The Fraunhofer IESE Series on Software Engineering

‘giving the reader a
proven basis for
engineering complex
software systems’

A NMdNADOOK C DTLWC
and Systems Engineering

Empirical Observations, Laws and Theories

i ‘
Albert Endres e

Fraunhofer Institut

“Addison

Dieter Rombach Experimentales v AL

A Handbook of
Software and Systems Engineering

Empirical Observations, Laws and Theories

The Fraunhofer IESE Series on Software Engineering

Editor-in-Chief
Dieter Rombach (Fraunhofer Institute for Experimental Software Engineering IESE and
University of Kaiserslautern)

Editorial Board

Frank Bomarius (Fraunhofer IESE, Kaiserslautern, Germany), Dave Parnas (University of Limerick,
Limerick, Ireland), Karl Reed (La Trobe University, Melbourne, Australia), Giinther Ruhe
(University of Calgary, Calgary, Alberta, Canada), Ian Sommerville (Lancaster University, Lancaster,
UK), Marvin Zelkowitz (Fraunhofer Center for Experimental Software Engineering, Maryland &
University of Maryland, College Park, Maryland, USA)

Whereas software technology is concerned with individual techniques, methods and tools for
developing software, such as programming languages, design notations, or test techniques, soft-
ware engineering takes a holistic view of the entire software development process, regarding it
as an integral part of a given organizational, technical and business context. Software engineer-
ing does not focus on individual projects only, but treats development activities as steps in an
evolutionary process improvement. Like other engineering disciplines, software engineering
rests on three pillars:

B “Architectural principles” that can be applied to reduce the complexity of systems

B “Process technology” for modeling individual process steps and their interaction, and for
measuring and controlling their impact

B “Precise methods” for describing software

Software is developed by humans, so the effects of the application of techniques, methods and
tools cannot be determined independent of context. A thorough understanding of their effects in
different organizational and technical contexts is essential if these effects are to be predictable
and repeatable under varying conditions. Such process—product effects are best determined
empirically. Empirical software engineering develops the basic methodology for conducting
empirical studies, and uses it to advance the understanding of the effects of various software
engineering approaches.

Frustrated by the apparent lack of progress in the discipline, with repeated examples of major soft-
ware projects overrunning on budgets and deadlines, the software community realizes the importance
of empirical software engineering. The 2001 ICSE conference in Toronto made it quite clear that
software measurement and empirical studies are considered a major driver of the faster integration of
academic research and industrial practice. Unfortunately, books about measurement and empiricism
are scarce and scattered across numerous book series. This makes it hard to achieve the necessary
thrust and visibility. The Fraunhofer IESE Series on Software Engineering helps by providing an
open forum for all important books in the area of software engineering that contribute to the advance-
ment of the empirical view. This series will contain books on empirical infrastructures in software
engineering, and on all software engineering topics that include empirical validation.

Titles in the series
Endres, A. and Rombach, D. A Handbook of Software and Systems Engineering (2003)

Fraunhofer Institute for Experimental Software Engineering, Sauerwiesen 6, D-67661 Kaiserslautern, Germany

A Handbook of
Software and
Systems Engineering

Empirical Observations,
Laws and Theories

Albert Endres
Dieter Rombach

A
AA4

PEARSON

|
Addison
Wesley

Harlow, England « London s New York « Boston « San Francisco « Toronto
Sydney « Tokyo « Singapore « Hong Kong « Seoul « Taipei « New Delhi
Cape Town « Madrid « Mexico City « Amsterdam « Munich « Paris « Milan

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoneduc.com

First published 2003
© Pearson Education Limited 2003

The right of Albert Endres and H. Dieter Rombach to be identified as the
authors of this work has been asserted by them in accordance
with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without either the prior
written permission of the Publishers or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose.
The publisher does not offer any warranties or representations nor does it accept
any liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Pearson Education has made every attempt
to supply trademark information about manufacturers and their products
mentioned in this book. A list of the trademark designations and their owners
appears on page xviii.

ISBN 0 321 15420 7

British Library Cataloguing-in-Publication Data
A catalogue record for this book can be obtained from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

10987654321
07 06 05 04 03

Typeset by 30 in 10/12pt Sabon
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn

‘Ma, why is this and why is that?’
‘Would you please stop asking those why-questions!’
“Why¢’

Conversation between a three-year-old girl and her mother.

%ok

This book is dedicated to all those colleagues who have
preserved their innate passion for theory, revealing itself
by continually asking “Why?’

Preface

List of abbreviations

Chapter 1: Introduction

1.1 Computing as empirical science

1.2 From observations to laws and theories
1.3 The role of experiments

1.4 Laws as lessons learned by the profession
1.5 On principles, methods and tools

1.6 Search for theories

1.7 About this book

Chapter 2:

modeling

2.1 Definitions and importance
2.2 General observations
2.3 Applicable laws and their theories

231
2.3.2
2.3.3
234
2.3.5

Glass’ law

Boehm’s first law
Boehm’s second law
Davis’ law

Booch’s first hypothesis

2.4 More on requirements definition

2441
2.4.2
2.4.3
2.4.4
24.5
2.4.6
2.4.7
2.4.8
2.4.9

Vision statement

Requirements elicitation and prioritization
Knowledge acquisition and management
Feasibility study or risk analysis

Functional and non-functional requirements
Safety and security requirements

Detailed documentation of requirements
Buy-in, validation and approval of requirements
Requirements tracing and change control

Requirements definition, prototyping, and

XV
XVi

=

D AN L W W I =

10

10
13
15
16
17
19
22
25
26
26
26
27
27
28
28
28
29
30

<.

SJUlajU0)

2.5

Examples and study material

2.5.1 Text formatting requirements
2.5.2 Digital library requirements
Exercises

Chapter 3: System design and specification

3.1 Definitions and importance
3.2 General observations
3.3 Applicable laws and their theories
3.3.1 Curtis’ law
3.3.2 Simon’s law
3.3.3 Constantine’s law
3.3.4 Parnas’ law
3.3.5 Denert’s law
3.3.6 Fitts-Shneiderman law
3.3.7 Booch’s second hypothesis
3.3.8 Bauer—Zemanek hypothesis
3.3.9 Gamma’s hypothesis
3.4 More on system design and specification
3.4.1 Project goals and design criteria
3.4.2 Open architectures
3.4.3 Design quality and iterative design
3.4.4 Design of data structures and databases
3.4.5 Design for safety and security
3.4.6 Technology impact on system design
3.4.7 Documentation of design
3.4.8 CASE tools and design change control
3.4.9 Cognitive processes and group dynamics
3.4.10 User participation and growing of designers
3.5 Examples and study material
3.5.1 Text formatting design
3.5.2 Digital library design
3.5.3 Performance analysis
3.5.4 Metrics analysis
Exercises
Chapter 4: System construction and composition
4.1 Definitions and importance
4.2 General observations

30
30
31
33

34

34
35
38
38
40
43
45
46
48
50
50
53
55
55
56
56
57
58
58
59
59
60
60
61
61
62
64
65
67

68

68
69

4.3 Applicable laws and their theories

4.4

4.5

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9

DeRemer’s law

Corbatd’s law
Dijkstra—Mills—Wirth law
Lanergan’s law

Mcllroy’s law

Conway’s law

Dahl-Goldberg hypothesis
Beck-Fowler hypothesis
Basili-Boehm COTS hypothesis

More on system construction and composition

4.4.1
44.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9

Incremental development and integration
Implementation languages

Application generators

Visual programming languages

Programming by example

Software metrics

Configuration management and version control
Software factories

Legacy applications

Examples and study material

4.5.1
45.2
4.5.3

Text formatting implementation
Program size variations
Metrics application

Exercises

Chapter 5: Validation and static verification

5.1 Definitions and importance
5.2 General observations
5.3 Applicable laws and their theories

54

5.3.1
5.3.2
5.3.3
5.34
5.3.5
5.3.6
5.3.7

Fagan’s law
Porter-Votta law
Basili’s law
Hetzel-Myers law
Mills—Jones hypothesis
May’s hypothesis
Hoare’s hypothesis

More on validation and static verification

5.4.1
5.4.2
5.4.3

Formal analysis of code
Static software visualization
Model checking

71
71
72
73
76
77
81
83
84
85
86
86
87
87
88
89
89
90
91
93
94
94
95
95
97

98

98

99
100
100
103
10$
107
110
110
112
115
115
115
117

3

SJUaU0)

x

SJUlajU0)

5.5 Examples and study material
5.5.1 Formal specification
5.5.2 Design inspection
5.5.3 Code inspection
5.5.4 Static visualization
Exercises

Chapter 6: Testing or dynamic verification

6.1 Definitions and importance
6.2 General observations
6.3 Applicable laws and their theories
6.3.1 Sackman’s first law
6.3.2 Dijkstra’s law
6.3.3 Weinberg’s law
6.3.4 Pareto-Zipf-type laws
6.3.5 Gray-Serlin law
6.3.6 Nielsen—-Norman law
6.3.7 Gutjahr’s hypothesis
6.3.8 Weyuker’s hypothesis
6.3.9 Endres—Glatthaar hypothesis
6.3.10 Hamlet’s hypothesis
6.4 More on testing
6.4.1 Compiler vaildation
6.4.2 Test planning and test case development
6.4.3 Test support and automation
6.4.4 Clean-room and other testing strategies
6.4.5 Testing of object-oriented or real-time software
6.4.6 Use of assertions and code-embedded test aids
6.4.7 Dynamic software visualization
6.4.8 Operational profile
6.5 Examples and study material
6.5.1 Text formatting unit test
6.5.2 Digital library system test
6.5.3 Arithmetic test suite
Exercises

Chapter 7: System manufacturing, distribution, and

installation

7.1 Definitions and importance
7.2 General observations

117
117
118
119
120
122

123

123
125
127
127
128
131
131
133
134
136
137
138
139
140
140
140
141
142
143
144
144
145
146
146
147
148
149

150

150
150

7.3

7.4

7.5

Applicable laws and their theories

7.3.1 Conjecture 1

7.3.2 Conjecture 2

7.3.3 Conjecture 3

7.3.4 Conjecture 4

More on system manufacturing, distribution, and installation
7.4.1 Software distribution methods and tools
7.4.2 Software installation methods and tools
7.4.3 User training and help services

7.4.4 Customizing, localizing, and conversion
7.4.5 Applets and servlets

Examples and study material

7.5.1 Manufacturing and distribution
Exercises

Chapter 8: System administration, evolution, and

8.1
8.2
8.3

8.4

8.5

maintenance

Definitions and importance

General observations

Applicable laws and their theories

8.3.1 Lehman’s first law

8.3.2 Lehman’s second law

8.3.3 Lehman’s third law

8.3.4 Basili-Moller law

8.3.5 McCabe’s hypothesis

8.3.6 Wilde’s hypothesis

8.3.7 Conjecture 5

8.3.8 Conjecture 6

More on system administration, evolution, and maintenance
8.4.1 Security strategy and control

8.4.2 Vendor strategies for service and maintenance
8.4.3 User strategies for service and maintenance
8.4.4 Preventative versus corrective maintemance
8.4.5 On-the-fly version updates

8.4.6 Re-engineering, re-development, and renovation
8.4.7 Retirement and withdrawal

Examples and study material

8.5.1 Quality tracking and prediction

8.5.2 Maintenance strategy

Exercises

151
151
152
153
154
156
156
157
157
157
158
158
158
159

160

160
161
163
163
165
166
167
168
170
171
172
173
173
173
174
175
175
176
177
178
178
180
183

X,

SJUaU0)

X,

SJUlajU0)

Chapter9: Project management and business analysis
9.1 Definitions and importance
9.2 General observations
9.3 Applicable laws and their theories
9.3.1 Sackman’s second law
9.3.2 Nelson—Jones law
9.3.3 Boehm’s third law
9.3.4 DeMarco-Glass law
9.3.5 Humphrey’s law
9.3.6 Brooks’ law
9.3.7 Baumol’s disease
9.3.8 Boehm’s hypothesis
9.4 More on project management and business analysis
9.4.1 Project plans and commitments
9.4.2 Project and process models
9.4.3 People assignment and skill management
9.4.4 Work environment and tools
9.4.5 Software pricing and business case
9.4.6 Product packaging and licensing
9.4.7 Intellectual property rights
9.4.8 The open source model
9.4.9 Total cost of system ownership
9.5 Examples and study material

Chapter 10: User skills, motivation, and satisfaction

9.5.1 Cost estimating (bottom-up approach)
9.5.2 Cost estimating (with COCOMO-II)
9.5.3 Business analysis

9.5.4 Project tracking

Exercises

10.1 Definitions and importance

10.2 General observations
10.3 Applicable laws and their theories

10.3.1 Kupfmiiller’s law
10.3.2 Gestalt laws
10.3.3 Miller’s law
10.3.4 Krause’s law
10.3.5 Librarian’s law

184

184
185
188
188
190
192
194
195
199
199
201
203
203
204
204
205
206
208
209
210
211
212
212
213
215
216
218

219

219
220
223
223
224
226
227
228

10.4

10.5

10.3.6 Apprentice’s law

10.3.7 Maslow-Herzberg law

10.3.8 McGregor’s hypothesis

10.3.9 Hawthorne effect

10.3.10 Marketer’s hypothesis

More on user skills, motivation, and satisfaction
10.4.1 Conducting user studies

10.4.2 Special abilities and attitudes

10.4.3 Customer feedback and satisfaction
10.4.4 Social opportunities and risks
Examples and study material

10.5.1 Professional development and career planning
10.5.2 Customer satisfaction survey

Exercises

Chapter 11: Technology, architecture, and industry

11.1
11.2
11.3

11.4

11.5

capabilities

Definitions and importance

General observations

Applicable laws and their theories

11.3.1 Moore’s law

11.3.2 Hoagland’s law

11.3.3 Cooper’s law

11.3.4 Morris—Ferguson law

11.3.5 Metcalfe’s law

11.3.6 Shaw-Garlan hypothesis

11.3.7 Bayer’s hypothesis

11.3.8 Codd’s hypothesis

11.3.9 Engelbart’s hypothesis

More on technology, architecture, and industry capabilities
11.4.1 Technology assessment and prediction
11.4.2 Management of technology and innovation
11.4.3 Some emerging technologies and applications
11.4.4 Assessing industry capabilities

11.4.5 Developing an information systems strategy
Examples and study material

11.5.1 Information systems strategy

Exercises

229
229
231
232
233
233
233
234
234
235
236
236
239
241

242

242
243
244
244
247
249
250
250
252
252
254
254
255
255
256
257
259
259
260
260
263

X,

SJUaU0)

=,
<

SJUlajU0)

Chapter 12: Measurements, experiments, and empirical

research 264

12.1 Definitions and importance 264
12.2 General observations 265
12.3 Applicable laws and their theories 267
12.3.1 Bayes’ theorem 267
12.3.2 Basili-Rombach hypothesis 268
12.3.3 Conjecture 7 269
12.3.4 Conjecture 8 269
12.3.5 Conjecture 9 270
12.3.6 Conjecture 10 271
12.3.7 Conjecture 11 272
12.3.8 Conjecture 12 273

12.4 More on measurements, experiments, and empirical research 273
12.4.1 Defining experimental goals 273
12.4.2 Deriving testable hypotheses 274
12.4.3 Designing experiments 274
12.4.4 Analysis and validation of results 275
12.4.5 Replication of experiments 276
12.4.6 Ethical issues 276
12.4.7 Limitations of the experimental approach 276
12.4.8 Nature of empirical research 277

12.5 Examples and study material 277
12.5.1 Comparative product evaluation 277
12.5.2 Evaluation of verification methods (hypothesis-based) 279
Exercises 281
Chapter 13: Conclusions and challenges 282
13.1 More on the laws and theories covered in the book 282
13.2 Frequency and quality of experiments 285
13.3 Research issues 285
13.4 Implications for education and practice 287
13.5 Future of software and systems engineering 288
13.6 Beyond observations, laws, and theories 289
Appendix 1: Summary of laws, hypotheses, and conjectures 290
Appendix 2: Biographies of pioneers and key contributors 294
Appendix 3: On-going projects/research groups 305
References 308

Index 325

This book is about the empirical aspects of computing. We believe that the
fields of computer science, information technology (IT), systems, and soft-
ware engineering do not emphasize enough the fundamental knowledge
needed by practitioners. Moreover, the four fields are diverging more than
is necessary. Practitioners have to rely on all of them whenever modern
information systems have to be planned, developed, evaluated, or intro-
duced. A unified approach based on empirically derived knowledge from all
four fields is helpful for this task.

Instead of arguing in favor of individual methods and techniques, we
intend to look for rules and laws, and their underlying theories. We shall do
that by repeatedly asking ‘“Why?’. We shall ask, “What are the fundamental
rules, why do they work, and why are they useful? We will not always find
the correct answer or even a satisfying one, but we want to motivate other
people to take the same route. We do not claim that this is the only possible
approach for an engineering discipline. It certainly is more demanding than
a purely phenomenological approach, namely a listing of interesting fea-
tures and relevant techniques. Above all, we have included as laws only
those rules which, in our view, have stood the test of time, either being sup-
ported by direct experimentation, documented case studies, or by the
collective experience of practitioners. The latter are important, since much
of conventional engineering practice arose in this way.

We believe that our approach has advantages for both students and prac-
titioners. Basic concepts are easier to remember than a plurality of features.
It is our opinion that this type of knowledge has a longer lifetime than
knowledge of passing trends and their manifestations. The rules presented
here can serve as checklists with respect to the state of the art. No doubt the
knowledge of applicable methods, tools, and products is indispensable for
every practitioner, but it has to be complemented by more basic knowledge.

This book was not possible without the help of several colleagues. We are
particularly indebted to Calvin Arnason, Lucian Endicott, Jirgen Miinch,
Karl Reed, Toru Takeshita, Walter Tichy, and several unnamed reviewers for
valuable comments, be it on the content or the style. We also thank David
Hemsley for carefully editing our text and improving our English.

Albert Endres
H. Dieter Rombach
Stuttgart and Kaiserslautern, August 2002

XV

XVi

ACM
AFM
Al

B

BNF
CBO
CD
CERT
CMM
CORBA
COTS
CSI
CTSS
DBMS
DB2
DCOM
DFD
DIT
DVD
ERD
FNF

G
GQM
GUI
HP
HTTP
IEEE
ISERN
IS

ISO

IT

K
Kbit/s
KLOC
KPA
LAN
LCOM
LOC
M

Association for Computing Machinery
Atomic force microscope

Artificial Intelligence

Byte

Backus—Naur Form

Coupling between objects

Compact Disk

Computer Emergency Response Team
Capability Maturity Model

Common Object Request Broker Architecture
Commercial off-the-shelf (software)

Changed source instructions

Compatible Timesharing System

Database management system

IBM’s relational DBMS

Distributed Common Object Model
Dataflow diagram

Depth of inheritance tree

Digital Versatile Disk

Entity relationship diagram

Functional normal form

Giga (=107)

Goal-Question-Metric

Graphical user interface

Hewlett Packard

Hypertext Transfer Protocol

Institute of Electrical and Electronic Engineers
International Software Engineering Research Network
Information systems

International Organization for Standardization
Information technology

Kilo (1024)

Kilobit per second

Kilo (= thousand) lines of code

Key process area

Local area network

Lack of cohesion in methods

Lines of code

Mega (= 10°)

Mbit/s
MLOC
MTTF
Multics
NLS
NOC
OO0A
OOD
010)
PBE
RFC
PDL
PL/AI
PSP
RMI
QIP
SDL
SE

SEI
SEL
SQL
SSI
STM
T
Thbit/s
V&V
VOD
WAC
WMC
XML

Megabit per second

Million lines of code

Mean time between failures

Multiplexed Information and Computing Service
Natural Language System

Number of children

Object-oriented analysis

Object-oriented design

Object-oriented programming

Programming by example

Response for a class

Program design language

Programming Language/l

Personal software process

Remote method invocation

Quality improvement program

System design language

Software engineering

Software Engineering Institute (at Carnegie Mellon University)
Software Engineering Laboratory (of NASA)
Structured Query Language

Shipped source instructions

Scanning tunneling microscope

Tera (=1012)

Terabit per second

Validation and verification

Violations of Demeter

Weighted attributes per class

Weighted methods per class

Extensible Mark-up Language

x
<.

suolleiAaiqqe Jo 1sI

Xxviii

Trademark notice

The following designations are trademarks or registered trademarks of the
organizations whose names follow in brackets:

ABAP/4 and SAP (SAP); Apache (Apache Software Foundation); CERT
(Carnegie Mellon University); CICS, DB2, MVS, and OS/2 (IBM
Corporation); CORBA and UML (Object Management Group, Inc.); DBase
II (Borland International, Inc.); Intel, Pentium, and Pentium Pro (Intel
Corporation); Java (Sun Microsystems, Inc.); LINUX (Linus Torvalds);
Microsoft, Visual Basic, and Windows (Microsoft Corporation); Motif and
UNIX (The Open Group); PeopleSoft (PeopleSoft, Inc.).

Supplementary material
Case study material and code to support this book are available to down-

load at:
www.booksites.net/endres

Introduction

Building software will always be hard. There is inherently no silver bullet.
EP. Brooks, Jr [Broo87]

1.1 Computing as empirical science

Computing is a broad field at whose core we find the academic discipline
called computer science. We consider computing largely as an empirical sci-
ence. This is particularly true for two of its major application areas, namely
software and systems engineering. Systems engineering deals with the plan-
ning, development, and administration of complex systems, particularly of
computing systems. Software engineering is that part of systems engineering
that deals with the systematic development, evaluation, and maintenance of
software. In practice, new people are constantly entering the field of com-
puting. Not all of them have been trained as either computer scientists or
software engineers. Even if they have computing degrees, they may never
have learnt about what has been done by people before them. Many people
purposely ignore the lessons of the past. It may take a major project failure
before these people realize that the problems they encountered were neither
new nor unique.

Academics have often complained that software and systems engineering
operate without a scientific basis. It is customary to reproach the practition-
ers for this. For 30 years, theorists have demanded that practitioners should
be re-educated in order to make better use of available theoretical results. In
our opinion, this is a biased view. We believe that the problem sometimes lies
with the theorists. Rather than developing theories, they frequently argue in
favor of specific methods and tools, many of which demonstrate technical
virtuosity. They often do this without sufficient regard to their usefulness in
practice nor after validating them by meaningful trials. Practice should be
the true measure of a method’s usefulness, however, because this is where
daily problems are solved. The knowledge that helps us master practical
tasks should have our highest attention. In computing, a new approach is
therefore needed if we want to close the gap between theory and practice.
We call this approach empirical software and systems engineering.

N

uondnposu|

1.2 From observations to laws and theories

The key terms used throughout this book are observation, law, and theory.
In science and general human life, we often go from observations to laws
and then to theories. All three are important. Observations may be facts, or
simply subjective impressions. We make observations all day long using all
our senses. In more recent times we can even make observations of signals
that are not detectable to our senses. Electrical waves or radioactive particles
have become very important. However, we can’t always find regularities or
recurring patterns in the observations and often consider non-repeatable
observations as accidents, or put them aside as observation errors. There are
no apparent laws that govern them, no observable systematic behavior.

Whenever we make reoccurring observations we might want to react on
them, whether that means adjusting to them or taking advantage of them.
Examples are the symptoms of a widespread disease, the beginning of the
rainy season, or the re-appearance of a planet. Repeatable observations can
often be stated as a law. Using this law, we can then make predictions about
further observations. Laws are generalizations from one situation to an-
others, or from one time period to another. A law tells us how things occur,
but not why. Kepler’s laws describe how the planets move, but not why. If
there is a law, we like to know why it is true — we like to have a theory.
Theories explain and order our observations. We get at them the same way
children do, by asking “Why?’. Fig. 1-1 depicts this relationship.

” predicts confirmed by
Observation |« B R SR .
= Law
Is repeatable '

explained by
................... > > Theory
Is non-repeatable

Fig. 1-1 Relationship between observations, laws and theories

Theories may exist first. They may predict observations or even laws. In an
empirical science, theories should always be verified through observations.
Until adequately confirmed by observations, such a theory (or potential law)
is called a hypothesis. An empirical science looks at the world as it exists
around us and in us. It not only looks at the objects created or manipulated,
but also at the people involved in doing this. Rather than assuming that all
objects that are dealt with have mathematical properties only, a much
broader view is required. All kinds of important properties need to be taken
into account. These may be cognitive, economic, technical, or sociological
properties. They are all subjects of study.

1.3 The role of experiments

Observations can be made during all kinds of daily work, but most intensively
in the framework of projects, surveys, case studies, or experiments. In software
and systems engineering, projects are organizational efforts to develop, intro-
duce, or evaluate new applications, tools, or methods. The development of
new knowledge is not their primary purpose. Projects may succeed, partially
succeed, or fail. Projects that fail, in total or in part, can be more important
from a learner’s perspective than successful ones. Lessons are learned during
the course of a project, and may be summarized at the end as a post mortem.
Surveys and case studies are usually done to complement projects, frequently
as peripheral activities. They are less expensive and less risky but may produce
limited information. If they cover multiple projects and different organizations,
they may give a broader picture, however, than a single project.

An experiment is an intentional exercise, carried out to gain new know-
ledge. To do this, a hypothesis is set up that has to be verified or falsified by
the experiment. A special form of experiments are controlled experiments.
To conduct experiments with real systems or real users can be very expen-
sive or socially undesirable. Nevertheless, this source of knowledge should
not be neglected. Unfortunately, in the early decades of computing, experi-
ments seldom took place. However, their number has significantly increased
over the last decade. Most experiments in software engineering make use of
statistical methods to assure that the results obtained are meaningful. Many
experiments reported in the literature, however, were done with small or toy
systems and with students. Some of them, nevertheless, produced results
that seem to be applicable to real systems and real users, and could easily be
followed up by case studies in realistic environments.

1.4 Laws as lessons learned by the profession

If project participants achieve new and significant results worth remember-
ing, we usually talk of ‘lessons learned’. These are the nuggets that must be
captured to improve future performance. This is true both for individuals
and organizations, and applies to the entire profession. The results may be
communicated in several forms. The simplest form is oral or written trans-
mission between individuals within an organization. It may also take the
form of lessons taught by senior professionals and specialists, or may end
up in handbooks or knowledge databases that compile and structure avail-
able knowledge. It is the recognition and dissemination of widely applicable
laws with defined applicability that will strengthen the development of soft-
ware engineering as an effective discipline.

Electronic computing is about 50 years old. The lessons that have been
learned by our profession during this period are the essence of our empirical
knowledge. It will be complemented by other knowledge, even if it is much
older and stems from seemingly unrelated disciplines. Which lessons are

uoissajoid ay) Ag pauiea) SUOSSI] Se smeT ‘ w

s

uondnposu|

most valuable depends partially on the situations we later encounter. Not
all lessons learned are applicable to the entire profession, while some of
them stand out and have been stated clearly before. We will call the essen-
tial lessons laws in this book. By using this term, we are exaggerating a
little: the less exacting term ‘rule’ may be more appropriate, but several
authors have already used the term ‘law’ for these lessons, and we will
abide by this convention.

Of the different meanings associated with the term law, we mean law in
the sense of ‘law of nature’. According to Webster’s definition, a law of
nature is a statement of an order or relation of phenomena that, so far as is
known, is constant under certain conditions. Certainly, the laws we cite can
be better compared with laws in economics, than with laws in physics or
biology. To quote Lehman [Lehm80], whose laws we will discuss later, our
laws are ‘certainly weaker than those formulated in the biological sciences,
where regularity stems from the collective behavior of cellular systems that,
even though alive, are non-intelligent’. Laws represent firm knowledge
upon which people can rely, and are a proven way to summarize knowledge
that needs to be conveyed to large communities. Of course, it is always pos-
sible to construct situations where a certain law does not apply. These
situations, however, usually deviate from the environments typical for pro-
fessional software and systems development and evaluation.

We distinguish here between laws, hypotheses and conjectures. By quot-
ing a certain rule as a law, we mean that there is strong empirical evidence
supporting it, and that it represents an important insight. As in science, a
hypothesis is a proposition that is only tentatively accepted. If we call some-
thing a hypothesis, this does not necessarily mean that we are in agreement
with it; sometimes we have doubts about its validity. Otherwise, we might
have looked harder for more good evidence, so that we could turn it into a
law. With conjectures it is different again. A conjecture is a guess only. We
usually believe in it, but have not found too many people (yet) who share
our view. If we elevate something to a law, we are suggesting that it be
accepted as truth, at least for the time being, and that future studies should
be directed at something else, maybe at our hypotheses and conjectures.
That is exactly the fine line we are trying to follow in this book.

Some of the laws we cite became popular because the projects or studies
leading to them were landmark events at their time. They were convincing
because several people made similar observations in different environments,
or the experiments were done repeatedly. The professional community had
(and still has) the same interpretation of the facts that were observed and
agreed with the conclusions that were drawn. In Shaw’s [Shaw90] terms,
this knowledge somehow became part of our folklore. Our criterion for
expressing knowledge by a law is quite stringent: firstly, there is a clear
underlying hypothesis that has been validated in the context of systematic
studies (with a few exceptions as indicated). Secondly, the study may have
been performed as an experiment, a case study, or as an afterthought or
byproduct of a regular project. Thirdly, some experiments were repeated,
achieving consistent results across different groups or environments.

By selecting a set of 50 laws, we want to express our opinion that, in the
field of software and systems engineering, there is a significant body of agree-
ment among experts. We also believe that these insights will remain true for a
long time. In this book, some of the laws have been slightly reworded, so that
the long-term significance becomes more obvious. To some people, our list
may seem arbitrary and incomplete. However, if laws have not been discov-
ered yet, we do not attempt to invent them. We also exclude many areas where
good results have been achieved or are considered as ‘best practice’. We shall
try to compensate for this to some extent by quoting a number of hypotheses
and conjectures, which in our opinion, should fill the most significant gaps. By
doing this we want to say that these insights are shared by many people but
have not been validated by a systematic study. In fact, we want to challenge
both researchers and practitioners to work together to turn these hypotheses
or conjectures into laws or to replace them. Even a law can be challenged,
whether because the problem it addresses has became irrelevant, or that the
circumstances leading to a certain conclusion have changed over time.

We will mainly cite laws that have a certain surprise value, i.e. are not con-
sidered as obvious or common sense by everybody, particularly people who are
new to the field. It is no coincidence that many of our laws were first formu-
lated decades ago. In empirical science, if something has survived the test of
time, it is a sign of quality. In fact, some of the laws we cite originate from the
very beginning of the computer age. The dates when a particular law was first
formulated express somewhat the changing emphasis of the field. The older
laws deal with implementation and test; newer ones are more concerned with
design and requirement issues. If, in our selection, requirements, design and
testing seem to be over-represented, this reflects our assessment that these activ-
ities are really ‘intellectually demanding tasks’, as Brooks [Broo87] calls them.

Laws and hypotheses are given both names and numbers in this book.
Names are easier to memorize than numbers, and we will usually refer to
them using the name. We would like to give credit for these important con-
tributions to our field by naming the laws and hypotheses after the authors
who first formulated them. Advancements in many disciplines are due to
those people who see order where others see only disorder. This is the same
in astronomy, biology, and physics, as well as in the social sciences.

1.5 On principles, methods and tools

Not all experiences are such that they can be called laws. They may be less
universal or may not have been sufficiently validated. They are frequently at
a rather detailed level. They are useful, nevertheless, and we will refer to
them as principles. Most books on computing science try to outline at least
some principles, from which in conjunction with laws, methods have been
derived. We will use the term ‘method’ to include what other people may
call a ‘technique’ or ‘practice’. Methods are supported by tools. Typical
tools are a stopwatch, a measuring tape, or a microscope. In our case, tools
are frequently computer programs. Fig. 1-2 illustrates this relationship.

5]100] pue spoylaw ‘sajdpuud uQ ‘ o

()Y

uondnposu|

leads to is helped by
Law = Method

Principle

depends on
............... Tool

Fig. 1-2 From laws to methods and tools

There is a feedback from tools to methods: the preferred methods are those
for which good tools exist. Tools take over repetitive tasks and assure the
reliability of results. As every practitioner knows, decisions regarding meth-
ods and tools are not always made in a rational way: sometimes tools are
bought before knowing that they require the introduction of a new method.

It is symptomatic of the state of the art in systems and software engi-
neering that handbooks abound with methods, including practices and
techniques. The market for tools is mushrooming in its own right, as
a glance into any bookstore will show. This is, in some respect, an
advancement when compared to the hopes of those naive optimists look-
ing for a single all-encompassing cure, referred to as a ‘silver bullet’ in
Brooks’ quote above. Typical examples of such catalogs of methods are
Davis [Davi95], Jones [Jone00] and the Software Engineering Body
of Knowledge (SWEBOK!'). The latter is the laudable attempt by a profes-
sional society (IEEE Computer Society) to collect an agreed-on body of
knowledge. All list many principles, techniques, and best practices, but
give little explanation of why they should be used. This is similar to
medieval medicine: there were hundreds of ointments and tinctures that
seemed to work, but no-one knew why. Such medicine is difficult to teach
and, more significantly, difficult to improve. Many of the laws presented
here can be used in exactly this way, as direct guides to action and as
predictors of outcomes in a broad but specific sense, hence they are of
direct value to practioners and managers alike.

Software and systems engineering are no different in this respect to most
other branches of engineering. Engineering cannot wait until all phenomena
can be explained. Electrical engineering is a typical example. It existed about
a 100 years before the phenomenon of electric current could be explained.
Engineers may work effectively, often for centuries, with heuristics. These are
rules (‘rules-of thumb’) of the form: if such a condition exists, do such and
such. They exist in most fields of engineering and cannot be ignored.

1.6 Search for theories

Using the definition of an economist, a theory is a deliberate simplification
(abstraction) of factual relationships that attempts to explain how these

! http://www.swebok.org

relationships work [BaumO1]. It is an explanation of the mechanisms
behind observed phenomena. Our laws are such observed phenomena. If we
accept something as a law, the salient question is, ‘Why is this so?’
Understanding why something is happening puts a given phenomenon onto
another level; it helps to demystify it. For all laws quoted in this book, we
therefore try to come up with an explanation or a theory. In fact, we will
try to answer two types of question: (1) ‘What is the reason or the rational
explanation for this phenomenon?’ and (2) “Why will it reoccur elsewhere,
or why can it be generalized?’ This is the key characteristic, and the defin-
ing value, of this book. It is not presently possible to give a theory for all
rules and methods that are important or seem to work. This is work for
several generations, but we want to make a start.

Any theory is an attempt to explain observed laws with current knowl-
edge. Following Popper [Popp63], all that we have are preliminary theories
only, i.e. theories that have not yet been rejected. In other words, a theory is
assumed to be true (or similar to truth) if no observations have been made
that are in conflict with it. As an example, the Ptolemaic theories of the
world explained sufficiently the movement of heavenly bodies for centuries.
Only when more precise observations were possible did they become ques-
tionable. They were good, or useful, theories up to that point.

Theories are helpful to researchers in order to design their experiments.
They are useful (although not mandatory) for practitioners as well. It
allows them to cope more effectively with the situations they encounter. It is
of secondary importance, whether those theories are easily expressible in
some formal notation. Theories may come from either hard or soft sectors
of science. Hard science observes that part of nature that is considered to be
non-intelligent and thus more predictable. The more established disciplines
in this respect are physics, chemistry, and parts of biology (those that are
not concerned with human beings). In earlier times they were all branches
of physics. The soft sciences have to take into account mental and social
processes. Examples are medicine (sometimes considered as a part of biol-
ogy), economics, psychology, and sociology. Developing a good theory is
mainly an intellectual effort. In physics or astronomy, observations or meas-
urements may require expensive set-ups, time, and equipment. Therefore,
theories are often the inexpensive part. The proper attitude to get at them is
to lean back and let our imagination play.

Mathematics does not normally produce scientific theories (in the sense
defined above), as it cannot explain the reasons behind natural phenomena,
although it can certainly help to describe them. As an example, mathematics
does not give the reasons why the sun rises, but it can help to predict the
timing with high precision, provided a physical theory is available.
Mathematics provides theorems. Theorems are basically different from the
theories discussed here. They cannot be validated even by millions of obser-
vations, but can be falsified by a single observation. If proven to be correct,
they are valid forever.

S91109Y] J0J YdJeag ‘ ~

[oe]

uondnposu|

1.7 About this book

This book is intended as a handbook for students and practitioners alike.
The information contained is largely independent of particular technologies
or tools, application areas or geographical regions, fashions or fads. It takes
into account only what we consider as basic insights. It represents the fun-
damental knowledge for any professional in computing or information
processing. This type of knowledge is required and valuable for an entire
career. Without it, one should not assume responsibility for developing or
evaluating business- or mission-critical systems. Indeed, we would dare to
say that without this state-of-the-art knowledge, practitioners today would
perform with the same effectiveness as those of 50 years ago.

The goals and ideas pursued in this book were excellently expressed by
Boehm and Basili [Boeh0Oa] in their report on two workshops in 1999,
They recommended the development of an ‘empirical science of software’ as
soon as possible. We also support their plea not to separate information
technology (IT) from software engineering (SE). ‘Great systems require both
great I'T components and great SE elements’ is a maxim we fully agree with.
We therefore want to extend their idea by outlining an empirical science of
software and systems engineering. With this we come closer to their goal of
unifying software and systems engineering [Boeh00a].

The type of tasks that practitioners confront determined the structure of
this book. These tasks or activities are reflected in the chapter headings. The
first seven chapters (after the introduction) follow roughly the sequence
encountered in practical studies or development projects. In different
process models, these tasks have varying importance or are applied in a dif-
ferent sequence. In an iterative or cyclic model they may be applied
repeatedly. The subject of quality assurance is treated together with each
individual activity. This reflects the authors’ opinion that it should be
closely interwoven with development. The chapters towards the end deal
with tasks that are not development related. They are, nevertheless, impor-
tant for most practitioners.

If the book is used as a handbook, each chapter can be referred to indi-
vidually and repeatedly. Therefore, not all 50 laws need to be memorized. A
small subset that is relevant for the current task, as given in each chapter,
will suffice. When presenting a law, we shall discuss applicability, evidence
and relevant theory. For hypotheses and conjectures, no theory is given. For
each chapter, additional activities are discussed in detail. Each chapter also
contains examples and exercises. All laws, hypotheses and conjectures are
summarized in the Appendices, along with short biographies of the people
contributing to the results presented, and a list of groups doing research in
empirical software and systems engineering.

Many books on computer science are structured similarly to books on
mathematics. They start out with some theoretical concepts, for example,
fuzzy logic or lattice theory, and list at the end a few situations where they
may apply. That approach asks a lot of most readers; it requires consider-

able effort to place these kinds of result into a practical context. Our
approach builds on practical situations and activities. However, the reader
still has to translate the general conclusions to his or her specific context.
This we cannot replace.

Finally, we hope that our book will provide a guide for researchers.
There are experiments still to be done, experiences to be collected and
investigations to be made to develop specific methods based on some of our
laws, to validate some of the theories and to determine the truth of various
conjectures. In some cases, the laws as we now know them raise challenges
which, if they can be overcome, will provide significant advances.

O

3004 SIY1 IN0QY

Requirements definition,
prototyping, and modeling

Requirements engineering is more difficult now, because all systems that
were easy to specify have been built some time ago.
T. DeMarco [DeMa01]

In this chapter, we explain why the definition of requirements can be a very
critical aspect of any project. Recognizing its limitations and pitfalls, and
taking the proper precautions, can reduce the risks of any development
project. For this, more than any other activity, a purely technical view is
not sufficient.

2.1 Definitions and importance

Requirements definition is the process that determines the properties a par-
ticular system should have. The requirements process generates the
information on which the design will be based. For this, you have to know
where a system is to be used, by whom, and what services it should provide.
It is also important to determine what trade-offs can be made in case of
conflicting requirements. We assume that each system has a set of useful
functions that are crucial for its success.

The concern for the importance of requirements definition arose rather
late in our industry. Firstly, there was the concern for implementation lan-
guages, then for verification and testing, and finally for design and
requirements definition. This corresponds to the personal evolution of most
people. Only after they feel that they have the final activities under control
do they look for potential problems in the early activities. As biologists say,
‘Ontogeny repeats phylogeny’, the development of the individual repeats
that of the species.

The parties participating in the requirements definition process are col-
lectively referred to as stakebolders. If the system is being built for a known
customer, requirements may be the basis for a development contract. If the
customer is initially unknown, the marketing organization may assume this
function. At first, requirements are discussed at the application level. It is

not always initally clear whether they will be implemented in hardware or
in software, or performed by humans. Requirements should therefore
always be considered as system requirements. Software requirements are
only a part of them. They are determined after the system requirements, or
derived from them. The results of the requirements definition process are
documented in the requirements specification. Sometimes the term ‘objec-
tives’ is used for this document. The requirements definition process is
frequently referred to as ‘systems analysis’ or ‘requirements engineering’.

Prototyping is an activity intended to build a partial replica of a system
comprising a subset of functions and using methods and materials that may
be inappropriate for the final product. A prototype is executable and will
usually accept the same type of inputs as the actual system and will produce
the expected output. The development of a prototype should be consider-
ably faster and less expensive than the actual product. Therefore the term
rapid prototyping is used frequently. If developed, it should be available
much earlier than the actual product. A prototype should not be confused
with a pilot. Pilot projects are normally done to gain experience with a new
methodology, such as object-oriented design or a new programming lan-
guage. A pilot project may or may not involve a prototype.

Modeling is a method to describe a system in a way that makes particular
properties visible or allows some automated analysis. To use an economist’s
definition [BaumO1]: ‘A model is a representation of a theory or part of
theory, often used to gain insight into cause and effect’. If we are unable to
build a model, then our theory about how things relate or interact is inade-
quate. For an artifact still in the process of being created, the model depends
on how we think the artifact should be. The quality of a model depends on
how close it comes to reality and how well it explains the properties in ques-
tion. A dynamic model of a system usually consists of a set of states, which
are the values that the attributes of a system can take. During its execution, a
program or system passes through a sequence of successive states.

The following related terms are used throughout this book. As stated
before, a project is an organizational effort over a limited period of time,
staffed by people and equipped with the other resources required to pro-
duce a certain result. For a development project, the result to be achieved is
a product. In our case a product is a system, consisting of hardware, soft-
ware, or both, to be used by people other than the developers. The term
process is used here to designate a set of activities and methods used.

Another important set of terms is illustrated in Fig. 2-1. A failure is the
inability of a product to perform its expected function, or of a project to
achieve its expected results. Sometimes the word ‘problem’ is used instead. A
fault is a deficiency in a product that causes a failure. If a fault or failure is a
consequence of a human activity we call it an error. Most faults observed for
software systems are errors, usually introduced during development or
installation. Faults introduced during manufacturing may be human errors
or mechanical failures (e.g. blank page in the documentation, unreadable
electronic medium, etc.). In the hardware part of a system, faults can also be
caused by unexpected power variations, temperature changes, water, dust, or

-
RN

dduenodwl pue suoniuyaq ‘

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ 3

Development
Failures

Installation

I
Manufacturling

Wear out

User

Power supply

Fig. 2-1 Failures, faults, and errors

wear. To differentiate between errors in the product (code, device), and docu-
mentation errors, we shall use the term defect. Normally a defect requires an
engineering change; in the case of software, a code correction or code fix.
Until a fix is available, a temporary circumvention (or work-around) of the
problem may be needed. A product failure can result from a fault, a user
error, or a power supply outage. The same fault in a system can lead to mul-
tiple failures. Not all faults lead to failures: they exist, but remain
undiscovered and cause no harm.

The quality of a product is usually defined as the degree to which it
meets customer requirements. This view emphasizes one side of quality: the
user’s perspective. A more comprehensive view also includes the developer’s
or manufacturer’s side.

View Criterion Definition
User Availability High degree of access
Reliability Low failure rate
Efficiency Economic resource consumption
Installability Easy and fast bring-up in user environment
Usability Well adapted to skills and preferences of user
Robustness Safe reaction to user errors and hardware failures
Safety/Security Low damage in case of negligent/malicious use
Developer Testability Good documentation and structure
Maintainability High readability and modifiability
Portability Low dependency on technical environment
Localizability Adaptable to national and regional requirements
Reusability High modularity and completeness

Fig. 2-2 Important software quality criteria

The quality of software products from a user’s point of view can be
expressed as the fulfillment of several properties: availability, reliability, effi-
ciency, installability, usability, robustness, and safety/security. In addition,
several criteria have to be added if a developer’s interests are considered as
well. These criteria are testability, maintainability, localizability, portability,
and reusability. A short definition of each criterion is given in Fig. 2-2. Of
these properties, reliability is usually the most important and is often used
as a synonym for quality. In the case of software products, reliability (and
hence quality) is frequently expressed as number of errors or defects per
thousand lines of code (defects/KLOC). The problem is that this is a devel-
oper-oriented measure. A user-oriented measure for reliability is the number
of problems per user month. The relationship between these two measures
is complicated and depends on the actual usage of a system. System avail-
ability is a function of the number and the duration of interruptions. One
popular definition is:

Availability = MTTF/(MTTF + MTTR)

where MTTF = mean time to failure and MTTR = mean time to repair. The
unit used is usually percent (e.g. 99.9%). The inverse is down time, fre-
quently expressed in hours per year.

The term correctness, which will be used later, denotes a subset of relia-
bility, namely consistency with a formal specification. It is defined only if a
specification exists. If a user plans to use a software product as it is, i.e. he
or she does not have the intention to modify it, he or she should be con-
cerned about the user-oriented criteria only. The intended use of a product
has to take into account typical handling mistakes. If safety and security are
issues, careless and malicious use have to be considered as well.

2.2 General observations

Requirements are supposed to define the “What’ and “Why’, rather than the
‘How’, of a system, i.e. it should state which functions should be there, but
not how they are provided. In practice, this separation cannot be strictly
maintained. Some requirements may directly prescribe certain design or
implementation aspects, such as compatibility with existing interfaces or lan-
guage to be used for the implementation. In order to be able to define certain
requirements, some basic design decisions may have to be made first. Also,
developers may need an overall idea how certain functions can be imple-
mented before they can accept them as meaningful requirements. As for all
development activities, one has to assess the consequences of each decision
for all consecutive steps. This occurs by mentally performing the next steps,
or if that is not sufficient, by actually advancing a part of it. Prototyping is
an example of that. As Davis [Davi90] put it, one person’s “What is always
some other person’s ‘How’, depending on the role he plays.

-
w

Suol}eAlasqo |elausn ‘

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ =

Informal view Formal view
(Reality) (Model)
Objects

Processes

Fig. 2-3 Two world views

If the requirements are modeled, this amounts to a mapping of two dif-
ferent world views. The terms that may initially be used as part of an
informal language have also to be mapped in terms of a formal language or
system. As indicated in Fig. 2-3, entities in a colloquial language may
become objects in an artificial model; actions may become procedures. Even
if the same names are used on both sides, they no longer mean the same.
One can only ensure that some basic properties that are relevant for the
application are kept the same. Whatever approach is taken, this basic step
remains. Any attempt to avoid it may increase the danger that misinterpre-
tations will occur. The further the design of the target system evolves, the
more the meaning of the terms diverges.

A system may be able to assume millions of different states. The states of
a system can be modeled with the aid of finite state machines. The problem
is how to structure the states in a meaningful way. A process model expresses
which signals cause which state transitions. The model can be physical in
nature (i.e mechanical, hydraulic, electrical, etc.) or symbolic (i.e. made up of
words, graphs, or mathematical notation). In the case of physical models, the
emphasis is on the understandability by humans; in the case of mathematical
models, the focus is on the possibility of deriving certain information using
computers. We may create models of existing or planned systems. If the
system is complex, an abstraction is chosen that leaves out some aspects or
properties. Examples are functional models, data models, or performance
models. A model may not be executable. If it is, it requires an input that
describes, rather than emulates the actual input; the output may be a descrip-
tion of the expected output or of other system properties. In a performance
model it may be the amount of storage consumed by a data structure (given
in bytes) or the time needed for a given task (expressed in seconds).

A complete specification has to be such that no legal state is excluded;
nor does it allow that illegal states are considered legal. Of course, require-
ments definitions need to be ‘good enough’ only, not descriptive of all legal
states. Agreement should be reached between all the stakeholders.
Normally, requirements are a moving target. The reasons for changes may
be technological advances, competitive products, regulatory constraints,
external standards, marketing approaches, or financial conditions of the
sponsoring company.

In an ideal development process, the entire requirements definition
should be completed before design is started, in case an additional require-
ment changes the basic design structure. Since design and implementation
may cost considerable amounts of money, one usually cannot afford to
spend most of it before requirements are defined. On the other hand, it is
an illusion to expect that perfect requirements can be formulated ahead of
time. Both the developers and the users may need some feedback. They
require a learning cycle. This is particularly important if dealing with a new
application area, where developers and users have no prior experience.

When discussing the requirements process, we assume that customer and
developer are not the same person; they may even belong to different organi-
zations. The term customer is used to designate the person or group of
persons who have a vested interest in the system. He or she is initiating and
usually funding the development, and is the key stakeholder. However, he or
she may not be the final user. As part of the requirements process he or she
may ask representative users to contribute. Neither the customer nor the
users have to be IT professionals, while the developer’s side always consists of
IT professionals. Directly interfacing with the customer may be people with
limited technical knowledge — these could be sales people or system analysts.

An explicit requirements definition is less important if the target envi-
ronment is familiar to the developer. End users who develop applications
for their own use hardly spend time to gather requirements. Such efforts
would in fact be counter-productive. However, if the project is outsourced
and the time and money spent on it are critical, then careful requirements
gathering and analysis are key. Systems developed merely for learning pur-
poses or fun have requirements too, but they are not being considered
here. The importance of a careful requirements definition clearly depends
on the criticality of the system planned. There is a wide disparity between
the criticality of a desktop game and that of a nuclear power station con-
trol system. Different types of products have different requirements, and
they may change over time. In a public procurement situation, the require-
ments statement may be the basis on which bids are made.

In the case of products intended for a large user community, particularly
for a consumer market, it is important to distinguish between the require-
ments of existing customers and those of non-customers. If the current
customer base is small and specialized it may express requirements that
make the expansion into new markets more difficult rather than easier.
Many potential customers may not like a product because of properties that
current customers love. The information obtainable from unsatisfied cus-
tomers may contain similar clues.

2.3 Applicable laws and their theories

The laws quoted here mainly express warnings. They are based on the expe-
rience of some failed projects and the analysis of errors. This should not
cloud the fact that the large majority of projects are successful.

-
(9]

S91109Y3 119y} pue sme) a)1gedljddy ‘

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ =

2.3.1 Glass’ law

The definition of requirements is usually the first step in a project. Robert
Glass has investigated failed projects over several decades. The law that is
quoted here is based on the conclusions of a recent book [Glas98].

Requirement deficiences are the prime source of project failures. ((1)]

Applicability Requirement deficiencies cause problems in many projects. The
requirements may be determined incorrectly, or not enough attention given
to their definition. Setting the goals correctly for any project is a demanding
task. Although there are projects with well understood, specified, and stable
requirements, more often this is not the case. More typical is the incomplete
or erroneous requirements definition, especially if the definition is done by a
third party for the customer and developer. But removing the requirements
definition step is of course no solution to the difficulty.

Evidence The evidence provided by Glass for this law is essentially based
on case studies. No controlled experiments were done. They would have
been quite difficult. Of the projects that Glass has studied, three failed in
his opinion because of requirements problems. All three achieved world-
wide attention:

m the baggage handling system for the Denver airport;
m the welfare administration system for the state of Florida;
m the air-traffic control system of the Federal Aviation Administration (FAA).

Glass’ assessment is that the requirements were (1) far too many, (2) unsta-
ble due to late changes, (3) ambiguous, and (4) incomplete. In the case of
Denver airport, the city of Denver had written the specifications for the
baggage conveyer system without consulting its users — the airlines. In the
recovery effort, three different baggage handling systems have been built,
one each for the two major airlines, and a third for all others. The imple-
menters of the Florida welfare system were told to reuse several million
lines of code from an existing centralized system, although their require-
ments called for a distributed system. The FAA system was a long way from
reaching its performance goals. The air-traffic controllers wanted to use the
new 20" display units in the same fashion as they were using paper slips
before. They (rightly) insisted on the same response times and the same low
number of key strokes. Additional evidence supporting this law can be
found in the studies by Curtis [Curt88] and Davis [Davi90]. Brooks
[Broo87] alludes to the same when he says: “The hardest part of building a
software system is deciding precisely what to build. No other part of the
conceptual work is so difficult, and is more difficult to rectify later’.

A recent field study on the requirements definition process is reported
by Hofmann and Lehner [Hofm01]. The authors interviewed 15 teams in

nine companies in the telecommunication and banking sector. The best
results were obtained by those groups that had the ‘right combination of
knowledge, resources and process’. The knowledge aspect required getting
the involvement of customers, consulting all sources, and assigning highly
skilled people. Resources were sufficient if 15-30 percent of the project
effort was spend on requirement definition. A successful process concen-
trated on prioritization, traceability and validation of requirements.
Sometimes multiple cycles were required.

Theory The proper definition of requirements is a hard problem. The main
reasons for this are differing needs of different user groups, natural conflicts
of interest between participating persons or groups, and the difficulty of
prioritization among conflicting requirements. Requirements definition is a
process of learning and negotiation. Both the developers and users learn
while implementing or using a system. The knowledge of every person
involved is limited. People do not know everything and forget much of
what they know over time. Sharing of knowledge does not occur by itself.
These problems are inherent and will not go away as technology progresses.

2.3.2 Boehm’s first law

While Glass looked at projects as a whole, earlier studies clearly hinted in the
same direction. These studies were concerned with the analysis of errors made
by the developers. When analyzing those errors, the first question is: “Where
in the development process was this error made?’ This leads to an assignment
of errors to individual phases or activities in the lifecycle. We quote here one
of the most significant discoveries in this respect, attributed to Barry Boehm
[Boeh75]. This law combines two observations that are closely related.

Errors are most frequent during the requirements and design activities and
are the more expensive the later they are removed. L2)

Applicability Around 1974, several groups realized that the early phases,
namely requirements definition and design are most heavily loaded with
errors. Requirement errors are as numerous but more serious than design
errors. If a developer does not know the domain, he or she can easily be
misled. Nobody tells the developer that he or she is trying to solve the wrong
problem until he or she interacts with customers or users again, which may
be as late as installation. Design errors are found by the responsible devel-
oper, the developer of a related construct, or by a user who discovers the
problem either accidentally or through a review process.

The cost incurred by an error is larger the later in the project cycle it is
removed. It applies to all large system developments. The earlier an error is
removed, the lower its cost. In other words, the lifetime of errors is the
problem. Lifetime is the time between introduction or injection of an error

S91109Y3 119y} pue sme) a)1gedljddy ‘ 3

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ s

and its removal. Since errors are unavoidable, provisions should be made to
detect and remove them quickly. Put another way, if we know that we can
catch errors early and completely, we can afford a higher number of errors
in early stages of the project.

Evidence The evidence for this law is also based on case studies only. Most
studies of software errors done before 1974, e.g. [Rube68], were concerned
primarily with coding errors. About 1974, several studies became known that
drastically changed this view. Boehm’s paper refers to a study done at TRW in
1974 where 224 errors were analyzed. They were detected in a system consist-
ing of about 100 KLOC. The main conclusion was that design errors outweigh
coding errors, 64 percent versus 36 percent. Of the errors found during accept-
ance testing, the ratio was even 45:9. In that particular project, 54 percent of
the errors were found no earlier than the acceptance test. It took twice as much
time to diagnose and correct design errors versus coding errors.

At the same time as Boehm, an error analysis was done by one of the
authors of this book [Endr75]. It will be discussed in more detail in Chapter
4. Tt also concluded that about 60-70 percent of all errors to be found in a
project are either requirements or design errors. In the case of an operating
system, this was not expected, because the application knowledge lay with
the developers. A similar relationship in the number of design and imple-
mentation errors was observed in 1984 by Basili and Perricone [Basi84] for
Fortran programs in an aerospace application where the design was done
by people with good domain knowledge.

At about the same time various statistics appeared, showing that the cost
of errors are the higher the longer they stay in a product. Although this
observation has been attributed to many people, the first publication we
know of that mentions it is from Peter Hiemann [Hiem?74]. It is based on
internal studies done at IBM between 1972-1974. Hiemann’s characteriza-
tion of the problem is reproduced in Fig. 2-4. In this figure, the assumption
is made that the cost to remove errors at coding time is negligible. When the
cost of inspections are considered the picture changes.

30

Lonl

Coding Unit Component System Field
test test test

Cost

Y

Fig. 2-4 Cost of problems per phase

Additional evidence supporting the second half of this law can be found in
[Boeh76] and [Daly77]. An evaluation of several estimates is contained in
[Boeh81]. It gives a comparison of earlier estimates from IBM, GE and TRW.

Theory Humans usually have problems if a multitude of situations need to be
thought of at the same time. We tend to think of the main line only, and
forget the special cases, the exceptions. Even if the human mind supports par-
allel processing, this does not mean that different units investigate in different
directions. We possess no inherent means or mechanisms to explore a domain
exhaustively (unless it can be represented visually). Errors of omission are
therefore more frequent than misunderstandings. The costs for changes of a
system grow as the development cycle proceeds. The reason is that subse-
quent investments are based on decisions made before. The number of people
affected may grow from less than ten to several hundreds or thousands.

2.3.3 Boehm’s second law

Prototyping is a well-known remedy against requirements errors. Although
much has been written on this subject, we quote as a law the claims as
derived from an empirical study by Boehm et al. [Boeh84a].

Prototyping (significantly) reduces requirement and design errors, especially
for user interfaces. L3)

Applicability The usefulness of prototypes is hardly an issue. Prototypes of
hardware systems are built frequently. One may use chips of a previous gen-
eration to build a new device or to explore some new architectural features.
For most interactive systems, prototyping is appropriate. It has the advan-
tage that it crosses the gap between description and implementation. As
such it can communicate requirements better than a specification. A proto-
type may be helpful to educate the development team, spread confidence
among users, and to convince the sponsor. Prototyping is a vehicle to facili-
tate participatory development; it reduces the possible tension between
users and developers (the ‘us versus them’ syndrome). Depending on the
type of questions to be answered, different types of prototypes may be con-
structed. In the case of software systems these types are:

B Demonstration prototype: It may be used to help clarify some user
requirements. It may demonstrate certain features that the user cannot
imagine otherwise. It may impress the customer and win his or her con-
fidence. The developer is not learning from the prototype, but gains
other advantages, for example, a mock-up of the user interface or a 4GL
implementation of a database query.

®m Decision prototype: It can be useful to help select the proper design
among alternatives. It helps the designer evaluate decisions through a

S91109Y3 119y} pue sme) a)1gedljddy ‘ 5

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ N

partial implementation. The prototype is created to answer a particular
question. Its main benefit is a learning effect for the developers. They are
done mainly during design, but may be useful also during construction.
B Educational prototype: Its purpose is not to arrive at a specific design
decision. It may make developers familiar with a new technology or may
be used to help clarify some method or tool questions ahead of time, for
example, the performance of a new version of a compiler. It may be
applied during design, but mainly to prepare the implementation.

System lifecycle

Requirements definition Design Construction

A

Decision
prototype

Educational
prototype

Demonstration
prototype

Y

Construction

Prototype
lifecycle

Y

R R R Evaluation

Fig. 2-5 Prototypes in the system lifecycle

As shown in Fig. 2-5, the different types have their use in different phases
of a project. All three forms are normally throw-away prototypes. At least
they should be, since they are not intended to become part of the final
system. For software prototypes in particular, there is a high risk that proto-
types are not being thrown away but used as part of the final product,
which is in conflict with the goal to achieve a high product quality.
Prototypes should normally go through a lifecycle of their own and be eval-
uated, i.e. tested, against the questions they were supposed to answer. Many
are only constructed then forgotten. Prototyping typically has an iterative
project cycle.

The law, as stated, puts the emphasis on the reduction of errors. As will be
shown later, the reduction of errors entails cost reductions as well. The amount
of reduction is not quantified, however. To be significant, at least 20-30 per-
cent have to occur. This applies to all laws, even if the word ‘significantly’ is
omitted. Changes in the range of 5-20 percent can be due to measurement or
set-up differences, or can be caused by uncontrolled interferences.

Evidence The study by Boehm et al. [Boeh84a] is the first controlled experiment
referred to in this book. However, it is not the earliest one. The study addresses
the usefulness of prototypes for requirements definition. The experiments were
conducted as part of a graduate course in software engineering and involved
seven teams developing the same small system (2-4 KLOC). Four groups used a
specification-driven approach, whilst the other three used a prototyping
approach. The system to be developed was an interactive version of the
COCOMOH-I cost-estimating model. For the specification-driven approach both
a requirements and a design specification were required. In the other approach,
instead of the specifications an early prototype was required. Both had to
provide a users’ manual together with the running system. The same level of
feedback was given to the specifications and to the prototype. In both cases, an
acceptance test was performed, verifying functionality, robustness, ease of use,
and ease of learning. The results of this experiment were as follows:

m The prototype approach resulted in a somewhat smaller system (same
overall function, fewer LOC).

B The productivity was about the same in both cases (with larger varia-
tions in the specifying approach).

B The quality of the resulting systems were rated about equal. The proto-
typing approach came out lower in terms of functionality and
robustness, but higher in terms of ease of use and ease of learning.

B There were no clear observations concerning maintainability.

Although this experiment was conducted in an academic environment, these
conclusions are essentially in line with related experiences made in industry.
The main advantage is better usability or user satisfaction. The motivational
boost resulting from a prototype is a typical by-product for inexperienced
teams. That the prototype approach shows more resistance to adding non-
essential features is true only if the prototype code is the basis of the final
product. As stated in the paper, the emphasis given to either specifications or
prototypes should be based on a risk assessment. Specifications are not nec-
essary for small, user-developed products; prototypes are not necessary if
both the user interface and the overall design are given or well-understood.

Many reports exist on the successful use of prototypes. A report by Bernstein
[Bern93] talks about a 40 percent reduction in effort because of it. The same
developer gives a warning, however, about a well-known danger of prototyp-
ing: ‘Our customers loved it so much that we packaged it for sale’. This case is
referred to as ‘trap number 1” by the author. Not only customers may cause this
to happen, but also the developer’s management or the sales force. Prototypes
can also be dangerous in the sense that they may mislead developers. A typical
example is performance: a prototype handling only the normal cases fitted
nicely into the allocated storage, but the fully-fledged system didn’t.

Theory Prototypes give a view of the system in the way it will actually appear
to the user. Contrary to other design representations it does not depend on a
person’s power of imagination to visualize it. It is a partial embodiment of

S91109Y3 119y} pue sme) a)1gedljddy ‘ N

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ N

the real system, not an abstraction. It may over-emphasize some details and
thereby hide or distort the total view of the system. Prototypes need to be
created for systems under development only, not for existing systems.

Comment Most developers are reluctant to throw prototypes away. The
reason is that if the prototype was well done, people say, “‘Why do we have
to wait for the thing to be redone?’ If it was poorly done, the project may
not continue. In most engineering fields, the materials used to construct
prototypes clearly differ from the final product. It is only in the case of soft-
ware prototypes that managers can say, ‘Why don’t you add a few
instructions and ship this to the customer?’

2.3.4 Davis’ law

Modeling is used extensively to either represent an actual or a planned
system. As stated before, models may be mechanical, hydraulic, electrical,
graphic, or arithmetic in nature. This can be summarized in the following
law, which is taken from an extensive study by Alan Davis [Davi90].

The value of a model depends on the view taken, but none is best for all purposes. (L4)

Applicability Models are a very useful form to describe systems. This is true
before, during, and after development of the system. Examples of models
used in natural science are models describing the evolution of a star; the
atom model; or the operation of a cell. They are first an intellectual con-
cept, but can be transformed or expressed in a visible representation. In
computing science, we may use models to study the static structure of the
system’s objects or components, the logical structure of the data used, or the
dynamic structure of the interacting tasks and processes.

Model view Elements considered Practical notations Mathematical
equivalent
Data Data structures, data Entity relationship Heterogeneous algebra
relationships diagram (ERD)
Process Processes, Dataflow diagram (DFD) Process graphs

interconnections
State transition Events, states State diagram, Finite state machine
including hierarchically
structured state chart

(Harel)
Structure Objects, classes, Class diagram, 1/0 functions
components Component diagram
Behavior Interfaces, message Message sequence Dataflow graphs
histories chart

Fig. 2-6 Modeling views and notations

Fig. 2-6 gives an overview of the most frequently used models in software
and systems engineering. In software development, at least two models are
usually used, depending on which view of the system is more critical: it could
be the process and data models; the data and state models; or all three.
Thanks to the effort of the UML initiative [Rati97], the notations used for the
different views have been largely standardized. Some effort has been made to
develop mathematical foundations for the various models. The right-most
column of the figure mentions the mathematical concept suggested for this
purpose by Broy [Broy01]. With a proper mathematical foundation, it will be
easier to determine where individual models overlap, if at all. It also allows
the definition of some form of a refinement concept. With this, the relation-
ship between different stages of a model can be expressed.

Whether modeling helps, and if so how much, depends on the situation.
Models can normally be checked for consistency, but not executed. Like
human models (which are also called mannequins), they frequently end up
in beauty contests. Usually, models cannot be converted automatically
into a prototype. They therefore have a life of their own and may grow or
die. If they grow, the risk is high that all they will amount to is just
another nice artifice to be admired. They distract from the real thing — the
system. All that is needed are models that are ‘good-enough’ for the pur-
pose in hand. If not countered, the development effort for a model can
easily reach the same magnitude as that of the actual product. The advan-
tage of a model is that it may answer questions that are difficult to obtain
from the actual product, or it may do that before the product is available
or in environments where the product cannot be used. Every program is a
model of some real-world application.

Evidence The study that Davis did is a qualitative rather than quantitative
analysis, and uses subjective rather than objective criteria. It is valuable, never-
theless. Davis selects three very different applications and tries to apply several
different modeling approaches. The applications are of increasing difficulty as
far as the problems to be solved are concerned. The applications are:

® Automating a book distribution company: including ordering, shipment,
and accounting; possibly human resources, payroll, inventory, conveyor
belts, and robots to move books.

B Automating the landing of a helicopter: ensuring a safe landing on one
of 250 helipads within a large city, even in the case of zero visibility and
an unconscious pilot.

®m Transporting people from New York to Tokyo in 30 minutes: solutions
to be considered include space shuttle, tunnel, bullet train, or digitizing
and transmitting passengers (as in the movie Star Trek).

For all three applications, a problem analysis is done first, then the behav-
ioral (functional) requirements are specified. In the first case, several
different approaches can be used, i.e. an object-oriented analysis (OOA), a
function-oriented analysis (DFD), or a state-oriented analysis. The conclu-

S91109Y3 119y} pue sme) a)1gedljddy ‘ N

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ IN

sion is that all three methods lead to useful but different results. In fact, dif-
ferent aspects are emphasized by each approach. The second and third
examples show that the contributions by the above techniques are small
compared to the domain-specific questions that have to be investigated first.
In the third example, it is unlikely that a solution can be found with today’s
technologies (a so-called ‘hard problem’). The documentation, i.e. specifica-
tion, step is only performed for the first two examples. The following
techniques are applied: finite state machines, state charts (in the form pro-
posed by Harel), a requirements engineering validation system (REVS), Petri
nets, decision tables, a program design language (PDL), and two specifica-
tion description languages (SDL, PAISLey). Davis finds that, like a skilled
carpenter who builds a piece of furniture, one should use different tools and
techniques for different types of job. Of course, the tools should co-operate
in the sense that data entered once should not have to be re-entered again,
and results produced by one tool should be understood by the other.

Davis’ exercise showed that most of the available methods are more
useful for the solution description than for the problem definition. The
problem definition depends heavily on domain-specific knowledge.
Although the first example appears technically trivial, a clear statement is
needed to specify which of the above-mentioned functions are really to be
provided. In the second example, the message is that computer scientists
should not believe that they can assume responsibility for the correctness of
a solution without relying on expertise from such fields as aeronautics,
meteorology, and medicine. As the third example shows, computers may
only play a small part in the solution, if at all. By taking an example that is
clearly science fiction, Davis wants to warn his readers that science fiction
aspects may be hidden in any requirement, even if it looks quite innocent.
He concludes that the best this project could produce is a two-year feasibil-
ity study. We believe that saying ‘No’ even prior to such a feasibility study,
would be the ethically correct attitude.

Theory A model of reality is an aid to explain our understanding. Models
are descriptions of a system only. They are indirect views or abstractions,
leaving out those things that are not considered important for the time
being. Abstractions are useful for certain types of human understanding
only. It is the conceptual knowledge that is enhanced. Not all users need
this, want this or would even tolerate this. It may be asking too much of
them. From the point of view of the system to be built, abstractions are a
departure from reality, which, depending on the notation used, frequently
deceive the observer. The movement of stars in a planetarium, or the orbits
of electrons in an atomic model, have only a faint resemblance to reality.
Nevertheless, such models often serve a useful purpose.

Comment A group of models not shown above may serve in performance
investigations, describing the load distribution in a network or the timing of
a transaction. They are usually dynamic models and may be executed. They
can make timing relationships visible, either in slow motion or by time

compression. A reference model may help in the communications among
experts; it gives them a new language to express themselves. As Brooks
[Broo75] has pointed out, if a model abstracts from the complexity of the
system, it is abstracting the essence. In a software system, the repetition of
identical parts is easily dealt with: they become common code or subrou-
tines. The complexity of a software system results from the abundance of
different parts. None can be ignored, however. Some may be lumped
together to form subclasses, thus allowing us to factor out some properties.
These subclasses can mentally be treated as units (called chunks later), so
that we can get a better intellectual grasp of them.

2.3.5 Booch’s first hypothesis

The most pervasive approach to modeling in recent years has been the object
model. Its advantages have been eloquently presented by Grady Booch
[Booc91]. Many variations of the object model have been introduced by
other authors, e.g. Jacobson [Jaco92], Rumbaugh [Rumb91], Shlaer/Mellor
[Shla88], and Wirfs-Brock [Wirf90]. With the following hypothesis we sum-
marize the claims as made by Booch for the requirements activities.

Object model reduces communication problems between analysts and users. (H1)

Applicability The object model was first introduced into programming lan-
guages (Simula, Smalltalk, C++). Later it was applied to design and
requirements analysis also. In the requirements and design phases it pre-
scribes the way the system is divided into components or subsystems. It also
postulates a specific form of interaction (message passing) among compo-
nents. The arguments in favor of this approach are that (1) it appeals to the
workings of the human cognition, (2) it facilitates the transition from
requirements to design and implementation, (3) it treats data and processes
simultaneously, and (4) it uses ‘sound software engineering concepts’, like
abstraction, encapsulation, modularity, hierarchy, strong typing, and con-
currency. While the values of the object model are hardly disputed for
design and implementation, the situation is not as clear for the requirements
definition activity. There is also some discussion whether concepts like
inheritance and polymorphism should be used in the requirements phase.
They may be looked at as techniques to aid the implementation.

Evidence In 1994, Capers Jones [Jone94] complained that there is a severe
lack of quantitative data to support the claims of the object-oriented para-
digm. There are more data now, but they are far from conclusive. A survey
of the state of the art is given by Briand et al. [Bria99]. Of the empirical
studies looking at object-oriented requirements definition, the study by
Moynihan [Moyn96] stands out. It compares object-oriented analysis
(Rumbaugh’s method) with functional decomposition (following J. Martin).

S91109Y3 119y} pue sme) a)1gedljddy ‘ N

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ N

The participants were 20 Irish business managers. The author asked them to
comment on the two requirement definitions for the same hypothetical proj-
ect (an IT solution for a health farm). His conclusion was that the functional
model was easier to understand, more useful in detecting omissions and
inconsistencies, provoked more comments and questions, gave a more holistic
understanding of the business, and better helped to evaluate likely implemen-
tation benefits and priorities. This experiment was intended to emphasize the
users’ rather than the developers’ perspective and did not look at potential
cost savings in the subsequent phases, nor did it address the reuse aspect.
Another weakness is the fact that the object-oriented analysis model was
given in the form of a static object model only. Had a use-case model (as
defined by Jacobson) been added, the result may have been different.

2.4 More on requirements definition

In this section, we will focus on several activities in more detail. We con-
sider them as essential aspects of the requirements definition process. The
discussion on prototyping and modeling will not be extended.

2.4.1 Vision statement

It is considered good practice to start the requirements process with a vision
statement. This is a half or one-page document outlining the overall goals that
should be achieved. It should be agreed to by everybody that may be affected
by the new system, particularly by the highest level of management. For a small
system, this may be all that is needed. The subsequent work has the purpose of
filling in the necessary details. If in the process it turns out that the vision
cannot be achieved, the vision statement should be revised and re-discussed.

2.4.2 Requirements elicitation and prioritization

Requirements have to be gathered from any source that can contribute. This
process is often called requirements elicitation or requirements discovery.
Contributions will come mainly from current or potential customers and
users. If the funding does not come directly from customers, there may be
other groups who have both interest and influence. In addition, third party
experts, legal authorities, and standards bodies may have an input.
However, the requirements of the expected users should get the highest pri-
ority. Therefore, one should understand who the users are, and what their
skills, motivations and working environments are. They may not tell those
things that are naturally part of their environment. It is important to make
all requirements explicit by listing them.

After requirements have been identified, they should be prioritized. Three
priority classes are usually enough: ‘mandatory’, ‘essential’, and ‘nice to
have’. Yourdon [Your97] who advocates a similar prioritization, calls the
three categories ‘must do’, ‘should do’, and ‘could do’. The prioritization

should be agreed to by all stakeholders. It is important to recognize that
requirements ranking high for a long-living product, may have lowest prior-
ity for a one-shot application. This is particularly obvious for several of the
non-functional requirements, e.g. efficiency, maintainability, and portability.

2.4.3 Knowledge acquisition and management

In many cases, the requirements process depends on the discovery, clarifica-
tion, and collection of problem-oriented knowledge. It is related to a specific
application domain. Without this knowledge, we are not able to determine
what functions the planned system should have, or whether it can be built at
all. If the knowledge exists, people have to be motivated to make it available.
This may be easy, if these people are the potential beneficiaries of the
planned system. The traditional ways of collecting information are:

B Interviews with individuals: time-consuming; may cover small fraction
of users only; allows two-way communication.

B Questionnaires: allow broad coverage, depending on return rate; essen-
tially one-way communication only.

B Meetings with groups: good communication modus; positive motiva-
tional effect; immediate resolution of conflicts; limited degree of detail.

®m Surveys and studies: necessary to understand detailed data and external
trends; gives objective complement for other methods.

If the users are not supposed to know who is asking questions, so-called
focus groups can be used. In this case, people may receive compensation for
the time spent with the investigators. If novel solutions are sought, brain-
storming is a popular method, where any wild idea coming to somebody’s
mind, will be recorded. As the knowledge collected has to be structured and
organized, the selection or sorting out process will occur in a subsequent
session. This is an application for database systems, sometimes referred to
as knowledge bases.

2.4.4 Feasibility study or risk analysis

For a larger system, a feasibility study should be performed before the
requirements are formally accepted. In this process, an answer to the follow-
ing question for every item on the requirements list should be obtained: ‘Can
this requirement be met with the technology and the knowledge that is cur-
rently available?’ This can be extended into a complete risk analysis. In this
case, non-technical exposures will be addressed also. This may concern such
questions as: ‘Can this be developed or built in the time frame allocated?’ Is
the budget adequate?’ and ‘Are there competitive exposures?’ To answer
these questions, a form of partial design has to be done. Prototyping may
also be considered.

uonIuljap Ssyuawalinbal uo aiop ‘ N

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ 3

2.4.5 Functional and non-functional requirements

Normally, the main emphasis is on functional requirements. In almost all
cases, these have to be complemented by non-functional ones. Non-func-
tional requirements are often tacit requirements, i.e. they are not explicitly
specified. They may address such quality criteria as portability, reliability,
efficiency, usability, testability, maintainability, and reusability. Their con-
sideration may have a greater impact on the cost of the system than some of
the functional requirements. They typically conflict with each other, and
with the functional requirements. For this reason, the trade-off possibilities
should be specified. As a case in point, the efficiency of a software solution
usually conflicts with most of the other criteria. If efficiency is not specified,
it will be neglected. No doubt the importance of this criterion has declined
considerably during the last few decades because an easy remedy was often
provided by spending more on hardware resources.

2.4.6 Safety and security requirements

A specific form of non-functional requirements concern the safety and the secu-
rity of a system. Safety risks may cause harm to individual users, to groups, or
to the public at large. Safety is of concern, particularly if computers control
physical devices or plants, such as car brakes, planes, or nuclear power stations.
Any malfunction of the computer may cause harm not through itself, but
through the devices it controls. Security becomes an issue whenever valuable
data are stored. These have to be protected against accidental misuse, as well as
against attacks by malicious contenders. A well-known threat exists for net-
worked systems because of viruses, Trojan horses, and worms. A special form
are the so-called denial-of-service attacks. A network site may be flooded by
millions of messages so that it may become incapable of performing its regular
business. Almost every month new versions of these threats appear.

Some of the attacks occurring may be politically motivated. For some
organizations it was a bitter lesson to learn that the large majority of their
security violations originate from inside, i.e. from their own employees.
Unfortunately, this area has become a playground, not only for criminals, but
also for students and teenagers who like to misuse their intellectual energy to
cause problems for business and society. The nature and priority of each of
these threats has to be spelled out. Each one requires unique forms of protec-
tion and means of recovery after an attack. The recovery after a breakdown
due to technical failure of the system is only a special case of this. Safety and
security is an important example, where all requirements have to be recognized
early, and the trade-off possibilities identified, before the design can start.

2.4.7 Detailed documentation of requirements

Well-managed projects often adhere to the principle that requirements only
exist if they are documented. We refer to this document as the requirements
specification. Only if the requirements are specified do we have a basis to

compare the design against. The documentation can be at different levels of
detail, depending on the intended readers. Frequently, large companies or
government agencies have developed standard forms for requirements speci-
fications, one example of which is the IEEE Guide to Software
Requirements Specifications [IEEE84]. The borderline between require-
ments and design often is blurred. In such cases, it may be helpful to say
that design information is given as an illustration only. Functional require-
ments can be expressed in unstructured text or in some formal notation.
For the programming interface it may be a formal syntax notation; for the
user interface it may be manual pages or screen images. For data and system
structures, graphical diagrams are the favorite notation. Non-functional
requirements are always expressed in text format.

Any notation used should keep the reading audience in mind. If the key
reviewers and readers of the document have no computing science back-
ground, plain text and simple diagrams are the preferred medium. To
describe the system for developers, it is customary to include a requirements
model as discussed earlier. For modeling purposes, the UML notation
[Rati97] seems to be favored above other graphical notations. This notation
is currently supported by most CASE tools. The UML notation builds on the
Object Modeling Technique (OMT) of Rumbaugh et al. [Rumb91], the
Entity Relationship Diagrams (ERDs) as advocated by Peter Chen [Chen76],
the state charts of Dave Harel [Hare88], and the Use Case notation of
Jacobson [Jac092]. The only older notation still in use is the Data Flow
Diagrams (DFDs) of Tom DeMarco [DeMa78]. However, these individual
notations will not be discussed here. Sometimes it is advocated that the
requirements specification should make use of so-called formal notations.
These will be discussed in Chapter 3.

2.4.8 Buy-in, validation and approval of requirements

The success of any development project depends primarily on the accept-
ance of the final product by the intended users. Unless we are talking about
products that are acquired commercially off-the-shelf (so-called COTS sys-
tems) it is crucial that users are convinced that they had an influence on its
generation. The best way to achieve this is through user participation. This
joint effort always starts with the requirements definition. Users have to
‘buy-in’ on the requirements, i.e. consider them as theirs. If input to the
requirements comes from multiple sources, conflicts have to be resolved.
The resulting compromise should be validated again by asking for a
detailed review and a formal approval by the users. In the case of COTS
systems, people have to be found who represent the potential users.
However, even if the highest level of user participation is achieved, this does
not relieve the developer of any one of his or her responsibilities. For exam-
ple, it remains his or her obligation to make sure that the originator knows
what his or her requirement means to the project.

uonIuljap syuawalinbal uo alop ‘ 5

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ S

2.4.9 Requirements tracing and change control

For a large system, it may be necessary to make sure that no documented
requirement is forgotten. In one particular case, an implementer felt obliged
to demonstrate for every line of source code which requirement caused it to
be there. This is hopefully an exception. Such a tracing of requirements to
their origin may be very helpful for a thorough test coverage, but is difficult
and laborious.

Requirements may change, during the life of a project, either prior to
shipment or after. It is therefore necessary to establish a change control pro-
cedure for requirements. This procedure has to ensure that all parties
concerned learn about the change when it is proposed, agree to its adop-
tion, and follow up on all activities triggered by this change. This should
apply equally when adding or removing code, performing regression tests,
or making documentation changes.

2.5 Examples and study material

2.5.1 Text formatting requirements

To illustrate the types of errors occurring in software systems, we will use a
small example program, originally published by Peter Naur [Naur69a].
Naur used it as an illustration of a formal and rigorous development
process. It is a real toy example but large enough to make some important
points. Because of the errors contained in it, this example has subsequently
been used by several authors, particularly by Goodenough [Good75] and
Myers [Myer78]. Its requirements specification consists of the following;:

Given an input text consisting of words separated by blanks or carriage
return (CR) characters. Transform the text into a line-by-line format
where a line should start only where a blank or CR character was in the
input text. Each output line should be as full as possible, and no line
should have more than a given number (n) of characters.

Peter Naur [Naur69a]

A careful inspection of this text reveals the following potential problems for a
person trying to design a solution. They can be classified as requirement errors:

r1: No condition specified for the normal end of the program.

r2: No information on the role of the CR character in the output file.

r3: No information on how to handle errors, e.g. words longer than 7 characters.
r4: Unspecified assumption on the sequence and non-changeability of words.
r5: No information on storage formats or medium of input and output.

r6: Open whether multiple consecutive blanks are allowed in the output.

In later chapters, the design and the implementation of this program will be
given. For some of the above problems, arbitrary assumptions will be made
by the developer in later phases.

2.5.2 Digital library requirements

Systems supporting digital libraries are well suited to illustrate data-inten-
sive applications. The following example from [Endr00] is used to show
how different model types can complement each other. The example uses a
UML-like notation [Rati97]. Three models are shown. Together with the
explanatory text, they convey a rough picture of what the library system is
supposed to offer.

User Publisher

Qu

Fig. 2-7 Use case model

Use case model The use case model given in Fig. 2-7 describes what services
are to be provided by the library system and with whom any external inter-
action takes place. There are two types of external actors: a user and a
publisher. They may be interacting with the library through other systems
rather than in person. It is assumed that the library provides six types of
services, five of which interface with the users, and three with the publishers.
Users are either the customers, or are representatives of a customer. Publisher
is the generic name used for all suppliers of documents to the library.

Class model The class model shown in Fig. 2-8 is a static model showing the
highest level of the object classes the library is dealing with. The library data
and services is shown as a superclass with eight subclasses. The relationship
is that of a specialization/generalization, and is expressed by an arrow point-

Jeualew Apnis pue sajdwex] ‘ e

Sunapouw pue ‘uidAjoloid ‘uoiiulyap syuswalinbay ‘ N

Digital
library
data and services

K
| | | |

User Publisher Order Shipment

Catalog Document Service Billing

Fig. 2-8 Class model

ing from the subclass to the superclass. The classes are refined at lower
levels. Each class has attributes and methods: the attributes identify the types
of data elements belonging to this class; the methods are operations that can
be performed. Attributes and methods are not shown in the diagram. The
operations relate to the services shown in the use case diagram (Fig 2-7).
Users are enrolled before they can query the catalog, which contains all doc-
uments that can be delivered. An order may be placed by any enrolled user,
and may follow a query session or not. Queries and orders may address
either documents or services. Documents comprise books, journals, audio
and video recordings, and multimedia offerings, and may be held either on
physical media or as electronic files. New documents or supplements of a
subscription are acquired from a publisher. Shipments include mailings of
physical media and making electronic media accessible. Some documents
may be billed for, others may be free of charge. The same applies to the
value-added services that are offered, for example, profiling, alerting, and
professional search services.

notify that
item not offered
Recei_\y
confirm
order Y send
invoice
Accepted —> Billed
prepare receive
shipment Y payment Y

Y

Fig. 2-9 State transition model

State transition model The state transition model given in Fig. 2-9 is an
example of a dynamic model and shows the states that an order placed by a
user can assume. The ellipses show the states in question, the arrows iden-
tify the operations that can change the state. An order received can be for a
document or service that is not offered. In the dynamic model, documents
and services are collectively referred to as items. Loaning of physical docu-
ments is not shown; they may be temporarily unavailable and may be
reserved by the user. In the case of electronic documents, payments may
occur before, after, or during delivery (pay-per-view). Settlements may occur
in many different ways, including pre-payment, credit card or electronic
cash. Cancellation of orders prior to or after delivery is not shown. This
model will be used as the basis for a design in the next chapter.

