LR and RS procedures, they are significantly more conservative than the GB
and GH procedures. This can be seen by plotting the cut-off values under each of the four
MHT procedures against the sequence of ordered (from least significant to most significant)
p-values (Figure 21.1). Interestingly, under the LR and RS procedures many of the regional
and cross-regional relationships and causal effects drop away. Indeed, on a regional basis, it is
only really in the case of the German and Spanish power markets that statistical relations are
established between and amongst base, peak and off-peak prices. On a cross-regional basis,
only the Austrian power market is shown to have a causal effect on Spanish power prices.

21.4 EMISSIONS MARKET INTERACTIONS

To again showcase the application of MHT procedures, this section references the recent work
of Cummins (2013b), who looks specifically at market interactions within the EU ETS. In
particular, the study focuses on EUA and CER units, both of which are allowable instruments
(although CERs only to a limited extent) for compliance purposes under the EU ETS. EUA
and CER forward curves are constructed from a comprehensive set of emissions data and VAR
and Granger-causality testing employed to analyse the statistical relationships. The multiple
comparisons problem again surfaces as a result of this testing framework. The same suite
of p-value class procedures as described in the previous section are applied here to control
for the multiple comparisons problem in this context. A full literature review is available in
Cummins (2013b), and so the discussion in the section will focus on the testing framework
and the empirical results.

21.4.1 Test ing Framework and Data

The testing framework is exactly the same as that described in Section 21.3.3 in its use of VAR
modelling, Granger-causality testing and p-value MHT procedures to control for the multiple
comparisons problem. To get a sense of the scale of the multiple comparisons problem it is
first necessary to discuss the data set used by Cummins (2013b).

A comprehensive data set of EUA and CER emissions prices is considered in the study.
This data spans the period 14th May 2008–31st May 2012. It incorporates the December
maturity futures contracts that span the Phase II period and that extend into the Phase III period.
Specifically, for the EUA and CER data the futures contracts range from the December 2008
expiry up to the December 2020 expiry. Rather than analyse the calendar maturity contracts, the
approach taken in the study is to create fixed-maturity EUA and CER forward curves by means
of rolling the futures contracts at expiry.1 So the front end of the forward curve represents the
rolled prompt December contract, the second point on the forward curve represents the second
December contract, and so on. The issues pertaining to rolling EUA and CER futures contracts
are considered by Carchano et al. (2012). Last-day rolling is deemed sufficient for the price
discovery focus of this study and aligns with the previous studies of Mansanet-Bataller et al.
(2011), Chevallier (2010, 2011) and Mansanet-Bataller and Pardo (2011).

1The term ‘forward curve’ is used here and throughout the chapter on the understanding that futures
contracts are used for its construction.
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Two subperiods are considered for the analysis. The first subperiod spans the period
14th May 2008–20th Jan 2011, within which the available futures contracts allow for the
construction of an EUA forward that runs from the prompt December contract to the fifth
December contract (denoted EUA-D1,… , EUA-D5) and a CER forward curve that runs from
prompt December contract to the second December contract (denoted CER-D1, CER-D2).
The second subperiod spans the period 21st Jan 2011–31st May 2012. Over this period,
the increased availability of EUA and CER futures contracts allows for the construction of
respective forward curves that run from the prompt December contract to the ninth December
contract (EUA-D1,… , EUA-D9 and CER-D1,… , CER-D9). It is on these constructed EUA
and CER forward curves that the VAR and Granger causality testing is performed. Given that
the VAR model requires stationarity in the system variable, the log returns from the constructed
forward curves are used as inputs.

The VAR and Granger-causality testing is to be performed on the EUA and CER for-
ward curves constructed for the two Phase II subperiods. So, for the first subperiod, the
system variable Yt = {EUA-D1t,… , EUA-D5t, CER-D1t, CER-D2t} and therefore is of
dimension seven. On this basis, implementation of the VAR model involves 56 regression
coefficient tests, including the constant terms. The Granger-causality testing involves 49 tests
covering all of the pairwise relationships. For the second subperiod, the system variable
Yt = {EUA-D1t,… , EUA-D9t, CER-D1t,…, CER-D9t}, which leads to 342 regression coef-
ficient tests and 324 Granger-causality tests. So a total of 771 hypothesis tests are examined
simultaneously within this framework, justifying the need to apply the MHT procedures. The
specific choices for the GB and GH procedures used are k = 20, such that no more than 2.5% of
the tests represent false discoveries, and 𝛼 = 5% as the significance level. The specific choices
for the LR and RS procedures used are 𝛾 = 5% for the proportion parameter and 𝛼 = 5%, such
that the FDP ensures P {𝛾 > 5%} ≤ 𝛼 = 5%.

21.4.2 Empir ica l Results

The results reported by Cummins (2013b) show interesting results between the two Phase II
subperiods considered for the analysis. For the first subperiod, none of the MHT procedures
show statistical significance for any of the tests performed. So there is no evidence of term
structure interactions in either the EUA forward curve or the CER forward curve. Additionally,
there is no evidence of any cross-interaction between the EUA and CER forward curves. In
contrast, for the second subperiod, the class of generalized familywise error rate procedures
shows evidence that the second December EUA contract (and not the prompt December
contract) returns have a causal effect on the entire EUA forward curve, suggesting markets
are working to a two-year time horizon. The second December EUA contract returns are
also shown to have a causal effect on CER returns, particularly at the long end of the CER
forward curve. The evidence further suggests that term structure causal effects exist within
the CER forward curve. Specifically, lags in the seventh and eighth December contract returns
are shown to have a causal effect on the long end of the CER forward curve. In contrast to
the above evidence, the class of false discovery proportion procedures shows no evidence at
all to support term structure, or indeed cross-market, EUA and CER interactions, meaning the
conclusions drawn need to be taken with a degree of caution. However, the false discovery
proportion procedures are much more conservative than the generalized familywise error rate
procedures and so the researcher needs to be conscious of these differences. For further details
of the analysis and for further discussion, the interested reader is directed to Cummins (2013b).
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21.5 QUANTITATIVE SPREAD TRADING IN OIL MARKETS

The study discussed in this section is quite different from the previous two studies from the
point of view of the MHT methodology in particular. It references the recent work of Cummins
and Bucca (2012), who look at quantitative spread trading in the crude oil and refined products
markets. Specifically, the authors apply the innovative statistical arbitrage trading model
of Bertram (2010) to a large range of common-commodity and cross-commodity spreads,
including calendar, locational and crack spreads. The multiple comparisons problem presents
here given that the overall objective is to identify, with statistical confidence, profitable trading
strategies from the range of trading strategies implemented. However, unlike the two previous
studies, a suite of resampling class procedures is applied in order to control for the multiple
comparisons problem in this instance. In so doing, a defined criterion needs to be set out for
the hypothesis testing and in this case this is chosen to be the mean daily log return.

21.5.1 Test ing Framework and Data

For the empirical analysis in this study, a comprehensive data set of crude oil and refined
product futures contracts is used, comprising WTI and Brent on the crude oil side and gasoil
(GO) and heating oil (HO) on the refined products side. These commodities are chosen on
the basis of size, importance and liquidity. WTI and HO are both traded on the New York
Mercentile Exchange (NYMEX), while Brent and GO are both traded on the Intercontinental
Exchange (ICE). The data set covers the 11-year period from 3rd Jan 2000 to 31st Dec 2010.
Most notably, this period covers the record high crude oil prices recorded in 2008 and the
subsequent collapse in the latter part of the same year resulting from the global economic
crisis, in addition to the gradual recovery in crude oil prices over 2009–2010. All relevant
conversions were done to ensure the time series are quoted consistently in dollars per barrel.

The data set includes futures curves for WTI, Brent and HO running from the prompt
month up to month 12, with the GO futures curve running from the prompt month up to month
six. These choices are made to ensure sufficient liquidity from a trading perspective, with the
construction of the individual time series explicitly taking into account the rolling of futures
contracts. Transaction costs and contract liquidity are discussed in more detail in the study.
For the quantitative spread trading analysis, the full range of common and cross-commodity
spreads (including calendar, crack and locational spreads) is considered. With 42 different
maturity contracts across the four commodity groups, a total of 861 individual spreads are
available for analysis. Finally, nonsynchronicity bias is avoided with all time series being
observed at the same time of 5.15pm EDT, coinciding with the close of the WTI crude oil
market.

The statistical arbitrage trading model of Bertram (2010) that is used for the analysis
is described in detail in the following section. Although the associated mathematics is quite
complicated, underlying the model is a very simple mean-reverting Ornstein–Uhlenbeck (OU)
process that is used to describe the dynamics of a given spread. The innovation over existing
literature is that the statistical arbitrage trading model of Bertram (2010) determines optimal
trade execution signals (i.e., entry and exit levels), albeit this optimality is model based within
the context of the OU spread price dynamics rather than empirically optimal. Analytical
expressions are derived by Bertram (2010) for the optimal entry and exit levels, which may be
solved easily. So, the application of the trading model in practice is relatively straightforward,
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in that the underlying OU process is first estimated against an historical time series for the
given spread. The estimated parameters are then used in determining the optimal entry and
exit levels from the analytic expressions and then, with the trade execution signals in place,
the model may be tested and evaluated out-of-sample.

A number of alternative in-sample and out-of-sample periods are considered for estimation
and evaluation of the spread trading strategies. Specifically, eight separate one-year out-of-
sample periods are considered for evaluation of trading strategy performance; namely, each
year over the period 2003–2010. These choices allow for a wider testing of the optimal
statistical arbitrage trading model and an examination of trading profitability over time. Three
separate in-sample periods are then considered for the estimation of the trading models and
the generation of trading signals to be applied out-of-sample. One-year, two-year and three-
year periods are considered for estimation, where for convenience of construction 252 trade
days are assumed in each year. So, for example, the two-year in-sample period includes the
2 × 252 trade dates prior to the start of the out-of-sample period. Given the daily frequency
of the data, these choices are seen as reasonable to capture consistent mean-reversion effects,
while at the same time examining the impact of alternative estimation periods. Hence, for each
out-of-sample period, a total of 2583 (i.e., 3 × 861) individual trading strategies are tested
simultaneously. Hence, it is quite clear that the multiple comparisons problem exists in this
case. However, as already outlined, resampling-based MHT techniques are required for control
purposes here and the detail of these is presented in Section 20.5.3.

21.5.2 Opt imal Stat ist ica l Arbitrage Model

This section provides a detailed mathematical exposition of the novel optimal statistical
arbitrage trading model of Bertram (2010). The issue of optimal statistical arbitrage trading is
approached by first assuming that the spread between two asset log-price series, denoted st, is
given by the following zero-mean OU process:2

dst = −𝛼stdt + 𝜎dWt, (21.1)

with 𝛼, 𝜎 > 0 and Wt denoting a Wiener process. Defining the entry and exit levels of the
trading strategy by a and m respectively, a complete trade cycle is the time taken for the spread
process to transition from a to m and then return back to a. Formally, the trade cycle time is
defined as follows:

 ≡ a→m + m→a,

where a→m is the time to transition from a to m and m→a is the time to transition from m
to a, and the independence of the two times follows from the Markovian property of the OU
process. Given relative transaction costs c, the total log return from one trade cycle of the
statistical arbitrage trading strategy is given by r (a, m, c) ≡ m − a − c, which is deterministic
but for which the associated trading cycle time is stochastic. In this context, Bertram (2010)

2The zero-mean assumption does not present any issue in practice. The optimal entry and exit levels
obtained can easily be translated to account for a non-zero mean in empirical data.
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proposes the following expected return per unit time and variance of return per unit time
measures:

𝜉 (a, m, c) ≡
r (a, m, c)
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) ,
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where E( ) = E(a→m) + E(m→a) is the expected trade cycle time and V( ) = V(a→m) +
V(m→a) is the variance of the trade cycle time. Following a transformation of the OU process
to a dimensionless system, and drawing on the first-passage time theory of Thomas (1975),
Sato (1977) and Ricciardi and Sato (1988), Bertram (2010) derives the following analytic
expressions for E( ), V( ), 𝜉(a, m, c) and 𝜍(a, m, c):
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where Erfi (z) is the imaginary error function,
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and Ψ (z) ≡ 𝜓 (z) − 𝜓 (1), with Γ (z) and𝜓 (z) the gamma and digamma functions respectively.
With these analytical results in place, it is shown that the optimal entry and exit levels

a∗ and m∗ may be derived by maximizing the expected return per unit time 𝜉 (a, m, c). It is
established that m∗ = −a∗, a∗ < 0, and it is shown that a∗ is the root of the equation
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21.5.3 Resampl ing-Based MHT Procedures

Towards building a framework to identify profitable trading strategies, with statistical signif-
icance, on the set of calendar and crack spreads in the study, the associated hypothesis tests
need to be established. The approach taken in the study is to formally identify those spread
trading strategies that, with statistical significance, outperform a given benchmark in terms of
mean daily log return. The benchmark is defined as in Hsu and Kuan (2005) as equivalent to
taking no position in the spread, and so the hypothesis tests look to identify departures from
the zero-mean daily log return. Letting 𝜁i denote the daily log return of trading strategy i and
𝜃i ≡ E(𝜁i), then the hypothesis tests may be formalized as follows:

H0,i : 𝜃i ≤ 0 vs. H1,i : 𝜃i > 0,

for a full set of hypothesis tests {1,… , s} , where s is as before set equal to the number of tests
considered. The appropriate estimate of 𝜃i is the mean daily log return observed on trading
strategy i over a given historical period with n daily observations. Letting 𝜁t,i, t = 1,… , n,
denote the daily log return of trading strategy i at time t, the estimate �̂�n,i =

∑n
t=1 𝜁t,i∕n. Given

that 𝜃i is unknown, implementing the stepdown and balanced stepdown procedures requires
use of appropriate bootstrapping techniques. This involves replacing the true specification
(�̂�n,i − 𝜃i) with the estimates

(
�̂�
∗
n,i (b) − �̂�n,i

)
, where �̂�∗n,i (b) are bootstrap estimates of 𝜃i and

b = 1,… , B, are the indices for the bootstrap samples.
The objective is to control for the multiple comparisons in this scenario through the

generalized familywise error rate, which as discussed offers greater power whilst also implicitly
accounting for the dependence structure that exists between the tests. This section continues
as follows: Section 21.5.3.1 presents a single-step procedure as described by Romano et al.
(2010); Section 21.5.3.2 presents the stepwise procedure of Romano and Wolf (2007), which
serves as an improvement on the single-step approach by allowing for subsequent iterative
steps to identify additional hypothesis rejections; and Section 21.5.3.3 presents the balanced
stepwise procedure of Romano and Wolf (2010), which is a marked improvement again that
allows for balance amongst the hypothesis tests in the sense that each is treated equally in
terms of power, that is in the identification of true discoveries.

