
Lecture Notes in Computer Science 5525
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Betty H.C. Cheng Rogério de Lemos
Holger Giese Paola Inverardi Jeff Magee (Eds.)

Software Engineering
for Self-Adaptive Systems

13

Volume Editors

Betty H.C. Cheng
Michigan State University, Department of Computer Science and Engineering
3115 Engineering Building, East Lansing, MI 48824-1226, USA
E-mail: chengb@cse.msu.edu

Rogério de Lemos
University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, UK
E-mail: r.delemos@kent.ac.uk

Holger Giese
Hasso Plattner Institute for Software Systems Engineering
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
E-mail: holger.giese@hpi.uni-potsdam.de

Paola Inverardi
Università dell’Aquila, Dipartimento di Informatica
67100 L’Aquila, Italy
E-mail: inverard@di.univaq.it

Jeff Magee
Imperial College, Department of Computing
180 Queen’s Gate, London SW7 2BZ, UK
E-mail: j.magee@imperial.ac.uk

Library of Congress Control Number: 2009928525

CR Subject Classification (1998): D.2, D.3, F.1.1, I.2.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-02160-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02160-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12686551 06/3180 5 4 3 2 1 0

Preface

The complexity of current software-based systems has led the software engineer-
ing community to look for inspiration in diverse related fields (e.g., robotics and
control theory) as well as other areas (e.g., biology) to find innovative approaches
for building, running, and managing software systems and services. Therefore,
self-adaptation – systems that are able to adjust their behavior at run-time in re-
sponse to their perception of the environment and the system itself – has become
a hot topic within the software engineering community.

This book and the roadmap paper that is included here are two key outcomes
from the Dagstuhl Seminar 08031 on “Software Engineering for Self-Adaptive
Systems” that took place in January 2008. In addition to the roadmap paper,
this book includes invited papers from recognized experts in the area that de-
scribe the current state of the art in the field, and papers that provide an in-
sight into the key features of self-adaptive systems and how these should be
designed. All the papers were peer-reviewed, with the exception of the roadmap
paper, which was based on the discussion held at the Dagstuhl Seminar and
put together by several of its participants. The book consists of four parts: “Re-
search Roadmap,” “Architecture-Based Self-Adaptation,” “Context-Aware and
Model-Driven Self-Adaptation,” and “Self-Healing.”

The first part entitled “Research Roadmap” includes the roadmap paper on
research challenges for the area of software engineering for self-adaptive systems
as well as the two papers that are extended versions of two self-adaptation views
that were presented in the roadmap paper.

With the contribution of several authors—participants of the Dagstuhl Sem-
inar on Software Engineering for Self-Adaptive Systems—the roadmap paper,
which is entitled “Software Engineering for Self-Adaptive Systems: A Research
Roadmap” summarizes the state of the art and identifies critical challenges for
the systematic software engineering of self-adaptive systems.

The second paper of this part, authored by J. Andersson, R. de Lemos, S.
Malek and D. Weyns, entitled “Modelling Dimensions for Self-Adaptive Sys-
tems” proposes a classification of modelling dimensions for self-adaptive software
systems, which are key aspects that characterize self-adaptation. The identified
modelling dimensions are illustrated by applying them to several application
scenarios.

The third paper “Engineering Self-Adaptive Systems Through Feedback
Loops,” which is authored by Y. Brun, G. Di Marzo Serugendo, C. Gacek, H.
Giese, H. Kienle, M. Litoiu, H. Muller, M. Pezzè and M. Shaw, promotes, in
the design of self-adaptive systems, the use of feedback loops as first-class en-
tities. The paper argues that feedback loops are essential for understanding all
types of self-adaptive systems, and identifies critical challenges that must be

VI Preface

addressed to enable systematic and well-organized engineering of self-adaptive
and self-managing software systems.

Part two of the book entitled “Architecture-Based Self-Adaptation” consists
of three papers describing solutions in which architectures take a central role in
the development of self-adaptive software systems.

The first paper by S.-W. Cheng, V. V. Poladian, D. Garlan and B. Schmerl,
entitled “Improving Architecture-Based Self-Adaptation Through Resource Pre-
diction,” discusses how self-adaptation using architectural models can be im-
proved by adopting an anticipatory approach in which predictions are used to
inform adaptation strategies rather than operate in a purely reactive way. It is
demonstrated that predictions can be incorporated into an architecture-based
adaptation framework showing the resulting benefits.

J.C. Georgas and R.N. Taylor in the paper “Policy-Based Architectural Adap-
tation Management: Robotics Domain Case Studies” continue previous work in
which the authors developed notations and tools that support the design and
development of policy- and architecture-based self-adaptive systems that are
modular and have the ability to change the specifications of the adaptation pol-
icy during system run-time. This paper assesses the feasibility of integrating
those notations and tools with the robotics domain, develops novel self-adaptive
capabilities for robotic systems, and identifies difficulties for such integration.

The last paper of this part, authored by W. Heaven, D. Sykes, J. Magee and J.
Kramer and entitled “A Case Study in Goal-Driven Architectural Adaptation,”
presents an approach to constructing autonomous systems that synthesize tasks
from high-level goals. In order to execute these tasks reliably in a changing en-
vironment, the software architecture of the system is adapted. The applicability
of the proposed approach is demonstrated with a case study involving mobile
robots.

Part three of the book is “Context-Aware and Model-Driven Self-Adaptation,”
and includes five papers centered around context-aware self-adaptability and
how model-driven approaches can be applied in the development of self-adaptive
software systems.

O. Nierstrasz, M. Denker and L. Renggli are the authors of “Model-Centric,
Context-Aware Software Adaptation,” the first paper of this part. This paper
makes the case for model-centric and context-aware software adaptation, and
shows through concrete examples how these design principles work at the level
of application interface, programming language and run-time. The paper also dis-
cusses how the presence of sufficiently high-level models at run-time can enable
very dynamic forms of context-dependent software adaptation. The authors also
present a research agenda for model-centric development that supports dynamic
software adaptation and evolution.

The second paper, entitled “Modeling of Context-Aware Self-Adaptive Appli-
cations in Ubiquitous and Service-Oriented Environments” written by K. Geihs,
R. Reichle, M. Wagner and M. Ullah Khan, presents a modelling approach for
the integration of service-based adaptation in a planning framework for composi-
tional adaptation of context-aware applications. Based on semantic descriptions

Preface VII

that are associated to variation points in the component framework, the proposed
modelling framework provides a harmonized view on QoS-properties of external
discoverable services and conventional context properties of component-based
applications.

The third paper “MUSIC: Middleware Support for Self-Adaptation in Ubiq-
uitous and Service-Oriented Environments,” authored by R. Rouvoy, P. Barone,
Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli and U. Scholz, intro-
duces an extension of the MUSIC component-based planning framework. This
extension optimizes the overall utility of applications by plug-in interchange-
able components and services when there are unexpected changes of the service
provider landscape in a ubiquitous context. The planning framework is outlined
and a motivating scenario is presented.

Paper four of this part, “Using Architecture Models to Support the Gener-
ation and Operation of Component-Based Adaptive Systems,” authored by N.
Bencomo and G. Blair, presents an approach that uses architectural models for
supporting the generation and operation of component-based adaptive systems.
The proposed approach supports the specification and validation of models based
on abstractions of architectural or structural variability as well as environment
and context variability.

Finally, the paper written by V. Grassi, R. Mirandola and E. Randazzo, and
entitled “Model-Driven Assessment of QoS-Aware Self-Adaptation,” presents an
approach for supporting the QoS assessment of self-adaptable systems, which
extends an intermediate modelling language for capturing the core features of
a dynamically adaptable architecture model from a performance/dependability
viewpoint. A model transformation chain is outlined that maps a “design ori-
ented” model to an “analysis oriented” model for permitting the application of
a suitable analysis methodology.

Part four of the book is “Self-Healing,” and contains two papers related to
error detection and system recovery.

The first paper in this part is authored by M. Pezzè and J. Wuttke with
the title “Automatic Generation of Runtime Failure Detectors from Property
Templates.” The authors propose property templates to link requirements and
design, and to generate automatically assertions using a model-based specifica-
tion language. It targets self-healing software and permits detecting failures at
low-cost at run-time while providing high detection precision and enough infor-
mation about the detected failures to enable automatic healing actions.

The final paper of this part “Filtered Cartesian Flattening and Microreboot-
ing to Build Enterprise Applications with Self-adaptive Healing,” written by J.
White, B. Dougherty, H.D. Strowd and D.C. Schmidt, considers the develop-
ment of enterprise applications that can self-adapt to tolerate component fail-
ures. The paper describes a microrebooting technique based on feature models
and a heuristic algorithm for deriving new configurations, as well as a container
component that crashes the faulty subsystem and reboots the new configuration.
For feature selection, the approach uses Filtered Cartesian Flattening and mul-

VIII Preface

tidimensional multiple-choice knapsack heuristic algorithms in order to reduce
self-healing time.

Although the self-adaptability of systems has been studied in a wide range of
disciplines, from biology to robotics, only recently has the software engineering
community recognized its key role in enabling the development of future software
systems that are able to self-adapt to changes that may occur in the system, its
requirements, or the environment in which it is deployed. In our understand-
ing, this volume is one of the first books containing a collection of papers that
looks specifically into the current state of the art in the field, describes a wide
range of approaches coming from different strands of software engineering, and
presents future challenges facing this always resurgent and challenging field of
research. We are certain that this book will prove valuable both for practitioners
and researchers that are involved with the development of self-adaptive software
systems.

Our thanks go to the authors of the contributions for their excellent work, the
participants of the Dagstuhl Seminar on Software Engineering for Self-Adaptive
Systems for their active participation in the discussions and further contribu-
tions, and Alfred Hofmann and his team from Springer for believing in this
important topic and for helping us to get the book published. Last but not least,
we highly appreciate the efforts of our reviewers who have helped us in ensur-
ing the high quality of the contributions. They are J. Andersson, L. Baresi, N.
Bencomo, G. Blair, J. Bradbury, Y. Brun, C. Canal, G. Candea, S.-W. Cheng,
C. Cuesta, G. Di Marzo Serugendo, Y. Ding, S. Dustdar, C. Gacek, K. Geihs,
J. Georgas, K. M. Goeschka, V. Grassi, R. Hirschfeld, J. Kramer, E. Letier, M.
Litoiu, J. Liu, P. Lollini, S. Malek, J. A. McCann, R. Mirandola, H. Müller, J.
Noyé, O. Nierstrasz, P. Popov, P. Robertson, M. Sadjadi, G. Salaün, B. Schmerl,
U. Scholz, J. P. Sousa, R. Taylor, M. Tichy, M. Tivoli, D. Weyns, and several
anonymous reviewers.

March 2009 Betty H.C. Cheng
Rogério de Lemos

Holger Giese
Paola Inverardi

Jeff Magee

Table of Contents

Part 1: Research Roadmap

Software Engineering for Self-Adaptive Systems: A Research
Roadmap . 1

Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi,
Jeff Magee, Jesper Andersson, Basil Becker, Nelly Bencomo,
Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo,
Schahram Dustdar, Anthony Finkelstein, Cristina Gacek,
Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle,
Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola,
Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias Tichy,
Massimo Tivoli, Danny Weyns, and Jon Whittle

Modeling Dimensions of Self-Adaptive Software Systems 27
Jesper Andersson, Rogério de Lemos, Sam Malek, and
Danny Weyns

Engineering Self-Adaptive Systems through Feedback Loops 48
Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek,
Holger Giese, Holger Kienle, Marin Litoiu, Hausi Müller,
Mauro Pezzè, and Mary Shaw

Part 2: Architecture-Based Self-Adaptation

Improving Architecture-Based Self-Adaptation through Resource
Prediction . 71

Shang-Wen Cheng, Vahe V. Poladian, David Garlan, and
Bradley Schmerl

Policy-Based Architectural Adaptation Management: Robotics Domain
Case Studies . 89

John C. Georgas and Richard N. Taylor

A Case Study in Goal-Driven Architectural Adaptation 109
William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer

Part 3: Context-Aware and Model-Driven
Self-Adaptation

Model-Centric, Context-Aware Software Adaptation 128
Oscar Nierstrasz, Marcus Denker, and Lukas Renggli

X Table of Contents

Modeling of Context-Aware Self-Adaptive Applications in Ubiquitous
and Service-Oriented Environments . 146

Kurt Geihs, Roland Reichle, Michael Wagner, and
Mohammad Ullah Khan

MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and
Service-Oriented Environments . 164

Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen,
Svein Hallsteinsen, Jorge Lorenzo, Alessandro Mamelli, and
Ulrich Scholz

Using Architecture Models to Support the Generation and Operation
of Component-Based Adaptive Systems . 183

Nelly Bencomo and Gordon Blair

Model-Driven Assessment of QoS-Aware Self-Adaptation 201
Vincenzo Grassi, Raffaela Mirandola, and Enrico Randazzo

Part 4: Self-Healing

Automatic Generation of Runtime Failure Detectors from Property
Templates . 223

Mauro Pezzè and Jochen Wuttke

Using Filtered Cartesian Flattening and Microrebooting to Build
Enterprise Applications with Self-adaptive Healing 241

J. White, B. Dougherty, H.D. Strowd, and D.C. Schmidt

Author Index . 261

Software Engineering for Self-Adaptive Systems:
A Research Roadmap

Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi,
and Jeff Magee

(Dagstuhl Seminar Organizer Authors)

Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar,

Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi,
Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek,

Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle

(Dagstuhl Seminar Participant Authors)

r.delemos@kent.ac.uk, holger.giese@hpi.uni-potsdam.de

Abstract. The goal of this roadmap paper is to summarize the state-of-
the-art and to identify critical challenges for the systematic software engi-
neering of self-adaptive systems. The paper is partitioned into four parts,
one for each of the identified essential views of self-adaptation: modelling
dimensions, requirements, engineering, and assurances. For each view, we
present the state-of-the-art and the challenges that our community must
address. This roadmap paper is a result of the Dagstuhl Seminar 08031
on “Software Engineering for Self-Adaptive Systems,” which took place
in January 2008.

1 Introduction

The simultaneous explosion of information, the integration of technology, and
the continuous evolution from software-intensive systems to ultra-large-scale
(ULS) systems require new and innovative approaches for building, running,
and managing software systems [1]. A consequence of this continuous evolu-
tion is that software systems must become more versatile, flexible, resilient, de-
pendable, robust, energy-efficient, recoverable, customizable, configurable, and
self-optimizing by adapting to changing operational contexts, environments or
system characteristics. Therefore, self-adaptation - systems that are able to ad-
just their behaviour in response to their perception of the environment and the
system itself – has become an important research topic.

It is important to emphasize that in all the many initiatives to explore
self-adaptive behaviour, the common element that enables the provision of self-
adaptability is usually software. This applies to the research in several ap-
plication areas and technologies such as adaptable user interfaces, autonomic

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 1–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 B.H.C. Cheng et al.

computing, dependable computing, embedded systems, mobile ad hoc networks,
mobile and autonomous robots, multi-agent systems, peer-to-peer applications,
sensor networks, service-oriented architectures, and ubiquitous computing. It
also hold for many research fields, which have already investigated some aspects
of self-adaptation from their own perspective, such as fault-tolerant computing,
distributed systems, biologically inspired computing, distributed artificial in-
telligence, integrated management, robotics, knowledge-based systems, machine
learning, control theory, etc. In all these case software’s flexibility allows such
heterogeneous applications; however, the proper realization of the self-adaptation
functionality still remains a significant intellectual challenge and only recently
have the first attempts in building self-adaptive systems emerged within specific
application domains. Moreover, little endeavour has been made to establish suit-
able software engineering approaches for the provision of self-adaptation. In the
long run, we need to establish the foundations that enable the systematic devel-
opment of future generations of self-adaptive systems. Therefore it is worthwhile
to identify the commonalities and differences of the results achieved so far in the
different fields and look for ways to integrate them.

The goal of this roadmap paper is to summarize and point out the cur-
rent state-of-the-art and its limitations, as well as to identify critical challenges
for engineering self-adaptive software systems. Specifically, we intend to focus
on development methods, techniques, and tools that we believe are required
to support the systematic development of complex software systems with dy-
namic self-adaptive behaviour. In contrast to merely speculative and conjectural
visions and ad hoc approaches for systems supporting self-adaptability, the ob-
jective of this paper is to establish a roadmap for research, and to identify the
main research challenges for the systematic software engineering of self-adaptive
systems.

To present and motivate these challenges, the paper divided into four parts,
one for each of the four essential views of self-adaptation we have identified.
For each view, we present the state-of-the-art and the challenges our community
must address. The four views are: modelling dimensions (Section 2), require-
ments (Section 3), engineering (Section 4), and assurances (Section 5). Finally,
we summarize our findings in Section 6.

2 Modelling Dimensions

Endowing a system with a self-adaptive property can take many different shapes.
The way self-adaptation has to be conceived depends on various aspects, such
as, user needs, environment characteristics, and other system properties. Under-
standing the problem and selecting a suitable solution requires precise models
for representing important aspects of the self-adaptive system, its users, and
its environment. A cursory review of the software engineering literature attests
to the wide spectrum of software systems that are argued to be self-adaptive.
Indeed, there is a lack of consensus among researchers and practitioners on the
points of variation among such software systems. We refer to these points of
variations as modelling dimensions.

Software Engineering for Self-Adaptive Systems: A Research Roadmap 3

In this section, we provide a classification of modelling dimensions for self-
adaptive systems. Each dimension describes a particular aspect of the system
that is relevant for self-adaptation. Note that it is not our ambition to be ex-
haustive in all possible dimensions, but rather to give an initial impetus towards
defining a framework for modelling self-adaptive systems. The purpose is to es-
tablish a baseline from which key aspects of different self-adaptive system can
be easily identified and compared. A more elaborated discussion of the ideas
presented in this section can be found in [2].

In the following, we present the dimensions in term of four groups. First, the
dimensions associated with self-adaptability aspects of the system goals, second,
the dimensions associated with causes of self-adaptation, third, the dimensions
associated with the mechanisms to achieve self-adaptability, and fourth, the di-
mensions related to the effects of self-adaptability upon a system. The proposed
modelling framework is presented in the context of an illustrative case from
the class of embedded systems, however, these dimensions can be equally useful
in describing the self-adaptation properties, for example, of an IT change
management system.

2.1 Illustrative Case

As an illustrative scenario, we consider the problem of obstacle/vehicle collisions
in the domain of unmanned vehicles (UVs). A concrete application could be the
DARPA Grand Challenge contest [3]. Each UV is provided with an autonomous
control software system (ACS) to drive the vehicle from start to destination along
the road network. The ACS takes into account the regular traffic environment,
including the traffic infrastructure and other vehicles. The scenario we envision
is the one in which there is a UV driving on the road through a region where
people and animals can cross the road unexpectedly. To anticipate possible col-
lisions, the ACS is extended with a self-adaptive control system (SCS). The SCS
monitors the environment and controls the vehicle when a human being or an
animal is detected in front of the vehicle. In case an obstacle is detected, the
SCS manoeuvres the UV around the obstacle negotiating other obstacles and
vehicles. Thus, the SCS extends the ACS with self-adaptation to avoid collisions
with obstacles on the road.

2.2 Overview of Modelling Dimensions

We give overview of the important modelling dimensions per group. Each
dimension is illustrated with an example from the illustrative case.

Goals. Goals are objectives the system under consideration should achieve.
Goals could either be associated with the lifetime of the system or with scenarios
that are related to the system. Moreover, goals can either refer to the self-
adaptability aspects of the application, or to the middleware or infrastructure
that supports that application. In the context of the case study mentioned above,
amongst several possible goals, we consider, as an example, the following goal:

4 B.H.C. Cheng et al.

the system shall avoid collisions. This goal could be expressed in a way in which
quantities are associated with the different attributes, and partitioned into sub-
goals, with each sub-goal related to one of the attributes.

Evolution. This dimension captures whether the goals can change within the
lifetime of the system. The number of goals may change, and the goals themselves
may also change as the system as a whole evolves. Hence, goal evolution ranges
from static in which changes are not expected, to dynamic in which goals can
change at run-time, including the number of goals, i.e., the system is able to
manage and create new goals during its lifetime. In the context of the case study
since the goal is related to the safety of the UVs it is expected for the goal to
be static.

Flexibility. This dimension captures whether the goals are flexible in the way
they are expressed. This dimension is related to the level of uncertainty as-
sociated with the goal specification, which may range over three values: rigid,
constrained, and unconstrained. A goal is rigid when it is prescriptive, while
a goal is unconstrained when its statement provides flexibility for dealing with
uncertainty. An example of a rigid goal is “the system shall do this. . . ” while
an unconstrained goal is “the system might do this. . . ” A constrained goal pro-
vides a middle ground, where there is flexibility as long as certain constraints
are satisfied, such as, “the system may do this. . . as long as it does this. . . ” In
the context of the case study, the goal is rigid.

Duration. This dimension is concerned with the validity of a goal throughout the
system’s lifetime. It may range from temporary to persistent. While a persistent
goal should be valid throughout the system’s lifetime, a temporary goal may
be valid for a period of time: short, medium and long term. A persistent goal
may restrict the adaptability of the system because it may constrain the system
flexibility in adapting to change. A goal that is associated with a particular
scenario can be considered a temporary goal. In terms of duration, the goal of
the illustrative case can be considered persistent since it is related to the purpose
of the system.

Multiplicity. This dimension is related to the number of goals associated with the
self-adaptability aspects of a system. A system can either have a single goal or
multiple goals. As a general rule of thumb, a single goal self-adaptive system is
relatively easier to realize than systems with multiple goals. As discussed in the
next dimension, this is particularly true for system where the goals are related.
The illustrative case is presented in the context of a single goal.

Dependency. In case a system has multiple goals, this dimension captures how
the goals are related to each other. They can be either independent or dependent.
A system can have several independent goals (i.e., they don’t affect each other).
When the goals are dependent, goals can either be complementary with respect
to the objectives that should be achieved or they can be conflicting. In the latter

Software Engineering for Self-Adaptive Systems: A Research Roadmap 5

case, trade offs have to be analyzed for identifying an optimal configuration of
the goals to be met. In the illustrative case study there are no dependencies since
there is a single goal.

Change. Changes are the cause of adaptation. Whenever the system’s context
changes the system has to decide whether it needs to adapt. In line with [4],
we consider context as any information which is computationally accessible and
upon which behavioural variations depend. Actors (entities that interact with
the system), the environment (the part of the external world with which the sys-
tem interacts [5]), and the system itself may contribute to the context that may
influence the behaviour of the application. Actor-dependent, system-dependent,
and environment-dependent variations can occur separately, or in any combina-
tion. We classify context-dependable changes of a self-adaptive system in terms
of the place in which change has occurred, the type and the frequency of the
change, and whether it can be anticipated. All these elements are important for
identifying how the system should react to change that occurs during run-time.
In the context of the illustrative case study, we consider the cause of adaptation
the appearance of an obstacle in front of the ACS.

Source. This dimension identifies the origin of the change, which can be either
external to the system (i.e., its environment) or internal to the system, depending
on the scope of the system. In case the source of change is internal, it might be
important to identify more precisely where change has occurred: application,
middleware or infrastructure. The source of the change related to the ACS is
external to the system.

Type. This dimension refers to the nature of change. It can be functional, non-
functional, and technological. Technological refers to both software and hardware
aspects that support the delivery of the services. Examples of the three types
of change are, respectively: the purpose of the system has changed and services
delivered need to reflect this change, system performance and reliability need to
be improved, and the version of the middleware in which the application runs
has been upgraded. In the illustrative case, since the change can lead ACS to
collide against an obstacle the type of change is non-functional.

Frequency. This dimension is concerned with how often a particular change oc-
curs, and it can range from rare to frequent. If for example a change happens
quite often this might affect the responsiveness of the adaptation. Since the oc-
currence of obstacles is rare within the system lifetime, we consider changes are
rare to occur.

Anticipation. This dimension captures whether change can be predicted ahead of
time. Different self-adaptive techniques are necessary depending on the degree of
anticipation: foreseen (taken care of), foreseeable (planned for), and unforeseen
(not planned for) [6]. In the illustrative case study, the occurrence of obstacles
should be foreseeable.

6 B.H.C. Cheng et al.

Mechanisms. This set of dimensions captures the system reaction towards
change, which means that they are related to the adaptation process itself. The
dimensions associated with this group refer to the type of self-adaptation that
is expected, the level of autonomy of the self-adaptation, how self-adaptation
is controlled, the impact of self-adaptation in terms of space and time, how
responsive is self-adaptation, and how self-adaptation reacts to change.

Type. This dimension captures whether adaptation is related to the parameters
of the system’s components or to the structure of the system. Based on this,
adaptation can be parametric or structural, or a combination of these. Struc-
tural adaptation could also be seen as compositional, since it depends on how
components are integrated. In the illustrative case, to avoid collisions with ob-
stacles, the SCS has to adjust the movements of the UV, and this might imply
adjusting parameters in the steering gear.

Autonomy. This dimension identifies the degree of outside intervention during
adaptation. The range of this dimension goes from autonomous to assisted. In
the autonomous case, at run-time there is no influence external to the system
guiding how the system should adapt. On the other hand, a system can have
a degree of self-adaptability when externally assisted, either by another system
or by human participation (which can be considered another system). In the
illustrative case, for the foreseen type of changes the system is autonomous since
the UV has to avoid collisions with animals without any human intervention.

Organization. This dimension captures whether adaptation is performed by a
single component - centralized, or distributed amongst several components -
decentralized. If adaptation is decentralized no single component has a complete
control over the system. The SCS of the UV in the illustrative example seems
to fit naturally with a weak organization.

Scope. This dimension identifies whether adaptation is localized or involves the
entire system. The scope of adaptation can range from local to global. If adapta-
tion affects the entire system then more thorough analysis is required to commit
the adaptation. It is fundamental for the system to be well structured in order to
reduce the impact that change might have on the adaptation. In the illustrative
case, the adaptation is global to the UV since involves different components in
the car, such as, steering gear and brakes.

Duration. This dimension refers to the period of time in which the system is
self-adapting, or in other words, how long the adaptation lasts. The adaptation
process can be for short (seconds to hours), medium (hours to months), or long
(months to years) term. Note that time characteristics should be considered
relative to the application domain. While scope dimension deals with the impact
of adaptation in terms of space, duration deals with time. Considering that the
time it takes for the UV to react to an obstacle is minimal compared with the
lifetime of the system, the duration of the self-adaptation should be short term.

Software Engineering for Self-Adaptive Systems: A Research Roadmap 7

Timeliness. This dimension captures whether the time period for performing
self-adaptation can be guaranteed, and it ranges from best-effort to guaranteed.
For example, in case change occurs quite often, it may be the case that it is
impossible to guarantee that adaptation will take place before another change
occurs, in these situations best effort should be pursued. In the context of the
case study, the upper bounds for the SCS to manoeuvre the UV should be
identified for the timeliness associated with self-adaptation to be guaranteed.

Triggering. This dimension identifies whether the change that initiates adap-
tation is event-trigger or time-trigger. Although it is difficult to control how
and when change occurs, it is possible to control how and when the adaptation
should react to a certain change. If the time period for performing adaptation
has to be guaranteed, then an event-trigger might not provide the necessary
assurances when change is unbounded. Obstacles in the illustrative case appear
unexpectedly and as such triggering of self-adaptation is event-based.

Effects. This set of dimensions capture what is the impact of adaptation upon
the system, that is, it deals with the effects of adaptation. While mechanisms
for adaptation are properties associated with the adaptation, these dimensions
are properties associated with system in which the adaptation takes place. The
dimensions associated with this group refer to the criticality of the adaptation,
how predictable it is, what are the overheads associated with it, and whether the
system is resilient in the face of change. In the context of the illustrative case
study, a collision between an UV and an obstacle may ensue if the SCS fails.

Criticality. This dimension captures the impact upon the system in case the
self-adaptation fails. There are adaptations that harmless in the context of the
services provided by the system, while there are adaptations that might involve
the loss of life. The range of values associated with this criticality is harmless,
mission-critical, and safety-critical. The level of criticality of the application (and
the adaptation process) is safety-critical since it may lead to an accident.

Predictability. This dimension identifies whether the consequences of self-
adaptation can be predictable both in value and time. While timeliness is re-
lated to the adaptation mechanisms, predictability is associated with system.
Since predictability is associated with guarantees, the degree of predictabil-
ity can range from non-deterministic to deterministic. Given the nature of the
illustrative case, the predictability of the adaptation should be deterministic.

Overhead. This dimension captures the negative impact of system adaptation
upon the system’s performance. The overhead can range from insignificant to
system failure (e.g., thrashing). The latter will happen when the system ceases
to be able to deliver its services due to the high-overhead of running the self-
adaptation processes (monitoring, analyzer, planning, effecting processes). The

8 B.H.C. Cheng et al.

overheads associated with the SCS should be insignificant, otherwise the UV
might not be able to avoid the obstacle.

Resilience. This dimension is related to the persistence of service delivery that
can justifiably be trusted, when facing changes [6]. There are two issues that
need to be considered under this dimension: first, it is the ability of the system
to provide resilience, and second, it is the ability to justify the provided resilience.
The degree of resilience can range from resilient to vulnerable. In the context of
the illustrative case study, the system should be resilient.

2.3 Research Challenges in Modelling Dimensions

In spite of the many years of software engineering research, construction of
self-adaptive software systems has remained a very challenging task. While
substantial progress has been made in each of the discussed modelling dimen-
sions, there are several important research questions that are remaining, and
frame the future research in this area. We briefly elaborate on those below. The
discussion is structured in line with the four presented groups of modelling
dimensions.

Goals. A self-adaptive software system often needs to perform a trade-off
analysis between several potentially conflicting goals. Practical techniques for
specifying and generating utility functions, potentially based on the user’s re-
quirements, are needed. One promising direction is to use preferences that
compare situations under Pareto optimal conditions.

Change. Monitoring a system, especially when there are several different QoS
properties of interest, has an overhead. In fact, the amount of degradation in
QoS due to monitoring could outweigh the benefits of improvements in QoS to
adaptation. More research on lightweight monitoring techniques is needed.

Mechanisms. Researchers and practitioners have typically leveraged a single
tactic to realize adaptation based on the characteristics of the target application.
However, given the unique benefits of each approach, we believe a fruitful av-
enue of future research is a more comprehensive approach that leverages several
adaptation tactics simultaneously.

The application of the centralized control loop pattern to a large-scale soft-
ware system may suffer from scalability problems. There is a pressing need for
decentralized, but still manageable, efficient, and predictable techniques for con-
structing self-adaptive software systems. A major challenge is to accommodate
a systematic engineering approach that integrates both control-loop approaches
with decentralized agent inspired approaches.

Responsiveness is a crucial property in real-time software systems, hence the
need for adaptation models targeted for real-time systems that treat the duration
and overhead of adaptation as first class entities.

Software Engineering for Self-Adaptive Systems: A Research Roadmap 9

Effects. Predicting the exact behaviour of a software system due to run-time
changes is a challenging task. More advanced and predictive models of adapta-
tion are needed for systems that could fail to satisfy their requirements due to
side-effects of change.

In highly dynamic systems, such as mobile systems, where the environmen-
tal parameters change frequently, the overhead of adaptation due to frequent
changes in the system could be so high that the system ends up thrashing. The
trade-offs between the adaptation overhead and the accrued benefits of changing
the system needs to be taken into consideration for such systems.

3 Requirements

A self-adaptive system is able to modify its behaviour according to changes
in its environment. As such, a self-adaptive system must continuously monitor
changes in its context and react accordingly. But what aspects of the environment
should the self-adaptive system monitor? Clearly, the system cannot monitor
everything. And exactly what should the system do if it detects less than optimal
conditions in the environment? Presumably, the system still needs to maintain
a set of high-level goals that should be satisfied regardless of the environmental
conditions. But non-critical goals could well be relaxed, thus allowing the system
a degree of flexibility during or after adaptation.

These questions (and others) form the core considerations for building self-
adaptive systems. Requirements engineering is concerned with what a system
should do and within which constraints it must do it. Requirements engineering
for self-adaptive systems, therefore, must address what adaptations are possible
and what constrains how those adaptations are realized. In particular, ques-
tions to be addressed include: what aspects of the environment are relevant
for adaptation? Which requirements are allowed to vary or evolve at run-time,
and which must always be maintained? In short, requirements engineering for
self-adaptive systems must deal with uncertainty because the information about
future execution environments is incomplete, and therefore the requirements for
the behavior of the system may need to change (at run-time) in response to the
changing environment.

3.1 Requirements State-of-the-Art

Requirements engineering for self-adaptive systems appears to be a wide open
research area with only a limited number of approaches yet considered. Cheng
and Atlee [7] report on some previous work on specifying and verifying adaptive
software, and on run-time monitoring of requirements conformance [8,9]. They
also explain how preliminary work on personalized and customized software can
be applied to adaptive systems (e.g., [10,11]). In addition, some research ap-
proaches have successfully used goal models as a foundation for specifying the
autonomic behaviour [12] and requirements of adaptive systems [13].

10 B.H.C. Cheng et al.

One of the main challenges that self-adaptation poses is that when designing
a self-adaptive system, we cannot assume that all adaptations are known in ad-
vance — that is, we cannot anticipate requirements for the entire set of possible
environmental conditions and their respective adaptation specifications. For ex-
ample, if a system is to respond to cyber-attacks, one cannot possibly know all
attacks in advance since malicious actors develop new attack types all the time.

As a result, requirements for self-adaptive systems may involve degrees of
uncertainty or may necessarily be specified as “incomplete.” The requirements
specification therefore should cope with:

– the incomplete information about the environment and the resulting incom-
plete information about the respective behaviour that the system should
expose

– the evolution of the requirements at run-time

3.2 Research Challenges in Requirements

This subsection highlights a number of short-term and long-term research chal-
lenges for requirements engineering for self-adaptive systems. We start with
shorter-term challenges and progress to more visionary ideas. As far as the au-
thors are aware, there is little or no research currently underway to address these
challenges.

A New Requirements Language. Current languages for requirements en-
gineering are not well suited to dealing with uncertainty, which, as mentioned
above, is a key consideration for self-adaptive systems. We therefore propose
that richer requirements languages are needed. Few of the existing approaches
for requirements engineering provide this capability. In goal-modelling notations
such as KAOS [14] and i� [15], there is no explicit support for uncertainty or
adaptivity. Scenario-based notations generally do not explicitly support adapta-
tion either, although live sequence charts [16] have a notion of mandatory versus
potential behaviour that could possibly be used to specify adaptive systems. Of
course, the most common notation for specifying requirements in industry is still
natural language prose. Traditionally, requirements documents make statements
such as “the system shall do this. . . ” For self-adaptive systems, the prescriptive
notion of “shall” needs to be relaxed and could, for example, be replaced with
“the system may do this. . . or it may do that . . . ” or “if the system cannot do
this. . . then it should eventually do that. . . ” This idea leads to a new require-
ments vocabulary for self-adaptive systems that gives stakeholders the flexibility
to account for uncertainty in their requirements documents. For example:

Traditional RE:
– “The system shall do this. . .”
Adaptive RE:
– “The system might do this. . .”
– “But it may do this. . . as long as it does this. . .”

Software Engineering for Self-Adaptive Systems: A Research Roadmap 11

– “The system ought to do this. . . but if it cannot, it shall eventually do
this. . . ”

Such a vocabulary would change the level of discourse in requirements from
prescriptive to flexible. There would need to be a clear definition of terms, of
course, as well as a composition calculus for defining how the terms relate to
each other and compose. Multimodal logic and perhaps new adaptation-oriented
logic [17] need to be developed to specify the semantics for what it means to have
the possibility of conditions [18,19]. There is also a relationship with variability
management mechanisms in software product lines [20], which also tackle built-
in flexibilities. However, at the requirements level, one ideally would capture
uncertainty at a more abstract level than simply enumerating alternatives. Some
preliminary results in defining a new adaptation requirements language along
these lines are being developed [21].

Mapping to Architecture. Given a new requirements language that explicitly
handles uncertainty, it will be necessary to provide systematic methods for refin-
ing models in this language down to specific architectures that support run-time
adaptation. A variety of technical options exist for implementing reconfigura-
bility at the architecture level, including component-based, aspect-oriented and
product-line based approaches, as well as combinations of these. Potentially,
there could be a large gap in expressiveness between a requirements language
that incorporates uncertainty and existing architecture structuring methods.
One can imagine, therefore, a semi-automated process for mapping to archi-
tecture where heuristics and/or patterns are used to suggest architectural units
corresponding to certain vocabulary terms in the requirements.

Managing Uncertainty. In general, once we start introducing uncertainty
into our software engineering processes, we must have a way of managing this
uncertainty and the inevitable complexity associated with handling so many
unknowns. Certain requirements will not change (i.e., invariants), whereas others
will permit a degree of flexibility. For example, a system cannot start out as a
transport robot and self-adapt into a robot chef [22]! Allowing uncertainty levels
when developing self-adaptive systems requires a trade-off between flexibility
and assurance such that the critical high-level goals of the application are always
met [23,24,25].

Requirements Reflection. As we said above, self-adaptation deals with re-
quirements that vary at run-time. Therefore it is important that requirements
lend themselves to be dynamically observed, i.e., during execution. Reflection
[26,27,28] enables a system to observe its own structure and behaviour. A rel-
evant research work is the ReqMon tools [29] which provides a requirements
monitoring framework, focusing on temporal properties to be maintained. Lever-
aging and extending beyond these complementary approaches, Finkelstein [22]
coins the term “requirements reflection” that would enable systems to be aware
of their own requirements at run-time. This capability would require an

12 B.H.C. Cheng et al.

appropriate model of the requirements to be available online. Such an idea brings
with it a host of interesting research questions, such as: Could a system dy-
namically observe its requirements? In other words, can we make requirements
run-time objects? Future work is needed to develop technologies to provide such
infrastructure support.

Online Goal Refinement. As in the case of design decisions that are eventu-
ally realized at run-time, new and more flexible requirement specifications like
the one suggested above would imply that the system should perform the RE
processes at run-time, e.g. goal-refinement [25].

Traceability from Requirements to Implementation. A constant chal-
lenge in all the topics shown above is dynamic traceability. For example, new
operators of a new RE specification language should be easily traceable down to
architecture, design, and beyond. Furthermore, if the RE process is performed
at run-time we need to assure that the final implementation or behaviour of
the system matches the requirements. Doing so is different from the traditional
requirements traceability.

The above research challenges the requirements engineering (RE) commu-
nity will face, as the demand for self-adaptive systems continues to grow, span
RE activities during the development phases and run-time. In order to gain as-
surance about adaptive behaviour, it is important to monitor adherence and
traceability to the requirements during run-time. Furthermore, it is also nec-
essary to acknowledge and support the evolution of requirements at run-time.
Given the increasing complexity of applications requiring run-time adaptation,
the software artefacts with which the developers manipulate and analyze must
be more abstract than source code. How can graphical models, formal specifica-
tions, policies, etc. be used as the basis for the evolutionary process of adaptive
systems versus source code, the traditional artefact that is manipulated once a
system has been deployed? How can we maintain traceability among relevant
artefacts, including the code? How can we maintain assurance constraints dur-
ing and after adaptation? How much should a system be allowed to adapt and
still maintain traceability to the original system? Clearly, the ability to dynam-
ically adapt systems at run-time is an exciting and powerful capability. The RE
community, among other software engineering disciplines, need to be proactive in
tackling these complex challenges in order to ensure that useful and safe adaptive
capabilities are provided to the adaptive systems developers.

4 Engineering

The engineering of self-adaptive software systems is a major challenge, especially
if predictability and cost-effectiveness are desired. However, in other areas of
engineering and nature there is a well-known, pervasive notion that could be
potentially applied to software systems as well: the notion of feedback.

The first mechanical system that regulated its speed automatically using
feedback was Watt’s steam engine that had a regulator implementing feedback

Software Engineering for Self-Adaptive Systems: A Research Roadmap 13

control principles. Also in nature plenty examples for positive and negative feed-
back can be found that help to regulate processes.

Even though control engineering [30,31] as well as feedback found in nature
are not targeting software systems, mining the rich experiences of these fields
and applying principles and findings to software-intensive adaptive systems is
a most worthwhile and promising avenue of research for self-adaptive systems.
We further strongly believe that self-adaptive systems must be based on this
feedback principle and we advocate in this section to focus on the ’control loop’
when engineering self-adaptive systems.

In this section we first examine the generic control loop and then analyze the
control loop’s role in control theory, natural systems, and software engineering,
respectively. Finally, we describe the challenges whose resolutions are necessary
to enable the systematic engineering of self-adaptive systems. A more detailed
elaboration of the perspective presented in this section can be found in [32].

4.1 Control Loop Model

Self-adaptation aspects of software-intensive systems can often be hidden within
the system design. What self-adaptive systems have in common is that (1) typi-
cally design decisions are partially made at run-time, and (2) the systems reason
about their state and environment. This reasoning typically involves feedback
processes with four key activities: collect, analyze, decide, and act, as depicted
in Figure 1 [33].

Here, we concentrate on self-adaptive systems with feedback mechanisms
controlling their dynamic behaviour. For example, keeping web services up and
running for a long time requires collecting of information about the current state
of the system, analyzing that information to diagnose performance problems
or to detect failures, deciding how to resolve the problem (e.g., via dynamic
load-balancing or healing), and acting on those decisions.

The generic model of a control loop based on [33] (cf. Figure 1) provides an
overview of the main activities around the control loop but ignores properties
of the control and data flow around the loop. When engineering a self-adaptive
system, questions about these properties become important. We now identify
such questions and argue that in order to properly design self-adaptive software
systems, these questions must be brought to the forefront of the design process.

The feedback cycle starts with the collection of relevant data from environ-
mental sensors and other sources that reflect the current state of the system.
Some of the engineering questions that Figure 1 ignores with respect to collec-
tion but that are important to the engineering process are: What is the required
sample rate? How reliable is the sensor data? Is there a common event format
across sensors?

Next, the system analyzes the collected data. There are many approaches
to structuring and reasoning about the raw data (e.g., using applicable models,
theories, and rules). Some of the important questions here are: How is the current
state of the system inferred? How much past state may be needed in the future?
What data need to be archived for validation and verification? How faithful is the

14 B.H.C. Cheng et al.

Fig. 1. Activities of the control loop

model to the real world? Can an adequate model be derived from the available
sensor data?

Next, the system makes a decision about how to adapt in order to reach
a desirable state. Approaches such as risk analysis can help make this decision.
Here, the important questions are: How is the future state of the system inferred?
How is a decision reached (e.g., with off-line simulation or utility/goal functions)?
What are the priorities for adaptation across multiple control loops and within
a single control loop?

Finally, to implement the decision, the system must act via available
actuators and effectors. Important questions here are: When should the adapta-
tion be safely performed? How do adjustments of different control loops inter-
fere with each other? Does centralized or decentralized control help achieve the
global goal? Does the control system have sufficient command authority over the
process—that is, can the action be implemented using the available actuators
and effectors?

The above questions—as well as others—regarding the control loop should
be explicitly identified, recorded, and resolved during the development of the
self-adaptive system.

4.2 Control Loops and Control Theory

The control loop is a central element of control theory, which provides well-
established mathematical models, tools, and techniques to analyze system per-
formance, stability, sensitivity, or correctness [34,35]. Researchers have applied
results of control theory and control engineering to building self-adaptive
systems. However, it is not clear if general principles of this discipline (e.g., open/
closed-loop controller, observability, controllability, stability, or hysteresis) are
applicable to self-adaptive software systems.

Software Engineering for Self-Adaptive Systems: A Research Roadmap 15

Control engineering has determined that systems with a single control loop
are easier to reason about than systems with multiple loops. Unfortunately, the
latter types of control loops are far more common. Good engineering practice
calls for reducing multiple control loops to a single one, or making control loops
independent of each other [36]. When such decoupling is impossible, the design
must make the interactions of control loops explicit and expose how these inter-
actions are handled.

Control engineering has also identified hierarchical organization of control
loops as a fruitful way to decouple control-loop interactions. The different time
scales of the different layers of the hierarchy can minimize the unexpected in-
terference between control loops. This scheme is of particular interest if we
distinguish between forms of adaptation such as change management and goal
management [25] and can organize them hierarchically.

While mining control engineering for control-loop mechanisms applicable to
software engineering can result in breakthroughs in engineering self-adaptive
systems, one important obstacle is that different application areas of control en-
gineering introduce distinct nomenclature and architectural diagrams for their
realizations of the generic control loop depicted in Figure 1. It is useful to in-
vestigate how different application areas realize this generic control loop and to
identify the commonalities in order to compare and leverage self-adaptive sys-
tems research from different application areas. For example, control engineering
has developed standard approaches to model and reason about feedback such as
the Model Reference Adaptive Control (MRAC) [31] and the Model Identifica-
tion Adaptive Control (MIAC) [37].

Models such as MRAC and MIAC introduce well-defined elements such as
controller, process, adjustment mechanism, and system identification or model
reference along with prescribed dependencies among these elements. This form
of separation of concerns suggests that these models are a solid starting point
for the design of self-adaptive software-intensive systems. In fact, many par-
ticipants of the Dagstuhl Seminar 08031 [38] presented self-adaptive systems
that can be expressed in terms of standardized models from control engineer-
ing such as MRAC and MIAC. Examples of presented systems include a
self-adaptive flight-control system that realizes a more robust aircraft control
capable of handling multiple faults (e.g., change of aircraft dynamics due to
loss of control surface, aileron, or stabilator) [39]; a system of autonomous
shuttles that operate on demand and in a decentralized manner using a wire-
less network [40]; a multi-agent approach to an AGV transportation system
that allows agents to flexibly adapt their behavior to changes in their con-
text, realizing cooperative self-adaptation [41]; and the Rainbow system [42],
whose architecture was mapped by Shaw to the classical control loop in control
theory [43].

4.3 Control Loops and Natural Systems

In contrast to engineered self-adaptive systems, biologically or sociologically in-
spired systems do not often have clearly visible control loops. Furthermore, the

16 B.H.C. Cheng et al.

systems are often decentralized in such a way that the agents do not have a sense
of the global goal but rather it is the interaction of their local behaviour that
yields the global goal as an emergent property.

Nature is full of self-adapting systems that leverage mechanisms and types
of control loops far removed from those we use today when engineering self-
adaptive systems. Mining this rich collection of systems and creating a catalogue
of feedback types and self-adaption techniques is an important and likely fruitful
endeavour our community must undertake.

Some software systems that leverage mechanisms found in nature already
exist and promise a bright future for nature-inspired software engineering tech-
niques. For example, in systems built using the crystal-growth-inspired tile archi-
tectural style [44], components distributed around the Internet come together to
“self-assemble” and “self-organize” into a solution to an NP-complete problem.
These systems can self-adapt to exhibit properties of fault and adversary toler-
ance [45]. The self-adaptation control loop is not easily evident in the nature’s
process of crystal growth, but it does exist and increasing our understanding
of such control loops will increase our ability to engineer self-adaptive software
systems.

In addition to discovering new self-adaptation mechanisms, mining natural
systems and creating a catalogue can facilitate engineering of new novel mecha-
nisms as the combinations of existing ones. For example, while many systems in
nature use bottom-up adaptation mechanisms, it may be possible to unify the
self-adaptive top-down and self-organizing (bottom-up) mechanisms via software
architecture by considering metadata and policies with adaptation properties
and control-loop reasoning explicitly, both at design-time and run-time [46].

4.4 Control Loops and Software Engineering

We have observed that control loops are often hidden, abstracted, or internal-
ized when presenting the architecture of self-adaptive systems [43]. However, the
feedback behaviour of a self-adaptive system, which is realized with its control
loops, is a crucial feature and, hence, should be elevated to a first-class entity in
its modelling, design, and implementation.

When engineering a self-adaptive system, the properties of the control loops
affect the system’s design and architecture. Therefore, besides the control loops,
those control loops’ properties must be made explicit as well. In one approach,
Cheng et al. [47] advocate making self-adaptation external, as opposed to internal
or hard-wired, to separate the concerns of system functionality from the concerns
of self-adaptation.

Despite recent attention to self-adaptive systems (e.g., several ICSE work-
shops), development and analysis methods for such systems do not yet provide
sufficient explicit focus on the control loops and their associated properties that
almost inevitably control self-adaptation.

The idea of increasing the visibility of control loops in software architectures
and software methods is not new. Over a decade ago, Shaw compared a software
design method based on process control to an object-oriented design method [48].

Software Engineering for Self-Adaptive Systems: A Research Roadmap 17

She introduced a new software organization paradigm based on control loops,
one with an architecture that is dominated by feedback loops and their analyses,
rather than by the identification of discrete stateful objects.

4.5 Research Challenges in Engineering

We have argued that control loops are essential for self-adaptive systems. There-
fore, control loops must become first-class entities when engineering self-adaptive
systems. Understanding and reasoning about the control loops of a self-adaptive
systems is integral to advancing the engineering of self-adaptive systems’ matu-
ration from an ad-hoc, trial-and-error endeavour to a disciplined approach. We
identify the following issues as the current most critical challenges that must be
addressed in order to achieve a disciplined approach to engineering self-adaptive
systems:

Modelling. Making the control loops explicit and exposing self-adaptive prop-
erties to allow the designer to reason about the system modelling support for
control loops.

Architecture. Developing reference architectures for adaptive systems that
address issues such as structural arrangements of control loops (e.g., sequential,
parallel, hierarchy, decentralized), interactions among control loops, data flow
around the control loops, tolerances, trade-offs, sampling rates, stability and
convergence conditions, hysteresis specifications, and context uncertainty.

Design. Compiling a catalogue of common control-loop schemes and charac-
terizing control-loop elements, along with associated obligations in the form of
patterns to help classify specific kinds of interacting control loops, e.g., for man-
ual vs. automatic control or for decoupling control loops from one another. These
control-loop schemes should come from exploring existing knowledge in control
engineering, as well as other fields that use feedback, and from mining naturally
occurring systems that use adaptation.

Middleware Support. Developing middleware support to “allow researchers
with different motivations and experiences to put their ideas in practice, free
from the painful details of low-level system implementation” [49] by supporting
a framework and standardized interfaces for self-adaptive functionality.

Verification & Validation. Creating validation and verification techniques to
test and evaluate control loops’ behaviour and automatically detect unintended
interactions.

Reengineering. Exploring techniques for evolving existing systems and
injecting self-adaptation into such systems.

18 B.H.C. Cheng et al.

Human-Computer Interaction. Analyzing feedback types from human-com-
puter interaction and devising novel mechanisms for exposing the control loops
to the users, keeping the users of self-adapting systems “in the loop” to ensure
their trust.

5 Assurances

The goal of system assurance is simple. Developers need to provide evidence that
the set of stated functional and non-functional properties are satisfied during
system’s operation. While the goal is simple, achieving it is not. Traditional
verification and validation methods, static or dynamic, rely of stable descriptions
of software models and properties. The characteristics of self-adaptive systems
create new challenges for developing high-assurance systems. Current verification
and validation methods do not align well with changing goals and requirements
as well as variable software functionality. Consequently, novel verification and
validation methods are required to provide assurance in self-adaptive systems.

In this section, we present a generalized verification and validation framework
which specifically targets the characteristics of self-adaptive systems. Thereafter,
we present a set of research challenges for verification and validation methods
implied by the presented framework.

5.1 Assurances Framework

Self-adaptive systems are highly context dependent. Whenever the system’s con-
text changes the system has to decide whether it needs to adapt. Whenever the
system decides to adapt, this may prompt the need for verification activities to
provide continual assessment. Moreover, depending on the dynamics of change,
verification activities may have to be embedded in the adaptation mechanism.

Due to the uniqueness of such assessment process, we find it necessary to
propose a framework for adaptive system assurance. This framework is depicted
in Figure 2. Over a period of operation, the system operates through a series of
operational modes. Modes, represented in Figure 2 by index j, represent known
and, in some cases, unknown phases in the computational lifecycle. Examples
of known modes in flight control include altitude hold mode, flare mode and
touchdown mode. Sequences of behavioural adjustments in the known modes are
known. But, continuing with the same example, if failures change the airframe
dynamics, the application’s context changes and software control needs to sense
and adapt to the conditions unknown prior to the deployment.

Such adaptations are reflected in a series of context - system state (whatever
this is for a self-adaptive system) configurations. (C+S)ji denotes the ith combi-
nation of context and system state in a cycle which is related to the requirements
of the system mode j. At the level of configurations it is irrelevant whether the
context or the system state changes (transition tj0), the result always is a new
configuration.

Goals and requirements of a self-adaptive system may also change during run-
time. We abstract from the subtle differences between goals and requirements

Software Engineering for Self-Adaptive Systems: A Research Roadmap 19

Mj0

mj0

Mj1

(C + S)j1(C + S)j0

Mjk

(C + S)jk
tjk−1

|= Pj

j-1 j+1

|=
tj0|=

mjk−1

P
t
j0

P
t
jk−1

Fig. 2. V & V model

for the generalized framework and instead use the more generic term proper-
ties. In self-adaptive systems, properties may change over time in response to
changes in the system context or the system state. Properties might be relevant
in one context and completely irrelevant in some other. Properties might even
be weighted against each other, resulting in a trade offs between properties and,
thus, their partial fulfilment. Properties can also be related to each other. Global
properties like safety requirements must be satisfied over the entire life time of
a system, through all the system modes. Different local properties P t

ji
within

a context might guarantee a global property. Similarly, a local property may
guarantee that a global property is not invalidated by the changes.

Verification of the properties typically relies on the existence of models.
System dynamics and changing requirements of self-adaptive systems make it
impossible to build a steady model before system deployment and perform all
verification tasks on such a model. Therefore, models need to be built and main-
tained at run-time. In Figure 2, Mji is the model that corresponds to configura-
tion (C + S)ji . Each change in the system configuration needs to be reflected at
model level as well, letting the model evolve accordingly from one configuration
to the other, not necessarily linearly as depicted in Figure 2. Delays in model
definition may also be inevitable. In Figure 2, the evolution of models from one
configuration to the other is denoted by mji . The complexity of such evolution
moves along two dimensions. On one side the model must be efficiently updated
to reflect the system changes, on the other it should still reflect an accurate
representation of reality.

5.2 Research Challenges in Assurances

While verification and validation of properties in distributed systems is not
a novel problem, a number of additional issues arise in the context of self-
adaptation due to the nature of these applications. Self-adapting systems have

20 B.H.C. Cheng et al.

to contend with dynamic changes in modes and contexts as well as the dynamic
changes in user requirements. Due to this high dynamism, V&V methods tra-
ditionally applied at requirements and design stages of development must be
supplemented with run-time assurance techniques.

Dynamic Identification of Changing Requirements. System requirements
can change implicitly, as a result of a change in context. Since in dynamic en-
vironments all eventualities cannot be anticipated, self-adapting systems have
to be able to identify new contexts. There will inevitably be uncertainty in the
process of context identification. Once the context is identified, utility functions
evaluate trade-offs between the properties (goals) aligned with the context. The
adequacy of context identification and utility functions is subject to verification.
It appears that failure detection and identification techniques from distributed
fault tolerant computing are a special case of context identification. Given that
all such techniques incorporate uncertainty, probabilistic approaches to assur-
ance seem to be the most promising research direction.

Adaptation-Specific Model-Driven Environments. To deal with the chal-
lenges of adaptation we envisage a model-driven development, where models
play a key role throughout the development [50]. Models allow the application of
verification and validation methods during the development process and can sup-
port self-adaptation at run-time. In fact, models can support estimation of sys-
tem’s status, so that the impact of a context change can be predicted. Provided
that such predictions are reliable, it should be possible to perform model-based
adaptation analysis as a verification activity [51]. A key issue in this approach
is to keep the run-time models synchronized with the changing system. Any
model based verification, therefore, presumes the availability of accurate change
tracking algorithms that keep system model synchronized with the run-time
environment. Uncertain model attributes can be described, for example, using
probability distribution functions, the attribute value ranges, or using the analy-
sis of historical attribute values. These methods can take advantage of probability
theory and statistics that helped solve stochastic problems in the past.

Agile Run-Time Assurance. In situations when models that accurately rep-
resent the dynamic interaction between system context and state cannot be de-
veloped, performing verification activities that address verification at run-time
are inevitable. The key requirement for run-time verification is the existence of
efficient agile solution algorithms which do not require high space/time complex-
ity. Self-adaptive systems may change their state quickly to respond to context
or property changes. An interesting class of verification techniques is that in-
spired by Proof-Carrying Code (PCC). PCC is a technique by which a host
platform can verify that code provided that needs to be executed adheres to a
predefined, still limited, set of safety rules. The limitation of the PCC paradigm
is that executed code must contain a formal safety proof that attests to the fact
that the code respects the defined safety policy. Defining such kind of proofs

Software Engineering for Self-Adaptive Systems: A Research Roadmap 21

for code segments which are parameterized and undergo changes and for larger
classes of safety properties is a challenge. When formal property proofs do not
seem feasible, run-time assurance techniques may rely on demonstrable prop-
erties of adaptation, like convergence and stability. Adaptation is a transient
behaviour and the fact that a sequence of observable states converge towards a
stable state is always desirable. Transient states may not satisfy local or global
properties (or we just cannot prove that they do). Therefore, the analysis of the
rate of convergence may inspire confidence that system state will predictably
quickly reach a desirable state. Here we intentionally use term “desirable” rather
than “correct” state because we may not know what a correct adaptation is in
an unforeseen context [52]. This problem necessitates investigation of scientific
principles needed to move software assurance beyond current conceptions and
calculations of correctness.

Liability and Social Aspects. Adaptive functionality in safety-critical sys-
tems is already a reality. Applications of adaptive computing in safety critical
systems are on the rise [39,53]. Autonomous software adaptation raises new chal-
lenges in the legal and social context. Generally, if software does not perform as
expected, the creator may be held liable. Depending on the legal theory, differ-
ent issues will be relevant in a legal inquiry [54]. Software vendors may have a
difficult time to argue that they applied the expected care when developing a crit-
ical application if the software is self-adaptive. Software may enter unforeseeable
states that have never been tested or reasoned about. It can be also argued that
current state-of-the-art engineering practices are not sufficiently mature to war-
rant self-adaptive functionality. However, certain liability claims for negligence
may be rebutted if it can be show safety mechanisms could disable self-adaptive
functionality in hazardous situations. Assurance of self-adaptive software is then
not only a step to make the product itself safer, but should be considered a valid
defence against liability claims.

6 Lessons and Challenges

In this section, we present the overall conclusions of the roadmap paper in the
context of lessons learned and the major ensuing challenges for our community.
First and foremost, we must point out that this exercise had no intention of being
exhaustive. We made the choice to focus on the four major issues we identified as
the key in the software engineering of self-adaptive systems process: modelling
dimensions, requirements, engineering, and assurances.

The presentations of each of the four views intend not to cover all the re-
lated aspects, but rather focused theses as a means for identifying the challenges
associated with each view. The four identified theses are:

– modelling dimensions - the need to enumerate and classify modelling di-
mensions for obtaining precise models to support run-time reasoning and
decision making for achieving self-adaptability;

22 B.H.C. Cheng et al.

– requirements - the need to define a new requirements language for handling
uncertainty to give self-adaptive systems the freedom to do adaptation;

– engineering - the need to consider feedback control loops as first-class entities
during engineering of self-adaptive systems;

– assurances - the need to define novel verification and validation methods for
the provision of assurances that cover the self-adaptation of systems.

We now summarize the most important challenges of each the views identified.

Modelling Dimensions. A major challenge in modelling dimensions is defining
models that can represent a wide range of system properties. The more precise
the models are, the more effective they should be in supporting run-time analysis
and decision process. However, at the same time, models should be sufficiently
general and simple to keep synthesis feasible. Defining utility functions for sup-
porting decision making is a challenging task, and we need practical techniques
to specify and generate such utility functions.

Requirements. The major challenge in requirements is defining a new lan-
guage capable of capturing uncertainty at an abstract level. Once we consider
uncertainty at the requirements stage, we must also find means of managing it.
Thus, we need to represent the trade offs between the flexibility provided by
the uncertainty and the assurances required by the application. Since require-
ments might vary at run-time, systems should be aware of their own require-
ments, creating a need for requirements reflection and online goal refinement.
It is important to note that requirements should not be considered in isolation
and we must develop techniques for mapping requirements into architecture and
implementation.

Engineering. In order to properly engineer self-adaptive software systems, the
feedback control loop must become a first-class entity throughout the process.
To allow this, there is the need for modelling support to make the loop’s role
explicit. Explicit modelling of the loops will ease reifying system properties to
allow their query and modification at run-time. In order to facilitate reasoning
between system properties and the feedback control loop, reference architectures
must highlight key aspects of the loop, such as, number, structural arrangements,
interactions, and stability conditions. In order to maintain users’ trust, certain
aspects of the control must be exposed to the users. Finally, in order to facilitate
organized use and reuse of self-adaptation mechanisms, the community must
compile a catalog of feedback control loops, explicitly explaining their properties,
benefits and shortcomings, and interaction possible methods for interaction with
other loops.

Assurances. The major challenge in assurances is supplementing traditional
methods applied at requirements and design stages of development with
run-time assurances. Since system context is dynamic at run-time, systems must
identify new contexts dynamically. In order to handle the uncertainty associated

Software Engineering for Self-Adaptive Systems: A Research Roadmap 23

with this process, models must include uncertainty via, e.g., probabilistic ap-
proaches. Further, adaptation-specific model-driven environments may facilitate
modelling support of run-time self-adaptation; however, these environments must
be lightweight, in order to allow run-time verification without impacting system
performance. One approach to run-time verification of assurances is the labelling
of such assurances as “desirable,” rather than “required.”

There are several aspects related to software engineering of self-adaptive sys-
tems that we did not cover. One of them is processes, which are an integral part
of software engineering. Software engineering processes are essentially associated
with design-time; however, engineering of self-adaptive systems will also require
run-time processes for handling change. This may require re-evaluating how soft-
ware should be developed for self-adaptive systems. For example, instead of a
single process, two complementary processes may be required for coordinating
the design-time and run-time activities of building software, which might lead to
a whole new way of developing software. Technology should enable and influence
the development of self-adaptive systems. Other aspects of software engineer-
ing related to self-adaptation are technologies like model-driven development,
aspect-oriented programming, and software product lines. These technologies
might offer new opportunities and offer new processes in the development of
self-adaptive systems.

During the course of our work, we have learned that the area of self-adaptive
systems is vast and multidisciplinary. Thus, it is important for software engi-
neering to learn and borrow from other fields of knowledge that are working or
have being working in the development and study of similar systems, or have
already contributed solutions that fit the purpose of self-adaptive systems. We
have already mentioned some of the fields, such as control theory and biology,
but decision theory, non-classic computation, and computer networks may also
prove to be useful. Finding a solution in one of these fields that fits our needs ex-
actly is unlikely; however, studying a wide range of exemplars is likely to provide
necessary knowledge of benchmarks, methods, techniques, and tools to solve the
challenges of engineering self-adaptive software systems.

The four theses we have discussed in this paper outline new challenges that
our community must face in engineering self-adapting software systems. These
challenges all result from the dynamic nature of adaptation. This dynamic na-
ture brings uncertainty that some traditional software engineering principles and
techniques are the proper way to go about designing self-adaptive systems and
will likely require novel solutions.

References

1. Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,
Klein, M., Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-large-scale
systems: The software challenge of the future. Technical report, Software Engineer-
ing Institute (2006), http://www.sei.cmu.edu/uls/

http://www.sei.cmu.edu/uls/

24 B.H.C. Cheng et al.

2. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Towards a classification of self-
adaptive software system. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525.
Springer, Heidelberg (2009)

3. Seetharaman, G., Lakhotia, A., Blasch, E.P.: Unmanned Vehicles Come of Age:
The DARPA Grand Challenge. Computer 39, 26–29 (2006)

4. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7, 125–151 (2008)

5. Jackson, M.: The meaning of requirements. Annals of Software Engineering 3, 5–21
(1997)

6. Laprie, J.C.: From dependability to resilience. In: International Conference on De-
pendable Systems and Networks (DSN 2008), Anchorage, AK, USA, pp. G8–G9
(2008)

7. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 285–303. IEEE Computer
Society, Minneapolis (2007)

8. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In:
IEEE International Symposium on Requirements Engineering (RE 1995), pp. 140–
147 (1995)

9. Savor, T., Seviora, R.: An approach to automatic detection of software failures in
realtime systems. In: IEEE Real-Time Technology and Applications Symposium,
pp. 136–147 (1997)

10. Sutcliffe, A., Fickas, S., Sohlberg, M.M.: PC-RE a method for personal and con-
text requirements engineering with some experience. Requirements Engineering
Journal 11, 1–17 (2006)

11. Liaskos, S., Lapouchnian, A., Wang, Y., Yu, Y., Easterbrook, S.: Configuring com-
mon personal software: a requirements-driven approach. In: 13th IEEE Interna-
tional Conference on Requirements Engineering (RE 2005), pp. 9–18. IEEE Com-
puter Society, Los Alamitos (2005)

12. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. In: CASCON 2006: Proceedings of the 2006
Conference of the Center for Advanced Studies on Collaborative Research, p. 7.
ACM, New York (2006)

13. Goldsby, H.J., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.C.: Goal-based
modeling of dynamically adaptive system requirements. In: 15th Annual IEEE
International Conference on the Engineering of Computer Based Systems (ECBS)
(2008)

14. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal directed requirements ac-
quisition. In: Selected Papers of the Sixth International Workshop on Software
Specification and Design (IWSSD), pp. 3–50 (1993)

15. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: 3rd IEEE International Symposium on Requirements Engineering
(RE 1997), Washington, DC, USA, p. 226 (1997)

16. Harel, D., Marelly, R.: Come Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2005)

17. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program seman-
tics. Journal of Systems and Software (JSS), Architecting Dependable Systems 79,
1361–1369 (2006)

18. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over incon-
sistent viewpoints. In: Proceedings of International Conference on Software Engi-
neering (ICSE 2001), pp. 411–420 (2001)

Software Engineering for Self-Adaptive Systems: A Research Roadmap 25

19. Sabetzadeh, M., Easterbrook, S.: View merging in the presence of incompleteness
and inconsistency. Requirements Engineering Journal 11, 174–193 (2006)

20. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-
niques. Software: Practice and Experience 35, 705–754 (2005)

21. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.: A language for self-adaptive
system requirement. In: SOCCER Workshop (2008)

22. Finkelstein, A.: Requirements reflection. Dagstuhl Presentation (2008)
23. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-

ware. In: Proceedings of International Conference on Software Engineering (ICSE
2006), Shanghai,China (2006)

24. Robinson, W.N.: Monitoring web service requirements. In: Proceedings of Interna-
tional Requirements Engineering Conference (RE 2003), pp. 65–74 (2003)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE
2007: 2007 Future of Software Engineering, Minneapolis, MN, USA, pp. 259–268.
IEEE Computer Society, Los Alamitos (2007)

26. Maes, P.: Computional reflection. PhD thesis, Vrije Universiteit (1987)
27. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware.

Communications of the ACM 45, 33–38 (2002)
28. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A generic compo-

nent model for building systems software. ACM Transactions on Computer Systems
(2008)

29. Robinson, W.: A requirements monitoring framework for enterprise systems. Re-
quirements Engineering 11, 17–24 (2006)

30. Tanner, J.A.: Feedback control in living prototypes: A new vista in control engi-
neering. Medical and Biological Engineering and Computing 1(3), 333–351 (1963),
http://www.springerlink.com/content/rh7wx0675k5mx544/

31. Dumont, G., Huzmezan, M.: Concepts, methods and techniques in adaptive control.
In: Proceedings American Control Conference (ACC 2002), Anchorage, AK, USA,
vol. 2, pp. 1137–1150 (2002)

32. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litiou, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feed-
back loops. In: Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.)
Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Sci-
ence Hot Topics, vol. 5525 (2009)

33. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Transactions Autonomous Adaptive Systems (TAAS) 1(2), 223–259 (2006)

34. Burns, R.: Advanced Control Engineering. Butterworth-Heinemann (2001)
35. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 10th edn. Prentice-Hall, En-

glewood Cliffs (2005)
36. Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Princeton Uni-

versity Press, Princeton (1999)
37. Söderström, T., Stoica, P.: System Identification. Prentice-Hall, Englewood Cliffs

(1988)
38. Schloss Dagstuhl Seminar 08031 Wadern, Germany: Software Engineering for Self-

Adaptive Systems (2008), http://www.dagstuhl.de/08031/
39. Liu, Y., Cukic, B., Fuller, E., Yerramalla, S., Gururajan, S.: Monitoring tech-

niques for an online neuro-adaptive controller. Journal of Systems and Software
(JSS) 79(11), 1527–1540 (2006)

http://www.springerlink.com/content/rh7wx0675k5mx544/
http://www.dagstuhl.de/08031/

26 B.H.C. Cheng et al.

40. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool support for the design of self-optimizing mechatronic multi-agent systems.
International Journal on Software Tools for Technology Transfer (STTT) 10 (2008)
(to appear)

41. Weyns, D.: An architecture-centric approach for software engineering with situated
multiagent systems. PhD thesis, Department of Computer Science, K.U. Leuven,
Leuven, Belgium (2006)

42. Garlan, D., Cheng, S.W., Schmerl, B.: Increasing system dependability through
architecture-based self-repair. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems. LNCS, vol. 2677. Springer, Heidelberg (2003)

43. Müller, H.A., Pezzè, M., Shaw, M.: Visibility of control in adaptive systems. In:
Second International Workshop on Ultra-Large-Scale Software-Intensive Systems
(ULSSIS 2008), ICSE 2008 Workshop (2008)

44. Brun, Y., Medvidovic, N.: An architectural style for solving computationally inten-
sive problems on large networks. In: Proceedings of Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS 2007), Minneapolis, MN, USA (2007)

45. Brun, Y., Medvidovic, N.: Fault and adversary tolerance as an emergent property
of distributed systems’ software architectures. In: Proceedings of the 2nd Interna-
tional Workshop on Engineering Fault Tolerant Systems (EFTS 2007), Dubrovnik,
Croatia, pp. 38–43 (2007)

46. Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: Metaself - a
framework for designing and controlling self-adaptive and self-organising systems.
Technical Report BBKCS-08-08, School of Computer Science and Information Sys-
tems, Birkbeck College, London, UK (2008)

47. Cheng, S.W., Garlan, D., Schmerl, B.: Making self-adaptation an engineering re-
ality. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van
Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 158–173.
Springer, Heidelberg (2005)

48. Shaw, M.: Beyond objects. ACM SIGSOFT Software Engineering Notes
(SEN) 20(1), 27–38 (1995)

49. Babaoglu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel,
A.P.A.: The self-star vision. In: Babaoglu, O., Jelasity, M., Montresor, A., Fetzer,
C., Leonardi, S., van Moorsel, A. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp.
1–20. Springer, Heidelberg (2005)

50. Inverardi, P., Tivoli, M.: The future of software: Adaptation and dependability. In:
ISSSE 2008, pp. 1–31 (2008)

51. Sama, M., Rosenblum, D., Wang, Z., Elbaum, S.: Model-based fault detection in
context-aware adaptive applications. In: International Symposium on Foundations
of Software Engineering (2008)

52. Liu, Y., Cukic, B., Gururajan, S.: Validating neural network-based online adaptive
systems: A case study. Software Quality Journal 15(3), 309–326 (2007)

53. Hageman, J.J., Smith, M.S., Stachowiak, S.: Integration of online parameter iden-
tification and neural network for in-flight adaptive control. Technical Report
NASA/TM-2003-212028, NASA (2003)

54. Kaner, C.: Software liability. Software QA 4 (1997)

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 27–47, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Modeling Dimensions of Self-Adaptive
Software Systems

Jesper Andersson1, Rogério de Lemos2, Sam Malek3, and Danny Weyns4

1 Department of Computer Science, Växjö University,
S-351 95 Växjö Sweden

jesper.andersson@msi.vxu.se
2 Computing Laboratory, University of Kent,

Canterbury, Kent, CT2 7NF, UK
r.delemos@kent.ac.uk

3 Department of Computer Science, George Mason University,
MS 4A4, 4400 University Drive, Fairfax, VA, 22030 U.S.A.

smalek@gmu.edu
4 Departement Computerwetenschappen, Katholieke Universiteit Leuven,

Celestijnenlaan 200 A, B-3001 Leuven, Belgium
danny.weyns@cs.kuleuven.be

Abstract. It is commonly agreed that a self-adaptive software system is one that
can modify itself at run-time due to changes in the system, its requirements, or
the environment in which it is deployed. A cursory review of the software engi-
neering literature attests to the wide spectrum of software systems that are
described as self-adaptive. The way self-adaptation is conceived depends on
various aspects, such as the users’ requirements, the particular properties of a
system, and the characteristics of the environment. In this paper, we propose a
classification of modeling dimensions for self-adaptive software systems. Each
modeling dimension describes a particular facet of the system that is relevant to
self-adaptation. The modeling dimensions provide the engineers with a com-
mon set of vocabulary for specifying the self-adaptive properties under consid-
eration and select suitable solutions. We illustrate how the modeling dimensions
apply to several application scenarios.

Keywords: Self-Adaptive, Self-*, Dynamic Adaptation, Modeling.

1 Introduction

Over the past few decades we have witnessed an unrelenting pattern of growth in the size
and complexity of software systems. This pattern of growth, which is very likely to con-
tinue well into the foreseeable future, has motivated software engineering researchers to
develop techniques and tools that allow developers to deal with the complexity of design-
ing, building and testing large-scale software systems. However, for the large part these
advances have relied heavily on human reasoning or manual intervention.

At the same time, the emergence of highly distributed, mobile, and embedded sys-
tems that are often long-lived has made it increasingly infeasible to manually manage

28 J. Andersson et al.

and control such systems. This has prompted the development of a new class of soft-
ware systems, namely self-adaptive software systems, which can modify their behav-
ior at run-time due to changes in the system, its requirements, or the environment in
which it is deployed. A cursory review of the software engineering literature attests to
the wide spectrum of software systems that are argued to be self-adaptive. Indeed,
there is a lack of consensus among researchers and practitioners on the points of
variation among such software systems. We refer to these points of variations as mod-
eling dimensions. The underlying insight guiding our study is that any self-adaptive
system is built according to a conceptual model of adaptation, irrespective of the
technologies and tools leveraged for its implementation. In fact, often the models of
self-adaptation are represented implicitly in the form of domain knowledge or the
engineer’s expertise in the development of these systems. This in turn makes it harder
to systematically, or even qualitatively, compare the different approaches.

In this paper, we identify modeling dimensions that describe various facets of self-
adaptation, and classify these modeling dimensions in terms of four groups. This
classification allows engineers to precisely specify the self-adaptive properties under
consideration and select suitable solutions.

Note that it is not our ambition to be exhaustive, nor do we claim this is the only,
or even the most appropriate classification. Our objective is to provide an initial impe-
tus towards defining a comprehensive classification of key properties that are associ-
ated with self-adaptive systems. The purpose of such study is to establish a baseline
from which key aspects of different self-adaptive system can be easily identified and
compared. We demonstrate our classification’s application in three different applica-
tion domains. This exercise has served not only as a preliminary evaluation of the
proposed classification, but has also helped us (the developers of these systems) to
learn more about the specifics and in some cases intrinsically hidden characteristics of
our systems. Finally, the classification of the modeling dimensions has aided us with
identifying the current shortcomings of the state-of-the-art, which we propose to the
software engineering community as future research challenges. We hope that it paves
the way for focusing the future research efforts in this area.

The remainder of the paper is organized as follows. Section 2. describes an illustra-
tive case, which serves as a motivating scenario for describing the classification of the
modeling dimensions. Section 3. presents the details of the modeling dimensions.
Section 4. discusses the application of the classification on two representative self-
adaptive software systems. Section 5. provides an overview of open research chal-
lenges. Section 6. provides some pointers to related work. Finally, the paper concludes
with a discussion of our contributions and our plans for extending this work.

