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Foreword

Some Context
It is a great pleasure and difficult task to write the foreword of this book. I
would like to start by setting out some context.

Everything started back in 1996 in the context of the IST project FAMOOS
(Framework-Based Approach for Mastering Object-Oriented Software Evo-
lution). At that time we started to think about patterns to help approach
and maintain large and complex industrial applications. Some years later, in
2002, after a lot of rewriting these patterns ended up in our book “Object-
Oriented Reengineering Patterns”. Back in 1999, Radu Marinescu was a
young researcher on object-oriented metrics and Michele Lanza was starting
to work on program visualization. At that time, object-oriented reengineering
was nearly a new field that we explored with imagination and fun. While writ-
ing the “Object-Oriented Reengineering Patterns” book, we (Oscar Nierstrasz,
Serge Demeyer and I) felt the need to have some metric-based patterns that
would help us apply metrics to understand or spot problems in large appli-
cations, but we could not find the right form for doing it, so we dropped this
important topics from our book.

A few years later, in the context of RELEASE Network, a European Science
Foundation network, I remember talking with Radu, who was working on
detection strategies, about a book that would have pattern metrics at its
center. Such a book was then still missing. Now you can read about years of
concrete experience in this book.

A Word About Design
Programming, and object-oriented programming in particular, is about defin-
ing an adequate vocabulary that will help express a complex problem in a
much simpler way. While object-oriented design provides a good way to ex-
press new vocabularies, object-oriented design is difficult. Difficult because
different concerns have to be taken into account: Is the vocabulary good
enough? How will the terms interact with each other? Will the domain be ex-
tended? Can it be extended? Will the operations change? Can we know this
upfront in our nice crystal ball? Are the entities representing the domain im-
portant enough to be first class entities? And many other concerns. We have
some important conceptual tools for assessing the design of an application
— experience, code heuristics, and design patterns are some of them — still
Object-Oriented Design (in capitals) is difficult.

Over the years, I have programmed a lot and taught a lot of object-oriented
design. Of course, not simply UML, which is a notation, but the identification
of objects and their responsibilities, how these entities interact to gracefully
achieve our complex tasks. Note that often people confuse the format with
the contents, as XML marketing tends to demonstrate it.

The goal of my lectures is not that students learn some design patterns,
but that the students train and educate their design taste. Maybe because
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I’m French, I often use the metaphor of teaching cooking where, besides the
technical aspects of slicing and cooking the elements, creativity comes into
play because the cook knows tastes and spices and how they interact. To
learn we should get in touch with varieties of spices, aromas and textures:
we do not teach cooks by only feeding them with fast food, but by exposing
them to varieties and subtle flavors. I always remember when I was a kid the
first time I went to sleep in a friend’s place. There things were the same but
also different. I realized that we understand the world also by stressing and
tasting differences. After being exposed to change, we can decide to explore
or not, but at least this helps us to understand our own world. This is why I
expose students to the beauty of Smalltalk. My goal is to destabilize them, so
that they realize that “0.7 sin” (i.e., sin is just a message sent to a number)
can be more natural than “Math.sin(0,7)”, or that late binding is a big case
statement at the virtual machine level. A nice example is to understand how
Boolean behavior (NOT, AND, OR) is defined when we have only objects and
not primitive types.

Recently I have been more and more involved in the maintenance and
evolution of Squeak, this great open-source multimedia Smalltalk. I decided
that I should help make this gem shine. And this has been rewarding since I
have learned a lot. Squeak has given me many ideas about my own practices
and has sharpened my taste and views about design, and often even changed
my mind. Here are some of the thoughts I want to share with you:
(1) Reducing coupling is difficult. Often we would like to be able to load one
package independently of others. But there is this one reference to that class
that does not make it possible. Easy you think. Just move the class to an-
other package. But you simply move the dependency around! If you are lucky
you have dead code. If you can attach the changes as a class extension to
another package you can fix it, but in Java and C++ you do not have that
possibility, while the next version of C# is taking a step in that direction. In
all the other non-trivial cases you have to understand the context and see if
a registration mechanism or any other design change can solve the problem.
(2) It is really fun to see that the old procedural way of thinking is still with
us. People still believe that a package should be cohesive and that it should
be loosely coupled to the rest of the system. Of course strong coupling is a
problem. But what is cohesion in the presence of late binding and frame-
works? Maybe the packages I’m writing are transitively cohesive because the
classes they contained extend framework classes defined in cohesive pack-
ages? Therefore naive assessments may be wrong.
(3) Evolution in general is difficult. Not really because of the technical dif-
ficulty of the changes but because of the users. The most difficult things I
learned with Squeak is that on the one hand all the system and the world
urge you to fix that specific behavior, it is easy to fix and the system and
your ego would be better after. But the key questions are: How are the clients
impacted? Is the change worth it? May be the design is good enough finally?
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But what is “good enough”? On the other side, not changing is not the so-
lution. Not changing is not really satisfactory because maybe with a slightly
different vocabulary our problem would be so simple to express. In addition
a used system must change. Therefore the next challenge is then how can
we escape code sclerosis. How can we create a context in which changes are
acceptable and possible and not a huge pain? The only way is to build a
change-friendly context. One path to follow is investing in automated tests.

A Word About Metrics
Funny enough, I never believed that metrics could help in assessing design.
Indeed, what metric can tell me when we should introduce a Visitor pattern.
We could get an indication, for example, when the domain objects do not
change over the years and when we want to plug in different algorithms
acting on the domains. But, is it worth it? Is it worth it when you are using a
language that supports class extension such as Objective-C or Smalltalk1.

However on the other hand, when I was writing the object-oriented reengi-
neering patterns, I was dreaming about small metric-based patterns that
would help the reengineers to identify some structural problems, maybe not
Design problems but still important problems and bad smells. Indeed, it
would be wonderful to be able to use simple metrics and to know how to
use them to identify code problems. And this is what Michele and Radu have
succeeded in presenting in this book. So, after all, I have changed my mind
regarding metrics.

I think that the contribution of this book is quite rich. Indeed what is fas-
cinating is to see the amount of Java code tool analysis. The major problem
with these tools is that of course they compute metrics — or what I would
humbly call measurements with respect to metric experts. And we have tons
and tons of metrics! We are overwhelmed by numbers and acronyms! But
nearly none of the tools puts the metrics in context, or simply makes them
confront each other. Of course this is difficult, but this is where the informa-
tion or semantics is revealed. By putting metrics in context we pass from a
quantitative and boring approach to a qualitative understanding. The great
value of this book is to put metrics in perspective; it does this using two
conceptual tools: the overview pyramid and the polymetric view.

The Overview Pyramid is really a simple and powerful tool to introduce
some way to understand the metrics, to correlate them, and, by this simple
fact, generate a deeper knowledge. It is well known that by mixing metrics we
obtain meaningless results. Still the overview pyramid avoids this problem
and uses ratios at the right level. The overview pyramid produces new in-
sights about the code. It makes a big difference whether a package contains
1000 lines of code for 100 or 10 classes.

1 In Smalltalk or Objective-C, a method does not have to be in the file or
package of the class to which the method is attached. A package can define
a method that will extend a class defined in another package.



I’m a bit biased when I talk about polymetric views since I love them. Poly-
metric views display structural entities and their relationships using some
trivial algorithms. Then the entities are enriched with metrics. Once again,
the metrics are put into a context. And from this perspective new knowl-
edge emerges. It is worth mentioning that one of the powers of polymetric
views is their simplicity. Indeed, researchers tend to focus on solving difficult
problems, and some people confuse the complexity of problems with that of
the solutions. I have always favored simple solutions when possible since
they may have a chance to get through. Polymetric views have been designed
to be simple so that engineers using different environments can implement
them in one or two days. As an anecdote, an Apple engineer to whom we
showed the polymetric views one evening showed us the next morning that
he had introduced some of them in his environment. This was delightful.

I hope that in the future metrics tools will introduce the overview pyramid
and that reengineers will use the power of polymetric views.

This book goes a step further: It also introduces a systematic way of
detecting bad smells by defining detection strategies. Basically a detection
strategy is a query on code entities that identifies potential bad smells and
structural design problems. Now there are two dangers: first there is the dan-
ger of thinking that because your code does not exhibit some of these bad
smells you are safe; and second there is the danger of thinking the inverse.
Indeed, the authors measure and reveal structural aspects of the program
and not its Design2. While this may be true that if the structure of an appli-
cation is bad, its design can have problems — there is no systematic way of
measuring the design of an application. Of course, in trivial cases (i.e., when
a system is distorted according to bad practices) structural measurements
will reveal flaws; but in the case of well-designed systems that have evolved
over time, this is another story.

Therefore it is important to see the suggested refactorings as the prelim-
inary step to further and more consequent analysis and action. But this is
an important step. This is like removing the furniture of a room before ren-
ovating it — once you removed it you can see the wall that you should fix.
Thus, just because the suggested refactorings are applied and the proposed
detection strategies do not detect anything does not mean that the problem
is not there, but you are in a much better position moving forward.

So, for all the reasons I’ve mentioned, I’m convinced — and I guess that
you see that I’m not an easy guy to convince — that this book will really help
you to deal with your large applications.

Université de Savoie, April 2006 Stéphane Ducasse

2 You remember, with a capital “D”.
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1

Introduction

This book is not about metrics per se. It is about the way metrics can
be used in practice to aid us in characterizing software systems, to
evaluate their design and when we detect design problems to provide
the appropriate refactorings.

The goal of this book is to help you characterize, evaluate and
improve the design of the large applications that you have to main-
tain and enhance, by using metrics and visualization techniques to
localize potential structural design problems and identify context-
dependent recovery means.

Why are these relevant problems? Well, if a straightforward and
simple software engineering solution to build perfect and extensible
applications existed, any software engineer would know it and you
would not be reading this book. Designing large applications is diffi-
cult because of the intrinsic complexity of the modelled domains. To
this intrinsic complexity, another incidental factor is added, which
comes from business processes, organizational issues, human and
other external factors.

Based on centuries of development, engineers have built – with
success – extremely complex artifacts, such as bridges, buildings,
satellites, space shuttles, etc. In software engineering, many devel-
opment methodologies and design heuristics [Rie96] have been pro-
posed in recent decades to help software engineers to produce robust
and extensible software. Some methodologies promoted up-front de-
sign such as the now obsolete waterfall model. The spiral model ac-
knowledged this fact and proposes a more flexible model of develop-
ment adapted to changes [Boe88]. More recently, agile methodologies
acknowledged the fact that there is no way to predict future require-
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ments and that the only way to survive is to embrace change as a fact
of the software industry [Bec00, Kru04].

Over the years a common understanding of basic software en-
gineering principles emerged. In the case of object-oriented pro-
gramming and design good examples are the Open-Closed Princi-
ple [Mey88a], the Law of Demeter [Lie96], the Substitution Principle
[MGM02, LW93b], Responsibility-Driven Design [WBW89], etc. More-
over, nowadays most software engineers understand and use design
patterns [GHJV95, ABW98], write unit tests and use refactorings
[FBB+99].

There are several factors that make designing and developing large
software systems a difficult task:

• Designing software is about abstraction manipulation, i.e., a soft-
ware system has no tangible, physical form. Therefore it is more
complex to assess whether the outcome is the desired one.

• Writing software involves human communication that becomes
more and more complex the more people are involved, and even
has an effect on the structure of the system itself, as stated in Con-
way’s law: “Organizations that design systems are constrained to
produce designs that are copies of the communication structures
of these organizations”.

• Software must evolve and change to be successful. Indeed, due to
the inherent complexity of design, the necessity of meeting new
client requirements adds stress to software systems over their
life-time. A design often degrades and gets more and more com-
plex and thus harder to evolve [DDN02]. Lehman and Belady es-
tablished laws that describe the inevitable evolution of successful
projects [LB85]. These laws stress the fact that software must con-
tinuously evolve to stay useful and that this evolution is accompa-
nied by an increase in complexity and that energy will have to be
invested to control this growth. This continuous evolution implies
that a design is not written in stone but must be revised and im-
proved over and over again to fight against the effects of aging and
decay that software systems inevitably incur.

An important question is then how can we control complexity. There
is no definite answer but often a combination of actions such as
redesigning, rethinking and adapting the architecture, modularizing
the application, etc. [DDN02, Fea05]. What would be ideal would be
to have analyses or predictions telling us which parts of the sys-
tem should be changed to support the system evolution. Many re-
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searchers are working on capturing software quality in terms of met-
rics. Up to now, no magic metric has been found and we can consider
the definition of a universal design quality metric as the holy grail of
software engineering.

Still, metrics can be a useful tool to understand, steer and control
the development of complex software applications. Software metrics
can be used to understand applications, to get an overview of a large
system and identify potential design problems. In this book we pro-
pose the use of metrics to get an overview of large applications us-
ing source code metrics and to identify potential design problems by
combining source code metrics.

Metrics — a Swiss Army knife for software design?

Good design quality metrics are not necessarily indicative of
good designs. Likewise, bad design quality metrics are not nec-
essarily indicative of bad designs. [JDepend Docs]

It is important not to be blinded by metrics. Metrics are not a
panacea. Metrics are a tool with power but also with limits. There
are many aspects of design and its quality that are difficult to mea-
sure. We offer an extensive set of ways to measure design, but of
course these ways are based on structural element characterization,
i.e., source code and design assessment cannot be reduced to mea-
suring the structure of an application. However, metrics help in spot-
ting problems that an expert can use as a starting point for a deeper
analysis.

In addition, within your organization you certainly have access
to other information that you can measure such as the number of
changes, the number of bug fixes associated with a particular arte-
fact, the amount of time spent to develop a part of the system, and so
on. Following our approach you can certainly gain insights into your
applications by developing your own detection strategies.

Why Should You Read This Book?

We wrote this book for all the software engineers concretely facing
legacy systems in their daily work. The ideal reader we have in mind
is a fluent programmer who has to maintain and evolve code he did
not write, or a consultant who has to assess large applications.

While many books exist to help designing existing applications,
there is no book that supports the understanding of applications and
the identification of potential design problems in a scalable manner.
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It is rare to have the possibility to design a new system from
scratch. Most of the time engineers are assigned to maintain and
evolve existing successful applications. The term used in such a case
is legacy system. Such systems suffer from typical problems, such as
obsolete documentation, convoluted design, intensive patch mecha-
nisms, large size, severe duplication, obsolete parts, long build times,
loss of original developers, etc. [Fea05, DDN02].

The key characteristics of legacy systems, besides their impor-
tant financial value, is their complexity, which stems from the fact
that they were created and evolved by many developers. For exam-
ple, the software system which helps a Jumbo Jet fly consists of ca.
8,000,000 (8 million!) lines of code [Coo99].

The central question is how can we deal with the size of legacy
systems. Academic researchers has proposed numerous approaches,
two of which have proven to scale up and be successful, metrics and
visualization.

Metrics. Metrics are good at summarizing particular aspects of
things and detecting outliers in large amounts of data. They scale
up and are a good basis for synthesizing the many details of soft-
ware.

Visualization. Humans are trained to understand signs and pic-
tures, therefore visualization is an excellent tool for understand-
ing and identifying hidden aspects of large software.

In this book we use and combine metrics and visualization to offer
efficient approaches to understanding and assessing large applica-
tions. This book should help you to develop strategies for approach-
ing, assessing and supporting the evolution and maintenance of large
applications.

How Does This Book Fit into Your Library?

Several good books have emerged over recent years, and next we
present a short and non-exhaustive list. While none of them covers
the objective of this book, they are connected to the exact purpose
of this book, i.e., to characterizing, evaluating and improving existing
code design.

Software metrics books. There are also many good books on soft-
ware metrics. Lorenz and Kidd [LK94] present a first attempt to
use simple metrics to qualify the design of applications. How-
ever, the result is fairly outdated and overly simplistic. There
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are other, more technical books, such as the one by Henderson-
Sellers [HS96] which offers an extensive survey of metrics, or the
one by Fenton [FP96] which lays down the foundation of measure-
ment. These books, while valuable to researchers, are not oriented
towards software engineers daily facing large applications. Our
book offers directly applicable methods for practitioners.

Object-Oriented Design Heuristics. The book by Riel [Rie96] offers a
large repository of concise, yet effective, design heuristics, guide-
lines and best practices for achieving good object-oriented design.
In this book we use many of these heuristics as a starting point for
the detection of relevant aspects of good (and bad) object-oriented
design, aspects that need to be quantified using metrics.

Reengineering Books. The book “Object-Oriented Reengineering” by
Demeyer et al. [DDN02] identifies a large set of patterns that de-
scribe best practices to reengineer a legacy system. This book cov-
ers the complete life cycle of approaching, understanding, testing,
and restructuring legacy systems. However, it does not provide a
systematic (quantifiable) way to assess the quality of an applica-
tion. Another relevant book is “Working Effectively with Legacy
Code” by Feathers [Fea05], which offers strategies for working
more effectively with large, untested legacy code bases.

Design Patterns. The seminal book on Design Patterns [GHJV95] of
the “gang of four” inspired many good books, such as [ABW98].
However, even though they offer solutions to design problems,
they do not support the identification of the problems in massive
amount of data that large legacy systems consist of.

Refactorings and Code Smells. The book by Fowler [FBB+99] presents
refactorings, behavior-preserving code transformations that can
help you to improve your design. In addition, this book presents
code smells, factors that indicate bad practices or indicate that
the design is starting to get rusty. While enlightening and provoca-
tive, the book does not offer a systematic way of identifying possi-
ble bad smells. Another excellent book is “Refactoring to Patterns”
by Kerievsky [Ker04], which suggests that using patterns to im-
prove an existing design is better than using patterns early in a
new design.

Object-Oriented Metrics in Practice is the glue between all these books:
It supports the identification of bad smells using software metrics,
links back to refactorings or to reengineering patterns as possible
solutions, and enforces object-oriented design heuristics.
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The Book in a Nutshell

The approaches presented in this book are useful in dealing with the
problems of existing legacy systems or when you need to ameliorate
the design of a part of an existing system.

Fig. 1.1. Object-Oriented Metrics in Practice — in a Nutshell.

In Fig. 1.1 we see a depiction of our approach. It starts with a
system whose design must first be characterized and then evaluated.
This information is necessary to perform refactorings on the system
to ameliorate its design.

Chapter 2, Facts on Measurements and Visualization , presents a
practical view on metrics and the usual pitfalls of their use and how
we circumvent them in this book. This chapter puts down the basic
principles and vocabulary that is used throughout this book and also
introduces the domain of visualization.

Chapter 3, Characterizing the Design , presents two metrics-based
techniques, the Overview Pyramid and Polymetric Views, to get an
overview of the design of a large software system. The Overview Pyra-
mid assembles in one place the most significant measurements about
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an object-oriented system, so that an engineer can see and interpret
in one shot everything that is needed to get a first impression about
the system. It provides an overview of the application in terms of its
complexity, coupling and inheritance. Polymetric Views are metrics-
enriched visualizations of software entities and their relationships.
Their main benefit is that they can visually render numbers in a
simple, yet effective and highly condensed way that is directly in-
terpretable by the viewer.

Chapter 4, Evaluating the Design , presents two further tech-
niques, i.e., the Detection Strategy and the Class Blueprint to provide
more fine-grained understanding and assessment of the design of
an application. Detection strategies are queries, expressed as a com-
bination of metrics, identifying design elements in the source code
satisfying the properties encoded by the query. They provide us with
a means to detect flawed (from a design point of view) entities. A
Class Blueprint is a semantically enriched and layered visualization
of the control-flow and access structure of classes. It provides us with
a powerful means to inspect the suspects detected by the Detection
Strategy.

The following three chapters (Identity Disharmonies , Collaboration
Disharmonies , and Classification Disharmonies ) present a catalogue
of design disharmonies. Each chapter presents general design rules
for the design of classes, their collaboration and their position in in-
heritance hierarchy. These rules offer a unified way of approaching
design through three general viewpoints: proportion (i.e., the size of
the entity), presentation (i.e., how the entity is accessed or the pre-
sentation it offers to collaborators), and its implementation (i.e., the
relationships between its internal representation). Each chapter then
presents in detail design disharmonies which can be detected using
metrics. For each of them we describe a metrics-based rule, i.e., a
Detection Strategy, that would discover it in the code, analyze and
discuss in detail an example using also the Class Blueprint visual-
ization technique, and propose a set of potential cures in terms of
refactorings.

About the Metrics

In this book we do not focus on one particular programming lan-
guage. We exemplify the metrics using one or other language, but the
metrics remain as language independent as possible. Therefore the
vocabulary used throughout this book may not perfectly match that
used by software engineers working with a specific language.
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In the context of describing measurements we think of classes and
operations as design entities that have properties and are in relation
with other entities. This perspective helps us to define almost every
measurement for a design entity in the very simple terms of the fol-
lowing three elements:

1. The Having Element, i.e., what other entities does the measured
entity have (contain), in the sense of being a scope for those enti-
ties? This also includes the inverse relation: which entity does the
measured entity belong to? For example, an operation has param-
eters and local variables, while it belongs to a class.

2. The Using Element, i.e., what entities does the measured entity
use; and again the inverse relation: by which entities is the mea-
sured one being used? For example, an operation is using the vari-
ables that it accesses, while it is used by the other operations that
call (invoke) it. A class uses another class by extending it through
inheritance, but also uses other classes by communicating with
them.

3. The Being Element, i.e., what are the properties of the measured
entity? For example, a property of a class is that it is abstract,
while an attribute can have the property of being “private”.

These three elements, as trivial as they may seem, open a huge range
of possibilities for measurements, and one should be careful not to
fall into the trap of measuring for the sake of measuring. Metrics are
only a means, not a goal, and our goal is to evaluate and improve the
design of a system using metrics.

A detailed description of this manner of expressing object-oriented
metrics is found in Appendix A. There we also describe all the metrics
used in this book in terms of the three aforementioned elements.

About the Examples

We applied the presented material on many proprietary projects.
However, as we could not use these private industrial applications
as examples, we chose to use an open-source project, ArgoUML (a
well-known UML modeling application1) to illustrate our approaches.

ArgoUML consists of more than 200,000 raw lines (including com-
ments, dead pieces, etc.), and slightly less than 100,000 lines of Java
source code. We also use some code samples of other open-source
projects written in Smalltalk to show that our approach is language
independent.
1 See http://argouml.tigris.org
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Tool Support

Our approaches are powerful, but in order to make use of their full
potential an adequate tool support is needed. From this point of view
there are three possibilities:

1. Our own tool implementations (see Appendix B and Appendix C)
which are free and (partially) open-source. Although developed in
an academic environment we have oftentimes used them in large-
scale industrial applications. We cordially invite you to try them
out.

2. We hope that industrial tool builders will be influenced by this
book and adapt their own tools.

3. As the ideas behind the tools are not complex, building your own
tools based on our ideas is far less complex than you may guess.

The Stage is set

This book presents a hopefully fresh view on software metrics. You
will discover that they are indeed useful for characterizing large soft-
ware systems beyond the usual lines of code. Moreover, with some
more sophisticated approaches you will learn how metrics can help
to detect design problems in large systems and how a correct identi-
fication can also lead to proper refactoring solutions.

Enter metrics...



2

Facts on Measurements and Visualization

In this chapter we briefly introduce you to the good, the bad and
the ugly of software metrics. In this context, we also take a short
look on why and how visualization can be used in conjunction with
metrics to counter-balance several drawbacks of using metrics. By
doing this we aim to set a basis for our approach of employing metrics
to characterize, evaluate and improve the design of software systems.

What is a metric? It is the mapping of a particular characteristic of
a measured entity to a numerical value. An entity can be anything, in-
cluding yourself; the characteristic can be anything, e.g., your height.
The metric height in your case, for example, would be 180 cm. The
metric could also have been 1.8 m. This seemingly trivial issue actu-
ally unravels a space where decisions have to be taken: what is the
unit we are using? Is it important? Yes, otherwise you could end up
being a giant of 180 meters! Moreover, why do we care at all about
your height? Maybe we just wanted to measure your weight – and
this leads us to the next issue: we can measure almost everything,
but if we do not have a clear goal in mind of what we are actually
trying to achieve with these measurements we are wasting our time.
Since this is a book about object-oriented construction and design,
we are quantifying and qualifying those aspects.

Why is it useful to measure? Engineering artifacts are made ac-
cording to precise guidelines, i.e., the size, weight, material, etc. of
screws, construction elements, etc. must be defined upfront and be
respected by those actually creating the artifacts. Metrics in this case
are a way to control quality. Losing control in such a case may have
implications on security and potentially endanger people. In software
engineering it is important and useful to measure systems, otherwise
we risk losing control because of their complexity. Losing control in
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such a case could make us ignore the fact that certain parts of the
system grow abnormally or have a bad quality, e.g., cryptic and un-
commented code, badly structured code, etc..

In practice there are different types of metrics that quantify vari-
ous aspects of software development ranging from human resources
to bugs and documentation. Consequently, metrics are used by de-
velopers, team leaders, and project managers, for many specific pur-
poses, like quantifying and qualifying the code that has been writ-
ten, or predicting future development efforts that must be invested
into a project. Software metrics can be divided into two major groups
[LK94]:

1. Project metrics. They deal with the dynamics of a project, with what
it takes to get to a certain point in the development life cycle and
how to know you are there. They can be used in a predictive man-
ner, e.g., to estimate staffing requirements. Being at a higher level
of abstraction, they are less prescriptive, but are more important
from an overall project perspective.

2. Design metrics. These metrics are used to assess the size and in
some cases the quality, size and complexity of software. They look
at the quality of the project’s design at a particular point in the
development cycle. Design metrics tend to be more locally focused
and more specific, thereby allowing them to be used effectively to
directly examine and improve the quality of the product’s compo-
nents.

With respect to this classification, this book is dealing exclusively
with design metrics.

The most pragmatic issue is how to use metric values so that they
provide real information and not just numbers. In this context, the
Goal–Question–Metric (GQM) model [BR88] defines the necessary obli-
gations for setting objectives before embarking on any software mea-
surement activity.

1. List the major Goals for which metrics are going to be employed.
2. From each goal derive the Questions that must be answered to

determine if the goals are met.
3. Decide what Metrics must be collected to answer the questions.

The goal indicates the purpose of collecting the data. The questions
tell us how to use the data and they help in generating only those
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measures that are related to the goal. In many cases, several mea-
surements are necessary to answer a single question; likewise, a sin-
gle measurement may apply to more than one question. In the rest
of this book, we implicitly use GQMto efficiently employ metrics for
characterizing and evaluating the design structure of object-oriented
systems.

2.1 Metrics and Thresholds

With any metric we use we must know what is too high or too low,
too much or too little. In other words, we need some reference points,
some means to link a particular metric value to useful semantics.
Therefore we discuss next how to identify threshold values so that
metric values can be properly interpreted.

A crucial factor in working with metrics is to be able to interpret
values correctly; and for this purpose we need to set thresholds for
most of the metrics that we use. A threshold divides the space of a
metric value into regions; depending on the region a metric value is
in, we can make an informed assessment about the measured entity.

For example, if we measure the height of people and we define 2
meters as being the threshold to very tall people, then all measured
people whose height is above that threshold can be qualified as being
very tall. This simple example has a few implications: how did we
come up with a threshold of 2 meters in the first place? Why not
1.95m? Why not six feet? And, is a person of 2.02 meters not small
compared to a person of 2.5 meters? Would such a threshold still be
meaningful in a population where the tallest person is 1.8 meters?

The point is that there is no such thing as a perfect threshold.
However, we can still define explicable thresholds, i.e., values that
can be chosen based on reasonable arguments. They are not perfect,
but they are useful in practice, and this makes them good enough for
our purposes, i.e., assess software artifacts. How do we find them?
In our practical experience in working with metrics, we identified two
major sources for threshold values:

1. Statistical information, i.e., thresholds based on statistical mea-
surements. They are especially useful for size metrics, where only
statistics can tell what usual or unusual values are. For example,
if we measure (count) the number of hairs on the head of a person
(say 10,000) and we want to assess if the result is low, average
or high, we need one or more reference points, i.e., thresholds
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which split the space of numbers into meaningful intervals. There
is no other way of finding out than using statistical data, which
in this case would tell us that the average number of hairs (mea-
sured over a statistically relevant population) is between 80,000
and 120,000. These two statistically-determined values help us
determine if a person has an excessive pilosity or if it tends to
become bald.