Exercises

2-1 In which development situations is it important that requirements are
defined? When is it unnecessary, or even detrimental?

2-2 How and from whom should requirements be elicited? How are they to be
documented?

2-3 Why are requirement errors critical for the final product? What are the most
frequent types of requirement errors?

2-4 What are non-functional requirements? How do they relate to functional
requirements?

2-5 What is a prototype, and when is it useful? How does a prototype differ
from a model?

2-6 Which modeling approach can help for which aspect of the requirements?

2-7 Why should requirements be validated and how can it be done? When
should it be done?

2-8 Rewrite the requirements specification for the text formatting example so
that all six errors are taken care of!

Jeualew Apnis pue sajdwex] ‘ Y

System design and
specification

Every module is characterized by its knowledge of a design decision
which it bides from all others. Its interface is chosen to reveal as little as

possible about its inner workings.
D.L. Parnas [Parn72]

This chapter is about design. Design is technically the most demanding
activity within the development cycle. We shall explain what is a good
design and what is a good design process. We shall point out the difference
between design and design documentation, and the relationship between
architecture and structure.

3.1 Definitions and importance

Design is an activity that generates a proposed technical solution that
demonstrably meets the requirements. In that process, we simulate (men-
tally or otherwise) what we want to make or do, before making or doing it.
We iterate until we are confident that the design is adequate. The output of
a design activity is a technical plan or blueprint of a system, not the system
itself. It tells other technical people how to construct or build the system.
The design effort typically has to give answers to the following questions:

B Which functions called for in the requirements document will be imple-
mented, in view of the time, cost, and performance constraints given?

® How will these functions be invoked by the users, initially, and over time?

® How will the system be structured to allow the detailed design work
and the implementation to proceed in parallel, and to ease extension
and maintenance?

® How should each function be implemented, in terms of algorithms used,
so that the performance, usability, security, and other goals are met?

The first two questions address external properties of the design, the last
two are concerned with internal properties. Usually for each function more

than one solution is possible. Therefore, the one chosen has to be justified.
In a similar way to the requirements definition, a full design is usually only
important for large and complex systems, and for systems that are being
implemented by other people than the designers.

A specification is a document describing the properties of a system pre-
cisely. The term is used ambiguously in the literature to denote both the
output of the requirements definition process and the results of the design
process. Here it is used in the latter sense. A specification usually has two
parts: the description of the external interface, and the description of the
internal structure of the intended product. The two parts are frequently
referred to as ‘external specification’ and ‘internal specification’, respec-
tively. Both may be augmented by a design rationale, i.e. the justification of
the design chosen. This information is very helpful for people who have to
modify the design later.

3.2 General observations

Computing systems or software systems are artifacts. Artifacts are distin-
guished from natural phenomena in that they are usually based on a design.
As a planned, purposeful endeavor, the design of an artifact is limited by the
ability and foresight of the people making it and the circumstances of its
creation. As Simon [Simo069] put it: ‘Natural phenomena have an air of
necessity; artificial phenomena have an air of contingency’. Design is at the
core of most professions, whether medicine, law, business, architecture, or
engineering. The members of these professions are not just called on to
diagnose a problem; they usually have to devise a solution as well.

Design is the most challenging and most creative activity in software and
systems engineering. Here it is where the knowledge of user requirements
has to be translated into knowledge about computing systems. Good
designs express a good match; poor designs a poor match. The knowledge
about design has two aspects: properties and process. The design properties
tell us what are good designs and for what reason. It is useful to distinguish
between external and internal properties. The design process is concerned
with how to perform a design task. Every student of computing science has
to learn about design properties and processes. A document called the
design specification must be produced as a result of the design process.

Except in student exercises, or in the case of reverse engineering, every
design creates something unique — something that did not exist before.
Reverse engineering is important if a product has to be manufactured
whose design documents are lost or not accessible. Particular skills in this
respect had developed in Eastern Europe before the fall of the Berlin wall.
Either the external appearance or the internal structure may be new in a
design, or both. If the externals remain the same, the new design is called
re-engineering; it can occur for technical or business reasons. Some software
systems are re-implemented in order to avoid legal problems, as was the
case of the Unix operating system.

SUOI1BAISO |RIBUID) ‘ W

uoledydads pue ugisap waisAs ‘ @

Design is easiest in the case of special purpose systems, i.e. systems where
the functions and the user community can be clearly defined. A design is
difficult if the requirements are conflicting or if the target system is a multi-
purpose system to be used by a variety of different user groups. In that case
the search for an optimum may be too cumbersome, but it may be possible
to find a good compromise. In other words, designs have to be good
enough for the purpose at hand. What goes beyond that is usually harmful;
sometimes called ‘gold plating’.

The task a designer is confronted with can usually be solved in many dif-
ferent ways. In a design contest for a new building, it is unlikely that two
architects will come up with the same solution. The same applies in infor-
mation and software systems design. It is this observation that is reflected in
the remark quoted by Curtis [Curt88] about software design: In a design
team of fifteen, two is a majority’, i.e. if in a creative exercise two persons
are of the same opinion, it is easy for them to dominate the rest. As for new
buildings, it is not a good idea to have a software system designed by 15
architects. It is sometimes advisable, however, to have more than one solu-
tion put forward for evaluation.

The design process typically goes through a sequence of steps. Most
important is the outside-in direction. The outside is the users view of the
system; the inside is the manufacturer’s or developer’s (or modifier’s) view.
The detailed design of a computing system covers several dimensions, which
are usually addressed in the following sequence: (1) network and hardware
structure; (2) human interface; (3) data storage and retrieval aspects, and
(4) processing programs. Since the design of programs ties together the
other dimensions, it should occur at the end. Some programs that have nei-
ther a human interface nor rely on organized collections of data can be
designed in isolation. The terms high-level and low-level are being used
recursively for each of the four dimensions given above.

Design activities do not only occur prior to the first construction of a
system, they also occur during evolution and maintenance. The main differ-
ence is that we do not start out from a clean sheet of paper. Many aspects
have been fixed before. We have to understand which decisions that have
been made have to be strictly adhered to, and which ones may be changed.
This may make certain things easier, but it may make other things much
more difficult.

The high-level design is commonly referred to as ‘architecture’. The
architecture is the external view, but also the long lasting structure. If con-
ceived correctly, it survives generations of technology, i.e. implementations.
The classical example is a watch. There are two external architectures: the
analog version with number circle and hands; and the digital version with
an illuminated numerical display. Watches with the same external specifica-
tions may be built either of mechanical or electronic parts. On the other
hand, two watches from the same manufacturer may look quite different
from outside but may largely use common parts inside.

There is no single best design for all systems, in the same way as there is
no single best design for a house, room, or dress. Nevertheless, it is impor-

tant to make use of standard architectures and common design styles as
much as possible. A standard architecture allows sharing of components
with other systems, or their reuse. This makes implementations less costly
and more stable. Architectural considerations comprise both hardware and
software; to ignore either one of them is a mistake. Even pure software
products have to make sure that they do not contain dependencies on par-
ticular hardware features. They usually make assumptions regarding a
particular hardware architecture or hardware configuration.

As outlined in the previous paragraph, the designer maps the application
domain into the realm of computer solutions. For this, he or she applies
knowledge that computer scientists have gained before. Such knowledge is
reflected in the categorizations made. The last 50 years have produced
many ways of categorizing software systems, although some are of historic
interest only. We shall point only to two recent categorizations. Following
Jones [Jone0O0], Fig. 3-1 lists 22 different application types.

Non-procedural (spreadsheet, query, generators, etc.)
Web applet

Batch application

Interactive application

Batch database application

Interactive database application

Pen-based application

Client—server application (two tier)

0V 0N EWwN e

Client—server application (three tier)

._.
e

Enterprise resource planning (ERP) application

=y
=y

. Scientific or mathematical application

=y
N

. Systems or hardware control application

=y
w

. Communications or telecommunication application

._.
&

Process control application

=y
v

Embedded or real-time application

-
[))

. Trusted system with stringent security

=y
~N

. Graphics, animation, or image-processing application

._.
®

Robotic or manufacturing control application

-
0

Expert system with substantial knowledge acquisition

N
o

. Atrtificial intelligence application

NN
N =

Neural net application
Hybrid program (multiple types)

Fig. 3-1 Types of software (according to Jones [Jone 00])

[

In a well-known treatise on the matter, Shaw and Garlan [Shaw96] clas-
sify systems according to their architectural structure, as follows: batch,
interactive, real-time (sensor-based), embedded, distributed data or
processes, data-centric, knowledge-based, peer-to-peer, and client-server.
This can be regarded as a coarse-grained version of the classification made

SUOI1BAISO |RIBUID) ‘ w

uoledydads pue ugisap waisAs ‘ P

by Jones, where the term ‘data-centric’ stands for ‘data base’; ‘real-time’ for
‘process control’; and ‘knowledge-based’ for ‘expert system’.

A concern for design decisions at this level is much more appropriate than
worrying about how to draw boxes and arrows. However, since designs have
to be understandable by humans, a common language is useful. Above all,
designs are for humans, not for machines. As in the case of requirements def-
initions, developers often have to insist that it is better to spend more time
on design rather than to start coding right away. As an example of this prob-
lem, Bill Gates of Microsoft has been quoted by Larry Constantine [Cons01]
in saying that he does not believe in diagrams and does not want his pro-
grammers doing design. In the same context, Constantine suggested that
certain people should use the title ‘rapid code construction technician’ on
their business card, rather than software or systems engineer.

3.3 Applicable laws and their theories

Design is the area where practitioners really expect guidance from empirical
studies. The laws cited here indeed reflect some deep and useful insights.
They represent, in our opinion, the essence of what every software or sys-
tems designer needs to know and can learn. Some laws deal with the
external properties of a design, and others with the internal structure and
the process. Finally, a number of important claims are given which, at pres-
ent, we consider to be hypotheses rather than laws.

3.3.1 Curtis’ law

Bill Curtis et al. [Curt88, Curt90] studied the design process in several
organizations, most extensively in the defense industry. Of the many results,
the following one is picked as it best describes the essence of design. We
have put this law first, because we want to emphasize that a design has,
above all, to solve a problem in an application domain.

Good designs require deep application domain knowledge. (L5)

Applicability Curtis’ law applies to all types of system design. It applies to
pure software projects as well as to hardware or combined hardware-soft-
ware projects. Domain knowledge is that knowledge that is needed to solve
problems in a certain application area. Application areas can be systems pro-
gramming, or business systems, but also airplane construction, heat
dissipation processes, chemical reactions, or human diseases. In systems pro-
gramming, the domain knowledge may be compilers, operating systems,
database management systems, networking, or others. Knowing how to pro-
gram is not the same as being able to design a product. As indicated in Fig.
3-2, a designer maps application knowledge onto computational knowledge.

Structures
Architectures
Algorithms
Resources
Data

Functions
User actions
Constraints
Exceptions
Devices

>

mapping

Application knowledge Computational knowledge

Fig. 3-2 Design expertise

The key problem with design is that it requires people to have knowledge
in both of the above domains, otherwise knowledge in one of the two fields
has to be acquired as part of the design process. We will ignore the case
where a designer lacks knowledge in both fields (which occasionally may
occur with students or novices). In the case where professional software or
systems engineers are responsible for a design, it is normally the application
knowledge that has to be acquired. It can also be the other way around, i.e.
the domain expert acquires software or systems knowledge. Very often,
software designers move from one application area to the next, in which
case they have to learn new application knowledge with every project.
There may also be projects where knowledge from one application domain
may not suffice, i.e. interdisciplinary knowledge may be needed. Knowledge
acquisition can occur in several ways: systematic training, interpersonal
exchange, apprenticeship (mentor programs), or job rotation (learning
while doing, or non-systematic training). Creating a design extends a
person’s knowledge, in the same way as doing an exercise in school does. It
is usually more advantageous to spend time on gaining a better understand-
ing of the problem (exploring the problem space) than to rush to a solution.

Evidence In his 1986 field study, Curtis [Curt88] interviewed developers and
managers in 17 projects. The size of the products developed varied between
25 KLOC and one MLOC. The application domains were avionics, teleph-
ony, transaction processing, operating systems, and compilers. He looked at
the processes involved at different levels of an organization. For this he used
a layered model of an organization, starting with the individual, which is
surrounded by embracing layers representing the team, the project, the com-
pany, and the business sector. His main findings were as follows:

m Application domain knowledge was thinly spread.

® In most cases, one or two people with the most knowledge took prime
responsibility for the design.

m The same people communicated their vision and co-ordinated among all
project members.

®m Design meetings had the task of converting the design into a shared
vision among all team members.

S91109Y3 119y} pue sme) a)1gedljddy ‘ 3

uoledydads pue ugisap waisAs ‘ PN

These observations certainly apply to many design situations. In another
study [Curt90], Curtis observed that agreement on a design was reached
fastest if the members of the design team had a similar background. In the
case of diverse backgrounds, more time was needed. The design was chal-
lenged more thoroughly, and probably became better.

Theory Design can be understood as a special form of knowledge applica-
tion. Not all knowledge is explicit, i.e. expressible in words. This part is
also referred to as tacit knowledge. In a design situation, tacit knowledge
also comes to bear if the designer possesses it. Tacit knowledge is acquired
more often through experience than through training. This is particularly
true for knowledge that crosses domains or maps one domain into another.
Very often the capability to integrate knowledge from different areas is
needed. Having the necessary knowledge is often seen as a primary problem
for the design of large systems. As one system engineer in the above-
mentioned study put it: “Writing code isn’t the problem, understanding the
problem is the problem’. Having access to some knowledge, be it in books
or in a database, does not mean that it is usable. It has to be active, i.e. use-
able in peoples’ minds. Sufficient knowledge is needed to be able to
correctly interpret the requirements definition, while good designers should
be sensitive to unstated requirements. Since knowledge is spread unevenly,
many system designs rely on rare experts, so-called gurus. They form the
intellectual core of a project. In addition to knowledge skills, creativity and
communication skills are required. Creativity is to do with the ability to
generate associations among different pieces of knowledge. It also requires
courage to try to combine things that have not been brought into connec-
tion before. Communication skills are called for if knowledge has to be
acquired on the spot, be it from users or other experts.

Comment The designers are the communication focal points of a project; in
that they have to educate the entire team. The team’s learning phase, and
possibly that of the designers as well, is usually buried within the design
phase. It is an illusion that a design can be generated automatically from a
requirements statement, except in a few simple cases.

3.3.2 Simon’s law

All the following laws deal with the structure of the solution or the process
used to find a solution. The first one is from the computer scientist and psy-
chologist Herb Simon [Simo062], who has been referred to before.

Hierarchical structures reduce complexity. (L6)

Applicability The definition of complexity used here is ‘made up of a large
number of parts that interact in a non-simple way’. By hierarchical we mean

that a system is partitioned in such a way that it consists of subsystems, each
of which is structured hierarchically until elementary components are
reached. When starting from the top, the subsystems comprising the system
form layers or levels, with the higher layers on top of lower layers. By struc-
turing a complex system as a hierarchy of subsystems, complexity is reduced.
Simon’s law is applicable to any complex system, whether natural or artifi-
cial. It is one of the few laws that are universally useful for structuring large
systems. Very often we tend to believe that non-hierarchical systems are
more flexible and scalable. An example is the Internet. Actually non-hierar-
chical systems usually require significantly greater efforts for their designs.

Evidence In this essay, Simon draws comparisons between natural and artificial
systems on how they deal with complexity. His observation from nature is that
hierarchically structured systems evolve more quickly than non-hierarchical
systems of similar size. Simon’s definition of hierarchy is not concerned about
the nature of the relationship between subsystems (the term hierarchical is used
recursively). What is considered an elementary component depends on the
context; examples from nature are galaxies and stars, or molecules and atoms.
In social life, there are states, communities, and families. More in social than in
natural systems, a key determinant of a hierarchy is the frequency of interac-
tions between the subsystems. Evolution obviously has a preference for
hierarchical systems, because they are more stable if interrupted.

That this is also true for artificial systems is illustrated by the difference
in the productivity of two watchmakers. One builds his product out of
subsystems, the other has to start from scratch after each interruption.
The one using subassemblies has a better chance of finishing the watch.
Simon finally concludes that many large systems are nearly decomposable
and contain high amounts of redundancy, meaning that identical substruc-
tures may occur repeatedly.

Fig. 3-3 Nearly decomposable structure

S91109Y3 119y} pue sme) a)1gedljddy ‘ PN

uoledydads pue ugisap waisAs ‘ 3

This is illustrated in Fig. 3-3. In this example, subsystems B, and B, are
identical; so are subsystems C, and C,. They communicate through sub-
system A. Therefore, an alternate representation can be chosen to represent
these properties graphically (Fig. 3-4). This figure happens to resemble what
is known among computing scientists as a Bachman diagram. This is no
coincidence, since the repetition of comparable elements occurs more often
with data than with programs. The technique of making slightly different
programs equal is called ‘parameterizing’, i.e. differences are factored out
and passed to the routine as parameters.

Fig. 3-4 Alternate representation

Theory Simon concedes that he does not know ‘whether we understand the
world because it is hierarchic or it appears hierarchic because those aspects
of it which are not, elude our understanding and observation’. It is a
chicken-and-egg problem for him. The complexity of a system is usually the
result of its adaptation to the environment: it is the living environment that
exposes a great variety of forms, and changes over time. As a result, more
and more special cases have to be dealt with. The problem that is created by
complexity is the description of the resulting structure. This is particularly
true if different types of interactions exist.

n1=4,c1=6
n,=3,c,=6
n,=4,c,=10

Totalsn=11,c=22

Fig. 3-5 Connections in a hierarchical structure

As shown in Fig. 3-5, the number of interactions is reduced significantly
in a hierarchical structure as compared to a non-hierarchical structure. In
the hierarchical structure, 11 nodes are connected by 22 connections. This
is considerably less than the number of connections that would be needed
to connect the 11 nodes in the non-hierarchical case. In that case, ¢ = n x
(n=1)/2 = 11 x 10/2 = 55 connections would be required.

Comment In his paper at the 1974 IFIP congress, Parnas [Parn74] gives a pre-
cise definition of hierarchical structure, as follows: ‘There exists a relation or
predicate R(x, y) between parts of the structure that define levels as follows:

m Level 0 is a set of parts such that there does not exist an x for any y such
that R(x, y), and

m Level i is a set of parts x; = (x,, x,, X3, ..., x,) such that (a) there exists a
y on level i-1 such that R(x,, y) holds, and (b) if R(x, z) then z is on level
i1 or lower.

Parnas also made the point that the term hierarchical structure is really
undefined unless we specify precisely what relationship exists between the
levels of the hierarchy. He offers the following examples: x contains y, x
uses y, x has access to y, x gives work to y, x gives resources to y, and x
uses resources of y. This clarification has certainly had the effect that hierar-
chical structures are being used in a more rational way.

3.3.3 Constantine’s law

This well-known law is attributed to Larry Constantine. In the original
publication by Stevens, Myers, and Constantine [Stev74], the authors state
that the major ideas are the result of nearly ten years of research by
Constantine. A comprehensive description can be found in a book by Myers
[Myer75]. We state the law in the following way:

A structure is stable if cohesion is strong and coupling low. L7)

Applicability This law introduces two terms that have become base terms
when talking about system structuring: cobesion (or binding) is the short
term for intra-module communication; and coupling stands for inter-
module interaction. Both terms can be related to Fig. 3-3. The subsystems
B, and C, have a high degree of internal communication, meaning that they
are cohesive units. Their communication with other parts of the system is
less intensive, and their coupling is low compared to their cohesion. By
applying this law, one other aspect of complexity is reduced. In this case,
complexity is understood as the number and type of interconnections that
exist between the parts of a structure. This allows the division of a system
into pieces that can be implemented, fixed, and changed ‘with minimal

S91109Y3 119y} pue sme) a)1gedljddy ‘ 5

uoledydads pue ugisap waisAs ‘ R

consideration of the effect on other pieces of the system’. The degree of cou-
pling depends also on how complicated the connections are, whether they
refer to the module itself or to something in it, and what is being sent or
received over the connections. The fewer connections there are, and the sim-
pler they are, the easier they can be understood. Often a distinction is made
between export and import coupling. Cohesiveness may also have different
characteristics, i.e. coincidental, logical, temporal, communicational,
sequential, and functional. Functional cohesion is the highest and most nat-
ural, and should be striven for. The term ‘stable’ means that such a
structure is less vulnerable to problems arising from normal incidents of
programming life, i.e. to modifications due to design changes or mainte-
nance. In other words, it is less error-prone. The application of the law lead
to a design method that became known as ‘composite’ or ‘structured’
design. It is also one of the basic principles of object-oriented design.

Evidence The paper quoted above does not contain any empirical data. On the
contrary, it contains the following disclaimer: “This method has not been sub-
mitted to any formal IBM test. Potential users should evaluate its usefulness in
their own environment prior to implementation’. Nevertheless, the law has
been widely accepted since it relates to the experience of most practitioners.

Recently, several empirical studies have been conducted that were rele-
vant to this law. Notably, Basili [Basi96a, Basi98a] Briand [Bria96, Bria98]
and their colleagues have expanded and tested Constantine’s law through
controlled experiments conducted both with students and with profes-
sional developers. The studies were actually done in order to evaluate
various proposals for code metrics. Metrics are used to describe different
properties of a program or of a design. The most popular ones deal with
product size (e.g. LOC) or product complexity. Metrics relevant to cou-
pling and cohesion have been proposed by Chidamber and Kemerer
[Chid94]. They are:

m lack of cohesion in methods (LCOM)
m coupling between object classes (CBO).

With these two metrics, cohesion and coupling have been redefined (‘opera-
tionalized’) so that they can be measured easily. LCOM counts the number
of disjointed sets produced, by intersecting the sets of attributes used by all
methods. CBO counts the number of pairs of classes that have methods or
attributes in common.

In [Basi96b], the source code of programs in C++ (180 classes in eight
systems) was analyzed. Several coupling and cohesion measures were put
into correlation with the number of errors found during an internal test per-
formed by independent testers. The hypotheses used, and their results, are
summarized in Fig. 3-6. In the abbreviated text, the line A — B for each
hypothesis should be read as follows: the more attribute A is present, the
more attribute B can be expected.

Hypothesis tested Correlation
Strong cohesion — few errors Strong
High import coupling — more errors Strong
High export coupling — more errors Weak

Fig. 3-6 Evaluation of cohesion and coupling

Only the criteria expressing cohesion and coupling are considered here.
The results on coupling even differentiate between import and export cou-
pling. The investigation addressed many other metrics as well. However,
errors eliminated through design or code inspections were not counted. Their
number and severity was probably small compared to those errors found
during testing.

Depending on the type of data evaluated, different correlation methods
(Spearman, Pearson, multi-variance, or logistic) can be applied. In Fig. 3-6,
the actual numerical values of the correlation coefficients are not given. We
believe that the nature of the result is better expressed in words, and will do
so for most results of empirical studies presented in this book. In the case of
correlations, the following phrases are used for the values in parenthesis:
‘very strong’ (>0.9), ‘strong’ (0.7 to 0.9), ‘moderate’ (0.5 to <0.7), ‘weak’
(0.3 to <0.5), and °“little or no correlation’ (<0.3).

Theory The idea of low coupling in Constantine’s law is already present in
the concept of nearly decomposable systems, as described by Simon.
Localizing design ideas or functions in one place makes sure that they can
be understood quickly and completely. Distributing them over several pages
of program text is the same as burying them. If one has to look in a single
place only, errors are avoided and changes are less error-prone.

3.3.4 Parnas’ law

David Parnas, who has been mentioned before, has contributed many useful
insights to our field. We will cite here what is known as the ‘information
hiding’ or encapsulation principle [Parn72]:

Only what is hidden can be changed without risk. (L8)

Applicability This well-known law gives another important hint how sys-
tems can be structured, and it is a universal rule for modularization. It
mainly talks about the implications for the developer. The Constantine and
the Parnas laws are valid for any programming language, and are criteria of
good design. The information hiding principle led to the development of the
concept of abstract data types, and later became the basis of object-oriented
design. Parnas’ law can have a major effect on what documentation is

S91109Y3 119y} pue sme) a)1gedljddy ‘ &

uoledydads pue ugisap waisAs ‘ X

needed or exchanged within a project. In the case of OS/360, the prevailing
idea was that all design information has to be shared with all programmers.
This resulted in a tremendous workload for all participants.

Evidence Parnas did not perform a controlled experiment but closely
observed engineers at the Philips company in the course of their work.
Parnas observed that modularization was important but poorly understood.
In his paper [Parn72], he contrasted the conventional view of design with
what he calls an unconventional view. The conventional view was only con-
cerned with the size of each module and its interfaces. The size had to be
small enough so that the module could be thoroughly understood and pro-
grammed independently. The interfaces had to be clearly specified. Parnas
suggested that the modules be divide in such a way that they are largely
independent of each other. Each module should be changeable without
impact on the others. This requires that the implementation of one module
does not depend on the implementation of the others. In other words, the
implementation details should be hidden. The interface to each module
should ‘reveal as little as possible about its inner workings’. To come up
with the proper structure, one has to list all difficult design decisions or the
design decisions likely to change. Each module is then designed to hide such
a decision from the others. Efficiency (i.e. short instruction path lengths) is
no longer the only criterion for a good program construction.

Theory The reason why Parnas’ law is considered a basic rule for system
design comes from two aspects; the first is the recognition that design is a
process extending over time. This is true for a one-shot product, but more so
for one that evolves after its initial release. It is important to be able to defer
things for later treatment without running the risk that this may percolate
back and invalidate the work already done. The other aspect is that the expo-
sure of people to knowledge costs time and energy. It is therefore advisable
not to burden people with knowledge that they do not need. The traditional
approach is to give all the design information to everyone on the project, or
in other words: “If in doubt, simply flood people with information’.

Comment As Brooks has stated in the second edition of his best-selling
essay [Broo75], this is one of the major lessons that the industry has learned
since the days of OS/360. Updating the specifications for OS/360, which
were initially distributed in paper form, took about half an hour from every
working day of a thousand programmers. One of the authors (Endres) was
among them.

3.3.5 Denert’s law

We cite the following law in order to fill an important gap regarding the
structuring of systems. It also gives us an opportunity to recognize a
German colleague [Dene91] for his contributions to software engineering.

Separation of concerns leads to standard architectures. (L9)

Applicability Denert’s law is related to Parnas’ law, but looks at the system
from a higher level. It is not concerned with the relationship of individual
modules, but of subsystems. It addresses design-in-the-large. It says that no
module should be concerned with several things at the same time; i.e. appli-
cation, presentation, communication, etc. For business systems, Denert
postulated and successfully applied a three-layer architecture, the elements
of which are shown in Fig. 3-7.

Presentation Interface to
interface other system
A A A A
Y Y
Functional
kernel
A
Y Y Y
Files and
databases

Fig. 3-7 Standard architecture of a business system

Fig. 3-7 shows a hierarchical structure with the relation ‘x gives work to
y’ (in the sense of Parnas) between its layers. The lowest layer makes heaviest
use of standard software components, e.g. database management systems.
The functional kernel may make use of a transaction monitor. The presenta-
tion interface supports both interactive dialogs and batch processing. The
interfaces between the layers are generic, meaning that they apply also in the
case that a different product is chosen for a particular layer. The architecture
as shown is not dependent on specific product types or suppliers.

Evidence This architecture has found wide application throughout the
industry. As an example, many reservation or enterprise resource planning
(ERP) systems follow this architecture. The three software levels may reside
on the same processor or may be distributed. If distributed over two proces-
sors (two-tier hierarchy), the presentation interface is placed on a PC or
workstation, and the function and data layers are on a host. In many cases,
each layer resides on different processors (three-tier hierarchy). An exten-
sion of this architecture is called client—server architecture.

As shown in Fig. 3-8, not just the presentation interfaces but any pro-
gram may invoke any other program to provide specific services. The
different clients or servers may reside anywhere in a network of computers.

S91109Y3 119y} pue sme) a)1gedljddy ‘ 5

uoledydads pue ugisap waisAs ‘ >

Server A
\ v ;
4 Server B @

OO
\

ClientA

OO

Server C Client C

Fig. 3-8 Client—server architecture

Some of the interfaces are open, public standards, such as CORBA,
DCOM, and Java Remote Method Invocation (RMI).

Theory Both examples are very illustrative of the concept of a standard
architecture. The individual components are stable with respect to several
types of changes that frequently occur. The most important property is its
invariance with respect to hardware technology, be it in processors, storage
devices or communication networks. Also, changes in standard software
components, as well as potential changes in the application logic and the
presentation format are strictly localized. An architecture of this type
reduces the amount of unique code to be developed for each new applica-
tion drastically. In addition, it protects the application code from changes in
its environment. As a consequence, the system is scalable, i.e. can grow
easily if the demand increases.

3.3.6 Fitts—Shneiderman law

An important area for the design of systems is the graphical user interface.
As an example for this area, we will give one of the few empirically derived
laws. The basic law was given by Fitts [Fitt54] in 1954, and was later
extended by Shneiderman [Shne98].

Screen pointing-time is a function of distance and width. (L10)

Applicability Fitts’ law says that objects that are small and farther away are
more difficult to point at than objects that are large and close. Fitts defined
an index of difficulty as:

Index of difficulty = log,(2D/W)

with D as distance and W as width. From this follows the time to point as:
Time to point = C, + C, x Index of difficulty

where C, and C, are constants that depend on the device used. Interface
design has a level that is different to its mere physical aspects. These are the
cognitive aspects, which will be discussed under ‘Gestalt’ laws in Chapter
10. Interface design is crucial for the acceptance of a system by its users.
The more users use a system only casually the more important it is that they
cannot remember the idiosyncrasies of a system. The interface has to be
‘natural’, i.e. behave as the user expects, or the user has to be guided.

Evidence Ben Shneiderman is an author who has reported several empirical
studies in this area. His experiments regarding Fitts’ law yielded a pointing
law consisting of three elements, time to initiate an action, time for gross
movement and time for fine adjustment. Many empirical investigations have
studied the influence of color. Colors direct the attention, e.g. red reminds
us of fire. It is easy to overload an interface as far as colors are concerned.
This then negates the mentioned advantages. Cognitive science is the basis
of what Shneiderman calls the golden rules of interface design. These are
also based on empirical evidence and are as follows:

strive for consistency;

enable frequent users to use shortcuts;

offer informative feedback;

design dialogs to yield closure;

offer error prevention and simple error handling;
permit easy reversal of actions;

support internal locus of control;

reduce short-term memory load.

Some of the terms used will occur throughout the book and need further
explanation. A consistent approach tries to get along with a minimum set of
different concepts. It is less of a surprise if a new situation occurs, after sim-
ilar ones have been dealt with. Giving users feedback indicates that progress
is being made. It creates a feeling of success. A dialog yields closure if some
intended task will be completed rather than merely information collected.
To be able to reverse any action is key to giving confidence. Otherwise the
fear of damage may be overwhelming. The internal locus of control refers
to the mental image that a user has of the system. A user believes that he or
she is in control if he/she knows his/her position and destination. The last
rule refers to the short-term memory. This is part of the human information
processing capabilities and will be dealt with in Chapter 10.

Theory Our eyes are always focusing at an area of only a few degrees. To
move away from this takes processing time, both for searching with the eyes
and for positioning with the hand. To position a cursor (or any other pointer)
on a small target, takes more time than positioning it on a large target.

S91109Y3 119y} pue sme) a)1gedljddy ‘ v

uoledydads pue ugisap waisAs ‘ 3

3.3.7 Booch’s second hypothesis

We have discussed the claims of object-oriented analysis under the heading
Booch’s first hypothesis in Chapter 2. We summarize the claims made for
object-oriented design in the following hypothesis:

Object-oriented designs reduce errors and encourage reuse. (H2)

Applicability The following specific claims are made for object-oriented
design. The use cases and classes identified during the requirements process
will be directly translatable into a design. There is no break in the modeling
concept, no switch from one paradigm to another. In other design methods,
a change of paradigms occurs when going from phase to phase. This made
it difficult to keep the requirements model synchronized with the design
model. Because objects encapsulate data formats, the precise data formats
can be specified and modified at any time, even at runtime. For object-ori-
ented design, more benefits are expected for the developer than for the user.
Inheritance and polymorphism are two specific concepts that are considered
as essential. As we will see below, they are the reason why we believe that
the promises of the above hypothesis will only be partially met.

Hypothesis tested Correlation
Deep inheritance — more errors Very strong
Many descendants — more errors Strong
Method overriding — more errors Strong

Fig. 3-9 Evaluation of inheritance

Evidence To our knowledge, most empirical studies regarding object-oriented
concepts looked at programs rather than at design documents. The studies of
Basili [Basi96b] and Briand [Bria98], mentioned before, also contain an evalu-
ation of specific concepts related to object-oriented design. They address the
well-known problems associated with inheritance. As a result of correlation
analysis, Fig. 3-9 shows that three aspects of inheritance are a potential
source of problems. They should therefore be subject to special scrutiny
during design inspections. In the programs studied, the depth of inheritance
varied between 0-3, with an average of 1.32; the number of descendants (or
children) amounted to 04, with an average of 0.23. Empirical investigation
on how object-oriented design influences reusability will be discussed later.

3.3.8 Bauer-Zemanek hypothesis

For over 30 years, one specific hypothesis has occupied many people,
mainly in academia. We credit it to Friedrich Ludwig Bauer [Baue82] and to

Heinz Zemanek [Zema68]. The question is how mathematical approaches can
be used in the design of computing systems, and for software in particular.

Formal methods significantly reduce design errors, or eliminate them early. (H3)

Applicability The term ‘formal methods’ is used here to denote design
methods that make use of mathematical concepts (like sets, relations) to
generate and to document a design. According to Hall [Hall90], formal
methods can cover the following activities:

writing a specification;

proving properties about the specification;

constructing a program by mathematically manipulating the specification;
verifying the program by mathematical arguments.

In this definition, it is left open whether ‘specification’ denotes a require-
ments or a design specification. Normally a design specification is assumed.
Otherwise, the actual design process is bypassed or suppressed, namely
selecting a specific solution out of a set of possible solutions. The transition
from a design specification into a programming language is frequently
achieved by a series of transformation steps, typically called refinement
steps. The expected result is higher reliability of the product, because cer-
tain ambiguities and imprecision are eliminated at design time, that
otherwise may only be found during implementation or test time.

Formal methods in design have a long tradition. The origins are clearly to
be found in Europe. Both the Munich group of Bauer and the Vienna group
of Zemanek made decisive contributions. Today, only two methods are seri-
ous contenders: VDM and Z. The Vienna Development Method (VDM) is
an outgrowth of the work done by the IBM Vienna laboratory in the formal
definition of programming languages. A system is defined by specifying the
objects to be dealt with as sets, and the operations on them by means of pre-
and post-conditions. The operations are then refined, i.e. designed, proving
that the pre- and post-conditions still hold. A description of VDM can be
found in [Jone90]. Z is a specification language originally developed by the
Programming Research Group at Oxford University, UK (based on a pro-
posal by J.R. Abrial). It uses a typed first order predicate calculus to describe
the behavior of a system. A structuring mechanism called schemas provides a
modularized description. One notation is documented in [Spiv89].

Formal specifications should be produced as a result of the original
design work. In that case, they may become the official reference for the
design. Other material, like text and diagrams, must also be produced, but
it serves as auxiliary information only. It cannot be avoided because users
demand a ‘readable’ specification in natural language, on which they base
their evaluation. Formal specifications have sometimes been done as an
afterthought based on some other design documentation. In both cases,

i
RN

S91109Y3 119y} pue sme) a)1gedljddy ‘

uoledydads pue ugisap waisAs ‘ N

conflicts between the two specifications may arise. Then a decision is
needed, to determine what is binding. There might be reluctance to update
both during the life of a project.

Evidence The empirical evidence on the benefits of formal methods in design
is not conclusive yet. Hall [Hall90] gives an experience report based on a
medium sized project (58 KLOC). The formal specification written in Z
comprised 340 pages. It helped to improve the design and to remove some
errors early. The product specified was a development tool (project and con-
figuration management system), so the need did not arise to provide a
user-oriented specification in natural language (at least not before the prod-
uct was shipped).

Two other projects, both in the UK, are frequently cited. The one is the
CICS re-specification performed by IBM Hursley in co-operation with the
Programming Research Group at Oxford University [Haye85, Fent94]. In
this effort, the external specification as documented in the application pro-
grammer’s reference manual was redone using Z. During this process, a
number of inconsistencies or missing details were found in the manual.
They were resolved by studying the source code. Also, a part of the system
was subsequently re-implemented. The claims are that the error density was
reduced by 60 percent (probably compared to previous releases) and the
cost savings were about US$5.5 million (perhaps as compared to the origi-
nal implementation of the same system). The value of this experience is
somewhat limited, because the project was essentially a re-documentation
and re-engineering effort, completed over a 12-year (!) period. The formal
specification was not used in the requirements process, nor in the design
itself. It was an additional quality enhancement activity targeted at an exist-
ing system. The project received high recognition, including an award by
the British Queen.

A very thorough analysis is reported by Pfleeger and Hatton [Pfle97].
The project produced a display system for the London Airtraffic Control
Centre, comprising about 200 KLOC written in the C language. Essential
parts of this system were specified either in VDM or with state diagrams.
The analysis showed that the modules in those parts of the system that were
specified formally had rather low complexity (in the sense of the McCabe
metric) and loose coupling. The same modules demonstrated, prior to
release, a slightly higher error density than the remainder of the system, and
after release, a significantly lower error density. Fig. 3-10 shows the results.

Time Error density Formal Informal
Prior to release Changes per KLOC 19.6 21.0
% modules changed 22 19
After release Changes per KLOC 0.58 1.61
% modules changed 0.12 0.27

Fig. 3-10 Results of formal methods

No information is available on the experience of the staff, be it with the
application domain, the design method, the implementation language or the
test methods. To train a sufficient number of developers and users in the formal
methods was apparently no problem. Compared to other groups in industry,
this project team seems to have relied on formal methods but did not make
efficient use of inspections. This becomes clear from the fact that the bulk of
the 3000 errors reported prior to release were removed very late in the devel-
opment cycle, namely during system and acceptance testing (340 errors found
in code reviews, 725 in unit test, and 2200 during system and acceptance test).
An explanation for the thoroughness of the test effort may be that the project
had been obliged contractually to achieve 100 percent code coverage.

One of the authors has reported on his experiences with formal design
methods elsewhere [Endr93a]. In this case, the designer applied a formal
design language to design a small change of an existing system. To aid the
code understanding, a significant part of the old design (extracted from the
existing code) was first translated into the new language. After hundreds of
lines in the formal design language, the code change finally resulted in a few
lines in the (old) implementation language.

Comments Even if the Bauer—Zemanek hypothesis were to be refuted, it would
be hard to stop people from working in that direction, indeed some people
with a mathematics background probably think they owe it to their profes-
sional reputation. The topic of formal methods is also related to the subject of
higher-level programming concepts. If all that is needed for formal design spec-
ifications are sets and relations, the question that should be asked is: “Why
have they not been included in a very high-level programming language yet?’
Years ago, this idea emerged from several authors who specified their designs
in a language with high-level data structures (SETL, APL) first. They could
‘execute’ (i.e. interpret) the design in order to verify it. They had to translate it
by hand afterwards into a standard programming language, however.

3.3.9 Gamma’s hypothesis

During the last decade, software reuse has been heralded as a way to
achieve both productivity and quality in software. Code, test cases, designs,
and requirements can all be reused. The most popular form of design reuse
is through patterns. Erich Gamma is one of four authors that made popular
the idea of design patterns [Gamm95]. The claims made are summarized in
the following hypothesis:

Reusing designs through patterns yields faster and better maintenance. (H4)

Applicability A design pattern is a schematic description of a possible solution
to a design problem. It gives a template showing how elements of the solution
(objects, classes) should be arranged. Gamma and his co-authors were influ-
enced by ideas from mechanical engineering and building architecture. Notably,

S91109Y3 119y} pue sme) a)1gedljddy ‘ e

uoledydads pue ugisap waisAs ‘ <

the architect Alexander had based his work on the idea of design patterns. The
assumption is that experienced designers reuse successful elements of previous
designs. The advocates make the following claims concerning patterns:

B programmer productivity and program quality are improved;

B the skills of novices are increased by allowing them to reuse proven
concepts;

B communication among designers is made easier;

B it encourages the exchange of good design ideas;

m the maintainability of programs is improved.

Patterns have found considerable interest, both in industry and academia:
many other patterns have been published; journals and conferences have
been initiated; and tools are being offered. The advantage of patterns over
code reuse is in the crossing of language and operating system boundaries.
Most examples given are related to OO concepts, however. Another way of
reusing designs is through frameworks. Frameworks are a top-down
approach to reuse. They provide a skeleton of an application where the
details have to be filled in. They often come as a tree structure (of classes)
where the branches can be reused, but some of the leaves have to be added.
As a consequence, they are limited to a specific domain and application
type. Design patterns are more general, although smaller.

Evidence Until recently the pattern community has only reported anecdotal evi-
dence to support their claims. Two controlled experiments have recently been
performed by Prechelt and Unger [Prec99], addressing the claim regarding
maintenance benefits only. In both cases, only rather small programs (< 500
LOC) were used. In one test, conducted with students, comments had been
added to the source text highlighting the fact that a specific pattern was used.
The control group had to perform the same maintenance tasks for the same
programs without the extra comments. The result was that the additional com-
ments resulted in shorter maintenance time (time to understand the program
and to make the fix on paper) and a larger percentage of correct solutions.

In another experiment, professionals from a German software house
were asked to perform a maintenance task for several programs with and
without patterns. Here the results were mixed. In those cases where the pat-
tern yielded the cleaner solution the results were positive. Whenever the
solution without pattern was simpler, the maintenance time was shorter.
The results of both studies are summarized in Fig. 3-11.

Hypothesis tested Correlation
Pattern documented as comments — fast maintenance Strong
Pattern documented as comments — correct maintenance Strong
Pattern used at all —easy maintenance Weak

Fig. 3-11 Evaluation of patterns

Comment In a recent presentation, Gamma [GammO1] mentioned that he
had been reproached for looking backward, i.e. at existing design, rather
than forward, i.e. at new visions. This criticism, if any, should be noted by
all people who want to learn from others.

3.4 More on system design and specification

Many more questions regarding systems design are under discussion, and in
the following section, we will address some of them. None of them have, to
our knowledge, been subject to empirical studies so far.

3.4.1 Project goals and design criteria

From one project to the next, different project goals may have different
importance. In many environments, the main concern is about project costs.
The question “Why does software cost so much?’ is so prevalent in the
industry that it has become the title of a best-selling book by Tom DeMarco
[DeMa95]. This aspect is especially relevant to all environments where soft-
ware is considered a necessary, but undesirable cost factor. This may be the
case for a manufacturer of computer hardware, as well as for a car or air-
plane manufacturer, or an insurance company. It is mainly from this view
that the discussion about developer productivity arises. In these situations,
the best productivity can be achieved if new development is avoided com-
pletely or if it can be moved out to countries with lower labour costs. The
cost gains achieved through development in India and Russia (‘off-shore’
development) cannot be matched by the best methods or tools.

Of course, there are many good reasons why one needs to develop software
and why one has to do it in-house. Whenever software is considered to be an
investment that may lead to returns comparable to, or even better than, other
investments, the view changes. The cost is no longer the most critical item,
because higher investments may lead to higher returns. The same is true if the
software gives a competitive advantage to the business. The concern then shifts
to the questions of skills availability, protection of intellectual assets, and the
cycle time needed. Exceptional skills may be needed to be able to offer unique
and new functions before the competition does. In a dynamic market, as exem-
plified by the Internet, time-to-market may decide whether a product becomes
profitable or not. In such a case, cycle time is key; cost is secondary.

The same variations may affect the technical design criteria. The obsession
with new function often leads to over-engineered solutions. They then suffer
from a disease called “featuritis’. Of course, the core function has to be there,
but leaving out the frills that unduly destroy efficiency may be the crucial
part of a design. If a function is offered, it has to perform according to the
user’s work speed. If it delays him, it will not be used. It is in this respect that
the rapid progress in hardware technology increases the responsibilities of
the software designer. The overriding goal of each design, however, should
be to make the system reliable. There is no excuse for system breakdowns

(S,
(9,

uonedy10ads pue ugisap walsAs uo aIo ‘

uoledydads pue ugisap waisAs ‘ =

that are caused by design errors. This applies independently whether the
respective parts will be implemented in hardware or software.

One property of design, that is normally not specified as a design criterion
is its conceptual integrity. Brooks [Broo87] has described this property as fol-
lows: “The product should appear to each user’s mind as if it were designed
by a single mind, although it may have been designed by many minds’.

3.4.2 Open architectures

As discussed in the context of Denert’s law, large systems can only be devel-
oped effectively if they have a well-known, stable architecture. For a large
company, this may be an internal or proprietary architecture. If the industry
as a whole wants to have the same benefits, the architectures in question
should be open. An architecture is open, if its specification is freely accessi-
ble. It may have initially been developed by a single person or a single
company, and made public afterwards. Examples of this are programming
languages, like PL/T and Java, operating systems like Unix, and text formats
like Postscript and SGML. An open architecture can also be developed by a
group of companies or a standards committee. Examples are CORBA and
XML. An open architecture can be proprietary. In this case, the documenta-
tion is available, but changes can be made only by the originator.

Every developer is well advised to use open architectures. They give his
or her product the largest possible market penetration and the longest busi-
ness life. He or she then has the best chances to be able to share work with
other developers or to reuse components developed by others. However,
there are several risks that should be taken into account here also. An open
architecture may undergo changes that are not under the developer’s control
and which cause additional work later to adapt to them. The open interface
can also encourage a competitor to develop a replacement product or exten-
sions to be added on top. This sometimes causes companies not to adhere
to open interfaces, but rather to use internal, undocumented interfaces.

3.4.3 Design quality and iterative design

The quality of a design depends on how well it meets the requirements defi-
nition. It must not only meet the functional requirements, but also the
non-functional requirements. Attempts to measure the quality of a design
usually use only a single criterion: for example, measures of maintainability
or reusability. In most cases such measurement attempts have been applied
not to the design, but to the implementation.

When the quality of a design is judged, one should not only think of the
quality of the proposed product. The intrinsic quality of a design is judged
on how good the design describes the planned product for the customer and
to the other developers. Have the architecture, the structure and the neces-
sary implementation ground rules been specified in a way that it is easy to
build a system that meets the requirements? In other words, an awful and
useless product may be well designed, and vice versa.

If no requirements definition exists, iterative design may be helpful. It is
not to be confused with prototyping, as described above. Iterative design
produces a partial design, implements this part, then switches back to
design mode again. This mode of operation was described in a famous
quote by Andy Kinslow during the Garmisch software engineering confer-
ence [Naur69b]: “We design until we can code, then code until we design’.
He did not mean this to be a recommendation to be followed.

In every practical environment the question of when to stop designing
arises. In other words, how detailed should a design be? A pragmatic answer
can read as follows: ‘A design should be detailed enough that the planning
and cost estimating needed in order to proceed into the next phase can be
done’. If a cost estimate is required for the entire project, including mainte-
nance, the design has to cover the entire system and has to be detailed
enough to serve as a base for all necessary estimates. The same is true if per-
formance estimates are required. On the other hand, the volume of the
design documentation should not exceed the level that can be digested by the
intended readers. Applying Parnas’ law, one should carefully evaluate which
information is needed by whom and when. The final consideration should be
to avoid too meticulous a design that restricts the intellectual contributions
of the implementers. The construction of a system should remain an intellec-
tual challenge for whoever is assigned to perform it.

3.4.4 Design of data structures and databases

The laws cited above all deal with the design of programs. The entire sub-
ject of data design has not yet been subject of empirical studies by the
software engineering community. Data and data descriptions are an impor-
tant part of any system. Frequently, both persist longer than programs, and
the same data may be shared by many programs.

Data elements are the actual values the data assume. The description of a
data element is often referred to as meta data. It gives meaning to an ele-
ment. Because there are multiple elements with the same description, meta
data are less numerous and change slower. Meta data are usually recorded
in the form of a data dictionary. An installation may want to maintain one
common data dictionary for all its applications. When we look at relation-
ships between data elements, we talk of data structures. Primitive data
structures are list, array, and file. Several files may be treated together in the
form of a database. The three related fields of data structures, file organiza-
tion, and database management have grown to become own branches of
computing science, standing alongside software engineering. They have pro-
duced a considerable body of knowledge that every system designer can use.
We will refer to some basic results in a later chapter. For all data-intensive
systems it may be advisable to place the design of data into the center of the
design effort. In this case, a data model with strong semantic relationships is
useful. This role is usually played by the entity relationship model as intro-
duced by Peter Chen [Chen76]. The object model, which has been referred
to before, lumps together data elements and procedures.

uonedy10ads pue ugisap walsAs uo aIo ‘ N

uoledydads pue ugisap waisAs ‘ Pl

3.4.5 Design for safety and security

Hardly any area has received more attention recently than the question of
what technical means exist to improve a system’s safety and security
aspects. While the problem of safety is closely related to the question of reli-
ability, security has a unique dimension. The higher the value of the
information stored in a system, the more important is its protection. With
the advent of distributed systems, particularly public networks, the number
of technical options has grown significantly. Both servers and clients require
adequate mechanisms and procedures. This starts with the proper policies
for physical access, and involves the ‘hardening’ of systems (removing obvi-
ous risks and flaws), the authentication of users (usually via passwords),
and the proper allocation of access rights for data and applications. It ends
with the encryption of messages, and the detection of malicious use and
intrusions (including viruses).

One frequently employed protection scheme is referred to as a firewall. It
may be a separate computer or software package that screens all traffic
between an external and an internal network, just as medieval cities protected
themselves with a defensive wall. The access rights are simply split between
user groups, i.e. citizens and non-citizens. More advanced approaches are
required for applications like electronic commerce. Here different rights may
have to be negotiated for each transaction type. More information on stan-
dard and advanced methods can be found in the Software Engineering
Institute’s CERT® documentation!, which has been published by Allen
[Alle01], and in Miiller and Ranneberg’s book [Mill99], respectively.

As a general remark, security is a typical example where software-only
solutions are weaker than hardware-supported approaches. Therefore chip
cards are used for authentication purposes, and special hardware implemen-
tations for encryption/decryption algorithms. Furthermore, the technical
design can only provide the mechanisms needed for protection and detec-
tion. The policies and procedures that make use of them, have to be decided
separately. They may have to change during a system’s lifetime.

3.4.6 Technology impact on system design

As will be discussed later, the field of computing science is benefiting heavily
from advances in technology. The most rapidly advancing technologies are
those concerning semiconductor devices, magnetic storage media, and digi-
tal transmission. These three technologies are enjoying exponential growth,
meaning that their key parameters double every two to three years.

Most systems are planned with a lifetime of one or two decades. As a
consequence, no systems should be built in such a way that it cannot easily
adjust to progress in technologies. The way to achieve this is to treat all
devices as virtually unlimited, but optimize for their current geometrical and

L http://www.cert.org/security-improvement/

physical properties. If a device adheres to a proven architecture, the general
framework for its use is given. From a practical user point of view, it is
risky to rely on unproven technology. A new technology is less risky if it can
be introduced through an existing architecture where, if there is a problem,
a fallback to older technology is possible.

3.4.7 Documentation of design

The architecture of a system may be equally of interest to users and devel-
opers. The documentation should therefore address both audiences and
consist mainly of text and drawings, augmented possibly with screen shots
or syntax notations for a command interface (API). Traditionally, the exter-
nal specification became the basis of the user manual. With the dominance
of graphical user interfaces (GUI), such manuals have largely disappeared.
In fact, they have migrated into the user dialogs and the help files. As dis-
cussed before, formal specifications are often an add-on to the external
specification. They cannot serve as an external specification if the potential
users of the system are not familiar with the notation.

The internal specifications mainly serve other developers or maintenance
personnel. It can make use of any notation familiar to programmers. This
may be a notation resembling a programming language (also referred to as
pseudo-code) or any mathematical or graphic notation. The notations avail-
able under UML are normally sufficient to describe a design completely.
However, prose is needed to explain the design rational. The comments in
the source code, as used in the experiments of Prechelt and Unger, cannot
be considered as genuine design documentation. They certainly describe the
design, but as an afterthought to the implementation. This is very useful for
maintenance purposes, particularly if no other design documentation exists.

3.4.8 CASE tools and design change control

With CASE tools, graphic representations of designs can be recorded,
stored, updated and transmitted. Different vendors’ tools differ in which
diagram types they support. Most of them support entity relationship dia-
grams (ERD), dataflow diagrams (DFD), and state transition diagrams. The
Rational tool set was the first to offer the Unified Modeling Language
(UML). Some tools allow cross references between different diagram types.
In some cases, the generation of code skeletons and backward linking
between code fragments and design diagrams is provided.

CASE tools have frequently been oversold. They are usually only able to
perform syntactic checks on the construction rules for diagrams. Their
strength comes to bear if updates or small changes have to be made. This
should motivate developers to keep designs current while changes occur
during implementation time. No tool can generate design information that
does not exist yet, nor can it detect flaws and gaps in the design.

uonedy12ads pue ugisap walsAs uo alon ‘ 3

uoledydads pue ugisap waisAs ‘ A

3.4.9 Cognitive processes and group dynamics

The accomplishments discussed in this book are seldom achieved by indi-
viduals working in isolation. Of course, we cannot ignore the genius of an
individual or his or her hard work. In practice, we will learn, again and
again, that a single person’s capabilities are limited. His or her span of com-
prehension or depth of knowledge may not suffice for the task at hand.
Reducing the task so that it suits an individual is not a solution in every
case. In some cases, but not in all, the way out is a team approach. In a
team, one person’s inadequacies may be compensated by other, differently
qualified persons. On the other hand, the mutual stimulation may raise the
level of output produced. Group dynamics is therefore a relevant topic, and
not only for managers. It influences all activities, beginning with require-
ments definition, through design, verification, and installation.

Based on the studies referenced above, Curtis [Curt90] gives some valu-
able hints on the cognitive processes involved with design. He has observed
that the individual designer oscillates between abstraction levels, jumps
through discrete system states, and develops the problem and solution space
simultaneously. The idea of a top-down design is an over-simplification,
although it may be a good way to explain a design once it is completed. In a
design group, the curve showing the agreement level reached follows an
inverted ‘U’, i.e. it increases until the design is documented, but falls off
again after the completion of the design specification.

Designers make extensive use of personal networks to obtain information
they need. The more aware a designer is of his or her own limitations, the
better he or she will be able to make use of other people. Other people are
motivated to share their knowledge if they expect to gain in the process.
One-way streets, where only one of the partners is getting ahead, are not
popular. Putting the group’s success above that of the individual members
may help in some situations, but not always. Group members usually prefer
fairness and justice over altruistic appeals.

3.4.10 User participation and growing of designers

The participation of users in the design process is an idea highly valued by
some authors. It is often proclaimed as the Scandinavian approach. In our
opinion, these authors confuse requirements definition with design. While
the users’ role for the definition of requirements is critical, no significant
contributions can normally be expected during design. If the user is not a
computing professional, he or she is neither capable nor interested in engag-
ing him- or herself. No layperson will ever be asked to design a washing
machine or a cooking stove, let alone a car or an airplane. That does not
mean that they may not be able to contribute good ideas for the external
appearance and the user interface. As with other commodities, a consumer
who pays relies on experts for the quality of the product he or she gets. He
or she may be willing to select among alternatives if they are presented in a
convenient form. Prototyping is a good vehicle to do this. Most importantly,

a designer cannot discharge his or her responsibilities to the user if the prod-
uct does not satisfy all requirements.

It should be noted that the development of designers is a topic that is fre-
quently neglected. The education given to professionals in our field often
confuses coding and the drawing of diagrams with designing. Designing can
best be learned by studying good designs or by watching other designers at
work. From Brooks [Broo87] comes the plea that our industry should find
ways to ‘grow great designers’. Perhaps we can learn from architecture or
industrial design in this respect.

3.5 Examples and study material

3.5.1 Text formatting design

In Fig. 3-12, the design of the text-formatting program is given as expressed by
the author. The form chosen is that of pseudo-code. It highlights the control
flow. The words starting with capital letters designate procedures; those with
small letters are variables. The procedure Buffadda places the incoming character
into a buffer at the position given by the pointer buffpos (buffer position);
Lineadd appends the content of the buffer to the output line at position 1inepos
(line position). After each operation the respective pointers are incremented. The
pointer buffpos is reset to 1 by procedure 1.ineadd; 1inepos is reset to 1 by
StartLine. In this design document the following errors can be observed:

d1: Every output line will start with a blank character, unless it contains a word
of length N.

d2: There will be two cr characters in the output line, if the word is N charac-
ters long.

d3: There will be two blanks or two cr characters in the output line, if the text
starts with a blank or a cr character.

d4: The last word of the input will not be transmitted to the output, unless
it is followed by either blank or cr.

Initialize;

Startline;

L: InCharacter;
if separator

then begin
if spaceleft then LineAdd else StartLine;
LineOut
end
else if buffFull then Alarm else BuffAdd;
goto L;

Where: separator = blank or CR
spaceleft = linepos + buffpos < N
buffFull = buffpos = N

Fig. 3-12 Example in pseudo-code

Jeualew Apnis pue sajdwex] ‘ N

uoledydads pue ugisap waisAs ‘ 3

Of the requirement errors mentioned in Chapter 2, three have been handled
implicitly (r2, r4, and r5); errors r1, r3, and r6 still exist.

3.5.2 Digital library design

For the digital library system outlined in Chapter 2, a preliminary design is
given. Four aspects of the system are described, namely the overall architec-
ture, the network client, the network server, and the back-office system. The
design is presented in a top-down fashion.

System architecture Fig. 3-13 gives an overview of the system architecture.
It shows that the applications considered are split over two logically differ-
ent systems, a network server and a back-office system. The applications on
the net server can be accessed by local or remote users. Local users may be
connected through a local network (LAN); remote users dial in via the
Internet. The back office applications are normally only accessible for the
library staff. Shipping and billing may be invoked automatically from a net
application. Another important set of decisions reflected in this diagram
concerns the interfaces used between subsystems and components. The net
server is primarily accessed via the Hypertext Transfer Protocol (HTTP).
This assures that local and remote users have the same interface. For the
access to the data, three different interfaces are specified. For library docu-
ments stored in electronic form the preferred protocol is the Extensible
Mark-up Language (XML), which can handle almost any data type, includ-
ing multimedia databases (MM-DBs). For queries to the catalogs, the
Structured Query Language (SQL) has been specified, which applies to rela-
tional databases (R-DBs) only. Certain other databases may require a

HTTP Net server
o > (enroll, que
client - s quen,
order)
Local user A Net
XML SQL Y client
MM-DBs R-DBs (R)-DBs
7y Internet
Documents Catalogs Other DBs v
Y
Back office
et > (acquire, ship
client bill)

Library staff

Fig. 3-13 System architecture

special interface that is explicitly defined for library applications (Z39.50).
The library system will also provide certain portal functions, i.e. it provides
access to relevant Internet services. Search engines are one such example.

Network client The network client as specified in Fig. 3-14 is that software
function that has to be available on every PC or workstation to enable the net-
work server of the library to be accessed. The important point of this
specification is that only commercially available software components are used.
Users do not require any library-specific code in order to use its services. A Web
browser transfers files from a server, using the HTTP protocol. In addition,
reader and display functions are needed for text, graphics, and images; depend-
ing on the type of material used, audio or video players should also be installed.

Web browser -

Reader, video player

Operating system

Local data

Fig. 3-14 Network client

Network Server The structure of a network server is shown in Fig. 3-15. Its
key component is the Web server. It is the counterpart of a Web browser
and understands the HTTP protocol. It sends files to the clients in any pop-
ular file format.

Library applications
(enroll, query, order) -

Web server

Operating system

Central data

Fig. 3-15 Network server

Back-office system The back office system as shown in Fig. 3-16 is specified as
a classical database/data communication (DB/DC) system. A DB/DC system is
a combination of a database management system with a transaction monitor. It
can reside on the same processor as the network server or may be a physically
separate system. Several components that would be required for typical library
systems are not shown. Examples include user administration, catalog
management, document generation, accounting, and security facilities. The
design given leaves most technology options open.

63

Jeualew Apnis pue sajdwex] ‘

uoledydads pue ugisap waisAs ‘ A

Library applications
(aquire, ship, bill) -

DB/DC system

Operating system

Central data

Fig. 3-16 Back-office system

Both data and programs can be centralized or distributed, and may reside
on different media or use different languages or formats. For the network
connection no assumptions are made on topology or technology. The same
is true for all other hardware components. However, their performance,
capacity, and reliability have to meet the requirements of the applications
and the workload. A very important consideration is the scalability of the
system, meaning that it should be able to grow, be it in capacity, perform-
ance, or availability, without needing a change to its architecture.

3.5.3 Performance analysis

For a DB/DC system similar to the back-office system given above, a per-
formance prediction is to be performed using, the simple model given in
Fig. 3-17. This allows studying of the flow through the system of a transac-
tion originating from a user. In this model, ¢, (i = 1-7) are the estimated
service times of individual components of the system. The following values
are given (corresponding to reasonable values of real systems):

t, = 300 msec: average delay for PC and LAN;

t, = 60 msec: average disk access time;

L,, I, = 160k instructions: path-length in operating system for each service
request;

[, = 200k instructions: path-length in DC system for each transaction;

l, = 40k instructions: path-length in the application program (installation
unique);

l; = 400k instructions: path-length in DB system for each DB query;

g =4 Mill. instructions per second (MIPS): processor speed of host
computer;

k = 2: number of messages per transaction;
m= 3: number of DB calls per transaction;

n = 5: number of disk accesses per DB call.

User Host
on S on
/\ E = c ._g = E c -
PC LAN s8 |92 8 o 2 c 3
5 w0 o wn = [T 6 w0
N 2% =] = | 8%
o g o
(k) t, t, t t, m t, () t t,

Fig. 3-17 Performance model for DB/DC system

The values ¢, (i = 2-6) can be calculated as
t,=11g

The response time (in seconds) for a transaction can be calculated using the
following formula (no queuing is assumed):

T=k(t +t,+t;)+ 1, +m(ts+n(t;+1))

For the values given above, the estimated response time of a transaction is
given by:

T=2x(0.3+0.04+0.05) + 0.01 +3x(0.1+35x(0.04 +0.06)) =
=0.79+3x(0.1+0.5)=0.8+1.8 =2.6 sec.

This response time may be a problem since sub-second response times are
normally required. The above model easily allows an investigation of alter-
nate designs that might solve this problem. Of course, the easiest solution for
the developers would be to propose a faster processor. Unless the processor
was a singleton or already at the top of a family, the additional costs may be
justified by the costs of the redesign alone. A processor upgrade is almost
always justified, if the problem is discovered late, e.g. during installation
time. Then a change of the implementation would not only considerably
delay the introduction of the new system, it would also destabilize it.

The general message from this example is clear, however: the easiest com-
pensation for software shortcomings is through better hardware. It also
illustrates that the application-specific code in a DB/DC system is only a
small part of the software functions invoked. The largest portion is stan-
dard systems software, i.e. commercial of-the-shelf software (COTS).

3.5.4 Metrics analysis

Many different proposals exist for software metrics. Obviously, not all met-
rics proposed measure different properties. In order to find out where this is
the case, a correlation analysis can be performed. In Fig. 3-18, data are
given for five different metrics collected in three different projects. The data
originate from [Basi98a].

Jeualew Apnis pue sajdwex] ‘ A

uoledydads pue ugisap waisAs ‘ N

Project A Project B Project C
Metric 1 1.41 1.19 1.69
Metric 2 1.50 1.50 1.52
Metric 3 0.11 0.16 0.16
Metric 4 30.4 37.2 8.04
Metric 5 5.02 4.63 5.34

Fig. 3-18 Comparative metrics data

Fig. 3-19 compares all five metrics in turn against each other. This is
done by calculating the Pearson correlation coefficients (by means of a
spreadsheet). The Pearson coefficient 7 is defined as

r = Covariance(X, Y)/(Square Root(Variance(X) x Variance(Y)),

where Covariance(X, Y) = sum((X - X)(Y - Y))/n, and Variance(X) =
sum((X — X)?)/n. (X designates average over X, through X).

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5
Metric 1 1 0.90 0.07 -0.97 0.99
Metric 2 1 0.50 -0.97 0.84
Metric 3 1 -0.29 -0.06
Metric 4 1 -0.94
Metric 5 1

Fig. 3-19 Pearson correlations of metrics data

Not counting the diagonal (with all 1s), we have three cases of strong
correlation (>0.7), one moderate (0.5-0.7), and six weak (<0.5) ones. Five
correlations are positive, and five negative. A positive coefficient indicates
that the values of variable X vary in the same direction as those of variable
Y. A negative coefficient indicates the values of variable X and variable Y
vary in opposite directions. The conclusion to be drawn from this example
is that metrics 1, 2 and 5 are most likely measuring the same property.
Metric 4 is probably the inverse of the other three.

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

Exercises

How does the complexity of a system present itself to the developer? What
can he or she do to control it?

Define the terms cohesion and coupling, and explain their importance for
system design.

Why is information hiding or encapsulation important? How can it be
achieved?

What benefits can be expected of standard architectures? What are open
architectures?

Which aspects of object-oriented design should be carefully checked for
errors?

What are design patterns, and why are they useful? How do they differ
from frameworks?

Recalculate the transaction response time for the example in Section
3.5.3, assuming a processor of twice the speed. As an alternative, evalu-
ate the response time effect if, instead of the processor, the disk device is
replaced by a device with half the access time.

What does the term ‘strong correlation’ mean mathematically?

Jeualew Apnis pue sajdwex] ‘ A

System construction and
composition

The goto statement as it stands is just too primitive; it is too much an
invitation to make a mess of one’s program.
E.W. Dijkstra [Dijk68]

This chapter deals with the actual building of a system. We will state basic
rules that apply to the construction of all types of systems, be they batch,
interactive, distributed, or imbedded. Traditional and novel methods of pro-
ducing quality products will also be considered.

4.1 Definitions and importance

Construction is a set of activities that converts a design into a running
system. Construction is also referred to as ‘implementation’ and ‘realiza-
tion’. In the case of software systems, construction always involves the
creation of source code, its compilation into executable modules, and the
integration of these modules into a system. We use the term coding to
denote the activity of transforming a design into the statements prescribed
by the syntax of a programming language. Programming encompasses
design, coding, verification, and test. If hardware is involved, the respective
components may have to be build, procured, and installed.

The term composition is used if a system is being built primarily out of
high-level components or building blocks. In the early days, every software
system was built from scratch, i.e. one instruction was written after the other.
The first application area that fostered sharing of existing routines among
users was that of mathematical and statistical applications. Today, any appli-
cation runs on a bed of common software functions. System software, for
instance, supports all user applications in, for example, operating systems,
database systems, and data communication systems. The applications that
make use of these system programs can be custom-developed by users or their
organizations, or can be a standard application, purchased from software
vendors. A well known example of a standard application is a text-processing
system, similar to the one used to enter, modify, and format this book. Ready-

to-use business applications are not as widespread, but can be assembled or
generated (customized) from the packages available. Enterprise Resource
Planning (ERP) and Financial Systems are examples of off-the-shelf packaged
software, the pieces of which can be mixed and matched.

Constructing a system is clearly an essential step if one wants to produce
more than just paper documents (or paper tigers). The desire to produce
something new and useful is what really motivates a developer. That desire
may even induce novices and managers to skip or shortcut the preceding
activities. Programming or coding is the most characteristic activity within
the scope of system development, but it is also the most over-emphasized
activity. Building a system is much more than just coding (which may be as
little as a sixth of the total effort).

4.2 General observations

Software systems typically consist of multiple layers. This has turned out to
be the easiest and safest way to achieve significant gains in productivity.
Following Simon’s law, layering allows the hiding of complexity. For a pro-
grammer, the peculiarities of a machine’s architecture are no longer a
concern if he or she can write the application in a simple high-level language
such as Fortran or Pascal. The same is true for data storage and access, and
particularly for network communication. The software offers abstractions
for such basic concepts as device or file. Depending on the device type or the
medium, different device drivers or file access methods are invoked.

Any application program may be written following different programming
paradigms. A paradigm is a pattern or an example of something. The word also
connotes the ideas of a mental picture and pattern of thought. Kuhn [Kuhn70]
uses the word to mean the model that scientists hold about a particular area of
knowledge. Using the term in this context compares software technology with
science, in the sense that it proceeds from one paradigm to the next.

Fig. 4-1 gives a list of what Jones [Jone00] considers as different software
paradigms. The procedural approach is only one of them. For certain types
of applications a declarative, logical, functional, or rule-based approach may
be equally useful; the declarative approach is the basis of most application
generators. Even within the same programming paradigm, many languages
compete with each other. Jones states that he has encountered about 600
programming languages in the installations he has investigated. It is very rare
that, an installation gets along with a single language — usually, some three
or four languages dominate within an installation. There is little language
overlap between different installations, particularly between different
branches or industries. A university installation may have not a single lan-
guage in common with a banking system, and the same applies for most of
the other tools, be it design, test, administration, or accounting. Many appli-
cations are written in multiple languages, or mix the object programs of
components originally developed in different languages. In such a case, the
respective languages have to adhere to a common call interface or the calls
have to be translated into the proper format each time. This principle is used
in a well-known open protocol, called Remote Procedure Call (RPC).

SUOI1BAISO |RIBUID) ‘ A

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ S

Numeric, text or list oriented, recursive routines

Batch, interactive, reactive (embedded) systems

Procedural, declarative (4G) programs; deductive (logic) programs
Object-oriented systems

Functional (stateless) programs; finite state machines

Loops with callback routines; monitors with transaction programs
Neural networks

Genetic algorithms

Fig. 4-1 Programming paradigms (according to Jones [Jone00])

In business applications, transactions play a prominent role. A transac-
tion is invoked from a transaction monitor or data communication (DC)
subsystem, using the services of the transaction monitor through a com-
mand or call interface.

For most languages, the module concept is the key structuring concept.
The precise definition of a module varies by programming language. It may
be a subroutine, a procedure, or a class. In some languages the term
‘module’ is used. A module (in a generic sense) is a vehicle to factor out rep-
etitions, to facilitate parallel developments (separate name spaces), and to
allow independent compilation. Above all, it is the main structuring aid,
helping to make code readable. For large systems, a module is a rather low-
level concept, however. Some systems have thousands of modules,
particularly if they have more than a million source instructions or lines of
code (MLOC). Most languages offer few constructs beyond the module
level. These additional constructs are frequently defined outside the pro-
gramming language, be it by the operating system, the transaction monitor,
or the database system. For example, transactions, threads, and partitions.

A small system is distinguished from a large system mainly by the type of
hardware used. From a software point of view, a small system usually
requires the same set of functions than a large system, only they are used
less intensively. A difference may show up in the size of the files and the
databases, which is sometimes referred to as the ‘small system paradox’.
The client—server concept, as described before, is one way to make available
to a small system functions that are only needed occasionally, for which
permanent storage capacity cannot be dedicated. If the client only has a
bare minimum of functions it is referred to as a ‘thin client’.

The source code of a program is a complete entity, rather than a skeleton
or torso, if it is interpretable according to the execution model of the lan-
guage chosen, or it can be compiled into some machine code. The most
important property of source code is, that it has to be readable by humans.
The purpose of most of the rules discussed in this chapter is to ease the
understanding of programs and to improve their utility for humans.

In spite of many declarations to the contrary, the real binding documen-
tation of a software system is its source code. This is, of course, not the
view of the user, but that of the developer and maintainer. A user has to be
able to rely completely on the external specification, whether it has the form

of a user manual or an online dialog. Whatever effort is made to keep the
design documentation, i.e. the internal specification, synchronized with the
source code, the developer or maintainer has no right to rely on it. It may
help him or her enormously, it may show him or her what was intended,
but that is all. Object code can be disregarded in this respect: compilers are
fast enough today to recreate object code from source code when needed. In
normal business life, there is no need to de-compile a program from object
to source code, i.e. do reverse engineering. This is true for developers, main-
tainers, and users. Moreover, no user should be expected to ever have to
compile a program or system he or she has not developed personally.

4.3 Applicable laws and their theories

4.3.1 DeRemer’s law

The following law expresses an observation made by many practitioners in
the late 1960s. It was formulated by DeRemer and Kron [DeRe75].

What applies to small systems does not apply to large ones. (L11)

Applicability This law says that experiences made in a small, local environ-
ment cannot be transferred to a large, global environment. The experiences
cannot be stretched: they do not scale up. Since it is easy to build small sys-
tems, it is a favorite utopia among managers to be able to build a large system
with the help of a number of small teams. DeRemer’s law also indicates the
reason why technology transfer is difficult between academia and industry.
Academic institutions are seldom in a position to develop large systems.

Evidence Although this law has not been validated empirically, it is widely
accepted. DeRemer and Kron talk about programming-in-the-small and pro-
gramming-in-the-large as two different disciplines. In their paper, they
mainly talk about the need for different programming languages for the two
disciplines. They call these two languages (1) programming languages, and
(2) module interconnection languages (MILs). Their proposal however, has
not caught on. Later authors have seen in the distinction more than just a
language problem. Parnas [Parn72] describes the five-people/one-year proj-
ect as the borderline between craftsmanship and industrialization. He
suggest that software engineering should be defined as that part of our
methodologies that apply to large projects. Brooks’ experience report on the
development of OS/360 [Broo75] also gives many hints in this direction.
Every programmer believes he or she can program best if left to do it alone
or in a small team. According to Brooks, the difference manifests itself in
two directions: first going from a single program to a system; and secondly
when going from a program to a product. Both come together in the case of
a system product.

S91109Y3 119y} pue sme) a)1gedljddy ‘ N

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ N

Theory To use Brooks’ words, ‘large projects suffer problems that are dif-
ferent in kind from those of small projects’. They usually result from the
need to divide labor that is inherently difficult to divide. Nevertheless, if
one wants to build large systems, one has to be in command of and apply
the technology needed for that. Or as Jones [Jone0O0] puts it: ‘One cannot
build an ocean cruiser by planning to build 3000 rowing boats’.

4.3.2 Corbatd’s law

Over the entire history of programming, there have been constant discus-
sions on the question which languages or notations are best. One of the
most basic answers goes back to the Compatible Timesharing System
(CTSS). The law in question is derived from an experience report by
Fernando Corbaté [Corb69] on the CTSS project.

Productivity and reliability depend on the length of a program’s text, independent
of language level used. (L12)

Applicability At the time where this law was formulated it seemed to apply
only to what were the high-level languages at that time, (e.g. Fortran,
COBOL, Algol and PL/T). They were competing against low-level languages as
represented by assembly languages. The law still applies today because it is
independent of a specific language or language class. It is primarily the textual
length of a program or specification that causes difficulty, both in creating and
understanding it. The higher the language level, the higher the productivity
and reliability. The price to be paid usually shows up at run-time, in the form
of path-length increase, and memory consumption. The law is applicable to
any document that has to be grasped in its entirety, with all details. For many
documents cursory reading is sufficient, but this is not true for programs or
data descriptions. Corbatd’s law works only if the shorter version of the text
invokes higher conceptual constructs than the longer version.

The productivity gains mentioned in this context, of course, apply only
to the activities following requirements definition and design. There is no
reason why the time needed for requirements definition depends on the
methods or tools used for the implementation. If a very high-level language
is used, the design may have to skip over certain detailed aspects, such as
storage layouts or code optimizations.

Evidence The time sharing system CTSS was a precursor of Multics and
the first large system to be partially written in a high-level language. The
language used was a dialect of PL/I. Corbaté was the first author who
observed that development effort and error frequency turned out to be
roughly equivalent for a piece of code of given length, independent of the
language used. His comparison was between Assembler and PL/I. What
gives this law its deeper meaning is the fact that the functionality provided

by one line of PL/I code is three of four times that of Assembler code. The
success of PL/I for the development of both CTSS and Multics strongly
influenced the overall direction taken in systems programming from then
on. Some of the Multics developers later created the UNIX system, which
was also largely written in a high-level language.

Corbatd’s law has been proved many times in the last 30 years for several
third-generation languages (3GL). The most recent study in this respect was
performed by Prechelt [Prec00] with students at the University of Karlsruhe.
His comparison dealt with the following classes of languages: (1) non-script
languages, in particular C, C++, and Java; and (2) script languages, namely
Perl, Python, Rexx, and Tcl. The essential difference between those lan-
guage classes is that the non-script languages are compiled but the script
languages are interpreted. For the same problem, about eight to ten pro-
grams were written per language, (to smooth the difference between
individuals) with a total of 80 programs. The result showed that the non-
script programs were about twice as long as the script programs and took
about twice the time to write. Also, reliability (inverse to number of errors)
was in favor of the script programs, but not as clearly. The price to be paid,
of course, was run-time overhead and memory consumption. Incidentally,
the same relationship existed between Assembler and PL/T in 1968.

Several studies have shown that a similar relationship exists between 3GL
and fourth generation languages (4GL), also referred to as application genera-
tors. 4GL systems usually standardize classes of applications, such as database
query, file update, or report generation, in such a way that all necessary varia-
tions can be expressed by means of a few parameters. A study by Misra and
Jalics [Misr88] shows a size difference (in terms of source code lines) between
COBOL and dBase III Plus of a factor of greater than three, but only a devel-
opment time gain of 15 percent. Other studies have claimed productivity gains
by factors of three to five. Corbatd’s law is also reflected in most estimating
formulas, such as in Boehm’s COCOMO model. The law is also the reason
why certain software complexity measures (like Halstead, McCabe) can only
be used meaningfully if applied to modules of equal length.

Theory The explanation of this law relies on two aspects. By using a higher
set of constructs, we do not have to redo all the detailed decisions that are
required for the low-level building blocks. Even if we are proficient in doing
that, errors may occur. The second reason for this law comes from the pecu-
liarities of human information processing. We are able to handle a limited
amount of information in our short-term memory only. The number of enti-
ties is restricted, but not the nature of the entities. These ideas will be
discussed further in Chapter 10 in the context of Miller’s law.

4.3.3 Dijkstra—Mills—Wirth law

Besides the length of code, it is important to know which other properties are
significant. The new insight that was developed during the late 1960s and
early 1970s, concentrated on the logical structure of programs. Three of the

S91109Y3 119y} pue sme) a)1gedljddy ‘ 3

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ IN

pioneers of this era were Edsger Dijkstra [Dijk69], Harlan Mills [Mill71], and
Niklaus Wirth [Wirt71]. We therefore name the following law after them.

Well-structured programs have fewer errors and are easier to maintain. (L13)

Applicability A computer does not care how the code is structured. It exe-
cutes anything as long as it is syntactically correct and functionally valid
(i.e. ‘executable’). Programs are normally used not only by computers, but
also by humans, for whom, additional criteria have to be met. The most
important criterion is called ‘well-structuredness’, which means being well-
suited for a human reader. It has to be grasped easily, structured properly,
and the purpose of each unit has to be clear and easy to remember. The
format and structure have to help comprehension. Although Dijkstra
[Dijk68] strongly advocated the avoidance of jumps (gotos), there are many
other things that turn a program into unreadable text (or ‘spaghetti code’).

Evidence There was a recognition that higher structuring mechanisms or
language constructs above procedure level were needed. Mills first applied
these principles successfully in a commercial project for the New York
Times. Since that time the idea of structured programming has been widely
accepted throughout the industry. Early empirical evaluations of the struc-
tures and features used in programs are reported by Elshoff [Elsh76],
Gannon [Gann77], and Dunsmore and Gannon [Duns80]. Dunsmore and
Gannon studied programs written by students in several Pascal-like lan-
guages. They found that the percentage of global variables used, the total
number of variables referenced, and the number of live variables per state-
ment were contributors to errors. This is just another form of the same
observation that was expressed by Dijkstra in his famous statement quoted
in the chapter heading.

An experimental investigation of structured programming was made by
Basili and Reiter [Basi81]. They define structured programming (called ‘dis-
ciplined programming’ by the authors) as top-down design, use of a program
design language (PDL), design and code reading, and an organization as a
chief-programmer team. The latter idea was promoted by Baker and Mills
[Bake72]. An identical task was assigned to seven individual students and to
two different groups (a test group and a control group) of six teams, consist-
ing of three students each. The individuals and one group could work as they
liked (called the ad-hoc method), the second group of teams followed the
structured approach. The task consisted of the design, implementation, test-
ing and debugging of a small system of about 1.2 KLOC, using a Pascal-like
language. The development process was measured mainly by collecting data
on the number of compile and test runs. The product was analyzed with
respect to size, segmentation, and number and scope of variables. The claims
tested and the results achieved are given in Fig. 4-2.

Hypothesis tested Result

Structured method vs ad-hoc — higher efficiency Confirmed

Structured method vs ad-hoc — lower cost Confirmed

Structured team vs individuals — same quality Partially confirmed
Structured team vs individuals — same efficiency Moderately supported

Fig. 4-2 Evaluation of structured programming

The structured methods came out superior in terms of efficiency (cost per
LOC) and total cost. The structured teams produced equally good results
regarding the quality of the product (conceptual integrity of design, coher-
ence of modules) as the individual programmers. The overhead costs for
team co-ordination were usually offset.

A comprehensive study of the effects of higher language constructs was
performed by one of the authors (Rombach) in 1985 [Romb87]. In a con-
trolled experiment, 50 maintenance tasks were assigned to six test persons.
There were two systems (a timesharing and a process control system), each
one implemented in two languages (a Pascal derivative and a new language,
called LADY). The characteristics of the systems that were tested are sum-
marized in Fig. 4-3. The new language contained two important structuring
elements, not present in the Pascal derivative, namely a set of processes
(called teams), and the separation of the module interface specifications from
module implementation. Each person had to apply the same 25 error correc-
tions to two systems, one written in Pascal, the other in LADY. For the five
hypotheses tested, the results of the experiment are given in Fig. 4-4.

Type of system Language KLOC
Time sharing Pascal 10.7
Time sharing LADY 15.2
Process control Pascal 1.5
Process control LADY 2.5

Fig. 4-3 Characteristics of systems tested

The measures used in Fig. 4-4 are defined as follows: maintenance effort
is the staff time needed per task; comprehension is that portion of the main-
tenance effort needed to understand what has to be changed; locality is
measured by the number of modules changed per task; modifiability is the
actual correction effort, after the problem has been understood; and
reusability is related to the portion of the system that is left unchanged.
What gives the results of this experiment their external validity is the fact
that the LADY versions of the systems were always larger (in KLOC) than
the Pascal versions. Otherwise, Corbatd’s law would have applied. Only the
results on the process control system seem to be influenced by this effect.
The concern that the results could be skewed in favor of the new language
(the Hawthorne effect) was addressed by the test set-up.