2 Illustrative Case Study

As an illustrative case study, we consider the problem of obtaining dependable stock
quotes from several, potentially unreliable, web sources [15]. The self-adaptation
problem being considered is how to obtain reliable and available stock quotes through
architectural reconfiguration. There are several web sources for stock quotes, for
example, Yahoo, Google, CNN, Reuters and FT, but these sources might not be avail-
able all the time, and there are no guarantees that the values that are being provided

 Modeling Dimensions of Self-Adaptive Software Systems 29

are correct, and moreover, their quality of services (QoS) may change. Based on the
availability of resources, different fault-tolerant strategies, which rely on mechanisms,
such as, voting, comparison and exception handling are employed in order to guaran-
tee the delivery of dependable stock quotes. It is also assumed that the non-functional
requirements (NFR) related to dependability may change during the system lifetime.

The system comprises (1) the application software that includes bridges for han-
dling architectural mismatches and the fault tolerant strategies, (2) middleware that
supports access to web services, and (3) the system infrastructure that includes com-
puter hosts and the local area network. The user and the web sources for stock quotes
are not considered to be part of the system.

3 Modeling Dimensions

We have grouped the identified key modeling dimensions for self-adaptive software
systems into four groups: first, the dimensions associated with self-adaptability as-
pects of the system goals, second, the dimensions associated with causes of
self-adaptation, third, the dimensions associated with the mechanisms to achieve self-
adaptability, and fourth, the dimensions related to the effects of self-adaptability upon
a system. Table 1 provides a summary of the modeling dimensions and their associ-
ated groups. Below we use different facets of the illustrative case study to exemplify
the different modeling dimensions.

3.1 Goals

Goals are objectives the system under consideration should achieve [13]. Goals could
either be associated with the lifetime of the system or with scenarios that are related to
the system. Moreover, goals can either refer to the self-adaptability aspects of the
application, or to the middleware or infrastructure that supports that application.

In the context of the case study mentioned above, amongst several possible goals,
we consider, as an example, the following goal: “the system shall deliver dependable
(correct, responsive and available) stock quotes from the web”. This goal could be
expressed in a way in which quantities are associated with the different attributes, and
partitioned into sub-goals, with each sub-goal related to one of the attributes.

Evolution. This dimension captures whether the goals can change within the lifetime
of the system. The number of goals may change, and the goals themselves may also
change as the system as a whole evolves. Hence, goal evolution ranges from static in
which changes are not expected, to dynamic in which goals can change at run-time,
including the number of goals, i.e., the system is able to manage and create new goals
during its lifetime.

In the context of the case study, the degree of goal evolution is static because a
goal is not expected to change at run-time. However, if some stock quote providers
start to charge for their services, then a new goal could be introduced to accommodate
the need of the system to look for free services.

30 J. Andersson et al.

Table 1. Modeling dimensions for self-adaptive software systems

Dimensions Degree Definition
Goals – goals are objectives the system under consideration should achieve
evolution static to dynamic whether the goals can change within the lifetime

of the system
flexibility rigid, constrained,

unconstrained
whether the goals are flexible in the way they are
expressed

duration temporary to persistent validity of a goal through the system lifetime
multiplicity single to multiple how many goals there are?
dependency independent to dependent

(complementary to
conflicting)

how the goals are related to each other

Change – change is the cause for adaptation
source external (environmental),

internal (application,
middleware, infrastructure)

where is the source of change?

type functional, non-functional,
technological

what is the nature of change?

frequency rare to frequent how often a particular change occurs?
anticipation foreseen, foreseeable,

unforeseen
whether change can be predicted

Mechanisms – what is the reaction of the system towards change
type parametric to structural whether adaptation is related to the parameters of

the system components or to the structure of the
system

autonomy autonomous to assisted
(system or human)

what is the degree of outside intervention during
adaptation

organization centralized to decentralized whether the adaptation is done by a single
component or distributed amongst several
components

scope local to global whether adaptation is localized or involves the
entire system

duration short, medium, long term how long the adaptation lasts
timeliness best effort to guaranteed whether the time period for performing self-

adaptation can be guaranteed
triggering event-trigger to time-trigger whether the change that triggers adaptation is

associated with an event or a time slot
Effects – what is the impact of adaptation upon the system
criticality harmless, mission-critical,

safety-critical
impact upon the system in case the self-adaptation
fails

predictability non-deterministic to
deterministic

whether the consequences of adaptation can be
predictable

overhead insignificant to failure the impact of system adaptation upon the quality
of services of the system

resilience resilient to vulnerable the persistence of service delivery that can
justifiably be trusted, when facing changes

 Modeling Dimensions of Self-Adaptive Software Systems 31

Flexibility. This dimension captures whether the goals are flexible in the way they are
expressed [4]. This dimension is related to the level of uncertainty associated with the
goal specification, which may range over three values: rigid, constrained, and uncon-
strained. A goal is rigid when it is prescriptive, while a goal is unconstrained when its
statement provides flexibility for dealing with uncertainty. An example of a rigid goal
is “the system shall do this…”, while an unconstrained goal is “the system might do
this…” A constrained goal provides a middle ground, where there is flexibility as long
as certain constraints are satisfied, such as, “the system may do this… as long as it
does this…”

In the context of the case study, the goal as stated is rigid. However, if we consider
a scenario in which the non-functional requirements (NFR) associated with a goal can
change according to the quality of services (QoS) of the resources available, then the
goal in terms of flexibility could be considered unconstrained. For example, if the
NFR associated with the goal cannot be achieved, then the goal can be relaxed
through some best effort analysis.

Duration. This dimension is concerned with the validity of a goal throughout the
system’s lifetime. It may range from temporary to persistent. While a persistent goal
should be valid throughout the system’s lifetime, a temporary goal may be valid for a
period of time: short, medium and long term. A persistent goal may restrict the
adaptability of the system because it may constrain the system flexibility in adapting
to change. A goal that is associated with a particular scenario can be considered a
temporary goal.

In terms of duration, the goal of the illustrative case can be considered persistent
since it is related with the purpose of the system. On the other hand, a temporary
goal could be “the system shall deliver stock quotes more often when the volume of
transactions go above a certain threshold”.

Multiplicity. This dimension is related to the number of goals associated with the
self-adaptability aspects of a system. A system can either have a single goal or multi-
ple goals. As a general rule of thumb, a single goal self-adaptive system is relatively
easier to realize than systems with multiple goals. As discussed in the next dimension,
this is particularly true for system where the goals are related.

In the illustrative case, since there are several NFRs associated with the system’s
overall objective, there are several goals that need to be satisfied. Therefore, we
characterize the multiplicity dimension as multiple.

Dependency. In case a system has multiple goals, this dimension captures how the
goals are related to each other. They can be either independent or dependent. A sys-
tem can have several independent goals (i.e., they don’t affect each other). When the
goals are dependent, goals can either be complementary with respect to the objectives
that should be achieved or they can be conflicting. In the latter case, tradeoffs have to
be analyzed for identifying an optimal configuration of the goals to be met.

In the illustrative example, the goals that are extracted from the main objective can
be considered dependent. Moreover, if cost is introduced as a NFR, then the goals can
be considered as conflicting since those web sources that are able to provide better
QoS might have a higher associated cost.

32 J. Andersson et al.

3.2 Change

Changes are the cause of adaptation. When there is a change in the system, its re-
quirements, or the environment in which it is deployed, this may cause the system to
self-adapt. There are changes in which the system is expected to act upon, while oth-
ers can be masked from the system. Changes can be classified in terms of place in
which change has occurred, the type and the frequency of the change, and whether it
can be anticipated. All these elements are important for identifying how the system
should react to change that occurs during run-time.

In the context of the illustrative case study mentioned above, we consider the cause
of adaptation to be the failure of web sources, the reduced QoS from web sources, and
changes in the NFR (expressed as goals) associated with the system.

Source. This dimension identifies the origin of the change, which can be either exter-
nal to the system (i.e., its environment) or internal to the system, depending on the
scope of the system. In case the source of change is internal, it might be important
to identify more precisely where change has occurred: application, middleware or
infrastructure.

The source of the two changes related to the service providers is external to the
system. The change of Apache version, on which the application runs, is an internal
change that happens in the middleware.

Type. This dimension refers to the nature of change. It can be functional, non-
functional, and technological. Technological refers to both software and hardware
aspects that support the delivery of the services. Examples of the three types of
change are, respectively: the purpose of the system has changed and services deliv-
ered need to reflect this change, system performance and reliability need to be im-
proved, and the version of the middleware in which the application runs has been
upgraded.

In the illustrative case, since the changes are related to the QoS of the web sources,
the type of change is non-functional, and the failure of a web source is also consid-
ered a non-functional change. An example of a technological change is the upgrade of
the Apache version.

Frequency. This dimension is concerned with how often a particular change occurs,
and it can range from rare to frequent. If for example a change happens quite often
this might affect the responsiveness of the adaptation.

Failures in the web sources are expected to occur quite often, hence the frequency
of change is frequent. On the other hand, if we consider changes in NFR, these should
be quite rare to occur.

Anticipation. This dimension captures whether change can be predicted ahead of
time. Different self-adaptive techniques are necessary depending on the degree of
anticipation: foreseen (taken care of), foreseeable (planned for), and unforeseen (not
planned for) [14].

Although faults are undesirable, they should be expected to occur, hence the failure
of a web resource should be considered as foreseen. In contrast, the upgrade of the

 Modeling Dimensions of Self-Adaptive Software Systems 33

Apache should be considered as a foreseeable change, and the provision of depend-
able weather forecast instead of stock quotes should be considered as unforeseen.

3.3 Mechanisms

This set of dimensions captures the system reaction towards change, which means that
they are related to the adaptation process itself. The dimensions associated with this
group refer to the type of self-adaptation that is expected, the level of autonomy of the
self-adaptation, how self-adaptation is controlled, the impact of self-adaptation in
terms of space and time, how responsive is self-adaptation, and how self-adaptation
reacts to change.

In the context of the illustrative case study mentioned earlier, we consider the
mechanism for self-adaptation to be the system’s architectural reconfiguration in
which the structure of the system is modified as a means to accommodate change.

Type. This dimension captures whether adaptation is related to the parameters of the
system’s components or to the structure of the system. Based on this, adaptation can
be parametric or structural, or a combination of these. Structural adaptation could
also be seen as compositional, since it depends on how components are integrated
(e.g., dynamic weaving [20]).

The type of self-adaption considered in the illustrative case study is structural since
configurations are changed and components and connectors are replaced. An example
of structural adaptation is when a configuration based on majority voting has to be
changed to a configuration based on comparison because of the lack of resources.

A parametric type self-adaptation would be to increase the time interval between
two stock quote readings.

Autonomy. This dimension identifies the degree of outside intervention during adapta-
tion. The range of this dimension goes from autonomous to assisted. In the autono-
mous case, at run-time there is no influence external to the system guiding how the
system should adapt. On the other hand, a system can have a degree of self-adaptability
when externally assisted, either by another system or by human participation (which
can be considered another system).

In the illustrative case, for the foreseen type of changes the system is autonomous,
but for the foreseeable type of changes, such as a change in the Apache version,
human participation is likely to be required.

Organization. This dimension captures whether adaptation is performed by a single
component – centralized, or distributed amongst several components – decentralized.
If adaptation is decentralized no single component has a complete control over the
system.

The self-adaptation in the case study relies on a complete model of the system,
hence the organization is centralized.

Scope. This dimension identifies whether adaptation is localized or involves the entire
system. The scope of adaptation can range from local to global. If adaptation affects
the entire system then more thorough analysis is required to commit the adaptation. It

34 J. Andersson et al.

is fundamental for the system to be well structured in order to reduce the impact that
change might have on the adaptation.

In the illustrative case, the current architectural configuration of the system and the
web resource that has failed determines the scope of the self-adaptation. For instance,
it may be global if it involves the reconfiguration of the whole system to come up
with a new fault tolerance strategy.

Duration. This dimension refers to the period of time in which the system is self-
adapting, or in other words, how long the adaptation lasts. The adaptation process can
be for short (seconds to hours), medium (hours to months), or long (months to years)
term. Note that time characteristics should be considered relative to the application
domain. While scope dimension deals with the impact of adaptation in terms of space,
duration deals with time.

Considering that the time it takes for architectural reconfiguration is minimal (in
the scale of seconds) when compared with the lifetime of the system (months), the
duration of the self-adaptation in the context of the case study should be short term.

Timeliness. This dimension captures whether the time period for performing self-
adaptation can be guaranteed, and it ranges from best-effort to guaranteed. For exam-
ple, in case change occurs quite often, it may be the case that it is impossible to
guarantee that adaptation will take place before another change occurs, in these
situations best effort should be pursued.

In the context of the case study, upper bounds on the process of architectural
reconfiguration can be easily identified, hence the timeliness associated with
self-adaptation can be guaranteed.

Triggering. This dimension identifies whether the change that initiates adaptation is
event-trigger or time-trigger. Although it is difficult to control how and when change
occurs, it is possible to control how and when the adaptation should react to a certain
change. If the time period for performing adaptation has to be guaranteed, then an
event-trigger might not provide the necessary assurances when change is unbounded.

In the illustrative case, the self-adaption mechanism is event-triggered, when
a fault occurs, it is detected and the system starts the process of architectural
reconfiguration.

3.4 Effects

This set of dimensions capture what is the impact of adaptation upon the system, that
is, it deals with the effects of adaptation. While mechanisms for adaptation are proper-
ties associated with the adaptation, these dimensions are properties associated with
system in which the adaptation takes place. The dimensions associated with this group
refer to the criticality of the adaptation, how predictable it is, what are the overheads
associated with it, and whether the system is resilient in the face of change.

In the context of the illustrative case study mentioned earlier, we consider that the
system fails if it is not able to provide dependable stock quotes.

Criticality. This dimension captures the impact upon the system in case the self-
adaptation fails. There are adaptations that harmless in the context of the services

 Modeling Dimensions of Self-Adaptive Software Systems 35

provided by the system, while there are adaptations that might involve the loss of life.
The range of values associated with this criticality is harmless, mission-critical, and
safety-critical.

The level of criticality of the application (and the adaptation process) is
mission-critical, since it may lead to some financial losses.

Predictability. This dimension identifies whether the consequences of self-adaptation
can be predictable both in value and time. While timeliness is related to the adaptation
mechanisms, predictability is associated with system. Since predictability is associ-
ated with guarantees, the degree of predictability can range from non-deterministic to
deterministic.

Given that in the illustrative case there are no guarantees sufficient web sources
will be available for the continued provisioning of services, the predictability of the
adaptation is non-deterministic.

Overhead. This dimension captures the negative impact of system adaptation upon
the system’s performance. The overhead can range from insignificant to system fail-
ure (e.g., thrashing). The latter will happen when the system ceases to be able to de-
liver its services due to the high-overhead of running the self-adaptation processes
(monitoring, analyzer, planning, effecting processes).

Since the architecture of the system that provides dependable stock quotes is based
on web services, the overall overhead associated with the architectural reconfiguration
is quite reasonable. In other words, although the system ceases to provide services for
some time interval, this interval is acceptable.

Resilience. This dimension is related to the persistence of service delivery that can
justifiably be trusted, when facing changes [14]. There are two issues that need to be
considered under this dimension: first, it is the ability of the system to provide resil-
ience, and second, it is the ability to justify the provided resilience. The degree of
resilience can range from resilient to vulnerable.

In the context of the illustrative case study, the system is resilient to certain types
of change (failures of web sources) because the self-adaptation which is responsible
for the continuous provisioning of services can be analyzed for extracting the
assurances that are needed for justifying resilience.

4 Evaluation – Case Studies

A classification framework is generally difficult to evaluate, mainly due to the process
used to develop the classification. A formal evaluation, such as the one proposed by
Gómez-Pérez [8], would require a formal specification of our classification frame-
work, which is not feasible for our topic of study. Therefore, we adopt a more
practical approach to validate our classification framework.

The main contribution of our work is the descriptive model of the modeling dimen-
sions for self-adaptive software systems. The evaluation of the proposed classification
was conducted through applying it to several previously developed self-adaptive soft-
ware systems. The case studies represent different classes of application domains: (1)
Traffic Jam Monitoring Systems [9], (2) Embedded Mobile Systems [16,17,19], and

36 J. Andersson et al.

(3) High Performance Computing and Sensor Networks [1]. The feedback from the
case studies improved the classification in several iterations. Due to space constraints
we only present the results of the first two studies below.

We use the classification in two different ways, In the Traffic Monitoring System,
we apply the various modeling dimensions to a single scenario of self-healing. This
approach provides detailed insight on one particular quality property of the system. In
the Embedded mobile System, the modeling dimensions are applied to multiple QoS
concerns. This approach provides insight on a set of related quality properties of the
system.

4.1 Traffic Jam Monitoring System

Intelligent transportation systems (ITS) refer to systems that utilize advanced in-
formation and communication technologies to improve the safety, security and
efficiency of transportation systems [6,9]. One particularly challenging problem in
traffic is congestion. A first step to address this problem is monitoring the traffic.
We describe an agent-based approach for traffic monitoring that enables the detec-
tion of traffic jams in a decentralized way, avoiding the bottleneck of a centralized
control center. Our interest is in a particular scenario of self-healing that allows the
system to deal with silent node failures (i.e., a type of failure that occurs when the
failing node becomes unresponsive without sending any incorrect data). We intro-
duce the application and briefly explain how self-healing is added to the system.
Then we give an overview of the modeling dimensions for the self-healing
scenario.

4.1.1 Application
The traffic monitoring system consists of a set of intelligent cameras which are
distributed evenly along a highway. Each camera has a limited viewing range and cam-
eras are placed to get an optimal coverage of the highway. A camera is able to measure
the current congestion level of the traffic and decide whether there is a traffic jam or not
in its viewing range. Each camera is equipped with a communication unit to interact
with other cameras. The task of the cameras is to detect and monitor traffic jams on the
highway in a decentral-
ized way, i.e. without
any centralized entity
involved. Possible clients
of the monitoring system
are traffic light control-
lers and driver assistance
systems such as systems
that inform drivers about
expected travel time
delays. Since traffic jams
can span the viewing
range of multiple cam-
eras and can dynamically

Fig. 1. Deployment view of the traffic monitoring system

 Modeling Dimensions of Self-Adaptive Software Systems 37

grow and dissolve, the data observed by multiple cameras has to be aggregated. Without
a central point of control, cameras have to collaborate and distribute the aggregated data
to the clients. To support such dynamic organizations, we have applied an agent-based
design for the system [9]. On each camera an agent is deployed that can play different
roles in organizations. Example roles are “data pusher” and “data aggregator.” Agents
exploit a distributed middleware which provides support for dynamic organizations. The
middleware encapsulates the management of dynamic evolution of organizations offer-
ing possible roles to agents based on the current context. Figure 1 shows the deployment
view of the agent-based traffic monitoring system.

The software on each camera is structured in layers. The Host Infrastructure
layer encapsulates common middleware services and basic support for distribution,
hiding the complexity of the underlying hardware. The Agent Middleware layer
provides basic services in multi-agent systems [22], including support for percep-
tion, action, and communication. The Organization Middleware layer provides
support for dynamic organizations. The layer encapsulates the management of dy-
namic evolution of organizations and it provides role-specific services to the agents
for perception, action, and communication. Finally the Agent layer encapsulates the
agents that provide the associated functionality in the organizations for monitoring
traffic jams.

4.1.2 Self-healing
When a node fails, the system may enter an inconsistent state in which agents and the
organization middleware are no longer capable of working according to their specifi-
cation. To deal with this kind of failures, an additional self-healing subsystem (SHS)
is deployed on each node. The SHS interacts with the local agent middleware and
organization middleware, and relies on the functionalities provided by the agent mid-
dleware to interact with SHSs on other nodes. Figure 2 shows the integration of the
self-healing subsystem with the system software on one node.

SHSs periodically exchange alive signals using the communication service of the
agent middleware (send and
receive). Node failures are
detected by monitoring the
alive signals. When a SHS
detects a failure, it adapts
the local structure of the
organizations in which the
agent of the failing node is
involved in and possibly
interacts with SHSs on other
involved nodes to bring the
system in a consistent state
from which it can continue
its function in a degraded
mode.

Fig. 2. Integration of the self-healing subsystem with the
organization middleware and agent middleware on one node

38 J. Andersson et al.

4.1.3 Modeling Dimensions
We consider the scenario where the system is in normal operation mode (camera
agents are collecting data and provide information to clients about possible traffic
jams) and one of the nodes fails silently. Such event may result in corrupt organiza-
tions with lost or missing roles on the failed node. The self-healing subsystem (SHS)
detects the failure and restores the system to a consistent state so that it can continue
its operation.

Goals – The system shall recover from a silent node failure and continue its
operation in a degraded mode.

• Evolution: static – Recovering from silent node failures is a goal that will not
change over the life time of the system.

• Flexibility: rigid – A node failure compromises the consistency of the system
and as such it threatens service delivery. In order to remain operational, the
system must deal with node failures.

• Duration: persistent – Silent node failures can occur at any time during normal
operation. As such, recovering from silent node failures is a persistent goal.

• Multiplicity: multiple – Besides dealing with node failures, the system has other
goals as well. The primary goal of the system is to deliver a monitoring service to
clients interested in traffic jams. Other goals refer to particular qualities of the
system such as accuracy of observation and reaction time.

• Dependency: dependent – There is a dependency between the self-healing goal
and the delivery of services. If the system fails to recover from a node failure, the
quality of the services will significantly degrade.

Change – a node fails silently.

• Source: external (environment) and internal (application) – A silent node failure
can be caused by an external trigger such as a hardware failure, or it can be
caused by a crash of the software running on the node.

• Type: technological – The cause for self-adaptation is of a technologic nature: a
node in the system fails. If the system reacts not properly, the failure will harm
the system functionality.

• Frequency: rare – Silent node failures happen rarely.
• Anticipation: foreseen – Neither the place nor the time of a silent node failure

can be predicted. Still, the system can anticipate how to react when a silent node
failure occurs.

Mechanisms – the SHSs restore the system in a consistent state.

• Type: parametric / structural – From the point of view of a single node which is
involved in a failure, the adaptation is parametric since the SHS will restore the
affected local state of the system. From the point of view of the system, adapta-
tion is structural since the changes applied by the SHSs on the nodes involved in
a failure will change the structure of collaborating cameras (i.e. the failing
camera will no longer be part of the collaboration).

 Modeling Dimensions of Self-Adaptive Software Systems 39

• Autonomy: autonomous – The SHS acts fully autonomously. The self-adaptation
process will take place without a human involved. However, restoring the failed
node typically will require human intervention.

• Organization: decentralized – SHSs deployed on the different nodes collaborate
to detect a node failure. The required adaptations are performed locally. No
central monitor or controller is involved.

• Scope: local – The adaptation is performed locally. Only the nodes with cameras
taking part in organizations with the camera of the failed node will be involved in
the adaptation process.

• Duration: short term – The adaptation process should be completed in seconds.
This is orders of magnitude faster as traffic jams arise or dissolve.

• Timeliness: best effort – The time period required for performing the adaptation
depends on several factors, such as the current traffic conditions and the available
bandwidth. Given the relative short duration of the adaptation (comparing to the
duration of the traffic jam phenomena), best effort meets the required timeliness.

• Triggering: event-trigger – Adaptation is triggered by the detection of missing
alive messages exchanged between SHSs.

Effects – the system will continue its functionality in degraded mode.

• Criticality: harmless – The services provided by the traffic monitoring system
are in general not critical. If the adaptation fails, the functionality of the system
may significantly degrade, however, no human lives are involved.

• Predictability: deterministic – The consequences of a node failure are clear.
The information provided by the failed node will no longer be available.
The SHSs will bring the system in a consistent state so that it can continue its
operation.

• Overhead: almost insignificant – After adaptation, the quality of the services
provided by the system will slightly degrade in case a traffic jam occurs in the
neighborhood of the failed node. All traffic information collected outside the
range of the camera of the failed node will not be affected.

• Resilience: semi-resilient – After adaptation, service delivery will persist with
only minimal decrease of quality. In case of repeatable node failures, the
quality of service delivery may become seriously affected, in particular when
neighboring nodes fail.

4.2 Embedded Mobile System

Below we present the application of our classification model to another self-adaptive
software system, which is representative of an emerging class of mobile, pervasive,
and cyber physical systems. These systems are inherently different from traditional
software systems. For instance, network failures and changes in the availability of
resources are considered the norm, instead of an exception. As detailed further
below, self-adaptation has been shown as a promising approach to deal with the
unpredictability of such systems.

40 J. Andersson et al.

4.2.1 Application
Emergency Deployment
System (EDS) is a mobile
application intended for
distributed management
and deployment of person-
nel to deal with situations
such as natural disasters
and search-and-rescue
efforts. An instance of
EDS (shown in Figure 3)
consists of Headquarters,
Team Leader, and Re-
sponder applications that
leverage the software ser-
vices and wireless sensors
provided by the system to
achieve their tasks. The Headquarters computer is networked via secure links to a set of
mobile devices used by Leaders during the operation. Each Leader is capable of control-
ling his own part of the crisis scene: deploying Responders, analyzing the deployment
strategy, transferring Responders between Leaders, and so on. Responders can only view
the segment of the operation in which they are located, receive direct orders from the
Leaders, and report their status.

The domain of emergency and response is by its nature unpredictable. For instance,
it is completely conceivable that due to some unforeseen event the Headquarters fail,
in which case it is desirable for a designated Leader to assume the role of the Head-
quarters. On top of the unpredictability of the application domain, given that EDS is a
mobile platform, it also needs to be able to deal with fluctuations in the availability of
computing resources. For instance, the system should be able to deal with situations
where as a result of user mobility the network connectivity or its throughput changes
significantly.

4.2.2 Self-Adaptation
In response to the Quality of Service (QoS) challenges of mobile software systems,
such as those faced by EDS, software engineers have previously developed a variety of
run-time adaptation techniques, including caching [11] or hoarding [12] of data, and
multi-modal components [21]. In our work [16,17,19] we have demonstrated that a
software system’s deployment architecture (i.e., allocation of the system’s software
components to its hardware hosts) has a significant impact on the mobile system’s QoS
properties. For example, a mobile system’s latency can be improved if the system is
deployed such that the most frequent and voluminous interactions among the compo-
nents involved in delivering the functionality occur either locally or over reliable and
capacious wireless network links. A key observation is that most system parameters
(e.g., available bandwidth, reliability of networks, and frequency of interactions) that
are required for finding a good deployment architecture are not known until run-time,
and even then they can change. Therefore, a redeployment of the software system via
migration of its components may be necessary to improve its QoS.

Fig. 3. An instance of EDS application

 Modeling Dimensions of Self-Adaptive Software Systems 41

We have developed a self-adaptive infrastructure [16,17,19] for improving a mo-
bile system’s deployment architecture that consists of four phases: 1) monitoring the
system parameters of interest (e.g., reliability of links, frequencies of interaction), 2)
populating a deployment model of the system with the monitored system properties,
3) finding a new deployment architecture that improves the system’s QoS properties,
and 4) effecting the new deployment architecture via software component mobility
[7]. In order to reason about multiple QoS dimensions we leverage a multivariate
utility function. The utility function allows us to resolve the trade-offs among multiple
QoS dimensions (e.g., when improvement in one QoS results in degradation in an-
other QoS).

4.2.3 Modeling Dimensions
We have applied the above approach for improving a mobile software system’s de-
ployment architecture on several instances of EDS. Below we provide an analysis of
this work in the context of the modeling dimensions from Section 3:

Goals – improve the users’ preference, which is specified in the form of a utility function.

• Evolution: dynamic – New QoS concerns may be added, old ones may be re-
moved or modified, and the users’ preferences for the QoS concerns may change.

• Flexibility: constrained – The goal is to maximize the utility function as long as
the system constraints are satisfied. An example of a system constraint is as fol-
lows: the amount of memory required for software components that are deployed
on a host should be less than the amount of available memory on that host.

• Duration: long term – The system is always in pursuit of the optimal configuration.
• Multiplicity: multiple – Since most instances of EDS consist of multiple users

with different roles (e.g., commanders, leaders, troops), and the fact that often
there are multiple QoS dimensions of importance to each user, the goals are often
multi-faceted.

• Dependency: dependent – The goals are dependent on one another. For example,
a deployment architecture that maximizes the system’s security often leverages
complex encryption and authentication protocols, which have a negative impact
on the system’s latency.

Change – fluctuations in system parameters (e.g., network bandwidth, reliability)
and changes in the system usage (i.e., load).

• Source: external (environment) and internal (application) – Source of change
could be either external environment, such as a situation when a mobile user’s
connectivity is impacted severely due to his movement (e.g., when the user is be-
hind thick walls). Alternatively, the source of change could be internal applica-
tion, where some of the distributed components interact more frequently than
others. In this case, a better deployment may be to collocate the components to
minimize the amount of remote communication.

• Type: non-functional – Changes in the system could potentially degrade the level
of QoS provisioned by the system.

• Frequency: frequent – System parameters are changing constantly. However, in
order to avoid the system from constantly redeploying itself, changes in the

42 J. Andersson et al.

system are observed over a period of time, and only changes that are significant
enough are reported to the adaptation modules.

• Anticipation: foreseen – In mobile systems changes in system parameters are the
norm, rather than the exception. In EDS we foreseen such changes, and devel-
oped the appropriate mitigation capability.

Mechanisms – redeployment of software components.

• Type: structural – Through component redeployment the deployment architecture
of the system is changed.

• Autonomy: autonomous – EDS is a long-lived and highly distributed system. At
the same time, given that changes in such a system are frequent and unpredict-
able, it is infeasible for a manual control of adaptation at run-time.

• Organization: centralized analysis, decentralized adaptation – Finding (calculat-
ing) a new optimal deployment architecture is performed centrally, effecting the
actual change (i.e., migrating and rebinding software components) is performed
by individual platforms in a decentralized manner.

• Scope: local and global – The actual components that are redeployed depend on
the results of the analysis. The result of adaptation could range from redeploy-
ment of a single software component to redeployment of the entire system.

• Duration: short term – The amount of time required to redeploy the system
should be short. Redeployment impacts the availability of (some of) the
system’s services. This is in particular true for the EDS system that has stringent
availability requirement.

• Timeliness: best effort – The time required for adaptation depends on a number
of system parameters (e.g., network throughput) as well as the sizes of the soft-
ware components that need to be redeployed. Therefore, it is not possible to pro-
vide any hard guarantees. For relatively stable systems it is feasible to determine
a time bound.

• Triggering: event-trigger – The triggering usually depends on the patterns iden-
tified in the monitored data. If the monitored data indicates significant changes in
the system, the analysis process is initiated.

Effects – system provisions its services with higher level of QoS.

• Criticality: mission-critical, safety-critical – Depending on the nature of emer-
gency scenario EDS could be either a mission or safety critical system.

• Predictability: non-deterministic – An underlying assumption in EDS is that
changes in the past are a good indicator of the system’s future behavior. How-
ever, this assumption may not hold, in particular if the users’ usages of the
system’s services or its parameters change dramatically.

• Overhead: reasonable – In EDS we have developed a mechanism to ensure the
system does not constantly redeploy itself. This is realized by ensuring that the
adaptation is triggered only if there are significant changes in the monitored data
over a prespecified period of time. However, there is a considerable overhead in
terms of wasted resources (e.g., battery) for the redeployment of the components,
and if the components are large this overhead may be prohibitive.

 Modeling Dimensions of Self-Adaptive Software Systems 43

• Resilience: semi-resilient – A services (functionality) becomes temporary un-
available if some of the software components involved in provisioning that ser-
vice are currently being redeployed. However, there is no impact to the services
that do not depend on the part of the system that is being redeployed.

5 Challenges of Modeling Self-Adaptive Systems

Substantial progress has been made by the software engineering community in tack-
ling the challenges posed by each of the discussed modeling dimensions. However,
there are several important research questions that are remaining. Our study of the
modeling dimensions, in particular the exercise of applying it to several self-adaptive
software systems, helped us to identify some important research questions that should
be the focus of future research in this area. We briefly elaborate on those below based
on the categories of the modeling dimensions.

5.1 Goals

A self-adaptive software system often needs to perform a trade-off analysis between
several potentially conflicting goals. Current state-of-the-art techniques leverage a
utility function to map the trade-offs among several conflicting goals to a scalar value,
which is then used for making decisions about adaptation. However, in practice, de-
fining such a utility function is a challenging task. Practical techniques for specifying
and generating utility functions, potentially based on the user’s requirements, are
needed. One promising direction is to use preferences that compare situations under
Pareto optimal conditions.

5.2 Change

Often the adaptation is triggered by the occurrence of a pattern in the data that is
gathered from a running system. For example, the system is monitored to determine
when a particular level of QoS is not satisfied, which then initiates the adaptation
process. However, monitoring a system, especially when there are several different
QoS properties of interest, has an overhead. In fact, the amount of degradation in QoS
due to monitoring could outweigh the benefits of improvements in QoS to adaptation.
We believe that more research on light-weight monitoring techniques, as well as more
advanced models that take the monitoring overhead of the approach into account are
needed.

5.3 Mechanisms

Many types of adaptation techniques have been developed: architecture-based adapta-
tion that is mainly concerned with structural changes at the level of software compo-
nents, parametric based adaptation that leverages policy files or input parameters to
configure the software components, aspect-oriented-based adaptation that changes the
behavior of a running system via dynamic weaving techniques. Researchers and prac-
titioners have typically leveraged a single tactic to realize adaptation based on the
characteristics of the target application. However, given the unique benefits of each

44 J. Andersson et al.

approach, we believe a fruitful avenue of future research is a more comprehensive
approach that leverages several adaptation tactics simultaneously.

Most state-of-the-art adaptive systems are built according to the centralized control
loop pattern. Thereby, if applied to a large-scale software system, many such tech-
niques suffer from scalability problems. The field of multi-agent systems has devel-
oped a large body of knowledge on decentralized systems, where each agent (software
component) adapts its behavior at run-time. Related are biologically inspired adapta-
tion systems that tend to further push the limits of decentralization. While these ap-
proaches are promising, practical experiences with these approaches in real-world
settings are limited. Methods used in systems engineering, like hierarchical organiza-
tion and coordination schemes could also be applicable. There is a pressing need for
decentralized, but still manageable, efficient, and predictable techniques for construct-
ing self-adaptive software systems. A major challenge is to accommodate a
systematic engineering approach that integrates both control-loop approaches with
decentralized agent inspired approaches.

Responsiveness is a crucial property in real-time software systems, which are be-
coming more prevalent with the emergence of embedded and cyber-physical systems.
These systems are often required to deterministically respond within pre-specified
(often short) time intervals, making it extremely difficult to adapt the system, while
satisfying the deadline requirements. There is a need for adaptation models targeted
for real-time systems that treat the duration and overhead of adaptation as first class
entities.

5.4 Effects

Adapting safety-critical software systems, while ensuring the safety requirements, has
remained largely an out-of-reach goal for the practitioners and researchers. There is
a need for verification and validation techniques that guarantee safe and sound
adaptation of safety-critical systems, under all foreseen and unforeseen events.

Finally, predicting the exact behavior of a software system due to run-time changes
is a challenging task. For example, while it may be possible to predict the new func-
tionality that will become available as a result of replacing a software component, it
may not be possible to determine what will be the impact of the replaced software
component on the other components that are sharing the same resources (e.g., CPU,
memory, and network). More advanced and predictive models of adaptation are
needed for systems that could fail to satisfy their requirements due to side-effects of
change.

In highly dynamic systems, such as mobile systems, where the environmental pa-
rameters change frequently, the overhead of adaptation due to frequent changes in the
system could be so high that the system ends up thrashing. This overhead includes
the frequent execution of the reasoning algorithms (e.g., finding a new configuration),
the downtime of a portion of the system due to making changes, or simply the re-
source cost (e.g., wasted CPU cycles, battery power) of changing the system. The
trade-offs between the adaptation overhead and the accrued benefits of changing the
system needs to be taken into consideration for such systems.

 Modeling Dimensions of Self-Adaptive Software Systems 45

6 Related Work

This work defines a classification of modeling dimensions that should be considered
when modeling self-adaptive software systems. Similar classifications exist but our
survey reveals that none is suitable for characterizing the modeling variations among
self-adaptive software systems. Dobson et al. provide a survey of techniques applied
to autonomic computing [5]. Buckley et al. define a taxonomy for software change
[3], which unlike our approach is not focused on run-time adaptation (change) of
software. Another major difference is that goals are not made explicit in Buckeley’s
taxonomy. Implementation of adaptability requires support from middleware or lan-
guages, Bradbury et al. classify support from dynamic software architecture lan-
guages [2]. This work has a focus on architecture specification and does not consider
the goals. Similarly, the taxonomy by McKinley et al. [18] specifically targets compo-
sitional software adaptation, and is not applicable to other types of self-adaptive soft-
ware. The work by Laprie on a classification of resilience [14] has also inspired some
of the dimensions and their values in our work.

7 Discussions and Future Work

The classification model presented in this paper applies to any self-adaptive software
system. We believe that this classification will be useful in several different develop-
ment situations. It can be used as a driver for traditional forward engineering, but also
useful in a reverse engineering context where engineers comprehend the existing
solutions.

The classification brings more structure to the area of self-adaptive software sys-
tems. With the classification in mind it is more likely that an individual engineer as
well as groups of engineers to be able to understand the technology domain better,
thus avoiding situations where two or more interpretations of a technique affect the
development process. Our intention with the classification has been to create a
vocabulary that can be used within, for instance, a design team.

The classification can also be used to drive development. Despite its rather high
level of abstraction, the groups, dimensions, and degrees can be used as a require-
ments statement for the self-adaptive scenarios in a system. This information supports
decision making about tools, languages, and middleware platforms.

The classification could also be utilized in reverse engineering activities. Part of
this process is “understanding structures” that are currently present in a self-adaptive
application, and then go forward and change. The classification provides a check-list
for conceptual and physical concepts concerned with structural and behavioral proper-
ties that can be identified in existing application documentation, hence assist in
classifying an application’s self-adaptive behavior.

While our experience with the classification model has been positive so far, we
believe the classification model can be refined further. In particular, we would like to
provide a more detailed enumeration of possible values for the classification’s degree
attribute (i.e., the middle column of Table 1). We also hypothesize that the majority of
self-adaptive software systems are developed according to a handful of architectural
patterns. We intend to leverage the proposed classification model, which allows for

46 J. Andersson et al.

systematically identifying the variations among different self-adaptive software sys-
tems, to study and document the most commonly used architectural patterns for such
systems.

Acknowledgments

This work is partially supported by grant CCF-0820060 from the National Science
Foundation. Danny Weyns is funded by the Research Foundation Flanders (FWO).

References

1. Andersson, J., et al.: An Adaptive High-Performance Service Architecture. In: ETAPS
Workshop on Software Composition Electronic Notes Theoretical Computer Science,
vol. 114 (2005)

2. Bradbury, J.S., et al.: A Survey Of Self-Management In Dynamic Software Architecture
Specifications. In: Garlan, D., Kramer, J., Wolf, A. (eds.) ACM SIGSOFT Workshop on
Self-Managed Systems (WOSS 2004), pp. 28–33 (2004)

3. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards A Taxonomy of
Software Change. Journal of Software Maintenance and Evolution, 309–332 (September
2005)

4. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research Road
Map. In: Cheng, B.H.C., et al. (eds.) Software Engineering for Self-Adaptive Systems.
08031 Dagstuhl Seminar. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany
(2008)

5. Dobson, S., Denazis, S., et al.: A Survey of Autonomic Communications. ACM Transac-
tions on Autonomous and Adaptive Systems 1(2), 223–259 (2006)

6. ERTICO. Intelligent Transportation Systems for Europe, http://www.ertico.com/
7. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Trans. on Soft-

ware Engineering 24, 342–361 (1998)
8. Gómez-Pérez, A.: Evaluation of Ontologies. International Journal of Intelligent Sys-

tems 16, 391–409 (2001)
9. Haesevoets, R., et al.: Managing Agent Interactions with Context-Driven Dynamic Or-

ganizations. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS,
vol. 5049, pp. 166–186. Springer, Heidelberg (2008)

10. ITS. Intelligent Transportation Society of America, http://www.itsa.org/
11. Kistler, J.J., Satyanarayanan, M.: Disconnected Operation in the Coda File System. ACM

Transactions on Computer Systems 10(1) (Feburary 1992)
12. Kuenning, G.H., Popek, G.J.: Automated Hoarding for Mobile Computers. In: ACM

Symp. on Operating Systems Principles, St. Malo, France (October 1997)
13. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: IEEE

International Symposium on Requirements Engineering, Toronto, Canada (August 2001)
14. Laprie, J.C.: From Dependability to Resilience. In: International Conference on Depend-

able Systems & Networks (DSN 2008), Anchorage, Alaska, June 2008, pp. G8–G9 (2008)
15. de Lemos, R.: Architecting Web Services Applications for Improving Availability. In: de

Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III.
LNCS, vol. 3549, pp. 69–91. Springer, Heidelberg (2005)

 Modeling Dimensions of Self-Adaptive Software Systems 47

16. Malek, S., et al.: A Framework for Ensuring and Improving Dependability in Highly Dis-
tributed Systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting De-
pendable Systems III. LNCS, vol. 3549, pp. 173–193. Springer, Heidelberg (2005)

17. Malek, S., Seo, C., Ravula, S., Petrus, B., Medvidovic, N.: Reconceptualizing a Family of
Heterogeneous Embedded Systems via Explicit Architectural Support. In: International
Conference on Software Engineering (ICSE 2007), Minneapolis, Minnesota (May 2007)

18. Mckinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive Soft-
ware. IEEE Computer 37(7), 56–64 (2004)

19. Mikic-Rakic, M., Malek, S., Medvidovic, N.: Architecture-Driven Software Mobility in
Support of QoS Requirements. In: International Workshop on Software Architectures and
Mobility (SAM), Leipzig, Germany (May 2008)

20. Popovici, A., et al.: Dynamic Weaving for Aspect-oriented Programming. In: International
Conference on Aspect-Oriented Software Development (AOSD 2002), Enschede, Nether-
lands, April 2002, pp. 141–147 (2002)

21. Weinsberg, Y., Ben-Shaul, I.: A Programming Model and System Support for Discon-
nected-Aware Applications on Resource-Constrained Devices. In: International Confer-
ence on Software Engineering (ICSE 2002), Orlando, FL (2002)

22. Weyns, D., et al.: Environments for multiagent systems, state-of-the-art and research chal-
lenges. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS,
vol. 3374, pp. 1–47. Springer, Heidelberg (2005)

Engineering Self-Adaptive Systems
through Feedback Loops

Yuriy Brun1, Giovanna Di Marzo Serugendo2, Cristina Gacek3, Holger Giese4,
Holger Kienle5, Marin Litoiu6, Hausi Müller5, Mauro Pezzè7, and Mary Shaw8

1 University of Southern California, Los Angeles, CA, USA
ybrun@usc.edu

2 Birkbeck, University of London, London, UK
dimarzo@dcs.bbk.ac.uk

3 University of Newcastle upon Tyne, Newcastle upon Tyne, UK
cristina.gacek@ncl.ac.uk

4 Hasso Plattner Institute at the University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

5 University of Victoria, British Columbia, Canada
{kienle,hausi}@cs.uvic.ca

6 York University and IBM Canada Ltd., Canada
marin@ca.ibm.com

7 University of Milano Bicocca, Italy and University of Lugano, Switzerland
mauro.pezze@unisi.ch

8 Carnegie Mellon University, Pittsburgh, PA, USA
mary.shaw@cs.cmu.edu

Abstract. To deal with the increasing complexity of software systems
and uncertainty of their environments, software engineers have turned to
self-adaptivity. Self-adaptive systems are capable of dealing with a con-
tinuously changing environment and emerging requirements that may be
unknown at design-time. However, building such systems cost-effectively
and in a predictable manner is a major engineering challenge. In this pa-
per, we explore the state-of-the-art in engineering self-adaptive systems
and identify potential improvements in the design process.

Our most important finding is that in designing self-adaptive systems,
the feedback loops that control self-adaptation must become first-class
entities. We explore feedback loops from the perspective of control engi-
neering and within existing self-adaptive systems in nature and biology.
Finally, we identify the critical challenges our community must address
to enable systematic and well-organized engineering of self-adaptive and
self-managing software systems.

1 Introduction

The complexity of current software systems and uncertainty in their environ-
ments has led the software engineering community to look for inspiration in
diverse related fields (e.g., robotics, artificial intelligence, control theory, and
biology) for new ways to design and manage systems and services [1,2,3,4]. In

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 48–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Engineering Self-Adaptive Systems through Feedback Loops 49

this endeavor, the capability of the system to adjust its behavior in response
to the environment in the form of self-adaptation has become one of the most
promising research directions. The “self” prefix indicates that the systems decide
autonomously (i.e., without or with minimal interference) how to adapt or orga-
nize to accommodate changes in their contexts and environments. While some
self-adaptive system may be able to function without any human intervention,
guidance in the form of higher-level objectives (e.g., through policies) is useful
and realized in many systems.

The landscapes of software engineering domains and computing environments
are constantly evolving. In particular, software has become the bricks and mortar
of many complex systems (i.e., a system composed of interconnected parts that
as a whole exhibits one or more properties (behaviors among the possible prop-
erties) not obvious from the properties of the individual parts). The hallmarks
of such complex or ultra-large-scale (ULS) systems [5] are self-adaptation, self-
organization, and emergence [6]. Engineers in general, and software engineers in
particular, design systems according to requirements and specifications and are
not accustomed to regulating requirements and orchestrating emergent proper-
ties. Ottino argues that the landscape is bubbling with activity and engineers
should be at the center of these developments and contribute new theories and
tools [6].

In order for the evolution of software engineering techniques to keep up with
these ever-changing landscapes, software engineers must innovate in the realm of
building, running, and managing software systems. Software-intensive systems
must be able to adapt more easily to their ever-changing surroundings and be
flexible, fault-tolerant, robust, resilient, available, configurable, secure, and self-
healing. Ideally, and necessarily for sufficiently large systems, these adaptations
must happen autonomously. The research community that has formed around
self-adaptive systems has already generated many encouraging results, helping
to establish self-adaptive systems as a significant, interdisciplinary, and active
research field.

Self-adaptive systems have been studied within the different research areas
of software engineering, including requirements engineering [7], software archi-
tecture [8,9], middleware [10], and component-based development [11]; however,
most of these initiatives have been isolated. Other research communities that
have also investigated self-adaptation and feedback from their own perspec-
tives are even more diverse: control theory, control engineering, artificial in-
telligence, mobile and autonomous robots, multi-agent systems, fault-tolerant
computing, dependable computing, distributed systems, autonomic computing,
self-managing systems, autonomic communications, adaptable user interfaces, bi-
ology, distributed artificial intelligence, machine learning, economic and financial
systems, business and military strategic planning, sensor networks, or pervasive
and ubiquitous computing. Over the past decade several self-adaptation-related
application areas and technologies have grown in importance. It is important to
emphasize that in all these initiatives software has become the common element

50 Y. Brun et al.

that enables the provision of self-adaptability. Thus, it is imperative to inves-
tigate systematic software engineering approaches for developing self-adaptive
systems, which are—ideally—applicable across multiple domains.

Self-adaptive systems can be characterized by how they operate or how they
are analyzed, and by multiple dimensions of properties including centralized and
decentralized, top-down and bottom-up, feedback latency (slow vs. fast), or envi-
ronment uncertainty (low vs. high). A top-down self-adaptive system is often cen-
tralized and operates with the guidance of a central controller or policy, assesses
its own behavior in the current surroundings, and adapts itself if the monitoring
and analysis warrants it. Such a system often operates with an explicit internal
representation of itself and its global goals. By analyzing the components of a
top-down self-adaptive system, one can compose and deduce the behavior of the
whole system. In contrast, a cooperative self-adaptive system or self-organizing
system is often decentralized, operates without a central authority, and is typi-
cally composed bottom-up of a large number of components that interact locally
according to simple rules. The global behavior of the system emerges from these
local interactions. It is difficult to deduce properties of the global system by
analyzing only the local properties of its parts. Such systems do not necessarily
use internal representations of global properties or goals; they are often inspired
by biological or sociological phenomena.

Most engineered and nature-inspired self-adaptive systems fall somewhere be-
tween these two extreme poles of self-adaptive system types. In practice, the line
between these types is rather blurred and compromises will often lead to an engi-
neering approach incorporating techniques from both of these two extreme poles.
For example, ULS systems embody both top-down and bottom-up self-adaptive
characteristics (e.g., the Web is basically decentralized as a global system, but
local sub-webs are highly centralized or server farms are both centralized and
decentralized) [5].

Building self-adaptive software systems cost-effectively and in a predictable
manner is a major engineering challenge. New theories are needed to accommo-
date, in a systematic engineering manner, traditional top-down approaches and
bottom-up approaches. A promising starting point to meet these challenges is
to mine suitable theories and techniques from control engineering and nature
and to apply those when designing and reasoning about self-adaptive software
systems. Control engineering emphasizes feedback loops, elevating them to first-
class entities [12,13]. In this paper we argue that feedback loops are also essential
for understanding all types of self-adaptive systems.

Over the years, the discipline of software engineering strongly emphasized the
static architecture of a system and, to a certain extent, neglected the dynamic
aspects. In contrast, control engineering emphasized the dynamic feedback loops
embedded in a system and its environment and neglected the static architecture.
A notable exception is the seminal paper by Magee and Kramer on dynamic
structure in software architecture [14], which formed the foundation for many
subsequent research projects [9,15,16,17]. However, while these research projects
realized feedback systems, the actual feedback loops were hidden or abstracted.

Engineering Self-Adaptive Systems through Feedback Loops 51

Feedback loops have been recognized as important factors in software process
management and improvement or software evolution. For example, the feedback
loops at every stage in Royce’s waterfall model [18] or the risk feedback loop in
Boehm’s spiral model [19] are well known. Lehman’s work on software evolution
showed that “the software process constitutes a multilevel, multiloop feedback
system and must be treated as such if major progress in its planning, control,
and improvement is to be achieved.” Therefore, any attempt to make parts of
this “multiloop feedback system” self-adaptive necessarily also has to consider
feedback loops [20].

With the proliferation of self-adaptive software systems, it is imperative to
develop theories, methods and tools around feedback loops. Mining the rich
experiences and theories from control engineering as well as taking inspiration
from nature and biology where we can find systems that adapt in rather complex
ways, and then adapting and applying the findings to software-intensive self-
adaptive systems is a most worthwhile and promising avenue of research.

In the remainder of this paper, we therefore investigate feedback loops as a key
aspect of engineering self-adaptive systems. Section 2 outlines basic principles of
feedback loops and demonstrates their importance and potential benefits for un-
derstanding self-adaptive systems. Sections 3 and 4 describe control engineering
and biologically inspired approaches for self-adaptation. In Section 5, we present
selected challenges for the software engineering community in general and the
SEAMS community in particular for engineering self-adaptive computing systems.

2 The Role of Feedback Loops

Self-adaptation in software-intensive systems comes in many different guises.
What self-adaptive systems have in common is that design decisions are moved
towards runtime to control dynamic behavior and that an individual system
reasons about its state and environment. For example, keeping web services up
and running for a long time requires collecting information that reflects the
current state of the system, analyzing that information to diagnose performance
problems or to detect failures, deciding on how to resolve the problem (e.g., via
dynamic load-balancing or healing), and acting to effect the planning decisions
made.

Feedback loops provide the generic mechanism for self-adaptation. Positive
feedback occurs when an initial change in a system is reinforced, which leads
toward an amplification of the change. In contrast, negative feedback triggers
a response that counteracts a perturbation. Further, natural environments with
synergistic and antagonistic relationships between components sometimes pro-
duce more complex forms of feedback loops that can neither be classified as
positive nor negative feedback.

2.1 Generic Feedback Loop

A feedback loop typically involves four key activities: collect, analyze, decide, and
act. Sensors or probes collect data from the executing system and its context

52 Y. Brun et al.

Fig. 1. Autonomic control loop [21]

about its current state. The accumulated data are then cleaned, filtered, and
pruned and, finally, stored for future reference to portray an accurate model of
past and current states. The diagnosis then analyzes the data to infer trends and
identify symptoms. Subsequently, the planning attempts to predict the future to
decide on how to act on the executing system and its context through actuators
or effectors.

This generic model of a feedback loop, often referred to as the autonomic
control loop as depicted in Figure 1 [21], focuses on the activities that realize
feedback. This model is a refinement of the AI community’s sense-plan-act ap-
proach of the early 1980s to control autonomous mobile robots [22,23]. While
this model provides a good starting point for our discussion of feedback loops, it
does not detail the flow of data and control around the loop. However, the flow
of control among these components is unidirectional. Moreover, while the figure
shows a single control loop, multiple separate loops are typically involved in a
practical system.

When engineering a self-adaptive system, questions about these properties
become important. The feedback cycle starts with the collection of relevant data
from environmental sensors and other sources that reflect the current state of the
system. Some of the engineering questions that need be answered here are: What
is the required sample rate? How reliable is the sensor data? Is there a common
event format across sensors? Do the sensors provide sufficient information for
system identification?

Next, the system analyzes the collected data. There are many approaches to
structuring and reasoning about the raw data (e.g., using models, theories, and
rules). Some of the applicable questions here are: How is the current state of the
system inferred? How much past state may be needed in the future? What data
need to be archived for validation and verification? How faithful will the model
be to the real world and whether an adequate model can be obtained from the
available sensor data? How stable will the model be over time?

Engineering Self-Adaptive Systems through Feedback Loops 53

Next, a decision must be made about how to adapt the system in order to
reach a desirable state. Approaches such as risk analysis help in choosing among
various alternatives. Here, the important questions are: How is the future state
of the system inferred? How is a decision reached (e.g., with off-line simula-
tion, utility/goal functions, or system identification)? What are the priorities for
self-adaptation across multiple feedback loops and within a single feedback loop?

Finally, to implement the decision, the system must act via available actua-
tors or effectors. Important questions that arise here are: When should and can
the adaptation be safely performed? How do adjustments of different feedback
loops interfere with each other? Do centralized or decentralized feedback help
achieve the global goal? An important additional applicable question is whether
the control system has sufficient command authority over the process—that is,
whether the available actuators or effectors are sufficient to drive the system into
the desired directions.

The above questions—and many others—regarding the feedback loops should
be explicitly identified, recorded, and resolved during the development of a
self-adaptive system.

2.2 Feedback Loops in Control Engineering

An obvious way to address some of the questions raised above is to draw on
control theory. Feedback control is a central element of control theory, which
provides well-established mathematical models, tools, and techniques for analy-
sis of system performance, stability, sensitivity, or correctness [24,25]. The soft-
ware engineering community in general and the SEAMS community in particular
are exploring the extent to which general principles of control theory (i.e., feed-
forward and feedback control, observability, controllability, stability, hysteresis,
and specific control strategies) are applicable when reasoning about self-adaptive
software systems.

Control engineers have invented many variations of control and adaptive con-
trol. For many engineering disciplines, these types of control systems have been
the bread and butter of their designs. While the amount of software in these con-
trol systems has increased steadily over the years, the field of software engineer-
ing has not embraced feedback loops as a core design element. If the computing
pioneers and programming language designers were control engineers—instead
of mathematicians—by training, modern programming paradigms might feature
process control elements [26].

We now turn our attention to the generic data and control flow of a feedback
loop. Figure 2 depicts the classical feedback control loop featured in numerous
control engineering books [24,25]. Due to the interdisciplinary nature of control
theory and its applications (e.g., robotics, power control, autopilots, electronics,
communication, or cruise control), many diagrams and variable naming conven-
tions are in use. The system’s goal is to maintain specified properties of the
output, yp, of the process (also referred to as the plant or the system) at or suf-
ficiently close to given reference inputs up (often called set points). The process
output yp may vary naturally; in addition external perturbations d may disturb

54 Y. Brun et al.

Fig. 2. Feedback control loop

the process. The process output yp is fed back by means of sensors—and often
through additional filters (not shown in Figure 2)—as yb to compute the differ-
ence with the reference inputs up. The controller implements a particular control
algorithm or strategy, which takes into account the difference between up and
yb to decide upon a suitable correction u to drive yp closer to up using process-
specific actuators. Often the sensors and actuators are omitted in diagrams of
the control loops for the sake of brevity.

The key reason for using feedback is to reduce the effects of uncertainty which
appear in different forms as disturbances or noise in variables or imperfections
in the models of the environment used to design the controller [27]. For example,
feedback systems are used to manage QoS in web server farms. Internet load,
which is difficult to model due to its unpredictability, is one of the key variables
in such a system fraught with uncertainty.

It seems prudent for the SEAMS community to investigate how different ap-
plication areas realize this generic feedback loop, point out commonalities, and
evaluate the applicability of theories and concepts in order to compare and lever-
age self-adaptive software-intensive systems research. To facilitate this compari-
son, we now introduce the organization of two classic feedback control systems,
which are long established in control engineering and also have wide applicability.

Adaptive control in control theory involves modifying the model or the control
law of the controller to be able to cope with slowly occurring changes of the
controlled process. Therefore, a second control loop is installed on top of the
main controller. This second control loop adjusts the controller’s model and
operates much slower than the underlying feedback control loop. For example,
the main feedback loop, which controls a web server farm, reacts rapidly to
bursts of Internet load to manage QoS. A second slow-reacting feedback loop

(a) Model Identification Adaptive Control
(MIAC)

(b) Model Reference Adaptive Control
(MRAC)

Fig. 3. Two standard schemes for adaptive feedback control loops

Engineering Self-Adaptive Systems through Feedback Loops 55

may adjust the control law in the controller to accommodate or take advantage
of anomalies emerging over time.

Model Identification Adaptive Control (MIAC) [28] and Model Reference Ad-
aptive Control (MRAC) [27], depicted in Figures 3(a) and 3(b), are two impor-
tant manifestations of adaptive control. Both approaches use a reference model
to decide whether the current controller model needs adjustment. The MIAC
strategy builds a dynamical reference model by simply observing the process
without taking reference inputs into account. The MRAC strategy relies on a
predefined reference model (e.g., equations or simulation model) which includes
reference inputs.

This MIAC system identification element takes the control input u and the
process output yp to infer the model of the current running process (e.g., its
unobservable state). Then, the element provides the system characteristics it
has identified to the adjustment mechanism which then adjusts the controller
accordingly by setting the controller parameters. This adaptation scheme has to
take also into account that a disturbances d might affect the process behavior
and, thus, usually has to observe the process for multiple control cycles before
initiating an adjustment of the controller.

The MRAC solution, originally proposed for the flight-control problem [27,29],
is suitable for situations in which the controlled process has to follow an elaborate
prescribed behavior described by the model reference. The adaptive algorithm
compares the outputs of the process yp which results from the control value u
of the Controller to the desired responses from a reference model ym for the
goal up, and then adjusts the controller model by setting controller parameters
to improve the fit in the future. The goal of the scheme is to find controller
parameters that cause the combined response of the controller and process to
match the response of the reference model despite present disturbances d.

The MIAC control scheme observes only the process to identify its specific
characteristics using its input u and output yp. This information is used to
adjust the controller model accordingly. The MRAC control scheme in contrast
provides the desired behavior of the controller and process together using a
model reference and the input up. The adjustment mechanism compares this
to yp. The MRAC scheme is appropriate for achieving robust control if a solid
and trustworthy reference model is available and the controller model does not
change significantly over time. The MIAC scheme is appropriate when there is no
established reference model but enough knowledge about the process to identify
the relevant characteristics. The MIAC approach can potentially accommodate
more substantial variations in the controller model.

Feedback loops of this sort are used in many engineered devices to bring about
desired behavior despite undesired disturbances [24,27,28,29]. Hellerstein et al.
provide a more detailed treatment of the analysis capabilities offered by control
theory and their application to computing systems [2,13]. As pointed out by
Kokar et al. [30], rather different forms of control loops may be employed for self-
adaptive software and we may even go beyond classical or even adaptive control
and use reconfigurable control for the software where besides the parameters also
structural changes are considered (cf. compositional adaptation [31]).

56 Y. Brun et al.

2.3 Feedback Loops in Natural Systems

In contrast to self-adaptive systems built using control engineering concepts,
self-adaptive systems in nature do not often have a single clearly visible control
loop. Often, there is no clear separation between the controller, the process, and
the other elements present in advanced control schemes. Further, the systems
are often highly decentralized in such a way that the entities have no sense of
the global goal but rather it is the interaction of their local behavior that yields
the global goal as an emergent property.

Nature provides plenty of examples of cooperative self-adaptive and self-
organizing systems: social insect behaviors (e.g., ants, termites, bees, wasps,
or spiders), schools of fish, flocks of birds, immune systems, and social human
behavior. Many cooperative self-adaptive systems in nature are far more com-
plex than the systems we design and build today. The human body alone is
orders of magnitude more complex than our most intricate designed systems.
Further, biological systems are decentralized in such a way that allows them to
benefit from built-in error correction, fault tolerance, and scalability. When en-
countering malicious intruders, biological systems typically continue to execute,
often reducing performance as some resources are rerouted towards handling
those intruders (e.g., when the flu virus infects a human, the immune system
uses energy to attack the virus while the human continues to function). De-
spite added complexity, human beings are more resilient to failures of individual
components and injections of malicious bacteria and viruses than engineered
software systems are to component failure and computer virus infection. Other
biological systems, for example worms and sea stars, are capable of recovering
from such serious hardware failures as being cut in half (both worms and sea
stars regenerate the missing pieces to form two nearly identical organisms), yet
we envision neither a functioning laptop computer, half of which was crushed by
a car, nor a machine that can recover from being installed with only half of an
operating system. It follows that if we can extract certain properties of biologi-
cal systems and inject them into our software design process, we may be able to
build complex and dependable self-adaptive software systems. Thus, identifying
and understanding the feedback loops within natural systems is critical to being
able to design nature-mimicking self-adaptive software systems.

Two types of feedback in nature are positive and negative feedback. Positive
feedback reinforces a perturbation in systems in nature and leads to an amplifica-
tion of that perturbation. For example, ants lay down a pheromone that attracts
other ants. When an ant travels down a path and finds food, the pheromone at-
tracts other ants to the path. The more ants use the path, the more positive
feedback the path receives, encouraging more and more ants to follow the path
to the food. Negative feedback triggers a response that counteracts a perturba-
tion. For example, when the human body experiences a high concentration of
blood sugar, it releases insulin, resulting in glucose absorption, and bringing the
blood sugar back to the normal concentration.

Negative and positive feedback combine to ensure system stability: positive
feedback alone would push the system beyond its limits and ultimately out of

Engineering Self-Adaptive Systems through Feedback Loops 57

control, whereas negative feedback alone prevents the system from searching for
optimal behavior.

Decentralized self-organizing systems are generally composed of a large num-
ber of simple components that interact locally — either directly or indirectly.
An individual component’s behavior follows internal rules based only on local
information. These rules can support positive and negative feedback at the level
of individual components. The numerous interactions among the components
then lead to global control loops.

2.4 Feedback Loops in Software Engineering

For software engineering we have observed that feedback loops are often hid-
den, abstracted, dispersed, or internalized when the architecture of an adaptive
system is documented or presented [26]. Certainly, common software design no-
tations (e.g., UML) do not routinely provide views that lend themselves to de-
scribing and analyzing control and reason about uncertainty. Further, we suspect
that the lack of a notation leads to the absence of an explicit task to document
the control, which leads in turn in failure to explicitly designing, analyzing, and
validating the feedback loops.

However, the feedback behavior of a self-adaptive system, which is realized
with its control loops, is a crucial feature and, hence, should be elevated to a
first-class entity in its modeling, design, implementation, validation, and oper-
ation. When engineering a self-adaptive system, the properties of the control
loops affect the system’s design, architecture, and capabilities. Therefore, be-
sides making the control loops explicit, the control loops’ properties have to be
made explicit as well. Garlan et al. also advocate to make self-adaptation ex-
ternal, as opposed to internal or hard-wired, to separate the concerns of system
functionality from the concerns of self-adaptation [9,16].

Explicit feedback loops are common in software process improvement mod-
els [19] and industrial IT service management [32], where the system manage-
ment activities and products are decoupled by the software development cycle.
A major breakthrough in making feedback loops explicit came with IBM‘s auto-
nomic computing initiative [33] with its emphasis on engineering self-managing
systems. One of the key findings of this research initiative is the blueprint for
building autonomic systems using MAPE-K (monitor-analyze-plan-execute over
a knowledge base) feedback loops [34] as depicted in Figure 4. The phases of
the MAPE-K loop or autonomic element map readily to the generic autonomic
control loop as depicted in Figure 1. Both diagrams highlight the main activities
of the feedback loop while abstracting away characteristics of the control and
data flow around the loop. However, the blueprint provides extensive instruc-
tions on how to architect and implement the four phases, the knowledge bases,
sensors, and actuators. It also outlines how to compose autonomic elements to
orchestrate self-management.

Software engineering for self-adaptive systems has recently received consid-
erable attention with a proliferation of journals, conferences, workshops (e.g.,
TASS, SASO, ICAC, or SEAMS). Many of the papers published in these venues

58 Y. Brun et al.

dealing with the development, analysis and validation methods for self-adaptive
systems do not yet provide sufficient explicit focus on the feedback loops, and
their associated properties, that almost inevitably control the self-adaptations.

The idea of increasing the visibility of control loops in software architectures
and software methods is not new. Over a decade ago, Shaw compared a software
design method based on process control to an object-oriented design method [35].
She introduced a new software organization paradigm based on control loops
with an architecture that is dominated by feedback loops and their analysis
rather than by the identification of discrete stateful objects. Hellerstein et al.
in their ground-breaking book provide a first practical treatment of the design
and application of feedback control of computing systems [13]. Recently, Shaw,
together with Müller and Pezzè, advocated the usefulness of a design paradigm
based on explicit control loops for the design of ULS systems [26]. The prelimi-
nary ideas presented in this position paper contributed to ignite the discussion
that led to the contribution of this paper.

To manage uncertainty in computing systems and their environments, we need
to introduce feedback loops to control the uncertainty. To reason about uncer-
tainty effectively, we need to elevate feedback loops to be visible and first class.
If we do not make the feedback loops visible, we also will not be able to identify
which feedback loops may have major impact on the overall system behavior
and apply techniques to predict their possible severe effects. More seriously, we
will neglect the proof obligations associated with the feedback, such as validat-
ing that yb (i.e., the estimate of yp derived from the sensors) is sufficiently good,
that the control strategy is appropriate to the problem, that all necessary correc-
tions can be achieved with the available actuators, that corrections will preserve
global properties such as stability, and that time constraints will be satisfied.
Therefore, if feedback loops are not visible we will not only fail to understand
these systems but also fail to build them in such a manner that crucial properties
for the adaptation behavior can be guaranteed.

ULS systems may include many self-adaptive mechanisms developed indepen-
dently by different working teams to solve several classes of problems at differ-
ent abstraction levels. The complexity of both the systems and the development
processes may result in the impossibility of coordinating the many self-adaptive
mechanisms by design, and may result in unexpected interactions with negative
effects on the overall system behavior. Making feedback loops visible is an es-
sential step toward the design of distributed coordination mechanisms that can
prevent undesirable system characteristics—such as various forms of instability
and divergence—due to interactions of competing self-adaptive systems.

3 Solutions Inspired by Explicit Control

The autonomic element—introduced by Kephart and Chess [33] and popular-
ized with IBM’s architectural blueprint for autonomic computing [34]—is the
first architecture for self-adaptive systems that explicitly exposes the feedback
control loop depicted in Figure 2 and the steps indicated in Figure 1, identifying

Engineering Self-Adaptive Systems through Feedback Loops 59

Fig. 4. IBM’s autonomic element [34]

functional components and interfaces for decomposing and managing the feed-
back loop. To realize an autonomic system, designers compose arrangements of
collaborating autonomic elements working towards common goals. In particular,
IBM uses the autonomic element as a fundamental building block for realizing
self-configuring, self-healing, self-protecting and self-optimizing systems [33,34].

An autonomic element, as depicted in Figure 4, consists of a managed element
and an autonomic manager with a feedback control loop at its core. Thus, the
autonomic manager and the managed element correspond to the controller and
the process, respectively, in the generic feedback loop. The manager or controller
is composed of two manageability interfaces, the sensor and the effector, and the
monitor-analyze-plan-execute (MAPE-K) engine consisting of a monitor, an an-
alyzer, a planner, and an executor which share a common knowledge base. The
monitor senses the managed process and its context, filters the accumulated sen-
sor data, and stores relevant events in the knowledge base for future reference.
The analyzer compares event data against patterns in the knowledge base to di-
agnose symptoms and stores the symptoms for future reference in the knowledge
base. The planner interprets the symptoms and devises a plan to execute the
change in the managed process through its effectors. The manageability inter-
faces, each of which consists of a set of sensors and effectors, are standardized
across managed elements and autonomic building blocks, to facilitate collabora-
tion and data and control integration among autonomic elements. The autonomic
manager gathers measurements from the managed element as well as informa-
tion from the current and past states from various knowledge sources and then
adjusts the managed element if necessary through its manageability interface
according to its control objective.

An autonomic element itself can be a managed element [34,36]. In this case
additional sensors and effectors at the top of the autonomic manager are used
to manage the element (i.e., provide measurements through its sensors and re-
ceive control input—rules or policies—through its effectors). If there are no such
effectors, then the rules or policies are hard-wired into the control loop. Even

60 Y. Brun et al.

if there are no effectors at the top of the element, the state of the autonomic
element is typically still exposed through its top sensors. Thus, an autonomic
element constitutes a self-adaptive system because it alters the behavior of an
underlying subsystem—the managed element—to achieve the overall objectives
of the system.

While the autonomic element, as depicted in Figure 4, was originally pro-
posed as a solution for architecting self-managing systems for autonomic com-
puting [33], conceptually, it is in fact a feedback control loop from classic control
theory.

Garlan et al. have developed a technique for using feedback for self-repair
of systems [9]. Figure 5(a) shows their system. They add an external controller
(top box) to the underlying system (bottom box), which is augmented with suit-
able actuators. Their architecture maps quite naturally to the generic feedback
control loop (cf. Figure 2).

To see this, Figure 5(b) introduces two elaborations to the generic control
loop. First, we separate the controller into three parts (compare, plan correc-
tion, and effect correction). Second, we elaborate the value of yb, showing that
sensors can sense both the executing system and its operating environment and
by explicitly adding a component to convert observations to modeled value. In
redrawing the diagram, we have arranged the components so that they overlay
the corresponding components of the Rainbow architecture diagram. To show
that the feedback loop is clearly visible in the Rainbow architecture, we provide
the mapping between both architectures in Table 1.

An example for a self-adaptive system following the MIAC scheme applied
to software is the robust feedback loop used in self-optimization that is be-
coming prevalent in performance-tuning and resource-provisioning scenarios (cf.
Figure 6(a)) [37,38]. Robust feedback control tolerates incomplete knowledge
about the system model and assumes that the system model has to be fre-
quently rebuilt. To accomplish this, the feedback control includes an Estimator

3

45

1

2

6

(a) Rainbow system’s archi-
tecture [9]

(b) Shaw’s elaborated feedback control architec-
ture [26]

Fig. 5. The Rainbow system and Shaw’s feedback control loop

Engineering Self-Adaptive Systems through Feedback Loops 61

Table 1. Mapping showing the correspondence between the elements of the Rainbow
system’s architecture and Shaw’s architecture

Rainbow system (cf. Figure 5(a)) Model (cf. Figure 5(b))

(1) Executing sys. with runtime manager Executing sys. in its operating environment
(2) Monitoring mechanisms Probes
(–) (Rainbow is not predictive) Predictions
(3) Architectural model Objective, model of current state
(4) Analyzer Compare
(5) Repair handler Plan correction
(6) Translator, runtime manager Effect correction, commands

that estimates state variables (x) that cannot be directly observed. The variables
x are then used to tune a performance model (i.e., queuing network model) on-
line, allowing that model to provide a quantitative dependency law between the
performance outputs and inputs (yu) of the system around an operational point.
This dependence is dynamic and captures the influence of perturbations w, as
well as time variations of different parameters in the system (e.g., due to software
aging, caching, or optimizations). A Controller uses the yu dependency to decide
when and what resources to tune or provision. The Controller uses online opti-
mization algorithms to decide what adaptation to perform. Since performance is
affected by many parameters, the Controller chooses to change only those param-
eters that achieve the performance goals with minimum resource consumption.
Since the system changes in time, so does the performance dependence between
the outputs and inputs. However, the scheme still works because the Estimator
and the Performance Model provide the Controller with an accurate reflection
of the system.

Another example of an MIAC scheme is a mechatronics system consisting of
a system of autonomous shuttles that operate on demand and in a decentral-
ized manner using a wireless network [39]. Realizing such a mechatronics system
makes it necessary to draw from techniques offered by the domains of control
engineering as well as software engineering. Each shuttle that travels along a spe-
cific track section approaches the responsible local section control to obtain data
about the track characteristics. The shuttle optimizes the control behavior for
passing that track section based on that data and the specific characteristics of
the shuttle. The new experiences are then propagated back to the section control

Performance
Model

SystemController

Estimator

y

yu

Performance
Goals

u

d

e
x

+

(a) Self-optimization via feedback loop

ProcessProcess

Adjustment
Mechanism

Adjustment
Mechanism

System
Identification

ControllerController

System
Identification

Adjustment
Mechanism

System
Identification

Controller Processu
up yp

Controller
Parameters

Process Characteristics

d

(b) Multiple intertwined MIAC schemes

Fig. 6. Applications of adaptive control schemes for self-adaptive systems

62 Y. Brun et al.

such that other shuttles may benefit from them (i.e., improve their model). The
shuttles implement the MIAC control loop as a group as depicted in Figure 6(b).
Each shuttle traveling along a track only realizes the Adjustment Mechanism
and Controller while the shuttles, which have reported on the track characteris-
tics before, and the section control collectively realize the System Identification.
Note that this constitutes a form of cooperative self-adaptation where multiple
elements are involved in a single adaptive control loop.

4 Solutions Inspired by Natural Systems

Because nature-inspired engineering is a younger area of research than con-
trol theory, emerging nature-inspired solutions for self-adaptive software have
not yet been classified and contrasted against one another. In this section,
we present some of the existing nature-inspired solutions for self-adaptive soft-
ware systems. While some current work deals with building biologically inspired
self-adapting software systems [40,41], even more work has gone into studying
biological systems to inspire the design of software and hardware systems in
robotics [1,42,43,44]. It remains a challenge to employ biological knowledge to
develop an understanding of how to build software systems that function the
way biological systems do, and to design appropriate architectures, design tools,
and programming tools to create such systems.

In nature, the process of crystal growth can result in well-formed regular crys-
tals or high-error irregular crystals. The key aspect that determines which type
of crystal will form is the speed at which the crystal grows. If the crystal grows
slowly, then badly and weakly attached molecules detach from the crystal and
the final result has very few, if any, errors. However, if the crystal grows quickly,
badly attached molecules are locked in by other attachments before they can
detach, and the final result has many errors. The tile architectural style [40], a
software architectural style inspired by crystal growth, leverages the feedback
exhibited by crystal growth to allow fault and adversary tolerance [4]. The tile
style allows distributing computation of NP-complete problems on a large net-
work in a secure, dependable, and scalable manner [40]. The control loops within
tile-style systems are difficult to classify as positive or negative; however, they
do fit nicely into the feedback loop described in Figure 2. The individual compo-
nents attach to one another, collecting information on what other components
may attach. After a faulty or malicious agent attaches an illegal component, fu-
ture attachment cannot happen, and analysis reveals that the assembly became
locally “stuck.” (Since the system is only affected locally, the computational re-
sources are rerouted and the system as a whole makes progress, incurring only
negligible reduction in computation speed.) The surrounding components decide
to detach a few most-recently attached neighbors, and resume attaching new
components. As this action selects prospective components at random, faulty or
malicious agents are unlikely to be able to penetrate the assembly two or more
times, thus resulting in a fault- and adversary-tolerant software system.