21.5.3.1 Sing le-Step Procedure Assume a set of test statistics Tn,i = �̂�n,i associated with
the hypothesis tests, where n is introduced to denote the sample size of the data used for esti-
mation. Letting A ≡ {1,… , s}, the single-step procedure proceeds by rejecting all hypotheses
where Tn,i ≥ cn,A (1 − 𝛼, k), and where cn,A (1 − 𝛼, k) represents the (1 − 𝛼)-quantile of the dis-
tribution of k-max(�̂�n,i − 𝜃i) under the probability measure P

𝜃
. With P

𝜃
unknown, the critical

value cn,A (1 − 𝛼, k) is also unknown. However, an estimated critical value may be determined
using appropriate bootstrapping techniques. That is, the critical value ĉn,A (1 − 𝛼, k) is esti-
mated as the (1 − 𝛼)-quantile of the distribution of k-max

(
�̂�
∗
n,i − �̂�n,i

)
for P̂

𝜃
an unrestricted

estimate of P
𝜃
. See Romano and Wolf (2007) for further technical details.

21.5.3.2 Stepdown Procedure The stepwise procedure of Romano and Wolf (2007)
improves on the single-step procedure described in the previous section by allowing for
subsequent iterative steps to identify additional hypothesis rejections. The stepdown procedure
is constructed such that at each stage, information on the rejected hypotheses to date is used
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in retesting for significance on the remaining hypotheses. Romano and Wolf (2007) describe
the following steps to the algorithm:

� Step 1. Let A1 denote the full set of hypothesis indices, that is A1 ≡ {1,… , s}. If the
maximum test statistic observed, that is max

(
Tn,i

)
, is less than or equal to the estimated

critical value ĉn,A1
(1 − 𝛼, k) then fail to reject all null hypotheses and stop the algorithm.

Otherwise, proceed to reject all null hypotheses H0,i for which the associated test statistics
exceed the critical value level, that is, where Tn,i > ĉn,A1

(1 − 𝛼, k).
� Step 2. Let R2 denote the set of indices for the hypotheses rejected in Step 1 and let A2

denote the indices for those hypotheses not rejected. If the number of elements in R2 is
less than k, that is ||R2

|| < k, then stop the algorithm as the probability of k or more false
discoveries is zero in this case. Otherwise, the appropriate critical value to be applied at
this stage is calculated as follows:

d̂n,A2
(1 − 𝛼, k) = max

I⊆R2,|I|=k−1
{ĉn,K (1 − 𝛼, k) : K ≡ A2 ∪ I}.

Hence, additional hypotheses from A2 are rejected if Tn,i > d̂n,A2
(1 − 𝛼, k) , i ∈ A2. If no

further rejections are made then stop the algorithm.
⋮

� Step j. Let Rj denote the set of indices for the hypotheses rejected up to Step (j − 1) and
let Aj denote the indices for those hypotheses not rejected. The critical value to be applied
at this stage is calculated as follows:

d̂n,Aj
(1 − 𝛼, k) = max

I⊆Rj,|I|=k−1
{ĉn,K (1 − 𝛼, k) : K ≡ Aj ∪ I}.

Hence, additional hypotheses from Aj are rejected if Tn,i > d̂n,Aj
(1 − 𝛼, k) , i ∈ Aj. If no

further rejections are made then stop the algorithm.
⋮

From the description of the algorithm above, at each stage j in the stepwise procedure the
hypotheses that are not rejected thus far are retested over a smaller population of hypothesis
tests than previously. The size of this smaller population is given by (|Aj| + k − 1), which
includes all the hypotheses within Aj in addition to (k − 1) hypotheses drawn from those
already rejected, that is drawn from Rj. Given that control of the generalized k-FWER is the
premise of the procedure, it is expected that there are at most (k − 1) false discoveries amongst
the set of hypotheses rejected Rj. However, it is not known which of the rejected hypotheses
may represent false discoveries. Hence, it is necessary to circulate through all combinations of
Rj, of size (k − 1) , in order to obtain the maximum critical value d̂n,Aj

(1 − 𝛼, k) against which
to test the hypotheses within Aj. See Romano and Wolf (2007) for further technical details.

Operative Method In requiring to circulate through all subsets of Rj, of size (k − 1) , in order
to obtain the maximum critical value to apply at each stage of the stepdown procedure, the
algorithm can become highly, if not excessively, computationally burdensome. Depending on
the |Rj| and the value of k, the number of combinations |Rj|Ck−1 can become very large. Romano
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and Wolf (2007) therefore suggest an operative method that reduces this computational burden,
while at the same time maintaining many of the attractive properties of the algorithm.3

For this, first consider the hypothesis tests rejected up to step (j − 1) and place these in
descending order of test statistic, that is

Tn,r1
≥ Tn,r2

≥ … ≥ Tn,r|Rj|
,

where {r1, r2,… , r|Rj|} is the appropriate permutation of associated hypothesis test indices
that gives this ordering. Now consider a user-defined maximum number of combinations,
Nmax, at each step of the algorithm. Then choose an integer value such that MCk−1 ≤ Nmax and
replace the critical value calculation at each step j of the algorithm with the following:

d̂n,Aj
(1 − 𝛼, k) = max

I⊆
{

rmax(1,|Rj|−M+1),…,r|Rj|

}
,|I|=k−1

{ĉn,K(1 − 𝛼, k) : K ≡ Aj ∪ I}.

What this serves to do is replace circulating through all the hypothesis tests rejected to date with
circulating through only the M least significant hypothesis tests rejected. Of course, in the case
where M ≥ |Rj| this amounts to circulating through all the hypotheses rejected. Although this
approach is premised on the assumption that the (up to k − 1) false discoveries lie within the
least significant hypotheses rejected so far, it does offer significant computational efficiencies
for the algorithm. It is this operative method that is used for the empirical analysis in the final
section.

21.5.3.3 Balanced Stepdown Procedure Whereas the stepwise procedure of the previ-
ous section is an improvement on the single-step procedure of Section 21.5.3.1, it does not
offer by construction balance in the sense that each hypothesis test is treated equally in terms
of power. The balanced stepwise procedure of Romano and Wolf (2010) addresses this issue.

Introducing some notation, let Hn,i(⋅, P
𝜃
) denote the distribution function of (�̂�n,i − 𝜃i) and

let cn,i(𝛾) denote the 𝛾-quantile of this distribution. The confidence interval

{𝜃i : �̂�n,i − 𝜃i ≤ cn,i(𝛾)}

then has coverage probability 𝛾 . Balance is the property that the marginal confidence intervals
for a population of s simultaneous hypothesis tests have the same probability coverage. Within
the context of controlling the generalized k-FWER, the overall objective is to ensure that
the simultaneous confidence interval covers all parameters 𝜃i, i = 1,… , s, except for at most

3The generic algorithm offers a number of attractive features. Firstly, the generic algorithm is conservative
in its rejection of hypotheses. Secondly, the generic algorithm also allows for finite-sample control of
the k-FWER under P

𝜃
. Thirdly, the bootstrap construction is such that the generic algorithm provides

asymptotic control in the case of contiguous alternatives. Romano and Wolf (2007) provide a more
detailed discussion.
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(k − 1) of them, for a given limiting probability (1 − 𝛼), while at the same time ensuring
balance (at least asymptotically). So, what is sought is that

P
𝜃
{�̂�n,i − 𝜃i ≤ cn,i (𝛾) for all but at most (k − 1) of the hypotheses}

≡ P
𝜃
{Hn,i(�̂�n,i − 𝜃i, P

𝜃
) ≤ 𝛾 for all but at most (k − 1) of the hypotheses}

≡ P
𝜃
{k-max(Hn,i(�̂�n,i − 𝜃i, P

𝜃
)) ≤ 𝛾} = 1 − 𝛼.

Letting Ln,{1,…,s}(k, P
𝜃
) denote the distribution of k-max(Hn,i(�̂�n,i − 𝜃i, P

𝜃
)), the appropriate

choice of the coverage probability 𝛾 is then L−1
n,{1,…,s}(1 − 𝛼, k, P

𝜃
).

As before, given that P
𝜃

is unknown, it is necessary to use appropriate bootstrapping
techniques to generate an estimate of the coverage probability L−1

n,{1,…,s}(1 − 𝛼, k, P̂
𝜃
), under

P̂
𝜃
. Therefore, from this development it is possible to define the simultaneous confidence

interval

{
𝜃i : �̂�n,i − 𝜃i ≤ H−1

n,i

(
L−1

n,{1,…,s}(1 − 𝛼, k, P̂
𝜃
), P̂

𝜃

)}
.

The right-hand side of the above inequality will form the basis of the critical value definitions
used within the stepdown procedure. See Romano and Wolf (2010) for further technical details.
Note that although the above development was made assuming the full set of hypothesis tests,
it equally applies to any subset K ⊆ {1,… , S} . Hence, the balanced stepwise algorithm may
now be described as follows.

� Step 1. Let A1 denote the full set of hypothesis indices, that is A1 ≡ {1,… , s}. If, for each
hypothesis test, the associated test statistic Tn,i is less than or equal to the corresponding
critical value estimate ĉn,A1,i (1 − 𝛼, k) ≡ H−1

n,i

(
L−1

n,A1
(1 − 𝛼, k, P̂

𝜃
), P̂

𝜃

)
then fail to reject

all null hypotheses and stop the algorithm. Otherwise, proceed to reject all null hypotheses
H0,i for which the associated test statistics exceed the critical value level, that is, where
Tn,i > ĉn,A1,i (1 − 𝛼, k).

� Step 2. Let R2 denote the set of indices for the hypotheses rejected in Step 1 and let A2
denote the indices for those hypotheses not rejected. If the number of elements in R2 is
less than k, that is, ||R2

|| < k, then stop the algorithm as the probability of k or more false
discoveries is zero in this case. Otherwise, the appropriate critical value to be applied for
each hypothesis test s at this stage is calculated as follows:

d̂n,A2,i (1 − 𝛼, k) = max
I⊆R2,|I|=k−1

{ĉn,K,i (1 − 𝛼, k) : K ≡ A2 ∪ I}.

Hence, additional hypotheses from A2 are rejected if Tn,i > d̂n,A2,i (1 − 𝛼, k) , i ∈ A2. If no
further rejections are made then stop the algorithm.
⋮
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� Step j. Let Rj denote the set of indices for the hypotheses rejected up to Step (j − 1) and
let Aj denote the indices for those hypotheses not rejected. The appropriate critical value
to be applied for each hypothesis test s at this stage is calculated as follows:

d̂n,Aj,i
(1 − 𝛼, k) = max

I⊆Rj,|I|=k−1
{ĉn,K,i (1 − 𝛼, k) : K ≡ Aj ∪ I}.

Hence, additional hypotheses from Aj are rejected if Tn,i > d̂n,Aj,i
(1 − 𝛼, k) , i ∈ Aj. If no

further rejections are made then stop the algorithm.
⋮

Similar to the stepwise algorithm of the previous section, at each stage j in the stepwise
procedure the hypotheses that are not rejected thus far are retested over a smaller population of
hypothesis tests than previously. The size of this smaller population is given by (|Aj| + k − 1),
which includes all the hypotheses within Aj, in addition to (k − 1) hypotheses drawn from
those hypotheses already rejected, that is drawn from Rj. Given that control of the generalized
k-FWER is the premise of the procedure, it is expected that there are at most (k − 1) false
discoveries amongst the set of hypotheses rejected Rj. However, it is not known which of the
rejected hypotheses may represent false discoveries. Hence, it is necessary to circulate through
all combinations of Rj, of size (k − 1) , in order to obtain the appropriate critical values. Where
the algorithm departs significantly from the previous section is that a maximum critical value
d̂n,Aj,i

(1 − 𝛼, k) must be determined for each hypothesis test s. This adds an additional layer
of computational burden on the algorithm.