S91109Y3 119y} pue sme) a)1gedljddy ‘ 3

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ >

Hypothesis tested Result

High language constructs — low maintenance effort Confirmed

High language constructs — good comprehension Confirmed

High language constructs — easy localization Confirmed

High language constructs — easy modification Partially confirmed
High language constructs — good reusability Confirmed

Fig. 4-4 Evaluation of language constructs

A study comparable to the one just described was performed by Walker ez
al. [Walk99] with respect to a language (Aspect]) that contains structuring
elements supporting aspect-oriented programming. In one case (synchroniza-
tion construct) the new language was superior to the control language (Java).
The time needed to debug and fix errors turned out to be shorter. In a second
case (distribution construct), the new language required more time to make
changes and resulted in more code to be written. Obviously, the second lan-
guage construct is not conceptually clean. Users had to study its
implementation in order to understand what needed to be done.

Theory In a well-structured text (whether literary, legal, scientific, reference,
or software), logical concepts and ideas are localized. They are not spread
over hundreds of pages. In the case of software, the execution of the pro-
gram can easily be visualized by looking at the text. In a debugging system,
where the interpreted source code is highlighted, the point of control moves
sequentially down the text. It does not jump forward and backward in
some erratic fashion. A well-structured text fosters comprehension speed
and thoroughness. It is easy to imagine the opposite: a scrambled text that
is not understandable at all.

4.3.4 Lanergan’s law

A very important direction in software engineering is concerned with the
standardization and reusability of software artifacts. The recent impetus for
this movement goes back to the investigations done by Robert Lanergan
and his colleagues at the Raytheon Corporation in Bedford, MA [Lane79,
Lane84]. Their findings are expressed by the following law.

The larger and more decentralized an organization, the more likely it is that
it has reuse potential. (L14)

Applicability There are several possible technical directions that can be
taken based on Lanergan’s law. The most successful way has been the devel-
opment of standard application packages. The so-called enterprise resource
planning (ERP) packages are the best example. One of the companies taking
that route was SAP, which has since become the largest software company

in Europe, and third largest in the world. The second direction is to look
for lower level functions, so-called components, that can be used to build
applications. Examples are standard data structures, and GUI interfaces.
The final direction taken is in-house reuse. This option only exists for com-
panies with large and decentralized software development groups.

Evidence In the course of their six-year study, Lanergan and his colleagues
looked at about 5000 COBOL programs. Their conclusion was that large
portions of their business applications consisted of similar functions — in
fact, all their programs could be described using six general functions: edit,
sort, combine, explode, update, and report. After the introduction of stan-
dard routines for select, update, and report, they achieved about 60 percent
of code reuse in their systems. Only about 40 percent of the code was unique
to the applications. Many similar reports have been published since, for
example [Neig84]. According to Jones [Jone00], all companies that employ
more than 5000 programmers have a reuse program — examples being
AT&T, Hewlett-Packard, and IBM. On the other hand, only 10 percent of
those companies with less than 500 programmers have one. A startup com-
pany has little to share, as is also the case with competitors in general.

Theory The larger a company or an institution, the more likely it has pro-
gram developments going on in separate areas. If all activities could have
been strongly co-ordinated from the beginning, they would have been
sequenced to avoid all redundancies. Since strict sequencing would create
dependencies that cannot be managed, identifying components for reuse can
reduce the redundant work. In this sense, reuse is a cure of an organiza-
tional problem. The cure may not be needed, if the problem does not exist.

4.3.5 Mcllroy’s law

Software reuse has become popular in industry and academia following an
ITT workshop in 1983 lead by Ted Biggerstaff and Alan Perlis [Bigg91]. The
underlying ideas can be found already in a visionary paper given by Doug
Mcllroy during the 1968 Garmisch conference on software engineering
[Naur69b]. The promise of software reuse is conveyed by the following law.

Software reuse reduces cycle time and increases productivity and quality. (L15)

Applicability Mcllroy’s vision was a software industry that would build
products out of parts, as is done in other high-technology industries. For a
given function, multiple parts could be selected from a supplier’s catalog,
with varying properties and different levels of trust. Software reuse, as it is
understood today, can take on the form of generators, frameworks, and
components. Component reuse has become the most frequent direction, and
is often advertised as component-based development. For the component

S91109Y3 119y} pue sme) a)1gedljddy ‘ N

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ >

approach two modes are relevant: black-box or white-box reuse. In the case
of black-box reuse, the source code is not essential; the user depends
entirely on the interfaces as specified. If white-box reuse is pursued, the
source code is studied and frequently modified. In this case, the reliability
achieved by the component is lost. The advantage is that no dependence on
the supplier exists and maintenance can be done in-house. As no market has
developed yet for reusable components, software reuse is mainly concerned
with reusing artifacts developed within the same company.

Reuse most often starts with code reuse. If the appropriate activities
follow a disciplined approach, reuse can be considered for the following
work products as well: requirement specifications, requirements models,
design specifications, test cases, user documentation, screen layouts, cost
estimates, and project plans.

Evidence One of the earliest groups adopting the component approach was
lead by one of the authors (Endres). Between 1985 and 1990, a comprehen-
sive set of black-box components were developed and introduced into
various projects from all over the world. The Boblingen building blocks,
comprising data and functional abstractions to be used in systems program-
ming, were used in about 100 projects throughout IBM and became part of
an external product (IBM classes). What convinced its users were their relia-
bility and the efficiency of their implementation. The negotiations with users
resulted in clear criteria that had to be met: the components had to be error-
free, and the performance degradation compared to a hand implementation
had to be less than 10 percent, as far as path-length was concerned, and less
than 30 percent for the storage space required. Individual components were
reused up to 20 times; the average was close to two. As a rule of thumb, if at
least two projects used a component, the extra effort to make it reusable
paid off. Reports on the Boblingen approach are given by Lenz [Lenz87] and
Bauer [Baue93]. The HP experience is described by Griss [Gris93].

Clearly reuse is not a question of language, nor is it a technical question
only. Fig. 4-5 summarizes the key technical problems encountered and some
possible solutions. The last point, dependency on tools, addresses the ques-
tion of which programming language to use.

Problem Solution

Global variables and data structures Data encapsulation

Incomplete functions Generalized function

Poor parameterization Full parameterization, generic parameters
Poor structuring, lack of cohesion Good modularization, functional coherence
Insufficient documentation Sufficient documentation

Dependence on environment, tools and history Isolation from environments and tools

Fig. 4-5 Technical problems of reuse

Non-technical problems associated with software reuse may be just as
important. They comprise: (1) an adequate requirements definition process
(domain analysis) for the reusable components; (2) the development of con-
sistent terminology and classification systems; (3) the establishment of a
distribution and maintenance process for components; (4) library search
mechanisms and tools; (5) the motivation of the developers; and (6) the
motivation of users. While the motivation of developers is usually the easy
part, the motivation of users is much more critical. If ways have been found
to account for the extra effort required to make code reusable, developers
love to make their code freely available to others. In fact one has to be quite
selective, otherwise a reuse library can easily be inundated. Many develop-
ers like to dump their output across the fence, particularly if the library
takes over the maintenance responsibility. Users have to overcome the not-
invented-here effect, and have to learn to live with the risk involved in
relying on other people’s work. The content of a repository of reusable
components should be determined more by what is needed and will be used,
than by what happens to be available. It starts out with a small library,
showing what is possible. Building up knowledge and trust is a recursive
process. Software reuse is at the heart of a concept called software factory,
which will be discussed later.

An experimental study addressing the key issues related with software
reuse is reported by Basili [Basi96b]. In this experiment, students, in teams
of three, developed eight small systems of between five to 14 KLOC. The
components to be reused came from three well-known public domain
libraries: (1) the OSF/Motif library of C++ classes for manipulating win-
dows, dialogs, and menus; (2) the GNU library of C++ classes for the
manipulation of strings, lists, and files; and (3) the C++ database library,
with an implementation of multi-indexed B-trees. The errors counted were
those found by independent testers during acceptance test. The hypotheses
tested and the respective results are given in Fig. 4-6.

Hypothesis tested Correlation
High reuse rate — few errors Strong
High reuse rate — little rework Strong
High reuse rate — high productivity Strong

Fig. 4-6 Effect of software reuse rate

This experiment has several limitations: the systems being developed
were rather small; the test process and coverage reached is not well defined;
and any errors detected during design or code inspections were not counted.
In addition, the absolute number of errors density, measured in defects per
KLOQC, is of interest, being 0.1 for the reused code, and 6.1 for the new
code. What is surprising is not the range of the two numbers, but the fact
that the reused code had such a high error density.

S91109Y3 119y} pue sme) a)1gedljddy ‘ 3

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ X

A very interesting empirical study regarding software reuse is reported by
Zweben [Zweb95]. The goal was to investigate the differences between
white-box and black-box reuse. A controlled experiment was used, involv-
ing two enhancement tasks and one modification task to be performed for
existing Ada programs. Fourteen graduate students were the testers. The
results are summarized in Fig. 4-7.

Hypothesis tested Correlation
Black-box reuse — lower effort Strong
Black-box reuse — high quality Mixed

Fig. 4-7 Evaluation of software reuse modes

In this experiment, quality was equated with correctness. Black-box reuse
showed higher quality only in one of three experiments. Although this
experiment uses a rather small number of test persons, the results seem to
be rather conservative. The industrial experience of the authors has con-
firmed that the quality argument is clearly in favor of black-box reuse.

We would also like to mention a study by Frakes [Frak94] that had the
goal of evaluating search methods. This investigation is not directly relevant
to the main claims of reuse, but deals with a technical question of interest
for reuse. Assuming that a repository has more than a few hundred compo-
nents, the search method may become critical. Four search methods that are
widely used for library search were tested: (1) hierarchical classification; (2)
faceted description; (3) attributes with values; and (4) keywords. The
queries dealt with UNIX related components; the test persons were profes-
sionals in a software company with considerable programming experience
(average about 12 years). Frakes observed no significant difference between
the four methods in terms of recall and precision. Each method, however,
retrieved a different set of components. The overlap was about 70 percent,
meaning that each method found an additional 30 percent of components
that the other methods had not found. The search time was shortest for the
classification system; longest for the keyword search. Considering the over-
all costs, keyword search is superior, since no manual preparation of the
data is needed. This is, by the way, consistent with the current practice on
the Internet, where keyword searches have become dominant.

Theory Reuse will be technically successful only if components show low
coupling and high cohesion, and if the details of the implementation are
properly encapsulated. These are exactly the same properties that have been
the basis of the Constantine, Parnas, and Dijkstra—Mills—Wirth laws cited
above. Rather than writing new code, the highest productivity and quality
gains are to be achieved by reusing well-tested code. The problems normally
associated with development are reduced to a search problem. For a given
task the right match has to be found. Reuse works only if there is a loosely

coupled community that is not doing enough analysis to eliminate all simi-
lar functions beforehand and is close enough to be able to share code, i.e.
trust each other.

To evaluate the business case for reuse a simple cost model can be used.
It is based on the model published in [Endr88] and uses the following
parameters:

C: cost of new development of a component;

C,: cost of generalization, i.e. effort needed to make a component reusable;
C,: cost of adaptation of a reusable component to using environment;

n: frequency of reuse, i.e. number of users of a component.

Using these variables, the cost of reuse for a component C, is given by the
formula:

C,=CJn+C,

This assumes that the cost for the original development has been absorbed
by somebody else. A decision in favor of reuse within a project is economi-
cally justified if C, < C, is true. Similarly, the productivity can compared
with the base productivity, defined as:

P, =S/C,

with § as size of product (e.g. expressed in KLOC). If, in addition, 7 is given
as the rate of reuse (i.e. percentage of code originating from reusable com-
ponents), then the productivity including reusable components is:

P =5/((1-r)CC,) = (S/C))((1-r) +]/ C))
=Py/(1-r +rC /C,).

In this formula, the ratio k, = C/C, can be called the relative cost of reuse.
Given r = 0.4 and k, = 0.3 as an example, and using P = 1, we obtain the
following relative productivity:

P, =1/(1-0.4 + 0.4 x 0.3) = 1/(0.6 + 0.12) = 1/0.71 = 1.39

In this example, the productivity has increased by 39 percent, assuming that
reused code is counted as new code. There are other measures of productiv-
ity that do not take reused code into account, or at least not fully.

4.3.6 Conway’s law

There is a relationship between the structure of the organization that builds
a system and the structure of the system. This observation was first
expressed by Melvin Conway [Conw68] and observed frequently since.

S91109Y3 119y} pue sme) a)1gedljddy ‘ X

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ ®

A system reflects the organizational structure that built it. (L16)

Applicability Conway’s observation was that organizations that build sys-
tems are constrained to produce systems which are copies of the
communication structures of theses organizations. The organization chart
reflects the first system design. Conway’s example is the following: If a
COBOL compiler is written by four people it will have four phases. A more
general version (supposedly due to Cheatham) says: If # people are assigned
to a project, it will produce #-1 modules (because one person will be the
manager). Conway’s law will apply unless the organization is willing to
adjust to a structure that is more suited for the system. The communication
between different project groups should follow the same interfaces as estab-
lished for the system. Therefore one should organize the development team
in such a way that it matches the system structure, and components should
not be split among different groups. As the system structure may change as
development proceeds, the organizational structure should change accord-

ingly.

Evidence One of this book’ authors (Endres) found many confirmations of
Conway’s law during his industrial career. One particular example was a
project split between a group in the Netherlands and in Germany. The
German data are given in [Endr75]. At the same time as the new functions
were developed in Boblingen, a restructuring (a so-called clean-up) of the
operating system nucleus was performed by the team in the Netherlands,
which resulted in serious integration conflicts and caused considerable
amounts of rework. After this experience, strict attendance to Conway’s law
was enforced by adopting a principle called module ownership.

A recent study investigating the applicability of Conway’s law is reported
by Hersleb and Grinter [Hers99]. They looked at a project in the telephony
area that was split across two sites, one in the UK and one in Germany.
Although the division of work followed the architectural lines of the
system, the need for communication was still high, and integration prob-
lems were unavoidable. Interface specifications, thought to be 100 percent
complete, were lacking essential details. Project plans would have to be
‘over-engineered’ if they were to solve all problems. The variability occur-
ring during the project created unforeseen communication requirements. In
spite of conference calls and e-mails, liaison assignments and on-site visits
were needed.

Theory Conway’s law is valid since system development is more a commu-
nication problem than a technical problem. It is more important to think
about communication barriers and enablers than about tools that enhance
the clerical or intellectual capabilities of the individual. This is also the
reason it is listed here and not under management aspects.

4.3.7 Dahl-Goldberg hypothesis

The object-orientation paradigm is applicable to requirements definition,
design and programming. The concept of object-oriented programming goes
back to the languages Simula [Dahl67] and Smalltalk [Gold89]. The next
hypothesis is therefore named after the designers of these two languages,
Ole-Johan Dahl and Adele Goldberg.

Object-oriented programming reduces errors and encourages reuse. (H5)

Applicability Simula 67 introduced classes and objects, mainly as a protec-
tion mechanism. They were intended to make programs more reliable by
restricting the freedom of a programmer to associate any processing func-
tions with any data type. This principle is referred to as strong typing and is
available in most object-oriented languages to varying degrees. A notable
exception is Smalltalk, which avoids strong typing in favor of late binding.
All object-oriented languages support inheritance and polymorphism.

Evidence The studies referred to in Section 3.3.6 on Booch’s second law
regarding inheritance also apply here, because they were done with object-
oriented programs. For the question of strong typing versus late binding a
study by Prechelt and Tichy [Prec98] gives some hints. This was performed
with 40 students and compared the effects of two different C compilers, one
with and one without type checking. The subjects developed and tested small
programs interfacing with a GUI library. The input to each compiler run was
evaluated and the measurements taken included the time needed for the task,
the number of errors made, and the number of runs needed until all errors
were removed. As summarized in Fig. 4-8, all their hypotheses were sup-
ported by the results.

Hypothesis tested Result

Type checking — better productivity Supported
Type checking — reduced # of defects Supported
Type checking — shorter defect lifetime Supported

Fig. 4-8 Evaluation of type checking

The subjective impression expressed by the test persons was that type
checking was helpful. Since code inspections are normally performed after
the compile errors are eliminated, additional checks performed by a com-
piler let inspectors concentrate on other problem areas. The results of this
study are consistent with the results achieved by Dunsmore and Gannon
[Duns80] for the same questions.

S91109Y3 119y} pue sme) a)1gedljddy ‘ 3

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ X

Comment The results of tests performed for object-oriented programs are
usually inconclusive if the measurements only span a single project. It may
take at least two or three projects within the same organization before the
benefits are seen.

4.3.8 Beck—Fowler hypothesis

One of the more recent software development paradigms is referred to as
agile development, implying both rapidity and lightness. Two key propo-
nents are Kent Beck [Beck99, Beck01] and Martin Fowler [Fowl01]. Its
main emphasis is summarized by the following hypothesis.

Agile programming methods reduce the impact of requirement changes. (H6)

Applicability As discussed in the context of Glass’ law, the requirements
process is a well-known source of problems. In certain environments,
requirement changes are unavoidable. The only question is how to go about
them. A development process that emphasizes careful requirements docu-
mentation and elaborate designs may not be best suited in such a situation.
Rather than abandoning all forms of a systematic process entirely and
adopting the ‘code-and-fix’ principle, some minimal and adaptable process
is necessary. What is dubbed a ‘heavyweight’ process should be replaced by
a ‘lightweight’ process.

Evidence Of the several new methodologies described in [Fowl01], Extreme
Programming (XP) is certainly the best-known one. It relies on the follow-
Ing activities:

B Start the implementation with a basic design only and evolve the design
as the project proceeds.

m Instead of producing lengthy documentation, foster face-to-face commu-
nication between developers and customers.

B Put a minimal system into production early and grow it later.

m Write test cases before programming starts and run tests for every devel-
opment iteration.

B Integrate and test the whole system, if possible several times a day.

B Produce all software in pairs, i.e. two programmers to one screen.

Comments This approach has attracted significant attention. Clearly, this
is incremental development in its purest form. It appeals to all program-
mers who consider documentation a nuisance, while for most novice
programmers, anyway, coding is ranked higher than designing, since it
gives assurance and satisfaction. There is no design notation around that
is as stringent as source code: UML allows too many choices and it takes
additional work to keep the design synchronized with the source code;

and XP emphasizes testing as the main and only verification method. Pair
programming is only a weak substitute for inspections. If two persons
work together day-in day-out, they become susceptible to the same errors.
XP recommends an integration process similar to the one adopted some
time ago by Microsoft [Cusu95] and many other companies. It certainly is
ideal for a developer if he or she does not have to make any predictions or
commitments, but has a customer who is very indulgent and willing to
assume all risks. As Fowler states, XP is not applicable for every project,
and especially not for fixed price contracts or projects involving more
than 50 people.

4.3.9 Basili-Boehm COTS hypothesis

A set of ten hypotheses related to COTS-based software is given by Basili
and Boehm [BasiO1]. They are summarized in one hypothesis here.

COTS-based software does not eliminate the key development risks. (H7)

Applicability Although the abbreviation COTS (Commercial Off-The-
Shelf) is of recent origin, software has been offered commercially since the
pioneering days. The first products were compilers, followed by utilities
or applications of all kind. As indicated in the title and the introductory
sections of this chapter, building systems using COTS packages is really
the normal mode of system development. Most modern systems are
built through composition rather than construction. Today, no software
system is developed without using a platform comprised of an operating
system and a file- or data-management system. Frequently, a transaction
monitor, network management services, a user-interface package, and
server and browser functions are involved. The degree of usage of these
components varies somewhat between commercial and technical applica-
tions. Many technical applications, however, also make use of databases
but research and education in software engineering are only gradually
taking this into account.

Evidence There is no doubt in our mind that the hypothesis as formulated
above is true. The question is merely what it implies in detail. Little empiri-
cal data are available on this subject, and are not normally to be found in
any scholarly journal. Basili and Boehm [BasiO1] have published the
hypotheses listed in Fig. 4-9, in order to provoke more studies in this area.
Although the original authors refrained from taking a position, we have
added a first guess on what these studies might produce. Our judgment is
given in the right-hand column.

S91109Y3 119y} pue sme) a)1gedljddy ‘ x

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ X

No. Hypothesis Authors’ guess
1 Over 90% of executed instructions are COTS code True
2 More than half of features go unused Likely
3 New release every 8-9 months; service for three releases only True
4 Integration and post-deployment costs grow with square number Likely
of components
5 Post-deployment costs exceed development costs Unlikely
6 Cost of glue code is three times cost of application code True
7 License costs are significant Varies
8 Assessment and tailoring varies with type of program True
9 Personal skill and experience remain highest productivity factors True
10 More schedule and cost overruns as for non-COTS-based systems Unlikely

Fig. 4-9 Hypotheses for COTS-based systems

Comments The main use of COTS software is in the reduction of cycle
time. Considering the relative expense of additional hardware, redundant
functions are quite acceptable, although provision has to be made to ensure
that they do not have to be learned by the users. The license costs for com-
mercial software are normally no problem, with the exception of purchased
software from development markets with a monopolistic structure.
Competition clearly reduces software prices for COTS products. The sched-
ule and cost risks can also be mitigated if the functions to be used are
clearly delineated and if developers and users can gain experience with the
corresponding interfaces early enough.

4.4 More on system construction and composition

There are a number of aspects that have not been addressed by the laws and
hypotheses given above, which deserve more consideration.

4.4.1 Incremental development and integration

The construction or build plan for a system may call for a sequence of dis-
tinct steps, leading up to the final product. This should not be confused
with prototyping, since each intermediate level is built with the same quality
criteria that will apply to the final product and the intermediate levels are
not typically thrown away (this should only happen if a total redesign is
needed, or the project ends prematurely).

In the area of system integration, incremental methods clearly have advan-
tages. Here there is a trade-off between (1) long integration cycles, with
increased stability for the individual developers and high risks for the entire
project, and (2) short integration cycles, with constant demands on each
developer, but lower risks for the project. In the past, a trade-off was often
made in favor of the individual developer, but today all major software

developers have adopted processes with extremely short integration cycles.
Daily builds, as practiced by Microsoft [Cusu95], are one such example.

4.4.2 Implementation languages

According to Jones [Jone00], around 600 different programming languages
are in use today. Their frequency and use reflects both the history and the
peculiarities of our field. Well-known criteria exist for the rational selection
of an implementation language, and are listed in Fig. 4-10. Unfortunately, the
actual decision can seldom be made independently for each project, since the
decisions made for previous projects have a great influence, depending on
where on the learning curve the team is, what tools have been paid for, and so
on. Many language candidates fall short on such basic requirements as the
support for decimal arithmetic, file management, and database access — one
reason why many commercial users are still dependent on COBOL and PL/L

Technical criteria Non-technical criteria

Adequacy for problem domain Compatibility with existing programs and data
Clarity, structure, self-documentation Experience of users

Support of software engineering concepts Demands of customer

Interface to system services and subsystems License fee and conditions

Quality and performance of compilers Quality of supplier support and service
Available development tools and libraries Standardization

Portability, reusability Future and strategic importance

Fig. 4-10 Criteria for language selection

PL/I was the attempt to unify the world of commercial and technical
applications. For some time it became the most frequently used second
language. If a COBOL programmer needed floating point, or a Fortran
programmer more flexible data types and data structures, PL/I was their
choice. On minicomputers, and later on microcomputers, Pascal, C, and
Basic took its place. Today, C++ and Java are the dominant languages. Both
are object-oriented languages; Java is a subset of C++ with special features
that enable its execution in a distributed environment.

Programming languages are also a means for some vendors to differenti-
ate their products from their competition. For a user, there is a risk,
however, that he or she may become dependent on (be locked in by) a
vendor, if he or she uses vendor-specific languages or features of a standard
language that are vendor-specific.

4.4.3 Application generators

Application generators, also referred to as fourth generation languages (4GL),
have achieved a clear role as productivity aid for professional programmers.
They have not fulfilled, however, the expectation of those people who

uol3Isodwod pue uoi}dNIISU0I WIISAS UO IO ‘ A

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ x

believed they could turn programming into a layperson’s job, following the
slogan ‘Application Development Without Programmers’, to quote the title of
a book by Jim Martin [Mart81]. This class of languages usually follows the
paradigm of declarative, rather than procedural programming. In a declara-
tive language, the desired results are specified by means of high-level
operations (like sum, average or largest value). In some cases, certain process-
ing steps are implied, i.e. they are always invoked. In the case of the Report
Program Generator (RPG), the dominant language for all small commercial
IBM systems, this cycle implies the reading of one record per file, comparing
so-called matching fields, performing a calculation, and printing the result.

Many languages are integrated closely with certain DB/DC or application
systems. An example of the latter is ABAP/4 of SAP. The most successful
type of application generators are so-called spreadsheets. They allow simple
calculations to be performed for every row and column of a two-
dimensional table. Spreadsheets turned PCs into a universal business tool.
Modern spreadsheets have interfaces to database systems and graphics
packages, and their output can be integrated into a text report, produced by
means of a text system.

The disadvantage of 4GL languages is their lack of standardization, and
hence their limited portability across suppliers. A notable exception in this
respect is the Structured Query Language (SQL), which was originally devel-
oped for relational database systems by IBM, but has since been standardized
and re-implemented for most other vendor products. With the exception of
SQL, this entire class of languages is usually ignored by academia.

4.4.4 Visual programming languages

The subject of visual languages has been a research topic for about the last
20 years. The goal is to generate programs by means of two-dimensional
graphical notations. These programs are either directly interpreted or trans-
lated into a conventional programming language. Some examples adhere to
the procedural paradigm, i.e. the graphs describe operations that are to be
sequentially executed. Of considerable interest are examples that realize a
dataflow paradigm, or a functional paradigm. Some examples are mere dec-
orations of CASE tools.

It is assumed that a multi-dimensional graphic representation of a pro-
gram appeals better to the strengths of our visual system than a linear text.
There is some hope that visual languages will enable children and non-
experts to create simple programs by pointing at the respective building
blocks, but so far this hope has not been fulfilled. Some successes can be
found, however, in professional applications, for example, systems that sup-
port the selection and integration of components from a fixed repository, as
in image processing.

Apart from visual languages in the sense described above, the attribute
‘visual’ is also used for development systems that support graphical user
interfaces (GUI) and make extensive use of graphical manipulation facilities.
As an example, Visual Basic is an implementation of Basic that makes use

of a full screen editor, with drag-and-drop facilities, and a GUI package
included in the generated code. Similar systems exist to aid in the construc-
tion of C++ or Java programs.

4.4.5 Programming by example

Even more far-reaching than for visual programming is the vision that is
pursued by an approach to programming known as Programming by
Example (PBE). The expectation is that computers could be taught in the
same way as people are taught, i.e. by demonstration. As one author
[Lieb00] puts it: “This could break down the Berlin wall that has always
separated programmers from users’.

In the case of numeric calculations, PBE is trivial if the number of cases to
be handled is small (i.e. a few thousands only). Then all input—output pairs
(or tuples) can be listed and stored in a table. The problem arises if cases are
to be handled, that cannot be specified ahead of time. In such a case, the
computer is expected to interpolate or extrapolate from the cases given. This
may work if the range and type of input and output data can be strictly spec-
ified and the method of interpolation or extrapolation can be given.

The general expectation of people pursuing PBE is that they might find
ways to automatically generalize from given input values. This may be pos-
sible in the case of graphical manipulations or robotic movements, where
the total environment is clearly defined and the set of operations is limited.
In some prototype systems, the system performs certain generalizations,
based on heuristics, and the user is asked to confirm the results. To be able
to perform correct generalizations for any given set of examples is clearly an
unsolvable problem. The final point is that this approach to programming
could eliminate testing, at least as we know it. The code is generated from
the test cases, in such a way that it satisfies all test cases. Another form of
testing would be required however, to verify that the generalizations were
done correctly. Little thought has been given to that.

4.4.6 Software metrics

Many of the laws cited in this book either explicitly or implicitly refer to
metrics. In the software engineering literature the term metric is used in the
sense of measure. It is a mapping of empirical objects onto formal objects,
usually rational numbers. Mathematically speaking, a metric is a function
m: X—R, with X as an arbitrary type and R as the set of (positive) rational
numbers, where for all x in X:

m(x) is defined,
m(x) = 0, and
m(x, U x,) <mx,) + m(x,)

Several hundred software metrics have been proposed, although not all of
them are useful. Fig. 4-11 gives examples of some typical measures, most of

uol3Isodwod pue uoi}dNIISU0I WIISAS UO IO ‘ X

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ 8

which have been used in this book. The most basic measure is Lines of Code
(LOC). Its precise definition and its relationship with the function point (FP)
measure will be discussed in Chapter 9. In practical environments, tools are
used to automatically derive size and structure measures (except for function
points) as soon as source code exists. It is therefore relatively easy to obtain
and to update these measures. If the same tools are used for comparison

measurements, consistency of data is no problem either.

Category Metric Author/definition Typical range
Size Lines of code (LOC) Many 50-20M
Function points (FP) Albrecht 5-500,000
Structure Cyclomatic complexity McCabe 3-50
Fan-in/fan-out Henry/Kafura 3-10
Coupling between objects (CBO) Chidamber/Kemerer 10-50
Depth of inheritance tree (DIT) Chidamber/Kemerer 0-20
Lack of cohesion on methods (LCOM) Chidamber/Kemerer 0-50
Quality Error density Defects/KLOC 0.1-50
Field stability Problems/user month 0.01-0.5
Satisfied customers Percent 50-95%
Process Defect removal rate Percent 30-90%
Fixes in error Percent 0.3-5%

Fig. 4-11 Examples of software metrics

The quality measures given in Fig. 4-11 are a refinement of the criteria
listed in Fig. 2-1. The entity called ‘defect’ is a synonym for error, that may
also designate fault or failure, particularly in cases where a distinction
between the two is not obvious. The term ‘problem’ almost corresponds to
failure. With the exception of function points, the metrics for size and struc-
ture have the great advantage that they can be derived easily and precisely
from the source code. The data relating to the metrics for quality and
process require a certain organizational effort if they are to be collected
consistently. This effort is well justified because otherwise no basis exists for
any systematic process improvements. Some readers may miss the Halstead
measures. Based on our experience, however, they are not very useful.

4.4.7 Configuration management and version control

Configuration management is a process that assures that the physical pieces
making up a system are properly identified and made available when
needed. A configuration is a specific arrangement of components allowed
for within the scope of the systems definition. For this purpose a system can
be considered as a family of different configurations that can be derived
from the specification. An example is a software system planned to support
different, mutually exclusive, hardware device types. One configuration
uses device driver A, another device driver B.

Fixes

Integrate Generate

Master
library

Development
library

Test systems

Test cases,
expected results

New/changed

ntr
modules Control

library

Fig. 4-12 Configuration management

A related but different concept is that of a version. Versions describe
assemblies of components from a historical perspective. A version of a system
combines those versions of the components that represent the same level of
development. Fig. 4-12 illustrates the development process determined by
configuration management aspects. New or changed modules are promoted
from a private library (not shown) into a central development library. A
module is only accepted after it fulfills certain criteria — it must at least com-
pile without errors. From then on, every module is subject to formal change
control. A changed module may only be accepted if a reason for the change is
given, for example, the reference to a problem report in case of a corrected
error. If a new version is built, all required modules have to be included. After
potential conflicts have been resolved, the modules are integrated into a
master library, which can be used to generate multiple configurations in order
to perform testing. A configuration management process similar to the one
described above is not only needed during development but also during main-
tenance. The reason for this is that normally three or four versions of a
system have to be maintained simultaneously. Unfortunately, not all users can
be induced to migrate to a new version as soon as it comes out.

A well-thought-out change control procedure may require additional
steps. Usually a change proposal is made first. This is followed by an assess-
ment of its impact (e.g. number of dependencies, cost) before it is approved.
Configuration management makes use of a number of tools. The minimum
is a development library with version control and access rights. Multiple
versions of a component are normally stored in the form of one base ver-
sion and modification chains (so-called deltas) from which the other
versions can be derived. The backward delta approach is usually preferred.

4.4.8 Software factories

The term software factory, although a misnomer, was first used in General
Electric by Bob Bemer to designate a highly organized facility for the devel-

uol3Isodwod pue uoi}dNIISU0I WIISAS UO IO ‘ Q

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ Nt

opment of software. At the heart of it was the idea to use computers to
automate as many processes as possible. After a transitory use in a USA
software company (SDC) in the early 1970s, the concept was successfully
implemented in Japan.

Software parts steering committee
Project X Parts development
¢ department
X P X
Design < Retrieve arts center Design
system parts
Code ‘ Code
modules | parts
Y LY
Test | | L __\hange ~o . . .2\ YUlzation Test
system parts
A
Y
Certify
system

Fig. 4-13 Toshiba software factory

The environment established by Toshiba for its Fuchu site, shown in Fig.
4-13, has been in use since 1977. At that time the site had about 2,500
employees, which rose to about 8,000 by 1991. The site produced software
for power supply stations and other control systems. As described by
Matsumoto [Mats87], the organization centered around four strategies:

standardized development processes;

reuse of existing designs and code;

standardized and integrated tools;

training and career development for programmers.

o=

A central department for the development of parts was funded separately.
The term ‘parts’ is used to designate specifications, design, and code meeting
predefined standards. In addition, programmers in development projects
were asked to contribute parts to the central repository. Maintenance of
parts is centralized and the using project is informed about changes. To moti-
vate the user side, project managers had to agree on productivity targets that
could only be met by making extensive use of existing parts. Developers
would receive awards for parts they had registered if they achieved a high
frequency of reuse.

Many other companies (including HP and IBM) have introduced reuse
programs that are modeled on the Toshiba factory. Because of the progress
in communication technologies, there is less need today to concentrate a
large number of people in one location. Also, the rigid process associated
with the term factory never became popular outside Japan. The fear was
that it would strangle creativity and flexibility, which are both considered
important for the American and European approach to developing soft-
ware. The term ‘manufacturing’ found its place into the software
vocabulary, designating the process leading to shrink-wrapped packages in
sufficient quantities, after the actual development is completed.

4.4.9 Legacy applications

Software reuse as described above is concerned with reusing components,
rather than entire systems. Existing applications, even if developed with
older languages and methods, may be successful for several decades. They
are then referred to as legacy applications. If for new applications a new
system environment is required, the legacy application has to be integrated
into that environment. For batch applications, the easiest way is to use sep-
arate hardware partitions that allow simulation of the old environment
including the base functions provided by the operating system. Fig. 4-14
shows how legacy applications can be integrated into a Web application
environment. The Web server is extended into an application platform.
Special routines (Servlets) intercept all interactions with users and convert
them into HTTP dialogs. On the client side, the browser is extended (via
Applets) to interpret the interactions and convert them back into the format
used before.

Server
Client
New
applications New and
Browser s old data
with Internet sewer
applets s
PP servlets
Legacy
|| applications
Applications platform

Fig. 4-14 Integrating legacy applications

uol3Isodwod pue uoi}dNIISU0I WIISAS UO IO ‘ S

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ L

4.5 Examples and study material

4.5.1 Text formatting implementation

Fig. 4-15 gives the text of a sample program as published by its author. It
has been converted from Algol to Pascal. A careful analysis of this text
reveals the following implementation errors or shortcomings:

cl: No input or output files are named; the system will assume whatever
defaults or standards have been established.

c2: Without further explanation, the carriage return character (CR) is
replaced by the line feed character (LF).

c3: The procedure Alarm is undefined.

c4: The variable k has not been declared.

c5: The text does not contain a single line of commentary.

In addition to the implementation errors introduced in this phase, three
requirements errors (r1, r3, r6) and all four design errors are still present. It
can safely be assumed that the program as published was never compiled
nor executed. Although a rather small program, it has served many authors
to explain several basic lessons on software development.

program textform;

const N = 30, BL = * ‘, LF = char(10);

var buffer: arravy([1.N] of char, charact: char,
fill, bufpos: 0..N;

label 10;

fill := 0; bufpos := 0; write(LF)
10: read (charact);
if (charact = BL) or (charact = LF)
then begin
if (fill + bufpos + 1) = < N
then begin write(BL) ;
fill := fill + 1 end
else begin write(LF) ;
fill := 0 end;
for k := 1 to bufpos do
write (buffer([k]);
fill := fill + bufpos;
bufpos := 0 end
else if bufpos = N
then Alarm
else begin bufpos := bufpos + 1;
buffer[bufpos] := charact end;

goto 10
end.

Fig. 4-15 Program textform in Pascal

4.5.2 Program size variations

The purpose of this example is to illustrate the variability of size measure-
ments. In Fig. 4-16, five different implementations are assumed for the
printing of a single text line, consisting of two words (‘Hello World’). The
size of each implementation is given in terms of two measures, namely lines
of code (LOC) of the source code, and storage bytes (Kbytes) used for the
object code. On the left, the numbers are given for an implementation in a
procedural language (C, C++), on the right are the respective numbers for
implementations by means of a transaction processing (DB/DC) system or
application framework. The implementation by means of an application
generator (4GL) falls between these extremes. For this tiny program the
overhead created by the more advanced modes of implementation is dispro-
portionately high. For larger programs it hardly matters.

Implementation C C++ 4GL DB/DC Framework
LOC 10 50 300 1,200 2,350
KBytes 0.2 0.4 1.5 5.3 9.5

Fig. 4-16 ‘Hello World’ sizes

Fig. 4-17 shows for a given module the evolution of size and complexity
over time. Size is measured again in lines of code (LOC), complexity is
expressed as cyclomatic complexity, i.e. McCabes’s metric. After the
requirements definition and the design activities, both numbers are still esti-
mates. After coding and test, both numbers can be measured. As the
example demonstrates, the size has a tendency to increase, due to the fact
that as the project progresses, more special cases are discovered that have to
be handled. This trend can be reversed whenever optimization is attempted.
The McCabe number can increase even if the size of a module is decreasing.
This shows that both measures express independent properties.

Time Requirements High-level Low-level Coding Unit System

design design test test
LOC 220 210 265 341 378 365
McCabe 15 15 15 18.5 19.3 28.4

Fig. 4-17 Growth of size and complexity over time

4.5.3 Metrics application

Fig. 4-18 gives example metric data for two projects. It lists eight structural
metrics values that were derived manually from the specification of classes.
The actual numbers are taken from a study by Sharble and Cohen [Shar93].

Jeualew Apnis pue sajdwex] ‘ N

uol}sodwod pue uol3dNIISuU0d WalsAg ‘ L

The same kind of numbers can automatically be derived from the source
code (e.g. C++, Smalltalk, or other) by means of a metric tool. The first six
belong to the Chidamber/Kemerer set referred to before. The exact defini-
tion of each metric is not important here, as, it can be found in the
literature. The absolute values, as calculated by Sharble and Cohen, are
contained in the two middle columns.

Metric Abbr. Range Range ProjectA Project B Project A Project B
low high [absolute] [absolute] [percent] [percent]

Weighted methods perclass WMC 0 120 130 71 108 59
Depth of inheritance tree DIT 0 20 21 19 105 95
Number of children NOC 0 20 19 13 95 65
Coupling between objects CBO 10 50 42 20 80 25
Response for a class RFC 50 250 293 127 121 38
Lack of cohesion in methods LCOM 0 50 64 21 128 42
Violations of Demeter VOD 0 100 64 44 64 44
Weighted attributes per class WAC 0 50 40 0 80 0

Fig. 4-18 Metric data for two projects

In the two right-hand columns, the values have been normalized (to per-
cent), using the range information given in the two left-hand range columns.
Using these values, the Kiviat graph given in Fig. 4-19 can be drawn. The
inner circle represents the lower boundary of the range, the outer circle the
higher boundary. Some tools, for example, Logiscope, enable us to do this
automatically. The range values chosen are somewhat arbitrary in this exam-
ple. In practice, they should be selected based on actual experience. Their
purpose is to make outliers visible. In this example, four measures (WMC,
DIT, LCOM, and VOD) of Project A fall outside the expected range.

<>> Project A

O ProjectB

NOC

Fig. 4-19 Example of Kiviat graph

It may be of interest to note that Projects A and B developed the same
system, using different methods (Wirfs—Brock versus Shlaer—-Mellor).
Following this example, we note that it is easy to derive many numbers, once
the code is available and that some tools produce 50 to 200 different num-
bers. Single and absolute numbers have seldom illuminative power, nor is
any single value either good or bad. The important thing to remember is that
variations in numbers point to potential problems, providing an opportunity
to ask questions, to look for reasons, and to improve our understanding.

Exercises

4-1 What is the difference between construction and composition in software
development?

4-2 Explain the term paradigm in the context of programming.

4-3 What s a software module? Give examples for different languages.

4-4 What is the main advantages that can be expected from using high-level
language constructs?

4-5 What are the circumstances for a successful software reuse program?

4-6 What is COTS software? What is the main advantage of its use?

4-7 Please name some technical and non-technical criteria for the selection of
an implementation language.

4-8 What distinguishes an application generator from a procedural language?
In what situations and in what respect is it superior?

4-9 Which of the software metrics listed in Fig. 4-11 are source code related?
Which are not?

4-10 What constitutes a configuration? How does it differ from a version?

4-11 When is an application referred to as legacy application? What type of con-
flicts can arise between legacy and new applications?

Jeualew Apnis pue sajdwex] ‘ N

Validation and static
verification

We can conclude from experience that inspections increase productivity
and improve final program quality.
M.E. Fagan [Faga76]

This chapter focuses on static approaches to system validation and verification.
They do not rely on the execution of code or on the actual performance of
system tasks, which will be described in the next chapter. We will show why
these static methods are important and how they relate to other methods.

5.1 Definitions and importance

Validation is an activity that answers the question: ‘Are we developing the
correct system?’ In a narrow sense, we are determining whether the design
fulfills all requirements, assuming the requirements correctly describe what
is intended or needed. Both functional and non-functional requirements
have to be considered. Verification on the other hand answers the question:
‘Are we developing the system correctly?” Or to put it differently, is the
design an optimal solution for the requirements and is the implementation
consistent with the design? The abbreviation V&V is frequently used for
validation and verification. In the IEEE Glossary [IEEE90], a definition of
both terms is given that is a little more restricted, but explains the essence
nicely. Accordingly, validation evaluates a system or component to deter-
mine whether it satisfies specified requirements. Verification, on the other
hand, evaluates a system or component to determine whether the products
of a given development phase satisfy conditions imposed at the start of that
phase. Here a phase-oriented process model is implied, where the goals for
each phase are clearly specified at the beginning of each phase.

In contrary to the constructive methods of design and build, the methods
applicable to V&V can be called analytical methods. V&V methods can be
split into two large groups, namely static and dynamic methods. Static
analysis means the respective document is read by humans, or perused by a
computer, but not executed as a program. In the case of dynamic analysis,
the program or the system is run (or executed) by means of a computer.

The key method for static V&V is inspection. We will use this term for
any static analysis of requirements, designs, code, test cases, and project
plans. Testing, which is a dynamic analysis method, is used only in the com-
parison of methods in this chapter. There are two approaches, black-box
(or functional testing) and white-box (or structured testing), and both will
be discussed in detail in the next chapter. For a definition of the terms fail-
ure, fault, and error, see Chapter 2.

Two terms used throughout this chapter are effectiveness and efficiency.
Effectiveness measures the success rate of an activity. Many activities suffer
from a variable number of non-successful results. The various error detection
methods are examples of such activities. The more errors that are detected,
the more effective a method is. Efficiency is result per effort spent. The effort
is usually expressed as time in minutes or hours. While productivity measures
the same attributes over an entire project, efficiency looks at a single activity.

A key challenge of system development is in meeting reasonably set qual-
ity targets. The pursuit of this goal distinguishes the work of professionals
from that of amateurs or novices. To be able to take corrective actions early,
the quality of the final product must be made visible during the design and
construction periods. Clearly we cannot rely purely on the methods used for
design and construction for this measurement, nor can we wait until the
end of development to investigate quality. This analysis has to occur in par-
allel with development.

5.2 General observations

In the previous chapters, the emphasis was on methods of construction. We
have discussed what it takes to make them more predictable and more effec-
tive, but errors are unavoidable for even the best such methods. It is better
to prepare for them than to be caught totally by surprise. As a consequence
of Boehm’s first law, the cost of errors rises with their lifespan. It is there-
fore important to reduce the lifespan of errors, i.e. to remove the error as
soon as possible after the time of commission.

In order to do this, the work products of all activities must be scruti-
nized. The key work products in question are requirement specifications,
design specifications, and source code. Test plans, integration, and mainte-
nance plans are important documents as well, but are not given the same
level of attention. Analytical methods attempt to derive certain informa-
tion from a work product, but which information is valuable depends on
the questions asked. How the wanted information is obtained varies with
the work product. The use of computers for this analysis has two key
advantages: reliability and speed. Computer-performed analysis is there-
fore the normal case, and applies to all formalized work products, such as
programs, data descriptions, design diagrams, etc. It is increasingly impor-
tant also for natural language text. The spell-checker supporting the
creation of this book is one example; another is a diagram checker within
a CASE tool.

SUOI1BAISO |RIBUID) ‘ g

100

UOI1BD1JII9A D11R]S pue uoljepljeA

While an analysis normally checks whether a document has certain prop-
erties, the next step is to map a document from one representation into
another. Depending on the type of mapping, we talk of conversions, trans-
formations, compressions, formatting, etc. Well-known examples of this
category are the formatting tools for text or print programs for a program-
ming language. One particular important form of mapping is called
measurement. In this case, a property is expressed by a numeric value, that
may be simply a count of lines, words, or characters. Metrics are the
sophisticated analysis of such measurements.

In many situations we need to compare two documents. The usual pur-
pose is to find out about differences, such as the differences between two
versions of a document. If one wants to determine how the content (or
more precisely, the meaning of the statements) of one document relates to
the content of another document, we are approaching what is called verifi-
cation. Since automatic efforts in this direction have limitations, most
verifications have to be done manually. Manual verifications are called
inspections and, there are many approaches and different names used to
designate this type of activity. Sometimes the names express levels of thor-
oughness, sometimes they are synonyms. In this context, inspections are
rather well-planned, systematic activities as compared with reviews and
walk-throughs. Reviews and walk-throughs have the same function, but are
usually less rigorous.

For the quality criteria listed in Fig. 2-1, the following difference is
important. While the user-oriented criteria, i.e. reliability, effectiveness,
installability, usability, and robustness, can best be verified through testing,
the developer-oriented criteria, i.e. testability, maintainability, localizability,
portability, and reusability, have to rely almost entirely on inspections.

5.3 Applicable laws and their theories

The laws cited here represent very important achievements and form part of
the basic knowledge for the professional work in our field.

5.3.1 Fagan’s law

The most popular concept of inspections is referred to as Fagan inspections
today. Michael Fagan [Faga76, Faga86] and his colleagues at IBM defined
and introduced this concept first within IBM and later throughout the
industry. The benefits of inspections are summarized by the following law.

Inspections significantly increase productivity, quality, and project stability. (L17)

Applicability Inspections as defined by Fagan and his colleagues have the
following key properties:

1. multiple reviewers receive the document or code to be inspected several
days ahead of a scheduled inspection meeting;

. the meeting between author and reviewers is lead by a moderator;

. the reviewers raise issues while the moderator talks through sections of
the document;

4. the moderator records the valid and unique issues; and

5. the moderator organizes the necessary actions together with the author.

[SSIN\S)

Fagan introduced three types of inspection — design, code, and test inspec-
tions — and has given detailed guidelines for all three. The framework of
Fagan’s original study is given in Fig. 5-1. The different types of inspections
are indicated with I, for design inspections, I, for code inspections, and I,
for test inspections.

Design | Code | — .
1 2 test Iy tests
Rework Rework Rework

Fig. 5-1 Fagan inspections

Fagan’s law applies to all developments that produce information or
knowledge intensive products. It particularly applies if the required knowl-
edge is not in the possession of a single person, but has to be collected from
different persons or sources. Inspections are widely recognized as the most
effective V&V method. They became a key ingredient in the Capability
Maturity Model (CMM) of the Software Engineering Institute (SEI) in the
USA. Nevertheless, its acceptance in industry is rather low and in academia
even lower. As a colleague put it, it is difficult to explain to a mathematician
or theoretical physicist why this can be the most effective quality assurance
method, although it gets along ‘without stochastic differential equations’.

Evidence Fagan’s law was first substantiated with empirical data by Fagan
himself. To determine the gains in productivity, he compared a process with
inspections where rework was done early, with a process where all rework
was done after testing. The overall productivity gain was 23 percent. Even
more important than the productivity gains, were the gains in quality. While
82 percent of the errors were found during design and code inspections, the
total number of errors found after seven months in the field was 38 percent
lower than for the comparison product. Examples are given in [Faga86] of
projects where between 50 and 93 percent of all errors occurring over the
life of a product had been found through inspections.

One author’s (Endres) experience with inspections dates back to about
1977. At that time, inspections became a prime method to improve the
quality of code, be it for code under development or for code already
shipped to customers. The inspections helped to reduce error densities by a

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

UOI1BD1JII9A D11R]S pue uoljepljeA ‘ §

factor of more than ten over a period of about ten years. The motivation of
developers and managers, however, was not easy as first the fear that a new
level of control was being introduced had to be overcome. A particular
episode illustrates this point: when asking which programmers were in
favor of inspections and which were against it, the answer was ‘All pro-
grammers are against it, except A, B, and C. But those are exactly the
people who do not need it’. Since these were the best programmers and
rarely made any errors, there was no better argument to have all program-
mers do inspections. In this case, this argument was a winner; no further
experiments and proofs were needed.

Empirical studies from other industrial environments are reported from,
for example, Honeywell-Bull [Well93] and Hewlett-Packard [Grad94]. In
the Honeywell-Bull report, a case is mentioned where code inspections
were so effective that unit tests could have been skipped. Of 302 errors, 298
were found by means of inspections. It also mentions a case where a major
design flaw was not detected in spite of ‘successful’ inspections, requiring
the product to be put on hold. As a human activity, its success depends on
the skill of the participants and the amount of time spent for the prepara-
tion. This is reflected in the HP version of the inspection process, which
comprises the following steps:

Planning: create inspection material.

Kickoff: brief participants.

Preparation: find items and issues to be addressed.

Logging: log items and issues.

Cause/prevention: determine causes and recommend prevention.
Rework: verify and fix defects.

Follow-up: document inspection experience.

In the HP case, with an average effectiveness of about 40 percent (assumed
error removal rate across all inspections), the reduction in rework yielded a
clear business case in favor of inspections. The cause/prevention step men-
tioned above will be discussed separately below.

A rational way to motivate an organization in favor of inspections is
shown by Jalote and Haragopal [Jalo98] for an Indian software company.
The resistance to inspections is explained by what they call the not-applica-
ble-here (NAH) syndrome, which is quite common in our industry and
means: “Whatever works elsewhere will not work here, because our situation
is unique’. A small experiment was conducted to convince the local develop-
ers in which the same modules underwent code inspections and unit test in
parallel. The inspections revealed three times more errors than the unit test
and the overlap of errors was small. The detailed numbers were: 54 errors
found by inspections, 20 errors found by module test, and 12 duplicates.
The effort per error was equal for inspections and unit test, namely 1.9
person-hours. Nevertheless, the fact that 42 errors were removed earlier
than usual made a positive business argument. Under the assumption that
these 42 errors would be caught during system test, the conclusion was that
one hour spent on inspections saves 3—6 hours during system test.

Theory The validity of Fagan’s law is a direct consequence of Boehm’s first
law described before. The high success rate of inspections is due to the high
percentage of requirements and design errors. More than anything else,
inspections are useful for breaking the vicious circle of misunderstood
requirements. If the developer assumes that the requirements were stated
correctly, he or she will not find requirement errors during design. Nor will
he or she be able to look for those things in the code of which he or she was
unaware when creating the design. The developer is in a closed loop, unless
an independent thought process gets him or her out of it. A similar effect
can occur if one looks at one’s previous work after a vacation period of sev-
eral weeks. Unfortunately, this method is too slow and does not scale.

Comments Removing errors early in the project cycle not only reduces their
cost for the project, but also takes out risks that may cause poblems later.
Besides their direct effect on quality, inspections have very important collat-
eral benefits. They are an excellent means for education and skill transfer,
and they provide for risk distribution within a team. If because of external
events or an accident a developer should suddenly become unavailable, it is
easier to find a back-up. Above all, inspections create awareness for quality
that is not achievable by any other method.

5.3.2 Porter—Votta law

Adam Porter and Lawrence Votta [Port95, Port97a, Port97b] have studied
the effectiveness of inspections under a number of conditions. A survey of
their studies is given in [Port97c]. The main conclusion is summarized in
the following law.

Effectiveness of inspections is fairly independent of its organizational form. (L18)

Applicability This law explains why it is so difficult to improve on Fagan’s
basic idea. Fagan’s law postulates that an independent thought process should
be applied to recreate a work product. As discussed above, Fagan’s original
approach to inspections has been modified for different environments. The
modifications are mainly concerned with the method of preparation and the
role of the inspection meeting. Questions like the following were answered dif-
ferently: ‘Is the purpose of the inspection meeting to make decisions after the
errors have been found or should errors be identified primarily at the meeting?’
‘Should there be one meeting for a given set of modules or multiple meetings?’

Evidence The studies done by Porter and Votta involved students as well as
professional developers. For the professionals, the study was done at
Lucent Technologies, observing the work for a major release for its switch-
ing system (SESS). The size of this system is about five MLOC. A total of
88 inspections were analyzed over a period of 18 months and the main
results are given in Fig. 5-2.

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

UOI1BD1JII9A D11R]S pue uoljepljeA ‘ §

Hypothesis tested Result
Scenario-based approach — high detection rate Confirmed
Physical meeting — high detection rate Weak
Phased inspections — high detection rate Weak
More than two persons — high detection rate Wrong

Fig. 5-2 Evaluation of inspection approaches

In the case of requirements inspections, different scenarios were assigned
to different inspectors. Scenarios in this case focused on different classes of
errors rather than use cases. The inspections using scenarios were compared
with ad-hoc inspections and inspections using a general checklist. The sce-
nario-based inspections turned out to be superior because this way it is
possible to avoid the gaps in the coverage and overlaps between inspectors.
The inspection meetings as postulated by Fagan are expected to produce a
synergy effect, i.e. bring errors to light that would otherwise not be
detected. While this could not be confirmed, the number of false positives
(issues raised that were not errors) can be reduced. If that is of no concern,
the co-ordination of the different results can be done by a moderator over
the network. Splitting up code inspections into multiple sequential sessions
does not bring corresponding benefits. To the contrary, this may cause
heavy delays because of scheduling problems. The final result is that inspec-
tions with one reviewer only are less effective than inspections with two
reviewers, but four reviewers are not more effective than two.

Theory In order to detect errors, the mental processes leading to design or
implementation decisions have to be redone independently. A single person
can do this only to a very limited extent. It is key that this is performed by
different minds because the biggest gain comes from the second person.
Three or more are less efficient, producing a diminishing return only, unless
they can perform their work under separate perspectives (as will be dis-
cussed below). The way in which this is organized and how information is
collected and interchanged is secondary.

Comments The importance of a physical meeting has certainly been
overemphasized. A meeting may be helpful, however, for people who are
learning about inspections or who do not dare to express a criticism of a
peer, unless backed by a group. It is a matter of education and experience,
until reviewers learn that each problem or doubt can be valuable. The
author has to learn not to ignore any comment, even if it appears extrane-
ous at first glance. The Porter—Votta law is also consistent with recent
findings of empirical psychologists [Krau00]. They have found that the ben-
efits of brainstorming can be achieved without a meeting, provided that all
ideas are evaluated. Even the number of different ideas being produced was
higher, if individuals could work undisturbed, i.e. without a meeting.

5.3.3 Basili’s law

The third important result on inspections can be attributed to Vic Basili
[Basi96c, Shul00]. He also introduced the term ‘perspective-based inspections’.

Perspective-based inspections are (highly) effective and efficient. (L19)

Applicability Under the Porter—Votta law a scenario-based approach for
inspections was mentioned. It used known error situations to guide the
reviewer. This idea was considerably extended by grouping scenarios into
perspectives. A perspective is the view a certain stakeholder has on the
system. Stakeholders are users, developers, testers, writers, and human
factor specialists. The basic idea is to ask different reviewers to take on the
role of different stakeholders and to perform the review from that angle.
This way a better coverage is achieved and overlaps are avoided. As a con-
sequence, the cost per error detected is lower.

Evidence The approach was originally validated at the Software
Engineering Laboratory (SEL) of NASA in Maryland [Basi96c]. For this
experiment, 12 professionals were asked to review two requirements docu-
ments (each of about 30 pages), using both their traditional and the
perspective-based approach. One document required special domain knowl-
edge (in aerodynamics), the other document described well-known business
applications. The perspectives applied were user, developer, and tester. The
experiment showed that there was a clear increase in effectiveness for the
perspective-based approach. It was higher for the general purpose applica-
tion than for the aerodynamics application.

Several efforts have since been undertaken to validate Basili’s law in
other environments. One very interesting, but rather small, experiment was
conducted by Laitenberger and DeBaud [Lait97] at the Robert Bosch com-
pany in Stuttgart, Germany. Eleven professionals were asked to inspect
three small C programs (<300 LOC each) from the perspective of an ana-
lyst, unit tester, and integration tester. The programs were unknown to the
reviewers and had been seeded with about 15 errors each. The hypotheses
tested and the results achieved are given in Fig. 5-3.

Hypothesis tested Result

Type of perspective — detection rate Analyst best
Physical meeting — detection rate Small positive effect
Number of perspectives — overlap of detections Little overlap
Domain/language experience — detection rate Medium effect

Fig. 5-3 Evaluation of perspective-based inspections

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

106

UOI1BD1JII9A D11R]S pue uoljepljeA

This experiment gives raise to several comments. Of the three perspectives,
the analyst was supposed to check the consistency between requirements
specification and code. Since the traceability between requirements and
design is an unsolved (or even unsolvable) problem, it is no surprise that the
analyst perspective detected the highest number of defects. That this problem
does not go away even in the case of object-oriented design is the conclusion
of another study by Travassos et al. [Trav99]. The testers only look for the
testability of the code that is provided, independently of whether it is consis-
tent with either the design or the requirements. It is obvious that
perspective-based inspections reduce the amount of overlap between different
reviewers, something that is demonstrated in another study discussed below.
The final point is that the successful contribution to an inspection is less
dependent on the prior experience of the reviewer. In other words, a detailed
guidance helps beginners to overcome their learning curve faster.

A third study in support of Basili’s law was performed by Zhang, Basili
and Shneiderman [Zhan99]. In this experiment, two existing Web interfaces
were inspected for usability problems. One was a standard Web interface
programmed in HTML, the second was a special application interface
implemented in Java. The 24 professionals that participated were split into
groups following one of the following three perspectives: novice user, expert
user, or error handling. For each perspective an explicit set of questions had
been generated to guide the review based on a usability model as described
by Shneiderman’s golden rules in Chapter 3. The results of this study are
enlightening, not only with respect to Basili’s law. The groups using guide-
lines found about 30 percent more usability problems than the control
groups (without guidelines). The highest number of errors was reported for
the error-handling perspective. For one of the two tasks, the overlap of
problems between perspectives was as shown in Fig. 5-4. The authors
observed that their usability inspections were considered to be very ineffec-
tive, and that the test participants were more interested in the usability
problems themselves than in the methods used for their detection.

Novice Error

Total of 54

Expert problems

Fig. 5-4 Overlap of problems in GUI inspection

Theory This law rests on the fact that mental work is time consuming and,
depending on the environment, may even be expensive. It makes sense to go
about it economically. If not predisposed in a certain direction, even two
independent minds may cover the same grounds. To avoid duplicate results,
it is better to make sure that two persons working in the same area look at
different angles. Any initial guidance or orientation also reduces the learn-
ing curve for beginners, and improves the repeatability of results.

5.3.4 Hetzel-Myers law

Although very effective, inspections are not the only verification method. A
comparison of different V&V methods was first performed by William
Hetzel [Hetz76]. It was publicized by Glen Myers [Myer78] through a well-
known controlled experiment. The key result is quoted here.

A combination of different V&V methods outperforms any single method alone. (L20)

Applicability The Hetzel-Myers law applies to inspections and black- and
white-box testing. It says that the best results are obtained, not by focusing
on a single method, but by using all three methods in combination.
Contrary to what many people think, the three methods are not alternatives
that compete with each other.

Evidence In his experiment, Myers gave a PL/I version of the Naur text for-
matting program to 59 experienced DP professionals (of whom 49 were
programmers). The program contained a total of 15 errors known before-
hand, but which were unknown to the test participants. The participants
were divided in three groups: one was asked to do black-box tests; the other
to perform white-box tests; and the third group was asked to do inspections
only. The results showed that the three methods were more-or-less equally
effective. The people time was highest in the case of inspections. Machine
time, i.e. total cost, was not measured. These results are illustrated in Fig. 5-5.

Black-box White-box Inspections Two methods

tests tests combined
Mean number of errors found 4.5 5.4 5.7 7.6
Variance of errors found 4.8 5.5 3.0 4.3
Median number of errors found 4.5 5.5 6 8
Range of errors found 1-7 2-9 3-9 5-10
Cumulative number of errors found 13 14 11 14
Man-minutes per error 37 29 75 75

Fig. 5-5 Results of Myers' experiment

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

108

UOI1BD1JII9A D11R]S pue uoljepljeA

Myers was surprised by the high variability of results among individuals,
both in terms of number and type of errors found. From this he concluded
that it is critical to determine which person is using which method. The
most interesting conclusion was that the best result was obtained if he com-
bined the results of the different groups. For this, Myers simulated
additional experiments by pooling the results of individual methods. The
right-hand column of Fig. 5-5 gives his data for combining black-box test-
ing and inspections.

A similar study was performed by Basili and Selby about ten years later
[Basi87]. The study was done at three locations, involving 74 persons, both
students and professional programmers with different levels of experience.
The programs used in the experiment were written in Fortran. The methods
tested were code reading (a limited form of inspection), and black-box and
white-box testing. The conclusions of the study were:

m For professional programmers, code reading detected more errors than
either black-box or white-box testing.

B The three methods showed about the same results, even for students.

m The types of errors found varied with the method used. Code reading
detected more interface errors, while testing found more logic errors.

The Basili/Selby study was repeated by Kamsties and Lott [Kams95] in
1994 and again by Wood et al [Wood97] in 1997. Both experiments made
use of a replication package originally developed by Kamsties and Lott.
While both experiments essentially confirmed the previous results, they also
produced additional information of interest.

Kamsties and Lott used three small C programs (<300 LOC) with
between six and nine errors inroduced into each program. The test persons
were students, in one group of 27 and another of 15. They extended the
Basili/Selby experiment by adding a fault isolation step. Their main result
was that the effectiveness (i.e. number of errors found) for the three meth-
ods was approximately the same. Fig. 5-6 shows those results that were
new. The relative rankings of the methods, rather than the absolute values,
are given. The ‘time to reveal’ is the time needed to discover that there was
an error. The ‘time to isolate’ is the additional time needed to identify the
piece of the source code that would have to be changed. The efficiency is
the sum of both time intervals divided by the number of errors found.

Method used Time to reveal Time to isolate Efficiency
White-box testing Middle Middle Low
Black-box testing Short Long High
Inspection Long Short Middle

Fig. 5-6 Results of the Kamsties—Lott experiment

Another question investigated was which type of error would be detected
by which method. Inspections found interface and data faults and were
worst on type and class faults. No guidance was given how to inspect or
how to test. Kamsties and Lott arrived at the same conclusions as Myers,
namely that there are large individual differences, that the effectiveness of
each methods is below 50 percent, and that best results are achieved by a
combination of all three methods.

The results of Wood et al. are summarized in Fig. 5-7, which gives the
percentage of errors detected for each of the three programs used. The first
line is the best result of a single method (white-box testing). The second line
is the calculated result of the worst pair of methods, while the last line
shows the calculated result of a combination of all three methods. Wood et
al. observed that the absolute effectiveness of each method is rather low and
the variability among users is high, and the results very much depend on the
nature of the program and its faults. Again, these observations agree exactly
with Myers’ observations 20 years ago.

Combination of methods Program A Program B Program C
White-box testing only 48 53 73
Inspection, black-box testing 63 71 81
Inspection, black-box, white-box testing 76 83 90

Fig. 5-7 Results of Wood et al.’s experiment

Another study covering the same ground was published by Laitenberger
[Lait98]. He applied inspection and testing in sequence to the same module.
His conclusion was that defects that escaped the inspections were usually
not found by a white-box test. He therefore suggests that inspections are
combined with tests that are not mere coverage tests, e.g. boundary tests.
Finally, the study by Jalote [Jalo98], mentioned above, confirms the fact
that inspections can find a significant portion of errors that are not typically
found in module tests. The consistent evidence established by a series of
replicated experiments over more than 20 years, makes the Hetzel-Myers
law one of the most firmly established laws in this book.

Theory Obviously different methods have their strength in different applica-
tion areas. They address different criteria, and may have a different effect
with different users, depending on their cognitive style. Some methods are
related with each other in that they detect the same type of errors. It is impor-
tant to know which methods are strong for which type of errors, and which
methods complement each other. The best results are achieved if the methods
applied are orthogonal, meaning that they work in different directions. This
requires a good knowledge of the severity and frequency of error types.
Errors made in different stages of development have different appearances
and different causes.

S91109Y3 119y} pue sme) a)1gedljddy ‘ \80

UOI1BD1JII9A D11R]S pue uoljepljeA ‘ 5

Comment The work done by one of the authors [Endr75] on error classifica-
tion may be helpful in this respect. More recently, similar work was carried
out by Ram Chillarege [Chil92] and his colleagues, detailing the concept of
orthogonal methods. This work will be discussed in Section 5.3.6.

5.3.5 Mills—Jones hypothesis

The following hypothesis was originally expressed by the late Harlan Mills
[Mill83, Cobb90] and was made popular by Capers Jones [Jone96,
Jone00]. Some people also called it the ‘optimist’s law’.

Quality entails productivity. (H8)

Applicability Many people feel strongly that quality and productivity are
positively correlated, in the sense that a concentration on quality from
the beginning will entail productivity. Because poor quality results in a
high percentage of rework, avoiding that may have a positive effect on
productivity. By eliminating the causes of potential rework, quality and
productivity may benefit simultaneously. This law is also a variation of
Phil Crosby’s adage that quality is free [Cros79].

Evidence Although substantiated in a field study by Card, McGarry, and
Page [Card87], we still prefer to call this rule a hypothesis. Their data
showed that reliability and productivity were positively correlated. They
defined reliability as errors per lines of code, and productivity as LOC per
person month. In this particular study, data from 22 projects were evalu-
ated. All were different solutions to an aerospace application to be run on
the same computer, and all were written in Fortran. The size of the project
varied between three and 24 people years, delivering between 33 and 160
KLOC. Of the non-technology factors considered, only the application-spe-
cific experience of the development personnel showed a high correlation
with both productivity and reliability. As a consequence, the following well-
founded conclusions were drawn from the study: use experienced, capable
personal, develop software as completely as possible before testing, read all
code developed, document each phase of development, and conduct regular
quality assurance reviews.

5.3.6 Mays’ hypothesis

The next lesson is also still called a hypothesis. Intuitively, everybody con-
cerned with quality issues thinks it to be true, although it is, however,
extremely difficult to prove. It is named after Richard Mays of IBM.

Error prevention is better than error removal. (H9)

Applicability Every error made causes some amount of rework, even if it is
removed early. It is therefore a good idea to prevent errors from occurring.
To do this, the causes of errors have to be identified and removed.

Evidence As an example of a defect prevention process, a process intro-
duced in IBM development laboratories is given in Fig. 5-8. The respective
process is documented in [Mays90].

Development

stage
Process \ Problems,
changes ! errors
St Causal
Ki ?(g‘;f o m o m - Experience | g ______| analysis
IERG database meeting
Implemented Causes,
actions ; proposed
Action actions
team

Fig. 5-8 Defect prevention process

A mini-postmortem is performed after each development stage. It culmi-
nates in the so-called causal analysis meeting during which specific problems
and errors that occurred during the development stage are analyzed and their
causes determined. The cause is an answer to the question, “‘What was wrong
in the current development process that caused this error?’ This again leads
to the question, ‘What should be done differently in the development process
to avoid this error from reoccurring?’ From the resulting answers a number
of proposed actions follow. Each proposal (or each related group of propos-
als) is evaluated by an action team, consisting of those people who are
responsible for either the process or the tools. As soon as the action team has
implemented the necessary changes, these are presented in the form of a
stage kickoff meeting to those developers that may benefit from them. The
problem and the available solutions are recorded in an experience database.
The effect of this process on error rates has been studied for two products
over a series of releases. A clear indication of its effect is not available since
the observed reduction in error rates of the delivered products may be attrib-
utable to improvements in the error-removal process as well.

111

S91109Y3 119y} pue sme) a)1gedljddy

112

UOI1BD1JII9A D11R]S pue uoljepljeA

The same measurement problem exists for a more advanced form of this
error prevention process, which also originated in IBM [Bill94]. This process
was called the shuttle process by what was then the IBM Federal Systems
Division, and was first applied to the space shuttle onboard software devel-
oped by IBM in Houston, TX. This process has the following steps:

1. Find the errors in the product and fix them.

2. Find the cause of the error (i.e. the process error) and eliminate it.

3. Fix other faults in the process that allowed the error to go through unde-
tected.

4. Look for similar, as-yet-undetected, errors (both in the product and in
the process) and eliminate them too.

The result of this process was that the detection and elimination of errors
was shifted considerably up-front in the development process. To express
this numerically: 85 percent of all errors were found before the code was
integrated in the system (pre-built); whereas only about 7 percent were
found through testing. We consider this ratio to be much more desirable
than that achieved in the London air traffic system mentioned in Chapter 3.

The above-mentioned defect prevention process relies on a careful causal
analysis of the defects observed. The danger exists that, in spite of significant
efforts, each team will come up with a different nomenclature for problems and
causes. To cope with this, and in order to ease both data collection and analy-
sis, a general scheme has been devised within IBM for the classification of error
data. It is referred to as orthogonal defect classification by Ram Chillarege and
his co-authors [Chil92]. In this scheme, errors have five different attributes:

Defect type: nature of correction to be made.
Missing or incorrect: code to be added or changed.
Trigger: aspect surfacing error.

Source: stage in the process that caused error.
Impact: system property effected.

S M

For each of these attributes, standard values are chosen from a given set of
options, yielding mutually exclusive classes. The resulting classification is consis-
tent between different development stages and uniform across products. By
associating error types with development stages, conclusions can easily be drawn
on the health of the current process. For example, if error types such as ‘missing
function’ occur in late stages, then this would be reason to be alarmed. Such
alarm would not be necessary if the error were a timing problem. The feedback
produced this way can be used to improve the process while it is being executed.

5.3.7 Hoare’s hypothesis

While inspections and testing have become the V&V methods that are most
heavily used in practice, program proving has been received with the great-
est expectations, both from researchers and from practitioners. Of all the

approaches discussed, Hoare’s method [Hoar69, Hoar72] is by far the most
popular. Hoare’s claims are reflected in the following hypothesis.

Proving of programs solves the problems of correctness, documentation,
and compatibility. (H10)

Applicability Inspections are people-intensive and people-dependent.
Testing only covers particular cases of the input domain. Program proving
has the promise that it can make statements with respect to the entire input
domain of a program. For the purpose of program proving the term cor-
rectness has been given specific definitions, as follows:

® Partial correctness: the program produces correct output for those cases
in which it terminates.

m Total correctness: the program terminates and produces correct output
for all points in the input domain.

A proof of correctness compares the program text with a specification of
the intended input—output relationship. For Hoare-type proofs this specifi-
cation has the form of input and output assertions, also referred to as pre-
and post-conditions. In his notation

P{OJR

P is the assertion that has to be true before the program Q is initiated, and R
is the assertion that will be true on its completion. For programs with loops,
loop invariants are required additionally. The pre-condition P and the post-
condition R, possibly augmented by loop invariants, can be considered as a
complement to the specification or the specification itself. They can be closely
associated with the code and serve as its documentation. If each module has
an exact description of its input and output, this information can be used to
check the compatibility between modules. We will not discuss the termination
problem. Often the term verification is used for formal proofs only.

Evidence In the years up to around 1990, program proofs were mainly per-
formed for small examples, typical examples being integer division, the
factorial function, or the manipulation of data structures such as set inser-
tion or array sorting. In the array sorting example provided by Hoare
[Hoar71], the author’s manual proof was only concerned with a partial
property, i.e. that the elements in the output array were either equal or in
ascending order. He did not consider it necessary to prove that the output
was a permutation of the input values. Many automatic proving systems, so-
called verifiers, have been built using Hoare’s ideas. In addition to the minor
and temporary problem that the machine time needed for a proof is quite
extensive, there are many more general problems: it may be quite difficult to

113

S91109Y3 119y} pue sme) a)1gedljddy ‘

UOI1BD1JII9A D11R]S pue uoljepljeA ‘ E

find assertions for programs that are more than toy examples; even if asser-
tions are found, they have to be derived by an independent thought process —
otherwise the danger exists that they contain the same misconceptions about
the problem or the solution; finally, a typical proof may become much longer
than the text of the program itself. The question then is, ‘How does one
verify the proof?” This problem was encountered by one of the first develop-
ers of a verifier, Eduard Marmier [Marm74] from ETH Zurich. He made the
following observation: ‘Either the proof was trivial, then I could do it by
hand. If it was not trivial, and the machine took hours to find it, then I really
felt insecure about its correctness.’

During the last decade, very powerful verifiers [Kauf97, Reif95] have been
developed that allow proofs for programs comprising more than a few LOC.
The most realistic approach is referred to as interactive proof generation. In
this, an overall strategy for the proof is first developed by a human specialist
using a computer-based logic system to administer specifications and code, to
check type consistency, to derive verification conditions, and to prove individ-
ual lemmas. During the proof process additional axioms may be added to the
logical base in order for the proof to proceed. Errors detected in the code or
in the specification are corrected and the proof steps are repeated. Unchanged
parts of the proof are reused. A realistic estimate of the human effort
involved in an interactive proof can be derived from an example given in
[Reif99]. As part of the EU-funded VSE project, about two person years
(rather than two person days or weeks!) were spent on the proof of a single
application consisting of seven KLOC with an accompanying formal specifi-
cation of about 5000 lines. For safety-critical applications such an effort may
be well justified. As a consequence of the Hetzel-Myers law given above, it
should not be the only verification method used, however.

A proof can only ensure correctness relative to the specification, i.e. the
assertions given. If a formal specification comprises 5000 lines or more it has
to be considered as a development artifact in its own right. To assume that it
is error-free is not realistic. Above all, there is no formal way to determine
whether it is semantically correct. This can only be ascertained by applying
an independent thought process, i.e. by performing an inspection. In a prac-
tical situation one may argue that the resources needed for an inspection of
the formal specification could be more efficiently applied to an inspection of
the source code. As for the Hoare example mentioned above, a verification
condition may be imprecise, i.e. it does not exactly describe all values, but
some properties of the intended function only. To perform a proof on this
basis may be quite useful, but it should not be confused with a proof of cor-
rectness. Related to formal proofs are assertions that are added at critical
points in a program to be checked at runtime. This can help to restrict a pro-
gram so that it does not execute any path that may cause damage.

Comment Although significant efforts have been spent on the subject of
formal proofs since Hoare’s initial papers, the practical value of this work is
still very limited. Even the official endorsement by some funding agencies,
such as is the case in the UK, has not helped. This has had the same effect as

IBM’s decision during the 1970s to make PL/I the obligatory language for
all internal software development. It certainly forced all arguments against
this approach into the open. Eventually the decision had to be rescinded.

5.4 More on validation and static verification

5.4.1 Formal analysis of code

The source code of any program can be viewed as a document in a formal
notation. As such it can be analyzed by computers. This analysis can be
very extensive — the limits depend on the type of language used. For all lan-
guages, a syntactic analysis is possible. It checks whether the program’s text
fulfills certain criteria of well-formedness, the syntactic rules describing
which can be separated into context-free and context-dependent rules. For a
language of the Pascal type the following criteria have to be fulfilled if the
program text is compilable:

all identifiers are declared;

expressions, assignments, and parameters observe the respective type rules;
indices of arrays and fields in a record are consistent with their declaration;
a function name receives a value assignment.

While all compilers perform a syntax check, semantic checking is usually
optional. In the case of Pascal, its semantic rules define whether a program
is executable. Examples of semantic rules include the following:

m the program has at least one executable path;

m all results and intermediate results of arithmetic operations are repre-
sentable on the machine that will execute the program;

m all variables used on the right side of assignments have obtained a value;

B index expressions do not exceed their defined range.

Usually this type of semantic error is not eliminated at compile time, but
rather is handled at run time by specifying assertions. More extensive
semantic checks as the ones described can be performed in languages that
support domain-dependent data elements and operations. The semantic
checks mentioned are a subset of what a formal verification system does.
They are easier for the user, however, since no dual specification is needed.
Any automatic analysis performed can assist inspections and considerably
reduce the needed human effort.

5.4.2 Static software visualization

To foster the understanding of a software system, the visualization of
selected properties is helpful. Visualization is understood as representation
in the form of two- or three-dimensional graphs, monochromatic or chro-

115

UOI1BD1JLIBA D1181S PUB UOIIBPI|RA UO 310

UOI1BD1JII9A D11R]S pue uoljepljeA ‘ o:\

matic images, or videos. Visualization has become affordable because of
high resolution display devices and appropriate software packages. The
representation in audio form (sonification) is an additional possibility, but
not important (yet) in this context. There are distinct advantages arising
from this mode of communication, namely:

m Exploitation of the full bandwidth of the human visual channel (which is
larger than can be exploited by alphanumeric data).

m Capability to perform associative pattern recognition.

B Random access to different parts of the visual representation.

®m Reaction to the attractive stimulus of certain colors.

Software visualization methods can be split into static and dynamic visuali-
zation. Static visualization normally exhibits properties that can be derived
without executing the software on a machine. The source code to be ana-
lyzed does not have to be executable.

Source

Interpretation
code P

Script

D
u View

Fig. 5-9 Static software visualization

Fig. 5-9 gives the structure of a static visualization system. Logically, it
consists of two parts: an analyzer and a visualizer. The analyzer extracts the
desired information from the source code. Depending on the information,
the source code may have to be parsed to discover its syntactic structure.
The analyzer may be directed by means of a set of parameters, the so-called
script. The visualizer extracts and presents this information according to a
particular interpretation. For each interpretation (or model) a different view
of the data is presented. The type of view chosen may be tree, network,
floor map, perspective pyramid or cone, Kiviat chart, line graph, histogram,
bar chart, pie chart, or other. Each of them may be two- or three-dimen-
sional, and monochrome or color.

Examples for properties to be visualized are the static structure of the
entire system or of each module, the size and structure metrics mentioned
above, the relations between variable definitions and use, the use relations
between modules, or the module change history. User interaction is
restricted to setting the parameters of the analyzer and to the selection of
views. Dynamic visualization will be discussed in the next chapter.

5.4.3 Model checking

Model checking is a promising formal method to support system verification.
It produces a finite set of state spaces and state transitions of a program and
evaluates them for liveness (reachability of path) and safety (deadlock free-
ness). The problem that the number of states may become extremely high
(state explosion) is treated by special languages, representations (binary deci-
sion diagrams), and abstractions. Model checking has been applied so far
mainly to hardware circuit designs (including processor chips) and communi-
cation protocols. It is expected that it can be very useful for non-ending
programs, i.e. programs that are best described by their state transitions
(deterministic finite automata). In a recent application [Clar94], Boolean
functions with more than 10109 states were handled. Given the appropriate
tools, model checking requires less skill in logic than program proving.

5.5 Examples and study material

5.5.1 Formal specification

In 1979, an attempt made by Manfred Broy and colleagues [Broy80] to
prove the correctness of the text-formatting program given in Fig. 4-15
turned out to be too difficult to achieve. A formal specification was devel-
oped, however, consisting of several interrelated recursive function
definitions. Fig. 5-10 shows the headers only of four of the functions. The
specification itself covered several pages. We shall skip the detailed logical
formulas, since we believe that readers will not gain much from trying to
understand them. Although the formal specification was developed with
knowledge of the program’s implementation, its structure deviates consider-
ably from the program code. As an example, it implies three complete scans
over the input file: one to check that no word is contained that is longer
than N characters; then a run to eliminate all CRs and redundant blanks;
and finally the conversion to the output format. No reasonable implementa-
tion would do that. That the recursive functions may have to be
implemented as loops is a minor detail.

The positive outcome to this study was that choosing the proper data
structure may be helpful to reduce the complexity of a problem and enable us
to get a better understanding of the requirements. After the problem is under-
stood correctly once, we may look for more efficient algorithms, and thus
become able to solve this and similar problems with less effort and with fewer

Jeualew Apnis pue sajdwex] ‘ E

UOI1BD1JII9A D11R]S pue uoljepljeA ‘ o:o

errors. Whether this goal has been achieved for the important area of text
processing, may be doubted. Although nobody including the authors of this
book can dispense with text processing systems these days, it has become
quite fashionable to complain about the quality of the system one uses.

funct editor = (string t: precond (t) string:
that string S: norm(t) = norm(S) = editcondition(S)

Where:

funct precond (string t) bool:
m(first(t)) = NL = V word w: w in t—length(w) < N
{describes the input, excludes words longer than N characters}

funct norm (string t) line
{eliminates all CR’s and redundant blanks}

funct editcondition (string S) bool
{describes output condition that every line has CR at beginning,
is as full as possible, but less than N characters long}

Fig. 5-10 Fraction of a formal specification

5.5.2 Design inspection

In this example, some guidelines and an elementary checklist will be given
for a design inspection. The application domain assumed is that of embed-
ded systems in the automotive industry. Representative software functions in
a car are the antilock braking system (ABS) and the electronic stability pro-
gram (ESP).

After the requirements inspection, which is not addressed here, the design
inspection is the key validation step. It will occur in stages, starting with the
high-level design. Following this, different parts of the low-level design will
be inspected in a single round of inspections. In the case of major problems,
re-inspections may be scheduled. Design inspections will involve the origina-
tor of the software design in question, the corresponding hardware
designer(s), the standards representative, one additional software designer,
and a moderator. The last four persons will receive the material to be
inspected, together with a checklist, either on paper or online. After one
week, the moderator will determine whether a meeting is needed. If so, he or
she will schedule the meeting.

Fig. 5-11 gives an example of a design inspection checklist, which may be
updated for every project. Experiences from other projects may be included,
or special considerations applicable to this project. After all the points
raised by the inspectors have been discussed with the original designer and
the moderator, the moderator will summarize the changes that have been
agreed upon.

Design aspect

Traceability
Architectural compliance

Functionality

Sample questions

Are all stated requirements addressed? How can they be traced?

Does design match with architectural framework established for
automotive software?

Are the algorithms that are proposed technically correct? Are all

functions totally defined (for the domain specified)? Are the safety
margins adequate? Are all special cases addressed?

Are the assumptions about the environment and the other modules
correctly stated and verified? Are parameter ranges correctly
specified?

Are applicable industry standards properly addressed?

Assumptions, limitations

Standards compliance
User interface Is the user interaction reduced to essentials? Is interface presented

in a standard manner?

Testability Can all test cases be specified? Can functional and operational tests
be planned?

Robustness Are all exceptions and faults (user, engine) identified and their
handling specified? Will software always restart automatically?

Performance Are response times specified and correctly estimated? Is resource
consumption (space, time) reasonable?

Readability Are functions localized? Is coupling minimized? Are design patterns
used where applicable?

Reusabilty Is optimum use made of available components? Are components

identified that will be reused elsewhere?
Documentation Is design documented at enough detail? Is the design notation

adequate and well-known within our organization?

Fig. 5-11 Design inspection checklist

5.5.3 Code inspection

This example complements the previous example with respect to code
inspections: it assumes that a design inspection and the necessary follow-up
actions have taken place. Code inspections will be scheduled for all modules
after they have been compiled without errors. Not more than five modules
will be inspected together. Participants in code inspections will be the owner
of the module, together with one senior and one junior programmer, and a
moderator. The junior programmer is assigned because of the training effect
achieved. The last three persons receive online access to the source code
with LOC and McCabe metrics provided by the code owner. A meeting is
only scheduled in the event of conflicting recommendations. Fig. 5-12 gives
an example of a checklist. The moderator ensures that agreed-to recommen-
dations are documented in a traceable fashion and decides whether a
re-inspection is needed.