Schools of fish and flocks of birds adapt their behavior by using direct com-
munication. They follow a set of attraction and repulsion rules: maintaining a

Engineering Self-Adaptive Systems through Feedback Loops 63

minimum distance from other objects in the environment, matching own velocity
with that of neighbors, and moving toward the perceived center of mass in one’s
neighborhood. These rules provoke a wave of reactions that are communicated
progressively to all components of the school or flock. Certain software systems
use similar mechanisms—for example, process schedulers and network routing
protocols.

In contrast, ants and wasps use stigmergy as an indirect communication mech-
anism by leaving clues in the environment for the others. Ants add pheromone
to their environments to denote paths to food and wasp-nest construction fol-
lows a work-in-progress mechanism (each cell added to the nest creates a new
nest configuration and each configuration triggers a particular response in the
wasps). Research in swarm robotics has used stigmergy extensively to solve static
and dynamic optimization problems. More generally, stigmergy as an indirect
communication medium is being used for coordinating unmanned vehicles [45].

Mammalian immune systems provide a defense mechanism by detecting
antigens (intruders) and by coordinating a collective decentralized response to
destroy them. These distributed, decentralized systems balance detection and re-
moval of malicious agents against interference with normal cell processes and em-
ploy learning techniques. Software intrusion detection research already leverages
some immune-system ideas [46], but understanding these intricate self-organizing
defenses can offer much more insight into engineering self-adaptive systems.

More generally, current practice in engineering self-organizing systems en-
compass the use of autonomous components (agents), establishment of behav-
ior interactions rules following adaptive mechanisms inspired by nature or use
of middleware with built-in features supporting adaptive mechanisms (such as
digital pheromone propagation).

5 Challenges Ahead

We have argued that the feedback loop should be a first-class entity when think-
ing about engineering of self-adaptive systems. We believe that understanding
and reasoning about the control loop is key for advancing the construction of
self-adaptive systems from an ad-hoc, trial-and-error endeavor towards a more
disciplined approach. To achieve this goal, the following issues, possibly among
others, have to be addressed.

Modeling: There should be modeling support to make the control loop explicit
and to expose self-adaptive properties so that the designer can reason about the
system. The models have to capture what can be observed and what can be
influenced. It would be desirable to have a widely agreed upon standard (e.g.,
in the form of reference models with domain-specific notations) for self-adaptive
systems including the control loop. Highly decentralized self-organizing systems,
such as swarms, need to have proper models of control loops, even though today,
that control loop is only implicitly present in the models.

The nature of a self-adaptive system requires to reify properties that would
otherwise be encoded implicitly. These reified properties need to be modeled

64 Y. Brun et al.

appropriately so that they can be queried and modified during runtime. Exam-
ples of such properties are system state that is used to reason about the system’s
behavior, and policies and business goals that govern and constrain how the
system can and will adapt.

Control Loops: We have described a number of types of control loops found
in control-engineering, natural, robotics, and software systems. Our list is by no
means comprehensive and other types of control loops, and self-adaption tech-
niques that leverage control loops and interactions between control loops, exist.
One challenge to advancing the engineering of self-adaptive software systems is
creating a reference library of control-loop types and mechanisms of control-loop
interactions. To create this library, we must mine, understand, and leverage ex-
isting systems and then classify and catalog their self-adaptation mechanisms.
In particular, natural systems are rich sources of distinct and novel control loops
and control-loop interactions.

Architecture and Design: Decisions concerning feedback loops in the archi-
tecture and design of self-adaptive systems can leverage past experience. Con-
trol theory research found that systems with a single control loop are easier
to reason about than systems with multiple loops, although the latter are far
more common. Since good engineering practice calls for simple design, engineers
should consider minimizing the number of control loops or decoupling control
loops from each other. Such a decoupling can happen with respect to time,
ensuring that the loops operate at different time scales, or with respect to space,
weakening the dependencies between variables. When complete decoupling is
not possible, the design must make the control-loop interactions, and their han-
dling, explicit. Thus, designs containing multiple control loops must be care-
fully considered and analyzed, as in, for example, the MIAC or MRAC designs
(cf. Figures 3(b) and 3(b)).

Control engineering research has also identified that hierarchical organiza-
tion of control loops reduces the design complexity. In this scheme, the loops
influence each other top-down and operate at different time scales, avoiding un-
expected interference between the hierarchy levels. Hierarchical organization is
of particular interest if it is possible to distinguish different time scales and dif-
ferent controlled variables [37] or different adaptation domains within a software
system, such as change management and goal management [17].

Reference architectures for adaptive systems should therefore highlight key
aspects of feedback loops, including their number, structural arrangements (e.g.,
sequential, parallel, hierarchical, decentralized), interactions, data flow, toler-
ances, trade-offs, sampling rates, stability and convergence conditions, hystere-
sis specifications, and context uncertainty [36]. It is highly desirable that such
architectures can be used to reason about the properties of the system and
its control loop. In other words, we must determine whether it is possible to
build Attribute-Based Architectural Styles for control loops in self-adaptive
systems [47].

Engineering Self-Adaptive Systems through Feedback Loops 65

Unintended-Interaction Detection: For some systems (e.g., ULS systems),
their complexity may limit the possibility of hierarchical organization of control
loops or other methods of control-loop decoupling. Control loops developed in-
dependently to cope with different problems at various abstraction levels may
result in unexpected interactions with negative effects on the system behavior.

Combining distinct subsystems with seemingly independent goals can often
result in emergent behaviors, some of which can be desirable, while others are
undesirable. Nature suggests two avenues of research toward potential solutions
to detecting and avoiding unintended interactions between control loops: (1)
mining the abundant systems from nature with control loops that do not in-
teract in undesirable ways to understand how to develop such control loops in
engineered systems; and (2) understanding the process that has arrived at sys-
tems with only desirably interacting control loops (e.g., evolution) and applying
a similar process to select or decouple control loops automatically in engineered
systems.

Maintenance: Since maintenance constitutes a significant portion of a soft-
ware system’s life cycle, understanding maintainability concerns specific to self-
adaptive systems poses an important challenge. Examples of issues that should
be tackled are how the maintainability concerns of self-adaptive systems and tra-
ditional systems compare and whether a system designed for dynamic variability
or adaptation is easier to maintain than a static system [36,48]. It is reasonable
to expect differences in maintenance of the two kinds of systems because some
self-adaptive systems add a reflective layer that enables runtime analysis and
adaptation. Consequently, a maintenance activity may involve changes to either,
or both, the system’s meta level or base level [49].

Middleware Support: Currently, the building of self-adaptive systems is te-
dious because of the lack of a reusable code base. A dedicated development and
execution environment (e.g., in the form of a framework or library) for build-
ing systems with self-adaptive features would go a long way in resolving this
challenge. As a vision, good middleware support should “allow researchers with
different motivations and experiences to put their ideas into practice, free from
the painful details of low-level system implementation” [50]. Such an infrastruc-
ture should define standardized interfaces and services, support different het-
erogeneous platforms, allow for the rapid prototyping of self-adaptive features,
and involve hybrid architectures (e.g., combining top-down and bottom-up or
centralized and decentralized approaches).

Verification and Validation: Development of self-adaptive systems requires
techniques to validate the effects of feedback loops. Classical control engineering
provides sophisticated solutions for the analysis of continuous-feedback control
loops [2,13]. However, some phenomena relevant to software and self-adaptation
have a discrete or hybrid nature (e.g., architectural changes). In addition to con-
trol engineering, discrete event systems [51], switched systems [52], and hybrid
systems [53] may provide mechanisms relevant to self-adaptive systems.

66 Y. Brun et al.

Reengineering: Today, most engineering issues for self-adaptive systems are ap-
proached from the perspective of greenfield development. However, many legacy
applications can benefit from self-adaptive features. Reengineering of existing
systems with the goal of making them more self-adaptive in a cost-effective and
principled manner poses an important challenge. Of particular concern is the
question of how to inject a control loop into an existing system. Technologies
and tools that allow an engineer to (semi-)automatically augment an existing
system with sensors and effectors can begin to answer this challenge. Further,
existing systems should be gradually migrated towards self-adaptive capabilities
(a.k.a. the chicken little approach), for example, by increasing the scope of self-
adaptive control from subcomponents towards the entire business infrastructure
or by increasing self-adaptive functionality in a single component by substituting
high-level-goal-based self-adaptive behavior for manual configuration.

Human-Computer Interaction: Even though self-adaptive systems act au-
tonomously in many respects, they have to keep the user in the loop. Providing
the user with feedback about the system state is crucial to establish and keep
users’ trust. To that effect, a self-adaptive system needs to expose aspects of
its control loop to the user. For example, if a web server is reconfigured in re-
sponse to a load change, the human administrator needs (visual) feedback that
the performed adaptation has a positive effect.

Also, users should be given the option to disable self-adaptive features and
the system should take care not to contradict explicit choices made by users [54].
Furthermore, users might want feedback from the system about the information
collected by sensors and how this information is used to adapt the system. In
fact, if the collected information is personal data there might be even a legal
obligation to do so [55].

6 Conclusions

We have outlined in this paper that feedback loops are a key factor in software
engineering of self-adaptive systems. In the case of top-down self-adaptive archi-
tectures employing explicitly-engineered feedback control loops, these loops are
of paramount importance to guide engineering of the self-adaptive part of those
systems. In case of systems inspired by biological and natural systems, iden-
tifying the feedback loops and understanding their impact is essential. While
notions of the feedback loop that can be found in the areas of control theory
and natural systems can provide valuable insight, software engineering needs to
develop its own unique notion of feedback loop that is suitably aligned with
its own problem domain. Therefore, we argue for the necessity of well-founded
approaches for the models, architectures, design, implementation, maintenance,
and verification techniques of self-adaptation, while taking into account the no-
tion of reengineering existing systems to contain self-adaptation. We think that
aligning our efforts with the key concept of feedback loops, which has been some-
what ignored in software engineering, will bring our community closer to the goal

Engineering Self-Adaptive Systems through Feedback Loops 67

of building complex self-adapting systems. Satisfying the challenges we outlined
above is the first step toward this endeavor.

Acknowledgments

This paper is the result of stimulating discussions among the authors and other
participants during the seminar on Software Engineering for Self-Adaptive Sys-
tems at Schloss Dagstuhl in January 2008. Some of the ideas developed in this
paper have initially been presented elsewhere [26,36,56].

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Thomas, F., Knight, J.,
Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commu-
nications of the ACM 43(5), 74–82 (2000)

2. Diao, Y., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser, G., Phung, D.: Control
theory foundation for self-managing computing systems. IEEE Journal on Selected
Areas in Communications 23(12), 2213–2222 (2005)

3. Di Marzo-Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation in MAS.
Knowledge Engineering Review 20(2), 165–189 (2005)

4. Brun, Y., Medvidovic, N.: Fault and adversary tolerance as an emergent property of
distributed systems’ software architectures. In: 2nd ACM International Workshop
on Engineering Fault Tolerant Systems (EFTS 2007), Dubrovnik, Croatia, pp. 38–
43 (2007)

5. Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,
Klein, M., Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-large-scale
systems: The software challenge of the future. Technical report, Software Engineer-
ing Institute (2006), http://www.sei.cmu.edu/uls/

6. Ottino, J.M.: Engineering complex systems. Nature 427(6973), 399–400 (2004)
7. Brown, G., Cheng, B.H., Goldsby, H., Zhang, J.: Goal-oriented specification of

adaptation requirements engineering in adaptive systems. In: ACM 2006 Interna-
tional Workshop on Self-Adaptation and Self-Managing Systems (SEAMS 2006),
Shanghai, China, pp. 23–29 (2006)

8. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for organic computing. In: Hochberger, C.,
Liskowsky, R. (eds.) INFORMATIK 2006: Informatik für Menschen. GI-Edition –
Lecture Notes in Informatics, vol. P-93, pp. 112–119. Gesellschaft für Informatik
(2006)

9. Garlan, D., Cheng, S.W., Schmerl, B.: Increasing system dependability through
architecture-based self-repair. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems. LNCS, vol. 2677. Springer, Heidelberg (2003)

10. Liu, H., Parashar, M.: Accord: a programming framework for autonomic applica-
tions. IEEE Transactions on Systems, Man, and Cybernetics 36(3), 341–352 (2006)

11. Peper, C., Schneider, D.: Component engineering for adaptive ad-hoc systems.
In: ACM 2008 International Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2008), Leipzig, Germany, pp. 49–56 (2008)

12. Tanner, J.A.: Feedback control in living prototypes: A new vista in control engi-
neering. Medical and Biological Engineering and Computing 1(3), 333–351 (1963),
http://www.springerlink.com/content/rh7wx0675k5mx544/

http://www.sei.cmu.edu/uls/
http://www.springerlink.com/content/rh7wx0675k5mx544/

68 Y. Brun et al.

13. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons, Chichester (2004)

14. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: 4th ACM
SIGSOFT Symposium on Foundations of Software Engineering (FSE 1996), San
Francisco, CA, USA, pp. 3–14. ACM Press, New York (1996)

15. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems 14(3), 54–62 (1999)

16. Cheng, S.W., Garlan, D., Schmerl, B.: Making self-adaptation an engineering re-
ality. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van
Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 158–173.
Springer, Heidelberg (2005)

17. Kramer, J., Magee, J.: Self-managed systems: An architectural challenge. In: Future
of Software Engineering (FOSE 2007), Minneapolis, MN, USA, pp. 259–268. IEEE
Computer Society, Los Alamitos (2007)

18. Royce, W.W.: Managing the development of large software systems. In: 9th
ACM/IEEE International Conference on Software Engineering (ICSE 1970), pp.
328–338 (1970)

19. Boehm, B.W.: A spiral model of software development and enhancement. IEEE
Computer 21(5), 61–72 (1988)

20. Lehman, M.M.: Software’s future: Managing evolution. IEEE Software 15(1), 40–44
(1998)

21. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Transactions Autonomous Adaptive Systems (TAAS) 1(2), 223–259 (2006)

22. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga Press, Palo Alto (1980)
23. Gat, E.: Three-layer Architectures, pp. 195–210. MIT/AAAI Press, Cambridge

(1997)
24. Burns, R.: Advanced Control Engineering. Butterworth-Heinemann (2001)
25. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 10th edn. Prentice-Hall, En-

glewood Cliffs (2005)
26. Müller, H.A., Pezzè, M., Shaw, M.: Visibility of control in adaptive systems. In:

Second International Workshop on Ultra-Large-Scale Software-Intensive Systems
(ULSSIS 2008), Workshop at 30th IEEE/ACM International Conference on Soft-
ware Engineering (ICSE 2008), Leipzig, Germany (May 2008)

27. Astrom, K., Wittenmark, B.: Adaptive Control, 2nd edn. Addison-Wesley, Reading
(1995)

28. Söderström, T., Stoica, P.: System Identification. Prentice-Hall, Englewood Cliffs
(1988)

29. Dumont, G., Huzmezan, M.: Concepts, methods and techniques in adaptive control.
In: 2002 IEEE American Control Conference (ACC 2002), Anchorage, AK, USA,
vol. 2, pp. 1137–1150 (2002)

30. Kokar, M.M., Baclawski, K., Eracar, Y.A.: Control theory-based foundations of
self-controlling software. IEEE Intelligent Systems 14(3), 37–45 (1999)

31. McKinley, P.K., Sadjadi, M., Kasten, E.P., Cheng, B.H.: Composing adaptive soft-
ware. IEEE Computer 37(7), 56–64 (2004)

32. Brittenham, P., Cutlip, R.R., Draper, C., Miller, B.A., Choudhary, S., Perazolo,
M.: IT service management architecture and autonomic computing. IBM Systems
Journal 46(3), 565–581 (2007)

33. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

Engineering Self-Adaptive Systems through Feedback Loops 69

34. IBM Corporation: An architectural blueprint for autonomic computing. White Pa-
per, 4th edn., IBM Corporation,
http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

35. Shaw, M.: Beyond objects. ACM SIGSOFT Software Engineering Notes
(SEN) 20(1), 27–38 (1995)

36. Müller, H.A., Kienle, H.M., Stege, U.: Autonomic computing: Now you see it,
now you don’t. In: Lucia, A.D., Ferrucci, F. (eds.) Software Engineering: Interna-
tional Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures.
LNCS, vol. 5413, pp. 32–54. Springer, Heidelberg (2009)

37. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic con-
trol of software systems. In: ACM ICSE Workshop on Design and Evolution of
Autonomic Software, St. Louis, MO, USA, pp. 1–7 (2005)

38. Litoiu, M., Mihaescu, M., Ionescu, D., Solomon, B.: Scalable adaptive web services.
In: Development for Service Oriented Architectures (SD-SOA 2008), Workshop at
30th IEEE/ACM International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany (2008)

39. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool support for the design of self-optimizing mechatronic multi-agent systems.
International Journal on Software Tools for Technology Transfer (STTT) 10(3)
(2008)

40. Brun, Y., Medvidovic, N.: An architectural style for solving computationally in-
tensive problems on large networks. In: Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2007), Workshop at 29th IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA
(2007)

41. Di Marzo-Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A generic
framework for the engineering of self-adaptive and self-organising systems. Tech-
nical report, School of Computer Science, University of Newcastle, Newcastle, UK
(2007)

42. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using
Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA (2001)

43. Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Workshop
on Adaptability in Multi-Agent Systems, First RoboCup Australian Open (AORC
2003), Sydney, Australia (2003)

44. Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh,
J.: Multimode locomotion via superbot reconfigurable robots. Autonomous
Robots 20(2), 165–177 (2006)

45. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.A.: Performance of digi-
tal pheromones for swarming vehicle control. In: 4th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), The Netherlands,
pp. 903–910. ACM, New York (2005)

46. Hofmeyr, S., Forrest, S.: Immunity by design: An artificial immune system. In:
Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando,
Florida, USA, pp. 1289–1296. Morgan-Kaufmann, San Francisco (1999)

47. Klein, M., Kazman, R.: Attribute-based architectural styles. Technical Report
CMU/SEI-99-TR-022, Software Engineering Institute (SEI) (1999),
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr022.pdf

48. Zhu, Q., Lin, L., Kienle, H.M., Müller, H.A.: Characterizing maintainability con-
cerns in autonomic element design. In: 24th IEEE International Conference on
Software Maintenance (ICSM 2008), Beijing, China, pp. 197–206 (2008)

http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr022.pdf

70 Y. Brun et al.

49. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In: 2009 International Workshop on Self-Adaptation and Self-
Managing Systems (SEAMS 2009), Vancouver, BC, Canada (to be published, 2009)

50. Babaoglu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel,
A.P.A.: The self-star vision. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer,
C., Leonardi, S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS,
vol. 3460, pp. 1–20. Springer, Heidelberg (2005)

51. Passino, K.M., Burgess, K.L.: Stability analysis of discrete event systems. Adaptive
and Learning Systems for Signal Processing Communications, and Control. John
Wiley & Sons, Inc., New York (1998)

52. Liberzon, D., Morse, A.: Basic problems in stability and design of switched systems.
IEEE Control Systems Magazine 19(5), 59–70 (1999)

53. Decarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and
Results on the Stability and Stabilizability of Hybrid Systems. Proceedings of the
IEEE 88(7), 1069–1082 (2000)

54. Lightstone, S.: Seven software engineering principles for autonomic computing de-
velopment. Innovations in Systems and Software Engineering 3(1), 71–74 (2007)

55. Sackmann, S., Strüker, J., Accorsi, R.: Personalization in privacy-aware highly
dynamic systems. Communications of the ACM 49(9), 32–38 (2006)

56. Cheng, B.H., de Lemos, R., Giese, H., et al.: Software engineering for self-adaptive
systems: A research roadmap. In: Cheng, B.H., de Lemos, R., Giese, H., Inver-
ardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS,
vol. 5525. Springer, Heidelberg (2009)

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 71–88, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Improving Architecture-Based Self-Adaptation through
Resource Prediction

Shang-Wen Cheng, Vahe V. Poladian, David Garlan, and Bradley Schmerl

Carnegie Mellon University, School of Computer Science
5000 Forbes Avenue, Pittsburgh, PA 15213

{zensoul,vahe.poladian,garlan,schmerl}@cs.cmu.edu

Abstract. An increasingly important concern for modern systems design is how
best to incorporate self-adaptation into systems so as to improve their ability to
dynamically respond to faults, resource variation, and changing user needs. One
promising approach is to use architectural models as a basis for monitoring,
problem detection, and repair selection. While this approach has been shown to
yield positive results, current systems use a reactive approach: they respond to
problems only when they occur. In this paper we argue that self-adaptation can
be improved by adopting an anticipatory approach in which predictions are used
to inform adaptation strategies. We show how such an approach can be incorpo-
rated into an architecture-based adaptation framework and demonstrate the
benefits of the approach.

Keywords: self-adaptation, resource prediction, autonomic computing, software
architecture.

1 Introduction

As computing systems become more and more integral to our daily activities, it be-
comes increasingly important for those systems to provide reliable and uninterrupted
service, even in the presence of system faults, changing resources and loads, and
different user needs. In the past this capability has largely been provided through
human oversight. As a result, the cost of managing such systems has grown to 70-
90% of the total cost of system ownership [8], while the burden of managing the
many aspects of computing has surpassed the capacity of human attention [24].

In response there has been considerable recent interest in supporting automated
system self-adaptation, whereby the system takes increasing responsibility for dy-
namically detecting problems and repairing itself. Most systems that support
self-adaptation adopt a control systems perspective: a system is monitored and the
resulting observations are used to determine system health, and the system is adapted
to fix any existing problems.

One particularly promising form of this approach is to use architectural models of a
system as the basis for problem detection, diagnosis, and repair. Architecture-based
self-adaptation has had considerable success in providing adaptation support for

72 S.-W. Cheng et al.

legacy systems and in providing flexibility for tailoring adaptation to business needs
[1,6,10,11,12,13,19,25].

One outstanding problem with such systems is that they are strictly reactive: they
respond to the current environment and system state, invoking adaptation strategies if
and only if an immediate problem arises. The goal of a reactive approach is to select
an adaptation that optimizes the instantaneous utility of the system at that time. How-
ever, from a global perspective, several instantaneously optimal decisions may be
sub-optimal when considered together. For example, if we adapt a web system reac-
tively to a short, temporary spike in bandwidth by reducing the fidelity of the content,
this may be sub-optimal in hindsight because a short delay may be less offensive to
the client than low fidelity.

In this paper we argue that self-adaptation can be dramatically improved if we use
future predictions of the environment, and specifically its resources, to make better
choices about whether and how to adapt a system. In other work [21], we have
developed a resource prediction framework that provides predictions on resource
availability from a variety of prediction models, in the context of continually adapting
ubiquitous computing. We can use this framework to provide predictive information
to help architecture-based self-adaptation. In particular, we observe that prediction
offers four kinds of improvement to the existing self-adaptation approach:

1. Prediction prevents unnecessary self-adaptation.
2. Prediction reduces disruption from incremental adaptation, for

example, enlisting servers 4 at once rather than one at a time.
3. Prediction enables pre-adaptation to seasonal behavior.
4. Prediction improves overall choice of adaptation.

At first glance, it seems obvious that using predicted information will improve self-
adaptation – if you know it is going to rain, don’t turn on the sprinklers. But, making
choices about when and how to consider this predicted information is crucially
important. Accordingly, the contributions of this chapter are:

1. A framework for generic use of predictive information. The framework is
agnostic to methods used for deriving predictions;

2. Flexibility in using predictions for self-adaptation. Our framework has several
points of integration where predictions can be useful; and

3. Some rules-of-thumb for how to incorporate predictive information into a
self-adaptive framework.

In the remainder of this chapter we describe our resource prediction framework and
show how it achieves the improvements listed above. In Section 2, we describe the
overall framework of our architecture-based self-adaptation approach and identify
core challenges of incorporating prediction. We then introduce the anticipatory model
for adaptation in Section 3. In Section 4 we present initial results of applying an an-
ticipatory model to adaptation and describe future applications. In Section 5 we de-
scribe related work on architecture-based self-adaptation and prediction. In the final
section, we conclude with a brief discussion of additional ways in which prediction
could be used to improve architecture-based self-adaptation.

 Improving Architecture-Based Self-Adaptation through Resource Prediction 73

Fig. 1. Architecture model of Znn.com

2 Framework for Architecture-Based Self-Adaptation

In this section we provide a high-level overview of our self adaptation framework,
illustrate its use with an example, and discuss opportunities for enhancement via re-
source prediction. In particular, making use of prediction requires addressing a few
challenges: What kinds of predictive information are useful? What can be predicted?
How would it be used? This section addresses the first question of requirements for
prediction. In the next two sections we address the questions of what and how.

To illustrate our approach, consider an example news service, Znn.com, inspired
by real sites like cnn.com and RockyMountainNews.com, which serves multimedia
news content to its customers. Architecturally, Znn.com is a web-based client-server
system that conforms to an N-tier style. As illustrated in Fig. 1, Znn.com uses a load
balancer (LB) to balance requests across a pool of replicated servers, the size of which
is dynamically adjusted to balance server utilization against service response time. A
set of client processes (represented by the C component) makes stateless content re-
quests to the servers. Let us assume we can monitor the system for information such
as server load and the bandwidth of server-client connections. Assume further that we
can modify the system, for instance, to add more servers to the pool or to change the
fidelity of the content. We want to add self-adaptation capabilities that will take
advantage of the monitored system and adapt the system to fulfill Znn.com objectives.

The business objectives at Znn.com are to
serve news content to its customers with
reasonable response, while keeping the cost of
the server pool within its operating budget.
From time to time, due to highly popular
events, Znn.com experiences spikes in news
requests that it cannot serve adequately, even
at maximum pool size. To prevent unaccept-
able latencies, Znn.com opts to serve mini-
malist textual content during such peak times
in lieu of providing its customers zero service.

Assume that two actions are possible to adapt the system: adjust the server pool size
(enlist or remove) or switch content mode (multimedia or textual). While seemingly
simple, an adaptation decision requires a tradeoff between the multiple objectives.

2.1 Overview of the Rainbow Framework

Our architecture-based self-adaptive approach is embodied in an engineering frame-
work, called Rainbow, which provides mechanisms to monitor a target system and its
executing environment, reflect observations in an architecture model, detect opportu-
nities for improvements, select a course of action, and effect changes. By leveraging
the notion of architectural style to exploit commonality between systems, the frame-
work provides general and reusable infrastructures with well-defined customization
points to cater to a wide range of systems. It also provides a useful set of abstractions
to focus engineers on adaptation concerns, facilitating the systematic customization of
Rainbow to particular systems. Details can be found in [3,4].

74 S.-W. Cheng et al.

Fig. 2. The Rainbow Framework

The Rainbow framework (Fig. 2) uses a component-and-connector architecture
model of the target system to monitor and reason about appropriate strategies for
adapting the system. Monitoring mechanisms—probes and gauges—observe the run-
ning target system. Observations are reported to update properties of the architecture
model managed by the Model Manager. The Architecture Evaluator evaluates the

model upon update to ensure that the
system is operating within an accept-
able range, as determined by archi-
tectural constraints. If the Evaluator
determines that the system is not
operating within the accepted range,
it triggers the Adaptation Manager to
initiate the adaptation process and
choose an appropriate adaptation
strategy. The Strategy Executor then
executes the strategy on the running
system via system-level effectors.

To apply Rainbow to the Znn.com
example, we use probes and gauges
to monitor response time and server
load, reflecting those as properties in

the architecture model. The architecture evaluator triggers adaption when any client
experiences request-response latencies above some threshold. The Adaptation manager
determines whether to activate more servers or decrease content fidelity, as specified in
a repair script. The strategy executor effects the change in Znn.com using provided
hooks.

When the system comes under high load, Rainbow may opt to increase the server
pool size until a cost-determined maximum is reached, at which point Rainbow would
switch the servers to serve textual content. If the system load drops, Rainbow may
switch the servers back to multimedia mode to make customers happy, in combination
with reducing the pool size to reduce operating cost. In general, the adaptation deci-
sion is determined by both the business objectives and observations of system
conditions, including average response time, server load, and available bandwidth.

2.2 Elements of Rainbow

The Rainbow framework uses models of the architecture and environment to make
adaptation decisions. A component-and-connector (C&C) architecture model reflects
abstract, runtime states of a target system, including what entities are present and how
they communicate [5]. An environment model provides contextual information about
the system, including its executing environment and the resources used. For example,
when additional servers are needed, the environment model indicates what spare serv-
ers are available. When a better connection is required, the environment model
contains information about the available bandwidth of other communication paths.

In order to get information out of the target system into an abstract model for man-
agement, and then to push changes back into the system, we need mechanisms that
hook into the target system and understand what is represented in the model. Gauges

 Improving Architecture-Based Self-Adaptation through Resource Prediction 75

process system-specific information from Probes to populate architectural properties.
Associated with architectural operators in the Rainbow Architecture Layer, effectors
carry out change operations on the target system via mechanisms that range in com-
plexity from a system-call, to a script, to an elaborate workflow.

The Architecture Evaluator evaluates model conformance against architectural
constraints, which are specified using first-order predicate logic to identify problems
in the system. When triggered by the Architecture Evaluator, the Adaptation Manager
uses information about the state of the system, embodied in the architecture, the busi-
ness quality-of-service concerns and utility functions to decide which remedial strat-
egy to execute. A strategy is chosen from a set of specified strategies that have been
engineered for the system and/or domain. A strategy specifies conditions and contexts
in which it applies, and captures a pattern of adaptation steps.

Business quality-of-service concerns for the target system (e.g., system reliability,
service availability, or performance) are represented as quality dimensions. A quality
dimension provides a notion of utility, or happiness, for particular values of a quality
attribute. Each adaptation action has a specified impact in cost or benefit on each
dimension. By tallying the cost-benefit attributes over the actions in a strategy, an
expected aggregate impact can be computed for each strategy. A strategy can then be
scored using utility preferences specified for the quality dimensions. The Adaptation
Manager then selects the highest-scoring strategy.

Utility preferences define the relative importance between the quality dimensions.
Specifically, we use a von Neumann-Morgenstern utility function ud : Xd ℜ that
assigns a real number to each quality dimension d, normalized to the range [0,1].
Across multiple dimensions, we attribute a percentage weight to each dimension to
account for its relative importance compared to other dimensions. These weights form
the utility preferences. The overall utility is then given by the utility preference func-
tion, U =Σwdud. An example utility preference with three objectives, u1, u2, u3, of
decreasing importance might be quantified as [w1:0.6, w2:0.3, w3:0.1].

The utility preference function gives us a way to compute the instantaneous utility
of the target system given its current conditions, as well as the accrued utility of the
target system over time. If we assume coverage of system conditions, accrued utility
provides a measure of optimality of the target system, giving us a way to compare the
relative optimality of a system under different combinations of conditions.

2.3 Opportunities for Improving Self-Adaptation

To date, Rainbow’s adaptation has been reactive in nature. Reactive adaptation has the
advantage of requiring only a small set of recent system conditions to choose an adap-
tation, allowing for timely decisions. However, reactive adaptation has a number of
well-known disadvantages. First, following the decision to perform an adaptation, time
is needed to carry out and propagate the necessary changes on the target system. At
times, the conditions that trigger an adaptation may be more short-lived than the dura-
tion for propagating the adaptation changes, resulting in an unnecessary adaptations
that incur potential resource costs and service disruption, which we term penalty.

Second, reactive adaptation lags behind current system conditions, and the degree
of that lag depends on the sensitivity of the system sensors to present (versus histori-
cal) values of a system condition (e.g., CPU load, link bandwidth). If the system

76 S.-W. Cheng et al.

condition undergoes a dramatic and rapid shift, it may take numerous adaptation cy-
cles for sensors to “catch up,” resulting in more than one incremental adaptation
change where a single adaptation might have sufficed. Again, this is problematic
since each adaptation potentially incurs some penalty.

If a similar shift in system conditions recurs “seasonally”—once every period of
time, such as every day at 8 AM—then the same undesirable pattern of incremental
adaptations would repeat every period. (One workaround is to learn the seasonal pat-
tern from historical data and predicate adaptations on time; however, this is a form of
prediction.) In fact, executing adaptation while the system is under duress usually will
take more time and is more likely to fail because of lack of resources. Having such
prediction will help ensure sufficient resources are available for the adaptation.

Finally, knowledge of future availability of some required resource might result in
a different adaptation choice that moves the system into a higher level of overall util-
ity. To illustrate using a simplified Znn.com example, assume three levels of utility—
happy, somewhat happy, unhappy – and three levels of values corresponding to re-
source conditions: low, medium, high. Assume that both high response time and zero
service (i.e., no content) makes the customer unhappy, while low-fidelity content
makes the customer somewhat happy. Assume further that an adaptation cycle takes
one unit of time to effect its changes. We will represent the conditions of the system
at a particular time-point with a tuple: (utility, response time, server load, available
bandwidth, content fidelity). Now imagine a scenario lasting 3 time units, where
Rainbow reacts to the conditions at time unit 1 by lowering the content fidelity:

0. (happy utility, low response time, low load, high available bandwidth, high fidelity)
1. (unhappy, high, high, low, high)
2. (somewhat happy, medium, medium, low, low)
3. (somewhat happy, medium, medium, high, low)

However, with perfect hindsight, knowing that the available bandwidth would recover
to high might have led Rainbow to adapt by enlisting more servers to lower the
average server load and to keep the fidelity high, thus achieving better overall utility:

3. (happy, medium, medium, high, high)

This example demonstrates how a reactive strategy of adaptation that optimizes in-
stantaneous utility may often be sub-optimal over a long period of time. This defi-
ciency results from two properties of reactive adaptation: (1) information used for
decision making does not extend into the future, and (2) the planning horizon of the
strategy is short and does not consider the effect of current decisions on future utility.

By analyzing its reactive nature, we have thus identified four opportunities for
improving the current self-adaptation capabilities:

1. Preventing unnecessary self-adaptation
2. Reducing disruption from incremental adaptations.
3. Enabling pre-adaptation to seasonal behavior.
4. Improving overall choice of adaptation.

These opportunities for improving self-adaptation highlight the need for predictive
information, particularly predictions of resources the target system environment. In

 Improving Architecture-Based Self-Adaptation through Resource Prediction 77

the following section, we characterize a number of different kinds of prediction and
types of information that are amenable to prediction.

3 Resource Prediction

In the previous section we identified four opportunities for using prediction to im-
prove self-adaptation of systems. For the purpose of this chapter, prediction is an
informed estimation of the future random values of a system or environment variable,
e.g., the future available level of some resource required by the system. By leveraging
predictive information, a self-adapting system is able to analyze adaptation alterna-
tives slightly, or even significantly, ahead of real-time, make forward-looking deci-
sions based on those predictions, and potentially improve the performance according
to some objective metric. In this section, we describe the types of prediction that we
use, discuss their applicability and limitations, and then describe a generic prediction
framework that was developed for use in a ubiquitous computing context, but which
can be co-opted for use within Rainbow.

Poladian defined and described an anticipatory model of self-adaptation in the con-
text of a ubiquitous computing system that makes resource allocation decisions based
on predictions of three inputs: (1) predictions of user’s tasks, e.g., what type of appli-
cations the user needs and for how long, (2) predictions of resource demand by re-
source- and fidelity-aware applications, and (3) predictions of the available supply of
resources such as network bandwidth and battery. He developed a calculus and
framework that can synthesize different categories of prediction about a resource to
produce a single combined predictive value. The types of predictive models that can
be synthesized with this approach are: (1) linear recent history, which is a kind of
predictor that uses recent history and a linear time-series model; we use auto-
regressive moving average (ARMA) models for this kind of resource prediction,
which is consistent with [7]. (2) Relative move, which models seasonal variations in
resource availability (e.g., knowing that network usage will be high at the beginning
of a work day). (3) bounding, which specifies the maximum and minimum values of a
resource for a union of time intervals (for example, knowing that bandwidth cannot be
above 10Mbps). In this chapter, we are concerned with how to integrate the prediction
architecture with a self-adaptive system, rather than the particular models of
prediction used. For details of the types of predictive models, and the calculus for
combining them, we refer readers to [20,21].

Because predictions are rarely perfect, a model of prediction must be prepared to
address uncertainty. Broadly, uncertainty describes both measurement and estimation
error when making predictions. Consequently, we differentiate between two types of
uncertainty. The first type of uncertainty arises when estimating future, random values
of variables. One familiar example of such uncertainty is forecasting tomorrow’s
weather. Predicting (forecasting) tomorrow’s temperature is generally imprecise, and
a good prediction would provide an estimate for the uncertainty (error) in the forecast.
Moreover, the error increases the further into the future one is predicting. Examples
from computer systems include predicting the number of clients connected to the
system or the available supply of network bandwidth in ten minutes. The second type
of uncertainty arises when measuring the magnitude of past and present values of

78 S.-W. Cheng et al.

variables. An example from the physical sciences is the measurement of voltage. Here
the uncertainty (error) is the result of imprecision, rather than randomness, that can
only be resolved by waiting until some future time. An example from computer sys-
tems includes measuring the current available bandwidth between two network nodes.

Prediction and uncertainty in the context of self-adaptive systems must be modeled
and addressed together. Typically, making predictions requires a statistical model that
estimates (calculates) future values of a variable based on available information to the
system. The uncertainty in the prediction is a rigorous description of the predictive
error based upon that statistical model. In other words, prediction and uncertainty are
described by the predictive distribution of the variable being estimated, conditional on
all available data, e.g., the past values of the variable as well as the past values of the
prediction errors and any other information.

The types of prediction models and the way of combining them can be extended to
a certain class of self-adaptive systems that (a) monitor and predict resource availabil-
ity, and (b) make resource allocation decisions as part of self-adaptive behavior.
Typically, such systems are concerned with measuring or estimating both the demand
for computational resources by the system under consideration and the supply of re-
sources available to that system. In practice, the demand and the supply might be
dependent. Therefore, it is important to identify when those are interdependent and
express the dependence. Essentially this means whether each critical resource in the
environment of the self-adaptive system is shared among many systems or entirely
dedicated to the system under consideration. If the resource is not under our control,
then we can simply use the aggregate predictions of that resource where the future
value of that resource is based on the historical values of that resource. However, if
the resource is being managed wholly by the self-adaptive system, then the prediction
is more complicated; we need to predict how each element under our control uses that
resource. In either case, the predictive framework can be applied equally effectively.

The kinds of predictions that can be handled by the prediction framework are for
resources that have historical data that can be analyzed statistically and that match our
statistical model of the resource in question. For example, if the historical data fits a
Poisson distribution then it is obviously not applicable for an ARMA predictor that
assumes Gaussian distribution. So, predictions that assume uncertainty is normally
distributed may fail to detect the arrival of a so-called “Slashdot effect,” when a rapid
increase of web clients are connected to the server due to a sudden surge in the popu-
larity of the web server. This is especially the case if the historical data does not con-
tain evidence of a Slashdot event.

Our approach to anticipatory adaptation is based on optimizing the match between
system needs and the environment capabilities. In practice, finding such a match cor-
responds to maximizing system utility. Poladian’s thesis defines an analytical model
that formalizes the notion of utility for user’s tasks and expresses automatic configu-
ration as a mathematical problem of maximizing the expected utility of the user
from the running state of the environment under the constraints of the computing
environment.

The analytical model provides a carefully crafted structure for the problem, allow-
ing efficient runtime configuration algorithms to search the problem space for good
solutions. That structure is used to define a configuration strategy for prediction that
takes as input (1) the amount of historical information about the resource being

 Improving Architecture-Based Self-Adaptation through Resource Prediction 79

 Monitor

AggPredP

BPredP

LPUpdPP

RMonP

Basic Predictor

Controller Consumer

Aggregator

Fig. 3. The resource-prediction framework

predicted, (2) the temporal horizon of the decisions, and (3) treatment of uncertainty
in the available information explicitly quantifying the uncertainty of future events and
coping with uncertainty by planning for future changes.

Using this analytical model, Poladian designed and implemented a software infra-
structure for automatic configuration with three important contributions: (1) a central
component that makes near optimal configuration decisions, (2) a prediction frame-
work that provides resource prediction on demand, and (3) a programming interface
between the centralized decision maker and the prediction framework. The central

decision-making component leverages
the structure of the analytical models to
implement efficient and near-optimal
configuration algorithms. In particular,
the framework consists of the following
four types of components, the architec-
ture of which is defined in Fig. 3.
For each resource, there will be one
instantiation of this framework.

Aggregator: the centerpiece of the
prediction framework, is responsible
for combining information from all
available Basic Predictors and calculat-
ing aggregate predictions. The Aggre-
gator maintains an up-to-date list of
currently available Basic Predictors.

It aggregates the information from the predictors and produces a time series of
predictions with increasing uncertainty further into the future.

Controller: allows setting the model parameters of the linear recent history predictor
in the Aggregator. The model parameters are expected to be relatively stable over
time, changing only infrequently. There is one Controller resource instance.

Basic Predictors: these components implement a wrapper around either known pat-
tern or bounding predictors. Multiple Basic Predictors can be used. Upon startup, a
Basic Predictor registers with the Aggregator. As new sources of predictions become
available, additional Basic Predictors can be added to the framework,

Monitor: probes the environment for actual resource availability and provides peri-
odic monitoring reports to the Aggregator. These monitored values correspond to the
the historical values used by the predictors. A Monitor provides a uniform interface to
the aggregator, encapsulating platform, network, and resource-specific details,

Consumer: the recipient and beneficiary of aggregate predictions. A Consumer is
implemented by the coordinating entity of an adaptive resource management system.
The prediction framework allows multiple concurrent Consumers to co-exist,
each with its own aggregate prediction session. The Consumer specifies prediction
parameters to the Aggregator including the sampling window to make prediction
observations and how far into the future to predict.

80 S.-W. Cheng et al.

In summary, the resource prediction framework quantifies the future level of re-
source availability by combining predictive information from multiple sources. More
details can be found in [21].

4 Incorporating Resource Predictions in Rainbow

Poladian’s work on resource prediction is both practical in terms of algorithm speed,
and useful in terms of manageable parameter space. In this section, we show how
resource predictions can be incorporated into the Rainbow self-adaptation framework.
Rainbow must satisfy the following requirements of Poladian’s framework:

1. Utility: to evaluate the quality of the various possible adaptations on the sys-
tem. Rainbow has a notion of utility as a central concept for strategy selection;

2. Penalty: to quantify costs of performing adaptations. If there is no penalty as-
sociated with adapting the system, this would obviate the need for using pre-
diction – we will do a much better job with a reactive approach. In Rainbow,
the penalties reflect the impact of temporary disruptions to system utility and
the also time it takes to propagate changes throughout the system; and

3. Historical information: to facilitate prediction, past observed values need to be
fed to the prediction framework.

4.1 Integration Points to Make Predictive Information Available

In Rainbow resource predictions can provide additional leverage in evaluating and
choosing between alternate strategies of adaptation. For example, by knowing the
probability that the available level of a critical resource, such as bandwidth, will be
below a certain threshold 5 minutes from now, Rainbow can choose a strategy that
quiesces lower priority client sessions so that the remaining client requests will con-
tinue to be satisfied within a tolerable latency. If, on the other hand, the probability is
high that the bandwidth will be restored to levels that will naturally bring the system
back within its desired state, Rainbow can choose to reduce the fidelity of some or all
of the client sessions. Rainbow can even choose to do nothing.

To leverage resource predictions, it is important to consider how predictive infor-
mation adds to the existing information flow of adaptation decisions in the Rainbow
framework. The following points in Rainbow are potential sites for integrating
resource predictions:

• Monitoring: predictor gauges
• Detection: prediction of architectural properties
• Strategy: conditions based on predicted value and actions with time cost
• Effector: addition or removal of prediction data streams

Monitoring: To make adaptation decisions, Rainbow reads gauge output to determine
target-system conditions. We can integrate resource predictions in Rainbow by encap-
sulating, as gauges, instances of the entire prediction runtime from Poladian’s system.
It provides output to the gauge bus consistent with the gauge infrastructure API.
Rainbow uses the standard gauge control interface to configure parameters of the

 Improving Architecture-Based Self-Adaptation through Resource Prediction 81

Fig. 4. Sample snippet of an adaptation strategy

01 define boolean cPredViolation (dur : int)=
 exists c : T.ClientT in M.components |
 Model.predictedProperty(c.experRespTime,
 dur) > M.MAX_RESPTIME;
02 ...
03 strategy VariedReduceResponseTime
04 [cViolation && cPredViolation(self.dur)] {
05 t0: (cViolation) -> enlistServers(1)
 @[1000 /*ms*/] {
06 t1: (!cViolation) -> done;
07 t2: (cViolation) -> lowerFidelity(2, 100)
 @[3000 /*ms*/] {
08 t2a: (!cViolation) -> done;
09 t2b: (default) -> TNULL; // give up
10 } } }

prediction runtime. The gauge performs the role of the consumer, providing parame-
ters for the prediction, then processing the time series returned from the aggregator to
produce a single predicted value for one future time, as requested by Rainbow.

Because uncertainty is inherent in resource prediction, we must incorporate the
probability of error in a predicted measurement, as supplied by predictors. We can
choose to ignore predicted measurements and fallback to current measurements when
the confidence level is below some threshold. We can also incorporate confidence
level directly in utility computation to give lower consideration to strategies that use
low-confidence predictive information.

Detection: Rainbow uses architectural constraints to identify opportunities for adapta-
tion. Conditions based on predicted resource states, such as the anticipated load in the
next 500 milliseconds, may indicate opportunities for adaptation. Thus, architectural
constraints should support predicates over predicted values of architectural properties,
perhaps in the form of a supplied architectural function, such as predictedProperty(p :
Property, dur : int) : float (similarly for functions providing basic statistical operations,
e.g., max/min/average). The predictedProperty() function returns the value of the archi-
tectural property identified by p, at a time point dur milliseconds from now. Recall
that gauges are associated with specific architectural properties to update their values.
So the function can compute predicted values by querying the predictor gauge
mapped to the requested property.

Strategy: At adaptation time, Rainbow uses current system conditions (reflected in
the model) to score and select strategies based on their expected utility. A strategy has
two important ingredients: system conditions and adaptation actions. System condi-
tions are used to (a) determine the applicability of strategies during strategy selection
and (b) decide the next adaptation step during strategy execution. Adaptation actions
change the target system to move the system toward a better state. New capabilities
are required in the mechanisms for strategy selection, applicability condition, and
actions to incorporate resource predictions.

An example strategy to reduce
system response time is shown in
Fig. 4, specified in Rainbow’s adap-
tation language. The function defined
on line 1, cPredViolation(), uses the
architectural function predictedProp-
erty() to compute client experienced
response time at some future time,
specified by dur. (cViolation defines
the same predicate without using a
predicted value.) Line 4 shows the
use of this predicted value to deter-
mine the applicability of this strat-
egy, in this case, when the client
experienced response time is above
threshold now and in the future.
Lines 5-9 specify what the strategy

82 S.-W. Cheng et al.

does. In this case, it first enlists a server. Failing that, it then lowers the fidelity. And
if that doesn’t work, it gives up.

Timing plays a crucial role in prediction. We add the ability to calculate for-
ward-looking expected utilities based on future system conditions. We augment
Rainbow with the notion of future variable value so that a strategy can specify
dependency on the future value of a condition. An adaptation action takes some
time to execute, and estimating this duration is needed to determine how far into
the future to predict. So, using settling time information specified in strategies (see
@[ms] in Fig. 4, lines 5 and 7), Rainbow estimates the amount of time that a strat-
egy would take to execute successfully. It then measures actual execution times to
improve estimation.

For prediction to improve the performance of Rainbow, recall that there needs to
be some cost, or penalty, to doing a particular adaptation. To capture this, we model
penalty as a separate utility dimension, called disruption, that can be applied in utility-
based strategy selection like other dimensions, such as average response time (see
Table 1). There are two parts to disruption: one is how jarring it is to the user, and the
other is how long the user is disrupted. We collect information about the disruption
level in the same way as other dimensions, specified as part of the strategy specifica-
tion. The second one we track automatically by measuring how long it takes to
execute an adaptation step.

Effector: Finally, changes to the target system, particularly changes that add or re-
move resource components, will likely have significant effects on resource predic-
tions. Therefore, we rely on system-level effectors to be augmented so that, when
adding or removing system elements with associated resources, the effectors also take
care of the addition or removal of the corresponding prediction data streams. Addi-
tionally, because prediction usually requires a series of input before the first output of
predictive data, gauges may have to be coordinated with the addition of prediction
data streams to produce useful output immediately.

4.2 Illustration of Rainbow with Resource Predictions

To illustrate resource predictions in Rainbow, let us revisit the Znn.com example to
examine in more detail the four scenarios of prediction introduced in Section 2.3.
Recall that in the Znn.com example, the customers care about quick response time
and high content fidelity for their news requests. While aware of customer preferences
on content fidelity, Znn.com as the provider is constrained by infrastructure provi-
sioning costs. We also consider service disruption as a penalty of performing an adap-
tation: avoiding penalties is important to improving overall system utility, which is a
major benefit to having predictive information.

Accordingly, we define four quality dimensions and determine the corresponding
measurable properties in the target system. We capture each dimension as a discrete
set of values (for example, we use an ordinal scale of 1 to 5 to express the degree
of disruption). We then elicit from the service providers the utility values and
preferences for these dimensions, summarized in Table 1.

 Improving Architecture-Based Self-Adaptation through Resource Prediction 83

Table 1. Znn.com quality dimensions and utility preferences

Label Description Architectural Property Utility Function Weight

uR Avg Response Time ClientT.experRespTime
((low,1), (med,0.5),
(high,0))

25%

uF Avg Content Fidelity ServerT.fidelity
((textual,0), (multi-
media,1))

10%

uC Avg Budget ServerT.cost ((within,1), (over,0)) 15%

uD Disruption ServerT. droppedReqs
((1,0.8), (2,0.6),
(3,0.4), (4,0.2), (5,0))

50%

A rule specifies the acceptable bound of request-response latencies experienced by
a client: exceeding the threshold indicates a problem. A set of operators correspond to
available effectors in Znn.com to enlist or remove servers, or to change content fidel-
ity. We define a number of adaptation strategies for Znn.com and specify cost-benefit
attribute vectors, not shown here, that specify the impact of each strategy to the four
quality dimensions. For example, strategy VariedReduceResponseTime is expected to
lower response time and fidelity level, not affect cost, and incur some disruption.

We now consider how prediction could improve Rainbow’s choices of adaptation
for the four opportunities outlined in Sec. 2.3. For evaluation, we set up Znn.com in a
simulation environment that allows us to experiment with prediction-enabling design
points in Rainbow’s Architecture Layer (cf. Fig. 2). The states of Znn.com are simu-
lated using an M/M/k queuing model. The simulation environment acts as gauges that
update corresponding Znn.com architectural properties in Rainbow. This setup
enables prediction of future states to an arbitrary precision.

Scenario 1: Avoiding Unnecessary Adaptation
In the first scenario, if a client experiences an above-threshold request-response time
for only 500 ms, but the chosen adaptation requires at least one second to complete,
this adaptation is unnecessary. Avoiding adaptation requires knowing the predicted
request-response time (using the architectural function predictedProperty()) and the
estimated execution time of an adaptation strategy, which Rainbow collects.

To evaluate how well prediction improves overall system utility in this scenario,
we designed two Znn.com configurations, one in which the bandwidth drops briefly,
and another in which incoming requests (load) spike briefly. The data is summarized
in Table 2. In both cases, Rainbow with prediction successfully avoided making un-
necessary adaptations, improving the normalized accrued utility over no prediction by
2.5% in the transient bandwidth-drop case, and 15.7% in the transient peak-load case.
The much greater improvement in the second case can be attributed to the high level
of disruption incurred by the strategy that is unnecessarily invoked without future

Table 2. Summary of data from 3 experiments (each averaged over 30 trials)

Normalized Accrued Utility (AU)
Scenario Configuration No Prediction With Prediction ΔAU Improved

1: transient bandwidth-drop 0.889 0.911 0.022 2.5%
1: transient peak-load 0.731 0.846 0.115 15.7%
2: ramp-up to peak load 0.734 0.770 0.036 4.9%

84 S.-W. Cheng et al.

knowledge This outcome underscores the role of penalty in determining whether
prediction is useful. We discuss some choices of prediction usage in Section 4.3.

Scenario 2: Reducing Incremental Disruptions
In the second scenario, Znn.com experiences a dramatic increase in client requests,
ramped up over seconds to minutes. In reaction, Rainbow provisions by invoking a
strategy that adds one server. However, by the time the server is added, the request
load has surpassed the capacity of the added server, so Rainbow adds another server
in response. This gradual adaptation is undesirable because it disrupts the system
multiple times. Eliminating this ramp-up requires knowing the peak of the ramp-up
and computing cost-benefit attributes based on input arguments to an adaptation step
(e.g., k in enlistServers(k)).

To evaluate this scenario, we designed a Znn.com configuration that ramps up re-
quests over four seconds. We added a leap strategy similar to VariedReduceRespon-
seTime but enlists 3 servers in one step. We then configured Rainbow to compute
utilities that look five seconds ahead, and compute the load at its peak. Rainbow
successfully selected the leap strategy and showed a 4.9% improvement in AU.

The results of these experiments show that there is improvement when using pre-
dictive information. Perhaps not surprisingly, the most improvement is achieved when
the potential disruption to the user is high. For the other cases, the room for improve-
ment is not as great, but our numbers are significant when measured against the
available margin for attaining perfect utility.

Additional Scenarios: Seasonal Pre-adaptation and Choosing Better Adaptations
We have shown two scenarios that exercised the new capabilities added to Rainbow
to incorporate predictive information, with supporting data from experiments. We
now consider two other scenarios that use the same set of capabilities; for these we
have not performed additional experiments.

In a third scenario, Znn.com periodically experiences a significant increase in cli-
ent requests at 9 AM every Monday through Friday. Reacting to the increase each
time it occurs is undesirable because the adaptation potentially disrupts the system
and adds stress to a system already under load. In contrast, pre-adapting has the bene-
fit of reducing disruption while introducing system slack to prepare for the upcoming
load. Pre-adapting for seasonal behavior requires detecting seasonal patterns, which
can be provided by predictors in Vahe’s framework. Then, by adding an architectural
constraint that checks for predicted load at fixed future time points, configuring utility
computation to look ahead to the same time, and specifying a strategy that is
applicable for violation at that future time point, Rainbow can seasonally pre-adapt.

A fourth scenario is already described in Section 2.3, where a client experiences an
above-threshold request-response time due to increased visitor traffic, coupled with a
transient drop in available bandwidth. Given the low bandwidth and a choice between
the a strategy to lower fideltiy and another to enlist more servers, Rainbow chooses
the former to use less bandwidth while fulfilling the increased request load. However,
when the available bandwidth recovers shortly afterward, Rainbow would then adapt
again to restore the content fidelity and perhaps also enlarge the server pool if traffic
remains high. Thus, Rainbow’s reaction results in at least one additional disruption
and an overall lower system utility. With advanced knowledge that the bandwidth
drop is transient (as in scenario 1), Rainbow would have chosen to enlist servers.

 Improving Architecture-Based Self-Adaptation through Resource Prediction 85

4.3 Deciding When to Use Predictive Information

Once predictive information is available for use in self-adaptation, the questions still
remain of when and how to use the information in the decision process. In our appli-
cation of predictive information, we encountered the following design choices, which
we have addressed in a variety of ways.

How far into the future do we look ahead? The predictive framework requires
parameterization for how far ahead to predict a resource property. The predictive
framework actually returns a time series of values, but to make use of this information
in Rainbow, we must pick one particular value. The choice of this depends on the
context. For example, in Scenario 1 where we are trying to decide whether to avoid an
adaption, a reasonable choice is to use a duration equivalent to the estimated time of
completing the adaptation. For Scenario 2 on the other hand, the look ahead could be
far longer than the duration of adaptation. Note that by using estimated completion
time to choose how far into the future to look, we are comparing different prediction
ranges for different strategies in a single adaptation cycle. An alternative is to look
ahead to the same time in the future, perhaps by using the maximum completion time
of all strategies under consideration.

Should predictive information be used at strategy selection time, utility evaluation
time, strategy execution time, or a combination of these? There are several steps in
Rainbow’s process of selecting a repair strategy: 1) decide the set of strategies that
may fix a problem; 2) determine which strategy is the best to use; and 3) execute the
chosen strategy. Predicted information can be used in Rainbow at any of these times.
For example, the strategy in Fig. 4 uses predicted information in step 1. In line 4, we
are checking if response time is high now and in the future. If the condition is tran-
sient the strategy will not be chosen, and so there is no need to use prediction in lines
5-9 (strategy execution time). Alternatively, to anticipate seasonal changes, the strat-
egy writer would write the strategy to consider only predictions in line 4, and also to
use prediction in lines 5-9. Rainbow gives the strategy writer the power to decide how
and when to use the prediction. Currently, in Rainbow, the second step (using predic-
tion in the utility calculation) is provided as a parameter to the framework, because
there is no way in the strategy language to refer to this. We are investigating a more
agile way to specify the use of prediction in this case.

How much weight should be given to the penalty dimension? When we experi-
mented with a 10% weight for the penalty dimension, the first configuration yielded a
utility improvement of 0.4%, whereas a 50% weight yielded 2.4% improvement. This
data reinforced Poladian’s results that anticipatory adaptation yields increasing gains
at penalty levels above 7%. On the flip side, a penalty weight above 50% makes it
difficult to distinguish the relative importance of the other utility dimensions. A sweet
spot should be found between 10 and 50%.

5 Related Work

To date, several dynamic software architecture-based adaptation approaches and
frameworks have been proposed and developed [12, 19]. Related approaches focus
on formalism and modeling, mechanisms for adaptation, or distribution and

86 S.-W. Cheng et al.

decentralization of control. These include Darwin with π-calculus semantics to spec-
ify distributed systems [16], ArchWare with architectural reflection and dynamic co-
evolution [17], Weaves for construction and analysis of data-flow systems [13],
ArchStudio for self-adaptation of C2 hierarchical publish-subscribe systems [6],
Plastik targeting performance properties [1], and CASA for resource availability
concerns in mobile network environments [18]. These approaches share a few com-
mon characteristics: They generally apply a closed-loop control, use an architecture
model for reasoning about the target system, assume certain structures in the target
system, and adapt for a fixed set of quality attributes.

Notable in industry, IBM’s Autonomic Computing tackles the challenges of emer-
gent autonomic behavior with the MAPE control loop—to monitor, analyze, plan, and
execute changes for self-management. The AC toolkit provides consoles and tools to
diagnose problems and engineer autonomic systems. We apply a similar approach.

One of the differentiators of this work from prior self-adaptive systems is the use of
resource prediction. The anticipatory strategy uses predictions of the future values of
input variables to make forward-looking decisions about adaptation selection.
Forward-looking approaches have been proposed and used in other domains. For ex-
ample, the online stochastic combinatorial optimization approach is similar to our
anticipatory strategy [2,14]. Various combinatorial optimization problems such as
optimal vehicle dispatch and network packet routing are solved by leveraging probabil-
istic priors of the future values of problem inputs. There is equivalence between the
algorithms for automatic configuration in this chapter and the algorithms described in
[14]. The Active Virtual Network Management Prediction System uses simulation
models running ahead of real time to predict resource demand among network nodes.
Such predictions can be used to allocate network capacity in anticipation of demand
increase, and to ensure adequate quality of service to different network flows [9]. Our
work shares theoretical foundations with these, but the problem domains are different.

There is a body of work that uses various kinds of prediction to improve self-
adaptation. For example, Clockwork [22] introduces the concept of predictive
autonomicity that uses statistical modeling to forecast cyclic variations in system load
and uses these predictions to reconfigure systems in anticipation of need. They pre-
scribe a method for implementing a predictive autonomic system. In spirit, we share
the same steps for incorporating predictive information. However, our notion of con-
trollable parameters are enriched with strategies and utility preferences, and we use
predicted information in strategy selection. Solomon [23] uses predictions about
workload to adapt the control component of an autonomic system to be more suited to
that workload. For example, if the workload is linear, then simple thresholding can be
used in the controller, but if the workload on the system changes to be Gaussian, then
a more sophisticated statistical controller based on Kalman filters is swapped in to
manage the system. Their adaptation layer shares the same principle components as
Rainbow, with the selection of controllers analogous to selection of strategies. They
show encouraging results in using predicted information for Gaussian workloads to
provision servers. This is one of many types of prediction sources that could be
incorporated into our prediction framework.

Rather than using auto-regressive techniques to predict resource availability, Lu
[15] uses knowledge about the domain being controlled to predict behavior. They use
queuing-theoretic models in the domain of web servers to infer expected delays

 Improving Architecture-Based Self-Adaptation through Resource Prediction 87

directly from input load. Again, this is another form of predictive model that could
theoretically be incorporated as a Basic Predictor in our framework, although it is of a
type that we have not fully considered.

6 Conclusion and Future Work

In this chapter, we presented an approach to enhance architecture-based self-
adaptation through anticipatory prediction of future resource availability. The ap-
proach uses a framework that combines various forms of prediction (statistical,
bounded, and seasonal) in a practical manner that can be applied to a variety of cir-
cumstances. We have argued that self-adaptive systems can take advantage of predic-
tion to improve the choice of adaptations and to reduce disruption to the system. We
gave specific consideration to the changes needed to incorporate predictions into one
reactive architecture-based self-adaption system, Rainbow. We conducted several
experiments that show improvement in the adaptation when predicition is used, and
discussed how we addressed some issues that we encountered doing the integration.

In future work, we would like to better quantify the types of resources that can be
predicted and would be useful in realistic circumstances. For example, other types of
resources to be considered beyond bandwidth are power consumption, memory usage
and CPU load. We would like to give more guidance to adaptation writers about when
and how to use prediction. We also would like to verify the results discussed in this
chapter through additional experimentation and application to real systems.

Acknowledgments. This research was funded in part by the National Science Foun-
dation Grants ITR-0086003, CCR-0205266, CCF-0438929, CNS-0613823, by the
Sloan Software Industry Center at Carnegie Mellon, by the High Dependability Com-
puting Program from NASA Ames cooperative agreement NCC-2-1298 and by
DARPA grant N66001-99-2-8918. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the US
government or any other entity.

References

1. Batista, T.V., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in component-
based systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 1–
17. Springer, Heidelberg (2005)

2. Bent, R., van Hentenryck, P.: Regrets only! Online stochastic optimization under time con-
straints. In: Proc. 19th AAAI (2004)

3. Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation,
Ph.D. Thesis, TR CMU-ISR-08-113, Carnegie Mellon University School of Computer
Science (May 2008)

4. Cheng, S.-W., Garlan, D., Schmerl, B.: Making Self-Adaptation and Engineering Reality. In:
Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen,
M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 158–173. Springer, Heidelberg (2005)

5. Clements, P., et al.: Documenting Software Architecture: Views and Beyond. Pearson
Education, London (2003)

88 S.-W. Cheng et al.

6. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-healing
systems. In: Garlan, et al. [10], pp. 21–26 (2002)

7. Dinda, P., O’Halloran, D.: Host Load Prediction Using Linear Models. Cluster Comput-
ing 3, 4 (2000)

8. Frye, C.: Self-healing systems. Appl. Dev. Trends, 29–34 (September 2003)
9. Galtier, V., et al.: Predicting resource demand in heterogeneous active networks. In: Proc.

MILCOM (2001)
10. Garlan, D., Kramer, J., Wolf, A. (eds.): Proc. 1st ACM SIGSOFT Workshop on Self-

Healing Systems (WOSS 2002), November 18–19. ACM Press, New York (2002)
11. Georgiadis, I., Magee, J., Kramer, J.: Self-organizing software architectures for distributed

systems. In: Garlan, et al. [10], pp. 33–38 (2002)
12. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems - survey and syn-

thesis. Decision Support System 42(4), 2164–2185 (2007)
13. Gorlick, M.M., Razouk, R.R.: Using Weaves for software construction and analysis. In:

Proc. 13th International Conf. of Software Engineering, pp. 23–34. IEEE Computer Soci-
ety Press, Los Alamitos (1991)

14. Hentenryck, P., et al.: Online stochastic optimization under time constraints (2008),
http://www.cs.brown.edu/people/pvh/aor5.pdf (last accessed April 2008)

15. Lu, Y., Abdelzaher, T., Lu, C., Sha, L., Liu, X.: Feedback Control with Queuing-Theoretic
Prediction for Relative Delay Guarantees in Web Servers. In: Proc. IEEE Real-Time and
Embedded Technology and Applications Symposium (2003)

16. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT 1996:
Proc. of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.
3–14. ACM, New York (1996)

17. Morrison, R., Balasubramaniam, D., Oquendo, F., Warboys, B., Greenwood, R.M.: An ac-
tive architecture approach to dynamic systems co-evolution. In: Oquendo, F. (ed.) ECSA
2007. LNCS, vol. 4758, pp. 2–10. Springer, Heidelberg (2007)

18. Mukhija, A., Glinz, M.: A framework for dynamically adaptive applications in a self-
organized mobile network environment. In: ICDCSW 2004: Proceedings of the 24th Inter-
national Conference on Distributed Computing Systems Workshops—W7: EC (ICDCSW
2004), pp. 368–374. IEEE Computer Society, Washington (2004)

19. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. IEEE Intelli-
gent Systems 14(3), 54–62 (1999)

20. Poladian, V., Garlan, D., Shaw, M., Schmerl, B., Sousa, J.P., Satyanarayanan, M.: Lever-
aging Resource Prediction for Anticipatory Dynamic Configuration. In: Proc. 1st IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007), July
2007, pp. 214–223 (2007)

21. Poladian, V.: Tailoring Configuration to User’s Tasks under Uncertainty, Ph.D. Thesis, TR
CMU-CS-08-121, Carnegie Mellon University School of Computer Science (May 2008)

22. Russel, L., Morgan, S., Chron, E.: Clockwork: A new movement in autonomic systems.
IBM Systems Journal 42, 1 (2003)

23. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M.: A Real-Time Adaptive Control of Auto-
nomic Computing Environments. In: Proc. 4th International Information and Telecommunica-
tion Technologies Symposium (U2TS 2006), December 2006, pp. 94–103 (2006)

24. Sousa, J.P.: Scaling Task Management in Space and Time: Reducing User Overhead in
Ubiquitous-Computing Environments, Ph.D. Thesis, TR CMU-CS-05-123, Carnegie Mel-
lon University School of Computer Science (2005)

25. Sztajnberg, A., Loques, O.: Describing and deploying self-adaptive applications. In: Proc.
1st Latin American Autonomic Computing Symposium, July 14–20 (2006)

Policy-Based Architectural Adaptation
Management: Robotics Domain Case Studies

John C. Georgas1 and Richard N. Taylor2

1 Department of Computer Science, Northern Arizona University
Flagstaff, AZ 86011 USA
John.Georgas@nau.edu

2 Institute for Software Research, University of California, Irvine
Irvine, CA 92697 USA
taylor@ics.uci.edu

Abstract. Robotics is a challenging domain that exhibits a clear need
for self-adaptive capabilities, as self-adaptation offers the potential for
robots to account for their unstable and unpredictable deployment envi-
ronments. This paper focuses on two case studies in applying a policy-
and architecture-based approach to the development of self-adaptive
robotic systems. We first describe our domain-independent approach for
building self-adaptive systems, discuss two case studies in which we con-
struct self-adaptive Robocode and Mindstorms robots, report on our
development experiences, and discuss the challenges we encountered. The
paper establishes that it is feasible to apply our approach to the robotics
domain, contributes specific examples of supporting novel self-adaptive
behavior, offers a discussion of the architectural issues we encountered,
and further evaluates our general approach.

1 Introduction

One of the major current challenges in software engineering is the development of
self-adaptive systems, which are systems that are able to change their behavior in
response to changes in their operation or their environment for a variety of goals.
In contrast to more specialized terms such as self-healing or self-optimizing, we
use the term self-adaptive to inclusively refer to this class of systems, without
consideration for their specific adaptive goals.

In addition to self-adaptive software, we are also keenly interested in robotic
systems. These systems are amalgams of software and hardware that are highly
resource constrained, commonly deployed in environments out of reach of hu-
man operators, exhibit a high degree of dependence on events in their envi-
ronment, and commonly required to perform functions to which there can be
little interruption. The domain characteristics naturally motivate the inclusion
of self-adaptive capabilities that are currently lacking. The focus of this paper
is the intersection of the robotics domain with self-adaptive software, as we see
both a driving need for such capabilities in robotic systems as well as a fruitful
application domain for self-adaptive technologies.

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 89–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

90 J.C. Georgas and R.N. Taylor

The challenge of integrating self-adaptive capabilities into robotic systems is
a two-front battle: First, the system itself must be built in such a manner as
to be conducive to adaptation by virtue of its very design and construction.
Only then can adaptive behavior be integrated into the system. In our research
efforts, the fact that the construction of the system must support adaptation
implies that modularity is one of the fundamental qualities. This quality is the
key enabler that allows adaptation to take place in a fine-grained manner rather
than adaptation through wholesale replacement. In addition, due to the fact
that adaptive needs are virtually impossible to fully and correctly predict during
design, we also posit that adaptive behavior must be built in a way that is flexible
and modifiable at runtime.

Much of our previous work has been dedicated to the development of
architecture-based self-adaptive systems, and we identify a clear parallel in the
capabilities this work provides and the needs of self-adaptive robotic systems.
More specifically, we have developed notations and tools that support the design
and development of policy- and architecture-based self-adaptive systems that are
modular and have the ability to change adaptation policy specifications during
system runtime [1]. Our goals with the specific work described in this paper
are to:

– establish the feasibility of integrating our policy- and architecture-based
self-adaptive system research with robotics domain;

– develop novel self-adaptive capabilities in robotic systems that did not
previously exhibit them; and,

– probe into the difficulties and pitfalls of such an integration effort.

This paper is a report of our work to date toward these goals and our experiences
in striving to meet them. We describe two case studies we performed in devel-
oping self-adaptive robotic systems, beginning with our work in the Robocode

system – a robotic combat simulator and development framework – and continu-
ing by discussing the construction of an autonomous Mindstorms NXT robot.
For each of these systems, we demonstrate practical self-adaptive solutions to
practical domain challenges. Neither of these domains previously considered –
much less provided support for – self-adaptive capabilities.

The key contributions of our work in this intersection between self-adaptive
architectures and robotic systems are:

– verifying the feasibility of integrating robotics and architecture-based
self-adaptive techniques;

– providing examples of novel self-adaptive capabilities in our case-study
domains;

– uncovering an important architectural mismatch between architecture-based
adaptation and current robotic domain practice; and

– demonstrating that our policy language is adequate for expressing robotic
adaptations.

Policy-Based Architectural Adaptation Management 91

The remainder of the paper offers background information, presents our overall
approach to self-adaptive systems, discusses our case studies, and concludes with
future work and final remarks.

2 Background and Related Work

This section begins with a discussion of representative robotic architectures,
paying particular attention on their support for runtime change. We also discuss
related approaches to architecture-based self-adaptive systems.

2.1 Robotic Architectures

One of the first robotic control system architectures to gain wide acceptance
was the sense-plan-act architecture (SPA) [2]. In SPA, control is accomplished
through the sense component that gathers information from sensors, the plan
component that maintains an internal world model used to decide on the robot’s
actions, and the act component that is responsible for executing actions.

SPA architectures, however, scale poorly as robotic systems grow in complex-
ity and scope, and Subsumption [3] was developed to address these scalability
issues. This architecture abandons world models and adopts layered composi-
tions of reactive components. Communication between these components takes
place through the inhibition and suppression of inputs and outputs of lower level
components by higher level ones. While the component-based approach of this
architecture allows for improved scalability and modularity, the supported modes
of communication prove very limiting.

Most current robotic systems are heavily influenced by three-layer (3L) archi-
tectures, first described in [4]. These hybrid architectures separate robotic sys-
tems into three explicit layers and mix reactive and planning modes of operation:
The reactive layer captures behaviors that quickly react to sensor information,
the sequencing layer chains reactive behaviors together and translates high-level
directives from the planning layer into lower-level actions; the planning layer is
responsible for deciding on long-term goals.

Despite their differences, these robotic architectures share a commonality in
their lack of support for runtime adaptation, discussed in more detail in our
paper to a workshop attached to the International Conference on Robotics and
Automation (ICRA) [5]. These architectures simply do not consider this con-
cern in their design and therefore do not exhibit the necessary qualities to
be amenable to the direct application of self-adaptive techniques – the mini-
mally amenable, perhaps, is the Subsumption architecture, due to its focus on
independent components.

This lack of support for the architectural qualities that promote ease of run-
time change is the motivation for the development of the RAS architectural style,
also described in [5]. The style combines insights from event-based architectural
styles such as C2 [6] and the Subsumption and 3L robotic architectures, and is
aimed at supporting the development of robotic architectures that are modular

92 J.C. Georgas and R.N. Taylor

Fig. 1. An illustration of the RAS architectural style, showing the style’s layers and
event types

and incrementally evolvable while fostering component reuse. Figure 1 outlines
the style, which is:
– component-based, with no shared memory between components;
– explicitly-layered into skill, reactive, sequencing, and deliberative layers1 with

components belonging to layers based on their complexity and maintenance
of state information;

– event-based with communication taking place between components of the
architecture through requests and notifications, sensor information being
transmitted by robot notifications, and actions being enacted through ac-
tion requests, and;

– connector-based, with independent connectors separating layers and facili-
tating communication and distribution.

The robotic systems we build in our case studies are built according to the
principles of this style, which provides the basis for the construction of robotic
systems that foster modularity and, therefore, are more easily modifiable using
architecture-based means.

2.2 Self-Adaptive Architectures

Some related work takes a formal approach to the specification of architectures
and the artifacts governing adaptation. The work based on Community [7],
for example, models architectures as abstract graphs while the approach based

1 While the RAS style uses similar layer names as 3L architectures, there are differ-
ences between the two; the reader is referred to [5] for further details.

Policy-Based Architectural Adaptation Management 93

on the Darwin [8] architecture description language (ADL) focuses on the self-
assembly of systems according to a formally specified set of constraints repre-
senting invariant architectural properties. Other approaches are more focused
on providing practical tool support for developing self-adaptive architectures.
The Rainbow system [9] adopts a style-based approach and focuses on the
specification of styles for specific domains along with style-specific adaptations
and constraints tailored for the domain’s needs. Our own work is a descen-
dant of such a tool-based approach [10], which conceptualized architecture-based
adaptation but left many questions about how to implement adaptive behavior
unanswered.

There is also work in the intersection of robotic systems and architecture-
based approaches: Applied to sophisticated hardware platforms, the Shage

framework [11] supports the definition of adaptive strategies managed by a con-
trolling infrastructure, but focuses only adaptations that replace components
with alternatives providing similar services. Kramer and Magee have also dis-
cussed self-adaptive robotic architectures through the application of a conceptual
framework strongly influenced by 3L architectures and focused on self-assembling
components using a formal statement of high-level system goals [12]. In contrast,
the approach described here embodies a fundamental trade-off away from formal
specifications of system behaviors in order to achieve a higher degree of flexibility
and support for the runtime change of adaptation policies without necessitating
the re-generation of adaptation plans.

3 Approach

Before discussing the case-studies, we present here the high-level approach we
use for developing self-adaptive robotic systems. As this paper is focused on
the application of our approach to robotic architectures, we keep the discussion
minimal; a more extensive discussion of the overall approach appears in [13].