Operative Method Similar to the stepdown procedure of Section 21.5.3.2, the need to
circulate through all subsets of Rj, of size (k − 1) , in order to obtain, in this case, a set
of maximum critical values to apply at each stage of the stepdown procedure means the
algorithm can become excessively computationally burdensome. Romano and Wolf (2010)
therefore suggest an operative method that reduces this computational burden in the spirit of
that proposed by the authors for the stepdown procedure (Romano and Wolf, 2007).

It is first necessary to be able to order the hypothesis tests rejected up to step (j − 1) in
terms of significance. To this end, it is noted that marginal p-values can be obtained as follows:

p̂n,i ≡ 1 − Hn,i(�̂�n,i, P̂
𝜃
).

This gives the following ascending order for the significance of the hypothesis tests:

p̂n,r1
≤ p̂n,r2

≤ … ≤ p̂n,r|Rj|
,

where {r1, r2,… , r|Rj|} is the appropriate permutation of associated hypothesis test indices
that gives this ordering. As before, a maximum number of combinations, Nmax, at each step of
the algorithm is defined. Then an integer value M is chosen such that MCk−1 ≤ Nmax, leading
to the calculation of the critical values as follows:

d̂n,Aj,i
(1 − 𝛼, k) = max

I⊆

{
rmax(1,|Rj|−M+1),…,r|Rj|

}
,|I|=k−1

{ĉn,K,i (1 − 𝛼, k) : K ≡ Aj ∪ I}.
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The rationale for this approach is the exact same as that described in Section 21.5.3.2, with the
same effect being the introduction of significant computational efficiencies to the algorithm.
It is this operative method that is used for the empirical analysis in the final section.

21.5.4 Empir ica l Results

This study examines the quantitative trading of spreads in the crude oil (WTI and Brent) and
refined products (heating oil and gasoil) markets, making a number of important conclusions.
Firstly, it is shown that the novel statistical arbitrage trading model of Bertram (2010), when
applied to a wide range of spreads (including calendar, crack and locational spreads), leads to
profitable spread trading. It is further shown that the performance is quite robust to varying
transaction costs. Secondly, it is shown that generalized stepwise procedures are essential in
controlling for data snooping bias within such quantitative trading applications. The stepdown
procedure of Romano and Wolf (2007) and the balanced stepdown procedure of Romano and
Wolf (2010) offer greater power to reject false null hypotheses, with the balanced stepdown
procedure offering equal treatment in the identification of profitable strategies. Profitable
trading strategies are identified, after applying these MHT procedures, with results reflecting
the aggregation of dynamically taking long and short positions in the spreads. This rigorous
application of the MHT procedures allows for greater statistical confidence in the results
reported and the conclusions drawn. For the top 10 and top 20 categories of trading strategy,
average daily returns fall within the approximate range 0.07%–0.55%, with trade lengths of
9–55 days and Sharpe ratios of between 2 and 4 in many cases. Thirdly, the study provides
some interesting insights for both academics and practitioners in its practical comparison of
the stepwise and the balanced stepwise procedures in the context of this trading application.
The balanced stepdown procedure, being unbiased in its approach, is shown to identify many
more profitable trading strategies compared with the nonbalanced stepdown procedure. For
instance, a collapse in the number of profitable trading strategies is seen in 2008, reflecting
the impact of the credit crisis and the distortion of spreads relative to previous years. Whereas
the stepdown procedure fails to identify any profitable strategies, the balanced procedure is
successful in identifying a limited number of profitable strategies. For further details of the
analysis and for further discussion, the interested reader is directed to Cummins and Bucca
(2012).
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APPENDIX

A Quick Review of Distributions
Relevant in Finance with

Matlab® Examples∗

Laura Ballotta and Gianluca Fusai

I n this Appendix, we quickly review the properties of distributions relevant in finance, like the

� normal distribution
� lognormal distribution
� chi-square distribution
� non-central chi-square distribution
� Poisson distribution
� exponential distribution
� Gamma distribution
� multivariate Gaussian distribution.

We also present a standard procedure to simulate random variables via the so-called inverse
method.

A.1 THE NORMAL DISTRIBUTION

Fact A.1.1 (Normal Distribution) A normal (Gaussian) random variable onℜwith expected
value 𝜇 ∈ ℜ and standard deviation 𝜎 ∈ ℜ+ has density function (pdf)𝜙

𝜇,𝜎(x) and cumulative
distribution (cdf) Φ

𝜇,𝜎(x) given by:

𝜙
𝜇,𝜎(x) = fX(x;𝜇, 𝜎) = 1

√
2𝜋𝜎2

exp
(
−1

2

(x − 𝜇
𝜎

)2
)

, x ∈ ℜ

∗The figures in this Appendix have been produced in The MathWorks, Inc. Matlab® R2009a.
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TABLE A.1 Probability intervals of the Gaussian distribution

k 𝜇 − k𝜎 𝜇 + k𝜎 Pr(𝜇 − k𝜎 < X < 𝜇 + k𝜎)

1 −0.3542 0.2742 0.6827
2 −0.6684 0.5884 0.9545
3 −0.9826 0.9026 0.9973
4 −1.2968 1.2168 0.9999
5 −1.611 1.531 1.0000

TABLE A.2 Moments of the Gaussian distribution

Support x ∈ (−∞;+∞)

Mean 𝔼(X) = 𝜇

Variance 𝕍ar(X) = 𝜎
2

Skewness
𝔼((X − 𝜇)3)

𝜎3
= 0

Kurtosis
𝔼((X − 𝜇)4)

𝜎4
= 3

Central odd moments 𝔼((X − 𝜇)2n+1) = 0

Central even moments 𝔼((X − 𝜇)2n) = (2n)!
n!

𝜎
2n

2n

and

Φ
𝜇,𝜎(x) = FX(x;𝜇, 𝜎) =

∫

x

−∞
𝜙
𝜇,𝜎(s) ds.

We write X ∼  (𝜇, 𝜎2). If 𝜇 = 0 and 𝜎 = 1 we have the so-called unit standard Gaussian
random variable. In particular, if Z ∼  (0, 1), then

X = 𝜇 + 𝜎Z ∼  (𝜇, 𝜎2).

Given the cdf, we can compute the probability that X falls in a given interval:

Pr(a < X < b) = Φ0,1

(
b − 𝜇
𝜎

)
− Φ0,1

(a − 𝜇
𝜎

)
.

We produce Table A.1. Table A.2 illustrates the main properties of the Gaussian distribution.
The resulting pdf and cdf are shown in Figure A.1.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PLOT OF THE GAUSSIAN DISTRIBUTION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%assign parameters
mu=0.2;
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sg=0.1;
%assign x−range
x=linspace(−0.4,0.8,100);
%compute pdf and cdf
pdfg=pdf(’norm’,x,mu,sg);
cdfg=cdf(’norm’,x,mu,sg);
%make the plot
plot(x,pdfg,’r’,x,cdfg,’b’);
%define the limits in the x−axis
xlim([−0.4 0.8])
%insert the legend
legend(’Gaussian pdf’,’Gaussian cdf’)
%print the figure
print(h,’−djpeg’,’FigGaussianpdf.jpg’)
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F IGURE A.1 Density and cumulative distribution of the Gaussian random variable
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A.2 THE LOGNORMAL DISTRIBUTION

Fact A.2.1 (Lognormal Distribution) Let X be a normal r.v. with mean 𝜇 and standard
deviation 𝜎. Then the r.v.

Y = exp(X)

is said to have a lognormal distributionwith parameters 𝜇 and 𝜎 and density fY (y;𝜇, 𝜎)
given by

fY (y;𝜇, 𝜎) = 1

y
√

2𝜋𝜎2
exp

(

−1
2

(
ln y − 𝜇
𝜎

)2
)

, y ∈ ℜ+
.

Moreover:

𝔼(Y) = e𝜇+
1
2
𝜎

2

and

𝕍ar(Y) = e2𝜇+𝜎2
(e𝜎

2 − 1).

We write X ∼  (𝜇, 𝜎2).
The relationship between densities of the Gaussian and lognormal distribution is depicted

in Figure A.2.
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F IGURE A.2 Densities of the Gaussian and lognormal random variables
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TABLE A.3 Moments of the lognormal distribution

Support y ∈ [0;+∞)

Mean 𝔼(Y) = e𝜇+
1
2
𝜎

2

Variance 𝕍ar(Y) = e2𝜇+𝜎2
(e𝜎

2 − 1)

Skewness
𝔼((Y − 𝔼(Y))3)

(𝕍ar(Y))
3
2

= (e𝜎
2 + 2)

√
e𝜎2 − 1

Kurtosis
𝔼((Y − 𝔼(Y))4)

(𝕍ar(Y))2
= e4𝜎2 + 2e3𝜎2 + 3e2𝜎2 − 3

Moments 𝔼(Yn) = en𝜇+ 1
2

n2
𝜎

2

The cumulative density function of a lognormal r.v. is given by:

FY (y) = Pr(Y ≤ y)

= Pr(eX ≤ y), where X ∼  (𝜇, 𝜎2)

= Pr(X ≤ ln(y))

= Φ
𝜇,𝜎2(ln(y))

= Φ0,1

(
ln(y) − 𝜇

𝜎

)
.

Given the cdf, we can compute the probability that X falls in a given interval:

Pr(a < Y < b) = Φ
𝜇,𝜎2 (ln(b)) − Φ

𝜇,𝜎2(ln(a)) = Φ0,1

(
ln(b) − 𝜇

𝜎

)
− Φ0,1

(
ln(a) − 𝜇

𝜎

)
.

The main properties of the lognormal distribution are summarized in Table A.3. The
resulting pdf and cdf are shown in Figure A.3.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PLOT OF THE LOGNORMAL DISTRIBUTION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%assign parameters
mu=0.2; sg=0.1;
%assign x−range
x=linspace(0.0,2,100);
%compute pdf and cdf
pdflg=pdf(’lognorm’,x,mu,sg);
cdflg=cdf(’lognorm’,x,mu,sg);
%make the plot
h=figure(’Color’, [ 1 1 1])
plot(x,pdflg,’r’,x,cdflg,’b’);
%define the limits in the x−axis
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xlim([0 2]); xlabel(’x’);
%insert title
title(’Lognormal pdf and cdf when \mu=0.2 and \sigma =0.1’)
%insert the legend
legend(’Log−normal pdf’,’Log−normal cdf’)
%print the figure
%print(h,’−dpng’,’FigLogGaussianpdf.jpg’)
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F IGURE A.3 Density and cumulative distribution of the lognormal random variable

A.3 THE CHI -SQUARE DISTRIBUTION

Fact A.3.1 (Chi-Square Distribution) Let Xi, i = 1,… , n, be n independent normal random
variables with zero mean and unit standard deviation. Then the r.v.

Y =
n∑

i=1

X2
i
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TABLE A.4 Moments of the chi-square distribution

Support y ∈ [0;+∞)

Mean 𝔼(Y) = n

Variance 𝕍ar(Y) = 2n

Skewness
𝔼((Y − n)3)

(2n)
3
2

=
√

8
n

Excess kurtosis
𝔼((Y − n)4)

(2n)2
− 3 = 12

n

Moments 𝔼(Ym) = 2m
Γ
(

m + n
2

)

Γ
(n

2

)

is said to have a chi-square distribution with n degrees of freedom and density fY (y; n)
given by

fY (y; n) =
e−y∕2yn∕2−1

2n∕2Γ(n∕2)
, y ∈ ℜ+,

where Γ(n) is the Gamma function

Γ(n) =
∫

∞

0
tn−1e−tdt,

and if n is an integer Γ(n) = (n − 1)!. Moreover:

𝔼(X) = n

and

𝕍ar(X) = 2n.

We write Y ∼ 𝜒
2
n .