Jeualew Apnis pue sajdwex] ‘ \:o

UOI1BD1JII9A D11R]S pue uoljepljeA ‘ g

Implementation aspect

Traceability

Compatibility
Embedding

Data types and formats

Concurrency
Initialization, termination

Data fields, buffers
Performance

Portability

Maintainability
Metrics

Sample questions

Is coding consistent with design? How can the consistency be
traced? In case of differences, does the design documentation have
to be changed?

Are all modules binary compatible with their environment? Are they
re-entrant and linkable?

Are all sensors and actuators correctly attached and controlled? Are
all sensors and actuators reset for every restart?

Are type and precision of all variables correct? Is double-precision
float always sufficient? Are overflows and underflows handled
properly?

Are all concurrent paths live (reachable) and safe (deadlock-free)?
Can they be properly tested?

Are all fields properly initialized? Do all loops terminate? How is
termination verified?

Are all data fields and buffers protected against overruns?

Are path-lengths and storage requirements in-line with the
estimates? In case of deviations, what is their impact?

Is the code platform-independent? Which environments need
special treatment?

Is the code modularly structured and self-documenting?

Are module sizes in the range of 300-700 LOC? Is the McCabe

complexity < 20? If not, why?

Fig. 5-12 Code inspection checklist

5.5.4 Static visualization

The following three figures illustrate the use of a modern visualization tech-
niques to gain information on the structure of a large system. This is a key
method to assist program understanding. It can be used to aid inspections,
and to ease maintenance and enhancements. Only the macroscopic views
are given here, but the visualization system offers a zoom function to allow
a closer look at the details. The application being visualized is a extension
of the ET++ framework, called MET++ [Acke96]. The visualization tool
was developed by Jorn Trilk [Tril98], who also provided the figures.!

Fig. 5-13 shows 30 (of 1550) classes of the system with their mutual
static method-calls interrelationship. Approximatley 300 methods are
involved. The classes have been arranged on the display by means of a clus-
tering algorithm. The relative position of two classes is an indication of
their affinity, in this case the static call frequency. All interconnections are
drawn as equally thin lines. In Fig. 5-14 those classes that have been
changed relative to the base system are highlighted, or in other words, the
unchanged classes are ‘ghosted’. Using this structuring technique, the com-
plexity of the picture is reduced considerably but the context is not lost
since it can be moved up into the foreground at any time.

1'We gratefully acknowledge his permission to republish them.

Fig. 5-13 Cluster with all classes

[N+ oo R e R

Fig. 5-14 Highlighting changed classes

Fig. 5-15 is an enhancement of part of the previous figure, with the
unchanged (ghosted) classes eliminated. The picture now visualizes a
dynamic property of the system. By varying the thickness of the connections,
it shows the run-time frequency of interactions between the eight classes.
The data have been produced by a profiling tool while executing the system,
and are visualized afterwards by means of a static visualization tool.

Jeualew Apnis pue sajdwex] ‘ §

—_
N
N

UOI1BD1JII9A D11R]S pue uoljepljeA ‘

e G B S

T i aa e | e main P—

Fig. 5-15 Frequency of interactions

5-1
5-2
5-3
5-4
5-5
5-6

5-7

Exercises

Explain the difference between validation and verification. What is
dynamic verification?

What are the reasons for the validity of Fagan’s law? What are the essential
parts of a Fagan-type inspection?

What are the essential results of Porter’s and Votta’s studies?

What is perspective-based reading and why is it of interest?

What lessons are expressed by the Hetzel-Myers law and why are they
important?

How is correctness understood in the case of program proving and what
are its limitations?

What are the advantages of a graphical versus a textual representation?

Testing or dynamic verification

Users don’t observe errors or faults. They observe execution failures.
H. Mills [Cobb90]

This chapter is dedicated to the subject of testing. It distinguishes between
functional verification and operational testing and shows how the different
methods of testing are founded, whether through empirical study or theo-
retical investigation.

6.1 Definitions and importance

Testing is the key method used for the dynamic verification of a program or
system. It does this by running a discrete set of test cases. The test cases are
suitably selected from a finite, but very large, input domain.! During testing
the actual behavior is compared with the intended or expected behavior.
The emphasis of software testing is (to validate and) to verify the design and
the initial construction. It is part of the development steps, not the manufac-
turing process. This is different to many other engineering products, where
the emphasis is on testing the correct reproduction. Testing can also serve as
a validation activity. It automatically has this effect, if satisfactory valida-
tion steps have not been taken before.

Debugging has the purpose of tracing a problem down to its source. It
starts with the known failure, i.e. a suspected error, and ends when the
piece of code is identified that needs to be changed in order to avoid the re-
occurrence of the failure. To be effective, debugging requires a thorough
understanding of the code. It is therefore usually performed by the code
developer. The necessary code change is called a correction or fix.

Testing can be used to verify any one of the user-oriented quality criteria
listed in Fig. 2-2. Typically, reliability testing has priority over all others and
most effort is spent on it. Reliability testing is intended to verify that a pro-

1 Although in mathematics we may deal frequently with infinite sets, this is never the case in
computing. Even what are called real numbers in some languages are represented by a finite set
of floating point numbers.

124

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

gram or system performs its intended function. The term function is used
here both in the colloquial and in the mathematical sense. For most pro-
grams, functional correctness has three aspects: the program terminates; it
produces the correct number of result items in the correct sequence; and the
value of each item is correct. This definition does not apply, however, to
non-terminating programs for which the sequence and the timing of events
is key and no results are produced as such, for example, the kernel of an
operating system or the input routine (message loop) of a graphic user inter-
face. In such a case, the abstraction of a mathematical function as a relation
of input and output values is not an adequate model for testing. The view
of a state machine is more appropriate. This case will not be included in the
following discussion unless stated explicitly.

Usability testing and performance measurements (efficiency testing) have
received significant attention in most industrial environments. This has not
always been the case for availability, installability, and robustness testing.
Safety and security testing is an area whose importance has grown signifi-
cantly over the last few years. All these tests have unique targets, follow
different procedures, and require special test cases or setups. They will not
be covered in the same detail here as reliability testing.

Test cases for reliability tests consist of input values and their expected
output. The input values may be valid or invalid, i.e. lie within the specified
input domain or not. If they are invalid, their purpose is to test robustness,
i.e. to force error messages. These test cases are called diagnostic test cases,
and may be accompanied by some handling instructions. ‘Good’ functional
test cases are those that reveal functional errors in a system. For perform-
ance tests, workloads play the role of test cases; for usability tests we need
task scripts. A test suite is a set of test cases intended for a specific test.

A test strategy defines the sequence in which test cases should be applied
— in general, tests may proceed bottom-up or top-down. In the case of
bottom-up testing, the individual modules of a system are tested first. What
is called module or unit test occurs before the system test. To test modules
outside of their system context, test drivers and module test cases are
needed. A test driver (or test harness) simulates the environment that is
needed in order to execute a module. In the case of top-down reliability
testing, the main paths through a system are first tested, which may require
that certain other paths are artificially circumvented. The coding necessary
to enforce this is referred to as test stubs. Later, the test stubs are removed
to reach and test individual modules.

Test methods for reliability testing can be divided into two major groups:
black-box and white-box testing. Black-box testing is based on the prod-
uct’s specification only. Beyond that, it assumes nothing. The tester is
‘blindfolded’. He has to assume the worst case, i.e. that all values of the cal-
culated function are obtained by looking up a large table. Black-box testing
is also referred to as specification-based or functional testing. A special case
of black-box testing is statistical or random testing. It even ignores the spec-
ification and arbitrarily selects valid or in valid test cases. White-box testing
assumes that the source code of the module or system to be tested is avail-

able, so that the tester can see how the specified function has been imple-
mented, and select the test cases accordingly. The tester uses this additional
information on the test object to make his or her tests more efficient. White-
box testing is also called program-based testing or structured testing.

6.2 General observations

Testing is the development step that moves a system from the drawing board
(albeit an electronic one) into operation, placing the product close to its pro-
duction environment. It usually begins in a controlled laboratory environment
and gradually moves out into the actual user environment. Testing is the
moment of truth for many developers: in all previous activities, assumptions
were made regarding the functions to be provided, the environment in which
the systems would operate, and about the skills and work habits of users;
during testing those assumptions are then ‘put to the test’. Testing is a verifi-
cation step executed before faults are known. Sometimes faults are detected,
sometimes not. Testing ends when a certain test coverage goal has been met. A
tester’s concern about a fault is usually limited to identifying the test case
showing the failure. This distinguishes testing from debugging.

A famous quote that expresses some people’s attitude is that of W. L. van
der Poel at the Garmisch conference [Naur69a]: ‘If you develop programs
systematically, you can dispense with testing altogether’. Although this hope
is shared by everybody, it has unfortunately, never been achieved. In practice,
testing cannot be obviated by any other effort, be it a most careful design,
construction, or formal analysis. Elimination of testing from the develop-
ment process just postpones the test with reality until the product moves into
production. Testing introduces the same degree of independence as described
for verification in the preceding chapter. In addition, test cases can be written
and applied by people who cannot perform other validations, because they
cannot read code or specifications. Testing puts the system or program in a
mockup of the intended operating environment, which helps to validate the
assumptions made about the environment, e.g. the compatibility with other
systems, and the skill level, work habits, and motivation of users.

As stated before, the correctness of a program must be understood with
respect to its intended function. Contrary to what happens in program prov-
ing, the intended function is normally not formally defined, and even if it is, it
is not the only yardstick. A specification is considered as the best possible tex-
tual definition of the intended function, but is usually only an incomplete
definition. It is not a revelation from above (deus ex machina), but a develop-
ment product like any other. Many aspects relevant to correctness are only
implicitly defined. Examples are such requirements as no unintended side-
effects on other routines, no overflows or underflows of the arithmetic, no
rounding errors, etc. The user may not have been aware that these problems
can occur, and if so, he or she assumed that they would be handled ‘properly’.
There may have been errors in the specification that were not detected in pre-
vious V&V steps. There may even be errors in the requirements definition

[ER
N
(9]

Suol}eAlasqo |elausn ‘

126

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

that did not show up before, meaning that the intended function has to be re-
interpreted or adjusted. In this case, testing becomes part of system
validation. Here the slogan ‘better late than never’ applies.

Testing is usually very expensive and labor-intensive, and in many projects
it amounts to over half the development effort. Most developers resent test-
ing because it can destroy the developer’s self-confidence or illusions. Many
projects suffer from the so-called ‘last bug syndrome’, which means that
developers are willing to swear an oath that the last bug has ‘just been
found’. Usually this type of oath is broken instantly, particularly if tests are
selected by people other than the developer. In the early years of our indus-
try, testing was often delegated to newcomers or less skilled colleagues, but
now it has become a professional activity in its own right. The test effort
consists of the human time needed to determine the test conditions that need
to be tested and to develop test cases for those conditions; the human and
machine time required to execute the tests; and the human time needed to
evaluate the test runs. Often not included is the time needed to correct the
errors and validate the fixes. For large test efforts, the test phase is a project
itself, requiring management of resources and the tracking of test progress.

The intellectual effort associated with testing is reflected in the selection of
test cases. Their execution and evaluation, i.e. the comparison of actual with
expected results, is a clerical effort and can be delegated to non-specialists.
The test selection is determined by the test method chosen. Test cases for a
black-box test can be contributed by non-programmers. For a white-box
test, the test case developer has to be able to understand the code. We can
compare white-box testing with tests in physics or chemistry. Here, we usu-
ally can see how big something is or what color it has, before we put it on a
scale or measure its temperature. We combine data from different modes of
observation to perform a test.

Exhaustive testing, i.e. executing a test case for every point in the input
domain, is usually prohibitive. The main purpose of test planning is there-
fore to find that subset of test cases that is most effective. The effectiveness
of testing can be expressed using the effort invested in testing in relation to
the results achieved, specifically the number and type of errors detected.
This is complemented by the assurance that certain types of errors do not
exist. Testing has the goal to verify all functions of a system and to detect
all errors down to a certain degree of severity. Certain errors may be
detectable in a production environment only, because the cost to create all
possible system configurations in a laboratory may be prohibitive, so it is
therefore customary that a limited number of copies are shipped to cus-
tomers who are willing to do additional testing (beta shipment).

The degree of severity of an error depends largely on the type of applica-
tion. For most applications, errors affecting the main function are very
critical, while typing errors in auxiliary messages are of low severity. A suc-
cessful test gives a certain, but limited, degree of assurance with respect to
the quality of the system. As stated before, the user-oriented criteria of
system quality can best be addressed through testing. Besides reliability and
robustness, this applies to efficiency, installability, and usability.

6.3 Applicable laws and their theories

6.3.1 Sackman’s first law

The two laws attributed to Sackman in this book are based on one of the
earliest empirical studies conducted with programmers [Sack68]. The prime
intention of this study was to prove the hypothesis that computers can be
used to make the programmer’s work more efficient. The result relevant for
this chapter concerns online debugging versus offline debugging.

Online debugging is more efficient than offline debugging. (L21)

Applicability This law can be considered as a commonplace today. When this
study was published in 1968, however, there were raging discussions not only
concerning the economics involved, but also regarding the potential negative
influence on programmer attitudes and work products. Sackman’s data clearly
showed that the economics were in favor of online debugging, even at the low
ratio of human costs versus machine cost effective then. The other arguments
were only gradually settled. In a conference in 1971 organized by one of the
authors (Endres) several participants took the position that online program-
ming would be detrimental and should not be encouraged - it would produce a
sloppy work style, enticing programmers to make fixes without careful consid-
eration of their consequences. The resulting style was referred to as
‘trial-and-error’ programming. The turn-around times of half a day or more
associated with batch runs for compilations and tests would force the program-
mer to invest more thinking into his or her code.

Evidence In Sackman’s study two groups of programmers participated:
group A consisted of 12 experienced programmers; and group B was made
up of nine beginners. Each group had two different tasks to solve:

A1: Interpreting algebraic expressions (using the Bauer-Samelson push-
down stack).

A2: Finding the only possible path through a 20 x 20 cell maze.

B1: Solving a cube puzzle (similar to the Rubic cube).

B2: Writing a sort routine.

The language to be used was a subset of Jovial. For the online environment,
access was provided to a timesharing system developed by the System
Development Corporation (SDC), which could be used through a teletype
terminal at any time of the day. For the offline (or batch) environment, the
turn-around time was arbitrarily fixed at two hours. This was better than
what was achievable in many laboratories, but was long enough to be felt.
Programming itself was done in offline mode. Debugging was defined as the
time interval between the first compilation without major errors, and the
time correct output was achieved.

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

128

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

Tasks Offline Online Ratio Offline Online Ratio
Al 50.2 34.5 0.69 907 1266 1.40
A2 12.3 4.0 0.32 191 229 1.20
B1 4.7 0.7 0.15 109 11 0.10
B2 13.6 9.2 0.67 875 290 0.33

Fig. 6-1 Offline versus online debugging

The results of the study are summarized in Fig. 6-1. For each task, the
three left-hand columns give the average time (in person hours) needed by
each participant for debugging; the right-hand columns gives the mean com-
puter time (in CPU minutes) expended by each participant. Only group A
uses more machine time for online debugging.

Theory The validity of this law is so obvious today that we were tempted
not to mention it at all. We included it, however, as an example of where
the essential parameters underlying the hypothesis have changed over time.
In this case, it was the relation between human costs and machine costs. In
1968, depending on the system used, a CPU hour may have been accounted
for with several thousand dollars and a programmer’s time with less than
US$50 per hour (in 1968 dollar values). Today, a PC with power in excess
of a 1968 timesharing system can be purchased for a few $1000 (at today’s
prices). Online debugging is not only more effective than offline debugging,
it allows the invoking of debugging tools interactively and causes no inter-
ruptions in the thought process, unless this is desired by the programmer.
The temptation to fall into a ‘code-and-fix’ style of development is the
greater the better the development environment is. It requires a conscious
decision not to fall back into this style.

6.3.2 Dijkstra’s law

The following law stated by Edsger Dijkstra [Dijk70] can be considered as
the most famous law on testing.

Testing can show the presence but not the absence of errors. (L22)

Applicability This law asserts the most basic limitation of software testing.
Unless an exhaustive test is performed, testing can not ensure that all errors
have been found. Like most results derived from mathematical reasoning, it
is negative in nature. While Dijkstra used this as an argument to concentrate
on mathematical methods (formal specifications and proofs), testing has
kept, and will keep, its unquestioned role in practice, at least for the foresee-
able future. Dijkstra’s law can never be used as an excuse not to test. This is
the dilemma of most mathematical contributions to computing. It may, how-

ever, be a deterrent, suited to demotivate testers further. It may also have
reduced the academic interest to study the scientific foundations of testing.

Evidence When quoted, the justification for Dijkstra’s law usually comes
from the reputation of its author. It is generally believed to be true. Since it
is really mathematical in nature, collecting evidence does not help much. As
in number theory, any mathematical law can be refuted only, but not con-
firmed by evidence. We will therefore present some arguments only (not a
proof!) why we think that it is true.

Theory Two approaches can be taken to explain Dijkstra’s law: one mathe-
matical, the other practical. Mathematically speaking, programs are
normally partial functions, i.e. they are defined for restricted domains only.
As shown in Fig. 6-2 for a two-dimensional function, the delineation of the
domains can be given by means of an arbitrarily complex function. In fact,
many programs derive their meaning just from calculating these delin-
eations. Moreover, the input domains need not be homogeneous (i.e. of the
same type), continuous (i.e. without holes), or contiguous (i.e. without
gaps). For instance, only distinct points of a sub-domain may be valid, e.g.
all even or all odd numbers.

Fig. 6-2 Contiguous input domains (two-dimensional)

Theoretically, any program can be represented in the format given in
Fig. 6-3. This is called the functional normal form for a program. This
format was introduced by John McCarthy as early as 1962 [McCa62].

f(xa J’) = bl (x’)’) - €1<x, Vs f);
bz (x, y) = ez(xa ¥, s

else > e (x,y, /)

Fig. 6-3 Functional normal form of a program

S91109Y3 119y} pue sme) a)1gedljddy ‘ \So

130

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

A two-dimensional function f{x, y), is shown, defined over 7 sub-domains.
The sub-domains are described by means of a predicate, b,(x, y). For each
predicate another value e(x, y, f) is calculated, where the term ¢, is a path
expression. Path expressions can be recursive expressions, i.e. containing a
reference to f(x, y). Normally, the sequence in which the predicates are writ-
ten is important. In that case, the predicate else designates the remainder of
some underlying ‘catch-all’ domain.

In the case of arithmetic calculations, the path expressions can normally
be expressed as polynomials. They may even be higher functions, e.g. the
Ackermann function, a case we shall ignore for the moment. If 7 test cases
are used, this is akin to determining a polynomial based on 7 points. Unless
the degree of the polynomial is given, there is an arbitrary set of functions
that have » points in common. Fig. 6-4 illustrates this by showing a set of
polynomials passing through two points. To be more precise, an infinite
number of polynomials passes through those points, including those that
have a higher degree. The latter oscillate at smaller intervals like the ones
shown. It is also possible that the path expressions are quite trivial. It could
consist merely of constants like true or false. Many query programs for
databases have this form. Using this view of programs it becomes clear that
testing is no more than searching for a needle in a haystack, unless more
information is known about the types and families of functions involved. A
method to convert entire Pascal programs into this form has been outlined
by one of the authors [Endr77]. The purely functional view of programs is a
helpful model to allow better understand testing, although practical pro-
grams will never be written in that form: for timing reasons, they will do
repeated calculations only once; and for space reasons, they will share
common expressions and routines whenever possible.

Fig. 6-4 A family of polynomials with two points in common.

The second approach is a pragmatic one. As stated before, if we look at
the program as a black-box, the worst-case assumption is that all results are

simply retrieved from a large table. We cannot assume that any connection or
relationship exists between the individual values. Even if we know that it is
not a table, program text may deviate from the specification in very unique
ways; it even may contain a facility to mark all paths taken by test cases, and
produce an invalid value in all other cases. This, by the way, is the methodol-
ogy applied to obtain code coverage data. From both arguments it follows
that black-box testing is very unsatisfactory indeed. In other words, Dijkstra’s
law is an excellent statement of the limitations of black-box testing.

6.3.3 Weinberg’s law

Weinberg’s work [Wein71], on which this law is based, dealt with psycholog-
ical aspects of programming. The law quoted here, is the most revealing part
of this work and became the basis for most approaches to quality assurance.

A developer is unsuited to test his or her code. (L23)

Applicability As soon as one accepts Weinberg’s law, independent testing at
some point becomes an imperative. In most situations the developer per-
forms at least part of the unit test. An alternative is the clean-room
approach, discussed later.

Evidence The point made by Weinberg’s law is seen again and again in
every project. Except for trivial cases, every programmer learns that imme-
diately after he or she feels that the code is free of errors, a second person
will discover errors.

Theory All explanations given for Fagan’s law in Chapter 5 also apply here.
Weinberg’s arguments are based on the psychological theory that human
beings always want to be honest with themselves. Therefore the developer is
compromised, i.e. blindfolded, with respect to his or her mistakes. If he or
she misunderstood the problem or implemented a wrong function he or she
can only test what has been developed. The misunderstanding can only be
removed by another person.

6.3.4 Pareto-Zipf-type laws

Pareto-type laws exist in many fields, and date back to the Italian economist
and engineer Vilfredo Pareto (1848-1923). This law was first described in a
publication in 1897 [Pare97]. Zipf’s law? is from linguistic and postulates
that many events (like the frequency of words in a language) have a loga-
rithmic distribution.

2 http://linkage.rockefeller.edu/wli/zipf/

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

132

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

Approximately 80 percent of defects come from 20 percent of modules. (L24)

Applicability The economical example of Pareto’s law at the time of its
publication was that 80 percent of the income is obtained by 20 percent of
the population. In more general terms it said that 80 percent of the desired
outcomes are (often) derived from 20 percent of the activities. Contrary to
other engineering fields, considerable care should be taken in software
when assuming a statistical normal distribution. This is particularly true
when dealing with software errors. It is simply wrong to assume that they
are close to being evenly distributed over any one of the following popula-
tions: all programmers in a team; all activities in a project, all statements of
a program, or all modules of a system. Wherever an author reported a dis-
tribution that was heavily skewed, we call this a Pareto-type law. As in
economics, Pareto’s law appears in several contexts.

Evidence The study done by one of the authors [Endr75] in 1974 was one
of the first major studies of software errors published. The study analyzed
about 740 problems of which about 430 were classified as software defects.
The problems had been discovered during internal tests (component and
system test) in about 500 modules of the DOS/VS operating system. The
following types of problems were not considered to be software defects:
machine errors, user errors, suggestions, duplicates and documentation
errors. The conclusions of the study were:

1. More than half of the errors were requirements and design errors.

2. Approximately 80 percent of the errors were found in 20 percent of
the modules.

3. Approximately 85 percent of the errors affected only a single module
(not multiple modules).

4. The frequency of errors was higher for small modules than for large
modules.

5. Changed code was more error-prone than new code.

It should be noted that several of the conclusions are consistent with some
of the others laws cited, namely with Boehm’s first law (see Chapter 2) and
with the basic Basili-Moller law (see Chapter 8). Exactly the same findings
were later reported by Myers [Myer79] and Moller [Moel85]. In Moller’s
case, the analysis was done for code developed by the Siemens corporation.
Other examples related to software and systems are from Adams [Adam84]
and Boehm [Boeh00a]. Adams states that 90 percent of system downtime
comes from 10 percent of the system defects. Boehm reports about a case
where 80 percent of the rework comes from 20 percent of the defects. A
recent study that again confirmed this law was reported by Fenton
[Fent00]. The data used originated from a telecommunications switching
system and came from Ericsson in Sweden. In that case, 20 percent of the
modules contained 60 percent of the errors.

Theory Pareto- or Zipf-type distributions have been observed again and
again. We do not really know why they exist. Obviously, some distributions
can be heavily skewed. In such a case, we should concentrate our efforts on
the ‘vital few, instead of the trivial many’ [Fent00].

6.3.5 Gray-Serlin law

A testing area with a long tradition of well-engineered methods is perform-
ance testing. In this field, modeling and measurement approaches complement
each other, as do hardware and software-oriented approaches, and system-
level and module-level activities. As a case in point, we would like to name a
law after two proponents of standard system-level benchmarks - Jim Gray
and Omri Serlin.

Performance testing benefits significantly from system-level benchmarks. (L25)

Applicability Performance analysis has a number of goals: it should show
bottlenecks and usage patterns, allow for the optimization of resources, and
determine the competitiveness of a system. Competitive comparisons are
usually based on price/performance, i.e. the ratio of price and performance.
Performance is normally expressed in terms of throughput, which means
work done per unit of time. Sometimes response time is the overriding crite-
rion. Many possibilities exist to define the work done by a computer or its
software. For the dominant commercial applications, transactions are a rep-
resentative work unit.

As with other validations, performance analysis can be done at different
stages of development. As part of the requirements definition, performance
studies should determine which requirements are reasonable. As soon as a
design or code is available, a static analysis can be done. The building of
models can help to support design decisions. Most valuable, however, are
measurements, which, as with reliability tests, are the encounter with real-
ity. Performance measurement can be performed on a module as well as at
the system level. The workloads, corresponding to the test cases in reliabil-
ity tests, have to be different for different levels. Only a measurement for a
specified workload and a specified configuration can say whether and how
well requirements are met. If workloads are used to compare different sys-
tems, they are referred to as benchmarks. Benchmarks can be internal or
external to a company. In the latter case they can be used to compare com-
peting systems. Performance evaluations are expensive in terms of skill and
effort needed, and hence are usually carried out too late.

Evidence Following an initiative by Jim Gray and colleagues in 19835, the
Transaction Processing Council (TPC) was founded in 1988 and led initially
by Omri Serlin. This industry consortium was soon joined by some 30 other
companies. Based on earlier work by Gray, the TPC developed a series of
system-level benchmarks that were published by Gray [Gray91]. Initially,
three different benchmarks were defined:

S91109Y3 119y} pue sme) a)1gedljddy ‘ Q

134

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

B TPC-A: a simple banking transaction, with screen input and output and
several database accesses. The response time requirement is defined as
90 percent of transaction below two seconds. The configuration specifies
ten terminals per transaction/sec (tps).

TPC-B: a simplified version of TPC-A with lower permanent storage.
TPC-C: an order entry application with a mix of interactive and batch
transactions. It is roughly ten times as complex as TPC-A.

In the meantime, additional benchmarks have been defined, such as TPC-W
for Web applications. Contrary to other benchmarks, the TPC benchmarks
imply a specific computer configuration (storage capacity, number of termi-
nals). As a consequence, these benchmarks allow price/performance
comparisons. These can be expressed as dollars per transaction/sec ($/tps).
The TPC workload is used for comparisons throughout the industry today.
According to information provided by the Transaction Processing Council,?
the price/performance range measured and published for TPC-A extends from
33 tps to 3692 tps, with costs of $25,500 and $4,873, respectively. A similar
role is played by the SAP benchmarks used to measure the ERP application
R/3 for different processors and database systems. The SPEC benchmark
(Standard Performance Evaluation Corporation) is limited to the evaluation of
processors. The acceptance of benchmarks is not equally spread in all areas,
for example, the area of database systems is poorly developed [Jone00].

Theory Measurements are only meaningful if compared against a yardstick,
which can be an earlier measurement or a competitive system. Application-
level benchmarks make measurements more meaningful from a user’s
perspective, thus also helping the system developer. Competition and
progress are stimulated if there is a clear yardstick to measure against.

6.3.6 Nielsen—Norman law

Besides performance, usability is the other requirement that receives high
attention in many environments. One often hears excuses, however, that
usability cannot be treated with the same rigor as functionality, reliability or
performance. The fact that usability can be approached in an engineering
fashion, is expressed by the following law named after two well-known pio-
neers in this field — Jacob Nielsen and Doug Norman.

Usability is quantifiable. (L26)

Applicability Today most software products have a graphical user interface
that determines mainly the external impression of the system (i.e. its look
and feel). Whether a system is usable is not just a question of the external

3 http://www.tpc.org/

interface. As stated in Fig. 2-1, usability is a measure of how well a system
is adapted to the skills and the preferences of the intended users. As for all
other design criteria, the attainment of this goal must be controlled during
the entire design process. Early steps in this direction are usability inspec-
tions or walkthroughs, which can be based on the design specification or
the code. The most important step is the usability test, which can be based
on a prototype or based on the real system. Very often the main reason why
a prototype is developed is to test it with potential users. As in the case of
performance measurements, the proper execution of usability tests requires
a certain amount of skill and effort. They are therefore often conducted too
late, or not at all. Jacob Nielsen’s book [Niel94] and a joint paper by Jacob
Nielsen and Doug Norman [Niel00] explain in more detail why the neglect
of usability efforts can become critical.

Evidence There are many ways to determine usability. The simplest form is
to ask users to perform the intended tasks while developers are watching.
This has been eye-opening for many developers, who have asked the users to
stop and come back the next day, allowing them to change the system
overnight. Usability tests can be more valuable if they are planned and setup
in a consistent way such that they can be repeatable. This requires some
well-defined tasks and equipment for the collection of data, which is usually
achieved via a special usability laboratory. Extensive usability tests have been
performed by several software developers, for example, IBM, Microsoft, and
SAP. Typically, the following four items have been measured quantitatively:

B Success rate: number of given tasks performed without error and within
time limit (measured in percent).

B Time spend: time needed by each test person to complete given task suc-
cessfully (in min).

B Error frequency: number and type of errors made while solving a given
task.

B Help incidents: number and type of additional information or tools
requested.

As with performance data, these numbers have meaning only if they are put in
relation to another set of numbers. These can come from a comparison to a ref-
erence product, be it a previous version of the same product or a competitive
product. Also the difference between a first and a second session can be of
interest, which is usually taken as an indication for the ease of learning. Besides
these quantitative data, other information can easily be collected. Video record-
ings of the user actions can be very valuable particularly if the users have been
asked to think aloud about what they are doing. Any subjective impressions
should be documented as well.

Theory The usability of a system is quantifiable if we consider humans as
part of the system. They have to be observed while performing certain
tasks, which have to be meaningful and representative. The differences

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

136

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

between humans can and should be factored out by either varying the tasks
while the rest of the system is kept constant, or varying the system while the
tasks are fixed. Besides the time needed for the task and success ratios, the
attitudes and preferences expressed are valuable information as well.

Comment Measuring human attitudes and preferences is treated with dis-
dain by many scientists. Computing, like most social sciences, can no longer
do without it. To make these measurements meaningful, a number of criteria
should be observed: first, the participants should be selected carefully to be
representative of the user community, and should volunteer for the experi-
ment; second, the groups should be large enough, so that the individual
performance does not show through or influence the results too much; and
finally, the test should be set up as a controlled experiment, meaning that the
number of variables, independent and dependent, should be kept low.

6.3.7 Gutjahr’s hypothesis

The following hypothesis regarding white-box (program-based) testing has
been known intuitively for quite some time, but has been formulated only
recently by Gutjahr [Gutj99].

Partition testing is more effective than random testing. (H11)

Applicability Most authors that have published on software testing took
the position that the poorest testing method is random testing. Random
testing is the equivalent of unsystematic testing. Its advantage is that test
cases can be generated mechanically, e.g. by using a random number gener-
ator. The problem of random testing is that it is normally very difficult to
obtain the expected results. This is referred to as the oracle problem, to be
discussed later. Partition testing is the term used to designate any method
that breaks up the input domain into multiple sub-domains or partitions. In
fact, all white-box testing methods do this.

Evidence Gutjahr’s theoretical study tries to settle a controversy originally
raised by Duran and Ntafos [Dura84] and Hamlet [Haml90]. These authors
had developed simulation models showing that the probability to detect
errors by random testing approaches or even exceeds the probability to detect
errors by partition testing if the number of partitions is large. The analysis
done by Gutjahr shows that partitions chosen based on the program’s text are
likely to invoke an identical processing of the input data from the correspon-
ding sub-domain, i.e. the same path expression in the sense of Fig. 6-3. If at
least one test case has been chosen per partition, every path expression has
been covered at least once. This will not be the case, however, for randomly
selected partitions.

6.3.8 Weyuker’s hypothesis

Elaine Weyuker and her colleagues have studied different test approaches in
detail [Weyu88], [Fran93]. From their results we present the following
hypothesis regarding coverage criteria for white-box testing:

The adequacy of a coverage criterion can only be intuitively defined. (H12)

Applicability As stated before, white-box or program-based testing is the only
approach where it is meaningful to look for some criteria to logically restrict
the number of test cases to be run. Black-box or specification-based testing is
needed to verify the consistency of specification and implementation. The most
popular coverage criteria for white-box testing are listed in Fig. 6-5.

Criterion Coverage to be achieved Abbreviation
Statement Every statement (or instruction) at least once G
Branch Every branch (or segment) at least once (o
Dataflow Enough paths to cover data dependencies Cy
Loop Enough paths to achieve k loop iterations C,
Path All paths C,

Fig. 6-5 Test coverage criteria

Evidence The studies done by Weyuker and others have postulated that a
relationship exists between the coverage criteria listed in Fig. 6-5. This rela-
tionship is as follows: a test suite T that satisfies criterion C also satisfies
criterion C'. For the criteria C and C' this is a relationship, i.e. a partial
order, whose essence can be described by words like ‘covers’, ‘partitions’, or
‘subsumes’. The meanings of these words are as follows:

m Covers: the individual segments of the program’s text are invoked in a
similar way and to a similar degree.

B Partitions: the input domain of the program is split up in a similar fash-
ion into disjointed sub-domains.

B Subsumes: the property includes the other property as a special case. It is
more comprehensive.

Fig. 6-6 represents graphically the above relation in lattice form. In the
figure, C, is the lowest criterion; C, subsumes Cy; C, and C, are higher than
C,, but not comparable among each other; and C_ is the top of the lattice. The
most important point, however, is that the adequacy of a coverage criterion for
the detection of errors cannot be stated formally. We assume intuitively that a
higher criterion is more adequate than a lower one. Any explicit relationship
between coverage and error detection would mean that we have a fixed distri-
bution of errors over all statements or all paths, which is clearly not the case.

S91109Y3 119y} pue sme) a)1gedljddy ‘ E

138

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

For a specific type of dataflow coverage (all definition-use sub-paths),
Weyuker [Weyu93] showed that about twice as many test cases are needed
compared to a pure statement coverage (C,). In general, for the definition of
a test suite the actual number of test cases is secondary. A test suite satisfy-
ing the higher coverage criterion may consist of fewer test cases than the
one satisfying the lower criterion. How a test suite is built may be influ-
enced by other considerations.

Fig. 6-6 Relationship of coverage criteria

6.3.9 Endres—Glatthaar hypothesis

After all the negative results on testing, we would like to add one very spe-
cific positive result that builds on the view of programs that has emerged so
far. It is presented in order to explain an example given below.

The test suite needed to verify an arithmetic path expression can be determined. (H13)

Applicability Path coverage can only be achieved in those cases where the
number of paths can be determined. This is not possible, however, if the
number of paths depends on input values. Many authors have suggested
that at least one test case per path should be chosen. It is easy to show that
this is not enough. One has only to imagine that instead of an assignment
Z := x X y the statement z := x + y is encountered. A test case with the input
values (x := 2, y := 2) will not reveal the error.

Evidence A paper by Endres and Glatthaar [Endr78] suggests how test
cases can be found to test the correctness of arithmetic path expressions. As
shown in Fig. 6-3, the path expression is a formula consisting of polynomial

elements and recursive calls. If the degree of the polynomial and the number
of recursive calls can be predetermined, test cases can be selected that deter-
mine the coefficients of the expression. The specific function within the
class can be determined by a finite number of points. The predetermination
of the degree (and the number of recursive calls) is the key point. This has
to occur by means other than testing, e.g. through inspections.

As an example, a polynomial with one independent variable v and degree
k can be expressed in the following way:

flv)=apk +a, v+ .. +av+a,
An individual member of this class is determined if the coefficients a,, through a,
are determined. By using k+1 value pairs <v, f>, we obtain k+1 linear equations
that can be solved for the k+1 unknowns 4, through a,. Hence the number of
test cases needed is k+1. If any k test cases are chosen arbitrarily, the fact that
the determinant of the coefficients has to be different from zero leads to a con-
dition for the k+1™ test case. More details are given in an example below.

Comment The key problem to be addressed by any theory of testing is the
delineation of sub-domains. This has been emphasized in several well-
known papers by Goodenough and Gerhart [Good75], Howden [Howd76],
and Weyuker [Weyu80].

6.3.10 Hamlet’s hypothesis

We will conclude this section with a very practical hypothesis on reliability
testing. Its wording is due to Richard Hamlet [Haml90].

Suspicion-based testing can be more effective than most other approaches. (H14)

Applicability Previous discussions have shown how difficult it is to derive
‘good’ test cases for either the black-box or the white-box tests. The pur-
pose of test cases is to detect errors. Test runs that only satisfy some
coverage goal and do not reveal errors are a waste of resources and should
be avoided. Other criteria have to be added to make testing more effective.
Hamlet’s hypothesis certainly points in the right direction.

Evidence Following the suggestion by Hamlet, test cases should be written
specifically to cover routines with the following properties:

written by inexperienced programmers;

a history of failures;

failed in inspections and substantially modified late in the development cycle;
late design change, introduced when most of the coding was complete;

the designer or coder feels uneasy about it.

S91109Y3 119y} pue sme) a)1gedljddy ‘ @

140

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

Practical evidence clearly confirms that the history of a module may be more
often an indicator for trouble than its structure. Structure may have an effect,
but this effect may be overwritten totally by history. The uneven distributions
leading to the Pareto-type laws mentioned above, show that the skew is sig-
nificant. In addition, the analysis of error frequencies, such as the one
published by one of the authors [Endr75], can lead to more test criteria. Two
error types that come to mind immediately are lack of variable initialization
and boundary errors, i.e. calculations of ranges that are off by a value of one.

6.4 More on testing

In the literature and in practice, there are many methods and techniques for
testing. We shall discuss a few that have not been adequately addressed earlier.

6.4.1 Compiler validation

Compilers are an example of popular software systems for which we have a
high level of trust. One reason is that the input as well as the expected
output are usually defined precisely. Another reason is that the theory, the
methods, and the tools available for the construction of compilers are well
advanced when compared with other applications. Last, but not least,
formal procedures have been established for the validation of compilers.

The initiative for the establishment of a compiler validation process has been
taken by government agencies for those programming languages that have rele-
vance for government applications. Languages for which validation procedures
exist are COBOL, Jovial, Pascal, and Ada. The goal is to demonstrate through
testing that the compiler conforms to a standard definition of the language and
its implementation. Sometimes not only the compiler but its entire execution
environment are subject to validation. The test is executed under the auspices
of a certification authority. The compiler validation process fosters the defini-
tion of reliable interfaces. It is highly desirable to extend this idea into other
areas, such as text processing, databases, and cryptographic services.

6.4.2 Test planning and test case development

As testing requires considerable effort it has to be planned, otherwise the work
needed is not done, done too late, or done inefficiently. Too often it is a mere
afterthought. It is typical that when code is ready to be tested, no test cases are
available or people available that are capable to run them. Sometimes project
managers have the illusion that test cases are something one collects. However,
test cases that happen to exist may be a useful complement to planned test
cases, but cannot replace them. The effort needed to make them usable may be
greater than the effort needed to develop new ones. Their only advantage is
that they have been created without knowledge of the system’s internals. This
goal can also be achieved with new test cases if implemented strictly based on
the specifications (the black-box approach).

Depending on the testing strategy, there may be a need for unit, integra-
tion, component and system test cases. There should be both small test
cases and large test cases. Small test cases cover a single function only and
do not require many prerequisite functions or other system resources. Large
test cases should simultaneously exercise many functions. They are most
useful for regression tests. Only regression tests can benefit from existing
test cases, which may come from previous versions of the product, or from
similar products.

Test case input can often be generated automatically. The biggest prob-
lem is normally to produce the expected output. This is referred to as the
oracle problem (hoping that a mythical priestess will help). If the expected
results are not available ahead of time the evaluation of the output may
take excessive amounts of time or will be inaccurate. If the expected output
cannot be developed, this is an indication that the design specification may
lack detail. Even if the specifications are precise, however, the oracle prob-
lem may still remain. The very reason for having this program, may be that
it is too difficult to calculate the results by hand. The oracle problem is less
severe in the case of diagnostic test cases, which are intended to test the
error detection and recovery facilities (robustness) of the system. As dis-
cussed before, some test cases should strictly rely on the specification (for
black-box testing). Others will be developed with a coverage goal in mind
(for white-box testing). Special attention needs to be given to stress tests.

6.4.3 Test support and automation

Testing is very stressful for humans. On the other hand, however, it is work
that can be easily distributed among several people. These are two prerequisites
that make automation desirable and important. Tools can be classified in test
case generators (mentioned before), test drivers (or harnesses), capture/replay
systems, assertion checkers, file comparators, and coverage analyzers.

Test tools Test object

Test generator,
test driver,

System or
capture/replay,
—> X program to
file comparator,
be tested
coverage
analysator

Problem

Test data
data

Fig. 6-7 Test automation

SU1359] UO IO ‘ E

142

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

As indicated in Fig. 6-7, most of the test tools are usually hosted on a system
different to the one being tested, although, test tools and test objects can reside
on the same hardware system as well, provided they are properly separated.
What is designated as test data can comprise actual test cases with expected
results, or descriptive data from which test cases are generated, or test plans
according to which test suites are selected. The test object may be equipped
with probes or not, depending on the detailed level of feedback needed. If prop-
erly equipped with tools, all regression tests may be run fully unattended.
Usability tests require different tools, e.g. video cameras. Performance tests
make use of software or hardware monitors, among other tools.

6.4.4 Clean-room and other testing strategies

The first step towards a mature software organization is usually the estab-
lishment of an independent test department. This allows the development of
test plans and test cases in parallel with the code. It also ensures that tests
are controlled and repeatable. A trade-off is involved in the decision when
the test department takes over. In most organizations the developers per-
form the unit test themselves. In these cases, the test department is only
concerned with external test cases, i.e. test cases that can be developed
based on the external specification. The test department runs tests, reports
problems (failures), and verifies fixes. The developers debug their code and
make fixes.

Test group
i Test B .
case -
Test Failure
' system report '
: 5 Fault? E
System / \
H update ! H
: ; Yes N Reply |
: System Module
' Integration basis fixes Development !
1 group ' group

Fig. 6-8 Flow of information during test

Fig. 6-8 gives an example of a typical organizational setup during soft-
ware testing. The communication between the test group and developers
occurs by means of failure reports. The developer decides whether the fail-
ure is caused by a fault of the system, i.e. if there is an error in the code or
in the documentation that has to be corrected. Test cases may fail because
of test case errors or handling (setup) errors. The integration department
integrates fixes and builds new test systems.

A much-publicized approach in this context is clean-room development
as introduced by Harlan Mills [Mill87]. In this, developers are not sup-
posed to test their own code: all testing, including unit testing, is done by
independent testers. In some cases the clean-room approach became suc-
cessful because it introduced independent testing for the first time.

6.4.5 Testing of object-oriented or real-time software

From the preceding discussions it should have become obvious that several
system or software types require special attention with respect to testing.
Examples are object-oriented and real-time systems.

For object-oriented programs, inheritance, polymorphism, and dynamic
binding raise particular challenges. The static structure of the code may
differ considerably from the dynamic structure. Testing cannot be based
on the class structure only, be it concrete or abstract classes, but has to
take into account the objects instantiated by the classes. Objects refer to
other objects implicitly and use connections that only exist at run time. A
state-based testing approach is required, which, as indicated in Fig. 6-9, is
similar to functional testing, but has to be augmented by additional input
and output [Turn93].

Process

Specific tests may have to be set up to cover so-called message-to-mes-
sage paths. Methods inherited from higher classes have to be retested if
reused in a different environment. Real-time systems are an example where
it is totally inadequate to view programs as only mathematical functions

that relate some input with some output data. The sequence and the timing
of operations are the key properties to be verified.

Fig. 6-9 State-based testing

143

Su13S931 UO Ao ‘

144

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

6.4.6 Use of assertions and code-embedded test aids

The concept of assertions originated with program proving. It seems that an
extremely useful application of assertions can be found in software testing.
In this context, assertions are conditions or invariants placed at critical
points in a program. They are evaluated every time the program reaches this
point with the current state of the variables. If the assertions are not met,
this fact is recorded or the program is interrupted. The use of assertions is
an example of a defensive style of programming. It is always advisable to
check the ranges of parameters when invoking a procedure, to test counters
against overflow, floating point numbers against underflow, the validity of
pointers, and the integrity of data. Such checks can be done in any lan-
guage. Placing assertions has to be supported by the programming language
used. Eiffel is a language that gains its strength from this feature.

Many other hooks or aids can be embedded into code during testing and
debugging. This can be simple print commands to produce selective output
of variables or intermediate results. It can be a whole set of probes inserted
to monitor the execution of the system. Typically these tests aids are
removed before the code is shipped to customers. Assertions may be left in
the shipped code, as their time and space burden is usually negligible.

6.4.7 Dynamic software visualization

Contrary to static visualization, dynamic visualization requires that the pro-
gram or system can be executed. For the purpose of data extraction either
the source code is extended manually (annotated) or probes are inserted
into the environment in which the object code is executed (instrumented).
Fig. 6-10 gives an overview of a dynamic software visualization system.

The first step (compilation) may occur ahead of time, and may require
the building of a running system, consisting of many modules. Many com-
pilers have a debug mode which generates additional information (e.g. a
symbol table) that may be used if the data to be visualized refers to source-
code related objects. The term instrumentation implies that probes are set at
the operating system or hardware level to record certain events. If this is not
sufficient, the source code is extended (annotated) accordingly. During the
execution, a script determines which events and data values are to be col-
lected about the program or system under investigation. These records can
either be displayed in real-time (animated) or visualized at any later point in
time. For each animation or visualization the collected data may be inter-
preted in a certain fashion resulting in distinct views of the system.

Among the properties to be displayed are the dynamic structure of the
system, the temporal relationships between events, the type and frequency
of object and data accesses, the change of values or data structures over
time, the resource consumption, and the user interaction. The visualization
system itself can be disconnected, restarted, or put in slow-motion mode.
Dynamic visualization is a very powerful method that can help to better
understand the run-time behavior of a system. It is indispensable for the
efficient debugging of object-oriented and parallel programs and systems.

Source code Instrumentation Interpretation
Input Events,
data
Script \ *
Y N {

Instrumented
execution
environment

Y * Y

Object code Results View

Animator/
visualizer

Compiler
(debug mode)

Fig. 6-10 Dynamic software visualization

6.4.8 Operational profile

Operational profile is the term introduced by John Musa [Musa93] to
describe the probabilities with which functions of a system will be used after
delivery to customers. Musa uses this primarily to make reliability projec-
tions for large telecommunication systems. If these data are available early
enough they could be used to determine a test strategy. Unfortunately, so far
only the telecommunications industry has good data on usage. Fig. 6-11
gives an example of an operational profile, it is corresponding to what Musa
calls a functional profile. Other views could be organized by customer type,
individual user profile, or environmental conditions.

Input Domain Occurrence probability
b, 0.42
b, 0.21
b, 0.12
b, 0.07
b 0.18

v

Fig. 6-11 Operational profile

The input domains in this example are taken from Fig. 6-2, while the
occurrence probabilities express how often the individual sub-domains will
be invoked over a certain time period. The probabilities add up to 1.0. The
time period is not spelled out, but could be a day, a year, one thousand CPU
hours, or the life of the product.

145

Su13S931 UO Ao ‘

146

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

6.5 Examples and study material

6.5.1 Text formatting unit test

As stated earlier, the text-processing example can be used to demonstrate a
number of points. In Fig. 6-12, a small set of test cases is listed that could
be run against the program given in the previous chapter. For sake of read-
ability, the following special symbols are used to designate characters that
are otherwise not printable, namely ~ for blank, and / for the line feed (or
new line) character. The line length N of the output is assumed to be 3
(rather than 30). The right-hand column refers to the errors given before,
explaining why the actual output deviates from the expected output.

It is assumed that the message ‘alarm’ is produced by the Alarm routine,
and that the end-of-file indicator is properly generated for the output when-
ever the read routine encounters this indicator on input. The actual result
corresponds to the expected result in none of the test cases, with the possi-
ble exception of 7. The 16 test cases given are certainly less than adequate
to test this program. Both the statement and the branch coverage criteria
(Cy» C,) are reached, however. In addition, the example shows that the same
error (fault) may cause several test cases to fail. In the reporting, each
unsuccessful test case would be considered as a different problem (failure).
On the other hand, the same test case may be affected by multiple errors.

Test case Input Expected Actual Causing
output output error
1 ” / (no output) /” d1
2 N /(no output) /" d1
3 a /a /(no output) d4
4 an /a /"a d1
5 ~an /a /" "a d3
6 NANAAN / (no output) /"""/"" 16
7 aaaa /‘alarm’ /'alarm’ (correct)
8 aa” /aa /"aa d1
9 aaa /aaa /(no output) d4
10 aaa” /aaa //aaa d2
11 ~aaa” /aaa /" /aaa d1,d3
12 an"b” /a”b /~a”/b di,r6
13 ~a"bb /a/bb /" "a d1,d3,d4
14 a”bb /a/bb /" a d1,d4
15 a~bbb /a /bbb /"a d1,d4
16 ar™""b” /a”b /"~a”~/"b di,r6

Fig. 6-12 Unit test case suite (N = 3) with actual results

Although the above test cases can be used directly, they are really unit
test cases. Their use can be simplified by providing a test driver that allows
execution of all test cases in a single session.

6.5.2 Digital library system test

Based on the requirements model given in Figs 2-5-2-7, system-level test
cases can be specified. Fig. 6-13 gives an overview of a potential test case
suite for a system test. They are structured after the use cases in Fig. 2-5.
Only key input parameters are mentioned, and certain alternative test cases
are implicitly expressed in the expected results column. The results are
mainly expressed in the form of actions to be executed next. In practice
these actions will be given in the form of input parameters for a system
transaction. This way the test cases can be executed individually or in
sequence. In the latter case, they serve as integration test cases.

Test case Usecase Parametervalues Expected results
1 Enroll User: New Check data; insert into user database
2 User: Known Check data; update user database
3 Query User: New Suggest/perform enrollment
4 User: Known Check and perform query
5 Order User: New Suggest/perform enrollment
6 User: Known Confirm order if item offered, otherwise notify
that item not offered
7 Item: On stock Prepare shipment
8 Item: Not on stock Acquire item from publisher
9 Acquire Publisher: New Obtain conditions
10 Publisher: Known Request delivery; after receipt prepare catalog
entry for this item
11 Ship Item: Free-of-charge Perform shipment
12 Item: Chargeable Prepare billing; perform shipment
13 Bill Customer: Prepaying Deduct from account
14 Customer: Billable Send invoice; receive payment

Fig. 6-13 System test case suite

The specification of this test case suite raises at least one question regard-
ing the requirements model. It assumes that all users have to be enrolled
before they can perform a query or place an order. This may be too restric-
tive. It is technically feasible to allow users to enroll while they perform a
query or place an order. The two specifications are inconsistent in this
respect and should be brought in line. It is not shown that items will proba-
bly not be shipped and billed individually, but rather collected into one
package and one bill if shipped on the same day. Nor is a difference made
for the delivery of documents and services. The assumption is that online
access is provided in a similar fashion. The term shipment is still used in
both cases.

Jeualew Apnis pue sajdwex] ‘ E

148

UOI3BD1JIISA dIWRUAp 10 Suisal ‘

6.5.3 Arithmetic test suite

The following is a simplified version of an example given in [Endr78]. The
program to be tested is a function max(x, y) given by the following piece of
Pascal code:

function max(x, y: integer): integer;
begin if x>y then max := x else max := y en

In functional notation, this program would have the form:
flx,y)=b, = e, b, > e, where

bi:ix>y and e;:x;
by:x <y, ey

As a test neighborhood we chose the class of polynomials with two vari-
ables of degree 1. This class can be represented by the following equation:

flx,y) =a;xx XyXa,Xx +a; Xy+a,

To determine the coefficients a, through a;, a total of four test cases are
needed. We can characterize this set as follows:

TS = {<x, y, f> li=1.4 & D(x,y) 20}

Here the suffixes are used to designate individual values from the range of
the independent variables x and y, and the dependent variable f. The nota-
tion D(x, y) is an abbreviation for the following determinant:

Xty %yl
X, 7Y, %9, 1
D(x,y) = X3 * V3 X33 1
X4 " Yy Xy Yy 1

If we pick three of the four test cases at random, then the determinant D(x,
y) results in a condition that the fourth test case has to fulfill. As an exam-
ple, we might choose the following values as the three first test cases:

{<1, 1, 1>, <2, 2, 2>, <3, 3, 3>}
The condition resulting from the determinant is

1 1 1 1
4 2 2 1
9 3 3 1+0

ST VR T VR

Solving the determinant leads to the inequality x, # y,. Combining this with
the path expressions b, gives the conditions that the fourth test case for each
path has to meet.

Exercises

6-1 Explain the difference between testing and debugging.

6-2 What s the content and purpose of a test plan?

6-3 What are the advantages of black-box versus white-box testing? What are
the limitations of white-box testing?

6-4 What is the difference between a test driver and a test stub? When are they
useful?

6-5 What is the practical implication of Dijkstra’s law and why is it valid?

6-6 Which test coverage measure is more comprehensive: statement or path
coverage? What does this relation imply?

6-7 What are performance benchmarks and why are they important?

6-8 How can usability be inspected and measured?

6-9 What is the purpose of compiler validation and how is it performed?

6-10 Correct the example program in Fig. 4-15 to obtain the expected test case
results.

Jeualew Apnis pue sajdwex] ‘ \%

System manufacturing,
distribution, and installation

Simple, elegant solutions are more effective, but they are much harder to

find than complex ones.
N. Wirth [Wirt85]

This chapter covers briefly the activities at the end of each development
project, i.e. manufacturing, distribution, and installation.

7.1 Definitions and importance

Manufacturing is the process that packages the outcome of the development
process into a format suitable for distribution and generates multiple
copies, if necessary. Distribution is a logistics process of shipping products
from the developer location to the actual user. The intermediate step may be
a distributor or distribution center on the developer’s side, and a central
support group on the user’s side. Some authors also refer to this part of the
product cycle as deployment or rollout, both terms still carrying somewhat
of a military connotation. The installation process finally converts the deliv-
erables into a usable application or system at the customer’s site.

In order to move a software or system product from the controlled
development environment to a genuine user’s workplace it has to be manu-
factured, distributed, and installed. Software’s unique advantages come to
bear in these very processes. Only an installed product is a complete prod-
uct, and only a complete product can produce the benefits expected or the
revenues anticipated.

7.2 General observations

In many classical engineering fields, the steps following development were
often treated as something trivial. Only when problems occurred did the
attitude change. Engineers designing cars, appliances, or chips have learned
that manufacturing aspects have to be taken into consideration in addition

to development trade-offs. Today, an integrated view prevails, i.e. manufac-
turing engineers are usually involved early in the design process. The same
lesson still needs to be learned in software and systems engineering. Very
few textbooks on software or computer systems engineering give this sub-
ject a systematic treatment.

In the computer industry, hardware products have been able to consider-
ably reduce their manufacturing costs over recent decades. Software
manufacturing has always had comparatively low costs, so the concern has
therefore been mainly on software development costs. Hardware develop-
ment costs used to be low compared to the hardware manufacturing costs.
The more hardware manufacturing costs fall, the higher the development
costs appear in comparison.

System products need to be packaged to be shipped. Shipping may occur
either as a pure hardware component (even including some microcode), as
hardware with supporting software, or as pure software. After this basic deci-
sion, other decisions follow. As far as practicable, hardware components are
assembled to be ready for use. The same is true if software is embedded, or
supports a specific hardware device only. For embedded software, the end user
may not even be aware that there is any software involved at all.

If software appears as a product in its own rights, it should be packaged
such that it can be installed with multiple hardware devices or systems. The key
determinants for a software product are its representation form and the
medium. The main representation forms are source code and object code.
Intermediate forms, like relocatable code, are less important today. Any elec-
tronic medium used to store data can also be used to store software. If software
is shipped independently of hardware, the medium has to be removable.

Distribution solves the problem of getting a product from A to B when
required and should take advantage of the users resources as little and as
late (‘just in time’) as possible. To achieve this goal, a certain infrastructure
is needed; distribution can occur prior to or after sale; the installation task
should always be minimized; and ideally every product should be ready for
use as delivered. This is not always achievable, or it may lead to consider-
able redundancies, i.e. things are delivered that are there already. For all
these activities, Wirth’s advice, as given in the chapter epigraph, applies.

7.3 Applicable laws and their theories

Instead of laws and hypotheses, this section offers some conjectures only.
This is because the problems and issues addressed here have seldom been
subject to systematic study.

7.3.1 Conjecture 1

The first activity to be concerned about in this context is software manufac-
turing. Its key problems are summarized by conjecture C1.

S91109Y3 119y} pue sme) a)1gedljddy ‘ E

uolle||eISUl puB ‘uolNguUISIp ‘Sulnidejnuew wWalsAg ‘ 5

For COTS products, costs and risks of manufacturing can approach those of
development. (C1)

Applicability With the advent of software products for the mass market it
became obvious that software manufacturing can no longer be seen as an
insignificant activity. The question arises of how software products should be
packaged so that thousands of copies can be made reliably and cheaply. In
early times, when storage space and costs were overriding factors, a product
had to be offered with a high number of selectable features. As soon as the
number of copies to be produced grew, the number of features had to be
reduced. They were lumped together to make ordering and shipping easier.

Evidence In the period where software was mainly needed for mainframes,
a standard software package typically consisted of some reels of magnetic
tape, plus several manuals. For the mass products that are sold through
retail stores, the glossy shrink-wrapped paper box has become the typical
form of appearance, containing some diskettes or, more recently compact
disks (CDs) and, at most, one manual.

The experience of one of the authors (Endres) in this respect goes back to
1966 and 1967. Several months prior to the completion of system test we
had to convince IBM marketing to order several mainframes for their four
distribution centers in order to be able to handle the later distribution work-
load. We then sent them test data to check out their procedures and
programs. It turned out that our proposed packaging did not suit them at all.
We had intended to distribute a disk-resident operating system on a remov-
able disk pack (which the customer would supply himself or order from the
software distribution center). To start the system generation tools supplied
on the disk, the customer would need a small deck of punched cards contain-
ing the Initial Program Load (IPL) program. We soon learned that
distributing five punched cards together with a disk pack to the expected
customer set would cost IBM around a million dollars. Fortunately, we con-
vinced the hardware developers to add a new microcoded instruction to all
processors to perform IPL from disk.

A more recent case is documented in a Microsoft press release [Hoch00],
stating that the company had to increase its production facility seven-fold
and that it rented about 500 trucks to deliver several million copies of
Windows 95 within days to retail stores in the USA. Since a million copies
were sold during the first four days, this was clearly a good investment.

7.3.2 Conjecture 2

Software distribution is not only an issue concerning the supplier of stan-
dard products. Every author of a useful software routine wants to find ways
to make his code available to other users.

Distribution ends where the customer wants it to end. (C2)

Applicability In many respects, software distribution can be considered as a
precursor and test case of electronic commerce. A distribution center has to
handle all activities described in Section 2.5.2 for digital libraries. A distri-
bution service is mainly concerned with the receipt of orders, the control of
the user’s authorization, the delivery of the requested product, the billing,
and the subsequent control of the license conditions (e.g. expiration date).
Sometimes installation and maintenance support is also provided by the
same organization.

Evidence Companies that develop software products are the originators for
the distribution of software. They may have centralized their distribution
activities or split them up by product type or by geographical regions. They
may distribute their products to corporate users, private users, re-distribu-
tors, or retail shops. Today, most software developing companies accept
orders through their homepage.

Many universities or state agencies have their own distribution centers.
They may distribute products they have developed to external customers, or
they may only handle the distributions within their own organization. An
example of the first group is the UNIX distribution center (BSD) of the
University of California at Berkeley; an example of the second is the Argonne
National Laboratory or the Academic Software Cooperation (ASKnet) in
Karlsruhe. Distribution centers serving large groups of internal users are usu-
ally justified by the price discounts obtainable for bulk orders. They also help
individuals in negotiating conditions with suppliers or in clarifying legal
issues. Some self-sufficient corporate users may by-pass distribution centers
and order directly from suppliers or retail stores. As are libraries, software
distribution centers are sometimes inundated by suppliers trying to find users
for their mediocre products. A distribution center is well advised to attend to
the needs of their customers rather than the selling wishes of suppliers.

7.3.3 Conjecture 3

A unique concern of the software industry is the ease and the existence of
software piracy. The current estimate of the industry is that, worldwide,
37 percent of all licensed software products are used illegally [BSA0O].

Prevention of software piracy by technical means is almost impossible. (€3)

Applicability Software piracy is such a widespread phenomenon that it cannot
be ignored. It is a problem not only in developing countries where the rate may
be as high as 90 percent, but also in developed countries, including the USA.
Our concern is not only about the revenue losses, but more about the attitude

S91109Y3 119y} pue sme) a)1gedljddy ‘ 5

uolle||eISUl puB ‘uolNguUISIp ‘Sulnidejnuew wWalsAg ‘ E

users take with respect to software. Users in this case are not only private per-
sons and students, but also industrial corporations and government agencies.

Evidence Many attempts have been made to solve this problem by technical
means. The following methods are ordered by increasing degree of protec-
tion achieved:

B Object-code only: the source code of a software product is only needed
by those customers who want to change or maintain the package. The
adaptation of the software to the hardware configuration can be done
with object code as well.

B Check for machine identification: traditionally, many software packages
were licensed for a specific CPU number. This situation can be assumed
whenever software is pre-installed on a machine when delivered.

m Check for software license number: most large software packages have a
license number assigned to them that is referred to in the license contract.
It is not given to people who acquired the product without a contract.

B Encoding and encryption: software can be encoded or encrypted like any
other data. The authorization of the user would require that a decryption
key is transferred, unless a public key system is installed. Decryption is an
additional step before the software can be used.

m Watermarking: watermarking is the method used to protect electronic
media by placing certain information into the document itself (steganogra-
phy). A watermark can be visible or invisible in the printed or displayed
form of the document. It gives the original owner the possibility of prov-
ing his or her ownership in the case that a specific copy reappears.

Most of the technical methods to prevent piracy have not been overly suc-
cessful. The supplier has to make a trade-off between the ease to obtain and
use the product versus the degree of protection achieved. Usually organiza-
tional or business means are quite effective as a way out. Many suppliers
split their products in to free and licensed parts or offer extended trial peri-
ods. Lowering the price or improving the support may also help.

7.3.4 Conjecture 4

A widespread technical concern of many software users is the problem of
installability. We referred to it in Fig. 2-1 as an important quality criterion.

Installability must be designed in. (Ca)

Applicability Ease of installability has been a concern of the software indus-
try from its beginning. The problem has gained importance as the usage of
computers has extended from professional to non-professional users. If the
installation process is not self-evident, it has to be verified as part of the
development process. This can occur through inspections as well as tests.

Evidence For mainframe systems, the installation of software was typically
performed by computer professionals. This task has since grown both in
numbers and in complexity. Within IBM, a major breakthrough in this
direction was achieved with a system called Small System Executive (SSX)
developed and shipped by the Boblingen IBM laboratory in 1982 [Gatz83].
The major aspects are summarized in Fig. 7-1.

Although supporting what would be called a mainframe today (IBM
4300 processors), the SSX approach features several innovations that
became the customary approach for the PC world about ten years later.
The most important aspect was that the extremely error-prone activity of
system generation could be eliminated entirely. This became possible
because storage costs had fallen to a point that they could be traded
against programmer time. The strict adherence to object-code, i.e. elimina-
tion of source code, simplified not only the installation task, but above all
the maintenance process. The other major installation simplification was
due to special hardware assistance, i.e. device sensing. This feature allows
the operating system to determine which peripheral devices are directly
(natively) attached to a processor and what its characteristics are.

Aspect SSX solution Previous solution

Distribution Single magnetic tape Multiple tapes or disk drives

Code format Object code only Partially source, partially object code

Generation None Several modules to be modified and compiled

Installation 4-5 hardware parameters About 30 hardware and software options to be
to be specified specified

Devices Automatically sensed To be specified individually

Applications Installed by prompter Manually selected and installed

Remote install Unattended over network Locally and by hand

Time needed 1-2 hours/system 4-8 hours/system

Fig. 7-1 Installation approach of SSX

Today, the installation of software products is still a major concern of
users, mainly because of the number of different systems involved. For an
industrial corporation or a research center it easily can involve some 10,000
systems. The most common ways to perform a software installation are:

B At the plant or at a central location: for most computers the operating
system and some basic applications are pre-installed this way.

B Locally by hand: most user specific applications are installed on the
local computer using some standard tools (e.g. Microsoft InstallShield).

B Remotely over the network: a representative of the support group may
log-in locally to perform an installation or use some replication process
to do it.

S91109Y3 119y} pue sme) a)1gedljddy ‘ E

uolle||eISUl puB ‘uolNguUISIp ‘Sulnidejnuew wWalsAg ‘ gf:

A very popular way to avoid the installation of multiple copies is to place
all applications into a distributed file system, such as NFS. As discussed in
[Gomb98], systems that rely heavily on graphical user interfaces (GUI) are
usually more difficult to install remotely than those with a command inter-
face. Other factors are the dependency on a particular operating system, the
number of options to be considered and the total size (footprint).

7.4 More on system manufacturing, distribution, and
installation

7.4.1 Software distribution methods and tools

Excellent distribution channels are key to the success of the software indus-
try. The term channel refers to parties involved in the distribution process
and to the business model implied. Typical channels are:

developer to end user;

developer to distributor to end user;

developer to customer center to end user;

developer to distributor to customer center to end user.

The coverage by distribution channels varies considerably between industri-
alized countries and developing countries. The technical aspects of
distribution are largely determined by the medium used. The currently
available distribution media are listed in Fig. 7-2.

Medium Size Properties

Diskette 2 MB Limited capacity, modifiable

Magnetic tape 70 GB Large capacity, sequential

CD-ROM 600 MB Inexpensive, non-modifiable

DVD-ROM 17 GB Excessive capacity

Network Undetermined Limited by transmission speed and costs

Fig. 7-2 Software distribution media

Considering the size of today’s software products, CD-ROMs and net-
works are the preferred media. If network transmission times exceed 15 or
20 minutes, CD-ROMSs may be more advantageous. They can also serve as
backup copy and can easily carry the necessary documentation. There are
several tools on the market to support the distribution of software within a
local network. They must allow multiple versions of a program to exist.
Software distribution tools may support a push or pull strategy: in push
mode all nodes are kept at the same level, which has considerable advan-
tages for problem determination and maintenance; in pull mode, the nodes
have to explicitly request an update.

7.4.2 Software installation methods and tools

If not pre-installed prior to hardware delivery, software is typically installed
by one of the methods listed in Fig. 7-3. Installation tools check the com-
pleteness of the material, resolve configuration conflicts, and register
components in an inventory. In a large enterprise network, a medium-sized
application (Netscape browser) could be successfully installed on 4,000 PCs
in a single day [Luer98]. A distribution tool was extended by a small Perl
script to handle configuration peculiarities.

Configuration Installation method Installation source

Single client or server Local, hands-on Original CD

Multiple servers Local, hands-on Replicated CD

High number of clients Remote, unattended File server, distribution tool
High number of servers Remote, unattended Scripts over network

Fig. 7-3 Software installation methods

7.4.3 User training and help services

The subject of user training is somewhat ambiguous. For the ideal system,
no training should be required. Nor should there be any printed documen-
tation. The functions should be what the user expects (and loves to have)
and its use should be easy and self-explanatory. Since ideal systems are rare,
it can be crucial to recognize what training is required. Not offering the
appropriate training may reduce the acceptance of the product to zero. For
planning a training package, the vendor has to be aware of the difference
between available and needed skills of the potential users, and of their will-
ingness to undergo a certain training effort. The user’s willingness is
determined by the ratio of expected benefit versus costs. Some costs may be
successfully camouflaged by special forms of offerings, be it online or in a
leisurely atmosphere. Also, independent consultants can motivate users to
spend training costs that will result in revenue for them.

Most users expect, as a minimum, a help service, usually a phone
number or e-mail address, to which questions can be directed. There are
vendors who charge for such a service. If the phone service charges by the
minute and does not provide technically qualified help, this is really a deter-
rent and will all but confirm to the user that he or she has made the correct
product choice.

7.4.4 Customizing, localizing, and conversion

Whenever standard products are installed, the need may arise to adapt the
product to the actual configuration or application requirements of the user
— referred to as customizing. This may involve the setting of options and
parameters, and the selection and loading of special modules. In former

157

UuoI1e||RISUI pUR ‘UoNNGLISIP ‘SulinjdejNuURW Wa)SAS UO aI0| ‘

uolle||eISUl puB ‘uolNguUISIp ‘Sulnidejnuew wWalsAg ‘ E.H’;

times, re-assembly or re-compilation of source code was considered a valid
approach, but this is no longer the case. As an example, most ERP pack-
ages can be customized today by completing a set of tables. Choosing the
correct values for theses tables may be quite a demanding task requiring
professional assistance.

Localization describes the effort needed to adjust a standard software
system to the requirements of the market in a particular country. It usually
implies the translation of messages, help texts, and accompanying docu-
ments. In some cases, additional effort is needed for the handling of
currency notations.

Very often, a new application uses existing data files. It may be appropri-
ate to convert these data files from the format they were in to a format
better suited for the new application. Standard tools can usually be used to
perform this conversion. Conversion can also apply to databases if a differ-
ent data model is required, such as relational instead of hierarchical.
Whenever conversions are needed, it is important that they are planned
carefully and executed completely in the time period allocated for them. To
drag them along may give rise to awkward problems.

7.4.5 Applets and servlets

Whenever new modes of distribution are discussed, applets and servlets
come up. Applets are small application programs embedded in a Web docu-
ment. When downloaded, they can be activated by the browser residing on
a Web client. Regular Java programs execute in their own window and have
full access to the file system. They require the Java virtual machine as their
interpreter. A servlet is a Java program that is executed on a server on
request of a client, and which returns its result to the client. It can be
expected that for all applications that are primarily used through the
Internet, these forms of programs will play a key role.

7.5 Examples and study material

7.5.1 Manufacturing and distribution

As stated before, manufacturing and distribution costs for a software prod-
uct can easily exceed its development costs. This example is intended to
illustrate this conjecture. The base assumption is that 10,000 copies are to
be produced by the vendor, to be installed by the same number of users.
This number is typical for the mainframe world. In the case of PC software,
several million copies may be sold. Fig. 7-4 gives data for six different dis-
tribution modes. All numbers are in thousand US$.

Distribution Fixed Variable Distribution Distribution Total Installation Costs:

method manufacturing manufacturing medium logistics vendor all users
costs costs costs

Removable 100 2.0 1.00 0.50 35,100 2.0 20,000

disk, books

Pre-installed 100 4.0 0.05 0.02 40,800 0.05 500

disk, books

Magnetic tape 40 0.5 0.10 0.05 6,540 2.5 25,000

only

Shrink-wrapped 80 0.3 0.05 0.02 3,780 0.5 5,000

books, CD

CD only 40 0.1 0.005 0.005 1,140 1.0 10,000

Download 50 0.05 550 1.5 15,000

Fig. 7-4 Manufacturing and distribution options

Costs are identified as manufacturing, distribution, and installation costs.
Manufacturing costs are split in fixed and variable costs. The fixed costs occur
only once for a product, and may include the hardware and software needed
for distribution centers, and the preparation and testing of the distribution
material. Variable manufacturing costs are caused by every unit produced.
Depending on the distribution mode, they may involve computer runs and cler-
ical handling. Distribution costs are split into media and logistics costs.
Logistics covers shipment, storage, and accounting. In the case of pre-installa-
tion, the software distribution costs are covered by the hardware distribution
costs. Both manufacturing and distribution are considered as vendor costs. In
some cases, the vendor may be able to bill these to the user. All user-related
costs are subsumed under installation costs. This may include training, product
customization, installation planning and execution, and security backup. Also
the users’ communication costs for downloading are included here.

As the example shows, there are many possibilities to shift costs between
vendor and user. One case favored by users is pre-installation, which is appli-
cable only in case of new hardware, however. Downloading takes away most
vendor costs, which are partially compensated by the user. Whenever books
are needed, the question who prints them is a typical shift of costs.

Exercises

7-1 Explain the difference between software and hardware manufacturing.

7-2 Which means or channels are available for software distribution?

7-3 What technical means exist to prevent illegal copying (piracy) of software?

7-4 Describe the effect on software installability of the following innovations:
object-code only and device sensing.

7-5 What options are meaningful for the mass installation of client-server
software?

[ER
Ui
O

Jeualew Apnis pue sajdwex]

System administration,
evolution, and maintenance

The term evolution describes a process of progressive change in the attri-
butes of entities. This may include improvement in some sense, adaptation
to a changing environment, loss of not-required or undesired properties or
the emergence of new ones.

M.M. Lebman [Lehm94]

This chapter deals with activities that occur once a system is complete. The
activities explored in detail are administration, evolution, and maintenance.
The relevant principles and ground rules are presented.

8.1 Definitions and importance

Administration is the activity that assures that a system is used properly.
For many dedicated systems the end user is concerned about this personally.
In other cases, specialists can be drawn upon to help. Evolution is the term
used to designate the adaptation of installed systems to new requirements.
By using this term from biology, we emphasize the fact that this activity is
very important should a system survive over an extended period of time.
Maintenance is the activity that is concerned with the elimination of fail-
ures. In the case of hardware, failures may be due to the physical
deterioration of devices. In the software field, maintenance is mainly con-
cerned with the removal or circumvention of faults, i.e. errors introduced
during development. Many vendors make a distinction between service and
maintenance support. A service contract may include consultation, informa-
tion on fixes and updates as they become available, but with or without the
actual fixes. Like with any complicated technical product, be it a car, a
household appliance, or an airplane, its value heavily depends on the level
of service provided.

After installation at a user’s site, systems begin to perform useful work.
They may or may not produce the benefits that had been expected. To
improve the chances of doing so, systems have to be administered, evolved,
and maintained. The lifecycle ends when the product is explicitly withdrawn.

8.2 General observations

When large mainframe computers were the norm, systems were all centrally
administered. An economic or even orderly operation was not feasible other-
wise. A computing center not only occupied special air-conditioned rooms, it
also had a significant number of technical staff. Very often it was a separate
organizational unit consisting of between five and 50 people. With distrib-
uted systems, the expectation arose that administrative tasks would
disappear, i.e. if every employee had a computer of his or her own, he or she
could do the administration personally. Maybe the central department could
be off-loaded or even dissolved. In fact, the distribution of computers
throughout an organization moved work from a specialist group out to
many non-specialists. If their time is valuable, the question arises whether
this solution is optimal. If the number of distributed systems reaches in the
thousands, economies of scale will favor a centralized solution again, or at
least a centralization of repetitive and time-consuming tasks.

The terms hardware and software came about when programs were con-
sidered a soft addition to impressive and solid computing systems. Today
the relationship has reversed totally. One of the persons who predicted this
very early was Barry Boehm. Fig. 8-1 is a modification of his graph from
1976 [Boeh76], which can still be found in many publications.

100%
Hardware

g

2

g 50% - Software

< development

[NN)

Software
maintenance
0% L
1965 1985 2005

Fig. 8-1 Relative expenditure on hardware versus software

Fig. 8-1 shows the relative expenditures of organizations for hardware
versus software. Boehm has drawn a similar graph, ending in 19835.
Certainly, during the last decade, software maintenance costs have sur-
passed both software development costs and hardware costs for a typical
commercial computer user. There are even some industries, such as mobile
phones, where hardware is given away free if certain software business can

IR
(o)}
kN

Suol}eAlasqo |elausn ‘

9JURUIIUIRW PUR ‘UOIINJOAS ‘UOIJRAISIUIWLPER WIISAS ‘ 5

be expected. The fact that software maintenance costs exceed software
development costs indirectly points to the longevity of software. Boehm’s
assumption was that typically software is developed and maintained by the
customer. It did not take into account that today more and more software
can be purchased as commercial products (COTS). Therefore, the current
situation concerning the two software cost factors somewhat depends on
what is considered as maintenance cost. If it includes local administration
and support, and the purchase of updates for existing products, the rela-
tionship still holds today.

It took both industry and academia quite some time to realize the true
nature of software. It was at the Congress of the International Federation of
Information Processing Societies (IFIP) in 1968 when the Russian computer
scientist Adrei Ershov astounded the entire audience with the far-sighted
statement: “You better get used to the idea that OS/360 will still be around
in the year 2000°. This was about three years after its first delivery. Today,
the sixth or seventh generation of processors is being installed to run
0S/360 or its derivatives. Similarly, several other operating systems devel-
oped more than 30 years ago are still significant revenue generators, e.g.
UNIX and DOS/VSE. As the majority of all programmers in the world did
not share Ershov’s view, one result was what became known as the Year
2000 (Y2k) problem.

Both for customer-developed and for licensed products, an explicit deci-
sion has to be made concerning the type and duration of service provided.
Although the technical life of a software product is not limited, the period
for which service and maintenance support is offered may be limited. This is
the subject of the service and maintenance strategy and will be discussed in
more detail below.

There is usually a difference between the user’s view and that of a service
provider. The user first notices what we call an irregularity, which he may
or may not report to a local service group. For the local service group, some
reported irregularities can be solved by giving advice to the user, e.g. via a
help desk. Others may need work on the part of the support group. If many
users are affected, or critical applications are halted, this may put the sup-
port group into emergency mode. In some instances, the critical situation
may have been caused by an apparent problem in a product of an external
supplier. Only if a maintenance contract exists is an incident reported to a
service provider. The service provider has the choice between supplying cor-
rections only for the problem just reported by this customer (corrective
maintenance), or may at this or any other occasion install fixes also for
problems found at other installations (preventive maintenance). The
number of events involved may be reduced by a factor of ten at each step.

All incidents that cannot be handled without specialist involvement will
be counted as problems (failures). Software field service typically encounters
two major problem types: duplicates and no-trouble-founds. A duplicate is a
problem that has been reported before by some other installation, and a fix
is available or in preparation. No-trouble-found (NTF) designates that the
problem could not be reproduced by the service people. While the percentage

.--~\ Documentation
Duplicates .- errors

No tro
found

Fig. 8-2 Making a distinction between problems and errors

User

errors New errors Program

errors

Suggestions

of duplicates depends on the service strategy, the number of NFTs is a
function of the diagnostic tools provided. The three small groups, each with
less than 10 percent, are suggestions, user errors, and new errors. The new
errors typically consist of 25 percent documentation errors and 75 percent
code errors. For both subgroups fixes have to be provided. Fig. 8-2 is based

on historical data of IBM mainframe operating systems, analyzing some
400,000 problems.

8.3 Applicable laws and their theories

We will commence this section with three laws formulated and popularized
by Manny Lehman [Lehm80], and quote them here verbatim. Lehman had
originally defined five laws. We will combine the last three into one law.

8.3.1 Lehman’s first law

The first law to be quoted expresses a fundamental observation about soft-
ware and computing systems.

A system that is used will be changed. L27)

Applicability This law expresses a unique and essential property of software.
It illuminates the Janus-faced character of software between a piece of
machinery and an intellectual document. For many users, software is used as
it is and never changed. Many small programs are written, used once, and
then thrown away. The more typical situation, however, is that a software
product is useful for some users over an extended period of time. Change is
inevitable in that case. Change in the case of software normally means
growth. The period of change varies with the type of software: a virus scan
program will have to be updated three times a month; an Internet search
engine may only need to be updated once per quarter; and for other types a

S91109Y3 119y} pue sme) a)1gedljddy ‘ 5

9JURUIIUIRW PUR ‘UOIINJOAS ‘UOIJRAISIUIWLPER WIISAS ‘ §

yearly issue will be more appropriate. From a user’s point of view, it is sec-
ondary which part of the program is being changed. Some changes may
affect the data files or databases only, other changes may be code changes.
As with legal reference documents, many software products can be seen only
as a basic binder that is constantly being updated with supplements.

Evidence The initial empirical work on this subject was done by Lehman in
co-operation with Les Belady [Bela76] during the period 1970 through
1975. They observed and analyzed the first 25 releases of OS/360, the
mainline operating system of IBM at that time. The system grew from one
to eight million LOC within a three to four year period. Similar growth pat-
terns could be seen in other software systems as well, for example,
DOS/VSE, MS Windows, UNIX, or the Netscape browser. Fig. 8-3 shows
the growth curves for the three most important families of operating sys-
tems. The size numbers assume that, besides the kernel, some basic
development tools are included as well.

107

108

0S/360 MS Windows

107

106

Size (KLOC)

10° UNIX

- MS DOS
104

| | | |
1970 1980 1990 2000

Fig. 8-3 The growth of operating systems

Fig. 8-3, which is based on a similar figure in [Denn84], shows the soft-
ware systems associated with three types of hardware systems: mainframes,
minicomputers, and microcomputers. Each one started by creating a new
market below the other, then expanded by pushing the predecessor upward.
In recent years, Windows and PCs are overtaking UNIX and workstations
in size. The growth of MVS (the successor to OS/360) may have slowed
down somewhat because most of the user related front-end functions have
been off-loaded to PCs and workstations running MS Windows or OS/2.

Theory There are many reasons why software that is in use undergoes
change. Some have to do with restrictions that may have been introduced
initially. Some functions had lower priority and were left out. Once the ini-
tial applications were available that justified the introduction of the new
systems, customers found other applications that were related and could be

automated as well. From the vendor’s point of view, there are opportunities
to be exploited by expanding the system’s usage into new market segments.
There is a constant pressure to support new hardware, satisfy higher
demands for security, and to achieve better throughput or response times.
As Lehman [Lehm80] has put it: ‘A large programming system models some
part of reality. It either undergoes change or becomes less and less useful’.
Two decades later, he stated the reasons for change more positively: “The
ultimate goal of functional growth is to increase stakeholder satisfaction’
[LehmO01]. Being a non-physical system, a software system can change; it
can be adapted to the changing environment.

We should not ignore the market forces that drive change. As an object
that does not decay or dissolve, an existing software product has to be oblit-
erated in order to be replaced. If a large portion of the potential buyers
already use last year’s version, the new version has to have a superior set of
functions. No user wants to give up functions he or she is accustomed to.
This forces the suppliers to constantly add features, since keeping the same
set of functions may make it difficult to prove that the new solution is better.
It is easier to distinguish a product from its competition by saying that it can
do more than all the others. Under these circumstances, a user has to be
quite brave to continue to use, for example, a ten-year old text processor.

8.3.2 Lehman’s second law

The next law is almost as famous, but is more subject to controversy.
An evolving system increases its complexity unless work is done to reduce it. (L28)

Applicability While the first law states the inevitability of growth, we now
are looking at its effect. The ramifications of this law depend heavily on
what is considered as complexity. For this reason we shall repeat the defini-
tion of complexity from Chapter 3 used in the context of Simon’s law:
‘made up from a large number of parts that interact in a non-simple way’. A
system grows by adding functions and components, supporting more con-
figurations, handling more special cases, and by accommodating different
user styles, national languages, etc. With respect to its original design, the
system degrades. It loses more and more of its original structure. In
Lehman’s words, “The accumulation of gradual degradation ultimately leads
to the point where the system can no longer be cost-effectively maintained
and enhanced.’

In addition to functional maintenance a structural maintenance becomes
necessary. This is referred to as clean-up or re-engineering, and amounts to
a partial redesign. We will discuss this activity in more detail below. By the
way, this kind of problem is not unique to a system in maintenance. It is a
risk also with incremental development.