The core of our policy-based approach to architectural adaptation manage-
ment (PBAAM) appears in Fig. 2. Self-adaptive systems in this approach consist
of three fundamental parts: an architectural model specifying the system’s struc-
ture, a set of adaptation policies capturing how the structure changes, and exe-
cutable units of code corresponding to each architectural element. These three
artifacts are managed at runtime by elements of the PBAAM infrastructure:
the Architecture Model Manager (AMM), the Architecture Adaptation Man-
ager (AAM), and the Architecture Runtime Manager (ARM) respectively. Self-
adaptive systems are further augmented by a configuration graph model that
maintains information about the history of a system’s adaptations, as well as
a body of architectural constraints that are intended to preserve core system
capabilities. These artifacts are managed at runtime by the Architectural Run-
time Configuration Manager (ARCM) and the Architecture Constraint Manager
(ACM) respectively.

94 J.C. Georgas and R.N. Taylor

Fig. 2. The tools and activities of the PBAAM approach

3.1 Adaptation Policy Specification

One of the fundamental abstractions in our approach is the adaptation policy:
a policy is an encapsulation of the system’s reactive adaptive behavior and indi-
cates a set of actions that should be taken in response to events indicating the
need for these actions. The basic building blocks of adaptation policies are ob-
servations and responses. Observations encode information about a system and
responses encode system modifications. Given the architecture-based focus of our
approach, responses are limited in the kinds of actions they can perform: they
are restricted to operations which change the structure of software architectures
and, in essence, reduce to additions, removals, connections, and disconnections
of architectural elements.

We specify the structure of adaptation policies using a xADL 2.0 schema [14]
that extends the core schemas of the ADL and lays out policy structure. The
basic definition of a policy appears below, with XML namespace information
removed for the sake of brevity:

Policy-Based Architectural Adaptation Management 95

<xsd:complexType name="AdaptationPolicy">
<xsd:sequence>
<xsd:element name="description" type="Description"/>
<xsd:element name="observationList" type="ObservationList"/>
<xsd:element name="responseList" type="ResponseList"/>

</xsd:sequence>
<xsd:attribute name="id" type="Identifier"/>

</xsd:complexType>

Each adaptation policy is characterized by a unique identifier and may contain
an optional, human-readable textual description that indicates its purpose to
designers. Each policy also contains a list of observations and a list of responses:
when this list of observations is fully satisfied, the entire set of responses is en-
acted. It is very important to note that this policy schema is highly extensible
and can be customized to fit the needs of specific projects. One of the extensions
currently under development, for example, extends the notion of policies with
support for expressing observations in terms of exhibited behaviors while mod-
eling responses as a set of desired behaviors, where Statechart models [15] are
used to specify behavior.

3.2 Architectural Adaptation Management

The AAM is the element responsible for the runtime management of the specified
adaptation policies. When the self-adaptive system is first instantiated, the AAM
loads the set of policies and initiates their runtime evaluation: as policies are
added and removed from the policy specification, the AAM updates the set of
active runtime policies to reflect these changes. The current incarnation of the
AAM adopts an expert system for the runtime management of policies. In a
very straightforward manner, policies are translated to executable condition-
action rules and then managed using an expert system shell. More specifically,
we adopt the Java Expert System Shell (JESS) [16] for this task, which provides
us with a well-tested and efficient platform for the runtime execution of policies.

In coordination with the ARM – an existing element of the ArchStudio

environment that supports runtime evolution and predates our work – the AAM
drives architectural change by enacting modifications to the system’s architec-
tural model. The ARM’s primary responsibility is to ensure that changes enacted
to the architectural model are also enacted on the runtime system itself.

Alongside these tools that implement a reactive self-adaptation loop, two addi-
tional tools provide capabilities related to constraint and configuration manage-
ment. Before changes are actually enacted, the ACM ensures that these changes
would not violate a body of architectural constraints. These constraints enforce
a variety of desired architecture structural properties, ranging from component
membership to architectural connectivity. Only those changes that do not vi-
olate these constraints are allowed to be enacted by the AMM. The ARCM
tool is responsible for monitoring architectural changes as they take place, and
recording them in a configuration graph. Nodes in this graph correspond to and

96 J.C. Georgas and R.N. Taylor

maintain information about architectural configurations, while edges represent
adaptations between these configurations. Each edge maintains bi-directional
diff information, which is used by ARCM to enact explicit user commands to
apply rollback or rollforward operations on the architecture (an early description
of ARCM appears in [17]).

3.3 Activity Flow

Referring to the activity flows indicated in Fig. 2 by numbered arrows, the adap-
tation process begins when observations about the running system are collected
and transmitted to the AAM (flow labeled 1). These observations are gathered
through independent probing elements or through self-reporting components and
encapsulate what is known about the system. This information forms the basis
for evaluating adaptation policies managed by the AAM.

Any triggered responses are first communicated to the ACM (indicated by
the flow labeled 2), which ensures that these suggested responses do not violate
the active architectural constraints. Modifications that are deemed allowable are
communicated back to the AAM, and then finally enacted by being transmitted
to the AMM (event flows 3 and 4, respectively). Both the ARM and ARCM are
notified of any changes enacted on the architectural model (event flow 5). The
ARM then ensures that these changes are reflected on the executing system,
while the ARCM builds the system’s configuration graph; ARCM also allows
manual modifications triggered by the user (event flow 6).

4 Case Studies

This section offers specific details about two case studies in integrating self-
adaptive capabilities with robotic systems. For each of the ArchWall and
Archie systems, we will discuss our experiences and call out some of the dif-
ficulties we encountered and lessons we learned in providing novel self-adaptive
capabilities in domains that did not previously support them.

4.1 Robocode

Our first study was performed using the Robocode
2 system. Initially developed

as a Java teaching tool, Robocode is now an open-source system under active
development that provides a robotic combat framework and simulator which is
used to pit robotic control systems in battle against each other.

Robocode Background. Robocode provides a customizable simulated bat-
tlefield into which robots are deployed: the objective of robots is to remain alive
while destroying their competitors. Each robot may move, use its radar to de-
tect other robots, and use its gun to fire at opponents. The constraint of primary
importance for each robot is the amount of remaining energy. While all robots

2 http://robocode.sourceforge.net

Policy-Based Architectural Adaptation Management 97

begin a battle with the same level of energy, energy is depleted by being hit by
bullets or colliding with other robots or walls. Energy can also be invested into
firing bullets at other robots, but a multiple of this invested energy is recovered
by successfully hitting. The goal of each robot, then, is to preserve its own energy
by both firing wisely as well as avoiding collisions and enemy fire.

From a software development perspective, the Robocode API provides
builders with basic robot control capabilities: movement and steering, control
for the robot’s scanner and weapon, and support for notifications of battlefield
events. How each robot responds to these events is the challenge of Robocode

development, and the robots developed by the community vary from the very
simple to the very sophisticated. It is important to note that in development
for the simulator, a robot is programmed and compiled as a single static unit of
code that is then executed by the battle simulator; there is no consideration or
support for runtime adaptation.

Architecting ArchWall. The core architecture of the ArchWall robot fol-
lows the guidance and constraints of the RAS architectural style (discussed in
Section 2.1) and appears in Fig. 3.

In contrast to Robocode development that focuses on robots being mono-
lithically implemented as a single unit of source code, ArchWall is comprised
of a number of independent components and connectors that are distributed
between the Java and Robocode environments. These components embody a
number of behaviors and are arranged in RAS layers. At the lowest level, the skill
layer captures the basic tasks that a Robocode robot can perform: ArchWall

can scan for other robots, turn its turret, fire at enemies, detect collisions, and
control its speed and direction. Using these fundamental facilities, the reactive
layer implements a simple collision recovery strategy of stopping and moving

Fig. 3. The architecture of the ArchWall robot, showing the layered arrangement of
components and connectors implementing robot behaviors, as well as the environments
and platforms providing the execution context

98 J.C. Georgas and R.N. Taylor

away from collisions, firing at any enemy robot detected, and moving along a
wall if the robot is near one. The sequencing layer contains components that
ensure the turret is always pointed toward the center of the battlefield, and di-
rect the robot to move to the nearest wall if it has not already done so. Finally,
the deliberative layer maintains data about enemy robots that attack Arch-

Wall. In accordance with the RAS style, components are arranged in layers
according to the timeliness of their responses to events, and their maintenance
of state.

The curved connection in Fig. 3 indicates the special-purpose interface we con-
structed in order to integrate the PBAAM infrastructure with the Robocode

simulator (the integration also involved a number of modifications to the simu-
lator framework itself). PBAAM requests for robot actions are translated into
the appropriate Robocode API calls, while notifications of simulator events are
translated into architectural events and transmitted to the robot’s architecture.

With this architecture, ArchWall first seeks a battlefield wall and then
follows it for the duration of the battle, embodying the movement behavior of
a type of Robocode robots referred to as “wall-crawlers.” The turret is always
kept pointed toward the center of the battlefield, and ArchWall fires at any
robot it detects. This initial set of behaviors is sufficient for the robot to compete
in basic battles: in our testing experiences, the robot tends to rank between
positions four and six in a battle against ten opponents selected from the set of
sample Robocode robots that are distributed with the simulator.

Self-Adaptive ArchWall. The basic behaviors exhibited by ArchWall,
while sufficient to be competitive, are certainly not optimal under a wide variety
of battlefield conditions. For example, while firing at any enemy robot scanned
is perfectly acceptable when the robot’s energy is high, it would be helpful to
exhibit a more careful firing strategy as the robot’s energy is depleted. Simi-
larly, while targeting the center is useful when there are many opponents on the
battlefield, it becomes less desirable as the battle progresses and the number of
enemies is lessened.

To address these shortcomings, we developed a self-adaptive version of Arch-

Wall by placing the architecture of the robot under the management of the
PBAAM toolset. This augmented architecture appears in Fig. 4; the core archi-
tecture of the robot appears in unshaded components, while the PBAAM tools
are shaded. Along with the system, we deployed a number of adaptation policies
addressing the need to change the firing and targeting behaviors of ArchWall

as the conditions of the battle change. One policy, for example, states (in an
abridged form for brevity):

<AdaptationPolicy id="ReplaceFiring">
<ObservationList>
<StringObservation>
<StringObservationContent>

(energy_report {energy < 60}) </StringObservationContent>
</StringObservation>

Policy-Based Architectural Adaptation Management 99

Fig. 4. The PBAAM-managed architecture of the ArchWall robot, showing the
robot’s architecture as well as the PBAAM tools that enable self-adaptive behavior

<ResponseList>
<RemoveComponentResponse>

<RemoveComponent> ReactiveFire </RemoveComponent>
</RemoveComponentResponse>
<AddComponentResponse>

<AddComponentIdentifier>
DistanceReactiveFire

</AddComponentIdentifier>
<AddComponentType>
DistanceReactiveFire_type

</AddComponentType>
...

</AddComponentResponse>
</ResponseList>

</AdaptationPolicy>

This policy replaces the firing strategy used by ArchWall when the energy of
the robot drops below the indicated threshold by replacing one component with
another: Distance Fire, which only fires at enemies that are nearby in an attempt
to maximize the chances of hitting (and, thereby recovering the invested energy)
takes the place of Reactive Fire.

Additional adaptation policies also change the way in which the robot moves
and scans for opponents as fewer enemy robots remain: in total, the ArchWall

robot contains four independent adaptation policies which modify its behavior
in different ways. Overall, the addition of the adaptation policies improves the

100 J.C. Georgas and R.N. Taylor

performance of the robot: the adaptive version of ArchWall tends to rank
between positions two and four, while even coming in first on some test runs.

Most importantly, however, is the fact that each adaptation policy is com-
pletely independent of the architecture to which it is applied and could be added,
removed, or modified during runtime as the robot continues to operate. Fur-
thermore, the architecture and components of the robot are entirely adaptation
unaware: None of the components needs to be modified for the transition from
the non-adaptive to the adaptive version of ArchWall, and the only changes
are those made through architectural means.

Developing the ArchWall robot clearly established the feasibility of inte-
grating architecture- and policy-based self-adaptive software methods in robotic
systems by providing novel support for developing self-adaptive Robocode

robots. While this framework is admittedly limited to simulation, from a software
engineering perspective it exhibits many of the same challenges that developing
a self-adaptive system for any other robot does: coherently organizing and relat-
ing robot behaviors, for example, and dealing with multiple sources of input in
deciding on which actions to perform.

The effort also gave us experience in dealing with an important architectural
mismatch between the Robocode framework and the PBAAM infrastructure:
Like most robotic system frameworks, robots supported by Robocode are de-
veloped synchronously by sequencing behaviors through their explicit ordering in
the source code. This way of building systems conflicts with the asynchronous na-
ture of our approach. As this asynchronous and modular nature is a fundamental
enabler of runtime change, reconciling this mismatch was necessary and required
effort in the design and implementation of each behavior in order to compensate.
Each component had to be constructed in a state-based way – that is not necessary
in other applications we have applied our approach to – that maintains informa-
tion about the state of the interactions it is engaged in with components to which
it has dependencies. This explicit maintenance of state for inter-component inter-
actions is a key enabler for the integration of our work with robotics; decoupling
this interaction modeling from components and isolating it at the architectural
level is an area we are interested in pursuing in our future work.

4.2 Mindstorms NXT

We performed the second case study using the LEGO Mindstorms NXT de-
velopment kit3. Released in the summer of 2006, this is another in LEGO’s line
of kits to support easily accessible and affordable development of robotic systems
that has found great traction in academic settings.

Mindstorms NXT Background. Each Mindstorms kit is comprised of
Technic pieces which are used to build the structure of robots, servo motors,
and a variety of sensors (the commercial kit includes ultrasonic, light, sound,
and touch sensors). Computer control for the sensors and motors is provided by
an NXT brick: each brick supports enough ports to accommodate a maximum
3 http://mindstorms.lego.com/Overview/

Policy-Based Architectural Adaptation Management 101

of three motor and four sensor connections, and also supports a USB port and a
Bluetooth wireless connection. These kits are extremely affordable (at the time
of this writing, the kits cost about $250 US) but resource constrained: process-
ing is provided by a 32-bit ARM7TDMI microprocessor with 64KB of RAM
available to it and 256KB of flash memory for non-volatile program storage.

From a software perspective, the basic platform supports development in two
ways: the NXT processing brick firmware can execute user-written programs,
and the development and compilation of these programs is supported through the
NXT-G visual programming environment. More advanced users may leverage a
large variety of third-party libraries and firmware replacements for a variety of
programing languages. In the context of our discussion on self-adaptive systems,
it is important to once more note that Mindstorms robots are developed as
single units of code with no pre-existing support for or consideration of runtime
change.

Architecting Archie. Building on the work described in the previous section,
we continued by developing the Archie Mindstorms robot; a picture of the
robot in our lab can be seen in Fig. 5.

The physical platform of the robot is a modification of a basic three-wheeled
Mindstorms design. Movement is provided by two motors, each controlling one
of the side wheels while the third wheel is unpowered and can freely rotate to
any movement direction. A third motor opens and closes the grasping arm of the
robot. The robot is equipped with the following sensors: A touch sensor which
is mounted in place to detect when an object is within grasping range, a light
sensor which detects the light reflectivity of the surface the robot is on, and an

Fig. 5. A picture of the Archie Mindstorms robot: a three-wheeled design with a
grasping arm and a number of mounted sensors along with the NXT processor brick

102 J.C. Georgas and R.N. Taylor

Fig. 6. The architecture ofthe Archie robot, showing the robot’s layered architecture
distributed among two platforms and environments

ultrasonic sensor providing motion detection as well as range-finding in the front
arc of the robot.

The software architecture of Archie is built in the RAS style, and appears in
Fig. 6. Once more, we abandon the traditional methods of building robot archi-
tectures in this domain, and construct Archie in a component-based manner.
The additional complication to integrating information providers and informa-
tion consumers, in this domain, is the lack of the NXT brick’s on-board pro-
cessing power. As a result, Archie adopts a tele-operation design: the bulk of
the processing is performed on a PC running the PBAAM infrastructure, while
the Mindstorms NXT brick is responsible for executing commands sent to its
actuators and transmitting sensor data over the robot’s Bluetooth connection.
The deployment can be seen in Fig. 6, where the Bluetooth connection is indi-
cated by the curved connection connecting the multi-platform architecture. This
divide between the adaptive system and the facilities governing adaptation is
not an essential challenge to developing robots using this approach, but was a
solution driven by the limited resources of the NXT brick, which prevented us
from deploying the PBAAM toolset on-board.

While limiting the range of the robot to that of the Bluetooth connection
(roughly 10 meters), the solution was more than adequate for us to demonstrate
self-adaptive behavior in our lab. We adopted the LeJOS icommand API (ver-
sion 0.6) – a Java implementation of an NXT Bluetooth interface – and we
replaced the default firmware of the Mindstorms platform with the LeJOS

NXJ firmware update (version 0.4)4.
With this architectural configuration, Archie travels to a pre-defined loca-

tion in our lab and grasps objects (in this case, small balls) if they are there.
If it finds the object at the indicated location, it delivers it to its starting loca-
tion. Navigation is implemented by the Tachometer Navigator component in the

4 http://lejos.sourceforge.net/

Policy-Based Architectural Adaptation Management 103

Fig. 7. The PBAAM-managed architecture of the Archie robot, showing how the
basic architecture is managed by the PBAAM tools in order to enable self-adaptive
behavior

sequencing layer, which keeps track of the robot’s location based on tachome-
ter information from its motors. The Grasper Control component of the reactive
layer provides control for the robot’s grasping arm, and basic robot functionality
resides in the skill layer.

Self-Adaptive Mindstorms. The need for adaptation in the Archie robot
is naturally motivated by the nature of the architecture itself. Due to driver in-
compatibilities between the Bluetooth libraries used by the NXT and the PC we
used for development (running Mac OS X 10.4), the connection is unreliable and
exhibits intermitted data loss and errors. Since the Tachometer Navigator com-
ponent relies on reports from the robot’s motors in order to calculate position-
ing data, corrupted information means that position information can be grossly
mistaken, which makes navigation impossible. With this failure (currently self-
diagnosed by Tachometer Navigator through a determination of whether data
conforms to a reasonable envelope), the robot can no longer correctly navigate
nor find its way back to the starting position.

One way to address this failure is through architectural self-adaptation. To
this end, we developed a self-adaptive version of Archie by managing the ar-
chitecture with the PBAAM toolset: this augmented architecture appears in
Fig. 7. We use PBAAM’s adaptation management tools to deploy an adapta-
tion policy that restores navigational support to the robot when Tachometer
Navigator fails. The policy definition, elided for brevity, follows:

<AdaptationPolicy id="ReplaceNavigation">
<ObservationList>
<StringObservation>
(navigation_report {failure ==true})

</StringObservation>

104 J.C. Georgas and R.N. Taylor

</ObservationList>
<ResponseList>
<RemoveComponentResponse>
<RemoveComponent>

Tachometer Navigator
</RemoveComponent>

</RemoveComponentResponse>
<AddComponentResponse>
<AddComponentIdentifier>

Ultrasonic Navigator
</AddComponentIdentifier>
...

</AddComponentResponse>
</ResponseList>

</AdaptationPolicy>

The new Ultrasonic Navigator component maintains no state information –
which is the reason it is inserted into a lower RAS layer – but simply locates a
wall using the robot’s ultrasonic sensor and continues to follow the lab’s walls
until it locates the starting location that it detects using the light sensor to mea-
sure the reflectivity of the floor (the starting location is wall-adjacent and is more
reflective than the remainder of the lab’s floor). Archie’s components are also
designed in the state-based way used for the Robocode platform to account for
synchronicity assumptions in the underlying development framework.

As with the Robocode case study, our goal was to establish the feasibility
of applying architecture-based self-adaptation techniques to a domain in which
they had not previously been demonstrated, namely autonomous mobile robotic
systems. So, while the architecture and behavior of Archie are simple, they
nevertheless demonstrate a practical self-adaptive solution to a practical problem
as well as a successful application of our tools and techniques in this domain.
And, despite the simplicity of the platform, we are confident our feasibility claim
is valid due to the number of difficulties and challenges our Mindstorms robot
shares with more complex robotic systems, such as the:

– necessity of integrating data from multiple sensors (sensor fusion) to
determine courses of action;

– demands on timely actions in response to sensor information so that the
robot’s actions are current and actions are not performed too late, and;

– unreliability of sensor information and communication channels that the
robot must account for in its control system.

These are just some examples of the kinds of difficulties shared by both real-
world robotic systems and the types of Mindstorms robots we are developing.
These systems are real, mobile, unreliable and resource constrained platforms,
which is why we feel justified in the validity of a case-study using this platform.

Policy-Based Architectural Adaptation Management 105

5 Discussion

This section explores some of the interesting questions and trade-offs we en-
countered and offers some of our insights into the cross-section of self-adaptive
architectures and robotic systems.

5.1 Architectural Mismatch

One of the difficulties we faced in our case studies was the architectural mismatch
between the robotic frameworks we were working with and the assumptions
of an architecture- and component-based approach. The PBAAM development
framework was designed and built to support the development of component-
based systems that use asynchronous events for communication and have no
assumptions of shared state between them. These high-level design principles
are critical in enabling the degree of modularity and decoupling that our work
in developing self-adaptive systems relies on.

Robotic systems, on the other hand, tend to be constructed with architectural
assumptions about synchronicity and strict temporal ordering of operations in
mind. Many robotic libraries, for example, define interfaces to actuators and
sensors that operate in a blocking manner: control is not returned until they
have completed execution, which is particularly problematic in the case of long-
term actions such as movement. This allows systems to be designed with great
ease as long as they’re constructed in a monolithic manner: it is quite easy to
develop behaviors by chaining together a sequence of operations when these oper-
ations are invoked sequentially from a single unit of code. It is significantly more
challenging, however, to compose these behaviors when fine-grained actions are
distributed among many independent and potentially distributed components.

This mismatch between the fundamental design decisions of these domains
was challenging to overcome, and required care in component design to account
for the lack of synchronicity and the lack of guarantees about event ordering. The
benefit, of course, from investing in this effort is the higher degree of modularity
and enablement of runtime adaptation that this approach to building systems
supports.

The conclusion from this necessity for more effort, of course, is not to dismiss
the integration of architecture-based adaptation with robotics, but to recog-
nize when the trade-off becomes worthwhile. Unless there is a driving need for
self-adaptive behavior – and therefore the necessity to support a great deal of
modularity and runtime evolvability – the effort to build robotic systems in
a component-based manner and according to the RAS style while having to
bridge this mismatch is not worth the benefits. It is interesting to note that a
great deal of effort is currently being invested by the robotics community toward
supporting the development of component-based robots and integrating software
engineering technologies in their construction, as exemplified by the IEEE RAS
TC-SOFT5.
5 http://robotics.unibg.it/tcsoft/

106 J.C. Georgas and R.N. Taylor

5.2 Platform Selection

Our goal of examining the integration of architecture-based adaptation with
robotics – rather than the development of industrial-strength robots that is work
best left to domain experts – guided our selection of the Mindstorms system
for experimentation: The platform compares favorably with other commercially
available platforms and development tool sets such as the iRobot or K-Team

platforms in terms of flexibility as well as cost. While there is a clear loss of stur-
diness compared to these pre-manufactured robots, the Mindstorms platform
provides a degree of flexibility that other packages can’t match: a new type of
physical structure is only a matter of a few hours of (fun) re-assembly. Most im-
portant is the degree of broad availability and appeal of the LEGO kits: the kit
supports both Windows and Macintosh platforms in a variety of programming
languages, is supported by a large and dedicated community, has sold millions
of units throughout the years, and seems to quickly capture the imagination and
attention of those exposed to it. As we are interested in both disseminating our
research tools and techniques as well as teaching self-adaptive architectures to
university students, the Mindstorms platform is an ideal and affordable choice
for such needs.

6 Future Work

There are a number of directions we plan on pursuing in continuing our work
in the intersection of robotic systems and self-adaptive architectures. In the
long term, the most important aspects of robotic construction which must be
addressed involve examining, understanding, and improving the scalability and
reliability of these architectures. This is both an issue of learning more about
the implications of using architecture-based techniques in the robotics domain
as well as a matter of refining our notations and tools: we expect, for example, to
refine our conceptualization of constraints and express them in terms of behavior
as opposed to structure.

We also plan on further strengthening our feasibility claims by continuing to
build more sophisticated and complex robotic architectures. One such avenue
of development involves the construction of mixed deployment, distributed ar-
chitectures in which the more computationally intensive elements of a robotic
architecture remain on a PC platform and communicate through the wireless
connection, but where more efficient elements are deployed on the robot plat-
form itself. We hope that these hybrid architectures will ease the difficulty of
bridging the architectural mismatch we discussed in the previous section, and
significantly improve the performance and stability of our robots.

7 Conclusion

The work presented in this paper is an exploration into the application of
architecture-based techniques to the robotics domain in order to support the

Policy-Based Architectural Adaptation Management 107

development of self-adaptive robotic systems. One of the critical challenges of
this effort is supporting the dynamic modification of adaptive behaviors during
runtime.

Our previous work in architecture-based self-adaptive systems has been fo-
cused on supporting exactly this capability through the use of adaptation poli-
cies that are decoupled from the architectures they relate to; these policies are
independently managed and the tools we have developed support their runtime
modification. We therefore applied this work to the robotics domain by per-
forming two case studies: The first focused on developing a self-adaptive robot
for the Robocode robotic combat simulator, while the second involved the
development of a self-adaptive Mindstorms NXT robot.

We believe that our efforts were successful in multiple ways. Most importantly,
our case studies establish the feasibility of applying an architecture-based ap-
proach to self-adaptive robotic software by demonstrating practical solutions
to practical robotic problems. Furthermore, our work also contributes an ini-
tial understanding of the difficulties involved in transitioning our particular
approach – and others component-based approaches like it – to the robotics do-
main due to the architectural mismatch between the assumptions of architecture-
based approaches and the actual practice of robotic system development. Finally,
we continue to realize that the policy language of our approach is adequate for
specifying adaptive behavior in a variety of settings.

The field of robotics is a rich application domain for software engineering re-
search which provides dividends for both communities. Robotic software devel-
opment greatly benefits from the application of software engineering research to
the challenges of the domain, and software engineering researchers gain rigorous
test settings and realistic scenarios for their work in a domain that stresses issues
such as safety, reliability, and adaptation completeness which are more relaxed
in other settings. We plan to continue to examine the intersection of robotic con-
trol systems and self-adaptive architectures, particularly with the Mindstorms

platform as an easily accessible and inexpensive experimental testbed.

Acknowledgments. The authors would like to thank Eric Dashofy for his
work on ArchStudio and André van der Hoek for his contributions to the
conceptualization of our approach. This work sponsored in part by NSF Grants
CCF-0430066 and IIS-0205724.

References

1. Georgas, J.C., Taylor, R.N.: Towards a Knowledge-Based Approach to Architec-
tural Adaptation Management. In: Proceedings of ACM SIGSOFT Workshop on
Self-Managed Systems (WOSS 2004), Newport Beach, CA (October 2004)

2. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga Publishing Company
(1980)

3. Brooks, R.A.: A Robust Layered Control System for a Mobile Robot. IEEE Journal
of Robotics and Automation 2(1), 14–23 (1986)

108 J.C. Georgas and R.N. Taylor

4. Firby, R.J.: Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Yale
University (1990)

5. Georgas, J.C., Taylor, R.N.: An Architectural Style Perspective on Dynamic
Robotic Architectures. In: Proceedings of the IEEE Second International Work-
shop on Software Development and Integration in Robotics (SDIR 2007), Rome,
Italy (April 2007)

6. Taylor, R.N., Medvidovic, N., Anderson, K.M., James, E., Whitehead, J., Robbins,
J.E., Nies, K.A., Oreizy, P., Dubrow, D.L.: A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on Software Engineer-
ing 22(6), 390–406 (1996)

7. Wermelinger, M., Lopes, A., Fiadeiro, J.L.: A Graph Based Architectural
(Re)configuration Language. In: ESEC/FSE-9: Proceedings of the 8th European
Software Engineering Conference held jointly with 9th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 21–32. ACM Press,
New York (2001)

8. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: WOSS 2002: Proceedings of the First Workshop on Self-
Healing Systems, pp. 33–38. ACM Press, New York (2002)

9. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-Based Self Adaptation with Reusable Infrastructure. IEEE Com-
puter 37(10) (2004)

10. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An Architecture-based Approach to
Self-Adaptive Software. IEEE Intelligent Systems 14(3), 54–62 (1999)

11. Kim, D., Park, S., Jin, Y., Chang, H., Park, Y.S., Ko, I.Y., Lee, K., Lee, J., Park,
Y.C., Lee, S.: SHAGE: a Framework for Self-Managed Robot Software. In: SEAMS
2006: Proceedings of the 2006 International Workshop on Self-Adaptation and Self-
Managing Systems, pp. 79–85 (2006)

12. Kramer, J., Magee, J.: Self-Managed Systems: An Architectural Challenge. In:
Future of Software Engineering (FOSE 2007), pp. 259–268 (2007)

13. Georgas, J.C.: Supporting Architecture- and Policy-Based Self-Adaptive Software
Systems. PhD thesis, University of California, Irvine (2008)

14. Dashofy, E.M., Hoek, A.v.d., Taylor, R.N.: A Comprehensive Approach for the De-
velopment of Modular Software Architecture Description Languages. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 14(2), 199–245 (2005)

15. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

16. Hill, E.F.: Jess in Action: Java Rule-Based Systems. Manning Publications Co.,
Greenwich (2003)

17. Georgas, J.C., van der Hoek, A., Taylor, R.N.: Architectural runtime configuration
management in support of dependanble self-adaptive software. In: Proceedings of
ACM SIGSOFT Workshop on Architecting Dependable Systems (WADS 2005),
St. Louis, MO (May 2005)

A Case Study in Goal-Driven Architectural
Adaptation

William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer

Department Of Computing, Imperial College London
{william.heaven, daniel.sykes, j.magee, j.kramer}@imperial.ac.uk

Abstract. To operate reliably in environments where interaction with
an operator is infrequent or undesirable, an autonomous system should
be capable of both determining how to achieve its objectives and adapt-
ing to novel circumstances on its own. We have developed an approach
to constructing autonomous systems that synthesise tasks from high-
level goals and adapt their software architecture to perform these tasks
reliably in a changing environment. This paper presents our approach
through a detailed case study, highlighting the challenges involved.

1 Introduction

In many defence and civilian organisations in the modern world, people are asked
to venture into treacherous environments. Understandably, such organisations
are turning to automated means to achieve their goals. Previously, the deploy-
ment of autonomous systems in real-world environments was limited by their
inability to cope with the complexity and variability in the environment; some-
thing which humans deal with naturally. Hence, much recent work [1,2,3,4,5] has
been driven by the principle that the (partial) failure of the system as designed
is to be expected, and that mechanisms to adapt when such failures occur must
be provided.

We have developed an approach to constructing self-managing systems that
is underpinned by a three-layer model, a standard means of abstraction in
robotics [6]. Our three layers—goal management, change management, and con-
trol—partition the system in a way that allows different kinds of change in the
environment to be handled by different levels of adaptation, from low-level sense-
react mechanisms in the control layer to more deliberative and potentially time-
consuming reassessment of how the system might continue to meet its high-level
goals. For example, if a mobile robot finds its path blocked by a small obstacle
then it should be able to detect and avoid this obstacle using mechanisms in its
control layer such as sensors, actuators, and basic obstacle avoidance algorithms.
However, if the robot finds its navigation system incapacitated, perhaps due to
loss of GPS, then it may have to reassess the ways in which it might achieve
its goal, perhaps making use of a different set of capabilities or an alternative
decomposition of subgoals. Both these cases can be thought of as instances of
adaptation. By partitioning a system into three layers, clear distinctions can be

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 109–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

110 W. Heaven et al.

Fig. 1. Overview of conceptual layers (a) and current implementation (b)

made between types of goal-threatening “obstacle” and, accordingly, between
means to cope with them.

The three layers are shown in Figure 1(a). The goal management layer handles
adaptation at the top level, which typically demands relatively sophisticated
analysis, such as planning to meet a new set of goals or replanning to continue
to meet existing ones. This layer consists of planning mechanisms that synthesise
tasks from high-level goals, given a model of the environment of the system.

While the goal management layer concerns adaptation between different tasks,
the change management layer concerns adaptation within the current task. This
layer interprets plans generated by the goal management layer and automatically
selects a suitable configuration of software components to execute these plans.
There are two types of adaptation that can be handled by this layer. Firstly,
the plans used in our approach are reactive plans [7,8,9], which means that a
single plan can include alternative means of satisfying a goal. When one branch
of a plan fails, this layer manages the adaptation necessary to try an alternative.
Secondly, it is often the case that more than one component is available to imple-
ment a certain capability. When use of an instantiated component is no longer
feasible, it may thus be possible to swap in an alternative without interrupting
execution of the current plan.

Finally, the control layer is the level of execution of the selected component
configuration. Low-level adaptive mechanisms such as obstacle avoidance may
be implemented here, along with any other behaviour required to carry out the
current plan, as prescribed by the layers above.

In addition to the downward communication between the layers—the pro-
vision of new plans and new component configurations—there is also feedback
communicated upwards from the lower layers. The control layer provides infor-
mation about the environment to the middle layer, which it uses to decide how
to continue executing the current plan. If the environment changes in such a way
that this is no longer possible, the middle layer provides diagnostic information
about this failure to the goal management layer, which can use this to update
its model of the environment and replan.

A Case Study in Goal-Driven Architectural Adaptation 111

Our engineering approach is motivated by the general need for self-managing
systems to be able to adapt their component configuration automatically. The
approach is intended to be applicable to a wide range of such systems, from
unmanned vehicles to self-managing service-oriented web applications. However,
since we have had the opportunity to experiment extensively with a testbed
of mobile robots, the case study presented here draws on our experiences in
the former application area. Our experimentation to date has demonstrated the
feasability of synthesising software architectures from high-level goals as a means
of adaptation and, in particular, the adoption of the three-layer model as a
means of abstraction for the engineering of self-managing systems. Finally, it
should be noted that our current implementation for the mobile robot testbed
uses a centralised architecture. Ongoing work will extend this implementation
to address decentralized network-based applications.

An overview of our implementation is shown in Figure 1(b). Domain modelling
and planning are performed using an extension to the Labelled Transition Sys-
tem Analyser (LTSA) [10]. The middle layer consists of the plan interpreter and
the mechanisms for configuration generation, while the domain-specific compo-
nents are instantiated using the Backbone interpreter [11] in the bottom layer.
Components are implemented in Java, following the model prescribed by the
Backbone language [11]. Certain steps in the feedback loop between the middle
and upper layers, such as updating the domain model, have not yet been fully
automated and will not be demonstrated in this case study.

Most of the technical aspects of our approach have been described before [8,9],
but the purpose of this paper is to illustrate its applicability through a detailed
case study. Following a summary of related work in Section 2, we present the
case study secenario in Section 3. Sections 4 and 5 then describe the mechanisms
of the upper two layers necessary to bring about adaptation. In Section 6 we
give an overview of the how the system executes in the scenario, describing an
adaptation to the changing environment. We conclude in Section 7.

2 Related Work

The three-layer model is now widely used in the robotics community [6], where
it developed from the early sense-plan-act (SPA) and subsumption [12] architec-
tures. An SPA system consists of a single control loop where sensed data passes
to an analysis or deliberation component, which then determines what actions
to perform. The main limitation of this approach was that it could not react
quickly enough for low-level behaviours. Subsumption was proposed to mitigate
this by introducing several layers. The lowest layer was concerned with tight
feedback loops such as obstacle avoidance, while the highest layers dealt with
abstract goals. However, subsumption suffered from difficulties in specifying the
interplay between the layers, and so it was not easy to modify a given program.

As we observed in [8] and [9], many previous authors have described ap-
proaches which assume adaptation can be specified and analysed before the
system is deployed. Unfortunately, as in our chosen scenario, this is not always
the case with autonomous systems.

112 W. Heaven et al.

Garlan and Schmerl [1,13] achieve dynamic change by describing an architec-
tural style [2] for a system and a repair strategy. The repair strategy is a script
which modifies the architecture in response to changes in the monitored system
properties. The Rainbow approach, by Cheng et al. [14,15], extends this idea
by calculating for each strategy a utility, in terms of non-functional properties,
so that the most appropriate repair can be applied. Dashofy et al. [16] use an
architectural model and design critics [17] to determine whether a set of changes
(an architectural ‘delta’) is safe to apply to a given configuration. Georgas and
Taylor [4] describe a system where change is enacted by architectural policies
which are invoked in response to certain events such as component failure. Geor-
giadis [3] describes a distributed approach to enforcing architectural constraints,
though ultimately repairs are specified by the programmer.

The previous work that perhaps bears most resemblance to our combined
approach is that by Garlan et al. [18], where adaptations are driven by a change
of goal, and that by Arshad et al. [5,19] where adaptations are found by resorting
to replanning. Unfortunately, planning for all reconfigurations comes at some
cost, as it corresponds to an SPA architecture in an adaptive context.

3 Scenario

We explain our approach with ref-
erence to a humanitarian crisis in
which a house has collapsed—
perhaps due to an earthquake or
military action—and an aid pack-
age must be transported to a trapp-
ed survivor. Clearly, it is imper-
ative that the package reach its
destination, but the task cannot be entrusted to a human being since the en-
vironment is dangerous. Hence, an autonomous system is required, which must
ensure reliability by adapting to changing circumstances. Three robots are avail-
able to perform this task: two mobile Koala robots (www.k-team.com) and a fixed
Katana arm (www.neuronics.ch). The situation is complicated by the presence
of a wall between the two locations (which could be regarded as rooms), with a
door allowing robots to pass from one side to the other. However, the door cannot
be opened by the Koala robots, and may open or close in an unpredictable way.
Meanwhile, the Katana arm is able to reach over the wall and hoist the package
(represented by a coloured ball) from one robot to the other if necessary. We
further complicate the situation by not providing the robots with the position
of the door (though the position of the ball source and target are known).

Note that there are at least two ways the goal can be achieved: by carrying
the ball through the door after locating it, or by carrying the ball to the arm and
having it transferred to the second robot, which is able to transport the ball to the
target. We will show how these can be derived as two alternative decompositions
of an abstract plan, itself derived from the user’s goal. The actions of these

A Case Study in Goal-Driven Architectural Adaptation 113

decompositions will represent the concrete operations available to the system
such as moving to a known location, searching for an object or location, avoiding
obstacles and picking up and putting down balls.

4 Modelling the Environment and Generating Plans

We do not consider adaptation to occur blindly, as it might, for instance, if one
were to persue a genetic-algorithms-based approach to self-adaptation. Rather,
adaptation is explicitly determined by the requirements of a system, which are
determined in turn by the system’s goals and its operating environment. For an
autonomous system to satisfy its goals over time—which involves determining
when, and how, to adapt to keep those goals satisfied—it must maintain a rep-
resentation of this environment. We call such a representation a domain model.
The system uses its current domain model and goal specification to generate
reactive plans.

As described in [8], a domain model for a non-trivial environment is typically
composed of a small hierarchy of sub-models. Models higher in the hierarchy are
more abstract representations of the environment than those below them. At the
top level, we can abstract away variables such as the number of Koala robots
available, or details of their individual capabilities. This allows the abstract
domain model to represent only those characteristics of the environment salient
to a general expression of the problem domain, which means, in turn, that we
are able to generate a correspondingly general top-level plan.

Actions of an abstract domain model are decomposed into actions of a concrete
domain model, the latter specifically describing details of available hardware. For
example, one particular decomposition of moveToTarget includes the sequence of
actions loadBallAtX, startGotoTarget, unloadedBallAtTarget, where the first and
third actions assume a Koala with loading and unloading capabilities, and the
second action assumes a Koala with its own long-range navigation capabilities.
In the following exposition, we consider only the abstract plan for the scenario.

4.1 Modelling the Environment

A domain model represents the essential characteristics of a system embedded in
an environment and can be thought of as a representation of that environment
from the system’s point of view. It informs the system of the behaviours available
to it and the ways in which these behaviours can both affect and be affected by
the environment. The domain model for a system is represented as a finite state
machine, capturing the set of logical states in which the system and environment
can be (given a predefined set of propositions of interest) and the ways in which the
system can move between these states (given a set of actions that the system can
control). Formally, a domain model is a structure D = 〈Props, States, Actions,
T rans〉 where Props is a finite set of propositions describing (discrete) properties
of the system and environment, States ⊆ 2Props is a set of states, Actions is a
finite set of actions, and Trans ⊆ States×Actions×States is a transition relation.

114 W. Heaven et al.

Domain Properties and Actions. The set of properties Prop are either
discrete abstractions of (possibly continuous) data that the system is able to
sense, such as BallAtTarget or DoorOpen, or execution states of the system
itself, such as MovingToTarget or HoistingSouth. The boolean values of domain
properties can be changed by the occurrence of actions.

The set of actions Actions is partitioned by the set {Sys, EnvDep, EnvInd},
where Sys is a set of system actions, EnvDep is a set of causally-Dependent
environment actions, and EnvInd is a set of causally-Independent environment
actions. System actions, as might be expected, are those actions controllable by
the system. A system action typically initiates some behaviour of the system.
For example, the system action moveToTarget initiates the system behaviour
of “moving to the target”. Environment actions, on the other hand, are not
controllable by the system (note that environment actions are indicated by an
underscore prefix to the action label, e.g., doorOpened). We further distinguish
between causally-dependent and causally-independent environment actions.

A causally-dependent environment action is an action that can only occur once
a system action has initiated some particular behaviour. For example, the en-
vironment action arrivedAtTarget can only occur when MovingToTarget holds.
Causally-dependent actions play the role of “notifications”, which are moni-
tored by the system to determine whether or not the objective of a particular
behaviour has yet been reached. For example, the occurrence of arrivedAtTarget
can be thought of as the notification of successful completion of the behaviour
initiated by the system action moveToTarget. In practice, an action such as
arrivedAtTarget coincides with the system’s sensing that it has arrived at the
target location.

In contrast, a causally-independent environment action is an environment ac-
tion that is not constrained in any way by the behaviour of the system. For exam-
ple, the environment action doorOpened can occur whenever the door is closed,
irrespective of the behaviour of the system at that point. Causally-independent
actions are somewhat akin to input actions in I/O automata [20], though the lat-
ter are typically fully unconstrained, with all input actions enabled in every state.

Generating Domain Models. Our current implementation uses the Labelled
Transition System Analyser (LTSA) [10] to generate an LTS representation of a
domain model from a set of actions, a set of fluent propositions [21], and a set
of LTL constraints. The set of actions for the case-study domain is partitioned
along the lines described above as follows:

set Sys = {moveToTarget, moveToArmNorth, moveToArmSouth, moveNorth, moveSouth,

hoistSouth, hoistNorth}
set Env Dep = { arrivedTarget, arrivedArmNorth, arrivedArmSouth, arrivedSouth,

arrivedNorth, hoistedNorth, hoistedSouth}
set Env Ind = { doorOpened, doorClosed}
set Actions = {Sys, Env Dep, Env Ind}

A Case Study in Goal-Driven Architectural Adaptation 115

The only causally-independent environment actions we care about in this envi-
ronment are doorOpened and doorClosed since the property DoorOpen needs
to be monitored.

A fluent f represents a property of the environment and is defined by a set
of initiating actions I and a set of terminating actions T such that f holds at
all states along a path through a given LTS between an occurrence of an action
e ∈ I and an occurrence of an action e′ ∈ T . A sample of the set of fluents
defined for the case-study domain is shown below (where each fluent definition
has the form fluent f = <I, T>):

fluent BallAtTarget = <{ arrivedAtTarget}, {moveToArmSouth, moveToArmNorth, moveNorth}>
fluent InNorth = <{ arrivedNorth, hoistedNorth}, { arrivedSouth, hoistSouth}>
fluent DoorOpen = <{ doorOpened}, { doorClosed}> initially true

The fluent BallAtTarget, for example, becomes true whenever arrivedAtTarget
occurs and false whenever any of the actions moveToArmSouth, moveToArm-
North, or moveNorth occur. Note that, by default, a fluent is false in the initial
state of the LTS but can explicitly be defined to be true, as is the case for the
fluent DoorOpen.

While fluents describe the way properties change value, they do not constrain
actions. To do this, a set of LTL constraints is defined that describes the con-
ditions under which actions may occur. In the following, [] is the “always”
operator, X is the “next” operator, and W is the “weak until” operator.

constraint C1 = ([] (!X moveToTarget W !BallAtTarget && InNorth && !MovingToTarget))

constraint C2 = ([] (!X arrivedAtTarget W MovingToTarget))

...

constraint C11 = ([] (!X doorOpened W !DoorOpen))

constraint C12 = ([] (!X doorClosed W DoorOpen))

Constraint C1, for example, expresses a precondition for the system action
moveToTarget : this action cannot occur until InNorth is true and BallAtTar-
get and MovingToTarget are both false. T he domain model does not only
constrain system actions. As can be seen, it is necessary to specify the pre-
conditions of environment actions (whether in EnvDep or EnvInd) so that we
model the environment as accurately as possible. Causally-dependent actions,
such as arrivedAtTarget must be constrained so that they cannot occur un-
til the system is behaving in a way that makes their occurrence appropriate.
Here, for example, the precondition for arrivedATarget is that MovingToTarget
holds. Finally, though causally-independent actions are not constrained by the
behaviour of the system, they must follow their own logic: here doorOpened
is specified to occur only when the door is closed, i.e., DoorOpen is false, and,
conversely, doorClosed is specified to occur only when the door is open.

While LTL constraints specify the preconditions of actions, fluent defini-
tions —in addition to defining the properties of the domain—also specify the

116 W. Heaven et al.

postconditions of actions by describing how fluents are affected by the occur-
rence of actions. For example, it can be seen from the sample fluent defini-
tions above that the postcondition of the causally-dependent environment action
hoistedNorth implies InNorth∧¬HoistingSouth, since hoistedNorth is in the set
of initiating actions for InNorth and set of terminating actions for HoistingSouth.

A detail of the LTS of the abstract domain model for our scenario is shown in
Figure 2(a). As mentioned above, the abstract domain model allows two routes
to the target: one involves moving the ball through the door, the other involves
hoisting the ball over the wall using the arm. In the LTS shown, the former
starts from state 0, in which DoorOpen is true, the latter from state 1, in which
DoorOpen is false.

4.2 Generating Reactive Plans

The key advantage of a reactive plan over traditional linear plans is that a
reactive plan includes paths to the goal states from every state in the domain
from which those goal states are reachable. In a sense, a reactive plan might
be considered a set of linear plans to a common set of goal states. It is this
feature of reactive plans that allows for, and drives, adaptation in the change
management layer: selecting an alternative path when one fails can allow the
system to continue to satisfy its goals, though execution of the alternative path
might require system reconfiguration.

Fig. 2. Detail of domain model (a) and pruned domain model or “plan” for goal
Achieve[BallAtTarget] (b)

A Case Study in Goal-Driven Architectural Adaptation 117

In essence, a reactive plan is a pruned domain model from which all paths that
(a) include causally-independent environment actions or (b) are not shortest paths
to a goal state are removed. To generate reactive plans from a domain model,
we have extended LTSA with an implementation of algorithms adapted from the
planning-as-model-checking community [22,7]. The extended LTSA (LTSA Plan-
ner) uses the existing analysis features of LTSA to identify goal states in a domain
model LTS and then a newly implemented backtracking and pruning facility to
construct a reactive plan to attain these goal states. Figure 2(b) shows a detail
of the pruned LTS for the abstract domain model in Figure 2(a). Recall that the
goal states for the case study are those in which BallAtTarget holds. The short-
est path from state 0 to a state where this fluent holds requires the moveSouth
action. However, a precondition of this action is that DoorOpen is true. Thus, in
state 1, where this is not the case, the shortest path not involving a doorOpen or
doorClose action requires the moveToArmNorth action.

Formally, a reactive plan is a map Plan : States → Sys ∪ EnvDep ∪ {DONE}
where DONE represents a null-action allowing Plan to be applied to goal states.
For all s ∈ States and a ∈ Sys ∪ EnvDep, Plan(s) = a only if Trans(s, a, s′)
for some s′ ∈ State. In other words, a state is associated with an action in the
generated plan only if that action can be performed in that state (according to
the domain model). If defined, Plan(s) thus denotes the action to be taken by
the system whenever it is in state s in order to meet the goal for which the plan
was generated.

At this point, the importance of the distinction between kinds of action be-
comes clear. The aim is to generate a reactive plan to be used by the system to
achieve and maintain given goals so it might be assumed that only system actions
should appear in a generated plan. However, while causally-independent environ-
ment actions are indeed excluded, causally-dependent environment actions are
required for plan execution. For example, while a causally-independent action
such as doorOpened will not appear in a generated plan, causally-dependent ac-
tions such as arrivedAtTarget do. This is because a path to a goal is effectively
a sequence of system behaviours—and system behaviours must be initiated (by
system actions) and terminated (by causally-dependent environment actions).
A path to a goal thus consists of a sequence of alternating system and
causally-dependent actions.

A reactive plan can equally be thought of as a set of condition-action rules,
where each condition represents a logical state in the domain model. Execution
of a reactive plan involves determining the current logical state of the system and
performing the action prescribed for that state by the corresponding condition-
action rule. An extract of the generated plan for the abstract domain is given
below. The first two rules shown here correspond to the first two states of the
pruned domain model LTS shown in Figure 2(b). (There is, of course, also a
state in the pruned domain model LTS to which Rule 14 corresponds, but it
is not shown in the above figure.) There are 23 condition-action rules in total,
one for each state of the domain model. In the extract below, the domain prop-
erty conjuncts that are true in each condition have been highlighted for legibility.

118 W. Heaven et al.

Fig. 3. Plan LTS showing alternative paths to goal states

/* Rule 0 */ !MovingSouth && DoorOpen && InSouth && !MovingToArmSouth

&& !BallAtArmSouth && !MovingNorth && !MovingToTarget && !InNorth && !MovingToArmNorth

&& !BallAtArmNorth && !HoistingSouth && !BallAtTarget && !HoistingNorth

-> moveSouth

/* Rule 1 */ !MovingSouth && !DoorOpen && InSouth && !MovingToArmSouth

&& !BallAtArmSouth && !MovingNorth && !MovingToTarget && !InNorth && !MovingToArmNorth

&& !BallAtArmNorth && !HoistingSouth && !BallAtTarget && !HoistingNorth

-> MoveToArmNorth

/* Rule 14 */ !MovingSouth && DoorOpen && !InSouth && !MovingToArmSouth

&& !BallAtArmSouth && !MovingNorth && !MovingToTarget && InNorth && !MovingToArmNorth

&& !BallAtArmNorth && !HoistingSouth && BallAtTarget && !HoistingNorth

-> DONE

Execution of a reactive plan can be thought of as a game between system and
environment, in which the system makes a move (performs an action, such as
moveToTarget) and the environment responds (a corresponding action, such as
arrivedAtTarget occurs). However, only the system actively seeks to achieve its
goal. The environment is indifferent and may or may not respond as expected.
When the environment does not respond as expected, execution of the reactive
plan will involve jumping between paths in the domain model towards the goal
as the system continually makes a move towards its goal and the environment
forcing the system to take alternative paths.

The two paths to the goal can perhaps most easily be displayed in an LTS
representation of the plan. Figure 3 shows the plan LTS with the alternative
paths highlighted. Here, the highlighted paths originate from states 0 and 1
respectively. Recall from Figure 2 that the only difference between these states
is that DoorOpen is true in state 0 and false in state 1. In other words, the plan
involves moving through the door when it is open and hoisting over the wall
when the door is closed. As is explained in Section 5, these alternative options
correspond to two different modes of component configuration in the system.

To summarise, the abstract domain model expounded above contains proper-
ties and actions in terms of the “problem domain” and makes few assumptions
about the infrastructure available, other than the existence of at least one mobile
agent and a robot arm with fixed location. The set of available concrete actions

A Case Study in Goal-Driven Architectural Adaptation 119

(and constraints on their application) are provided in a concrete domain model.
The composition and generation of abstract and concrete domain models are the
same. The difference lies in the set of actions and the scope. A concrete domain
model includes actions specific to the available infrastructure and may have a
more narrow scope that focusses on a particular part of the overall environment,
such as the functioning of the arm. The decomposition of an abstract action
essentially amounts to a small planning step in the concrete domain to get from
the precondition of the abstract action to the postcondition. More details of this
are described in [8].

In our scenario, the infrastructure consists of two Koalas and the arm. The
actions available to these agents include the following:

set Sys = {k1.startLoading, k1.startUnloading, k1.startGoToTarget, k2.startLoading,

k2.startUnloading, k2.startGoToTarget, arm.startPickUp, arm.startPutDown, ...

As is described in Section 5, the action startMoveToTarget, for example, can
be decomposed by the actions startLoading, startGoToTarget, startUnloading
for a single Koala.

4.3 Overhead

To give a rough indication of the computation involved in our current imple-
mentation of domain modelling and reactive-plan generation, the LTS for the
abstract domain model in this case study consists of 25 states and 76 transitions
and is generated by LTSA in under 1ms. Plan generation, including some basic
preprocessing steps, takes around 50ms. However, since we harness planning-as-
model-checking technology, these numbers can be expected to grow exponentially
with the size of domain model. This is why planning is positioned in the goal
management layer of our conceptual architecture and employed for top-level
adaptation only, i.e., when system goals change, or the environment changes sig-
nificantly enough for the domain model to require updating. In this case study,
we focus on adaptation in the change management layer, as detailed in the next
section.

5 Generating Software Configurations

In order to put the generated plan into action, the system must derive the soft-
ware architecture which is able to perform the plan and modify this architecture
when it becomes necessary to ensure reliable execution. Each of the robots has
a set of software components associated with it which implement and support
various behaviours appropriate to each platform. The computational capacity
of each robot is limited and so the purpose of the change management layer
becomes, in addition to plan execution, that of deciding which components will
be instantiated into a configuration.

The selection of components is based primarily on a mapping from the sys-
tem actions required by the plan to component interfaces. In addition to these

120 W. Heaven et al.

Fig. 4. Configuration generation

purely functional concerns, the system can generate configurations which sat-
isfy arbitrary structural constraints and make choices between alternatives on
the basis of non-functional properties of interest to the user, such as reliability
or performance. Hence, there are three major steps to the process as shown in
Figure 4, which also exhibits the information provided by the user. The first two
steps, dependency analysis and constraint checking, are interrelated. Candidate
configurations generated by the dependency analysis are checked against the
structural constraints, and may be passed back after modification to consider
further dependencies. Configurations which satisfy both initial steps are then
evaluated according to their non-functional properties to select a final config-
uration. A configuration is constructed by instantiating components and con-
necting required ports to the provided ports of another component where the
interface type matches. A complete configuration contains no component with
an unsatisfied requirement.

5.1 Dependency Analysis

In the first step of the algorithm, dependencies between requirements and pro-
visions are used to generate complete candidate configurations which provide
sufficient functionality to execute the given plan.

In our scenario, at least three configurations are required: one which enables
the Koala to locate and pass through the door, and if that is not possible, one
which enables the arm to lift the ball over the wall, plus one which enables
the Koalas to transport the ball. Each of these configurations is implied by the
actions present in the plan.

For example, the presence of a startGoToX action in the plan indicates that
the configuration must include a component which provides a suitable imple-
mentation of this action. A particular interface type is associated with each type
of action, and thus the system selects components which implement the relevant
interfaces. More formally, the set of desired interfaces is derived from the system
actions in the plan, SysPlan = range(Plan) \ EnvDep, by way of the binary
relation Implements ⊆ Sys × Interfaces. The desired set is the image of this
relation under the set of plan actions, Implements[SysPlan].

Given the set of components required for their functionality, the system can
then construct a complete configuration by considering the required interfaces of

A Case Study in Goal-Driven Architectural Adaptation 121

Fig. 5. Components are selected according to the plan actions

those components. Providers of these must also be instantiated and connected
to the relevant ports of the action component. The full details of the dependency
analysis have been given elsewhere [9].

Figure 5 shows how a configuration would be generated to perform a startGo-
ToX action. The system is aware of an interface provided by the GoToTask
component that implements this action. Then, to complete the configuration,
it considers the requirements of the GoToTask, and their requirements in turn.
In this case, the GoToTask requires a MotionController implementation and a
LocationServer. The latter is provided by the SkyCamera which connects to
external infrastructure. The VectorMotionController has a further requirement
of KoalaMotors which are provided by the Koala component, representing the
hardware capabilities of the robot. Thus, the configuration for startGoToX is
cg ={GoToTask, SkyCamera, VectorMotionController, Koala}.

The other required configurations are generated similarly. For the arm, the
required configuration is ca ={BallGrabber, BallPlacer, KatanaArm, Webcam}
where the first two components implement startP ickUp and startPutDown
actions. For the door search, there are two possibilities representing different
strategies for achieving the behaviour. These are cs2 ={VisualDoorLocator, We-
bcam, VectorMotionController, Koala} and cs1 ={IRDoorLocator, VectorMo-
tionController, Koala}. The first component in each implements the behaviour
in a different way. VisualDoorLocator requires a Webcam since it uses image
recognition to detect the door, while the IRDoorLocator attempts to use the
infra-red sensors provided by the Koala to do the same. We assume that in
general there are multiple implementations of each interface, and so there are
several candidate configurations which provide the same functionality.

122 W. Heaven et al.

5.2 Structural Constraints

Each of the candidates produced by the dependency analysis is checked against
any structural constraints that the user has provided. Any candidates which are
not valid according to the constraints are essentially vetoed, as is the case in [23]
where reconfigurations are checked using Alloy.

Constraints may express an architectural style [2] to which configurations
must conform. In the current scenario, one constraint the user has placed on
the system is that if the Koalas must move, they must simultaneously avoid
(unknown) obstacles. This can be encoded as

VectorMotionController ∈ arch −→ ObstacleAvoider ∈ arch

which states that whenever a configuration includes VectorMotionController (a
component for moving the robots), it must also include ObstacleAvoider.

This constraint is an example which could never be satisfied by relying on
dependency analysis alone, since the ObstacleAvoider is not required by any
other component, so there are no candidates in which it will be present. As
shown above, for the startGoToX action the dependency analysis will produce
a solution, cg, which contains {GoToTask, VectorMotionController, SkyCamera,
Koala} but not the ObstacleAvoider. Since the generation of such candidates is
entirely ignorant of what might be added to achieve satisfaction, it is necessary
to add extra components which are not already included in a given candidate.
Components cannot be removed from candidates since this would make them
incomplete. Hence, from every candidate vetoed by the constraint check, sev-
eral new candidates are generated, consisting of the original plus a number of
extra components. These candidates are returned to the dependency analysis
for “completion”, which entails ensuring all the required interfaces of the new
components are satisfied, and finally resubmitted to the constraint check.

The configurations derived for the Koala by the dependency analysis do
not satisfy the above constraint. Hence, new candidates are generated, com-
pleted, and re-checked. For the initial candidate cg ={GoToTask, VectorMo-
tionController, SkyCamera, Koala}, variants such as cg∪{IRDoorLocator} and
cg∪{ObstacleAvoider} are generated. The completion of the latter does not in-
troduce further components (since everything required by the ObstacleAvoider
is already present) and satisfies the constraint, giving c′g ={GoToTask, Vec-
torMotionController, SkyCamera, Koala, ObstacleAvoider}. The configuration
for the arm, ca, is unchanged, while the ObstacleAvoider is added to the al-
ternatives for the door search giving c′s1 = cs1∪{ObstacleAvoider} and c′s2 =
cs2∪{ObstacleAvoider}. These configurations are shown in Figure 6.

5.3 Non-functional Properties

Once the set of complete, valid configurations has been generated, a choice must
be made between them on the basis of their non-functional properties, such
as reliability or performance. Each component can be annotated with a set of
pairs indicating the name of a property, and the value of that property for the
component, e.g., (“power-drain”, “500mA”) and (“reliability”, “70%”).

A Case Study in Goal-Driven Architectural Adaptation 123

Fig. 6. Candidate component configurations

In addition to these annotations, the user provides utility functions uprop, one
for each property, which give the utility of every value in the range of a property.
The utility is a real number between 0 and 1 where 1 represents the most useful
value. For example, the utility function for power drain may be defined as

upower(0mA) = 1 upower(1000mA) = 0.05

The total utility of a component can be calculated from the property values by
taking a weighted sum, resulting in a value between 0 and 1, placing functionally
equivalent components in a partial order. In other words, the utility U(c) of a
component c is

U(c) =
∑

p∈NFProp

wp × up(c.p)

where NFProp is the set of all non-functional properties, c.p indicates the value
of p for component c (assumed to be 1 where no annotation is provided), and wp

is the weight for property p. The weights for each property are provided by the
user, and represent the user’s priorities or preferences among the non-functional
properties. Since power drain is particularly important in the current context,
wpower will be a high value. These weights must sum to 1.

The utility of a configuration is then defined as the average utility amongst
the components it contains. The configuration with the maximum utility among
the candidates is selected as the final choice. If two configurations have the same
utility, the smaller one (in terms of components) is picked.

124 W. Heaven et al.

This method for calculating the utility of a configuration masks a significant
assumption which we aim to eliminate in future work. The approach supposes
that the component annotations are correct whether the component works in
isolation or in a large configuration. It is trivial to conceive of a situation where
this is not the case, such as a configuration which involves large numbers of com-
ponents which claim to be fast, which will no doubt exhibit poor performance.

Nevertheless, the present approach allows us to differentiate between the two
solutions for locating the door: c′s2, which uses the Webcam (using a lot of
power), and c′s1, which uses the infra-red sensors (which are unreliable). Hence,
the properties of interest are the power drain and reliability.

In c′s2, Webcam is annotated with (“power-drain”, “500ma”) and VisualDoor-
Locator is annotated with (“reliability”, “high”). In c′s1, IRDoorLocator is an-
notated with (“reliability”, “low”). There is no annotation for power drain, and
so this is assumed to be the best case (its utility is 1). The utility of the two con-
figurations can then be computed by providing weights for reliability and power
drain. In this case the user is concerned that a high power drain will prevent
the ball from being delivered. Hence, wpower = 0.8 and wreliability = 0.2. The
computed utility values are given below.

U(Webcam) = 0.8 × upower(800mA) + 0.2 × 1 = 0.36

U(VisualDoorLocator) = 0.8 × 1 + 0.2 × ureliability(high) = 0.98

U(c′s2) =
U(Webcam) + U(VisualDoorLocator) + 3

5
= 0.868

U(IRDoorLocator) = 0.8 × 1 + 0.2 × ureliability(low) = 0.82

U(c′s1) =
U(IRDoorLocator) + 3

4
= 0.995

Here, c′s1 has the higher utility and is selected. This means that the final choice
of configurations is

c′s1 = {IRDoorLocator, ObstacleAvoider, VectorMotionController, Koala}
for the first mode of operation (applicable when the door is open), and

ca = {BallGrabber, BallPlacer, Webcam, KatanaArm}
c′g = {GoToTask, VectorMotionController, ObstacleAvoider, Koala}

for the second mode of operation (applicable when the door is closed).

5.4 Overhead

The whole configuration generation process takes between 200 and 6000ms
(about 3100ms on average), while a fully scripted configuration (where the result
is written directly by the programmer) takes less than 16ms to be instantiated.
This compares favourably against the performance of Arshad’s Planit [19] where
planning for configuration takes at best 4.92 seconds, and up to hundreds of sec-
onds if plan execution time is included. Using planning to generate configurations
as well as behaviour would be significantly more expensive.

A Case Study in Goal-Driven Architectural Adaptation 125

6 Reconfiguration

Having seen how the plan and initial configurations are generated, we now con-
sider the behaviour of the system as it is running, and how it responds to prob-
lems in the environment. Once the ball has been collected, one Koala proceeds
to search for the door using the IRDoorLocator. Suppose that the annotation
marking this component as unreliable proves to be true, due to noise in the infra-
red sensors. The Koala fails to find the door after scanning the entire area of the
wall and so the IRDoorLocator reports this failure by throwing an exception.
This triggers a reconfiguration to find a replacement for the failed component.
As shown above, there is such an alternative, c′s2, which uses the more reliable
VisualDoorLocator. Although the system is not aware of the meaning of the
“reliability” property, it switches to the more reliable alternative by simply ex-
cluding the failed components, disregarding the property weights provided by
the user. Reconfiguration happens in parallel with normal execution such that
the change is almost imperceptible to an observer.

When the door is found to be closed the system must use another strat-
egy to achieve the goal. In this case the alternative is to use the Katana arm.
This requires the configuration used on the Koala to switch to c′g, and ca to be
instantiated on the arm.

7 Conclusions

This case study demonstrates how our three-layer abstraction—previously ap-
plied in the field of robotics—can be successfully applied to self-adaptive software
systems, including their self-assembly. In our case, the model separates the con-
cerns of such systems into high-level task planning and replanning, architectural
configuration and reconfiguration, and component-based control. Although we
have not yet fully elaborated the replanning feature, which involves updating the
domain model at runtime to reflect arbitrary changes in the environment, we be-
lieve the advantages of the general approach are apparent. In particular, each
layer of the model operates at a level of abstraction appropriate to it, simultane-
ously simplifying the problem and generalising the solutions, such that several
opportunities for adaptation are uncovered. The arrangement of the layers aims
to ensure that the most costly adaptations are peformed the least frequently. Of
course, the general mechanisms of the approach are not tied to the particular
implementation outlined here.

Adaptability is provided by four mechanisms: (i) control loops within do-
main components, (ii) architectural reconfiguration, (iii) the nature of reactive
plans, and (iv) dynamic replanning. Replanning will likely necessitate modifi-
cation of the domain description with information gathered at runtime, which
in the minimal case is that a certain action fails (either because of changes in
the environment or a software fault) in some contexts. The planner can then be
invoked to generate a new plan which avoids the failing action. Replanning will
also be required when the system’s goals change.

126 W. Heaven et al.

Interesting future work includes further extension of ideas in [8] to address
scalability of the goal management layer by generating plans from sub-goals
and verifying that these sub-goals are consistent with the overall goal. Also,
the approach as currently implemented relies on a central plan interpreter in
the change management layer to co-ordinate component execution on several
hosts, with only indirect communication between each host. Aside from being a
single point of failure, this scheme assumes the entire world state is (correctly)
observable on this host. This can be made more scalable and robust by providing
a means to distribute plan interpretation and configuration generation. Naturally
such concurrent plan execution leads to synchronisation and co-ordination issues
which must be addressed [24,25].

Finally, we also propose enriching the domain model to capture uncertainty
and partial knowledge about the environment, possibly by exploiting existing
work on modal transition systems [26], which allow “maybe” transitions and
facilitate the incorporation of new domain knowledge by model-merging.

Acknowledgements. The work reported in this paper was funded by the Sys-
tems Engineering for Autonomous Systems (SEAS) Defence Technology Centre
established by the UK Ministry of Defence.

References

1. Garlan, D., Schmerl, B.: Model-Based Adaptation for Self-Healing Systems. In: 1st
Workshop on Self-Healing Systems (2002)

2. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting Style in Architectural Design En-
vironments. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008. Springer, Heidelberg
(1995)

3. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: 1st Workshop on Self-Managed Systems (2004)

4. Georgas, J.C., Taylor, R.N.: Towards a Knowledge-Based Approach to Architec-
tural Adaptation Management. In: 1st Workshop on Self-Managed Systems (2004)

5. Arshad, N., Heimbigner, D., Wolf, A.: A Planning Based Approach to Failure Re-
covery in Distributed Systems. In: 1st Workshop on Self-Managed Systems (2004)

6. Gat, E.: Three-Layer Architectures. In: Artificial Intelligence and Mobile Robots:
Case Studies of Successful Robot Systems (1998)

7. Ghallib, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, San Francisco (2005)

8. Sykes, D., Heaven, W., Magee, J., Kramer, J.: Plan-Directed Architectural Change
For Autonomous Systems. In: SAVCBS (2007)

9. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From Goals to Components: A
Combined Approach to Self-Management. In: SEAMS (2008)

10. Magee, J., Kramer, J.: Concurrency: State Models & Java Programming. Wiley,
Chichester (2000)

11. McVeigh, A., Kramer, J., Magee, J.: Using Resemblance to Support Component
Reuse and Evolution. In: SAVCBS (2006)

12. Brooks, R.: A Robust Layered Control System for a Mobile Robot. Robotics and
Automation 2(1), 14–23 (1986)

A Case Study in Goal-Driven Architectural Adaptation 127

13. Cheng, S.W., Garlan, D., Schmerl, B., Sousa, J., Spitnagel, B., Steenkiste, P.: Using
Architectural Style as a Basis for System Self-Repair. In: 3rd Working IEEE/IFIP
Conference on Software Architecture (2002)

14. Cheng, S., Garlan, D., Schmerl, B.: Architecture-Based Self-Adaptation in the
Presence of Multiple Objectives. In: SEAMS (2006)

15. Cheng, S., Huang, A., Garlan, D., Schmerl, B., Steenkiste, P.: An Architecture
for Coordinating Multiple Self-Management Systems. In: 4th Working IEEE/IFIP
Conference on Software Architecture, pp. 243–252 (2004)

16. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards Architecture-Based Self-
Healing Systems. In: 1st Workshop on Self-Healing Systems (2002)

17. Robbins, J.E., Hilbert, D.M., Redmiles, D.F.: Using Critics to Analyze Evolving
Architectures. ISAW-2 / Viewpoints (1996)

18. Garlan, D., Poladian, V., Schmerl, B., Sousa, J.P.: Task-Based Self-Adaptation.
In: 1st Workshop on Self-Managed Systems (2004)

19. Arshad, N., Heimbigner, D., Wolf, A.: Deployment and Dynamic Reconfiguration
Planning for Distributed Software Systems. Software Quality Journal 15(3) (2007)

20. Lynch, N., Tuttle, M.: An Introduction to Input/Output Automata. CWI-
Quarterly 2(3) (1989)

21. Giannakopoulou, D., Magee, J.: Fluent Model Checking for Event-Based Systems.
In: ESEC / FSE (2003)

22. Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: European Confer-
ence on Planning (1999)

23. Warren, I., Sun, J., Krishnamohan, S., Weerasinghe, T.: An Automated Formal
Approach to Managing Dynamic Reconfiguration. In: ASE (2006)

24. Lomuscio, A., Sergot, M.: Deontic Interpreted Systems. Studia Logica (Special
Issue on The Dynamics of Knowledge) 75 (2003)

25. Inverardi, P., Mostarda, L., Tivoli, M., Autili, M.: Synthesis of Correct and Dis-
tributed Adaptors for Component-Based Systems: an Automatic Approach. In:
ASE, pp. 405–409 (2005)

26. Sibay, G., Uchitel, S., Braberman, V.: Existential Live Sequence Charts Revisited.
In: ICSE (2008)

Model-Centric, Context-Aware
Software Adaptation

Oscar Nierstrasz, Marcus Denker, and Lukas Renggli

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch

Abstract. Software must be constantly adapted to changing require-
ments. The time scale, abstraction level and granularity of adaptations
may vary from short-term, fine-grained adaptation to long-term, coarse-
grained evolution. Fine-grained, dynamic and context-dependent adap-
tations can be particularly difficult to realize in long-lived, large-scale
software systems. We argue that, in order to effectively and efficiently
deploy such changes, adaptive applications must be built on an infras-
tructure that is not just model-driven, but is both model-centric and
context-aware. Specifically, this means that high-level, causally-connected
models of the application and the software infrastructure itself should
be available at run-time, and that changes may need to be scoped to the
run-time execution context.

We first review the dimensions of software adaptation and evolution,
and then we show how model-centric design can address the adaptation
needs of a variety of applications that span these dimensions. We demon-
strate through concrete examples how model-centric and context-aware
designs work at the level of application interface, programming language
and runtime. We then propose a research agenda for a model-centric de-
velopment environment that supports dynamic software adaptation and
evolution.

1 Introduction

It is well-known that real software systems must change to maintain their value
[26]. It is therefore curious to observe that the technology we use to develop
software systems tends to hinder and inhibit change rather than to enable and
support it [31]. Statically typed languages, for example, are based on the as-
sumption that first-class values have fixed types that will not change, especially
at run-time. Few mechanisms are available to developers to deal with the fact
that interfaces do change over time, and real software systems may need to cope
with different versions of the same libraries, possibly depending on the run-
time context. Design patterns offer further evidence of ungainly workarounds
that developers need to regain flexibility at run-time, for example to change the
apparent behaviour of objects as a consequence of a change in state [17].

Long-lived, software intensive systems [50] cannot always be modified in a
static way. Furthermore, although certain kinds of anticipated adaptations can be

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 128–145, 2009.
� Springer-Verlag Berlin Heidelberg 2009

http://scg.unibe.ch

Model-Centric, Context-Aware Software Adaptation 129

built in by design as run-time configuration parameters, there are many kinds of
dynamic adaptation that cannot be anticipated so easily. One canonical example
of such an adaptation is run-time instrumentation: certain kinds of anomalies
only manifest themselves with deployed software systems. As it is not possible
to anticipate for all cases what and where to trace to observe the problematic
behaviour, it may be necessary to dynamically adapt the running system. Other
examples exist (such as adding new features to an always-running system), but
the key characteristics remain the same — the software may need to be adapted
dynamically, in a fine-grained way, while taking care not to disturb existing
behaviour.

There are many important dimensions of software change. Let us just consider
three of these that pose challenges for software development:

Timescale — Software is changed not only at the coarse scale of versions and
releases, but also at a medium scale (e.g., start-up configuration) and at
a fine scale (run-time adaptation and instrumentation). Particularly at the
dynamic end, little support is available to developers aside from certain
design patterns and relatively low-level reflective mechanisms.

Granularity — Here too we see that software is changed not only at the coarse
granularity of subsystems and packages, or the medium granularity of classes
and methods, but also at a finer granularity within methods and procedures.
Fined-grained, run-time adaptation of software must typically be anticipated
by design, and necessitates the use of boilerplate code (e.g., case-based rea-
soning over anticipated scenarios) or design patterns (e.g., State or Strategy
patterns). Unanticipated run-time adaptation will typically entail low-level
techniques such as bytecode transformation.

Scope — Changes may be globally visible, they may be localized to individ-
ual users, or they may depend on an even finer context. The same software
entities may need to behave differently as the run-time context changes. Mo-
bile applications, for example, may need to switch to a fall-back behaviour
as services become unavailable. Run-time instrumentation of software enti-
ties, as another example, may need to be dynamically adapted if the same
entities are used by the instrumentation layer itself (i.e., to avoid endless
instrumentation loops) [14].

Although model-driven and round-trip engineering techniques have proved to be
effective in maintaining the connection between high-level and low-level views
of software systems, they do not especially address the problem of dynamic
adaptation. We argue that it is necessary to go a step further from model-driven
towards model-centric software, in which high-level, causally connected views of
software and their application domain are available at run-time. In this paper
we show several examples of run-time adaptation at the level of source code, so
the “high-level models” appropriate to these applications take the form of ASTs
that reflect the structure of software to be adapted.

Furthermore, such systems must be context-aware in order to control the
scope of adaptations and changes. In our examples we show how context can

130 O. Nierstrasz, M. Denker, and L. Renggli

play an important role in software adaptation to control the scope of change. We
argue that current programming technology offers only very weak support for
developing context-aware applications, and that new research is urgently needed
into novel context-oriented programming mechanisms [21].

In this paper we make our case for model-centric, context-aware software
adaptation by presenting two examples of platforms that adopt this approach.
We show how the presence of sufficiently high-level models at run-time can enable
very dynamic forms of context-dependent software adaptation.

In Section 2 we present Reflectivity, a relatively mature platform for dy-
namic, model-centric software adaptation. We have used Reflectivity extensively
in various projects to support different forms of adaptation, such as run-time
instrumentation, dynamic aspects, and software transactional memory. Next, in
Section 3, we present ongoing work on Diesel, a lightweight language workbench
which can be used to adapt the programming environment to support the ex-
pression of high-level application concepts by introducing numerous, lightweight
domain-specific languages. We discuss further applications of these ideas and
our vision for a research agenda in Section 4 and provide an overview of re-
lated work in Section 5. We conclude in Section 6 with some remarks on future
work.