2. Generally accepted semantics, i.e., thresholds that are based on
information which is considered common, widely accepted knowl-
edge. Usually this knowledge is also a result of former statisti-
cal observations, but the information is so widely accepted that it
implicitly provides the necessary reference points needed to clas-
sify measurement results. For example, if we were to measure the
number of meals a person consumes per day, then we would use
a value of 3 as a “normality” threshold, as usually people eat three
times a day.

Statistics-Based Thresholds

What is the average number of operations (methods) per class? Be-
yond which number of code lines is a method too large? It is difficult
to give a correct answer. On the one hand, the answer depends on
many factors (i.e., how exactly do I count? what programming lan-
guage was used? etc.). On the other hand, even after having specified
all the measurement conditions we still need statistical data that pro-
vide us with proper orientation points (i.e., what is too much? what
is too little?).

We come up with statistics-based thresholds by measuring a large
number of Java and C++systems with respect to 3 metrics:

1. Average Number of Methods (NOM) per class
2. Average Lines of Code (LOC) per method (operation)
3. Average Cyclomatic Number (CYCLO) per line of code (i.e., density

of branching points)

These three metrics have three important characteristics, which
makes the gathering of statistical data for them meaningful:

1. they are elementary metrics that address the key issues of a
project’s size and complexity;

2. they are independent of each other;
3. they are independent of the size of a project.
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We collected these metrics from a statistical base of 45 Java projects
and 37 C++projects. The projects had been chosen with diversity in
mind. They have various sizes (from 20,000 up to 2,000,000 lines),
they come from various application domains, and we included both
open-source and industrial (commercial software) systems.

Having this amount of data, we employed simple statistical tech-
niques in order to determine for each of these metrics:

• the Typical values, i.e., the range of values that includes the data
from most projects.

• the Lower and respectively the Higher margins of this interval.
• the Extreme high values, i.e., a value beyond which a value can be

considered an outlier.

We use two statistical means to find what the typical high and low
values are:

1. Average (AVG), to determine the most typical value of the data set
(i.e., the central tendency).

2. Standard deviation (STDEV), to get a measure of how much the
values in the data set are spread1.

Knowing the AVG and STDEV values and assuming a normal distri-
bution for the collected data (i.e., that most values are concentrated
in the middle rather than the margins of the data set), we also know
the two margins of the typical values interval for a metric2 and the
threshold for very high values. These are:

• Lower margin: AV G− STDEV .
• Higher margin: AV G + STDEV .
• Very high: (AV G+STDEV ) ·1.5, i.e., we consider a value to be very

high if it is 50% higher than the threshold for a high value.

The computed threshold values are summarized in Table 2.1. These
margins tell us now the meaning of Low, High and Very High for a

1 The standard deviation is defined as the square root of the variance. This
means it is the root mean square (RMS) deviation from the average. It is
defined this way in order to give us a measure of dispersion that is (1) a
non-negative number, and (2) has the same units as the data. For example,
if the data are distance measurements in meters, the standard deviation
will also be measured in meters.

2 If the distribution of the data set is normal around 70% of the values will
be in this interval.



16 2 Facts on Measurements and Visualization

given metric. Based on the information from Table 2.1 we can state
that a Java method is very long if it has at least 20 LOC, or that a
C++class has few methods if it has between 4 and 9 methods.

Java C++
Metric Low Ave-

rage
High Very

High
Low Ave-

rage
High Very

High

CYCLO/Line of Code 0.16 0.20 0.24 0.36 0.20 0.25 0.30 0.45
LOC/Method 7 10 13 19.5 5 10 16 24
NOM/Class 4 7 10 15 4 9 15 22.5

Table 2.1. Statistical thresholds of 45 Java and 37 C++systems computed
for the size and complexity metrics used in this book.

The thresholds values presented above are relevant for more than
the three metrics themselves; they can be used to derive thresholds
for any metric that can be expressed in terms of these three metrics.

Example. We want to know what a high WMC (Weighted Method
Count) value is for a class written in Java. We use the following def-
inition of WMC [CK94]: the sum of the CYCLO metric [McC76] over
all methods of a class. Thus, WMC can be expressed in terms of the
three metrics as follows:

WMC =
CY CLO

LOC
· LOC

Method
· NOM

Class

To compute a threshold for high WMC means selecting from Ta-
ble 2.1 the high statistical values for the three primary terms from
the formula above and multiplying them. In a similar fashion we can
compute the low, average, high, and very high thresholds for two
other size and complexity metrics used in this book, i.e., LOC/Class
and AMW (Average Method Weight) a.k.a. CYCLO/Method (see Ta-
ble 2.2).

Java C++
Metric Low Ave-

rage
High Very

High
Low Ave-

rage
High Very

High

WMC 5 14 31 47 4 23 72 108
AMW 1.1 2.0 3.1 4.7 1.0 2.5 4.8 7.0
LOC/Class 28 70 130 195 20 90 240 360
NOM/Class 4 7 10 15 4 9 15 23

Table 2.2. Derived thresholds of 45 Java and 37 C++systems computed for
the size and complexity metrics used in this book.
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Meaningful Thresholds

Statistics-based thresholds are useful for most metrics, but for some
others they are implicitly given by observations. In that sense they
are also based on statistics, but their values have become part of our
culture. Therefore we do not need to statistically measure them, but
we can infer them from common knowledge.

Example. If we think about the maximum nesting level of state-
ments in a method it is clear that 0 denotes a method without any
conditional statements and 1, 2 or 3 would mean that there is some
nesting but it is quite shallow; but if the maximum nesting level gets
higher than that we know that the method has a deep nesting level
and following the control flow is harder.

We identified two cases of thresholds based on meanings that are
generally accepted and easy to understand: (1) commonly-used frac-
tion thresholds and (2) thresholds with generally-accepted meaning.

Common Fraction Thresholds

Quiz. Which of the following (fractional) numbers can you mentally
associate with a semantic: 0.07; 0.39; 0.75; 0.33; 0.72?

We guess you picked 0.75 because it means three quarters; and
you also picked 0.33 because it is one third. We guess that while
looking at 0.72 you thought: “it is close to three quarters”. Normal-
ized metrics thus have thresholds which seem natural to us. We sum-
marized them in Table 2.3.

Numeric Value Semantic Label

0.25 ONE-QUARTER
0.33 ONE-THIRD
0.5 HALF
0.66 TWO-THIRDS
0.75 THREE-QUARTERS

Table 2.3. Threshold values for normalized metrics and their semantic la-
bels.

We recommend that when you use metrics with normalized values
you should choose thresholds from this discrete set of values as they
can be easily linked to proper semantics.

Example. The metric TCC [BK95] (Tight Class Cohesion) is defined
as “the relative number of method pairs of a class that access at least
one common attribute of that class”. This is a normalized metric, its
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values lie between 0 and 1. The lower the TCC value, the less cohesive
is the class: if we want to find non-cohesive classes we pick a value
lower than half, i.e., either one-third or one-quarter.

Thresholds with Generally-Accepted Meaning

Not just fractional values can be associated with generally accepted
semantics, but also absolute values. We consider integer values be-
tween 0 and 7, which was proven to be the upper limit of the human
short-term memory [Pin97]. We summarized them in Table 2.4.

Numeric Value Semantic Label

0 NONE
1 ONE/SHALLOW
2 – 5 TWO, THREE/FEW/ SEVERAL
7 – 8 Short Memory Capacity

Table 2.4. Threshold values associable with generally accepted semantics.

Note that these thresholds are used throughout this book, but this
does not make them generally applicable to other contexts.

Example. We use such thresholds for the ATFD (Access To Foreign
Data) metric, which counts how many attributes from other classes
are accessed directly from a measured class. If we wanted to judge “by
the book” then every class with ATFD > NONE is problematic. But if
we wanted to admit that accessing accidentally a couple of attributes
of other classes is not that much of a problem, we can classify as
critical only those classes that have ATFD > FEW .

2.2 Visualizing Metrics and Design

Characterizing, evaluating and improving the design of large-scale
system is a highly complex enterprise, and while metrics are a highly
needed means for this purpose, they must be used in conjunction
with further techniques to handle this level of complexity. In our opin-
ion the most adequate means to complement metrics is visualization,
as it has long been adopted as a means to break down the complexity
of information.

The goal of visualization in general is to visualize any kind of data.
Applications in visualization are so frequent and common, that most
people do not notice them: examples include meteorology (weather
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maps), geography (street maps), geology, medicine (computer-aided
displays to show the inner of the human body), transportation (train
tables and metro maps), etc..

Metrics and Visualization

Quiz. Which of the cylinders in Fig. 2.1 have which letter associated
with it?

Fig. 2.1. A simple visualization of metrics.

It is easy to assess that the cylinder on the right has the largest
diameter, the one in the middle has the greatest height, while the one
on the left has the smallest diameter. Why is that? Human perception
allows us to perform such non-trivial analysis as an in-grained mech-
anism, despite the fact that we had no numbers to hand. However,
when provided with a table containing metric information (height, di-
ameter, weight) for the cylinders we have no problem assigning those
numbers. Do we? There is a problem with the weight metric which
confuses us. Why? It does not respect the so-called representation
condition.

In measurement theory, the procedure of rendering metrics on
visual characteristics of representations is called measurement map-
ping, and must fulfill the representation condition, which asserts that
“a measurement mapping M must map entities into numbers and
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empirical relations into numerical relations in such a way that the
empirical relations preserve and are preserved by the numerical rela-
tions” [FP96]. In other words, if a number a is greater than a number
b, the graphical representations of a and b must preserve this fact.

The reader must be aware that visualization does not provide a
means to visualize every metric. The provided weight metrics above
actually confuse us because we would think that the smallest cylin-
der would also be the lightest. In that sense, at least regarding the
weight, the above visualization does not completely respect the rep-
resentation condition.

Software Visualization in a Nutshell

Software visualization is defined as “the use of the crafts of typog-
raphy, graphic design, animation, and cinematography with modern
human-computer interaction and computer graphics technology to
facilitate both the human understanding and effective use of com-
puter software” [SDBP98]. It is a specialization of information visual-
ization, whose goal is to visualize any kind of abstract data.

The field of software visualization can be divided into two separate
areas [SDBP98]: program visualization and algorithm visualization.
In this book we focus exclusively on techniques of the first area, as
our aim is to improve the efficiency of metrics for assessing and im-
proving the design quality of software systems.

Program visualization techniques provide views of actual program
code or data structures in either static or dynamic form. The visual-
ization techniques presented in this book belong to a sub-area of pro-
gram visualization, namely static code visualization, because we vi-
sualize (object-oriented) source code by using only information which
can be statically extracted from the source code without the need to
actually run the system.

Static code visualization has been widely used by the reverse en-
gineering research community for the past two decades [SDBP98,
SWM97, Sto98, MADSM01]. Many of these visualization techniques
provide ways to uncover and utilize information about software sys-
tems. When it comes to visualizing code, the preferred way of doing
so is by using the notion of a graph, where the vertices represent the
entities (such as classes, methods, etc.) and the arcs represent the
relationships (such as invocation, inheritance, etc.). In this book we
use a special technique called polymetric view to visualize the soft-
ware artifacts that we analyze using metrics.
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A

C

B

LOC

NOM

Fig. 2.2. A simple polymetric visualization.

Example. In Fig. 2.2 we display three classes A, B, C as rectangles
together with the metrics LOC and NOM. We map NOM on the width
of each rectangle and we map LOC on the height of each rectangle.
The metric information of these three classes which would usually be
displayed with a table is thus visually displayed without needing to
read through a table, but we can easily see that B has less lines of
code, while C has a high LOC count (compared to A and B) and a low
NOM count. We derive from this the information that C has rather
long methods.

In the next chapter we discuss Polymetric Views in more detail.

2.3 Conclusions and Outlook

This book is not about metrics per se. It is about the way that metrics
can be used to aid us in characterizing software systems, to evaluate
them and when we detect design problems to provide the appropriate
refactorings.

Characterizing the Design of Object-Oriented Systems

In the next chapter we provide the means to use metrics to charac-
terize the design of systems. We do so by introducing the Overview
Pyramid and two Polymetric Views. We then use these techniques
to characterize a real system, namely ArgoUML . We chose ArgoUML
because of its considerable size and complexity, the understandable
domain (UML) and the availability of the source code3.

3 ArgoUML is open source, see http://argouml.tigris.org for more in-
formation.
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Evaluating and Improving the Design of Object-Oriented Systems

In the subsequent chapters we provide the means to use metrics
to evaluate the design of systems. We do so by introducing various
metrics-based detection strategies to uncover design disharmonies.
We also present the Class Blueprint, a visualization technique to dis-
play the internal details of classes and class hierarchies without the
need to provide endless code listings.

An Integrated Approach Based on Metrics

The Overview Pyramid, the Polymetric Views, the detection strategies
and the Class Blueprint presented in this book are complementary.
While the first two are useful to get an impression of the system, the
main purpose of the detection strategies is to produce lists of suspects
that need to be investigated. Of course such investigations can be
performed manually, i.e., by reading the source code in question.
However, as the amount of source code that must be read can be
several thousands of lines, we use the class blueprint to aid us in this
task.
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Characterizing the Design

Independently of our convictions about software metrics, every time
we analyze or talk about a software system, we want to obtain an
impression of the size and complexity of the software system to be
able to characterize it. Some people like to express the size of a system
in terms of lines of code, others use the number of classes, and even
others only measure the amount of source code in megabytes.

These numbers are nothing more than the values of some basic
metrics. For object-oriented systems the most common ones are the
lines of code, the number of classes, the number of packages or sub-
systems, the number of operations (methods), etc.

Unfortunately, after getting such numbers in isolation, we still
have trouble clearly characterizing the system. How come? There are
several causes:

• Unbalanced characterization. The characterization is unbalanced
because metrics only partially cover the aspects of interest. How
faithful to object-oriented principles is the design of a system given
the fact that it consists of 500 classes and 25,000 lines of code?

• Misused metrics. Knowing that a system has 500 classes does not
tell us how large the system is because the classes in question
could all be very large or very small. Neither do we know how com-
plex a system is, if we know that it has 25,000 lines of code. Fur-
thermore, how is a line of code defined? Do we count comments?
Do we count lines containing curly brackets or semi-colons?

• Uncorrelated metrics. A lot of information slips through our fingers
because it is not revealed by the raw numbers but by the propor-
tions (ratios) between the raw values. Assume again that a system
has 500 classes and 50,000 lines of code. Is something striking?
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Not really. But what if the same system has 1 million lines of code?
Then it becomes quite striking that the 500 classes are overloaded
with functionality, since each class has an average of 2,000 lines!
Or imagine that we additionally knew the number of methods in
the system. What if we find out that there are only 1,000 methods
in the system? It would be striking again because having only two
methods per class looks suspiciously low.

• Missing reference points. Without reference values, any compari-
son of a qualitative assessment is impossible. A line of C++code
is not the same as a line of Java, Smalltalk or Ada code because
each language has its own syntax and semantics; and, even more
important, each has its own style and best practices.

Providing an overall characterization of a system is a tough job. Con-
sequently, it is deceiving to believe that several “classic” system-level
metrics (usually size metrics such as the ones mentioned previously)
can characterize a whole system. But characterizing a system is pos-
sible if we use the proper measurement means, i.e., if we extend our
system-level measurements to other aspects than size and correlate
these results in a proper manner.

In the remainder of the chapter we present two techniques to
characterize object-oriented systems in terms of size and complex-
ity which solve the above issues:

1. The Overview Pyramid is a metrics-based means to both describe
and characterize the structure of an object-oriented system by
quantifying its complexity, coupling and usage of inheritance.

2. The Polymetric Views are a visualization of software entities and
their relationships enriched with metrics.

3.1 The Overview Pyramid

The overview of an object-oriented system must necessarily include
metrics that reflect three main aspects:

1. Size and complexity. We want to understand how big and how com-
plex a system is.

2. Coupling. The core of the object-oriented paradigm are objects that
encapsulate data and that collaborate at run-time with each other
to make the system perform its functionalities. We want to know
to which extent classes (the creators of the objects) are coupled
with each other.
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3. Inheritance. A major asset of object-oriented languages is the ease
of code reuse that is possible by creating classes that inherit func-
tionality from their superclasses. We want to understand how
much the concept of inheritance is used and how well it is used.

To understand these three aspects we introduce the Overview Pyra-
mid, which is an integrated, metrics-based means to both describe
and characterize the overall structure of an object-oriented system,
by quantifying the aspects of complexity, coupling and usage of in-
heritance.

The basic idea behind the Overview Pyramid is to put together
in one place the most significant measurements about an object-
oriented system, so that an engineer can see and interpret in one
shot everything that is needed to get a first impression about the sys-
tem. The Overview Pyramid is a graphical representation of metrics
values which can be visually interpreted. Yet, it is not a metrics vi-
sualization (in the sense of Sect. 2.2). From this point of view the
Overview Pyramid is a graphical template for presenting (and inter-
preting) system-level measurements in a unitary manner. In order to
visualize the overall structure of a software system, we will use the
Polymetric Views (see Sect. 3.2).

The Principles of the Overview Pyramid

Inheritance

Size & Complexity Coupling

Fig. 3.1. The the three major structural aspects of a system quantified by
the Overview Pyramid.

The three previously mentioned aspects are closely related and mu-
tually influence each other (Fig. 3.1). While Size & Complexity and
Coupling characterize every software system, the Inheritance aspect
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is specific for object-oriented software and combines both elements
of coupling (e.g., due to inheritance-specific dependencies) and ad-
ditional size and complexity elements (e.g., due to type-checked up-
and down-casts). Measuring these three aspects at the system level
provides us with a comprehensive characterization of an entire sys-
tem. An Overview Pyramid is composed of three parts concerning
each aspect.

The Left Part: System Size and Complexity

Fig. 3.2. Size and complexity characterization.

The left side of the Overview Pyramid (Fig. 3.2) provides information
characterizing the size and complexity of the system.

Size and complexity: direct metrics. We need a set of direct
metrics (i.e., metrics computed directly from the source code) to de-
scribe a system in simple, absolute terms. The metrics describing the
size and complexity are probably some of the simplest and widely
used metrics. They count the most significant modularity units of
an object-oriented system, from the highest level (i.e., packages or
namespaces), down to the lowest level units (i.e., code lines and in-
dependent functionality blocks). For each unit there is one metric in
the Overview Pyramid that measures it. The metrics are placed one
per line in a top-down manner, from a measure for the highest level
unit (i.e., Number of Packages (NOP )) down to a complexity measure
counting the number of independent paths in an operation (i.e., the
cyclomatic complexity (CYCLO)). We use the following metrics for the
size and complexity side of the Overview Pyramid:

• NOP — Number of Packages, i.e., the number of high-level pack-
aging mechanisms, e.g.,packages in Java, namespaces in C++,
etc.



3.1 The Overview Pyramid 27

• NOC — Number of Classes, i.e., the number of classes defined in
the system, not counting library classes.

• NOM — Number of Operations,1 i.e., the total number of user-
defined operations within the system, including both methods and
global functions (in programming languages that allow such con-
structs).

• LOC — Lines of Code, i.e., the lines of all user-defined operations.
In the Overview Pyramid only the code lines containing function-
ality (i.e., lines of code belonging to methods) are counted.

• CYCLO — Cyclomatic Number, i.e., the total number of possi-
ble program paths summed from all the operations in the system.
It is the sum of McCabe’s cyclomatic number [McC76] for all op-
erations. We use this metric to quantify the intrinsic functional
complexity of the system.

Size and complexity: computed proportions. There is nothing new
about the numbers above, but let us have a look at the numbers on
the left: there are four computed numbers; we call them computed
proportions because they are all computed in a “cascading” manner
as ratios between the direct metrics placed on the right (see Fig. 3.2).
All these four proportions have two essential characteristics:

• Independence. While the direct metrics discussed earlier influ-
ence each other (e.g., a system of 100 classes probably has fewer
methods than one of 10,000 classes) these proportions are inde-
pendent of one another. This makes each number a distinct char-
acteristic of a specific aspect of code organization at both the pro-
cedural and the object-based level.

• Comparability. Being computed as ratios between absolute val-
ues, these proportions allow for easy comparison with other projects,
independent of their size.

How are these proportions computed? As depicted in Fig. 3.2 each
proportion metric is computed as a ratio between two consecutive
numbers, by dividing the lower number by the next upper one. Thus,
for example, the ratio emphasized in the figure (i.e., the one posi-
tioned second lowest in the Overview Pyramid) is computed as a ra-
tio between the value of LOC (the number on the line below it) and
NOM (the number on the same line). The number denotes the aver-
age number of code lines per operation in the analyzed system. To

1 We use the well-known NOM acronym; in the Overview Pyramidall user-
defined operations are counted, including methods or global functions.
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characterize the size and complexity of a system, based on the direct
metrics used, the following proportions result:

• High-level Structuring (NOC /Package). This proportion pro-
vides the reader with a first impression of the packaging level, i.e.,
the high-level structuring policy of the system. In other words, it
indicates if packages tend to be coarse grained or fine grained.

• Class structuring (NOM/Class). This proportion provides a hint
about the quality of class design, because it reveals how opera-
tions are distributed among classes. Very high values might be
a sign of missing classes, i.e., an exaggerated stuffing of opera-
tions into classes. In the case of global functions which cannot be
attached to any class, we consider them as static methods of a
default anonymous class.

• Operation structuring (LOC/Operation). This is an indication
of how well the code is distributed among operations. Very high
numbers suggest the system’s operations are rather “heavy”. This
can be used as a first sign of the how the system is structured
from the point of view of procedural programming.

• Intrinsic operation complexity (CYCLO/Code Line). This last
ratio characterizes how much conditional complexity we are to ex-
pect in operations (e.g., 0.2 means that a new branch is added
every five lines).

The Right Part: System Coupling

Fig. 3.3. Characterizing a system’s coupling.

The second part of the Overview Pyramid provides an overview with
information about the level of coupling in the system (see Fig. 3.3),
by means of operation invocations.
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System coupling: direct metrics. The key questions when trying
to characterize the level of coupling in a software system are: How
intensive and how dispersed is coupling in the system? The two direct
metrics that we use are:

• CALLS — Number of Operation Calls, i.e., this metric counts
the total number of distinct operation calls (invocations) in the
project, by summing the number of operations called by all the
user-defined operations. If an operation foo() is called three times
by a method f1() it will be counted only once. If it is called by meth-
ods f1(), f2() and f3(), three calls will be counted for this metric.

• FANOUT — Number of Called Classes, this is computed as a
sum of the FANOUT [LK94] metric (i.e., classes from which op-
erations call methods) for all user-defined operations. This metric
provides raw information about how dispersed operation calls are
in classes.

System coupling: computed proportions. Again, the numbers above
describe the total coupling amount of a system, but it is difficult to
use those numbers to characterize a system with respect to coupling.
We can compute, using the number of operations (NOM), two propor-
tions that better characterize the coupling of a system.

• Coupling intensity (CALLS/Operation). This proportion denotes
the level of collaboration (coupling) between the operations, i.e.,
how many other operations are called on average from each op-
eration. Very high values suggest that there is excessive coupling
among operations, i.e., a sign that the calling operation does not
“talk” with the right “counterpart”.

• Coupling dispersion (FANOUT /Operation Call). This proportion
is an indicator of how much the coupling involves many classes

(e.g., 0.5 means that every two operation calls involve another
class).

Top Part: System Inheritance

The top part of the Overview Pyramid is not a ladder as in the pre-
vious cases; it is composed of two metrics that provide an overall
characterization of inheritance usage. These proportion metrics re-
veal how much inheritance is used in the system, as a first sign of
how much “object-orientedness” (i.e., usage of class hierarchies and
polymorphism) to expect in the system.
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Fig. 3.4. Example to illustrate the computation of inheritance metrics used
in the Overview Pyramid

The two metrics to characterize the presence and the shape of
class hierarchies are:

1. ANDC — Average Number of Derived Classes, i.e., the average
number of direct subclasses of a class. All classes defined within
the measured system (and only those) are considered. Interfaces
(in Java or C#) are not counted. If a class has no derived classes,
then the class participates with a value of 0 to ANDC . The metric
is a first sign of how extensively abstractions are refined by means
of inheritance. We illustrate how ANDC is computed based on the
example presented in Fig. 3.4. First, we count the classes: there
are 19 classes, as we do not count Q because it is a library class;
we also do not count T because it is an interface. Out of the 19
classes, 11 have no subclasses at all, four classes (i.e., D, H, J,
L) each have one direct subclass, three classes (i.e., B, E, N ) have
2 direct subclasses each, and there is one class (i.e., A) with four
direct descendants. Thus, ANDC is computed as:

ANDC =
11 · 0 + 4 · 1 + 3 · 2 + 1 · 4

19
= 0.73

2. AHH — Average Hierarchy Height. The metric is computed as
an average of the Height of the Inheritance Tree ( HIT ) among the
root classes defined within the system. AHH is the average of the
maximum path length from a root to its deepest subclasses. A
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class is a root if it is not derived from another class belonging to
the analyzed system. Interfaces (in Java or C#) are not counted.
Standalone classes (i.e., classes with no base class in the system
and no descendants) are considered root classes with a HIT value
of 0. The number tells us how deep the class hierarchies are. Low
numbers suggests a flat class hierarchy structure. In order to il-
lustrate how AHH is computed we revisit the sample system de-
picted in Fig. 3.4. First, we have to count the root classes. Based
on the specification of AHH , we identify five root classes: A, N,
R (because it is derived from a library class), S and U (because
the implementation of an interface does not make U a subclass).
For these root classes the values for the HIT metric are: HIT(A) =
4, HIT(N) = 1, HIT(R) = 0, HIT(S) = 0, HIT(U) = 0. Thus, AHH is
computed as:

AHH =
4 + 1 + 0 + 0 + 0

5
= 1

Why did we choose these two proportions and why are they suffi-
cient? They capture two complementary aspects of a class hierarchy:
while ANDC provides us with an overview of the width of inheritance
trees, the ahh metric reveals if class hierarchies tend to be deep or
shallow. The two metrics provide us with first hints on whether we
should expect intensive usage of inheritance relations (ANDC ) and,
if so, they help us understand how deep these hierarchies are (AHH
). Summarizing, Fig. 3.5 shows the entire Overview Pyramid.

Fig. 3.5. A complete Overview Pyramid.

Interpreting the Overview Pyramid

We have seen that the Overview Pyramid characterizes a system
from three different viewpoints: size and structural complexity; cou-
pling and the usage of the inheritance relation. The characterization
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is based on the eight computed proportions displayed in the Overview
Pyramid. All these values have one important property: they are in-
dependent of the size of the system, allowing for an objective assess-
ment.

Did we say objective? We need a reference point, other than com-
mon sense (which is not enough to interpret the numbers). For ex-
ample, is the 9.42 NOM/Class value in Fig. 3.5 normal, too small or
too large? We need a reference point.

Based on the statistical thresholds described in the previous chap-
ter (see Sect. 2.1) and using the same statistical base, we computed
the low, average and high thresholds for all the proportions.2 All
thresholds are summarized in Table 3.1 3.

Java C++
Metric Low Average High Low Average High

CYCLO/Line of code 0.16 0.20 0.24 0.20 0.25 0.30
LOC/Operation 7 10 13 5 10 16
NOM/Class 4 7 10 4 9 15
NOC /Package 6 17 26 3 19 35

CALLS/Operation 2.01 2.62 3.2 1.17 1.58 2
FANOUT /Call 0.56 0.62 0.68 0.20 0.34 0.48

ANDC 0.25 0.41 0.57 0.19 0.28 0.37
AHH 0.09 0.21 0.32 0.05 0.13 0.21

Table 3.1. Statistical thresholds of 45 Java and 37 C++systems computed
for the proportions (ratios) used in this Overview Pyramid.

Based on these thresholds, we refer to the Overview Pyramid for
the sample system depicted in Fig. 3.5 and knowing that it represents
a Java system we interpret the pyramid.

The Size and Complexity side can be interpreted as follows: the
operations in the system have a rather low intrinsic complexity (as
0.15 is closer to the LOW threshold, which is 0.16), while the size of
operations is close to the average value for Java systems. With 9.42

2 We did not include a very-high threshold because we consider that the
three low, average and high thresholds are enough for the interpretation
of the Overview Pyramid.