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

9JURUIIUIRW PUR ‘UOIINJOAS ‘UOIJRAISIUIWLPER WIISAS ‘ §

Evidence Lehman sees an analogy between his second law and the second
law of thermodynamics. It says that in all energy exchanges, if no energy
enters or leaves the system, the potential energy of the final state will always
be less than that of the initial state. This is also commonly referred to as
entropy. For software systems, Dvorak [Dvor94] talks about conceptual
entropy. He applies this concept to class hierarchies in object-oriented pro-
grams. In a case study, he analyzed Smalltalk programs that underwent
frequent changes. Additional subclasses were added, the existing classes
were modified, and the hierarchy itself was restructured. Conceptual incon-
sistencies increased further down the hierarchy. This makes it difficult to
use and modify. His conclusion was that: ‘If left unchecked, the hierarchy
can reach a state where it must be restructured.’

The above law is certainly true for the three families of operating sys-
tems referred to in Fig. 8-3. For all of them, major clean-ups and redesigns
occurred at least once during every decade. In the case of the VSE operat-
ing system such a redesign had a major effect on maintenance costs. It
reduced the number of fixes in error in half (from about 10 percent to
under 5 percent). The latest re-implementation of the UNIX system is
known today as LINUX.

Theory The rationale for this law can be found in [Lehm80]: ‘If one tries to
do the necessary changes to a system in a cost-effective way, this is what
happens. If there are multiple objectives, one cannot fulfill all of them opti-
mally.” In other words, one cannot redesign the system for every change.
Since the process of system evolution normally extends over several years,
some design ideas behind the original structure may get lost. They may
simply have been forgotten. They must not always be explicitly sacrificed
for other goals.

Comment Some people compare the evolution of software systems with
evolution in nature. This is certainly an exaggeration, as in nature most sys-
tems seem to grow totally without a design. If one subscribes to Darwin’s
theory, the only design principle applied is survival of the fittest. All varia-
tions are accidental, i.e. caused by errors (or mutations) in DNA copying.

8.3.3 Lehman’s third law

As stated before, we have combined three of Lehman’s other laws into a
single law, which we state in a somewhat generalized form.

System evolution is determined by a feedback process. (L29)

Applicability The applicability of this law is not as strong and obvious as
for the other two laws. The growth dynamics of a system depend highly on
the business environment. The maintenance strategy is only one aspect.

Maintenance efforts may have a higher or lower priority than other consid-
erations. For example, to remain in control of a newly emerging market, it
may be extremely vital to bring out new functions soon. If the number of
customers is still low, or their applications still not mission-critical, it would
be wrong to concentrate on maintenance problems.

Lehman’s fourth and fifth laws, which are not quoted here, are in our
opinion special boundary conditions for this law. They postulate that the
organizational work rate and the perceived complexity of the system remain
constant. This seems to be true for a certain form of organizational setup
only and cannot be generalized.

Evidence The evidence of this law was mainly drawn from OS/360. This
system and its successor MVS were largely driven by hardware considera-
tions. If new hardware was ready, software for it had to be shipped. Pure
software functions and even software maintenance were postponed. In the
early releases of OS/360, Lehman observed that releases with significant
new functional content were normally followed by a release consisting pri-
marily of maintenance. Completely different priorities existed for systems
like Windows, R/3, or Unix. Here the tie-in with hardware vendors existed
also, but had less influence over the software.

Theory In [Lehm80], Lehman tries to give the reasons himself why one
should expect a feedback process with regular behavior. In his opinion, it is
due to random input — the interplay of forces and ‘multiple levels of arbitra-
tion, correction, smoothing and feedback’. This has the effect of ‘economic
and social brakes’. In our opinion, many systems have considerable degrees
of freedom left. They can be adjusted to specific subsets of users or to
changes in requirements quite easily. In our form, the law only points out
that a developer is not entirely free in the way he or she can go about
system evolution. He or she has created technical facts, raised expectations,
and committed certain resources.

8.3.4 Basili—-Maoller law

The following law gives an important insight into software maintenance.
We have named it after the two authors who independently published work
on it, i.e. Vic Basili and Karl-Heinz Moller.

Smaller changes have a higher error density than large ones. (L30)

Applicability The essential point of this law is that small changes to a
module or a system are very critical. They usually have a higher density of
errors per lines of changed or added code, than have larger changes. This
law is not in conflict with the observation that error numbers are propor-
tional to size, i.e. that larger systems have more errors than small systems.

S91109Y3 119y} pue sme) a)1gedljddy ‘ 5

9JURUIIUIRW PUR ‘UOIINJOAS ‘UOIJRAISIUIWLPER WIISAS ‘ §

Evidence The study that first brought out this law was performed by Basili
and Perricone [Basi84]. The study was done in the NASA Software
Engineering lab and was concerned with Fortran programs for aerospace
applications. The study is based on 215 errors found during a three-year
period of testing and maintenance. The distribution of errors was skewed
with respect to the number of modules affected (Pareto’s law!). Errors were
found only in 96 of 370 modules (26 percent). The key data are given in
Fig. 8-4. The results have caused considerable controversy, since they were
regarded as counter-intuitive by many people. What astounded people most
was the fact that the error-prone modules did not show more than average
complexity. The other remarkable observation was that the error density
(errors/KLOC) was clearly decreasing with module size.

Module size Complexity: Complexity: Errors per KLOC
allmodules error-prone
modules
50 6.0 6.2 65.0
100 19.6 17.9 33.0
150 27.5 28.1 24.6
200 56.7 52.7 13.4
»200 77.5 60.0 9.7

Fig. 8-4 Error density and complexity sorted by module size

Evidence leading to this law was presented independently by Moller
[Moel85] based on data for a Siemens operating system (BS/2000). The
observation is also consistent with Selby’s [Selb88] data from his study of
software reuse. Selby observed that small changes create disproportionably
high costs.

Theory The reason for this law is that small changes require the same
amount of understanding of the old, surrounding code as do large changes.
The relative costs of small changes, and their proneness to error are there-
fore higher. The exact amounts depend, of course, on how good the design
is, and how well it is documented. If the system had been in use, the origi-
nal structure may have deteriorated (following Lehman’s second law). For
larger changes, the knowledge required about the existing code is less in
proportion to the added code.

8.3.5 McCabe’s hypothesis

The following hypothesis is introduced to discuss the role of complexity
metrics and their relation to error-prediction models. It is named after
Thomas McCabe [McCa76].

Complexity metrics are good predictors of post-release reliability and
maintainability. (H15)

Applicability Many developers and researchers are inclined to predict quality-
related properties from the structure of a module or system, be it static or
dynamic structure. The hope is that this would make a system more reliable by
changing its structure, or predict its quality without looking at its history.
Many software metrics have been proposed and tools developed to help in this
respect. The McCabe metric [McCa76] is the best known example.

Evidence The question addressed by empirical studies so far is the relationship
between complexity metrics and reliability. One such study was performed
under the supervision of one of the authors (Endres) in 1983. It is documented
in a thesis at the University of Karlsruhe and in an IBM technical report
[Niod83]. The study analyzed three products, totaling 324 modules from the
DOS/VSE operating system. They were consisting of about 105 KLOC and
were written in a high level language (PL/I dialect). Two groups of modules
were from products already in use with customers. One group was still in devel-
opment. In the last case, the faults had either been detected by inspections or
internal tests. In each case the number of faults per module has been compared
with the size of the module and the McCabe number. The McCabe number was
derived mechanically from the source code of the modules. Somewhat as a sur-
prise, the size measure correlated as well or better than the McCabe number
with the number of errors detected. Besides the McCabe metric, the Halstead
metric was also evaluated. It showed the same relationships.

The same conclusion can be drawn from the Basili and Perricone data
given in Fig. 8-4. A more recent and, very comprehensive study was pub-
lished by Fenton and Ohlsson [Fent00]. They studied data from two releases
of an Ericsson telecommunication system. They came to the same conclusion
as the two other studies mentioned, namely that the McCabe metric is no
better predictor for post-release quality than is size (LOC). Another result of
this study is even more interesting: it says, ‘there is no evidence to support
the hypothesis that the more errors are found during pre-release activities,
more faults will be found after release’. In fact, 93 percent of all pre-release
faults were found in modules which showed no errors after release.

Comment Before operational profiles were applied, software reliability pro-
jections were frequently made based simply on system size and system
structure information. Combined with data on the amount of errors
removed during testing, several authors developed reliability growth
models. The predictive power of theses models has turned out to be quite
good, although the approach contains severe theoretical flaws. As pointed
out before, it is wrong to assume anything approaching an equal distribu-
tion of errors across all modules of a system. The next assumption is
equally wrong, namely that if many errors are detected during testing this is

S91109Y3 119y} pue sme) a)1gedljddy ‘ 9'3

9JURUIIUIRW PUR ‘UOIINJOAS ‘UOIJRAISIUIWLPER WIISAS ‘ g

a sign of increased (‘growing’) reliability. Taken to the extreme, this means
that if few errors have been introduced and found, the system is assumed to
be unreliable. As Fenton [Fent99] pointed out, two flaws are not enough.
Most of these models rely on an unknown relationship between faults and
failures. Apparently, software reliability prediction is one of those areas
where correlations are observed (and published) even when causal relation-
ships do not exist.! In practice, complex modules are usually inspected and
tested more carefully than non-complex modules. Complexity measures
might be good predictors of maintainability, i.e. cost to do fixes. No studies
of this hypothesis have been published yet.

Finally, we should mention that the IBM laboratory in Boblingen used
McCabe measurements to great success in the case of software acquisitions.
In one case, a vendor claimed that two successive releases of a product had
not undergone any significant changes because the sizes of the modules had
not changed. A short analysis producing McCabe numbers revealed, how-
ever, that many modules had undergone significant rewrites. This finding
could be used to request additional regression testing from the vendor.

8.3.6 Wilde’s hypothesis

Because of the current pre-occupation with object-oriented programs we
want to focus separately on the property called maintainability. This has
been triggered by a paper by Norman Wilde [Wild93] that stated the fol-
lowing hypothesis.

Object-oriented programs are difficult to maintain. (H16)

Applicability The benefits of object-orientation have been sought in differ-
ent areas where maintainability rates high. Depending on the use a program
gets, its maintenance costs may reach the same magnitude as the develop-
ment costs. Wilde’s hypothesis, as well as some empirical investigations,
raise doubt whether object-orientation has an advantage in this respect.

Evidence Wilde only uses extensive qualitative arguments. The purpose
seems to be the justification of a maintenance tool. He argues that object-ori-
ented programs are difficult to understand, because they typically consist of
a large number of small methods that are difficult to relate. The other prob-
lem area is inheritance. An empirical study Daly et al. [Daly96] does not
confirm this directly. In this experiment, two groups of students were asked
to perform a maintenance task on a small program (< 400 LOC) in C++.

n ordinary life, such a case is the correlation that exists between the population size of storks
in a certain area and the birth rate of women. This correlation is supposed to support the
hypothesis that babies are brought by storks.

One contained a three-level class hierarchy, the other one was flat, i.e. did 171
not use inheritance. In a second experiment, a flat program was compared
with a program containing a five-level inheritance hierarchy (deep inheri-
tance). The time in minutes was measured until a correct change was made.
Test and integration time are not counted. The results are given in Fig. 8-5.

Hypothesis tested Result
Low vs no inheritance — maintenance time Significant advantage for inheritance
Deep vs no inheritance — maintenance time Small advantage for flat program

Fig. 8-5 Evaluation of maintenance costs

Here the hypotheses have a different form. They do not specify the expected
direction of the results, i.e. whether the effect on maintenance will be positive
or negative. For the correct interpretation of these results, the following infor-
mation should be added. In the first experiment, the flat program was only
slightly longer than the program with inheritance. In this case the existing class
hierarchy could obviously be used as a template that guided the maintenance
programmers. For the flat program, no such aid existed. In the second experi-
ment, the flat program was about three times as large as the program with deep
inheritance. The five-level hierarchy caused what the authors called ‘conceptual
entropy’ (following Dvorak [Dvor94]), i.e. most programmers attempted sev-
eral solutions before it became clear which class to specialize from.

An improved form of this experiment was conducted by Unger and
Prechelt [Unge98]. Larger programs were used, and design information was
given in graphical notation. The results showed that a program with a
three-level hierarchy needed more time and generated more errors than a
program with no inheritance, and a five-level program was worse than a
three-level program.

S91109Y3 119y} pue sme) a)1gedljddy

8.3.7 Conjecture 5

Because the laws and hypotheses presented so far in this chapter deal
mainly with evolution and maintenance, we shall add two conjectures. The
first one addresses administration.

The larger the system, the greater the administration effort that is needed. (C5)

Applicability We like to introduce this conjecture as a variant of Lehman’s
second law. We could call it a corollary. While Lehman’s concern is the
internal structure of a single application or component, similar observations
can be made at the level of a system supporting several applications, or for
a network of systems. Systems and networks, if used, will grow in
unplanned ways. An administration effort involves adding or deleting com-
ponents in a systematic fashion.

9JURUIIUIRW PUR ‘UOIINJOAS ‘UOIJRAISIUIWLPER WIISAS ‘ 5

Evidence Administrative tasks are quite different depending on the size (and
hence, the cost) of the systems involved. They also vary largely between
organizations. An academic environment may have requirements quite dif-
ferent to those of a commercial or government installation. Following
Halprin [Halp99], typical administrative tasks include the following:

establishment of access rights and controls;

provision of accounting methods and tools;

management of problems, updates, and configuration changes;
capacity planning and asset management;

data security, archiving, and recovery;

network management.

Some of the activities are primarily technical in nature, while others require a
business or accounting background. The staff of a large mainframe computing
center have to have both skills. One group of persons in a mainframe installa-
tion is concerned with the operation of the system, including replying to system
messages, the mounting of tapes or disks, and the readying of printers. With
distributed systems a similar task is performed in monitoring the network.

8.3.8 Conjecture 6

The next conjecture points out another basic experience of every system owner.
Any system can be tuned. (Ce)

Applicability While Lehman’s first law views system change somewhat in
a fatalistic way, there clearly is also a positive message involved that says
that, if needed, any system can be improved. This is generally found to be
true not only for one specific property, but only up to a certain point.
Improvement of one property is easy if other properties allow it. To
improve multiple properties at the same time is much more difficult.
Changing a running system is counterbalanced by the observation that users
are willing to adapt to a system’s idiosyncrasies only if the benefits obtained
are obvious. The other question is, is it worthwhile to change? Are the risks
and costs in a proper relation to the benefits expected?

Evidence Of the many cases supporting this conjecture, the following expe-
rience is most vivid in one author’s memory (Endres). To succeed in a
certain bid situation, a limited number of benchmarks had to be run. In the
first round, however, we came second because the path-length of certain
transaction types were a problem. In the four weeks prior to the decisive
showdown, we analyzed the particular transactions with all the available
tools. We then moved all critical routines higher in the storage hierarchy,
i.e. from disk to main memory, or even into microcode. In the ‘best and
final’ run we outperformed the competition by a long way.

8.4 More on system administration, evolution, and
maintenance

8.4.1 Security strategy and control

More than ever before, system administration has to focus specifically on
security aspects. As suggested in Allen [Alle01], a security strategy has to
address three time intervals, namely preparation, incident handling and
follow-up. During the preparation phase, the policies have to be selected
and the proper mechanisms and tools have to be installed. Each incident
has to be handled in the following order: characterize the intrusion, inform
all parties that need to be aware of it; collect all information on the intru-
sion, contain and eliminate the intrusion; and return to normal mode of
operation. In the follow-up phase, the lessons learned should be analyzed
and the protection mechanisms or policies should be improved, if possible.
As an additional measure of control, a security audit may have to be con-
ducted from time to time. To check the adequacy of policies and mechanisms,
and the capabilities of the people involved, an intrusion may be simulated.

8.4.2 Vendor strategies for service and maintenance

As indicated before, the value of a software product depends critically on
the service available for it. From a supplier’s view, the service associated
with a product can considerably enhance its value. It may help users who
bought the product to turn it from ‘shelfware’ into a useful tool. It estab-
lishes a relationship with the customers that easily can become a source of
new business. Often service is a business in its own right and can generate
revenue, be it for the supplier or a third party.

A service contract may cover advice and help only, and/or include the
delivery and application of maintenance fixes. It may be free of charge or
liable for costs. The duration of service can vary; it may cover an initial
shake-out period only, the time up to the next release, or an arbitrarily set
time period, e.g. four years after first shipment. The frequency with which
updates are provided is another business decision. Typical options are once
per month, once per quarter, or once per year. Determining arguments can be
the amount of changes, their importance, and the user’s effort to apply them.

Fig. 8-6 indicates the relationship of errors and product code in a multi-
version product. In this case, version 2 reuses large portions of the code of
version 1, and version 3 reuses code of versions 1 and 2. The customer ship-
ment date of the version 1 corresponds to the y-axis, and the availability
dates of versions 2 and 3 are indicated by means of dashed vertical lines.
The upper part of the figure reflects the assumed distribution of the number
of users with respect to this product. As users do not migrate from one ver-
sion to the next instantaneously, but only gradually, maintenance support
may have to be provided concurrently for all three versions. In the lower
part, the error distribution over the three versions is shown. As an example,
the errors E3 found by version 3 users may have been introduced during the

173

9JURUIUIRW PUR ‘UOIINJOAS ‘UOIIRAISIUIIPE WIISAS UO 3IO|\ ‘

9JURUIIUIRW PUR ‘UOIINJOAS ‘UOIJRAISIUIWLPER WIISAS ‘ E

development of version 1, 2, or 3. If quality analysis is attempted the data
have to be collected such that a distinction can be made between the prod-
uct where the error was found and the product causing the error. The time
frame under consideration may be up to five to seven calendar years.

Users

Time

Errors

Time

Fig. 8-6 Errors found in product versus caused by product

8.4.3 User strategies for service and maintenance

From a user’s point of view, the main decision to be made boils down to the
question whether one wants to be economically independent or enter into
some long-term business relationship with a supplier or a third party. If skill
and resources are no problem, a do-it-yourself approach may be appropriate.
In that case, the source code of the system or component is needed, as well as
the design documentation. Normally, business arguments will favor mainte-
nance by the supplier or a trusted third party. Certainly, this approach takes
into account the nature of software, as expressed by Lehman’s first law.

Two questions regarding maintenance support have to be considered as
risk management. At first, it should be determined whether the turn-around
time of the service provider for problem fixes is satisfactory in view of the
criticality of the application or the system for one’s own business. This may
require that an ability is created and maintained to develop certain types of
fixes themselves. The other potential problem to be considered is the case
that the service provider ceases business. For this eventuality, source code
and design material should be accessible. The legal option most often taken
for this is to place such material ‘in escrow’ with some safeguarding agency.

For software developed in-house, the normal approach is to perform the
maintenance in-house as well. If the corresponding workload binds an
excessive amount of resources and skills, outsourcing can be considered.
This may result, however, in additional time delays and higher total costs.

8.4.4 Preventive versus corrective maintenance

One popular adage among users says, ‘Never change a running system’.
This reflects the experience that any update may introduce errors that did
not exist before. For this reason, many users prefer corrective maintenance,
meaning that they install only fixes for problems that occurred at their site.
For the service provider this means that individual fixes have to selectable.
To achieve this, fixes are usually supplied in source code format. The user
then goes through a lengthy, error-prone process of compilation for all com-
ponents in question. For the vendor such a strategy means that all users will
eventually run into all the problems that ever existed. The data shown in
Fig. 8-2, are largely based on this approach. What are called ‘duplicates’ are
problems rediscovered at installations different to the one where the first
discovery occurred.

For this reason, some software vendors adopted a strategy of preventive
maintenance. In the extreme case, this means that as soon as an error is dis-
covered anywhere, it will be fixed everywhere. As a compromise, from time
to time, users are asked whether they want to install maintenance updates,
sometimes called refreshes.? Another approach, tried out with the SSX
system mentioned before, was to install refreshes only at those installations
that reported a problem. The category called ‘duplicates’ in Fig. 8-2 could
be reduced significantly. As a prerequisite for this, the number of fixes in
error had to be addressed and was practically eliminated. In order to be
efficient, both for the service provider and the user, preventive service is typ-
ically applied based on object-code. Entire modules or components are
replaced, ready to be used, without re-compilation. Several suppliers of
Internet-related software successfully exercise a preventive maintenance
strategy. They distribute and install refreshes over the Internet in rather
short time intervals, e.g. once per month.

8.4.5 On-the-fly version updates

Many systems require a shut-down and restart after an update has been
made. Since this can be a problem if uninterrupted service is offered, several
approaches have been taken to perform software updates on a running
system. At the simplest level, this means replacing entire modules or proce-
dures that do not change the system kernel and whose interfaces with other
modules are kept unchanged. A common approach to this uses dynamically
linked libraries. Individual members of this library can be updated on an
external medium up to the point in time where they are invoked. Sometimes
special hardware features are used to assist. In highly available systems a
stand-by processor may take over while the software is being updated.
Several prototypes of such systems are described in [Sega93]. In many prac-
tical systems, changes of the system kernel occur, even in situations where it
does not seem necessary.

2 This term is used to differentiate from functional upgrades

175

9JURUIUIRW PUR ‘UOIINJOAS ‘UOIIRAISIUIIPE WIISAS UO 3IO|\ ‘

176

9oUBRUDIUIRW PUE ‘UOIIN|OAD ‘UoIIRlISIUIWpP. WaISAS ‘

Should kernel changes really become necessary, more demanding solutions
are needed. In the most general case, the change has to occur while a module
is running and the interfaces used by a routine have to be adjusted. This
implies that in the moment of the update, the old state of the system has to
be dynamically mapped into a new state. This can only occur at certain con-
trol points for which this mapping is defined. Finding these control points is
a problem akin to dataflow analysis in compilers. For each such control
point the life variables have to be determined and the appropriate state map-
pings have to be defined. A study of these problems is given in [Gupt96].

8.4.6 Re-engineering, re-development, and renovation

Re-engineering encompasses all activities whose goal it is to improve any or
all of the developer-oriented quality criteria. As listed in Fig. 2-1, these are
testability, maintainability, portability, localizability, and reusability. The
user-oriented functions or criteria such as efficiency and usability are not
considered as re-engineering. Since the external interfaces and functionality
are kept, only the internal structure is changed. The system or component
in question is brought onto a new technical base. Besides the structure,
other elements of this technical base are the platform, the building blocks,
the implementation language, and the language level used.

In contrast to re-development, re-engineering makes extensive use of
existing material. This material may be manually or automatically con-
verted. Re-development as well as re-engineering work is triggered as a
reaction to Lehman’s second law. In Lehman’s terms, this is anti-regressive
work [LehmO1], since it consumes effort without immediate visible stake-
holder value. The investment has to be justified by expected future savings
in development or maintenance costs. In the case of re-engineering the
investment is expected to be lower than in the case of re-development.

Fig. 8-7 illustrates the software re-engineering process as propagated and
used by Sneed [Snee87]. It shows four steps to be applied to source code,
each of which can be supported by tools. The analysis step corresponds to
the parsing and analysis step of a compiler. It decomposes programs and
creates tables containing structural information and relationships. It may
also derive certain software metrics. During the modularization step, mono-
lithic programs may be split up into smaller components, observing certain
interface or structuring rules (high coherence, low binding). The restructur-
ing step may eliminate poor coding style at the module level. The final
transformation step converts the intermediate results into the language
notation used for the new system.

A special case of software modification is renovation. It improves the
external appearance while keeping its function and technical base the
same, for example, replacing an alphanumerical user interface with a
graphical user interface (GUI). Very often re-engineering is combined with
renovation, and both are combined with functional enhancements or per-
formance improvements. It such a case, it may be easier to create a positive
business case.

Old source)
Manual input

Y

Restructuring

Transformation

Y

Analysis Modularization

Fig. 8-7 The re-engineering process

8.4.7 Retirement and withdrawal

Software has the unique property that it does not decay or wear. As a con-
sequence, there is no need to replace older parts, nor does a system ever die
a natural death. Software systems only lose relevance. Should they disap-
pear from an installation, they have to be removed explicitly. This may
become desirable in order to save memory space on a computer, or to free
up people and resources occupied for maintenance and service support.

For each individual user, the decision to drop an application may be
rather easy, as is the effort required to un-install the corresponding pro-
grams and data. For an organization, looking inward, retiring an
application or a software system is a removal of some service to some users,
possibly effecting other organizations, and it has to be approached accord-
ingly. For a purchased or licensed product, the termination may result in the
cancellation of a service contract. If the product had been developed or
maintained by the organization itself, it means dissolving the central main-
tenance group. For some products, this may only be the first step. Support
by some local organization may continue for a while.

In the IBM tradition of software maintenance, a distinction was made
between removal from the sales manual, withdrawal of central support, and
cease of field support. Each step in the reclassification process was
announced separately. Whatever steps are taken, the users have to be
informed about the status change. They have to be told what to do in case
of problems and where to migrate to. They should get advice how to per-
form the migration, should be provided with tools, should be offered help,
and should have enough time to do it. In some cases, the announcement of
withdrawal is considered by users as their last chance to report known
problems and to request fixes.

177

9JURUIUIRW PUR ‘UOIINJOAS ‘UOIIRAISIUIIPE WIISAS UO 3IO|\ ‘

9oUBRUDIUIRW PUE ‘UOIIN|OAD ‘UoIIRlISIUIWpP. WaISAS ‘ 0:0

8.5 Examples and study material

8.5.1 Quality tracking and prediction

In this example, a simple yet effective quality tracking and prediction
method is illustrated. It is included in this chapter because it can be used to
predict the maintenance effort. The method has been used over several
decades in software development efforts and has been described before
[Endr93a]. In the following figures, a waterfall-type project model is
assumed. Six phases are assumed and designated using Roman numbers I
through VI. The phases comprise the following activities, shown in Fig. 8-8.

I Requirements definition

IT Design, design inspection

III Construction, code inspections

IV Functional and operational testing

V Manufacturing, distribution, instillation
VI Maintenance

A

:

| Il 1] v
Time

Defects removed/KLOC

il

VI

Fig. 8-8 Defect removal model

Fig. 8-8 is an illustration of the basic model used. It is a model expressing
the number of defects removed per KLOC during the different phases.
Although no scale is given on the ordinate, the example could be interpreted
to represent about ten defects per KLOC for the two phases in the middle.
Then this example would show that we assume that a total of about 45
defects per KLOC are inserted and removed over the life of this project.

This model encodes the specific experience of some organization with
respect to error insertion and error removal. It is based on historic data
gained for a certain application domain, a certain skill-level and a certain
set of methods and tools. If a new project is started for the same domain,
using people with the same skill level and following the same process, a
similar result can be expected. Since every project is different, some changes
in the assumptions usually have to be made. This may be reflected in the
total number of defects, as well as in the distribution of the removals over
the phases. In fact, this type of a model has been used for projects experi-
encing between 15 to 50 defects per KLOC over the life of a product. The

number 50 was in vogue around 1975, the number 15 ten years later. The
corresponding numbers for the post-development period (phase VI) were
initially about ten, later less than one.

il -

1] \% \Y Vi
Time

Defects removed/KLOC

\/

[] Plan-to-go
[Plan-to-date
Actual

Fig. 8-9 In-process measurement

One of the big advantages of this model is that it can be used during the
entire life of a project, and for several purposes. Fig. 8-9 shows its use for in-
process measurements. It is a plot of the defect removal data at some point
during phase III. Here two adjacent columns are used, with distinctive filling
patterns. While the original plan (the plan-to-go) was represented by blank
columns, for the portion of the plan that has been executed (the plan-to-
date) the first column is tinted. In the example, phases I and II are completely
done, phase III a little bit more than half. The second, hatched column gives
the actual values. In the example, the actual values have been somewhat
lower than the planned values. The questions triggered by this simple sketch
are really useful. Typical questions are: “Why is there a difference?” “What is
really different from what was expected?” ‘Do we accept the deviations and
their reasons?’ and “What can and will be done as a consequence?’ The
answer to the last question may result in a modification of the plan-to-go.

In Fig. 8-10, the data gained during development (i.e. phases I through
V) are used to predict the residual errors. Residual defects are here defined
as defects removed during the maintenance period (phase VI). Note that
other definitions are not very practical. We can compare a prediction (plan-
to-go) which was initially based on historic data from previous projects
with the results achieved during the on-going project. Contrary to many
other prediction models, we are not relying on the results of a single phase
only, i.e. the test phase. In this example, the white cap on column III may
mean that some planned code inspections did not take place. Testing may
have been extended simply to compensate for the shortcomings in previous
phases. It would therefore be wrong to assume less residual errors because
more errors were found during testing than expected. Incidentally, to

179

Jeualew Apnis pue sajdwex] ‘

9oUBRUDIUIRW PUE ‘UOIIN|OAD ‘UoIIRlISIUIWpP. WaISAS ‘ §

] 7 New plan-to-go
7 \

3010 IPs

11l [\ V Vi
Time

Defects removed/KLOC

Y

[] Plan-to-go
[Plan-to-date
Actual

Fig. 8-10 Prediction of residual defects

assume that fewer errors are left the greater the number of errors that have
been found is still a very weak assumption; it is better than the opposite,
however. Data collected during the maintenance period can be used to
recalibrate the model, and to reuse it for other projects. The most important
benefit of this quality tracking method is that the quantitative effects of new
methods and tools have to shown up in this model. It forces the empirical
approach. Hype and hot air do not suffice.

8.5.2 Maintenance strategy

The maintenance strategy chosen can have a major effect on the post-ship-
ment costs of a software product. This will be illustrated with this example.
Another important message is that the bulk of the maintenance costs are
not caused by the development of fixes, but by the field costs caused by
incidents. The assumptions made for this example are listed in Fig. 8-11.

Assumptions Year 1 Year 2 Year 3 Year 4
New users 1,000 4,000 3,000 2,000
New defects 80 60 40 30
Rediscovery rate 0.06 0.05 0.04 0.03
Total users 1,000 5,000 8,000 10,000

Fig. 8-11 Maintenance model assumptions

A four-year period is considered as the field life of a product. The accept-
ance of the product by new users has its peak in the second year. The
number of residual errors to be detected totals 210, and peaks in the first
year. As shown in Fig. 8-2, only a small fraction of the incidents are caused

by newly detected problems. The majority are duplicates or ‘no-trouble-
founds’ (NTFs). The assumption is made that in the normal case of
corrective maintenance about ten times as many incidents occur as there are
new defects. Based on this, a rediscovery rate is derived, which is highest for
errors detected during the first year and decreases over time.

Incidents Year 1 Year 2 Year 3 Year 4 Total
New defects Y1 80 80
Rediscoveries Y1 48 200 256 240 744
New defects Y2 60 60
Rediscoveries Y2 150 192 180 522
New defects Y3 40 40
Rediscoveries Y3 128 120 248
New defects Y4 30 30
Rediscoveries Y4 90 90
Total incidents 128 410 616 660 1814

Fig. 8-12 Corrective maintenance (base case)

The base case, as given in Fig. 8-12, assumes that error fixes are given
only to those users who discovered a specific problem. As a consequence,
all users may rediscover all defects. With the above figures, this leads to
1814 incidents. If we assume a cost of US$2000 per incident, this amounts
to US$3.6 million for this product. Assuming 0.5 person-month per fix and
a person-month at US$16,000, to produce the 210 fixes amounts to about
US$1.7 million.

As the first alternative to be considered, shipments to new users are
altered. After a certain period, new users will no longer receive the origi-
nal product, but a product of higher quality, a so-called upgraded system.
In our example, the assumption is made that such an upgraded system is
produced once per year, including all fixes for errors found in the previous
years. This leads to the numbers in Fig. 8-13. Rediscoveries can occur
only at user sites that have received their shipment in previous years. In
other words, the problems of year 1 (Y1) can be rediscovered only at
1000 sites, the problems of the second year (Y2) only at 5000 sites, etc.
As a consequence, we see a decrease of field costs by more than 40
percent. We also have to add the costs for the production and distribution
of the upgrades, however. In practice, the actual interval of upgrades will
be determined by the frequency and severity of problems encountered in
the field. It should be noted that the actual field cost will not go down if
the manpower assigned to field support is kept constant. In that case,
reducing the number of problems only has the effect of increasing the
costs per problem.

Jeualew Apnis pue sajdwex] ‘ Eo

9oUBRUDIUIRW PUE ‘UOIIN|OAD ‘UoIIRlISIUIWpP. WaISAS ‘ g

Incidents

New defects Y1
Rediscoveries Y1
New defects Y2
Rediscoveries Y2
New defects Y3
Rediscoveries Y3
New defects Y4
Rediscoveries Y4
Total incidents

Year 1

80
48

128

Year 2

40
60
150

250

Year 3

32

120

40
128

320

Year 4

24

90

96
30
90
330

Total

80
144
60
360
40
224
30
90
1028

Fig. 8-13 Refreshing of distribution material

In the final case, as outlined in Fig. 8-14, we assume that once per year
all users are forced or enticed to update their system. This is referred to as
preventive maintenance. In the example case, it reduces field costs by
another 40 percent. Companies pursuing this strategy may distribute main-
tenance updates as frequently as once per quarter. Preventive maintenance
requires an excellent fix quality. If a significant number of fixes are in error,
the users will not accept any preventive maintenance. In such a case, they
will stay with the service level they have.

Incidents

New defects Y1
Rediscoveries Y1
New defects Y2
Rediscoveries Y2
New defects Y3
Rediscoveries Y3
New defects Y4
Rediscoveries Y4
Total incidents

Year 1

80
48

128

Year 2

60
150

210

Year 3

40
128

168

Year 4

30
90
120

Total

80
48
60
150
40
128
30
90
626

Fig. 8-14 Preventive maintenance

8-1

8-2

8-4

8-5

8-6

8-7

8-8

Exercises

What factors determine the technical and the economic life of a software
product?

What are the dominant categories of reported user problems and why?
What can cause a software product to change over time?

Why does the complexity of a program increase during maintenance and
what can be done about it?

What properties of object-oriented programs increase the maintenance
effort and why?

Why is the complexity of a module (in the sense of McCabe) a poor predic-
tor of its quality?

What are the advantages or disadvantages of doing maintenance in-house
for purchased products? What particular risks have to be addressed?

Why is an on-the-fly installation of new software versions desirable? How
can it be achieved?

Jeualew Apnis pue sajdwex] ‘ 5

Project management and
business analysis

The software field is not a simple one and, if anything, it is getting more
complex at a faster rate than we can put in order.
B.W. Boehm [Boeh79]

This chapter discusses two activities that permeate most projects from
beginning to end: management and business analysis. Although considered
as necessary evils by many technical people, we will show what issues they
address and what results can be achieved.

9.1 Definitions and importance

The term project management is used here to designate the following activi-
ties: establishment of project plans and targets; selection and allocation of
people; the definition of a development process; and the monitoring and
control of the project progress. The establishment of project plans is
referred to as planning. It requires estimation of effort and time, collectively
called cost estimating. The allocation of people includes the definition of
their role and their responsibilities.

Repeating a definition from Chapter 2, a project is an organizational
effort over a limited period of time, staffed with people and equipped with
the other required resources to produce a certain result. A process is the set
of principles, methods, and tools used by a project. A development process
defines which activities receive what emphasis, and how and in what
sequence they are performed. Accordingly, different process models are used.

Business analysis comprises the estimating of the market potential, the
determination of a product packaging and pricing approach (if applicable),
the development of a business case, and the control of the return-on-invest-
ment. Besides revenue, customer satisfaction is an important indicator of
product success.

In most projects, technical aspects are interrelated with management and
business considerations. To be able to restrict oneself on the technical issues
only, is really an exception and a luxury affordable only for some beginners

or those in paradisical work environments. On the other hand, to be able to
generate revenue from one’s work is a source of recognition and satisfac-
tion, eventually leading to economical independence.

9.2 General observations

We often encounter the attitude that software management is a necessary
evil that disturbs a creative and mainly technical activity. It is seen as adding
constraints that technical people do not like or do not need. Sometimes
yardsticks are put up that may apply elsewhere. Creative people prefer to
see their situation as unique, leading to the not-invented-here (NIH) syn-
drome. Some of them also sympathize with moderate forms of anarchism.
In the software industry this phenomenon is typically prevalent in an envi-
ronment of self-proclaimed cowboys. A very pragmatic view is to look at
management not as some hostile group of people sitting on top of a project,
but as an auxiliary function supporting a project from below. This view
even produced some inverted organization diagrams.

The key activity associated with management is project planning.
Planning does for a project what design does for a product: it identifies the
goals, the success criteria, and the resources needed. In an ideal situation,
the goals are obvious, the success criteria generous, and the resources to be
used unlimited. Since such an environment is rare, any serious project needs
a plan. The laissez-faire principle is inadequate. The questions here are
‘How detailed and reliable is the plan?’ and ‘How is it generated?’

Cost estimating is a prerequisite to project planning. No planning is possi-
ble without estimating. Estimating the project effort is only possible if we
understand the type of work to be done. Understanding usually progresses
with the phases of a project: estimates are naturally very approximate at the
beginning and should be improved over time. We should think carefully
about which model to use and should not hope for simple models; we should
rework estimates whenever better information is available. Following Boehm
[Boeh00c], we can distinguish between seven estimating methods:

m Algebraic models: express relationships between independent and
dependent variables by means of a formula.

B Expert judgment: ask people who are considered knowledgeable to
express their opinion.

B Analogy: look for similar projects and use their actual data as a base.

B Parkinson: equate cost estimate to available resources.

B Price-to-win: equate cost estimate to price considered necessary to win
the job.

B Top-down: derive costs from general properties of the resulting product.

B Bottom-up: estimate each individual activity separately or ask each par-
ticipating subgroup to estimate its requirements and add up the result.

[ER
[00]
(9]

Suol}eAlasqo |elausn ‘

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ §

In practice, frequently more than one of these methods is used, mainly to
validate the results achieved. Whatever method is used, it is important that
the people responsible for the work agree with the estimate. This is the
only way that a plan can be turned into commitments that people are will-
ing to meet. The earlier in the project cycle an estimate is made, the lower
is its accuracy. It is therefore customary to include a contingency factor
into the planning. This may start as high as 30 percent and decrease while
the project proceeds.

Algebraic cost estimating models usually rely on some notion of produc-
tivity. Productivity is to be understood as the amount of output per unit of
investment. The question here is “What is counted as output, and what
investments are included?’ As will be discussed in more detail below, the
common measure of output for software projects is the size of the delivered
system in terms of lines of source code (SLOC, or simply LOC). The invest-
ment is the labor cost spent. If the difference in manpower cost from
country to country is to be excluded, only the effort (and not the cost) is
considered. The effort is measured in person-time. For small projects (such
as student assignments) it is person-hours or person-days, for large indus-
trial projects it is usually person-months or person-years. When Brooks
wrote his essay [Broo75], the expression man-year or man-month was more
customary. A typical productivity measure (or metric) is thousand lines of
code per person-year, abbreviated as KLOC/PY. The abbreviation PY stands
for people-year or person-year.

Productivity numbers cannot be compared across organizations, unless
unambiguous definitions of both elements, effort and LOC, are used. When
counting effort, the degrees of freedom are as follows:

B which activities are counted, including requirements definition and
maintenance;

m which people are counted, direct or indirect project members;

® which times are counted, productive and unproductive times.

The various LOC measures may also differ in several aspects. It should be
clearly stated which of the following items are counted:

only executable statements, or also declaratives;

machine language (or assembler-equivalent), or high-level language;
commentary and command language;

physical lines or logical lines;

newly developed, reused and changed code.

Depending on the way counting occurs, there may be differences by a factor
of ten on each part. The most reasonable approach is to count only newly
developed, logical lines, in a high-level language, excluding commentary,
but including declarative and command language statements. Unless stated
differently, this definition of LOC is used in this book.

Because of the wide variety of definitions, great care should be taken for
comparisons between companies. Within a company and for comparisons
between projects, a consistent definition has to be used. Two measures
derived from LOC are essential in the definition of process or productivity
measures. They are:

B Changed Source Instruction (CSI): Newly developed LOC + changed
LOC + reused LOC - deleted LOC.

B Shipped Source Instructions (SSI): SSI of previous release + CSI of cur-
rent release — changed LOC.

The LOC metric has the disadvantage that it depends on the design and the
implementation chosen, including the implementation language. To solve
this problem the measure function points (FP) has been proposed. In its ini-
tial definition by Albrecht [Albr79], five distinct functional elements of an
application were counted (inputs, outputs, files, tables, and inquiries).
These numbers were weighted and calibrated with historical data from 25
IBM projects to arrive at effort estimates. Later on, the definitions were
generalized and calibrated with additional data. The problem with function
points is that they cannot be directly measured. They can therefore not be
used to plan the modification of an existing system. What makes their value
even more questionable is the fact that FP measure size in a similar fashion
as LOC does. This is demonstrated by the existence of tables that allow
conversion from FP into LOC and vice versa, such as those published by
Jones [Jone96]. According to this source, for typical third-generation lan-
guages, such as Ada, COBOL, and C, 1 FP corresponds roughly to 100
LOC. There are of course variations from language to language, particu-
larly between Assembler and higher-level languages. Jones’ table can also be
found (as Table 2.4) in the COCOMO-II book [Boeh00c], and has been
incorporated into the COCOMO-II tool.

The skill to make good estimates can only be developed if actual data are
collected with which to compare the estimates. To assure consistency of
measurements, it may be advantageous to install an independent group to
collect data across multiple projects. Process-related data should not be
used for personal performance rating, however.

Another major management obligation is the choice of the right process
model. There have been hundreds of different models proposed. They are
usually variations of the waterfall model as first documented by Royce
[Royc70] and the spiral model as proposed by Boehm [Boeh88]. We will
discuss the essence of these two models below. As with any method, a
process model cannot be introduced against resistance from below. The
employees have to own the process.

Estimating the market potential of a product is really part of the require-
ments definition. If requirements are accepted this means that there are
users who want this function. These users represent the potential market.
Whether a market potential can be exploited depends on how motivated the
users are, how well the actual products meet the requirement, and what

187

Suol}eAlasqo |elausn ‘

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ é

alternate solutions exist. If a competitive product is already in the market
and has satisfied the needs, a new product must be superior: it has to
replace the existing product to gain users. Replacing an existing product
creates additional costs for the user, which may have a major influence on
his or her decision to move.

Pricing of a product requires the ability to estimate costs incurred in
developing the product. It helps to determine a lower bound. For art and
intellectual work, the value, and hence the price, is seldom determined by
the effort that went into its creation. The value is what it is worth in the
eyes of the viewer, collector, or user. A price is determined by considering
the value for the user and the level established by the competition. Value-
based pricing is usually only possible if the product or service is unique in
the marketplace.

The slow growth in software development productivity frequently is seen
as a problem, particularly in those environments where software is consid-
ered a burden rather than a business opportunity. If software is a business,
the emphasis on productivity is secondary. It is certainly easier to double the
revenue than to double productivity. Time to market may be more critical.

9.3 Applicable laws and their theories

9.3.1 Sackman’s second law

This law is one of the oldest known in the industry. It dates back to a study
done in 1966 by Sackman, Erikson, and Grant [Sack68] at the System
Development Corporation (SDC).

Individual developer performance varies considerably. (L31)

Applicability Although the purpose of Sackman’s study was to prove the
hypothesis that online programming is more productive than offline pro-
gramming (Sackman’s first law), the most surprising result of the study
leads to this second law, which has achieved a much wider recognition
than the first law. Without looking at the exact numbers, everyone knows
that the variations between people are significant. In fact, they are much
bigger than what can be achieved by a variation in methods. In spite of
this, estimators have to make reliable predictions on the numbers, even
before they know which programmers will be assigned to the project. A
manager who is aware of this law will not attempt to force equal quotas
on every member of the team. In fact, he or she will watch for the extremes
at both ends, and will try to capitalize on the high performers, thus com-
pensating for the low performers. It is an interesting question whether the
use of tools smoothes the differences or not; many people believe that tools
may increase the difference.

Evidence For this part of the study only the data for the group of 12
experienced programmers (group A in the study) were evaluated. The
essence of Sackman’s striking results is given in Fig. 9-1. The numbers
given apply to the maze problem (A2). The study report does not provide
the more detailed information that would be desirable, for example,
whether the shorter program size correlates with the shorter coding times
or not. The explanation of these findings leads Sackman into a discussion
about the meaning of programmer skill. For beginners it is some general
proficiency in problem solving and coding. Later on, the experience with
the application domain, the tools, and methods prevails, so that a more
diversified notion is needed. Sackman suggests the use of aptitude tests to
detect the poor performers.

Activity Best score Poorest score Ratio
Coding time (hours) 2 50 25
Debug time (hours) 1 26 26
CPU time (sec) 50 541 11
Program size (LOC) 651 3287 5
Run time (sec) 0.6 8.0 13

Fig. 9-1 Variability in programmer performance

Theory Programming is a key example of an intellectual activity. The intel-
lectual capabilities of people vary. So do cognitive styles and work habits.
The economic importance and the fact that first successes can be obtained
easily, attract many people that have difficulties with more demanding
problems into this field. Beside the basic skills, knowledge about many
application domains has to exist or has to be acquired. Certainly, specializa-
tion can help.

Comment The statistical quality of this part of the data has been questioned
[PrecO1b]. Besides the small sample size (12 programmers) it is considered
inappropriate to express variability by giving the extremes only. A better
approach would have been to form quartiles and to take the median of the
lowest and highest quartile. In addition, the data include variations caused
by the use of Assembler (by three programmers) versus a high-level lan-
guage (by nine programmers), as well as the use of a timesharing system (by
six programmers) for debugging instead of a batch computer (by six pro-
grammers). If those programmers using the same methods are compared,
the ratio in debug time is 14 : 1. If the medians of the lowest and highest
quartiles were used, the ratio becomes 7 : 1. Even after this adjustment of
the data, the variability is still significant. It is surprising that no similar
study has been done during the last 35 years. Obviously, nobody expects
that the numbers will change dramatically.

S91109Y3 119y} pue sme) a)1gedljddy ‘ @

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ \g

9.3.2 Nelson—Jones law

The following law combines work done as early as 1964 by Edward Nelson
of the System Development Corporation [Nels66] with very recent observa-
tions by Capers Jones [Jone00].

A multitude of factors influence developer productivity. (L32)

Applicability Both authors, whose work was carried out more than 30
years apart, emphasize the fact that productivity of software developers is
really determined by a host of factors. Reducing this number to some ten or
15 parameters is certainly a major simplification. Together with Sackman’s
second law quoted above, the Nelson—Jones law characterizes the environ-
ment in which project managers work.

Evidence Nelson’s study [Nels66] was based on data from 169 projects,
covering both aerospace and commercial applications. Correlation analysis
was done between about 100 factors and their effect on human effort,
machine time needed, and schedule. The conclusion was that software pro-
ductivity at least correlates with 15 factors. The factors chosen appear
somewhat arbitrary today. The linear cost estimating model developed by
Nelson proved to be of little use. Jones’ experience [Jone0O0] is based on
consulting work done for about 600 companies all over the world. Jones
started his work within IBM about 1975, was with ITT from 1978 to
1985, and founded a company called Software Productivity Research
(SPR) afterwards. Jones has written 11 books on software assessments and
benchmarking. He claims that about 250 factors influence the work of
programmers and thus the outcome of a project.

New development

Enhancement (new functions added to existing software)
Mandatory change (update for new statutes or regulations)
Maintenance (defect repairs to existing software)

Performance updates (revisions needed to improve throughput)
Conversion or adaptation (migration to new platform)
Nationalization (migration to new national language)
Re-engineering (re-implementing a legacy application)

Mass update (modifications for Euro or Y2K)

Hybrid (concurrent repairs and functional updates)

0 0NN AWM

._\
e

Fig. 9-2 Nature of projects

-
e

0 0N AR WN e

Subroutine of sub-element of program
Module of a program

Reusable module or object

Disposable prototype

Evolutionary prototype

Stand-alone program

Component of a system

Release of a system

New system or application

Compound system (multiple linked systems)

Fig. 9-3 Scope of projects

Looking at the different project environments and the different types of
software to be written, Jones distinguishes between project nature (Fig. 9-2),
project scope (Fig. 9-3), and project class (Fig. 9-4).

VRN R WN e

o Y
w N =L O

Personal application for private use

Personal application to be shared by others

Academic program developed in academic environment

Internal application to be installed at one location

Internal application to be accessed via an intranet or timesharing
Internal application to be installed at many locations

Internal application developed by contract personnel

Internal application developed using military standards

External application, to be freeware or shareware

External application to be placed on the World Wide Web

. External application leased to users

. External application embedded in hardware
. External application bundled with hardware
14.
15.
16.
17.

External application marketed commercially

External application developed under outsource contract
External application developed under government contract
External application developed under military contract

Fig. 9-4 Class of projects

Considering, in addition, the 22 software types (as listed in Fig. 3-1),
Jones arrives at a number for the multitude of variations. By multiplying 10
x 10 x 17 x 22, he obtained 37,400 different forms of software projects.

Theory Software and system development reflect the diversity of our social
activities. There is no hope to reduce it unless we give up parts of our eco-
nomic or social liberty. This reflects the basic difference between social and
natural science. Social systems usually have a history, as do biological sys-
tems. This history is the main reason for a multitude of forms (and species)

S91109Y3 119y} pue sme) a)1gedljddy ‘ \E

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ \E

and the complexity of structures. It is only in some parts of inorganic
nature that more simple structures can be discovered.

9.3.3 Boehm’s third law

With this law we would like to give credit to Barry Boehm for his outstand-
ing contributions to software cost estimating. Two books [Boeh81,
Boeh00c] and several publications document his work in this area. A short
overview is given in [Boeh84b].

Development effort is a (non-linear) function of product size. (L33)

Applicability The law as formulated expresses the essence of a class of cost-
estimating models, particularly those developed by Boehm. This class of
estimating models requires that a size estimate be done first. In other words,
they turn a cost estimate into a size estimate.

Evidence Software cost estimating has a long tradition. Any organization
concerned with software development from the late 1950s was confronted
with this problem. Brooks [Broo75] referred to work published during the
early 1960s by Aron [Aron70], Corbatd, Nelson, Portman, and Wolverton
[Wolv74]. Later, the algebraic models of Putnam and Doty and their respec-
tive tools received wide acceptance.

Difficulty Representative system LOC/PY
Difficult Control program 500 - 700
Medium Compiler 1000 - 1700
Easy Application program 2000 - 4000

Fig. 9-5 Productivity rules-of-thumb

Fig. 9-5 lists what could be considered as the industry’s rule of thumb up
to the time where more detailed models became available. As with Aron’s
estimating rule [Aron70], it uses three levels depending on the difficulty of
the code in question. Other people made a distinction between high,
medium, and low interaction. It is customary to equate these levels with the
types of systems given in the figure.

A major empirical study looking at a wealth of data, was that of Walston
and Felix [Wals77]. Their study focused specifically on the effect of differ-
ent development methods in one particular environment (the federal
business of IBM). It showed that the methods in question (top-down design,
structured programming, chief programmer team) all had a positive effect,
but always in the range 1.3-2. The following factors had an influence rang-
ing from 3-7, however:

amount of old code;

experience of developers with the problem;
experience of developers with the tools;
proximity of customer.

In the course of his work, Boehm analyzed data from multiple sources and
reviewed most of the software cost estimating approaches used in the indus-
try. Boehm elaborated on algebraic models and produced a very detailed
model, called the Constructive Cost Model, abbreviated as COCOMO. The
original model published in 1981 has undergone a major revision recently.
The COCOMO-I model [Boeh81] was based on data from 63 projects, rep-
resenting business, scientific, systems, real time, and support software. The
essence of the model is expressed in two exponential formulas of the form:

E=cxS€and T=2.5xE"

where E = effort (in people-months), S = size (in KLOC), T = elapsed time
(in months), and ¢, g and b are constants. The constant ¢ can be modified
with 15 so-called effort multipliers. They express product, computer, per-
sonnel and project attributes. The constants g and » assume one of three
values depending on the development mode. The modes and their values
are: organic (g = 1.05, h = 0.38), semidetached (g = 1.12, b = 0.35) and
embedded (g = 1.20, b =0.32). From the fact that g > 1 it follows that in the
case of large projects their effort grows more than linearly. In other words,
a ‘dis-economy”’ of scale is assumed. The COCOMO-I model can only be
used if a size estimate (LOC) is available, meaning that reliable LOC esti-
mates can only be done after the design is complete.

With COCOMO-II [Boeh00c], a wider applicability has been attempted.
The structure of the formulas remains essentially the same, but the adjust-
ments have changed considerably. The model was calibrated using data from
161 projects. The data have been augmented by expert opinions. Two differ-
ent sets of adjustments are given: one to be used in the requirements phase
or early in the design phase, the other one after design is completed. The
latter is called the post-architecture model, for which five scale factors and
17 effort multipliers have been defined. The scale factors are precedented-
ness (meaning: ‘degree of novelty’), development flexibility, risk resolution,
team cohesion and process maturity. The exponent g in the effort equation
above is now a function of the scale factors and may turn out to be smaller
than 1. The effort multipliers express product, platform, personnel and proj-
ect attributes. For the early design model, it is assumed that the size of the
product is given in terms of function points rather than in lines of code
(LOC). In this case, the conversion rules from function points to lines of
code, developed by Jones [Jone96] are to be applied.

Theory Many people argue that we should not measure intellectual work by
the size of its output. What is measured here is not the quality but the
effort. The effort, even in the case of a genius, is reflected in the time

[ER
e}
w

S91109Y3 119y} pue sme) a)1gedljddy ‘

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ \E

needed. This certainly applied to the writing of this book. Size has a close
relation to functionality. Complexity (Simon, McCabe) correlates better
with size than with anything else, assuming a common higher-level lan-
guage. In practice, nobody throws in arbitrary code just to improve
productivity. Many of the non-coding activities depend on size.

Comment The success of this class of cost estimating models is limited by
the fact that size estimates are difficult. Whether done in terms of FP or
LOC, it does not make a real difference. To do them correctly, a design is
needed and a decision made as to what is reused, bought as ready-to-use
(COTS) from outside, or newly developed. As the design evolves, the size
estimates have to be updated. Even if this is done, not every project man-
ager is willing to correct his or her cost estimate. He or she simply hopes
that a sudden increase in productivity will bail him/her out.

9.3.4 DeMarco-Glass law

With the next law, based on the work of Tom DeMarco and Robert Glass
[DeMa82, Glas98, Glas01], we shall highlight the most common problem
associated with cost estimates.

Most cost estimates tend to be too low. (L34)

Applicability Estimates are usually needed and performed at the beginning
of the lifecycle. In extreme situations, it may happen before the require-
ments definition, i.e. before the problem is fully understood. Estimates can
reasonably only be done after the design phase, when it is determined how
the problem at hand will be solved. During the design activity we decide
whether everything will be developed from scratch or whether large parts
can be reused from previous projects or from COTS. Even if an estimate is
performed after a design is available, it may soon be out of date. Not only
may the design change, but we may learn more about how to implement the
given design.

Evidence In his study of runaway projects Glass [Glas98] defines a runaway
project as one exceeding its cost estimate by more than 30 percent. Whether
the number of runaway projects has increased or decreased recently is
an open question. Apparently, schedule overruns are more frequent than
cost overruns. In [Glas01] many reasons are listed which explain why cost
estimates are not met: they are too optimistic; performed too early; done by
marketing or the customer rather than by the developer; not adjusted as the
project proceeds, or not taken seriously at all. Often projects are conducted
without clear responsibility for project performance. Some projects have
been seen as quite a success by the developers, although the estimates were
not met.

Theory It is more likely that an estimator forgets work items than adding
unnecessary work. Frequently, not all efforts are considered ahead of time, for
example, the amount of rework. Or as Humphrey [Hump97b] puts it: “There
are always surprises, and all surprises involve more work.” A professionally
done estimate therefore includes contingencies. Contingencies are always posi-
tive. They should be higher the earlier in the life cycle an estimate is made.

Comment If the contingency of the cost estimate is included in project
plans, it will be used up. The same is true if the initial estimate is too high.
This is frequently referred to as the Parkinson effect. If an organization
exists, it tends to keep itself busy. DeMarco [DeMa82] suggests that esti-
mates should be done by professional estimators only as they would have
pride in the precision of their estimates. If done by a designer or project
manager, the accuracy of an estimate is only one problem among others.

9.3.5 Humphrey’s law

With the following law we recognize the essential contributions made to
our industry and profession by Watts Humphrey [Hump89, Hump96,
Hump97a]. The work discussed here had its roots largely in IBM, but was
extended and made popular after Humphrey’s retirement from IBM.

Mature processes and personal discipline enhance planning, increase
productivity, and reduce errors. (L35)

Applicability The work that has lead to this law is known under two different
names: the Capability Maturity Model (CMM) and the Personal Software
Process (PSP). Humphrey found a unique environment that helped him to insti-
tutionalize and publicize his ideas. This is the Software Engineering Institute
(SEI) at Carnegie Mellon University in Pittsburgh. CMM and PSP are closely
related. PSP has recently been extended to the Team Software Process (TSP).

Because of Humphrey’s work, our profession has an excellent under-
standing of what a disciplined and mature process is all about. There have
been other attempts that were not oriented as much towards software, such
as ISO 9000, which defines minimal criteria that a quality system has to
meet for companies designing or supplying products. An effort funded by
the European Community, called Bootstrap, has extended the CMM con-
cept and applied it to European companies. As shown in Fig. 9-6, CMM
defines five levels of maturity. Each of the boxes in the figure lists what is
called the key process areas (KPA) that have to be addressed if this level
has to be reached. The SEI conducts CMM appraisals according to a
detailed questionnaire, and has trained and qualified people all over the
world independently to perform the CMM assessment leading to an equiv-
alent appraisal. The rapid acceptance of CMM within the USA was
certainly promoted by the fact that the US Department of Defense evalu-
ates many of its vendors based on the CMM scheme.

[ER
e
(9]

S91109Y3 119y} pue sme) a)1gedljddy ‘

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ §

CMM 5 - Optimizing
Process change management;
technology change management;
defect prevention

CMM 4 — Managed
Quality management; quantitative
process management

CMM 3 - Defined
Peer reviews; intergroup co-ordination;
product engineering; integrated
software management; training;
process definition; process focus

CMM 2 - Repeatable
Configuration management; quality
assurance; subcontract management;
project tracking; project planning;
requirements management

CMM 1 - Initial

Fig. 9-6 Capability maturity model (CMM)

While the CMM assessment is a scheme to be used by companies that are
interested in improving their software development and software acquisition
processes, PSP is a vehicle that can be used by individual developers to
advance their professional skills. As shown in Fig. 9-7, the personal process
matures through four phases. The PSP is a bottom-up complement to the

PSP 3 - Scaling Up
Cyclic development

PSP 2 - Personal Quality
Code reviews; design reviews; design
templates

PSP 1 - Personal Planning
Size estimating; test planing;
schedule planning

PSP 0 - Personal Measurement
Current process; time and defect
recording

Fig. 9-7 Personal software process (PSP)

CMM, that addresses a subset of the key process areas, and emphasizes the
personal responsibilities for schedule commitments and the quality of work
products. It starts out by creating awareness for the process being used and
demonstrates how to collect data about one’s own performance as a soft-
ware developer. Using this as a base, one’s own work can be planned more
systematically. The key message is that project plans are nothing but aggre-
gations of personal plans. The third step is an emphasis on quality, where the
focus is on design and code defects. This step relies on the concept that
design has to reach a certain level of completeness before coding starts. The
final phase introduces an iterative development cycle where requirements are
refined and the design evolves through the aid of prototypes.

Evidence The CMM has been subject to many empirical studies. As an exam-
ple, we will discuss the data published by Diaz and Sligo [Diaz97] of
Motorola. Fig. 9-8 summarizes their data from 13 organizations, comprising
about 350 software developers. It reflects a period of four years (1988-1992)
and 34 different projects. During this time period, 104 CMM assessments
took place, moving some organizations up to CMM 3. For the performance
of the project groups, three criteria are given, i.e. defects/KLOC, cycle time,
and productivity. For each, a short explanation is provided.

Maturity level Number of Defects/KLOC Cycle time Productivity
projects (X factor)

CMM 1 3 n/a 1.0 n/a

CMM 2 9 4.4 3.2 1.0

CMM 3 5 2.1 2.7 0.8

CMM 4 8 1.0 5.0 2.3

CMM 5 9 0.6 7.8 2.8

Fig. 9-8 CMM-related project performance (at Motorola)

As defects, only those errors are counted that escaped detection in the
phase they were introduced. Instead of a high-level language-based KLOC
metric, the paper uses Assembler-Equivalent KLOC (AE-KLOC), where 1
KLOC = 5 AE-KLOC. Cycle time reduction is expressed as a positive factor.
If the base project needed 30 calendar months, and the compared project
only three months, this is an improvement by a factor of ten. Productivity is
also given as a relative number only. In this case it was discovered that pro-
ductivity slightly decreased when going from CMM 2 to CMM 3. At the
same time cycle time increased. The reason is that additional effort, such as
peer reviews, was introduced that was not spent before.

First empirical data on PSP are contained in the paper by Humphrey
[Hump96]. He reports that 104 students or engineers that took the training
program were able to reduce the errors found during development by 58 per-
cent, and those found during testing by 72 percent. For the small program
exercises completed during the course, productivity expressed in LOC/hour

S91109Y3 119y} pue sme) a)1gedljddy ‘ \\'BI

[ERN
\O
(0]

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

improved by 20 percent (comparing programs written at the beginning with
programs written towards the end of the course). More data are contained in
the paper by Ferguson et al. [Ferg97]. The data published originate from
three companies that had completed PSP training. Fig. 9-9 shows the data
from one of the three companies (Advanced Information Services). The proj-
ects were rather small (between one and three programmers only). Given are
the planned-versus-actual schedule mismatch and the total number of the
defects discovered during acceptance test and after delivery.

Staff Project Delivery: Acceptable test Usage
planned/actual defects defects

Non-PSP C 2/5 11 1

D 10/19 6 14

G 2/2 0 3
PSP B 7/5 1 0

E 6/6 0 0

F 2/2 0 0

Fig. 9-9 PSP-related project data (at AIS)

Finally, some data from the study by Prechelt and Unger [PrecOl1a] in a
university environment should be mentioned. They compared the perform-
ance of 29 students who had completed PSP training with that of 19 students
in a control group. The PSP students achieved a higher degree of reliability
for the programs they wrote, which was attributable mainly to fewer diag-
nostic errors because their programs provided for better error checking.
They also estimated their productivity more accurately than the others, but
not the program size and effort. The productivity as measured in LOC/hour
was higher than that of the control group, as they typically wrote larger pro-
grams for the same task within the time allocated for their work.

Theory The philosophy behind Humphrey’s law is that good quality and
high productivity are worthwhile and can largely be achieved through orga-
nizational and personal discipline. The way to approach this is through
detailed and reliable planning. Improvements will not be obtained as a
single shot, but as part of a gradual process. The individual, as well as the
organization, learns best from analyzing his or her own performance.

Comment Not all organizations have the resources and the time to apply all
CMM required process elements. For different products, the quality level
required may be different. The CMM approach has been criticized for focus-
ing too much on the organizational side and not enough on technical
aspects. It could be applied successfully to a low technology process as well,
for example, assembler language coding. Based on Humphrey’s and other
work, many forms of quality improvement programs (QIP) have been estab-
lished in industry.

9.3.6 Brooks’ law

This is probably the best-known law in software engineering. It was stated
by Fred Brooks [Broo75] in exactly the following words.

Adding manpower to a late project makes it later. (L36)

Applicability The law says that, in a software project, people and months,
i.e. effort and duration, are not simply interchangeable. This applies to all
types of multi-person projects where knowledge level gained is essential.
The effect is smaller if the additional people join early in the project. The
only safe way out is to reduce the scope of the project, i.e. defer part of the
functions of the system being developed. In his book on death march proj-
ects, Yourdon [Your97] calls this solution ‘triage’, i.e. sifting by prioritizing.

Evidence Brooks’ statement is based on his experience as development man-
ager of OS/360. As stated by Brooks in the Anniversary Edition of his book,
the law was validated by two studies: one is by Abdel-Hamid and Madnick
[Abde91], the other by Stutzke [Stut94]. They are not presented here.
Brooks’ law is also reflected in Boehm’s COCOMO model, where project
duration is a non-linear function of effort.

Theory Brooks gives three reasons why the law is valid: training, re-parti-
tioning, and additional communication cost. The training that has to be
given to the new people diverts current team members from their original
task. The re-partitioning of work has a disruptive effect. The amount of
communication needed raises roughly with the square of the number of
members. Another reason is that certain types of activities tend to be
sequenced, such as requirements definition, design, and system integration.
They cannot be shortened, nor can they be overlapped. The maximum
number of people to be productive in a project depends on the number of
independent subtasks that can be executed in parallel. This is highest if the
need for communication is low or non-existent, such as in picking apples or
similar manual tasks. Co-ordination effort reduces productive work: many
programmers consider meetings a waste of time.

9.3.7 Baumol’s disease

The computing industry, like several other industries, has two kinds of
offerings: products and services. The next law, formulated by William J.
Baumol [BaumO01, Peng98], addresses their relationship. The principle, also
known as Baumol’s disease, represents a valuable economic insight.

Products replace services through productivity gains. L37)

S91109Y3 119y} pue sme) a)1gedljddy ‘ g

N
o

0

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

Applicability In an economy that is low in capital, the majority of people
live from services, e.g. catching fish or raising agricultural products. If capi-
tal is available, a high portion of the goods traded are produced
mechanically. As long as the level of automation is rather low, a significant
industrial work force is needed to supplement the machines. As the industry
progresses to a higher degree of automation, it reduces the required work
force. Now many more people move into services again, but into entirely
different services than before. In a high-technology field, the product and
service business are complementary. Many complex products need service
to be useful. This is true of cars, airplanes, nuclear reactors, etc. Service may
comprise selection, evaluation, configuration, installation, deployment,
operating, tuning, maintenance, and recovery.

Evidence Baumol’s famous example is the Mozart string quartet. In 1793,
the year it was composed, to perform a Mozart quartet, required four per-
sons, four stringed instruments, and about 30 minutes. To produce a
Mozart quartet today requires precisely the same effort, time, people, and
materials. Only turning the live performance into a product allowed its
industrialization. The shellac record or the CD version achieved prices that
opened up markets not accessible to a live performance.

Services need not be provided by the developer (or, as in the case of the
Mozart quartet, the composer himself.) The skill to perform a meaningful
service can be acquired by other organizations or individuals as well. In the
software industry, some developers were stronger than others at motivating
third parties to provide services for their products. Two examples are SAP
and Microsoft. The acceptance of their products in the market relies to a
large extent on the fact that they are important sources of income for many
consulting and service companies throughout the world. Companies that are
not financially equipped to do product development, for example, two to
three person start-ups, can provide services economically. Service companies
are therefore willing to operate at lower margins than most developers.

Also in the software field, a service may easily be turned into a product.
It is typical for the industry that products evolve in a direction that reduces
the support service needed. The major growth of the software industry
during the last decade has only been possible by making the installation and
maintenance of products easier. This way the industry can gain customers
that are not able to pay the extra service costs or develop the appropriate
skills in-house. Turning a service into a product, or reducing service by
enhancing the product, also opens markets in less-developed countries
where a local service is not offered. In highly developed countries, the
scarcity of skilled resources also pulls away people from services into prod-
uct development. The more business that is done over the Internet, the more
services can and will be turned into products. In spite of this, there are
people who are creating new service markets by giving away products for
which they gained access without major investments of their own. This is
referred to as the open source business model and will be discussed in
Section 9.4.8.

Theory Baumol’s principle reflects the fact that productivity gains can nor-
mally not be achieved for services. In a capital intensive economy,
investments can be made to develop and build products. They can be manu-
factured and distributed at lower cost and can replace services. Because
productivity in the service jobs tends to lag behind productivity in manufac-
turing, the cost of services ends up rising constantly over time. If the
nominal wages remain equal across the two sectors, the lower productivity
growth will show up as a relatively faster growth of prices. Baumol calls
this handicap a disease.

9.3.8 Boehm’s hypothesis

With this hypothesis we will address another area of Boehm’s work
[Boeh88, Boeh89a, Boeh89b, Boeh91]. It is a key aspect of software and
systems management.

Project risks can be resolved or mitigated by addressing them early. (H17)

Applicability Even the most careful planning of a project cannot exclude all
risks. A project risk is the probability of failure. Risks can be considered as
potential future exposures that are accepted to gain advantages that would
not be achievable otherwise. Risks may exists from the beginning, or develop
during the course of the project. Projects without risks are either boring or
not worth doing. Some risks are generic, some are project-specific.

Fig. 9-10 gives the top-ten list of generic software project risks as identi-
fied by Boehm [Boeh88]. For these risks, every software manager should be
constantly on guard. In addition, he/she should watch out for risks due to his
specific situation and constraints. As Tom Gilb [Gilb88] put it: ‘If you do not
attack risks, they will attack you.” Project risks have to be distinguished from
product risks. Even if a project was executed as planned, the product may
possess risk potential. There may be a risk for the individual user, its owner,

Personal shortfalls

Unrealistic schedules and budgets
Developing the wrong software functions
Developing the wrong user interfaces

Gold plating

Continuing stream of requirements changes
Shortfalls in externally furnished components
Shortfalls in externally performed tasks

0 0NV W R

Real-time performance shortfalls

—
e

Straining computer-science capabilities

Fig. 9-10 Top ten software project risks

N
S91109Y3 119y} pue sme) a)1gedljddy ‘ S

N
o

2

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

or the public at large. The latter risks are being discussed by Neumann in a
regular contribution to the ACM Software Engineering Notes.

Evidence Boehm has made several proposals to address this aspect of proj-
ect management. In [Boeh89a] and [Boeh91] he proposes to make risk
management an integral part of project management. He suggests the iden-
tification of risks once a month and, if necessary, that action should be
taken to manage them. Managing risks means assessment and control. As
part of the assessment, the risk exposure should be quantified. Boehm
defines the risk exposure or impact as the product of probability of failure
times the amount of damage, as follows:

R:Pffo

Risks can be mitigated, resolved or transferred to somebody else. The latter
is possible only, if the other party is capable and willing to accept the addi-
tional responsibility. Whatever actions are taken, they need time and
resources. Unless they have been planned as a part of a buffer, they will
have an impact on the project.

The well-known spiral model [Boeh88] is an example of a risk-driven
process model. It contains other process models (e.g. the waterfall model) as
a special case. The waterfall model relies heavily on firm requirements and a
thorough design step. Otherwise the implementation work cannot be han-
dled as a closed entity and farmed out to multiple groups working in
parallel. It requires elaborate documents and phase completion criteria,
which, as we have seen before, is difficult to achieve for certain types of
projects. In the spiral model, before entering into a waterfall-like process,
one or more iterations should be performed to address specific risks. Each
spiral ends with a new risk assessment. Unless this is done, and the appro-
priate consequences are drawn, the spiral model may deteriorate to a
code-and-fix process. If the funding of the project comes from somebody
else, this party has to be closely involved and agree with the risk assess-
ments. Unless he/she agrees that all major risks are not due to the project
team itself, we cannot expect this party to tolerate additional costs and
schedule delays.

Finally, with “Theory W’, Boehm [Boeh89b] tries to take away the nega-
tive image of risk management. The goal of this management principle is to
make every stakeholder of a project a winner. He suggests they constantly
look out for win-win conditions, meaning situations where more than one
project partner can gain. Win—lose situations should be avoided or managed
as risks. It is important to establish reasonable expectations among all
stakeholders. Unquestionably, the set of observations leading to these pro-
posals is shared by many people in the industry. The evidence provided by
Boehm is typically based on single projects only. Other authors have not
followed this example. It is for this reason, that we have called the underly-
ing assumption a hypothesis, rather than a law.

9.4 More on project management and business analysis

Although the key issues are addressed by the laws and hypotheses quoted,
we will extend the discussion by giving some further details.

9.4.1 Project plans and commitments

While the result of design work is documented in a design specification, the
result of project planning finds its expression in a project plan. As long as
both exist only in somebody’s head, their value is marginal. A project plan
normally addresses at least the following topics:

goals and scope of project;

overall schedules;

organization and responsibilities;

detailed plans for major activities (sub-plans);
resource requirements;

status meetings and reports planned;
dependencies, open questions.

A project plan is primarily a means of communication between the parties
responsible for the project. During its development it constitutes a proposal
for negotiation. As soon as it is accepted, it becomes a commitment on which
people can rely. Commitments are necessary between project members if par-
allel work is considered. Commitments are frequently made towards external
partners, be it the customer or the marketing organization. Projects that can
live without commitments, i.e. where nobody else is really interested, are not
worth pursuing. Exceptions are training exercises, which, as shown under
Humphrey’s law above, can be used to test our ability to meet commitments.

The accuracy of a plan has to be a function of the criticality of the proj-
ect. If the risk of failure is high, more careful planning is necessary. Using
Boehm’s definition above, if either the probability of failure or the damage
are low, little effort should be spent on planning. The project plan is a
means for the project owner to manage risks. Its establishment should not
detract from other project activities. Plans are normally internal documents
only, and not deliverables. It is important that a plan be a ‘living’ document,
i.e. updated and refined as needed. As an example, detailed plans should be
established ‘just in time’. If an activity is performed during phase 7 of a
project, the corresponding plan should be ready at the end of phase #-1.

Plans can only address those things that we understand and know will
happen. By laying out plans for this portion of the immediate future, we are
better able to react to unpredictable events. A plan is not a program that
will execute automatically, i.e. without human intervention. It is not a pre-
diction that we have to work on to ensure that it becomes true. Nor is it an
achievement to brag about, or a reason to lull oneself into complacency.
The best plan cannot serve as an excuse for poor project management, nor
for deficiencies of the project outcome.

203

sisAjeue ssauisng pue juswadeuew 3d9(oid uo 3o ‘

N
o

4

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

9.4.2 Project and process models

As part of a project plan, a project or process model should be selected. Not
to do this, would be a major management error. In any case, a model
should be chosen that best suits the project. There exist a large variety of
options: we will not discuss them in detail. Project models are either a
derivative of the sequential (waterfall) approach or of the iterative (spiral)
approach. Very often, they have elements of both.

A process model is the level below. It prescribes how the individual activ-
ities in a project are to be approached. A very elaborate process model
might define entry and exit criteria for each activity, specify which organiza-
tional groups are involved, and prescribe which methods and tools should
be used, etc. As with a project model, it should be tailored to the needs of
the project. It is the vehicle by which experience can be transferred from
one project to the other, or from one group to the other. For most organiza-
tions, the adaptation of project and process models, is the key means for
becoming a learning organization. The formal adoption of certain models
(like SEI-CMM or ISO 9000) can be considered as a high level commitment
of a company to quality targets and business ethics.

9.4.3 People assignment and skill management

Project members should be selected based on skill and motivation. For col-
lege and university graduates their skill level can only partially be deducted
from the school’s curriculum and the grades achieved. Since the emphasis in
most curricula is more on analytical and technical skills than on construc-
tive and human skills, special attention has to be given to these aspects
during an interview. Those with professional experience may have gained
with respect to non-technical skills, but may have adopted certain working
styles or habits, which may be advantageous or may cause difficulties
within a project team.

A project team ideally consists of complementing skills. Such a team can
produce better results than if people are totally equal and exchangeable. It
may be advantageous, if different technical and psychological roles can be
assumed: technical roles are database designer, network specialist, user
interface, or performance expert; psychological roles are pusher, motivator,
or arbitrator. Specialization can occur best if people are allowed to do the
same type of work repeatedly, which is more likely to be possible in large
organizations than in small ones. Doing the same work over and over again
may conflict with other goals, i.e. broadening our experience and skill,
which is where job rotation may come in. A project’s success strongly
depends on the motivation of its team. Personal motivation is determined
by how well a project’s goal matches individual goals. Professionals are not
only interested in the money they earn, but also in the skills they gain, the
satisfaction of creation they experience, and the recognition they receive.
For professionals, salary is frequently a ‘hygiene’ factor, meaning that it has
to be in line with what is customary.

Every project is a learning opportunity, and this is true both for individ-
ual learning and organizational learning. While the basic professional
training is an individual’s responsibility, an organization can help an indi-
vidual to keep abreast of technical developments during his or her career, a
topic that will be discussed further in the next chapter. Professional training
should not be confused with project training. For project training, the needs
of the project have priority over those of the individual; the training must
fill immediate gaps and must do this in the shortest possible time. The sub-
jects to be learned may be the methods and tools used for coding and
testing, the content of the requirements, the principles and contents of the
design, etc. Learning by doing is often used as a fallback if other possibili-
ties do not exist. It may be the riskiest method, however.

9.4.4 Work environment and tools

It was recognized long ago that the physical and social work environments
directly influence developer productivity. Only a few instances are known
where the physical environment was created specifically with the require-
ments of software developers in mind. A well-known positive example is the
Santa Teresa laboratory of IBM, which was built for some 2000 program-
mers and opened in 1977. Its architectural philosophy and design process
were documented in a paper by McCue [McCu78]. The planning of the
building was preceded by a study showing that programmers in this organi-
zation spend 30 percent of their time working alone, 50 percent in small
groups and the remainder in large groups, traveling, etc. As a consequence,
the building is constructed as a campus-like cluster, with a monastic touch,
embedded in a garden landscape. It provides privacy through single person
offices, with small meeting rooms in close proximity. Other advantages its
occupants praised were the automatic forwarding of phone calls to a secre-
tary, and a reference library close by.

That these principles have not been commonly accepted in the industry
is proven by the success of a book by DeMarco and Lister [DeMa87] a
decade later. For this book the authors had collected data showing the
effect on productivity of such factors as floor space per programmer, noise
level of the office, and number of interruptions by phone calls or by other
people. Besides postulating the proper physical environment, this book is
also an excellent source regarding the social environment suitable for soft-
ware developers. Even many traditional companies (where Dilbert-like
managers are the exception) have great difficulties in creating the correct
social environment for intellectual work. As DeMarco and Lister point
out, there are hundreds of ways to influence productivity, and most of
them are non-technical; besides, overemphasizing productivity is the best
way to loose it.

More recently, a major shift in work environments was frequently associ-
ated with terms like ‘old’ and ‘new’ economy. Since the new economy
heavily relies on intellectual work, some start-ups experimented with new
physical and social environments. Many of them offered flat organizations,

205

sisAjeue ssauisng pue juswadeuew 3d9(oid uo 3o ‘

N
o

6

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

loosely coupled groups, very flexible working hours, remote workplaces
and, of course, economic participation through stock options. After the new
economy has lost its credibility, we hope that any good ideas will move over
to economically more persistent companies.

Development tools are certainly helpful, but they are only part of the story.
While the other considerations apply consistently, tools change frequently
over time. In McCue’s example the programmers needed considerable storage
space for listings and punched cards, and good elevator connections to the
central computing center to deliver or pick up print outs several times a day.
In some development laboratories, this technology period was followed by a
time where most programmers needed more than one terminal in their office
(one for designing and coding, and one for testing), until such time as all ter-
minals could be replaced by powerful workstations or PCs.

Incidentally, McCue’s building project mentioned above followed a
cyclic design process iterating through requirements definition, high-level
(conceptual) design and low-level design. It was plagued with conflicting
requirements, sought user participation, and used prototyping at various
levels, including testing furniture mock-ups under working conditions.

9.4.5 Software pricing and business case

Software (and many hardware components) are knowledge products. As
such they are comparable to lectures, books, musical recordings, and films.
For all these products the development costs are high and the replication
costs low. Therefore the same pricing models apply:

m Target groups: prices are established separately for different user groups
according to their price sensitivity, for example, private and corporate users.

B Time delays: early buyers who usually have a higher demand pay more
than late comers. The price of the old version is lowered after a new ver-
sion is out.

m Versioning: for the same product, different functional or performance
levels are offered at different prices.

B Personalizing: the product is part of an enhanced or tailored offering,
possibly together with some local service.

B Bundling: the product is sold only as part of a package consisting of
multiple products. Limits to this are usually set by law.

B Negotiating: the price is freely negotiated between seller and buyer.
Customers who buy large quantities expect special discounts. The
extreme case is an auction.

The following options are specific for software: the vendor differentiates
between initial purchase price and upgrade price or may give away certain
teaser products, for example, development tools. Products may be sold
through different marketing channels. The most important ones are direct
marketing through own agents or online ordering, and indirect marketing
through independent agents or retail stores.

A business case is usually done on a per product basis. Sometimes it may
be extended to a family of products. For COTS products, it may be done
for one market segment only, or for multiple markets. Accordingly, different
revenue and cost figures apply. The revenue is an aggregate of the forecasts
for the different channels and pricing models. For internal systems, instead
of revenue the benefits are calculated either as savings or as additional rev-
enue made in the traditional business segment. For a COTS system, the
costs include development, distribution, maintenance, and marketing costs.
For an internal system, the costs comprise development, installation, con-
version, operation, and maintenance. A product is profitable if the ratio

Profit = (Revenue — Cost)/Cost

exceeds the profitability target. This ratio is also called return on investment
(ROI), where investment corresponds to the costs incurred. A profitability
target should be higher than the current interests of a bank account. A key
factor affecting revenue and costs is the assumed life of the product, which
depends strongly on the point in time when a replacement product is
expected, be it from the vendor itself or from a competitor.

An important aspect of a business case is cash flow, which is concerned
not only whether a return on investment occurs, but when. For projects
with similar profitability ratios, their break-even points may differ consider-
ably. Fig. 9-11 shows one way to illustrate the financial history of a project.
As long as a product is under development, the monthly costs create a nega-
tive cash flow. This starts to change after shipment or delivery of the
product. Depending on the speed and the degree of acceptance in the
market or within the own company, revenues or savings will gradually turn
the cash flow into a positive figure. The point in time where this happens is
called the break-even point. A time-scale for this is not given in the figure,
because the time frame shown may range over three to seven years. The ear-
lier the break-even point is reached, however, the better for a project. We
may even accept lower profit rates if the return comes early.

Revenue
Monthl

Delivery omny

revenue/

Monthly costs | savings

Time
. \\ :
Temkent Break-even
Cash flow

Cost

Fig. 9-11 Financial history of a project

207

sisAjeue ssauisng pue juswadeuew 3d9(oid uo 3o ‘

N
o

8

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

9.4.6 Product packaging and licensing

While computer hardware did have the character of a commercial product
from the beginning, this was not the case for software. For quite a while,
many people were against such an idea. This is reflected in the opinion nicely
expressed by one of the participants of the 1968 Garmisch conference on
Software Engineering [Naur69b]: ‘Software belongs to the world of ideas,
like music and mathematics, and should be treated accordingly’. The change
came about gradually after IBM decided in 1969 to offer some of its software
as separately priced products. In the case of IBM, it took about 15 years until
all new software was unbundled, i.e. priced separately from hardware.

Software pricing has an influence on how software products are pack-
aged. The first requirement is that each product should be self-contained,
i.e. all dependencies it has on other products should be well-justified. A
product has to be big enough to justify not only the separate distribution,
but also the transaction costs (billing, accounting). The number of sepa-
rately priced features has to be low. On the other hand, a product cannot be
too big: it has to be handled and paid for by its intended user.

Software licenses can take on many forms. Usually, they only give the
right for a non-exclusive use. In this case, the vendor retains the ownership
of the software and all other rights. Most common license models permit
installation on one computer only, or on multiple computers used by the
same person. Simultaneous use by several persons is either not allowed or
handled separately. Other rights that a user may have, depending on the
license model, is the right to make a backup copy, to transfer the software
from one machine to another, or to sell the license to another user. The right
to do modifications is normally not given.

The license also specifies what type of on-going support (telephone, on-
site) is given, and at what price. The same applies to error corrections and
functional upgrades. A somewhat controversial subject is the question of
warranty. A warranty may say that the software will perform according to
documentation (i.e. according to specification) as far as ‘best practices’
allow. The exclusion of responsibility for consequential damages and the
guarantee that other people’s intellectual property rights are not infringed
are normal business. Users should be alerted of the license conditions
through a visible copy of the license that can be inspected at the time of
purchase. For products downloaded in the network, an online message that
requires an ‘I agree’ reply is sufficient.