2 Reflectivity — A Platform for Model-Centric Software
Adaptation

In this section we present Reflectivity, a platform that supports dynamic adap-
tation of software by means of causally connected, high-level models of the
source code [9]. The purpose of this section is (i) to motivate the need for
dynamic software adaptation for various applications such as runtime instru-
mentation, dynamic aspects, and software transactional memory, (ii) to
motivate the need for better mechanisms to support context-dependent adap-
tation, and (iii) to demonstrate that sufficiently high-level models available at
run-time (in this case ASTs causally connected to bytecode) facilitate run-time
adaptation.

Reflectivity is built on top of Smalltalk, since it already provides extensive
support for run-time reflection, albeit at a relatively low-level of abstraction
[9]. Furthermore, Smalltalk provides full access to the implementation of its
infrastructure, making it ideal for extensive experimentation. Any other language
that supports run-time structural and behavioural reflection and access to the
infrastructure would also be suitable.

2.1 A Model for Dynamic Software Adaptation

The particular challenge we are focusing on is support for dynamic, fine-grained
and possibly context-dependent software adaption. Let us consider the canonical
example of run-time instrumentation:

Model-Centric, Context-Aware Software Adaptation 131

– We may need to install the instrumentation code dynamically in the running
system because the phenomena we wish to study only occur in the deployed
system (say, a web service).

– The adaptation is fine-grained because we wish to monitor only part of a
given method (say, conditional access to an authorization service).

– The adaptation is context-dependent because we are only interested in
monitoring calls made from a specific application, not others.

Other plausible scenarios, such as adding features to a running system, would
serve as well for establishing our requirements.

In order to dynamically adapt software, we need a model to reason about it.
In our run-time instrumentation scenario the following properties are important:

Abstraction Level: This model should be high-level, reflecting the language
concepts we wish to instrument, rather than, say, the generated bytecode.

Completeness: The model should represent the complete software, from
coarse-grained structures like classes, methods down to sub-method
structures such as variable accesses and method calls.

Although these properties may seem obvious, in most cases the representations
used for software adaptation today do not satisfy them. The representation used
is often plain (source) text. Modern development environments do better: here
the code is represented with dedicated data-structures that better support code
presentation (e.g. pretty printing) or code change (e.g. refactoring). But these
data structures are those of the development environment, not of the language
itself. They are not available to support run-time adaptation.

Runtime representations are often tailored solely towards execution, such as
bytecode representations for Java or Smalltalk. Representations based on byte-
code are low-level, and therefore suffer from a semantic mismatch with the core
language concepts.

The reflective representation of the structure of software available in many
modern object-oriented languages provides a high-level model for packages,
classes and methods, but it lacks any representation of sub-method structure.

As we are especially interested in adaptation at runtime and by the system
itself, we conclude that the model needs to have the following properties:

Self Representation: The model of the software needs to be available from
within the running system itself.

Causal Connection: When we change this model (either from the outside or
from within the system), the behavior of the program needs to change. Con-
versely, when the system changes, the representation needs to change, too.
The program needs to stay in sync with the model at all times.

Meta-annotations: We need to be able to extend the representation to use it in
many contexts and annotate it with meta-data. For example, different tools
that deal with the structure of the system need slightly different information.

132 O. Nierstrasz, M. Denker, and L. Renggli

Annotations allow the programmer to associate meta-data with any node,
making the existing AST-based representation extensible.

Models that have the properties of self representation and causal connection are
called reflective. There is a long history of reflection in programming languages in
general and in object-oriented languages in particular [45]. Sub-method reflection
[10,9] provides a model of the software that exhibits all the properties discussed
above. Software is represented down to the statement level by a causally con-
nected, annotated Abstract Syntax Tree (AST). Changes to the AST will be
(lazily) propagated to the generated bytecode using runtime just-in-time compi-
lation. Semantics are given to annotations by an open compiler infrastructure:
annotations are interpreted by dedicated compiler plug-ins.

We will now illustrate this approach by a series of examples.

2.2 Run-Time Instrumentation

With a causally connected model of the whole software, we can provide a frame-
work to support instrumentation at runtime. The model chosen is that of partial
behavioral reflection [47,12,40].

The central notion is the Link. The link is set as an annotation to one or more
nodes of our AST. The link points to a meta-object and can be parameterized
to indicate which information is passed to the meta-object. In addition, we can
set a condition to specify when a link is active and to specify if the meta-object
is called before, after or instead of the original instruction. Figure 1 shows the
interaction of the AST, the link and the meta-object.

Links are specified as annotations on the AST. A compiler plugin transforms
the AST before execution to take the links into account. A link thus results in
code to be inserted in the program at the nodes where it is installed.

This model provides some interesting characteristics: it is completely dynamic
due to just-in-time compilation at runtime. We can create links at runtime,
configure them and install them in the system. Links can even be installed by
other links, or they can remove or install themselves.

A side-effect of using the higher-level representation provided by the AST
is improved performance. It is actually easier to generate more efficient code
using the AST [10]. Furthermore, we only have to generate bytecode for those
parts of the system that take part in the execution. The actual set of classes

source code
(AST)

meta-object

activation
condition

links

Fig. 1. The link-meta-object model

Model-Centric, Context-Aware Software Adaptation 133

used by an application is generally smaller than the overall code base by an
order of magnitude. As a result, dynamic code generation provides an additional
performance benefit [9].

2.3 Localization: Annotating Structure

We have seen both a structural model of our system, and a framework for dy-
namic behavioral reflection based on annotating the structural model with links.
Now we will see how to manipulate this structure using behavioural reflection.

To make this possible, we need to be able to reference the structural model
from the behavioral world. The simplest way to do this is to allow the nodes of
the structural model to be meta-objects, as shown in Figure 2.

source code
(AST)

instruction is
 metaobject

link

Fig. 2. Bridging structural and behavioral model

This allows a node to be annotated before it is executed. This way one can
easily realize tracing or feature analysis [13]. For example, a simple code-coverage
tool can be realized by installing a link on each AST node of interest. We just
provide a method markExecuted to mark AST nodes as having been executed.
The links are activated when the AST nodes are executed, and simply invoke
this method to record the fact.

link := GPLink new metaObject: #node;
selector: #markExecuted.

Listing 1.1. Code-coverage analyzer realized with Reflectivity

When we install the link on the node representing methods, we obtain method
level coverage. But with our sub-method model, we can go a level deeper and
even install the link on all assignments.

To improve performance, it is even possible to remove the tagging-link at
runtime just after tagging the node. In this way, the method would, at the next
execution, be recompiled to only call markExecuted on those nodes that have not
yet been executed before. We can also take advantage of activation conditions,
for example, to only tag nodes that are executed in the context of a unit-test.

134 O. Nierstrasz, M. Denker, and L. Renggli

The possibility of both installing and removing links at runtime allows for just-
in-time annotation: links are installed on-demand on all methods that are to be
executed next. This way an annotation can spread itself through the system,
driven by the flow of execution itself. Examples like these make Reflectivity
especially suitable for building self-monitoring and self-evolving systems.

2.4 Scoping the Effect of Changes

An interesting problem arises when instrumenting basic system classes. The
instrumented code itself is used at runtime by the meta-object, leading to endless
loops. This makes any use of reflection on basic system classes like Number or
Array impractical. This problem can be seen with all reflective systems — a
well-known example is CLOS [6].

To solve this problem, we provide the possibility to scope the activation of links
towardsmeta-level execution [14]. Links are parameterized with the level for which
they are activated. This way we can restrict the introduced change towards, for
example, base-level program execution. Note that the same mechanisms can be
used to reason about execution of meta-level programs. For example, it may be
the case that a profiler realized as a meta-object needs to be analyzed to improve
performance. By restricting the link that activated the profiler to the meta-level,
we can use the profiler on itself without the danger of endless loops.

2.5 Implementing Higher-Level Dynamic Language Features

With partial behavioral reflection, we can easily adapt the programming language
to support new language features. Very deep changes can be realized that normally
require changes at the level of language implementation (i.e. the virtual machine).

Dynamic Aspects. Partial behavioral reflection can serve as an efficient tech-
nique for implementing Aspect-Oriented Programming [39]. We have used the
dynamic features of Reflectivity to implement dynamic aspects, which are not
woven into the code at compile time, but instead can be introduced and re-
tracted at runtime. Compared with traditional runtime AOP implementation
techniques, we can see some improvements. We can generate better code than
typical bytecode transformation based approaches as we can leverage the higher-
level AST representation [9]. We can leverage the link-conditions to efficiently
control aspect activation at runtime.

Transactional Memory. We have realized software transactional memory for
a dynamic language [37]. It is notable that this realization was done without any
changes to the underlying virtual machine. With the help of Reflectivity we in-
troduced a transactional execution context and were able to reify all state access
to be handled by the transactional model implemented in the host language.

3 Diesel — An Engine for Bringing Models Closer to Code

We have seen that it is important to have higher level models of software available
at run-time in order to enable dynamic software adaptations. But what about

Model-Centric, Context-Aware Software Adaptation 135

the application logic itself? Models of the software structures can be far removed
from the application domain. What we need to enable dynamic adaptation of
application logic is to make application models more explicit in the code. One
way of doing this is to raise the level of programming by means of specialized
domain specific languages (DSLs).

This raises new, extrinsic problems, as a new DSL will not be able to automat-
ically benefit from existing development tools available for the general-purpose
host language. We need to be able to adapt the host language and environment
to support new DSLs. As before, the adaptions must be fine grained because DSL
code may be interspersed with regular source code, dynamic because we want
to be able to change host compilers and tools on the fly, and context-dependent
because DSL code may be restricted to certain parts of an application.

Diesel is a lightweight language workbench that closely integrates with the
host language [16]. This enables developers to incrementally bend the syntax and
semantics of the host language to suit their exact needs for a particular problem
domain. As such, Diesel is an environment for developing domain specific lan-
guages (DSLs), with the aim of giving application developers more suitable ab-
stractions than the host language provides. Contrary to other approaches, Diesel
reuses the traditional compiler toolchain and closely integrates with the existing
tools of the programming environment, such as editors, debuggers, inspectors,
etc. A close integration is crucial to keep the abstraction gained through new
language features. While language developers might want to toggle between a
view on the original source and the transformed result, domain developers would
like to stay at the abstraction level of their code at all times.

The host language of our implementation is Smalltalk, which provides us with
a uniform development environment. The abstract code representation of the
compiler is reused in all parts of the system and can thus take advantage of our
extensions. For example, if we change the syntax in a specified part of the system,
syntax highlighting and debugger continue to work. Application developers do
not have to learn new tools, but continue to use the existing ones even if they
mix multiple languages.

3.1 Example: Modelling Relationships

A common challenge in transforming UML models to code is how to implement
relationships between objects. The problem has long been solved in relational
databases [2,32], but none of today’s mainstream languages provide first-class
relationships [29]. If done by hand, it is easy to introduce subtle bugs that might
be very hard to detect. With code generation, huge chunks of boilerplate code
may appear that are hard to understand and impossible to change. In either
case, debugging and maintaining the code is cumbersome, because developers
not only have to think in terms of the high-level DSL code that they specify, but
also in terms of the code that is generated.

We present an approach to solve this problem with Diesel. The example
only handles 1:1 relationships, however it could easily be extended to support
arbitrary n:m relationships.

136 O. Nierstrasz, M. Denker, and L. Renggli

To implement the write accessor next: of a double linked list, a developer or
a code generator would write something like this:

1 Link>>next: aLink
2 next isNil ifFalse: [next instVarNamed: �prev� put: nil].
3 next := aLink.
4 next isNil ifFalse: [next instVarNamed: �prev� put: self]

At run-time lines 2 and 4 are need to ensure that the inverse relations are
properly updated. The actual assignment only occurs on line 3. Most parts of
the code are not interesting to developers. It is an unnecessarily complex code
fragment specifying an implementation detail of 1:1 relationships that is probably
used at several places throughout the application.

We now replace the complex write accessor from above with a plain write
accessor that does not update the opposite relationships:

Link>>next: aLink
next := aLink

However we put high-level annotations next to the instance variable declaration
of the Link class, to tell Diesel that all write access to these variables requires
their respective inverse relationships to be updated:

Link instanceVariables: #(
next <opposite: prev>
prev <opposite: next>

)

When compiling the method, Diesel will automatically generate the necessary
boilerplate code around it. This generated code is never visible, not even in the
debugger, to ensure that the developer can concentrate on the high-level model.
The magic behind the transformation comes from a rule that has been added
to the Diesel engine. Whenever source-code is parsed, translated and annotated
these rules are processed to enable interaction with the compiler:

1 TreePattern
2 match: ��variable := �expression�
3 do: [:context |
4 variable := context at: ��variable�.
5 opposite := variable annotationNamed: �opposite�.
6 opposite notNil ifTrue: [
7 context addNodeBefore: ��(�,variable isNil
8 ifFalse: [�,variable instVarNamed: �,opposite put: nil]).
9 context addNodeAfter: ��(�,variable isNil

10 ifFalse: [�,variable instVarNamed: �,opposite put: self])]

Model-Centric, Context-Aware Software Adaptation 137

The rule given above matches all parse tree nodes that assign an expression to
an instance variable (line 2). The remaining code checks if the instance variable
is annotated with an opposite annotation (lines 5–6) and then defines the trans-
formation programmatically. This is done using a quasi-quoting mechanism [3]
to build and inject the AST nodes that update the opposite relationship into
the tree. Subsequently the tree is transformed to bytecodes, by the standard
Smalltalk compiler. The handwritten and the transformed code result in identi-
cal bytecodes, therefore both approaches perform equally at runtime. In practice
the minimal increase in compilation time due to the additional transformations
can be neglected.

3.2 Scoping the Effect of Changes

In the above example the scope of the transformation is given at the level of parse
tree nodes. Often such transformation rules only apply to a carefully chosen
part of the system however. For example, the above transformation should be
used in model code only, but not in the UI implementation. Diesel supports
a wide variety of additional constraints that can be composed and added to
transformation rules: packages, namespaces, classes, class hierarchies or even
specific methods.

Furthermore arbitrary conditions can be added to the transformed parse-tree
nodes, so that the transformation is only in effect if a certain runtime condition
is met. The generated code can resort to the reflective capabilities of the system
[38] and select the appropriate behaviour depending on the runtime context [7].

4 Towards a Research Agenda

Full reflection (i.e., with run-time intercession) has been widely available in
dynamic programming languages for many years, notably in Smalltalk [38] and
CLOS [22]. Nevertheless, reflection has been commonly considered to be either
too dangerous or too difficult to use for common programming tasks. Static
languages such as Java and C++ offer a weaker form of reflection that only
supports introspection at run-time (i.e., the possibility to examine but not to
affect the model elements).

There is increasing pressure to adapt software systems at run-time. If the
host programming language does not offer reflective features, programmers can
be forced to adopt workarounds, such as reifying and interpreting model elements
within their programs. This obviously places a heavy burden on developers who
must build up this infrastructure themselves, possibly in ad hoc ways.

The Reflectivity framework simplifies the development of reflective applica-
tions by offering ASTs as relatively high-level, causally connected, run-time mod-
els of program elements. Reflection at the sub-method level is enabled since the
deep structure of programs is captured, unlike in other approaches which stop
at the method level. We have used the Reflectivity framework extensively for

138 O. Nierstrasz, M. Denker, and L. Renggli

various purposes, including the analysis of software features [13], dynamic moni-
toring of software entities from the IDE [41], and even for the implementation of
pluggable types, where type expressions are encoded as source code annotations
and interpreted by compiler plug-ins [19].

Despite these successes, Reflectivity is focused on reifying model elements of
the host programming language, not those of the application domain. (One could
also say that the application domain of Reflectivity is the host programming
language.) What we are missing is Reflectivity for domain models. We envision
a system where end users can change their domain models on the fly, without
having to touch the host programming language [36].

Traditionally domain concepts are translated and encoded in the source code
in such a way that makes it difficult to reason about these concepts once the soft-
ware is deployed. It is often difficult, for example, to find the software components
responsible for a given end-user feature in the source code. In a model-driven
approach, one would express domain concepts at the level of meta-models and
models, and then generate code from these descriptions. In a straightforward
approach, this still has the consequence that the domain models are no longer
directly expressed in the code. If features must be dynamically adapted, there is
no easy way to manipulate these model elements from the running system. In-
stead of generating code from models, we feel that it is necessary to bring models
closer to code. This means that domain concepts should be expressed directly
in the source code, rather than being encoded using concepts of the solution
domain. In essence, rather than applications being model-driven, with models
merely being used to generate code, we believe that they should be model-centric,
with models being first-class entities that can be manipulated at run-time.

One way of bringing models closer to code is to provide higher-level, do-
main specific languages for model concepts more directly. One downside of this
approach is the potential for the proliferation of DSLs, each with their own
obscure syntax. DSLs should therefore be simple and lightweight. Another im-
portant downside is that the existing development environment will need to be
adapted to work with each new DSL. Diesel addresses these problems by offering
a lightweight framework for specifying simple DSLs that are transformed into
the ASTs used by Reflectivity. The transformations are used to keep the develop-
ment tools in sync with each DSL, so that editors and debuggers, for example,
can present developers with the original DSL code rather than the generated
host language code. In a sense, the model is the code.

Returning to the theme of software adaptation, we note that any adaptation
manifests itself as a kind of software change, which is possibly intrusive and pos-
sibly context-dependent. As an example, consider software that should adapt its
policies for ensuring changing requirements (e.g., related to concurrency control,
or security, or transactional behaviour) dynamically according to (i) the run-time
context (e.g., the presence of competing applications), and (ii) availability of re-
lated services (e.g., for optimistic or pessimistic transaction support). Such an
application has clearly defined requirements but can only partially anticipate its
run-time context and the nature of services available to meet those requirements.

Model-Centric, Context-Aware Software Adaptation 139

Depending on the context, the same software will need to behave differently, and
may need to be adapted in unanticipated ways.

We summarize the research directions that we see as essential to support
dynamic software adaptation as follows:

Bring Models Closer to Code. In order to enable dynamic software adap-
tation, models should be first-class, high-level artifacts available at run-time
for both introspection and intercession. Structured source code and run-time
annotations offer one light-weight technique to embed domain knowledge in
source code [28]. Lightweight DSLs are another promising technique.

Model-Centric Development. Rather than seeking ways to embed models
in source code, perhaps we should replace the source code as an artifact and
directly program with models. After all, third generation languages were
once seen as a way to “generate (machine) code” from high-level specifica-
tions. Nowadays we consider programs in these languages to be the source
code. We need to take the next step and jettison our third generation object-
oriented languages in favour of models as source code. Environments to sup-
port model-centric development would concentrate on directly manipulating
first class models and their meta-models. Models would be available at run-
time to support the same kinds of adaptations available to the developer at
development time.

Context-Oriented Programming. COP refers to programming language
mechanisms and techniques to support dynamic adaptation to context [21].
Although many present-day applications need to be context-aware, context-
dependent behaviour is generally programmed in ad hoc ways, due to the
lack of support in modern programming languages. Some COP languages
have been proposed [7,18], and both Reflectivity and Diesel are examples of
a frameworks that provide some degree of COP support, but research is very
young, and there is no consensus how best to support COP in programming
languages.

5 Related Work

There is a long history of reflective programming languages, ranging from dy-
namic languages such as Lisp, Smalltalk, Scheme and CLOS, to static languages
like C++ and Java, which provide a more limited form of run-time introspec-
tion rather than full intercession. All of these approaches are limited to models
of the code base, and do not take models of requirements, design decisions or
architecture into consideration.

Over the years various approaches have attempted to keep high-level knowl-
edge about software in sync with the software itself. The earliest examples of
these is probably Literate Programming [24], in which documentation and source
code are freely interspersed and maintained together.

In some cases Architectural Description Language (ADL) specifications are
considered to be part of the running software system, rather than simply a
higher-level description of it, as it is the case with Darwin [27]. Although ADLs

140 O. Nierstrasz, M. Denker, and L. Renggli

provide a high-level interface for specifying and configuring components at an
architectural level, there is not really any explicit representation of a model that
is developed in tandem with the rest of the software.

Generative programming approaches [8] produce software from higher-level
descriptions using such mechanisms as generic classes, templates, aspects and
components. A general shortcoming of these approaches is that the transforma-
tion is uni-directional — there is no way to go from the code back to higher-level
descriptions. Round-trip engineering refers to approaches in which transforma-
tions are bi-directional [1]. Models and code are still considered to be separate
artifacts, so models are not available at run-time for making adaptive decisions.

Case tools and 4GLs represent an attempt to simplify the generation and
adaption of an application. However the main focus of these approaches was
to generate code and not to consider models as executable artifacts of software
development.

Model-driven engineering (MDE) [4,42] refers to a more recent trend in which
application development is driven by the development of models at various
levels of abstraction. Platform-independent models are transformed to platform-
specific models, and eventually to code which runs on a specific platform. Gen-
erally these transformations are performed off-line, so models are not necessarily
available to the run-time system, though some approaches support this [20].

The Eclipse Modeling Framework (EMF) [5] provides facilities for manipu-
lating models and generating Java source code from these models. Here too the
focus is on models of source code, rather than on other views of a software
system. The model and the code are still separate entities.

Naked objects [35] is an approach to software development in which domain
objects and software entities are unified. Business logic is encapsulated in the
domain objects and the user interface is completely generated from these do-
main objects. In this approach the domain model and the executing runtime are
tightly coupled. Although naked objects address the earlier complaint against
approaches which separate domain models from the source code or the running
system, they do not offer any help in integrating other views of the software as
it is being developed (i.e. requirements models, architectural views, and so on).

Aspect-Oriented Programming (AOP) [23] provides a general model for mod-
ularising cross cutting concerns. Join points define points in the execution of a
program that trigger the execution of additional cross-cutting code called ad-
vice. Join points can be defined on the runtime model (i.e., dependent on control
flow). Although AOP works at a sub-method level, it does not provide a struc-
tural model of the system or any other reflective capabilities. The goal of AOP is
to modularize crosscutting concerns, not to provide a model for dynamic software
adaptation.

Reflex [47] pioneered partial behavioral reflection in the context of Java. Here
links are associated with so called hooksets, abstractions of operations at the
bytecode level. Therefore, the structural model of Reflex is that of bytecode, not
the higher-level AST. In addition, Reflex does not support meta-annotations on
bytecode.

Model-Centric, Context-Aware Software Adaptation 141

Context-Oriented Programming (COP) [21] refers to programming language
support for developing applications whose behaviour depends on the run-time
context. Present prototypes of COP languages focus on mechanisms for adapting
behaviour to context, but provide little support for reasoning about context at
the model level.

Changeboxes [11] provide a mechanism to control the scope of change in a run-
ning system. Deployment and development versions of a running software system
can co-exist without interfering. Mechanisms for merging differences and resolv-
ing conflicts, however, must be handled in an ad hoc fashion, as no fully general
approach exists for all usage scenarios. Changeboxes currently operate at the level
of source code changes. There is no notion of changes to higher-level models.

Unlike general-purpose programming languages, domain specific languages
(DSLs) tend to be compact languages that provide appropriate notations and
abstractions for a particular problem domain. It was shown that DSLs increase
productivity and maintainability for specialized tasks [15]. DSLs are often cat-
egorized as being either homogenous (internal), where the host-language and
the DSL are one and the same, or heterogeneous (external), where the two lan-
guages are distinct [44]. Techniques have been proposed to define language and
semantics for new DSLs [25]. The idea of designing languages that embrace the
addition of new DSLs has been a focus of research in the past [33,49,48]. However
integrating new languages into existing tools has been largely neglected.

In the 1990s there was considerable interest in the development of architec-
tural description languages (ADLs) [43] to capture and express architectural
knowledge of a software system. ADLs can be viewed as DSLs for describing the
architecture of complex software systems. Many DSLs formalize architecture in
terms of components, connectors, and the rules governing their composition [43].
This idea is also implicitly contained in the notion of scripting languages, which
can be seen as DSLs for composing applications from components written in an-
other, usually lower-level programming language [34]. Despite this, the interplay
between conventional object-oriented languages, ADLs, scripting languages and
DSLs has not yet been thoroughly studied nor has it been exploited in practice.

6 Concluding Remarks

Software systems are under increasing pressure to support run-time adaptation for
localization, mobile platforms, dynamic service availability, and countless
other context-dependent applications. Unfortunately mainstream programming
languages and development environments focus on limiting and restricting change
rather than enabling it. Specifically, dynamic, fine-grained and context-dependent
software adaptation is not well-supported by modern development technology.

In this paper we have presented two ongoing research projects that illustrate
the principle of model-centric, context-aware software adaptation, and we have
outlined a number of promising research directions for further exploration.

Reflectivity is a mature, model-centric framework for dynamic software adap-
tation. Software structures are represented at run-time by means of abstract

142 O. Nierstrasz, M. Denker, and L. Renggli

syntax trees, which enables both dynamic and fine-grained adaptation. Further-
more, by means of partial behavioural reflection, adaptations can be scoped
to the dynamic context. As a typical example, run-time instrumentation can
be scoped to the context of a given feature, so it is possible to identify which
software components support a given feature.

Diesel is a new framework for bringing models closer to code by supporting
the definition of lightweight DSLs that are transformed to the host program-
ming language using the same high-level source code models as provided by
Reflectivity. The development tools, such as editors and debuggers, are aware
of the transformations, so developers can continue to work with the high-level
models rather than the transformed code, even while debugging. Here too, run-
time models are used to support fine-grained adaptations that can be scoped to
specific parts of the application requiring these DSLs.

Reflectivity and Diesel both build on top of the same rich programming envi-
ronment and therefore could profit from each other in the future. On one hand,
the causal connection of model and code would help Diesel to automatically
propagate language changes to all its users. Furthermore Diesel could apply
language transformations that normally happen at compile-time from the dy-
namic world. On the other hand, Reflectivity could profit from a richer language
infrastructure and the compiler plugins could reuse the Diesel transformations.

These are only two examples of promising research directions to support dy-
namic change and software adaptation. We argue that more research is needed
to close the gap between models and code. In general, software systems need to
be change-enabled — instead of limiting and restricting change, they should ac-
tively enable change by treating change as a first-class entity [30,31]. Ultimately
we want model-centric and context-oriented programming environments where
we can directly manipulate models both during development time and run-time,
and software can be dynamically adapted by context.

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Bringing Models Closer to
Code” (SNF Project No. 200020-121594, Oct. 2008 - Sept. 2010).

We thank Tudor Gı̂rba and Jorge Ressia for their careful reviews of various
drafts. We also thank the anonymous reviewers for their numerous suggestions
on how to improve the presentation of this paper.

References

1. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-
trip engineering. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 692–706. Springer, Heidelberg (2006)

2. Atkinson, M.P., Buneman, O.P.: Types and persistence in database programming
languages. ACM Computing Surveys 19(2), 105–170 (1987)

3. Bawden, A.: Quasiquotation in Lisp. In: Partial Evaluation and Semantic-Based
Program Manipulation, pp. 4–12 (1999)

Model-Centric, Context-Aware Software Adaptation 143

4. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework.
In: Proceedings of Automated Software Engineering (ASE 2001), pp. 273–282.
IEEE Computer Society, Los Alamitos (2001)

5. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Addison Wesley Professional, Reading (2003)

6. Chiba, S., Kiczales, G., Lamping, J.: Avoiding confusion in metacircularity: The
meta-helix. In: Futatsugi, K., Matsuoka, S. (eds.) ISOTAS 1996. LNCS, vol. 1049,
pp. 157–172. Springer, Heidelberg (1996)

7. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented program-
ming: An overview of ContextL. In: Proceedings of the Dynamic Languages Sym-
posium (DLS) 2005, co-organized with OOPSLA 2005, pp. 1–10. ACM, New York
(2005)

8. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

9. Denker, M.: Sub-method Structural and Behavioral Reflection. PhD thesis, Uni-
versity of Bern (May 2008)

10. Denker, M., Ducasse, S., Lienhard, A., Marschall, P.: Sub-method reflection. Jour-
nal of Object Technology, Special Issue (2007); Proceedings of TOOLS Europe
2007, vol. 6/9, pp. 231–251 (2007)

11. Denker, M., Ĝırba, T., Lienhard, A., Nierstrasz, O., Renggli, L., Zumkehr, P.:
Encapsulating and exploiting change with Changeboxes. In: Proceedings of the
2007 International Conference on Dynamic Languages (ICDL 2007), pp. 25–49.
ACM Digital Library, New York (2007)

12. Denker, M., Greevy, O., Lanza, M.: Higher abstractions for dynamic analysis. In:
2nd International Workshop on Program Comprehension through Dynamic Anal-
ysis (PCODA 2006), pp. 32–38 (2006)

13. Denker, M., Greevy, O., Nierstrasz, O.: Supporting feature analysis with runtime
annotations. In: Proceedings of the 3rd International Workshop on Program Com-
prehension through Dynamic Analysis (PCODA 2007), pp. 29–33. Technische Uni-
versiteit Delft (2007)

14. Denker, M., Suen, M., Ducasse, S.: The meta in meta-object architectures. In:
Proceedings of TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 218–237 (2008)

15. van Deursen, A., Klint, P.: Little languages: Little maintenance? In: Kamin, S.
(ed.) First ACM-SIGPLAN Workshop on Domain-Specific Languages, DSL 1997,
January 1997, pp. 109–127 (1997)

16. Fowler, M.: Language workbenches: The killer-app for domain-specific languages
(June 2005), http://www.martinfowler.com/articles/languageWorkbench.html

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading (1995)

18. González, S., Mens, K., Heymans, P.: Highly dynamic behaviour adaptability
through prototypes with subjective multimethods. In: DLS 2007: Proceedings of
the 2007 symposium on Dynamic languages, pp. 77–88. ACM, New York (2007)

19. Haldimann, N., Denker, M., Nierstrasz, O.: Practical, pluggable types for a dynamic
language. Journal of Computer Languages, Systems and Structures 35(1), 48–64
(2009)

20. Haustein, S., Pleumann, J.: A model-driven runtime environment for web applica-
tions. Software and System Modeling 4(4), 443–458 (2005)

21. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3) (March 2008)

22. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge (1991)

http://www.martinfowler.com/articles/languageWorkbench.html

144 O. Nierstrasz, M. Denker, and L. Renggli

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

24. Knuth, D.E.: Literate Programming. Center for the Study of Language and Infor-
mation, Stanford (1992)

25. Krahn, H., Rumpe, B., Völkel, S.: Integrated definition of abstract and concrete
syntax for textual languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 286–300. Springer, Heidelberg (2007)

26. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. Aca-
demic Press, London (1985)

27. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp.
137–153. Springer, Heidelberg (1995)

28. Marschall, P.: Persephone: Taking Smalltalk reflection to the sub-method level.
Master’s thesis, University of Bern (December 2006)

29. Nelson, S., Pearce, D.J., Noble, J.: First class relationships for OO languages. In:
Proceedings of the 6th International Workshop on Multiparadigm Programming
with Object-Oriented Languages (MPOOL 2008) (2008)

30. Nierstrasz, O., Denker, M., Ĝırba, T., Lienhard, A.: Analyzing, capturing and
taming software change. In: Proceedings of the Workshop on Revival of Dynamic
Languages (co-located with ECOOP 2006) (July 2006)

31. Nierstrasz, O., Denker, M., Ĝırba, T., Lienhard, A., Röthlisberger, D.: Change-
enabled software systems. In: Wirsing, M., Banâtre, J.-P., Hölzl, M. (eds.) Chal-
lenges for Software-Intensive Systems and New Computing Paradigms. LNCS,
vol. 5380, pp. 64–79. Springer, Heidelberg (2008)

32. Nixon, B., Chung, L., Mylopoulos, J., Lauzon, D., Borgida, A., Stanley, M.: Im-
plementation of a compiler for a semantic data model: Experiences with taxis. In:
SIGMOD 1987: Proceedings of the 1987 ACM SIGMOD international conference
on Management of data, pp. 118–131. ACM, New York (1987)

33. Odersky, M.: Scala language secification v. 2.4. Technical report, École Polytech-
nique Fédérale de Lausanne, 1015 Lausanne, Switzerland (March 2007)

34. Ousterhout, J.K.: Scripting: Higher level programming for the 21st century. IEEE
Computer 31(3), 23–30 (1998)

35. Pawson, R.: Naked Objects. Ph.D. thesis, Trinity College, Dublin (2004)
36. Renggli, L., Ducasse, S., Kuhn, A.: Magritte — a meta-driven approach to empower

developers and end users. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 106–120. Springer, Heidelberg (2007)

37. Renggli, L., Nierstrasz, O.: Transactional memory in a dynamic language. Journal
of Computer Languages, Systems and Structures 35(1), 21–30 (2009)

38. Rivard, F.: Smalltalk: a reflective language. In: Proceedings of REFLECTION
1996, April 1996, pp. 21–38 (1996)

39. Rodŕıguez, L., Tanter, É., Noyé, J.: Supporting dynamic crosscutting with par-
tial behavioral reflection: a case study. In: Proceedings of the XXIV International
Conference of the Chilean Computer Science Society (SCCC 2004), Arica, Chile.
IEEE, Los Alamitos (2004)

40. Röthlisberger, D., Denker, M., Tanter, É.: Unanticipated partial behavioral reflec-
tion: Adapting applications at runtime. Journal of Computer Languages, Systems
and Structures 34(2-3), 46–65 (2008)

41. Röthlisberger, D., Greevy, O., Nierstrasz, O.: Exploiting runtime information in
the IDE. In: Proceedings of the 16th International Conference on Program Com-
prehension (ICPC 2008), pp. 63–72. IEEE Computer Society, Los Alamitos (2008)

Model-Centric, Context-Aware Software Adaptation 145

42. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Com-
puter 39(2), 25–31 (2006)

43. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, Englewood Cliffs (1996)

44. Sheard, T.: Accomplishments and research challenges in meta-programming. In:
Taha, W. (ed.) SAIG 2001. LNCS, vol. 2196, pp. 2–44. Springer, Heidelberg (2001)

45. Tanter, E.: Reflection and open implementations. Technical report, University of
Chile (2004)

46. Tanter, É., Gybels, K., Denker, M., Bergel, A.: Context-aware aspects. In: Löwe,
W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 227–242. Springer, Heidelberg
(2006)

47. Tanter, É., Noyé, J., Caromel, D., Cointe, P.: Partial behavioral reflection: Spa-
tial and temporal selection of reification. In: Proceedings of OOPSLA 2003, ACM
SIGPLAN Notices, November 2003, pp. 27–46 (2003)

48. Tratt, L.: Domain specific language implementation via compile-time meta-
programming. ACM TOPLAS 30(6), 1–40 (2008)

49. Warth, A., Piumarta, I.: OMeta: an object-oriented language for pattern matching.
In: DLS 2007: Proceedings of the 2007 symposium on Dynamic languages, pp. 11–
19. ACM, New York (2007)

50. Wirsing, M., Hölzl, M. (eds.): Report of the Beyond the Horizon thematic group 6
on Software Intensive Systems (2006)

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 146–163, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Modeling of Context-Aware Self-Adaptive Applications
in Ubiquitous and Service-Oriented Environments

Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan

Universität Kassel, Wilhelmshöher Allee 73,
34121 Kassel, Germany

{geihs,reichle,wagner,khan}@vs.uni-kassel.de

Abstract. Mobile computing in ubiquitous environments has to cope with both
predictable and unpredictable changes in the execution context, which intro-
duces the need for context-aware adaptive applications. Such environments are
also characterized by dynamically discoverable services that can be utilized by
applications to improve their functionality and quality of service (QoS). Thus,
application adaptation decisions not only depend on context properties, but also
on service availability and QoS-properties. In this chapter we present a novel
comprehensive modeling approach that facilitates the model-driven develop-
ment of such applications. Our focus is on modeling concepts which align the
description of services and their QoS-properties with the context modeling ap-
proach. We provide a harmonized view on context and service properties,
bridging the syntactical and semantic differences through an ontology. We also
consider related aspects like semantic service discovery and service level
agreements.

Keywords: context awareness, compositional adaptation, ontology, service-
oriented architecture, ubiquitous computing, utility function.

1 Introduction

Mobile computing in ubiquitous environments triggers a need for dynamically adapt-
able applications that can be reconfigured during run-time, in order to remain useful
under the changing context situation. For example, an application may need to adapt
when connectivity changes, battery is running low, user preferences change, some
specific sensor value exceeds a predefined threshold, or services or devices appear or
disappear.

Context-aware adaptive applications based on component frameworks have been a
subject of intensive research for several years. Adaptation usually involves a recon-
figuration of the component composition to suit the changed context. In the EU-IST
project MUSIC [1] we explore an advanced kind of compositional adaptation by con-
sidering dynamically discovered services as possible replacements for application
components. Clearly, this opens up new possibilities as well as challenges for the
application adaptation. In the companion chapter “MUSIC: Middleware Support for
Self-Adaptation in Ubiquitous and Service-Oriented Environments” [20] in this vol-
ume a new planning framework has been introduced that supports self-adaptation of
mobile applications with regard to changes in the service landscape. By the term

 Modeling of Context-Aware Self-Adaptive Applications 147

‘planning’ we refer to the computation and evaluation of alternative application con-
figurations in response to context changes and the selection of a feasible configura-
tion, best-fitted for the current context situation.

Our adaptation approach extends compositional adaptation by adding service-based
adaptation. Services can be dynamically discovered and bound by applications. A
newly discovered service may replace a component (or another service) in a compo-
nent-based application if it increases the overall application utility. Our adaptation
planning framework takes service properties and service level agreements into ac-
count when computing an adaptation decision in reaction to a context change.

A major goal of our research is to facilitate the development of self-adaptive appli-
cations. We adopt a model-driven development approach that builds on available
modeling languages for service-oriented computing with regard to functionality, inter-
faces, QoS-properties and semantic properties. The main contribution of this chapter
is a new modeling framework that explicitly addresses heterogeneity aspects that arise
from the independent development of services, context sensors and reasoners, as well
as the application itself. It provides a coherent set of concepts and a modeling meth-
odology that integrate seamlessly into an adaptation planning framework for context-
aware, component-based adaptive applications. The modeling concepts have been
designed such that the description of services and their QoS-properties align with the
context model. Since both QoS-properties and the context model are based on a
coherent set of ontologies, our approach achieves the bridging of syntactical and se-
mantic differences. Thus, it provides a harmonized, integrative view on context and
service properties. Furthermore, it also covers aspects like semantic service discovery
and service level agreements.

The chapter is organized as follows. We start with a motivating scenario in section 2.
In section 3 we identify the requirements of context-aware adaptive applications in
ubiquitous computing environments that serve as a guideline for our work. The main
concepts of the new application variability model and the adaptation reasoning approach
are explained in section 4. The integration of service-based adaptation is presented in
section 5. Section 6 explains the approach using a modeling example based on the sce-
nario of section 2. Related work is discussed in section 7. Section 8 concludes the chap-
ter and presents perspectives for future work.

2 Motivating Scenario

The following scenario shall motivate the need for service-based adaptations. A sales
agent visits customers and uses a context-aware Customer Relationship Management
(CRM) system, which offers functions like accessing and sharing customer- and busi-
ness-related information, route planning, calculation of travelling delays and notifying
people, who are affected by delays.

Scene 1: The sales agent meets a customer and uses the CRM system on his
smart-phone to record agreements. During the meeting he is notified about a new
appointment at another customer site and decides to prepare for it. He uses the CRM
application on his smart-phone to find the best route and to estimate the travel time.
For this, the application uses a navigation service provided over the WLAN at the
customer site and a traffic information service available through the Internet. There

148 K. Geihs et al.

are several providers for both of these services, and the CRM application selects the
one that offers a quick and precise solution to the agent.

Scene 2: After the meeting, the agent walks out of the customer’s building and gets
into the car to head for the next meeting. As he moves away from the customer site,
the smart-phone loses connection to the customer WLAN, and the Internet connection
is switched seamlessly to GPRS by the mobile IP software installed on the smart-
phone. The connection to the navigation service, which the CRM application needs to
monitor the progress towards the destination, is lost. The GPRS provider also offers a
navigation service, but with a rather low accuracy. The car has a navigation system
based on GPS, which provides not only a more accurate navigation service via a Blue-
tooth connection but also a better display. The CRM application automatically recon-
figures itself to use these services. It also saves battery life on the smart-phone by off-
loading local processing to the external services.

Scene 3: Halfway to the meeting, the agent runs into a traffic jam. The CRM applica-
tion detects this situation, alerts the agent that he will be late, estimates the delay
using data obtained from the traffic information service and offers the agent to notify
affected customers. The agent validates this proposal and the CRM application sends
messages to the customers.

Our goal is to provide generic support for such kind of automatic service-based ad-
aptations. Therefore, we have developed appropriate modeling concepts and inte-
grated them into a planning framework for compositional adaptation.

3 Requirements

In order to facilitate the development and operation of context-aware self-adaptive
applications in ubiquitous environments, we provide a model-driven development
approach, an adaptation middleware, and suitable development tools. The middleware
separates context sensing, adaptation reasoning and application reconfiguration from
the pure application logic. It provides a generic and reusable infrastructure for a wide
range of adaptive applications. See [20] for details of the middleware and the adapta-
tion approach. The middleware is complemented by a model-driven development
approach that allows the specification of application adaptation capabilities at a high
and platform-independent level and facilitates automatic generation of source-code
tailored for the middleware.

In order to realize context-aware adaptive applications in ubiquitous environments,
the adaptation approach and the adaptation models have to cope with the following
requirements:

• Application variability: Dynamic reconfigurations and reasoning about different
configuration alternatives require the definition of an application variability model
by the application developer. Since adaptations are intended to maximize the QoS
perceived by the user, the variability model has to be enriched with QoS-metadata
of the involved components.

• Dynamic service discovery: Ubiquitous computing environments are assumed to
offer services that can be discovered and accessed dynamically at runtime. This
requires specification means for the integration of external services into the

 Modeling of Context-Aware Self-Adaptive Applications 149

application variability model. Their QoS-properties must be made available for the
adaptation reasoning process. Therefore, support for semantic service discovery,
semantic description of QoS-properties and service level negotiations is required.

• Heterogeneity: Services in ubiquitous computing environments may have been
developed independently by different parties. This implies that QoS-properties of
services may have different names and representations. Likewise, heterogeneity
may be found with the context management components, in particular if third
party context sensors and reasoners are integrated. Thus, QoS-properties and con-
text information that describe the properties of the execution context have to be
semantically enriched in order to enable interoperability and integration.

• Integration of service and context properties into the planning: The adaptation
planning is responsible for evaluating the usefulness of alternative application
configurations under a given context situation. Therefore, QoS-properties of avail-
able components and services have to be related to the properties of the execution
context.

In particular with respect to the heterogeneity aspect, we argue that a comprehensive
modeling notation is required to provide a common vocabulary that enables develop-
ers of different components to share a harmonized semantic view on the QoS-
properties of involved components/services and the properties of the execution
context. Our ontology-based modeling approach, as discussed in the following sec-
tions, provides such a vocabulary and thus eases the development task. Without such
kind of support, bridging syntactical and semantic differences of QoS-properties and
context information and their mediation is hard to achieve. Furthermore, the modeling
concepts have to be aligned to the underlying adaptation planning framework and
have to include provisions for semantic service discovery and description of service
levels and service level agreements.

In a previous publication [16], we already presented an ontological framework for
context modeling. Here we present a very substantial enhancement and generalization
of that approach by considering the additional aspects and challenges arising from a
service-oriented ubiquitous computing environment.

4 Application Variability and Adaptation Reasoning

The following explanations require a basic understanding of the underlying adaptation
approach. Therefore, we shortly describe its most important concepts. For a more
detailed description the reader is referred to our companion chapter [20] that presents
the corresponding run-time support for planning and execution of adaptations.

Applications are based on a component framework model that supports dynamic
reconfiguration at run-time. When there is a significant context change the middle-
ware evaluates and compares all available application variants based on different
QoS-metadata associated to the involved component realizations. Thus we consider
applications that are developed with a QoS-oriented component model, which defines
all reasoning dimensions used by the planning-based middleware to select and deploy
the component implementation that provides the best utility.

The utility of a component configuration is computed using a developer-defined
utility function. Those parts of the application that are evaluated during planning are

150 K. Geihs et al.

Application

Composite
Component

Atomic
Component

Component
Type

Atomic
Realization

Plan

Composite
Realization

Plan

Component

is a

realize

described by
descibed by

describe
realization of specialize

stpecnoctnenopmoCnoitpircsedlevel-ateM

Fig. 1. Creating application variants

called variation points. Each variation point identifies a functionality of the applica-
tion that can have different realizations. In our case the variation points are compo-
nent types corresponding to a certain part-functionality of the application. Each
component implementation suitable for a variation point is reified as a plan, which
mainly consists of a meta-structure that reflects the properties of the component im-
plementation. A plan exhibits both requested properties (e.g., memory consumption,
network bandwidth, monetary cost) and offered properties (e.g., throughput, response
time, result accuracy) referring to the QoS model of the application. Property predic-
tors help estimating the offered properties of the component associated with a plan.
They predict the values of non-functional offered properties of a component (or com-
ponent composition) as a function of required properties depending on a given execu-
tion context. These predicted property values are input arguments to a normalized
utility function to obtain the expected utility of the component in the given context.
The planning middleware compares the expected utility of all alternate component
configurations, and finally selects the one that provides the highest utility value.

Figure 1 illustrates that an application is viewed as a Component Type that can
have different realizations. The details and the QoS-properties of a certain realization
are described using Plans. Corresponding to the atomic and composite component
types, there are two types of Plans: Atomic Realization and Composite Realization.
An Atomic Realization Plan describes an atomic component and contains just a refer-
ence to the class or the data structure that realizes the component. The Composite
Realization Plan describes the internal structure of a composite component by speci-
fying the involved Component Types and the connections between them.

Variation is obtained by describing a set of possible realizations of a Component
Type using Plans. In order to create a possible variant, one of the Plans of a Compo-
nent Type is selected. If the Plan is a Composite Realization Plan, it describes a col-
laboration structure of further Component Types, which in turn are described by Plans
again. Now we proceed by recursively selecting one realizing Plan for every involved
Component Type. The recursion stops if an Atomic Realization Plan is chosen. There-
fore, by resolving the variation points we create application variants that correspond
to a certain composition of components depending on the plans that are chosen for
each of the Component Types.

 Modeling of Context-Aware Self-Adaptive Applications 151

With service-based adaptation a part-functionality may be provided through a dy-
namically discoverable and accessible service. Thus, compositional adaptation is
extended by taking a service as a possible realization of a Component Type. To do so,
the QoS-properties, interfaces and binding information have to be included in a corre-
sponding plan.

Service discovery protocols integrated in the middleware advertise any newly dis-
covered services to a plan broker. Plans for these services and from known service
repositories are generated from service level descriptions so that they are available
when the planner initiates an adaptation at a later time. Of course, plans are discarded
when services become unavailable to the middleware and an adaptation process is
triggered if a service described by the discarded plan is currently in use.

A service might offer a predefined set of service levels. Then, for each service
level a separate plan is generated by the plan broker. Thus, the planning framework is
able to take service levels into account when planning the adaptation.

Two kinds of property predictors, representing service levels, can be associated
with plans. If the service level is fixed, then the property predictors report the values
defined in the SLA contracts associated with the plan. In case of a choice of service
levels, the property predictors iterate over the service level property values to calcu-
late the utility of the application variant.

5 Modeling of Service-Based Adaptation

Our modeling notation provides means for the creation of the application variability
model together with QoS-metadata, property predictors and utility functions. It also
facilitates the semantic description of the execution environment, in terms of context
and resource models, and includes specification means for external services, service
levels and service level agreements. In the following we focus on the specific model-
ing concepts for the integration of external services into compositional adaptation.

5.1 Semantic Annotation of Variation Points

The variability model consists of application type, component types and realizing
plans. We have developed a new UML Profile [12] to support such modeling tasks. In
order to consider services as a possible replacement for certain components, the corre-
sponding component types have to be annotated with a set of descriptions specifying
the expected functionality, the required interfaces and the expected set of QoS-
properties. Such annotations are only required for component types that may be the
target of dynamic service discovery. Clearly, core components that are crucial for the
general functionality of the application will most likely not be candidates for dynamic
substitution by externally provided services.

The semantic web community has addressed very similar challenges with regard to
semantic service discovery and matching. We intend to reuse their approaches and
modeling support as much as possible and thus, we associate OWL-S descriptions to
the corresponding component types. As we only want to state our requirements for an
external service, only the service profile and process model are needed, while the
service grounding is omitted. However, we avoid, as far as possible, that a developer

152 K. Geihs et al.

has to bother with the OWL-S descriptions and the ontology modeling. Therefore, we
generate the most relevant parts of the OWL-S descriptions from the UML applica-
tion variability model where the component types are explicitly modeled through their
provided and required ports and the corresponding interfaces. The interfaces also
indicate the input and output parameters and their data-types (which in OWL-S termi-
nology are called messages). We provide an UML-to-OWL-S transformation, which
is similar to WSDL2OWL-S [15, 23] and to the one provided through the OWL-S
Editor of the University of Malta [24]. However, they generate OWL-S descriptions
from WSDL specifications, while we start with UML models.

The resulting OWL-S description associated with the component type is used for
service discovery and matching. We support two levels of matching: a high-level
matching mechanism considering the service category included in the service profile
and a low-level approach considering also ports and interfaces. For the high-level
approach we support both existing taxonomies of service categories like NAICS [7]
as well as the definition of own taxonomies in the form of simple OWL ontologies.
The high-level matching approach uses only taxonomical information assuming that
the service provides the expected ports and interfaces. This is particularly useful for
simple and fast service matching on mobile devices with limited computation capa-
bilities.

In order to enable QoS-driven adaptation reasoning, the services are expected to
provide information about the offered QoS-properties that are evaluated in property
predictors and/or the utility function. Therefore, we must be able to specify the QoS
dimensions for which the discovered services are expected to provide information.

5.2 MUSIC Ontology Concepts

In section 3 we highlighted the need for a harmonized view on QoS-properties of
services and properties of the user and execution context. This is achieved by the
MUSIC Ontology. It establishes a common vocabulary for QoS-properties and con-
text information and serves as the baseline for information management and represen-
tation in MUSIC. We also define an extension to the OWL-S profile ontology that
facilitates semantic service discovery, description of service levels and service level
agreements.

5.2.1 Two-Level Hierarchy
A critical issue with processing ontologies, in particular on resource constraint mobile
devices, is the number of defined classes, properties and relationships. Therefore, the
MUSIC Ontology is divided into a two-level hierarchy. We distinguish between do-
main-specific and general entities, in the same way as proposed in [25, 26]. The top-
level ontology captures general knowledge to provide a semantic vocabulary, which is
applicable for most foreseen applications. It also consists of extensions that we pro-
vide for the integration of external discoverable services into the adaptation planning
process.

The top-level ontology is complemented by domain-specific sub-ontologies that
can be plugged-in for applications of a particular application domain. Whereas the
top-level ontology is the stable part of the ontology, the domain-specific sub-
ontologies are regarded as the extensible parts.

 Modeling of Context-Aware Self-Adaptive Applications 153

Fig. 2. Top-level concepts of the ontology

5.2.2 Top-Level Concepts of the MUSIC Ontology
The top-level concepts of the ontology consist of EntityType, InformationConcept,
Representation, Unit, ServiceClassification and ServiceConcept as shown in Figure 2.
EntityTypes categorize the entities of the world that are characterized through context
information. Examples of entity types are Person, Device, and ResourceEntity. Infor-
mationConcept encapsulates Scopes and Metadata, which are used to represent the
actual information that is provided for an entity of a certain type. Scope represents the
type of information, e.g. Location, and Metadata concepts can be associated to con-
text or resource information, in order to provide additional meta-information, e.g. a
TimeStamp that specifies the time of sensing the corresponding data. QoS-properties
are modeled as a specialization of Scope. They are considered as a special information
type that expresses the characteristics of a service with regard to its quality.

Each InformationConcept is associated to a Representation concept, which defines
how the information is internally structured with regard to Scopes, Metadata,
DataType properties and Units. Here, we allow more than one representation for an
InformationConcept, in order to explicitly deal with the heterogeneous nature of the
ubiquitous computing environment. Units concept is used to define measurement
units in a way that allows their automatic conversion. We distinguish between Base-
Units, e.g. Meter or Byte, and DerivedUnits that can be derived from one or more
BaseUnits. The ServiceClassification concept helps referring to the functionality of a
service through the definition of a taxonomy of service functionalities.

Further modeling concepts required for the integration of external services in the
adaptation reasoning process are provided as extensions to the OWL-S Service profile
ontology. These concepts are generalized by the ServiceConcept class of the MUSIC
Ontology and are described in more detail in section 5.2.4.

5.2.3 Information Concept and Representation
In order to explain further the terms InformationConcept and Representation, a simple
example is shown in Figure 3. It shows that the class hierarchy of representations
reflects corresponding to the class hierarchy of the information concepts. For instance,
as Required_Bandwidth is a QoSProperty which is in turn an InformationConcept,
the RequiredBandwidthRepresentation is a specialization of QoSPropertyRepresenta-
tion which is in turn a specialization of Representation. As the QoSProperty
Required_Bandwidth is associated with RequiredBandwidthRepresentation which
provides different specializations, namely ReqBandwidth_DefaultRep_KBps,
ReqBandwidth_DefaultRep_MBps, etc., the Required_Bandwidth QoSProperty can be
represented in different ways. Support for different representations is one way of
coping with the heterogeneity that one must expect if context sensors and/or services
are developed independently.

154 K. Geihs et al.

InformationConcept RepresentationhasRepresentation

QoSProperty

Scope
...

isa

isa isa

QoSProperty_Rep

Scope_Rep ...
isa

isa isa

Required_Bandwidth

hasRepresentation

isa isa

...

isa

ReqBandwidth_Rep
...

isa

ReqBandwidth_Def
aultRep_KBps

isa

ReqBandwidth_Def
aultRep_MBps

isa

Req_Bandwidth1

io

1024

io

0.001

io

hasRepresentation

hasRepresentation

hasRepresentation

Fig. 3. Example for information concepts and representations

We also include support for the definition of Inter-Representation-Operations
(IRO), as developed in the ASC project [19]. For example, it allows a consumer to
ask for data of a certain Scope, characterizing a certain Entity and having a certain
Representation. If this does not match the representation provided by the context
sensor, an appropriate representation can be computed with the corresponding IRO.

5.2.4 Extensions to the OWL-S Profile Ontology
Semantic service discovery and matching are facilitated through the association of
component types with a semantic description of the corresponding part-functionalities
along with a description of the port types and interfaces. In order to enable QoS-
driven adaptation planning, the services are expected to provide information about
their offered QoS-properties that are evaluated in property predictors and/or the utility
function. Therefore, we must be able to specify the QoS-dimensions that we expect
from discovered services.

In Service Level Management, QoS-properties of services are defined in Service
Level Agreements and established by a service level negotiation process. As we want
to evaluate the discovered services with regard to their QoS-properties, the QoS-
properties should already be subject to the service discovery process. At best, a ser-
vice description used for service discovery would include specifications of the service
functionality, the QoS-dimensions that the service should provide information on and
the required QoS-properties to improve the specification of the utility function.

The OWL-S description associated to a component type contains the corresponding
specifications and is used for service discovery. Therefore, we have extended the
OWL-S Service Profile ontology to provide machine understandable information on
QoS dimensions and also on service level requirements to enable a quality-aware
service discovery. The ontology includes the specification of Service Level Dimen-
sions (SLDs) and Service Levels (SLs) on these dimensions. The SLDs correspond to

 Modeling of Context-Aware Self-Adaptive Applications 155

InformationConcept RepresentationhasRepresentation

ServiceLevel

SLPackageSLRequirements

Condition

Guarantee

ServiceLevelAgree
ment

ServiceLevelObjec
tive ServiceLevelDime

nsion

SLDExpression

Predicate

isa isa

hasCondition *

hasGuarantee *

GuaranteeHasDimension

ConditionHasDimension

SLOHasDimension

hasConcept

hasExpression
hasPredicate

hasSLO

MusicServiceProfile

hasServiceLevel *

QoSProperty

isa

Subclasses of ServiceConcept

Fig. 4. MUSIC ontology used for quality-aware service discovery

the QoS-dimensions used in the property predictors and/or the utility function, and the
specification of an SL allows service providers and service consumers to specify their
interest in QoS with regard to the SLDs. We distinguish between two types of SLs,
namely, Service Level Requirements (SLR) and Service Level Package (SLP). The
service providers can offer different service level packages for one service, which
means that they offer different quality levels at different conditions. A quality level
consists of several obligations. Each obligation offers a guarantee on an SLD. Service
providers and consumers negotiate a certain quality level by agreeing on obligations
on quality dimensions and the result is an SLA with several Service Level Objectives
(SLOs).

The specification of the QoS-properties could be included either into the service
profile ontology or into the ontology for the service’s process model. Including it into
the process model would allow for more flexibility as QoS-properties could be asso-
ciated to single processes. However, in the current adaptation planning process it is
only possible to consider the QoS-properties of the whole service. Therefore, we
include the QoS-property specification into the service profile ontology.

Figure 4 shows the main classes and their relationships defined in the ontology
used for quality-aware service discovery: ServiceLevel, ServiceLevelDimension
(SLD), QoS-Property and Representation. Each SLD refers to a QoSProperty, which
is a specialization of the class InformationConcept and, thus, refers to a representation
through the property hasRepresentation. By providing several representations for one
concept and appropriate Inter-Representation-Operations we enable the automatic
conversion of an individual of one concept with a special representation into an indi-
vidual of this concept with another representation. In particular, this applies to the
class Units which is a specialization of the class Representation. For example, a
bandwidth quantity “KByte/s” can be transformed into “MBit/s”. By providing differ-
ent representations for one concept, we cope with different terms and metrics used by
different parties to describe the same QoS-dimensions.

A Service Level Package and a Service Level Requirement are specializations of a
Service Level. As aforementioned, a Service Level consists of several conditions

156 K. Geihs et al.

and/or obligations. Obligations are expressed by guarantees on quality dimensions
(SLDs). If the service provider and the service consumer agree on a guarantee, it
becomes an obligated guarantee in the resulting Service Level Objective in the result-
ing SLA. Each condition and each guarantee consist of a predicate (e.g. lessthan), a
SLD (e.g. ResponseTime) with its associated representation/unit (e.g. second), a vari-
able and a value, e.g. lessthan(ResponseTime, x, 200, milliseconds).

Usually, the obligated guarantees are created by a negotiation process between the
service provider and the service consumer. A matching algorithm can be applied to
identify service candidates along with service level requirements for further consid-
eration in the planning framework. The SLP’s guarantees are compared to the SLR’s
conditions and vice versa. If all conditions are fulfilled, the SLP becomes a candidate
for the Planning framework. This does not need to be the SLP which fits best to the
SLR. The SLR only acts as a filter to find a set of alternative services. For the service
level negotiation, currently only a few standards are available. The most mature pro-
tocol seems to be the XML-based WS-Agreement specification [27]. However,
WS-Agreement is not designed to be semantically interpreted, i.e. it does not foresee
references to an ontology. Therefore, we will enhance the standard with semantic
annotations in a similar way as it was done with WSDL-S for WSDL and we will
establish a mapping from our OWL-S descriptions to specifications that can be used
in WS-Agreement service level negotiations.

5.3 Characteristics of QoS-Properties

In reality we cannot expect that all the discovered services are able to provide QoS
information on exactly the set of QoS dimensions expected in the utility function.
Therefore, we have to live with a mismatch between the expected and provided QoS
dimensions.

QoS-properties of external services are provided to the planning framework by
property evaluators and property predictors. These can be arbitrarily complex func-
tions ranging from just returning a constant value to predicting the QoS-properties
based on context information and other QoS-properties. Besides, property evaluators
also mediate the QoS-properties of the external service with regard to performing
inter-representation-operations. This means, the utility function requests information
on a QoS dimension in a certain representation (metric) and the property evaluator is
responsible to provide the information in the corresponding representation, e.g. by
performing inter-representation-operations. For the modeling of property evaluators
and predictors we had already provided a basic support in the MADAM project [2, 3].
However, with regard to service-based adaptation we have to extend that support in
order to deal with QoS-properties that are not provided by the discovered service;
e.g., we can assign a default/derived value in such cases. If this is not reasonable or
possible at all, the service cannot be considered in the adaptation reasoning process.

6 Example

In this section, we show how the introduced modeling framework can be utilized to
realize the CRM Application in section 2. Please note that our particular focus is on

 Modeling of Context-Aware Self-Adaptive Applications 157

«mApplic ation»
CRMAppl ication

«mComponentType»
CRMApplica tion::GUI GUIProv

«mComponentType»
CRMApplication::ControlGUIReq

NavReq Dela yReq

«mComponentType»
CRMApplication::Nav igation

NavProv «mComponentType»
CRMApplication::Delay

DelayProv

Fig. 5. UML composite structure for the CRM application

the integration of services into the application, and the related modeling aspects.
Hence, we do not show how the models are utilized by the run-time environment. The
corresponding middleware that provides the run-time environment is presented in
detail in our companion chapter [20]. In general, thanks to our model-driven devel-
opment approach, a developer can specify the adaptation capabilities and context-
awareness of an application at a high level and is not confronted with implementation
details (see [3] for more details on the model-driven development approach of the
MUSIC project).

The variability model of the example application is based on the UML composite
structure diagram, as shown in Figure 5.

The application is composed of four component types: GUI (user interface), Con-
trol (main application logic), Delay (traffic information), and Navigation (route plan-
ning and navigation). By allowing different realizations for each component type a
number of application variants can be derived from this simple specification that are
created at run-time by the Adaptation Manager of the adaptation middleware [20].
Each of the involved component types is further specified in an additional UML class
diagram defining the corresponding port types and interfaces.

In order to mark the Navigation Component Type as a component that can be real-
ized through external services and to facilitate semantic service discovery and match-
ing, the NavProv port type of the Navigation component type is associated (UML
dependency) to a PortDescription.

«mComponentType»
Nav igation

NavProv

«interface»
NavigationService::INavigationService

+ calculateRoute(Address, GPSPosi tion) : Route
+ getEstimatedTimeTo(Address, GPSPosi tion) : TimeInterval
+ getNextAnnouncement(GPSPosition) : AudioWave
+ showPosi tionOnMap(GPSPosi tion) : Bitmap

«mPortDescription»
Nav Prov Annotation

«mQoSProperty»
- Accuracy: String = #Music.Informat...
- Cost: String = # Music.Informat...
- RequiredBandwidth: Stri ng = #Music.Informat...

«mServiceClassi fication»
- serviceClassi fication: String = #Music.ServiceC...

INavigati onService

Fig. 6. Semantic annotation of the Navigation component type

158 K. Geihs et al.

Fig. 7. Example of a generated OWL-S profile

The port description includes attributes service classification to categorize the ex-
pected functionality and QoS-properties expected from the discovered service. The
default value of such attributes has the structure <QoSProperty>:<Representation>
and points to the corresponding semantic concept in the ontology and the expected
representation. This UML specification of the Navigation Component Type serves as
basis for a UML-to-WSDL and WSDL-to-OWL-S transformation. An extract of the
resulting OWL-S Profile specification is shown in Figure 7.

The OWL-S Profile description includes a MUSICServiceProfile for the Naviga-
tionService. Apart from the service classification, it mainly consists of a ServiceLev-
elRequirements specification, which defines the corresponding QoS-properties in
ServiceLevelDimensions of conditions. The rationale for this is that we also foresee a
QoS-aware service discovery. Thus we allow the specification of expressions that are
associated to a QoS-Dimension in a condition. However, in this example we just want
to define the QoS-properties that the discovered service should support. Therefore,
expressions can be omitted here.

An example of a corresponding OWL-S profile description as expected from a dis-
covered service is depicted in Figure 8. The profile description defines a Ser-
viceLevelPackage that expresses a guarantee that the cost for invoking the service will
be less than 1.25 Dollar. The conversion to Euro as the expected currency (see previ-
ous profile description) is automatically handled by the corresponding Inter-
Representation-Operation.

 Modeling of Context-Aware Self-Adaptive Applications 159

Fig. 8. Example of OWL-S profile description of a discovered service

The necessity and importance of basing the properties of the execution context and
the QoS-properties of an external discoverable service on a common semantic vo-
cabulary defined in an ontology becomes obvious, when looking at the following
utility function of the application:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⎟

⎠
⎞

⎜
⎝
⎛

⋅+
⋅⋅

+
= −⋅−

8.0

cos)Re(0.10 max5.01

1

1

1

Accuracy

Accuracy
user

Cost
user

e
utility acctqBandwidthhAvBandwidt

The utility function takes into account user preferences for the influence of the cost
and the accuracy of the utilized service1. The corresponding terms result in a lower
utility for high costs and a higher utility for a higher accuracy. Besides, the utility
function compares the AvailableBandwidth provided by the execution environment
and the RequiredBandwidth of the discovered service (or more precisely, of the appli-
cation variant utilizing the service) and adjusts the utility through a sigmoid function.
If the corresponding context sensor estimating the currently available bandwidth and
the external service are developed independently, a common vocabulary as estab-
lished by the MUSIC Ontology is indispensable.

7 Related Work

Many projects have already addressed the challenge of realizing context-aware adap-
tive applications. One of the most famous works in this area is the Context Toolkit by

1 The user can control the adaptation decision by adjusting these preferences. We argue that the

user should be able to influence the adaptation decision but should not be confronted with too
many details of the adaptation approach. In our opinion, adjustable preferences for influenc-
ing factors are a good compromise.

160 K. Geihs et al.

Salber and Dey [28]. Poladian et al. developed a utility-based framework for service
selection and adaptation based on the awareness of resource demands and QoS capa-
bilities of services [29], similar to our variation point and plan concepts. Sousa et al.
presents an integrated framework for adaptation of context-aware applications that
enables end-users to assemble their own collections of services at run time and to tune
QoS policies of services to task-specific goals [30, 31]. At first glance these projects
address very similar challenges as we do. However, in contrast to these projects our
work mainly focuses on the bridging of syntactical and semantic differences of QoS-
properties and context properties, which is required for the dynamic composition of
independently developed components/services and context sensors at run-time.

Adaptive Service Grids (ASG) is an open initiative that enables the dynamic bind-
ing of services in adaptive service environments [11]. A basic concept of ASG is the
semantic service request. It contains a description of the requested functionality, but it
does not specify the concrete service that should be invoked. During the planning the
platform tries to find a service that perfectly matches the semantic service request or
to find a service (combination) that fits as much as possible. When an agreement with
a particular service is achieved, a digital contract is set up and signed by both parties.
If some services do not support negotiation mechanisms, the platform simply selects
services based on their static properties. The approach is similar to ours, as it uses a
semantic description of the desired functionality utilizing a domain ontology to dis-
cover services. However, in contrast to our approach the planning is not really QoS-
driven. Therefore, support for QoS specification and the mediation of QoS-properties
only play a secondary role in ASG.

Our approach has many similarities and shares a lot of concepts with the work
done by Bleul et al. [6]. In particular, we follow nearly the same approach to the mod-
eling of QoS dimensions, Service Level Requirements and Service Level Packages
and to the integration of the resulting specifications into the OWL-S description of a
service. Like ours, their work focuses on quality-aware service descriptions. In con-
trast to their approach, our main target is the integration of dynamically discovered
services in a QoS-driven planning framework for adaptive applications on mobile
devices and to align the modeling of QoS-properties with the modeling of context
information and context properties.

WSML [18] and WSLA [9] are specification languages for SLA. Both languages
allow specification of quality dimensions, metrics and guarantees. However, both
approaches lack the usage of semantics. Therefore, an important facility to bridge the
gap between different terms and semantic related metrics is missing.

Pure OWL-S [10] already provides support for specifying QoS. In OWL-S, QoS is
specified as service parameters; but it does not really deal with the specification of
QoS representations and metrics and lacks the specification of guarantees. Therefore
it is not applicable to semantic and quality-aware service discovery. WSMO [17] also
provides support for QoS specifications. However, it provides only indirect support
for QoS as non-functional properties can be utilized for specifying quality dimensions
and functional properties for specifying the relations between them.

DAML-QoS [22] is an ontology for QoS specification. It differentiates between
QoS offers and QoS requirements but does not support the specification of service
packages. It uses object-oriented identifiers to bridge among different terminologies
and metrics in quality dimensions. These identifiers are predefined metrics. In our

 Modeling of Context-Aware Self-Adaptive Applications 161

approach basic transformation between different representations and metrics are de-
fined in the underlying ontology in a very compact manner.

SWAPS [15] is a semantic approach to matching WS-Agreement descriptions for
automatic partner selection. It uses semantic matchmaking but lacks the ability to
transform metrics. Also it uses rules to describe a matching process. The authors of
[4] describe another project, based on WS-A, which presents an extension of WS-A to
specify negotiation terms. These terms are evaluated at runtime if certain guarantees
are not satisfied. In contrast to these works, in our approach we do not try to exactly
match Service Level Requirements and Service Level Offers. We make the QoS-
properties of the service available to the planning framework, and the best suited
service is determined by the utility function. The Service Level Requirements only act
as a means for pre-filtering the discovered services.

8 Conclusions

We have presented a novel comprehensive modeling approach for the integration of
service-based adaptation in a planning framework for compositional adaptation of
context-aware applications. We have shown how semantic descriptions can be associ-
ated to variation points in the component framework. This enables the inclusion of
dynamically discovered services into the adaptation planning process. A unique fea-
ture of our approach is the fact that it bridges between the adaptation decision
parameters needed by the planning framework and the properties of the discovered
services in terms of their service levels and execution context. Thus, our modeling
framework provides a harmonized view on QoS-properties of external discoverable
services and conventional context properties of component-based applications.

Our service ontology extends the OWL-S service descriptions with QoS-
descriptions needed for the service discovery and the planning framework. Besides,
we use another ontology as a base for the context model. Both ontologies are part of
an overall ontology that enables a coherent modeling of QoS-properties and context
properties. Our approach also covers requirements that arise from the mismatch of
expected and provided information about QoS-properties. Based on these modeling
concepts and the UML descriptions provided for the ports and interfaces of the com-
ponent types, we can automatically generate service proxies for discovered services
using transformation tools. A proxy acts as local representative of a service and thus,
realizes the binding and the integration of a service into the component configuration.
They also act as mediators that manage the QoS-properties between local components
and the integrated services.

Basic tool support integrated into the Eclipse software development framework is
available already for our new modeling approach. It has been used to generate proto-
type implementations of adaptive applications that demonstrate the viability of our
approach. Nevertheless, more research has to be done to improve and further integrate
the tool support and to help the developers with learning and using the new model-
driven development approach. Furthermore, we need many more practical experi-
ments in order to understand better the implications of our modeling and adaptation
approach for the performance and scalability of the whole self-adaptive system. Last
but not the least we need to study the ergonomics of self-adaptive systems in order to

162 K. Geihs et al.

design such systems in a way that meets the user’s expectations in ubiquitous comput-
ing applications.

Acknowledgements

The contributions of the MUSIC project partners are gratefully acknowledged.

References

1. EU IST FP6 project MUSIC (Self-adapting Applications for Mobile Users in Ubiquitous
Computing Environments), http://www.ist-music.eu

2. EU IST FP6 project MADAM (Mobility and Adaptation Enabling Middleware),
http://www.ist-madam.org

3. Geihs, K., et al.: A Comprehensive Solution for Application-Level Adaptation. Software
Practice & Experience. Wiley, Chichester (2008),
http://dx.doi.org/10.1002/spe.900

4. Aiello, M., Frankova, G., Malfatti, D.: What’s in an Agreement? An Analysis and an Ex-
tension of WS Agreement. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005.
LNCS, vol. 3826, pp. 424–436. Springer, Heidelberg (2005)

5. Bleul, S., Geihs, K.: Automatic Quality-Aware Service Discovery and Matching. In: 13th
Annual Workshop of HPOpenView University Association (HP-OVUA), May 2006, pp.
109–118. Infonomics Consulting, Stuttgart (2006)

6. Bleul, S., Weise, T.: An Ontology for Quality-Aware Service Discovery. In: First Interna-
tional Workshop on Engineering Service Compositions (WESC 2005), IBM Report
RC23821, December 2005, pp. 35–42 (2005)

7. Economic Classification Policy Committee. North American Industry Classification Sys-
tem (NAICS), http://www.census.gov/epcd/www/naics.html

8. DARPA. Profile-based Class Hierarchies,
http://www.daml.org/services/owl-s/1.1/ProfileHierarchy.html

9. Dan, A., et al.: Web Service Level Agreement (WSLA) Language Specification,
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

10. Martin, D., et al.: OWL-S, OWL-based Web Service Ontology (2004)
11. EU IST FP6 project ASG (Adaptive Services Grid), http://asgplatform.org
12. Geihs, K., et al.: Modeling of Component-Based Self-Adapting Context-Aware Applica-

tions for Mobile Devices. In: IFIP Working Conf. on Software Engineering Techniques,
Warsaw, Poland (2006)

13. University of Malta. OWL-S Editor to Semantically Annotate Web-Services,
http://staff.um.edu.mt/cabe2/supervising/undergraduate/
owlseditFYP/OwlSEdit.html

14. Oldham, N., et al.: Semantic WS-agreement partner selection. In: WWW 2006: Proceed-
ings of 15th Intern. World Wide Web Conference, pp. 697–706. ACM, New York (2006)

15. Paolucci, M., et al.: Towards a Semantic Choreography of Web Services: From WSDL to
DAML-S. In: Zhang, L.-J. (ed.) ICWS, pp. 22–26. CSREA Press (2003)

16. Reichle, R., et al.: A Comprehensive Context Modeling Framework for Pervasive Comput-
ing Systems. In: Meier, R., Terzis, S. (eds.) DAIS 2008. LNCS, vol. 5053, pp. 281–295.
Springer, Heidelberg (2008)

 Modeling of Context-Aware Self-Adaptive Applications 163

17. Roman, D., et al.: WSMO - Web Service Modeling Ontology. In: DERI Working Draft 14.
Digital Enterprise Research Institute (DERI) (2004)

18. Sahai, A., et al.: Towards Automated SLA Management for Web Services, HP Laborato-
ries Palo Alto, HPL-2001-310 (R.1) (2001)

19. Frank, K., et al.: CoOL - A Context Ontology Language to enable Contextual Interopera-
bility. In: Stefani, J.-B., Demeure, I., Hagimont, D. (eds.) DAIS 2003. LNCS, vol. 2893.
Springer, Heidelberg (2003)

20. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A.,
Scholz, U.: MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-
Oriented Environments. In: Cheng, B.H.C., et al. (eds.) Software Engineering for Self-
Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg (2009)

21. Carnegie-Mellon University, WSDL-to-OWLS,
http://www.daml.ri.cmu.edu/wsdl2owls/

22. Zhou, C., Chia, L.-T., Lee, B.-S.: Semantics in Service Discovery and QoS Measurement.
IT Professional 7(2), 29–34 (2005)

23. WSDL2OWL-S, http://www.daml.ri.cmu.edu/wsdl2owls/
24. OWL-S Editor to Semantically Annotate Web-Services,

http://staff.um.edu.mt/cabe2/supervising/undergraduate/
owlseditFYP/OwlSEdit.html

25. Wang, X.H., et al.: Ontology Based Context Modeling and Reasoning using OWL. In:
Proceedings of Workshop on Context Modeling and Reasoning (CoMoRea 2004), Or-
lando, Florida USA (March 2004)

26. Gu, T., et al.: A Middleware for Building Context-Aware Mobile Services. In: Proc. of the
IEEE 59th Vehicular Technology Conference (VTC 2004 spring), Milan, Italy (May 2004)

27. WebServices Agreement Specification (WS-Agreement),
http://www.ogf.org/documents/GFD.107.pdf

28. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of con-
text-enabled applications. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems: the CHI Is the Limit, Pittsburgh, Pennsylvania, United States. ACM,
New York (1999)

29. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic Configuration of Resource-
Aware Services. In: 26th International Conference on Software Engineering, pp. 604–613.
IEEE Computer Society, Edinburgh (2004)

30. Sousa, J.P., Schmerl, B., Steenkiste, P., Garlan, D.: Activity-oriented Computing. In: Mo-
stéfaoui, S., Maamar, Z., Giaglis, G. (eds.) Advances in Ubiquitous Computing: Future
Paradigms and Directions, pp. 280–315. IGI Publishing, PA (2008)

31. Sousa, J.P., Balan, R.K., Poladian, V., Garlan, D., Satyanarayanan, M.: User Guidance of
Resource-Adaptive Systems. In: Intl. Conf. on Software and Data Technologies, pp. 36–
44. INSTICC Press, Porto (2008)

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 164–182, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MUSIC: Middleware Support for Self-Adaptation in
Ubiquitous and Service-Oriented Environments

Romain Rouvoy1, Paolo Barone2, Yun Ding3, Frank Eliassen1, Svein Hallsteinsen4,
Jorge Lorenzo5, Alessandro Mamelli2, and Ulrich Scholz3

1 University of Oslo, 0316 Oslo, Norway
rouvoy@ifi.uio.no, frank@ifi.uio.no

2 HP Italy, 20063 Cernusco sul Naviglio, Italy
paolo.barone@hp.com, alessandro.mamelli@hp.com

3 European Media Laboratory GmbH, 69118 Heidelberg, Germany
yun.ding@eml-d.villa-bosch.de,

ulrich.scholz@eml-d.villa-bosch.de
4 SINTEF ICT, 7024 Trondheim, Norway
svein.hallsteinsen@sintef.no
5 Telefónica I+D, 47151 Valladolid, Spain

jorgelg@tid.es

Abstract. Self-adaptive component-based architectures facilitate the building of
systems capable of dynamically adapting to varying execution context. Such a
dynamic adaptation is particularly relevant in the domain of ubiquitous comput-
ing, where numerous and unexpected changes of the execution context prevail.
In this paper, we introduce an extension of the MUSIC component-based plan-
ning framework that optimizes the overall utility of applications when such
changes occur. In particular, we focus on changes in the service provider land-
scape in order to plug in interchangeably components and services providing
the functionalities defined by the component framework. The dynamic adapta-
tions are operated automatically for optimizing the application utility in a given
execution context. Our resulting planning framework is described and validated
on a motivating scenario of the MUSIC project.