The main properties of the chi-square distribution are summarized in Table A.4. The
resulting pdf and cdf are shown in Figure A.4. Figure A.5 illustrates the different shape of the
chi-square distribution for increasing number of degrees of freedom.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PLOT OF THE Chi−2 DISTRIBUTION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%assign parameters
n=5; %degrees of freedom
%assign x−range
x=linspace(0,20,100);
%compute pdf and cdf
pdfchi2=pdf(’chi2’,x,n);
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cdfchi2=cdf(’chi2’,x,n);
%make the plot
h=figure(’Color’, [ 1 1 1])
plot(x,pdfchi2,’r’,x,cdfchi2,’b’)
xlabel(’x’)
title(’Chi−Square pdf and cdf when \mu=0.2 and \sigma =0.1’)
legend(’Chi−Square pdf’,’Chi−Square cdf’)
print(h,’−djpeg’,’FigChiSquarepdf.jpg’)
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Chi−Square pdf and cdf when μ=0.2 and σ =0.1

F IGURE A.4 Density and cumulative distribution of the chi-square random variable with dof
(n = 20)

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%THE Chi−2 DISTRIBUTION AND THE DEGREES OF FREEDOM%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%assign parameters
n=[5 10 20 50]; %degrees of freedom
%assign x−range
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x=linspace(0,100,300);
%compute pdf and cdf
for i=1:length(n)
pdfchi2(i,:)=pdf(’chi2’,x,n,n(i));

end
h=figure(’Color’, [ 1 1 1])
plot(x,pdfchi2,’.’)
xlabel(’x’)
legend(’n=5’,’n=10’,’n=20’,’n=50’)
title(’The Chi−Square pdf varying …
the number n of degrees of freedom’)
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F IGURE A.5 Density of the chi-square random variable varying n

A.4 THE NON-CENTRAL CHI -SQUARE DISTRIBUTION

Fact A.4.1 (Non-Central Chi-Square Distribution) Let Xi, i = 1,… , n, be n independent
normal random variables with zero mean and unit standard deviation. Then the r.v.

Y =
n∑

i=1

(Xi + 𝛿i)
2
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TABLE A.5 Moments of the non-central chi-square distribution

Support y ∈ [0;+∞)

Mean 𝔼(Y) = n + d

Variance 𝕍ar(Y) = 2 × (n + 2d)

Skewness
𝔼((Y − 𝔼(Y))3)

(𝕍ar(Y))
3
2

= 23∕2(n + 3d)
(k + 2d)3∕2

Excess kurtosis
𝔼((Y − 𝔼(Y))4)

(𝕍ar(Y))2
− 3 = 12(n + 4d)

(k + 2d)2

is said to have a non-central chi-square distribution with n degrees of freedom
and non-centrality parameter d:

d =
n∑

i

𝛿
2
i

and density fY (y;𝜇, 𝜎) given by

fY (y; n) = e−(y+d)∕2 xn∕2−1

2n∕2

∞∑

k=0

dk

22kk!Γ(k + 1∕2n)
, y ∈ ℜ+

.

Moreover:

𝔼(Y) = n + d

and

𝕍ar(Y) = 2(n + 2d).

We write Y ∼ 𝜒
2
n,d

.

Remark A.4.1 We can make the following observations:

� The non-centrality parameter depends on the sum d =
∑n

i 𝛿
2
i , not on the individual values

of the parameters 𝛿i.
� If d = 0, the non-central chi-square distribution collapses to the chi-square distribution.
� Here we are assuming that n is an integer parameter; this is not necessary.

Table A.5 illustrates the main properties of the non-central chi-square distribution. The
resulting pdf and cdf are shown in Figure A.6. Figure A.7 illustrates the different shape of the
density for different values of the parameter of non-centrality d.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PLOT OF THE Non Central Chi−2 DISTRIBUTION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%assign parameters
n=5; %degrees of freedom
noncentralpar=2;%non centrality parameter
%assign x−range
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x=linspace(0,20,100);
%compute pdf and cdf
pdfncchi2=pdf(’ncx2’,x,n,noncentralpar);
cdfncchi2=cdf(’ncx2’,x,n,noncentralpar);
%make the plot
h=figure(’Color’, [ 1 1 1])
plot(x,pdfncchi2,’r’,x,cdfncchi2,’b’)
xlabel(’x’)
title(’Non central Chi−Square pdf and cdf when n=5 and d =2’)
legend(’Non Central Chi−Square pdf’,…
’Non Central Chi−Square cdf’)
print(h,’−djpeg’,’FigNCChiSquarepdf.jpg’)
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Non central Chi−Square pdf and cdf when n=5 and d =2
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F IGURE A.6 Density and cdf of the non-central chi-square distribution with n = 5 and d = 2

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%THE NCChi−2 DISTRIBUTION AND%%%%
%%%%THE PARAMETER OF NON CENTRALITY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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clear all;
%assign parameters
n=15; %degrees of freedom
ncp=[0.5 1.5 3 5 10];%non centrality parameter
%assign x−range
x=linspace(0,20,300);
%compute pdf and cdf
for i=1:length(ncp)
pdfncchi2(i,:)=pdf(’ncx2’,x,ncp(i));

end
h=figure(’Color’, [ 1 1 1])
plot(x,pdfncchi2,’.’)
xlabel(’x’)
legend(’d=0.5’,’d=1.5’,’d=3’,’d=5’,’d=10’)
title(’The Non−Central Chi−Square pdf varying the non …
centrality parameter and with n=15 of degrees of freedom’)
print(h,’−djpeg’,’FigNCChiParSquarepdf.jpg’)
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F IGURE A.7 Density of the non-central chi-square distribution varying the parameter of
non-centrality d
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A.5 THE POISSON DISTRIBUTION

Fact A.5.1 (Poisson Distribution) A Poisson random variable N with rate 𝜆 has probability
mass

pN(n) = e−𝜆𝜆n

n!
.

Moreover:

𝔼(N) = 𝜆

and

𝕍ar(N) = 𝜆.

We write N ∼ Poi(𝜆).

Table A.6 illustrates the main properties of the Poisson distribution. The resulting prob-
ability mass function and cdf are shown in Figure A.8. The impact of the rate of arrival 𝜆 is
represented in Figure A.9.

TABLE A.6 Moments of the Poisson distribution

Support n ∈ 0, 1, 2,⋯

Mean 𝔼(N) = 𝜆

Variance 𝕍ar(N) = 𝜆

Skewness
𝔼((N − 𝜆)3)

𝜆
3
2

= 1
√
𝜆

Excess kurtosis
𝔼((N − 𝜆)4)

𝜆2
− 3 = 1

𝜆

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PLOT OF THE Poisson DISTRIBUTION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%assign parameters
lambda=5; %rate of arrival
%assign x−range
x=(0:1:20);
%compute pdf and cdf
pdfpoil=poisspdf(x,lambda);
cdfpoil=poisscdf(x,lambda);
%make the plot
h=figure(’Color’, [ 1 1 1])
plot(x,pdfpoil,’−−o r’,x,cdfpoil,’−o b’)
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xlabel(’x’)
title(’Poisson pdf and cdf when \lambda = 5’)
legend(’Poisson pdf’,…
’Poisson cdf’)
print(h,’djpeg’,’FigPoisson1pdf.jpg’)
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Poisson pdf

Poisson cdf

F IGURE A.8 Density and cdf of the Poisson distribution with 𝜆 = 5. The functions are only defined
at integer values of x. The connecting lines are only guides for the eye

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%The Poisson DISTRIBUTION and the rate of arrival%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%assign parameters
lambda=[0.5 1 5 10]; %rate of arrival
%assign x−range
x=(0:1:20);
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%compute pdf and cdf
for i=1:length(lambda)
pdfpoil(i,:)=poisspdf(x,lambda(i));
cdfpoil(i,:)=poisscdf(x,lambda(i));

end
%make the plot
h=figure(’Color’, [ 1 1 1])
subplot(2,1,1)
plot(x,pdfpoil,’−−o’)
xlabel(’x’)
title(’Poisson pdf varying the rate of arrival \lambda’)
legend(’\lambda = 0.5’,’\lambda = 1’,…
’\lambda = 5’,’\lambda = 10’)
subplot(2,1,2)
plot(x,cdfpoil,’o’)
xlabel(’x’)
title(’Poisson cdf varying the rate of arrival \lambda’)
print(h,’−djpeg’,’FigPoisson2pdf.jpg’)
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F IGURE A.9 Density and cdf of the Poisson distribution varying the rate of arrival 𝜆



982 APPENDIX: A QUICK REVIEW OF DISTRIBUTIONS RELEVANT IN FINANCE

A.6 THE EXPONENTIAL DISTRIBUTION

Fact A.6.1 (Exponential Distribution) A non-negative random variable X is said to have
an exponential distribution with parameter 𝜆 when its density is given by

fX(x; 𝜆) =
{
𝜆e−𝜆x, x ≥ 0,
0, x < 0,

and its cdf is given by

FX(x; 𝜆) =
{

1 − e−𝜆x, x ≥ 0,
0, x < 0.

Moreover:

𝔼(X) = 𝜆
−1

and

𝕍ar(X) = 𝜆
−2
.

We write X ∼ Exp(𝜆).

Table A.7 illustrates the main properties of the exponential distribution, whilst pdf and
cdf are shown in Figure A.10.

TABLE A.7 Moments of the exponential distribution

Support x ∈ [0;+∞)

Mean 𝔼(X) = 1
𝜆

Variance 𝕍ar(X) = 1
𝜆2

Skewness
𝔼((X − 𝔼(X))3)

(𝕍ar(X))
3
2

= 2

Kurtosis
𝔼((X − 𝔼(X))4)

(𝕍ar(X))2
= 9

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PLOT OF THE Exponential DISTRIBUTION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%assign parameters
lambda=1.5; %rate of arrival
%assign x−range
x=linspace(0,5,100);
%compute pdf and cdf
pdfexpl=exppdf(x,lambdaˆ(−1));
cdfexpl=expcdf(x,lambdaˆ(−1));
%make the plot
h=figure(’Color’, [ 1 1 1])
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plot(x,pdfexpl,’− r’,x,cdfexpl,’− b’)
xlabel(’x’)
title(’Exponential pdf and cdf when \lambda = 1.5’)
legend(’Exponential pdf’,…
’Exponential cdf’)
print(h,’−djpeg’,’Figexpopdf.jpg’)
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Exponential pdf and cdf when λ = 1.5
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F IGURE A.10 Density and cdf of the exponential distribution with 𝜆 = 1.5

A.7 THE GAMMA DISTRIBUTION

Fact A.7.1 (Gamma Distribution) A non-negative random variable X is said to have a
Gamma distribution with shape parameter 𝛼 and rate parameter 𝜆 when its density is
given by

fX(x; 𝛼, 𝜆) = 1
Γ(𝛼)

𝜆
𝛼x𝛼−1e−𝜆x,

where Γ(𝛼) is the Gamma function, which is defined as

Γ(𝛼) =
∫

∞

0
x𝛼−1e−xdx.
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TABLE A.8 Moments of the Gamma distribution

Support x ∈ [0;+∞)

Mean 𝔼(X) = 𝛼

𝜆

Variance 𝕍ar(X) = 𝛼

𝜆2

Skewness
𝔼((X − 𝔼(X))3)

(𝕍ar(X))
3
2

= 2
√
𝛼

Kurtosis
𝔼((X − 𝔼(X))4)

(𝕍ar(X))2
= 3 + 6

𝛼

Moreover:

𝔼(X) = 𝛼

𝜆

and

𝕍ar(X) = 𝛼

𝜆2
.

We write X ∼ Γ(𝛼, 𝜆).

Remark A.7.1

� A Gamma random variable with parameter 𝜆 = 1
2

, that is X ∼ Γ(𝛼, 1
2
), is distributed

according to a chi-square distribution with 2𝛼 degrees of freedom.
� A Gamma random variable with 𝛼 = 1, that is X ∼ Γ(1, 𝜆), is distributed according to an

exponential distribution of parameter 𝜆.

Table A.8 illustrates the main properties of the Gamma distribution. Figures A.11 and
A.12 show the Gamma pdf and cdf for different values of the parameters 𝛼 and 𝜆.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%PLOT OF THE Gamma DISTRIBUTION%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
%assign parameters
alpha=5; %shape parameter
lambda=0.5; %rate parameter
%assign x−range
x=linspace(0,30,200);
%compute pdf and cdf
pdfgamma=gampdf(x,alpha,lambdaˆ(−1));
cdfgamma=gamcdf(x,alpha,lambdaˆ(−1));
%make the plot
h=figure(’Color’, [ 1 1 1])
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plot(x,pdfgamma,’− r’,x,cdfgamma,’− b’)
xlabel(’x’)
title(’Gamma pdf and cdf when\alpha =5 \lambda = 0.5’)
legend(’Gamma pdf’,…
’Gamma cdf’)
print(h,’−djpeg’,’FigGamma1pdf.jpg’)
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F IGURE A.11 Density and cdf of the Gamma distribution with 𝛼 = 5, 𝜆 = 0.5

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%The Gamma DISTRIBUTION and the shape/rate parameters%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
alpha=[1 2 5 10];
lambda=[0.5 0.5 0.5 2]; %rate parameter
%assign x−range
x=linspace(0,30,200);
%compute pdf and cdf
for i=1:length(alpha)
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pdfgamma(i,:)=gampdf(x,alpha(i),lambda(i)ˆ(−1));
cdfgamma(i,:)=gamcdf(x,alpha(i),lambda(i)ˆ(−1));

end
%make the plot
h=figure(’Color’, [ 1 1 1])
subplot(2,1,1)
plot(x,pdfgamma,’−’)
xlabel(’x’)
title(’Gamma pdf varying \alpha and \lambda’)
legend(’\alpha = 1, \lambda = 0.5’,’\alpha = 2, \lambda = 0.5’,…
’\alpha = 5, \lambda = 0.5’,’\alpha = 10, \lambda = 2’)
subplot(2,1,2)
plot(x,cdfgamma,’−’)
xlabel(’x’)
title(’Gamma cdf varying \alpha and \lambda’)
legend(’\alpha = 1, \lambda = 0.5’,’\alpha = 2, \lambda = 0.5’,…
’\alpha = 5, \lambda = 0.5’,’\alpha = 10, \lambda = 2’)
print(h,’−djpeg’,’FigGamma2pdf.jpg’)
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F IGURE A.12 Density and cdf of the Gamma distribution varying the shape parameter 𝛼 and the
rate parameter 𝜆
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A.8 THE MULTIVARIATE NORMAL DISTRIBUTION

Fact A.8.1 (Multivariate Gaussian Distribution) Let 𝜇 be an (N × 1) vector and Σ an
(N × N) matrix, symmetric and positive definite. A random vector X = (X1,… , XN ) is dis-
tributed according to a multivariate normal distribution with parameters𝜇 andΣ, and we write

X ∼  (𝜇,Σ),

if its density function fX(x) is given by

fX(x) = 1
√

(2𝜋)N det(Σ)
exp

(
−1

2
(x − 𝜇)′Σ−1(x − 𝜇)

)
,

where det(Σ) is the determinant of the matrix Σ and Σ−1 is the inverse of the matrix Σ.
If X ∼  (𝜇,Σ), then

𝔼(X) = 𝜇,𝕍 (X) = Σ,

and we call 𝜇 the expected value (or mean) vector and Σ the covariance matrix. In particular,
this means that a multivariate Gaussian distribution is determined by its mean vector and
covariance matrix.