Fig. 9-12 shows some typical software license types. The price may further
vary by the nature of the contracting organization, be it business, academic,
charity, or government. Fees may be collected as monthly license fees or as a
once-only charge. Monthly license fees are typical for mainframe software,
once-only charges are dominant in the PC market (shrink-wrapped soft-
ware). In the case of once-only charges, functional upgrades are usually paid
for separately. Unfortunately, users do not install upgrades as frequently or
as fast as many vendors would like. Periods of three to five years are
common for office-type software. For this reason, recently, one vendor

wanted to replace his ‘perpetual’ licenses with subscription-type licenses
valid for several years only, but including free updates. The move was not
well-received. More details on software licensing can be found in a typical
reseller’s homepage, for example, from Softmart.!

License type Pricing condition Typical customer

Single end user No discount Private user

Variable volume Staged discount without forecast Small and medium organization

Forecasted volume Staged discount based on 2-3 Medium or large organization with
year forecast variable suppliers

Enterprise Fixed discount Medium or large organization

with firm supplier relationship

Fig. 9-12 Software license types

9.4.7 Intellectual property rights

The term intellectual property rights usually denotes copyright, trademark,
and patent law. All three areas are relevant for software and system prod-
ucts. The developers and users have to be concerned about two aspects,
namely avoiding infringements of other people’s rights and gaining protec-
tion for the products being developed.

Copyright, originally intended to protect literary work, protects the par-
ticular expression chosen by the author, be it in writing, drawing, or
musical composition. In the case of software, it protects the textual expres-
sion of a program in a particular programming language. It does not
protect the ideas leading to this expression, or the algorithms chosen for a
solution. The great advantage of copyright protection is that it becomes
effective for any document at the moment of its publication, independent of
whether it has been registered with some agency. To register a document
with the US copyright office (or its equivalent in other countries) only
improves the evidence in case of legal quarrel.

Both trademarks and patents have to be applied for and are only granted
after examination. In the case of the USA, this responsibility lies with the US
Patent and Trademark Office. In Europe, the European Patent Office (EPO)
can issue patents that are valid in all its signatory states. Since its existence,
the EPO has granted some 200,000 software patents. In spite of this, there is
still a discussion about the patentability of software-related inventions, partic-
ularly in Europe. Early software patents, issued during the 1950 decade, had
to be disguised as hardware inventions in order to be granted. The clarifica-
tion, that has since been achieved in Europe allows software-related
inventions to be patented if the invention solves a technical problem. Saving
costs is not considered a technical problem, but saving storage space, time,
and energy is. In the USA, this point is treated more liberally. Any invention

1 http://www.softmart.com/licenseguide/

209

sisAjeue ssauisng pue jusawadeuew 3d3foid uo alo ‘

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ E

that is new, useful, and non-obvious can be patented. A good source of infor-
mation on the status of the relevant legislation is the Intellectual Property
Law Server.” The specific questions concerning software are discussed in sev-
eral papers by Pamela Samuelson and others, for example, [Davi96, Samu01].

Many discussions on this subject, particularly those regarding software
patents, are really strange. Some people seem to ignore that everyone can
give away as much of their intellectual property as they want to, provided
other people are interested. On the other hand, people who want to use
their invention to make a business from it should not be hindered from
doing so. If an inventor is not able or not interested to exploit the invention
through products, he or she is well advised to find licensees. A well-known
example where this is happening are the patents on MP3 encoding, which
are owned by the Fraunhofer research center in Erlangen, Germany. The
license fees obtained for the corresponding patents are sufficient to fund the
group’s future work in this area. To argue that all software-related patents
are trivial is simply untrue, and if applicable in a specific case, should be
taken up individually in the courts, rather than in the trade journals.

9.4.8 The open source model

The open source model is a combination of a unique development approach,
a software license model and a business model. Well-known products follow-
ing this model are GNU, Linux and Apache. GNU (the acronym stands for
‘Gnu is not Unix’) was a project started in 1984 by Richard Stallman. It has
created a C compiler and a text editor (Emacs). Linux is a UNIX kernel,
originally developed by Linus Thorvalds of Helsinki University, while
Apache is a Web server. The open source model is documented in several
books by Eric Raimond [Raim00], and an overview is given by Wu and Lin
[WuO1]. A current source of information is the homepage of the Open
Source Initiative.?

The open source development cycle starts out by announcing an interest
to develop a software product. Typically, this happens over the Internet. If
enough volunteers are found, a work plan is agreed upon. Requirements
definition and overall design is frequently handled by the initiator. He or
she publishes the design specification and collects comments from the other
project partners. A configuration management plan and version control
system are agreed upon, so that code development can be done remotely. A
first integration level of the product is built early with minimal functional-
ity. After that, gradual enhancements are build in short intervals. Unit
testing is assumed to be done by the original contributor. System testing is
done by all developers, sometimes following an agreed test plan.

The software license model is usually a derivative of the GNU license
model or the Berkeley Software Distribution’s (BSD) UNIX license model.
The main difference between the two models is the way derivative work can

2 http://www.intelproplaw.com/
3 http://www.opensource.org/

be used. The GNU model requires that all derivative work has to follow the
GNU model, i.e. the code has to remain open so that it can be modified by
any subsequent user. The BSD license model requires that proper credits are
given, but the derivative work can be used as desired.

Several business models are in use: for GNU, Stallman had founded a tax-
free charity to collect donations; and most Linux distributors claim that they
can get along with a nominal charge for the code and cover their expenses by
offering service to the users. Some hardware vendors, like IBM and Sun, see
a potential in the open source model, as it gives them additional options in
those software areas where they are dependent on other vendors, like
Microsoft. It also provides a vehicle to distribute certain teaser products to
users who cannot or do not want to buy regular commercial products.

The open source model has some appeal for people in the academic com-
munity. It allows developers to contribute small pieces at their own speed,
and let other people worry about integration and commercialization. This is
similar to publishing. The main limitation of the open source model is that
it works only for selected types of software. The contributors have to have
an interest as users. This is the case for certain operating systems and many
development tools. The UNIX environment has always had that appeal and
some Internet services also qualify. There is little chance at present for
normal major business applications, for example, an ERP system, to be
developed using this model. Several projects proposed simply have had to
wait years for volunteers. There has always been talk that, for certain secu-
rity problems, fixes were available for an open source system faster than for
a proprietary system. Experience shows that it is certainly easier for some-
body to propose a fix than making sure that it works with the entire
system, particularly with the coming release.

9.4.9 Total cost of system ownership

Generally, users of IT products are well advised not to take the procurement
price as the only decision factor. Other aspects, besides quality, are the
expected lifespan, the cost of usage, and the degree of dependency, all of
which can be lumped together in what is called the cost of ownership. The
degree of dependency can have many aspects, the first of which is the ability
to do without the product once it has been introduced. If the business can no
longer function without it, the dependency is absolute. Many efforts are
taken to protect the system from malfunction or misuse and all provisions
necessary for problem determination, recovery, security, and safety have to be
accounted for under this aspect. The second consideration concerns the ease
and certainty to obtain service from the vendor, be it help, fixes, or updates.
Without proper service, the product may have to be depreciated within a
short period of time. The final consideration is what are the chances to obtain
assistance from other users or to find people that are knowledgeable in using
the product? This is much easier for a product that has a significant presence
in the market than for a very rare and unprecedented product.

sisAjeue ssauisng pue jusawadeuew 3d3foid uo alo ‘ E’

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ E

9.5 Examples and study material

9.5.1 Cost estimating (bottom-up approach)

The example given in Fig. 9-13 is a development estimate using a simple
spreadsheet. It shows the number of persons needed by activity by month,
relative to the project start. It is assumed that the estimate for each activity
is provided by the experts responsible for it, which in some cases may repre-
sent a negotiated agreement. Depending on the business ground rules, a
distinction may be necessary between direct and indirect costs. Only direct
costs may be charged against a product, while indirect costs are part of the
overhead that may be allocated at a fixed rate to all products.

Activity/ M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 Sum
Month

Requirement 3 3 1 7
Prototyping 2 1 3
Design 1 4 4 3 12
Testcase dev. 1 1 2 4
Coding 5 5 5 5 20
Test tools 2 2
Unit test 2 3 4 4 1 14
Perf. analysis 1 1 1 4
Integr. + system test 1 9
Documentation 1 2 2 2 9
Manuf. + distrib. 1 1 1 1 2 6
Total direct 33 3 5 5 6 8 8 8 8 8 8 8 8 90
Marketing interface 1 1 1 1 1 5
Financial analysis 1 1 1 3
Management 1 1 1 1 1 1 1 1 1 1 1 1 12
Grand total 4 5 4 6 6 8 9 9 9 9 10 10 10 10 110

Fig. 9-13 Development effort estimate

The strength of this approach is that it explicitly shows which activities
are assumed and when. Additional activities can easily be added, and others
can be shortened, moved, or deleted. The semi-graphical representation of
the estimate exhibits visibly the essentials of the project schedule, points out
dependencies, and emphasizes the different skills required. To calculate the
costs, the effort has to be multiplied by the manpower cost rate ($/person
month), and has to be augmented by the costs for equipment, travel, and
software licenses. If we assume US$16,000 per person-month, the direct
costs for this project will amount to US$1.44 million.

9.5.2 Cost estimating (with COCOMO-II)

In the next example, an algebraic model is used to perform the estimate,
specifically the COCOMO-II model [Boeh0Oc]. It starts out with a size esti-
mate, using the function point (FP) metric. The input values and the
appropriate transformations are given in Fig. 9-14.

Function type Low Average High Subtotal
Internal logical files 1 1 1 32
External interface files 2 2 1 34
External inputs 7 3 0 33
External outputs 2 4 4 56
External inquiries 0 2 0 8
Total unadjusted FPs 163
Equivalent LOCin C 20864

Fig. 9-14 Size estimate using function points

The columns headed with Low, Average, and High list the input values
for the number of function types with low, average, and high complexity.
Using standard weighting for the various function types, the numbers in
these three columns are converted into ‘unadjusted’ function points, and
shown in the right-hand column. For this example they add up to 163 FPs.
Assuming that the programming language chosen is C, 1 FP corresponds to
128 LOC, following the conversion table of Jones. This yields a product
size of about 21 KLOC. For the scale factors affecting the exponent of the
COCOMO formula, we assumed nominal values throughout, which gives
an exponent slightly larger than 1. To determine the effort multipliers, the
seven cost drivers of the Early Design model are used. Fig. 9-15 gives the
ratings that have been chosen for the example. Multiplying the seven fac-
tors in the right-most column gives an Effort Adjustment Factor (EAF) of
1.15 for this example.

Cost drivers Abbreviation Rating Multiplier
Product reliability and complexity RCPX Nominal 1.00
Reusability RUSE High 1.07
Platform difficulty PDIF High 1.29
Personnel capability PERS High 0.83
Personnel experience PREX Nominal 1.00
Facilities FCIL Nominal 1.00
Required development schedule SCED Nominal 1.00

Fig. 9-15 Effort multipliers

N
Jeualew Apnis pue sajdwex] ‘ 2

214

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

With these parameters, COCOMO-II produces the effort and schedule
estimates as given in Fig. 9-16. Three levels of estimate are given: optimistic,
most likely and pessimistic. Besides effort and schedule (really project dura-
tion), the productivity is calculated (in LOC/person month), as well as the
average number of people needed. Not shown in this example, are the con-
version of effort to cost, and the risk analysis, which are also provided for
by the COCOMO-II tool. It is important to consider that these estimates
cover only the effort from design through integration. The efforts for
requirements definition, acceptance test, or maintenance are not included.

Estimate level Effort (PM) Schedule (M) Productivity (LOC/PM) Staff (P)

Optimistic 63.7 13.8 327.3 4.6
Most likely 95.1 15.6 219.3 6.1
Pessimistic 142.7 17.8 146.2 8.0

Fig. 9-16 Resulting effort and schedule estimates

Based on different project models, the COCOMO-II tool can also per-
form an allocation of the calculated estimates to individual activities or
phases. Fig. 9-17 gives an example of an allocation for a waterfall-type
project model. It has built-in assumptions for the percentage of effort or
schedule needed for each phase. Although the above effort estimate was
done for the activities starting with design, the allocation also calculates
data for the planning and requirements activities. In Fig. 9-17, the corre-
sponding values are placed in parentheses.

This example clearly illustrates the advantages of an algebraic model: it is
easy to change the parameters, or to recalibrate the model with new data.
The COCOMO model, in its current form, allows so many degrees of free-
dom that it can be easily adjusted to any environment. It can be used at
different points in a project to recalculate the estimates as soon as better
data are available. There are two points, however, that we should point out
to an enthusiastic user of this tool: first, the user should be careful in distin-
guishing between when the model is wrong or when the plan is wrong;
second, he or she should not be lulled into a false sense of security by the
three-decimal-digit precision of the print-outs, or by the multitude of pages
with numbers produced from a few pieces of actual input.

Activity/phase Effort (%) Effort (PM) Schedule (%) Schedule (M) Staff (P)
Plans and requirements (7.0) (6.7) (19.1) (3.0) 2.2
Product design 17.0 16.2 25.5 4.0 4.1
Programming 59.4 56.5 49.9 7.8 7.3
Detailed design 25.5 24.2 - - -
Code and unit test 33.9 32.3 -
Integration and test 23.6 22.5 24.6 3.8 5.8

Fig. 9-17 Allocation to activities

9.5.3 Business analysis

Many, if not most, software development projects are conducted in a business
environment. The costs incurred have to be recovered from revenues. In this
example, we will therefore start out with an estimate of the market potential.
With a given set of functions, a price level, and an assumed marketing plan, a
certain level of market penetration may be reached. Such an estimate as done
by a marketing expert is called a sales forecast, and an example for a soft-
ware product is shown in Fig. 9-18. It partitions the market in three sections,
i.e. end users, enterprises, and dealers. A different price can be achieved by
the vendor for each sector. The forecast in Fig. 9-18 predicts the number of
licenses sold (as once-only charges) over a four-year period.

Customer type Price($) Year1l Year 2 Year 3 Year 4
End users 200 1,000 5,000 4,000 2,000
Enterprises 500 300 1,000 2,000 700
Dealers 100 1,000 3,000 5,000 4,000

Fig. 9-18 Software sales forecast

Using the forecasted quantities, the gross revenue can be calculated.
Fig. 9-19 gives the corresponding numbers in the first row. To calculate
net revenue the gross revenue has been adjusted by the costs associated
with actual sales. Three cost types are shown, i.e. manufacturing/distribu-
tion, marketing, and maintenance costs. It is important to consider that a
large portion of these costs will also occur, if the sales targets are not met.
The last line of Fig. 9-19 gives the net revenue (in US$ million), after the
sales related costs are deducted. A net revenue of US$1.9 million corre-
sponds to a gross revenue of US$5.7 million.

Revenue and cost Year 1 Year 2 Year 3 Year 4 Total
Gross revenue 0.45 1.8 2.3 1.15 5.7
Manufacturing/distribution 0.2 0.4 0.3 0.2 1.1
Marketing 0.5 0.6 0.4 0.2 1.7
Maintenance 0.2 0.4 0.3 0.1 1.0
Net revenue —-0.45 0.4 1.3 0.65 1.9

Fig. 9-19 Revenues and sales related costs

We will calculate the allowable development cost for this business case in
the next step. This may seem like putting the cart before the horse, but is
often the most realistic approach. To simplify the calculation, we do not
discount the revenue numbers over time, but assume a reasonable profit
margin. We can then calculate the allowable development cost from the fol-
lowing formula:

N
Jeualew Apnis pue sajdwex] ‘ =

216

sisAjeue ssaulsng pue juswaseuew 123(oid ‘

Allowable cost = Revenue/(1 + Profit)

If we assume a profit margin of 20 percent, we obtain the allowable devel-
opment costs as 1.9/1.2 = US$1.6 million. For typical software products,
this number may indeed be lower than the marketing or even the distribu-
tion costs. As a final point, we consider the cash-flow of this product. For
this we assume that the development costs are all spent in a period of 12-14
months, called year 0, prior to the first year of sales. This leads to the num-
bers given in Fig. 9-20. This part of the example is an illustration of Fig.
9-11 above. The numbers used represent US$ million.

Cash-flow Year 0 Year 1 Year 2 Year 3 Year 4
Annual -1.6 -0.45 0.4 1.3 0.65
Cumulative -1.6 -2.05 -1.65 -0.35 +0.3

Fig. 9-20 Cash-flow analysis

The figure shows that investments have to be made, i.e. financial credits are
needed, over a four-year period. The break-even point of the project lies in year
4 of the sales period. From this point of view, the project is not very attractive,
and it may therefore have difficulties to compete for money with other pro-
posed investments that have a better cash-flow, i.e. an earlier break-even point.

9.5.4 Project tracking

While the challenges of estimating are largely technical in nature, the problems
with project tracking are predominantly psychological, i.e. people do not want
to be supervised. If appropriate checkpoints have been established, the tracking
of schedules is trivial. To rely exclusively on schedule tracking is not sufficient,
however. If a schedule is not kept to, many things have already gone awry. In
this example we therefore present two ideas that are helpful in gaining informa-
tion on a project’s progress, independent of established schedules. In the first
part of this example, we will rely on information that is generated routinely.

Last month Year-to-date

Plan Actual Percent Plan Actual Percent
Labor 60 61.5 102.5 360 362.5 100.6
Overtime 1 2.5 250.0 6 10.3 171.6
Computing center 10 8.7 87.0 60 47.2 78.6
Travel 3 2.8 93.3 18 19.8 110.0
Phone, mail 2 3.2 160.0 12 13.0 108.3
Subcontract 6 9.4 156.6 36 39.6 110.0
Total 82 88.1 107.4 492 492.4 100.0

Fig. 9-21 Project cost accounting

Fig. 9-21 is an excerpt from a standard cost accounting report. The
units are thousand dollars. The left part shows data for the last month (say
June), the right portion brings the year-to-date status. The middle of the
year is assumed. With respect to both the monthly and the cumulative
totals we seem to be perfectly in line with expectations. Two of the individ-
ual cost items, however, reveal alarming information for the project
manager: overtime* is excessive; and the utilization of machines is below
plan, which means that, whatever the phase we are actually in, we have
less material ready for machine processing than expected. Of course, the
manager will know whether it is the code development, unit test, or system
test that is running late.

Problems Leent
reported PPt Lins

Q

Problems
analyzed

0

“a,

an==”

Errors
fixed

-
.

Number of problems

e "mmmmn®
ammn®

Time

Fig. 9-22 Tracking of test progress

The next part is an argument in favor of graphical representations.
Fig. 9-22 shows one specific view of the test progress. It plots the number
of problems reported versus the number of problems analyzed and the
number of errors fixed. In this case, at the beginning of the test, which
was performed by an independent test group, the developers were flooded
with problem reports. The reports receded for a while, and then increased
again. The real problem is the middle curve, which indicates an enormous
backlog. As long as problems are not analyzed, it is unclear whether the
problems reported are test case errors, handling problems, documentation
problems, or errors in the code. In addition, the fixing rate is rather low.
This data can be indicative of a project situation in which the developers
are still developing new code and not yet ready to scan problems; the
errors reported are all very difficult to fix, because they are caused by
weaknesses in the design. Making information available to everyone for
their own interpretation and scrutiny may obviate the need to ask embar-
rassing questions; if there is a major problem in the project, everyone can
see where it is and why.

4 This example assumes that programmers are paid for overtime. This may not be true in some
environments.

N
Jeualew Apnis pue sajdwex] ‘ S

sisAjeue ssaulsng pue juswaseuew 123(oid ‘ 5

9-1

9-2

93
9-4

9-5

9-6

9-7
9-8

9-9

9-10

9-11

Exercises

Describe the tasks of project management. Which tasks can be ignored in
the open source model?

What is measured by the LOC metric? What variations can exist regarding
its definition?

Explain the advantages and disadvantages of the function point metric.
What are the strengths and the limitations of the COCOMO model? How
can the size of a software product be estimated?

What is considered to be a mature development process and why is its
definition useful? How do the key process areas (KPA) relate to the capa-
bility maturity model (CMM)?

What are the reasons for Brooks’ law? What solutions are available to
solve the schedule problem?

What are typical project risks and how can they be mitigated?

Why are people skill and motivation important for a project? What can a
project manager do about it?

How is the profitability of a product defined? What are minimal profitability
targets?

Describe some of the license and business concepts associated with the
open source model.

Explain what is meant by ‘total cost of system ownership’.

User skills, motivation, and
satisfaction

The best engineers or scientists don’t work for a company, a university or
a laboratory; they really work for themselves.
W.S. Humphrey [Hump97b]

This chapter discusses the issues and experiences relevant to the assessment
of human skills, motivation, and satisfaction. We will heavily draw on work
done outside the field of computer science. The results usually originate in
psychology and sociology.

10.1 Definitions and importance

In this chapter (as in the IT industry), the term user designates any person
that may come in contact with computers. In contrast, a customer is the
person or organization that has the financial responsibility for the acquisi-
tion of computer-related products and services. In the private sector of the
economy, user and customer are the same person. In business, education,
and administration the functions are normally separated. The assumption is
that users are both professionals and non-professionals. Professionals
include computer scientists, and systems and software engineers.

Skill is a combination of knowledge and capability. To use a computer,
both are needed. The knowledge consists of a model of what the computer
does and how it does it. The capabilities depend on the type of interaction
needed. They may require the processing of information and the command
of mechanical chores, like typing or pointing. Information may be presented
to the user in visual or acoustical form. The user reacts with tactile or, less
frequently, with acoustic signals. There is a relationship between informa-
tion and knowledge that permeates the discussion. It is indicative of the role
that information systems can play in this context. Motivation is the inclina-
tion a person has towards some activity or idea. Satisfaction is a measure
expressing how well a user likes a product or service.

The topics discussed in this chapter are extremely relevant to our field.
Computers and software are, among other things, cognitive tools. In addition

220

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

to such functions as data acquisition and machine control, they are used to
increase the effectiveness of both clerical and knowledge workers. They aug-
ment human skills and change the ways humans work. Software and systems
engineers, therefore, need a much greater knowledge of human sensory and
cognitive capabilities, and of mental limitations and motivational aspects,
than do most other engineers or scientists. Of concern are not just the physio-
logical and cognitive aspects of human—computer interaction: it is the relation
between humans and computers, in general, and their effects on our lives and
on society that has to be considered. This may help us to understand some
attitudes and to assess the impact on people and organizations.

10.2 General observations

An information-processing system consists of people, procedures, data, soft-
ware, and hardware. Only the last four are subject to engineering design.
Unless adapted to the people they support, they cannot fulfill their purpose.
There are common properties that are shared by most people. Of these, the
human information-processing capabilities are most relevant.

While in the past computer access was a privilege for certain parts of
society, it now penetrates all layers and realms. This is certainly the case in
all developed countries, while developing countries are following this trend
with a certain delay (of maybe five to seven years). It is worth looking at the
potential users of computers in distinct groups. A first grouping can be
made based on age:

B Children of pre-school age: their use of computers is limited to game
playing.

m Children of elementary and secondary school age: increasingly, elemen-
tary and secondary schools offer access to computing facilities. While
game playing may be allowed for motivational reasons, the real intent is
to spread computer literacy. This comprises typing, searching and com-
municating, as well as receiving some basic instructions and performing
simple exercises.

B Students: it can be assumed that in almost all branches of academic edu-
cation, computers play a key role. They are used for advanced forms of
instruction, to facilitate literature search, and to perform exercises, par-
ticularly those involving large amounts of text processing (term papers),
data transformations, and calculations.

B Adults, for private use: the typical home computer is used for correspon-
dence (e.g. e-mail and letters) and for simple accounting applications
(spreadsheets).

B Adults, for business use: this is the largest and most influential group
and will be discussed in more detail below.

The largest group of computer users are adult people in business.
According to some industry estimates, 80 percent of the workforce will be

computer users soon. It makes sense to break down this user group into
the following subgroups:

m Computer professionals: with about 1-2 percent of the workforce, this
subgroup has a very unique relationship to computers. It is the vehicle to
provide their service, which may include software development, data-
base, network and system administration, and computer and software
selection, installation, and tuning.

m Otber technical professionals and industrial workers: engineers and pro-
fessionals from many fields use computers to do technical design, to
procure parts and equipment, and to perform cost analysis and budget
planning. In most major industries the work of production workers is
supported in detail by computers, for example, in car manufacturing. In
some cases it may even be substituted by computer-controlled robots.

B Business professionals and clerical people: most businesses, even the
smallest ones, rely heavily on computers. The main applications are
accounting, ordering, inventory control, and billing. With the advent of
ERP systems, these applications have become more and more integrated.
Recently, e-commerce has changed them again.

B Doctors, lawyers, architects, journalists, and similar professionals: all these
professions have the need to store reference data (e.g. addresses, prescrip-
tions, and case histories), do accounting and perform correspondence.

B Public administrators, policemen, etc.: Local and state governments
store vast amounts of data to perform their duties. This may relate to
car licenses, real estate and people registration, or to tax collection and
social administration.

B [nstructors, consultants: the role of the computer as an aid in teaching is
constantly progressing. It started out with the preparation of course
material, and is now expanding into their delivery.

B Research scientists: here the use of computers is most varied. In many
branches of science it has become a new and indispensable means of con-
ducting research. Many experiments are complemented by simulation
models of processes in nature and society. Computers have also taken on a
new role in the traditional task of publishing scientific papers and results.

Not all users mentioned above are also purchasers of a system. The decision
to buy may be taken by somebody else on behalf of the actual users. The
user’s needs and desires determine which systems have a value in the
market. The overall acceptance is limited by the skills and the motivation of
users. Since the potential range of users is so broad, some aspect of general
human physiology and psychology come to bear.

Computers are information-processing devices. As such they are an
important resource for every professional. Information can be used to store
or transmit knowledge, but not all information is knowledge: we can be
flooded with information without gaining knowledge. Humans have the
capability to process information, which implies the reception, storage, and
retrieval of information. There are unique properties and limitations to

N
N
_

Suol}eAlasqo |elausn ‘

222

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

human information processing. Because computers are used to process
information this concept is central to computer science. The most com-
monly used definition is that information is any message that can be
interpreted. A message may have any form that can be observed by our
senses or their extensions, such as electrical meters or X-ray devices. A mes-
sage is interpretable if we can associate its components with components of
a set (e.g. an alphabet) we know already. If a message is not interpretable
we consider it as noise (in the case of audible messages) or as blur and
jumble (in the case of visual messages).

Knowledge is a set of models we (or other humans) have about objects
and their relationships that we consider true in the sense that they correctly
describe the world in and around us. Our knowledge comprises things that
exist in reality as well as abstract concepts. It is developed by condensation
and confirmation of observations and experiences, and held constant despite
frequent challenges. Knowledge can be represented through information,
which can be used to store things that are not knowledge. Examples of this
can be found in art, entertainment, and advertisement data. Not all knowl-
edge is stored as information. We call this tacit or implicit knowledge, which
may be acquired by observing or imitating some other person. A large por-
tion of the skills a person or a company has may be tacit knowledge. It is not
recorded in handbooks and cannot be stored in computers. It can be trans-
ferred only through personal interaction (e.g. an apprenticeship). Knowledge
has to be complemented by the ability to use it. This requires capabilities
that can only be acquired through practice or exercises.

Human motivation is an essential aspect if we want to understand human
behavior. Motivational research tries to identify the forces that influence
people when making decisions. People can be motivated or coerced to pursue
certain goals. Not all goals are of equal importance, and they may also
change over time. When discussing the motivation as it affects the attitude
towards computers, a distinction has to be made between professional and
non-professional users. Professional users use computers if they help them to
achieve their professional goals. As pointed out by Humphrey [Hump97b],
professionals are people who employ specialist knowledge and are concerned
with the most efficient way to solve a task. They want to do important work
that advances them professionally. As implied in the chapter epigraph, they
may judge their work environment on how much it helps in this respect.
They perform best and are most productive for their employers whenever
there is a close match between company and personal goals.

Computers can be extremely helpful for a professional, as long as they
can be used as an unobtrusive tool. They can enhance the attractiveness of a
workplace by offering an important resource as well as an additional com-
munication facility. Non-professionals may have a completely different
attitude towards computers: they may look at computers as yet another
annoyance of the work environment; or even as a threat of control or a
means of de-skilling. Children and young adults who first encounter
computers through games, may have an entirely different experience again.
This may influence their later attitude, both as a professional or as a

non-professional. In any case, satisfaction is highly dependent on a user’s
motivation. It raises or lowers the level at which products or services are
considered enjoyable, useful, acceptable, or frustrating.

Computers may not only influence the attitude of individuals, but of
groups as well. Humans may act differently if alone or in a group. Groups
follow unique laws, depending on their constituents and their purpose.
Some answers to this spectrum of questions can be found in studies of
group dynamics.

10.3 Applicable laws and their theories

The rules cited here are the ones considered most important for computing
science and are a selection from a multitude of results. They are only par-
tially based on empirical studies, but all reflect deep and useful insights.

10.3.1 Kupfmiiller's law

Karl Kupfmiuller has published some basic data on the capacity of human
senses and cognition [Kupf71]. We have condensed his observations into the
following law.

Humans receive most information through the visual system and store it in a
spatially organized memory. (L38)

Applicability Since the aim of computer usage is to support human infor-
mation processing we should understand what the human capabilities and
limitations are. It is of key importance to consider that not all senses are
involved equally. The predominance of the visual system explains why
signs, pictures, posters, books and screens play such a role in daily life, both
in business and culture. Of course, audio information is useful as a comple-
mentary channel, for example, in schools, army drill, or traffic, and may
even be very enjoyable emotionally, as in the case of music. The importance
of the spatial or visual memory varies between people.

Evidence The essence of Kupfmiiller’s data are represented in Fig. 10-1. The
total signal rate is estimated to be 100 Mbit/s on the sending side, and about
10 Mbit/s on the receiving side. The sending side is divided according to the
portion of the body from which they originate. More than half of the signals
emanate from the trunk (including legs), the hands, and the face. This part of
our communication is also called body language, and we are usually able to
recognize it without being explicitly trained. It is very common across cul-
tures. The voice, i.e. the speech muscles, are only a small part of this (23
percent). The receiving side is divided according to the senses involved. The
visual system is responsible for by far the largest part of our communication

N
N
w

S91109Y3 119y} pue sme) a)1gedljddy ‘

224

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

(87 percent). Hearing is responsible for only 10 percent, although this has
probably been changed by the invention of the mobile telephone. The other
senses include taste, smell, and touch, but also the sensations of heat, cold,
and pain. They collectively receive 3 percent of the signals.

Sending side Receiving side
Fac;e Trunk Vision
19%, o
e (32%) (67%)
Voice
(23%)
Hearing
Hanods Other (10%)
(26 /o) (30/0)

Fig. 10-1 Human signal sending and receiving

Our vision system has two other remarkable properties. It is very strong in
recognizing patterns (e.g. faces), and it can discern millions of shades of color.
As we will see in the next section, all our senses work in close co-operation
with the brain. There is a discussion among scientists whether the things that
we observe really exist in the way we observe them. One example is colors:
many people argue that colors do not exist in the real world, but only in the
human mind. In order to make sense of our observations, our senses (watch
the dual meaning of the word) have constantly to make hypotheses about the
world. Without it, all we hear is noise, and all we see is blur and jumble. The
second part of the above law is not directly due to Kupfmiiller. It says that we
are able to find things most easily if they are arranged in a spatial manner.
This applies to books on the shelf as well as to dishes in a kitchen.

Theory The eye is the most elaborate of the human organs. Each eye has
about 100 million receptors and is closely connected to the brain by about
1 million nerve fibers. As a comparison, the ear has only about 1500 recep-
tors and 1000 nerve lines. The origins of spatial memory are not well
understood yet. Its strength varies among individuals.

10.3.2 Gestalt laws

There is a group of laws derived from experimental psychology that are
usually referred to by the German word ‘Gestalt’ (pattern). Gestalt psychol-
ogy was founded by Max Wertheimer [Wert23]. The gestalt laws, looked at
as an entity, express the following observation about human perception.

Humans tend to structure what they see to form cohesive patterns. (L39)

Applicability Five gestalt laws usually are quoted. In abbreviated form they are:

Proximity: we tend to group things together that are close together in space.
Similarity: we tend to group things together that are similar.
Continuation: we tend to perceive things in good form.

Closure: we tend to make our experience as complete as possible.

Figure and ground: we tend to organize our perceptions by distinguish-
ing between a figure and a background.

The gestalt laws apply to all forms of human perception. They influence
what we see or hear. Sometimes we add information that is not there. As
Wertheimer put it, we are seeing an effect of the whole event, not contained
in the sum of the parts. If we have interpreted a picture once in a certain way
we have difficulties in seeing it differently. The gestalt laws are obviously not
restricted to perception although this is the area in which they were first dis-
covered and have been studied most thoroughly: they also seem to apply to
human memory. When remembering things, we straighten out odd lines or
add meaning that may not have been there originally. We often learn not
only the literal things in front of us, but the relations between them.

Evidence In this case, evidence can be presented directly. When looking at
Fig. 10-2 we add lines and see shapes that are not there. Psychologists have
many more examples. In a well-known experiment using cards, a black four
of hearts is mixed with correctly printed cards. In a short exposure to the
cards, about 90 percent of test persons recognize the incorrectly printed
card as either the four of hearts or four of spades. Of course, the ratio
decreases as the exposure time increases.

<7
¢ 2

Fig. 10-2 Law of continuation

Theory Our perception is not independent of our cognition. In other words,
we cannot avoid thinking while we are seeing. Our memory interferes with
what we are seeing. We are built to experience the structured whole as well
as the individual sensations. And not only do we have the ability to do so,
we have a strong tendency to do so. Humans are innately driven to experi-

N
S91109Y3 119y} pue sme) a)1gedljddy ‘ N

226

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

ence things in as good a pattern (gestalt) as possible. ‘Good’ can mean
many things, such as regular, orderly, simple, or symmetric. A possible
physiological explanation is that there are more nerve lines from the rest of
the brain to the vision center of our cortex than from the retina.

10.3.3 Miller’s law

The following law, made popular by the psychologist George Miller
[Mill56], is quoted frequently in the computing science literature.

Short-term memory is limited to 7+ 2 chunks of information. (L40)

Applicability When trying to understand human information processing,
the component following the sensory system is the human memory. Its
properties have to be considered when designing systems to support human
work. It is Miller’s law that led to the last of Shneiderman’s golden rules of
interface design, mentioned in Chapter 3. It says: ‘Reduce short-term
memory load’. It is also behind Corbaté’s law in Chapter 4.

Evidence Human memory is usually described as consisting of three distinct
parts (according to the Atkinson-Shiffrin model). They are the sensory
memory, the short-term memory, and the long-term memory. The sensory
memory is like a buffer and is associated with each sense, for example, the
iconic memory with vision and the echoic memory with hearing. The
number quoted in the law is true for short-term memory, which is the work-
ing memory. The number given by Miller is 7 = 2, unless ‘chunked” and
interrupted by something else. The short-term memory can hold single items
for about 1-3 minutes. The storage duration drops rapidly in the range of
10 to 30 seconds for multiple items. The long-term memory is virtually
unlimited in size. The duration of its storage may be up to a lifetime.

The number quoted by Miller is based on work done by the German psy-
chologist Ebbinghaus more than 100 years ago [Ebbi85] who investigated
the remembering of individual words. Miller’s contribution consists in the
definition of ‘chunks’. Miller determined that, instead of words, more com-
plex pieces of information can be remembered, a process referred to as
chunking. A chunk is a cluster of semantic entities that can be treated as a
unit. The individual components must have some relationship that puts
them into a cluster. Technically speaking, chunking is a form of recoding, an
adjustment of the representation. It draws on prior knowledge stored in
long-term memory [Ashc89]. The deeper the understanding of the relation-
ship between the units, the larger the number of units in a chunk.

The level of education also determines which items are chunked. While for
an adult European the string ‘Salt Lake 2002’ or ‘London fog’ may be single
chunks, it is not the case for a child who is just learning to read. This point is
illustrated by an experiment with a chess board as reported by Simon

[Simo74]. There is a game in progress with about 25 pieces on the board. Test
persons are asked to look at the board for a few seconds and then to repro-
duce the positions of all pieces from memory. Usually novices can only place
five to six positions, but chess experts can reproduce the entire board in most
cases. This is the case only if the board positions are actual games. If the pieces
are placed at random, the experts do not perform any better than novices.

According to Simon, the number of chunks should be 5 = 2 instead.
Whether Miller’s or Simon’s number is correct is not as important as the fact
that the short-term memory is severely limited. Since the long-term memory
is practically unlimited, many extraordinary achievements come about when
people use it in cases where ordinary people have to rely on their short-term
memory. This was the technique used by an arithmetic genius on German
TV who could multiply ten-digit numbers without paper and pencil.

Theory Some authors believe that short-term and long-term memory are dis-
tinct systems. This has been confirmed by medical cases in which part of the
long-term memory has been lost, but the short-term memory is unaffected.
Recent investigations indicate that there may be no physiological difference
between the two. The different behavior may be the result of a different organ-
ization of content only. The bottleneck that clearly exists for short-term
memory may also be the result of a limitation in processing capacity [Ashc89].

Comment Short-term memory seems to be equipped with some ‘general
purpose’ storage facility, while for long-term storage the neural ‘wiring’ (i.e.
connection of neurons) is permanently altered by the information. While
the long-term memory has a semantic and associative structure, the short-
term memory seems to be of syntactic nature. As we will see when we
discuss learning, the human memory stores data and ‘programs’. We can
store knowledge about the world as well as skills to perform certain activi-
ties, such as walking, knitting, or tree climbing.

10.3.4 Krause’s law

The next law also comes from experimental psychology and was published
by the German psychologist Werner Krause {Krau00].

Multimodal information is easier to remember than single mode. (L41)

Applicability There is considerable discussion among educators as well as
among computer scientists as to the value of multiple media. Krause’s law is
the best argument for using multimedia in education.

Evidence What Krause calls a mode of information is similar to what com-
puter scientists call a medium. Different modes are, for example, text,
drawing, image, and voice. In the course of his empirical studies Krause
found that highly talented people are not only building simpler structures of

N
S91109Y3 119y} pue sme) a)1gedljddy ‘ N

228

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

the things to remember, but are storing information in multiple modes. If pos-
sible, the same concept is associated with a picture, a melody, or a movement.
Most ordinary people learn better if reading is combined with their own
kinetic movement of writing or illustrating a text. An important restriction is
that the alternate representation of what we hear or see is not a mere replica-
tion of the other representation. Reading a text is aided less by listening to the
exact wording than by augmenting it with related images or sounds. In the
same way, if we have to learn a certain manual procedure (e.g. changing gears
in a car) it can help to verbalize it. Similar evidence was provided as early as
1971 by studies focusing on visual imagery, notably by Paivio [Ashc89].

Theory Krause believes that if we read a text that is illustrated by an image,
they are stored as different entities, and their relationship is stored also. The
method of information storage used is different for different media. In the
case of different media, multiple copies of the same semantic entity will be
stored. This points to the fact that long-term memory is organized by
semantic concepts and not by syntactic similarities.

10.3.5 Librarian’s law

The following law addresses the field of knowledge management and retrieval,
which is of increasing importance for individuals, organizations, and society. The
wording of this law has been influenced by a book by Nina Degele [Dege00].

The more knowledge that is available, the more effort has to be spent
on the processes to use it. (L42)

Applicability Economy and society are more and more dependent on the
generation and rapid dissemination of knowledge. For this purpose, indus-
tries such as chemistry, pharmacology, and transportation have to process
huge amounts of information. The same is true in fields such as medicine,
biology, or social administration. With this law we want to emphasize the
fact that, besides the knowledge itself, an ever increasing level of skill is
needed to get at this knowledge.

Evidence Knowledge management has been recognized as a problem by many
organizations. Because the essential new knowledge can no longer be found
in printed books, the traditional library cannot be called upon to help.
Neither does all new knowledge originate from those institutions that publish
in public journals and books, nor is the knowledge always presentable in text
format. An example are the results of the various human genome projects.
The information describing one particular human chromosome (chromosome
22) with 33.4 million base pairs, would fill 500,000 pages of paper. Searching
and evaluating this can only be handled by means of networked computers.

Theory To solve the knowledge management problem through further spe-
cialization is only feasible for knowledge that is unrelated. In many areas,
progress is possible only if we combine existing knowledge. The obvious
answer is knowledge about knowledge, known as ‘meta-knowledge’.

10.3.6 Apprentice’s law

We have to distinguish knowledge management from learning. Learning
concerns the individual. Of the many laws applicable in this area, we use
one in a form given by Doug Norman [Norm93].

It takes 5000 hours to turn a novice into an expert. (L43)

Applicability To make human knowledge effective, it has to be applied by
individuals. As long as it sits on paper or in a machine it is unproductive. It
has to be moved to a person’s head. Different people have different capabili-
ties to learn: the speed, the thoroughness, and the amount vary. An expert
in a field not only possesses a certain amount of knowledge, he or she is
also able to decide in what manner it should be applied.

Evidence The 5000 hours quoted above amount to two to three years,
which is the typical duration of an apprenticeship or a study. Becoming an
expert means acquiring a body of knowledge and the skills related to it. The
knowledge in all fields of science and technology does not consists of thou-
sands of individual pieces that can be picked up selectively. It usually
consists of deep structures and multiple layers that build on each other. Skill
differs from knowledge in that we are able to apply it intelligently. Knowing
how to ride a bicycle or play tennis does not mean that we can do it. It
takes practice. The same is true for playing a piano, flying an airplane, or
performing surgery. It is certainly possible to retrain a person from one spe-
cialty to another, maybe from musician to programmer, or from dentist to
lawyer, but it can happen only once or twice per lifetime.

Theory There are definite time constants to learning. We learn by receiving
the same stimulus repeatedly. Physiologically, learning means connecting
neurons by the forming of electrical or chemical synapses within the brain.

10.3.7 Maslow—Herzberg law

The next law originates from general motivational psychology. It helps in
understanding human requirements. We name it after two authors,
Abraham Maslow [Masl54] and Frederick Herzberg [Herz66] who devel-
oped related models from their observations.

Human needs and desires are strictly prioritized. (L44)

N
N
O

S91109Y3 119y} pue sme) a)1gedljddy ‘

230

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

Applicability We often have the impression that human needs and desires
are unlimited and unstructured. While the first may be true, the latter is not
the case. It is Maslow’s accomplishment to have shown that human needs
and desires are indeed well structured. Their motivational relevance was
clarified by Herzberg.

Evidence Maslow identified five ascending levels of human needs that should
be fulfilled in sequence. Fig. 10-3 shows what has become known as Maslow’s
pyramid [Masl54]. At the lowest level of the hierarchy we have the basic needs
for air, food, health, and shelter. They have to be satisfied before we are con-
cerned about the higher levels. At the next level we find the need for safety and
security. We often forget this, until we are reminded by some natural catastro-
phe (e.g. earthquake, storm) or social conflict (e.g. war, terrorism). Once they
feel secure, most people want to be socially accepted as part of a family, a
sports team, or a community. At a still higher level we want to be recognized as
a valuable person or as an expert on some topic. At the highest level we then
must meet our own goals and standards. Another popular term for this is self-
realization. This is the level of motivation most important for professionals.
Managers of technical people are well-advised to seek this motivation level for
their people. It is important to note that a person (or group) is not progressing
from the bottom to the top of the hierarchy, but that we are constantly shifting
levels. These needs are a driving force motivating behavior and general attitude.
Herzberg [Herz66] took Maslow’s ideas a step further by listing a larger
set of needs and then grouping these needs as either making people primarily
satisfied or dissatisfied. The first group he called motivator factors, the
second group hygiene factors. As an example, the level of salary paid he con-
sidered to be a hygiene factor only. It only motivates weakly and for a short
period of time, but if it is not considered as being adequate, it de-motivates
people heavily. Again, it is important for a manager of professionals to know
which attributes of a job are motivators, and which are hygiene factors only.

Self-actualization

Self-esteem needs

/Love and belonging needs\
/ Safety and security needs \
/ Basic physiological needs \

Fig. 10-3 Maslow’s pyramid

Theory The reason for this law can probably be found in the history of
evolution. We can assume that human needs evolved in accordance with

the human species, particularly as determined by the development of the
brain. As for all other species, the first needs were those for food, air,
water, and an adequate temperature. Safety became a concern when man
started to live among hostile neighbors or beasts that might hunt them.
Social needs arose while living in the family or in the tribe. The individual’s
spiritual ambitions could only rise after there was a mind realizing itself as
a self-reflecting human being.

10.3.8 McGregor’s hypothesis

With the next rule we will state a widly known organizational principle. It is
named after the MIT management scientist Douglas McGregor [McGr60].

Motivation requires integration and participation. (H18)

Applicability While the Maslow—Herzberg law is useful in understanding
the relationship of needs and motivation, McGregor’s law points out a spe-
cific course of action. It is particularly applicable to professionals.

Evidence In his book [McGr60], McGregor contrasted two types of manage-
ment. He purposely gave them the vague names ‘type X’ and ‘type Y’. Each
type adheres to a different theory of management, called theory X and Y,
respectively. As Fig. 10-4 shows, type X managers believe that the workforce is
not interested in the work itself, but only in the monetary income that is pro-
vided through it. Therefore workers must be driven. It is often compared with
Taylorism. Type Y managers believe that the employees want to be involved
and should therefore participate in all decision making. The manager’s job is
to create the proper environment and to establish the general direction.

Theory X Theory Y

Humans dislike work Expending physical or mental effort is natural

People must be coerced, directed, People will exercise self-direction and self-

and controlled control if committed; commitment is a function
of rewards associated with achievements

People avoid taking on responsibilities, People not only accept, but seek responsibility

want security Imagination, ingenuity and creativity are

widely distributed

In modern industrial life, intellectual potential
of the average human is only partially utilized

Fig. 10-4 McGregor’s theories X and Y

Theory Y is, of course, what McGregor recommends. In his opinion, the
higher motivation that results, leads to a ‘greater realization of both individ-

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

232

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

ual and organizational goals’. A climate of trust between employees and man-
agement is seen as a prerequisite for an effective organization. To be more
effective is another expression for improved productivity. McGregor saw sub-
stantial evidence for his principle, but reported a few case studies only. The
views described under theory X and Y are really two extremes on a graduated
scale, and not all people match either extreme. Management, therefore, has to
take both views into account. Since we are not aware of any systematic stud-
ies verifying McGregor’s assumptions, we prefer to call this a hypothesis.

Comment One reason we quote this hypothesis is that it puts Boehm’s
Theory W in the context of other management theories. What applies to
employees, also applies to customers and users. This is the basic attitude
leading to the Scandinavian style of participative development.

10.3.9 Hawthorne effect

The next subject is a well-known result from group dynamics, which is
based on the work of the industrial psychologist Elton Mayo [Pars74]. For
reasons given below, however, we classify this effect as a hypothesis.

Group behavior depends on the level of attention given. (H19)

Applicability The Hawthorne effect is quoted here because it applies to the
introduction of any new tool or method. It is the general rule saying that
increased organizational attention has an inherently positive effect. All new
methods, tools, work conditions, or even managerial changes will, at least on
a short-term basis, result in improvements in the workers output. So if one
only needs performance to improve for a few weeks, one can really imple-
ment any sort of plan. For any empirical investigation, there exists the risk
that any small improvement that is being observed may have to be discarded.
Either the improvement has to exceed a certain limit (e.g. 30 percent), or rea-
sons have to be found why the Hawthorne effect does not apply.

Evidence The Hawthorne effect was demonstrated in a research project
conducted from 1927 to 1932 at the Hawthorne Plant of the Western
Electric Company in Cicero, Illinois. The series of experiments, first led by
Mayo, started out by examining the physical and environmental influences
of the workplace, such as brightness of lights, and humidity, and later
moved into the psychological aspects, such as breaks, group pressure, work-
ing hours, and managerial leadership. The major finding of the study was
that, almost regardless of the experimental manipulation employed, the pro-
duction of the workers seemed to improve. One reasonable conclusion is
that the workers were pleased to receive attention from the researchers who
expressed an interest in them.

There has been a discussion whether the Hawthorne effect also applies in
the case of knowledge workers. In a workshop discussion reported by Fenton

[Fent93], this point was strongly disputed. It is our experience that it fully
applies in software and system development, as long as the rate of changes
does not overstress the employees. Many productivity studies on new tools or
methods did not prove anything more than the Hawthorne effect.

Comment Three other conclusions have been drawn from the Hawthorne
studies: the aptitudes of individuals are imperfect predictors of job perform-
ance; the informal organization and work-group norms affect productivity;
and, lastly, the workplace is a social system. These three assumptions have
since become part of the model or the theory of an industrial workplace.

10.3.10 Marketer’s hypothesis

To introduce the subject of user satisfaction we start out with a well-known
hypothesis. We cannot attribute it to any specific author.

One unsatisfied customer can hurt more than two satisfied customers can help. (H20)

Applicability With the orientation of modern industry towards customers it
is worthwhile to have statistical data showing how certain marketing efforts
pay off. The quoted hypothesis is one such example.

Evidence The following are some numbers that are quoted frequently in this
respect: it costs five times as much to recruit a new customer than to keep
an old customer; one dissatisfied customer tells seven to 20 people about his
or her experience; one satisfied customer only tells three to five; and only 4
percent of the dissatisfied customers complain, the rest switch supplier with-
out complaining. We have seen these numbers cited in several places. We
find them plausible, but are not aware of any study to support them.

10.4 More on user skills, motivation, and satisfaction

Assessing user skills and motivation is a task that computing professionals
are confronted with during several activities. The most obvious ones are
requirements definition, user interface design, and system administration.

10.4.1 Conducting user studies

Trying to systematically collect data about users is akin to doing field stud-
ies in the social sciences. The most popular methods are interviews,
questionnaires, and conferences. Interviews have the advantage that they
can provide for two-way communication: the persons being interviewed do
not only answer the questions that have been thought of in advance; and
the questioning may lead to additional questions or new problems.

233

UOI1DBJSIIBS PUR ‘UOIIRAIIOW S]|IYS J3SN UO 3I0 ‘

234

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

Interviews can be done by telephone or in person. Their cost depends on the
approach taken, the number of people interviewed and the amount of time
spent for each interview.

Questionnaires are less expensive and can therefore cover a larger popu-
lation. The questions asked can be very detailed. Their disadvantage is the
time delays encountered for the answer and the risk that the return rate may
be low. It is essentially a one-way communication, apart from any free com-
ments that may be entered. The time delay can be shortened by using the
Internet instead of the mail. Conferences can provide immediate feedback.
They may even lead to a resolution of conflicts if one fraction of partici-
pants adopts the arguments of others. It is not necessarily the majority
whose view prevails. These three methods may be complemented by tests
and observations. One very important group of methods is controlled
experiments. They will be discussed in Chapter 12.

10.4.2 Special abilities and attitudes

Designers of computers and software are well advised to take users with
disabilities into account. They can make accommodations for users who
have poor vision or are blind, as well as for users with hearing or mobility
impairments. For blind people, special hardware like keyboards with Braille
characters on them, or a voice input, may be needed.

A unique problem of computers is the behavior it provokes among certain
types of mainly young people, usually referred to as hackers. They are not
usually criminals, but they have a strong desire to show off their intellectual
capabilities. They typically do that by penetrating into other peoples’ sys-
tems. Their favorite targets are large companies and government agencies.
They force companies to establish walls around themselves (called firewalls).
Several of the attacks by viruses, Trojan horses, and worms that have threat-
ened the Internet and caused millions of dollars in damages were originated
by people who had no intent to gain an economic benefit for themselves.

It should be no surprise that computers are also used as a vehicle for
committing crime — any area where monetary gains can be expected is a
candidate for criminal misconduct — this includes theft and bribery, but may
involve drug and weapon business, prostitution, and pornography. Some of
the same methods that help against hackers also help here.

10.4.3 Customer feedback and satisfaction

Customers are people or organizations who have acquired a product. They
have paid for it once. This does not necessarily mean that they use the prod-
uct and that they are satisfied with it. Both questions are important because
their answer determines whether these customers buy again from the same
supplier. As stated under the marketer’s hypothesis above, it is advanta-
geous to do business again with an existing customer.

Feedback is therefore needed from individual customers as well as from
groups of customers. Some customers may prefer to remain anonymous.

Many industrial companies conduct regular satisfaction surveys. The same
methods can be used as discussed before, i.e. interview, questionnaire and
conference. Such a survey may be performed by the supplier him or herself
(stating his or her identity) or by a third party (with the name of the supplier
not being revealed). If surveys are repeatedly performed, such as once per
quarter, this may help to expose trends or show the effect of new versions or
enhanced products. For the feedback obtained it is helpful if each product is
positioned relative to its competition. The individual customer who gave
information to a supplier expects a reaction. If this cannot be done, it may
be better not to bother asking questions. This is the heart of customer rela-
tions management.

Fig. 10-5 lists the software quality attributes that are measured in the quar-
terly customer satisfaction surveys of IBM and Hewlett-Packard [Kan95].

The final point to be made is that it is not enough to talk only to cus-
tomers. It is important to know why potential customers or users are not
buying or using the product. A customer will only concede reluctantly that
he or she bought the wrong product.

IBM Hewlett-Packard
Capability Functionality
Usability Usability
Performance Reliability
Reliability Performance
Installability Serviceability

Maintainability
Documentation
Availability

Fig. 10-5 Software quality attributes measured

10.4.4 Social opportunities and risks

The spread of computers can have a positive effect on the spread of knowledge
and education. The reason is that it can ease and accelerate the distribution of
information. As stated before, information is only a carrier of knowledge.
Whether computers have a greater learning effect than other media mainly
depends on the content that is provided. As for all media, knowledge content
has to compete against the other contents. The track record is everything but
encouraging. All existing information media are heavily used to distract or
overload people with entertainment and advertisement. An additional problem
that exists today is that for computers ‘content providers’ are considered
highly paid specialists, while for paper, radio, and TV the respective skills are
acquired as part of a basic education. These specialists can be compared to
medieval monks who were then the experts for copying books.

235

UOI108JSIIBS PUR ‘UOIIRAIIOW ‘S]|I3S J9SN UO BIO ‘

236

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

Many people believe that computers, and particularly the Internet, may
have a greater influence on society as a whole than previous analog media,
such as books and films, or electronic media, such as radio and TV, had.
This is probably an exaggeration. What can be expected is that it may take
less time for computers to achieve the same penetration that books, radio,
or TV have achieved. Another difference is that the information flow by
means of the Internet is not necessarily one-way, as is the case for the other
media. Most people are more interested in the information they receive
than in what they can send out. Therefore, in developing countries radio
and TV usually have a much higher penetration than the telephone. Since
the Internet will soon be accessible from mobile phones (or from comput-
ers little more expensive than a mobile phone or pocket radio) computers
cannot be more guilty of creating a ‘digital divide’ among mankind than
pocket radios are. The digital divide is supposed to have split mankind into
haves and have-nots.

Another social risk that is often quoted is the fear that networked com-
puters may be used to infringe people’s privacy rights. While the capabilities
to do that not much exceed those of mobile phones, it is worth keeping an
eye on. Particularly in times of war or terrorist activity, a good balance has
to be found between the needs for security and individual privacy.

10.5 Examples and study material

10.5.1 Professional development and career planning

The skill or competency of a professional is his or her key asset. How well
it matches the requirements of current and future tasks, and how it relates
to other professionals, determines not only their reputation, but also their
bargaining power in the market. As stated before, skill comprises knowl-
edge and capability. Knowledge has to be accompanied by the capability to
apply it. Capabilities deteriorate if not used. Career-long skill development
is crucial for all professionals, particularly with respect to computer compe-
tency. On the other hand, computers can assist all professionals in this
respect. This example presents an outline for an individual skill develop-
ment plan. It should be the result of a joint assessment of the professional
and his or her manager. As stated before, professional development differs
from project training. The needs are determined by the individual’s long
range requirements. The goal is to make the workforce better qualified not
just for current but for future tasks.

Fig. 10-6 summarizes the result of a skill requirements assessment. Such
an assessment may have to be conducted once per year. The report first
lists the goals for the skill development. The middle column gives a
number of detailed subjects where there is a gap between required (or
desired) and available skills. The last column indicates the relative priority
of each subject.

Goal Subject Priority
Understand business strategy New business potential 3
Customer relationship management (CRM) 2
Understand technology Client-server networking 1
Object-oriented databases (OODB) 2
Image storage and retrieval 1
Improve project management and Cost estimating 1
team building skills Business analysis 3
Counseling and coaching 2
Increase development efficiency Inspection process 1
and quality Component-based development 3
Assure system availability and security Firewall products 2
Encryption methods 2
Develop information retrieval skills Digital libraries 3

Fig. 10-6 Prioritization of skill requirements

As a response to this assessment, Fig. 10-7 gives the agreed-to plan. In
the example, only subjects of priority 1 and 2 are addressed. For each sub-
ject the training resource is given that will be used to enhance or build up
the skill. Depending on the subject, different resources will be used. In one
case (image processing), no plan is established due to a lack of available
resources. The item may lead to an update of the plan or may be carried
over into the next year. The right-hand column gives the planned timing.
This is chosen considering both the resource availability and the job or
project schedules. Both the professional and his or her manager should
invest their best efforts to determine the requirements and identify the avail-
able resources, and then agree on a schedule that is realistic. Unless this
work is done, the plan is worthless.

Priority Subject Training resource Timing
1 Client-server networking Professional society course 3Q

1 Image storage and retrieval (open)

1 Cost estimating Inhouse via job rotation Summer
1 Inspection process Consultant class (on-site) 1Q

2 CRM products Industry fair (with follow-up contact to vendors) ~ March

2 0OO0DB products Internal self-study group (with pilot installations) 2H

2 Counseling and coaching External training course June

2 Firewall products Online course (Internet) Fall

2 Encryption methods Purchased book ASAP

Fig. 10-7 Individual development plan

N
Jeualew Apnis pue sajdwex] ‘ w

238

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

While the development plans given above usually address a short-term
period of one or two years only, long-term aspects are part of career plan-
ning. Every career is unique. Nevertheless, it is helpful if some guidance can
be provided. This purpose is fulfilled by publishing so-called model careers
or career roadmaps. Fig. 10-8 is an example of a technical career roadmap.
It is tailored after similar roadmaps in use within IBM and published by
Humphrey [Hump97b]. The boxes in the middle name some of the stages
achievable as part of a technical career. The position titles are examples only.
They may vary from company to company, or from industry to industry.

What is shown is referred to as the dual-ladder principle. The two
branches in the upper part represent both high-level management and high-
level professional positions. Fluctuations between the two branches are
possible. One aspect of the dual-ladder principle is that salaries are compara-
ble for positions at the same level on both sides of the ladder. The number of
years given designates the typical professional age necessary to reach the posi-
tion. This is a rule of thumb, but deviations are possible. The dotted boxes on
each side mention some broadening activities or assignments that may sup-
port the career path chosen. Included are on-site as well as off-site training,
and rotational assignments. They are representative for a large technically-
oriented company. A laboratory is understood as a development or research
establishment, comprising more than a thousand mainly technical employees.
A system manager has both development and marketing responsibilities for a
major line of products. This can be hardware, software, or both.

Laboratory Technical
X 15years | T | eeeemeeeeean -
_________________ director fellow i Technology !
' Executive 1 —— _| |_ _______ | promoter, i
' assistant, staff ! ' professional |
B R RREEEEEEEE System Corporate 1 society officer
13 years X
s manager advisor
+ Corporate staff, Task force
marketing, Lo -I |- ------- --1 leader, technical
! planning : i co-ordinator !
Pemmmmmmmmme e ! Functional Chief engineer/ | ---------------- :
10 years
_________________ manager programmer
, , , Advanced '
h Advanced h _| |_ , A :
h S -1 technical H
' management ! H .. :
! ! : training '
""""""""" Project Senior engineer/ | ----------------k
7years | T2 | eeeeeeeeeeeeee A
_________________ manager programmer ! Member :
' Project ' I I ' technical
! management ! | © committees, |
I t taskforces .
Project engineer/ 4years
; Member ; programmer
. professional 1+ ————— _I
i societies, !
» technical papers ' | Associate engineer/
B L Cr TP : 2 years
programmer

Fig. 10-8 Technical career roadmap

10.5.2 Customer satisfaction survey

Customer surveys are a well-known means to obtain feedback of a prod-
uct’s performance. The example here highlights some of the methods used
by IBM during the period between 1985 and 199S5. Similar examples have
been presented by Kan [Kan95]. Software products were tracked with
respect to eight different quality criteria:

Capability: adequacy of functions provided.

Usability: ease of learning and use.

Performance: response time and throughput.

Reliability: stability and freeness of defects.

Installability: ease of installation and upgrade.

Maintainability: skill and effort for application of fixes
Documentation: adequacy and quality of printable information.
Availability: mean-time between failures.

When filling out the survey questionnaire, the customer could judge the
above criteria on a five-point Lickert scale: Very satisfied, Satisfied, Neutral,
Dissatisfied, Very dissatisfied. In addition to the individual criteria, the
overall satisfaction was asked for. In the subsequent evaluations, key
emphasis was given to the negative results. Therefore the charts given in
Figs 10-9-10-11 only show the percentage of dissatisfied customers. The
various columns only differentiate between neutral and dissatisfied cus-
tomers. (In the charts, dissatisfied includes very dissatisfied!) For space
reasons, only six of the eight above criteria are shown.

Fig. 10-9 gives a comparison between three different releases of the same
product. The adjacent columns represent the different releases. These
releases have probably been measured at about the same time in their life
cycle, like six months after shipment. The individual criteria do not differ

[] Neutral
B Dissatisfied
o
R _
=
o)
©
¢
o — —
(=}
=
Q\D
;l %%
& X & & X & &
™ O ,b(\ O XY <
o e & N N & o
R S S Q > <&
© & N
<

Fig. 10-9 Release comparison by criteria

N
w
O

Jeualew Apnis pue sajdwex] ‘

240

UOI1DBJSII_S pUB ‘UOIIRAIIOW ‘S]|IYS 1asN ‘

very much. Obviously, some progress has been made with respect to relia-
bility and installabiltiy. All other criteria, particularly the documentation,
have not improved in the customers’ opinion.

Fig. 10-10 shows a similar evaluation, but for different products. Adjacent
columns represent three different products now. The survey could have
included products of a competitor. In such a case, the survey has been per-
formed as a ‘blind’ survey by an independent consultant. In a blind survey,
the customer is not told who is getting the results. The numbers in this chart
vary over a much larger range, and show differences in unrelated places.

[] Neutral
B Dissatisfied
- B _
L -] |
5 _ |
©
n -]
oL
o —
=
R 77
Z % 7
7 %
) } ; X
~{>\\© b\\\y\\\ %‘\& é\\\y\\\ 0\\\&\\ %;‘\OQ 4“"@
S S & & G o
Q Ny L N AN S
[{\0 () (’,}’b &
© & &
S

Fig. 10-10 Product comparison by criteria

Fig. 10-11 shows a comparison of two products over a four-year time
period. Measurements have been made twice a year. The quantity plotted is
overall satisfaction. The ups and downs of the curves can only be under-
stood by looking at the detailed criteria. If the two products compete

O ProductA

B <>> Product B

% Non-satisfied

1 1 1 1 1 1 1
Y1/1 Y1/2 Y2/1 Y2/2 Y3/1 Y3/2 Y4/1 Y4/2

Fig. 10-11 Product comparison over time

against each other, one product may loose its attractiveness, even if it is
technically unchanged. If product A raises the bar, users of product B will
become dissatisfied. Other factors, like marketing, support structure, or
even the visibility of the vendor as a company, can have an influence on the
perceived quality of a product. A constant focus is required.

Exercises

10-1 Explain the difference between information and knowledge.

10-2 How can we express the information processing capacities of the human
senses? What are the unique strengths of the vision system?

10-3 What are the key properties of human memory? What are some of the con-
sequences for system design?

10-4 Why are multiple media advantageous in learning?

10-5 What does Maslow’s pyramid describe? What is the difference between a
motivator and a hygiene factor, according to Herzberg?

10-6 What is the Hawthorne effect? Why is it important?

10-7 What is a professional development plan? How does it differ from project
training?

10-8 Why is it useful to obtain feedback from non-customers?

N
~
_

Jeualew Apnis pue sajdwex] ‘

Technology, architecture, and
industry capabilities

Software architecture involves the description of elements from which
systems are built, interactions among those elements, patterns that guide
their composition, and constraints on these patterns.

M. Shaw [Shaw96]

This chapter gives some basic information that may be helpful for an assess-
ment of technology, architecture, and industry capabilities. We will discuss
the most important laws that determine this field, and give advice how to
make use of them in the planning of systems or for the development of an
information systems strategy.

11.1 Definitions and importance

Technology is the set of scientific discoveries and engineering inventions,
and the methods and tools derived from it, that form the basis of a technical
field. A technical field is generally characterized as low or high technology,
depending on the relative sophistication of the technology used and its pen-
etration with technology. Information technology (IT) is considered to be a
high-technology field, and comprises computer hardware, communication
equipment and software. IT provides the components and tools to build
products and systems. In contrast, some fields may not advance technically
(or may only advance slowly). These are called low-technology fields.

The architecture of a computing system expresses what it does, how it
does it, and how it appears from outside. The term architecture is used in
two respects: first, it designates the external appearance and high-level
structure of any system; and second, in a more general sense, it designates a
framework in which systems are embedded or through which components
of a system interact. Many architectures are first defined by means of a ref-
erence model, which usually describes high-level concepts and terminology,
without fixing interfaces. A standard architecture is the set of interfaces for-
mally adopted by some industry consortium or standards body. Products

are based on a technology, and adhere to an architecture. In many cases, an
architecture is established or made popular through products.

The term industry is used to designate the supply side of the market.
Markets are the places (not only in a geographical sense) where supply and
demand meet. Markets exchange products and services. A market evolves
whenever consumers have difficulties in producing the goods and services
for themselves. There have to be specialists that can do it better, or partners
that are able and willing to deliver at lower cost. Consumers must have
buying power from sources where they are suppliers.

When the term market is used we frequently imply that this market has
properties of an ideal free market, i.e. open to every supplier, transparent
for the purchaser, and prices are freely negotiable. All markets deviate from
the ideal in one or the other aspect. A technology or architecture has market
relevance as soon as the industry is able to supply products and services
based on it in a reliable fashion. The demand side of the market was dis-
cussed in the previous chapter in the context of user desires and potential.
The importance of this aspect is quite different depending on the part of the
world considered. What seems easy and obvious in a mature market is not
that way in an emerging market, for example, China or Russia.

To assess the state of technology or the capabilities of an industry is a
responsibility of technical professionals in all fields. The same is true for
computing professionals. They may be called upon to do this independently
of particular projects. As an example, many organizations require what is
called an information systems (IS) strategy. It ties together the business
goals with a technology and industry assessment. This responsibility is not
discharged in a once-only event, but remains a constant challenge.
Unfortunately, the methods and tools to perform an assessment of technolo-
gies, architectures, and supplier capabilities are seldom dealt with in the
computing science literature. They are often the subject and carefully pro-
tected know-how of specialized industry consultants.

11.2 General observations

Technology is the arena in which individuals, companies, and national
economies compete. Technology advances arise from a variety of factors, a
key one being competition. It may not advance in those areas, where there
is no competition. We frequently tend to underestimate the progress of tech-
nology. In certain areas, technology seems to advance almost at its own
volition. Architecture evolves slower than technology. In our field, technol-
ogy changes every five to seven years, hardware architectures usually are in
vogue for ten to 15 years.

As stated before, information systems consist of hardware, software,
data, procedures, and people. The work of people is mainly regulated by
procedures (also called orgware), which is frequently where the resistance
to change lies. Contrary to what the term software suggests, data and pro-
grams are the durable part of a system. Computer hardware changes in

243

Suol}eAlasqo |elausn ‘

N
~
~

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘

rather short intervals. A hardware generation usually lasts from 18 months
to maybe five years. For communications hardware, it may take somewhat
longer. Both adapt to existing applications and software structures. A soft-
ware architecture only changes over decades, not years. In that sense,
software permanently limps behind hardware.

Architectural knowledge is a set of structural ideas and concepts that help
to build complex information systems. It normally consists of empirically
derived rules of what works or does not work in fitting together the compo-
nents of a system. An architect knows how to translate user expectations and
requirements into system functions. Small systems or components have a sim-
pler architecture than large systems. Beneath the architecture is the system’s
structure. It realizes the architecture. A structure is chosen based on whichever
elements or components are available to achieve the architectural purpose.

While a system’s structure is dependent on technology, architecture may
or may not be. There can be different structures implementing the same
architecture, or different technologies supporting the same structure. We
talk of re-engineering whenever the technology (and maybe the structure) of
a system are changed without altering its function and appearance. While
architectural knowledge is conveyed mainly through the products of (great)
architects, technology is transferred by a set of tools that a professional in
the field applies to solve any given problem. Both are important.
Architecture is often undervalued. In computer science, it is more important
than in some other fields that are not as much concerned about creating
new artifacts. In the case of computing systems, the same engineers are
often responsible for both architecture and structure.

In the information technology (IT) market, products and services are
offered and are competing. For various reasons, the market can not be consid-
ered as a totally free market. One key constraint is the so-called switching
costs, i.e. the internal cost involved in moving from one set of products to
another. If years ago a decision was made in favor of one vendor, this vendor
has the advantage that his products benefit from the investments made by the
user. Unless the other vendors takes specific actions to be architecturally com-
patible (plug-compatible), the user may encounter high costs for converting
programs and data, and even larger costs for converting to new procedures.

11.3 Applicable laws and their theories

The laws cited in this section are among the most fundamental laws of our
industry. They are about hardware and about software. The hardware laws
are usually better known than their software counterparts. This reflects that
they are older and probably more subject to systematic investigations.

11.3.1 Moore’s law

This law is due to Gordon Moore, the former chairman of Intel. The law
dates back to a publication in 1965 [Moor65].

The price/performance of processors is halved every 18 months. (L45)

Applicability Originally Moore predicted doubling of the number of transis-
tors on a chip every two years. This corresponds to a factor of 32 in ten
years and a factor of 1000 in 20 years. This has indeed happened over the
last 25 years. The most general form of the law is the form given above.
Moore’s law is by far the best known technology law in our field. It applies
to all semiconductor products, i.e. processors and storage chips. It is pre-
dicted to be valid for another two to three decades. The industry has several
options to exploit the advancements in chip density. Lowering the price or
increasing the performance. Both options are reflected when we talk of
improved price/performance.

Without doubt, Moore’s law has been the driving force for our entire
industry. It has made applications possible that could otherwise not have
been thought of. The growth in both processing power and storage capacity
has had tremendous influence on the development of software technology
and business. Without it, software would have to suffer severe limitations,
be it in terms of function or usability. The spread and importance of pro-
grammed devices would just be a fraction of today’s. Moore’s law is
responsible for the fact that computing equipment is outdating faster than
most other industrial products. When designing a system it is very impor-
tant to correctly identify those components for which Moore’s law is
applicable. It is equally important to keep an eye on those components
where it does not apply, for example, mechanical parts. They may become
the real performance bottlenecks or cost drivers. One very important conse-
quence of Moore’s law is that one should not start a software project that
provides a performance improvement less than that coming from the
advances in hardware during the project’s lifetime.

CPU Name Year of introduction Transistors/chip x 1000
4004 1971 2.3

8008 1974 6

8086 1978 29

286 1982 134

386 1985 275

486 1989 1,200

Pentium (P5) 1993 3,100

Pentium Pro (P6) 1995 5,500

Merced (P7) 1998 14,000

Fig. 11-1 The Intel family of processors

N
S91109Y3 119y} pue sme) a)1gedljddy ‘ 5

N
~
(@)Y

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘

Evidence Evidence for Moore’s law abounds. The most often quoted example
is the Intel family of processors. Fig. 11-1 lists the best known products of this
family. The figure shows the year of introduction into the market and the
number of transistors per chip. It should be noted that the size of the chip has
increased slightly. The same information is plotted with a logarithmic abscissa
in Fig. 11-2. It shows that for the period from 1970 to 1990 the density dou-
bles every two years. Starting in 1991 it doubles only every 2.5 years.

108

107 |

486 Pentium

106

10°

Transistors/chip

10*
4004

103
1970 1975 1980 1985 1990 1995 2000 2010

Fig. 11-2 Moore’s law for Intel processors

Theory Only part of the reasons for Moore’s law come from physics. A higher
density of circuits means shorter connections; shorter connections mean higher
speed; shorter connections also mean less power; less power means less heat
dissipation; less heat means less cooling. Smaller chip floor space and less cool-
ing both mean lower costs. This is an amazing coincidence that cannot be
found elsewhere in industrial applications of physics, i.e. more performance
for lower cost. The other part comes from economics. Moore’s law works only
because lower prices or higher performance trigger new demands. In other
words, the market has to be either cost-sensitive or function-hungry and has to
expand if the price/performance declines. This has happened so far. To achieve
the technology advances requires significant investments. The fixed costs asso-
ciated with development and manufacturing increase with every generation.
The variable costs become an ever smaller part of the equation. As an exam-
ple, if the next generation of chips will be at one-fourth of the manufacturing
costs of the current generation, but the costs for the development and for the
plant that that produces is four times higher than for the generation before, it
has to achieve at least 16 times the output. A saturation of the market may
occur, or investors may run out of money, before the physical limits have been
reached. The really amazing conclusion that Moore draws himself today
[Moor97] is the following: “The fact that the industry has accepted Moore’s
law as its guideline turned it into the competitive industry that we know’.

Comment Many people believe that Moore’s law may be repealed by
2010-2020, mainly because of problems in lithography for lines thinner
than the wavelength of light. There are people who feel that it may be of
advantage at least for some users (e.g. schools) if Moore’s law finally came
to an end and they would prefer that an investment in a PC would last for
about 10-12 years, comparable to that for desks and other furniture.
Lately, the industry has been focusing on what is called physical gate length.
It is the space between two key components on the transistor. In the most
advanced chip designs, this space has shrunk to just 90 nanometers which is
equivalent to about 360 atoms laid end to end. Along this line, Diffie
[Diff01] comes to the conclusion that Moore’s law is really about the size of
computing elements. The smallest elements in physics (today) are strings.
They are 10?28 times smaller than the smallest features on today’s chips.
After electronic computers, he envisages quantum computers, and finally
string computers.

In early years, another technology law received attention. That was
Grosch’s law. It postulated economies of scale for larger systems versus
smaller systems. Today many people think that Grosch’s law is no longer
valid due to the tremendous progress of microprocessors. Other people
think that it still applies if one takes into account the true costs of small sys-
tems, namely those costs that have been moved from the purchase to the use
of the systems. As a consequence of this view, many large corporations are
moving masses of distributed servers back to a central system again.

11.3.2 Hoagland’s law

The next law we cite is credited to Albert Hoagland of IBM San José,
California. He was one of the initial developers of IBM disk files in 1955 to
1960 [Pugh91]. We will quote the law in the form given by Gray and
Reuter [Gray93].

The capacity of magnetic devices increases by a factor of ten every decade. (L46)

Applicability Next to processing power, storage capacity is a determining
characteristic of computing systems. Magnetic media in the form of disks
and tapes have become the most important long-term storage devices. This
is due to the fact that it is a non-volatile technology, meaning that the con-
tents are preserved if power is switched off. Hoagland had predicted a
remarkable increase in the area density of magnetic storage devices, starting
with a capacity of 10 Mbit per square inch in 1970. His prediction amounts
to an increase of 25 percent to 30 percent per year, or a doubling every
three years. For the decade starting with the year 2000, this would mean 10
Gbit per square inch. As a consequence of the higher area density, disk stor-
age comes in ever increasing units of capacity. This is true, although the
form factor of devices has decreased (from 11 to 3.5 inches in diameter).

N
N
~N

S91109Y3 119y} pue sme) a)1gedljddy ‘

N
~
(00]

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘

Evidence Today’s magnetic disk technology brings 35 GB (about 300 Gbit)
on a device with a diameter of 3.5 inches. This is the storage technology avail-
able for a notebook-type PC. Obviously, Hoagland’s law has been exceeded.
According to Schechter and Ross [Sche01], IBM has achieved a 60 percent
increase per year in area density since 1991. This was mainly due to improve-
ments in the sensitivity of read heads. This trend is reflected by the unbroken
line in Fig. 11-3. The dashed curve shows the typical prices paid by users. As
an example, from 1990 to 2000 the prices dropped from about $100 to about
$3 per Gigabit. How far the current technology can be extended is a subject
for discussion. Some authors predict at least one more decade. Optical storage
has developed in a different direction. It provides low cost storage and serves
as a removable medium. Its current representatives are compact disk (CD)
and digital versatile disk (DVD). The progress of magnetic recording depends
on the fact that head and medium are in a fixed assembly, a technique used
for the first time by the so-called Winchester disks.

Price ".‘
100 - - 1000

N Area density =
£ &
= 10 4100 =
= &
© o

1 . - 10

1 1 1 1 1 -
1960 1970 1980 1990 2000 2010 2020

Fig. 11-3 Trends in magnetic storage technology

Theory The tremendous progress in the magnetic disk recording technology
was achieved over the last 40 years by a combination of improvement
actions, namely by reducing the size of the read/write heads, by reducing
the space between tracks and between bits within a track, by positioning
the head closer to the surface, and by increasing the sensitivity of the read
heads. Further improvements are expected from thermal-assisted recording
and perpendicular rather than longitudinal magnetization. Since the storage
market is very competitive, we can assume that advances in technology will
be passed on to users as price reductions.

Comment In the long run, storage devices are envisioned reaching millions
of gigabits per square inch, namely by rearranging single atoms. The tech-
nologies to do that have been demonstrated using either the atomic force

microscope (AFM) or the scanning tunneling microscope (STM). Using the
AFM approach, the Zurich research laboratory of IBM has plans to store 1
Tbit (about 125 GB) of data on a 1.4 inch-square surface [Sche01].

11.3.3 Cooper’s law

Of similar importance to the growth in processing power and storage
capacity is the development of communication capacity. We therefore also
quote one law from this area. The growth in communication capacity can
be characterized by the growth in bandwidth. It is a major design factor.
This law has been known for quite some time; the wording chosen here was
provided by Cooper [Coop01].

Wireless bandwidth doubles every 2.5 years. (L47)

Applicability Bandwidth is the key parameter in telecommunications. It is
usually expressed in bits per second. The most frequently used abbreviations
are Kbit/s, Mbit/s and Gbit/s designating Kilobits, Megabits or Gigabits per
second, respectively. It is the interplay of Moore’s law, Hoagland’s law, and
Cooper’s law that determine which system structures are feasible and econom-
ical. If processing is ahead, it is better to compute locally and to distribute
data in compressed format. If communications is ahead, one can reduce the
amount of computing and send uncompressed data from one point in a net-
work to the other. When storage is cheap, redundant copies can be stored. It is
Cooper’s law that makes many applications possible which otherwise would
not make sense. Examples are the transmission of music and video.

Evidence Cooper’s law is not based on a thorough empirical analysis. He
simply claims that this law has been valid for 105 years, i.e. since Marconi’s
invention of wireless telegraphy in 1896, and will be valid for the next 100
years, leading us to forms of personal communication that we are unaware
of today. It will allow an awareness of events anywhere on earth, not only by
hearing and vision, but also through the senses of touch, smell, and taste.

Theory Cooper’s law is less determined by advances in technology than are
Moore’s or Hoagland’s law. New technologies have entered the telecommuni-
cation field in several waves. The most important one was the introduction of
optical fibers. Additional bandwidth is being created mainly by a better
exploitation of an existing medium. An example is copper wires. They have
been around for decades and were used in the Kbit/s range. Only recently have
they been extended to transmit in the Mbit/s and even in the Gbit/s range.

Comment Optical wire-based transmissions are usually a magnitude ahead.
Here single-line transmissions in the range of 5-10 Tbit/s are being demon-
strated by various vendors, for example, Alcatel and Siemens. Transmission
technologies typically share single lines for multiple bands. Methods to

N
~
O

S91109Y3 119y} pue sme) a)1gedljddy ‘

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘ xz

achieve this are time division, frequency division and most recently wave-
length division multiplexing.

11.3.4 Morris—Ferguson law

This law is described in a landmark paper by Morris and Ferguson
[Morr93]. The authors refer to it as the Silicon Valley business model.

Architecture wins over technology. (L48)

Applicability One of the key questions of our industry is how architecture
and technology relate to each other. Typically, any software or system prod-
uct does not exist in isolation. It is a building block in a total system or in a
network of systems. At the same time, it forms the basis on which other
products are built. Technologies can make new applications feasible or
lower their entry costs.

Evidence After a study of the computer industry, Morris and Ferguson drew
the conclusions that good products are not enough. It is the architecture
that matters. Most successful are proprietary, but open architectures. In this
case, the architecture is accessible to everybody, but the owner has the
advantage that he can provide products implementing the architecture first.
He can also have the better implementations. With an accepted general pur-
pose architecture, special purpose solutions can be absorbed and low end
systems can swallow high end systems. The best known example is the PC.
It also applies to diskette and CD formats, text and image formats, operat-
ing systems, programming languages, spreadsheets, and user interfaces.

Theory The theory behind this law comes from economy. An innovative
company usually establishes a new market with a proprietary architecture.
‘Proprietary” here means that the architecture is developed and controlled by
one company. Only if that architecture is openly specified will it be adopted.
Not specifying an architecture, i.e. keeping it secret, only makes sense for a
company that already dominates a market. In any case, users are afraid to be
locked in. In the case of an open architecture, several companies and tech-
nologies can and will compete. The innovator has the best chance to be the
first and the best exploiter of the architecture. If he does not lead, he will
loose the market. Only those companies will win, for which the respective
products lie within their core competency. They will be able to introduce
new technologies into a given architecture faster than others.

11.3.5 Metcalfe’s law

Robert Metcalfe defined this law in his Ph.D. thesis [Metc73] at Harvard
university. It has since been widely quoted.

The value of a network increases with the square of its users. (L49)

Applicability This law says that communication networks are subject to a
unique phenomenon. It works first as a barrier, and later as an accelerator.
A communication device or network is of little value as long as there is
nobody or only a few partners to communicate with. This changes after a
critical mass has been reached. The more partners there are, the more every
device or connection gains in value. From the tipping point on, the growth
is exponential or faster than linear.

Metcalfe’s law applies to all two-way communication products, like tele-
phone and fax. It does not apply to the radio, walkman, and TV, which up
to now were one-way communication products. It applies to most software
products, however. Because each software product implements an architec-
ture or interface, its usefulness increases if that architecture finds
acceptance. Typical examples are text and image formats and the corre-
sponding processing software. If a software product cannot exchange data
with other programs, other qualities do not count.

Evidence Plenty of evidence can be found for Metcalfe’s law throughout the
industry. The law applied to the Ethernet first, a local area network, and to
the Internet, an interconnection of local networks, afterwards. The time
needed to reach critical mass varied with the different technologies. The
telephone needed about 30 years, the Internet about 20 years (1972-1992).
Metcalfe used his law himself to argue for common network standards. For
software products and architectures a critical boundary is a market penetra-
tion of about 20 percent. If this market share cannot be reached quickly, it
may be better to forget the product. Depending on the product type, the
market may be a national market or the world market.

Theory The root of Metcalfe’s law is certainly in economics. A communica-
tion product obtains its value for the user not from its consumption, but
from its use. It requires that there are other people who use the equivalent
product as a means for communication. If there are » users, each user has
potentially #—1 partners to communicate with. Considering all users in the
network, there are 7 X (n—1) possible one-way interconnections. Even if we
count connections between the same partners as two-way connections only
once, there are still # x (n-1)/2 connections, which mathematically is an
expression in the order of 72.

Comment In a recent interview [Metc96], Metcalfe expressed his concern that
the Internet may loose its strength if it becomes divided among many private
networks whose users do not communicate with users of other networks.

S91109Y3 119y} pue sme) a)1gedljddy ‘ E

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘ E

11.3.6 Shaw—-Garlan hypothesis

The following hypothesis gives credit to the work of Mary Shaw and David
Garlan [Shaw96].