Keywords: Adaptation planning, component-based architectures, self-
adaptation, service-oriented architectures.

1 Introduction

With the emergence of ubiquitous computing, common future scenarios will consist
in people moving around carrying mobile devices, which they use extensively to as-
sist both leisure and business related tasks. This will not only involve interactions
with services provided through the Internet, but also with services directly provided
by devices available in the surrounding environment.

For developers of mobile applications this is a very challenging scenario. Users’
movements in ubiquitous computing environments cause frequent and unexpected
changes in the execution context of their applications. For example, a mobile device is
frequently roaming, and its applications have to be dynamically adapted to remain

 MUSIC: Middleware Support for Self-Adaptation 165

useful under new network conditions. Such an adaptation requires the detection of
context changes, but also the selection of an application configuration that maintains a
satisfactory Quality of Service (QoS) in the new context. Furthermore, when services
become a part of the ubiquitous environment, both the availability and the quality of
the services on which the applications depend becomes a concern of the application
developer. There is therefore a need to dynamically discover services both when they
become available and when they disappear. Also, such applications need to embed
logic enabling them to reason about how and when to use a service available in the
surrounding, to select among service alternatives when there are more than one avail-
able, and to adapt when a service disappears. Such a self-adaptation process is gener-
ally complex and costly to implement. To achieve self-adaptation, developers can use
programming language features, such as conditional expressions, parameterization,
and exceptions. However, these approaches introduce complexity by intertwining
adaptation and application logic. Also, they make software evolution difficult. Con-
versely, approaches that use application independent middleware approaches for ad-
aptation relieve the applications from adaptation concerns [1].

In the MUSIC project, we follow the latter approach by seeking to separate the
self-adaptation concern from the business logic concern and delegate as much as
possible of the added complexity related to self-adaptation to generic middleware.
The adaptation process relies on the architecture model of the application, which
specifies its adaptation capabilities and its dependencies to context available at run-
time. In MUSIC, an application is modeled as a component framework, which defines
the functionalities that can be dynamically configured with conforming component
implementations. Thus, the purpose of an adaptation-planning framework is to evalu-
ate the utility of alternative configurations in response to context changes, to select a
feasible one (e.g., the one with highest utility) for the current context and to adapt the
application accordingly.

In this chapter, we propose a comprehensive extension of the MUSIC platform and
planning framework we initially sketched in [2]. Currently, MUSIC only supports the
adaptation of component-based architectures. The proposed extension enables the
self-adaptation of mobile and ubiquitous applications in the presence of Service-
Oriented Architectures (SOA). The planning middleware evaluates discovered remote
services as alternative configurations for the functionalities required by an applica-
tion. This means that the extended planning framework can support seamless configu-
ration of component frameworks based on both local and remote components as well
as services. In particular, components and services can be plugged in interchangeably
to provide the functionalities defined by the component framework. In case of ser-
vices, the planning framework deals directly with Service Level Agreement (SLA)
protocols supported by the service providers. In addition to that, we introduce in this
chapter a support for advertising services and associated service levels, in order to
satisfy dynamically incoming service requests. Hence, MUSIC applications can use
the MUSIC platform to share services with the environment.

In the remainder of this chapter, we first describe in section 2 the MUSIC approach
to planning-based adaptation for component-based applications. In section 3, we in-
troduce a motivating scenario for the support of SOA for self-adaptive applications in
a ubiquitous environment, as well as derive a set of requirements. Section 4 exposes
the MUSIC support for consuming and providing services in ubiquitous environ-
ments. Section 5 describes the integration of SOA into the MUSIC platform from an

166 R. Rouvoy et al.

implementation perspective, while section 6 provides a preliminary validation of our
approach by discussing how the requirements derived in section 3 are met by the
proposed design. In section 7, we discuss related work before concluding and pointing
out further work in section 8.

2 The MUSIC Approach to Self-Adaptation

Planning-based adaptation of a component-based application refers to the capability of
a system to adapt to changing user needs and operating conditions by exploiting
knowledge about its composition and Quality of Service (QoS) characteristics of its
constituting components [2,3,4,5,6]. In MUSIC this knowledge is provided in the form
of a QoS-aware model (cf. Figure 1), which describes the abstract composition, the
relevant QoS dimensions and how they are affected when varying the actual compo-
nent configuration. This model is exploited by the adaptation middleware to select,
connect, and deploy a configuration of Component Realizations providing the best
utility. The utility measures the degree of fulfillment of user preferences while optimiz-
ing device resource utilization [1,3]. The model describes the abstract composition as a
set of Roles collaborating through Ports, which represent either functionality provided
to or required from collaborating components. Properties and property predictor func-
tions associated with the ports define how the QoS properties and resource needs of
components are influenced by the QoS properties of the components they depend on. A
port has a Type defining the functionality represented by the port in terms of interfaces
and protocol. Component realizations implement ports and a component realization
can be used in a role if the ports match (same type). Component realizations are Atomic
or Composite. A Composite Realization is itself an abstract composition and allows for
recursive decomposition. Constraints are predicates over the properties of the constitut-
ing components of a composition, which restrict the possible combinations of compo-
nent realizations (e.g., configuration consistencies) [3,7].

The model is represented at runtime as plans within the middleware. A plan re-
flects a component realization and describes its ports and associated property

Fig. 1. Description of the MUSIC meta-model

 MUSIC: Middleware Support for Self-Adaptation 167

predictors as well as implicit dependencies on the hosting platform (e.g., platform
type and version). In the case of an atomic component realization, it also contains a
reference to the class, which realizes the component. In the case of a composite reali-
zation, the plan describes the internal structure in terms of roles and ports and the
connections between them. Variation is obtained by describing a set of possible alter-
native realizations of the roles.

Then, planning refers to the process of selecting the components that make up an
application configuration providing the best possible utility to the end-user. This
process will be triggered at start-up of the application and at run-time when the execu-
tion context suddenly changes. When such an adaptation process is triggered for a
particular type, the planning middleware iterates over the plans associated to the roles.
For each plan, it resolves the plan dependencies and evaluates the configuration suit-
ability to the current execution context by computing the Predicted Properties. The
predicted properties are input to the normalized utility function that computes the
expected utility of the evaluated application configuration [1,2,3,4,5]. The utility
function of an application is provided by the developer and is typically expressed as a
weighted sum of dimensional utility functions where the weights express user prefer-
ences (i.e., relative importance of a dimension to the user). A dimensional utility func-
tion measures user satisfaction in one property dimension.

An example model for an application assisting traveling on public transportation is
shown in figure 2. It is described as a collaboration of five roles. GUI presents a
graphical user interface on the device. Main embeds the application logic and binds
the different functionalities together. Main interacts with Route to find the shortest
route and the estimated travel time. It also uses Map to get localized maps and Loca-
tion to get the current location. The QoS properties used in the model are specified in
table 1. Property predictors for the application, specified as functions of the properties
of the components it consists of, are associated with the composition in figure 2. The
utility function assumes that the user always prefers high accuracy and low battery
consumption, while the relative weighting (w_acc, w_bat) will be extracted from the
user profile by the middleware.

Fig. 2. Example model for a TravelAssistant application

Table 1. Relevant QoS properties for the TravelAssistant application

Property Description Value range
acc Accuracy 1-10
det Level of detail of map 1-10
rel Reliability of estimated travel time 1-10
bat Power consumption of a component or link 0-∞

168 R. Rouvoy et al.

Fig. 3. Architecture of the MUSIC platform

The middleware manages a collection of active applications and seeks to maximize
the overall utility, which is computed as a weighted sum of individual application
utilities. The weights in this case express application priorities of the user.

Figure 3 depicts the component-based architecture of the MUSIC platform. The
planning is typically triggered by context changes detected by the Context Manager.
The Adaptation Controller coordinates the adaptation process. The Adaptation Rea-
soner supports the execution of the planning heuristics, which is driven by metadata
included in the plans [4]. The Plan Repository provides an interface IPlanResolver to
the adaptation reasoner allowing for the recursive retrieval of plans associated to a
given port. Any additional metadata on the required types will help the plan reposi-
tory to exclude plans and thus drastically reduce the exploration space [4,6]. The
adaptation reasoner builds a valid application configuration and discards those whose
dependencies are unresolved. Then, the heuristics ranks the application configurations
by evaluating their utility based on the computation of the predicted properties, whose
values are retrieved from the QoS Manager.

The reconfiguration process is handled by the Configuration Executor, which uses
the set of plans selected by the planner to reconfigure the application. This requires
the collaboration of the components, which must implement a reconfiguration inter-
face allowing the middleware to bring them to a state where they can be safely re-
placed and transfer their state to an alternative component.

3 Challenges of Ubiquitous and Service-Oriented Environments

The term service is perhaps one of the most over-used and confusing terms in the
software industry as analyzed in [9]. Typically, services are defined as functionalities
or capabilities provided by a software system to other software systems or to a human
user [10]. In the context of SOA, services are provided by independent service pro-
viders, which instantiate the providing software on their computers and advertise the
services they provide using standardized mechanisms, such that they can be discov-
ered and bound dynamically by consumers which need them. A fundamental concept

 MUSIC: Middleware Support for Self-Adaptation 169

of service-orientation is the standardized service contract [11], which is used to ex-
press the service semantics and capabilities. Service QoS properties are normally
negotiated between the service provider and the service consumer, and are described
as part of the service contract as a Service Level Agreement (SLA). A service level is
used to describe the expected performance (e.g., response time and availability) and
properties such as billing, termination terms, and penalties in case of a violation of the
SLA [12]. A SLA can either be created after selecting a fixed service level offer
among several pre-defined offers or, in more complex cases, after a customization via
a negotiation process. An SLA may be valid for a limited period or may be terminated
explicitly. During SLA provisioning, the provider monitors the service QoS and adapts
its resources to avoid SLA violations. The consumer may also perform monitoring to
avoid trusting the provider blindly.

The platform presented in the previous section focuses on component based self-
adapting systems. When mobile devices move around in ubiquitous computing envi-
ronments they experience a dynamic service landscape and additional requirements to
self-adaptation arise which require extensions of the platform. To investigate these
issues, we consider the following scenario of Paul who is on his way to meet a friend,
assisted by applications on his mobile device. First, we introduce several situations
that Paul encounters and explain how he and his device react. Then, we explain the
requirements that enable such flexibility.

3.1 Example Scenario: Paul on His Way to Meet a Friend

Paul has been at a concert in Paris. Now, he is taking the subway to a friend to see her
new home and to tell her about the show. His MUSIC-enabled mobile device is
WiFi-, UPnP-, and GPS-enabled. It provides several applications, among them a ser-
vice-based version of the TravelAssistant from the example and a media-sharing
application.

The TravelAssistant assists Paul with route planning, ticket vending, detects travel-
ing delays, and notifies Paul if he is affected by such delays. The media-sharing plat-
form, called InstantSocial [8], appears as a web site. However, instead of relying on a
central Internet server, it is served by a composition of services scattered across
nearby devices. As more users participate, this platform becomes more robust, the
number of shared content items increases and it may become more attractive for the
users. As soon as a critical mass of users leaves, it stops operating.

Scene 1. The scenario starts with Paul entering the Paris subway. He wants to plan the
journey to his friend, which requires a route service for the subway as well as a loca-
tion and a map service for the remaining trip. RATP, the operating company, offers a
route service for public transportation and a map service of Paris at two QoS levels:
basic and premium quality. Via UMTS, there is also access to a commercial service of
high quality, though for a higher monetary cost. Paul requests services of high quality
and his device chooses the cheap premium service of RATP.

Scene 2. With his TravelAssistant, Paul devises his journey and buys a ticket. As
regular traveler, he has an electronic pass. Upon approaching a validation post, his
device detects it, Paul’s pass is checked, and the entrance gate opens automatically.

170 R. Rouvoy et al.

Scene 3. Inside the train, Paul thinks of searching for further pictures of the concert.
He starts the InstantSocial application, which configures itself according to the other
InstantSocial instances in the vicinity. His device notifies Paul about the presence of a
matching media-sharing group. He joins and a moment later his display shows a se-
lection of pictures, each representing a collection of shots of interests. He browses
through the content, selects the ones he likes, and begins to download.

Scene 4. During the trip, there is an incident in the metro, blocking the planned itiner-
ary. The travel assistant notifies Paul and proposes an alternative metro route with a
different final station. Unfortunately, planning the remaining trip is not as smooth as
desired: RATP reserves a large share of its bandwidth to guide the emergency person-
nel and declines to offer the high-quality map service. Furthermore, he cannot use
GPS because the system’s satellites are out of sight. As best solution, Paul’s device
chooses the external high-quality services, despite the higher cost.

Scene 5. Now, Paul is in a train with fewer visitors of his concert. Due to the de-
creased robustness, InstantSocial adapts it focus from sharing to collecting pictures.
The other instances tend to do the same such that the combined media platform weak-
ens. Finally, Paul is notified about the poor quality and he terminates InstantSocial.

Scene 6. After leaving the subway, the GPS module starts working and his device
guides him through the streets. Some minutes later, he arrives at his friend’s home in
time with a device full of impressions to share.

3.2 Requirements for Planning-Based Adaptation

During Paul’s journey, the applications on his device make flexible use of a variety of
services and protocols nonetheless remains operational through various context
changes. In particular, TravelAssistant and InstantSocial depend on external services
that are dynamically chosen and used. Each InstantSocial instance also offers services
to other instances. All these examples of flexibility require middleware support,
which is provided by the design presented in this chapter.

Scene 1 shows a service selection process depending on QoS. The use of an UPnP-
based service in scene 2 demonstrates the need for alternative connection protocols
and services. Scene 3 demonstrates the degree of flexibility required: an InstantSocial
instance is a combination of local and external services; it is able to offer and may use
services at different QoS levels. The actual composition of the instance at a specific
time has to be decided at runtime. Scene 4 features a willful reduction of a QoS level
by the provider of an external service. It results in an adaptation to an alternative
service provider, although the original provider is still offering the service, too. In
scene 5, the device has to cope with an unplanned service termination by the sudden
disappearance of InstantSocial instances. Furthermore, it demonstrates the deliberate
termination of services by the user. Thus, to support scenarios of the kind presented
above, we need to extend the platform to deal with the following SOA requirements:

• Dynamic discovery of services,
• Dynamic binding and change of binding to service providers,
• Negotiation of service level agreements and detection of violations,
• Hosting and publishing of services.

 MUSIC: Middleware Support for Self-Adaptation 171

4 Supporting Service-Oriented Architectures within MUSIC

The interpretation of the term service presented in the previous section relates natu-
rally to the port concept in the conceptual model presented in section 2. Thus we can
accommodate services in the conceptual model simply by considering that ports rep-
resent services provided by or required by components, that services are described by
types, and that service levels are described by properties. However, the middleware
must be extended in several ways to cope with the challenges derived above. The
remaining of this section introduces the consumer- and the provider-side support
offered by the MUSIC platform in order to enable the seamless integration of services
made available in a ubiquitous computing environment.

4.1 Consuming Services within MUSIC

In SOA-based computing environments, an application typically uses one or more
services, which possibly depend on further services and so on. Thus, a large number
of computers owned and administrated by different organizations may potentially be
involved. This problem is aggravated when we deal with several applications running
concurrently. Thus, optimizing utility over the entire set of involved computers is
likely to be intractable both from a technical and administrative point of view. There-
fore, we have to delineate the scope of an adaptation to be more tractable. To this end,
we introduce the notion of adaptation domain and the distinction between internal
and external services.

An adaptation domain is a collection of MUSIC platform instances controlled by
one adaptation manager. It includes one distinguished node (e.g., a handheld device),
which represents a permanent binding to a user. This node acts as the nucleus around
which the adaptation domain forms dynamically as auxiliary nodes come and go. The
movement of nucleus nodes or changes in connectivity due other phenomena causes
the dynamic evolution of an adaptation domain. Adaptation domains may overlap in
the sense that auxiliary nodes may be members of multiple adaptation domains. This
adds to the dynamics and increases the complexity because the amount of resources
the auxiliary nodes are willing to provide to a particular domain may vary depending
on the needs of other served domains. The user of a nucleus node may start and stop
applications or shared components, and the set of running components is adapted by
the adaptation manager according to these user actions and context changes, taking
into account the resource constraints.

Clearly, it makes a difference whether a role is bound by instantiating a component
implementation running in the adaptation domain where a system is built (private
instance), by using a service provided by a component instance already running there
(internal service), or by connecting to a service provided by a third party (external
service). In the first two cases, the adaptation manager building the system must pro-
vision the resources and has control of the provided service level. In the latter case,
the service level is outside the control of the adaptation manager, and it is necessary
to negotiate an SLA with the service providers in order to compare the suitability of
services by different providers and weight against deploying an internal service. Ex-
ternal services may be provided by other adaptation domains or by third party provid-
ers (also referred to as external non-MUSIC services).

172 R. Rouvoy et al.

Discovery of Services and Service Levels. Providers make their services accessible
to third parties according to specific discovery protocols. The MUSIC platform sup-
ports an extensible set of discovery protocols allowing the detection of services avail-
able in the service landscape. The discovery of a service triggers the retrieval of its
service description, which includes information on the service capabilities, semantics,
and possibly the offered service level(s) or QoS properties in form of an agreement
template. The service description and, if available, the related agreement template are
then converted to service plans, each one reflecting an alternative realization for the
service level.

Negotiation of Service Level Agreements. The planning phase involves the evalua-
tion of the available plans, for selecting the composition optimizing the utility of the
applications running on the device. The utility depends on the QoS properties pre-
dicted by the services, whose value can be static or dynamic. Static properties consist
of fixed values that do not change over the time. Dynamic property values can change
according to the current status of the service. Evaluating the actual QoS values for
such properties requires a process of negotiation with the service provider. The cur-
rent MUSIC negotiation protocol is inspired by the WS-Agreement specification [13]
(for both the definition and the creation/monitoring of SLAs), where the provider
enriches the service description with an agreement template and the consumer fills in
the template to create and submit an agreement offer. The offer creation is driven by
Service Level Objectives (SLO), which are conditions defined at application or con-
figuration level and act as pre-defined criteria for negotiating an SLA contract. Once
the provider has accepted the offer, the agreed property values are reflected in the
plan.

Provisioning of Service Level Agreements. Whenever a service available in the
landscape is selected for use as a result of the adaptation reasoning, the MUSIC plat-
form instantiates service proxies. These Proxies act as local representatives of the
remote services and encapsulate the communication protocol necessary to access
them in a location-transparent way. They are created by a binding framework, which
provides dedicated proxy factories. Each factory supports a particular communication
protocol to export or import a service. During the binding phase, the SLA contract
associated with the selected plan is provisioned and enforced by the involved parties,
which includes the reservation of computing resources and the deployment of SLA
monitoring facilities [11,15,16].

Monitoring of Service Level Agreements. For the purpose of SLA monitoring, the
service proxy is instrumented with appropriate monitoring mechanisms according to
the content of the SLA contract (e.g., response delay, result quality). Both parties are
responsible for checking the status of the agreement and for taking proper actions in
case of violation of the agreement. Thus, after the creation of an agreement, the MU-
SIC middleware, at any given time, must be able to check the current state of the
agreement itself. When an agreement is not fulfilled anymore, the MUSIC middle-
ware must terminate it and trigger a new adaptation process in order to detect a new
set of available services and to select among them the best candidate to replace the
one breaking the contract. SLA-enabled service providers handle the state model of an
agreement and of its constituting terms, and make them accessible to consumers in
form of readable properties of the agreement.

 MUSIC: Middleware Support for Self-Adaptation 173

On the consumer side, the MUSIC middleware architecture is responsible for
checking the state of an agreement according to pre-defined policies (e.g., at given
intervals or when detecting that the expected performance of a service is degrading).
By querying the service provider for the agreement state, it is possible to detect
whether the agreement has been violated or not. In case of violation, the consumer
terminates explicitly the agreement by invoking a terminate operation on the provider
side (since there might be costs associated to the usage of the service), and discards
the related service plan, hence triggering a new adaptation process.

4.2 Providing Services within MUSIC

Hosting both applications and components providing services to the outside world in
an adaptation domain complicates the adaptation reasoning. In addition to the user
owning the device, there are also external service consumers, which may have con-
flicting needs (expressed in the SLA). Fortunately, the utility function approach lends
itself quite naturally to cope with such situations. Our solution is to treat shared com-
ponents providing services to external clients in the same way as applications and
equip them with their own utility function, computing the degree of fulfillment of
active SLAs. Using the weights, the overall utility function balances the utility to the
owner of the device against the utility to service clients. This information about user
preferences is included in user profiles.

Another difficulty is related to property prediction. For shared services, the re-
sources needed by the component to guarantee a certain QoS often depend on the
number of consumers. Hence, property predictor functions for shared services must
take this into account.

Publishing of Services and Service Levels. By publishing its description using the
discovery protocols supported by the MUSIC platform, a service running on a node
can be made available to other nodes within the adaptation domain. Each service
description encloses the service type as well as an agreement template describing the
static QoS properties that are provided by this service. QoS dimensions referring to
dynamic properties of the application are unbound in order to be fixed at a later time
depending on the capabilities and the processing load of the hosting node.

Negotiation of Service Level Agreements. The MUSIC platform supports the nego-
tiation of agreements by playing the role of a service provider. Whenever a service
consumer selects one of the published services, the MUSIC platform receives an
agreement offer for consuming this service. The MUSIC platform applies the negotia-
tion heuristics to decide whether to accept or reject this offer by taking the current
resource availability into account. This heuristics predicts the impact of accepting the
offer with regards to agreements that have been already accepted. If the resulting
impact does not trigger any violation of previous agreements, the MUSIC platform
creates an agreement, which keeps track of the negotiation process.

Provisioning of Service Level Agreements. When a service consumer requests an
internal service, the MUSIC platform checks that the requested service refers to an
accepted agreement. Then, the binding framework instantiates a service skeleton—
i.e., a local representative of the service consumer—which reflects the ongoing
agreement and implements one of the supported communication protocols

174 R. Rouvoy et al.

(e.g., SOAP or RMI). Invocations received via the service skeleton are delegated to
the service instance locally deployed on the node.

Monitoring of Service Level Agreements. Depending on the negotiated properties
agreed in the agreement, the service skeleton is instrumented with context sensors,
which are responsible for monitoring the agreement. The MUSIC platform provides a
library of sensors for observable properties (e.g., invocation latency) as part of its
context middleware. If one of the sensors detects a violation in one of the dimensions
of the agreement, it notifies the MUSIC platform about this violation, which results in
the notification of the service consumer and the termination of the agreement.

5 Realizing the Support for Service-Oriented Architectures

This section describes the extension of the MUSIC platform in order to support the
SOA principles as well as the realization of the MUSIC reference implementation.

5.1 Architecture of the Service-Oriented MUSIC Platform

To support the above-mentioned SOA principles [11], we have integrated new com-
ponents into the MUSIC Platform (cf. Figure 4, the composite component SOA Sup-
port). As MUSIC is independent of a particular technology, various implementations
of these components can be developed (e.g., Web Service, CORBA, RMI, or UPnP).

More specifically, the Service Discovery is responsible for publishing and discov-
ering services using different discovery protocols. The Remoting Service is responsi-
ble for the exporting of services at the service provider side, and for the binding to
these services at the service consumer side. Whenever a service is exported, it is en-
abled to accept requests from (remote) service consumers. Each service description
defining the provided functionalities and containing the necessary information for the
consumer to access the service1 can be published by the service discovery. If the ser-
vice provider offers additional guarantees for the published services, agreement tem-
plates are published in addition to the service description.

The service discovery supports the dynamic registration of discovery listeners. A
discovery listener can have interest for particular services and can enforce customized
policies to handle them. For example, the Remote Platform Discovery Listener is
particularly interested in finding remote instances of the MUSIC platform in order to
provide information about the MUSIC platforms connected to the applications. The
SLA Discovery Listener is interested in finding services accompanied with an SLA
support. Upon the discovery of services, the service discovery notifies the registered
discovery listeners by passing them the service descriptions. Since plans are the base
for the Adaptation Manager to perform planning-based adaptation, the discovery lis-
teners create service plans based on the service descriptions and the agreements nego-
tiated by the SLA Negotiation. Plans for remote services are generated whenever

1 For example, the service consumer needs the remote service URL in order to access it. In case

of a RMI-based binding, this URL would be rmi://localhost:8080/EchoService.
While, in case of a Web Service, the URL is the location of the WSDL document, e.g.,
http://localhost:8090/axis2/services/EchoService?wsdl for the Echo Service.

 MUSIC: Middleware Support for Self-Adaptation 175

Fig. 4. SOA configuration of the MUSIC platform

services are discovered; hence plans are available when the adaptation manager trig-
gers an adaptation at a later time. Plans are automatically discarded and removed from
the Plan Repository whenever remote services disappear or for some reason become
unavailable to the middleware.

The distributed instances of the MUSIC platform form a federation such that the
service discovery on different platforms can interact with each other. Hence, MUSIC
platform A can be aware of a service, which is published using a protocol supported
by MUSIC platform B and not supported by A. If the remoting service on platform A
supports the appropriate communication protocol, A is able to bind to that service
which it would not able to discover alone.

Agreement templates can be either static or allow for dynamic negotiation [12].
Furthermore, a service may be offered at a pre-defined set of service levels. When the
service discovery detects such a service, it first generates an abstract service plan
enclosing structural and behavioral metadata related to the service. Then, in order to
reflect the alternative service levels the service discovery publishes an extended ver-
sion of the service plan for each service level into the plan repository. Such a service
level plan inherits the metadata of the service from the abstract service plan and ex-
tends it with the additional QoS properties described by the particular service level
(e.g., service accuracy and cost).

The adaptation manager is then able to compare each available service level when
applying the reasoning heuristics. Since service negotiation is a time critical factor for
an efficient planning process, it should be resolved as soon as possible. In MUSIC,
the negotiation is generally performed during service discovery for static QoS proper-
ties (e.g., service cost) described by the service levels. The resulting static QoS prop-
erty values are included into the service plan such that the predicted properties can

176 R. Rouvoy et al.

automatically report them at a later time. However, in presence of a flexible service
level [11,13], the negotiation becomes dynamic, meaning that the SLA is negotiated
during the planning process. Dynamic negotiation is particularly required when the
adaptation manager needs to reason about up-to-date QoS properties (e.g., current
service accuracy). In this case, the predicted properties, when evaluated by the reason-
ing heuristics, delegate the negotiation of the requested property to the SLA negotia-
tion. The negotiation protocol is driven by SLOs, which are pre-defined criteria for
negotiating SLA [15].

The Configuration Executor generally iterates over the plans composing the new
configuration in order to reconfigure the application. As described in section 2, the
configuration executor distinguishes between plans which refer to available services
and plans which refer to services that are not available yet. In order to benefit from
remote services, the configuration executor now faces a third case: If the plan refers to
a remote service available in the environment, the configuration executor uses the
Remoting Service to generate a specific component that will act as a service proxy. A
service proxy is a local representative of the remote service. In particular, it imple-
ments the service type described by the application components and encapsulates the
communication necessary to access the remote service. By invoking the service
proxy, a service consumer interacts with the remote service in a location-transparent
way—i.e., as if the remote service is a local one.

The remoting service supports the dynamic integration of binding frameworks.
During the binding phase, the SLA associated with the selected plan is provisioned
and enforced by the involved parties. For the purpose of monitoring, the service proxy
is instrumented with appropriate monitoring mechanisms by the component SLA
Monitoring according to the content of the SLA (e.g., response delay, result quality).
The SLA monitoring is responsible for checking the status of the agreement for taking
proper actions in case of its violation.

As an example of performing SLA monitoring in ubiquitous environments, the ser-
vice proxy implements a disconnection detection algorithm. This disconnection sup-
port is inspired by the principles of ambient programming [17]. When loosing the
connection to a remote service, the proxy stores the incoming service requests in a
queue and returns a non-blocking future object to the application. The future object
includes actions that are triggered whenever the connection is resolved to process the
result of the request. If the connection is lost for a long period, the service proxy ter-
minates the agreement via the component SLA negotiation. Subsequently, the SLA
monitoring removes the associated service level plan from the plan repository to trig-
ger an adaptation of the application. During the reconfiguration process, the request
queue is transferred to the new component (or service proxy) that will be selected and
deployed by the middleware.

5.2 Implementation of the Service-Oriented MUSIC Platform

The reference implementation of the MUSIC platform is based on the architecture
described in section 5.1. The selection of the framework, which the reference imple-
mentation of the MUSIC architecture is built upon, has been made to meet the most

 MUSIC: Middleware Support for Self-Adaptation 177

relevant requirements for the MUSIC platform. They are, in particular, open source
framework, multi-platform support, suitability for resource-constrained devices, and
SOA support. Therefore, we selected OSGi to leverage the MUSIC platform.

OSGi (http://www.osgi.org) defined itself as the dynamic module system for
Java, is a service-oriented component-based framework. The success of OSGi may be
attributed to its relative simplicity, efficiency, openness, and portability. Multiple
open source implementations of OSGi are available. Since its initial design, OSGi
targets resource-constrained devices. Some existing implementations, such as Conci-
erge [18], exhibit a reasonable memory footprint for resource-constraint devices (80
kB). Furthermore, some initiatives, such as the OSGi Mobile Specification (JSR-232)
[19], the Eclipse eRCP project [20] or the Sprint Titan platform [21], propose OSGi
for hosting applications in mobile devices. OSGi offers a class-loading mechanism to
dynamically load/unload modules (bundles in the OSGi terminology). This feature is
particularly interesting to support the plug-ability of the MUSIC architecture. Plug-
ability is required to tackle the heterogeneity in communication and service discovery
technologies. It also allows the integration of an extensible set of customized context
sensors and adaptation algorithms.

SOA is the cornerstone of both OSGi and MUSIC. The SOA implementation in
OSGi is simple and efficient, based on fast Java method invocations and a service
registry, which provides mechanisms to react on the appearance and disappearance of
services (essential in mobile environments). However, OSGi lacks of distribution
support because OSGi services only communicate within one Java VM. The Service
Discovery and the Remoting Service jointly extend OSGi with transparent distribution
support and provide an abstraction to dynamically incorporate realizations of different
discovery and communication protocols.

The Service Discovery delegates requests for publishing and discovery to protocol-
specific implementations of service discovery, which are plugged into the platform as
OSGi services implementing the interface IServiceDiscoveryFactory. Currently, the
Service Location Protocol (SLP) protocol based on jSLP [22] and the Universal Plug
and Play (UPnP) protocol based on the UPnP bundle of DomoWare [23] are sup-
ported by the MUSIC platform.

The Remoting Service supports plug-ability in a similar way. Each protocol-
specific realization implements the interface IExportFactory or IRemoteBindingFac-
tory, and is registered as a service to the service registry. Currently, the remoting
service has support for exporting and binding services using sockets messaging and
UPnP. The Web Service support is under development by a lightweight SOAP engine
and small footprint HTTP server [24]. We create dynamic service proxies with the
code generation library CGLIB [25], and attach communication protocol-specific
interceptors to the service proxies. The instrumentation of a service proxy with SLA
monitoring mechanisms will be realized by adding monitoring interceptors to the
proxy (e.g., to measure the response time).

MUSIC has chosen a set of lightweight frameworks and protocols to offer the best
balance between performance in mobile devices and application requirements. The
preliminary implementation of the TravelAssistant has demonstrated the good behav-
ior of the MUSIC platform in a handheld device.

178 R. Rouvoy et al.

6 Discussions

As a preliminary validation of our approach, in this section we present a walk-through
of how the middleware would behave in the scenario described in section 3.1. Table 2
presents the realizations available for the different services with property predictors
for the relevant properties. In addition to the properties defined in table 1, we also
introduced cost, which is very relevant for 3rd party services, and extended the utility
function as follows: utility=0.6*norm(acc) + 0.1*(1-norm(bat))+ 0.3*(1-norm(cost)).
Based on this extended model we computed the utilities of the various configurations
in different scenes. Table 3 shows the utility of the best configurations in different
situations during the scenario.

In the first three scenes of the scenario, the composition i) using the RATP Loca-
tion, Map, and high quality Route services predicts the highest utility and is therefore
chosen. In scene 4, the high quality RATP Map service breaks its SLA. The service
proxy observes this and notifies the component SLA Monitoring, which terminates the
agreement and triggers a re-planning. The Adaptation Manager predicts that using the
commercial Map service instead now yields the highest utility and asks the Configura-
tion Executor to reconfigure the application’s service binding. This includes generat-
ing a corresponding service proxy. In scene 6, the device’s GPS discovers the
satellites and publishes the associated service plans into the Plan Repository. As this
service provided by a local component is free and accurate, the adaptation manager
predicts its use to have the highest utility and reconfigures accordingly.

Table 2. Services defined in the TravelAssistant application

Service Description Provider Level Property predictors

Location Locates the device RATP cost=0, acc=5, bat=1

 geographically Local component
using the builtin
GPS

 cost=0, acc=7 if GPS
signal, 0 otherwise,
bat=3

Map Provides a map of a limited RATP basic cost=0, det=1, bat=2

RATP detailed cost=5, det=9, bat=4 area
3rd party cost=9, det=9, bat=4

RATP basic cost=0, rel=1, bat=1 Route Computes best route and
estimated travel time

RATP reliable cost=5, rel=7, bat=1

Table 3. Some alternative configurations and utilities of the TravelAssistant

 Configuration Utility
Location Map Route Scene 1 Scene 4 Scene6
RATP RATP detailed RATP reliable 0,64 - -
RATP 3rd party RATP reliable 0,56 0,56 0,56
builtinGPS 3rd party RATP reliable - - 0,58

 MUSIC: Middleware Support for Self-Adaptation 179

The InstantSocial application appears to the user as a centralized application, while
under the hood, each user runs its own IS instance in its own adaptation domain. The
multi-user behavior emerges from the interactions among the IS instances services—
i.e., each IS instance offers services and uses services offered by the others. The util-
ity function determines the composition and behavior of an individual instance de-
pending on the local resource situation and the QoS of the used services, and therefore
indirectly also on the composition and resource situation of the other instances. Thus,
the user-visible shape of InstantSocial appears according to size and quality of the
instances in the collection.

The composition of IS describes three roles: browser proxy (BP), presentation (P),
and content repository (CR). The content repository component is responsible for
maintaining an inventory of available content in all the participating devices and pro-
viding access to it. CR instances act both as consumers and providers of the member-
ship service. When a new CR instance is created, it will use the membership service
provided by an existing instance to become included in the common distributed con-
tent repository, and later it may provide this service to another new instance. CR in-
stances also implement partial replication of content to ensure a certain stability of the
federated repository even if participants leave. Presentation components monitor the
content repository in order to find relevant content elements, according to user prefer-
ences. They present lists of relevant contents and selected content elements to the BP
component. Browser proxy components execute as demons and invoke the built-in
browser to present the user interface when InstantSocial is in the foreground.

7 Related Work

Adaptive Service Grids (ASG) [26] and VieDAME [27] are initiatives enabling dy-
namic compositions and bindings of services for provisioning adaptive services. In
particular, ASG proposes a sophisticated and adaptive delivery lifecycle composed of
three sub-cycles: planning, binding, and enactment. The entry point of this delivery
lifecycle is a semantic service request, which consists of a description of what will be
achieved and not which concrete service has to be executed. VieDAME proposes a
monitoring system that observes the efficiency of BPEL processes and performs ser-
vice replacement automatically upon performance degradation. Compared to our
planning-based middleware, ASG and VieDAME focuse only on the planning per
request of service compositions with regards to the properties defined in the semantic
service request. Thus, both approaches do not support a uniform planning of both
components and services as our planning-based framework for ubiquitous applica-
tions does. However, our planning-based middleware can be extended to integrate
ASG and VieDAME adaptive services and thus support the dynamic enactment of
service workflows.

Menasce and Dubey [28] propose a QoS brokering approach in SOA. Consumers
request services from a QoS broker, which selects a service provider that maximizes
the consumer’s utility function with regards to its cost constraint. The approach as-
sumes that service providers register with the broker by providing service demands
for each of the resources used by the provided services as well as cost functions for
each service. The QoS broker uses analytic queuing models to predict the QoS values

180 R. Rouvoy et al.

of the various services that could be selected under varying workload conditions. This
approach is of interest both from the viewpoint of a consumer and a provider. While
the client is relieved from performing service discovery and negotiation, the provider
is given support for QoS management. This approach, however, requires the client
device to be able to access the broker, which might not be possible in ubiquitous envi-
ronments. Our approach differs in that we consider the offered properties as alterna-
tives to determine the best application configuration and allow the client to adapt to
the service landscape.

CARISMA is a mobile peer-to-peer middleware exploiting the principle of reflec-
tion to support the construction of context-aware adaptive applications [29]. Services
and adaptation policies are installed and uninstalled on the fly. CARISMA can auto-
matically trigger the adaptation of the deployed applications whenever detecting con-
text changes. CARISMA uses utility functions to select application profiles, which are
used to select the appropriate action for a particular context event. If there are con-
flicting application profiles, then CARISMA proceeds to an auction-like procedure to
resolve (both local and distributed) conflicts. Contrary to MUSIC, CARISMA does
not deal with the discovery of remote services that can trigger application reconfigu-
rations. However, the auction-like procedure used by CARISMA could be integrated
in the MUSIC middleware as a particular negotiation protocol.

The conceptual models of both SeCSE (http://secse.eng.it) and PLASTIC
(http://www.ist-plastic.org) focus on service-oriented systems. Inspired by
the SeCSE model, the PLASTIC model extends it by introducing new concepts, such
as context, location, and service level agreements. The MUSIC and the PLASTIC
model have in common that both combine SOA and component-based software de-
velopment. However, the MUSIC conceptual model uses a component-centric ap-
proach, while the PLASTIC model uses a service-centric approach.

Finally, R-OSGi extends OSGi with a transparent distribution support [30] and uses
jSLP to publish and discover services [22]. The communication between a local ser-
vice proxy and the associated service skeleton is message-based, while different
communication protocols (e.g., TCP or HTTP) can be dynamically plugged in. In
contrast to R-OSGi, the discovery and binding frameworks of MUSIC are open to
support a larger range of discovery and communication protocols.

8 Conclusion and Perspectives

In this paper we have introduced the design of a QoS-driven generic planning frame-
work for self-adaptive mobile applications, which seamlessly supports and blends
component-based and service-based configurations. In particular, we have shown that
the framework is able to adapt to changes in a landscape of ubiquitous remote ser-
vices that dynamically come and go, and where the offered service qualities vary. The
framework exploits these changes to maximize the overall utility of applications. To
that aim, the paper has shown how the planning middleware discovers remote services
and evaluates them as alternative providers for the functionalities required by an ap-
plication. The planning framework deals directly with SLA protocols supported by
the services to negotiate the best QoS for the end-user. The current MUSIC platform

 MUSIC: Middleware Support for Self-Adaptation 181

has already implemented the binding and discovery of services with a range of well-
known technologies, while the SLA support is currently under development.

As a preliminary validation of our approach, the paper also explained how the
planning framework handles a use case in which the TravelAssistant and the Instant-
Social applications of a mobile user exploit ubiquitous services, such as location,
map, and content services, to improve their utility whenever such services become
available. The TravelAssistant has successfully validated the service binding and
discovery, and will be enhanced in future releases. InstantSocial will be developed by
the end of the MUSIC project (http://www.ist-music.eu).

Acknowledgements. We would like to thank our partners of the MUSIC project for
valuable comments. This work was partly funded by the European Commission
through the project MUSIC (EU IST 035166).

References

1. Mascolo, C., Capra, L., Emmerich, W.: Mobile Computing Middleware. In: Gregori, E.,
Anastasi, G., Basagni, S. (eds.) NETWORKING 2002. LNCS, vol. 2497, pp. 20–58.
Springer, Heidelberg (2002)

2. Rouvoy, R., et al.: Composing Components and Services using a Planning-based Adapta-
tion Middleware. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 52–67.
Springer, Heidelberg (2008)

3. Geihs, K., et al.: A comprehensive solution for application-level adaptation. Software:
Practice and Experience (2008)

4. Brataas, G., et al.: Scalability of Decision Models for Dynamic Product Lines. In: Int.
Work. on Dynamic Software Product Line, DSPL (2007)

5. Floch, J., et al.: Using Architecture Models for Runtime Adaptability. IEEE Soft-
ware 23(2) (2006)

6. Lundesgaard, S.A., et al.: Construction and Execution of Adaptable Applications Using an
Aspect-Oriented and Model Driven Approach. In: Indulska, J., Raymond, K. (eds.) DAIS
2007. LNCS, vol. 4531, pp. 76–89. Springer, Heidelberg (2007)

7. Khan, M.U., Reichle, R., Geihs, K.: Architectural Constraints in the Model-Driven Devel-
opment of Self-Adaptive Applications. IEEE Distributed Systems Online 9(7) (2008)

8. Fraga, L., Hallsteinsen, S., Scholz, U.: InstantSocial – Implementing a Distributed Mobile
Multi-user Application with Adaptation Middleware. EASST Communications 11 (2008)

9. Baida, Z., et al.: A shared service terminology for online service provisioning. In: 6th Int.
Conf. on Electronic commerce (2004)

10. Sassen, A., Macmillan, C.: The service engineering area: An overview of its current state
and a vision of its future. European Commission. Network and Communication Technolo-
gies, Software Technologies (2005)

11. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Englewood Cliffs (2006)

12. Dan, A., Ludwig, H., Pacifici, G.: Web service differentiation with service level agree-
ments. IBM White Paper (2003)

13. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement), Open Grid
Forum Recommended Specification (2005)

182 R. Rouvoy et al.

14. Flores-Cortés, C.A., Blair, G.S., Grace, P.: An Adaptive Middleware to Overcome Service
Discovery Heterogeneity in Mobile Ad Hoc Environments. IEEE Distributed Systems
Online 8(7) (2007)

15. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management 11(1) (2003)

16. Morgan, G., et al.: Monitoring Middleware for Service Level Agreements in Heterogene-
ous Environments. In: 5th Int. Conf. on e-Commerce, e-Business, and e-Government
(I3E), Poznan, Poland, vol. 189 (2005)

17. Dedecker, J., et al.: Ambient-Oriented Programming. In: Companion of the 20th Ann.
Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA) (2005)

18. Rellermeyer, J.S., Alonso, G.: Concierge: a service platform for resource-constrained de-
vices. In: 2nd Eur. Conf. on Computer Systems (EuroSys). ACM, New York (2007)

19. JCP. OSGi Mobile Specification (JSR-232),
http://jcp.org/en/jsr/detail?id=232

20. Eclipse. Embedded Rich Client Platform, http://www.eclipse.org/ercp
21. Sprint. Sprint Titan, https://developer.sprint.com
22. Rellermeyer, J.S., Kuppe, M.A.: jSLP, http://jslp.sourceforge.net
23. Demuru, M., Furfari, F., Lenzi, S.: DomoWare, http://domoware.isti.cnr.it
24. Equinox. OSGi HTTP Server,

http://www.eclipse.org/equinox/server/http_in_equinox.php
25. Baliuka, J., et al.: Code Generation Library (CGLIB),

http://cglib.sourceforge.net
26. Kuropka, D., Weske, M.: Implementing a Semantic Service Provision Platform — Con-

cepts and Experiences. Wirtschaftsinformatik Journal (1), 16–24 (2008)
27. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for

WS-BPEL. In: 17th Int. Conf. on World Wide Web (WWW). ACM, New York (2008)
28. Menasce, D., Dubey, V.: Utility-based QoS Brokering in Service Oriented Architectures.

In: Int. Conf. on Web Services (ICWS) (2007)
29. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective Middle-

ware System for Mobile Applications. IEEE Trans. on Software Engineering 29(10)
(2003)

30. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications Through
Software Modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007.
LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

Using Architecture Models to Support the Generation
and Operation of Component-Based Adaptive Systems�

Nelly Bencomo and Gordon Blair

Computing Department, InfoLab21,
Lancaster University, LA1 4WA, United Kingdom

Abstract. Modelling architectural information is particularly important because
of the acknowledged crucial role of software architecture in raising the level of
abstraction during development. In the MDE area, the level of abstraction of mod-
els has frequently been related to low-level design concepts. However, model-
driven techniques can be further exploited to model software artefacts that take
into account the architecture of the system and its changes according to vari-
ations of the environment. In this paper, we propose model-driven techniques
and dynamic variability as concepts useful for modelling the dynamic fluctua-
tion of the environment and its impact on the architecture. Using the mappings
from the models to implementation, generative techniques allow the (semi) au-
tomatic generation of artefacts making the process more efficient and promoting
software reuse. The automatic generation of configurations and reconfigurations
from models provides the basis for safer execution. The architectural perspective
offered by the models shift focus away from implementation details to the whole
view of the system and its runtime change promoting high-level analysis.

Keywords: software architecture, dynamic adaptation, model-driven engineer-
ing, middleware, dynamic variability.

1 Introduction

Adaptability is an increasingly important requirement for many applications, in par-
ticular those deployed in dynamically changing environments such as environmental
monitoring and disaster management [15, 29]. A well established approach to enable
adaptation is to use the support of middleware platforms [8, 9, 24]. Such configurable
and reconfigurable middleware platforms are ideally situated to monitor changes, and
manage individual adaptations. The primary role of middleware platforms is to ease
the development and operation of distributed applications. The approach allows the ap-
plication developers and domain experts to focus on the application logic, rather than
complex runtime, adaptation concerns that the middleware platforms deal with.

Making simpler the development of distributed applications by loading the middle-
ware platform with distribution and runtime concerns causes that development of these
platforms require highly technical knowledgable developers. Therefore, middleware de-
velopers need to work at very low levels of abstraction. Hence, the development of

� This work was partially funded by the Divergent Grid project, an ESPRC funded project and
the DiVA project (EU FP7 STREP).

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 183–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

184 N. Bencomo and G. Blair

components and planning of configurations and reconfigurations involve a large num-
ber of variability decisions related to fluctuations of the environment. These decisions
are frequently implemented using programming environments and tools with low lev-
els of abstraction (i.e. using constructions offered by programming languages like C++
and Java). The above results in a gap between the way application developers, domain
experts and middleware developers operate. Furthermore, the development process fre-
quently uses repeated ad-hoc solutions that many times are carried out manually.

The above reveals the need for both new software development approaches and op-
erational paradigms. These approaches and paradigms should be able to (i) promote the
overall view of the system that domain experts and application developers need when
planning the adaptation logic, and at the same time (ii) deal with the levels of detailed
and technical knowledge required by middleware developers, (iii) bridge the gap in be-
tween the different levels of abstraction of (i) and (ii), and (iv) be more systematic and
efficient, exploiting software reuse whenever possible. The approach presented in this
paper is aiming to address these issues.

Modelling architectural information is particularly important in this context because
of the crucial role of software architecture in raising the level of abstraction during
development. Such a fundamental role is repeatedly emphasized by the numerous def-
initions of software architecture [2, 11, 17, 26, 27]. For example, according to Oreizy
et all [33] “a software architecture represents software system structure at a high level
of abstraction, and in a form that makes it amenable to analysis, refinement, and other
engineering concerns”. This definition is particularly relevant because it also highlights
the opportunities for high-level analysis provided by architectural descriptions [17].
The importance of architecture has been recently revisited in the Future of Software
Engineering session at ICSE 2007 [25, 38].

The authors argue that MDE and generative software development [13] help to pro-
duce new development paradigms to support the life cycle of flexible and dynamically
configurable middleware platforms. In the MDE area, research has focused mainly on
using models during the phases before execution (i.e. design, implementation and de-
ployment) with emphasis on the generation of software artefacts to be used in those
phases (e.g. source code or deployment descriptors) [1, 20]. Moreover, abstractions
used for model-based transformations have frequently been related to low level design
concepts. Abstractions can also be related to the support for dynamic management and
evolution of software [16]. In this sense, model-driven techniques can be used to model
software artefacts that take into account the architecture (i.e. high-level structural orga-
nization) of the system and its changes according to the fluctuation of the environment.

We propose an approach called Genie. Genie uses domain-specific modelling and
dynamic variability (i.e. variability that needs to be solved at runtime) as relevant con-
cepts for the construction of models of the dynamic fluctuation of the environment and
contexts, and their impact on the variation of the architecture of the middleware and
applications during execution. Genie offers management of dynamic variability dur-
ing development and allows the systematic generation of middleware related artefacts
from high level descriptions (models). To this end, two kinds of dynamic variability are
identified, namely structural variability and environment and context variability. Us-
ing the mappings from the models to implementation artefacts, generative techniques

Generation and Operation of Component-Based Adaptive Systems 185

will allow the (semi) automatic generation of implementation artefacts making the pro-
cess more efficient and promoting software reuse. The authors argue that generating
the code associated with configurations and reconfigurations directly from the models
provides the basis for defining safer execution by reducing coding errors. The architec-
tural view offered by the models improves high-level analysis shifting focus away from
implementation details to the whole view of the system and its runtime change.

The remainder of this paper concentrates on the conception, design, and application
of the approach proposed. Section 2 discusses the case of dynamic variability for adap-
tive systems. Section 3 describes the Genie approach in detail. Section 4 discusses the
application of the approach in a specific real case study, the development and operation
of an adaptive flood warning system. Finally, Sections 6 and 7 present some related
work and conclusions respectively.

2 Dynamic Variability

2.1 Overview

One of the reasons for software variability is to delay design decisions [37]. Instead
of deciding on what system to develop in advance, a set of components and a com-
mon system family (reference architecture) are specified and implemented during a
process called domain engineering [13]. Later on, during application engineering, spe-
cific systems are developed to satisfy the requirements reusing the components and
architecture. Variability is expressed in the form of variation points. A variation point
denotes a particular location in a software-based system where decisions are made to
express the selected variant [37]. Eventually, one of the variants should be chosen to be
achieved or implemented. The time when it is done is called binding time. Traditionally,
decisions have been deferred to architecture design, implementation, compilation, link-
ing, and deployment as shown in [7, 13, 28, 31, 37]. Currently the aim is to postpone
these decisions to even later points in time to allow dynamic variability at runtime. This
raises several research challenges, such as their impact in the ongoing architecture of
the system and the management of variabilities in dynamically adaptive systems. These
challenges are further discussed in the next section.

2.2 Dynamic Variability in Adaptive Systems

A dynamically adaptive system operates in an environment that imposes changing con-
texts and requirements. The challenge comes from the need to support adaptation or
customization of the system according to the needs of the fluctuating environment. The
conditions associated with the adaptations may not be completely known before instal-
lation of the system. These conditions are related to:

(i) Environment or context variability: the evolution of the environment often cannot
be completely predicted during development; therefore the total range of contexts and
requirements may be unknown before the system is installed to start execution.

(ii) Structural or architectural variability: this covers the variety of components and
the variety of their configurations (architecture). This is a consequence of the envi-
ronmental variability explained above. In order to satisfy the set of requirements for the

186 N. Bencomo and G. Blair

Fig. 1. Dynamic Variability Dimensions

new context, the running system may dynamically add new components or rearrange the
current structural configuration (architectural reorganization). Hence, solutions cannot
be restricted to a set of known-in-advance configurations and components. New sets of
components may be added during execution (see Figure 1).

The system should be prepared to deal with the two dimensions of variability de-
scribed above. Under new contexts, the system must be prepared to discover and include
new components to meet new requirements or simply to improve the current state of
the system when new components become available [36] and according to some quality
of service (QoS) properties. Solutions to manage the latter structural variability can-
not be just the traditional component replacements and/or specializations, but decisions
should involve more powerful mechanisms able to manage whole sets of components,
their connections and semantics (architecture). Moreover, the correct match between
the architectural changes and the environmental context should be maintained.

2.3 Architectural Reorganization Supported by Middleware Platforms

At Lancaster University, we have gained experience developing adaptive systems and
middleware platforms using component frameworks and reflective technologies [12].
We use of component frameworks and reflection as flexible mechanisms for support-
ing runtime variability of dynamically extensible systems. Component frameworks are
collections of components that address a specific area of concern and accept “plug-
in” components that add or extend behaviour [12]. Reflective capabilities support in-
trospection to observe and reason about the state of the system to make decisions on
architectural reconfigurations. Adaptive behavior is defined by sets of reconfiguration
policies. These policies are of the form on-event-do-actions and actions are architec-
tural changes using the component frameworks. During runtime, a context engine re-
ceives relevant environmental events that are employed to identify the reconfiguration
policy to be used. Crucially, component frameworks offer the medium to provide ar-
chitectural variability. Furthermore, reflective capabilities offer the potential to reason

Generation and Operation of Component-Based Adaptive Systems 187

about the possible variation points and their variants during execution. The support
offered by the middleware platforms provides the technique to implement variability
called infrastructure-centered architecture [37]. When using this technique, connec-
tions between components are treated as first-class entities. This means that required
interfaces of components are not hard-coded. Dynamic replacement of a component
in the architecture or indeed dynamic reorganization of the architecture is eased if the
architecture and the location where such modifications could be carried out is made
explicit. “Used correctly, this technique yields perhaps the most dynamic of all archi-
tectures” [37]. The next section elaborates how the middleware platforms act as the
reconfiguration framework and introduces the approach proposed. The approach lever-
ages the middleware platforms to guide the domain experts and developers during the
modelling and generation of software artefacts, and during the operation of middleware
platforms and applications. This is a key assumption that the underlying middleware
platform ensures consistency and integrity using change transactions [12].

3 The Genie Approach

3.1 Overview

The proposed approach is called Genie. Genie uses domain specific languages (DSLs)
for the construction of the models associated with both the structural (architectural) and
the environment variability. Using models and generative techniques, software artefacts
can be generated more efficiently. Supported by the middleware platforms, applications
can be dynamically reconfigured from one structural variant to another according to
changes in the context or environment. The system monitors specific properties of the
runtime environment and reacts to given changes while keeping a valid architecture.
The system is able to decide what kind of architectural reorganization (reconfiguration)
has to be performed, if any.

To model the adaptive behaviour described above it is necessary to define what adap-
tation means in terms of configurations (architecture) and conditions:

An adaptation is defined in the scope of this research as the process of having the
system transforming itself from a given configuration Ci to another configuration Cj
given the set of conditions Tk.

The set of conditions correspond to variants of the context and environment variabil-
ity and the configurations (components and connections) correspond to variants dictated
by the architectural and structural variability. The next section describes the proposed
approach.

3.2 Description of the Genie Approach

The Genie approach allows the use of DSLs to specify:

i. the structural variability. The DSL associated with the structural variability al-
lows the modelling of the component configurations to be expressed in terms of
the architecture dictated by component frameworks. The modelling elements to be
used are generic architectural elements such as components, required and offered
interfaces, and bindings.

188 N. Bencomo and G. Blair

ii. the environment and context variability. The transition diagram DSL is used to
specify the conditions that represent the dynamic nature of the environment and
context. Basically, this DSL is used to specify adaptations of the form described
above: from the configuration Ci and on the set of conditions Tk, go to configuration
Cj. These models are in essence transition diagrams.

Using generators capable of traversing the models created with the DSLs and their trace
relationships, different software artefacts can be generated:

iii. components and configurations of components associated with the component
frameworks are generated from the structural variability models. The constraints
specified by the component frameworks are captured in the models to allow vali-
dation of the configurations and ensure consistency of the resultant artefacts. The
middleware platforms allow the newly generated components and component con-
figurations to be added during the execution of the system.

iv. reconfiguration policies are generated from the transition models. As in (iii), val-
idation of the diagrams should be performed to avoid inconsistencies. The middle-
ware platforms allow the generated policies to be inserted during execution. The
newly added reconfiguration policies are used as long as the “new” component(s)
or component configuration(s) for the right match are also provided.

3.3 Levels of Abstraction

An overview of the different levels of abstraction promoted by Genie is given in
Figure 2. The figure shows the specific artefacts that populate the layers which cor-
respond to different levels of abstraction (abstraction levels are raised from bottom
to top).

(1) The first level at the bottom is populated by different software artefacts like source
code, XML configuration files describing the different configurations associated with
component frameworks, and the XML files of reconfiguration policies.

(2) The second level corresponds to the architectural models associated with struc-
tural variability, i.e. the models of component frameworks and their components and
configurations. These models offer visual representations of the component configura-
tions, their components and interfaces.

(3) The third level at the top corresponds to the environment and context variability.
Here the developer plans the adaptations based on transition diagrams. At this level the
developer reasons in terms of structural variants (associated with specific domains of
concern) and conditions of the environment that trigger the reconfigurations.

The first and second levels are similar to existing approaches using architecture de-
scription languages (ADLs) and offering tool chain support for the development of
component-based systems. Actually, the DSL associated with the structural variability
can be considered as an ADL with generative capabilities. The major contribution of
the Genie approach is the support to high level analysis and automation provided by
level 3 and its relationships with the other two levels.

Each node in the transition diagrams of level 3 is considered as a structural variant
of the system. Structural variants are “coarser grain” configurations than configurations

Generation and Operation of Component-Based Adaptive Systems 189

Fig. 2. Different levels of abstraction supported by Genie

associated with individual component frameworks in the sense that they are described by
a set (or n-tuple) of component frameworks. Structural variants can be seen as configura-
tions of component frameworks. The set of component frameworks are associated with
the problem domain. Thus, for example, if the problem domain identified requires archi-
tectural changes (in terms of reconfiguration) of the routing protocols and the topology
of nodes in a sensor network, the component frameworks to be used in each structural
variant should represent concepts associated with routing protocols and topologies of
nodes. The proposed approach aims then at partitioning each structural variant into a set
of specialized and focused domains of concern.

Figure 2 shows the trace relationships between the levels. At the top, each structural
variant has the references to both the related component frameworks in level 2 and the
files of reconfiguration policies in level 1. The component frameworks in level 2 make
reference to the files associated with the configuration files. In turn, the reconfiguration
files point to the executable code associated with the components. In the example of
Figure 2, each structural variant of the transition diagram is described in terms of two
component frameworks (the Spanning Tree component framework for routing protocols
and the Network component framework) that opportunistically correspond to the case
study described in the next section. From the initial architecture (configuration) the
system will evolve over time according to the conditions of the environment specified
in the arcs of the diagrams. The places where the architecture can be changed and the
consequences of the changes will be driven by the transition diagrams.

The use of DSLs in the approach described above promotes higher levels of abstrac-
tion beyond programming and code. The benefits from raising the levels of abstraction

190 N. Bencomo and G. Blair

using models is twofold. First, automation levels are improved as the models allow the
specification and application of repetitive patterns that are used in the generation of
software artefacts. As a result software reuse is encouraged. Second, the gap between
the way requirements engineers, domain experts, software architects and programmers
operate is reduced, thereby promoting their joint collaboration as shown in [21]. Fur-
thermore, the use of generative techniques increases the levels of efficiency and automa-
tion. The approach can be applied using different middleware platforms that work with
concepts of components and component frameworks like in the case of OpenCOM or
Fractal as reported in [3] and [30].

Next section discusses the application of the approach in the specific case of the
development and operation of an adaptive flood warning system [23]. The approach
has also been applied in the context of dynamic service discovery scenarios for mobile
applications with results reported in [3].

4 Case Study: A Wireless Sensor Network for Flood Management

4.1 Overview

The Genie tool is the implementation of the Genie approach for the case of the Open-
COM based middleware platforms at Lancaster University and is described in detail in
[3, 5]. The DSL associated with the structural variability is called the OpenCOM DSL
in the case of the Genie tool.

The use of the architectural models supported by Genie and its tool is explained
using the case study GridStix [23]. GridStix is a wireless sensor network for flood
management that has been deployed in prototype form on the flood plain of the River
Ribble in North Yorkshire, England. About 15 nodes have been deployed. Sensors route
the data collected in real-time using a spanning tree topology to one or more designated
root nodes. From these nodes, the data is forwarded (via General Packet Radio Service,
GPRS) to a prediction model that runs on a remote computational cluster. Each sensor
node includes a 400MHz XScale CPU, 64MB of RAM, 16MB of flash memory, and
Bluetooth and WiFi Networks. The designated root nodes are also equipped with GPRS.
Each GridStix is powered by a 4 watt solar array and a 12V 10Ah battery. Linux 2.6
and the Java virtual machine 1.4 are used in contrast to conventional sensor network
deployments, where sensors are simply responsible for transmitting sensor data off-
site. This deployment permits the use of local processing. Local processing supports
computation for the local prediction of future environmental conditions.

Level 3 of Figure 2 shows the transition diagram that guides the reconfiguration and
adaptation process of GridStix. Three possible states were identified: Normal, Alert, and
Emergency. Each state of the system has a specific structural (architectural) variant. The
problem domain identified requires structural changes (in terms of reconfiguration) of
the routing algorithms and the networks interfaces to be used in the sensor network.
The component frameworks to be used in each structural variant represent concepts
associated with the overlays component framework, specifically the Spanning Tree and
the Network framework.

The Spanning Tree component framework supports the routing algorithm that has
two possible variants: Shortest Path (SP) and Fewest Hop (FH). The Spanning Tree

Generation and Operation of Component-Based Adaptive Systems 191

Fig. 3. Overlays Pattern Architecture

component framework and its variants follow the overlay pattern architecture (control,
forward, and state). The overlays pattern is shown in Figure 3. This is part of a more
generic pattern that allows the overlay of individual plug-ins to be inserted into com-
ponent frameworks. As such, the reuse of architecture design is one of its main contri-
butions. The use of models to generate artefacts further exploits this contribution. The
second one, the Network component framework, describes the type of network to be
used and offers two possible variants: BlueTooth(BT) and WiFi.

The 2-tuples associated with the structural variants used in the case study are (SP,BT),
(SP,WiFi), and (FH,WiFi) and correspond with the three possible states identified above.
Figures 4 and 5 show the Shortest Path variant and WiFi variant models developed with
the Genie tool respectively.

The system will evolve over time according to changes in the conditions of the en-
vironment specified in the arcs of the diagrams. The places where the architecture can
be changed and the consequences of the changes will be driven by the transition dia-
grams. How different variants of these component frameworks are chosen will depend
on the possible multiple variations of conditions in the environment and context. This
variation is specified using the triggers associated with the transitions in the diagram
(i.e. arcs). Triggers of reconfiguration policies are specified in the arcs between states.
The number of transitions in the transition diagrams will depend on how adaptable the
system should be or is conceived.

Fig. 4. Shortest Path Variant for the Spanning Three component framework

192 N. Bencomo and G. Blair

Fig. 5. WiFi Variant for the Network component framework

According to the transition diagram in Figure 6, if the application is operating as Nor-
mal, and the prediction model of GridStix predicts an imminent flood (i.e. the FloodPre-
dicted monitoring condition is true), the nodes adapt to the Emergency state bypassing
the Alert state. This adaptation is effected by reconfiguring the Network to use WiFi
instead of BlueTooth, and the Spanning Tree to a Fewest Hop topology.

One of the advantages of using transition diagram models is that they offer a com-
plete view of the reconfiguration opportunities of the system offered to the user. The
architectural perspective offered by these models shift focus away from the source
code of isolated policies to the whole view of the reconfiguration opportunities and

Fig. 6. The transition diagram of the case study and three generated reconfiguration policies

Generation and Operation of Component-Based Adaptive Systems 193

the component frameworks involved. Different stakeholders can abstract away irrele-
vant implementation-related details and focus on the big picture: the system structure
and its runtime change. It should be contrasted with the partial view when working
with individual policies using traditional approaches. Figure 6 shows 3 examples of the
reconfiguration policies that are invoked when the specified monitoring conditions are
met. From this specific example, a total of 8 reconfiguration policies can be generated.
For readability purposes, the transition diagram proposed is simple, as the number of
policies increases rapidly with the number of triggers considered.

4.2 Orthogonal Variability Models

To complement the approach described above, the orthogonal variability models pro-
posed by Klaus Pohl et all [34] are used. An orthogonal variability model (OVM) de-
fines the variability of a system family in a separate model. It relates the variability
specified to other software development models such as component models in our case.
Figure 7 shows the variability diagrams used to model the variants in the case study. The
three structural variants, Normal, Alert, and Emergency are associated with the varia-
tion point VP:Flood App marked by (a). Each state variant of the graph is described
using two component frameworks, i.e. the Spanning Tree and the Network component
framework as seen above. The Spanning Tree and the Network component frameworks
have variation points associated themselves, marked by (b) and (c).

The OVM has mainly been used by developers to document variability. However,
in our work these variability models have been useful not just to document variability.

Fig. 7. Variability and Transition Diagrams

194 N. Bencomo and G. Blair

Particularly, OVMs have proofed to be useful (i) when traversing the models to gener-
ate the reconfiguration policies, (ii) to keep links to adaptation requirements (using goal
models) [21], and (iii) when managing the traceability relations between the structural
variants of the transition diagrams (level 3) and the component frameworks configura-
tions (level 2).

4.3 Artefacts Generated by the Genie Tool

The developer designs models to specify the components, component frameworks and
configurations, structural variants and the transition diagrams using the DSLs provided
by the Genie tool. Using generators that traverse these models, different software arte-
facts of level 1 can be generated (see Figure 8).

From the models specified using the OpenCOM DSL the source code of compo-
nents and configurations of components associated with the component frameworks is
generated. Similarly, using the models associated with the transition diagrams, the re-
configuration policies are generated. To ensure consistency of the generated artefacts,
the constraints specified by the models are used to validate the configurations before
any generation is carried out. The middleware platforms enable extensibility and evo-
lution of the system allowing newly generated artefacts (e.g. components, component
configurations, and reconfiguration policies) to be added during the execution of the
system.

Fig. 8. Genie Models and Generated Artefacts

Generation and Operation of Component-Based Adaptive Systems 195

5 Discussion

In this section we discuss the novel contributions of our research and briefly describe
ongoing research that extends the Genie approach.

5.1 Contributions

Architectural changes take place according to environment variations and following the
adaptation policies. With Genie, new reconfiguration policies can be modeled and gen-
erated off-line while the system is running. Using the capabilities provided by the mid-
dleware platforms, the newly generated policies can also be added to the running system,
changing dynamically the behaviour of the system. The fact that these policies are ex-
plicitly modelled using the Genie approach improves the traceability during the software
development process. The overall view offered by the transition diagrams described
above contrasts with the partial text-based view offered by each reconfiguration policy.
Using only partial views makes it very probable that the developers ignore, or simply
lose sight of, important interdependency relationships. Overlooking dependencies can
cause failures and inconsistencies during execution. Identifying the source of the error
may require significant effort and time [3]. Genie promotes joint collaboration between
requirements engineers, domain experts, software architects, and developers [21]. Fur-
thermore, the proposed approach makes explicit the support the middleware platforms
provide in separating the system evolution and system adaptation as two simultaneous
processes in self-adaptive software [32]. System evolution ensures the consistent appli-
cation of change over time, and system adaptation focuses on “the cycle of detecting
changing circumstances and planning and deploying responsive modifications” [32].

5.2 Ongoing Research

Towards the Use of Models@run.time

We are already extending and improving the Genie approach. As explained above and
as Figure 6 shows, the generated policies mainly specify the trigger events and which
reconfiguration scripts have to be loaded to adapt the system from one configuration
(state) to another. These scripts are currently hand-written using the support offered by
the underlying middleware platforms.

The reconfiguration scripts can also be generated from the DSL-based models during
design-time or even at runtime. In the case of the dynamic generation during runtime
and when adaptations (transitions) are triggered, the current configuration and the target
configuration are compared. The comparison results in the identification of the compo-
nents that should be added or deleted and allows the dynamic generation of the corre-
sponding reconfiguration script. This solution is possible as we are able to maintain a
reference model at the meta-level of the reflective middleware platform. The reference
model represents the current system and the possible modified model that is the result
of the required adaptation (both models are supplied by Genie). Partial results of such
ideas are already reported in [30]. This work opens some research questions as for ex-
ample: what is the correct order of the deletion and incorporation of components during

196 N. Bencomo and G. Blair

Fig. 9. Genie Models and Generated Artefacts

the reconfiguration process, or what is the impact on the performance of the application.
This research is being carried out in the scope of the STREP European project DiVA
[14] (work package diva@run.time) and the research topic Models@run.time [4].

Goal-Driven Requirements

Genie is complemented by the approach Levels of RE for Modeling (LoREM) [21].
LoREM is a goal-driven requirements approach that supports the formulation of the
requirements of dynamically adaptive systems helping the analyst to understand the
characteristics of the operational environment and the adaptation scenarios that the sys-
tem can go through. The goal models in LoREM are in a fourth abstraction level and
are used to derive the DSL-based models used in Genie. At the bottom, the middleware
platform underpins the reorganization of the ongoing architecture at runtime providing
support as the requirements imposed by the environment change, see Figure 9. Partial
results applied to GridStix can be found in [21].

6 Related Work

Research work by Floch et all [15] on the use of architecture models for runtime adapt-
ability, shares the basic principles of our approach as for example the use of component
frameworks to support variability. They also take into account the benefits of coarse-
grained variability mechanisms. However our approach is more general as their focus
is only on mobile computing applications. Sora et all [36] also use architecture-based
abstractions for what they call self-customizable system. They composable components

Generation and Operation of Component-Based Adaptive Systems 197

which are similar to our component frameworks. They apply recursive composition ac-
cording to external requirements using ADLs what can be to some extent equivalent to
our reconfiguration policies. However, they do not offer reflection capabilities, i.e their
systems cannot reason about the current state or configuration of the system. Reflec-
tion offers potential support to determine where the points for variation are, what the
possible set of variations are, or the state of the system at any point in time. However,
using reflection has some drawbacks as the effect on performance and integrity issues.
When developing reflective systems a trade-off between flexibility and performance
has to be studied and a rigorous system development has to be performed. Neither of
the solutions in [15] and [36] provides generative capabilities as we offer. In [21] we
explain how the policy mechanisms contribute to providing a clear trace from user re-
quirements to adaptation requirements [6] and their implementations. In this sense, the
research related to requirements-driven composition in [36] is similar to our research.

Many mechanisms for runtime variability management have been proposed. They are
mainly focused on exchange of runtime entities, parametrization, inheritance for spe-
cialization, and preprocessor directives [19, 35, 37]. Our approach proposes the model-
based architecture management for whole sets of components, their connections and
semantics (i.e. we offer a more coarse grained approach).

In [18], Garlan and Schmerl describe their research work on the use of system mon-
itoring and reflective capabilities using architectural models. Specifically, they describe
their approach to monitor the executing system to translate observed events to events
that construct and update an architectural model that reflects the actual running sys-
tem. The final goal is to compare the dynamically-determined model with the correct
architectural model. Garlan and Schmerl argument how inconsistencies found after the
comparison can be used to identify implementation errors, or, even possibly, to effect
runtime adaptations to correct certain type of faults. Different from Garlan and Schmerl,
we do not deal in this paper with the self-healing issues of adapted systems. Our focus
is first, to offer the overall view of the system that domain experts and developers need
when planning the adaptations and secondly, to bridge the gap in between the differ-
ent levels of abstraction used by domain experts and middleware developers. There are
different research projects on architecture-based dynamic adaptations that use ADLs
including the research by Garlan and Schmerl. As explained in Section 3.3, the DSL
associated with the structural variability in Genie can be considered as an ADL with
generative capabilities. A difference between our approach and other ADL-based ap-
proaches such as ArchWare, Rainbow, ArchStudio [17, 25, 38] is that our architectural
descriptions are always tied to a component framework. Component frameworks of-
fer the architectural principles and constrains that address a specific area of concern
(e.g. routing protocol or discovery service). Furthermore, in our case systems can be
assembled from component frameworks in a recursive way. A component plugged into
a component framework may be an atomic component, but it can also be a compound
component that is a component framework itself. The view provided by this recursivity
along with the domain oriented nature provided by component frameworks is different
from the often flat view offered by the research projects named above.

When performing dynamic reorganization of the architecture we ensure that updates
are completed atomically and do not impact the integrity of the network. To do this,

198 N. Bencomo and G. Blair

frameworks are placed in a quiescent state ensuring that the reconfiguration is complete
and correct. We are investigating the use of architectural patterns to drive the generation
of software artefacts related to safe reconfiguration at that level. In this sense the work
presented by Gomaa and Hussein [22] is relevant and complementary to our research.
Finally, we see potential use in combining our approach with the Fujaba project princi-
ples [10]. Fujaba supports gradual transitions from one configuration to another and the
specification of timing constraints. The principle of gradual transitions can improve the
prescriptive policies of our approach.

7 Conclusions and Future Work

This paper has presented an approach called Genie. The approach uses architecture
models to support the generation and operation of component-based adaptive systems.
We have identified two dimensions of dynamic variability namely architectural or
structural variability and environment and context variability. Genie supports the use
of domain-specific languages to specify and validate models based on abstractions of
the dynamic variability dimensions. Models describe the architecture of reconfigurable
applications and the conditions of the environment and context that trigger the recon-
figuration of the architecture. From the models, different software artefacts (e.g. com-
ponents configurations and reconfiguration policies) can be generated. These artifacts
can be dynamically added to the system during its execution using the middleware
platforms. Such artefacts support the dynamic architectural reorganization, runtime
decision-making and system adaptation mechanisms. Specifically, transition diagram
models allow the developer to work at higher levels of abstraction. An important con-
tribution of Genie is the overall view of the different problem domains and the whole
process of reconfiguration that the systems can undergo. The approach has been suc-
cessfully applied in two different case studies.