3 As already mentioned in the previous chapter, these metrics are collected
from a statistical base of 45 Java projects and 37 C++projects. The projects
have various sizes (from 20,000 up to 2,000,000 lines), they come from
various application domains, and we included both open-source and in-
dustrial (commercial software) systems.
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operations per class, and 20.21 classes per package the system has
rather large classes and packages.

On the System Coupling side we learn the following: the system is
intensively coupled in terms of operation calls, but these calls tend to
be rather localized, i.e., functions tend to call many operations from
few classes.

In the Class Hierarchies part we read the following: The class hi-
erarchies are frequent in the system (low ANDC value), and very
shallow (low AHH value).

To facilitate the visual interpretation of the Overview Pyramid
we associate the computed proportions with colors that map those
numbers to their semantics in terms of the three types of statisti-
cal thresholds (i.e., low, average, high) presented in Table 3.1. Thus,
we place a computed proportion in a blue rectangle to show that
the value is closest to the low threshold. Similarly, if a value is clos-
est to the average threshold it will be placed in a green rectangle;
eventually, if the computed value is closest to the high threshold, the
number will be placed in a red rectangle.

Fig. 3.6. Using colors to interpret the Overview Pyramid. BLUE means a low
value; GREEN means an average value; RED stands for a high value.

3.2 Polymetric Views

In the context of this book we use so-called Polymetric Views to visu-
alize software. A polymetric view is a metrics-enriched visualization of
software entities and their relationships[LD03]. Their main benefit is
that they can visually render numbers in a simple, yet effective and
highly condensed way which is directly interpretable by the viewer.
It is a lightweight technique that can be easily implemented into any
development environments and has already been adopted by some
research prototypes [Fav01] because of its simplicity.
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The Principles of a Polymetric View

We use rectangles to display software entities or abstractions of them,
and we use edges to represent relationships between the entities.4

This is a widely used practice in information visualization and soft-
ware visualization tools. Ware claims that “other possible graphi-
cal notations for showing connectivity would be far less effective”
[War00].

Color Metric

Entities

Relationship

Width Metric

Height

Metric

Position

Metrics

(x, y)

Edge Width

& Color Metrics

Fig. 3.7. The principles of a polymetric view.

We enrich this basic visualization technique by rendering up to five
metric measurements on a single node and two metrics on a single
edge simultaneously, as we see in Fig. 3.7. We exploit the following
visual attributes:

• Node size. The width and height of a node can render two mea-
surements. We follow the convention that the wider and the higher
the node, the bigger the measurements its size is reflecting.

• Node color. The color interval between white and black can dis-
play a measurement. Here the convention is that the higher the

4 The underlying model is thus that a software system can be modelled as
a graph where the vertices represent entities, i.e., source code artifacts or
abstractions of them, and the arcs represent relationships.
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measurement, the darker the node. Thus light gray represents a
smaller metric measurement than dark gray. We opted against us-
ing different colors, because nominal colors cannot reflect quan-
tities. Tufte [Tuf01] states that “Despite our experiences with the
spectrum in science textbooks and rainbows, the mind’s eye does
not readily give a visual ordering to colors. Because they do have
a natural visual hierarchy, varying shades of gray show varying
quantities better than color”.5

• Node position. The X and Y coordinates of the position of a node
can reflect two other measurements. This requires the presence of
an absolute origin within a fixed coordinate system, therefore not
all views can exploit such metrics (e.g., in the case of a tree view
the position is intrinsically given by the tree layout and cannot
reflect a measurement).

• Edge width and color. The width and the color interval between
white and black of an edge can be used to render two supple-
mental measurements. If we display an edge between two classes
which represents the method invocations that go from one class
to the other, the edge width and color can be used to represent the
weight of the relationships in terms of number of invocations.

Fig. 3.8. A System Complexity view. This view uses the following metrics:
width metric = number of attributes, height metric = number of methods,
color metric = number of lines of code.

Example. In Fig. 3.8 we see a polymetric view called System Com-
plexity of the software system CodeCrawler . The metrics used in this
view are the number of attributes for the width, the number of meth-
ods for the height, and the number of lines of code for the color of

5 There are exceptions to this rule: for example, weather maps use a spec-
trum which ranges from blue to red to denote cold and warm tempera-
tures.
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the displayed class nodes. The edges represent inheritance relation-
ships. Using this view it is easy to spot the large classes (in terms of
behavior, i.e., methods, and state, or variables).

polymetric view alone are not enough to tackle the problems of
reverse engineering, but they support and complement other tech-
niques to enhance and facilitate the comprehension of software sys-
tems. In the context of this book we use the polymetric views as a tool
to understand a system at a coarse-grained level. Moreover, some-
times — and this is one of the strong points of our views — it is
enough to visualize a certain part of a system to get a correct impres-
sion. Yet, for the cases where we want to double-check that impres-
sion in the source code, the implementation of polymetric views (see
Appendix C) should allow an easy navigation to the implementation
files.

The strongest point of polymetric views is that they can combine
multiple metrics and produce different colored shapes that can be
interpreted by the viewer: The viewer then has to look out for certain
visual symptoms (depending on the view) and can thus visually detect
interesting and/or disharmonious parts in the system. We also stress
that the interesting things are not necessarily visually obvious, but
require a trained eye in order to relate and compare things. Next, we
are going to present how polymetric views support the correlation and
comparison of various software entities.

Relating software entities. The eye of the viewer is at first at-
tracted by the larger classes in the system, e.g., the two on the right
side. It is true that these classes are the largest in the system, at least
as far as the number of methods is concerned. Moreover, the bigger
one is also very dark, denoting a high number of lines of code. The
advantage here is that we do not have to deal with actual numbers
but can put things in relation to each other. These two classes are
the largest in this system, while in another system they could actu-
ally be categorized as being very small or very large. This depends on
the system, its domain and the language it is implemented in.

Comparing software entities. The viewer can compare different
design fragments: the larger of the two inheritance hierarchies con-
tains two sub-hierarchies. Looking closer at the smaller one of the
two large sub-hierarchies we notice that all classes, especially the leaf
classes, are more or less of the same small size with one exception.
This exception is a starting point for an inspection since we expect
that sibling classes in inheritance hierarchies will have a similar com-
plexity. The point is that the polymetric views allow us to relate things
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to each other and compare them not only within a global, but espe-
cially within a local context. As another example: in our experience if
sibling classes look very similar, i.e., they have a similar number of
attributes and methods, this may oftentimes point to duplication.

The research we have performed on the polymetric views is ex-
tensive and can be found in various publications [Lan03a, Lan03b,
LD03, LD05, DL05, LDGP05, GLD05], but since the goal of this book
is not to explain everything about the views in detail, we direct the
interested reader to those publications. Note also that the views can
be easily composed and tweaked, especially regarding the metrics,
i.e., the number of potential views is very high, but in the context
of this book we limit ourselves to using two simple views, which are
presented next.

Polymetrics Views Exemplified

We introduce two polymetric views namely the System Hotspots and
System Complexity views. We exemplify their use with a small system
of a couple of hundred classes called Duploc, used for duplication
detection. Note that Duploc was developed in VisualWorks Smalltalk;
we use it to illustrate the language independence of the polymetric
views.

System Hotspots View

Nodes Edges Layout Width Height Color X Y
Classes – Checker NOM NOM free – –

Fig. 3.9. A System Hotspots view of Duploc. The nodes represent all the
classes, while the size of the nodes represent the number of methods they
define. The gray nodes represent metaclasses.
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This simple view helps to identify large and small classes and
scales up to very large systems. It relates the number of methods to
the number of attributes of a class. The nodes are sorted according to
the number of methods, which makes the identification of behavioral
outliers easy (note that a class that has many methods also tends to
consist of many lines of code).

This view gives a general impression of the system in terms of
overall size (how many classes are there?) and in terms of size of the
classes (are there any really large classes and how many of these
giants are there?).

Large nodes represent voluminous classes that define many meth-
ods and should be further investigated. Small nodes represent either
structs or very small classes. Classes with NOM = 0 should be in-
vestigated to see if they are not dead code. Further evidence can be
gained from the color, which can be used to reflect the number of
lines of code of a class. Should a tall class have a light color it means
that the class contains mostly short methods.

Example - System Hotspots. In Fig. 3.9 we see a System Hotspots
view of all the classes of Duploc. The classes in the bottom row con-
tain more than 100 methods and should be further investigated.
They are DuplocPresentationModelController (107 methods), RawMa-
trix (107), DuplocSmalltalkRepository (116) and DuplocApplication (117
methods). This view shows that Duploc is a system of more than 300
classes, where the largest classes contain more than 100 methods. It
also shows an impressive number of very small classes implementing
few methods.

System Complexity View

Nodes Edges Layout Width Height Color X Y
Classes Inheritance Tree NOA NOM LOC – –

This view is based on the inheritance hierarchies of a subject sys-
tem and gives clues on its complexity and structure. For very large
systems it is advisable to apply this view first on subsystems, as it
uses a lot of screen space. The goal of this view is to classify inher-
itance hierarchies in terms of the functionality they represent in a
subject system. Hints about the functionality they provide can be in-
ferred by knowing the names of the classes (usually just knowing the
name of the root class is telling enough).

The view helps to identify and locate the important inheritance
hierarchies, but also shows whether there are large classes not part of
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Fig. 3.10. A System Complexity view on Duploc. The nodes represent the
classes, while the edges represent inheritance relationships. As metrics we
use the number of attributes (NOA) for the width, the number of methods
(NOM) for the height and the number of lines of code (LOC) for the color.

a hierarchy. It also answers the question about the size of the subject
system. Moreover, it helps to detect exceptional classes in terms of
number of methods (tall nodes) or number of attributes (wide nodes).

Tall, narrow nodes represent classes with few attributes and many
methods. Deep or large hierarchies are definitively subsets of the sys-
tem on which more specific views should be applied to refine their
understanding. Large, standalone nodes represent classes with many
attributes and methods without subclasses. It may be worth looking
at the internal structure of the class to learn if the class is well struc-
tured or if it could be decomposed or reorganized.

Example - System Complexity. In Fig. 3.10 we present a System
Complexity view of all the classes of Duploc. We see that Duploc is
composed of many classes not organized in inheritance hierarchies.
Indeed, there are some very large classes which do not have sub-
classes. The largest inheritance hierarchies are five and six levels
deep. Noteworthy hierarchies seem to be the ones with the follow-
ing root classes: AbstractPresentationModelControllerState, Abstract-
PresentationModelViewState and DuplocSourceLocation. By manually
inspecting the first one, with the root class AbstractPresentationMod-
elControllerState having 31 descendants, we infer that it seems to be
the application of the state design pattern [GHJV95, ABW98] for the
controller part of an Model–View–Controller pattern. Such a complex
hierarchy within Duploc is necessary, since Duploc does not make
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any use of advanced graphical frameworks, but uses the standard
GUI framework that comes with the development environment it was
written with. Following this track of investigation we look for other
signs of the MVC pattern and find a hierarchy with AbstractPresenta-
tionModelViewState as root class with 12 descendants, which seems
to constitute the view part of the MVC pattern. This view shows that
Duploc consists of several very small hierarchies composed of small
classes and two bigger hierarchies, where one represents the domain
model of Duploc (the Model hierarchy), and the other one contains all
GUI-related classes (the ApplicationModel hierarchy).

3.3 Metrics at Work

In this section we put at work the metrics-based techniques pre-
sented so far in this chapter. Our aim is show you how these tech-
niques can be used for describing and characterizing at the system
level an object-oriented software system. For this purpose, we will
apply them on the ArgoUML system6. It is an open-source UML mod-
eling tool written in Java and consists of more than 220,000 raw lines
(code and comments). Before going into more detail, let us first take
a look at some of its size characteristics (see Table 3.2).

Metric Value Remarks

No. of Lines of Code 223,068 including comments
No. of Source Files 1,209 *.java files
No. of Packages 99 –
No. of Classes 1,393 including 140 inner classes
No. of Methods 9,561 including accessor methods
No. of Attributes 3,358 all variables including static and local variables

Table 3.2. Size properties of the ArgoUML system.

Characterizing ArgoUML Using the Overview Pyramid

To get a more detailed overview of the system we use the Overview
Pyramid (24) which for ArgoUML is depicted in Fig. 3.11.
To interpret the numbers we compare the values of ArgoUML with
the statistically computed values summarized in Table 2.2:
6 We analyzed the end of October 2004 version. See http://

argouml.tigris.org/ for more information and the source code itself.
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Fig. 3.11. The Overview Pyramid applied to ArgoUML .

• Size and complexity. The system has a complexity which is above
average and close to high, while the size of operations, classes and
packages are rather balanced, staying close to the average values
of other systems.

• Coupling. The system is intensively coupled by method calls, but
these calls tend to be rather localized, i.e., methods tend to call
many other methods from few classes.

• Inheritance. ArgoUML extensively uses inheritance, as classes
tend to have a large number of descendants (compare ANDC val-
ues with statistical results), and class hierarchies are also rather
“deep” (compare AHH values with statistical results). This inter-
pretation based only on numbers is confirmed by the System Com-
plexity view depicted in Fig. 3.13.

Characterizing ArgoUML Using Polymetric Views

To visually get a first idea of the raw size of the system we display in
Fig. 3.12 a System Hotspots view. What we see in the figure are all
1,393 model classes of ArgoUML . The size of the nodes represents
the number of methods (NOM), while the color represents the lines of
code (LOC) of each class. The class ModelFacade is striking because
of its size (453 methods, 3,507 lines) compared to the other classes
in the system. The next three largest classes are CoreFactory (116
NOM, 1,100 LOC), GeneratorCpp (97 NOM, 2,259 LOC) and Project
(85 NOM, 690 LOC). Another class which has many lines compared to
its number of methods is ParserDisplay (“only” 53 methods but 2517
lines). Moreover, we thickened the border of the abstract classes in
the system, and perceive that in ArgoUML there are many of them,
the two largest being FigNodeModelElement and FigEdgeModelEle-
ment which each have 81 and 55 methods.

In Fig. 3.13 we see a System Complexity visualization of the com-
plete system in terms of the inheritance hierarchies. The reader
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Fig. 3.12. A System Hotspots view of ArgoUML .
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Fig. 3.13. A System Complexity view of the complete ArgoUML system.
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should keep in mind that what is actually displayed in one single fig-
ure here resides in more than 1,200 source files distributed in dozens
of directories: We are talking about a fairly complex system, although
certainly not a very complex system. However, we see that ArgoUML
has been implemented using some complex and deep inheritance hi-
erarchies (some of them have more than seven levels).

3.4 Conclusions and Outlook

In this chapter we presented two approaches which allow us to char-
acterize and assess the design of object-oriented software systems,
the Overview Pyramid and Polymetric Views.

Overview Pyramid— It provides us with a numerical overview of sim-
ple and derived system metrics, and characterizes a system in
terms of size & complexity, coupling, and inheritance.

Polymetric Views— They provide a simple yet powerful means to see
a software system in the same terms.

They both serve as starting point to understand the intricacies of
systems without the need of reading source code or going through
large tables full of numbers. They serve another purpose too: They
are the basis for the two approaches that we present in the next
chapter, the Detection Strategy and the Class Blueprint.



4

Evaluating the Design

Object-oriented construction and design are misleading words, be-
cause they make people think that software can be constructed like
a house or designed like a piece of furniture. This is a myth which is
hard to kill. The truth is that a software system is at least as com-
plex as any other engineering artifact (such as buildings, if not more,
considering the fact that it evolves much faster).

Moreover, a modern software system is written by many people at
the same time, leading to (1) communication issues, (2) compatibility
issues and above all (3) complexity issues. In addition, a system can-
not be written once and for all, put in place and then work forever.
It is actually grown like a plant with many interrelated parts that de-
pend on each other, that die, that change, that are bugged and must
be fixed (introducing new bugs), etc.

You may well imagine that a plant which is not correctly watered
will die. In much the same spirit we can say that a system which
is not being cured and maintained will slowly decay and eventually
die. But all metaphors, including the one of the plant, do not fit the
context of object-oriented software. These systems are much more
complex and consist of thousands of artifacts and relationships be-
tween the artifacts. A change in one part of the system may break
other parts of the system. This is not due to bad programming prac-
tice, it is just a matter of complexity: you cannot expect to have a
complete picture of a large software system. Moreover, we are speak-
ing about evolving systems which change continuously, leading to
more complexity [LB85, DDN02].

Still in software construction finding an appropriate design is im-
portant. Indeed it may help people understand the system and ease
future changes. For example, it is well-known that using explicit type-
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checks goes against the essence of object-oriented programming and
creates brittle and hard to change code [DDN02]. However it is impor-
tant to understand that design decisions such as the impact of ap-
plying a given design pattern [GHJV95, ABW98] is difficult to assess
— using a design pattern introduces an intrinsic complexity which
should be balanced by the benefits of the pattern application. Identi-
fying the exact responsibilities of objects and how they should be dis-
tributed among objects is complex. In this book we show you how to
use metrics to assess the quality of a design. Metrics measure struc-
tural elements and as such they can reveal hidden symptoms. But
there will always be a gap between the symptoms and the deep as-
sessment that an expert in object-oriented design can do using these
symptoms. Therefore it is important to consider metrics as a tool and
as with any tool to know their advantages and disadvantages. This
leads us to the crucial questions we answer in this book:

What entities do we measure in object-oriented design?

It depends . . . on the language. In most object-oriented languages we
find and can measure classes; operations (including methods and
functions); variables (including the whole range from attributes to
local variables) etc.

What metrics do we use?

It depends . . . on our measurement goals. We may want to assess the
size, the complexity, the quality, etc.

What can we do with the information obtained?

It depends . . . on our objectives. We may want to just assess the sta-
tus quo to calm down management, we may want to brag with col-
leagues (“my system is bigger and better than yours”), or we may
actually want to ameliorate the quality of parts of the system.

Design Harmony

Simple metrics are not enough to understand and evaluate design, or
to put it bluntly: you cannot understand the beauty of a painting by
measuring its frame or understand the depth of a poem by counting
the lines. Object-oriented systems can be seen as pieces of complex
art and the creativity that programming involves backs up this bold
statement. Metrics can help to evaluate and improve designs, but
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those have to be meaningful metrics that are put in a context of de-
sign harmony.

The reader might be confused to find a word as ambiguous as
harmony in a book about object-oriented metrics. After all, a major
point of this book is that software, objet-oriented and not, can and
should be measured. However, metrics have to be put in a context.
The aspect of measurability and more specifically about thresholds
(such as: When should a class or a method be considered too large?)
does not make sense if there is no context: A class implementing a
parser is never going to be small, the domain is just too complex to
be modelled in a concise way. Still, and this is where harmony comes
into play, a class can be implemented in several ways, theoretically
even in only one huge method. This would however make the class
hard to understand.

An application, a class, a method and any other artifact in a soft-
ware system should be implemented in an harmonious way, e.g., a
class has to implement an appropriate number of methods of appro-
priate size, complexity, and functionality.

Appropriate to what? This appropriateness is a kind of harmony
that can indeed be measured and reached. This overall harmony is
composed of three distinct harmonies that concern every software
artifact:

1. Identity Harmony – “How do I define myself?” Every entity in a
software system must justify its existence: does it implement a
specific concept and how does it do that? Is it doing too many
things or nothing at all?

2. Collaboration Harmony – “How do I interact with others?” Every
entity collaborates with others to fulfill its tasks. Does it do that
all on its own, or does it use other entities. How does it use them?
Does it use too many?

3. Classification Harmony – “How do I define myself with respect
to my ancestors and descendants?”. This harmony combines ele-
ments of both identity and collaboration harmony in the context
of inheritance. For example, does a subclass use all the inherited
services, or does it ignore some of them?

Boiling it down: Every artifact in a system needs to be in harmony
with itself (not too large, not too small, not too complex, not too sim-
ple, etc.), in harmony with its collaborators (do not talk to everybody,
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do not talk to nobody, etc.), and finally in harmony with its ancestors
and descendants. Every artifact must have its appropriate place, size,
and complexity to fit the system context.

Detection Strategies and Class Blueprints

In the remainder of this chapter we present two techniques to eval-
uate the design of object-oriented systems and to detect structural
disharmonies:

1. A detection strategy is a composed logical condition, based on met-
rics, that identifies those design fragments that are fulfilling the
condition.

2. A class blueprint is a semantically rich visualization of the internal
structure of classes and class hierarchies. We use a class blueprint
to inspect source code and to detect visual anomalies which in
turn point to design disharmonies.

4.1 Detection Strategies

The Principles of Detection Strategies

A metric alone cannot help to answer all the questions about a sys-
tem and therefore metrics must be used in combination to provide
relevant information. Why?

Using a medical metaphor we might say that the interpretation of
abnormal measurements can offer an understanding of symptoms,
but the measurements cannot provide an understanding of the dis-
ease that caused those symptoms. The bottom-up approach, i.e., going
from abnormal numbers to the recognition of design diseases is im-
practicable because the symptoms captured by single metrics, even
if perfectly interpreted, may occur in several diseases: The interpre-
tation of individual metrics is too fine grained to indicate the disease.

This leaves us with a major gap between the things that we mea-
sure and the things that are in fact important at the design level with
respect to a particular investigation goal.

How should we combine then metrics in order to make them serve
our purposes? The main goal of the mechanism presented below is
to provide engineers with a means to work with metrics at a more
abstract level. The mechanism defined for this purpose is called a
detection strategy, defined as follows:
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A Detection Strategy is a composed logical condition, based on
metrics, by which design fragments with specific properties are
detected in the source code.

The aim with detection strategies is to make design rules (and their
violations) quantifiable, and thus to be able to detect design prob-
lems in an object-oriented software system, i.e., to find those design
fragments that are affected by a particular design problem.

The use of metrics in the detection strategies is based on the mech-
anisms of filtering and composition, described next.

Filtering

The key issue in filtering is to reduce the initial data set so that only
those values that present a special characteristic are retained. A data
filter is a boolean condition by which a subset of data is retained from
an initial set of measurement results, based on the particular focus
of the measurement.

The purpose of filtering is to keep only those design fragments
that have special properties captured by the metric. To define a data
filter we must define the values for the bottom and upper limits of
the filtered subset. Depending on how we specify the limit(s) of the
resulting data set, filters can be either statistical, based on absolute
thresholds, or based on relative thresholds.

Statistical Filters

A first approach when we seek abnormal values in a data set is to
employ statistical means for detecting those values. Thus, the (bi-
nary) filtering condition and its semantics are implicitly contained
in the statistical rules that we use. The advantage of this approach
is that it is not necessary to specify explicitly a threshold value be-
yond which entities are considered abnormal. One significant exam-
ple of a statistical filter is the box-plot technique, which is a statis-
tical means for detecting the abnormal values (outliers) in a data
set [FP96]. In this case, the detection of outliers starts from the me-
dian value, which can be directly computed from the analyzed data
set. Based on this median value, two pairs of thresholds are com-
puted i.e., the lower/upper quartile and resp. lower/upper tail. These
thresholds are again computed implicitly, based on the formulas pre-
sented in Fig. 4.1. Eventually, in a box-plot an outlier is a value from
the data set that is either higher than the upper tail or lower than the
lower tail thresholds.
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Fig. 4.1. The box-plot technique [FP96].

Threshold-Based Filters

The alternative way of defining filters is to pick-up a comparator
(e.g.,lower than or highest values) and specify explicitly a threshold
value (e.g., lower than 10 or 5 highest values). But, as already dis-
cussed in Chapter 2 (see Sect. 2.1), the selection of proper thresholds
is one of the hardest issues in using metrics. There are two ways in
which these filters can be specified:

1. Absolute Comparators. We use the classical comparators for num-
bers, i.e., > (greater than); ≥ (greater than or equal to); < (less
than); ≤ (less than or equal to).

2. Relative Comparators. The operators that can be used are highest
values and lowest values. These filters delimit the filtered data set
by a parameter that specifies the number of entities to be retrieved,
rather than specifying the maximum (or minimum) value allowed
in the result set. Thus, the values in the result set will be relative
to the original set of data. The used parameters may be absolute
(e.g., retrieve the 20 entities with the highest LOC values) or per-
centile (e.g., retrieve the 10% of all entities having the lowest LOC
values). This kind of filter is useful in contexts where we consider
the highest or lowest values from a given data set, rather than
indicating precise thresholds.

Composition

In contrast to simple metrics and their interpretation models, a de-
tection strategy is intended to quantify more complex design rules,
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that involve multiple aspects that needed quantification. As a con-
sequence, in addition to the filtering mechanism that supports the
interpretation of individual metric results, we need a second mech-
anism to support a correlated interpretation of multiple result sets –
this is the composition mechanism. It is based on a set of AND and
OR operators that compose different metrics together to form a com-
posite rule.

Graphical Notation for Detection Strategies

A detection strategy is a composed logical expression by which de-
sign entities addressed by the strategy are filtered. Instead of using
formulas, we decided to take advantage of a well-known graphical
notation used to represent logical circuits. In this representation, the
composition operators are represented as logical AND and OR gates
(see Fig. 4.2). Both the input and the output terms of the gates are
filters. Inputs can be either simple or composed filtering conditions.

Representation of Simple Filters

A simple filter is represented as a gray rounded rectangle, composed
of an informal description of the filtering condition and a white com-
partment (box) where the filtering formula is depicted i.e., the met-
ric followed by the filtering operator and the threshold value (see
Fig. 4.2).

Representation of Composed Filters

A composed filter is represented as a gray rounded rectangle that
contains only the informal description of the composed condition that
it stands for (see Fig. 4.3). Note, that a composed filter is always
the result (output) of another gate. Notice, that these intermediary
terms are not conceptually necessary. We introduced them, in order
to increase increase the understandability of more complex detection
strategies.

Detection Strategies Exemplified

A detection strategy can be used to express in a quantitative man-
ner deviations from a given set of rules of design harmony. While it
is impossible to establish an objective and general set of such har-
mony rules that would lead automatically to high-quality design if
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Fig. 4.2. Composition operators used in detection strategies represented as
logical AND/OR gates.

Metric > Threshold

Informal description of a simple 

filtering condition

Informal description of a composed 

filtering condition

AND
High-Level

Filtering Condition

Fig. 4.3. A graphical representation of a detection strategy.

they would be applied, yet heuristic knowledge reflects and preserves
the experience and quality goals of the developers.

As a consequence, over the last two decades, many authors were
concerned with identifying and formulating design principles [Mey88b]
[Lis87] [Mar02b], rules [CY91] [Mey88b], and heuristics[Rie96] [JF88]
[Lak96] [LR89] that would help developers fulfill those criteria while
designing their systems.
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An alternative approach to disseminating heuristical knowledge
about the quality of the design is to identify and describe the symp-
toms of bad-design.

This approach is used by Fowler in his book on refactorings
[FBB+99] and by the “anti-patterns” community [BMMM98] as they
try to identify situations when the design must be structurally im-
proved. Fowler describes around twenty code smells – or “bad smells”
as the author calls them – that address symptoms of bad design,
often encountered in real software systems.

Let us see now, based on the concrete example of the God Class
[Rie96] design flaw, how detection strategies can be defined for a con-
crete design flaw. The entire process is summarized in Fig. 4.4.

The starting point in defining such a detection strategy is given by
one (or more) informal design rules — like those stated by Riel [Rie96],
Martin [Mar02b] or Fowler [FBB+99] — that comprehensively define
the design problem, i.e., the disharmony that we want to capture. In
this concrete case we start from the three heuristics related to the
God Class problem, as described by Riel [Rie96]:

Top-level classes in a design should share work uniformly. [...]
Beware of classes with much non-communicative behavior. [...]
Beware of classes that access directly data from other classes.

Step 1: Identify Symptoms

The first step in constructing a detection strategy is to break down the
informal rules in a correlated set of symptoms (e.g., class inflation, ex-
cessive method complexity, high coupling) that can be captured by a
single metric. In our case the first rule refers to high class complexity.
The second rule speaks about the level of intra-class communication
between the methods of the class; thus it refers to the low cohesion
of classes. The third heuristic addresses a special type of coupling,
i.e., the direct access to instance variables defined in other classes.
In this case the symptom is access of foreign data.