A sound architecture significantly reduces development and maintenance costs. (H21)

Applicability Architectures are usually the result of an explicit design effort.
As shown in the case of Denert’s law in Chapter 3, a certain architecture
may be the answer to one specific concern. Given different environments
and applications, different architectures may be feasible. Not all of them are
equally sound or appropriate. At different levels of a given system, different
architectures may be applicable. Examples are the user interface, the data-
base or the communication network. Thinking in terms of architectural
styles allows the designer to recognize the different paradigms, and to deter-
mine what is the best architecture for a given purpose. In a case of an
existing system, any deviation from its architectural style may have disas-
trous effects. The success of software reusability largely depends on whether
the modules in question are consistent with respect to the architectural
framework they support. Fluency with different architectural concepts
allows the designer to make better choices.

Evidence In the cited book, Shaw and Garlan not only define different archi-
tectural styles but give a number of examples also. They also postulate
generally applicable architecture description concepts and languages. The
evidence, supporting the above hypothesis, is mainly presented by means of
case studies. Whether experiments can be designed and conducted, in order
to clarify questions in this area, is doubtful. The costs are usually prohibi-
tive. Due to the importance of the subject, more systematic studies are
needed, however.

11.3.7 Bayer’s hypothesis

As an example of a technical achievement in data management we quote the
following insight which is due to Rudolf Bayer [Baye72].

In spite of disk capacity increases, data access can be kept efficient. (H22)

Applicability Hardly any system is being built that does not have the need to
access data efficiently. Active data usually reside on disk. All disk devices
have a rather low access time, but a high data rate. With the larger capacity
of devices, the geometric limitations of its access mechanism have not
changed. As a consequence, the time to scan the entire disk has increased by a
factor of ten since 1969. For a dynamically changing file with frequent inser-

tions or deletions, the problem arises to keep the access time within reason-
able bounds. For data structures in main storage, balanced trees (like the
AVL-tree) provide the optimal solution in this case. The path-length or time
needed for retrieval or insertion/deletion is proportional to the logarithm of
the number of elements (log #). This is a theoretically proven lower bound.

To take the properties of disk devices into account, a data structure,
called B-tree, was introduced by Bayer. It provides access times near the the-
oretical optimum, as given by balanced trees. Bayer’s original intention was
to apply the concept to index structures. Indexes are directories (often con-
sisting of multiple levels) pointing to the data in a file. Fig. 11-4 gives an
example of a B-tree. The boxes represent contiguous disk blocks (also called
pages). They contain between k and 2k index entries (in the figure, k = 2),
except for the root. Within a block, the entries are sorted. New entries are
inserted at the leaves (the bottom of the figure). If they do not fit, the leaves
are split and a new node is created, containing links to both the leaves. The
tree grows from bottom to top. During deletion, the tree is shrunk when-
ever a leaf has less than k entries.

ClesTe] el T] [elsfel | folel 1]

Fig. 11-4 Example of B-tree

Evidence The B-tree has become the basis of the widely used data access
method VSAM and the database product DB2 of IBM. VSAM uses the B-tree
concept not only for indexes, but also for the data itself. The data segments
of a file start out with a given amount of free space. If this is taken up, the
data segments are split in a similar way as the indexes. As shown by Keehn
and Lacy [Keeh74], VSAM has excellent access properties, both for sequen-
tial and random access. For all main frame operating systems of IBM, VSAM
was well accepted by the customers and has replaced all other access methods
within a short period of time. Investigations concerning the access behavior
of System R, a precursor of DB2, have been published by Blasgen and
Eswaran [Blas77]. It shows that the number of accesses to secondary storage
has been minimized. Another major advantage of an access method imple-
menting the B-tree concept is that both data and indexes are very stable, i.e.
they are seldom restructured or rewritten. This contributes to the integrity
and recoverability of the data.

S91109Y3 119y} pue sme) a)1gedljddy ‘ §

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘ E

11.3.8 Codd’s hypothesis

One of the best-known achievements of software technology is associated
with the concept of databases. The following rule is quoted, to introduce Ed
Codd’s [Codd70] contributions.

Databases can be independent of devices and applications. (H23)

Applicability Apart from the physical access of data, most systems are con-
cerned with the logical organization of data as well. This is the realm of
databases, a crucial part of software and systems engineering. Database tech-
nology allows the organization and storage of data in a way that is largely
independent of how they are used in a particular application and what
appears to be necessary due to the geometry of a device. This principle is most
consistently and effectively realized by means of Codd’s relational data model.

Evidence Codd’s relational model, as first presented in [Codd70], stores all
data in tables. This way the data become independent of ordering, indexes and
access path. Since its initial publication, the ideas have been refined through the
work of many authors, including Codd himself. A relational system is defined
today as a system supporting the following properties and criteria [Codd82]:

m All information is represented by values in tables. Only the values count,
not their location within the table, meaning that the left-to-right order-
ing of the columns and the top-to-bottom ordering of rows is irrelevant.

B These values can be manipulated by means of relational operations, such
as select, project, and join, and set operations, such as union, intersec-
tion, and difference. These operations transform tables into tables.

m Additional integrity constraints, called entity integrity and referential
integrity, ensure that all values can be manipulated with the above
operations.

Implementations of the relational model dominate the market of database
management systems (DBMS) today. Due to the progress in processing
power and special optimization techniques developed for this model, the
performance of relational systems is no longer a problem. Structured Query
Language (SQL) was standardized as the language to retrieve data from
relational database management systems. It has found wide acceptance
throughout the industry. Recently, the concept of a relational DBMS has
been extended to handle non-scalar data elements. This class of systems is
referred to as object-relational systems.

11.3.9 Engelbart’s hypothesis

Human—computer interaction is an area where considerable knowledge has
been developed over the last decades. Doug Englbart’s [Enge68] name can
be associated with the following fundamental insight.

Conceptual integrity is the result of a consistent mental model. (H24)

Applicability Quoting Brooks [Broo87] again, a product should present a
coherent impression to a single user’s mind, even if designed by many
minds. The mental model is the image the designer has in his mind. This
determines the image that a user has of the system. Conceptual integrity
denotes that property of a system that makes a homogeneous impression. It
is a perfect whole for its user. One way to do this is through metaphors.

Evidence Hardly any concept has changed the external appearance of soft-
ware systems more than the WIMP interface (windows, icons, mouse,
pull-down menu). They were originally invented by Engelbart and his col-
leagues at the Xerox Palo Alto Research Center. During the mid-1960s they
implemented a natural language system (NLS) that pioneered the mouse,
windows, and hypertext. The same group later developed the Xerox Star, the
first commercial system with an all-points-addressable display offering the
desktop metaphor, using symbolic icons and multiple, non-overlapping win-
dows. Later these ideas were extended, first by Apple’s systems (Lisa,
Macintosh), and then by IBM’s OS/2 and Microsoft Windows. The fact that
all graphical user interfaces (GUI) today ‘look and feel” quite similar is due
to this common heritage. The concepts developed by Engelbart and his
group have been extremely convincing.

Most attempts to come up with similarly useful metaphors as the desktop
have failed. This points to a general limitation of metaphors. They may be
very useful at the beginning, like the coach metaphor was in the history of
automobiles. As soon as additional functions are added, they are either a
hindrance or have to be abandoned.

11.4 More on technology, architecture, and industry capabilities

Some additional aspects are helpful when assessing technology and architec-
ture status and trends. They all come to bear when a professional is called
upon to propose an information systems strategy for his or her organization.

11.4.1 Technology assessment and prediction

We have stated before that technology advances quickly. This is only true in
general. If we look at different technologies, we see that the speed can be
quite different for different technologies or different application areas. The
reason is that the effort and the motivation to move technology may vary
considerably. If we look at the rate of acceptance, most technologies follow
a similar lifecycle, which is usually described by an S-shaped curve, such as
the one given in Fig. 11-5.

255

Aysnpul pue ‘ainjoaliydle ‘ASojouydal uo alop

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘ §

Early /
adopters

Pioneers Late Laggards
adopters

Acceptance

7

Time

Fig. 11-5 Technology lifecycle

The time represented may comprise a period between three and ten years.
Acceptance usually starts with pioneers, reaches 20-50 percent with early
adopters, and ends with laggards. Another view is to talk of emerging,
mature, and aging technologies. In some cases, we refer to one technology
lifecycle as a generation. Generations follow each other at shorter or longer
intervals. The time to introduce a new technology is very often a function of
the learning curve, i.e. how difficult it is to make users familiar with it.
Some fields can or will stay at low levels of technology, others strive for and
adopt a high level. We have already distinguished between high technology
and low technology fields at the beginning of this Chapter. They may coex-
ist next to each other. A high technology usually requires large teams of
specialists with scientific knowledge, uses complex processes, demands a
high capital investment for equipment or tools, and can be transferred with
considerable effort only. A low technology can be mastered by small groups
of low-trained persons, uses simple processes, demands little capital, and
has a short learning and transfer period. High technology is usually the pre-
rogative of advanced economies. Developing countries often have to
compete using low technology.

Technology predictions are as risky as any other prediction. They can
only be made if the driving forces are understood. The technology laws
quoted in this chapter are such predictions. All of them were made for exist-
ing technologies. To predict totally new technologies is much harder. Glaring
failures abound.

11.4.2 Management of technology and innovation

The economic life of a product is usually very short. Technically it may last
for 10 or 15 years, but after two to three years it may be challenged by new
technologies. In a global market, product leadership can be maintained only
through technology leadership. A company that can introduce new technol-
ogy and new products in a timely fashion is not forced to compete on a
price basis.

To develop new technologies or attractive products requires innovation.
Innovation depends on creative people and a climate that fosters new ideas.
The organizations most successful in this respect, surpass others by provid-
ing good internal and external communication, and by concentrating on
core competencies. Above all, new ideas have to be recognized as such and
their feasibility investigated. After that, they can be called inventions and
treated accordingly. To achieve this level, appropriate funding may have to
be given and bureaucratic hurdles removed. Whenever inventions are to be
exploited commercially, patenting is helpful. This applies to software as
well as hardware related inventions.

Not all new technologies need to be developed in-house. Companies can
buy or trade technologies. In this case, we have to know who the players
are with which it is worthwhile to negotiate. Any technology transfer
requires a match of interests between the giving and taking side. The giving
side has to be willing to share its knowledge and has to know who is inter-
ested in it. The taking side has to recognize a gap and must be motivated to
close it. A technology gap can be closed by training, by hiring or transfer of
people with the desired knowledge, but also through co-operation, acquisi-
tion or licensing.

With respect to technology management, a company can pursue differ-
ent strategies. Fig. 11-6 lists four different strategies. For each of them,
different strengths are needed, both in research and development (R&D)
and in marketing.

Strategy type Development strength Marketing strength

Innovator Daring in new technologies Raises demand, creates markets
Fast follower Quick technology transfer Expands markets, differentiates
Mass producer Optimizes quality and cost Minimizes sales and service cost
Niche dweller Exploits applications Excels in customer service

Fig. 11-6 Technology management strategies

11.4.3 Some emerging technologies and applications

As stated before, a professional cannot dodge his or her responsibility to
make assessments regarding emerging technologies. No speculations are
allowed - this would be rated as science fiction. Rather the best profes-
sional judgment should be applied. In this sense, we shall list a number of
technologies or applications that, in our opinion, are likely to achieve
market relevance during the next five to seven years.

m Portable terabyte RAM: magnetic or semiconductor random access
memory (RAM) technology will advance enough to provide storage capac-
ities in the range of 10'? bytes. Such a device will be able to store all our
books or our favorite music or movies, and can be carried everywhere.

257

Aisnpul pue ‘ainjoaliydle ‘ASojouydal uo 3o

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘ g

Terabyte ROM under US$1: the optical or other read-only memory
technologies will provide a medium the size of today’s digital versatile
disks (DVD) with a capacity of about 10'? bytes. For the amount of text
or image data, it will be cheaper than paper and will be given away. It
will become the main carrier for audio or video recordings.

Network bandwidth of several Gbits/s: networks with this bandwidth
are in the experimental stage today. This bandwidth will allow us to
hear music with high fidelity, see videos without significant compression,
and to reload the portable terabyte RAM frequently.

GFLOPS processor power: a processor power of a billion floating point
operations per second is about a thousand times more powerful than
today’s PC (Pentium 4). In a laboratory or office environment, it will
allow us to perform extensive data conversions, visualizations, virtual
reality applications, and other calculations.

Throw-away computers: computers will no longer be recognizable as
such. They will be sewed into clothes or bags, inserted in furniture or
garden equipment, glued to food packs, etc. They will record all kinds of
data and send out messages. They will be thrown away with their carrier.
4B read devices: digital displays are still quite bulky. In the future they will
become flat like cardboard or paper. They will finally allow us to read
computer-generated print pages (e.g. newspapers, or books) while in the
bath, in bed, on the beach, or on a bus. These devices will compete with
smaller displays for less demanding applications, such as mobile phones.
Electronic paper: several laboratories are experimenting with a medium
that looks like paper and carries electronically changeable or erasable
information. Every dot is realized by a small partially colored sphere
whose side is turned under electronic control.

Flexible voice recognition: today’s voice recognition software requires
pauses between words and a special training session. More advanced
systems will recognize fluent speech and adjust automatically to the
voice of a speaker.

On-the-fly natural language translation: based on the recognition of
fluent speech the translation into a foreign language will occur with a
delay of only a few seconds. The output may not be perfect, but is useful.
Biometric pattern recognition: apart from the voice, finger-print, head
contour and retina form are biometric patterns that can be useful to
identify a person.

Medical monitoring: for certain patients, a device implanted or carried
close to the body will transmit medical data (e.g. temperature, blood
pressure, etc.) to a doctor or hospital at given intervals.

Personal diary: the storage capacity described above, will be sufficient to
record everything we hear or see during the day.

Location sensitive computing: combining computers with global posi-
tioning devices will allow us to transmit information as needed or
desired at specific locations. This may be information about facilities or
persons in the neighborhood, but also traffic advice and weather data.

m Artificial sensory organs: Advances in neuro-physiology will allow the con-
nection of electronic devices to our nerve system. These devices can function
as a substitute for, or complement, the human eye, ear, nose, or skin.

This list represents a realistic forecast, because all the technologies exist
today — at least in a laboratory stage. When and how they will reach pro-
duction depends on diverse factors. Some may simply not make it in the
given timeframe, since its promoter may make a false start, either by select-
ing a technically risky approach, by expecting too high a margin, or by
choosing the wrong customer set.

11.4.4 Assessing industry capabilities

Whenever a decision is made whether to develop a system or to buy it from
outside, an industry assessment is involved. The same is true in the case of
services when the decision is between an in-house solution and outsourcing.

The IT industry is generally structured as hardware vendors, software
vendors and service companies. There are overlaps in the form, that some
hardware vendors also offer software, or that software vendors also supply
service. A rational decision usually has to start with the application in ques-
tion. If the decision has been made for the application, for example, an ERP
application, this triggers other software decisions. The application may be
offered for certain operating system platforms only, or may require certain
DBMS products. From the operating system and the database follows which
hardware is eligible. No hardware vendor is strong for all product or device
types. Mixing software components or hardware devices from different ven-
dors is possible only, if they are compatible with an overall architecture.

Since any decision of this kind has an effect over several decades, many
factors should be considered besides compatibility and price. The type of
service provided can be as critical as the geographic proximity and the long-
term financial viability. While these criteria apply to any industry, the
companies in the IT industry should be evaluated on their ability to define
and promulgate relevant industry architectures. Nothing will lead to more
wasted investments than building on architectures that will not survive.

To contract with an independent service company is advisable when the
problem to be solved is only a temporary one, or if the skill required is not
useful for the business. In all other cases, it may be better to acquire or
develop the skill in-house. Involving a consultant can be helpful if an objec-
tive evaluation of competing vendor offerings can otherwise not be
achieved. To rely on outside resources, particularly from developing coun-
tries, to achieve lower costs is often an illusion. Lower salaries do not
always translate into lower cost per product or unit of service.

11.4.5 Developing an information systems strategy

Many computer scientists are confronted with the task of developing an infor-
mation systems strategy for their organization or company. This demands all

259

Aisnpul pue ‘ainjoaliydle ‘ASojouydal uo 3o ‘

N
o
o

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘

the knowledge presented in this book, and more. The professional knowledge
has to be combined with the knowledge about the business goals, the priorities
and the possibilities of their own organization. The joint development of an
information systems strategy is an excellent opportunity for IS people to com-
municate with the rest of their company, particularly with upper management.

The establishment of a strategy requires an assessment regarding technolo-
gies, architectures and industry capabilities. It relates them to the needs of the
business and puts them into a framework. Strategies are always iterative
developments. They require a continued updating. A strategy usually covers a
five to ten-year period; shorter periods are considered as tactical or opera-
tional periods. In some cases, the actual decision does not need to be made at
the strategic level at all. A decision at the tactical level is sufficient.

Several options are worth considering. If most computer applications are
not critical for the business, a reactive strategy may suffice. In this case, only
those applications should be considered for automation, where their manual
execution produces higher costs or higher risks. For application areas where
fast and technically advanced solutions are key, an aggressive strategy may be
chosen. The risks should be well identified and controlled. In order to be able
to react fast, when needed, no area should be allowed to fall totally behind.

The strategy chosen may vary from business area to business area,
depending on the competitive situation. If a strategy has been developed, it
should be executed. To spend the effort first, and then put it away on the
shelf, does more harm than not developing a strategy at all. This will result
in a major loss of credibility for the entire management team. An illustra-
tion of an information systems strategy is given as an example below.

11.5 Examples and study material

11.5.1 Information systems strategy

The example gives a strategy for a financial institution, such as a bank. It is
based on a strategy proposal developed by Dewal and Schnichels [Dewa00].
The strategy is outlined in the form of three tables. They split the entire
strategy into three parts: business, technology, and process. Each table iden-
tifies a number of aspects important for each sub-strategy. The real content
of the strategy is given in the column entitled ‘Options chosen or consid-
ered’. The right-hand column gives an indication of how long the strategic
decision is supposed to be binding. In the case of a short planning cycle, this
part of the strategy may have to be reviewed every two to three years. A
long-term binding decision may be valid for up to ten years. This is a judg-
ment, too, and may have to be revised.

Fig. 11-7 summarizes the business part of the strategy. Apart from the last
aspect, the figures originate directly from the referenced publication. Of course,
in other situations, other points may be taken into consideration. In Fig. 11-8,
the technical part of the strategy is given. This is where the professional knowl-
edge and judgment of systems and software engineers are required.

Strategy aspect

Multiple sales channels

Accelerated processing

New business potential
Customization

Flexible operation
Credit risk assessment

Investment policy

Options chosen or considered

Support of home-banking, mobile phones,
branch offices, and point-of-sales; others can
be added easily

Generate and protect revenue by shortening
business processes and reducing
cancellation rate

Ease definition of new finance products; react
quickly to competitive pressure

Taylor function set and interfaces to individual
customer needs

Allow variations and extensions in a timely
fashion

Provide comprehensive support for credit
decisions

15% return-on-investment, project break-even
after 3 years

Planning cycle

Medium

Medium

Short
Medium
Medium
Short

Long

Fig. 11-7 Business strategy

Strategy aspect

Processing

Storage

Networking

Display, print

Voice, image

System availability
Data management
Transaction processing

Text processing and
document management

Security, recovery

Other

Options chosen or considered

Optimize between centralized and distributed
processing power (multi-tier); driven by

application demands and architecture constraints

Provide adequate capacity, including

backup and buffer (20%); fixed and removable
Assure sufficient bandwidth for non-image
applications, local and remote, wired and
wireless; build up pilot for image applications
Accommodate new handheld devices,
pluggable into running applications

Gain further experience; test pilot applications;
introduce successful ones

Total allowable outage of central systems
<6h/year

Extend use of relational databases, add
improved recovery and data mining facility
Enhance availability and throughput; move to
component-based products

Win more users for text systems and electronic
mail (90% of employees); evaluate and install
state-of-art document management products
Reduce intrusions into central systems (by 50%
in 2 years), introduce password protection for
all remote computing devices; provide auto-
restart for central systems and network
Evaluate workflow products and mobile agents

Planning cycle

Medium

Medium

Short

Short
Short
Long
Medium
Medium

Short

Medium

Short

Fig. 11-8 Technology and architecture strategy

N
Jeualew Apnis pue sajdwex] ‘ N

262 Finally, Fig. 11-9 addresses the process part of the strategy. This area is
undoubtedly the domain of systems and software engineers. The material in
this section builds on the two previous parts, of course.

Strategy aspect Options chosen or considered Planning cycle

Procurement, outsourcing Buy if standard product can be reliably Long
and economically obtained; build if
important unique function required; use
outsourcing to fill temporary capacity
gaps (not skill gaps!)
Development methods, Cycle time and quality have highest Short
tools priority; productivity and costs should
be industry average; use empirically
evaluated methods and tools only

Integration, migration Every application will adhere to the Medium
overall architecture; stepwise migration
to new architecture and applications

Evolution, maintenance Keep all applications up-to-date with Medium
respect to legal requirements; negotiate
functional enhancements with users;
perform maintenance in-house for all
self-developed code
Administration, operation Optimize service and support for all Medium
applications and devices used
throughout the company; assure smooth
and safe operation of central facilities

sanligeded Aiysnpul pue ‘ainjayydie ‘ASojouydsl ‘

Human resources Identify skill needs of IS department Medium
for implementation of this strategy
semi-annually; provide training in-house;
new hires only to complement skills

Organization Establish line responsibilities in Long
accordance with this strategy; use project
organization as base, cost center as exception

Risk management Identify project risks early; assign Long
responsibilities

Fig. 11-9 Development and operations strategy

111

11-2

11-3

11-4

11-5

11-6

11-7

11-8

Exercises

What are the key properties of a free market? In what respect does the IT
market deviate from it?

What effect did Moore’s law have on the IT industry? What physical limita-
tions may affect its validity?

Why does Metcalfe’s law apply to many software products?

What is the relationship between architecture and technology in our industry?
Explain the implications of Bayer’s and Codd’s hypotheses for system
design.

Describe the different strategies that can be employed for technology
management.

What factors should be considered when selecting hardware vendors, soft-
ware vendors, or service companies?

What constitutes an information system strategy? What are the main
options?

N
(o)}
w

Jeualew Apnis pue sajdwex] ‘

Measurements, experiments,
and empirical research

Experimentation in software engineering is necessary but difficult.
Common wisdom, intuition, speculation, and proofs of concept are not
reliable sources of credible knowledge.

V.R. Basili [Basi99]

The empirical approach to science relies on measurements and empirical
studies. This chapter presents some general rules and guidelines for con-
ducting empirical studies in software and systems engineering.

12.1 Definitions and importance

Measurements are observations done carefully. Rather than relying on
our senses, we often use special equipment such as measuring-rods or
stop-watches. We take special care to achieve precision, reliability, and
objectivity. Measurements are used to identify new phenomena (exploratory
measurements), test hypothesized phenomena, or guide engineering in the
application of models. Every measurement requires a scale or metric.

As stated in the introduction, empirical investigations rely on three meth-
ods: experiments, case studies, and surveys [Basi86, Zelk98, JuriO1]. In this
section, all experiments are taken to be controlled experiments, which are
intentional studies conducted in a specially prepared environment, and
based on some hypothesis [PrecO1b]. They are sometimes referred to as ‘in
vitro’ studies, meaning that they are conducted isolated from a living organ-
ism where the test object is artificially maintained, such as in a test tube. All
influences, that are not considered variables to be measured are excluded or
kept constant. The hypothesis is either verified or falsified by the controlled
experiment. In addition, a clear distinction is made between independent
and dependent variables of the hypothesis at hand. Independent variables
are the input parameters, as set for a given experiment; the dependent vari-
ables are the output parameters, which assume certain values dependent on
the input parameters.

Case studies (or quasi-experiments) are empirical studies conducted in a
field environment, and based on some hypothesis. They are also referred to
as ‘in vivo’ studies, meaning that they are conducted within the living organ-
ism. They are superimposed on some real project and less stringent in terms
of variable control than controlled experiments. The challenge is to collect
measurements without interfering with the project at hand. Owing to the
fact that many hidden project variables may influence the measured depend-
ent variables, the importance of qualitative analysis techniques is increased.
The broadest and least detailed empirical study is a survey. Surveys are
empirical studies aimed at acquiring data from people via questionnaires or
interviews. Surveys can be conducted ‘a posteriori’, i.e. data can be collected
based on peoples’ experience and recollection. Very often surveys are also
used to formulate a hypothesis to be followed up by controlled experiments
and/or case studies. They require sound methods for data collection to avoid
biases, data validation to ensure data accuracy and analysis. Survey method-
ologies have their origin in social and cognitive sciences.

Empirical Research is research based on the scientific paradigm of observa-
tion, reflection, and experimentation as a vehicle for the advancement of
knowledge. Observations gather data on some object of study, reflections
analyze the data to understand them and, if necessary, modify the object of
study, and experimentations observe and determine the effects of this change.
Empirical research is important to science and engineering, although there are
basic differences in the approaches used in both. Empirical research is guided
by the needs of the professional community, particularly those of practition-
ers, as well as the interests of the researchers themselves. Comprehensive
introductions to this subject can be found in [Wohl00] and [JuriO1].

12.2 General observations

Usually several measurements of the same phenomenon are taken by differ-
ent observers to protect against measurement errors, the key sources of
which are subjective metrics and scales; perceived pressure of empirical situ-
ations (known as the Hawthorne effect); inappropriate metrics and scales;
inconsistent ties between metrics and objects of study; and unclear motiva-
tion by missing explicit ties between metrics and measurement goals or
hypotheses. If, as in geodesy, there is an accepted theory as to the source of
errors, multiple measurements are needed in order to deal with the first two
sources of measurement errors. The differences in measurements are then
settled using a special adjustment calculus (e.g. the least squares method).
The latter three sources of measurement errors can only be dealt with by
applying sound empirical methodology ‘a priori’, i.e. from the beginning.
The empirical paradigm is used in all sciences, ranging from social
sciences to natural sciences and engineering sciences. The differences stem
from the differences in these fields. For example, in natural sciences (e.g.,
astronomy) the real world exists and cannot be modified, so the emphasis
is on observation and reflection. In engineering, the real world can be
changed, therefore, initial observation and understanding is followed by the

N
(o)}
(9,]

Suol}eAlasqo |elausn ‘

266

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

changing of methods. This may entail the creation of new models, the for-
mulation of a new hypothesis, and re-testing.

Since computing has aspects of both science and engineering, it is impor-
tant to distinguish the approaches used in both fields to discover new
knowledge. Some aspects of this difference are illustrated in Fig. 12-1. In
science (shown on the left side), a theory may come first. It predicts certain
observations. Based on an operational version of this theory, certain
hypotheses or models can be devised, which can be tested, either through
observations as in astronomy, through experiments as in physics, or by proofs
as in mathematics. If the result of this test is in line with the theory, the theory
is accepted; otherwise the experimental setup or the proof procedure may be
changed. If this does not help, the theory is either modified or rejected.

On the engineering side (right half of Fig. 12-1), there is usually a goal or
target. There is a problem to be solved. This problem can be solved by
developing an artifact, be it in hardware or software, or by fixing a deficit
of an existing artifact. The target is pursued using a certain set of methods
or processes. To be able to measure success or failure, a metric has to be
defined. Measurements will indicate how close we got to the target. If the
methods that were selected did not get us closer to the target, the method is
changed, or other methods are tried. If the methods solved the problem,
they become part of the repertoire. Quite frequently the target is raised. We
then want to solve the next largest problem, or attempt a more perfect and
less costly solution.

Science Engineering
Modify Accept
—>
Operational Modify Method/
. —_—
version process
Modify
------- >
Modify
————> Measurement
Not inline with /\ Inline with Not closer to /\ Closer to
Theory Target

Fig. 12-1 Knowledge discovery in science and engineering

12.3 Applicable laws and their theories

In this chapter we will present one law and one hypothesis only, and a
number of conjectures. Most rules cited here are not based on quantitative
measurements, but solely on expert experience.

12.3.1 Bayes’ theorem

This is a well-known theorem in probability theory, from the work of the
eighteenth century mathematician Thomas Bayes, that allows us to calculate
the probability of a hypothesis, based on both observations and prior
knowledge. This concept was later generalized and made popular by Pierre-
Simon Laplace, the French mathematician.

The probability that a hypothesis is true increases the more unlikely the new
event is that confirms this hypothesis. (L50)

Applicability Bayes’ theorem is usually given by the following formula
[Chal99]:

P(ble) = P(h) x P(elh)/P(e)

In this formula 4 is a hypothesis, and e is an event, P(bhle) is the (posterior)
probability of a hypothesis /» considering a new event e. P(b) is the prior
probability. It represents the prior knowledge. P(elb) is the probability of e
occurring under h. P(e) is the probability of e occurring at all, independent
of any hypothesis. The term P(elh)/P(e) is often referred to as the likeli-
hood factor (LF).

An application of Bayes’ theorem can be found in the derivation of the
COCOMO II model [Boeh0Oc]. In the case where the sampling data from
161 projects show a high variability (or low precision), data from expert
interviews are used as prior knowledge. By combining the two data sets
using Bayesian regression, the total precision increases. Bayes’ theorem can
be used to calculate the incremental reliability gain for a hypothesis by
adding additional measurements.

Evidence Bayes’ theorem is used in many empirical investigations. For
example, in medicine it allows us to estimate the probability that the right
medicine was prescribed, by observing what happened to the patients. If
one in ten patients who are wrongly prescribed recovers, and one in two
patients who are correctly prescribed recovers, Bayes’ theorem makes it five
times more likely that the right medicine was prescribed.

Theory The theorem represents an induction principle. It combines new
data with old information. It is valid wherever the past shows up in the

N
o
N

S91109Y3 119y} pue sme) a)1gedljddy ‘

268

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

future, or the larger environment in the small environment, and vice versa.
A new theory is more likely to be true the lower the probability that it can
be explained with existing data or with data that are valid for other theories
as well. Or inversly, the best theory is that which requires unique data for
its verification, i.e. data that cannot be explained by other theories.

12.3.2 Basili-Rombach hypothesis

The following hypothesis has received wide acceptance, both in academia
and in industry and it has been put forth in a series of publications
[Basi88, Basi94al].

Measurements require both goals and models. (H25)

Applicability The hypothesis implies that metrics and measurements have
no value by themselves. They need to be motivated by goals and questions.
If an organization wants to take measurements in a meaningful way, it must
proceed in a top-down rather than a bottom-up fashion: it must first specify
the goals for itself or for its projects; then it must trace down these goals by
means of questions to the data that define these goals operationally (opera-
tional model); finally, the data have to be interpreted in a certain technical
framework (metric). This goal-question-metric (GQM) paradigm is a hierar-
chical structure, starting from goals, then leading to questions, and finally
moving to metrics. The refinement of measurement goals into metrics
requires (possibly implicit) models of the artifact to be measured or the
quality aspect to be measured.

Evidence In the 1960s and 1970s measurement of software received a bad
reputation: lots of data had been collected in companies without having a
positive effect on project performance. The reason was that the data had
been collected according to ease of collection rather than need. The result
were large numbers of unused data cemeteries. In the 1980s, the idea of
focusing on the goal of measurement (‘What?’) before addressing the neces-
sary metrics (‘How?’) permeated the software development community.
This reflected the fact that software had become an important asset that
needed to be treated professionally. One facet of this move to professional-
ism was the relating of business goals to software (process) improvement
goals, which in turn were related to software measurement goals. The
GQM approach to measurement [Basi88, Basi94a] has since become one of
the most referred to and widely used approaches to sound measurement.
Since measurement programs in industry have been established and serve as
drivers for maturation of the software development process, it is considered
by some authors as one of the most influential ‘inventions’ in the software
development domain over the past 20 years.

12.3.3 Conjecture 7

The majority of the methods used in software and systems engineering
depend on people for their execution. This leads to the following conjecture.

Human-based methods can only be studied empirically. c7)

Applicability This conjecture suggests that the majority of software devel-
opment methods cannot be investigated any way other than empirically.
Human-based methods (e.g., designing, inspecting) include human judg-
ment and depend on human factors such as motivation and experience.
Therefore, the results of applying such methods depend on these factors. As
the result is not deterministic, empirical studies are needed to understand
and control these factors. One cannot determine analytically the effects of
an inspection method. The effects of an inspection method depend on a
multiplicity of independent factors such as application domain, experience
of people, notation of document to be inspected, etc.

Evidence The most important evidence is the large gap between research
and practice in software development. Many promising development meth-
ods have been proposed. Few of these have been tried out in practice, even
fewer have been sustained in practice despite project pressure. One of sev-
eral reasons is the inability of researchers to present practitioners with
realistic judgments as to the strengths and weaknesses of candidate methods
and their potential to solve problems existing in the industrial environment
at hand. This is the result of either a lack of empirical evidence regarding
new methods at all (“What is it good for?’) and/or lack of context relevance
(‘Does it work for my project?’). Understanding the impact of context vari-
ables is the major challenge of empirical studies in the software domain. In
order to adapt existing empirical evidence to specific characteristics of an
industrial environment, practitioners need to be able to (partially) replicate
published empirical studies. An example where this has been done are
inspections [Lott96]. For researchers to advance the scientific body of
knowledge, they need to perform families of empirical studies across differ-
ent contexts [Basi99].

12.3.4 Conjecture 8

To gradually evolve the methods used by an organization, a process
improvement plan is necessary. Improvements require feedback regarding
their effectiveness.

Process improvements require action-based feedback. (C8)

N
(&)
O

S91109Y3 119y} pue sme) a)1gedljddy ‘

270

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

Applicability Only if an individual is convinced (by data) that the new
process works for him or her will he or she adhere to it. As was suggested by
conjecture C7, different applications of a method will lead to different
results. That means that without action-based feedback there is no repeata-
bility of methods, which in turn means no repeatability of results. No
repeatability of results means no return on investment in process improve-
ments. Very often this is caused by the fact that improvements are not
sustained. All engineering disciplines accept the fact that teaching a new
method is not sufficient for successful application. In addition, engineers
require time to practice the new method in the context of a specific applica-
tion domain. Only such offline experiences, without project pressure, allow
re-adjustment of old mental problem-solving models. The development of a
complex software system is certainly an engineering task. Wide-spread igno-
rance of action-based training and feedback have led to many unsuccessful
method transfers from research into practice.

Evidence There are many stories about non-sustained process changes.
Who does not know the cases of ‘not-lived’ methods, e.g., object-oriented
programs that reveal the developer’s history as a Fortran or COBOL pro-
grammer, or inspection methods that are more or less faked because of
project pressure. In all these cases, methods cannot produce the expected
benefits and cannot therefore be sustained. This problem of sustaining
desired process changes at the (human-based) software engineering level has
been experienced in many industrial improvement programs. Successful
examples are reported by several institutions (e.g. [Romb02]).

12.3.5 Conjecture 9

Action-based feedback for individuals and learning of the entire organiza-
tion requires empirical studies. Both controlled experiments and case
studies have to be combined.

Learning is best accelerated by a combination of controlled experiments
and case studies. (C9)

Applicability In the same way that physicists learn from observing planets,
software developers learn from observing software developments.
The observation of software developments takes place in the real world (in
vivo) via case studies superimposed on real projects. The weaknesses of case
studies includes their intrusion on time-critical projects and their lack
of providing cause—effect insights. Therefore, a smart combination of
controlled experiments to study new methods or investigate specific
cause—effect relationships of already applied methods, and case studies to
scale-up experimental results to realistic complexity, project characteristics,
and project pressure, is essential. Researchers prefer case studies to identify

real-world hypotheses or scale-up experimental results, but rely on con-
trolled experiments to demonstrate cause—effect relationships. Practitioners
view case studies as the preferred way of testing applicability of new meth-
ods in their project domain. Controlled experiments are typically not
performed in industry.

Evidence A well-known example of a smart combination of controlled
experiments and case studies is the introduction of Cleanroom software
development into NASA [Selb87]. Controlled experiments in the university
environment were used to overcome the ‘factoid’ that testing is a more effec-
tive defect detection mechanism than human-based inspections. It was
demonstrated that rigorous inspections based on a stepwise abstraction
analysis procedure outscore any testing approach. Only after this was
demonstrated by a student experiment and repeated by practitioners, were
the developers open to Cleanroom software development. Cleanroom soft-
ware development which clearly separates the creation of software and
testing, has become a successful development practice, as demonstrated by a
series of case studies. It is obvious, especially if one compares the Cleanroom
experience with the fate of other formal development approaches, that
Cleanroom would have never been accepted by practitioners without the
sequence of controlled experiments and case studies. Other evidence exists
from many industrial success stories of development methods transferred
after experimental pre-evaluation.

Comment As stated before, the conclusions drawn by Basili ef al. [Basi92]
at the NASA Software Engineering Laboratory (SEL) are not easily transfer-
able to other environments. They are biased to a particular context because
effects of the Cleanroom approach were compared with the results of a
process where all testing was done by the developers. Most development
organizations take the step from the archaic (pre-Weinberg) process to the
establishment of independent test groups first. They may evaluate the
Cleanroom approach based on the higher quality level already achieved. In
that case, its benefits may not be as clearly visible.

12.3.6 Conjecture 10

Measurements are being taken from actually performed developments. A true
model of the actually performed process is required to start measurement.

Measurements are always based on actually used models rather than
on desired ones. (C10)

Applicability Development models are being used to instrument software
developments, i.e. to provide a framework for measurements. Very often,
the development model used is rather prescriptive, but does not agree with

S91109Y3 119y} pue sme) a)1gedljddy ‘ "\:n’

272

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

the actually performed development process. Such inconsistencies result in
complications during data collection as well as in irritations regarding
resulting improvement suggestions. In general, it can be said that the exe-
cuted software development process is not captured yet, and needs to be
captured descriptively by interviewing developers involved.

Evidence Many measurement programs in industry are terminated because
of a lack of valid data and/or lack of use of data to manage projects better
or trigger process improvements. One cardinal mistake, besides the lack of
goal orientation (see hypothesis H25 above), is the reference to the wrong
process. Typically, general project models are used instead of the live
process models from which developers can collect data. Developers recog-
nize the discrepancy easily and fake data collection. This marks the end of
any measurement program.

12.3.7 Conjecture 11

When considering the transfer and reuse of empirical results in a new envi-
ronment, two questions arise:

1. Do they apply to this environment?
2. What are the risks of reusing these results?

In order to allow potential reusers an intelligent judgment, empirical results
have to be packaged, i.e. completely documented.

Empirical results are transferable only if abstracted and packaged with context.(C11)

Applicability Effective reuse of empirical results requires the abstraction of
models from the actual data. Information has to be translated into knowl-
edge. This knowledge has to be packaged with its context. The context
necessary from a scientific point of view includes all information necessary
to (at least theoretically) repeat the empirical study. This enables testing and
thereby inclusion into one’s existing body of knowledge. The context infor-
mation necessary from a practical point of view includes all information
necessary to judge how well the context of the empirical evaluation matches
the project environment at hand, and thereby estimate the risk of transfer.

Evidence The experience-factory model as originally proposed by Basili
[Basi89, Basi94b] provides an organizational scheme as well as procedures
for experience packaging. This model has since been applied successfully in
many industrial environments for building up learning organizations for
software knowledge. Experience-factory-based learning organizations trans-
fer the general concept of the learning organization successfully into the
software domain.

12.3.8 Conjecture 12

The applicability of empirically based models changes based on learning.

Empirically based models mature from understanding to explaining and
predicting capability. (C12)

Applicability Very often the expectation from empirically based models is
too high. The natural evolution of such models starts with understanding,
i.e. phenomena can be clearly distinguished; evolves to explaining, i.e.
cause—effect relationships can be identified; and ends with predicting, i.e.
the impact of all relevant context variables can be included.

Evidence The experience factory model referred to above [Basi89, Basi94b],
provides a scheme for evolving empirically based models from understand-
ing to predicting. More evidence to support this model is being collected.

12.4 More on measurements, experiments, and empirical
research

To be able to perform meaningful work in this area, a number of additional
aspects have to be considered. We will highlight a few of them. For a more
comprehensive coverage we refer the reader to some recent books specializ-
ing on this subject, such as [Juri01, Wohl00, PrecO1b].

12.4.1 Defining experimental goals

A statement of goals is vital for planning and conducting an experiment.
By stating the goal explicitly, all data collection and interpretation activi-
ties are based on a clearly documented rationale. A goal may have the
following aspects:

object of study (e.g. design, coding, testing);

purpose of study (e.g. comparison, analysis, prediction);

focus of study (e.g. effectiveness, efficiency);

point of view (e.g. practitioner, researcher);

context (e.g. experience of subjects, objects used, environment).

The context and object aspects determine the independent variables for an
experiment; the focus of study the dependent ones. Context may also deter-
mine which hypotheses are meaningful at all, for example, if the empirical
subjects had no prior experience with a method, the results of the study
may be meaningless, unless the criterion measured was learning time. The
purpose of the study determines the breadth of analysis.

N
~N
w

yaJeasal |eauidwa pue ‘sjuawiiadxe ‘SJUsWaINSEal Uo a0 ‘

274

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

12.4.2 Deriving testable hypotheses

Each experiment or case study should have at least one testable hypothesis.
A hypothesis of the form ‘method A is good for task T’ is not testable but a
hypothesis of the form ‘method A requires less time than method B to
accomplish task T’ is. In order to be able to apply inferential statistics, both
a null and an alternate hypothesis should be formulated. The null hypothe-
sis would be accepted if there is no significant difference between two sets
of data. In the previous example, a null hypothesis would say ‘There is no
difference between method A and B as far as the time required for task T is
concerned’. Only if the null hypothesis has to be rejected, would it make
sense to investigate the alternate hypothesis.

12.4.3 Designing experiments

The cornerstone of empirical studies is credibility. It results from the efforts
taken to build up the evidence used to support the experimenter’s claims.
Before correlations are investigated, the causality of the events has to be
clearly determined. Causality can only be assumed if there is more than a
spurious association between the events, one event always occurs before the
other (temporal precedence) and, finally, there is a theory (i.e. model of
reality) saying why one event caused the other event.

After causality, internal and external validity of the experiment should be
assured. An experiment has internal validity only if the relationship
between presumed causes and measured effects has been observed. It
expresses the degree to which the controlled variables could be kept con-
stant. Typical threads are maturation (people get used to the test), history
(time between the experiments influences the result), selection (only such
participants were selected that are predisposed to the subject), and mortality
(not all participants complete the test). External validity is the degree to
which results also apply to other environments, and it depends on the
choices made for test objects and test participants. A typical question in this
respect is whether tests made with students have any relevance for profes-
sional environments.

Besides establishing the hypothesis to be verified or falsified, the design
of an experiment requires a clear definition of independent and dependent
variables. Independent variables are the (input) factors that are believed to
influence the results. By manipulating or varying the values of the inde-
pendent variables, different results are produced. Dependent variables are
the (output) results to be measured. For example, in the study of the rela-
tive effectiveness of testing and reading techniques by Basili and Selby
[Basi87] the dependent variables included number of defects found and
cost of defect finding; the independent variables of choice included the
defect detection technique used, the experience of subjects involved, and
the type of code analyzed. The programming language was kept constant
by the fixed choice of Fortran.

The final point to be considered is the method used to randomize the
results. For this purpose, people are assigned to different groups correspon-
ding to different levels of the independent variables. In some cases, one
group, called the control group, assumes that all independent variables have
base values only.

Opverall, there exist a number of experimental designs to choose from. The
most important are: one factor experiment/paired comparison; block design;
blocked factorial design; factorial design/nested design; and fractional facto-
rial design. They all are applicable under different conditions, including the
goal of experimentation, the number of independent variables, the possible
alternatives for these independent factors, and the number of undesired vari-
ations. For example, blocked factorial design is applicable if we deal with
more than one independent variable, more than one alternative per variable,
and the possibility of undesired variations. A complete discussion can be
found in [JuriO1].

12.4.4 Analysis and validation of results

The analysis of measurements can typically be done by use of statistical
correlation and/or regression analysis techniques. Analysis methods applied to
software engineering data range from traditional statistical methods to Al-
oriented pattern analysis to do justice to low-volume software engineering
data. The combination of quantitative and qualitative analysis methods is a
particular characteristic of the field of software. From data (e.g. effort data),
to information (e.g. effort distributions across development phases), to knowl-
edge (e.g. effort distributions with adjustments according to different contexts)
the benefits mature from understanding to explaining and predicting. In soft-
ware development, the analysis of exceptions guarantees improvement as it
may explain yet another independent factor.

Empirical results must be validated. This includes interviews with the
participants to make sure they understood all questions correctly. Special
considerations apply to small data sets, the handling of outliers, and the sig-
nificance level of all results. Data are the raw material for better
understanding. Analysis methods enable the identification of patterns
resulting in models. Owing to the specific distributions and low volume of
software engineering data as well as to hidden context dependencies, analy-
sis requires great care. Large industry-wide databases of measurement data
are of limited value only, although they may allow some benchmarking as
to where a specific firm ranks with respect to a heterogeneous community
of firms. However, these databases would not reflect the specific character-
istics of a given company. Today, many successful companies maintain their
private database for internal benchmarking and improvement purposes. A
well-known example where internal benefits were gained due to careful
data analysis is NASA’s Software Engineering Laboratory (SEL) [Basi92].

275

yaJeasal |eauidwa pue ‘sjuawiiadxe ‘S]USWINSEaL UO 310 ‘

276

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

12.4.5 Replication of experiments

Empirical results have to be published in a way that allows for repetition.
This fundamental characteristic of scientific experiments is still often vio-
lated in computer science. Repeating measurements is useful to find out
whether the results still apply. Repeating them unchanged will increase (or
decrease) their confidence. By varying the hypotheses, the respective theory
can gradually be extended. This is a valid research target.

Experiments that reproduce known results have one big problem: they
are not considered as advancing the state-of-the-art, and therefore are usu-
ally not accepted for publication in a scientific journal or conference. This is
unfortunate because they could help to increase confidence in existing
models. They may also serve as a learning experience for students or as an
argument to fight against the Not-Applicable-Here (NAH) syndrome.

12.4.6 Ethical issues

Empirical research requires strict adherence to ethics. People should not
participate without their consent, nor should people be deceived or their
privacy invaded. If students are asked to participate, the experiment should
result in an educational gain. The results should not influence the course
grades. The same applies in industry. The results of an experiment or study
should have no effect on salary. This does not exclude the possibility to
motivate people to participate by means of some small financial recogni-
tion. The main method to avoid ethical conflicts is to preserve anonymity.
Sometimes this requires that groups of at least six to eight people are
formed. If data from several tests have to be associated with the same
person, special identifiers can be assigned. The correspondence between
identifiers and true identities should not be recorded.

12.4.7 Limitations of the experimental approach

The experimental approach is not without limits. First of all, the costs are
high and in some cases may become prohibitive. It is clearly impossible to do
an experiment with hundreds of professionals, so smaller groups or case
studies will have to suffice. We should not forget, however, that if experi-
mentation is one of the costly ways to learn, it is even more costly to do
without learning. The second limitation comes from the use of people. This
restricts the type of experiments that can be done. There are different limita-
tions for students than for professionals: students may not have the critical
experience; professionals may not be willing to undertake every task. The
final limitation is the transferability of results: it is not easy to create experi-
ences that are easily transferable without human expert judgment, as source
and target contexts typically vary. In a practical work environment, the proj-
ect and business contexts may change faster than the experimental studies
can support. To overcome some of the limitations of controlled experiments,
research is investigating ‘smarter’ combinations of controlled experiments
and case studies as well as integrating experimentation with simulation.

12.4.8 Nature of empirical research

Empirical research has been recognized as a major sub-discipline of com-
puter science since about 1980. A first status report can be found in a 1993
Dagstuhl conference [Romb93]. Some recent book publications [Wohl00,
PrecO1b, JuriO1] have been mentioned before. It requires a certain shift
away from the emphasis on mathematical approaches. The majority of
the problems encountered in software and system development are not
mathematical in nature. They are caused by the nature of human work,
particularly mental or intellectual work. That means they cannot be under-
stood by mathematical reasoning alone; they can only be understood and
controlled empirically. Many researchers in computing hesitate to analyze
these activities by empirical methods: for them it is like applying engineer-
ing to scientific writing, poetry and painting (applying mathematics would
not make a difference for them).

Empirical research in software and systems engineering needs to take
the specifics of this domain into consideration. This results in specific
approaches to empirical research, empirical studies, and measurements. The
most important characteristics of the software domain include the non-
determinism of most methods because of (allowed and intended) human
creativity, variability from project to project, and the resulting low volume
measurement data sets. Furthermore, the large number of dependent vari-
ables and often sparse volumes of data require sophisticated designs and
data analysis procedures. Nevertheless, it is important to apply sound meth-
ods in order to perform objective and testable investigations. It is not
enough to just argue in favor of some desired behavior. As Bob Glass
[Glas94] put it: ‘Researchers should investigate, not advocate’.

12.5 Examples and study material

12.5.1 Comparative product evaluation

This example! describes the comparative evaluation of three text process-
ing products (P1, P2, P3). The measurement plan, outlined in Fig. 12-2,
highlights the difference between independent and dependent variables.
Besides the product to be evaluated (M1), two more variations of the
study are given as independent variables (M2, M3), i.e. task type and
application skill. The task type is determined by the nature and complex-
ity of the document to be processed. There are four documents of
different complexity, designated as follows: text only (D1), text with fig-
ures (D2), text with figures and formulas (D3), and foils (D4). The
application skill expresses the experience of the subjects with electronic
text processing. Only two levels (novice, expert) are distinguished.

1'We thank Jurgen Munch for this example.

N
~N
~

Jeualew Apnis pue sajdwex] ‘

278 Independent variables Dependent variables (and their ranges)
(and their domains)

M1: Product (P1, P2, P3) M4: Number of pages per hour (decimal)

M2: Task type (D1, D2, D3, D4) M5: Learning effort (< 1 hour, < 6 hours, » 6 hours)

M3: Application skill (novice, expert) Mé: Number of system crashes per hour (integer)
M?7: Input/output filters provided (none, too few, enough, plenty)
M8: Help function (none, useless, acceptable, useful, excellent)
M9: Spell-check (none, useless, acceptable, useful, excellent)

Fig. 12-2 Measurement plan for product evaluation

In this exercise, six dependent variables are observed. They are named as
parameters M4 through M9. They have either nominal (M7-M?9), ordinal
(M3), or rational scale (M4, Mé6).

Fig. 12-3 shows a m X n design for the experiment. It assigns nine inexpe-
rienced and nine experienced persons (subjects) to perform the processing of
each document with each product. This setup separates the skill levels and
isolates the learning effect. Fig. 12-4 shows sample results for two measure-
ments out of a total of 54 (18 x 3) measurement points. By analyzing these
results carefully, a professional assessment of the products in question can be
attempted that will be more reliable than a mere subjective judgment.

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

Skill Subjects P1 P2 P3
Novice S1-S3 D1 D2 D3
S4-S6 D2 D3 D1

S7-59 D3 D1 D2

Expert $10-S12 D1 D2 D3
S13-S15 D2 D3 D1

S$16-S18 D3 D1 D2

Fig. 12-3 Experiment design for product evaluation

Independent Dependent Independent Dependent
variables variables variables variables
M1: P3 M4: 2.5 M1: P2 M4: 1.0
M2: D1 M5:> 6 hours M2: D3 M5: <1 hour
M3: Novice Mé6: 0 M3: Expert Mé6: 2
M7: too few M7: enough

M8: useful M8: acceptable

M9: none M9: useful

Fig. 12-4 Sample results of product evaluation

12.5.2 Evaluation of verification methods (hypothesis-based)

The following example is based on an experiment published by Kamsties and
Lott [Kams95] which has been discussed in Chapter S. It is a well-known case
of a repeatable experiment. The programs used and the data produced by this
experiment are available as study material from the Fraunhofer Institute for
Experimental Software Engineering in Kaiserslautern.?

Fig. 12-5 gives the key characteristics of the programs used for this
experiment. The first program (ntree) implements an abstract data type that
inserts and searches elements in an unbounded tree. The second program
(cmdline) evaluates the parameters inserted in a command line and outputs
them as a data structure. The third program (nametable) inserts and
searches entries in a symbol table. All programs are written in C and are
provided with scaffold code to ease their execution by a test driver.
Comments in the program text are practically non-existent. They can nei-
ther help nor mislead their readers. A total of 22 faults (or errors) are
known,3 and have been classified in a number of ways. Only their classifica-
tion into ‘faults of omission’ and ‘faults of commission’ is repeated here.

Program LOC (including Lines with Faults of Faults of Total
name headers) comments omission commission faults
ntree 260 5 4 2 6
cmdline 279 1 2

nametable 281 11 4 3 7

Fig. 12-5 Test program characteristics

Fig. 12-6 outlines the measurement plan for this example. The three inde-
pendent variables (M1-M3) are language skill, method skill, and method
used. Language skill is the self-reported mastery and experience of the pro-
gramming language in which the test programs are presented. Method skill
is the self-assessed mastery of each of the three methods. For both parame-
ters an ordinal scale is used. The methods used are functional or black-box
testing (FT), structured or white-box testing (ST), and code reading or
inspections (CR). Although subject to a separate analysis, language and
method skills are randomized by assigning subjects to groups.

Of the dependent variables measured, we are only repeating four of them
(M4-M7). Typically, the number of failures (M4) depends on the test cases
used. A test case may fail because of a test case error, or many (ill-chosen) test
cases may indicate the same fault. The number of expected failures is therefore
not given. Since the number of faults are known, the relation of expected faults
to isolated faults can be expressed as a percentage. Two separate numbers are
collected: one for the faults of omission (MS5); and one for the faults of com-

2 http://www.iese.thg.de
3 Since the specifications of the test programs are very coarse, we rely on what has been
defined as failure or fault in the original paper.

279

Jeualew Apnis pue sajdwex] ‘

280

yoleasal jeouidwa pue ‘syuswiiadxa ‘sjuswainses|y ‘

Independent variables Dependent variables

(and their domains) (and their ranges)

M1: Language skill (1-5) M4: Number of failures observed (integer)

M2: Method skill (1-5) M5: Percent of omission faults isolated (decimal)
M3: Method used (FT, ST, CR) Mé: Percent of commission faults isolated (decimal)

M7: Time needed per method (minutes)

Fig. 12-6 Measurement plan for method evaluation

mission (M6). Their total is a derived number (M8 = M5 + M6). Suggestions
for improvements that normally show up in any verification process are
ignored. The time needed for a method (M7) is the total time required for all
three programs. As will be seen later, for each program a full day (eight hours)
was initially allocated. A group could stop earlier if the members felt that they
were done, or when their ideas of how to go about the task had exhausted. No
group was allowed to continue indefinitely until all errors were found. This
corresponds to the typical situation in practice where a limited and pre-planned
time period (maybe of several weeks) is available for verification.

The experiment was conducted in order to test three hypotheses: the pri-
mary hypothesis (H1) says that the three methods in question differ with
respect to effectiveness (number of failures observed and percentage of faults
isolated) and efficiency (number of failures or faults divided by time required
to detect them); the secondary hypothesis (H2) says that the three methods
differ in the effectiveness at isolating faults of different types (faults of omis-
sion versus faults of commission); the third hypothesis tested in the reported
experiment (correlation of results with language and method skill) is not
repeated here. It happens, anyway, to be the weakest result of the study!

Fig. 12-7 gives a formal representation (operational version) of the two first
hypotheses. H1 is split up into four sub-hypotheses: two of them (H1.1, H1.2)
deal with effectiveness; and two (H1.3, H1.4) with efficiency. Even in this
form, the hypotheses only predict that the results of different methods differ
from each other (<> sign). The respective null-hypothesis is that they are the
same (= sign). In the lower two cases, efficiency is calculated as E4 = M4/M7
and E8 = M8/M7, respectively. The secondary hypothesis consists of three
sub-hypotheses, one for each method. Not shown are the sub-hypotheses that
actually lead to what we regard as the essence of the Hetzel-Myers law as
introduced in Chapter 5, namely that each method detects different errors.

Primary hypothesis Secondary hypothesis
H1.1: M4 (FT) ©» M4 (ST) © M4 (CR) H2.1: M5 (FT) &> M6 (FT)
H1.2: M8 (ST) <> M8 (ST) <> M8 (CR) H2.2: M5 (ST) © M6 (ST)
H1.3: E4 (FT) © E4 (ST) ©» E4 (CR) H2.3: M5 (CR) ©» M6 (CR)

H1.4: E8 (FT) © E8 (ST) ©» E8 (CR)

Fig. 12-7 Operational hypotheses used

Fig. 12-8 describes the assignment of work used in the original study. The
permutation of programs and methods is such that all combinations of pro-
grams and methods occur, and that all possible orderings of applying the
methods can be seen. The experiment is run over three (not necessarily con-
secutive) days with one program per day. All groups see the same program
on the same day to avoid cheating.

Program name Method FT Method ST Method CR
ntree (day 1) G3, G4 G5, G6 G1, G2
cmdline (day 2) G1, G6 G2, G4 G3, G5
nametable (day 3) G2, G5 G1,G3 G4, G6

Fig. 12-8 Experiment design for method evaluation

We will not give the detailed results of the study, as reported by Kamsties
and Lott [Kams95]. Some results are stronger than others. We are sure,
however, that readers who carefully repeat the part of the study that is
described here will find yet another confirmation of the Hetzel-Myers law.
Kamsties and Lott are quite cautious in this regard: in the conclusion of
their paper, they say: ‘“The observed differences in effectiveness by fault class
among the techniques [methods] suggest that a combination of the tech-
niques might surpass the performance of any single technique.’

Exercises

12-1 Outline the difference between the scientific and the engineering
approach of discovering knowledge.

12-2 What are typical measurement errors in empirical software engineering
studies? What can be done about them?

12-3 What are the key characteristics of a controlled experiment? Why are con-
trolled experiments advantageous?

12-4 In what situations are case studies and surveys more appropriate than
controlled experiments?

12-5 Name the most important threads of validity for experiments. What meas-
ures can be taken to protect an experiment against them?

12-6 Why is it necessary to repeat experiments? What types of repetitions are
useless from a research perspective?

12-7 Explain Bob Glass’ dictum that research should investigate, and not advocate.

12-8 What are the five parameters to specify a measurement goal according to
the GQM approach?

12-9 How do you derive dependent and independent variables from a GQM goal
specification?

12-10 What are possible scenarios that justify combinations of controlled experi-
ments and case studies?

N
oo
_

Jeualew Apnis pue sajdwex] ‘

Conclusions and challenges

Programmers are always surrounded by complexity; we cannot avoid
it. Our applications are complex because we are ambitious to use our
computers in ever more sophisticated ways.

C.A.R. Hoare [Hoar81]

As has been shown in this book, considerable empirical knowledge exists
that can be communicated to computer scientists, and to software and
system engineers. To grow as a profession, more work needs to be done on
this. In this chapter, we will make some suggestions and point out some
future research directions.

13.1 More on the laws and theories covered in the book

The 50 laws, 25 hypotheses and 12 conjectures cited in this book (and
listed in Appendix 1), cover important aspects of software and systems engi-
neering. They provide an agenda for empirical computer science and in our
opinion, are pillars on which professional work can build, be it in research,
development, distribution, installation, evolution and maintenance. They
are not only part of the folklore, but are having significant impact in prac-
tice as well. They cover general areas, applicable to the entire field, and can
be extremely useful if interpreted wisely.

We concede that not everybody can observe in his or her daily practice
all the laws in this set, nor would he or she formulate them in exactly the
way we did. As with all laws in science, our laws are idealizations. Using a
characterization given by Chalmers [Chal99], laws of nature describe a ten-
dency of things to behave in a certain manner. Reality is complex and there
are always simultaneous operations at work that include other forces and
tendencies. On the other hand, some people may call our laws obvious and
trivial. This is unavoidable and it is partially a matter of the different views
or paradigms guiding our work. As Kuhn [Kuhn70] in his discussion of par-
adigms points out: ‘A law that cannot be demonstrated to one group of
scientists may occasionally seem intuitively obvious to another’. Why
should we be better off than science in general?

The laws in our set should not be seen as dogmas: they are not authorita-
tively asserted opinions. If proved wrong by objective and repeatable
observations, they should be reformulated or forgotten. Until this is done,
however, the laws we propose are the best we can come up with. They are
offered as signposts for those who look for orientation. By calling these
rules laws, we are also trying to suggest (perhaps cunningly!) that no pro-
fessional should be allowed to ignore them. As an analogy consider a legal
situation, where not knowing a law (i.e. a rule of conduct established
through legislation) is not accepted as an argument for pleading non-guilty.
It could at least be considered as an act of professional malpractice if some-
body openly works against laws that are well-established in the community.

With Fig. 13-1, we give a comparison of our laws with a list of heuristics
recently published by Boehm and Basili [Boeh01]. They try to summarize
the most important empirical results for which objective and quantitative
data exist. Seven of the ten items have been addressed by laws in this book,
as indicated by the reference in the right-hand column. In three cases, we
deviate somewhat from their assessment.

No. Defect reduction item Ref.

1. Finding and fixing a software problem after delivery is often 100 times more

expensive than finding and fixing it during the requirements and design phase L2
Current software projects spend about 40 to 50% of their effort on avoidable rework (1)
About 80% of the avoidable rework comes from 20% of the defects L24
About 80% of the defects come from 20% of the modules and about half the
modules are defect free L24
5. About 90% of the downtime comes from, at most, 10% of the defects L24
6. Peerreviews catch 60% of the defects L17
7. Perspective-based reviews catch 35% more defects than non-directed reviews L19
8. Disciplined personal practices can reduce defect introduction rates by up to 75% L35
9. All otherthings being equal, it costs 50% more per source instruction to develop
high-dependability software products than to develop low-dependability software
products. However, the investment is more than worth it if significant operations and
maintenance costs are involved ()
10. About 40-50% of user programs contain non-trivial defects 3)

Fig. 13-1 List of the top ten software defect reduction findings

1. We believe that item 2 is only true in an environment where no emphasis
is placed on early error prevention. We addressed the error prevention
concept under hypothesis 9 (H9).

2. Item 9 talks about high-dependability software. We agree that to meet
high robustness criteria, considerable amounts of additional code may
be necessary to correctly handle illegal input data. This is not the case
for high-quality software in the sense of high-reliability, as explained in
conjunction with hypothesis 8 (H8). The reference to operations and
maintenance costs is more applicable to high-quality than to high-
dependability software.

283

300Q a1 Ul PaIdaA0I S31I03Y] PUBR SMB] 3] UO 3IO|\

284

sagua)|_Yyd pue SuoIsnjauo) ‘

3. Item 10 is a rather pessimistic assessment of the current situation.
Considering that a program’s size may vary between 50 and 5 million LOC,
the statement is not very precise, nor is it helpful in a constructive sense.

A similar list for COTS software [BasiO1] was discussed in Chapter 4 under
hypothesis 7 (H7). More work in this direction can be expected from an organ-
ization called Center for Empirically-Based Software Engineering (CeBASE).!

Certainly our theories can and should be improved. We are sure that
many readers may have expected a different type of theory. Our theories are
derived by digging deeper into the nature of the activity or the role of the
intermediate products (as requirements or design) being generated.
Frequently, they touch on human models and models of the social world,
rather than those of the physical world around us. Only a few of them are
mathematical in nature. The better we understand the strengths and weak-
nesses of human information processing and problem solving (in groups or
alone), the better are the theories that we can develop for our field. Some
readers may be disappointed that such fields as Shannon’s information
theory, Wiener’s cybernetics, automata theory, formal languages, or the
entire field of knowledge engineering and artificial intelligence do not
appear. Unfortunately, we are unable to discern any empirical results from
those fields that are applicable, either as laws or as theories.

Following Popper [Popp63], we tried to accept only such theories that
are scientific in the sense that they are falsifiable. We therefore have no
objections if our theories are refuted. Recognizing the importance of having
a good theory does not mean that we can wait until we have it. It is not
only engineering that precedes science. In medicine, also, it is easier to
devise a cure, e.g. for Alzheimers, than to explain why a certain person
became infected and others not. If we could know precisely the reason why
something happens, we would have a chance to prevent it from occurring.
We should also be aware that mono-causal relationships are often assumed
where multiple causes may come into play. We should therefore strive for
simple and robust theories. Contributions are welcome.

The theories we propose are what some authors call micro-theories. They
primarily try to explain the individual laws. We have not attempted to
develop a macro-theory that combines all of them. For us, it is debatable
whether such a macro-theory really exists, and whether it is needed. Our
theories also deviate from what Zendler [Zend01] calls a theory. His theo-
ries (a system of hypotheses that are connected) roughly correspond to our
laws. Our laws are certainly connected, and could be grouped according to
their width of applicability.

Our approach of deriving theories is to ask ‘why’ in the case of a law. Or,
more precisely, what is the rationale for this law, its underlying reason? This
usually leads us to a layer of science below the one we are on. This layer may
lead to other questions of ‘why?’. Many people hope that fewer different the-
ories are needed the lower we get. By digging lower, we supposedly get to

L http://www.cebase.org/

‘broader’ theories. This is certainly the view of some physicists who hope that
oneday they will find a single (grand unifying) theory of everything. This atti-
tude is often labelled reductionism. As an example, the physicist Feynman
[Feyn67] was strongly convinced that nature is simple and of great beauty.
Whether the reason for this is a single act of creation or not is a metaphysical
question. This belief is seldom found outside physics; it is obviously not pop-
ular in biology. Biology exhibits inherent complexity, mainly because it has
gone through a lengthy process of evolution. We think that computing has
more in common with biology (a science trying to understand a billion years
of history) than with physics, although its history as a field is still very short.
The social and human efforts involved show signs of historical evolution,
however. They are clearly not the result of a single act of creation.

13.2 Frequency and quality of experiments

As stated in the introduction, there is still a scarcity of experiments and
more need to be done. As pointed out by Tichy [Tich98], there are good
reasons why more experiments should be done. Other sciences, such as
physics and pharmacy, spend enormous sums on experiments, provided
there is agreement among experts that the knowledge to be gained is
important. Many experiments have internal and external validity problems.
They are usually done with rather small groups, and often include trivial
questions and results that do no more than confirm common sense. We
have every reason to encourage people to keep going. By doing more
experiments, people learn how to do them better, and then can ask more
serious questions. As Bob Glass [Glas94] suggested, eventually academic
researchers should strive to do empirical studies in industry. This is part of
his vision for the year 2020. We believe that this step is due now.

Experiments usually follow innovations with a certain delay. They are
not a substitute for new concepts. They are a necessary complement to new
ideas, however, in the sense that they help to evaluate them. A specific point
is that the data collected in a study should not be thrown away. Doing this
would not only make the study suspicious, but it would deprive later inves-
tigations of the reference data they may need.

13.3 Research issues

In this book we have concentrated on those lessons learned which are
backed by empirical studies. We have also pointed at some areas for which
empirical investigations could be expected, for example, the area of distri-
bution and installation. As pointed out by Tichy [Tich98], there are other
very popular areas for which little empirical data exists, such as object-
orientation, functional programming, and agile methods. Capers Jones
complained two years ago that the multi-billion database industry seems to
get along without agreed benchmarks for database systems [Jone0O]. He

285

SONSSI YdleasSay

N
(0]
o)

sagua)|_Yyd pue SuoIsnjauo) ‘

was probably not aware that a partial solution exists through the bench-
marks established by the suppliers of ERP software (such as SAP and
Peoplesoft). We hope that, in the future, all these areas will be covered by
firm knowledge derived from controlled experiments.

Taking the view of a practitioner, we expect that future research will
address the following types of questions, which are all relevant to the dis-
cussions in this book:

1. How can we better identify both the domain and tacit knowledge for a
certain application? How can it be distinguished from the procedural
and computer-specific knowledge required for a good solution?

2. Can a better borderline be drawn between informal requirements and
their formal representation through models or prototypes? The fact that
many people unconsciously seem to cross this line causes many problems.

3. How can designs be evaluated with respect to their adequacy for the
problem at hand or their value for the user rather than on their format
or structure? Format and structure are less important from a user’s point
of view than they are for developers.

4. Can validation and verification methods be found that tie in with the
requirements definition process? They should not require that a complete
formal specification (or even a design) has to be provided before any con-
flicts can be discovered.

5. What properties of a system can be exhibited through static code
analysis? As a complement, an indication should be given as to which
properties cannot be determined in a given situation. It is the actual
situation that counts, not the general case. Examples are range conflicts
or termination problems (more on this below!).

6. Can a testing theory be developed that is constructive? Such a theory
would allow us to verify selected properties of a system, and it would
give reliable answers with a clearly defined limit.

7. How can experiments and case studies be conducted more easily in an
industrial setting answering key questions relevant to a specific organiza-
tion? This would help to avoid the not-applicable-here (NAH) syndrome.

As stated before, some of the theoretical work in computer science produces
solutions in search of a problem. This is not all bad. In some cases, what is
not considered a problem today may become a serious problem in ten years
time. An example is cryptography. Nobody could expect that with the
advent of the Internet, security protection would become the key issue.
Good theoretical work often takes the direction of proving certain theoreti-
cal limits. The best known example of this type of result is the halting
problem. Based on the Turing machine model, it could be shown that ‘in the
general case’ it is impossible to prove that a program halts. For a practi-
tioner, things look exactly the other way round. For any program he or she
writes, he or she has to say clearly whether it terminates or not. Anything
else is professionally irresponsible. He or she therefore needs help, showing
case by case which programs terminate, and which do not. In other words,

he or she would benefit from work done in a bottom-up fashion, rather
than top-down. The same is true for a related problem, namely the equiva-
lence of programs. Dijkstra’s law as quoted in Chapter 6, is another
example. The above list is intended to motivate researchers to look at prob-
lems whose solution would help practitioners.

13.4 Implications for education and practice

The education of computer professionals is caught in a constant dilemma.
On the one hand, the market requires instantly usable knowledge. This is
exemplified by the languages of the day: it used to be Fortran and COBOL
30 years ago; it is Java and C++ today. On the other hand, universities try
to teach fundamental and lasting knowledge. For lack of genuine computer
science content, many schools seem to escape to mathematics, the argument
being that what is good for other engineers cannot do any harm (or, in a
similar vein, learning Latin may be beneficial for a medical doctor). As a
consequence, most computer science curricula still have an unusually high
load of mathematics. Some of it could be dropped, because it takes away
the students’ most valuable resource, namely time. What is really needed is
basic knowledge and long-lasting skills related to computing. To become an
expert in this field requires more than the command of some notations or
tools. We hope that this book has helped to identify such material.

The skills developed through empirical investigations should be trans-
ferred to students and professionals alike. Students should participate in
repeatable experiments, such as those in physics as suggested by Lott and
Rombach [Lott96]. For this we need more packaged experiments.
Practitioners should be encouraged to make experiments in their environ-
ment to determine which methods are applicable. Looking at curricula for
computer science, such as [IEEE01], we get the impression that the following
message has not been received yet: software and systems engineering is more
than development, nor does it end with development; distribution, installa-
tion, administration, and maintenance should also be taught. Today, and in
the future, more people will be concerned about these aspects than about
development. The same is true for technology assessment and user studies.

The biggest challenge for educators is to prepare people to become true
professionals. We tend to train technical specialists only. Denning [Denn01]
believes that one reason for this is that academics in our field are not prac-
ticing their profession. Most of them do not regularly design or evaluate
systems. That is different in some other professions, such as law, medicine,
and architecture. People we train should be encouraged to assume full pro-
fessional responsibilities, and not just for certain technical aspects. To be
able to do that they have to rely on proven concepts for the entire field.
They have to know their own limitations and those of their methods and
tools. They have to know where to get advice and how to evaluate it. They
should build on knowledge, not on opinions. What we have called laws rep-
resents such knowledge.

N
o
N

321310e1d pue uo1edINpa 104 suoljedldw ‘

N
(0]
[00]

sagua)|_Yyd pue SuoIsnjauo) ‘

13.5 Future of software and systems engineering

The importance of both these fields is likely to grow in the future. However,
we should not create expectations that we cannot fulfill, we must be careful
that our own aspirations do not grow faster than our abilities; and we
should watch out for those simplifiers or charlatans who propagate cures
that do not work. One example is those who say we should never write
large programs. If these people lived by what they preach they would not
use a phone, send an e-mail, drive a car, or fly by airplane. In all these cases
the software systems that perform essential functions have grown to several
million instructions. Tony Hoare’s view, as given in the chapter epigraph, is
the only realistic one.

Many people who complain about the disappointing state of software
engineering point at the masses of low-skilled people who write software.
This is really a strange discussion. Of course we want millions of people to
be able to adapt computers to their needs, and industry will continue to
support this trend by providing the appropriate tools. Spreadsheets are a
good example: they are a great invention that purposely conceals the fact
that people who use them are indeed programming. The technical commu-
nity has therefore to solve two distinct problems: first, it has to tell these
people (the layperson programmers) what to watch out for — even in the
case of spreadsheets, no user is guarded against programming errors;
second, it must provide the professional developers (the expert program-
mers) with a framework of principles, methods, and tools that allows them
to produce high-quality products. The professional developers should be
challenged and encouraged to set themselves apart from the layperson. They
should have higher targets and should know how to meet them in a pre-
dictable way.

The question whether a field is science or not is often answered by
pointing to the progress achieved. No doubt, in the professional part of
software and systems engineering, progress can be found. However, it
moves slowly; it is visible in decades rather than in months. We should
achieve agreement what the key accomplishments of the field are. Only
then will we know what should be transferred. The best way to transfer
knowledge gained is by developing the appropriate skills in people. It is a
poorer solution to try to introduce it into an ongoing process by means of
regulations and bureaucracy.

Although we have been emphasizing empirical and scientific methods
in this book, we want to make it very clear that we do not want to loose
the creative or even artistic part of software and systems design. We need
many more innovative solutions, even to old and boring problems. We like
to have products that we enjoy, and that appeal to our aesthetic feeling.
Science, technology, and art need not be in conflict; they can easily form
a symbiosis. Its chances are best if we understand our science and master
our technology.

13.6 Beyond observations, laws, and theories

Finally, we should like to put the views presented in this book into perspec-
tive. We will do this by referring to some ideas put forth by Roger Penrose
[Penr89], a British mathematician and physicist. In his opinion, science will
severely restrict itself if it only looks for laws that are algorithmic. In that
case, we would be able to calculate the future given a certain set of precon-
ditions. This is not only in conflict with the concept of free will, however,
but also with reality. Our future is not computable from the past, although
it is determined by it. Penrose postulates that science should also consider
processes that are essentially lawless. Examples come from the two
extremes of a spectrum. One is where large time frames or huge spaces are
involved. It starts with cosmology and the biological evolution and ends
with the daily weather. The other end of the spectrum is the sub-micro-
scopic part of nature, namely quantum dynamics.

The processes to be observed in quantum dynamics are not computational
or algorithmic. They may be deterministic or non-deterministic. The essential
point is that they are non-reversible in time. In cosmology, the process of
going from the big bang to black holes is certainly non-reversible, because
there is information that is lost in a black hole. The entire field of tectonics
has this character, leading to volcanism and earthquakes. Mathematical
models to describe these types of processes are the subject of chaos theory.
Here, processes are studied where small changes of the preconditions have a
major influence on the outcome (the famous beat of wings of a butterfly that
causes a thunderstorm elsewhere). Their application to systems and software
engineering has not yet been fully investigated.

Another point we should like to discuss is what Penrose says about theo-
ries. He places them into four categories: superb, useful, tentative, and
misguided. As examples of superb theories he quotes Euclidian geometry,
Newton’s mechanics, Einstein’s relativity, and the quantum theory as origi-
nated by Planck, Heisenberg, and others. A useful theory of today is the big
bang theory. The Ptolomaic world model was a useful one for many centuries,
but not at all in the age of space flights. Most newer physical or cosmological
theories he labels tentative. For the category misguided he does not give exam-
ples, giving as a reason that he does not want to lose half of his friends. As far
as superb theories are concerned, Penrose believes that they not only survived
the selection process of history, but must have some deep underlying rationale.
On this scale, we consider our theories as tentative, or useful at best.

As stated in the Introduction to this book, children and scientists like to
ask “Why?’. We will therefore end this book by quoting the final questions
of “‘Why?’ asked by Penrose at the end of his book. They stem from his pre-
occupation with cosmology and philosophy and go beyond what physicists
normally ask. Some of the questions he leaves us with are: “Why is there life
on earth?” ‘Why does human life lead to consciousness?’ and ‘Why is there
a universe in which life (human or other) can actually be?’ Penrose does not
attempt to answer them by providing a theory. This is clearly beyond what
science as we understand it today can do. It may remain so forever.

289

S91109Y} pue ‘SMe| ‘SuolleAlasqo puohag ‘

Summary of laws, hypotheses,
and conjectures

In this appendix we give tabular overviews of all the laws, hypotheses, and
conjectures cited in the book. The three tables list the 50 laws, 25 hypothe-
ses, and 12 conjectures in the same sequence that they appear in the text. A
reference to the page where a law or hypothesis is described, can be found
via the Index (using the name as argument).

Summary of laws

No.

1

O 0 N o wun

11
12

13

14

15

16

Name

Glass
Boehm 1

Boehm 2
Davis

Curtis

Simon
Constantine
Parnas
Denert

Fitts—
Shneiderman
DeRemer
Corbato

Dijkstra—
Mills—Wirth
Lanergan

Mcllroy

Conway

Law

Requirement deficiencies are the prime source of project failures.

Errors are most frequent during the requirements and design activities
and are the more expensive the later they are removed.

Prototyping (significantly) reduces requirement and design errors,
especially for user interfaces.

The value of models depends on the view taken, but none is best for
all purposes.

Good designs require deep application domain knowledge.
Hierarchical structures reduce complexity.

A structure is stable if cohesion is strong and coupling low.
Only what is hidden can be changed without risk.
Separation of concerns leads to standard architectures.
Screen pointing-time is a function of distance and width.

What applies to small systems does not apply to large ones.

Productivity and reliability depend on the length of a program’s text,
independent of language level used.

Well-structured programs have fewer errors and are easier to maintain.

The larger and more decentralized an organization, the more likely it is
that it has reuse potential.

Software reuse reduces cycle time and increases productivity

and quality.

A system reflects the organizational structure that built it.

No.

17

18

19
20

21
22
23
24
25
26

27
28

29
30
31
32
33
34
35

36
37
38

39
40
41
42

43
44

45
46

47
48

49
50

Name

Fagan
Porter-Votta

Basili
Hetzel-Myers

Sackman 1
Dijkstra
Weinberg
Pareto-Zipf
Gray-Serlin

Nielsen—
Norman

Lehman 1
Lehman 2

Lehman 3
Basili-Méller
Sackman 2
Nelson—Jones
Boehm 3
DeMarco-Glass
Humphrey

Brooks
Baumol
Kupfmiller

Gestalt
Miller
Krause
Librarian

Apprentice

Maslow-
Herzberg

Moore
Hoagland

Cooper

Morris—
Ferguson

Metcalfe
Bayes

Law

Inspections significantly increase productivity, quality, and

project stability.

Effectiveness of inspections is fairly independent of its organizational
form.

Perspective-based inspections are (highly) effective and efficient.

1 xipuaddy ‘ 3

A combination of different V&V methods outperforms any single
method alone.

Online debugging is more efficient than offline debugging.

Testing can show the presence but not the absence of errors.

A developer is unsuited to test his or her code.

Approximately 80 percent of defects come from 20 percent of modules.
Performance testing benefits from system-level benchmarks.

Usability is quantifiable.

A system that is used will be changed.

An evolving system increases its complexity, unless work is done to
reduce it.

System evolution is determined by a feedback process.
Smaller changes have a higher error density than large ones.
Individual developer performance varies considerably.

A multitude of factors influence developer productivity.
Development effort is a (non-linear) function of product size.
Most cost estimates tend to be too low.

Mature processes and personal discipline enhance planning, increase
productivity, and reduce errors.

Adding manpower to a late project makes it later.
Products replace services through productivity gains.

Humans receive most information through the visual system and store it
in a spatially organized memory.

Humans tend to structure what they see to form cohesive patterns.
Short-term memory is limited to 7 + 2 chunks of information.
Multimodal information is easier to remember than single mode.

The more knowledge that is available, the more effort has to be spent on
the processes to use it.

It takes 5000 hours to turn a novice into an expert.
Human needs and desires are strictly prioritized.

The price/performance of processors is halved every 18 months.

The capacity of magnetic devices increases by a factor of ten
every decade.

Wireless bandwidth doubles every 2.5 years.
Architecture wins over technology.

The value of a network increases with the square of its users.

The probability that a hypothesis is true increases the more unlikely
the new event is that confirms this hypothesis.

292

xipuaddy ‘

Summary of hypotheses

No.

1

w

O 0 N O n1 D

11
12
13

14
15

16
17
18
19
20

21

22
23
24
25

Name

Booch 1

Booch 2

Bauer—
Zemanek
Gamma

Dahl-Goldberg
Beck—Fowler
Basili-Boehm
Mills—Jones
Mays

Hoare

Gutjahr
Weyuker

Endres—
Glatthaar

Hamlet
McCabe

Wilde
Boehm
McGregor
Hawthorne
Marketer

Shaw-Garlan

Bayer
Codd
Engelbart
Basili—
Rombach

Hypothesis

Object model reduces communication problems between analysts
and users.

Object-oriented designs reduce errors and encourage reuse.

Formal methods significantly reduce design errors, or eliminate
them early.
Reusing designs through patterns yields faster and better maintenance.

Object-oriented programming reduces errors and encourages reuse.
Agile programming methods reduce the impact of requirement changes.
COTS-based software does not eliminate the key development risks.
Quality entails productivity.

Error prevention is better than error removal.

Proving programs solves the problems of correctness, documentation,
and compatibility.

Partition testing is more effective than random testing.

The adequacy of a coverage criterion can only be intuitively defined.

The test suite needed to verify an arithmetic path expression can
be determined.

Suspicion-based testing can be more effective than most other approaches.

Complexity metrics are good predictors of post-release reliability
and maintainability.

Object-oriented programs are difficult to maintain.

Project risks can be resolved or mitigated by addressing them early.
Motivation requires integration and participation.

Group behavior depends on the level of attention given.

One unsatisfied customer can hurt more than two satisfied customers
can help.

A sound architecture significantly reduces development and
maintenance costs.

In spite of disk capacity increases, data access can be kept efficient.
Databases can be independent of devices and applications.
Conceptual integrity is the result of a consistent mental model.
Measurements require both goals and models.

Summary of conjectures

VWO NV AW 2

_ol e
N =R O

Conjecture

For COTS products, costs and risks of manufacturing can approach those of development.
Distribution ends where the customer wants it to end.

N
I Xxipuaddy ‘ 0

Prevention of software piracy by technical means is almost impossible.

Installability must be designed in.

The larger the system, the greater the administration effort that is needed.

Any system can be tuned.

Human-based methods can only be studied empirically.

Process improvements require action-based feedback.

Learning is best accelerated by a combination of controlled experiments and case studies.
Measurements are always based on actually used models rather than on desired ones.
Empirical results are transferable only if abstracted and packaged with context.

Empirically based models mature from understanding to explaining and predicting capability.

Biographies of pioneers and
key contributors

In this section, short biographies are given of key contributors to the empir-
ical knowledge in software and systems engineering (as well as of the
authors of this book). Their names have been associated with the laws and
hypotheses formulated in this book. Pictures are provided for all authors of
the epigraphs used in the chapter headings.! We shall regard them as the
pioneers who moved the empirical aspects of our field forward.

Basili, Victor R.: Professor of Computing Science at the
University of Maryland and Executive Director Fraunhofer
Center Maryland, College Park, MD. Principal Investigator NSF
Center for Empirically Based Software Engineering (CeBASE);
Director of the Software Engineering Laboratory; founder
and member of International Software Engineering Research
Network (ISERN); Editor-in-chief of the Empirical Software Engineering. Ph.D. in
computer science from University of Texas at Austin, TX (1970).

Bauer, Friedrich Ludwig: Professor Emeritus in Mathematics and Informatics,
Technical University Munich since 1989; Full Professor Informatics (1972-89)
and Mathematics (1963-72) Technical University Munich; Full Professor,
Applied Mathematics Mainz University (1962-3); Associate Professor, Applied
Mathematics Mainz University (1958-62); patents on error detecting and cor-
recting codes (1953) and on the stack principle (1957); organizer (1968) of the
Garmisch Conference on Software Engineering, and of the International
Summer School Marktoberdorf (1970-91), both sponsored by the NATO
Science Committee.