Substantial research remains to be done. For example, a concern is the combina-
torial explosion related to the number of reconfiguration paths in the reconfiguration
graphs and the number of adaptation policies). The number of reconfiguration paths in
the case study was manageable. However, it might not be the case for other domains.
Furthermore, even if the designer specifies the reconfiguration graphs at a high-level of
abstraction, the explosion of the number of configurations and transitions to be specified
is a potential problem. We are investigating how to dynamically generate the reconfig-
uration scripts and how to avoid the enumeration of all possible configurations. Partial
results are shown in [30].

References

1. Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Developing ap-
plications using model-driven design environments. IEEE Computer, 33–40 (2006)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley Professional, Reading (2003)

3. Bencomo, N.: Supporting the Modelling and Generation of Reflective Middleware Families
and Applications using Dynamic Variability. PhD thesis, Lancaster University (2008)

Generation and Operation of Component-Based Adaptive Systems 199

4. Bencomo, N., France, R., Blair, G.: 2nd international workshop on models@run.time. In:
Giese, H. (ed.) MODELS 2007. LNCS, vol. 5002, pp. 206–211. Springer, Heidelberg (2008)

5. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: Supporting the model
driven development of reflective, component-based adaptive systems. In: ICSE 2008 - For-
mal Research Demonstrations Track (2008)

6. Berry, D.M., Cheng, B.H.C., Zhang, P.J.: The four levels of requirements engineering for and
in dynamic adaptive systems. In: 11th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ 2005), Porto, Portugal (2005)

7. Beuche, D., Papajewski, H., Schröder-Preikschat, W.: Variability management with feature
models. Science of Computer Programming. Special issue: Software variability manage-
ment 53(3), 333–352 (2004)

8. Blair, G., Coulson, G., Robin, P., Papathomas, M.: An architecture for next generation mid-
dleware. In: Seitz, J., Davies, N.A.J., Raymond, K. (eds.) IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware 1998), The
Lake District, UK, pp. 91–206 (1998)

9. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal component
model and its support in java. Software: Practice and Experience 36(11), 1257–1284 (2006)

10. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The fujaba real-time tool suite:
model-driven development of safety-critical, real-time systems. In: ICSE (2005)

11. Clements, P., Kogut, P.: The software architecture renaissance. Crosstalk - The Journal of
Defense Software Engineering 7(11) (1994)

12. Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.: A generic
component model for building systems software. ACM Transactions on Computer Systems
(February 2008)

13. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and Applications.
Addison-Wesley, Reading (2000)

14. DiVA. Diva-dynamic variability in complex, adaptive systems (2008),
http://www.ict-diva.eu/

15. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using architecture
models for runtime adaptability. Software IEEE 23(2), 62–70 (2006)

16. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Briand, L., Wolf, A. (eds.) FoSE. IEEE-CS Press, Los Alamitos (2007)

17. Garlan, D.: Software Architecture: a Roadmap. ACM Press, New York (2000)
18. Garlan, D., Schmerl, B.: Using architectural models at runtime: Research challenges. In:

European Workshop on Software Architectures, St. Andrews, Scotland (2004)
19. Goedicke, M., Pohl, K., Zdun, U.: Domain-specific runtime variability in product line ar-

chitectures. In: 8th International Conference on Object-Oriented Information Systems, pp.
384–396 (2002)

20. Gokhale, A., Balasubramanian, K., Lu, T.: Cosmic: addressing crosscutting deployment and
configuration concerns of distributed real-time and embedded systems. In: OOPSLA 2004
Companion Book, NY, USA, pp. 218–219. ACM, New York (2004)

21. Goldsby, H.J., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.C.: Goal-based modeling
of dynamically adaptive system requirements. In: 15th Annual IEEE International Confer-
ence on the Engineering of Computer Based Systems (ECBS) (2008)

22. Gomaa, H., Hussein, M.: Model-based software design and adaptation. In: Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS 2007) (2007)

23. Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F., Smith, P., Beven, K.:
Gridstix: Supporting flood prediction using embedded hardware and next generation grid
middleware. In: 4th International Workshop on Mobile Distributed Computing (MDC 2006),
Niagara Falls, USA (2006)

http://www.ict-diva.eu/

200 N. Bencomo and G. Blair

24. Kon, F., Costa, F., Blair, G., Campbell, R.: The case for reflective middleware. Communica-
tions of the ACM 45(6), 33–38 (2002)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FoSE 2007:
2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society, Los Alamitos
(2007)

26. Kruchten, P., Thompson, C.: An object-oriented, distributed architecture for large scale ada
systems. In: Tri-Ada 1994, Baltimore, Maryland (1994)

27. Lawson, H., Kirova, V., Rossak, W.: A refinement of the ecbs architecture constituent. In: In-
ternational Symposium and Workshop on Systems Engineering of Computer Based Systems,
Tucson, Arizona (1995)

28. Lee, J., Muthig, D.: Feature-oriented variability management in product line engineering.
Communications of the ACM 49(12) (2006)

29. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive software.
IEEE Computer 37(7), 56–64 (2004)

30. Morin, B., Fleurey, F., Bencomo, N., Jezequel, J.-M., Solberg, A., Dehlen, V., Blair, G.: An
aspect-oriented and model-driven approach for managing dynamic variability. In: MODELS
2008 Conference, France (2008)

31. van Ommering, R.: Building Product Populations with Software Components. PhD Thesis.
PhD thesis, Rijksuniversiteits Groningen (2004)

32. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems and Their Applications 14(3), 54–62 (1999)

33. Oreizy, P., Rosenblum, D.S., Taylor, R.N.: On the role of connectors in modeling and im-
plementing software architectures. Technical Report 98-04, University of California, Irvine
(1998)

34. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering- Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

35. Posnak, E., Lavender, G.: An adaptive framework for developing multimedia. Communica-
tions ACM 40(10), 43–47 (1997)

36. Sora, I., Cretu, V., Verbaeten, P., Berbers, Y.: Managing variability of self-customizable sys-
tems through composable components. Software Process: Improvement and Practice 10(1),
77–95 (2005)

37. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Software: Practice and Experience 35(8), 705–754 (2005)

38. Taylor, R.N., van der Hoek, A.: Software design and architecture the once and future focus
of software engineering. In: International Conference on Software Engineering, ICSE 2007
(FoSE 2007) (2007)

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 201–222, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Model-Driven Assessment
of QoS-Aware Self-Adaptation

Vincenzo Grassi1, Raffaela Mirandola2, and Enrico Randazzo1

1 Dipartimento di Informatica, Sistemi e Produzione
Università di Roma “Tor Vergata”, Italy

vgrassi@info.uniroma2.it, randazzo@info.uniroma2.it
2 Politecnico di Milano, Italy

Dipartimento di Elettronica e Informazione
mirandola@elet.polimi.it

Abstract. One of the main goals of a self-adaptable software system is to meet the
required Quality of Service (QoS) by autonomously modifying its struc-
ture/behavior in response to changes in the supporting infrastructure and surround-
ing physical environment. A key issue in the design and development of such
system is the assessment of their effectiveness, both in terms of their ability to meet
the required QoS under different operating conditions, and in terms of the costs in-
volved by the reconfiguration process, which could outweigh the benefit of the re-
configuration. This paper introduces an approach to support this assessment, with a
focus on performance and dependability attributes. Our approach is based on the
idea of defining a model transformation chain that maps a “design oriented” model
of the system to an “analysis oriented” model that lends itself to the application of a
suitable analysis methodology. We identify some key concepts that should be pre-
sent in the design model of a dynamically adaptable system, and show how to de-
vise a transformation from such a model to a target analysis models, focusing in
particular on models of component or service oriented systems.

1 Introduction

Dynamic self-adaptation is becoming an important feature for software systems, due
to the emergence of more and more classes of applications that are highly complex
and distributed, and operate in heterogeneous and rapidly changing environments like
those from the mobile and pervasive computing domains [8,18,25,32]. Thanks to self-
adaptation, a software system can cope with changes in the execution environment by
modifying at runtime its behavior or structure.

Designing and maintaining such systems is a challenging task. A key issue to be
faced concerns the assessment of their effectiveness, in terms of the ability to meet
their functional and non-functional requirements. In particular, in the case of non-
functional requirements concerning the delivered quality of service (QoS), this as-
sessment should take into account the cost of the adaptation process itself. Adapting a
system can require time and system resources to be carried out, and this cost could
even outweigh the potential QoS benefit.

In this respect, our goal is to support the design and management of dynamically
adaptable software systems by means of the model-based analysis of their

202 V. Grassi, R. Mirandola, and E. Randazzo

effectiveness, focusing in particular on their ability to meet non-functional require-
ments concerning performance and dependability attributes.

Modeling frameworks for dynamically changing software systems have been al-
ready proposed. Some of them are mainly targeted to the analysis of functional re-
quirements [2,5,6,11,18,22], and hence are not suitable for the effectiveness analysis
of such systems with respect to performance or dependability, while others address
the analysis of non functional requirements and are hence closer to our goal [3,7].
However, existing frameworks do not always consider explicitly the modeling and
analysis of the tradeoff between the advantages and costs of the system adaptation.
Besides this, such frameworks are often based on formal notations and modeling prin-
ciples which are quite far from those used by software designers, thus making awk-
ward their integration in the design process.

In this paper we propose a comprehensive framework, where both the costs and
benefits of adaptation (in terms of its impact on performance or dependability) can be
properly modeled and analyzed. We also address the problem of how our modeling
approach can be actually integrated in the design process of a dynamically adaptable
system, leveraging ideas from the Model Driven Development (MDD) paradigm [4].

MDD typically focuses on a transformation path, supported by automatic transfor-
mation tools, from high level to platform specific models (up to the executable code)
of a software system [3,4,24]. The idea of exploiting MDD methodologies for QoS
assessment has emerged in recent years (see [10] for a review of these methods). In-
deed, the construction of a QoS analysis model can be seen as a special type of model
transformation whose source is a “design oriented” model of the system (produced
during the design process by the system designers), while the target is a suitable
“analysis oriented” model, which lends itself to the application of sound analysis
methodologies. Recently, Ardagna et al. [3] presented a conceptual map where differ-
ent methods and models are positioned in a general MDD framework.

One of the main motivations is that embedding within automatic model transfor-
mation tools relevant parts of the expertise required to build QoS analysis models
should facilitate the integration of QoS assessment in the design and development
process. Indeed, it should allow to quickly get QoS analysis results starting from the
available design artifacts, and should also facilitate the use of QoS analysis method-
ologies within design teams with little expertise in this field.

Existing MDD-based methodologies for the generation of QoS analysis models do
not consider the modeling of adaptable systems. Moreover, they often devise the
transformation path as a single step transformation from the source design oriented
model to the target analysis oriented model. This single step transformation could be
excessively complex, for several reasons: the large semantic gap between the source
and target models, the different notations that could be used in the source model, and
the different target notations one could be interested in, to support different kinds of
analysis (e.g. queueing networks, Markov processes).

To face these problems, we propose a two-step transformation path from design
oriented to analysis oriented models centered around the construction of a bridge
model expressed in a suitable intermediate modeling language.1 The goal is to split
into two parts the complex task of deriving an analysis model (e.g. a queueing

1 To better manage the process of devising each of these two basic steps, they could be further

decomposed into sub-steps.

 Model-Driven Assessment of QoS-Aware Self-Adaptation 203

network) from a high level design model (expressed using a design oriented notation,
e.g. UML):

1) extracting from the design model the information which may be relevant for the
analysis of performance or dependability attributes and expressing it in a bridge
model;

2) generating an analysis model based on the information expressed in the bridge
model.

To support this approach, the intermediate language we propose supports the ab-
stract and simplified representation of concepts we may expect be expressed in the
source design oriented model of an adaptable system.

The two parts of the proposed transformation path can be tackled independently of
each other, which makes simpler to deal with each of them. Moreover, a positive
consequence of this splitting centered around a bridge model is that it facilitates the
re-use of work already done for one of the two parts. Indeed, given a particular nota-
tion used for the design of adaptable systems (e.g. a notation based on a suitable cus-
tomization of UML [19]), the QoS assessment of models expressed in this notation
can take advantage of an already defined transformation from bridge models to some
kind of analysis model: what remains to be done is the (presumably) simpler trans-
formation from the source design model to the bridge model, rather than the more
complex thorough transformation from the source model to the analysis model. Simi-
larly, once a transformation from a specific kind of design model to the bridge model
has been defined, the set of QoS analysis methodologies that can be used (e.g., ana-
lytic, or simulation-based) can be extended by simply defining a new transformation
from the bridge model to a new kind of analysis model.

The use of bridge models expressed in some suitable intermediate language has
been already proposed in the literature to support the generation of analysis oriented
models from design oriented models [27,13]. However, as remarked above, also these
modeling frameworks only support the modeling of static systems.

This paper builds on and extends results presented in [12,13,14,15]. With respect
to [12,13,14], we extend the intermediate modeling language presented there with
new features aimed at modeling dynamically changing systems, and discuss how they
can be used for QoS assessment of such systems. We have presented in [15] a pre-
liminary version of this extension. Here, we improve and refine that extension, by
giving a more structured definition of the underlying modeling approach, and of the
overall transformation path.

The paper is organized as follows. In Section 2 we discuss the core concepts to be
considered in the modeling of a dynamically adaptable system. In Section 3, we deal
with the first part of the proposed transformation path. We present the intermediate
modeling language that represents the core element of our MDD-based approach, and
we show how this notation can be used to model the concepts highlighted in
Section 2. This discussion serves also as a guide for the definition of a mapping from
a source model expressed in some existing design oriented notation to a model ex-
pressed in the intermediate language. In Section 4, we deal with the second part of the
transformation path, by discussing the mapping of a model expressed in the interme-
diate language to a suitable analysis oriented model. Throughout Sections 2, 3 and 4,
we use a simple example of dynamically adaptable system to show the practical ap-
plication of the presented ideas. Finally, Section 5 concludes the paper.

204 V. Grassi, R. Mirandola, and E. Randazzo

2 Core Concepts for the Modeling of Dynamically Adaptable
Systems

In this section we identify some key concepts and features for dynamically adaptable
systems, which should be adequately represented in the source design oriented model
of the system, and then mapped onto the target analysis oriented model.

Before discussing this issue, we point out that we refer to systems that can be rep-
resented, at some suitable abstraction level, by a set of interacting components. As
environment of such systems we consider the resources of the platform where the
components are deployed, and the demand addressed to the system by external actors
(which may be humans, or other systems). Systems architected according to the com-
ponent-based or service-oriented paradigms belong to this category [9, 26].

Changes occurring in these systems may affect both the system architecture and its
environment. For the identification of key concepts concerning the modeling of these
changes, we refer to ideas and discussions about this issue appeared in the literature,
in particular those presented in [17] and [5,6].

Based on them, we group concepts for change modeling under two categories: the
type of change, and the change process that may affect an adaptable system, as de-
tailed below.

Type of change. First of all, we point out that an occurring change can be the cause
or the consequence of a system adaptation. In both cases, a modeling framework for
adaptable system should support the modeling of basic changes like the addi-
tion/removal of components and connectors. These basic changes can be considered
as an abstract representation of different kinds of changes which may occur in a sys-
tem (depending on which are the concrete entities modeled by the component and
connector concepts), for example:

- a change in the implementation of a software service by the dynamic binding of
its interface to a different implementation;

- a change in the logical interconnection among software modules;
- a change in the mapping of a software module to the underlying platform.

These changes correspond, respectively, to the three kinds of reconfiguration identi-
fied in [17], called, respectively, implementation, structural and geometric changes.

Besides the basic operations of adding/removing components and connectors, a
modeling framework for adaptable systems should also supports the representation of
complex change operations, obtained by the composition of basic operations using
constructs like sequencing, choice, iteration.

Another feature to be considered concerns the variability of architectural elements.
It refers to the possibility of modeling the dynamic extension of the set of compo-
nents/connectors belonging to a system, in opposition to having a fixed set of compo-
nents/connectors included in the system prior to runtime. The variability could also be
partial, where the available types for components and connectors are fixed, but new
instances can be dynamically created.

Change process. A modeling framework for adaptable systems should support the
modeling of the change initiation process, that is the occurrence of events which may

 Model-Driven Assessment of QoS-Aware Self-Adaptation 205

trigger an adaptive change. Such events can be asynchronous, when they occur asyn-
chronously with respect to the system control flow (e.g. changes occurring in the ap-
plication environment, like the addition/removal of resources or the variation in the
demand addressed to the system, or the failure of a resource), or synchronous, when
they occur synchronously with respect to the system control flow (e.g., the execution
of a given statement). Such events are called, respectively, external and internal
events in [5,6].

Another feature whose modeling should be possibly supported concerns the free-
dom degree in the selection of the change operation to be performed once an adaptive
change has been triggered. This freedom degree can range from a single pre-defined
adaptive change, to a constrained selection from a set of pre-defined changes, to an
unconstrained selection from an unlimited set of possible changes.

The concepts discussed above concerns, in a sense, “functional” aspects of an
adaptable system. Since we are interested in the effectiveness analysis of adaptive
systems with respect to performance and dependability requirements, a suitable mod-
eling framework should also support the representation of information about the
timing and failure characteristics of the activities occurring in the system. This infor-
mation should concern both the “normal” system activities and the activities related to
changes occurring in the system.

Finally, we point out that the clarity and maintainability of models developed
within a modeling framework may benefit from the framework ability in supporting a
separation of concerns approach, where the modeling of the normal system operations
can be kept separate from the modeling of the system changes.

2.1 An Example of Dynamically Adaptable System

This simple example will be used throughout the paper to show the application of the
proposed modeling framework. We consider a server that offers a service to its cli-
ents, giving guarantees about the performance levels of the delivered service. These
levels, and the related server and clients obligations and expectations are explicitly
stated in service level agreements (SLA) negotiated between the server and the cli-
ents. A suitable infrastructure is needed to check the fulfillment of what stated in the
SLA. In this example, it consists of a monitor component, which collects low-level
raw performance data, and a SLAchecker component, which processes and stores data
collected by the monitor, to calculate suitable high level indicators about the actual
service quality. Processing and storing these data are resource consuming activities. If
the SLAchecker is allocated on the same node of the server, they could negatively
affect the quality of the service itself, in particular when the server already works un-
der critical conditions (e.g. high load) [1]. To alleviate this problem, we could reduce
the monitoring activity, or move the SLAchecker to a remote node. However, reduc-
ing the monitoring activity could cause a non timely detection of SLA violations,
while processing and storing monitoring data on a remote node could cause a non
negligible network traffic. A possible architectural solution which tries to balance
these opposite issues consists of an adaptive SLA checking infrastructure which, ac-
cording to variations of the server load, reduces the monitoring activity and/or moves
the SLAchecker to a remote node when the server works under critical conditions,
while does the opposite when the server load is light.

206 V. Grassi, R. Mirandola, and E. Randazzo

With respect to the basic concepts discussed above, two kinds of change may occur
in this example system: an environment change (load variation), which may cause the
system adaptation, and a consequent adaptation change (variation of the SLAchecker
allocation and/or of the monitoring rate).

The initiation process corresponds to the occurrence of events (system load above
or below some given thresholds) triggering the adaptive change. These events are
asynchronous with respect to the system consisting of the server, monitor and SLA-
checker components, as they occur independently of the system operations.

Finally, we can note that in this example we are considering a constrained selection
among different adaptations, which differ for the load threshold that triggers the adap-
tation and for the adaptation action (variation of the SLAchecker allocation or of the
monitoring rate). In the following, for the sake of simplicity, we will consider only
adaptation actions based on the SLAchecker mobility.

The effectiveness of this adaptive system can be evaluated with respect to its abil-
ity in achieving a given performance goal under a variable server load. A possible
goal could consist in maintaining both the average server response time and the gen-
erated network traffic below given thresholds.

3 A Bridge Model between Design and Analysis Oriented Models
of Adaptable Systems

In this section, we discuss the first part of the model transformation path outlined in
the introduction. We define the intermediate language that plays a central role in our
approach, and we argue that a design model of an adaptable system can be suitably
mapped to a model expressed in this language.

The intermediate language we propose builds on a previously defined intermediate
language, called KLAPER (Kernel LAnguage for PErformance and Reliability analy-
sis) [13]), which was intended to support the generation of performance or depend-
ability models for “static” systems. To remark its derivation from KLAPER, and the
fact that it concerns the modeling of dynamically adaptable systems, we call the new
language D-KLAPER.

To take advantage of the current state of the art in the field of model transforma-
tion methodologies and tools, D-KLAPER is defined as a MOF (Meta-Object Facil-
ity) compliant metamodel, where MOF is the metamodeling framework proposed by
the Object Management Group (OMG) for the management of models and their trans-
formations within the MDD approach to software development [24].

We point out that D-KLAPER is not intended to be directly used by system de-
signers. Indeed, in the modeling framework we envisage, D-KLAPER plays a role
analogous to that played by the bytecode language in a Java environment. Hence, D-
KLAPER provides a purposely minimal set of elementary and abstract concepts and
notations. More expressive concepts and notations used by system designers to build
their models should then be mapped to D-KLAPER, with the support of automatic
model transformation tools. In particular, D-KLAPER is built around these two ele-
mentary abstract concepts:

• a software system (and its underlying platform) can be modeled as a set of re-
sources which offer and require services;

 Model-Driven Assessment of QoS-Aware Self-Adaptation 207

• a system change can be modeled by a change in the binding between offered and
required services.

Figures 1 and 2 show the structure of the D-KLAPER metamodel which expresses in
a more articulated way these basic concepts. We refer to [21] for the complete MOF
specification and an up-to-date view of its implementation status.

As shown in Figure 1, different sub-models concur to build a D-KLAPER model:

• System sub-model (corresponding to Resource and Service metaclasses): it pro-
vides an abstract representation of the software system and the part of its environment
consisting of the platform where it is deployed. This representation is based on the
consideration that systems are often structured according to a layered architecture,
where components at a given layer actually play the role of resources exploited by
upper layers; hence, this overall architecture is modeled as a set of Resources which
offer Services (services, in turn, may require the services of other resources to carry
out their own task). A D-KLAPER Resource is thus an abstract modeling concept
used to represent both software components and physical resources like processors
and communication links.

• Usage sub-model (corresponding to Workload metaclass): it models the part of
the system environment consisting of the demand arriving to the system from external
“users” (which may be human beings, or other systems), represented by a set of
Workloads.

• Trigger sub-model (corresponding to TriggerProcess metaclass): it models the
occurrence of events in the system and/or its environment, which may trigger an ad-
aptation, and is represented by a set of Trigger Processes. When a triggering event
occurs, the corresponding adaptation is modeled by the invocation of a suitable Adap-
tationService (see below).

• Adaptation sub-model (corresponding to AdaptationService metaclass): it models
the activities which implement a reconfiguration, whose goal is to adapt the system to
an occurred triggering event, and is represented by a set of Adaptation Services.

Behavior

0..1

Workload

Service

Resource

offeredService 1..*

KlaperModel

TriggerProcess AdaptationService

0..*

0..10..1

0..1

0..*0..*0..*

Fig. 1. The D-KLAPER MOF metamodel: overall system modeling

All the metaclasses belonging to these sub-models share the Behavior metaclass,
which provides a common representation for the dynamics of the activities occurring
within each submodel. As shown in Figure 2, a Behavior is modeled as a directed
graph of Steps. Each Step may be a:

• Activity step: it models an activity that may take time to be completed, and/or
which may fail before completion, thus providing the basic information for

208 V. Grassi, R. Mirandola, and E. Randazzo

Behavior

Step

1..*in 0..*

out 0..*

ServiceCall

Activity

Transition

Start End

Branch Fork Join

0..1

0..*

Acquire Release

nestedBehavior

0..*

ActualParam
0..*

{ordered}

Service

0..1

0..1 to

0..1 from

Control

0..*

Reconfig

CreateBinding

0..*

Binding

0..1

DeleteBinding
Resource

0..*

Fig. 2. The D-KLAPER MOF metamodel: behavior modeling

performance or dependability analysis. A special kind of Activity is a ServiceCall,
which models the request for the service provided by some Resource. A ServiceCall
may have Parameters, which provide the mean for an abstract representation of the
actual parameters that characterize the service requests addressed to some hardware
or software resource. The relationship between a ServiceCall and the actual recipient
of the call is represented by means of instances of the Binding metaclass.

• Control step: it models transition rules from step to step, like a branch or a
fork/join.

• Reconfiguration step: it models a basic change operation, corresponding in D-
KLAPER to the addition or removal of a Binding between a ServiceCall step and the
corresponding Service. Only the behavior associated with a TriggerProcess or an
AdaptationService is allowed to contain Reconfiguration steps.

The semantics of a Behavior is similar to that of other behavioral models like Execu-
tion Graphs [29] or UML Activity Diagrams [30]. As D-KLAPER is intended to sup-
port the stochastic analysis of performance or dependability attributes, timing, failure
and control information associated with steps of a behavior is specified according to a
stochastic setting: thus, information like the time to failure or the time to completion
of an Activity are defined by suitable random variables; analogously, control informa-
tion like the selection among alternative transitions, or the number of repetitions of a
loop is expressed by suitable probabilities and random variables. D-KLAPER sup-
ports the specification of random variables in different ways, ranging from their mean
value, to higher order moments, up to the complete distribution. It depends on the
target QoS analysis methodology whether this information can be thoroughly ex-
ploited (e.g., analytic methodologies for queueing network models usually consider
only mean values).

We argue below that most of the concepts and features highlighted in Section 2 can
be represented in a D-KLAPER model. Hence, D-KLAPER can be used effectively as
intermediate language in a transformation path from a design model to a perform-
ance/dependability analysis model.

Type of change. Basic change operations like the addition/removal of components
and connectors can be mapped to the creation/deletion of a Binding to a suitable
D-KLAPER Service. In this respect, we have given in [12,13,14] examples of Re-
source instances modeling different types of components and connectors.

 Model-Driven Assessment of QoS-Aware Self-Adaptation 209

Complex change operations can be modeled in D-KLAPER by composing a Re-
configuration step with other steps in more complex “reconfiguration behaviors”.
Control steps can be used in such behaviors to model the selection or iteration of re-
configuration activities.

With regard to the variability of architectural elements, D-KLAPER does not sup-
port the modeling of the dynamic creation/deletion of Resources. However, we can
simulate the dynamic creation/deletion of components and connectors in the source
design model by defining at the D-KLAPER model level a suitable finite “resource
pool”. In this way the dynamic creation/deletion of components and connectors can
be modeled as the creation/deletion of bindings with resources in the pool. The size of
the pool can be selected based on information about the maximum number of compo-
nents/connectors that can be created in the scenario we want to analyze.

Change process. The dynamics of the occurrence of an asynchronous change initia-
tion event can be modeled in D-KLAPER by the reaching of a given step in the
behavior associated with a TriggerProcess. Once this step has been reached, the exe-
cution of the corresponding adaptive change can be modeled by a ServiceCall step
bound to a suitable instance of an AdaptationService.

For the modeling of synchronous change initiation events, a basic premise is that
the software system model is mapped to a D-KLAPER model consisting of a set of
resources, each offering one or more services. Hence, the system operations corre-
spond, in a D-KLAPER model, to the execution of the behaviors associated with
those services. The synchronous triggering of a reconfiguration caused by the reach-
ing of a given step in a service behavior can be modeled by inserting before (or after)
that step a ServiceCall step bound to a suitable instance of AdaptationService.

With regard to the selection among different kinds of change, the pre-defined se-
lection of a single change associated with a trigger can be modeled by the invocation
of a single D-KLAPER AdaptationService. The constrained selection from a
pre-defined set can be modeled by a D-KLAPER Behavior that uses a suitable com-
bination of Control steps to invoke different AdaptationServices. The unconstrained
selection can only be simulated, to some extent, in D-KLAPER, by defining a suitable
“pool” of AdaptationService instances, analogously to the simulation of the dynamic
addition/deletion of components and connectors.

Change cost. As pointed out above, each D-KLAPER Activity step includes timing
and failure information that can be exploited to support the analysis of the system
performance or dependability. Moreover, ServiceCall steps can be used to model the
request for external resources (whose services, in turn, can require time to be com-
pleted, or may fail). These steps can be included in the behavior associated with a
TriggerProcess or an AdaptationService, thus providing the basis for an analysis of
the cost (impact on performance or dependability) of system changes, besides their
possible benefits.

Separation of concerns. From the discussion above, it is clear that D-KLAPER has
been designed according to the separation of concern principle. Indeed, the System
and Usage sub-models are intended to support the modeling of a basically static sys-
tem, while the Trigger and Adaptation sub-models are intended to model the dynam-
ics of the system adaptation. This separation is also enforced by the constraint that the

210 V. Grassi, R. Mirandola, and E. Randazzo

<<PAhost>>
Node 1

PArate = ...

 Server

Monitor
SLAchecker

<<PAhost>>
Network1-2

<<PAhost>>
Node 2

SLAchecker

Fig. 3. Deployment Diagram of the example system

<<PAopenLoad>>
...

ServerClientLoad

<<PAstep>>
...

MonitorSLAchecker

<<PAstep>>
...

<<PAstep>>
...

<<PAclosedLoad>>
...

SLAload

Fig. 4. Sequence Diagram for the example system

basic change operations (addition or removal of a Binding between a ServiceCall step
and the corresponding Service) can only be used in the Behavior associated with a
Trigger process or an AdaptationService.

3.1 D-KLAPER Modeling of the Example System

Figures 3 and 4 depict a possible UML model of the example system, with two possi-
ble allocations of the SLAchecker. The figures also partially show some annotations
(based on the SPT/MARTE profiles [31], used to express performance related infor-
mation). This model only provides a static vision of the system. We do not model the
dynamics of the adaptation described in Section 2.1, as we are not aware of a com-
monly agreed UML notation for this.

Figures 5 and 6 partially show the corresponding D-KLAPER models, expressed in
textual form. In particular, Figure 5 shows the D-KLAPER models of the two plat-
form elements Node_1 and Network_1-2, derived from the UML model of Figure 3.
Node_1 is modeled as a D-KLAPER Resource. The service it offers has a formal pa-
rameter (n_op) that can be used to specify the number of requested operations when
this service is invoked. This information, together with the value of the speedAttr at-
tribute allows determining the time needed to complete a given invocation of this ser-
vice. Network_1-2 is modeled analogously.

On the other hand, Figure 6 shows the D-KLAPER model of the Server software
component and its ClientLoad workload, derived from the UML model in Figure 4.
Server is modeled as a Resource. The service it offers has two formal parameters
(q_size and ans_size) that can be used to specify the size of the query sent by the cli-
ent and of the corresponding answer (under the assumption that this is the only rele-
vant information for performance analysis). The behavior of this service consists of
the invocation of a service offered by a cpu-type resource. Its actual parameter nq1

 Model-Driven Assessment of QoS-Aware Self-Adaptation 211

Resource Node_1 Resource net_1-2
{ type = cpu { type = network
 schedulingPolicy = ps schedulingPolicy = ps
 capacity = * capacity = *
 offeredService = service_1 offeredService = service_1-2
 description = "a processing node" description = " a network connecting Node_1
} and Node_2"
 }

Service service_1 Service service_1-2
{ formalParam = [n_op : double] {formalParam = [n_bytes : double]
 speedAttr = 109 /* number of operations per speedAttr = 106 /* number of bytes
 unit time; time unit is assumed transmitted per unit time; time
 = 1 sec */ unit is assumed = 1 sec */
 description = "processing service offered by description = " transmission service offered
 the resource Node_1" by net_1-2"
 Behavior Behavior
 { Start st1 -> { Start st1 ->
 Activity a1 Activity a1
 { ExecTime = mean n_op/speedAttr; } -> { ExecTime = mean n_bytes/speedAttr; } ->
 End e1 End e1
 } }
} }

Fig. 5. D_KLAPER models of platform resources

Resource Server_1 Workload wl_1
{ type = Server { type = OPEN
 schedulingPolicy = FIFO arrivalProcess = Poisson lambda1
 capacity = * Behavior
 offeredService = serviceS_1 { Start st1 ->
 description = " a server" Call cl1
 { resourceType = Server
} actualParam = mean qo
 actualparam = mean qi
 } ->
Service serviceS_1 End
{ formalParam = [q_size :double] }
 formalParam = [ans_size : double] }
 description = " service offered
 by the server Server_1"
Behavior
 { Start st1 ->
 Call cl1
 { resourceType = cpu
 isSynch = true
 actualParam = mean nq1
 } ->
 End
 }
}

Fig. 6. D_KLAPER models of a SW component and its workload

can be used to specify the computational load (number of operations) to calculate the
answer for a client request. As we are in a stochastic setting,nq1 is actually a random
variable. For the sake of simplicity, in this example we specify random variables by
their mean value (as indicated in fig. 6). This service invocation must be bound to the
service offered by a suitable resource. In this example, it will be bound to the service
offered by the Node_1 resource.

Thus, Figures 5 and 6 shows the modeling of both software components and hard-
ware nodes by the D-KLAPER Resource concept.

Instead, the ClientLoad represented in the UML model of Figure 4 is modeled in
Figure 6 as a D-KLAPER Workload. Its semantics consists in the generation, accord-

212 V. Grassi, R. Mirandola, and E. Randazzo

ing to a Poisson process, of instances of its Behavior. Each instance consists of an
invocation of the service offered by a Server-type resource, with suitable actual pa-
rameters (which again are specified as mean values). In this example, this invocation
will be bound to the service offered by the Server_1 resource, by means of an instance
of the Binding metaclass.

Explicit transformation rules to get these D-KLAPER models from the source
UML models can be quite easily envisaged. Some definitions of these rules can be
found in [12,13,14].

Even if we do not have given a UML model for the dynamics of the system
changes, we give below examples of D-KLAPER models that could reasonably be
derived from a source high-level model. We recall that in this example the adaptation
is triggered by some sensible variation of the load addressed to Server. Figure 7(a)
shows a possible D_KLAPER model of the adaptation triggering. It has been built
under the assumption that the following information has been extracted from the
source design model:

• the possible load values (arrival rates of the client requests) can be discretized us-
ing three different values of the Poisson process parameter representing the arrival of
client requests (λ1, λ2 and λ3);

• the load value changes cyclically, from λ1 to λ2 to λ3 and then back to λ1, with
a 20 minutes average interval between two consecutive variations.

Each load value can be modeled by a different instance of a D-KLAPER Workload,
which we name wl_1, wl_2 and wl_3, respectively (wl_1 is shown in Figure 6). They
share the same structure, and differ only in the value of the Poisson parameter. As
shown in Figure 7(a), the behavior of the trigger process TP_1 periodically binds the
service invocations generated by each of these instances to the service offered by
Server (immediately after deleting the binding with the previous workload instance).
Activities a1, a2 and a3, whose mean completion time is 20 minutes (expressed in
seconds), are used to model the time interval between two load changes. Moreover,
the behavior of TP_1 includes some “placeholder” activities (reconf1, reconf2, re-
conf3) where we can model the invocation of suitable AdaptationServices.

Figure 7(b) shows a possible AdaptationService (AS_1) for this example. Accord-
ing to the discussion in Section 2.1, its behavior models the transfer of the SLA-
checker from Node_1 to Node_2, which should reasonably happen when the load on
Node_1 exceeds some threshold. In the figure, we assume that the SLAchecker and
the Monitor have been modeled by D-KLAPER Resources named SLA-C and
MON_1, with respective offered services serviceSLA_1 and serviceM_1.

The operations available in D-KLAPER are elementary, so to model the behavior
of AS_1 we need a sequence of such operations. Operations db1 and cb1, respectively,
delete the direct binding between serviceSLA_1 and serviceM_1, and bind ser-
viceSLA_1 to the service offered by a RPC Resource (not shown here, modeling a
Remote Procedure Call connector) which provides a remote connection to serviceM_1
(the behavior of the service offered by RPC will include appropriate invocations of
network and cpu services). On the other hand, operations db2 and cb2 model the
transfer of the computational load generated by the SLAchecker from Node_1 to

 Model-Driven Assessment of QoS-Aware Self-Adaptation 213

TriggerProcess TP_1 Service serviceAS_1
{ Behavior { Behavior
 { Start st1 -> { Start st1 ->
 DeleteBinding db1 /* change from local to remote of the binding between

 SLAchecker and Monitor */
 { wl1.cl1 from Server_1.serviceS_1} -> DeleteBinding db1
 CreateBinding cb1 { SLA-C_1. serviceSLA_1.cl1
 { wl2.cl1 to Server_1.service_1 } -> from MON_1.serviceM_1
 Activity reconf1 -> } ->
 /* placeholder for a reconfiguration activity CreateBinding cb1
 triggered by the previous event */ { SLA-C_1. serviceSLA_1.cl1
 Activity a1 to RPC_1. serviceRPC_1
 {execTime = mean 1200 } -> } ->
 DeleteBinding db2 /* binding change between the SLAchecker and cpu */
 { wl2.cl1 from Server_1.serviceS_1} -> DeleteBinding db2
 CreateBinding cb2 { SLA-C_1. serviceSLA_1.cl2
 { wl3.cl1 to Server_1.serviceS_1 } -> from Node_1.service_1
 Activity reconf2 -> } ->
 /* placeholder for a reconfiguration activity CreateBinding cb2
 triggered by the previous event */ { SLA-C_1. serviceSLA_1.cl2
 Activity a2 to Node_2.service_1
 {execTime = mean 1200 } -> } ->
 DeleteBinding db3 /* cost of the transfer over the network */
 { wl3.cl1 from Server_1.serviceS_1} -> Call cl1
 CreateBinding cb3 { resourceType = network
 { wl1.cl1 to Server_1.serviceS_1 } -> isSynch = true
 Activity reconf3 -> formalParam = mean SLAcheck_size
 /* placeholder for a reconfiguration activity } ->
 triggered by the previous event */ End
 Activity a3 }
 {execTime = mean 1200 } -> }
 End -> Start
 }

} (a) (b)

Fig. 7. D-KLAPER models of a triggering process and an adaptation service

Node_2. Finally, operation cl1 is an invocation of a network service modeling the
transfer of the SLAchecker (at least, of its state) over the network.

We point out that in this way we have modeled not only the long term effects of
the adaptation (change in the target resources for the operations of SLAchecker), but
also the cost of such adaptation (network traffic and time spent to get the new
configuration).

4 Building an Analysis Oriented Model from the Bridge Model

In this section, we discuss the second part of the proposed model transformation path,
concerning the generation of an analysis oriented model from a D-KLAPER model.

We first discuss some general issues concerning this problem, independently of a
specific target notation. Then, we outline the generation of models expressed in a spe-
cific notation (Markov Processes) and finally we use the example already used in the
previous sections to show a concrete application of these ideas.

4.1 Approaches to the Generation of an Analysis Model

First of all we note that, abstracting from the different parts of the source model from
which the elements of a D-KLAPER model have been derived, an overall
D-KLAPER model basically consists of a set of Behavior instances, interconnected
by means of Binding instances. Each Behavior instance models a flow of activities

214 V. Grassi, R. Mirandola, and E. Randazzo

which take time to complete and may fail before completion (and may synchronize
with other Behavior instances through ServiceCall instances). Hence, the variety and
richness of constructs and concepts which were present in the source model have been
abstracted into these more elementary concepts, which are closer to those generally
used in analysis oriented notations.

Several notations (and corresponding analysis methodologies and tools) exist
which can be used to express a suitable target analysis oriented model derived from a
D-KLAPER model. Independently of any particular notation, two different ap-
proaches can be basically followed in the generation of such a model: a monolithic
approach and a hierarchical approach [16, 29].

A monolithic approach leads to the construction of an overall flat model, which
encompasses all the activities and events occurring in the system. This model basi-
cally gives an “exact” representation of the dynamics of the source model, but could
be too complex to be analyzed (because of the state space explosion, and of numerical
problems caused by the difference in the time scale for the occurrence of different
classes of events).

A hierarchical approach may overcome these problems, at the cost of introducing
some intrinsic approximation. It is based on the consideration that events concerning
the normal system operations (e.g. service requests, service completions) occur at a
much higher rate than adaptation triggering events (and consequent adaptation ac-
tions). This leads to a two-level hierarchy of models, with the first level consisting of
a family of so-called normal operation models, each modeling the system operation in
one of the possible system configurations, and the second level consisting of an adap-
tation model, which concerns the modeling of changes in the system configuration.
The two levels are combined by including in the latter model results (e.g. perform-
ance values) obtained from the solution of the former models. Because of the different
time scale between the two levels, it can be assumed with reasonable approximation
that most of the time the system is in steady state in a given configuration between
two consecutive configuration changes. This reduces the complexity of each model to
be generated in the hierarchy, and allows to solve it independently of the others. In
the following we only discuss the hierarchical approach.

The algorithm in Figure 8 summarizes the steps to be performed to implement in
our framework the hierarchical approach, independently of the selected target nota-
tions used to express the models in the two hierarchy levels.

Step 1 in Figure 8 is a preliminary step, consisting in the generation of D-KLAPER
models of all the possible “stable” system configurations. By stable configuration we
mean a configuration reached by the system at the end of the adaptation triggered by
some event. This step can be carried out by “executing” the Behavior instance(s) be-
longing to the Trigger sub-model T (which in turn may cause the activation of the
AdaptationService instance(s) belonging to the Adaptation sub-model A). This execu-
tion leads to the generation of instances (S1+U1), ..., (Sm+Um) of the System and
Usage sub-models S and U, where the different set of Bindings in each instance mod-
els a different system configuration. Since we assume a finite number of Resource
and Workload instances in a D-KLAPER model, there is a finite number of possible
configurations.

Steps 2 and 3 correspond to the construction of the first level of the hierarchical
model. At step 2 we use each (Si+Ui) instance built at step 1 to derive from it a

 Model-Driven Assessment of QoS-Aware Self-Adaptation 215

Input: a D-KLAPER model consisting of:
• a System sub-model S and a Usage sub-model U, representing the system under “normal operation
conditions” (with partially specified Bindings);
• a Trigger sub-model T representing the occurrence of adaptation triggering events (with corresponding
invocations of AdaptationService instances);
• an Adaptation sub-model A, whose AdaptationServices AS1, ..., ASk model the creation/deletion of
Bindings, and (possibly) the associated resource usage.
Output: a two-level hierarchical model.
Algorithm:
1. use T and A to derive from S and U a set of models (S1+U1), ..., (Sm+Um), with completely specified
Bindings, corresponding to all the possible “stable” system configurations;
2. for each (Si+Ui) in {(S1+U1), ..., (Sm+Um) } do
 - derive from (Si+Ui) a performance/dependability model PNi;
 - solve PNi to get performance/dependability values ri
 endfor
3. for each ASj in { AS1, ..., ASk } do
 - derive from ASj a performance/dependability model PRi;
 - solve PRi to get performance/dependability values ci (reconfiguration “cost”)
 endfor
4. derive from (S1+U1), ..., (Sm+Um), T, r1, ..., rm and c1, ..., ck a model of the overall system per-
formance/dependability and/or a model of the overall adaptation cost

Fig. 8. Transformation algorithm from a D-KLAPER model to a two-level analysis model

performance/dependability model PNi. The solution of PNi provides estimates of the
system performance/dependability indices when the system operates in the corre-
sponding configuration (in steady state conditions, according to the discussion
above).

At step 3 we use the adaptation services AS1, ..., ASk belonging to the Adaptation
sub-model A to derive from them corresponding performance/dependability models
PR1, ..., PRk. The solution of these models allows the estimation of the cost (in terms
of elapsed time and consumed resources) of each system adaptation.

Finally, step 4 corresponds to the construction of the second level of the hierarchy,
where information coming from the previous steps is used to build a model of the
overall performance/dependability which can be achieved thanks to the adaptation,
and also of the overall incurred cost.

We assume that all these steps are carried out with the support of automatic model
transformation tools. The target model for the transformations at step 1 is again a D-
KLAPER model, while the target models for the transformations at steps 2, 3 and 4
are to be expressed into suitably selected analysis-oriented notations. The selection of
these notations depends on the analysis goal (and also the availability of adequate
solution tools).

Target notations that can be used at steps 2 and 3 are, for example, Queueing Net-
works [23](for performance analysis) or Markov Processes (for dependability analy-
sis) [16]. In this respect, we have given transformations rules from KLAPER to Ex-
tended Queueing Networks, Discrete Time Markov Processes and Layered Queueing
Networks in [12,13,14].

On the other hand, at step 4 we need a target notation able to express the dynamics
of the occurrence of adaptation triggering events, and also able to embed the solutions
calculated at steps 2 and 3. In the next section we present an example of such a nota-
tion, and discuss the implementation of the mapping to it.

216 V. Grassi, R. Mirandola, and E. Randazzo

4.2 Generation of a Semi-markov Reward Model

Markov or Semi-Markov reward models [16] are state-based models where a reward
is associated with each state and/or transition. Within a hierarchical modeling ap-
proach, states can be used to model the possible system configurations; transitions to
model the system evolution; rewards associated with states to represent the system
performance/dependability in the corresponding configurations; rewards associated
with transitions to model the cost of reconfigurations (alternatively, the cost of recon-
figurations may also be modeled by the reward associated with some “reconfigura-
tion” states.

These models can be used to calculate probabilistic reward measures like the re-
ward at some time instant t, or the total reward accumulated over some time interval
[0, t], with t possibly going to infinity if we want to consider steady-state measures.
Depending on which kind of reward we associate to the model states and transitions,
these reward measures correspond to some overall performance/dependability meas-
ure for a reconfigurable system. For example, if the reward associated with a state is
the system throughput in that state, then the reward accumulated in [0, t] is the num-
ber of service requests processed in that interval, while this accumulated reward di-
vided by t is the average throughput in the same interval. Alternatively, if the reward
associated with a state is the system availability in that state, then the reward accumu-
lated in [0, t] divided by t is the average availability in that interval.

A vast literature exists about this modeling approach. We refer to [16] (in particu-
lar chapts. 3, 4, 9) for further details and references.

Generating a SMR model from a D-KLAPER model actually means specifying:

• the set of states;
• the sojourn time in each state, before a transition occurs;
• the transition probabilities to other states;
• the reward associated with each state/transition.

The set of states is defined by a one-to-one correspondence with each possible con-
figuration (Si+Ui) generated at the step 1 of the Figure 8 algorithm. The possible one-
step transitions from a state to other states can be determined at the same time: the
target states correspond to the set of configurations that can be generated by the invo-
cation of an AdaptationService ASj, when the system is in the configuration corre-
sponding to the source state.

The sojourn time in a state, and the probabilities associated with transitions from
that state, can be derived from information obtained from the Trigger sub-model. In
particular, the internalExecutionTime attribute of each step in the behavior of the
Trigger model, and the probability attributes of Transition steps in the same behavior
can be used to determine the timing (defined by a random variable) and the probabil-
ity for the occurrence of a trigger. This information can be used to determine the
overall residence time and transition probabilities for the SMR states.

Finally, regarding the SMR rewards, the performance/dependability models gener-
ated at step 2 of the algorithm are associated with the SMR states modeling the
corresponding system configuration, while the performance/dependability models
generated at step 3 are associated with the SMR transitions (or states) that model the
occurrence of a reconfiguration.

 Model-Driven Assessment of QoS-Aware Self-Adaptation 217

We point out that a MOF metamodel for SMR models should be defined to exploit
MOF-based transformation methodologies and tools for the implementation of the
D-KLAPER to SMR mapping outlined above. Defining such a metamodel is a simple
task and an example of this metamodel can be found in [15]. The SMR model ob-
tained as result of this transformation process can then be solved to calculate a suit-
able reward measure, using existing tools (e.g. [28]).

4.3 Analyzing the Example System Effectiveness

As discussed in Section 2.1, our goal is the analysis of the effectiveness of a class of
adaptation policies based on the mobility of the SLAchecker component. Policies in
this class differ for the load level used to decide whether the SLAchecker should move
from Node_1 to Node_2 or vice versa. Having assumed in Section 3.1 three different
levels (λ1, λ2 and λ3, with λ1<λ2<λ3) for the load level of the Server component,
two possible policies in this class could be defined as follows:

• policy 1: - SLAchecker moves from Node_1 to Node_2 when load ≥ λ2
 - SLAchecker moves from Node_2 to Node_1 when load < λ2
• policy 2: - SLAchecker moves from Node_1 to Node_2 when load ≥ λ3
 - SLAchecker moves from Node_2 to Node_1 when load < λ3

We evaluate their effectiveness with respect to the ability to keep the overall network
traffic and the Server component response time below given thresholds. For this pur-
pose, we also compare them with two “static” policies, named no-adapt_1 and
no-adapt_2, where the SLAchecker has a fixed location at Node_1 or Node_2, respec-
tively.

In Figure 7(a) we have presented a possible D-KLAPER Trigger sub-model for the
occurrence of load changes. This sub-model can be specialized for policy 1 by replac-
ing the “placeholder” activity reconf1 with a ServiceCall bound to the Adaptation
Service AS_1 shown in Figure 7(b) (which models the transfer of SLAchecker to
Node_2), and replacing the “placeholder” activity reconf3 with a ServiceCall bound
to an Adaptation Service AS_2 (not shown in Figure 7) which models the transfer of
SLAchecker to Node_1.

Analogously, the model of Figure 7(a) can be specialized for policy 2 by replacing
the “placeholder” activities reconf2 and reconf3 with ServiceCalls bound to Adapta-
tion Services AS_1 and AS_2, respectively.

The D-KLAPER models obtained in this way, together with the System and Usage
sub-models (partially shown in Figures 5 and 6) are the input for the algorithm in
Figure 8.

At step 1 the algorithm generates the set of D-KLAPER models corresponding to
stable system configurations. In our example, each configuration is characterized by a
specific load level and SLAchecker allocation. Hence, we denote each configuration
with the pair (i,j), 1≤i≤3, 1≤j≤2, where i refers to the load level and j to the SLA-
checker allocation. Each D-KLAPER model (i,j) obtained in this way has a different
set of Bindings between ServiceCall steps and corresponding Services. For example,
in configurations (1,-) (see Figure 6) serviceS_1 is bound to the ServiceCall step cl1
of the wl_1 workload, while in configurations (2,-) serviceS_1 is bound to the analo-
gous ServiceCall step cl1 of the wl_2 workload (not shown in Figure 6).

218 V. Grassi, R. Mirandola, and E. Randazzo

Node_1 SinkSource

delay

(a)

Node_1 SinkSource

Node_2

delay

Network_1-2(b)

Fig. 9. EQN models: (a) configurations (-, 1); (b) configurations (-, 2)

The possible configurations according to policy 1 are (1,1), (2,2), (3,2), while for
policy 2 they are (1,1), (2,1), (3,2).

For each D-KLAPER model (i,j), we have to derive (step 2 of the algorithm) corre-
sponding performance models. We assume as target model an Extended Queueing
Network (EQN) [23]. Transformation rules from D-KLAPER to EQN have been
presented in [13]. Using these rules we get the models depicted in Figure 9. In both
models 9(a) and 9(b) we can see a closed workload (dashed line) corresponding to the
periodic activity of the SLAchecker, and an open workload (continuous line) corre-
sponding to the arrival of requests to the Server. The 9(b) model has two additional
service centers with respect to the 9(a) model because of the allocation of the SLA-
checker to a remote node and the consequent network traffic. We may actually have
three instances of both 9(a) and 9(b) models, corresponding to the three different val-
ues of the open workload arrival rate. Solving these models, we get a prediction for
the steady state Server response time in the different configurations.

Analogously, we can get models of the adaptation cost (step 3 of the algorithm) by
deriving suitable performance models from the D-KLAPER adaptation model (see
Figure 7(b)). In our example, this cost is caused by the transfer of SLAchecker from
Node_1 to Node_2 and vice versa.

The models built at steps 2 and 3 correspond to the first level of the overall hierar-
chical model. Then (step 4 of the algorithm), we have to build the SMR model that we
have selected as second level model. The states of the SMR models for the two con-
sidered policies correspond to the configurations identified at step 1. The sojourn time
in each state is derived from information expressed in the Trigger sub-model (accord-
ing to what shown in Figure 7(a), we assume an exponentially distributed sojourn
time with mean equal to 1200 sec.). Reward rates associated with states and/or transi-
tions can be used to embed in this second level model the results obtained from the
first level models. In particular, to calculate the overall average response time, we
associate with each state a reward equal to the response time in the corresponding
configuration. To calculate the average traffic, we associate with each state a reward
equal to the network traffic (if present) caused by the interaction between SLAchecker
and Monitor, and with each transition a reward equal to the network traffic (if pre-
sent) caused by the transfer of the SLAchecker (we remark that this latter reward

 Model-Driven Assessment of QoS-Aware Self-Adaptation 219

1,1

2,2

3,2

resp(1,1)

resp(2,2)

resp(3,2)

1,1

2,2

3,2

traff(2,2)

traff(3,2)

0

transf

transf

(a) (b)

traff(1,1)

Fig. 10. SRMs for policy 1: (a) response time; (b) network traffic

actually represents the cost to be paid for each adaptation action). Figure 10 depicts
the two SRMs obtained in this way for policy 1. For the SRM in Figure 10(a), the
reward resp(i,j) associated with each state (i,j) denotes the response time in that con-
figuration. resp(i,j) is calculated using the EQN of Figure 9(a) or 9(b) when i=1 or
i=2, respectively, with the arrival rate of the open workload equal to λj.

For the SRM in Figure 10(b), the reward traff(i,j) associated with each state (i,j)
denotes the network traffic between the SLAchecker and Monitor when the system is
in the corresponding configuration. Hence, traff(1,1)=0, while traff(2,2)=traff(3,2)>0.
The reward transf associated with the transitions from (3,2) to (1,1) and from (1,1) to
(2,2) is calculated from the SLAchecker size, while the reward associated with the
transition from (2,2) to (3,2) is equal to 0 as this transition models a change in
the load level which does not cause a SLAchecker transfer, according to policy 1. The
SRMs for policy 2 can be obtained analogously.

Solving these models, we can evaluate the effectiveness of the two policies for the
modeled scenario.

We assume the following values of the system parameters (average values):

Node_1 and Node_2 speed: 1x109 op./sec; λ1 = 50; λ2 = 100; λ3 = 150;
Server service demand: 6.6x106 op.; Monitor service demand: 1x106 operations;
SLAchecker service demand: 6x106 op.; Server-Monitor traffic: 7 Kbytes/sec;
closed workload delay: 1 sec.

1086420
-2000

0

2000

4000

6000

8000

10000

Net. traffic (pol. 1)
Net. traffic (pol. 2)
Net. traffic (no adapt_1)
Net. traffic (no adapt_2)

SLAchecker size (Mbytes)

Kbytes

Fig. 11. Network Traffic

220 V. Grassi, R. Mirandola, and E. Randazzo

With these parameter values, we get the following values for the overall average re-
sponse time of the Server component under the considered adaptation and static
policies:

• policy 1: average response time = 0.3722 sec.
• policy 2: average response time = 0.3724 sec.
• no-adapt_1: average response time = 2.8402 sec.
• no-adapt_2: average response time = 0.3721 sec.

The values for the network traffic are instead reported in Figure 11, as a function of
the SLAchecker size. We see that the no-adapt_1 policy causes zero network traffic
(all the interactions between SLAchecker and Monitor are local), but with a consid-
erably worse response time. Conversely, the no-adapt_2 policy guarantees the best
response time, as the SLAchecker never interferes with the client load at Node_1, but
causes a high network traffic. For the two adaptation policies, policy 2 has a response
time quite close to the best, but at lower cost in terms of network traffic with respect
to no-adapt_2. Instead, the other adaptation policy (policy 1) causes a higher network
traffic (in some cases even worse than no-adapt_2), without a sensible improvement
of the response time.

Depending on the target thresholds for the average response time and network traf-
fic, these results can be used to determine which policy is more effective in meeting
the target.

5 Conclusions

In this paper we have presented a Model-Driven approach whose goal is to support
the QoS assessment of self-adaptable systems. Our approach builds on the existence
of intermediate modeling languages and extends one of them, to capture the core fea-
tures (from a performance/dependability viewpoint) of a dynamically adaptable archi-
tecture model.

A potential drawback of the methodology we have presented in section 4 to gener-
ate an analysis model from the intermediate model, is that it requires the enumeration
of all the configurations of the system model. This could lead to a kind of “state ex-
plosion” problem. In that case, a different methodology (possibly non state-based, as
the proposed one) could be more adequate. How to devise such a methodology is a
non trivial issue, and we leave it for future work.

At present, we are working on the automation of the proposed approach, since this
represents a key point for its successful application and complete validation by apply-
ing it to industrial case studies.

Acknowledgements

Work partially supported by the Italian Project ArtDeco (FIRB RBNE05C3AH) and
by the project Q-ImPrESS (215013) funded under the European Union’s FP7.

 Model-Driven Assessment of QoS-Aware Self-Adaptation 221

References

1. Agarwala, S., Chent, Y., Milojicic, D., Schwan, K.: QMON: QoS- and Utility-Aware
Monitoring in Enterprise Systems. In: 3rd IEEE Int. Conference on Autonomic Computing
(ICAC 2006), pp. 124–133 (2006)

2. Allen, R., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Software Archi-
tectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, p. 21. Springer, Heidelberg
(1998)

3. Ardagna, D., Ghezzi, C., Mirandola, R.: Rethinking the Use of Models in Software Archi-
tecture. In: Becker, S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281.
Springer, Heidelberg (2008)

4. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Software 20(5), 36–41 (2003)

5. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-management in
dynamic software architecture specifications. In: Proceedings of WOSS 2004, Newport
Beach, CA, USA (October 2004)

6. Bradbury, J.S.: Organizing definitions and formalisms for dynamic software architectures.
Tech. Report 2004-477, Queens’ University (2004)

7. Bracchi, P., Cukic, B., Cortellessa, V.: Performability Modeling of Mobile Software Sys-
tems. In: ISSRE 2004, pp. 77–88 (2004)

8. Cheng, B.H.C., Giese, H., Inverardi, P., Magee, J., de Lemos, R.: 08031 – Software Engi-
neering for Self-Adaptive Systems: A Research Road Map. In: Software Engineering for
Self-Adaptive Systems, Dagstuhl Seminar Proceedings (2008)

9. Crnkovic, I., Larsson, M. (eds.): Building Reliable Component-Based Software Systems.
Artech House (2002)

10. Di Marco, A., Mirandola, R.: Model Transformation in Software Performance Engineer-
ing. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214,
pp. 95–110. Springer, Heidelberg (2006)

11. Garlan, D., Monroe, R., Wile, D.: ACME: Architectural Description of Component-Based
Systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Sys-
tems. Cambridge University Press, Cambridge (2000)

12. Grassi, V., Mirandola, R., Sabetta, A.: A Model Transformation Approach for the Early
Performance and Reliability Analysis of Component-Based Systems. In: Gorton, I.,
Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K.
(eds.) CBSE 2006. LNCS, vol. 4063, pp. 270–284. Springer, Heidelberg (2006)

13. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perform-
ance/reliability models of component-based systems: A model-driven approach. Journal of
Systems and Software 80(4), 528–558 (2007)

14. Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An Intermediate Lan-
guage for Model-Driven Predictive Analysis of Performance and Reliability. In: Rausch,
A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Ex-
ample. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)

15. Grassi, V., Mirandola, R., Sabetta, A.: A model-driven approach to performability analysis
of dynamically reconfigurable component-based systems. In: WOSP 2007, pp. 103–114
(2007)

16. Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K. (eds.): Performability Modelling:
Techniques and Tools. J. Wiley and Sons, Chichester (2001)

17. Hofmeister, C.: Dynamic reconfiguration of distributed applications, PhD dissertation,
Dept. of Computer Science, University of Maryland (1993)

222 V. Grassi, R. Mirandola, and E. Randazzo

18. Irmert, F., Fischer, T., Meyer-Wegener, K.: Runtime Adaptation in a Service-Oriented
Component Model. In: SEAMS 2008 (2008)

19. Kacem, M.H., Miladi, M.N., Jmaiel, M., Kacem, A.H., Drira, K.: Towards a UML profile
for the description of dynamic software architectures. In: COEA 2005, pp. 25–39 (2005)

20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1)
(2003)

21. KLAPER project website, http://klaper.sf.net
22. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE 2007:

Future of Software Engineering, Washington, DC, USA, May 23-25 (2007)
23. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press, New York

(1983)
24. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture (TM):

Practice and Promise. Addison-Wesley Object Technology Series (2003)
25. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework, ap-

proaches, and styles. In: ICSE Companion 2008, pp. 899–910 (2008)
26. Papazoglou, M., Georgakopolous, D.: Service-Oriented Computing. Communication of

the ACM 46(10)
27. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and resources for

generating performance models from UML designs. Software and Systems Modeling 2,
163–184 (2007)

28. SHARPE, http://www.ee.duke.edu/~kst/
29. Smith, C.U., Williams, L.: Performance solutions: A Practical Guide to Creating Respon-

sive, Scalable Software. Addison Wesley, Reading (2002)
30. UML 2.0 Superstructure Specification, OMG Adopted Specification ptc/03-08-02,

http://www.omg.org/docs/ptc/03-08-02.pdf
31. UML Profile for Schedulability, Performance, and Time Specification, OMG Adopted

Specification ptc/02-03-02, http://www.omg.org/docs/ptc/02-03-02.pdf
32. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive software.

In: ICSE 2006, pp. 371–380 (2006)

Automatic Generation of Runtime Failure
Detectors from Property Templates

Mauro Pezzè1 and Jochen Wuttke2

1 University of Milan Bicocca, Italy, and
University of Lugano, Switzerland

mauro.pezze@unisi.ch
2 University of Lugano, Switzerland

wuttkej@lu.unisi.ch

Abstract. Fine grained error or failure detection is often indispensable
for precise, effective, and efficient reactions to runtime problems. In this
chapter we describe an approach that facilitates automatic generation
of efficient runtime detectors for relevant classes of functional problems.
The technique targets failures that commonly manifest at the boundaries
between the components that form the system. It employs a model-based
specification language that developers use to capture system-level prop-
erties extracted from requirements specifications. These properties are
automatically translated into assertion-like checks and inserted in all
relevant locations of the systems code.

The main goals of our research are to define useful classes of system-
level properties, identify errors and failures related to theviolationsof those
properties, and produce assertions capable of detecting such violations. To
this end we analyzed a wide range of available software specifications, bug
reports for implemented systems, and other sources of information about
the developers intent, such as test suites. The collected information is orga-
nized in a catalog of requirements-level property descriptions. These prop-
erties are used bydevelopers to annotate their system design specifications,
and serve as the basis for automatic assertion generation.

1 Introduction

Software engineering researchhas developed numerous paradigms,methodologies,
and technologies to improve the quality of software systems. Despite the progress
that has been made, software systems fail while deployed and running in the field.
Research in fault tolerant systems has produced several techniques that can mask
some classes of critical errors in a way that externally visible failures do not occur1.

1 The communityworking on fault tolerant systemsusually distinguishes between errors,
failures and faults. In this taxonomy an error is a system state, or a sequence of system
states that deviate from the correct state. A failure manifests when an error becomes
visible on the external interface of a component or system. A fault is the cause of an
error. In software systems the boundaries between components are not well defined
(is the boundary on the method, class, package, or system level?), and the distinction
between error and failure is difficult to make. Hence, in this chapter we use the term
failure to mean a system state that deviates from the correct state.

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 223–240, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

224 M. Pezzè and J. Wuttke

Most of these classical fault tolerant techniques have been developed for safety crit-
ical applications and rely on expensive design approaches, such as redundant im-
plementation, that may not fit well other classes of software systems [1,2].

In recent years, research in different fields has converged on the definition and
deployment of self-adaptive and autonomic software systems, that is systems able
to autonomously recover from problems at runtime [3]. Self-adaptation refers to
various classes of problems and techniques, and is specialized in different self–*
techniques depending on the classes of problems. For example, self-configuring
systems are able to assemble and configure themselves based on a description of
high-level goals, self-protecting systems are capable of taking autonomous action
when threatened by attempts to violate their security and safety guarantees. In
this chapter we discuss self-healing systems, that is systems that can recover
from functional failures of their constituent components.

Building on key ideas expressed by Kephart and Chess, most self-adaptive sys-
tems rely on a variant of the “autonomic cycle” [3]. In their model, an autonomic
element, that is a component or a whole system, is under the control of an auto-
nomic manager, which monitors and analyzes the execution of the element, and in
the case of problems plans and executes changes to the systems configuration.

Most research on self-healing systems has addressed issues directly relating
to adaptability, that is the planning and execution phases of the autonomic cy-
cle. Such work usually assumes suitable monitoring and analysis mechanisms
exist, instead of treating this as a research problem. Our research tackles the
problem of precise failure detection, and thus develops techniques for the moni-
toring phase of self-healing systems. Even though detection of functional failures
has been explored extensively in the literature on software validation and ver-
ification, in the context of self-healing systems we face new challenges. To be
acceptable as monitors in production systems, automatic failure detectors (1)
cannot rely on human operators to arbitrate the validity of detected problems,
(2) must have only limited performance overhead, (3) must detect failures pre-
cisely and produce only few, if any, false alarms, and (4) must detect failures
as early as possible. The results of our research facilitate the automatic gener-
ation of runtime monitors that meet these criteria. A fifth criterion that might
be considered in self-adaptive systems regards the effects of adaptations on the
correctness of failure detectors. However, the assumptions we make in Sec. 4
allow us to set aside this consideration for the discussion in this chapter.

We argue that a complete and consistent set of well tailored assertions can
meet the requirements above. Encoding thoroughly analyzed system invariants
into assertions produces automated oracles, and removes human operators from
the loop. Careful choice of logic constructs in assertions can assure low overhead.
Assertions suitably placed in critical locations can detect failures precisely and
early enough to support efficient fixing.

In current practice, assertions are either added directly to the code by pro-
grammers [4,5], or are generated from formal specifications that describe invari-
ants of data-structures and algorithms [6,7]. In both cases getting the specification
right is non-trivial and highly error prone [8,9]. Additionally, when writing such

Automatic Generation of Runtime Failure Detectors 225

specifications, developers focus on implementation details, hence they might miss
constraints stemming from the larger context in which the code will be used. Con-
centrating on code-level specifications also makes it difficult to express constraints
that are not directly related to how the system is implemented, but are imposed
by domain specific limitations the system has to adhere to.

We address the problem of producing well tailored assertions by defining a tech-
nique to map end-user requirements onto code assertions. We provide developers
with a catalog of property templates that help developers create explicit specifica-
tions of constraints that are implicit in the requirement specifications. However,
we do not require complete formal specifications, which are usually hard to write
and maintain, but we rely on simple annotations in system models to generate
code assertions.

In this chapter we present the methodology (Secs. 2 and 3), define the structure
and use of the property catalog, which lies at the heart of the methodology, and
report results of our research to derive properties for the catalog (Sec. 4). Related
work (Sec. 5) and a discussion of future directions of research (Sec. 6) conclude
this chapter.

2 Mapping Requirements to Assertions

To support self-healing systems, failure detection techniques must have a clear no-
tion of what constitutes a failure, must providemeans to detect failures at runtime,
and must provide enough information about the failures to allow subsequent anal-
ysis to determine the cause of the failures. Even though the first two items seem
similar, they have to be treated separately: The first requires an explicit specifi-
cation of what the system should do. The second requires techniques to monitor
the system execution, and means to decide when an execution violates the system
specifications.

Our goal is to create high-quality runtime failure detectors for system-level re-
quirements, and to reduce the effort required from developers when using our tech-
nique. Therefore, the purpose of the methodology we developed is to automate the
creation of such detectors as much as possible. To do so we have to address two
orthogonal concerns: First, we have to address the efficiency and quality concerns
associated with runtime monitoring techniques, and second, we have to bridge
the semantic gap between system goals, which are the source of the constraints
we monitor, and the implementation details of the system.

During our studies we observed that assertions for high-level properties are of-
ten distributed across substantial parts of the system. Creating and adding all
assertions in the right places is therefore tedious and error-prone. Our technique
focuses on two aspects: (1) How to derive and specify system-level constraints,
and (2) how to automatically translate constraints into assertions that meet the
desired performance and precision requirements.

Figure 1 shows how our methodology addresses the two key aspects in a pro-
cess centered around a catalog of property templates. In the first step, developers
derive properties from requirements specifications, and annotate the system de-
sign model with constraints that reflect these properties. This step is difficult to

226 M. Pezzè and J. Wuttke

transform

Assertionsannotate

analyze

The system...

Requirements

Property
Template
Catalog

Developer

A B
{set}

Annotated Model

int getValue() {
...
}

Code

MDA

Properties

Rules +
Templates

Actions

Data

Fig. 1. Methodology activities

automate, because it requires understanding and analyzing the semantics of re-
quirements specifications, which are usually provided in natural language or
informal notations that do not lend themselves well to automatic analysis. The
annotation language we provide for our technique is not a fully fledged assertion
language like JML or Spec#. Instead, we provide a set of concrete annotations
with well-defined semantics that readily translate into effective code-level asser-
tions. This has the advantage that model annotations are very simple and can eas-
ily be placed. On the other hand, this limits the expressiveness of our technique
to exactly the predefined set of annotations.

In the second step, a model-driven assertion generator transforms the anno-
tated model into assertions at the code level. It builds on the concept of property
templates, discussed in detail in Sec. 4. Property templates allow developers to
express high-level goals with few, simple annotations to system models. The anno-
tations are then automatically translated into the necessary sets of assertions, and
inserted in all relevant locations in the code. Like for every model-based technique,
for the automatic assertion generation to work, there must be a semantic link be-
tween the annotated model and the system implementation. This also means that
the model and the code must evolve together when the system changes. Keep-
ing models and code synchronized is a well-researched problem, but still provides
significant challenges. In our technique, we alleviate these problems by requiring
only partial models of the system. The model has to contain only the entities rel-
evant to each annotation, and assertion generation can proceed. This does not re-
move the need of keeping model and code synchronized, but it reduces the work of
synchronizing the much smaller model to code changes.

3 Asserting Correctness of Phone Bills

In this section, we exemplify the approach through a simple billing application for
a telecommunication company.

In the first step of our methodology, developers analyze the system require-
ments to identify properties using the property template catalog. For instance, the

Automatic Generation of Runtime Failure Detectors 227

requirements of our billing system may state that the phone calls being charged to
a customer’s account may appear only once in a bill, because otherwise the cal-
culated total charge would be incorrect. This requirement expresses that some
items, here phone calls, have to be unique in the context of a particular collection
of items, here the phone bill. This notion of requiring elements of a collection to
be unique occurs frequently in specifications and represents a constraint on the
system. The property template catalog, discussed in detail in Sec. 4, contains a
property template unique, which matches this requirement.

Having identified properties at the requirements specification level, developers
have to examine the design model, to identify the conceptual entities that are con-
strained by the properties, and have to annotate the identified entities to reflect
the property constraints. For instance, the diagram in Fig. 2 shows the conceptual
entities relevant to this example. Since the constraint identified above states that
phone connections listed in a bill have to be unique, the developers must anno-
tate the association between bills and connections with this constraint, as shown
in Fig. 2.

We automatically generate assertions from the annotated model through a set
of templates that describe the structure of the assertions, and a set of rules that
identify the position of the assertions in the code. The rules for positioning asser-
tions in the code share some common aspects, but many details are domain and
platform specific, since the implementation of conceptual entities depends on the
programming language, deployment platform, and target environment. For exam-
ple, the notion of a component is implemented differently in a J2EE application
and in a highly distributed traffic monitor for a telecommunications network.

In general, the implementation structure may be quite different from the design
model. For example, the simple class diagram in Fig. 2 may be näıvely
implemented with a phone bill as a container that aggregates the connections ini-
tiated by a customer in specific period of time. However in realistic systems, traf-
fic monitoring, customer management and billing are implemented as separate
components, whose structure and physical location are dictated by practical

Customer Mgmt

Billing Traffic

Customer Phone

ConnectionBill

*1

*

1

*

1

1 *
{unique}

Fig. 2. An excerpt of the phone system data model that shows the conceptual relation-
ships between the entities relevant for the example and the added unique constraint

228 M. Pezzè and J. Wuttke

considerations. For example, traffic must be monitored where the traffic is initi-
ated, but capacity constraints might make it prohibitively expensive to transmit
and store all the connection data at the location of the billing component. There-
fore, the containment relationship between Bill and Connection will not be rei-
fied in the systems implementation. The relation between bills and connections
is only reified through the customer management database and pointers to traffic
records. Thus, the assertions that monitor the conceptual containment relation-
ship must be transformed to match the system implementation.

If the conceptual model from Fig. 2 was to be implemented directly as classes in
an object-oriented language, the uniqueness check could be performed when con-
structing the bills, making sure that no duplicates are added to each bill. However,
in the concrete implementation of the system, the traffic monitor, which records
phone calls, and the customer management, which maintains customer and phone
contract related data, are implemented by different components that are
distributed both physically and logically, and bills are created on the fly from the
available data when needed. Therefore uniqueness must be checked already when
updating the databases to avoid inconsistencies that would lead to wrong bills.

Since there is no direct containment relation between bills and calls in the im-
plementation, we need to insert assertions between relations that model the con-
tainment relation as their composition. In this example, the containment relation
is indirectly modeled by the composition of Bill --> Customer --> Phone -->
Connection. Because of the well-defined structure of the conceptual model, the
uniqueness constraint can be pushed down any set of relations whose composition
models the same containment relation, and assertions can be inserted at the last
relation. In this example, the uniqueness constraint can be placed on the associa-
tion between Phone and Connection to detect duplicates as early as the records
are created.

Moving constraints along containment relations can strengthen or weaken the
constraints themselves, depending on the direction of the associations and their
multiplicity. Analyzing this strengthening or weakening is tedious, error prone and
easily automatable. Having thresholds in the placement rules allows complete au-
tomation, with potential for developer feedback if desired, of the movement of
annotations.

The listing in Fig. 3 shows the relevant parts of the code generated for the moved
annotation. The advice containing the assertion is triggered after an element is
added to a collection. The actual check for uniqueness is implemented in the
method #assertUnique,and in the nested methods it calls. A lot of the complexity
is hidden in the methods #contains and #computeSize, because these methods
have to take into account possible nested checks when the annotation in the model
has been moved. Several additional helper methods and classes not shown in the
figure are also generated to facilitate the monitoring.

Even though this example contains only four classes and few associations, it in-
dicates that automating the process of moving annotations, and finding the code
locations associated with the new model locations provides substantial benefits for
developers, since placing a sufficient set of assertions at the right code locations

Automatic Generation of Runtime Failure Detectors 229

public privileged aspect Phone_Unique {

pointcut addElement (Connection param): target(Collection +)

&& call (* add (..)) && args(param);

before (Collection collection , Connection param):

addElement (param) && target(collection)

&& !this(UniqueCollectionTracker+) {

pre_contains = contains (collection , param);

pre_size = computeSize (collection);

}

after (Collection collection , Connection param):

addElement (param) && target(collection)

&& !this(UniqueCollectionTracker+) {

assertUnique (collection , param);

}

private void assertUnique (Collection collection ,

Connection param) {

if (pre_contains &&

computeSize (collection) != pre_size)

throw new ConstraintViolatedException();

if (! pre_contains &&

computeSize (collection) != pre_size +1)

throw new ConstraintViolatedException();

}

private boolean contains (Collection c,

Connection object) {

// return true if the collection c already

// contains the object

}

private boolean computeSize (Collection c) {

// computes the sum of recursively contained elements

}

//more helper methods

}

Fig. 3. Excerpt of the code for the annotation in Fig. 2

may be difficult and error prone. In our experiments, the assertions for unique
have to be inserted in over 100 locations, even in comparatively simple examples.
Assume now that the phone provider has roaming contractswith a number of other
providers. The billing system will then have to implement gateways to the billing
systems of these roaming partners, and at each interface uniqueness checks have

230 M. Pezzè and J. Wuttke

to be performed when data passes through the interface. In this scenario the num-
ber of locations where assertions have to be inserted would increase linearly with
the number of partners. Automation also relieves developers from the problem of
having to think about which assertions to add and remove when maintaining or re-
engineering a system, because this is handled transparently by appropriate tools.