Step 2: Select Metrics

The second step is to select proper metrics that quantify best each of
the identified properties. In this context the crucial question is: from
where should we take the proper metrics? There are two alternatives:
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Fig. 4.4. Process of transforming an informal design rule in a detection strat-
egy.
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1. Use well-known metrics from the literature. For example, we could
choose a metric from a well-known metrics suite (e.g., the Chi-
damber&Kemerer [CK94] suite), or from the metrics summarized
by various authors (e.g., Lorenz and Kidd [LK94], Henderson-
Sellers [HS96], Briand [BDW99, BDW98] etc.)

2. Define a new metric (or adapt an existing one), so that the met-
ric captures exactly one of the symptoms (see previous step) that
appears in that design flaw that we intend to quantify.

Our approach is a conservative one, i.e., we try to use as much
as possible metrics from the literature, avoiding thus to define new
(oftentimes unnecessary) metrics. Yet, in the same time we want to
emphasize that, in defining a good detection strategy, it is very im-
portant not to sacrifice the exact quantification of a symptom, just
for the sake of using an existing metrics from the literature. In other
words, if no adequate metric can be found in the literature, define a
new metric that reflects one symptom that needs to be quantified.

For the God Class design flaw these properties are class complex-
ity, class cohesion and access of foreign data. Therefore, we choose
the following set of metrics1:

• Weighted Method Count (WMC) is the sum of the statical complex-
ity of all methods in a class [CK94]. We consider McCabe’s cyclo-
matic complexity metric as a complexity measure [McC76, LK94].

• Tight Class Cohesion (TCC) is the relative number of methods di-
rectly connected via accesses of attributes [BK95, BDW98].

• Access to Foreign Data (ATFD) represents the number of external
classes from which a given class accesses attributes, directly or
via accessor-methods.

Notice that while the first two metrics (i.e., WMC and TCC) are metrics
defined in the literature, the last one was defined by us in order to
capture a very specific aspect, i.e., the extent to which a class uses
attributes of other classes.

Step 3: Select Filters

The next step is to define for each metric the filter that captures best
the symptom that the metric is intended to quantify. As mentioned
earlier, this implies to (1) pick-up a comparator and (2) to set an

1 For a precise description of all the metrics used in the book, including the
metrics below please refer to Appendix A.
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adequate threshold, in conformity with the semantics described in
Sect. 2.1.

In our concrete case, the first symptom is referring to excessively
high class complexity we want to find classes that are complexity
outliers. Thus, for the WMC metric we use the ≥ (greater than or
equal to) comparator. How do we find the threshold for extremely high
values of the WMC complexity metric? There is no other way than
to base it on statistical data related to complexity, as described in
Sect. 2.1. Based on the semantic labels described there, we can say
now that we will use the very high threshold value.

For capturing the aspect of “access to foreign data” we use the
> (greater than) comparator, whereby the threshold value will be the
maximal number of “tolerable” foreign attributes to be used. Thus,
the threshold value for ATFD, does not need to be based on statis-
tics, because the metric has a precise semantic: It measures the ex-
tent of encapsulation breaking. Based on the rationale presented in
Sect. 2.1 “accidental” usage of foreign data, and consequently a few
such usages are harmless; thus, ATFD > FEW .

Eventually, for the low cohesion symptom we choose the < (less
than) comparator. In order to set the proper threshold, we first have
to notice that the values of TCC are fractions; thus we can use one
of the thresholds with fraction semantics summarized in Table 2.3.
As this filter must capture non-cohesive classes, we decided to use
the one-third threshold (see Sect. 2.1), meaning that only one third
of the method pairs of the class have in common the usage of the
same attribute. If we wanted to capture more extreme cases of non-
cohesiveness, we could have used the one-quarter threshold.

Step 4: Compose the Detection Strategy

The final step is to correlate these symptoms, using the composi-
tion operators described previously. From the context of the informal
heuristics as presented by their author in [Rie96], we infer that all
these three symptoms should co-exist if a class is to be considered a
behavioral God Class. Consequently, the final form of the God Classes
detection strategy is the one depicted in Fig. 4.5.

The Missing Link

Detection strategies are useful to detect problems in object-oriented
designs. What they finally produce is a list of suspects, i.e., all en-
tities in the system which conform to the applied detection strategy.
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Fig. 4.5. Detection of a God Class

These suspects must be manually inspected to find those that cause
the most severe problems in the context of the entire system. Ap-
plying the numerous detection strategies presented in this book (see
the next three chapters) would lead to many long code listings that
you, the engineer must manually inspect, which is painful and time-
consuming process.

Consequently, we need a technique that helps us to (1) assess
quickly the context of each suspect, (2) decide if the suspect needs
to be urgently refactored, and (3) get insights into how this is to be
done.

Next, we will introduce a powerful visualization technique called
Class Blueprint which helps us cover this “missing link” between lists
of suspects and the design fragments that need to be improved. Class
Blueprint is a semantically enriched depiction of the internal struc-
ture of classes. It will help us to quickly grasp and discuss the inter-
nal design of classes and the way they collaborate with other classes.

Using again a medical metaphor we can say that while detection
strategies help us to detect abnormal fragments of a system’s design,
the Class Blueprint technique helps us to perform a radiography (or
a CAT scan) of suspicious design fragments and decide if and how we
need to intervene.
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4.2 The Class Blueprint

In this section we present a visualization to assist the understanding
of classes by representing a semantically augmented call- and access-
graph of the methods and attributes of classes.

We only take into account the internal static structure of a class
and focus on the way methods call each other and the way attributes
are accessed, and the way the classes use inheritance.

This will help us understand the structure of classes without the
need to read all of their code. Classes are difficult to understand
because of the following reasons:

1. Contrary to procedural languages, the method definition order in a
file is not important [Dek02]. There is no simple and apparent top-
down call decomposition, which is necessary to break down the
complexity of understanding object-oriented code. This problem
is emphasized in the context of integrated development environ-
ments (IDEs), which disconnect the class and method definitions
from their physical storage medium, e.g., directories and files.

2. Classes are organized in inheritance hierarchies in which at each
level behavior can be added, overridden or extended. Understand-
ing how a derived class fits within the context of its base class is
complex because late binding provides a powerful instrument to
build template and hook methods that allow children’s behavior
to be called in the context of their ancestors. The presence of late
binding leads to yoyo effects: To understand the code by following
the call-flow the reader has to browse up and down the hierarchy
[WH92, DRW00].

The objective of the class blueprint is to help a programmer to under-
stand and develop a mental model of the classes he or she browses
and to offer support for reconstructing the logical flow of method
calls. In short, a class blueprint is a semantically enriched and lay-
ered visualization of the control-flow and access structure of classes
[LD01, DL05]2.

The Principles of a Class Blueprint

A class blueprint is structured according to layers that group the
methods and attributes. The nodes (varying in size depending on
2 To locate it in the general context of cognitive models [LPLS96, vMV96], it

is intended to support the implementation plans at the language level, i.e.,
working in code chunks, in this case classes and methods.
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source code information of the metrics) represent a class’s methods
and attributes and are colored3 according to semantic information,
e.g., whether a method is abstract, overriding other methods, return-
ing constant values, etc.

The Layered Structure of a Class Blueprint

Initialization External Interface Internal Implementation Accessors Attributes

Invocation Sequence

Fig. 4.6. A class blueprint decomposes a class into layers.

A class blueprint decomposes a class into layers and assigns its at-
tributes and methods to each layer based on the heuristics described
below (see Fig. 4.6). The layers support a call-graph notion in the
sense that a method node on the left connected to another node on
the right is either invoking or accessing the node on the right that
represents a method or an attribute.

The layers have been chosen according to a notion of time-flow and
encapsulation. The notion of encapsulation is visualized by separat-
ing state (to the right) from behaviour (to the left), and distinguish-
ing the public (to the left) from the private part (to the right) of the
class’ behaviour. Added to this only the actual source code elements
are visualized, i.e., we do not represent artificial elements resulting

3 The colors used in our visualizations follow visual guidelines suggested by
Bertin [Ber74], Tufte [Tuf90], Ware [War00], and Pinker [Pin97], e.g., we
take into account that the human brain is not capable of simultaneously
processing more than a dozen distinct colors.
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from a combination/abstraction of source code elements. From left
to right we identify the following layers: initialization layer, external
interface layer, internal implementation layer, accessor layer, and at-
tribute layer. The first three layers and the methods contained therein
are placed from left to right according to the method invocation se-
quence, i.e., if method m1 invokes method m2, m2 is placed to the
right of m1 and connected to an edge.

A class blueprint contains the following layers:

1. Initialization layer. The methods contained in this first layer are
responsible for creating an object and initializing the values of the
attributes of the object. A method belongs to this layer if one of
the following conditions holds:
• The method is a constructor.
• The method name contains the substrings “init(ialize)”.

2. External interface layer. The methods contained in this layer
represent the interface of a class to the outside world. A method
belongs to this layer if one of the following conditions holds:
• It is invoked by methods of the initialization layer .
• In languages like Java and C++which support modifiers (e.g.,

public, protected, private) it is declared as public or protected.
• It is not invoked by other methods within the same class, i.e.,

it is a method invoked from outside of the class by methods
of collaborator classes or subclasses. Should the method be
invoked both inside and outside the class, it is placed within
the implementation layer .

We consider the methods of the interface layer to be the entry
points to the functionality provided by the class. We do not in-
clude accessor methods (getters and setters) in this layer, but in a
dedicated accessor layer .

3. Internal implementation layer. The methods contained in this
layer represent the core of a class and are not supposed to be
visible to the outside world. A method belongs to this layer if the
method is invoked by at least one method of the same class.

4. Accessor layer. This layer is composed of accessor methods, i.e.,
methods whose sole task is to get or set the values of attributes.

5. Attribute layer. The attribute layer contains the attributes of the
class, connected to the method nodes in the other layers by edges
representing access relationships.
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Representing Methods and Attributes

We represent methods and attributes using colored boxes (nodes) of
various size and position them within the layers presented previously.
We map metric information to the size of the method and attribute
nodes, and map semantic information on their colors.

Method

Attribute
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Method

Overriding

Method

Delegating

Method

Extending

Method

Constant

Method

Read Accessor

Method

Write Accessor

Method

Direct access
Method invocation

Number of Invocations

Number of
Lines of Code

Number of external 
accesses

Number of 
internal accesses

Fig. 4.7. In a class blueprint the metrics are mapped on the width and the
height of a node. The methods and attributes are positioned according to the
layer they have been assigned to.

Mapping metrics information on size. The width and height of the
nodes reflect metric measurements of the represented entities, as il-
lustrated in Fig. 4.7. In the context of a class blueprint, the metrics
used for the method nodes are lines of code for the height and num-
ber of invocations (i.e., number of static invocation going out from the
represented node) for the width. The metrics used for the attribute
nodes are the number of direct accesses from methods within the
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class for the width and the number of direct accesses from methods
defined in other classes for the height. This allows one to identify how
attributes are accessed.

Description Color

Attribute blue node
Abstract method cyan node
Extending method. A method which performs a super invocation. orange node
Overriding method. A method redefinition without hidden method invocation. brown node
Delegating method, forwards the method call to another object. yellow node
Constant method. A method which returns a constant value. grey node
Interface and Implementation layer method. white node
Accessor layer method. Getter. red node
Accessor layer method. Setter. orange node

Invocation of a method. blue edge
Invocation of an accessor. Semantically equivalent to a direct access. blue edge
Access to an attribute. cyan edge

Table 4.1. In a class blueprint semantic information is mapped on the colors
of the nodes and edges.

Mapping semantic information on color. The call-graph is aug-
mented not only by the size of its nodes but also by their color. In
a class blueprint the colors of nodes and edges represent semantic
information extracted from the source code analysis. The colors play
an important role in conveying added information [Ber74, Tuf90]. Ta-
ble 4.1 presents the semantic information we add to a class blueprint
and the associated colors.

Class Blueprints Exemplified

To show how the class blueprint visualization allows one to represent
a condensed view of a class’s methods, call-flow and attribute ac-
cesses, we describe in detail two classes implementing two different
domain entities of the Jun framework: The first one defines the con-
cept of a 3D graph for OpenGL mapping and the second is a rendering
algorithm. We present the blueprints and some pieces of code to show
how the graphical representation is extracted from the source code
and how the graphical representation reflects the code it represents,
building a trustable model.

To help the reader to understand the first class blueprint we also
show on the right of the figure a blueprint without metrics in which
the method names are shown on the boxes that represent them.
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Fig. 4.8. Left: An actual class blueprint visualization of the class
JunOpenGL3dGraphAbstract, a class which represents 3D graphs in
OpenGL. Right: The same class displayed with method names for illustrating
how the methods call each other.

The left part of Fig. 4.8 shows the blueprint of a Smalltalk class
named Jun-OpenGL3dGraphAbstract which we describe hereafter. As
the named blueprint on the right in Fig. 4.8 shows, this kind of rep-
resentation does not scale well in practice; additionally, metrics in-
formation is not reflected in a named blueprint (i.e., the width and
height of nodes is not correlated with metric value). Therefore it is
not used in this book.

The code shown is Smalltalk code; however, in order to understand
the code sequence being fluent in Smalltalk is not a must as we are
only concerned with method invocations and attribute accesses.4

Example 1: An Abstract Class

The class blueprint shown in Fig. 4.8 has the following structure:

• One initialization layer method. This method, called initialize, is
positioned on the left. As shown, it extends (invokes) a superclass

4 In Smalltalk, attributes as local variables are read simply by using the at-
tribute name in an expression. They are written using the := construct.
In a first approximation, messages follow the pattern receiver method-
Name1: arg1 name2: arg2 which is equivalent to the Java/C++syntax re-
ceiver.methodName1name2(arg1, arg2). Hence bidiagNorm := self bidiag-
onalize: superDiag assigns to the variable bidiagNorm the result of the
method bidiagonalize.
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method with the same name, hence the node color is orange. It
directly accesses two attributes, as the cyan line shows. The code
of the method initialize is as follows:

initialize
super initialize.

displayObject := nil.

displayColor := nil

• Several external interface layer methods. Note that many of
them have a yellow color, i.e., they delegate the functionality. The
following method asPointArray is a delegating method:

asPointArray
ˆ self displayObject asPointArray

The five grey nodes in the interface layer are methods returning
constant values as illustrated by the following method isArc. This
method illustrates a typical practice to share a default behavior
among the hierarchy of classes.

isArc

ˆ false

• A small internal implementation layer with two sub-layers.
This layer shows that the blueprint granularity resides at the
method level, as the visualization does not specifically represent
control flow constructs. The method displayObject performs a lazy
initialization, i.e., it initializes the attributes only when the at-
tributes are accessed and acts as an abstract template method
by calling the method createDisplayObject which is abstract and
thus represented as a cyan node. The method createDisplayOb-
ject should then be redefined in the subclasses.

displayObject
displayObject isNil ifTrue:

[ displayObject := self createDisplayObject ].

ˆ displayObject

createDisplayObject

ˆ self subclassResponsibility

• Two accessors. There is a read-accessor, color, displayed as the
red accessor node and a write-accessor, setValue: displayed as the
rightmost orange accessor node.
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• Two attributes. Note that the read-accessor reads one attribute,
while the write-accessor writes the other one. However, no method
uses the write-accessor. The attributes are also directly accessed:
the initialize method accesses both, while two other methods also
directly access the attributes. which is an inconsistent coding
practice.

Fig. 4.9. A blueprint of the class JunSVD. This class blueprint shows patterns
of the type Single Entry, Structured Flow and All State.

Example 2: An Algorithm

The class blueprint presented in Fig. 4.9 displays the class JunSVD
implementing the algorithm of the same name. Looking at the blueprint
we get the following information.

• No initialization layer method. The left layer is empty.
• Three external interface layer methods. Two of them directly

access the attributes of the class. We also see that the second
external interface layer method is actually an entry point to all
the methods in the internal implementation layer.

• An internal implementation layer composed of nine methods
in five sub-layers. The class is actually written in a clearly struc-
tured way. Therefore the class blueprint can also be used to infer a
reading order of the methods contained in this class. The blueprint
shows that the node A which represents the method compute
(shown hereafter) invokes the methods bidiagonalize:, epsilon and
diagonalize:with:.
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compute
| superDiag bidiagNorm eps |

m := matrix rowSize.

n := matrix columnSize.

u := (matrix species unit: m) asDouble.

v := (matrix species unit: n) asDouble.

sig := Array new: n.

superDiag := Array new: n.

bidiagNorm := self bidiagonalize: superDiag.

eps := self epsilon * bidiagNorm.

self diagonalize: superDiag with: eps.

• Three read-accessor methods. Although three read-accessors
have been defined, they are not used by methods of this class,
because they do not have any incoming edges that would exem-
plify their use.

• Six attributes. All the attributes in this class are accessed by
several methods, i.e., all the state of the class is accessed by the
methods. The blueprint also reveals that the attributes are heavily
accessed. The nodes marked as A, B and C consistently access all
the attributes matrix, n, m, sig, v and u. To understand how this
particular behavior is possible we show the code of the method
generalizedInverse (C). After reading the code we easily under-
stand that this particular behavior for a class is normal for an
algorithm and we mentally acknowledge that the other methods
are built in a similar fashion.

generalizedInverse
| sp |

sp := matrix species new: n by: m.
sp doIJ: [:each :i :j |

sp row: i column: j put:

((i = j and: [(sig at: j) isZero not])

ifTrue: [(sig at: j) reciprocal]

ifFalse: [0.0d])].

ˆ (v product: sp) product: u transpose

This example shows that the blueprint visualization conveys infor-
mation which is otherwise hard to notice: all attributes are accessed
by the methods. This is an example of how the approach supports
opportunistic code reading. First the reader is intrigued by the regu-
larity of the accesses, then reads one method and understands that
the methods implement an algorithm. The reader can now extrapolate
this knowledge to the other methods of the class.
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Example 3: Class Blueprints and Inheritance

Understanding classes in the presence of inheritance is difficult as
the flow of the program is not local to a single class but distributed
over hierarchies, as mentioned by Wild [WH92] and Lange [LN95]. In
the context of inheritance we visualize every class blueprint separately
and put the subclasses below the superclasses according to a simple
tree layout.

In Fig. 4.10 we see a concrete inheritance hierarchy of class
blueprints. The superclass defines some behavior that is then spe-
cialized by each of the three subclasses named JunColorChoiceHSB,
JunColorChoiceSBH and JunColorChoiceHBS. The blueprint of this
hierarchy reveals that the subclasses have been developed to satisfy
the implementation needs of the superclass: they do not define any
extra behavior; it is the superclass that must be analyzed to under-
stand the whole hierarchy.

We see that the root class defines several abstract methods (de-
noted by the cyan color) that represent color components such as
brightness, hue and color and which are overridden (denoted by the
brown color) in the three small subclasses. As there is the same num-
ber of brown nodes as cyan ones, there is a good chance that the
subclasses are concrete classes.

The method named color is a template method that calls three
abstract methods as confirmed by the definition of the method color:

color
ˆ ColorValue hue: self hue

saturation: self saturation

brightness: self brightness

We see that the methods xy: (B) and xy (C), play a central role in the
design of the class as they are both called by several of the methods
of each subclass, as confirmed by the following method of the class
JunColorChoiceSBH:

JunColorChoiceSBH>>brightness: value
((value isKindOf: Number) and:

[0.0 <= value and: [value <= 1.0]])

ifTrue: [self xy: self xy x @ 1 - value]

This example shows again that the blueprint conveys information
which is otherwise hard to notice, e.g., the fact that all the subclasses
of the root classes implement only methods which override methods
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Fig. 4.10. A class blueprint visualization of an inheritance hierarchy with
the class JunColorChoice as root class. The root class contains an Interface
visual pattern, while each of the subclasses is a pure Overrider. Furthermore,
each subclass is a pure Siamese Twin.

in the superclass, or it helps to detect the template method design
pattern present in the root class.

All these examples illustrate how the blueprints help a software
engineer to: (1) build a mental image of the class in terms of method
invocations and state access, (2) understand the class/subclass
roles, and (3) identify key methods.

Blueprints act as revealers in the sense that they raise questions,
support hypotheses, or clearly show important information. When
questions are raised, code reading helps confirm the information pro-
vided by the visualization. Code reading is not always necessary, but
can be used sparingly on identified methods. There is a definitive
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synergy between the visual images generated by the blueprint and
the code reading. Class blueprints allow one to characterize classes
but also represent an important means of communication.

Example 4: Class Blueprints and Design Problems

Class Blueprints provide us with a powerful visual means to inspect
the suspects detected by the detection strategies. For example, by
applying the God Class detection strategy (see page 51) on a case
study we found several suspects, one of which is class Modeller.

Fig. 4.11. The class blueprint of a God Class suspect.

By building the class blueprint for this class (see Fig. 4.11) we
can immediately see that Modeller is not a class with an excessive
number of methods, but has a certain number of considerably large
and complex methods (3 methods are longer than 100 lines of code,
the longest one addDocumentationTag (annotated as 1a in the figure)
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is 150 lines code and invoked by three other methods, two of which
are the second and third longest methods in this class: addOperation
(1b, 116 LOC) and addAttribute (1c, 108 LOC). The class blueprint
reveals other disharmonies in this class: there are 12 attributes in
this class, all of them private (which is good), but there are “only” 4
accessor methods. Moreover, the attributes are accessed both directly
and indirectly (using the accessors), denoting a certain inconsistency
or lack of access policy.

4.3 Conclusions and Outlook

In this chapter we presented two approaches which will allow us to
evaluate the design of object-oriented software systems, the Detection
Strategy and the Class Blueprint:

Detection Strategy: It provides us with a means to detect flawed
(from a design point of view) entities in object-oriented systems.
The design strategies produce lists of suspects that comply with
specific heuristics encoded with metrics.

Class Blueprint: It provides us with a powerful visual means to
inspect the suspects detected by the detection strategies.

In the beginning of this chapter (see 46) we argued that metrics
can help to evaluate designs, but those have to be meaningful metrics
that are put in the context of rules, best practices and heuristics that
express the harmony of a design.

Although we partially agree with Fowler stating that “no set of
metrics rivals informed human intuition” [FBB+99], there is a big
disadvantage: human intuition does not scale with the dimensions
of today’s software systems. Therefore, in order to find and improve
disharmonious design fragments in the next three chapters we em-
ploy detection strategies and the class blueprint.

Consequently in the remaining chapters, we present in detail 11
such design disharmonies. For each of them we describe the detection
strategy that helps to detect them automatically using metrics, we
look at selected examples using the class blueprint, and conclude
each disharmony with a discussion of how to cure flawed entities
using refactorings.

Based on the harmony aspects identified in Sect. 4, we divide the
11 design disharmonies in three categories, i.e., identity collaboration
and classification disharmonies:
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Identity Disharmonies (Chapter 5): God Class(80), Brain Class(97),
Feature Envy(84), Brain Method(92), Data Class(88), Duplication(102)

Collaboration Disharmonies (Chapter 6): Dispersed Coupling(127),
Intensive Coupling(120), Shotgun Surgery(133)

Classification Disharmonies (Chapter 7): Refused Parent Bequest(145),
Tradition Breaker(152)

Fig. 4.12. Disharmonies and their correlations.

Each of the following chapters has four major parts:

1. Harmony Rule(s). As mentioned before, disharmonies are devia-
tions from a set of principles, rules and heuristics that specify
what harmony means. Therefore, before presenting a catalogue of
disharmonies, we summarize in the form of one or more harmony
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rules those aspects of harmony that we took into account when
building the catalogue of disharmonies. These harmony rules are a
concise distillation of various design rules and heuristics found in
the literature (e.g., [Rie96, Mar02b, JF88, Lak96, Mey88b, Lis87]).

2. Overview of Detected Disharmonies. Most of the times design
disharmonies do not appear in isolation. Therefore, before pre-
senting the disharmonies one by one, we provide a brief overview
in which we reveal the most common correlations between the
various disharmonies. Apart from discussing the correlations, we
provide in each case a picture that captures the web of correla-
tions involving the disharmonies presented in that chapter. As a
sneak preview, in Fig. 4.12 you can see all disharmonies and their
most common correlations. complete web of correlations

3. Catalogue of Disharmonies. The central part of each chapter con-
sists of a catalogue of specific disharmonies that can be detected
using a metrics-based approach. Each disharmony is described in
a in a pattern-like format.

4. Summary. Each chapter ends with a suite of practical guidelines
on detecting and recovering from the disharmonies presented in
the chapter.
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Identity Disharmonies

Identity disharmonies are design flaws that affect single entities such
as classes and methods. The particularity of these disharmonies is
that their negative effect on the quality of design elements can be
noticed by considering these design elements in isolation.

5.1 Rules of Identity Harmony

As mentioned at the end of Chapter 4 before presenting the various
identity disharmonies, let us first take a closer look on the most im-
portant harmony rules related to a single design entity.

We identified three distinct aspects that contribute to the identity
(dis)harmony of a single entity: its size, its interface and its imple-
mentation. We summarize each of these aspects in the form of a rule,
a rationale and a set of practical consequences. The three rules of
identity harmony that we defined are:

Operations and classes should have a harmonious size i.e., they
should avoid both size extremities

Each class should present its identity (i.e., its interface) by a set
of services, which have one single responsibility and which pro-
vide a unique behavior

Data and operations should harmoniously collaborate within
the class to which they semantically belong
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Proportion Rule

Operations and classes should have a harmonious size,
i.e., they should avoid both size extremities

Rationale

When considering quality and harmony the first aspect we think
about is proportion. The same applies to object-oriented software de-
sign. While this first rule is simple to understand it is crucial to follow
it. Most of the maintenance and reuse problems come from an unbal-
anced distribution of a system’s complexity (responsibilities) among
classes [Rie96, WBM03] or among operations [FBB+99]. This does not
mean that all classes or operations must have the same size; rather,
it warns us about the danger of going to extremes. Both extremes
can be dangerous: too large classes or operations are a maintenance
nightmare, while many tiny classes are in most cases a sign of class
proliferation and hinder understanding. In the same manner, while it
is desirable to have slim operations, sometimes this is abused and
we end up with an excessive number of methods, that again hampers
maintenance.
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Presentation Rule

Each class should present its identity (i.e., its interface) by
a set of services, which have one single responsibility and

which provide a unique behavior

Rationale

This rule encourages a balanced distribution of a system’s intelli-
gence among classes [Rie96, WBM03] and was the underlying idea
behind CRC cards (class, responsibility, collaborator) [BS97]. The aim
of the rule is to focus each class on a single task (responsibility), ex-
pressed in terms as a set of services (i.e., a set of public methods).
The rule makes sure that each concrete piece of functionality is im-
plemented once and only once in the system to avoid code duplica-
tion.

Practical Consequences

• Provide services and hide data – A class should present itself
to others only in terms of a set of provided services (i.e., public
methods). Never let a class present itself in terms of its data, as
this breaks encapsulation and consequently spoils the maintenance
benefits of object-oriented design.

• Take responsibility – Most non-abstract services of a class should
be responsible for implementing a piece of the class’s functionality.
A class might have some delegator (i.e., methods that just forward
the call to another method) and some accessor methods, but the
number of such methods should be limited in each class.

• Keep services cohesive – Services provided by a class should be
focused on one single responsibility. The set of services of a class
should have limited size and a high usage cohesion.

This is a restatement of the Interface Segregation Principle [Mar02b]
which states that the clients of a class should not be forced to
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depend on interfaces that they do not use. Although this conse-
quence also concerns the size of the interface of a class, the main
aspect here is not the proportion, but the avoidance of an eclectic
interface.

• Be unique – When classes have a harmonious identity, then each
piece of concrete functionality has a unique place, i.e., it is imple-
mented once and only once [Bec00]. Consequently, code duplication
is avoided.
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Implementation Rule

Data and operations should collaborate harmoniously
within the class to which they semantically belong

Rationale

One of the cornerstones of the object-oriented paradigm is encap-
sulation that makes sure that the data and the operations are kept
together. An abstraction (e.g., a class) is harmonious if its operations
use most of data most of the time [Rie96], i.e., if most attributes of a
class are used together in most methods of that class. This rule does
not allow every piece of the system to be visible and accessible by any
other part of the system. Applying the law of Demeter [LH89] stresses
that locality of data access is important to avoid to have ripple effects
when code changes. Hence keeping data and behavior together is a
good practice and an important refactoring [DDN02].

Practical Consequences

• Operations belong to classes – Every operation should belong to
a class. Thus, avoid as much as possible global operations.