The mean vector is a vector with N components. The ith component is denoted by 𝜇i and
it represents the expected value of Xi:

𝜇 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇1
⋮
𝜇i
⋮
𝜇N

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝔼(X1)
𝔼(Xi)
𝔼(XN )

⎤
⎥
⎥
⎦
.

The covariance matrix ΣN×N:

� is a squared and symmetric matrix;
� is positive definite, that is

x′Σx > 0∀x ∈ RN , x ≠ 0;

� is made up of N variances (on the diagonal and denoted by 𝜎2
i ) and N × (N − 1)∕2

covariances (denoted by 𝜎ij with 𝜎ij = 𝜎ji).

ΣN×N =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎
2
1 ⋯ 𝜎1,N

𝜎
2
2

⋮ ⋱ ⋮
𝜎

2
N−1

𝜎N,1 ⋯ 𝜎
2
N

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where

𝜎
2
i = 𝕍 (Xi); 𝜎ij = ℂov(Xi, Xj) = 𝔼((Xi − 𝜇i)(Xj − 𝜇j)).

Definition A.8.1 We say that the random vector Z = (Z1,… , ZN) has a multivariate standard
normal distribution if

𝜇 = 0N and Σ = IN ,
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where 0N is a vector of zeros and IN is the identity matrix of order N. It follows that Zi and Zj
are uncorrelated and (being normal) also independent. The density function is simply

fZ(z) = 1
√

(2𝜋)N
exp

(
−1

2
z′z

)
= 1

√
(2𝜋)N

exp

(

−1
2

N∑

i=1

z2
i

)

.

A.8.1 The Bivariate Normal Distr ibut ion

If N = 2, the mean vector and the covariance matrix can be written as

𝜇 =
[
𝜇1
𝜇2

]
;Σ2×2 =

[
𝜎

2
1 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎

2
2

]
;Σ−1

2×2 = 1
1 − 𝜌2

⎡
⎢
⎢
⎣

1
𝜎

2
1

− 𝜌

𝜎1𝜎2

− 𝜌

𝜎1𝜎2

1
𝜎

2
2

⎤
⎥
⎥
⎦

where 𝜌 = ℂorr(X1, X2) and the density function becomes

fX(x) =
exp

(
− 1

2(1−𝜌2)

(
(x1−𝜇1)

𝜎
2
1

2
− 2𝜌 (x1−𝜇1)(x2−𝜇2)

𝜎1𝜎2
+ (x2−𝜇2)

𝜎
2
2

2
))

2𝜋𝜎1𝜎2

√
1 − 𝜌2

.

The corresponding density is bell-shaped with maximum in (𝜇1,𝜇2).
The contour lines, that is the combinations of x1 and x2 such that the density is constant,

are described by the equation

− 1
2(1 − 𝜌2)

(
(x1 − 𝜇1)

𝜎
2
1

2

− 2𝜌
(x1 − 𝜇1)(x2 − 𝜇2)

𝜎1𝜎2
+

(x2 − 𝜇2)

𝜎
2
2

2
)

= k,

which is the equation of an ellipse. Figures A.13–A.15 show the bivariate Normal density (left
panel) and the corresponding contour plot (right panel) for different levels of the correlations, 𝜌.
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F IGURE A.13 Bivariate Gaussian distribution (𝜌 = 0.9)
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F IGURE A.14 Bivariate Gaussian distribution (𝜌 = 0)
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F IGURE A.15 Bivariate Gaussian distribution (𝜌 = −0.9)

A.8.2 An Important Fact About Sum of Gaussian
Random Variables

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%PLOT OF THE BIVARIATE GAUSSIAN%%%%%%%%
%%%%%%%%POSITIVE CORRELATION%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%correlation
rho=0.9;
%variances and covariances
s1=0.3ˆ2; s2=0.5ˆ2; s12=rho*(s1*s2)ˆ0.5;
factor=2*pi*(s1*s2)ˆ0.5;
m=zeros(2,1); %mean vector
npoints1=50;
npoints2=50;
x1=linspace(m(1)-3*s1ˆ0.5,m(1)+3*s1ˆ0.5,npoints1);
x2=linspace(m(2)-3*s2ˆ0.5,m(2)+3*s2ˆ0.5,npoints2);
[x1mesh, x2mesh]=...
meshgrid((x1-m(1))/s1ˆ0.5,(x2-m(2))/s2ˆ0.5);
x1x2mesh=-2*rho*x1mesh.*x2mesh;
pdfbiv=exp(-(x1mesh.ˆ2+x1x2mesh+x2mesh.ˆ2)...
/(2*(1-rhoˆ2)))/(factor*(1-rhoˆ2)ˆ0.5);
figure1=figure(’PaperSize’,[20.98 29.68],’Color’,[1 1 1]);
subplot(1,2,1); surf(x1mesh,x2mesh,pdfbiv)
axis square
title(’Bivariate Normal pdf, \rho=0.9’)
xlabel(’x1’),xlabel(’x2’)
subplot(1,2,2); contour(x1mesh,x2mesh,pdfbiv)
title(’Contour Level, \rho=0.9’)
axis square

Fact A.8.2 The marginal distributions of a vector X can all be Gaussian without the joint
being multivariate Gaussian.

Example A.8.1 Let X1 ∼  (0, 1) and

X2 =
⎧
⎪
⎨
⎪
⎩

X1 if −c < X1 < c

−X1 elsewhere.

We have

Pr(X2 < x) =
{

Pr(X1 < x) if −c < X1 < c
Pr(X1 > −x) elsewhere

and the density is

fX2
(x) =

{
fX1

(x) if − c < X1 < c

fX1
(x) elsewhere

= fX1
(x)

and therefore it is Gaussian as well. This is illustrated in Figure A.16.



Appendix: A Quick Review of Distributions Relevant in Finance 991

−2

−1

0

1

2

3

−2 −1 0 1 2 3

−2 −1 0 1 2 3

−2

−1

0

1

2

3

F IGURE A.16 Margins are Gaussian, the joint is not Gaussian

Fact A.8.3 However, the sum of two Gaussian random variables is in general not Gaussian.

Example A.8.2 Let us consider the previous example and let us build the new random
variable

Y = X1 + X2 =
{

2X1 if − c < X1 < c
0 elsewhere

that is clearly not Gaussian, as shown in Figure A.17.

A.9 SIMULATING RANDOM VARIABLES

Many applications entail sampling random variables from prespecified distributions. A very
popular general technique to achieve this is the inverse transform method. This method is
implementable if the cumulative density function and its inverse can be computed without
difficulty. The idea is formalized in Fact A.9.1 and illustrated in Figure A.18.

Fact A.9.1 Suppose we need to simulate a random variable X with cumulative distribution
function FX, that is such that ℙ(X ≤ x) = FX(x). Then, the inverse transform method sets

X = F−1
X (U), U ∼ Unif [0, 1],

where F−1
X is the inverse of FX and Unif [0, 1] denotes the uniform distribution on [0, 1].
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F IGURE A.17 Sum of Gaussian random variables is not necessarily Gaussian

A.9.1 Example: Sampl ing from the Normal Distr ibut ion

We refer to the properties presented in Section A.1.

� In Excel, simulation of Gaussian r.v.s can be performed by inputting in a cell the command
=NORMSINV(RAND()).

� In Matlab, we can simulate Gaussian random numbers by simulating uniform random
numbers through the command

>U=rand(1,1)

and then applying to it the inverse Gaussian cdf

>Z=norminv(U,0,1);

� If we are interested in generating Gaussian random variables with assigned mean 𝜇 and
standard deviation 𝜎 we can use

>X=norminv(U,mu,sigma);
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F IGURE A.18 Inverse transform method for a hypothetical cdf FX

This is illustrated in detail below.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIMULATION OF STD GAUSSIAN RANDOM VARIABLES BY INVERSION %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; close all
%assign parameters
NSim=10ˆ6;
%simulate a sample of Uniform(0,1) random variables
R=rand(1,NSim);
%simulate the sample of standard Gaussian r.v. by inversion
X = norminv(R,0,1);
%make the plot
h=figure(’Color’, [ 1 1 1]);
subplot(4,4,[1 5 9]);
u=linspace(0,1,50);



994 APPENDIX: A QUICK REVIEW OF DISTRIBUTIONS RELEVANT IN FINANCE

hist(R,u); view(90,−90)
title(’Uniform r.v.’)
set(gca,’XTick’,[0:0.1:1])
set(gca,’YTickLabel’,”); grid on
subplot(4,4,[2:4 6:8 10:12]);
x=linspace(−4,4,100);
f = ksdensity(X,x,’function’,’cdf’);
plot(x,f);
title(’Inversion of the cdf’)
set(gca,’XTick’,[−4:1:4])
set(gca,’YTick’,[0:0.1:1]); grid on
subplot(4,4,[14:16]);
histfit(X,100)
title(’Standard Gaussian r.v.’)
set(gca,’XTick’,[−4:1:4])
set(gca,’YTickLabel’,”); grid on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uniform r.v.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Inversion of the cdf

−4 −3 −2 −1 0 1 2 3 4

Standard Gaussian r.v.

F IGURE A.19 Sampling from the standard Gaussian distribution
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� A more direct approach in Matlab is through the command

>Z=randn(1,1);

� If we are interested in generating Gaussian random variables with assigned mean 𝜇 and
standard deviation 𝜎 we just do

>X=mu+Z*sigma;

This is illustrated in detail below.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIMULATION OF GAUSSIAN RANDOM VARIABLE BY INVERSION %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; close all
%assign parameters
NSim=10ˆ6; mu=0.2; sg=0.1;
%simulate a sample of Uniform(0,1) random variables
R=rand(1,NSim);
%simulate the sample of non standard Gaussian r.v. by inversion
X = norminv(R,mu,sg);
h=figure(’Color’, [ 1 1 1]);
subplot(4,4,[1 5 9]);
u=linspace(0,1,50);
hist(R,u); view(90,−90)
title(’Uniform r.v.’)
set(gca,’XTick’,[0:0.1:1])
set(gca,’YTickLabel’,”); grid on
subplot(4,4,[2:4 6:8 10:12]);
x=linspace(−0.3,0.5,100);
f = ksdensity(X,x,’function’,’cdf’);
plot(x,f);
title(’Inversion of the cdf’)
set(gca,’XTick’,[−0.3:0.1:0.5])
set(gca,’YTick’,[0:0.1:1]); grid on
subplot(4,4,[14:16]);
histfit(X,100)
title(’Gaussian r.v.’); xlim([−0.3 0.5]);
set(gca,’XTick’,[−0.3:0.1:0.5])
set(gca,’YTickLabel’,”); grid on
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F IGURE A.20 Sampling from the Gaussian distribution with 𝜇 = 0.2 and 𝜎 = 0.1

A.9.2 Example: Sampl ing from the Lognormal Distr ibut ion

We can exploit the relationship between the Gaussian and lognormal distribution. In the
following lines we simulate 10,000 lognormal variables with parameters𝜇 = 0.05 and 𝜎 = 0.2.