We automatically translate constraints at the design level to code assertions
through property templates. The assertions that characterize templates are de-
rived from properties of abstract entities that generalize the concrete elements,
for example mathematical concepts or design patterns. Our example property of
unique elements in a collection can be abstractly described by the mathemati-
cal concept Set. By definition a set does not contain duplicate elements under a
given equality relation. Thus, templates for assertions that check for violations of
the unique property can be based on constraints that characterize an algebraic
specification of the abstract data-type Set.

To check that the unique property holds on a container, we can generate
assertions that check that all operations on the container, including the construc-
tor, maintain the property. To reduce execution overhead, we may omit check-
ing operations that do not alter the state of the container, according to trusted
specifications.

When executing an operation that may alter the contents of a container, a com-
plete check has to verify that the container has been modified as required. This
means “remembering” the content of the container as it was before the operation,
and to check if the state has been changed only as specified. For a container be-
having like a set this means, for example, that an #add operation may only add
an element if it is not already in the set, and may not change any other element.
Maintaining a copy of the state of a container before each operation can consume
a lot of memory, and when the container is large, post-operation comparison of
the two containers can take a long time. Therefore, weakening the checks may be
a necessary trade-off to achieve acceptable overall performance.

The listing in Fig. 4 shows an assertion template that reduces overhead by limit-
ing the check to the size of the container state before and after an #add operation.
This template trades precision for runtime efficiency in two ways. First, it does
not keep track of the state of the container, but uses the containers size as an

//pre-operation code

int pre_size = <container>.<size>;

boolean pre_contains =

<container>.<contains>(param1);

//post-operation code

if (pre_contains && <container>.<size> != pre_size)

throw new ConstraintViolatedException();

if (!pre_contains && <container>.<size> != pre_size+1)

throw new ConstraintViolatedException();

Fig. 4. Assertion template for the unique property

Automatic Generation of Runtime Failure Detectors 231

approximation. Second, it does not scan the whole set to check that all previous
elements are unchanged. In particular, it does not check whether an observed size
change is actually caused by the element param1.

The tokens in angular brackets are place-holders in the template and need to be
replaced with appropriate expressions addressing the target elements in the imple-
mentation code. In our example, when the checks are pushed down the alternate
path through customer and phone, the <container> in the instantiated assertion
would be an identifier for a particular phone, and the <size> and <contains>
operations would be formulated as queries to the traffic database, where the con-
tainment relationship is reified with the phone identifier as a foreign key to delimit
the different container instances. In addition to general placement rules that allow
moving assertions to improve efficiency and early detection, domain specific place-
ment rules must describe how to identify code that creates new database entries
in the traffic database. The translation engine can then combine both rule-sets to
find relevant locations and create assertions tailored to each location.

Deciding what is a good trade-off between precision and performance depends
on many factors, and should consider the scope and particularities of the system
domain. Currently, we consider our technique a complement to traditional testing
and validation. Hence, any error we detect can be considered an improvement. On
the other hand, adaptations usually suspend the normal system execution, move
the system to a safe state, and alter the execution of the system to overcome the
problem, thus reducing the system availability during that time. False alarms that
unnecessarily trigger expensive adaptations can unacceptably reduce system avail-
ability and are thus seldom tolerated. The assertion templates we developed for
this chapter not only trade precision for speed, but are also designed to keep false
positives to a minimum at the expense of possibly missing some failures. For ex-
ample, the assertion template shown in Fig. 4 may miss faulty operations, but does
not generate false alarms, assuming that the container object’s mutating methods
do not have unexpected side-effects.

Potential healing actions, or more generally reactions to failures detected by our
assertions, are application and domain dependent. In the example of the phone
company many possible reactions are conceivable: The offending duplicate entry
might be dropped or stored in a separate database for later inspection. If the fault
can be determined from the failure, then stronger actions, like inserting additional
filtering components or simply replacing the faulty component with one that is
more reliable are possible. Classical fault tolerance techniques like roll-back and
re-execution are also thinkable. The clear separation of responsibility in the sense-
plan-act loop for adaptation allows the configuration of these behaviors in the
planning phase independent of the detection in the sensing phase.

4 Property Templates

Our research focuses on identifying useful property templates. Because property
templates link system level properties with classes of failures and faults, the
methodology we use to identify property templates starts with the natural sources

232 M. Pezzè and J. Wuttke

of information for both. On the one hand we studied requirements specifications,
for example user manuals and API specifications, and collected properties and pat-
terns that occur frequently in several contexts. On the other hand, we checked bug
reports in the bug database of the same applications and libraries, and clustered
the reported failures by symptoms and causes where possible. We analyzed several
open source applications from different domains: Apache Tomcat2 6.0.9, a server
application, Apache Cocoon3, a framework for web applications, Apache Lucene4,
a large library for text search.

Requirements properties that occur frequently in more than one application are
good candidates to be representative constraints in property templates. When one
or more failure clusters match one of the properties collected during our analysis
of requirements documents, we establish a link between a property and its failure
class. These connections between high-level property and classes of failures, and
the thorough study of the faults in the code and the fixes applied to remove the fault
guide the definition of assertion templates and translation rules for each property
template.

Table 1 lists the main classes of common property constraints that we found. A
noticeable aspect of the classes listed in Tab. 1 is thatmany of them match common
design patterns. Basic libraries like the Java SDK have gone to great lengths to pro-
vide frameworks for code that maintains these properties. For example, the Java
Collection Framework contains interfaces to make classes comparable, and there
exist well known design patterns for some aspects of the immutable and unique
properties [10]. Nonetheless, our analysis indicates that these well-understood and
often used properties and patterns represent a major source of software faults. This
lends additional motivation to our approach to automatically generate checks de-
tecting violations of them.

We produce property templates by augmenting classes of property constraints
with assertion templates and rules. We used the classes of constraints listed in
Tab. 1 to generate an initial catalog of property templates. Each catalog entry
consists of a property template, which is a triple 〈Constraint, assertion Template,
translationRule〉. The catalog lists property templates by giving aProperty identi-
fier, an informal Description of the property, an Elements entry that defines which
elements in a model may be constrained by this property, Assertion templates and
translation rules, described by relevant Context elements and target Location.

Table 2 shows an excerpt of the unique property template. Property and
Description are the same as in the list in Table 1. Property gives the property tem-
plate a name, and is also used as the label for model annotations. The
description is intended to give developers an intuitive understanding of the prop-
erty; the remaining entries in the table refine and formalize that notion. The en-
tries Elements and Parameters specify which type of model elements may carry
this property, and which additional parameters the annotation may take. The
property unique, for example, may annotate both, classes (or more generally

2 http://tomcat.apache.org
3 http://cocoon.apache.org
4 http://lucene.apache.org/java/

http://tomcat.apache.org
http://cocoon.apache.org
http://lucene.apache.org/java/

Automatic Generation of Runtime Failure Detectors 233

Table 1. Classes of constraints for property templates

Property Description

comparable <C> The constrained class must implement a comparison
operation matching interface C.

immutable The constrained entity may not change its visible
state once it is created.

initialized The constrained entity must complete all custom ini-
tialization before becoming accessible to clients.

language <L> The constrained entity must be a string and must
match a regular expression defining the language L.

unique The constrained entity must be unique within its con-
text. If the constrained entity is a relation, tuples in
the relation must be unique.

Table 2. Catalog entry for unique

Property: unique

Description: Tuples in the constrained relation must be unique.
Elements: Classifier, Association
Parameters: UniquenessProperty

Context: annotated entity, association ends
Location: annotated entity
Assertion: //pre-operation code

int pre_size = <container>.<size>;

boolean pre_contains =

<container>.<contains>(param1);

//post-operation code

if (pre_contains && <container>.<size> != pre_size)

throw new ConstraintViolatedException();

if (!pre_contains && <container>.<size> != pre_size+1)

throw new ConstraintViolatedException();

classifiers) and associations connecting classifiers, and has an additional parame-
ter UniquenessProperty. The parameter value must be the name of an attribute
of one of the annotated elements, which determines uniqueness of the annotated
entities. These first four entries define the constraint C. Context and Location de-
scribe more precisely which parts of the system model are relevant to create cor-
rect assertions, and where they need to be placed in the system implementation.
Thus, they form the rule R of the property template. The Assertion templates T
are templates that abstractly describe the necessary assertions.

For example, the Context of the property unique is both the annotated associ-
ation and the associated classes. The information about associated classes is im-
portant when the mapping of properties onto assertions is not straightforward,

234 M. Pezzè and J. Wuttke

Table 3. Properties identified during requirements analysis. For each application, the
first column represents the number of properties found during requirements analysis,
the second column represents the number of reported failures.

Property Cocoon Lucene Tomcat
Total instances 151 85 – 63 14 109

caching – 2 – 1 – –
comparable 19 – – 3 1 –
concurrency 47 5 – 2 1 4
immutable 22 – – – 3 2
initialized 32 3 – 1 4 6
language 1 5 – 1 2 3
resource mgmt 8 3 – – – –
unique 22 – – – 3 –

but involves several entities, as discussed in the example of Sec. 3, where the rela-
tion between Bills and Calls is implemented by several relations over different
sets of entities. The target Location for the unique assertions is the annotated ele-
ment. That means that assertions have to be placed around code that implements
or uses the annotated association. As discussed in the previous section, the precise
meaning of implements is application specific and may be defined by customized
rules. We omitted listing the translation rules in the catalog entry because of their
domain dependent nature. Showing a rule valid for an example domain may not
give more intuition about how they work in general than the discussion in the main
text (However, the pointcuts in Fig. 3 represent one possible realization of these
rules). An example where the location of the assertions is not the annotated ele-
ment is the property initialized. Here the clients of components that promise
to be initialized when they are visible have to check for this property. Thus, the
assertions have to be placed in client code.

We identified candidates for property templates by analyzing the relation be-
tween high-level properties and clusters of reported failures. We considered both
the common faults that could be avoidedby proper assertions derived from proper-
ties, and, where possible, the changes applied to the systems code to fix the identi-
fied faults. We took into account performance and precision concerns as discussed
in the previous section. Table 3 summarizes some of the results of that comparison.
For each application (with the exception of Lucene) we analyzed the requirements,
for example API specifications, to identify properties (column 1), and then ana-
lyzed bug reports accumulated for each application (column 2). The results show
that some properties show up only very rarely (for example caching), or only in
one application (for example resource mgmt). We omitted these from further
consideration later on, and the remaining properties we used to develop property
templates are listed in Tab. 1. To obtain actual assertion templates we used the
clusters of faults identified in our study, considered potential failures these faults
could cause, and abstracted away case specific information to obtain sufficiently
general descriptions of conditions that signify a failure for each fault class. We

Automatic Generation of Runtime Failure Detectors 235

Table 4. Effectiveness of property templates

Application Faults Properties Coverage
total relevant

Tomcat 109 16 4 94 %
Cocoon 85 22 5 86 %
Lucene 63 13 5 84 %

Total faults = number of known faults in the code
Relevant faults = number of faults with a clear connection to a requirement in the user

or API specification
Properties = number of different property templates to which more than one rel-

evant fault can be mapped
Coverage = percentage of relevant faults that belong to one of the classes ad-

dressed by a property template

encoded these conditions in the assertion templates for each property in the cata-
log. We discussed a detailed example of deriving assertions templates considering
these constraints in Sec. 3.

To check the usefulness of the assertion templates, we studied the relation be-
tween the assertions generated from templates and the known faults in the appli-
cations we studied (Apache Tomcat 6.0.9, Apache Cocoon and Apache Lucene).
Table 4 summarizes the amount of known faults that can be mapped to a property
template, and thus indicates the potential effectiveness of our technique. The num-
ber of known faults that can be addressed with assertions derived from the prop-
erty templates defined so far (relevant/total faults) varies between 15% and 25%
of the total amount of known faults, and represents a relevant fraction. The studies
indicate that well modularized applications and applications that are used as mod-
ules in a larger framework are more amenable to our technique than
monolithic applications. Additional details are available in [11].

5 Related Work

The idea to use specifications to derive recurring patterns also appears in the work
by Dwyer et al. [12]. They study a large set of finite state specifications from the
research literature and academic course-work, and collect typical properties ap-
pearing in these specifications. Cobleigh et al. build on this work and provide tools
to support developers in selecting and applying the derived patterns in their own
verification tasks [13]. Our work on the identification of properties that can lead to
the generation of property templates is similar in that it also studies software arti-
facts to derive patterns. However, our study uses two complementary approaches
to obtain patterns. We study not only what the software does wrong, but also re-
late it to the high level specification as an additional internal validation step that
is missing from previous work.

236 M. Pezzè and J. Wuttke

There is substantial work on the boundaries between software engineering and
programming languages, which addresses problems related to some of the prop-
erties we have listed in our catalog. For example, Zibin et al. and Unkel and Lam
address questions regarding immutable objects and variables [14,15]. Zibin et al.
discuss a language extension to Java that allows the explicit specification of im-
mutability properties of objects and references, which go far beyond the possibil-
ities of Java’s final qualifier. Unkel and Lam introduce the notion of stationary
fields, that is fields where all write operations to the field happen before any read
operation. Thus, at read time these variables can be treated similar to final fields.
The work by Unkel and Lam introduces a static analysis algorithm to identify such
fields, but no method to specify them beforehand, which means there is no way to
dynamically check for violations of such a property. Boyland and Retert address
the notion of object uniqueness and how languages can enforce the semantics of
unique objects [16]. The similarity between these approaches and our methodol-
ogy is that they address similar properties, partially by explicitly specifying them
to enable static or dynamic checks, and partially by analyzing real system to de-
termine which properties occur frequently. However, in all cases their analysis and
specification happens at the code level, and is thus far from the semantics of the
end-user specifications, which we use to identify the properties to monitor.

Chan et al. and Beckman et al. work on static analysis methods dealing with
concurrency problems [17,18]. In both cases the basic technique uses annotations
in the code to specify additional constraints on classes and methods. Chan et al.
provide annotations to explain the behavior of objects or methods, for example
reading or writing certain variables. Beckman et al. specify constraints that de-
clare the allowed accesses to objects, and use the typestate system to declare us-
age protocols of methods. In both cases, a static analysis uses these annotations to
detect potential or real race conditions and deadlocks.

Work addressing self-healing, that is autonomic repairing of functional prob-
lems, usually addresses either transient failures like race conditions, or resource
management problems like memory exhaustion. For example, RX by Qin et al.
propose an approach based on checkpoints and dynamic changes of the environ-
ment of the system to fix failures due to memory leaks and buffer overflows [19].
Goldstein et al. try to delay system crashes due to memory exhaustion by monitor-
ing object activity on the heap and transparently removing unused objects from
main memory [20]. This effectively delays and reduces the effects of memory leaks
in languages with managed memory. From a direction that appears to be more in-
spired by traditional fault tolerant systems, Candea et al. introduce micro-reboot,
a technique that restarts individual components of a system, either in reaction
to a detected failure, or regularly in the hope that this rejuvenation occurs be-
fore faults like memory leaks lead to irreparable damage or system crashes [21].
From this they develop the more general idea of software rejuvenation. Interest-
ingly, none of these techniques heals the problem, rather they reduce the likelihood
for failures to occur. This is why these techniques can be reasonably successful
without precise failure detection.

Automatic Generation of Runtime Failure Detectors 237

Using specifications to automatically derive oracles is one of the objectives of
specification- or model-based testing. However, in this field, approaches that at-
tempt to derive oracles usually require a complete and formal specification [22].
Furthermore, most practical approaches require developers to specify constraints
on the level of individual methods or classes, which makes it hard to keep the
bigger picture of system level requirements in mind [23,24]. Our property tem-
plate based methodology explicitly addresses this issue by providing a link from
end user requirements all the way down to assertions in the code. Our approach
only requires a partial, annotated structural model of the parts of the system that
should be augmented with failure detectors.

There are several fully or partially automated failure detection approaches that
do not require formal specifications, but use capture and replay techniques or dy-
namic invariant inference to build models of the system. Hangal and Lam use dy-
namic invariant inference to build a model of system executions [25]. Since their
goal is complete automation of the model building and monitoring process, their
system only issues warnings to be analyzed off-line by developers. Approaches that
explicitly try to solve the oracle problem usually rely on a separate training phase
to learn the model [26,27]. After the learning phase this model remains fixed and
serves as the oracle to distinguish between valid and invalid executions. The ap-
proaches by Baah et al. and Lorenzoli et al. combine trace information with static
invariants to improve the quality of the models prediction. However, since dynamic
behavior inference relies only on the implementation of a system, it is not able to
incorporate notions expressed in end-user requirements.

6 Conclusions and Outlook

In this chapter we presented a method for automatically generating assertions to
detect violations of end-user requirements. We target self-healing software, which
requires both detecting failures while the system is running in a production envi-
ronment, and providing enough information about the detected failures to enable
automatic healing actions. The self-healing requirements add the challenges of full
automation, low runtime overhead, and high detection precision to the problem
of failure detection as it would occur in traditional validation and verification.

Our approach is centered around the concept of property templates, which link
requirements and design, drive assertion generation and incorporate rules that
specify where to place assertions in the code. Property templates enable easy an-
notation of models, and correct and complete generation of assertions for high-
level properties. We address the technical concerns of performance and precision
discussed above by carefully connecting the three core elements that we need to
address in failure detection: faults, failures, and reusable information on how to
detect the failures.

In this chapter we present the property template catalog: We discuss how the
catalog drives the whole generation process, and how we can derive useful catalog
entries. In future work we plan to refine and extend the initial catalog of property
templates to match a wider range of requirements. At the time of writing, all prop-
erties refer to structural and functional features of systems, such as uniqueness of

238 M. Pezzè and J. Wuttke

object and limits to parameter values. We believe it is relatively straightforward
to extend the technique to the monitoring of simple temporal properties, like they
might be specified in Service Level agreements. Such work will be similar to more
complex MOF based approaches (for example [28]), but might be easier to use
thanks to the simple specification language we provide.

Our experiments indicate that for some relevant classes of constraints, develop-
ers are relieved from the burden of deriving, tuning, and inserting matching checks
for these constraints. As such, the technique improves developer productivity and
software quality. Since assertion generation and insertion are fully automated, this
process also allows efficient maintenance of constraints even when the systems
structure changes, because matching assertions can simply be re-generated and
will be inserted, even if new relevant locations have been created by the change.

The applicability of property templates listed in the catalog is limited by the
transformation rules available. These rules are domain specific, which implies that
most deployment platforms would require modifications to those rules. In future
work we plan to define techniques to extract common patterns for domain inde-
pendent translation rules, to separate domain independent aspects from domain
dependent ones and increase catalog portability.

In the introduction we discussed five criteria that runtime failure detectors for
self-adaptive systems should meet. The technique we discuss in this chapter ad-
dresses four of these criteria, but does not consider how adaptations to the system
may also require adaptations to the failure detectors. Since the properties we de-
fine in the property template catalog refer to system goals, the properties in the
models only have to change when the goals of the system change. Further, the
generated failure detectors are dynamically deployed to match component inter-
faces. Hence, as long as components added due to adaptations match annotated
interfaces, they can be augmented with already existing failure detectors. Part
of our ongoing work is to elicit and clarify conditions when our generated failure
detectors will have to adapt, and to define adaptation strategies for these cases.

References

1. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Morgan Kaufmann, San Fran-
cisco (2007)

2. Laprie, J.C., Avizienis, A., Kopetz, H. (eds.): Dependability: Basic Concepts and
Terminology. Springer, New York (1992)

3. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

4. Rosenblum, D.S.: A practical approach to programming with assertions. IEEE
Transactions on Software Engineering 21(1), 19–31 (1995)

5. Das, M.: Formal specifications on industrial-strength code—from myth to reality. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, p. 1. Springer, Heidelberg
(2006) (invited talk)

6. Machado, P.D.L.: Testing from Structured Algebraic Specifications: The Oracle
Problem. PhD thesis, University of Edinburgh (2000)

Automatic Generation of Runtime Failure Detectors 239

7. Richardson, D.J., Aha, S.L., O’Malley, T.O.: Specification-based test oracles for re-
active systems. In: Proceedings of the 14th International Conference on Software
Engineering, ICSE 1992, pp. 105–118 (1992)

8. Ciupa, I., Meyer, B., Oriol, M., Pretschner, A.: Finding faults: Manual testing vs.
random testing+ vs. user reports. Technical Report 595, Department of Computer
Science, ETH Zurich, Switzerland (2008)

9. Voas, J.M., Miller, K.W.: Putting assertions in their place. In: Proceedings of the 5th
International Symposium on Software Reliability Engineering, pp. 152–157 (1994)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1994)

11. Wuttke, J.: Property classes and assertions supporting runtime failure detection.
Technical report, University of Lugano, Switzerland (2008)

12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering, ICSE 1999, pp. 411–420 (1999)

13. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: Proceedings of the 14th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, SIGSOFT 2006/FSE-
14 2006, pp. 208–218 (2006)

14. Zibin, Y., Potanin, A., Ali, M., Artzi, S., Kieżun, A., Ernst, M.D.: Object and refer-
ence immutability using java generics. In: ESEC-FSE 2007: Proceedings of the 6th
Joint Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, pp. 75–84. ACM,
New York (2007)

15. Unkel, C., Lam, M.S.: Automatic inference of stationary fields: a generalization of
java’s final fields. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, pp. 183–195
(2008)

16. Boyland, J.T., Retert, W.: Connecting effects and uniqueness with adoption. SIG-
PLAN Notices 40(1), 283–295 (2005)

17. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks
and typestate. In: Proceedings of the 23rd ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA 2008, pp.
227–244 (2008)

18. Chan, E.C., Boyland, J.T., Scherlis, W.L.: Promises: Limited specifications for anal-
ysis and manipulation. In: Proceedings of the 20th International Conference on Soft-
ware Engineering, ICSE 1998 (1998)

19. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: Treating bugs as allergies — a safe
method to survive software failures. In: Proceedings of the 20th ACM Symposium
on Operating Systems Principles, SOSP 2005, pp. 235–248 (2005)

20. Goldstein, M., Shehory, O., Weinsberg, Y.: Can self-healing software cope with loi-
tering? In: Proceedings of the 4th International Workshop on Software Quality As-
surance, SoQUA 2007, pp. 1–8 (2007)

21. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot - a tech-
nique for cheap recovery. In: Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (2004)

22. Antoy, S., Hamlet, R.: Automatically checking an implementation against its formal
specification. IEEE Transactions on Software Engineering 26(1), 55–69 (2000)

23. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

240 M. Pezzè and J. Wuttke

24. Cheon, Y., Leavens, G.T.: The JML and JUnit way of unit testing and its imple-
mentation. Technical Report TR #04-02, Department of Computer Science – Iowa
State University (2004)

25. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly de-
tection. In: Proceedings of the 24th International Conference on Software Engineer-
ing, ICSE 2002, pp. 291–301. ACM, New York (2002)

26. Baah, G.K., Gray, A., Harrold, M.J.: On-line anomaly detection of deployed soft-
ware: a statistical machine learning approach. In: Proceedings of the 3rd Interna-
tional Workshop on Software Quality Assurance, SOQUA 2006, pp. 70–77. ACM,
New York (2006)

27. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proceedings of the 30th International Conference on Software Engineer-
ing, ICSE 2008, pp. 501–510. ACM, New York (2008)

28. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In: Pro-
ceedings of the 26th International Conference on Software Engineering, pp. 179–188
(2004)

Using Filtered Cartesian Flattening and
Microrebooting to Build Enterprise Applications

with Self-adaptive Healing

J. White1, B. Dougherty1, H.D. Strowd2, and D.C. Schmidt1

1 Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA

{jules,briand,schmidt}@dre.vanderbilt.edu
2 Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA, USA

hstrowd@andrew.cmu.edu

Abstract. Building enterprise applications that can self-adapt to elimi-
nate component failures is hard. Existing approaches for building
adaptive applications exhibit significant limitations, such as requiring
developers to manually handle healing side-effects, such as lock release,
thread synchronization, and transaction cancellation. Moreover, these
techniques require developers to write the complex recovery logic needed
to self-adapt without exceeding resource constraints.

This paper provides two contributions to R&D on self-adaptive ap-
plications. First, it describes a microrebooting technique called Refresh
that uses (1) feature models and a heuristic algorithm to derive a new
and correct application configuration that meets resource constraints and
(2) an application’s component container to shutdown the failed subsys-
tems and reboot the subsystem with the new component configuration.
Second, we present results from experiments that evaluate how fast Re-
fresh can adapt an enterprise application to eliminate failed components.
These results show that Refresh can reconfigure and reboot failed appli-
cation subsystems in approximately 150ms. This level of performance
enables Refresh to significantly improve enterprise application recovery
time compared to standard system or application container rebooting.

1 Introduction

Current trends and challenges. Enterprise applications are large-scale software
systems that execute complex business processes, such as order placement and
inventory management. Since many enterprise applications receive considerable
client traffic, they are often hosted on multiple application servers distributed
across a local network. Most enterprise applications utilize component mid-
dleware, such as Enterprise Java Beans (EJB), to reduce the effort of devel-
oping the distributed communication infrastructure by managing the complex
distributed interactions between application components and ensuring data in-
tegrity through distributed transaction controls.

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 241–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

242 J. White et al.

The failure of an enterprise application can have considerable negative impact
(e.g., lost orders, customer irritation, etc.) on an organization. As a consequence,
high availability is important for most enterprise applications. Regardless of how
much testing and system validation is done, systems can and often do fail [10].
In these situations, speedy recovery of system functionality is critical.

Many organizations use manual processes to recover from failures of enterprise
applications [10]. For example, when an EJB application fails, system administra-
tors may restart a group of application servers to attempt to remedy the error. If
the error is not fixed by the restart, the administrators may begin collecting logs
from the application servers and scanning them for errors. These manual processes
are time consuming and error-prone and can leave an application offline for an ex-
tended period while the root cause of the failure is identified and remedied.

To address the limitations of human-based recovery of application failure,
self-adaptive capabilities are needed that can identify failed components and
perform self-adaptive healing to quickly recover. Rather than being off-line for
minutes or hours, self-adaptive systems should be able to heal in milliseconds
or seconds. Despite the potential payoff associated with self-adaptive healing
capabilities, enterprise applications are rarely developed using these techniques
since (1) developing the complex logic to determine how to fix a failure cleanly
is hard and (2) implementing healing actions requires handling a plethora of
challenging side-effects, such as the need to roll-back distributed transactions.

Rather than focusing on fine-grained self-adaptive healing systems, most orga-
nizations today leverage clustering and other redundancy mechanisms to ensure
availability. Although these macro-level approaches can improve availability, they
require additional hardware and complex system administration. Moreover, there
are many types of failures that macro-level approaches cannot fix. For example, if
a database or remote service that an enterprise application relies on becomes in-
accessible due to a network failure, an entire cluster of redundant application in-
stances will be brought down. In this situation, however, if the application could
self-heal by loading additional components to communicatewith an alternative but
not identically accessed database, it could continue to function.

Since software development projects already have low success rates and high
costs, building an application capable of healing is hard [20,3]. Moreover, building
adaptive mechanisms greatly increases application complexity and can be hard
to decouple from application code if the development of the adaptive mecha-
nism is not successful. In addition, most self-adaptive healing approaches are
not suitable for enterprise applications because they do not take into account
transaction state, clean release of resources, and other critical actions that must
be coordinated with an enterprise application server.

Solution approach → Microrebooting and Feature-based Reconfiguration. Our ap-
proach to reducing the complexity of developing self-adaptive healing enterprise
applications is called Refresh. Refresh uses a combination of feature models [15]
(which describe an application in terms of points of variability and their af-
fect on each other) and microrebooting [8] (which is a technique for rebooting
a small set of failed components rather than an entire application server) to

Using FCF and Microrebooting to Build Enterprise Applications 243

significantly reduce the complexity of implementing an application with self-
adaptive healing capabilities. When an application component fails, Refresh (1)
uses the application’s feature model to derive a new application configuration,
(2) uses the application server’s component container to shutdown the failed
component, and (3) reboots the component in the newly derived configuration.
Refresh relies on the ability to transform a feature model into a constraint sat-
isfaction problem (CSP) and use a constraint solver to autonomously derive a
new configuration.

Our previous work [25,23] showed how Refresh’s CSP-based healing could be
used to reduce the complexity of implementing self-adaptive healing applications.
When the self-adaptive healing mechanism needs to respect resource constraints,
such as bandwidth or memory limits, a CSP-based approach for deriving appli-
cation configurations from feature models becomes too slow for enterprise appli-
cations. Selecting a feature configuration that adheres to resource constraints is
an NP-Hard problem that is time-consuming to solve with a CSP-solver.

This paper extends our previous work by showing how Filtered Cartesian
Flattening and multidimensional multiple-choice knapsack heuristic algorithms
can be used as the feature selection mechanism to drastically reduce feature
selection and consequently, self-adaptive healing time. We show how these algo-
rithms can be combined with microrebooting, component middleware container
hotswap capabilities, and feature models to create self-adaptive enterprise appli-
cations. We also present empirical results that show the increase in scalability
and speed provided by Filtered Cartesian Flattening (FCF) versus a CSP-based
reconfiguration approach. We provide empirical results comparing our original
Refresh + CSP technique to the new Refresh + FCF technique. Furthermore,
we provide an extensive comparison of the pros and cons of our Refresh + CSP
self-adaptive approach versus our new Refresh + FCF approach.

Paper organization. The remainder of this paper is organized as follows: Section 2
presents the e-commerce application we use as a case study throughout the pa-
per; Section 3 enumerates current challenges in applying existing MDE techniques
for building self-adaptive healing applications that must adhere to resource con-
straints; Section 4 describes Refresh’s approach to using feature models, microre-
booting, and Filtered Cartesian Flattening to reduce the complexity of modeling
and implementing an application that can heal; Section 5 analyzes empirical re-
sults obtained from applyingRefresh to our case study; Section 6 comparesRefresh
with related work; and Section 7 presents concluding remarks.

2 Case Study: ICred

Enterprise applications have a number of complex considerations thatmake it hard
to build an application capable of self-adaptive healing. To showcase these chal-
lenging aspects of enterprise applications, we present a case study based on an en-
terprise application that provides instant credit decisions for in-store purchases.
Throughout the paper, we refer to our case study application as ICred. The high-
level architecture of ICred is shown in Figure 1.

244 J. White et al.

Fig. 1. The ICred Instant Credit Enterprise Application

When a customer in a retail store wishes to purchase an expensive item, such
as a computer projector, the store clerk can offer the customer an instant line of
credit to make the purchase and pay later. If the customer is interested in obtaining
the line of credit, the store clerk keys in the customer’s information and a request
for credit is sent to the remote ICred server for approval. ICred must pull the cus-
tomer’s credit report and other needed information to make the credit decision.

ICred is used for a number of different retailers and each retailer has a specific set
of requirements for validating a credit application and issuing an approval. Stores
that sell less expensive and less durable items, such as computer equipment, may
require a simple validation of the customer’s residence information and bank ac-
counts. Vendors of more expensive items, such as car dealerships, require more
extensive sets of information, such as a full credit report and verification of a pre-
vious address. Each customer is supported by a custom configuration of ICred that
is not shared.

Instances of ICred are run and managed by an information supplier on behalf of
retail chains. Each piece of information needed for the credit decision can either be
obtained in-house or from another information supplier. Whenever ICred requests
a piece of information on a customer from another supplier, a small fee is paid to
the information vendor that services the request. Information can be purchased
from multiple vendors at varying prices based on volume.

An ICred configuration receives instant credit requests from thousands of retail
locations and must be continuously available. A failure to make a credit decision
could result in a customer not making a large purchase. When one of ICred’s in-
formation suppliers becomes unavailable, ICred can fail over to another supplier.
For example, Figure 2, shows the different sources of information that can be used
to obtain credit reports.

Figure 2 shows a feature model for an e-commerce application called
CreditReportProviderthat represents a service for obtaining credit reports. The
CreditReportProvider feature has different sub-features, such as different po-
tential vendors that can serve as the credit report provider service. If the Vendor 1
feature is chosen, it excludes the other potential providers’ services from being used

Using FCF and Microrebooting to Build Enterprise Applications 245

Java RMI

In-House CRP

SOAP Converter 1

Vendor 1

Hessian

Vendor 2

SOAP Converter 1 OpenID

Vendor 3

CreditReportProvider

In-House

Hessian

Vendor 2

SOAP

Vendor 3

AddressVerifProvider

Single In-House

JTA

Multiple

Datasources

ICred

Fig. 2. Feature Model of the Available Credit Report Providers

(it constrains the other features). If Vendor 1 service fails, a new feature selection
can be derived that does not include the failed service’s feature. When a compo-
nent failure occurs, Refresh uses an application’s feature model and a constraint
solver to derive an alternate but legal configuration of the application’s component
that eliminates the failed component implementation.

Failing over to another supplier involves a number of complex activities. Infor-
mation vendors represent the same information using slightly different formats and
leverage different request protocols. Depending on the vendor chosen, it may be
necessary to load various special converter and protocol handlers into the applica-
tion. Moreover, since ICred receives a high request volume, it must try to ensure
that the combination of protocols used by its current configuration of information
vendors will not saturate the network. Finally, since per request prices vary across
information vendors, ICred must also try to minimize the cost incurred by the
configuration of external information vendors.

To showcase the complexity of performing self-adaptive healing in an enterprise
application, we explore the difficulty of failing over between local and external
information services in ICred. Section 3 presents the complexities of developing
healing logic and adaptation actions. Section 4 shows how Filtered Cartesian Flat-
tening can be used to derive a new application configuration to eliminate a failure
and boot the configuration using the application’s component container.

3 Self-Adaptive Healing Challenges for Enterprise
Applications

This section describes the challenges associated with implementing a self-adaptive
healing enterprise application. First, we show that the need to adhere to resource
constraints, such as total available network bandwidth, makes finding a way of
healing an enterprise application an NP-Hard problem. Second, we discuss how
even if a way of healing the application can be found, numerous accidental com-
plexities, such as the need to properly handle in-process transactions, make it hard
to implement healing actions.

3.1 Challenge 1: Resource Constraints Make Adaptation Actions
Extremely Complex

When an application component fails and requires healing, adaptation actions
must be run to reach a new and valid state. We term the sequence of

246 J. White et al.

adaptation actions that are run to fix a failed application subsystem as a recovery
path. A chief complexity of implementing an application capable of self-adaptive
healing is building the logic to select a recovery path for a given application
failure.

Recovery actions are used to perform two key types of activities: (1) perform-
ing resource cleanup and release from failed application components and (2) de-
termining what new application components can be loaded to heal a failure. The
difficulty in building recovery logic is that the second critical activity, selecting
the new components to load, requires finding a series of application components
that fit into the resource limits of the application. Selecting a series of compo-
nents that adheres to a resource limit is an instance of the NP-Hard knapsack
problem.

For example, consider the failure of the In-House CRP. ICred’s In-House CRP
can be swapped out to one of three remote services. When the local In-House CRP
fails, the recovery logic must determine the optimal subset of these remote ser-
vices to fail-over to in order to fix the error. Furthermore, the recovery logic must
attempt to minimize the cost of the information provider services that are used in
the new configuration.

Network bandwidth consumption must be accounted for in the healing process.
Each remote service uses a different protocol for communication and consumes
varying amounts of network bandwidth. The Java RMI service uses the efficient bi-
nary IIOP protocol. The SOAP service, however, sends comparatively large XML
messages over HTTP and consumes significantly more bandwidth. Depending on
what combination of services are currently being used by the application, the net-
work may or may not have sufficient bandwidth to fail over to the SOAP-based
service. Even if the Vendor 1 SOAP-based service is the cheapest to fail-over to, it
may not be possible due to network bandwidth limitations.

If the SOAP-based service is the only of the three alternate remote services that
is reachable after the failure, the healing logic may need to shutdown and swap
other parts of the application (e.g., AddressVerifProvider, etc.) to less bandwidth
consumptive remote services so that the SOAP service can be used. For example, if
the CreditReportProvider is using a SOAP-based remote service, it may need to
be swapped to Vendor 2’s Hessian-based service to allow the SOAP-based product
service to be used. Finding the right set of services to swap in and out of the appli-
cation is NP-Hard and difficult to do quickly at runtime. Performing simultaneous
cost optimization is even harder.

Designing this type of complex adaptive logic to choose a recovery path is hard.
For most enterprise application development projects, this type of complex adap-
tation logic is not feasible to develop from scratch. Moreover, with nearly 53% of
software development projects being completed over-budget and 18% of projects
canceled [26,17] adding this type of complex adaptive logic adds significant risk
to a project. In Section 4.2, we show how we use feature models and the Filtered
Cartesian Flattening algorithm to eliminate the need to write complex recovery
path selection logic.

Using FCF and Microrebooting to Build Enterprise Applications 247

3.2 Challenge 2: Accidental Complexity Makes Adaptation Actions
Hard to Develop

Enterprise applications are typically built on top of component middleware, such
as Enterprise Java Beans. Component middleware provides an application con-
tainer, which manages the intricate details of thread synchronization, distributed/
local transaction control, and object pooling. One key challenge of developing self-
adaptive healing mechanisms for enterprise applications is properly and cleanly
handling the nuanced considerations related to these aspects of the application.
For example, if a credit report provider fails, the application must ensure that any
distributed transactions associated with the provider are rolled back and cleanly
terminated before a new provider is swapped in. Figuring out the right way to
terminate transactions, release locks, terminate network connections, and release
other resources when healing occurs is hard.

When healing takes place, a further challenge of properly handling transactions
and other container managed services is that the application does not have direct
control over them. For example, EJBs are not allowed to perform thread synchro-
nization or manually obtain locks. If a failure occurs in a multi-threaded applica-
tion, therefore, it is hard for an EJB to ensure that data corruption does not occur
if it reconfigures the application’s internal structure.

An issue further complicating the healing process is that healing may require
changing the policies the container uses to manage these services. In ICred, for
example, if ICred is using all local data sources, it can use standard local transac-
tion management through the container. If ICred fails over to a remote datasource,
however, it must also force the container to reconfigure itself to use the Java Trans-
action API (JTA) to manage distributed transactions across both the local and re-
mote datasources. It is hard to perform these numerous complex reconfiguration
processes manually. Section 4describes how we use the application component con-
tainer’s standard lifecycle mechanisms to perform healing and eliminate the need
to write custom recovery actions.

4 Solution Approach→Combining Refresh and Filtered
Cartesian Flattening

The challenges in Sections 3.1-3.2 stem from two primary causes: (1) the need for
developers to implement complex recovery path selection logic that accounts for
resource constraints and (2) the need for developers to implement complex recov-
ery actions that correctly coordinate and handle the side-effects of healing, such
as graceful transaction failure. This section presents an overview of Refresh [25]
and shows how we extend it with the Filtered Cartesian Flattening algorithm to
address these challenges.

4.1 Overview of Refresh

Refresh uses feature models to capture the rules for what is a correct system state,
which when combined with the Filtered Cartesian Flattening feature selection al-
gorithm, can be used to automate the selection of a new configuration to reboot

248 J. White et al.

into. After a new and valid configuration is found, Refresh uses the application’s
container to swap out the failed components and boot the new alternate configura-
tion. Automating the reconfiguration process eliminates the need for developers to
design and implement the recovery path selection logic, which addresses Challenge
2 from Section 3.1.

Using the container’s normal lifecycle facilities to perform healing (e.g., reboot-
ing and hotswapping), eliminates the need for developers tomanage the side-effects
of healing since they are automatically managed by the container when lifecycle
management activities are performed. As shown in Section 5, using Filtered Carte-
sian Flattening and container rebooting to perform resource constrained healing
provides fast recovery at a significantly reduced development cost compared to
recovery action oriented techniques.

Refresh is designed for enterprise applications where 1) failing components can
safely be rebooted, 2) the application container’s ability to handle transaction and
other failures provides a sufficient guarantee of safety for the developers, and 3)
developers do notwant to implement custom fine-grainedhealing. The technique is
not suited for safety-critical applications outside the enterprise computing domain,
such as flight avionics. If the three conditions outlined above do not hold, Refresh
is not applicable.

Refresh is based on the concept of microrebooting [8]. When an error is observed
in the application, Refresh uses the application’s component container to shut-
down and reboot the application’s components. Using the application container
to shutdown the failed subsystem takes milliseconds as opposed to the seconds re-
quired for a full application server reboot. Since it is likely that rebooting in the
same configuration (e.g. referencing the same failed remote service) will not fix
the error, Refresh derives a new application configuration from the application’s
feature models that does not contain the failed features (e.g., remote services).

The application configuration dictates the remote services used by the applica-
tion. The application configuration determines any local component implementa-
tions, such a SOAP messaging classes, needed to communicate and interact
properly with the remote services. After deriving the new application configura-
tion and service composition, Refresh uses the application container to reboot the
application into the desired configuration. The overall Refresh healing process is
shown in Figure 3.Throughout the healing process, Refresh does not use any

Fig. 3. Refresh Healing Process

Using FCF and Microrebooting to Build Enterprise Applications 249

Fig. 4. Mapping Failures to Features

custom recovery actions. All error states are transitioned out of through a single
recovery path, shutting down the application components via the container, auto-
matically deriving a new and valid configuration/service composition, and restart-
ing the application components. No application-specific recovery action model-
ing or recovery application implementations are required. Refresh interacts di-
rectly with the application container, as shown in Figure 3. During the initial and
subsequent container booting processes, Refresh transparently inserts application
probes into the application to observe the application components. Observations
from the application components are sent back to an event stream processor that
runs queries against the application event data, such as exception events, to iden-
tify errors. An example event stream query and mapping to the feature model is
shown in Figure 4. Whenever an application’s configuration requires healing, en-
vironment probes are used to determine available remote services and global appli-
cation constraints, such as whether or not JTA is present.

4.2 Feature Model Configuration Healing

At the core of the Refresh approach is its ability to derive a new configuration for
the application that both eliminates any failed components and adheres to resource
limitations. Refresh uses a feature model of the application to capture the rules
for reconfiguration. When a failure occurs, the configuration space defined by the
feature model is searched for a new and valid configuration.

A feature model is used to define the configuration space of an enterprise
application by defining configuration rules, such as:

– What alternate implementations of components are available
– What dependencies (such as libraries, configuration files, etc.) must be used

with each component
– What combinations of components form a valid and complete application

composition
– Annotations describing how much RAM, Bandwidth, etc. is consumed by each

feature

Searching a feature model’s solution space for a valid configuration is an instance
of the NP-complete circuit satisfiability problem. The feature model can define an

250 J. White et al.

arbitrary boolean formula. Each boolean term represents the presence of a spe-
cific feature. The constraints in the feature model are the AND, OR, and NOT
constraints used to form the circuit satisfiability clauses. Numerous research ap-
proaches have applied techniques such as SAT solvers [4,18], Binary Decision Di-
agrams (BDDs) [9], and Constraint Satisfaction Problem (CSP) solvers [21,5], to
find valid feature model configurations.

Our initial implementation of Refresh used the CSP-based approach proposed
by Benavides [5] and extended by us to include resource constraints [24,22]. CSP-
based feature selection techniques work well when resource constraints are not
included. Through experiments that we performed [23], however, we observed sig-
nificant scalability problems for CSP-based feature derivation with resource
constraints, as shown in the results in Section 5.3. Other exponential exact deriva-
tion techniques, such as SAT solvers and BDDs, suffer from these same scalability
problems [23].

A number of heuristic techniques can be applied to improve the performance
of these exact solving techniques. For example, by choosing the correct variable
ordering, many BDD-based problems can be simplified significantly. Choosing the
best variable ordering, however, is an NP-Hard problem and must be performed on
a per-problem basis. Similar techniques can be applied to CSP-based configuration
derivation, but must also be performed on a per problem basis.

Since the goal of Refresh is to simplify the implementation process of applica-
tions capable of self-adaptive healing, it would not be reasonable to expect these
heuristic techniques to be learned and applied by normal developers. Moreover,
the application of these techniques requires significant skill. Just as good applica-
tion design is an art form, knowing which of these heuristics to apply and how to
apply them is also an art. We do not think is reasonable to expect developers are
willing and/or able to become experts in these techniques. We have therefore not
considered these techniques for Refresh.

4.3 Filtered Cartesian Flattening

To overcome the scalability issues associated with finding a new and valid feature
configuration, we incorporated the Filtered Cartesian Flattening feature selection
algorithm into Refresh. Filtered Cartesian Flattening is a polynomial-time algo-
rithmic technique that approximates a feature configurationproblemwith resource
constraints as a multidimensional multiple-choice knapsack problem (MMKP)
[23]. A standard knapsack problem attempts to find a subset of a series of items
that fits into a knapsack of limited size and maximizes the value of the items inside
the knapsack. An MMKP problem is a variant of a knapsack problem where the
items are subdivided into disjoint sets and exactly one item must be chosen from
each set to put into the knapsack. Both variants of the problem are NP-Hard [19].

The reason that Filtered Cartesian Flattening approximates the feature con-
figuration problem as a MMKP problem is that there are a number of excellent
polynomial-time heuristic algorithms that have been developed for MMKPs. For
example, the M-HEU and C-HEU heuristic MMKP algorithms can solve large
MMKPs in milliseconds with an average of over 95% optimality [19]. Once a fea-

Using FCF and Microrebooting to Build Enterprise Applications 251

ture configuration problem is represented as a MMKP, these heuristic algorithms
can be used to derive a feature selection. When a failure occurs, the speed of Fil-
tered Cartesian Flattening, which uses MMKP heuristic algorithms, is far more
important than its minor tradeoff in healing solution optimality.

Filtered CartesianFlattening approximates a feature model as an MMKP prob-
lem by finding a series of independent subtrees in the feature model that can be
configured independently. Each of these subtrees is represented as an MMKP set.
The items within the MMKP sets represent the valid configurations of their respec-
tive subtrees. Because each MMKP set represents a subtree of the feature model,
by choosing a configuration from each MMKP set and composing them, a complete
feature model configuration will always be reached.

Since there may be an exponential number of possible configurations of each
subtree, Filtered Cartesian Flattening employs an approximation technique. As
Filtered Cartesian Flattening enumerates the possible configurations of each
feature model subtree, it bounds the MMKP set size and selectively filters which
configurations are propagated into the sets. Typically, a heuristic that selects
configurations with the best ratio of value/resource consumption is used as the
selection criteria.

To derive a configuration that omits the failed feature while still adhering to
resource constraints, Refresh utilizes Filtered Cartesian Flattening. During the
enumeration process, Filtered Cartesian Flattening disallows the inclusion of the
failed feature to any of the MMKP sets. Due to this exclusion, the feature can
not belong to any configuration that can be derived from the resulting MMKP
problem, thus disallowing the failed feature to be present in the new feature set.
After deriving the new feature configuration, the application container is used to
shutdown the old configuration and boot the new configuration.

5 Refresh and Filtered Cartesian Flattening Performance

This section presents results from experiments we performed to empirically evalu-
ate the performance of Refresh’s feature reconfiguration and container-based
healing. We used a reference implementation of an enterprise request processing
application, implemented on top of the Java Spring Framework [13], that could fail
over between a number of different remote and local data sources. The implemen-
tation was comprised of roughly 15,000 lines of code using a combination of Java,
Java Server Pages, XML, and SQL.

Our prior work [25] conducted experiments to measure the reduction in imple-
mentation complexity provided by Refresh. This paper extends our prior work by
evaluating the performance of feature model and container-based healing. More-
over, we analyze how automated feature selection techniques can be made more
scalable to handle resource constraints and optimization goals.

5.1 Hardware and Software Testbed Configuration

The experiments with the application were performed on a Pentium Core DUO
2.4ghz processor, with 3 gigabytes of RAM, running Windows XP. A Java Virtual

252 J. White et al.

Machine, version 1.6, was run in client mode for all tests. We used Apache Tomcat
6 as the web container for the application.

To test the performance of Refresh, we implemented a self-adaptive healing ver-
sion of the application and compared its performance to the conventional (non-
adaptive) implementation. The first set of experiments compared the performance
of the Refresh-based application to the conventional unmodified application to
measure the overhead of using a container-based healing approach. The second
set of experiments extended the Refresh application to adhere to a bandwidth con-
straint. We measured the configuration derivation times of both the Filtered Carte-
sian Flattening configuration derivation technique and the CSP-based technique
to compare scalability.

5.2 Refresh Performance

To create an initial performance baseline to compare against, we used Apache
JMeter to simulate the concurrent access of 30 different customers to the applica-
tion and the time required to complete 1,000 requests. Figure 5 shows the average
time required to complete various parts of the request process throughout the
experiment.

We also used Apache JMeter to simulate the concurrent access of 30 different
customers to the Refresh-enabled application and the time required to complete
1,000 requests. To measure Refresh’s worst case performance overhead, we used
the CSP-based configuration derivation technique for this experiment since it was
slower than the Filtered Cartesian Flattening technique. The performance results
were identical to the conventional application implementation. This result was ex-
pected since the time-consuming healing process is only invokedduring component
failures. Moreover, our Refresh application implementation used very lightweight
Spring interceptors to monitor components for exceptions. We saw no measurable
performance penalty for the use of these interceptors.

Fig. 5. Average Response Time for the Application

Using FCF and Microrebooting to Build Enterprise Applications 253

Fig. 6. Application Performance Before and After Healing

To determine how quickly the Refresh application could self-heal, we ran a fur-
ther trial of Apache JMeter tests to simulate an additional 1,000 requests. During
the experiment, we used fault injection to randomly simulate the failure of different
services. The faults were injected by adding code to the local services to throw Java
runtime exceptions that would force Refresh to heal the application by swapping
remote services for the failed local services. After the local services were swapped
to remote services, we randomly shutdown the remote services used by the appli-
cation to force the failover to alternate remote services or back to a local service
that had become available.

Over the tests, shutting down a failed subsystem and rebooting the container
into a new configuration averaged roughly 140ms. The CSP technique required an
average of an additional 10ms to find the new configuration to reboot into. When
this result is compared to Figures 5, it can be seen that the healing time is slightly
more than the average time to complete an order.

Figure 6 overlays the application’s worst case response time using a local infor-
mation provider, a remote information provider, and a remote information
provider that is swapped back to a local provider because of a failure.

The failure of the remote service is easily discernible on request 7. There is also
a visible slow down in the network but not a failure at request 25 of the remote
service.Before the failure occurs, the applicationhas the sameaverage performance
as the conventional application using a remote service. Once the failed service is
healed, the application again has the same averageperformance as the conventional
applicationwiththe local service.This result indicates thatcontainer-basedhealing
incurs little or no pre- or post- healing performance penalties.

5.3 Filtered Cartesian Flattening vs. CSP-Based Configuration
Derivation

The next set of experiments compared the scalability and speed of Filtered Carte-
sian Flattening versus a CSP-based configuration derivation technique. We

254 J. White et al.

Fig. 7. Filtered Cartesian Flattening vs. CSP-based Configuration Derivation Time for
the Application

extended the Refresh application’s healing configuration to attempt to respect a
bandwidth constraint while healing. Moreover,we directed the healing mechanism
to also attempt to minimize the total cost consumed by the new configuration’s
services. Our CSP-based configuration solver was based on the Java Choco open
source constraint solver [1].

First, we compared the time for Filtered Cartesian Flattening and the CSP-
based techniques to derive a new configuration for the standardpoints of variability
in the application. We then iteratively added 32 additional information providers
to consider in the configuration derivation process. Both techniques found solu-
tions for each size configuration problem. The results from this experiment are
shown in Figure 7.

Initially, the CSP technique requires 234ms to configure the conventional ap-
plication implementation with the additional resource constraints and bandwidth
minimization goal. In the experiments presented in Section 5.2, the CSP-based
technique was not required to adhere to a resource constraint. The new constraints
and optimization goal cause a significant increase in the solving time to 234ms. Fur-
thermore, by the time the 32 additional information providers were added into the
configuration, the CSP-based technique required over 30 minutes (1,835,406ms)
to derive a new configuration.

The speed at which a CSP solver can produce a solution is dependent on the
complexity of the constraints in each CSP instance. To illustrate the increase in
complexity of reconfiguring the application to find a valid solution versus reconfig-
uring to find an optimal solution that meets a resource constraint, we eliminated
the resource constraints and optimization goals. We then resolved the Pet Store
configuration problem with the simplified CSP that would produce a correct con-
figuration but not one that necessarily respected resource constraints. The results
are shown in Figure 8. Without the resource constraints and optimization, the 32
informationprovider problem instance that original took 1,835,406msto solve only
required 47ms. This result shows the significant increase in complexity that the re-

Using FCF and Microrebooting to Build Enterprise Applications 255

Fig. 8. CSP Solving Time without Resource Constraints & Optimization

Fig. 9. FCF Solution Increased Cost as a Percentage of CSP Solution Cost

source constraints and optimization goal add. FCF’s running time, in contrast, is
not affected by adding or removing the bandwidth constraint.

The time for Filtered Cartesian Flattening to derive a new configuration across
the different configuration sizes and incorporating resource constraints and opti-
mization is shown by the red line in the lower part of Figure 7. Initially, Filtered
Cartesian Flattening requires 15ms to derive a configuration, which is substan-
tially less than the CSP-based technique’s 234ms. Moreover, when the 32 addi-
tional providers are added, Filtered Cartesian Flattening is able to derive a
configuration in 31ms, which is faster than the CSP technique can solve the prob-
lem without resource constraints. Filtered Cartesian Flattening’s 31ms is many
orders of magnitude less than the ∼30mins for the CSP-based technique. This re-
sult shows that Filtered Cartesian Flattening is significantly more scalable than
the CSP-based technique for our case study application.

Another question that we sought to answer was how optimal the solutions pro-
duced by FCF were compared to the CSP-based solutions. We tracked the total
cost of the external information providers chosen by the two techniques. We used
both techniques to attempt to minimize the total cost of the information provider
configurations. Figure 9 shows the increase in solution cost of choosing the FCF

256 J. White et al.

technique over the CSP technique. As shown in Figure 9, the FCF technique pro-
duced solutions that ranged from roughly 2-3% more expensive. Thus, the dra-
matic reduction in solving time shown in Figure 7 came at a very low increase in
overall solution cost.

5.4 Results Analysis and Comparison of FCF and CSP
Reconfiguration

In this section, we provide an analysis of the pros and cons of our new Refresh
+ FCF approach versus the Refresh + CSP technique that we developed in prior
work [25,23]. There are a number of criteria to consider when selecting whether to
use CSP or FCF based reconfiguration with Refresh. We analyze the results of the
experiments and the capabilities of the techniques along a number of critical axes.
We evaluate the capabilities of each technique in terms of 1) scalability, 2) solution
optimality, 3) tractability guarantees, and 4) amenability to different constraint
types.

SolutionOptimality/Quality: Refresh + CSP provides guaranteed optimal re-
sults. Refresh + FCF, in contrast, is a heuristic algorithm that does not provide
guaranteed solution optimality. As we showed in the results depicted in Figure 9,
FCF can provide near optimal results. Furthermore, other research results [19]
have shown generally high optimalities of 90%+ optimal for the MMKP
heuristic algorithms that can be used by FCF.

A key tradeoff to consider when evaluating Refresh with CSP versus FCF is that
there is no hard guarantee on the optimality of the solutions generated by FCF.
Furthermore, we are not aware of any fast runtime algorithms for producing a good
estimate of the optimal solution value. Thus, there is no practicalway at runtime to
estimate the optimality of anFCF healing solution forRefresh. FCFdoes, however,
guarantee that resource constraints are respected. If the goal is to find a solution
that meets resource constraints with a ”best effort” on solution optimality, then
FCF can readily be applied.

Scalability: As shown in Figure 7, Refresh + FCF scales significantly better than
Refresh + CSP when resource constraints must be adhered to in the reconfigura-
tion process. As shown in Figure 8, if resource constraints are not included, Refresh
+ CSP can provide very fast configurationhealing times. If scalability and resource
constraints are a prime concern, Refresh + FCF should be used.

Whereas FCF does not provide a guarantee on solution optimality, it does pro-
vide a guarantee on scalability. FCF is a polynomial-time algorithm and hence will
scale accordingly. CSP solvers use algorithms with exponential worst-case time.
In some cases, as shown in Figure 8, these algorithms perform well. In other cases,
such as in Figure 7, the same algorithms can perform poorly. If guarantees on heal-
ing speed are more important than guarantees on solution optimality, the
unpredictability of CSP-based healing is not appropriate.

Tractability Guarantees: FCF does not guarantee that a configuration will be
found. If FCF cannot find a viable configuration, it is still possible that one exists

Using FCF and Microrebooting to Build Enterprise Applications 257

that eluded the FCF heuristics. Refresh + CSP does guarantee that a viable solu-
tion will be found if it exists. The down side is that, for large enough problems, the
CSP technique could take longer to find the solution than fixing the root cause of
the original failure.

Although FCF does not guarantee a solution is found, its solving speed provides
a number of potential options to developers. If reconfiguration speed is critical,
developers can instruct Refresh to first search for a configuration using FCF and
then to fallback to CSP if no solution is found. As shown in Figure 7, FCF can
have runtimes in the tens of milliseconds. Thus, an initial attempt at finding a
reconfiguration solution using FCF should add minimal overhead to the healing
process.

Amenability to Different Constraint Types: FCF is designed to work with
feature models that primarily have a tree-like structure. As the number of cross-
tree constraints in a feature model increase, FCF typically becomes less and less
effective at finding solutions. That is, FCF is good when the resource constraints
are more restrictive than the cross-tree constraints.

CSP, in contrast, tends to operate better when the cross-tree constraints in a fea-
ture model are more restrictive than the resource constraints. A CSPs constraint
network and propagation algorithms can leverage cross-tree constraints to quickly
eliminates large portions of the solution space. Thus, for applications with feature
models including large numbers of cross-tree constraints that have a less tree-like
structure, Refresh + CSP is most appropriate.

6 Related Work

This section compares our work on Refresh and Filtered Cartesian Flattening with
other research work. First, we compare Refresh to the original technique of mi-
crorebooting. Next, we compare and contrast Refresh with other feature-based
self-adaptive healing techniques. Finally, we compare Refresh to other non-feature
based self-adaptive healing techniques.

Microrebooting Related Work. Refresh is based on the idea of Microreboot-
ing [8]. Microrebooting restarts individual components or collections of compo-
nents to fix an error. The number of components that are rebooted continues to
grow if successive reboots do not eliminate the error. Microrebooting can help to
eliminate some types of problems but may not fix all issues.

For example, if one of the information provider services fails, restarting the ap-
plication will not fix the error since it is in a remote component. Instead, the local
application must be rebooted in an alternate configuration to eliminate the error.
As we showed in Section 3.1 determining how to eliminate failed components is a
challenging problem. Refresh uses the Filtered Cartesian Flattening algorithm to
eliminate this problem by dynamically deriving a new application configuration
to reboot the failed subsystem into. This type of reconfiguration and rebooting
can eliminate both local errors and references to failed remote services, which
microrebooting alone cannot fix.

258 J. White et al.

Feature-Based HealingRelatedWork. Other approaches to application heal-
ing have been developed that leverage a combination of goal modeling and feature
models [16]. In the approach by Lapouchnian et al. feature models are used to find
points of variation in the application. The application adaptation is driven by Stat-
echarts. As we showed in Section 3.1, specifying the logic to solve the NP-Hard
problem of reconfiguring the application subject to resource constraints is hard to
implement in either Java, C++, or Statecharts.

The approach of using Statecharts to drive the adaptive healing of the appli-
cation burdens enterprise application developers with a extremely complex prob-
lem. Moreover, there can be an exponential number of states that may need to be
modeled to properly adapt in all resource availability scenarios. In contrast, Re-
fresh does not require an explicit adaptation plan but instead a model of how the
application can be reconfigured. Refresh then automates the complex problem of
deriving a new application configuration that fits the current available resources.

Self-Adaptive Healing Related Work. Other approaches also use the idea of
identifying error conditions and then planning adaptation actions that should be
triggered [7,14,11,6,2,16,12]. These approaches also require developers to handle
the complex problem of determining how to best adapt the application’s config-
uration while adhering to a resource constraint. Determining how to reconfigure
in the face of a resource constraint is an NP-Hard problem. In contrast, Refresh
automates this recovery logic by using the Filtered Cartesian Flattening approxi-
mation algorithm to derive a new application feature set that can be used to con-
tinue functioning.

7 Concluding Remarks

A common approach to simplifying the development of self-adaptive healing ap-
plications is to use a model of an application’s adaptation logic to generate self-
adaptive healing code or guide self-adaptive healing at runtime [7,14,11,6,2,16,12].
This approach to simplifying the development of self-adaptive healing applications
does not, however, eliminate the key complexity, which is the logic needed to de-
duce how to heal the application. Moreover, when resource constraints must be
considered in the adaptation process, determining how to adapt the application
without exceeding the resource limitations is an NP-Hard problem.

This paper showed how our Refresh technique—based on a combination of mi-
crorebooting and dynamic reconfiguration using feature models—can simplify the
development of self-adaptive healing applications.Rather than simply rebooting in
the same configuration (which could cause errors involving remote services to per-
sist), Refresh dynamically derives a new application configuration to reboot into
using the application’s feature model. Moreover, we showed that by using the FCF
algorithm to perform the derivation of the new feature selection, Refresh could
respect resource constraints and still find alternate feature configurations fast.

The following list presents the lessons we have learned from our experiences
building self-adaptive healing enterprise applications using Refresh:

Using FCF and Microrebooting to Build Enterprise Applications 259

– CSP-based reconfiguration techniques are sufficient if no resource
constraints are present. If resource constraints are not considered in the
reconfiguration process, CSP and other exact techniques, such as SAT solvers,
provide sufficient performance to derive new configurations. Only when
resource constraints are added is FCF needed.

– Container lifefcycle methods can managing accidental healing com-
plexities.Containers must be able to release resources, roll back transactions,
and perform other cleanup whenever an application container is shutdown.
By reusing this lifecycle mechanism to perform healing, significant accidental
complexity is managed by the container on the developer’s behalf.

– Optimization goals may not be easy to formalize. In many domains, re-
source constraints and optimization goals can be hard to formalize since it is
not clear how choosing one service over another affects cost and resource con-
sumption. Interactions between organizations, however, often do have a known
resource consumption and cost associated with them.

Refresh is available in open-source form as part of the GEMS Model Intelligence
project at www.sf.net/projects/gems.

References

1. Choco constraint programming system, http://choco.sourceforge.net/
2. Barbier, F.: MDE-based Design and Implementation of Autonomic Software Compo-

nents. In: 5th IEEE International Conference on Cognitive Informatics, 2006. ICCI
2006, vol. 1 (2006)

3. Barki, H., Rivard, S., Talbot, J.: Toward an assessment of software development risk.
Journal of Management Information Systems 10(2), 203–225 (1993)

4. Batory, D.: Feature Models, Grammars, and Prepositional Formulas. In: Obbink, H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

5. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Mod-
els. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–
503. Springer, Heidelberg (2005)

6. Bhat, V., Parashar, M., Liu, H., Khandekar, M., Kandasamy, N., Abdelwahed, S.:
Enabling Self-Managing Applications using Model-based Online Control Strategies.
In: Proceedings of the 3rd IEEE International Conference on Autonomic Computing,
Dublin, Ireland (June 2006)

7. Calinescu, R.: Model-Driven Autonomic Architecture. In: Proceedings of the 4th
IEEE International Conference on Autonomic Computing, Jacksonville, Florida,
USA (June 2007)

8. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot-a tech-
nique for cheap recovery. In: Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation, pp. 31–44 (2004)

9. Czarnecki, K., Antkiewicz, M., Kim, C., Lau, S., Pietroszek, K.: FMP and
FMP2RSM: Eclipse Plug-ins for Modeling Features Using Model Templates. In:
Conference on Object Oriented Programming Systems Languages and Applications,
pp. 200–201 (October 2005)

10. Oppenheimer, D.P.D., Ganapathi, A.: Why do Internet Services Fail, and What can
be Done about It? In: Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (March 2003)

www.sf.net/projects/gems
http://choco.sourceforge.net/

260 J. White et al.

11. Denaro, G., Pezze, M., Tosi, D.: Designing Self-Adaptive Service-Oriented Appli-
cations. In: 4th IEEE International Conference on Autonomic Computing, Jack-
sonville, Florida (June 2007)

12. Elkorobarrutia, X., Izagirre, A., Sagardui, G.: A Self-Healing Mechanism for State
Machine Based Components. In: Proceedings of the 1st International Conference
on Ubiquitous Computing: Applications, Technology and Social Issues, Alcalá de
Henares, Madrid, Spain (June 2006)

13. Johnson, R., Hoeller, J.: Expert one-on-one J2EE development without EJB. Wrox
(2004)

14. Joshi, K., Sanders, W., Hiltunen, M., Schlichting, R.: Automatic Model-Driven Re-
covery in Distributed Systems. In: The 24th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS 2005), pp. 25–38 (2005)

15. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-; oriented
reuse method with domain-; specific reference architectures. Annals of Software En-
gineering 5, 143–168 (1998)

16. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards Requirements-driven
Autonomic Systems Design. In: Proceedings of the 2005 workshop on Design and
evolution of autonomic application software, pp. 1–7 (2005)

17. Linberg, K.: Software developer perceptions about software project failure: a case
study. The Journal of Systems & Software 49(2-3), 177–192 (1999)

18. Mannion, M.: Using First-order Logic for Product Line Model Validation. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg
(2002)

19. Mostofa Akbar,M., Sohel Rahman, M., Kaykobad, M., Manning, E., Shoja, G.: Solv-
ing the Multidimensional Multiple-choice Knapsack Problem by constructing convex
hulls. Computers and Operations Research 33(5), 1259–1273 (2006)

20. Schach, S.: Object-oriented and classical software engineering. McGraw-Hill Higher
Education, Boston (2005)

21. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated error
analysis for the agilization of feature modeling. Journal of Systems and Software (in
press) (2007)

22. White, J., Czarnecki, K., Schmidt, D.C., Lenz, G., Wienands, C., Wuchner, E.,
Fiege, L.: Automated Model-based Configuration of Enterprise Java Applications.
In: EDOC 2007 (October 2007)

23. White, J., Dougherty, B., Schmidt, D.: Filtered Cartesian Flattening. In: Workshop
on Analysis of Software Product-Lines at the International Conference on Software
Product-lines (October 2008)

24. White, J., Nechypurenko, A., Wuchner, E., Schmidt, D.C.: Optimizing and Au-
tomating Product-Line Variant Selection for Mobile Devices. In: 11th International
Software Product Line Conference (September 2007)

25. White, J., Strowd, H., Schmidt, D.C.: Creating Self-healing Service Compositions
with Feature Modeling and Microrebooting. In: The International Journal of Busi-
ness Process Integration and Management (IJBPIM), Special issue on Model-Driven
Service-Oriented Architectures (2008)

26. Whittaker, B.: What went wrong? Unsuccessful information technology projects.
Information Management And Computer Security 7, 23–29 (1999)

Author Index

Andersson, Jesper 1, 27

Barone, Paolo 164
Becker, Basil 1
Bencomo, Nelly 1, 183
Blair, Gordon 183
Brun, Yuriy 1, 48

Cheng, Betty H.C. 1
Cheng, Shang-Wen 71
Cukic, Bojan 1

de Lemos, Rogério 1, 27
Denker, Marcus 128
Ding, Yun 164
Dougherty, B. 241
Dustdar, Schahram 1

Eliassen, Frank 164

Finkelstein, Anthony 1

Gacek, Cristina 1, 48
Garlan, David 71
Geihs, Kurt 1, 146
Georgas, John C. 89
Giese, Holger 1, 48
Grassi, Vincenzo 1, 201

Hallsteinsen, Svein 164
Heaven, William 109

Inverardi, Paola 1

Karsai, Gabor 1
Khan, Mohammad Ullah 146
Kienle, Holger M. 1, 48
Kramer, Jeff 1, 109

Litoiu, Marin 1, 48
Lorenzo, Jorge 164

Magee, Jeff 1, 109
Malek, Sam 1, 27
Mamelli, Alessandro 164
Mirandola, Raffaela 1, 201
Müller, Hausi A. 1, 48

Nierstrasz, Oscar 128

Park, Sooyong 1
Pezzè, Mauro 48, 223
Poladian, Vahe V. 71

Randazzo, Enrico 201
Reichle, Roland 146
Renggli, Lukas 128
Rouvoy, Romain 164

Schmerl, Bradley 71
Schmidt, D.C. 241
Scholz, Ulrich 164
Serugendo, Giovanna Di Marzo 1, 48
Shaw, Mary 1, 48
Strowd, H.D. 241
Sykes, Daniel 109

Taylor, Richard N. 89
Tichy, Matthias 1
Tivoli, Massimo 1

Wagner, Michael 146
Weyns, Danny 1, 27
White, J. 241
Whittle, Jon 1
Wuttke, Jochen 223

	front-matter.pdf
	fulltext.pdf
	Software Engineering for Self-Adaptive Systems: A Research Roadmap
	Introduction
	Modelling Dimensions
	Illustrative Case
	Overview of Modelling Dimensions
	Research Challenges in Modelling Dimensions

	Requirements
	Requirements State-of-the-Art
	Research Challenges in Requirements

	Engineering
	Control Loop Model
	Control Loops and Control Theory
	Control Loops and Natural Systems
	Control Loops and Software Engineering
	Research Challenges in Engineering

	Assurances
	Assurances Framework
	Research Challenges in Assurances

	Lessons and Challenges

	fulltext_001.pdf
	Modeling Dimensions of Self-Adaptive Software Systems
	Introduction
	Illustrative Case Study
	Modeling Dimensions
	Goals
	Change
	Mechanisms
	Effects

	Evaluation – Case Studies
	Traffic Jam Monitoring System
	Embedded Mobile System

	Challenges of Modeling Self-Adaptive Systems
	Goals
	Change
	Mechanisms
	Effects

	Related Work
	Discussions and Future Work
	References

	fulltext_002.pdf
	Engineering Self-Adaptive Systemsthrough Feedback Loops
	Introduction
	The Role of Feedback Loops
	Generic Feedback Loop
	Feedback Loops in Control Engineering
	Feedback Loops in Natural Systems
	Feedback Loops in Software Engineering

	Solutions Inspired by Explicit Control
	Solutions Inspired by Natural Systems
	Challenges Ahead
	Conclusions

	fulltext_003.pdf
	Improving Architecture-Based Self-Adaptation through Resource Prediction
	Introduction
	Framework for Architecture-Based Self-Adaptation
	Overview of the Rainbow Framework
	Elements of Rainbow
	Opportunities for Improving Self-Adaptation

	Resource Prediction
	Incorporating Resource Predictions in Rainbow
	Integration Points to Make Predictive Information Available
	Illustration of Rainbow with Resource Predictions
	Deciding When to Use Predictive Information

	Related Work
	Conclusion and Future Work
	References

	fulltext_004.pdf
	Policy-Based Architectural Adaptation Management: Robotics Domain Case Studies
	Introduction
	Background and Related Work
	Robotic Architectures
	Self-Adaptive Architectures

	Approach
	Adaptation Policy Specification
	Architectural Adaptation Management
	Activity Flow

	Case Studies
	Robocode
	Mindstorms NXT

	Discussion
	Architectural Mismatch
	Platform Selection

	Future Work
	Conclusion

	fulltext_005.pdf
	A Case Study in Goal-Driven Architectural Adaptation
	Introduction
	Related Work
	Scenario
	Modelling the Environment and Generating Plans
	Modelling the Environment
	Generating Reactive Plans
	Overhead

	Generating Software Configurations
	Dependency Analysis
	Structural Constraints
	Non-functional Properties
	Overhead

	Reconfiguration
	Conclusions

	fulltext_006.pdf
	Model-Centric, Context-Aware Software Adaptation
	Introduction
	Reflectivity — A Platform for Model-Centric Software Adaptation
	A Model for Dynamic Software Adaptation
	Run-Time Instrumentation
	Localization: Annotating Structure
	Scoping the Effect of Changes
	Implementing Higher-Level Dynamic Language Features

	Diesel — An Engine for Bringing Models Closer to Code
	Example: Modelling Relationships
	Scoping the Effect of Changes

	Towards a Research Agenda
	Related Work
	Concluding Remarks

	fulltext_007.pdf
	Modeling of Context-Aware Self-Adaptive Applications in Ubiquitous and Service-Oriented Environments
	Introduction
	Motivating Scenario
	Requirements
	Application Variability and Adaptation Reasoning
	Modeling of Service-Based Adaptation
	Semantic Annotation of Variation Points
	MUSIC Ontology Concepts
	Characteristics of QoS-Properties

	Example
	Related Work
	Conclusions
	References

	fulltext_008.pdf
	MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented Environments
	Introduction
	The MUSIC Approach to Self-Adaptation
	Challenges of Ubiquitous and Service-Oriented Environments
	Example Scenario: Paul on His Way to Meet a Friend
	Requirements for Planning-Based Adaptation

	Supporting Service-Oriented Architectures within MUSIC
	Consuming Services within MUSIC
	Providing Services within MUSIC

	Realizing the Support for Service-Oriented Architectures
	Architecture of the Service-Oriented MUSIC Platform
	Implementation of the Service-Oriented MUSIC Platform

	Discussions
	Related Work
	Conclusion and Perspectives
	References

	fulltext_009.pdf
	Using Architecture Models to Support the Generation and Operation of Component-Based Adaptive Systems
	Introduction
	Dynamic Variability
	Overview
	Dynamic Variability in Adaptive Systems
	Architectural Reorganization Supported by Middleware Platforms

	The Genie Approach
	Overview
	Description of the Genie Approach
	Levels of Abstraction

	Case Study: A Wireless Sensor Network for Flood Management
	Overview
	Orthogonal Variability Models
	Artefacts Generated by the Genie Tool

	Discussion
	Contributions
	Ongoing Research

	Related Work
	Conclusions and Future Work

	fulltext_010.pdf
	Model-Driven Assessment of QoS-Aware Self-Adaptation
	Introduction
	Core Concepts for the Modeling of Dynamically Adaptable Systems
	An Example of Dynamically Adaptable System

	A Bridge Model between Design and Analysis Oriented Models of Adaptable Systems
	D-KLAPER Modeling of the Example System

	Building an Analysis Oriented Model from the Bridge Model
	Approaches to the Generation of an Analysis Model
	Generation of a Semi-markov Reward Model
	Analyzing the Example System Effectiveness

	Conclusions
	References

	fulltext_011.pdf
	Automatic Generation of Runtime Failure Detectors from Property Templates*-2mm
	Introduction
	Mapping Requirements to Assertions
	Asserting Correctness of Phone Bills
	Property Templates
	Related Work
	Conclusions and Outlook

	fulltext_012.pdf
	Using Filtered Cartesian Flattening and Microrebooting to Build Enterprise Applications with Self-adaptive Healing
	Introduction
	Case Study: ICred
	Self-Adaptive Healing Challenges for Enterprise Applications
	Challenge 1: Resource Constraints Make Adaptation Actions Extremely Complex
	Challenge 2: Accidental Complexity Makes Adaptation Actions Hard to Develop

	Solution ApproachCombining Refresh and Filtered Cartesian Flattening
	Overview of Refresh
	Feature Model Configuration Healing
	Filtered Cartesian Flattening

	Refresh and Filtered Cartesian Flattening Performance
	Hardware and Software Testbed Configuration
	Refresh Performance
	Filtered Cartesian Flattening vs. CSP-Based Configuration Derivation
	Results Analysis and Comparison of FCF and CSP Reconfiguration

	Related Work
	Concluding Remarks

	back-matter.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