• Keep data close to operations – Data and the operations that use
it most should be placed as close as possible to one another. In other
words, data (e.g., attributes, local variables, etc.) should stay in the
class or method where they are used the most.

• Distribute complexity – The functionality provided by a class
should be distributed among its operations in a balanced manner.

• Operations use most attributes – Within the same class, most
operations should collaborate and use most of the data most of the
time [Rie96]. Thus, avoid abstractions with disjunct sets of behavior
and data.



78 5 Identity Disharmonies

5.2 Overview of Identity Disharmonies

The most frequent and easily recognizable sign of an identity dishar-
mony is excessive size and complexity of a class and its methods (Pro-
portion Rule). Any investigation that intends to assess and improve
the identity harmony of a system usually starts with those classes
and methods that stand out due to their size. This is very important,
because as we will see also in Sect. 5.9 the process of recovering from
design problems uses these outlying design fragments as a starting
point.

Fig. 5.1. Correlation web between identity disharmonies.

In the remainder of this chapter we present detection strategies
that capture oversized and overcomplex methods (Brain Method(92))
and the classes that host them (Brain Class(97)). In many cases these
outliers are caused by the presence of code duplication; consequently
we check for code duplication within classes (Duplication(102)) with
excessive size and complexity (see Fig. 5.1).

Another sign of disharmonious identity is the non-cohesiveness
of behavior (Presentation Rule and Implementation Rule) and the ten-
dency to attract more and more features, to gather more and more
services (Riel calls such a disharmony a God Class(80) [Rie96]). We
defined a detection strategy to detect such classes. The more a class
tends to become a God Class(80), the more the other classes commu-
nicating with it tend to become simple data providers. A data provider
does not offer much functionality; instead it merely provides raw data
and tends to become a Data Class(88) [Rie96, FBB+99]. As an imme-
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diate consequence, the methods of the (God) classes, which use the
foreign data, smell of Feature Envy(84) [FBB+99], being more inter-
ested in the attributes of other classes than those of their own class.
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5.3 God Class

In a good object-oriented design the intelligence of a system is uni-Description
formly distributed among the top-level classes [Rie96]. The God Class
design flaw refers to classes that tend to centralize the intelligence of
the system. A God Class performs too much work on its own, dele-
gating only minor details to a set of trivial classes and using the data
from other classes. This has a negative impact on the reusability and
the understandability of that part of the system. This design problem
is comparable to Fowler’s Large Class bad smell [FBB+99].

Classes.Applies To

God Class is potentially harmful to a system’s design because it isImpact

an aggregation of different abstractions and (mis)use other classes
(often mere data holder) to perform its functionality (see Proportion
and Implementation Rules). Most of the time they are against the basic
principles of object-oriented design which is that one class should
have one responsibility. At this point it is important to mention that a
God Class is a real problem if it hampers the evolution of the software
system. Thus a class that has the structural characteristics of a God
Class but that resides in a stable and untouched part of the system
does not pose a problem!

The detection of a God Class is based on three main characteristicsDetection

(Fig. 5.2):

1. They heavily access data of other simpler classes, either directly
or using accessor methods.

2. They are large and complex
3. They have a lot of non-communicative behavior i.e., there is a low

cohesion between the methods belonging to that class.

We first detect the classes that strongly depend on the data of other
classes, as this is the most significant symptom of a God Class. After
that, we filter the first list of suspects by eliminating all the small and
cohesive classes. Small classes are eliminated because they are less
relevant, while cohesive classes are excused because a high cohesion
is a sign of internal harmony between the parts of the class. The
detection strategy is composed of the following heuristics:
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ATFD > FEW

Class uses directly more than a 

few attributes of other classes

WMC ! VERY HIGH

Functional complexity of the 

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Fig. 5.2. The God Class detection strategy

1. Class uses directly more than a few attributes of other classes.
Since ATFD measures how many foreign attributes are used by
the class, it is clear that the higher the ATFD value for a class, the
higher is the probability that a class is (or is about to become) a
God Class.

2. Functional complexity of the class is very high. This is ex-
pressed using the WMC (Weighted Method Count) metric.

3. Class cohesion is low. As a God Class performs several distinct
functionalities involving disjunct sets of attributes, this has a neg-
ative impact on the class’s cohesion. The threshold indicates that
in the detected classes less than one-third of the method pairs
have in common the usage of the same attribute.

The general design of ArgoUML is good enough so that we could not Example
identify a pure God Class i.e., a class controlling the flow of the appli-
cation and concentrating all the crucial behavior, which would indi-
cate a clear lack of object-oriented design. However, certain classes in
ArgoUML acts as a black hole attracting orphan functionalities. Such
classes are also detected by the metrics presented above and are still
a design problem. A class of ArgoUML which clearly stands out is the
huge class ModelFacade (see Fig. 3.12). This class implements 453
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Fig. 5.3. The Class Blueprint of ModelFacade

methods, defines 114 attributes, and is more than 3500 lines long.
Moreover, all methods and all attributes are static. Its name hints
at being an implementation of the Facade Design Pattern [GHJV95],
but it has become a sort of black hole of functionality. In Fig. 5.3 we
see its Class Blueprint with a modified layout for the methods and
attributes to make this Class Blueprint fit on one screen. Looking at
the Class Blueprint for this class it seems that the developers use it
for everything that does not fit into other classes, but the downside
is that this class is like a tumor within this system and can only
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be removed if somebody makes a great effort to break away pieces
of functionality and separate them into other classes. We see from
the visualization that many invocations are directed towards distinct
methods, pointing to subsets of connected methods that can be ex-
tracted.

Refactoring a God Class is a complex task, as this disharmony is Refactoring
often a cumulative effect of other disharmonies that occur at the
method level. Therefore, performing such a refactoring requires ad-
ditional and more fine-grained information about the methods of the
class, and sometimes even about its inheritance context. A first ap-
proach is to identify clusters of methods and attributes that are tied
together and to extract these islands into separate classes. Split Up
God Class [DDN02] proposes to incrementally redistribute the re-
sponsibilities of the God Class either to its collaborating classes or to
new classes that are pulled out of the God Class. Feathers [Fea05]
presents some techniques such as Sprout Method, Sprout Class,
Wrap Method to be able to test legacy system that can be used to
support the refactoring of God Classes.
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5.4 Feature Envy

Objects are a mechanism for keeping together data and the opera-Description
tions that process that data. The Feature Envy design disharmony
[FBB+99] refers to methods that seem more interested in the data
of other classes than that of their own class. These methods access
directly or via accessor methods a lot of data of other classes. This
might be a sign that the method was misplaced and that it should be
moved to another class.

Methods.Applies To

Data and the operations that modify and use it should stay as closeImpact

together as possible. This data-operation proximity can help minimize
ripple effects (a change in a method triggers changes in other methods
and so on; the same applies for bugs, i.e., in case of a poor data-
operation proximity bugs will also be propagated) and help maximize
cohesion (see Implementation Rule).

The detection is based on counting the number of data members thatDetection

are accessed (directly or via accessor methods) by a method from
outside the class where the method under investigation is defined.
Feature Envy happens when the envied data comes from a very few
classes or only one class. The detection strategy (Fig. 5.4) in detail is:

1. Method uses directly more than a few attributes of other
classes. We use the ATFD1 (Access To Foreign Data) metric for
this.

2. Method uses far more attributes from other classes than its
own. We use the LAA (Locality of Attribute Accesses) metric for
this.

3. The used “foreign” attributes belong to very few other classes.
We use the FDP (Foreign Data Providers) metric for this. The rea-

1 In defining the God Class(80) detection strategy we also used a metric
called ATFD, which counts how many distinct attributes from other classes
are accessed by the measured design entity. The only difference is that in
the God Class(80) the metric is defined for a class entity, while here it is
defined for a method entity.
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ATFD > FEW

Method uses directly more than 

a few attributes of other classes

LAA < ONE THIRD

Method uses far more attributes 

of other classes than its own

FDP ! FEW

The used "foreign" attributes 

belong to very few other classes

AND Feature Envy

Fig. 5.4. Detection strategy for Feature Envy.

son for introducing this condition is that we want to make a dis-
tinction between a method who uses directly data from many dif-
ferent classes, and the case where the method envies especially
1-2 classes. In the first case, it might be that the method acts like
a controller [Rie96] and/or that it is a Brain Method(92). But in de-
tecting Feature Envy we are more interested in the second case, as
the essence of this disharmony is that the affected method is sim-
ply misplaced, and this is reflected by a well targeted dependency
on the data from another class.

In analyzing this design disharmony two alternative detection ap-
proaches could be used:

1. Count all dependencies. Another way to detect Feature Envy
would be to consider all the dependencies of the measured method,
instead of considering only the data members accessed by a partic-
ular method. In this case we would count both the dependencies
on the class where the method is defined, and those on the other
classes defined in the system.

2. Ignore dispersion. We used the FDP metric in the detection strat-
egy because we were focused on detecting those methods that
can be easily moved to another class and this involves a reduced
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dispersion of the classes on which the methods rely. We might
want sometimes to eliminate this restriction and in this case we
will again find methods that rely on data taken from many other
classes. Although in this case moving the method is not obvious,
such methods might still require refactoring.

Fig. 5.5. ClassDiagramLayouter is envying the features of ClassDia-
gramNode. In red we colored the invocations that weightAndPlaceClasses
performs towards ClassDiagramNode, while in green we see its class-internal
invocations and accesses.

Looking again at the ArgoUML system we find a good example ofExample
Feature Envy, namely the weightAndPlaceClasses method in the class
ClassDiagramLayouter. Although the method uses data from its own
class it envies the data encapsulated in the class ClassDiagramNode
(i.e., by accessing the data heavily via a large number of accessor
methods), as depicted in Fig. 5.5. Looking closer at the figure we
notice three interesting aspects:

1. The weightAndPlaceClasses method is excessively large.
2. The envied class, i.e., ClassDiagramNode, contains almost no

functionality, but just data which is made accessible via the ac-
cessor methods (marked in red). A problem is that the envied class
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does not provide a clean interface to clients to offer them function-
ality, but it exposes its attributes, which is questionable.

3. Looking at ClassDiagramLayouter we notice that the method lay-
out is using several attributes from ClassDiagramNode.

These three observations illustrate the most significant aspect about
Feature Envy, namely that it is a sign of an improper distribution of
a system’s intelligence. While the ClassDiagramLayouter is an exces-
sively complex class (i.e., a Brain Class(97)) with a very high average
complexity of methods (AMW = 5.25) the ClassDiagramNode class
contains very little functionality, being a Data Class(88). For compar-
ison let us mention that the average complexity of methods in this
class, namely the values of the AMW metric, is as low as 1.33.

Finally, as we see in this example, often a Feature Envy method also
has some dependencies on its own class, and not only on the envied
class. This tells us that in order to recover from this problem, it is very
rare that we can move the whole method to the other class. Rather, it
is more often that a part of the method can be extracted and moved
to the envied class (for a more detailed discussion see also Sect. 5.9).

This problem can be solved if the method is moved into the class to Refactoring
which it is coupled the most. If only a part of the method suffers from
a Feature Envy it might be necessary to extract that part into a new
method and after that move the newly created method into the envied
class. If the method envies two different classes, you should move it
to the one that it uses most.

Oftentimes, the class that a method affected by Feature Envy is de-
pending on is a class with not much functionality, sometimes even a
Data Class(88). If this is a case then moving the Feature Envy method
to that class is even more a desirable refactoring, as it re-balances
the distribution of functionality among class and improves the data-
behavior locality.

The concrete refactoring technique for Feature Envy is based on
the Move Method and Extract Method refactorings [FBB+99]. Fur-
thermore, the Move Behavior Close to the Data reengineering pattern
[DDN02] discusses the steps to follow to move behavior close to the
data it uses and the potential difficulties.
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5.5 Data Class

Data Classes [FBB+99] [Rie96] are “dumb” data holders without com-Description
plex functionality but other classes strongly rely on them. The lack of
functionally relevant methods may indicate that related data and be-
havior are not kept in one place; this is a sign of a non-object-oriented
design. Data Classes are the manifestation of a lacking encapsulation
of data, and of a poor data-functionality proximity.

Classes.Applies To

The principles of encapsulation and data hiding are paramount toImpact

obtain a good object-oriented design. Data Classes break design prin-
ciples because they let other classes see and possibly manipulate
their data, leading to a brittle design (Presentation Rule). Such classes
reduce the maintainability, testability and understandability of a sys-
tem.

We detect Data Classes based on their characteristics (see Fig. 5.6):Detection

we search for “lightweight” classes, i.e., classes which provide almost
no functionality through their interfaces. Next, we look for the classes
that define many accessors (get/set methods) and for those who de-
clare data fields in their interfaces. Finally, we confront the lists and
manually inspect the lightweight classes that declare many public
attributes and those that provide many accessor methods. The detec-
tion strategy in detail is:

WOC < ONE THIRD

Interface of class reveals data 

rather than offering services

AND Data Class

Class reveals many attributes and is 

not complex

Fig. 5.6. The Data Class detection strategy.
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1. Interface of class reveals data rather than offering services.
The large majority of the class’s interface is exposing data rather
than providing services. We use the WOC (Weight Of Class) metric
for this.

AND

OR

Class reveals many 

attributes and is not 

complex

NOAP + NOAM > FEW

More than a few public 

data

WMC < HIGH

Complexity of class is not 

high

NOAP + NOAM > MANY

Class has many public 

data

WMC < VERY HIGH

Complexity of class is not 

very high

AND

Fig. 5.7. Data Class reveals many attributes and is not complex.

2. Class reveals many attributes and is not complex. The WOC
metric makes sure that the interface of the class is occupied
mainly by data and accessor methods. We also want to be sure
that the absolute number of these encapsulation breakers is high.
We differentiate between two cases (see Fig. 5.7):

a) The classical Data Class is not very large, has almost no func-
tionality, and only provides some data and data accessors. In
this case the class has not a high WMC (Weighted Method
Count) value, and we cannot expect to find much public data.
Therefore, the only request is that the class has more than a
FEW public data holders, expressed using the NOPA (Number
Of Public Attributes) and NOAM (Number Of Accessor Methods)
metrics.

b) The other case is that of a rather large class that apparently
looks “normal” (i.e., it does also define some functionality), ex-
cept for the fact that its (large) public interface contains, apart
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from the provided services, a significant number of data and
data accessors. For this case, in order to consider the class a
Data Class, we require that it provides MANY public data. At
the same time, we allow the complexity of the class (WMC) to be
considerably high, up to the limit of excessively high (because
a class with extremely high complexity does not conceptually
fit the Data Class term).

In ArgoUML we identified several examples of Data Classes, one ofExample
which is the class Property (see Fig. 5.8).

Fig. 5.8. An example of a Data Class: Property.

The name itself already suggests that the class is not really modelling
an abstraction in the system, but rather keeps together a set of data.
Looking closer, we notice that the class has five attributes. In Fig. 5.8
we depict the Property class together with the classes that use its
data. In spite of the fact that all attributes are declared as private,
the class is still a pure data holder, due to the fact that all (but one)
of its methods are accessors (see methods in red). Thus, the class
has no behavior, it just keeps some data, used by three other classes.
Although none of the involved classes are large, the fact that data
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and behavior are separated makes that design fragment harder to
understand and to maintain. The fact that in this class all attributes
are private, is a good example of how accessor methods can obey the
principle of data hiding and still let the class be a pure data holder.
Speaking about Data Class examples, let us revisit a previous exam-
ple presented in the context of Feature Envy(84) (see Fig. 5.5 on page
86) in which class ClassDiagramLayouter was envying the attributes
of ClassDiagramNode. The Feature Envy problem is mainly due to the
fact the ClassDiagramNode is a Data Class(88), and thus its behavior
and data are not part of the same class. This reveals an often encoun-
tered relation between the two aforementioned disharmonies: a Data
Class(88) will make the classes that are using it to envy its data; or,
the other way around: when a method is affected by Feature Envy(84),
it is rather probable that we will find Data Classes among the classes
from which that method accesses data.

The basic idea of any refactoring action on a Data Class is to put Refactoring
together in the same class the data and the operations defined on
that data, and to provide proper services to the former clients of the
public data, instead of the direct access to this data.

• This data-operation proximity (see Implementation Rule) can be
achieved in most of the cases by analyzing how clients of the Data
Class use this data. In this way we can identify some pieces of
functionality (behavior) that could be extracted and moved as ser-
vices to the Data Class. This refactoring action is very much re-
lated to what needs to be done when Feature Envy(84) is encoun-
tered. In other words, when refactoring a case of Feature Envy(84),
this could lead to a positive effect towards repairing a envied Data
Class.

• In some other cases, especially if the Data Class is dumb and has
only one or a few clients, we could remove the class completely
from the system and put the data it contains in those classes (for-
mer clients) where the best data-operation proximity is achieved.

• If the Data Class is a rather large class with some functionality,
but also with many exposed attributes, it is very possible that only
a part of the class needs to be cured. In some cases this could
mean extracting the disharmonious parts together to a separate
class and applying the classical treatment, i.e., trying to extract
pieces of functionality from the data clients as services provided
by the new class.
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5.6 Brain Method

Often a method starts out as a “normal” method but then more andDescription
more functionality is added to it until it gets out of control, becoming
hard to maintain or understand. Brain Methods tend to centralize the
functionality of a class, in the same way as a God Class(80) central-
izes the functionality of an entire subsystem, or sometimes even a
whole system.

Operations, i.e., methods or standalone functions.Applies To

A method should avoid size extremities (Proportion Rule). In the caseImpact

of Brain Methods the problem concerns overlong methods, which are
harder to understand and debug, and practically impossible to reuse.
A well-written method should have an adequate complexity which is
concordance with the method’s purpose (Implementation Rule).

The strategy for detecting this design flaw (see Fig. 5.9) is based onDetection

the presumed convergence of three simple code smells described by
Fowler [FBB+99]:

• Long methods – These are undesirable because they affect the un-
derstandability and testability of the code. Long methods tend to
do more than one piece of functionality, and they are therefore us-
ing many temporary variables and parameters, making them more
error-prone.

• Excessive branching – The intensive use of switch statements
(or if–else–if) is in most cases a clear symptom of a non-object-
oriented design, in which polymorphism is ignored.2

• Many variables used – The method uses many local variables but
also many instance variables.

The detection strategy in detail is:

2 The excessive use of polymorphism also introduces testability and analyz-
ability problems [Bin99]. Yet, the emphasis in the context of this design
flaw is on a very frequent case in which legacy systems migrated from
structured to object-oriented programming.
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MAXNESTING ! SEVERAL

Method has deep nesting

NOAV > MANY

Method uses many 

variables

LOC > HIGH (Class) / 2

Method is excessively large

CYCLO ! HIGH

Method has many 

conditional branches

AND Brain Method

Fig. 5.9. The Brain Method detection strategy.

1. Method is excessively large. We are looking for excessively large
methods. Based on our practical experience, we used the follow-
ing heuristic to set the threshold: a method is considered to be
excessively large if its LOC count is higher than half of the statis-
tical HIGH threshold for classes (see Table 2.2 for the LOC count
of classes) 3.

2. Method has many conditional branches. This is computed using
the CYCLO (McCabe’s Cyclomatic Complexity) metric.

3. Method has deep nesting level. This is computed using the
MAXNESTING (Maximum Nesting Level) metric i.e., the maximum
nesting level of control structures within a method or function.

4. Method uses many variables. Method uses more variables than
a human can keep in short-term memory. Exceeding this limit
always raises the risk of introducing bugs. Notice that all types of
variables are counted including local variables, parameters, but
also attributes and global variables (in programming languages
where this is unfortunately possible). We used NOAV (Number Of
Accessed Variables) to compute this.

3 Only the lines of code in the methods of the class are counted.
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Fig. 5.10. A Class Blueprint of Modeller and ProjectBrowser.

Fig. 5.10 shows that Modeller is not a class with an excessive numberExample
of methods, but has a certain number of Brain Methods. Some of
the methods reach considerable sizes (eight methods are longer than
50 lines of code), the longest one addDocumentationTag (annotated
as 1a in the figure) is 150 lines of code and invoked by three other
methods, two of which are the second and third longest methods in
this class: addOperation (1b, 116 LOC) and addAttribute (1c, 108
LOC).

The Class Blueprint reveals other disharmonies in this class: there
are 12 attributes in this class, all of them private (which is good), but
there are only four accessor methods. Moreover, the attributes are
accessed both directly and indirectly (using the accessors), denot-
ing a certain inconsistency or lack of access policy. As we will see
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in the chapter on collaboration disharmonies, the class Modeller is
also affected by other problems such as Dispersed Coupling(127) and
Intensive Coupling(120).

The class ProjectBrowser has a very high ATFD (Access To Foreign
Data) value, as it accesses the data of seven other classes (this cannot
be seen in the blueprint, since we only display the class itself). As we
look closer at the three disharmonious methods of this class we find
out that this situation has two different reasons: the less “harmless”
one is encountered in the createPanels method (annotated as 2a, 116
LOC) where various UI components are added to an UI panel. There
is also a more harmful case, i.e., a violation of Demeter’s Law[Lie96]
where the programmers build long chains of method calls, most of
which are accessor methods. A relevant example is the following code
sequence found in the setTitle method:

String changeIndicator =

ProjectManager.getManager().

getCurrentProject().

getSaveRegistry().

hasChanged() ? " *" : "";

ArgoDiagram activeDiagram =

ProjectManager.getManager().

getCurrentProject().

getActiveDiagram();

The problem with such long invocation chains is that only one of
the “links” in the middle has to break (because some method has
changed) to make the whole chain break down.

Fowler suggests [FBB+99] that in almost all cases a Brain Method Refactoring
should be split, i.e., that one or more methods (operations) are to be
extracted. He also explains how to find the possible “cutting points”:

[...] whenever we feel the need to comment something, we write
a method instead. Such a method contains the code that was
commented but is named after the intention of the code rather
than how it does it.

In spite of this simple heuristic, refactoring a Brain Method can be
a complex task, which needs a global perspective to solve it. Often we
find Brain Methods among the suspects of the Intensive Coupling(120)
and Dispersed Coupling(127) design flaws. To properly refactor a Brain
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Method we need a complex (interdependent) three-fold analysis, in-
volving all harmony aspects:

1. Identity harmony. Implies the already-mentioned aspect of its
length which points to a split method refactoring. It may also in-
volve Duplication(102) that implies the extraction of the common
part to a method of that class. Additionally, a Brain Method (or a
part of it) may exhibit Feature Envy(84). In this case, the refactor-
ing would mean extracting a part of the method or – in some rare
cases – moving the method completely to the “data provider”.

2. Collaboration harmony. As mentioned before, it is often the case
that Brain Methods exhibit also Intensive Coupling(120) classifica-
tion disharmony. This could imply the following refactoring: re-
place a “cluster” of calls to lightweight methods and the affer-
ent logic with fewer calls to higher-level (more complex) services
(see also explanations on Intensive Coupling(120)). This implies ex-
tracting a part of the method and moving it to another class.

3. Classification harmony. This aspect of harmony might be in-
volved as well if Duplication(102) is detected in the Brain Method.
If this is the case, often among the other methods that are the “du-
plication partners” we find other Brain Methods. Thus, the method
can be restructured by factoring out the commonalities in the hi-
erarchy (e.g., apply the Template Method [GHJV95] design pat-
tern).
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5.7 Brain Class

This design disharmony is about complex classes that tend to accu- Description
mulate an excessive amount of intelligence, usually in the form of
several methods affected by Brain Method(92).

This recalls the God Class(80) disharmony, because those classes
also have the tendency to centralize the intelligence of the system.
It looks like the two disharmonies are quite similar. This is partially
true, because both refer to complex classes. Yet the two problems are
distinct.

The fingerprint of a God Class is not just its complexity, but the
fact that the class relies for part of its behavior on encapsulation
breaking, as it directly accesses many attributes from other classes.

On the other hand, the Brain Class detection strategy is trying to
complement the God Class strategy by catching those excessively
complex classes that are not detected as God Classes either because
they do not abusively access data of “satellite” classes, or because
they are a little more cohesive.

Classes which are not a God Class(80) and contain at least one Applies To
method affected by Brain Method(92).

See impact of the God Class(80) disharmony. Impact

The detection rule can be assumed as follows (see Fig. 5.11). A class Detection

is a Brain Class if it has at least a few methods affected by Brain
Method(92), if it is very large (in terms of LOC), non-cohesive and
very complex. If the class is a “monster” in terms of both size (LOC)
and functional complexity (WMC) then the class is considered to be
a Brain Class even if it has only one Brain Method(92).4 The detection
strategy in detail is:

1. Class contains more than one Brain Method(92) and is very
large. A class is very large if the total number of lines of code
from methods of the class is very high (see Fig. 5.12).

4 Looking carefully at the detection rule and comparing it to the one for God
Class(80), you will notice that nothing hinders a God Class from also being
detected as a Brain Class. For simplification, we exclude a priori classes
classified as God Classes.
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Brain Class

Class contains more than one 

Brain Method and is very large

Class contains only one Brain 

Method but is extremely large 

and complex

Class is very complex 

and non-cohesive

AND

OR

Fig. 5.11. Detection strategy for Brain Class.

2. Class contains only one Brain Method(92) but is extremely large
and complex. This term covers the above case of a “monster” class
in both size and complexity, and which is not captured by the
previous term due to the fact that the class has only one Brain
Method. In other words, this is the case of a class where most
methods tend to be excessively large and complex, even if they
are not Brain Methods. Compared to the previous term, a special
condition (WMC) was added on the complexity of the class. This
condition overrides the “normal” filtering condition for WMC, as
defined in the third term.

3. Class is very complex and non-cohesive. This last term sets a
requirement on the increased complexity and low cohesion that
characterize mainly all classes with identity disharmonies. This
pair of filtering conditions is similar to the one found in the detec-
tion rule for God Class(80); in fact there is only one difference: the
threshold for the cohesion metrics is more permissive than in the
other detection strategy, as there the very low cohesion is a more
significant characteristic than here.

In Fig. 5.13 we see that the class ParserDisplay not only is visually de-Example
formed, but also plays strange tricks in terms of inheritance. As for
the visual deformation, this class implements some very large meth-
ods, the largest one (the tallest method box) with 576 lines of code
(this method is also the largest in the entire system) and another five
methods longer than 100 lines. In total 13 methods are longer than
50 lines. Moreover, there is a large amount of intra-method dupli-
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Class contains more than one 
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AND

WMC ! VERY HIGH

Functional complexity of class is 

very high

TCC < HALF

Class cohesion is low

AND

Fig. 5.12. Main components of the Brain Class detection strategy.

cation: for example, in the constructor of this class, which contains
seven code blocks containing duplication, there are 89 lines of code in
total, whereas the constructor has 132 lines in total. Another partic-
ular aspect of this class is its inheritance relationship with its super-
class, whose discussion we postpone to the section on classification
harmony.

The class FigClass is severely affected by the Brain Method(92)
disharmony. This class has another problem: code duplication. Eleven
of its methods are affected by Duplication(102), nine (!) of which are
involved in duplication with three of the sibling classes, especially
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Fig. 5.13. A Class Blueprint of ParserDisplay with its completely abstract su-
perclass Parser and a Class Blueprint of FigClass.

with FigInterface and FigUseCase. What is even more interesting is
that among the nine methods with Duplication(102) we found all three
Brain Methods of the class, all of them with significant amounts of
duplication. Our conclusion is that if the duplication “plague” were
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removed this class would become much lighter, and less problem-
atic. As you can see, in order to restore one aspect of harmony the
other aspects must be considered as well. In this concrete example,
we would not have found the cause of the Brain Method(92) problem
if we had not looked at the duplication within the hierarchy.

The primary characteristic of a Brain Class is the fact that it contains Refactoring
Brain Method. Therefore the main refactoring actions for these classes
must be directed towards curing the Brain Method(92) disharmonies.
Additionally, in our approach classes affected either by Brain Class(97)
or God Class(80) represent the starting point in the detection and
correction of identity disharmonies (see Sect. 5.9).

Apart from that, in our experience, there are at least three types
of Brain Class, each of them requiring a different treatment:

1. The methods suffering from Brain Method(92) contained in the
class are semantically related (oftentimes overloaded methods),
and contain a significant amount of duplicated code. Factoring
out the commonalities from these methods in form of one or more
private or protected methods, while making the initial methods
provide only the slight differences would significantly reduce the
complexity of the class.