>mu=0.05;
>sigma=0.2
>X=mu+Z*randn(10000,1);
>Y=exp(X);

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIMULATION OF LOGNORMAL RANDOM VARIABLES %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
close all
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%assign parameters
NSim=10ˆ6;
mu=0.05;
sigma=0.2;
%simulate the sample of Gaussian r.v.
X = mu+sigma∗randn(NSim,1);
%simulate the Lognormal
%by exponential transformation
Y=exp(X);
h=figure(’Color’, [ 1 1 1]);
histfit(Y,100,’lognormal’);
title(’Simulated Lognormal Random Variables’)
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F IGURE A.21 Sampling from the lognormal distribution with parameters 𝜇 = 0.05 and 𝜎 = 0.2

A.9.3 Example: Sampl ing from the Poisson Distr ibut ion

We refer to the properties presented in Section A.5. This is illustrated in detail below.
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F IGURE A.22 Sampling from the Poisson distribution with 𝜆 = 10

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIMULATION OF POISSON RANDOM VARIABLE BY INVERSION %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; close all
%assign parameters
NSim=10ˆ6; lambdaP=10;
%simulate a sample of Uniform(0,1) random variables
R=rand(1,NSim);
%simulate the sample of Poisson r.v. by inversion
X = poissinv(R,lambdaP);
h=figure(’Color’, [ 1 1 1]);
subplot(4,4,[1 5 9]);
u=linspace(0,1,50);
hist(R,u); view(90,−90)
title(’Uniform r.v.’)
set(gca,’XTick’,[0:0.1:1])
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set(gca,’YTickLabel’,”)
grid on
subplot(4,4,[2:4 6:8 10:12]);
x=(0:1:30);
f = ksdensity(X,x,’function’,’cdf’);
plot(x,f,’−o’);
title(’Inversion of the cdf’)
set(gca,’XTick’,[0:5:30])
set(gca,’YTick’,[0:0.1:1]); grid on
subplot(4,4,[14:16]);
histfit(X,15,’poisson’)
title(’Poisson r.v.’)
set(gca,’XTick’,[0:5:30])
set(gca,’YTickLabel’,”); grid on

A.9.4 Example: Sampl ing from the Gamma Distr ibut ion

We refer to the properties presented in Section A.7. This is illustrated in detail below.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIMULATION OF GAMMA RANDOM VARIABLE BY INVERSION %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; close all
%assign parameters
NSim=10ˆ6; alpha=2; lambdaG=0.5;
%simulate the corresponding sample of Gamma r.v. by inversion
X = gaminv(R,alpha,lambdaGˆ(−1));
h=figure(’Color’, [ 1 1 1]); subplot(4,4,[1 5 9]);
u=linspace(0,1,50); hist(R,u); view(90,−90);
title(’Uniform r.v.’)
set(gca,’XTick’,[0:0.1:1])
set(gca,’YTickLabel’,”); grid on
subplot(4,4,[2:4 6:8 10:12]);
x=linspace(0,20,200);
f = ksdensity(X,x,’function’,’cdf’);
plot(x,f);
title(’Inversion of the cdf’)
set(gca,’XTick’,[0:2:20])
set(gca,’YTick’,[0:0.1:1]); grid on
subplot(4,4,[14:16]); histfit(X,100,’gamma’)
title(’Gamma r.v.’); xlim([0 20]);
set(gca,’XTick’,[0:2:20])
set(gca,’YTickLabel’,”); grid on
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F IGURE A.23 Sampling from the Gamma distribution with 𝛼 = 2, 𝜆 = 0.5

A.9.5 Example: Sampl ing from the Chi -Square Distr ibut ion

A chi-square distribution is a special case of the Gamma distribution with shape parameter
𝛼. Therefore, the simulation turns out to be a special case of the Gamma. However, notice
that Matlab has a built-in function to sample directly from the chi-square distribution. In the
following lines we simulate 10,000 chi-square random variables with dof 5.

>df=5;
>chi2=chi2rnd(df,10000,1);

A.9.6 Example: Sampl ing from the Non-Central
Chi -Square Distr ibut ion

Matlab provides a routine that allows us to compute the inverse cdf of this distribution,
(ncx2inv(p,df,nc), where p is the probability level, df is the number of degrees of freedom and
nc is the parameter of non-centrality). Matlab also provides a random number generator for
this distribution. The function ncx2rnd(df,nc, m,n) returns a matrix mxn of random numbers
chosen from the non-central chi-square distribution with degrees of freedom df and positive
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non-centrality parameter nc. In the following lines we simulate 10,000 chi-square random
variables with dof 5.9 and parameter of non-centrality equal to 4.5.

>df=5.9;
>nc=4.5
>chi2nc=ncx2rnd(df,nc, 10000,1);

A.9.7 Example: Sampl ing from the Mult ivariate
Normal Distr ibut ion

We refer to the properties presented in Section A.8. Further, we note the following:

Fact A.9.2 X ∼  (𝜇,Σ) if and only if it admits the representation

X = 𝜇 + AZ, (A.1)

where Z = (Z1,… , ZN ) is a a multivariate standard normal distribution and A is an (N × N)
lower triangular matrix with strictly positive diagonal entries.

Fact A.9.3 It follows that:

Σ = 𝕍ar(X) = 𝕍ar(AZ) = A𝕍ar(Z)A′ = A𝕀A′ = AA′,

and we have the so-called Cholesky decomposition of Σ:

Σ = AA′;

this guarantees that Σ is semidefinite positive. If rank(A) = N, Σ is definite positive. This is
known as Cholesky decomposition.

Example A.9.1 Let

Σ =
[

0.04 0.024
0.024 0.09

]
.

In order to find its Cholesky decomposition, we need to look for a 2 × 2 lower triangular
matrix A such that

[
0.04 0.024
0.024 0.09

]
=
[

a11 0
a21 a22

] [
a11 a21
0 a22

]
=
[

a2
11 a11a21

a11a21 a2
21 + a2

22

]
,

that is we have to set

⎧
⎪
⎨
⎪
⎩

a2
11 = 0.04

a11a21 = 0.024
a2

21 + a2
22 = 0.09

⟹

⎧
⎪
⎨
⎪
⎩

a11 =
√

0.04 = 0.2
a21 = 0.024

0.2
= 0.12

a22 =
√

0.09 − (0.12)2 =
√

0.0756 = 0.27495
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and therefore

A =
[

0.2 0
0.12 0.2749545

]
.

� The Cholesky decomposition forms the basis of simulation methods for multivariate
Gaussian random variables.

� It can be verified that if

Σ =
[
𝜎

2
1 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎

2
2

]
,

then

A =
[
𝜎1 0

𝜌𝜎2 𝜎2

√
1 − 𝜌2

]
.

� This means that in order to perform Monte Carlo simulation we need to simulate Z1 and
Z2 independently and according to a standard normal random variable and then to set

X1 = 𝜇1 + 𝜎1Z1,

X2 = 𝜇2 + 𝜌𝜎2Z1 + 𝜎2

√
1 − 𝜌2Z2.

Example A.9.2 In the bivariate case, we can apply the Cholesky decomposition of the
previous example and obtain

Σ =
[

0.04 0.024
0.024 0.09

]
⟹ A =

[
0.2 0

0.4 × 0.3 0.3 ×
√

1 − 0.42

]

so that correlated Gaussian r.v.s are simulated according to

X1 = 𝜇1 + 0.2 × Z1,

X2 = 𝜇2 + 0.4 × 0.3 × Z1 + 0.3 ×
√

1 − 0.42 × Z2.

In Matlab we can simulate a multivariate Gaussian distribution using the command mvnrnd
that takes as parameters the mean vector, the covariance matrix and the number of simulations.
This is illustrated in details in the following Matlab script.

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SIMULATION OF BIVARIATE NORMAL RANDOM VARIABLE %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all
%assign parameters
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NSim=10ˆ6;
rho=0.9; mu1=0; mu2=0; s1=0.3ˆ2; s2=0.5ˆ2; s12=rho∗(s1∗s2)ˆ0.5;
%simulate the corresponding sample of bivariate Gaussian r.v.
Mu=[mu1 mu2]; VC=[s1 s12; s12 s2];
X = mvnrnd(Mu,VC,10000);
X1=X(:,1); X2=X(:,2);
h=figure(’Color’, [ 1 1 1]);
subplot(4,4,[1 5 9]);
histfit(X1,100)
set(gca,’YTickLabel’,”)
view(90,−90)
grid on
subplot(4,4,[2:4 6:8 10:12]);
plot(X2,X1,’+’)
grid on
subplot(4,4,[14:16]);
histfit(X2,100)
set(gca,’YTickLabel’,”)
grid on
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Figà-Talamanca, Gianna 659–72
FIGARCH (fractionally integrated GARCH) 689, 690,

716–19, 730–2
filter rules, technical analysis 907–21
filtered trend lines, forwards 679–84
financial forward prices 677–84
financial institutions 611
financial instruments 3–40, 41–66, 158–80, 272, 291–352,

366–7, 409, 756, 788–98
see also bonds; derivatives; equity…
accounting frameworks 6, 409, 756, 788–98
risk management uses 3–40, 41–66, 272, 366–7

financial risk 355–6, 357–66
Financial Services Authority (FSA) 378, 406
financialization of markets and hunger, speculation and

regulation 480–95
finite differences 892–9
finite-sample estimates, diffusion processes 661–72

Finland 112, 228–30, 238
FINMA 378–82
Fiorenzani, Stefano 181–222
firming, definition 205
first in then out barrier FX options 504, 512–13
Fischer–Tropsch coal technology 91, 101–2
fixed carbon (FC), definition 78
fixed leg of commodity swaps 756–96
fixed-income products 674–84, 688

see also bonds
fixed-strike Asian options 832–3, 834–56, 861–74
flexible square-root model, Asian options 858–74
floating leg of commodity swaps 42–66, 298–352, 525–33,

755–98
floating rate notes 927–36
floating storage, oil 57–66
floating-strike Asian options 832–3, 861–74
floors 187–8
flow commodities

see also electricity
definition 181–2, 185–6, 675–6

flow-based risk measures 218–19
fluorine content, coal 79
Food and Agriculture Organization (FAO) 430, 444–5
foot and mouth disease 401
forecasts 385–9, 392, 416–17, 495, 513–17, 698, 881
forest products 225–6, 359–66
forestry 225–6, 236, 241, 359–66, 452
formula-pricing/index-based gas contracts 154–8
forward curves 181–205, 283, 305–36, 393–6, 673–84, 756,

760–98, 847–56, 860–74, 880–99, 953–5
Benth et al (2007) forward curve method 674–5, 677–84
curve risk 335–6
daily granularity 181–2, 211–16, 306–36, 673–84
definition 673–5
examples 306–36, 679–84
granularity 181–2, 211–16, 306–36, 673–84
hedging metals in practice 328–36
Hodrick and Prescott filtered trend line (HP) 679–84
hourly granularity 684
interpolations 313–14, 347–52, 867–9
literature review 674–3
‘maximum smoothness’ fittings 675, 677–84
Monte Carlo simulations 771–7, 779–88, 847–51
Schwartz–Smith model 755–6, 760–77
smoothness fittings 675, 677–84
uses 283, 305–36, 393, 673–5, 760–77, 880–99, 953–5

forward freight agreements (FFAs) 356, 371–96
forward margins 39–41
forward points, outright (forward) FX contracts 500–2
forward rate agreements (FRAs) 396
forward start plain barrier FX options 504
forward starting options 833
forwards 29–32, 39–40, 41–66, 154–5, 179–205, 237–52,

281–353, 356, 372–96, 400–4, 494–5, 501–3, 514–16,
518–52, 635–57, 673–85, 756–98, 804–24, 847–56,
858–74, 927–36, 953–5

see also composite…; quanto…
agriculturals 400–1, 402–4, 494–5



1016 INDEX

forwards (Continued)
Asian options 847–56, 858–74
definition 41–2, 186–7, 292–3, 402–4, 494–5, 501–2,

516, 518, 673–7, 757
delivery 181–205, 293–352, 404–95, 518–33, 635–6,

675–84, 813–15, 871–3
electricity 181–205, 673–84
emission permits 237–8
freight 356, 372–96
gas 154–5, 179–80
metals 281–353
oil 5, 29–32, 41–66, 760–98
options 338, 809–24, 927–36
payouts 676–84
physical delivery 181–205, 675–84, 727–32, 934–6
price modelling approaches 193–205
prices 29–32, 41–66, 181–221, 247–52, 292–352, 356,

372–96, 400–1, 402–4, 494–5, 514–16, 518–52,
635–6, 673–85, 756–98, 804–24, 858–74, 927–36,
953–3

spread options 809–24
fossil energy 67–132, 135–80, 208, 225–52

see also coal; gas; lignite; oil…
definition 72–4
statistics 67–73, 135–80, 208

Fourier transform 198, 823–4, 861–2
Fourier–Euler algorithm 861–2
fracking processes, shale gas 5, 96, 129, 149–51
France 4, 12–14, 93, 97, 153–4, 185, 193, 205–6, 228–30,

264, 370–96, 404–5, 422–3, 427–8, 434–7, 451, 476,
489–90, 494, 944–53

agriculturals 404–5, 422–3, 427–8, 434–7, 451, 476,
489–90, 494

electricity 97, 185, 193, 205–6
nuclear energy 97
oil 4, 12–14
renewables 205
shale gas 153–4

fraud, operational risk 756
free on board (FOB) 11–20, 26–9, 33–5, 37–41, 60–6, 408,