Baumol, William J.: Senior Research Economist and Professor of Economics,
Emeritus, Princeton University, since 1992; Professor of Economics and
Director, C.V. Starr Center for Applied Economics, New York University, since

I 'The photos in this section were either taken by the authors or kindly provided by the subjects
themselves. The text originates from publicly available sources, unless stated otherwise.

1971; Professor of Economics, Princeton University (1949-92); Assistant
Lecturer, London School of Economics (1947-9); Ph.D. University of London
(1949); Past President, American Economic Association (1981), Association of
Environmental and Resource Economists (1979), Eastern Economic Association
(1978-9), Atlantic Economic Society (1985).

Bayer, Rudolf: Professor of Informatics, Technical University of Munich,
Germany, since 1972; Head of research group on knowledge bases in Bavarian
research center on Knowledge Based Systems; co-founder of TransAction soft-
ware company; Associate Professor Purdue University (1970-2); Senior Research
Scientist at Boeing Research Labs, Seattle (1966-70); Ph.D. in Mathematics from
University of Illinois (1966); recipient ACM/SIGMOD Innovations Award for the
development of B-trees (2001); holds two software patents.

Bayes, Thomas: 1702-61, English clergyman and mathematician. Although he
wrote on theology, e.g., Divine Benevolence (1731), Bayes is best known for his
two mathematical works, Introduction to the Doctrine of Fluxions (1736),
a defense of the logical foundations of Newton’s calculus against the attack
of Bishop Berkeley, and Essay Towards Solving a Problem in the Doctrine of
Chances (1763). The latter, pioneering work attempts to establish that the rule for
determining the probability of an event is the same whether or not anything is
known antecedently to any trials or observations concerning the event. Source:
The Columbia Encyclopedia, 6th Edition, 2001.2

Beck, Kent: Owns and operates First Class Software, Inc. from a ranch in south-
ern Oregon, near the town of Merlin. Consults with Smalltalk developers, and
develops Smalltalk tools. Graduate in Architecture from University of Oregon.

Boehm, Barry W.: Professor Software Engineering and Director
Center of Software Engineering University of Southern
California, Marina del Rey, CA. Prior to that with US
Department of Defense as Director of the DARPA Information
Science and Technology Office, and as Director of the Software
and Computer Technology Office (1989-92); at TRW
(1973-89), culminating as Chief Scientist of the Defense Systems Group, and at
the Rand Corporation (1959-73), culminating as Head of the Information
Sciences Department; Programmer-Analyst at General Dynamics (1955-9); M.S.
and Ph.D. from UCLA (1961 and 1964).

Booch, Grady: With Rational Software Corporation as Chief Scientist since its
foundation in 1980. One of the original developers of the Unified Modeling
Language (UML) (together with I. Jacobson and]J. Rumbaugh) and of
Rational’s products including Rational Rose. Author of several best-selling
books on Object Orientation and UML. MSEE from the University of
California at Santa Barbara (1979).

2 http://www.bartleby.com/65/ba/Bayes-Th.html

N
Z Xipuaddy ‘ 0

N
\O
o)

xipuaddy ‘

Brooks, Frederick Phillips, Jr: Professor of Computer Science
at University of North Carolina, Chapel Hill, NC. Prior to that
with IBM Corporation in Poughkeepsie, New York: Manager
of Operating System/360 (1964-5); Manager, System/360
Hardware Development (1961-4); Systems Planning Manager
(1960-1). Adjunct Assistant Professor Columbia University
(1960-1); Ph.D., Harvard University (1956); holds several patents.

Codd, Edgar E.: IBM Fellow; IBM Research Laboratory Almaden, CA. Joined
IBM in 1949 to prepare programs for the Selective Sequence Electronic
Calculator; worked later on the IBM 701 and Stretch computers. B.A. and M.A.
from Oxford University, England, M.Sc. and Ph.D. from University of
Michigan; ACM Turing Award (1981).

Constantine, Larry L.: Professor of Computing Sciences at University of
Technology, Sydney; Principal Consultant with consulting firm of Constantine
& Lockwood, Ltd. Graduate of the Sloan School of Management at MIT.

Conway, Melvin E.: Was with US Airforce Directorate of Computers at L.G.
Hanscom Field, Bedford, MA; co-developed the MUMPS operating system;
wrote an assembler for the Burroughs 220 and a COBOL compiler for the
Univac computer about 1960.

Cooper, Martin: Chairman and chief executive officer of ArrayComm, San José, CA.

Corbat6, Fernando J.: Professor Emeritus Department of Electrical Engineering
and Computer Science at MIT since 1996; Professor of Engineering (1965-96);
Associate Professor (1962-35); associated with the MIT Computation Center from
its organization in 1956 until 1966; led the development of the Compatible Time-
Sharing System (CTSS) and was a founding member of Project MAC (1963) which
produced the Multics (Multiplexed Information and Computing Service) operating
system, the precursor of UNIX; Ph.D. from MIT in Physics (1956); ACM Turing
Award (1990).

Curtis, Bill: Senior consultant with Cutter Consortium, Arlington, MA; co-
founder and chief scientist of TeraQuest Metrics, a firm that provides consulting
and training in process improvement. While at the Software Engineering Institute
(SEI), Pittsburgh, PA, he led the team that published the Capability Maturity
Model for Software (Software CMM). Prior to that, at MCC Research in Austin,
TX, and the ITT Programming Technology Center in Stratford, CT.

Dahl, Ole-Johan: Prior to his death in 2002, Professor of Informatics, Oslo
University; invented Simula (together with Kristen Nygaard).

Davis, Alan Michael: Founder and President of Omni-Vista, a software consult-
ant company in Colorado Springs, CO, and Professor of Computer Science at the
University of Colorado; Ph.D. in computer science from University of Illinois.

DeMarco, Tom: Principal of the Atlantic Systems Guild, and a
Fellow of the Cutter Consortium, Arlington, MA. He had
managed real-time projects for CEGOS Informatique in
France, and was responsible for distributed online banking
systems installed in Sweden, Holland, France and Finland.
Before that, he was on the ESS-1 project at Bell Telephone
Laboratories; M.S. from Columbia University and a diploma from the
University of Paris at the Sorbonne.

Denert, Ernst: General manager IVU Traffic Technologies, Berlin, and Chairman
of the Supervisory Board of sd&m, Munich, since 2001. Honorary professor and
honorary senator at the Technical University in Munich. In 1982, together with
Ulf Maiborn, founded sd&m (Software Design & Management) and turned it
into a leading software and consulting company, which currently has approxi-
mately 850 employees. Joined Softlab, Munich, in 1976 where he was
responsible for large-scale projects (e.g. the travel planning and reservation
system START) as well as developing methods and tools for software engineer-
ing; Ph.D. in Computer Science (1976) and a Diploma in Telecommunications
(1972) from the Technical University in Berlin.

DeRemer, Frank: Chairman, Metaware, San José, CA; University of California
in Santa Cruz, CA before that.

Dijkstra, Edsger Wybe: Prior to his death in 2002, Professor of
Computer Sciences at University of Texas, Austin, TX. Fellow
Burroughs Corporation; Professor of Mathematics University
of Eindhoven, Netherlands; Ph.D. (1959) University of
Amsterdam, Doctoral degree Theoretical Physics (1956)
University of Leyden; Candidate degree Mathematics and
Physics (1951); ACM Turing Award (1972).

Endres, Albert: Honorary Professor in Computer Science at the University of
Stuttgart (since 1986); full Professor of Computer Science at Technical University
of Munich (1993-7). With IBM Germany from 1957 to 1992. From 1965 to
retirement, software development manager at the IBM laboratory in Boeblingen,
Germany. Responsible for compiler, operating system, and database system
developments. Also experience in system architecture, performance evaluation
and software tools development. Prior to that, system software developer at the
IBM laboratories in La Gaude, France, New York City and Poughkeepsie, NY.
From 1957 to 1962, application programmer in Sindelfingen, Germany, and data
center manager in Dusseldorf, Germany; Ph.D. from University of Stuttgart
(1975); diploma in engineering (Dipl. Ing.) from University of Bonn (1957).

Engelbart, Douglas: Director, Bootstrap Institute, Palo Alto, CA, since 1990;
part-time Visiting Scholar at Stanford University; Director, Bootstrap Project,
Stanford University (1989-90); Senior Scientist, McDonnell Douglas ISG, San
Jose, CA (1984-9); Senior Scientist, Tymshare, Inc., Cupertino, CA (1977-84);

N
Z Xipuaddy ‘ ©

N
\O
[00]

xipuaddy ‘

Director, Augmentation Research Center, Stanford Research International
(1959-77); Researcher, Stanford Research Institute (1957-9); Assistant Professor
electrical engineering, University of California at Berkeley (1955-6); Ph.D.
University of California at Berkeley in 1955; ACM Turing Award (1997); IEEE
Computer Pioneer Award (1993).

Fagan, Michael: Chairman, Michael Fagan Associates Palo
Alto, CA, since 1989; about 20 years with IBM as a line man-
ager of software development, engineering development, and
manufacturing. In addition, manager of programming method- :
ology for IBM’s DP Product Group (Worldwide); Senior ‘ r h
Technical Staff Member at IBM’s T.J. Watson Research

Laboratory; member of the Corporate Technology Staff; and one of the founder
members of the IBM Quality Institute. Visiting Professor, Department of
Computer Science, University of Maryland (1983-5)

Ferguson, Charles H.: Lecturer at UC Berkeley Graduate School of Journalism;
former Visiting Scholar, Center for International Studies, Massachusetts Institute
of Technology (MIT); co-founder and former chairman and CEO, Vermeer
Technologies, Cambridge, MA; Senior Staff Member, MIT Commission on
Industrial Productivity; Software Technology Analyst, IBM; Ph.D. Massachusetts
Institute of Technology (1989).

Fitts, P.M.: Experimental psychologist, associated with the US Airforce,
Washington, DC.

Fowler, Martin: Chief Scientist at ThoughtWorks, a software consulting com-
pany in Chicago, IL, since 2000; before that, independent consultant
(1991-2000) and software practitioner (since 1988).

Gamma, Erich: Senior Object Consultant with IFA, a training company in
Zirich, Switzerland, since 2001; lab director of Object Technology
International in Zurich, (1999-2001); previously held positions with Taligent,
an IBM subsidiary (1993-9), and Union Bank of Switzerland (1988-1991);
Ph.D. in Computer Science from University of Ziirich (1988).

Garlan, David: Assistant Professor of Computer Science at Carnegie Mellon
University, Pittsburgh, PA, since 1990; previously with Textronics, Inc., in
Oregon; Ph.D. from Carnegie Mellon University in Pittsburgh, PA.

Glass, Robert L.: President of Computing Trends, a publishing company in
Bloomington, IN; active in the field of computing and software for over 40
years, largely in industry (1988—present and 1954-82), but also as an academic
(1982-8).

Glatthaar, Wolfgang: Director of information systems and organization at DZ
Bank, Frankfurt since 1996; with IBM Germany from 1977 to 1996; last position

director of Science and Technology; Ph.D. in Computer Science from University of
Stuttgart (1974); Diploma in Mathematics and Physics from University of
Tubingen (1972); Vice-president and President of German Informatics Society
(1992-4); Honorary Professor University of Chemnitz since 1992.

Goldberg, Adele E.: Joined Xerox PARC in 1973, founded ParcPlace Systems in
1988; President of the ACM (1984-6); ACM Systems Software Award (1987),
jointly with Alan Kay and Dan Ingalls.

Gray, Jim: Senior researcher and distinguished engineer in Microsoft’s Scaleable
Servers Research Group and manager of Microsoft’s Bay Area Research Center
(BARC) in San Francisco, CA; with Microsoft since 1995; was with Digital
Equipment (1990-5) and Tandem Computers in Cupertino, CA (1980-90);
prior to that with IBM Research in San José, CA, and Yorktown Heights, NY;
Ph.D. in Computer Science from University of California at Berkeley; ACM
Turing Award (1998).

Gutjahr, Walter J.: Professor in the Department of Statistics and Decision Support,
University of Vienna, Austria, since 1993; with Siemens Austria as Manager of
Software Quality Assurance (1980-88); Ph.D. in mathematics (1985).

Hamlet, Richard G.: Professor in the Department of Computer Science at Portland
State University; Ph.D. in Computer Science from University of Washington (1971).

Herzberg, Frederick I. (1923-2000): Was professor at the University of Utah’s
College of Business in Salt Lake City since 1972; before that Professor of
Management at Case Western Reserve, Cleveland OH; graduate degrees from
the University of Pittsburgh, PA.

Hetzel, William C.: Chairman of Software Quality Engineering, Jacksonville, FL;
independent software consultant; author of several books on software testing. Ph.D.
in Computer Science from University of North Carolina at Chapel Hill, NC (1976).

Hoagland, Albert S.: Director of the Institute for Information Storage Technology
at Santa Clara University, and Professor of Electrical Engineering in the School of
Engineering, since his retirement from IBM; with IBM for many years, key
responsibilities on the first magnetic disk drive, the RAMAC; held major posi-
tions in both research and development, e.g. Director for Technical Planning for
the IBM Research Division; Ph.D. from University of California at Berkeley, CA.

L Hoare, Sir Charles Anthony Richard (Tony): Professor Emeritus
at Oxford University, UK; Leading Researcher at Microsoft
Research Cambridge, UK since 1999; Professor in Computing at
Oxford University (1977-99); Professor of Computer Science at
(A + Queen’s University Belfast, Northern Ireland (1968-77); with
Elliot Brothers, Ltd (1960-68); Distinguished Fellow of the

British Computer Society (1978); ACM Turing Award (1980).

299

Z Xipuaddy ‘

w
o
o

xipuaddy ‘

Humphrey, Watts S.: Founded the Software Process Program of
the Software Engineering Institute (SEI) at Carnegie Mellon
University, Pittsburgh, PA; Fellow of the Institute and a
research scientist on its staff (1986-96); was associated with
the IBM Corporation from 1959 to 1986 where his last posi-
tion was Director of Programming Quality and Process; holds
five US patents; M.A. in Business Administration from University of Chicago;
B.S. in physics from Illinois Institute of Technology.

Jones, Capers: Founder and past chairman of Software Productivity Research
(SPR) of Burlington, MA; was with the ITT Programming Technology Center in
Stratford, CT, and with IBM in Santa Teresa, CA, before that.

Krause, Werner: Retired Professor of Psychology at the Friedrich Schiller
University in Jena, Germany.

Kupfmiiller, Karl: Was Professor of Electrical Engineering at the University of
Stuttgart, Germany.

Lanergan, R.G.: Head of Information Systems Department at Raytheon
Corporation (1979).

Lehman, Meir M. (Manny): Professor of Computing at
Imperial College of Science, Technology and Medicine, in
London; with IBM research laboratory Yorktown Heights, NY,
before that.

Maslow, Abraham: Professor at Brandeis University (1951-69), and then resi-
dent fellow of the Laughlin Institute in California; died in 1970; from 1937 to
1951 was on the faculty of Brooklyn College, NY where he found two mentors,
anthropologist Ruth Benedict and Gestalt psychologist Max Wertheimer. Before
that, he did research at Columbia University, NY, where he had contact with the
Freudian psychologist Alfred Adler; Ph.D. and M.A. in Psychology from the
University of Wisconsin (1934, 1932).

Mays, Richard: Software developer at the IBM development laboratory in
Raleigh, NC.

McCabe, Thomas J.: Founded McCabe & Associates in 1977; providing products
and services for software analysis and testing; was with the US Dept of Defense
and the National Security Agency at Ft Meade, MD, before that.

McGregor, Douglas: Professor of Management at MIT (1954-64) and manage-
ment consultant; first full-time psychologist on the faculty of MIT; died in
1964; President of Antioch College (1948-54); district manager for a retail
gasoline merchandising firm before that; Ph.D. and M.A. in Psychology at
Harvard; B.A. at Wayne State University.

Mcliroy, Douglas M.: Adjunct Professor in Department of Computer Science at
Dartmouth College, Hanover, NH, since 1996; also Distinguished Member of
Technical Staff in the Computing Sciences Research Center at Bell Laboratories
(formerly AT&T, now Lucent Technologies); was head of the Computing
Techniques Research Department from 1965 to 1986; participated in the design
of PL/I, contributed to C++, and has written unusual compilers for Lisp,
ALTRAN (an algebraic manipulation system), PL/I, and TMG (a compiler-com-
piler). He conceived ‘pipes’ as realized in the UNIX operating system and wrote
several of the original Unix routines; joined Bell Laboratories in 1958 after
earning a Ph.D. in Applied Mathematics from MIT.

Metcalfe, Robert M.: With International Data Group (IDG) since 1992; vice
president of technology since 1993. In 1979, founded 3COM Corporation, a
computer networking company; held various positions including Chairman,
Chief Executive Officer, President, Division General Manager, and Vice
President of Sales and Marketing. Ph.D. in Computer Science from Harvard in
1973. Associate Professor of Electrical Engineering at Stanford University. Since
1972, member of research staff at Xerox Palo Alto Research Center, where he
invented the Ethernet.

Miller, George A.: Professor of Psychology, Emeritus, Department of
Psychology at Princeton University.

Mills, Harlan D.: At the time of his death in 1996, he was
Professor of Computer Science at the Florida Institute of
Technology and the Director of the Information Systems
Institute, Vero Beach, FL. Was with IBM from 1964 to 1987.
He was Director of Software Engineering and Technology for
the Federal Systems Division, a member of the IBM Corporate
Technical Committee, and an IBM Fellow (1981); best known
as the originator of the Cleanroom Development and the Chief Programmer
Team concept. Prior to and during his industrial career he served on the facul-
ties of Iowa State, Princeton, New York, Johns Hopkins Universities, and the
University of Maryland. Before joining IBM, he worked at GE and RCA; Ph.D.
in Mathematics from Iowa State University (1952).

Moller, Karl-Heinz: Formerly with Siemens Corporation in Munich, Germany. Ph.D.

Moore, Gordon E.: Chairman Emeritus of Intel Corporation, since 1997;
co-founded Intel in 1968, serving initially as Executive Vice President; was
President and Chief Executive Officer from 1975 until 1987; Ph.D. in
Chemistry and Physics from the California Institute of Technology.

Morris, C.R.: With Harvard University, Cambridge, MA (1993).

Myers, Glenford J. Co-founder and chairman of RadiSys Corporation in
Hillsboro, OR since 1987; Manager of Microprocessor Product Line Architecture
and Manager of the Microprocessor Strategic Business Segment at Intel (1981-7).
While at Intel responsible for the feasibility and design of Intel’s 286 and 80960

w
o
_

Z Xipuaddy ‘

w
o
N

xipuaddy ‘

microprocesor chips. Various engineering and management positions with IBM
(1968-81). Ph.D. from the Polytechnic Institute of New York.

Nelson, Edward A.: With the System Development Corporation (1968).

Nielsen, Jacob: Principal of the Nielsen Norman Group, which he co-founded in
1998 with Donald A. Norman; was a Sun Microsystems Distinguished Engineer
before that; holds 61 US patents, mainly on ways of making the Internet easier to
use. Ph.D. in computer science from Technical University of Denmark.

Norman, Donald A.: Professor of Computer Science, Northwestern University,
Evanston, IL, since 2001; co-founder of the Nielsen Norman Group; Vice
President and Apple Fellow, Apple Computer Inc., Cupertino, CA. (1993-7);
Lecturer and Research Fellow, Department of Psychology and Center for
Cognitive Studies, Harvard University (1962-6); Instructor, Moore School of
Electrical Engineering, University of Pennsylvania (1957-9); Ph.D. in
Mathematical Psychology (1962) and M.S. in Electrical Engineering (1959),
both from University of Pennsylvania.

Pareto, Vilfredo: Italian economist and sociologist (1848-1923), became profes-
sor of political economy at the University of Lausanne (in 1893); had studied
mathematics and engineering in Turin and worked as an engineer for many years.

Parnas, David Lorge: Professor Computing and Software,
McMaster University, Hamilton, Ontario; before that Professor
at the University of Victoria, the Technische Hochschule
Darmstadt, the University of North Carolina at Chapel Hill,
Carnegie Mellon University and the University of Maryland.
Also advisor Philips Computer Industry, Apeldoorn
(Netherlands), the US Naval Research Laboratory in
Washington, DC and the IBM Federal Systems Division. B.S.,
M.S. and Ph.D. in Electrical Engineering from Carnegie Mellon University,
Pittsburgh, PA; licensed as a Professional Engineer in the Province of Ontario.

Porter, Adam A.: Associate Professor, Department of Computer Science,
University of Maryland, College Park, MD.

Rombach, H. Dieter: Full Professor in the Department of Computer Science at the
University of Kaiserslautern, Germany; Director of the Fraunhofer Institute for
Experimental Software Engineering (IESE) in Kaiserslautern. Its aim is to shorten
the time needed for transferring research technologies into industrial practice.
From 1984 to 1991 he held faculty positions with the Computer Science
Department at the University of Maryland, College Park, MD, and was project
leader in the Software Engineering Laboratory (SEL), a joint venture between
NASA, Goddard Space Flight Center, Computer Sciences Corporation, and the
University of Maryland. Ph.D. in Computer Science from the University of
Kaiserslautern, Germany (1984); M.S. in Mathematics and Computer Science
from the University of Karlsruhe (1978).

Sackman, H: Formerly researcher at Rand Corporation, Santa Monica, CA.

Serlin, Omri: Chairman of the Transaction Processing Performance Council
(TPC)(1988-2000); founder and principal of ITOM International Co., publisher
of an industry newsletter; B.S. and M.S. degrees in Electrical Engineering.

Shaw, Mary: Professor of Computer Science at Carnegie
Mellon University, Pittsburgh, PA, since 1987; from 1984-7,
Chief Scientist of Carnegie Mellon’s Software Engineering
Institute.

Shneiderman, Ben: Professor of Computer Science at
University of Maryland, College Park, MDj; Ph.D. State University of New
York, Stony Brook, NY; B.S. City College New York, NY.

Simon, Herbert Alexander: Professor of Computer Science and Psychology at
Carnegie Mellon University, Pittsburgh, from 1949 until his death in 2001; pro-
posed, together with Allen Newell, the General Problem Solver, the first Al
program (1956); with the Illinois Institute of Technology, Chicago, from 1942 to
1949; Ph.D. from the University of California, Berkeley (1942); M.A. from the
University of Chicago (1936) in Economics and Political Science; Nobel Prize in
economics (1978); ACM Turing Award (1975).

Votta, Larry G: With Motorola, Schaumburg, IL, USA; before that with Bell
Labs, Lucent Technologies, Morristown, NJ.

Weinberg, Gerald M.: Professor of Computer Science, State University of New York
in Binghampton, NY; formed consulting firm of Weinberg & Weinberg in 1969.

Weyuker, Elaine J.: Technology Leader in the Large-Scale Programming Research
organization at AT&T Labs; was a professor at New York University for 18 years
before that; Ph.D. in computer science from Rutgers University (1977); M.S.E. in
Computer and Information Sciences from University of Pennsylvania (1968).

Wilde, Norman: Professor in Computer Science at University of West Florida in
Pensacola, FL; Ph.D. in Mathematics and Operations Research from MIT.

Wirth, Niklaus: Retired Professor of Computer Science at the
Federal Institute of Technology (ETH), Zurich, Switzerland,
since 1999. Had obtained that position in 1968. Before that,
he was Assistant Professor of Computer Science at Stanford
University (1963-7), and then at the University of Zurich
(1967-8); Ph.D. from the University of California at Berkeley
(1963); M.Sc. from Laval University, Canada (1960); Diploma
degree in Electronics Engineering from the ETH in Zurich (1959); ACM Turing
Award (1984), IEEE Computer Society’s computer pioneer award, IBM Europe
Science and Technology Prize.

F Y

303

Z Xipuaddy ‘

w
o
~

xipuaddy ‘

Zemanek, Heinz: Retired Professor of Computer Science at the Technical
University of Vienna and former director IBM Laboratory Vienna (1961-75);
later he was IBM Fellow (1975-85). Led the building and programming of the
pioneer computer ‘Mailufter]” (1954-61) and the design of the Vienna
Definition Language and Method (VDL and VDM). Ph.D. from University of
Technology Vienna (1951), the ‘venia legendi’ (teaching privilege) in 1958 and
the title of professor in 1964. From 1947 to 1961, was assistant professor at
this university; was Vice-president and President of IFIP (1968-74), and
founded the Austrian Computer Society.

Zipf, George Kingsley: Professor in Linguistics at Harvard University (1902-50).

On-going projects/research
groups

Since 1998, several academic and industrial research groups worldwide
have made the paradigm shift to an experimental software engineering view.
Each of these groups is producing software engineering models valid within
their local laboratory environments. In order to take the next step towards
building the basic models and components of the entire software engineer-
ing discipline, we have to be able to abstract from the characteristics of
specific environments. No single research group is able to provide the labo-
ratory environment necessary to learn about variations in the effects of
technologies across multiple environments and influential factors. These
goals led to the formation of the International Software Engineering
Research Network (ISERN). whose members are listed here.’

Member site Contact Address

Blekinge TH, Sweden C. Wohlin Blekinge Institute of Technology,
S-371 79 Karlskrona, Sweden

Carleton University, Canada L. C. Briand Carleton University, Department

of System and Computer Engineering,
Ottawa, Canada

Central Research M. Takahashi Communication and Information Research
Institute of Electric Power Laboratory, Central Research Institute of
Industry, Tokyo, Japan Electric Power Industry, 2-11-1,

Iwado-Kita, Komae, Tokyo 20, Japan
COPPE, Rio de Janeiro, Brazil G. H. Travassos Universita Federal Rio de Janeiro,

Systems Engineering and Computer
Science Program, Bloco H, Sl. 319,
Centro de Tecnologia Cid. Universitaria
Rio de Janeiro, Brazil

Daimler-Chrysler F. Houdek Daimler-Chrysler, Forschung & Technik,
Research Center, Germany Postfach 2360, D-89013 Ulm

Ericsson Radio Systems K. Sandahl Ericsson Radio Systems AB, Zelab —
AB, Linkoping, Sweden Systems Engineering Lab, Box 12 48,

S-581 12 Linkdping, Sweden

1 For an update of this list refer to http://www.iese.fhg.de/network/ISERN/pub/

w
o
o)

xipuaddy ‘

Member site

Fraunhofer Center,
Maryland, USA

Fraunhofer Institute
for Experimental Software
Engineering, Germany

Lucent Technologies —
Bell Laboratories, USA

Lund University, Sweden

Motorola, USA

Nara Institute of Science
and Technology, Japan

National Space Development
Agency of Japan

Norwegian University of
Technology & Science, Norway

NTT Data Corporation, Japan

Politechnico Madrid, Spain

Quality Laboratories
Sweden AB (Q-Labs), Sweden

Solid Information
Technologies, Finland

Telcordia, USA

TU Vienna, Austria

Univerity of Southern
California, USA

Universita degli Studi di
Roma ‘Tor Vergata’, Italy

University of Alberta
University of Bari, Italy

Contact

M. Zelkowitz

A. Jedlitschka

A. Mockus

M. Hoest

L.G. Votta
K. Torii

M. Katahira

R. Conradi

T. Hayama

N. Juristo

G. Fagerhus

M. Oivo

C. M. Lott

S. Biffl

B. W. Boehm

G. Cantone

J. Miller
G. Visaggio

Address

Fraunhofer Center, Maryland, University
of Maryland, Ag/Life Sciences Surge Bldg.
(296), Room 3115, College Park, MD
20742, USA

Fraunhofer IESE, Sauerwiesen 6, D-67661
Kaiserslautern, Germany

Lucent Technologies, Bell Laboratories,
Room IHC 16-347, 1000 E. Warrenville
Road, Naperville, IL 60566, USA
Department of Communication Systems,
Lund Institute of Technology, Lund
University, Box 118, S-221 00 Lund,
Sweden

Motorola, Schaumburg IL, USA

NAIST, Graduate School of Inf. Science,
8916-5, Takayama-cho, lkoma,

Nara 630-01, Japan

National Space Development Agency of
Japan, Tokyo, Japan

Dept. of Computer Science and Telematics,
NTH, N-7034 Trondheim, Norway

NTT Data Corp., Laboratory for Information
Technology, Kowa-Kawasaki-Nishi 9F,
66-2 Horikawa-cho Saiwai-ku, Kawasaki
210, Japan

Universidad Politécnica de Madrid,
Departamento de Lenguajes y Sistemas
Informéticos e Ingenieria del Software,
Madrid, Spain

Q-Labs, Ideon Research Park, S-223 70
Lund, Sweden

Solid Information Technologies, Inc.,
FIN-90570 Oulu, Finland

Telcordia Technologies, Morris Corporate
Center, 445 South Street, Morristown,
NJ 07960-6438, USA

Technische Universitat Wien, Karlsplatz
13, A-1040 Wien, Austria

University of Southern California, Los
Angeles CA, USA

Universita degli Studi di Roma ‘Tor
Vergata’, Dipartimento di Informatica,
Via della Ricerca Scientifica, 1-00133
Roma, Italy

University of Alberta, Canada

Universita di Bari, Dipartimento di
Informatica, Via Orabona 4, 70126 Bari,
Italy

Member site

University of Calgary
University of Hawaii, USA

University of
Kaiserslautern, Germany

University of Maryland,
Baltimore County, USA

University of Maryland,
College Park, MD, USA

University of New South
Wales, Australia

University of Oslo
University of Sao Paulo, Brazil

University of Strathclyde,
Scotland, UK

VTT Electronics, Finland

Contact

G. Ruhe
P. Johnson

H. D. Rombach

C. Seaman

V. R. Basili

R. Jeffery

D. Sjgberg
J. C. Maldonado

M. Wood

S. Komi-Sirvio

Address

University of Calgary, Canada

Department of Information and Computer
Sciences, University of Hawaii,
2565 The Mall, Honolulu, HI 96822, USA

AG Software Engineering, FB Informatik,
Geb. 57, Universitdt Kaiserslautern, P.O.
3049, D-67653 Kaiserslautern, Germany
University of Maryland, Baltimore County,
1000 Hilltop Circle, Baltimore,

MD 21250, USA

Institute for Adv. Comp. Studies,
Department of Computer Science,
University of Maryland,

College Park MD 20742, USA

University of New South Wales,
Department of Information Systems,
Sydney 2052, Australia

University of Oslo, Norway

University of Sdo Paulo — Campus of Sao
Carlos, Brazil

Department of Computer Science,
University of Strathclyde, Glasgow G1 1XH,
Scotland, UK

VTT Electronics, PO Box 1100, FIN-90571
Oulu, Finland

w
o
Ny

€ xipuadd y ‘

References

[Abde91]

[Acke96]

[Adam84]

[Albr79]

[Alle01]

[Aron70]

[Ashc89]

[Bake72]

[Basi81]

[Basi84]

[Basi86]

[Basi87]

[Basi88]

[Basi89]

Abdel-Hamil, T., Madnick, S.: Software Project Dynamics: An
Integrated Approach. Englewood Cliffs, NJ: Prentice Hall 1991
Ackermann, P.: Developing Object-Oriented Multimedia
Software — Based on the MET++ Application Framework.
Heidelberg: dpunkt 1996

Adams, E.N.: Optimizing Preventive Service of Software Products.
IBM]. of Research and Development 28,1 (1984), 2-14
Albrecht, A.].: Measuring Application Development
Productivity. In: Proc. Joint SHARE/GUIDE/IBM Application
Development Symposium 1979, 83-92

Allen, J.H.: The CERT® Guide To System and Network Security
Practices. Upper Saddle River, NJ: Addison-Wesley 2001

Aron, J.D.: Estimating Resources for Large Programming
Systems. In: Buxton, J.N., Randell, B. (eds): Software
Engineering Techniques. Brussels: NATO Science Committee
1970, 68-79

Ashcraft, M.H.: Human Memory and Cognition. Glenview, IL:
Scott, Foresman and Company 1989

Baker, ET.: Chief Programmer Team Management in Production
Programming. IBM Systems J. 11, 1 (1972), 56-73

Basili, V.R., Reiter, R.: A Controlled Experiment Quantitatively
Comparing Software Development Approaches. IEEE Trans on
Software Engineering 7, 3 (1981), 299-320

Basili, V.R., Perricone, B.T.: Software Errors and Complexity:
An Empirical Investigation. Comm. ACM 27,1 (1984), 41-52
Basili, V.R., Selby, R.W., Hutchins, D.H.: Experimentation in
Software Engineering. IEEE Trans on Software Engineering 12,
7 (1986), 733-743

Basili, V.R., Selby, R.W.: Comparing the Effectiveness of
Software Testing Strategies. IEEE Trans on Software
Engineering 13, 12 (1987), 1278-1296

Basili, V.R., Rombach, H.D.: The TAME Project: Towards
Improvement-Oriented Software Environments. IEEE Trans on
Software Engineering 14, 6 (1988), 758-773

Basili,V.R.: Software Development: A Paradigm of the Future.
In: Proc. International Computer Software and Applications
Conference (COMPSAC), Orlando, FL, 1989, 471-485

[Basi92]

[Basi94a]

[Basio4b]

[Basi96a]

[Basi96b]

[Basi96¢]

[Basi98a]

[Basio8b]

[Basi99]

[BasiO1]
[Baue82]
[Baue93]
[Baum01]
[Baye72]
[Beck99]
[Beck01]
[Bela76]

[Bern93]

Basili, V.R., Caldiera, G., McGarry, EE. et al.: The Software 309
Engineering Laboratory: An Operational Software Experience —_—
Factory, In: Proceedings of the 14th International Conference
on Software Engineering (ICSE 92), 1992

Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question
Metric Paradigm. In: Marciniak, J.]J. (ed.): Encyclopedia of
Software Engineering. New York: Wiley 1994, 528-532

Basili, V.R., Caldiera, G., Rombach, H.D.: Experience Factory.
In: Marciniak, J.J. (ed.): Encyclopedia of Software Engineering.
New York: Wiley 1994, 469-476

Basili, V.R., Briand, L.C., Welo, W.L.: A Validation of Object-
Oriented Design Metrics as Quality Indicators. IEEE Trans. on
Software Engineering 22, 10 (1996), 751-761

Basili, V.R., Briand, L.C., Melo, W.L.: How Reuse Influences
Productivity of Object-Oriented Systems. Comm. ACM 39, 10
(1996), 104-116

Basili, V.R., Green, S., Laitenberger, O., Lanubile, E., Shull, F.,
Serumgdrd, S., Zelkowitz, M.: The Empirical Investigation of
Perspective-Based Reading. Empirical Software Engineering 1, 2
(1996), 133-164

Basili, V.R., Briand, L.C., Morasca, S.: Defining and Validating
Measures for Object-Based High-level Designs. Fraunhofer
Kaiserslautern, Report IESE-018.98/E (1998)

Basili, V.R.: Empirical Software Engineering. Software Process
Newsletter, 12 (1998), 1-3

Basili, V.R., Shull, F., Lanubile, F.: Building Knowledge through
Families of Experiments. IEEE Trans on Software Engineering
25,4 (1999), 458-473

Basili, V.R., Boehm, B.W.: COTS-Based Systems Top 10 List.
IEEE Computer 34, 5 (2001), 91-93

Bauer, EL., Wossner, H.: Algorithmic Language and Program
Development. New York: Springer 1982

Bauer, D.: A Reusable Parts Center. IBM Systems J. 32, 4
(1993), 620-624

Baumol, W.]., Blinder, A.S.: Macroeconomics: Principles and
Policy. Orlando, FL: Harcourt 2001 (8th edn)

Bayer, R., McCreight, E.M.: Organization and Maintenance of
Large Ordered Indexes. Acta Informatica 1, 3 (1972), 173-189
Beck, K.: Extreme Programming Explained: Embrace Change.
Upper Saddle River, NJ: Addison-Wesley 1999

Beck, K., Fowler, M.: Planning Extreme Programming. Upper
Saddle River, NJ: Addison-Wesley 2001

Belady, L.A., Lehman, M.M.: A Model of Large Program
Development. IBM Syst. |. 3, (1976), 225-252

Bernstein, L.: Get the Design Right! IEEE Software, 10, 5
(1993), 61-62

ERIEIEIEN

310

S9JUal9)9y

[Bigg91]

[Bill94]

[Blas77]

[Boeh75]

[Boeh76]

[Boeh79]

[Boeh81]

[Boeh84al]

[Boeh84b]
[Boeh8$]
[Boeh894]

[Boeh89b]

[Boeh91]
[Boeh004]
[Boeh00b]

[Boeh00c]

[Boeh01]
[Booc91]

[Bria96]

Biggerstaff, T.]., Perlis, A.]. (eds): Software Reusability: Volume
I, Concepts and Models. Reading, MA: Addison-Wesley 1991
Billings, C., Clifton, J., Kolkhorst, B., Lee, E., Wingert, W.B.:
Journey to a Mature Software Process. IBM Systems J. 23, 1
(1994), 46-61

Blasgen, M.W., Eswaran, K.P.: Storage and Access in Relational
Data Bases. IBM Systems J. 16,4 (1977), 363-377

Boehm, B.W., McClean, R.K., Urfrig, D.B.: Some Experience
with Automated Aids to the Design of Large-Scale Reliable
Software. IEEE Trans on Software Engineering 1, 1 (1975),
125-133

Boehm, B.W.: Software Engineering. IEEE Trans on Computers
25,12 (1976), 1226-1241

Boehm, B.W.: Software Engineering — As it is. In: Proc. 4th
International Conf. on Software Engineering, IEEE
Cat.79CH1479-5C, IEEE Computer society Press (1979), 11-21
Boehm, B.W.: Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall 1981

Boehm, B.W., Gray, T.E., Seewaldt, T.: Prototyping Versus
Specifying: A Multiproject Experiment. IEEE Trans on
Software Engineering 10, 3 (1984), 290-302

Boehm, B.W.: Software Engineering Economics. IEEE Trans on
Software Engineering 10, 1 (1984), 4-21

Boehm, B.W.: A Spiral Model of Software Development and
Enhancement. IEEE Computer 21, 5 (1988), 61-72

Boehm, B.W.: Software Risk Management. Cat. No. EH0291-5,
Los Alamitos, CA: IEEE Computer Society Press 1989

Boehm, B.W., Ross, R.: Theory W Software Project
Management: Principles and Examples. IEEE Trans on
Software Engineering 15, 7 (1989), 902-916

Boehm, B.W.: Software Risk Management: Principles and
Practices. IEEE Software 8,1 (1991), 32-41

Boehm, B.W., Basili, V.R.: Gaining Intellectual Control of
Software Development. IEEE Computer 33, 5 (2000), 27-33
Boehm, B.W: Unifiying Software Engineering and Systems
Engineering. IEEE Computer 33, 3 (2000), 114-116

Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K.,
Horowitz, E., Madachy, R., Reifer, D., Steece, B.: Software Cost
Estimation with COCOMO II. Upper Saddle River, NJ:
Prentice Hall 2000

Boehm, B.W., Basili, V.R.: Software Defect Reduction Top 10
List. IEEE Computer 34, 1 (2001), 135-137

Booch, G.: Object Oriented Design with Applications.
Redwood City, CA: Benjamin/Cummings 1991

Briand, L.C., Devanbu, P., Melo, W.: An Investigation Into
Coupling Measures for C++. Fraunhofer-Institut Kaiserslautern,
Report IESE-006-96 (1996)

[Bria98]

[Bria99]

[Broo75]

[Broo87]

[Broy80]

[BroyO1]

[BSA00]

[Buxt70]

[Card87]

[Chal99]

[Chen76]

[Chid94]

[Chil92]

[Clar94]

[Cobb90]

[Codd70]

Briand, L.C., Daly, J., Porter, V. Wiist, J.: A Comprehensive 311
Empirical Evaluation of Product Measures for Object-Oriented —_—
Systems. Fraunhofer Kaiserslautern, Report IESE-021.98/E (1998)
Briand, L.C., Arisholm, E., Counsell, S., Houdek, F., Thévenod-
Fosse, P.: Empirical Studies of Object-Oriented Artifacts,
Methods, and Processes: State of The Art and Future
Directions. Techn. Report ISERN-99-12 (1999)

Brooks, EP.: The Mythical Man-Month — Essays on Software
Engineering. Reading, MA: Addison-Wesley 1975 (Extended
version as Anniversary Edition 1995)

Brooks, EP.: No Silver Bullet: Essence and Accidents of
Software Engineering. IEEE Computer 20, 4 (1987), 10-19
Broy, M.: Zur Spezifikation von Programmen fiir die
Textverarbeitung. In: Wossidlo, P.R. (ed.): Textverarbeitung und
Informatik. Informatik-Fachberichte 30, Heidelberg: Springer
1980, 75-93

Broy, M.: Toward a Mathematical Foundation of Software
Engineering Methods. IEEE Trans on Software Engineering 27,
1(2001), 42-57

BSA Business Software Alliance: Sixth Annual BSA Global
Software Piracy Study. 2000. hitp://www.bsa.org/

Buxton, J.N., Randell, B. (eds): Software Engineering
Techniques. Brussels: NATO Science Committee 1970

ERIEIEIEN

Card, D.N., McGarry, EE., Page, G.T.: Evaluating Software
Engineering Technologies. IEEE Trans on Software Engineering
13,7 (1987), 845-851

Chalmers, A.F.: What is This Thing Called Science? St. Lucia,
Queensland: University of Queensland Press, 1999 (3rd edition)
Chen, P.: The Entity Relationship Model — Towards a Unified
View of Data. ACM Transactions on Database Systems 1, 1
(1976), 1-36

Chidamber, S.R., Kemerer, C.E.: A Metrics Suite for Object-
Oriented Design. IEEE Trans on Software Engineering 20, 6
(1994), 476-493

Chillarege, R., Bhandari, L., Chaar, J., Halliday, M., Moebus,
D., Ray, B., Wong, M.Y.: Orthogonal Defect Classification — A
Concept for In-Process Measurement. [EEE Trans on Software
Engineering 18, 11 (1992), 943-956

Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and
Abstraction. ACM Trans on Programming Languages and
Systems 16, 5 (1994), 1512-1542

Cobb, R.H., Mills, H.D.: Engineering Software under Statistical
Quality Control. IEEE Software 7, 6 (1990), 44-54

Codd, E.E: A Relational Model of Data for Large Shared Data
Banks. Comm. ACM 13, 6 (1970), 377-387

312

S9JUal9)9y

[Codd82]
[Cons01]
[Conw68]
[Coop01]
[Corb69]
[Cros79]

[Curt88]

[Curt90]

[Cusu95]

[Dahl67]

[Daly77]

[Daly96]

[Davi90]
[Davi9s]
[Davi96]
[Dege00]
[DeMa78]
[DeMa82]
[DeMa87]
[DeMa95]

[DeMa01]

Codd, E.F.: Relational Database: A Practical Foundation for
Productivity. Comm. ACM 25, 2 (1982), 109-117
Constantine, L.L.: Back to the Future. Comm. ACM 44, 3
(2001), 126-129

Conway, M.E.: How Do Committees Invent? Datamation 14, 4
(1968), 28-31

Cooper, M.: Bandwidth and the Creation of Awareness. Comm.
ACM 44, 3 (2001), 55-57

Corbatd, EJ.: PL/T as a Tool for System Programming.
Datamation 15, 5 (1969), 66-76

Crosby, P.B.: Quality Is Free: The Art of Making Quality
Certain. New York: McGraw-Hill 1979

Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software
Design Process for Large Systems. Comm. ACM 31, 11 (1988),
1268-1287

Curtis, B.: Empirical Studies of the Software Design Process. In:
Proc. Human Computer Interaction Interact *90. Amsterdam:
North Holland 1990, xxxv—xI

Cusumano, M.A., Selby, R.W.: Microsoft Secrets. New York:
Free Press 1995

Dahl, O.]., Nygaard, K.: Class and Subclass declarations. In:
Buxton, J.N. (ed.): Simulation Programming Languages.
Amsterdam: North Holland 1967, 158-174

Daly, E.: Management of Software Development. IEEE Trans
on Software Engineering 3, 3 (1977), 229-242

Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating
Inheritance Depth on the Maintainability of Object-Oriented
Software. Empirical Software Engineering 1,2 (1996),102-132
Davis, A.: Software Requirements: Objects, Functions, and
States. Upper Saddle River, NJ: Prentice Hall 1990

Davis, A.: 201 Principles of Software Development. New York:
McGraw Hill 1995

Davis, R., Samuelson, P., Kapor, M., Reichman, J.: A New View
of Intellectual Property and Software. Comm. ACM 39, 3
(1996), 21-30

Degele, N.: Informiertes Wissen. Frankfurt: Campus 2000
DeMarco, T.: Structured Analysis and System Specification.
New York: Yourdon 1978

DeMarco, T.: Controlling Software Projects. Englewood Cliffs,
NY: Yourdon 1982

DeMarco, T., Lister, T.: Peopleware: Productive Projects and
Teams. New York: Dorset House 1987

DeMarco, T.: Why Does Software Cost So Much? And Other
Puzzles of Information Age. New York: Dorset House 1995
DeMarco, T.: Invited Talk at sd&m Software Pioneers
Conference. Bonn June 2001

[Dene91]
[Denn8&4]

[Denn01]

[DeRe75]

[Dewa00]

[Diaz97]
[Diff01]
[Dijk68]
[Dijk69]
[Dijk70]
[Duns80]
[Dura84]

[Dvor94]

[EbbiSS]
[Elsh76]

[Endr75]

[Endr77]

[Endr78]

[Endr8S]

[Endr93al

Denert, E.: Software Engineering. Heidelberg: Springer 1991 313
Denning, P.J., Brown, R.L.: Operating Systems. Scientific —
American 251, 3 (1984), 94-106

Denning, P.J.: Crossing the Chasm. Comm. ACM 44, 4 (2001),
21-25

DeRemer, E, Kron, H.: Programming In-the-Large versus
Programming In-the Small. Proc. Int. Conf. Reliable Software,
IEEE Computer Society Press, IEEE Cat.75CH0940-7 (1975),
114-121

Dewal, S., Schnichels, L.: Bank2010: Eine fachliche und
technische Vision. In: Mehlhorn, K., Snelting, G.(eds):
Informatik 2000. Heidelberg: Springer 2000, 337-355

Diaz, M., Sligo, J.: How Software Process Improvement Helped
Motorola. IEEE Software 14, 5 (1997), 75-81

Diffie, W.: Ultimate Cryptography. Comm. ACM 44, 3 (2001),
84-86

Dijkstra, E.W.: GO TO Statement Considered Harmful. Letter
to the Editor. Comm. ACM 11, 3 (1968), 147-148

Dijkstra, E.W.: Notes on Structured Programming. Report
EWD 249, Eindhoven Technical University 1969

Dijkstra, E.W.: Structured Programming. In: [Buxt70], 84-88
Dunsmore, H.E., Gannon, J.D.: Analysis of Effects of
Programming Factors on Programming Effort. | of Systems and
Software 1 (1980), 143-153

Duran, J., Ntafos, S.: An Evaluation of Random Testing. IEEE
Trans on Software Engineering 10, 7 (1984), 438-444

Dvorak, J.: Conceptual Entropy and Its Effect on Class
Hierarchies. IEEE Computer 27, 6 (1994), 59-63

ERIEIEIEN

Ebbinghaus, H.: Uber das Gedichtnis. Leipzig: Duncker und
Humblot 1885

Elshoff, J.L.: An Analysis of Some Commercial PL/I Programs.
Trans on Software Engineering 2, 6 (1976), 113-120

Endres, A.: An Analysis of Errors and Their Causes in System
Programs. IEEE Trans on Software Engineering 1,2 (1975),
140-149

Endres, A.: Analyse und Verifikation von Programmen.
Miinchen: Oldenbourg 1977

Endres, A., Glatthaar, W.: A Complementary Approach to
Program Analysis and Testing. In: Bracchi, G., Lockemann, P.
(eds): Information Systems Methodology, Lecture Notes in
Computer Science 65, Heidelberg: Springer 1978, 380-401
Endres, A.: Software-Wiederverwendung: Ziele, Wege und
Erfahrungen. Informatik-Spektrum 11, 2 (1988), 85-95
Endres, A.: Lessons Learned in an Industrial Software Lab.
IEEE Software 10, 5 (1993), 58-61

314

S9JUal9)9y

[Endr93b]

[Endr00]

[Enge68]

[Faga76]
[Faga86]

[Fent93]

[Fent94|

[Fent99]

[Fent00]

[Ferg97]

[Feyn67]

[Fitt54]

[Fowl01]

[Frak94]

[Fran93]

Endres, A.: Model Reuse and Technology Transfer. In:
Rombach, H.D., Basili, V.R., Selby, R.W.: Experimental
Software Engineering Issues: Critical Assessment and Future
Directions. LNCS 706. Heidelberg: Springer 1993, 202-205
Endres, A., Fellner, D.: Digitale Bibliotheken. Heidelberg:
dpunkt 2000

Engelbart, D.C., English, W.K.: A Research Center for
Augmenting Human Intellect. AFIPS Proceeding, Fall Joint
Computer Conference 33 (1968), 395-410. Reprinted in: Greif,
L. (ed.): Computer-Supported Cooperative Work: A Book of
Readings. Palo Alto, CA: Morgan Kaufmann 1988

Fagan, M.E.: Design and Code Inspections to Reduce Errors in
Program Development. IBM Systems J. 15, 3 (1996), 182-211
Fagan, M.E.: Advances in Software Inspections. IEEE Trans on
Software Engineering 12, 7 (1986), 744-751

Fenton, N.E.: Objectives and Context of Measurement/
Experimentation. In: Rombach, H.D., Basili, V.R., Selby,
R.W.: Experimental Software Engineering Issues: Critical
Assessment and Future Directions. LNCS 706. Heidelberg:
Springer 1993, 82-86

Fenton, N.E., Pfleeger, S.L., Glass, R.L.: Science and Substance: A
Challenge to Software Engineers. IEEE Software July 1994, 86-95
Fenton, N.E., Neil, M.: A Critique of Software Defect
Prediction Models. IEEE Trans on Software Engineering 25, 5
(1999), 675-689

Fenton, N.E., Ohlsson, N.: Quantitative Analysis of Faults and
Failures in a Complex Software System. IEEE Trans on
Software Engineering 26, 8 (2000), 797-814

Ferguson, P., Humphrey, W.S., Khajenoori, S., Macke, S.,
Matvya, A.: Results of Applying the Personal Software Process.
IEEE Computer 30, 5 (1997), 24-31

Feynman, R.P.: The Character of Physical Law Cambridge,
MA: MIT Press 1967

Fitts, P.M.: The Information Capacity of the Human Motor
System in Controlling the Amplitude of Movement. Journal of
Experimental Psychology 47 (1954), 381-391

Fowler, M.: The New Methodology. hitp:/www.martinfowler.com/
newMethodology.himl/

Frakes, W.B. (ed.): Software Reuse: Advances in Software
Reusability. In: Proc. 3rd International Conf. on Software
Reuse, Los Alimitos, CA: IEEE CS Press 1994

Frankl, P.G., Weyuker, E.]J.: A Formal Analysis of the Fault-
Detecting Ability of Testing Methods. IEEE Trans on Software
Engineering 19, 3 (1993), 202-213

[Gamm95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley 1995

[Gamm01] Gamma, E.: Invited Talk at sd&m Software Pioneers
Conference. Bonn June 2001

[Gann77] Gannon, J.D.: An Experimental Evaluation of Data Type
Conventions. Comm. ACM 20, 8 (1977), 584-595

[Gatz83] Gatzhammer, P.P.: Distributed Data Processing with Small
System Executive/VSE. IBM Boblingen Techn. Report TR
05.291 (1983)

[Gilb88] Gilb, T.: Principles of Software Engineering Management.
Reading, MA: Addison Wesley 1988

[Glas94] Glass, R.L.: The Software Research Crisis. IEEE Software 11, 6

(1994), 42-47

[Glas98] Glass, R.L.: Software Runaways. Lessons Learned from
Massive Software Project Failures. Upper Saddle River, NJ:
Prentice Hall 1998

[GlasO01] Glass, R.L.: Frequently Forgotten Fundamental Facts about
Software Engineering. IEEE Software 18, 3 (2001), 110-112

[Gold89] Goldberg, A., Robson, D.: Smalltalk-80: The Language.
Reading, MA. Addison-Wesley 1989

[Gomb98] Gomberg, M., Evard, R., Stacey, C.: A Comparison of Large-
Scale Software Installation Methods on NT and UNIX. In:
USENIX Conference on Large Installation System

Administration of Windows NT, 1998. hitp:/lwww.usenix.org/

publications/library/proceedings/lisa-nt98/gomberg.html

[Good75] Goodenough, J.B., Gerhart, S.L.: Towards a Theory of Test
Data Selection. IEEE Trans on Software Engineering 1, 2
(1975), 156-173

[Grad94] Grady, R.B., Van Slack, T.: Key Lessons in Achieving
Widespread Inspection Use. IEEE Software, July 1994, 46-57

[Gray91] Gray,]J.: The Benchmark Handbook for Database and
Transaction Processing Systems. San Mateo, CA: Morgan
Kaufmann 1991

[Gray93] Gray, J., Reuter, A.: Transaction Processing: Concepts and
Techniques. San Mateo, CA: Morgan Kaufmann 1993

[Gris93] Griss, M.L: Software Reuse: From Library to Factory. IBM
Systems J. 32,4 (1993), 548-566

[Gupt96] Gupta, D., Jalote, P., Barua, G.: A Formal Framework for On-
line Software Version Change. IEEE Trans on Software
Engineering 22,2 (1996), 120-131

[Gutj99] Gutjahr, W.: Partition vs Random Testing: The Influence of
Uncertainty. IEEE Trans on Software Engineering 25, 5
(1999), 661-667

[Hall90] Hall, A.: Seven Myth of Formal Methods. IEEE Software 7, 5
(1990), 11-19

315

ERIEIEIEN

316

S9JUal9)9y

[Halp99]

[Haml90]

[Hare88]

[Haye85]

[Hers99]

[Herz66]

[Hetz76]

[Hiem74]

[Hoar69]
[Hoar71]
[Hoar72]
[Hoar81]

[Hoch00]

[Hofm01]

[Howd76]
[Hump89]

[Hump96]

Halprin, G.: Maturing System Administration. In: Proc. Usenix
LISA-NT99 Technical Conference 1999. http://www.usenix.org/
publications/library/proceedings/lisa-nt99/index.html

Hamlet, R.G., Taylor, R.: Partition Testing Does Not Inspire
Confidence. IEEE Trans on Software Engineering 16, 12
(1990), 1402-1411

Harel, D.: On Visual Formalisms. Comm. ACM 31, 5 (1988),
514-530

Hayes, 1.].: Applying Formal Specification to Software
Development in Industry. IEEE Trans on Software Engineering
11,2 (1985), 169-178

Hersleb, J.D., Grinter, R.E.: Splitting the Organisation and
Integrating of Code: Conway’s Law Revisited. In: Proc. 21st
Intl. Conf. on Software Engineering (ICSE). New York: ACM
1999, 85-95

Herzberg, F.: Work and the Nature of Man. Cleveland: World
Publishing 1966

Hetzel, W.C.: An Experimental Analysis of Program
Verification Methods. Ph.D. Thesis, University of North
Carolina, Chapel Hill, 1976

Hiemann, P.: A New Look at the Program Development
Process. In: Hackl, C. (ed.): Programming Methodology. LNCS
23, Heidelberg: Springer 1974

Hoare, C.A.R.: An Axiomatic Basis for Computer
Programming. Comm. ACM 12, 10 (1969), 576-580, 583
Hoare, C.A.R.: Proof of a Program: Find. Comm. ACM 14, 1
(1971), 3945

Hoare, C.A.R.: Proof of Correctness of Data Representations.
Acta Informatica 1,4 (1972), 271-281

Hoare, C.A.R.: The Emperor’s Old Clothes; 1980 Turing Award
Lecture. Comm. ACM 24, 2 (1981), 75-83

Hoch, D.]., Roeding, C.R., Purkert, G., Lindner, S.K., Miiller,
R.: Secrets of Software Success. Boston: Harvard Business
School Press 2000

Hofmann, H.E,, Lehner, E.: Requirements Engineering as a
Success Factor in Software Projects. IEEE Software 18, 4
(2001), 58-66

Howden, W.E.: Reliability of the Path Analysis Testing Strategy.
IEEE Trans on Software Engineering 2, 3 (1976), 140-149
Humphrey, W.S.: Managing the Software Process. Reading,
MA.: Addison-Wesley 1989

Humphrey, W.S.: Using a Defined and Measured Personal
Software Process. IEEE Software 13, 3 (1996), 77-88

[Hump97a] Humphrey, W.S.: Introduction to the Personal Software Process.

Reading, MA: Addison-Wesley 1997

[Hump97b] Humphrey, W.S.: Managing Technical People. Reading, MA:

Addison-Wesley 1997

[IEEES4]

[IEEE90]

[IEEEO01]

[Jaco92]

[Jalo98]

[Jone90]
[Jone94]
[Jone96]
[Jore00]

[JuriO1]

[Kams95]

[Kan95]

[Kauf97]

[Keeh74]
[Krau00]

[Kubn70]

[Kupf71]

IEEE Guide to Software Requirements Specifications. IEEE
Computer Society, IEEE Std 830-1984, 1984

IEEE Standard Glossary of Software Engineering Terminology,
IEEE Computer Society, I[EEE Std 610.12-1990 (Revision and
Redesignation of IEEE Std 729-1983), 1990

IEEE/ACM Computing Curriculum. Final Draft December 135,
2001. htip://www.computer.orgleducation/cc2001/finall

Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G.:
Object-Oriented Software Engineering. Reading, MA: Addison-
Wesley 1992

Jalote, P., Haragopal, M.: Overcoming the NAH Syndrome for
Inspection Deployment. In: Proc. 20th Intl Conf. on Software
Engineering (ICSE). Los Alamitos, CA: IEEE CS Press 1998,
371-378

Jones, C.B.: Systematic Software Development Using VDM.
London: Prentice Hall International 1990

Jones, C.: Gaps in the Object-Oriented Paradigm. IEEE
Computer 27, 6 (1994), 90-91

Jones, C.: Applied Software Measurement, Assuring
Productivity and Quality. New York: McGraw-Hill 1996
Jones, C.: Software Assessments, Benchmarks, and Best
Practices. Boston: Addison-Wesley 2000

Juristo, N., Moreno, A.: Basics of Software Engineering
Experimentation, Boston: Kluwer Academic 2001

Kamsties, E., Lott, C.M.: An Empirical Evaluation of Three
Defect-DetectionTechniques. In: Schifer, W., Botella, P. (eds)
Proc. 5th European Software Engineering Conference (ESEC),
LNCS 989, Heidelberg: Springer 1995

Kan, S.H.: Metrics and Models in Software Quality
Engineering. Reading, MA: Addison-Wesley 1995
Kaufmann, M., Moore, J.: An Industrial Strength Theorem
Prover for a Logic Based on Common Lisp. IEEE Trans on
Software Engineering 23, 4 (1997), 214-223

Keehn, D.G., Lacy, J.O.: VSAM Data Set Design Parameters.
IBM Systems J. 13, 3 (1974), 186-212

Krause, W.: Denken und Geddchinis aus naturwissenschaft-
licher Sicht. Gottingen: Hogefe 2000

Kuhn, T.S.: The Structure of Scientific Revolutions. Chicago:
University of Chicago Press 1970 (2nd Edition)

Kupfmiiller, K.: Grundlagen der Informationstheorie und
Kybernetik. In: Grauer, O.H., Kramer, K., Jug, R. (eds):
Physiologie des Menschen. Band 10. Miinchen: Urban und
Schwarzenberg 1971

317

ERIEIEIEN

318

S9JUal9)9y

[Lait97]

[Lait98)]

[Lane79]

[Lane84]

[Lehm80)

[Lehm94)

[Lehm01]

[Lenz87]
[Lieb00]

[Lott96]

[Luer98]

[Marm74]
[Mart81]
[Masl54]

[MatsS87]

[Mays90]

Laitenberger, O., DeBaud, J.M.: Perspective-Based Reading of
Code Documents at Robert Bosch GmbH. Fraunhofer-Institut
Kaiserslautern, Report IESE-049.97 (1997)

Laitenberger, O.: Studying the Effect of Code Inspection and
Structural Testing on Software Quality. Fraunhofer-Institut
Kaiserslautern, Report IESE-024.98 (1998)

Lanergan, R.G., Poynton, B.: Reusable Code — The Application
Development Technique of the Future. Proc. IBM
GUIDE/SHARE Application Symposium, Oct. 1979, 127-136
Lanergan, R.G., Grasso, C.A.: Software Engineering with
Reusable Design and Code. IEEE Trans on Software
Engineering 10, 5 (1984), 498-501

Lehman, M.M.: On Understanding Laws, Evolution, and
Conservation in the Large-Program Life Cycle. J. of Systems
and Software 1, 3 (1980), 213-231

Lehman, M.M.: Software Evolution. In: Marciniak, J.]. (ed.):
Encyclopedia of Software Engineering. New York: J. Wiley
1994, 1202-1208

Lehman, M.M., Ramil, J.E.,, Kahen, G.: Thoughts on the Role of
Formalisms in Studying Software Evaluation. Proc. Formal
Foundations of Software Evolution, Lisbon 2001

Lenz, M., Schmid, H.A., Wolf, P.F.: Software Reuse Through
Building Blocks. IEEE Software 4, 4 (1987), 34-42
Lieberman, H.: Programming by Example. Comm. ACM 43, 3
(2000), 73-74

Lott, C.M., Rombach, H.D.: Repeatable Software Engineering
Experiments for Comparing Defect-Detection Techniques.
Empirical Software Engineering 1, 3 (1996), 241-277
Luerkens, C.D., Cole, H.]J., Legg, D.R.: Software Distribution to
PC Clients in an Enterprise Network. In: USENIX Conference on
Large Installation System Administration of Windows NT, 1998.
hitp:/lwww.usenix.orglpublications/library/proceedings/lisa-
nt98/luerkens.html

Marmier, E.: A Program Verifier for Pascal. IFIP Congress 74.
Amsterdam: North Holland 1974

Martin, J.: Application Development Without Programmers.
Upper Saddle River, NJ: Prentice Hall 1981

Maslow, A.H., Frager, R., Fadiman,].: Motivation and
Personality. New York: Harper and Row 1954

Matsumoto, Y.: A Software Factory: An Overall Approach to
Software Production. In: Freeman, P. (ed.): Tutorial: Software
Reusability. IEEE Computer Society Cat. No. EH0256-8
(1987), 155-178

Mays, R., Jones, C., Holloway, G., Studinsky, D.: Experiences
with Defect Prevention. IBM Systems J. 29, 1 (1990), 4-32

[McCa62]
[McCa76]
[McCa89]

[McCu78]

[McGr60]
[Metc73]

[Metc96]

[Mill56]

[Mill71]

[Mill83]

[Mill87]

[Misr88]

[Moel85]

[Moor6S5]

[Moor97]

[Morr93]

[Moyn96]

[Miill99]

McCarthy, J.: Towards a Mathematical Theory of
Computation. Proc. IFIP Congress Munich 1962

McCabe, T.]J.: A Complexity Measure. IEEE Trans on Software
Engineering 2,12 (1976), 308-320

McCabe, T.J. , Butler, C.W.: Design Complexity Measurement
and Testing. Comm. ACM 32, 12 (1989), 1415-1425

McCue, G.M.: IBM’s Santa Teresa Laboratory — Architectural
Design for Program Development. IBM Systems J. 17,1 (1978),
4-25

McGregor, D.: The Human Side of Enterprise. New York:
McGraw-Hill 1960

Metcalfe, R.M.: Packet Communication. Ph.D. Thesis, Harvard
University, Project MAC TR-114, December 1973

Metcalfe, R.M.: The Internet After the Fad. Monticello
Memoirs, May 1996. hitp://americanbistory.si.edu/csr/com-
phist/montic/metcalfe.htm — me7

Miller, G.A.: The Magical Number Seven, Plus or Minus Two:
Some Limitations of Our Capability of Information Processing.
Psychol. Review 63 (1956), 81-97

Mills, H.D.: Top Down Programming in Large Systems. In:
Rustin, R. (ed.): Debugging Techniques in Large Systems.
Courant Computer Science Symposium 1, New York University
(1971), 41-55

Mills, H.D.: Software Productivity in the Enterprise. In:
Software Productivity. New York: Little Brown 1983

Mills, H.D., Dyer, M., Linger, R.C.: Cleanroom Software
Engineering. IEEE Software 4, 5 (1987), 19-25

Misra, S., Jalics, P.J.: Third-Generation versus Fourth-Generation
Software Development. IEEE Software 5, 4 (1988), 6-14

Moller, K.H.: Fehlerverteilung als Hilfsmittel zur
Qualitdtsverbesserung und Fehlerprognose. In: VDE- Fachtagung
Technische Zuverlissigkeit. Berlin: VDE-Verlag 1985

Moore, G.E.: Cramming More Components Onto Integrated
Circuits. Electronics Magazine, 38, 8 (April 1965)

Moore, G.E.: Interview with Gordon Moore. Scientific
American, September 1997. htip:/lwww.sciam.com/interview/
moore/092297moorel .html

Morris, C. R., Ferguson, C. H.: How Architecture Wins the
Technology Wars. Harvard Business Review, March—April
1993, 86-96

Moynihan, T.: An Experimental Comparison of Object-
Orientation and Functional Decomposition as Paradigms for
Communicating System Functionality to Users. J. of Systems
and Software 33, 2 (1996), 163-169

Miiller, G., Ranneberg, K.: Multilateral Security in
Communications. Reading, MA: Addison-Wesley 1999

319

ERIEIEIEN

320

S9JUal9)9y

[Musa93]
[Myer75]

[Myer78]

[Myer79]

[Naur69a]
[Naur69b]

[Neig84|

[Nels66]

[Niel94]

[Niel00]

[Niod83]

[Norm93]
[Pare97]
[Parn72]
[Parn74]
[Parn01]
[Pars74]
[Peng98]
[Penr89]

[Pfle97]

Musa, J.D.: Operational Profiles in Software-Reliability
Engineering. IEEE Software, March (1993), 14-32

Myers, G.].: Reliable Software Through Composite Design.
New York: Petrocelli 1975

Myers, G.J.: A Controlled Experiment in Program Testing and
Code Walkthroughs/Inspections. Comm. ACM 21, 9 (1978),
760-768

Myers, G.].: The Art of Software Testing. New York: Wiley and
Sons 1979

Naur, P.: Programming by Action Clusters. BIT 9, 3 (1969),
250-258

Naur, P., Randell, B.: Software Engineering. Brussels: NATO
Science Committee 1969

Neighbors, J.M.: The Draco Approach to Constructing
Software from Reusable Components. IEEE Trans on Software
Engineering 10, 5 (1984), 564-574

Nelson, E.A.: Management Handbook for the Estimation of
Computer Programming Cost. Syst. Dev. Corp. Report Ad-
A648750 (1966)

Nielsen, J.: Usability Engineering. San Mateo, CA: Morgan
Kaufmann 1994

Nielsen, J., Norman, D.A.: Usability on the Web isn’t a Luxury.
Information Week Online 1/14/2000. hitp:/fwww.information-
week.com/773web.htm

Niodusch, S.: A Comparison and the Result of Two Tools
Which Measure the Complexity of Programs Using the Theories
of Halstead and McCabe. IBM Technical Report GTR 05.300
IBM Boblingen 1983

Norman, D.A.: Things That Make Us Smart. Reading, MA:
Perseus Books 1993

Pareto, V.: Cours d’économie politique. Lausanne: Rouge 1897
Parnas, D.L.: On the Criteria To Be Used in Decomposing
Systems into Modules. Comm. ACM 15, 12 (1972), 1053-1058
Parnas, D.L.: On a ‘Buzzword’: Hierarchical Structure. IFIP
Congress 74. Amsterdam: North Holland 1974, 336-339
Parnas, D.L.: Invited Talk at sd&m Software Pioneers
Conference. Bonn June 2001

Parsons, H.M.: What happened at Hawthorne? Science 183,
(1974), 929-932

The Penguin Dictionary of Economics, 1998.
hitp:/fwww.xfer.comlentry/444673

Penrose, R.: The Emperor’s New Mind. Oxford: Oxford
University Press 1989

Pfleeger, S.L., Hatton, L.: Investigating the Influence of Formal
Methods. IEEE Computer 30, 2 (1997), 33-42

[Popp63]

[Port95]

[Port97a]

[Port97b]

[Port97c|

[Prec98]

[Prec99]

[Prec00]

[PrecO1a]

[Prec01b]

[Pugh91]

[Raim00]

[Rati97]

[Reif95]

[Reif99]

[Romb87]

Popper, K.R.: Conjectures and Refutations: The Growth of 321
Scientific Knowledge. London: Routledge & Kegan Paul 1963 —_—
Porter, A.A., Votta, L.G., Basili, V.R.: Comparing Detection
Methods for Software Requirements Inspections: A Replicated
Experiment. IEEE Trans on Software Engineering 21, 6 (1995),
563-575

Porter, A.A., Johnson, P.M.: Assessing Software Review
Meetings: Results of a Comparative Analysis of Two
Experimental Studies. IEEE Trans on Software Engineering 23,
3 (1997), 129-145

Porter, A.A., Siy, H.P., Toman, C.A. Votta, L.G.: An Experiment
to Assess the Cost-Benefits of Code Inspections in Large Scale
Software Development. IEEE Trans on Software Engineering
23,6 (1997), 329-346

Porter, A.A., Votta, L.G.: What Makes Inspections Work? IEEE
Software 14, 6 (1997), 99-102

Prechelt, L., Tichy, W.E.: A Controlled Experiment to Assess the
Benefits of Procedure Argument Type Checking. Trans on
Software Engineering 24, 4 (1998), 302-312

Prechelt, L., Unger, B.: Methodik und Ergebnisse einer
Experimentreihe iiber Entwurfsmuster. Informatik — Forschung
und Entwicklung 14,2 (1999), 74-82

Prechelt, L.: An Empirical Comparison of Seven Programming
Languages. IEEE Computer 33, 10 (2000), 23-29

Prechelt, L., Unger, B.: An Experiment Measuring the Effect of
Personal Software Process (PSP) Training. IEEE Trans on
Software Engineering 27, 5 (2001), 465-472

Prechelt, L.: Kontrollierte Experimente in der Softwaretechnik.
Heidelberg: Springer 2001

Pugh, E.W., Johnson, L.R., Palmer, J.H.: IBM’s 360 and Early
370 Systems. Cambridge, MA: MIT Press 1991

ERIEIEIEN

Raimond, E.S.: The Cathedral and the Bazaar; 2000 revision.
hitp:/lwww.tuxedo.org/~esr/writings/cathedral-bazaar/
Rational Software Corporation: Unified Modeling Language
(UML) 1.0. Santa Clara, CA: Rational Software Corporation
1997. http:/lwww.rational.com/uml

Reif, W.: The KIV approach to Software Verification. In: Broy,
M., Jahnichen, S. (eds): KORSO: Methods, Languages and
Tools for the Construction of Correct Software. LNCS 1009,
Heidelberg: Springer 1995

Reif, W.: Formale Methoden fiir sicherheitskritische Software —
Der KIV-Ansatz. Informatik — Forschung und Entwicklung 14,
4 (1999), 193-202

Rombach, H.D.: A Controlled Experiment on the Impact of
Software Structure on Maintainability. IEEE Trans on Software
Engineering 13, 3 (1987), 344-354

322

S9JUal9)9y

[Romb93]

[Romb02]

[Royc70]

[Rube68]

[Rumb91]

[Sack68]

[Samu01]

[Sche01]

[Sega93]

[Selb87]

[Selb88]

[Shar93]

[Shaw90]
[Shaw96]
[Shne9 8]

[Shul00]

Rombach, H.D., Basili, V.R., Selby, R.W. (eds): Experimental
Software Engineering Issues: Critical Assessment and Future
Directions. Lecture Notes in Computer Science # 706,
Heidelberg: Springer 1993

Rombach, H.D.: IESE Overview. In: Marciniak, J.J. (ed.):
Encyclopedia of Software Engineering. (2nd edition). New
York: Wiley 2002

Royce, W.W.: Managing the Development of Large Software
Systems: Proc. Westcon August 1970 (reprinted in Proc. ICSE
9, IEEE Computer Society Press 1987), 328-338

Rubey, R.]., et al.: Comparative Evaluation of PL/I. USAF Rep.
ESD-TR-68-150, 1968

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen,
W.: Object-Oriented Modeling and Design. Englewood Cliffs,
NJ: Prentice Hall 1991

Sackman, H., Erikson, W.]., Grant, E.E.: Exploratory
Experimental Studies Comparing Online and Offline
Programming Performance. Comm. ACM 11, 1 (1968), 3-11
Samuelson, P.: Intellectual Property for an Information Age.
Comm. ACM 44, 2 (2001), 67-68

Schechter, B., Ross, M.: Leading the Way in Storage. IBM Think
Research 2001. hitp://domino.research.ibm.com/comm/
wwwr_thinkresearch.nsf/pages/storage297.html

Segal, ML.E., Frieder, O.: On-The-Fly Program Modification:
Systems for Dynamic Updating. IEEE Software 10, 2 (1993),
53-65

Selby, R.W., Basili, V.R., Baker, ET.: Cleanroom Software
Development: An Empirical Investigation. IEEE Trans on
Software Engineering 13, 9 (1987), 1027-1037

Selby, R.: Empirically Analyzing Software Reuse in a Production
Environment. In: Tracz, W. (ed.) Software Reuse: Emerging
Technology. IEEE Computer Society Cat. No. EH0278-2
(1988), 176-189

Sharble, R.C., Cohen, S.S.: The Object-Oriented Brewery: A
Comparison of Two Object Oriented Development Methods.
ACM SIGSOFT Software Engineering Notes, 18,2 (1993), 60-73
Shaw, M.: Prospects for an Engineering Discipline of Software.
IEEE Software 7, 6 (1990), 15-24

Shaw, M., Garlan, D.: Software Architecture. Perspectives of an
Emerging Discipline. Upper Saddle River, NJ: Prentice Hall 1996
Shneiderman, B.: Designing the User Interface. Reading, MA:
Addison-Wesley 1998 (3rd edition)

Shull, E, Rus, L., Basili, V.R.: How Perspective-Based Reading
Can Improve Requirements Inspections. IEEE Computer 33, 7
(2000), 73-79

[Shla88]
[Simo062]
[Sim069]

[Simo74]
[Snee87)

[Spiv89]
[Stev74]

[Stut94]

[Tich98]

[Trav99]

[Tril98]

[Turn93]

[Unge98]

[Walk99]

[Wals77]

[Wein71]

[Well83]

[Wert23]

Shlaer, S., Mellor, S.: Object-Oriented Analysis: Modeling the 323
World in Data. New York: Prentice Hall 1988 E—
Simon, H.A.: The Architecture of Complexity. Proc. American
Philosophical Society 106 (1962), 467-482. Reprinted in [Simo69]
Simon, H.A.: The Sciences of the Artificial. Cambridge, MA:
MIT Press 1969

Simon, H.A.: How Big is a Chunk? Science 183 (1974) 482-488
Sneed, H., Jandrasics, G.: Software Recycling. Proc. IEEE
Conference on Software Maintenance, 1987, 82-90

Spivey, J.M.: The Z Notation: A Reference Manual. London:
Prentice Hall International 1989

Stevens, W.P., Myers, G.]., Constantine, L.L.: Structured
Design. IBM Systems J. 13, 2 (1974), 115-139

Stutzke, R.D.: A Mathematical Expression of Brooks’ Law. In:
Ninth International Forum on COCOMO and Cost Modeling,
Los Angeles 1994

ERIEIEIEN

Tichy, W.: Should Computer Scientists Experiment More? IEEE
Computer 31, 5 (1998), 32-40

Travassos, G.H., Shull, E,, Fredericks, M., Basili, V.R.: Detecting
Defects in Object Oriented Designs: Using Reading Techniques
to Increase Software Quality. In: Proc. Conf. on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, CO 1999

Trilk, J.: Skalierbare Visualisierung objectorientierter Software.
Ph.D. Thesis, Technical University of Munich 1998

Turner, C.D., Robson, D.]J.: The State-Based Testing of Object-
Oriented Programs. Proc. IEEE Conf. on Software Maintenance
1993, 302-310

Unger, B., Prechelt, L.: The Impact of Inheritance Depth on
Maintenance Tasks. Techn. Report 18/1998, Fakultat
Informatik, Universitat Karlsruhe 1998

Walker, R.J., Baniassad, E.L.A., Murphy, G.C.: An Initial
Assessment of Aspect-Oriented Programming. In: Proc. 21st
Intl. Conf. on Software Engineering (ICSE). New York: ACM
1999, 120-130

Walston, C.E., Felix; C.P.: A Method of Programming
Measurement and Estimation. IBM Systems J. 16,1 (1977)
Weinberg, G.M.: The Psychology of Computer Programming.
New York: Van Nostrand Reinhold 1971

Weller, E.F.: Lessons from Three Years of Inspection Data. IEEE
Software 10, 5 (1993) 38-45

Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt I +
I1, Psychologische Forschung, 1 (1923), 47-58 and 4 (1923),
301-350. Translation published in Ellis, W.: A Source Book of
Gestalt Psychology. London: Routledge & Kegan Paul 1938

324

S9JUal9)9y

[Weyu80]

[Weyu88]
[Weyu93]
[Wild93]
[Wirf90]
[Wirt71]
[Wirt85]
[Wohl00]
[Wolv74]

[Wood97]

[Wu01]

[Your97]

[Zelk98]
[Zema68]

[Zend01]

[Zhan99]

[Zweb95]

Weyuker, E.J., Ostand, T.J.: Theories of Program Testing and
the Application of Revealing Subdomains. IEEE Trans on
Software Engineering 6, 3 (1980), 236-246

Weyuker, E.]J.: The Evaluation of Program-based Software Test
Adequacy Criteria. Comm. ACM 31, 6 (1988), 668-675
Weyuker, E.]J.: More Experience with Dataflow Testing. IEEE
Trans on Software Engineering 19, 9 (1993), 912-919

Wilde, N., Matthews, P., Huitt, R.: Maintaining Object-
Oriented Programs. IEEE Software 10, 1 (1993), 75-80
Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-
Oriented Software. New York: Prentice Hall 1990

Wirth, N.: Program Development by Stepwise Refinement.
Comm. ACM 14, 4 (1971), 221-227

Wirth, N.: From Programming Language Design to Computer
Construction. ACM 28, 2 (1985), 160-164

Wohlin, C. et al.: Experimentation in Software Engineering: An
Introduction. Boston: Kluwer Academic 2000

Wolverton, R.W.: The Cost of Developing Large-Scale Software.
IEEE Trans on Computers June 1974, 282-303

Wood, M., Roper, M., Brooks, A., Miller, J.: Comparing and
Combining Software Defect-Detection Techniques. In: Jazayeri,
M., Schauer, H. (eds): Proc. 6th European Software Engineering
Conference (ESEC), LNCS 1301, Heidelberg: Springer 1997,
262-277

Wu, M.W., Lin, Y.D.: Open Source Software Development: An
Overview. IEEE Computer 34, 6 (2001), 33-38

Yourdon, E.: Death March: Managing ‘“Mission Impossible’
Projects. Upper Saddle River, NJ: Prentice Hall 1997

Zelkowitz, M.V., Wallace, D.: Experimental Models for
Validating Technology. IEEE Computer 31, 5 (1998), 23-31
Zemanek, H.: Abstrakte Objekte. Elektronische Rechenanlagen
10, 5 (1968), 208-216

Zendler, A.: A Preliminary Software Engineering Theory as
Investigated by Published Experiments. Empirical Software
Engineering 6,2 (2001), 161-180

Zhang, Z., Basili, V.R., Shneiderman, B.: Perspective-based
Usability Inspection: An Empirical Validation of Efficacy.
Empirical Software Engineering 4,1 (1999), 43-69

Zweben, S.H., Edwards, S.H., Weide, B.W., Hollingsworth, J.E.:
The Effects of Layering and Encapsulation on Software
Development Cost and Quality. IEEE Trans on Software
Engineering 21, 3 (1995), 200-208

administration 160
analytical methods 98
applet 158
apprentice’s law 229
architecture 242

Basili-Boehm COTS hypothesis 85
Basili-Moller law 167
Basili-Rombach hypothesis 268
Basili’s law 105

Bauer-Zemanek hypothesis 50-1
Baumol’s disease 199

Bayer’s hypothesis 252

Bayes’ theorem 267
Beck-Fowler hypothesis 84
black-box testing 124

Boehm’s first law 17

Boehm’s hypothesis 201
Boehm’s second law 19

Boehm’s third law 192

Booch’s first hypothesis 25
Booch’s second hypothesis 50
Brooks’ law 199

business analysis 184

case study 3,265
causality 274

chunk 226

Codd’s hypothesis 254
cohesion 43
composition 68
conjecture 4
Constantine’s law 43
construction 68
controlled experiment 264
Conway’s law 81
Cooper’s law 249
Corbatd’s law 72
correctness 13

cost estimating 185

coupling 43
Curtis’ law 38

Dahl-Goldberg hypothesis 83
Davis’ law 22

debugging 123

defect 12

DeMarco-Glass law 194
Denert’s law 46

dependent variables 274
DeRemer’s law 71

design 34

design specification 35
Dijkstra-Mills—Wirth law 74
Dijkstra’s law 128
distribution 150

dynamic analysis 98
dynamic visualization 144

effectiveness 99

efficiency 99

empirical research 265
Endres—Glatthaar hypothesis 138
Engelbart’s hypothesis 254

error 11

evolution 160

experiment 3

external validity 274

Fagan’s law 100

failure 11

fault 11

firewall 58
Fitts—=Shneiderman law 48
function point 187
functional correctness 124

Gamma’s hypothesis 53
gestalt laws 224
Glass’ law 16

326

Xapu|

Gray-Serlin law 133
Gutjahr’s hypothesis 136

Hamlet’s hypothesis 139
Hawthorne effect 232
help service 157
Hetzel-Myers law 107
Hoagland’s law 247
Hoare’s hypothesis 113
Humphrey’s law 195
hypothesis 4

independent variables 274
industry 243

inspection 99

installation 150

internal validity 274

Krause’s law 227
Kupfmiller’s law 223

Lanergan’s law 76

law 2

law of nature 4

Lehman’s first law 163
Lehman’s second law 165
Lehman’s third law 166
librarian’s law 228

maintenance 160
manufacturing 150

market potential 187
marketer’s hypothesis 233
Maslow-Herzberg law 229
Mays’ hypothesis 110
McCabe’s hypothesis 168
McGregor’s hypothesis 231
Mcllroy’s law 77
measurement 264
Metcalfe’s law 250
method §

Miller’s law 226
Mills—Jones hypothesis 110
model checking 117
modeling 11

Moore’s law 244

Morris—Ferguson law 250
motivation 219

Nelson—Jones law 190
Nielsen—-Norman law 134

observation 2

Pareto—Zipf-type laws 131
Parnas’ law 4§

pilot project 11
Porter—Votta law 103
pricing 188

principle 5

process 11,184

product 11

productivity 186
programming by example 89
project 3,11, 184

project management 184
project planning 185
prototyping 11

quality 12

reference model 242
reliability testing 123
requirements definition 10
requirements elicitation 26
requirements specification 11

Sackman’s first law 127
Sackman’s second law 188
safety 28

satisfaction 219

security 28

service contract 160
servlet 158

Shaw-Garlan hypothesis 252
Simon’s law 40

skill 219

software engineering 1
specification 35
stakeholder 10

standard architecture 242
state 11

static analysis 98

static visualization 116
survey 3,265
systems engineering 1

technology 242
test cases 124
test driver 124
test strategy 124
test suite 124
testing 123
theory 2

tool 5

user training 157

validation 98
verification 98
vision statement 26
visual languages 88
visualization 115

Weinberg’s law 131

Weyuker’s hypothesis 137

white-box testing 124
Wilde’s hypothesis 170

327

Xapu|