2. A possible type of Brain Method appears when a class is conceived
in a procedural programming style. Consequently, the class is
mainly used as a grouping mechanism for a collection of some-
how related methods that provide some useful algorithms. In this
case the class is non-cohesive. Refactoring such a class requires
to split it into two or more cohesive classes. Yet, performing such a
refactoring requires a substantial amount contextual information
(e.g., which class(es) use(s) which parts of the initial class, where
is stored the data on which each Brain Method operates on etc.)

3. There are cases where a Brain Class proves to be rather harmless.
In several case studies we encountered cases where an excessively
complex class was a matured utility class, usually not very much
related to the business domain of the application (e.g., a class
modelling a Lisp interpreter in a 3-D graphics framework). If, ad-
ditionally, the maintainers of the system or the analysis of the
system’s history [RDGM04] show that no maintenance problems
have been raised by that class then it makes no sense to start a
costly effort of refactoring that class just for the sake of getting
better metric values for the system.
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5.8 Significant Duplication

The detection of code duplication plays an essential role in the as-Description
sessment and improvement of a design. But detected clones might
not be relevant if they are too small or if they are analyzed in isola-
tion. In this context, the goal of this detection strategy is to capture
those portions of code that contain a significant amount of duplica-
tion. What does significant mean? In our view a case of duplication is
considered significant if:

• It is the largest possible chain of duplication that can be formed
in that portion of code, by uniting all islands of exact clones that
are close enough to each other.

• It is large enough.

Pairs of operations.Applies To

Code duplication harms the uniqueness of entities within a system.Impact

For example, a class that offers a certain functionality should be
solely responsible for that functionality. If duplication appears, it be-
comes much harder to locate errors because the assumption “only
class X implements this, therefore the error can be found there” does
not hold anymore. Thus, the presence of code duplication has (at
least) a double negative impact on the quality of a system: (1) the
bloating of the system and (2) the co-evolution of clones (the clones
do not all evolve the same way) which also implies the cloning of er-
rors.

In practice, duplications are rarely the result of pure copy–paste ac-Detection

tions, but rather of copy–paste–adapt “mutations”. These slight mod-
ifications tend to scatter a monolithic copied block into small frag-
ments of duplicated code. The smaller such a fragment is, the lower
the refactoring potential, since the analysis becomes harder, and the
granted importance is decreased, too. So, for example, imagine we
found two operations that have five identical lines, followed by one
line that is different, which is followed by another four identical lines.
Did we find two clones (of five and four lines) or one single clone
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spread over ten lines (5 + 1 + 4 lines)? In such cases, it is almost
always better to choose the second option.

Thus, there are two cases of duplication: the copy–paste case
and the copy–paste–adapt case. This detection strategy captures both
cases. The first term deals with the case of a brute-force duplication
which is significantly large. The second term tackles the case of du-
plication with slight adaptations, assuming that the largest possible
chain of duplication is considered. In both case the key element is
the size of the duplication.

In order to introduce the Significant Duplication detection strategy
(see Fig. 5.14), we need first to present three low-level duplication
metrics:

• Size of Exact Clone (SEC). An exact clone is a group of consecu-
tive line-pairs that are detected as duplicated. Consequently, the
Size of Exact Clone metric measures the size of a clone in terms
of lines of code. The size of a clone is relevant, because in most of
the cases our interest in a piece of duplicated code is proportional
to its size.

• Line Bias (LB). When comparing two pieces of code (e.g., two files
or two functions) we usually find more than one exact clone. In this
context, Line Bias is the distance between two consecutive exact
clones, i.e., the number of non-matching lines of code between
two exact clones. The LB value may allow us to decide if two exact
clones belong to the same cluster of duplicated lines (e.g., the gap
between the two exact clones could be a modified portion of code
within a duplicated block of code).

• Size of Duplication Chain (SDC). To improve the code we need
to see more than just a pile of small duplication chunks. We want
to see the big picture, i.e., to cluster the chunks of duplication
into a more meaningful block of duplication. This is what we call
a duplication chain. Thus, a duplication chain is composed of a
number of smaller islands of exact clones that are close enough
pairwise to be considered as belonging together, i.e., their LB value
is less than a given threshold.

Now, with these metrics in mind we can revisit the example men-
tioned earlier in this section, with two functions having two exact
clones. In terms of the low-level duplication metrics introduced in
this section, we can now say that the first clone has a SEC value of
5, while the second one has a SEC value of 4. Between the two clones
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there is a gap of one line; thus, the LB value is 1. Consequently the
SDC metric has a value of 10 lines (5 + 1 + 4 lines).

Based on these low-level metrics we can now introduce the heuris-
tics for this detection strategy:

Significant

Duplication

SEC > AVERAGE(LOC/Operation)

Significant standalone 

exact clone

Significant Duplication Chain

OR

Significant Duplication 

Chain

SDC ! 2x(FEW+1)+1

Duplication chain has at least a 

size of two relevant exact clones

SEC > FEW

Exact clones are longer than a 

few lines of code

LB " FEW

Distance between clones is not 

more than a few lines of code

AND

Fig. 5.14. The Significant Duplication detection strategy.

1. Significant Standalone Exact Clone. This case captures the case
of a contiguous, isolated block of duplication, i.e., a single exact
clone that has no other clones in its neighborhood. Thus, the only
thing that counts is the size of the exact clone. We consider a stan-
dalone clone to be large enough if it is at least as large as the
statistical average size of an operation.

2. Significant Duplication Chain. We stated earlier that a block of
duplicated code is significant only if it is the largest one that could
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be built in a particular area of the two pieces of code that are
compared. In other words, we try to build the largest chain of
relevant exact clones that are not too far from each other. As you
might notice, the previous phrase is fuzzy if not associated with
a measurement. Based on the low-level metrics defined earlier,
we eliminate the “fuzziness” and make the identification of these
clusters reproducible. This term is composed of three metrics (see
Fig. 5.14), each one carrying out a particular role:

a) Duplication chain has at least a size of two relevant ex-
act clones. This threshold is an indirect one, meaning that the
duplication chain has at least the total size of two significant
exact clones separated by a gap of minimal distance. The term
2× (FEW + 1) is based on the condition that each of the (mini-
mum) two fragments involves more than a few duplicated lines.
Because the minimal distance (i.e., the smallest LB value) is
one line of code, we add to the first threshold term one more
line. It ensures that the total length of the duplication chain is
large enough to qualify it as significant.

b) Exact clones are longer than a few lines of code. This makes
sure that the chain is not composed only of irrelevant “duplica-
tion crumbs”, i.e., that each fragment of the duplication chain
is not very small.

c) Distance between clones is not more than a few lines of
code. This quantifies the “neighborhood” aspect as it ensures
that the pieces of the chains are not too far from each other to
be considered as belonging to the same duplication chain. In
other words, the threshold for the LB metric is used as a stop
condition in the process of looking for further neighbor clones.

Looking at the ArgoUML case study just shows that code duplication Example
is one of the plagues that are omnipresent; but this can be now quan-
tified. In the case of ArgoUML , we checked for Significant Duplication
and we found that 239 classes (17% of all the classes) are affected by
it. Summing the SDC duplication metric at the system level, we end
up with more than 10,000 duplication lines!5

Usually duplication is a design disharmony that often appears in
conjunction with other disharmonies. Therefore, we believe that it

5 Note that one code line may be involved in more than one duplication
chain, and thus it is multiply counted; still, the number of lines of code
involved in duplication is impressive.
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does not make sense to discuss just a single concrete example of du-
plication. So, the aspect of duplication will occur over and over again,
as we discuss in an integrated manner various design problems that
we encountered in ArgoUML .

The essence of a refactoring that intends to eliminate duplication isRefactoring
based on Beck’s Once and Only Once Rule [Bec97]:

By eliminating the duplicates, you ensure that the code says
everything once and only once, which is the essence of good
design.

Thus, it is clear that we have to put all “instances” of a duplicated
portion of code into one single location. But what is the proper lo-
cation? To be able to answer this question we obviously need more
information about the context of the duplicated entities.

The first problem is that by detecting only exact clones we usu-
ally end up with lots of small clones (duplication crumbs) which are
irrelevant in themselves; yet, ignoring them would be a mistake as
they could be in fact part of a large duplication chain, as a result
of an extensive copy–paste–adapt process. The Significant Duplication
strategy helps us in solving this first headache and keeps only signif-
icant portions of code affected by duplication.

This brings us to the second headache: How to refactor the code
so that duplication is removed? Are all significant duplication blocks
the same? Can we apply the same treatment to all? Especially when
speaking about object-oriented design, the answer to these questions
is definitely (and obviously): No! This is why we identify three different
contexts in which duplication appears.6

Case I: Duplication Within the Same Class

In this case the two methods involved in a (significant) duplication
block belong to the same class. This is probably the easiest refactor-
ing: all that needs to be done is to extract the commonality in the
form of a new method and call the new method from both places (see
Fig. 5.15).

Case II: Duplication Within the Same Hierarchy

In this second case the two methods that are part of a (significant) du-
plication block are not part of the same class, but belong to the same
6 Note that we speak here exclusively about duplication of functional code,

i.e., duplication that appears in the bodies of functions and methods.
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Fig. 5.15. Recovering from Duplication within the same class.
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Fig. 5.16. Recovering from Duplication within sibling classes.

class hierarchy, which means that either they are in an ancestor–
descendant relation or they share a common base class. This type of
duplication can be eliminated in one of the following ways, depend-
ing on the inheritance relation between the methods involved in the
duplication (see Fig. 5.16):

• Siblings duplication. If duplication appears in two methods that
have a common ancestor, then the commonality is extracted in
the form of a new method placed into the common ancestor.

• Parent–child duplication. This case of duplication is a strange one,
because the two classes are in a direct relation. Thus, any com-
monality could have been placed in the base class. The refactoring
consists of extracting any common code and placing it in the par-
ent class, where it logically belongs.

A special case is the one where the duplication between two inheri-
tance-related methods is fragmented, i.e., the code is similar but not



108 5 Identity Disharmonies

identical. In this case you would probably be able to apply the Tem-
plate Method design pattern [GHJV95], as this would help separate
the common code (which goes into the closest ancestor class) from
the fragments that are different (which will become the hooks from
the pattern mentioned above).

Case III: Duplication Within Unrelated Classes

In this third case the two operations that share a duplicated block
are neither part of the same class, nor of the same hierarchy; either
the two operations are part of two independent classes (in the sense
of classification) or they are (one of them or both) global functions.

If you find duplicated code in methods belonging to unrelated
classes, there are three major options on where to place the common
code, extracted from the two (or more) classes:

• One hosts, one calls. In this case we notice that the code belongs
to one of the protagonist classes. Thus, it will host the common
code, in the form a method, while the other class will invoke that
method. This usually applies when the portions of duplication are
not very large and especially not encountered in many methods.
If the duplication between two classes affects many methods, then
we probably miss an abstraction, i.e., a third class. Thus, we de-
fine the new class and place the duplicated code there. Now, the
question is how to relate the two former classes with this third
one? The answer depends on the context, boiling down to two op-
tions: association and inheritance.

• Third class hosts, both inherit. If we find that the two classes are
conceptually related, then they probably miss a common base
class. Consequently the third class becomes the base class of the
two.
Good examples for this case are the classes FigNodeModelEle-
ment and FigEdgeModelElement which indeed miss a common
base class.

• Third class hosts, both call. If the two unrelated classes involved
in duplication are not conceptually related we need to introduce
an association from the two classes to the third one and call from
both classes the method that now hosts the formerly duplicated
code.
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5.9 Recovering from Identity Disharmonies

Where to Start

In practice we do not have enough time to analyze each suspect class
or method reported by the detection strategies. Therefore, a pragmatic
question pops up: How do we find the most important identity har-
mony offenders? We used the following criteria in selecting the classes
that especially need attention with respect to identity harmony:

• Classes that contain a higher number of disharmonious methods
have priority.

• Classes in which more than one identity disharmony appears have
priority.

• Classes that are affected by other disharmonies (i.e., collaboration
or classification disharmonies) go first in order to reveal relations
to other aspects of harmony.

This can be done in two steps (see Fig. 5.17):

1. Start with the “intelligence magnets”, i.e., with those classes that
tend to accumulate much more functionality than an abstraction
should normally have. In terms of the detection strategies pre-
sented so far, this means to make a blacklist containing all classes
affected by the God Class(80) or by the Brain Class(97) disharmony.

2. For each of the classes in the blacklist built in Step 1 find the
disharmonious methods. A method is considered disharmonious if
at least one of the following is true:
• it is a Brain Method(92);
• it contains duplicated code;
• it accesses attributes from other classes, either directly or by

means of accessor methods.

We mainly use the following quantification means:

Count disharmonious methods. To both assess and cure such a
disharmonious class we need first to examine how much the
identity problems have spread among the methods of that class.
Therefore, we have to count how many methods we can identify
as having identity problems. The more disharmonious methods a
class has, the more critical its identity is. When do we consider a
method as being disharmonious? We do so if at least one of the
following conditions holds:
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Fig. 5.17. Overview of the assessment process related to Identity Harmony.

1. It contains duplicated code in common with methods of the
same class.

2. It is a Brain Method(92).
3. It accesses directly attributes of other classes.

Number of Methods (NOM). This metric gives us information about
the functional size of the class. If we correlate the number of
disharmonious methods with NOM, we can also determine what
percentage of the class is affected by these identity problems.

Number of methods detected as Brain Method(92). We use this num-
ber to see how many of the disharmonious methods are detected
as being a Brain Method(92).

Duplicated LOC. This metric tells us for each class the amount of
intra-class duplication, which refers to source code duplicated
within a class, i.e., among the methods defined in the same class.



5.9 Recovering from Identity Disharmonies 111

This information helps us also to get a better understanding of
what the problem is with the disharmonious methods.

Access To Foreign Data (ATFD). This metric is included because it
quantifies one of the key disharmonies of an identity distortion,
i.e., the brute usage of attributes from other classes. As you may
notice, this is again one of the reasons that qualify a method as
being disharmonious.

How to Start

How should you start when you want to improve the identity harmony
of your system’s classes? Assuming that for a class in the blacklist we
have gathered its disharmonious methods, then in order to recover
from identity design disharmonies we have to follow the roadmap
described in Fig. 5.18, and explained briefly below.

• Action 1: Remove duplication. The first thing to be done is to
check if a method contains portions of Duplication(102) and re-
move that duplication in conformity with the indications provided
in Sect. 5.8. Because we analyze the class from the perspective of
identity harmony we concentrate on removing the intra-class du-
plication first. If a lot of duplication is found, the result of this step
can have a significant positive impact on the class, especially on
its Brain Methods.

• Action 2: Remove temporary fields. Among the bad smells in code
described in [FBB+99] we find one called Temporary Field. This
is an attribute of a class used only in a single method; in such
cases the attribute should have been defined as a local variable.
Obviously, detecting such situations can be done by checking in
the class who other than the inspected method uses a particular
attribute. If no one else does, then we need to remove the tem-
porary field and replace it with a local variable. Why do we care?
Remember that for both Brain Class(97) and God Class(80) one of
the “fingerprints” is a low cohesion. One of the causes of low co-
hesion could also be a bunch of such temporary fields, which do
not really characterize the abstraction modelled by the class, and
thus hamper the understanding of the class.

• Action 3: Improve data-behavior locality. If in our inspection pro-
cess we reach a foreign data user, i.e., a method that accesses



112 5 Identity Disharmonies

Method with 

Identity Disharmony

Intraclass

Duplication Host

Temporary Field 

User

Foreign Data 

User
Feature Envy

Brain Method

Data Class

Remove Duplication

Replace Attribute

with Local Variable

Move Behavior to 

Data Provider

Group used foreign 

data by their 

definition classes

Refactor for optimal 

Data-Behavior

Locality

More Foreign 

Data?

Extract Method

STOP

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

Fig. 5.18. How to address Identity Disharmonies in methods

attributes of other classes, then we have to refactor it so that we
reach an optimal data-behavior locality. A foreign data user has
one characteristic: the value for the ATFD metric is at least one.
In a simplistic way we can say that refactoring in this case requires
one of these two actions:

– Extract a part of the method and move it to the definition class of
the accessed attribute. The “ideal” case is when the method is
affected by Feature Envy(84) and the class that provides the at-



5.9 Recovering from Identity Disharmonies 113

tributes is a Data Class(88). In this case the method was simply
misplaced, and needs to be moved to the Data Class(88). But
life is rarely that easy, so the situations that you will proba-
bly encounter are more “gray” than “black and white”. In most
cases only a fragment of the method needs to be extracted and
moved to another place. This entire discussion is beyond the
scope of this book, but here is a rule of thumb that we of-
ten use: if the class that provides the accessed attributes is
“lightweight” (i.e., Data Class(88) or close to it) try to extract
fragments of functionality from the “heavyweight” class and
move them to the “lightweight” one.

– Move the attribute from its definition class to the class where the
user method belongs. This is very rarely the case, especially in
the context of Brain Class(97) and God Class(80). It applies only
for cases where the attribute belongs to a small class that has
no serious reason to live, and which will be eventually removed
from the system.

• Action 4: Refactor Brain Method. If you reached this step while in-
specting a method that was initially reported as a Brain Method(92),
first look if this is still the case after proceeding with Step 1
and Step 3. Sometimes, removing duplication and refactoring a
method for better data-behavior locality solves the case of the Brain
Method(92). If the problem is not solved, revisit Sect. 5.6 where we
discussed the main refactoring cases for a Brain Method(92).
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Collaboration Disharmonies

6.1 Collaboration Harmony Rule

Collaboration disharmonies are design flaws that affect several enti-
ties at once in terms of the way they collaborate to perform a specific
functionality.

The principle of low coupling is advocated by all the authors that
propose design rules and heuristics for object-oriented programming.
Although having different forms or emphases they all converge in say-
ing that coupling of classes should be minimized. Yet, a tension exists
between the aim of having low coupled systems and the fact that an
amount of collaboration among objects (and thus coupling) is nec-
essary in all non-trivial systems. Responsibility-driven approaches
stress the fact that classes should implement well identified respon-
sibilities often by delegating work to others and collaborate with a
clearly identified and limited set of collaborators [WBM03].

A harmonious collaboration is one that maintains a balance be-
tween the inherent need for communication among the entities (i.e.,
methods and classes) of a system and the demand to keep this cou-
pling to a minimum. The collaboration harmony rule is:

Collaborations should be only in terms of method invocations
and have a limited extent, intensity and dispersion
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Collaboration Rule

Collaborations should be only in terms of method
invocations and have a limited extent, intensity and

dispersion

Rationale

The idea behind this rule is summarized by Lorenz and Kidd 1:

You want to leverage the services of other classes, but you want
to have services at the right level, so that you want to know only
about a limited number of objects and their services. [...] If you
had to interact with all the indirectly related objects, we’d have
a tangled web of interdependencies and maintenance would be
a nightmare [LK94].

The rule refers both to outgoing and incoming dependencies. Ex-
cessive outgoing dependencies are undesirable because the more one
uses the others, the more vulnerable (to changes and malfunction)
one becomes. Excessive incoming dependencies are also undesirable
because the more one is used by the others, the more responsible
and thus immutable (i.e., rigid, stable, less evolvable) one becomes.
At the same time, note that excessive incoming dependencies may
also be a good sign of design and functionality reuse, with one con-
dition: the used interfaces are stable. An example is given by class
libraries implementing collections or common infrastructure. Addi-
tionally, it is important to take into account the important role of
stable interfaces to support changes. Interfaces play an important
role in shielding clients from specific implementation concerns hence
reducing the impact of changes.

Practical Consequences

• Limit collaboration intensity – Operations should collaborate
(mainly unidirectional) with a limited number of services provided
by other classes.

1 The rule is also very much related to Pelrines’s Object Manifesto which
states: Be private: do not let anybody touch your private data. Be lazy:
Delegate as much as possible
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• Limit collaboration extent – Operations (and consequently their
classes) should collaborate2 with operations from a limited number
of other classes.

This is a restatement of “A harmonious system must have services
defined at the proper level, so that you need to collaborate directly
only with a limited number of other abstractions” [LK94].

• Limit collaboration dispersion – The collaborators (i.e., invoked
and/or invoking operations) of an operation should have a limited
dispersion within the system. Thus, one should try to make an en-
tity collaborate closely only with a selected set of entities, with a
preference for entities (in decreasing order) located in the (0) same
abstraction; the (1) same hierarchy; the (2) same package (or sub-
system).

2 The term Collaborate refers both to the active (i.e., call another operation)
and to the passive (i.e., be called (invoked) by another operation) aspects.



118 6 Collaboration Disharmonies

6.2 Overview of Collaboration Disharmonies

Fig. 6.1. Correlation web of collaboration disharmonies.

The Collaboration Rule shows that, especially concerning outgoing
coupling, the problem is an excessive number of operations which are
called from the disharmonious operation. A second important aspect
is the distribution (dispersion) of these called operations on classes.

Considering the practical consequences above, we can say that
an operation is disharmonious in terms of collaboration if it has too
many invocations of many other methods.

We capture these collaboration disharmonies using two detec-
tion strategies, namely Intensive Coupling(120) and Dispersed Cou-
pling(127). While the former captures the case where the method in-
tensively uses a reduced number of classes (invoking lot of method
of a particular class), the latter deals with the situation where the
dependencies of the disharmonious method are very much dispersed
among many classes (invoking methods from too many classes).
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In a collaboration, not only the server methods can be disharmo-
nious, but also the client code. Fowler [FBB+99] mentions the case
when a small change in a part of a system causes lots of changes to
many classes, dispersed all over the rest of the system. They call this
bad smell Shotgun Surgery. Inspired by this we captured the dishar-
mony in which a method is excessively invoked by many methods
located in many classes (Fig. 6.1), and as a tribute to our inspiration
source we called it Shotgun Surgery(133).

Fowler’s Shotgun Surgery smell can also take the form of a piece of
code which is replicated over and over again in various methods, be-
longing to various classes which might otherwise not look coupled to
each other. For example, when a class is a Data Class(88), its clients
often duplicate functionality that would be normally be under the re-
sponsibility of that class.Thus, for such cases the Duplication(102)
disharmony can also be considered a collaboration disharmony.
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6.3 Intensive Coupling

One of the frequent cases of excessive coupling that can be improvedDescription
is when a method is tied to many other operations in the system,
whereby these provider operations are dispersed only into one or a
few classes (see Fig. 6.2). In other words, this is the case where the
communication between the client method and (at least one of) its
provider classes is excessively verbose. Therefore, we named this de-
sign disharmony Intensive Coupling.

Fig. 6.2. Illustration of Intensive Coupling

Operations i.e., methods or standalone functions.Applies To

An operation which is intensively coupled with methods from a hand-Impact

ful of classes binds it strongly to those classes. Oftentimes, Intensive
Coupling points to a more subtle problem i.e., the classes provid-
ing the many methods invoked by the Shotgun Surgery method do
not provide a service at the abstraction level required by the client
method. Consequently, understanding the relation between the two
sides (i.e., the client method and the classes providing services) be-
comes more difficult.
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The detection strategy is based on two main conditions that must Detection

be fulfilled simultaneously: the function invokes many methods and
the invoked methods are not very much dispersed into many classes
(Fig. 6.3).

Additionally, based on our practical experience, we impose a min-
imal complexity condition on the function, to avoid the case of config-
uration operations (e.g., initializers, or UI configuring methods) that
call many other methods. These configuration operations reveal a less
harmful (and hardly avoidable) form of coupling because the depen-
dencies can be much easily traced and solved.

The detection strategy is composed of the following heuristics (see
Fig. 6.3):

AND
Intensive

Coupling

Method calls too many methods from 

few unrelated classes 

MAXNESTING > SHALLOW

Method has few nested 

conditionals

Fig. 6.3. Intensive Coupling detection strategy.

1. Operation calls too many methods from a few unrelated classes.
The basic condition for a method or function to be considered as
having an Intensive Coupling is to call many methods belonging
to a few classes (Fig. 6.4). By “unrelated classes” we mean that
the provider classes are belonging to the the same class hierarchy
as the definition class of the invoking method. We distinguish two
cases:
a) Sometimes a function invokes many other methods (more than

our memory capacity) from different classes. Usually among
the provider classes there are two or three from which several
methods are invoked.

b) The other case is when the number of invoked methods does
not exceed our short-term memory capacity, but all the invoked
methods belong to only one or two classes. Thus, the number
of methods invoked from the same provider class is high.



122 6 Collaboration Disharmonies

Operation calls too 

many methods from few 

and unrelated classes 

CINT > Short Memory Cap

Operation calls too many 

methods

CDISP < HALF

Class are "dispersed" in 

few classes

CINT > FEW

Operation calls more than 

a few methods

CDISP < A QUARTER

Calls are "dispersed" in 

very few classes

AND

AND

OR

Fig. 6.4. In Intensive Coupling operation calls too many methods from a few
unrelated classes

Therefore, we have two branches: one for detecting intensive cou-
plings which are concentrated in one or two classes, and another
one dedicated to the more general case when the dispersion ratio
of the invoked methods is below 50%.

The used heuristics in the first case are:

a) Operation calls too many methods. Too many refers to a
number greater than the number of items that can be mem-
orized by the short-term memory. If the caller operation is a
method, than only those provider methods are counted that
are outside the scope of the caller’s definition class.

b) Calls are dispersed in a few classes. The methods invoked
by a client operation have a low grade of dispersion, i.e., the
provider methods belong to a few classes. The threshold tells
us that in average more than two methods are invoked from
the same provider class.

The used heuristics in the second case are:

a) Operation calls more than a few methods.



6.3 Intensive Coupling 123

b) Calls are dispersed in very few classes. The called methods
have a very low grade of dispersion, i.e., the threshold tells us
that in average more than two methods are called from the
same provider class.

2. Operation has nested conditionals. A function that calls many
methods, but is flat – in terms of the nesting level of its state-
ments – is less complex and from our experience this coupling
cases prove to be often less relevant. In many cases such methods
are initializers or configuration functions that are less interest-
ing for both understanding and improving the quality of a design.
Therefore, as mentioned earlier, we set this condition so that the
calling function should have a non-trivial nesting level.

In Fig. 6.5 we see that ClassDiagramLayouter is intensively coupled Example
with a few classes, especially with ClassDiagramNode. The blue edges
represent invocations between the methods in the classes. The red
nodes represent non-model classes, i.e., Java library classes.

The classes have been laid out according to the invocation se-
quence: above ClassDiagramLayouter we place all classes that use it,
while below it are all classes whose methods get used, i.e., invoked
by its methods.

In Fig. 6.6 we see that ClassDiagramLayouter is coupled to Class-
DiagramNode mainly because of four large methods, two of which
have previously been detected as a Brain Method(92): (1) layout, (2)
weightAndPlaceClasses (3) rankPackagesAndMoveClassesBelow and
(4) layoutPackages.

In more detail, the method weightAndPlaceClasses invokes 11
methods of the class ClassDiagramNode which by looking at its Class
Blueprint seems to be a mere data holder without complex function-
ality. The same goes for the method layout which uses 6 methods of
ClassDiagramNode. It looks as, after a few iterations, ClassDiagram-
Layouter could eventually become a God Class(80).

A strongly suggested refactoring in this case is splitting those
methods, since they do several things at once, as their names sug-
gest. For example, weightAndPlaceClasses could be split into a method
that weighs and another one that places the classes.

The prediction about ClassDiagramLayouter eventually becoming
a God Class(80) or at least a complex class is supported by the fact
that so far as the other classes in these figures are concerned, Class-
DiagramLayouter uses only small parts of them. This does not re-
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Fig. 6.5. The class ClassDiagramLayouter is intensively coupled with a
few classes, especially ClassDiagramNode. The red classes are non-model
classes, i.e., belong to the Java library. The classes have been laid out ac-
cording to the invocation sequence: above ClassDiagramLayouter we place all
classes that use it, while below it are all classes whose methods get used,
i.e., invoked by its methods.

ally represent a problem, although some of the coupling relationships
seem to be very weak and probably do not require much work to be
cut off and decrease the couplings of ClassDiagramLayouter.
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Fig. 6.6. The class ClassDiagramLayouter is intensively coupling with a few
classes, especially ClassDiagramNode.