475–6
freight 4, 11, 27–32, 69–73, 102–32, 139–41, 143–6, 147,

151–2, 236, 355–98, 408, 421, 831–2, 903–21
Baltic indices 356–7, 364–96, 831–2
coal 102–32
correlations 364–6
costs 5, 11, 20–7, 117–18, 356–66, 393–6
derivatives 355–6, 358, 366–96
diversification 364–5
empirical rate regularities 359–66
examples of derivatives trading 380–2, 390–6
expected shortfalls 356, 389–93
futures 356, 373–96, 405, 408
gas 139–41, 143–6, 151–2
hedging 24–7, 356, 358, 365–96
LNG 139–40
oil 4, 5, 11, 12–32, 358–96, 421
options 356, 377–96

portfolio management 364–6, 380–96
prices 11, 117–18, 355–96, 421
rate indices 356–7, 364–96, 831–2
risk management measurement 27–32, 356, 382–96
risk management strategies 27–32, 365–6
seasonal patterns 28–9, 359–66
shipping routes 116–18, 358–65, 366–96
sources of risk 20–7, 355–66
statistics 12–20, 116–18, 359–82
VaR 356, 384–96
volatility 355–66

French electricity markets 944–53
fret risks, agriculturals 480
front-month futures 734–9
frozen concentrated orange juice (FCOJ) 405–20, 928–36
fruit 400, 493
fuel oil 5, 9, 10–11, 21–9, 32–41, 905–21

see also bunker fuel
fuel switches, abatement options 243, 247–52
Fukushima tsunami 97, 106
fund managers 302–5, 922–3
fundamental analysis 906–7
fungibility 347–52, 494–5
Fusai, Gianluca 557–634, 673–85, 755–99, 827–77,

967–1003
futures 5, 9–11, 13–66, 158–87, 237–9, 244–52, 283–352,

356, 373–96, 400–95, 515–16, 524–33, 635–57,
586–8, 688–90, 733–9, 757–61, 765–76, 810–13,
829–32, 858–74, 878–921, 922–36, 944–64

agriculturals 400–1, 402–95
Asian options 835, 843–4, 858–74
backwardation 52–66, 294, 305–36, 350–2, 476–80,

636–46, 814, 923–36
Black-76 formula 339–52
concepts 41–3, 186–8, 292–3, 402–9, 491, 494–5
contango 31, 52–66, 306–36, 476–80, 637–46, 814
curves 161–2, 165–6, 170, 586–8, 860–74, 880–99
definition 41–3, 186–8, 292–3, 402–8, 491, 494–5
electricity 186–205
emission permits 237–9, 244–52
EUAs 244–52
expiry dates 41–66, 159–80, 404, 406–7, 586–8
freight 356, 373–96, 405, 408
gas 158–80, 248–52, 524, 651–6, 878–99, 907–21,

925–36, 944–64
gasoil 10–11, 13–20, 33–5, 48–66, 733–9, 905–21
gasoil crack 13–20, 39–41, 733–9
historical background 404–5
indexes 405, 491–2, 922–36
key success factors for agricultural futures 494–5
metals 283–352
oil 5, 9–11, 13–66, 256, 481–5, 515–16, 586–8, 642–6,

646–57, 690, 733–9, 760–1, 765–77, 829–32, 871–3,
903–21, 925–36, 944–64

options 297–352
portfolio management 901, 922–36
prices 10–11, 13–66, 158–80, 244–52, 292–352, 356,

373–96, 402–95, 515–16, 635–57, 586–8, 688–90,



Index 1017

733–9, 758, 760–1, 765–77, 843–4, 858–74, 878–99,
901, 903–21, 922–36, 944–64

quotes 407–9, 421
returns 688–90, 903–21, 923–36
sensitivity analysis 494, 788–90
steel 291–2
term structures 162–80, 201–5, 240–52, 340–52, 391–6,

586–8, 635–57, 760–77, 788–90, 955
training needs 494–5

futures look-alikes 298–9
FX futures 395–6, 480
FX markets 5, 33–5, 54, 293–4, 299–301, 350–2, 355–66,

395–6, 399–400, 410–13, 480–3, 493–5, 499–553,
580, 688, 756–8, 765–77, 788–90

concepts 293–4, 299–301, 395–6, 499–533
definitions 499–504
trading centres 499

FX options 350–2, 395–6, 480, 504–52
definition 503–4
payoffs 506–13, 534–52
premiums 299–301, 503–6
pricing models 509–11
quoting standards 506–7, 509
structures 507–9
taxonomy 503–4, 511–13
volatility surface 511–13

FX rates 5, 12–66, 299–301, 350–2, 355–96, 480–3, 493–5,
499–513

FX risk exposures 5, 33–5, 299–301, 350–2, 395–6,
399–400, 410–13, 480–3, 493–5, 513–52

definition 513–14, 518
hedging 299–301, 395–6, 410–13, 480–3, 493–5, 513–52
sources 5, 33, 513–17

FX swaps 179, 299–301, 395–6, 500–3, 525–33
see also outright…; spot…
definition 503

FX-linked energy contracts 522–33
FX-linked formula contracts 522–33
FX-linked swaps 525–33

G20 countries 430, 490–1
Galdenzi, Francesco 3–66
Gamma distribution 599, 601–2, 620–2, 967, 983–6,

999–1000
Gamma function 599, 601–2, 704, 715–19, 973, 983–6,

999–1000
Gamma process 558, 620–2, 629–32
gammas 343–52, 527–33, 804, 813–15, 862–74

see also deltas
GARCH 244–52, 333, 393, 687–8, 689–753, 912–21

see also autoregressive models
asymmetric models 247, 687–8, 690, 702–7, 723–5,

734–9
definition 689, 693–8, 702
diagnostic tests 722–5, 731–2
electricity prices 690, 727–2
empirical applications 690, 727–39
estimation 333, 690, 694–5, 699–700, 720–2

Eviews 690, 740–8
inference 690, 722–5, 912–13
limitations 702–4, 723–4
long-memory GARCH models 690, 700–1, 713–19,

730–2
Matlab 690, 740, 743–8
maximum likelihood estimation 694–5, 720–2, 728–32
model types 689–90
multivariate GARCH models 690, 694, 725–7
nested parameterizations 690, 704, 708–13
periodic models 707–8, 728–32
permanent and transitory component model of volatility

700–702
risk management 690, 733–9
software 690, 740–8
stationarity 696–8, 709–13, 714–19, 916–21
uses 244–52, 333, 393, 689–90, 720, 912–13
volatility-forecasting processes 698

garchpred 744–8
gas 21–2, 33–5, 67–74, 80–1, 91–6, 127–9, 135–80,

184–221, 224–52, 264–77, 521–33, 651–6, 690,
733–9, 755–98, 801–832, 858–74, 877–99, 907–21,
925–36, 940–64

see also liquefied natural gas; oil; shale…; storage
modelling

Asian options 180
calorific values 136
carbon dioxide 96, 142–3, 224, 247–52
carriers 357–66
classification methods 135–6
concepts 67–74, 80–1, 91–6, 128–9, 135–80
consumption 136–80
contaminants 135–6, 142–3, 147–8
contracts 154–63, 180
costs 141–6, 152–4, 156
definitions 135–6
demand/supply factors 136–41, 144–80
derivatives 154–5, 158–80, 248–52, 524, 651–6, 755–98,

878–99, 907–21, 925–36, 944–64
distribution networks 139–41, 143–51
exploration and exploitation 141–6, 166
financial markets 158–80
formation processes 74, 135–6
forwards 154–5, 179–80
freight 139–41, 143–6, 151–2
future prospects 128–9, 140, 149–50, 153–4
futures 158–80, 248–52, 524, 651–6, 878–99, 907–21,

925–36, 944–64
hedging 161–80
hubs 146–7, 159–71, 651–6, 850, 945–53
infrastructure constraints 96
markets 136–7, 139–80
metrics 136–80, 270–2
multiple hypothesis-testing techniques 940–64
oil-linked indexation formula 758–9
options 158–9, 172–80
OTC markets and products 158, 167, 169, 179–80
physical structure of the market 140, 141–6



1018 INDEX

gas (Continued)
pipelines 139–41, 143–6
prices 33–5, 67–71, 95, 127, 129, 140–2, 154–8,

186–221, 243–4, 247–52, 264–77, 521–33, 651–6,
758–98, 801–824, 827–32, 858–74, 877–99, 925–36,
940–64

processing methods 141, 142–6, 147–51
production 136–80
remaining-potential-to-production ratio 71, 74, 80–1, 95
reserve-to-production ratio 71, 74, 80–1, 95
reserves 71, 74, 80–1, 95, 136–42, 165–6
spread futures 171–2
statistics 67–73, 80–1, 91–6, 136–80
stripping processes 142–3
swaps 160–2, 167–71, 179–80, 755–98
temperatures 136–7
transportation processes 139–41, 143–51
trends 137–41, 148–51
uses 67–73, 91–2, 94–6, 127, 128–9, 135–80, 247–52,

271–3
volumetric metric 136–7, 167–80, 270–2
weather risk/derivatives 144–6, 242, 264–77

gas-fired power plants 94–6, 129, 147, 184–221, 243–4,
247–52, 276, 755, 801–804, 815–16, 933

gas-on-gas-based contracts 156–8
gasification of coal 101
gasoil 10–11, 13–20, 21–7, 28–35, 38–41, 48–66, 306,

522–33, 733–9, 905–21, 956–64
see also diesel oil

gasoil crack 13–20, 34–5, 36–41, 733–9, 804, 829–32,
956–64

gasoline 3, 7–10, 12–20, 28–9, 35–41, 89, 143, 361–6,
368–96, 689–90, 904–21, 925–36

Gaspool gas hub, Germany 147, 166, 212–16
Gaussian discretization with exact moments 601–2, 604
Gazprom 157–8
GBPCHF rates 505–6
GBPJPY rates 505–6
GBPUSD rates 505–6
Geman–Roncoroni model (2006) 192–3
generalized Bonferroni FWER control method (GB) 948–54
generalized familywise error rate criteria, multiple

hypothesis-testing techniques 941–2, 943–64
generalized Holm FWER control method (GH) 948–54
geographical arbitrage 54–66, 314–24
geographical spread options

see also spread options
definition 804

geometric Brownian motion (GBM) 247–52, 558, 575, 580,
581–8, 606, 619, 804–24, 833–56, 866–74, 881

see also Black-Scholes model; Brownian…
Asian options 833–56
definition 250, 575, 581–3
deterministic drift and volatility 585–8, 804–24
energy spread options 804–24
Matlab code 583–4
simulations 583–, 619

geopolitical issues 5, 118–21, 127–32, 226–52, 399–400,
402, 409–13, 425–39, 480–95

geothermal energy 72–3, 101, 208
German EEX market 187–205, 212–16, 238–9, 679–84,

802–4, 808–13, 907–21, 926–36, 944–53
Germany 68, 70–9, 81–2, 91–7, 101–5, 112–13, 120–1,

146–7, 163–6, 205–16, 228–30, 264, 284–90, 297,
319, 369–96, 405, 427–8, 490, 679–84, 802–4,
808–13, 907–21, 926–36, 944–53

agriculturals 405, 427–8, 490
coal 70, 73, 75–9, 81–2, 91–3, 94–5, 101–5, 112–13,

120–1
CtL 101–2
electricity 205–16
gas 147, 163–6
Kyoto Protocol 120, 228–30
metals 284–90, 297, 319
minute reserve power capacity 206, 209–16
nuclear energy 70, 97, 120
renewables 205–16
World War II 97, 101

Ghana 459–63
Gheyssens, Jonathan 223–54
Gibraltar 367–96
Gibson–Schwartz model 635–46, 655
gigajoules (GJ), definition 136
GJR-GARCH (Glosten et al 1993 model) 704–7, 709–13,

730–2, 734–9, 745–8
glass–ceramics 40–1, 236
Glencore 420
global financial crisis from 2007 6, 11–12, 69–70, 125,

179–80, 239, 280, 291, 323–4, 444–5, 490, 735–6
global warming potential (GWP) 230–52

see also climate change
globalCoal exchange 125
GMO corn 437–41
gold 241, 279, 663–72, 689, 859, 904–21, 925–36
good news (positive shocks), volatility effects 702–9,

723–5, 732
goodness-of-fit models 244, 266–7
government policies 118–21, 127–9, 206–16, 226–52,

399–400, 402, 409–15, 425–39, 480–95
grains 117–18, 359–66, 368–96, 399–421, 428–95, 689

see also agriculturals; barley; corn; rice; wheat
grandfathering allocation criteria, EU ETS 234–6
Granger-causality testing 917–21, 940, 944–55
granularity, forward curves 181–2, 211–16, 306–36, 673–84
Greece 228–30, 390–1, 463–6
the Greeks 341–52, 506–7, 511–13, 524–33, 862–74, 883

see also deltas; gammas; thetas; vegas
green and white certificates 23, 102, 757, 940, 944–55
greenhouse gases (GHGs) 21–2, 70–1, 94–6, 119–21, 129,