In the case of an operation with Intensive Coupling the intensity of Refactoring
coupling is high, while the dispersion is low. This guarantees that
we will find one or more clusters of methods invoked from the same
(provider) class. Therefore, a first refactoring action is to try to de-
fine a new (more complex) service in the provider class and replace
the multiple calls with a single call to the newly defined method (see
Fig. 6.7).

Fig. 6.7. The essence of the refactoring solution in case of Intensive Coupling

If this cluster of methods invoked from the same class consists
mainly of lightweight methods, some of which are affected by Shot-
gun Surgery(133), then it is highly probable that the aforementioned
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refactoring will also have a positive impact on the design quality of
the class that contains those lightweight methods, in the sense that
the the provided class will offer higher-level services.

The main reasons for reducing coupling are not that the code will
look cleaner after. Most of the time reducing coupling is required to
be able to use one component without the others or to make easier
the replacement of one component by another one. Therefore having
smaller communication channels is an important task. However, re-
ducing coupling between classes is a complex task. Indeed we can
reduce the metrics values by grouping or factoring the methods be-
longing to the same class and tunnelling thus the communication be-
tween the classes. However such a practice even if it can improve the
overall design of the system by making more precise the communica-
tion channel between the classes should not hide that often reducing
coupling is a more complex. Indeed either a dependency was useless
and this is easy to fix it or it is necessary and moving it around will
not solve the root of the problem. To reduce coupling often requires
to change the flow of the application or to introduce extra indirec-
tions. In addition the coupling can change over time and run-time
registration mechanisms such as Transform Type Checks to Registra-
tion [DDN02] may be the solution to decouple clients and providers
of services.

Finally, coupling or dependencies are often the results of mis-
placed operations, therefore it is worth checking if the Law of Deme-
ter [LH89] or reengineering patterns like Move Behavior Close to the
Data and Eliminate Navigation Code [DDN02] can be applied.
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6.4 Dispersed Coupling

This disharmony reveals a complementary aspect of coupling than Description
the one described as Intensive Coupling(120). This is the case of an
operation which is excessively tied to many other operations in the
system, and additionally these provider methods that are dispersed
among many classes (see Fig. 6.8). In other words, this is the case
where a single operation communicates with an excessive number of
provider classes, whereby the communication with each of the classes
is not very intense i.e., the operation calls one or a few methods from
each class.

Fig. 6.8. Illustration of Dispersed Coupling

Operations, e.g., methods or standalone functions. Applies To

Dispersively coupled operations lead to undesired ripple effects, be- Impact

cause a change in an dispersively coupled method potentially leads
to changes in all the coupled and therefore dependent classes.
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The detection rule is defined in the same terms as the the one definedDetection

for Intensive Coupling(120), with only one complementary difference:
we capture only those operations that have a high dispersion of their
coupling (Fig. 6.9). The detection strategy in detail is:

AND
Dispersed

Coupling

Operation calls a few methods from 

each of a large number

of unrelated classes

MAXNESTING > SHALLOW

Operation has few nested 

conditionals

Fig. 6.9. Dispersed Coupling detection strategy

Operation calls a few 

methods from each of a large 

number of unrelated classes

CINT > Short Memory Cap

Operation calls too many 

methods

CDISP ! HALF

Calls are dispersed in 

many classes

AND

Fig. 6.10. In Dispersed Coupling operation calls a few methods from each of
a large number of unrelated classes.

1. Operation calls a few methods from each of a large number
of unrelated classes. This term of the detection rules imposes
two conditions: an intensive coupling, i.e., the invocation of many
methods from other classes (CINT - Coupling Intensity), and a
large dispersion among classes of these invoked operations (CDISP
- Coupling Dispersion). The metrics used in this case are the same
as those already used in the context of detecting Intensive Cou-
pling(120).
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2. Operation has few nested conditionals. Exactly as for Intensive
Coupling(120), we also set the condition that the calling operation
should have a non-trivial nesting level, to make sure that irrele-
vant cases (like initializer functions) are skipped.

Fig. 6.11. The class ActionOpenProject is coupled with many classes. The
red classes are non-model classes, i.e., belong to the Java library. The blue
edges represent invocations.

An interesting example of Dispersed Coupling is found in class Ac- Example
tionOpenProject. We see in Fig. 6.11 that the class is coupled with
many other classes. Even ignoring the calls to non-model classes (col-
ored in red) we still see that this methods of this class invoke meth-
ods located in many other classes, resulting in a great dispersion of
the invocations. Looking closer at the methods of ActionOpenProject
we discover that most of the coupling in this class is caused by two
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Fig. 6.12. The class Modeller is coupled with many classes and suffers itself
from many other problems.

methods, i.e., actionPerformed and loadProject, both revealed by the
detection strategy as being affected by Dispersed Coupling. By looking
closer at these two methods we identify another interesting aspect:
each of them is also a Brain Method(92). Moreover, some fragments
of actionPerformed (exactly those fragments where many invocations
appear) are also duplicated in three methods from sibling classes of
ActionOpenProject. All these facts determine us to believe that the
cause of the excessive coupling is the improper distribution of func-
tionality among the methods of the system. In other words, the Dis-
persed Coupling detected in these methods is an additional sign that
the two methods are doing more than one single task.

Another relevant example of Dispersed Coupling is found in a class
already mentioned in the context of the Brain Method(92) dishar-
mony, i.e., Modeller. This class has two methods affected by Dis-
persed Coupling. Again, one of the two methods (addImport) is a Brain
Method(92); the other one (addClassifier) is also significantly large
and complex. As we see in Fig. 6.12, Modeller is indeed dispersively
coupled with many classes and especially coupled with ParseState,
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CoreFactory and UMLFactory. A manual analysis of both these two
methods has revealed two different causes:

1. Methods are too large and not focused on a single task. As a re-
sult, in each method, we find a portion of code that reveals an
intensive coupling towards the ParseState class. Furthermore, in-
specting ParseState we found out that this class provides only very
simple services, which are composed into higher-level services by
the client methods. This partially explains the need for many dif-
ferent methods invocations from that class.

2. In addClassifier apart from the aforementioned aspect, we found
that the Dispersed Coupling disharmony is partially due to invo-
cation chains that break the Law of Demeter [LH89]

Refactoring an operation affected by Dispersed Coupling is not a Refactoring
straight forward action. It needs more contextual information to pro-
ceed, but here are a few hints from our experience in dealing with
this problem:

• In many cases the operation that exhibits Dispersed Coupling is
also a Brain Method(92). In this case, the detailed knowledge about
coupling will support the refactoring of the operation in terms
of Brain Method(92). In other words, if you encountered a Brain
Method the refactoring should address both aspects simultane-
ously.

• For the other cases (rather rare) the refactoring process should
be centered on identifying called methods that are lightweight
and/or affected by Shotgun Surgery(133), always with the ques-
tion in mind: Isn’t there anything in the client method (i.e., the
one affected by Dispersed Coupling)that could be moved to one of
the lightweight methods that it invokes.

• Calling many methods from lots of classes might also have an-
other cause than the excessively large size of the invoker method.
The cause might be that the operation invokes the wrong classes,
i.e., that it it is coupled to classes that are at lower abstraction
level than the client method [Rie96]. Thus, it would be necessary
to identify the proper abstraction and let the client function com-
municate with that class. Although this sounds easy, it is hard to
accomplish because it requires a good understanding of the sys-
tem domain to be able to introduce a new abstraction into the
system.
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As mentioned while discussing refactoring solutions for Intensive
Coupling(120), eventually coupling or dependencies are often the re-
sults of misplaced operations, therefore it is worth checking if the
Law of Demeter [LH89] or the reengineering patterns Move Behavior
Close to the Data and Eliminate Navigation Code [DDN02] can be
applied.
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6.5 Shotgun Surgery

Not only outgoing dependencies cause trouble, but also incoming Description
ones. This design disharmony means that a change in an opera-
tion implies many (small) changes to a lot of different operations and
classes [FBB+99] (see Fig. 6.13). This disharmony tackles the issue
of strong afferent (incoming) coupling and it regards not only the cou-
pling strength but also the coupling dispersion.

Fig. 6.13. Illustration of Shotgun Surgery

Operations, e.g., methods or functions. Applies To

An operation affected by Shotgun Surgery has many other design en- Impact

tities depending on it. Consequently, if a change occurs in such an
operation myriads of other methods and classes might need to change
as well. As a result, it is easy to miss a required change causing thus
maintenance problems.
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We want to find the classes in which a change would significantly af-Detection

fect many other places in the system. In detecting the methods most
affected by this disharmony, we consider both the strength and the
dispersion of coupling. In contrast to Intensive Coupling(120) and Dis-
persed Coupling(127), here we are interested exclusively in incoming
dependencies caused by function calls. In order to reveal especially
those cases where dependencies are harder to trace, we will count
only those operations (and classes) that are neither belonging to the
same class nor to the same class hierarchy with the measured oper-
ation.

Shotgun Surgery

CM > Short Memory Cap

Operation is called by too many 

other methods

CC > MANY

Incoming calls are from 

many classes

AND

Fig. 6.14. Shotgun Surgery detection strategy

Based on all the considerations above, the detection technique is
now easy to describe (see Fig. 6.14). First, we pick up those functions
that have a strong change impact, and from these we keep only those
that also have a high dispersion of changes. The detection strategy in
detail is:

1. Operation is called by too many other operations. When a
change in the measured operation occurs we must fix all the other
operations that depend on it. If this exceeds our short-term mem-
ory capacity the risk of missing a dependency increases This jus-
tifies both the selection of the metric and of the threshold.
An alternative way to quantify the strength of incoming dependen-
cies is to count the number of calls instead of the number of callers
(like CM (Changing Methods) does). The metric called Weighted
Changing Method (WCM) defined it [Mar02a] does just that.

2. Incoming calls are from many classes. Using this metric and
this threshold has the following rationale: assuming that we have
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two operations, and that a change in each of them would affect 20
other operations, from these two, the one for which the 20 clients
are spread over more classes is worse than the other one. In other
words, if all dependencies were to come from methods of a few
classes then the potential changes that need to be operated on
these client methods would be more localized, reducing thus the
risk of missing a needed change. As a consequence, the mainte-
nance effort (and risk) involved in managing all changes would be
more reduced. Therefore, we use the CC (Changing Classes) met-
ric to quantify the dispersion of the changes, so that only those
Shotgun Surgery functions causing most maintenance problem are
detected.

Fig. 6.15. Project provides an impressive example of a class with several
methods affected by Shotgun Surgery(133). Due to these methods, Project is
coupled with 131 classes (ModelFacade has been elided from the screen-
shot). Furthermore, the class has cyclic invocation dependencies with Pro-
jectBrowser and CoreFactory. In the figure, the classes above Project depend
on it, while Project itself depends on (i.e., invokes methods of) the classes
below it.

In Fig. 6.15 we see an extreme case of Shotgun Surgery(133) that in- Example
volves several methods of class Project. The class is coupled with 131
classes (10% of ArgoUML ) and has cyclic invocation dependencies
with the classes ProjectBrowser and CoreFactory (the second largest
class in the system). The classes above Project depend on it, while
Project itself depends on (i.e., invokes methods of) the classes below
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it. The view reveals how fragile the system is if a major change is per-
formed on the class Project. Lots of classes in the whole system are
potentially affected by changes.

How should we deal with Shotgun Surgery? We identified a number ofRefactoring
refactoring options:

• Move more responsibility to the classes defining Shotgun Surgery
methods, from the client classes of these functions. Do this espe-
cially when the definition classes of the Shotgun Surgery methods
is small and/or not complex and/or it is or has a tendency to be-
come a Data Class(88). Move Behavior Close to the Data [DDN02]
presents step by step how to move behavior close to the data it
uses and can be helpful here.

• The Shotgun Surgery methods that are very large and complex
(e.g., tending to become a Brain Method) should be especially ana-
lyzed and taken care of by the maintainers of the system (e.g., by
increasing the number of test cases for the method, or by trying
to refactor it). We recommend this as such methods have a higher
potential for change and/or malfunction potentially having a se-
vere impact on the rest of the system. Identifying clearly the stable
interfaces in the system is a good way to reduce the candidates for
refactorings.
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6.6 Recovering from Collaboration Disharmonies

Where to Start

As already mentioned in the previous chapter, in practice we need
some criteria to prioritize the collaboration harmony offenders, so
that we know which classes and methods are the most dangerous
ones, the ones that require most our attention and that need a refac-
toring action to would improve the design. We use the following crite-
ria in prioritizing the classes which host classification disharmonies:

• Classes that contain a higher number of disharmonious methods
have priority

• Classes that are affected by other types disharmonies go first in
order to reveal relation to other aspects of harmony.

How to Start

The three collaboration disharmonies Shotgun Surgery(133), Inten-
sive Coupling(120) and Dispersed Coupling(127) address the issue
of coupling from two complementary perspectives: While the issue
of excessive coupling is addressed by Shotgun Surgery(133) from the
provider’s viewpoint, the other two tackle the same issue from the
client’s perspective. These two perspectives are like the two faces of
the same coin: therefore, they cannot be addressed separately in a
refactoring process.

Next we will provide some advice on how to approach the problem
of coupling using the aforementioned detection strategies.

1. For each operation affected by Intensive Coupling group the in-
voked methods by their definition class. There will be one or more
such groups containing 3 or more methods from one single class.

2. After that, collect the groups of “3-or-more-methods” (from the
same provider class) from all operations affected by Intensive Cou-
pling, and try to identify common groups. For those groups of
methods that are used together in several client operations, try
to introduce a new method in the provider class, and replace the
multiple calls with a single call of the new method. Such a refac-
toring could have multiple beneficial consequences:
• If these groups contain methods affected by Shotgun Surgery

(and they usually do) the refactoring would reduce the number
of clients for these methods, and thus reduce their incoming
coupling. In many cases such a refactoring would help them
recover from the Shotgun Surgery(133) disharmony.
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• Provider classes for groups of “3-or-more-methods” are often
lightweight classes, i.e., they do not have very much function-
ality, sometimes even being reported as being a Data Class; ad-
ditionally, such classes may participate in violations of the Law
of Demeter. Such refactorings would move some of the func-
tionality to them, thus improving also the identity harmony.

3. Dispersed Coupling is a design problem that oftentimes affects
Brain Method(92), because of the following reason: An excessively
large and complex operation is almost always non-cohesive, doing
more than one thing; and therefore there will be many invoca-
tions to methods from many classes. Thus, methods affected by
Dispersed Coupling should be first checked to see whether they
are also detected as Brain Method. If so, the Brain Method problem
should be solved first, as this might eliminate as well the Dispersed
Coupling.

4. Assume now that we consider the Brain Method problem as solved,
but there are still methods affected by Dispersed Coupling. In this
case, collect the groups of invoked methods from all the opera-
tions affected by Dispersed Coupling. Look at these groups trying
to identify clusters of methods invoked from multiple client opera-
tions (affected by Dispersed Coupling(127)). For each such cluster,
check if this is not an invocation chain, thus violating the Law
of Demeter [LR89], and try to remove it [DDN02]. After all, you
should check for such invocation chains in all methods affected
by Dispersed Coupling, as in our experience these violations of
the Law of Demeter are (apart from the operation being a Brain
Method(92)) the primary cause of this disharmony.

As a final remark, note that if the aforementioned detection strategies
will not flag anymore certain classes or methods as being affected by
Shotgun Surgery– as a result of applying the proposed refactorings
– it does not necessarily mean that you will be safe. We consider the
proposed refactoring as a first step towards often more challenging is-
sues. Rationalizing the communication between classes is a good ap-
proach to better understand deeper problems. As we already pointed
out, changing the coupling between classes is not simple, since one
dependency may still force you to load a complete package and mov-
ing dependencies around is often not as trivial as it seems. Some
solutions may lead you to rethink totally the flow of the communica-
tion within your application or to introduce dynamic mechanisms to
deal with the temporal aspects of the dependencies [DDN02].
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Classification Disharmonies

7.1 Classification Harmony Rules

The object-oriented programming paradigm captures the is-a-kind-of
relationship among classes with inheritance. This allows developers
to write flexible and reusable code, but it can lead to disastrous de-
signs if misused.

It is not enough for a class to be in harmony with itself; it also
needs to be in harmony with its its ancestor and its descendant
classes. The major cause of classification disharmonies is the mis-
conception that inheritance is mainly a vehicle of code reuse (i.e.,
subclassing) rather than a means to assure that more specific ob-
jects can substitute more general ones (i.e., subtyping) [LP90, LW93a,
Mar02b]. When inheritance is used solely for code reuse purposes
maintenance can become painful because abstractions are not de-
rived consistently.

The classification harmony rules are:

Classes should be organized in hierarchies having harmonious
shapes

The identity of an abstraction should be harmonious with re-
spect to its ancestors

Harmonious collaborations within a hierarchy are directed only
towards ancestors, and serve mainly the refinement of the in-
herited identity
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Proportion Rule

Classes should be organized in hierarchies having
harmonious shapes

Rationale

Inheritance is at the same time a curse and a blessing of the object-
oriented paradigm. The one extreme is given by applications where
basically inheritance is ignored and the application is a flat collec-
tion of classes, leading to limited code reuse. The other extreme is
overuse of inheritance, where the code is so heavily decomposed in a
hierarchy that reading the code is equivalent to browsing excessively
up and down the classes and methods in the hierarchy. Inheritance
should be used with care and style.

Practical Consequences

• Avoid wide hierarchies – Class hierarchies should not become too
wide, i.e., avoid inflation of subclasses.

Excessively wide hierarchies oftentimes appear because of copy-
paste-and-adapt patterns: the developers prefer to copy and mod-
ify existing code instead of refactoring the existing code. Since de-
velopers do not get to see such things they underestimate the
effect of copy-paste practices.

• Avoid tall hierarchies – Class hierarchies should not become too
tall. Avoid very narrow and deep hierarchies.
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Presentation Rule

The identity of an abstraction should be harmonious with
respect to its ancestors

Rationale

The concept of inheritance allows for writing compact code and also
for the reuse of the code already implemented in one of its ancestor
classes. In this sense a descendant should always be in sync with
what has been defined by its ancestors, and not reinvent the wheel
or duplicate the code.

Practical Consequences

• Extend interface smoothly – Keep an harmonious proportion be-
tween tradition and novelty. In other words, keep a balance be-
tween the inherited interface and its extension (through addition of
new services).

• Specialize behavior smoothly – Keep an harmonious proportion
between evolution and revolution of behavior. In other words, do
not refuse (deny, “cut off”) any parts of an ancestor’s interface and
specialize rather than override the inherited services (i.e., the inher-
ited public methods).

• Decrease abstractness smoothly – The abstractness level for the
set of services of a class (together with their “inheritable” helper
methods i.e., the protected ones) should be inversely proportional to
the distance to the top of the hierarchy. Thus, root classes should
be rather abstract or the other way around: abstract classes should
be situated close to the top of a hierarchy and not somewhere in the
middle of a hierarchy.
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Implementation Rule

Harmonious collaborations within a hierarchy are directed
only towards ancestors, and serve mainly the refinement of

the inherited identity

Rationale

This rule could be rephrased as: The implementation dependency of a
class on its ancestor should be unidirectional and serve the refinement
of the inherited services. The rule states that a subclass should not
depend on its ancestors just for the sake of code reuse (i.e., by calling
methods from its base classes (only) from newly defined methods).

Practical Consequences

• Dependencies go bottom-up – Base classes should not depend
on their descendants.

Despite the truth behind this, there is a hidden world of horrors
where developers who do not have a “complete picture” of the sys-
tem just reuse pieces of code whenever they see something useful
to them.

• Dependencies serve specialization – Inherited operations should
be used (i.e., redefined, called, specialized) most of the time in the
context of refining (specializing) the inherited services, rather than
calling them from newly added services.
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7.2 Overview of Classification Disharmonies

Fig. 7.1. Correlation web of classification disharmonies.

Considering the three harmony rules presented above, and based on
our experience with analyzing object-oriented systems, we defined a
set of patterns that capture the most disturbing classification dishar-
monies.

We have to mention Duplication(102) again, this time between in-
heritance-related classes. So, this is the first disharmony we are go-
ing to consider. This is often a symptom that goes together with other
disharmonies. But even if there is no duplication in a hierarchy, it
still needs to be harmonious with respect to its ancestors, as stated
by the Presentation Rule (see Sect. 7.1). Distortions of this harmo-
nious relation to the parent class(es) 7.1 appear as:
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1. The derived class denies the inherited bequest [FBB+99] (Refused
Parent Bequest(145)).

2. The derived class massively extends the interface of the base class
with services that do not really characterize that family of abstrac-
tions (Tradition Breaker(152))

The shape of the hierarchy itself says a lot about the classifica-
tion harmony. As we will see, in most cases the Refused Parent
Bequest(145) and Tradition Breaker(152) disharmonies appear in an
over-bloated hierarchy with an inflation of classes.

In conclusion, while inheritance is (also) a powerful mechanism to
reuse code, subtyping is the actual point because it supports a better
understanding of a hierarchy than subclassing, since a subclass is a
more specialized version of its ancestor and not an unrelated concept
that is there because it can reuse some code.

Another difficult issue related to inheritance is when is it useful
to introduce a new class in the system. Often developers are afraid
of having many small classes and prefer to work instead with fewer
but larger classes. Developers often believe that they will have less
complexity to manage if they have to deal with fewer classes. It is
better to have more classes conveying meaningful abstractions than
having a single large one. However, having useless classes or classes
without meaningful behavior is not good either because they pollute
and complicate the abstraction space: The challenge is to find the
right level of abstraction.
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7.3 Refused Parent Bequest

Inheritance is a mechanism dedicated to support incremental changes. Description
Consequently, the relation between a parent class and its children is
intended to be an intimate one, more special than the collaboration
between two unrelated classes. This special collaboration is based on
a category of members (methods and data) especially designed by the
base class to be used by its descendants, i.e., the protected members.
But if a child class refuses to use this special bequest prepared by its
parent [FBB+99] then this is a sign that something is wrong within
that classification relation.

Classes. The Following conditions are assumed: Applies To

1. the inspected class has a superclass;
2. the superclass is neither a third-party class (e.g., library class),

nor is it an interface.

The primary goal of inheritance is certainly code reuse. However, ex- Impact

tending base classes without looking at what they have to offer in-
troduces duplication and in general class interfaces that become in-
coherent and non-cohesive. An often overlooked part of the process
when adding or extending subclasses is to study the superclasses
and determine what can be reused, what must be added and finally
what could be pushed into the superclasses to increase generality.

Refused Parent 

Bequest

Child class ignores bequest

Child class is not 

too small and simple

AND

Fig. 7.2. Detection strategy for Refused Parent Bequest.
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As illustrated in Fig. 7.2 the detection of such disharmonious classesDetection

is based on two main conditions: (1) a low usage of inheritance-
specific members from the base class and (2) the detected class must
have at least an average size and complexity, otherwise the finding
is irrelevant as the bequest refusal might be due to its small size. In
other words, the second condition ensures that the bequest refusal is
an intentional rather than a circumstantial fact. The detection strat-
egy in detail is:

1. Child class ignores bequest. What do we mean by “a child class
uses the parent’s bequest”? We mean that it does one of the fol-
lowing:
• it calls a protected method defined in the parent class
• it accesses a protected attribute defined in the parent class
• it overrides or specializes a method defined in the parent class
To assess how much a child class depends on its parent class in
an inheritance-specific way, we used two metrics: (1) The Base-
class Usage Ratio (BUR), which quantifies the usage of protected
members; and (2) the Base-class Overriding Ratio (BOvR), which
quantifies the degree of overriding and specialization of base class
methods. The third metric we use, Number of Protected Members
(NPrM), just makes sure that there is a specific bequest to use,
i.e., that there are at least several protected members. We use
these metrics in the following way:
a) Parent provides more than a few protected members. The

bequest prepared by the parent class should be significant i.e.,
the base class has more than a few members declared as pro-
tected (in other words, members intended to be used specifi-
cally in the context of the inheritance relation).

b) Child uses only little of parent’s bequest.
c) Overriding methods are rare in child. Overriding or special-

izing methods from the base class is a rare case in the derived
class. Thus, the fraction of base class methods that are over-
ridden or specialized is very low.

2. Child class is not too small and simple. We say about a child
class that it intentionally refuses a bequest if it is large and com-
plex enough; otherwise the child class can have the excuse of re-
fusing the bequest because it is too small. Therefore, this term
finds those classes that are both significantly large (in terms of
methods (NOM)) and complex (Fig. 7.3).
There are two alternative conditions for considering the complexity
of the class significant: either the average CYCLO/method is high
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NProtM > FEW

Parent provides more 

than a few protected 

members

Child class 

ignores bequest

Child class is not 

too small and 

simple

BUR < A THIRD

Child uses only little of 

parent's bequest

BOvR < A THIRD

Overriding methods 

are rare in child

AND

OR

AMW > AVERAGE

Functional complexity 

above average

WMC > AVERAGE

Class complexity not 

lower than average

NOM > AVERAGE

Class size is above 

average

OR

AND

Fig. 7.3. Main components of the Refused Parent Bequest detection strategy.

enough, or the class is large and thus the cumulative complexity
(WMC) makes it relevant. The used metrics are:

a) Functional complexity above average.
b) Class complexity not lower than average.
c) Class is above average.

The unusual form of this hierarchy (see Fig. 7.4) already gives us a Example
first hint that its classes are afflicted by some problems. Moreover,
the fact that there is an abstract class (called ToDoPerspective) in the
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Fig. 7.4. A System Complexity view of the PerspectiveSupport hierarchy.

Fig. 7.5. A Class Blueprint view of the PerspectiveSupport hierarchy.

middle of the hierarchy also gives us hints about potential problems
related to inheritance. The Class Blueprint of this hierarchy depicted
in Fig. 7.5 shows a suspicious regularity in size among the meth-
ods implemented in the six leaf classes, hinting at duplication. The
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class TreeModelComposite is affected by Refused Parent Bequest: it
basically ignores what is implemented in the two superclasses.

If we want to remove a Refused Parent Bequest disharmony from a Refactoring
class then we need to follow the detailed (inspection and refactoring)
process depicted in Fig. 7.6. The figure has three areas (labeled A,
B and C) corresponding to one of the three identified causes for a
Refused Parent Bequest. Notice that some of the three causes might
co-exist. Next, we are going to describe these three cases in detail.

Refused Parent Bequest (RPB) 

Class

RPB has inheritance-

specific dependencies with 

parent class

Extract whole class from the 

hierarchy

Make all unused protected 

members private

Extract protected members with 

loose dependencies to new class

Solve initial dependencies by 

delegation to new class

Place class in former hierarchy 

as descendant of ancestor or 

merge with ancestor

Solve renaming dependencies 

with former parent class
Any usages

Assess usage in all subclasses 

of protected members defined in 

RPB's parent class

Assess dependencies of 

protected members in definition

class

New class has inheritance-

specific dependencies with 

a former ancestor

Still has RPB STOP

YES

YES

YES

YES

NO

NO

NO

NO

A

B

C

Fig. 7.6. Inspection and refactoring process for a Refused Parent Bequest.
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Case A: False Child Class

In this case the cause of the problem is that the child class simply
does not belong in the hierarchy; in other words, the hierarchy might
be ill-designed. The more relevant symptom for this case is when
the child class has no inheritance-specific dependencies on the parent
class.

In some cases this goes together with the Tradition Breaker(152)
disharmony. An interesting aspect is that in some cases the “false
child” does belong to the hierarchy, but as a child class of another
parent (i.e., an initial “grandparent” or ancestor). This can be found
out by analyzing the dependencies between the disharmonious class
and the other ancestors.

Case B: Irrelevant Bequest

In this case the Refused Parent Bequest design flaw appears as a
result of the fact that the space of inheritance-specific members is
over-populated with methods and attributes that have no relevance
in the context of the inheritance relation.

But how do we detect that a (part of the) bequest is irrelevant? We
have to count, for each protected member, the number of usages from
derived classes; in case of protected methods, this includes overriding
or specialization of that method in derived classes). If the number of
dependencies is null, i.e., if a member is used only from inside the
definition class, then it should be moved to a private scope.