223–52
see also carbon dioxide…; climate change; emissions…;

hydrofluorocarbons; Kyoto Protocol; methane…;
nitrous oxide; perfluorocarbons; sulphur…

concepts 119–21, 223–52
externalities 223–52
scenarios 225–7
statistics 70–1, 94–6, 224–52

Gretl 905



Index 1019

grid-balancing needs, electricity 182–3, 185–221
grindability factors, coal 79, 111–21
gross calorific value (GCV) 76–9
GSCI (Goldman Sachs Commodity Index) 69, 303–5,

483–4, 488, 922, 928–36
Guatemala 426–8, 453–4, 456–9
Gulf of Mexico 53–4
Gulf Wars 68–9
gypsum 359–66

H-gas (high calorific value), definition 136
half-life measures, mean reversion 776–7, 818
Halton quasi-Monte Carlo simulations 820–2
Hamanaka, Yasuo 327
Handy vessels 117–18, 360–96
Hanna–Quinn criterion (HQC) 945–53
hard coal

see also anthracite; coal; coking…; steam…
calorific values 75–9
classification methods 74–9
formation processes 74
mining methods 83–90
production 71, 74, 80–3
remaining-potential-to-production ratio 71, 74,

80–2
reserve-to-production ratio 71, 74, 79–83
reserves 71, 74, 79–83
size factors 79
statistics 71, 79–83, 94–5, 112–21
uses 90–102
volatilities 75, 78

Hardgrove grindability index (HGI) 79, 111–21
hazard functions 787–8
heat rates, gas-fired power plants 801–804
Heath–Jarrow–Morton model (HJM) 193–205, 811–13
heating degree days (HDDs) 267–77
heating oil (HO) 10–11, 14, 34–5, 38–41, 48–66, 276,

515–16, 690, 859–74, 904–21, 956–64
Heaviside function 883
heavy lift cargo 359–66
heavy oils 7–10, 20–7, 36–41, 98–9, 117–18, 355–96,

904–21
hedge accounting 789–98
hedge funds 303–5, 489–95, 922–3
hedge ratios 29, 331–6, 341–52, 383–6, 476–95
hedging 3–66, 161–80, 256–77, 302–52, 356, 358, 365–96,

399–420, 466–95, 506–7, 511–52, 613, 707, 755–98,
804, 813–15, 827–32, 874, 880, 901, 914–21, 922–36

accounting frameworks 6, 409, 756, 789–98
agriculturals 399–420, 466–95
arbitrage 46–66
Asian options 298–9, 827–32, 874
aviation sector 11–20
cash flow hedge methodology 478–80, 789–98
delta hedging 352, 506–9, 511–13, 524–33
documentation 7, 9–11, 791
dynamic hedging 177, 524–33, 707
effectiveness issues 6, 8–11, 383–96, 756, 788–98
evergreen FX hedging strategies 533–52

freight 24–7, 356, 358, 365–96
FX risk exposures 299–301, 395–6, 410–13, 480–3,

493–5, 513–52
gas 161–80
industrial demand for oil 40–1, 46–66
internal policies 6
land transportation industry 27–32
matrices 9–11
metals 302–52
oil 3–66
refining processes in the oil industry 35–41, 46–66
shipping companies 20–7
spread options 180, 804, 813–15
swaps 9–11, 12–20, 25–7, 30–2, 34–5, 39–41, 42–66,

525–7, 531–3, 755–8, 768–77, 788–98
utilities 32–5
volume profiles 334–6
weather derivatives 255–6, 272–7, 804, 805–13, 858–9

hedging errors 613
helium 135
Henry Hub Natural Gas (HH) (USA) 146–7, 159–80,

651–8, 850,
945–53

Hershey 462
Heston stochastic volatility model of 1987 558, 575, 581,

611–18
heteroskedasticity models 687–753

see also autoregressive models; GARCH
heteroskedasticity tests panel in Eviews 741–3
High Sulphur Fuel Oil Barger (HSFO) 22–7, 28–9, 905–21
high-rank coal 74–9

see also anthracite; coal; coking…; steam…
higher heating value (HHV) 76–9
Hiroshima 97
historical simulations 49–52, 218–19, 333–6
HKEx Limited 282
Hodrick and Prescott filtered trend line (HP) 679–84
hogs 405–20, 431–95, 689, 903–21
Holm FWER control method 948–54
homoscedasticity 723–5
Honduras 452–4, 455–9
Hong Kong 27, 110, 282, 371–96
hourly granularity, forward curves 684
hourly options 187–205
hubs, gas 146–7, 159–71, 651–6, 850, 945–53
Hull–White stochastic volatility model 575
humidity atmospheric variable 264
Hungary 228–30
hydrocarbons 7–66
hydroelectricity 68, 72–3, 92, 95, 99–102, 128–9, 137, 208,

211–16, 243–4, 276
hydrofluorocarbons (HFCs) 119–21
hydrogen 7–66, 76–132, 135, 136, 142–3
hypergeometric functions 715–16
hypothesis tests, multiple hypothesis-testing techniques

939–64

IAS 32 788
IAS 39 6, 409, 756, 788–98



1020 INDEX

IASB 756, 796–8
ICE Brent 8–11, 13–66, 256, 523–7, 733–9, 759, 764–77,

791–8, 829–32, 871–4, 904–21, 944–53, 956–64
ICE Clear Europe 44–5
ICE European Climate Exchange (ECX) 944–53
ICE gasoil futures 33–5, 733–9
ICE group 405, 426–8, 448–9, 457–9
ICE-NYSE 405, 427–8, 457–9, 465–6
Iceland 228–30, 415
ICIS Heren 45–66
Id Brik, Rachid 635–57
idiosyncratic risk 923–36
IEA reports 86–106, 128
IFO180 prices 22–3
IFO380 prices 22–3, 393–5
IFRS 7 788
IFRS 9 788
IGARCH (integrated GARCH) 690, 699–700, 713–19
imaginary error functions 958–9
implied default probabilities 780–8
‘implied method’, calibration 765
implied volatilities 173–80, 333–6, 337–52, 506–7, 508–11,

570–1, 606, 616–17, 832, 858–74
definition 337–8
FX options 506–7, 508–11
metals 333–6, 337–52

import taxes 315–16
importers 71, 76–7, 102–32, 140–80, 281–2, 315–18,

395–6, 409–95, 513–17, 533–52
impulse response coefficients 717–19
in-sample and out-of-sample periods 251–2, 384, 919–21,

957–64
in-the-money options (ITMs) 176–80, 338, 349–52, 504–5,

534, 831–2, 873–4, 880–1, 891–99
index futures 166–71, 491–2
index swaps 169–71, 491–2
index-linked container contracts (ILCCs) 371–96
indexation formulas, swaps 758–98
indexed random variables 558–633
India 16, 67–8, 73, 81–2, 92–3, 102–9, 113, 118–21, 123–7,

284–90, 302, 314–18, 360–6, 405, 421, 423–8,
431–59, 463–6

agriculturals 405, 421, 423–8, 431–7, 438–47, 448–59,
463–6

coal 67–8, 73, 81–2, 92–3, 102–4, 105–6, 108–9, 113,
118–21, 123–7, 360–6

Kyoto Protocol 119–20
metals 284–90, 302, 314–18
oil 16

Indonesia 8, 75–8, 81–2, 85, 98, 102–4, 107–10, 120,
123–7, 149, 289, 361–6, 425–8, 433–7, 439–41,
442–5, 447, 451–4, 455–63

agriculturals 425–8, 433–7, 439–41, 442–5, 447, 451–4,
455–63

coal 75–8, 81–2, 85, 102–4, 107–10, 120, 123–7
gas 149
GDP 108
metals 289
oil 8, 98, 108

industrial demand for electricity 185–221
industrial demand for oil 40–1, 46–66
Industrial Revolution 90–1, 281–2
inelasticity of demand/supply 184–205, 259–77, 401–9
inflation 302–5, 393–4, 761, 928, 929, 931–6
information 480–95, 702–9, 712–13, 716–19, 723–5, 732,

901–21
ingots 297
initial margin, concepts 42–66, 292–4, 407–95
injection/withdrawal rates, storage modelling for natural

gas 877, 884–99
innovations 247, 744–8
inputs, FX risk exposures 513–17, 534–52
Inside FERC 166–71
instantaneous financial forward prices 194–205, 677–84
instantaneous volatility 337, 517–33, 633–4
insurance 11, 13–20, 29–32, 33–5, 37–41, 48–66, 356–96,

400
Intercontinental Exchange (ICE) 10–11, 13–66, 156, 158–9,

164–80, 733–9, 827–32, 871, 944–5
see also ICE…

interest rate derivatives 179–80, 356, 396, 404–5, 480
interest rate futures 396, 404–5, 480
interest rate models 193–205, 646, 588, 595–600, 761–3,

811–13, 865–74
interest rate options 396
interest rate risks 404–5, 480, 493–5
interest rate swaps 179–80
interest rates 45–6, 179–80, 193–205, 294, 320–4, 355–6,

366–96, 404–5, 480, 501–13, 588, 593–600, 636–46,
646, 674–84, 756–8, 766–77, 780–88, 811–14,
834–56, 858, 865–74, 903–21, 924–36

Intergovernmental Negotiation Committee (INC) 228–9
Intergovernmental Panel on Climate Change (IPCC) 224–8
intermediate fuel oils (IFOs) 22–3, 27, 393–5
internal currency, definition 500
internal rate of return (IRR) 214–16
internal rating systems 6, 221
International Coffee Organization (ICO) 455–5
International Gas Union (IGU) 148–9, 155–8
International Grains Council 429–45
International Maritime Exchange (IMAREX) 374, 392–3
International Maritime Organization (IMO) 22
International Standards Organization (ISO) 22
International Sugar Organization (ISO) 423–8
International Tin Council (ITC) 282
International Transaction Log (ITL) 233–9
International Wheat Council 428–30
interpolations, forward curves 313–14, 347–52, 867–9
interruptible gas contracts 154–8
intra-day physical delivery market, electricity forwards

181–204, 206–16, 675–6
intrinsic valuations, storage modelling for natural gas

880–1, 897–9
inventories 325–8, 416–18, 430, 432–8, 458–9, 472–95,

813–15, 877–99, 921–36
see also storage…

inverse bivariate normal (Gaussian) distribution 1002–3
inverse chi-square distribution 1000



Index 1021

inverse Gamma distribution 999–1000
inverse leverage effect 345–52
inverse lognormal distribution 195–205, 996–9
inverse method to simulate random variables 967, 991–1003
inverse multivariate normal (Gaussian) distribution 1001–3
inverse non-central chi-square distribution 627, 1000–1
inverse normal (Gaussian) distribution 252, 562–3, 628–31,

992–6
inverse Poisson distribution 997–9
inverse transform method 867–9, 991–1003
investment banks 282, 298–9, 302–52, 611, 923–36
investments, coal 69–70, 81–2, 84–90
investors 121–32, 214–16, 282, 301–5, 357–66, 480–95,

901, 922–36
IPEX, spot price analysis 193, 196–200
Iran 136–41, 442–5, 453–4
Iraq 442–5
Ireland 228–30
iron ore 75–9, 95, 117–18, 236, 279–80, 282–3, 291,

359–65, 367–96
ISDA master agreements 6, 14–20, 300–1, 504, 778
Israel 415
Italian Power Exchange (GME) 945–53
Italy 3–4, 13–14, 61–6, 182, 185, 193–5, 198–9, 205,

228–30, 265–70, 273–6, 284–90, 319, 727–32, 945–53
electricity 182, 185, 193–5, 198–9, 205, 727–32
metals 284–90, 319
oil 3–4, 13–14, 61–6
renewables 205
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multivariate Itô’s lemma 578–80
multivariate normal (Gaussian) distribution 725–7, 737–9,

772–7, 861–74, 967, 987–91, 1001–3
Murphy, Bernard 135–80, 181–222
mutual funds, metals 303–5
Myanmar 441–5

NAGARCH (nonlinear AGARCH) 704–7, 712–13
Nagasaki 97
naphtha 3, 7–10, 28, 35–41, 59–66, 361–6, 368–96
NASAAC 285, 293–6, 306–8, 319–24
NASDAQ OMX Group Inc. 238–9, 374
National Allocation Plan (NAP) 232–9
National Balancing Point (NBP), UK 147, 156, 164–5,

177–9, 248–52, 944–53
National Commodity & Derivatives Exchange India

(NCDEX) 284, 287, 291, 314–18
National Futures Association (NFA) 304–5
national oil companies (NOCs) 4
national registries, EU ETS 233–9
natural disasters 69, 97
natural gas 21–2, 33–5, 67–74, 80–1, 91–6, 127, 128–9,

135–80, 247–52, 264–77, 651–6, 690, 758–98,
801–824, 859–74, 877–99, 907–21, 925–36, 944–64

see also gas
negative sign bias diagnostic test, volatility modelling

723–5
neon 135
nested parameterizations, GARCH 690, 704, 708–13
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