Case C: Discriminatory Bequest

The third case, probably the most interesting one, is when the parent
class has many child classes, and the bequest offered by it is relevant
only for some of these siblings, but not for the class affected by Re-
fused Parent Bequest. By cumulating the bequest needed by various
subsets of descendants, the total bequest becomes excessively large.
Consequently, the main symptoms in this case are:

• A large number of descendants.
• Often, there is more than one class exhibiting Refused Parent Be-

quest in the same hierarchy.
• Each descendant uses a small, non-overlapping portion of the to-

tal bequest.
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Fig. 7.7. Refactoring for Refused Parent Bequest in case of Discriminatory
Bequest.

At first sight we could improve the design in this case by splitting
class B in two classes, (B” derived from B’) adding an intermediary
layer in the inheritance tree and letting each initial subclass of B be
derived either from B’ or B” depending on which bequest they need
to inherit. Unfortunately, this applies only for simple cases which
involve few protected members used in common by only subsets of
the derived classes.

For the general case, the situation can be improved by extracting
the parts that are not used by all descendants to a helper class, and
letting the parent class have a reference to an instance of the helper
class (see Fig. 7.7). If this refactoring is applicable, then this could be
also the sign that the base class was capturing more than a single
abstraction. This way, the base class is easier to understand because
it does contain less protected members which do not characterize the
entire hierarchy.
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7.4 Tradition Breaker

This design disharmony strategy takes its name from the principleDescription
that the interface of a class (i.e., the services that it provides to the
rest of the system) should increase in an evolutionary fashion. This
means that a derived class should not break the inherited “tradition”
and provide a large set of services which are unrelated to those pro-
vided by its base class.

Of course, it is OK for a child class to contain more intelligence than
its parent i.e., to offer more services. But if the child class hardly
specializes any inherited services and only adds brand new services
which do not depend much on the inherited functionality, then this
is a sign that something is wrong either with the definition of the
child’s class interface or with its classification relation. In the Sug-
gested Refactoring (155) section we analyze in more detail the possi-
ble causes and solutions for this problem.

Classes. If C is the name of the class, the following conditions areApplies To
assumed: (1) C has a base class B, (2) B is not a third-party class and
(3) B is not an interface.

When adding subclasses without examining the functionalities imple-Impact

mented in the superclass(es) one might break the tradition kept up
by the superclasses. This could be called “disrespectful” inheritance.

Tradition

Breaker

Excessive increase of child 

class interface

Substantial size and 

complexity of child class

Parent class is neither small 

nor dumb

AND

Fig. 7.8. The Tradition Breaker detection strategy.
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than half of child
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Fig. 7.9. Main components of the Tradition Breaker detection strategy

In Fig. 7.8 we see a high-level view of the detection rule for a Tradition Detection

Breaker. There are three main conditions that must be simultane-
ously fulfilled for a class to be put on the blacklist of classes that
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break the inherited tradition by the interface that they define. These
conditions are:

• The size of the public interface of the child class has increased
excessively compared to its base class.

• The child class as a whole has a considerable size and complexity.
• The base class, even if not as large and complex as its child, must

have a “respectable” amount of functionality defined, so that it can
claim to have defined a tradition.

1. Excessive increase of child class interface. To quantify the evo-
lution of a child’s public interface compared to that of its par-
ent, we use two measures: (1) Newly Added Services (NAS) tells
us in absolute values how many public methods were added to
the class; and (2) the Percentage of Newly Added Services (PNAS)
which shows us the percentile increase, i.e., how much of the
class’s interface consists of newly added services. We used these
metrics in the following way:
a) More newly added services than average number of meth-

ods per class. This threshold is based on the statistical in-
formation related to the number of methods per class (see Ta-
ble 2.1), using the following logic. If a class adds more new
methods than the average number of methods (public or not)
of a class then the measured class is an outlier with respect to
NAS. For Java this average value1 is 6.5.

b) Newly added services are dominant in child class. We use
this metric to make sure that the absolute value provided by
the NAS is a significant part of the entire interface of the mea-
sured class. Therefore, PNAS is a normalized metric and we set
the threshold so that NAS represents at least two-thirds of the
public interface.

2. Child class has substantial size and complexity. To speak about
a relevant Tradition Breaker the child class must contain a sub-
stantial amount of functionality. This means that it must have a
substantial size (measured in this case by the number of meth-
ods) and accumulate a significant amount of logical complexity.
Therefore we require either the average complexity or the total
complexity of the class to be high. An additional requirement is
that the child class has a significant number of methods (NOM).
We use the following metrics (see Fig. 7.9):

1 Computed as the average between the lower value and upper value of
NOM/Class.
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a) Method complexity in child class above average.
b) Functional complexity of child class is very high.
c) Class has a substantial number of methods.

3. Parent class is neither small nor dumb. We cannot say that a
child class breaks a tradition if the tradition defined by the parent
class is insignificant. In other words, this term sets a minimal
condition on the size and complexity of the parent class, i.e., this
must satisfy at least half of the requirements imposed on the child
class. Additionally, its average complexity must be higher than the
average value. In this context, AMW and WMC are the two metrics
used to quantify the average and the total amount of functional
complexity respectively, while NOM quantifies the size of the class
in terms of method number. The used metrics are:

a) Parent’s functional complexity above average.
b) Parent has more than half of child’s methods With respect

to NOM, the parent class should satisfy at least half of the
requirements we set for the child (see term “Child class has
substantial size and complexity”).

c) Parent’s complexity more than half of child With respect to
Weighted Method Count (WMC), the parent class should satisfy
at least half of the requirements we set for the child (see term
“Child class has substantial size and complexity”).

In Fig. 7.10 we see a System Complexity view of the hierarchy whose Example
root class is named FigNodeModelElement. Visually striking is that
the hierarchy is top-heavy (the root class is by far the largest in terms
of methods and attributes) and unbalanced (there is a sub-hierarchy
on the left). Moreover, many direct subclasses of FigNodeModelEle-
ment look similar “from the outside” (i.e., they have a similar shape,
pointing to a possible duplication problem), and as we will see also
from the inside.

From the point of view of the disharmonies, nearly half of the
classes of this hierarchy are afflicted by at least one of two classifica-
tion disharmonies: Refused Parent Bequest(145) or Tradition Breaker.

Among the subclasses of FigNodeModelElement there is one in
particular which is striking because it is the only one which is both af-
fected by Refused Parent Bequest(145) and is also a Tradition Breaker,
namely FigObject. Additionally this class is also a Brain Class(97) that
contains two methods which are Brain Method(92).

If we want to remove a Tradition Breaker then we need to follow the Refactoring
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Fig. 7.10. A System Complexity view of the FigNodeModelElement hierarchy.

detailed (inspection and refactoring) process depicted in Fig. 7.11.
The figure has four areas (labeled A, B, C and D) corresponding to
one of the four identified cases, which may also co-exist, for a Tradi-
tion Breaker: irrelevant tradition in subclass, denied tradition in base
class, double-minded subclass, or misplaced subclass.
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Fig. 7.11. Inspection and refactoring process for a Tradition Breaker.

Case A: Irrelevant Tradition

In this case the derived class has an excessively large interface, i.e.,
it includes in its interface methods that should have been declared
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protected or private. In other words, the methods newly added in
the interface of the Tradition Breaker class are just helper methods,
mistakenly declared public. This can be be found out by analyzing
the usages of the method from other classes.

Case B: Denied Tradition

The base class does not include a set of services that are implemented
in all (or most) derived classes. Consequently, it is common that some
of the Tradition Breaker’s siblings also show the symptoms of a Tradi-
tion Breaker. In most of these cases Duplication(102) is also present.

Fig. 7.12. Extracting the “second mind” of a Tradition Breaker to a separate
class.

Case C: Double-Minded Descendant

In this case the problem is that the derived class is “double-minded”,
whereby only a part of its interface (and implementation) belongs to
the hierarchy where it was placed. The part of the class that wants
to stay in the hierarchy can be identified by a set of methods that
override/specialize/use methods of the base class. The “other mind”
of the class breaks the tradition, by doing something totally different,
that has nothing in common with the base class. In this case, the
part that does not belong to the hierarchy could be moved outside
the hierarchy to a separate class (see Fig. 7.12).

Case D: Misplaced Descendant

The extreme case of Case C is when the whole Tradition Breaker de-
fines a behavior that is not extending (specializing) in any way the
behavior found in its base class. Thus, the interfaces of the base
class and of the derived class are totally different and there is no real
inheritance-specific dependencies on the base class. When this is the
case, it is highly probable that the class is also affected by Refused
Parent Bequest(145).
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7.5 Recovering from Classification Disharmonies

Where to Start

In order to recover from from classification disharmonies (i.e., design
problems related to inheritance) it is insufficient to look at the indi-
vidual suspect classes; hierarchies must be analyzed as a whole. In
this context it becomes important to know how to group the different
classes identified as affected by various disharmonies and also, how
to prioritize the hierarchies that need more urgent attention. In prac-
tice, we use the following criteria in selecting the hierarchies with the
most significant amount of classification disharmonies:

• Hierarchies with more classes affected by classification dishar-
monies have priority.

• If the disharmonies are distributed on many hierarchy levels (i.e.,
if the sub-hierarchy affected by disharmonies is deep) the inspec-
tion priority for the hierarchy increases.

• Hierarchies where most distinct classification disharmonies ap-
pear have a higher priority.

• Hierarchies where other types of disharmonies (i.e., identity and
collaboration) co-exist with violations of classification harmony
must also be regarded with increased interest.

For the purpose of prioritizing the hierarchies to be inspected first,
we mainly use the following quantification means:

• Number (and Percentage) of Classes with Classification Dishar-
monies. These numbers tell us how much the classification dishar-
monies are spread within the hierarchy. In addition to the abso-
lute number of classes, we also display the percentage of dishar-
monious classes, as this indicator is more relevant and easier to
interpret for larger hierarchies. The higher these numbers are, the
higher also is the probability that the whole hierarchy must be
restructured.

• Hierarchy Depth of Disharmonious Classes. In addition to the pre-
vious values, we found that it is important to know also how deep
in the hierarchy (rooted by the class in the table) we find dishar-
monies. If disharmonies are propagated on many inheritance lev-
els then such hierarchies must be definitely revisited.

• Distinct Classification Disharmonies in Hierarchy. Often the same
disharmony (Tradition Breaker(152)) affects many subclasses of a
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hierarchy. But if the number of distinct problems in the same hier-
archy is high then the hierarchy has a more complex problem that
needs to be addressed. At the same time the co-existence of some
classification disharmonies (e.g., Refused Parent Bequest(145) and
Tradition Breaker(152)) could help us in addressing the problem
properly.

• Distinct Number of Other Disharmonies in Hierarchy. To have an
even better overview of all possible disharmonies that appear in
the same hierarchy, we also count how many distinct design prob-
lems, other than the classification ones (i.e., problems related to
identity or collaboration), can be found.

How to Start

Assessing and improving the classification harmony of a system is
a complex process, because a large number of classes are involved
(i.e., all (or most) of the classes in the hierarchy) and also because
the real cause of such design problems is not localized in one single
class (e.g., a child class is detected, but the real cause of the problem
is in the base class). Additionally, the inspection and refactoring pro-
cess is painful because of the existence of various correlated design
disharmonies (see Fig. 4.12) that might occur in the classes of the
hierarchy and that must be solved at the same time.

Because of all these reasons, for each of the two classification
disharmonies discussed in this chapter, i.e., Refused Parent Be-
quest(145) and Tradition Breaker(152), we addressed in detail the po-
tential refactoring solutions. We noticed that the order in which the
problems are addressed is very important. Therefore, we recommend
inspecting and refactoring each disharmonious hierarchy in your sys-
tem using the sequence described in Fig. 7.13.

Doing the refactorings in this order is important because on the
one hand the refactoring action for one disharmony can have positive
consequences with respect to the following ones (in the sense that
the refactoring effort is reduced); but on the other hand they can also
introduce additional cases of classification disharmonies that must
be addressed as well.

Let us see how it happens. We start by solving the Duplication(102)
problem. By doing so, it could be possible that methods are extracted
from some siblings and moved to their parent class. This can con-
tribute in some cases to a reduction – or even a total elimination
– of the Tradition Breaker(152) disharmony. But at the same time,
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Fig. 7.13. How to address classification disharmonies.

as we move new methods to a parent class, we might cause a Re-
fused Parent Bequest(145) disharmony for some other siblings, as the
bequest provided by the parent class has increased as a result of
the refactoring. Thus, it is important to deal with Duplication(102)
before addressing the Refused Parent Bequest(145) and the Tradition
Breaker(152) disharmonies.
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Now, which one of these two problems should we address next? We
suggest dealing first with Refused Parent Bequest(145), because by
refactoring a part of the class (or even the whole child class) needs to
be removed from the hierarchy. Thus, this provides a new perspective
in dealing with the cases of Tradition Breaker(152).



A

Catalogue of Metrics Used in the Book

In this appendix you will find definitions of the metrics used through-
out this book. These metrics are neither the best in the world, nor
magic. We chose them in the context of the detection strategies pre-
sented in Chapter 4. Thus, their most efficient use is in the context
of these strategies.

A.1 Elements of a Metric Definition

Before presenting the catalogue with the metrics definitions we need
to introduce the main elements that appear in a metric definition.
As we have discussed in Sect. 1 (see page 7), all metrics have some-
thing in common: they can be expressed in terms of three orthogonal
elements: HAVING, USING, BEING.

Therefore, because all definitions of the object-oriented metrics
that we are going to present next are defined in these terms, we will
first describe how these three elements become concrete in the object-
oriented design.



164 A Catalogue of Metrics Used in the Book

HAVING in Object-Oriented Design

In Fig. A.1 we see all the containment (HAVE and BELONGS-TO) re-
lations that are relevant in the context of object-oriented design, i.e.,
what other entities does the measured entity have (contain), in the
sense of being a scope for these entities? This also includes the in-
verse relation: to which entity does the measured entity belong to?
For example, an operation has parameters and local variables, while
it belongs to a class.

Fig. A.1. The HAVING relations in object-oriented design.
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USING in Object-Oriented Design

In Fig. A.2 we see all direct usage (USE and USED-BY) relations that
are relevant in the context of object-oriented design, i.e., what en-
tities does the measured entity use; and again the inverse relation:
by which entities is the measured one being used? For example, an
operation is using the variables that it accesses, while it is used by
the other operations that call (invoke) it. A class uses another class
by extending it through inheritance, but also uses other classes by
communicating with them.

Fig. A.2. The USING relations in object-oriented design.
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BEING in Object-Oriented Design

One of the most frequently encountered dilemmas when reading any
metric definition is: What is really counted? Just think about a simple
metric like Number of Methods. At first sight it looks straightforward.
But at second thoughts various questions pop up: Are constructors
included? Are inherited methods counted as well? What about acces-
sor methods (i.e., getters/setters)?

Browsing through an extensive set of object-oriented design metrics
we identified a set of recurring issues that appear in the definition of
metrics. We summarize them below in form of a non-exhaustive set
of questions:1

• Constructors/Destructor. Should constructors and destructor
be counted as methods of a class?

• Abstract Methods. Should abstract methods be counted as meth-
ods of a class?

• Inherited Members. Should members (data and operation) inher-
ited from ancestor classes be counted in a derived class?

• Static Members. When should class members, i.e.,static attributes
and operations, be counted?

1 The goal of this book is neither to list all possible questions nor to answer
them, but to put you, the reader, in a position where you can ask and
answer such questions yourself.
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A.2 Alphabetical Catalogue of Metrics

AMW - Average Method Weight

Definition The average static complexity of all methods in a class. McCabe’s cyclo-
matic number is used to quantify the method’s complexity [Mar02a, McC76]

Used for
Refused Parent Bequest(145), Tradition Breaker(152)

Measured Entity Class Definition Abstract
user-defined –

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
measured class all + + + +

ATFD - Access To Foreign Data

Definition The number of attributes from unrelated classes that are accessed directly
or by invoking accessor methods [Mar02a]

Used for
God Class(80), Feature Envy(84)

Measured Entity Class Definition Abstract
user-defined +

Measured Entity Method Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + –

Involved Relations

USES Method Definition Visibility Get/Set Constr. Static Abstract
(accesses) measured class or

method
all + – + –

Attribute Definition Visibility Static Const.
neither measured
class nor a class from
the same hierarchy

public + –

USES Method Definition Visibility Get/Set Constr. Static Abstract
(calls) measured class or

method
all + – + –

Method Definition Visibility Get/Set Constr. Static Abstract
neither measured
class nor a class from
the same hierarchy

public only – – –
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BOvR - Base Class Overriding Ratio

Definition The number of methods of the measured class that override methods from
the base class, divided by the total number of methods in the class

Used for
Refused Parent Bequest(145)

Measured Entity Class Definition Abstract
user-defined –

Involved Relations

USES Method Definition Visibility Get/Set Constr. Static Abstract
(overrides) measured class all + – – –

Method Definition Visibility Get/Set Constr. Static Abstract
in base class of mea-
sured class

all + – – +

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) in measured class all + – – –

BUR - Base Class Usage Ratio

Definition The number of inheritance-specific members used by the measured class,
divided by the total number of inheritance-specific members from the base
class

Used for
Refused Parent Bequest(145)

Measured Entity Class Definition Abstract
user-defined +

Involved Relations

USES Method Definition Visibility Get/Set Constr. Static Abstract
(accesses) measured class all + + + –

Attribute Definition Visibility Static Const.
in base class of the
measured class

prot. + +

USES Method Definition Visibility Get/Set Constr. Static Abstract
(calls) measured class or

method
all + + + –

Method Definition Visibility Get/Set Constr. Static Abstract
neither measured
class, nor a class
from the same hier-
archy

prot. only + – –
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CC - Changing Classes

Definition The number of classes in which the methods that call the measured method
are defined in [Mar02a]

Used for
Shotgun Surgery(133)

Measured Entity Method Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + +

Involved Relations

IS USED Class Definition Abstract
(called by) user-defined, scope

of operations called
from the measured
operation (see CM)

+

CDISP - Coupling Dispersion

Definition The number of classes in which the operations called from the measured
operation are defined, divided by CINT

Used for
Intensive Coupling(120), Dispersed Coupling(127)

Measured Entity Operation Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

Involved Relations

USES Class Definition Abstract
(calls) user-defined, scope

of operations called
from the measured
operation (see CINT)

+

CINT - Coupling Intensity

Definition The number of distinct operations called by the measured operation

Used for
Intensive Coupling(120), Dispersed Coupling(127)

Measured Entity Method Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

Involved Relations

USES Method Definition Visibility Get/Set Constr. Static Abstract
(calls) user-defined all + + + +
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CM - Changing Methods

Definition The number of distinct methods that call the measured method [Mar02a]

Used for
Shotgun Surgery(133)

Measured Entity Method Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + +

Involved Relations

IS USED Method Definition Visibility Get/Set Constr. Static Abstract
(is called by) user-defined all + + + -

CYCLO - McCabe’s Cyclomatic Number

Definition The number of linearly-independent paths through an operation [McC76]

Used for
Brain Method(92)

Measured Entity Operation Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

FDP - Foreign Data Providers

Definition The number of classes in which the attributes accessed — in conformity with
the ATFD metric — are defined

Used for
Feature Envy(84)

Measured Entity Method Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

Involved Relations

USES Class Definition Abstract
(called by) user-defined, scope

of attributes and ac-
cessor methods used
as in ATFD

+

HIT - Height of Inheritance Tree

Definition The maximum path length from a class to its deepest subclass [Mar02a]

Used for
Overview Pyramid(24)

Measured Entity Class Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + +

Involved Relations

USES Class Definition Abstract
(extended by) direct or indirect sub-

classes of measured
class

+
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LAA - Locality of Attribute Accesses

Definition The number of attributes from the method’s definition class, divided by the
total number of variables accessed (including attributes used via acces-
sor methods, see ATFD), whereby the number of local attributes accessed
is computed in conformity with the LAA specifications

Used for
Feature Envy(84)

Measured Entity Method Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

Involved Relations

USES Attribute Definition Visibility Static Const.
(accesses) definition class of

measured method
priv. + +

LOC - Lines of Code

Definition The number of lines of code of an operation, including blank lines and com-
ments [LK94]

Used for
Brain Method(92), Brain Class(97)

Measured Entity Operation Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

MAXNESTING - Maximum Nesting Level

Definition The maximum nesting level of control structures within an operation

Used for
Intensive Coupling(120), Dispersed Coupling(127)

Measured Entity Operation Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

NAS - Number of Added Services

Definition The number of public methods of a class that are not overridden or special-
ized from the ancestor classes

Used for
Tradition Breaker(152)

Measured Entity Class Definition Abstract
user-defined +

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) in measured class,

not overriding meth-
ods

public + - - +
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NOAM - Number of Accessor Methods

Definition The number of accessor (getter and setter) methods of a class

Used for
Data Class(88)

Measured Entity Class Definition Abstract
user-defined -

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) measured class public only - - -

NOAV - Number of Accessed Variables

Definition The total number of variables accessed directly from the measured oper-
ation. Variables include parameters, local variables, but also instance vari-
ables and global variables

Used for
Brain Method(92)

Measured Entity Operation Definition Visibility Get/Set Constr. Static Abstract
user-defined all + + + -

USES Attribute Definition Visibility Static Const.
(accesses) user-defined all + –

NOM - Number of Methods

Definition The number of methods of a class

Used for
Refused Parent Bequest(145), Tradition Breaker(152)

Measured Entity Class Definition Abstract
user-defined +

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) measured class all + + + +

NOPA - Number of Public Attributes

Definition The number of public attributes of a class

Used for
Data Class(88)

Measured Entity Class Definition Abstract
user-defined -

Involved Relations

HAS Attribute Definition Visibility Static Constant
(contains) measured class public - –
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NProtM - Number of Protected Members

Definition The number of protected methods and attributes of a class

Used for
Refused Parent Bequest(145)

Measured Entity Class Definition Abstract
user-defined +

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) measured class prot. + – + +

Attribute Definition Visibility Static Const.
measured class prot. + +

PNAS - Percentage of Newly Added Services

Definition The number of public methods of a class that are not overridden or special-
ized from the ancestors, divided by the total number of public methods

Used for
Tradition Breaker(152)

Measured Entity Class Definition Abstract
user-defined +

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) in measured class,

not overriding meth-
ods

public + – – +

Method Definition Visibility Get/Set Constr. Static Abstract
in measured class public + – – +

TCC - Tight Class Cohesion

Definition The relative number of method pairs of a class that access in common at
least one attribute of the measured class [BK95]

Used for
God Class(80), Brain Class(97)

Measured Entity Class Definition Abstract
user-defined –

Involved Relations

USES Method Definition Visibility Get/Set Constr. Static Abstract
(accesses) measured class all + – + –

Attribute Definition Visibility Static Const.
measured class all + +
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WMC - Weighted Method Count

Definition The sum of the statical complexity of all methods of a class. The CYCLO met-
ric is used to quantify the method’s complexity [CK94, McC76]

Used for
Refused Parent Bequest(145), Tradition Breaker(152), God Class(80), Data
Class(88), Brain Class(97)

Measured Entity Class Definition Abstract
user-defined –

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) measured class all + + + +

WOC - Weight Of a Class

Definition The number of “functional” public methods divided by the total number of
public members [Mar02a]

Used for
Data Class(88)

Measured Entity Class Definition Abstract
user-defined –

Involved Relations

HAS Method Definition Visibility Get/Set Constr. Static Abstract
(contains) measured class public – – + –

Method Definition Visibility Get/Set Constr. Static Abstract
measured class public only – – –

Attribute Definition Visibility Static Const.
measured class public + –
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iPlasma

B.1 Introduction

iPlasma 1 is an integrated environment for quality analysis of object-
oriented software systems that includes support for all the necessary
phases of analysis: from model extraction (including scalable parsing
for C++and Java) up to high-level metrics-based analysis, or detec-
tion of code duplication. iPlasma has three major advantages: exten-
sibility of supported analysis, integration with further analysis tools
and scalability, as were used in the past to analyze large industrial
projects of the size of millions of code lines (e.g., Eclipse and Mozilla).

B.2 iPlasma at Work

Fig. B.1 presents the layered structure of the iPlasma quality assess-
ment platform. Notice that the tool platform starts directly from the
source code (C++or Java) and provides the complete support needed
for all the phases involved in the analysis process, from parsing the
code and building a model up to an easy definition of the desired
analyses including even the detection of code duplication, all inte-
grated by a uniform front-end, namely INSIDER. Let’s take a closer
look at the layers of iPlasma .

MEMORIA and the Model Extractors

An essential task in a software analysis process is the construction of
a proper model of the system. The information contained in the model
1 iPlasma stands for Integrated PLAtform for Software Modeling and

Analysis.
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Fig. B.1. The layered structure of the iPlasma quality assessment platform.

strongly depends on its usage scenarios. As iPlasma is intended to
support mainly analyses focused on object-oriented design, it is im-
portant to know the types of the analyzed system, the operations and
variables together with information about their usages (e.g., the in-
heritance relations between classes, the call-graph etc.). In iPlasma
we defined MEMORIA as an object-oriented meta-model that can store
all the above information (and more). One of the key roles of MEMORIA

is to provide a consistent model even in the presence of incomplete
code or missing libraries, to allow the analysis of large systems and
to ease the navigation within a system.

Extracting such a model from the source code requires powerful
and scalable parsing techniques. Currently, iPlasma supports two
mainstream object-oriented languages i.e., C++and Java. For Java
systems we use the open-source parsing library called RECODER 2

to extract all the information required by the MEMORIA meta-model.
For C++code we have MCC, a tool which extracts the aforementioned
design information from the source code (even incomplete code!), and
produces a set of related (fully normalized) ASCII tables containing
the extracted design information (including even information about
templates). Although this information is eventually loaded in form

2 See http://recoder.sourceforge.net/
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of a MEMORIA model, the ASCII tables could be easily loaded in a
RDBMS and interrogated in the form of SQL queries.

Analyses for Quality Assessment

Based on the extracted information several types of analyses (e.g.,
metrics, metrics-based rules for detecting design problems, quality
models, etc.) can be defined.

Metrics and Detection Strategies

iPlasma contains a library of more than 80 state-of-the-art and novel
design metrics, measuring different types of design entities from op-
erations to classes and packages. All the metrics used in this book
are defined in iPlasma . In Sect. 4.1 we showed how detection strate-
gies allow us to combine metrics in more complex rules for detecting
design problems. In iPlasma detection strategies can be implemented
and adapted. Of course, all the detection strategies introduced in this
book are already available for use.

Dude: Detection of Code Duplication

As we have seen in the book, an important issue is the detection of
code duplication. In iPlasma the detection of code duplication is sup-
ported using the DUDE tool. DUDE uses textual comparison at the level
of lines of code in order to detect portions of duplicated code. It has
a powerful detection engine which can also cover some fine changes
to the duplicated code such as renaming of some variables, changes
in indentation or comments. The most important aspect about DUDE

is that it can annotate a MEMORIA model with all extracted informa-
tion about the presence of duplicated code. This makes possible to
correlate duplications with their context (e.g., detect operations from
sibling classes that contain duplication).

Insider: the Integrating Front-end

Assessing the design quality of an object-oriented system requires
the collaboration of many tools. Using them independently can eas-
ily transform the analysis process into a nightmare, making it com-
pletely unscalable for usage on large-scale systems. One of the key
aspects of iPlasma is that all these analyses are integrated and can



178 B iPlasma

Fig. B.2. Key elements of INSIDER, the front-end of iPlasma .

be used in a uniform manner through a flexible front-end, called IN-
SIDER. In other words, INSIDER is a front-end (see Fig. B.2) which
offers the possibility to integrate independent analyses (in the form
of plugins) in a common framework. This approach makes INSIDER

open implemented and thus easily extendable with any further needed
analyses.

Using INSIDER

In order to use INSIDER first a project must be loaded by indicating
the folder where the source code of the project is located. During the
loading phase, the sources are parsed and the model is constructed.
After that, the system can be analyzed using the three major zones of
the user interface (see Fig. B.2), namely:

• Group Inspector. In the top-right part of the screen a selected group
of design entities (e.g., classes and operations) are displayed. Ini-
tially, the Group Inspector displays a group with only one entity:
the system itself. In a display we can choose a number of metrics
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(over 80) that should be displayed. As seen in Fig. B.2 the met-
rics are displayed for all the entities in the group. By selecting an
entity in the group we can display another group associated with
that entity (e.g., for a class, display the group of methods defined
in the class or the group of its ancestors, etc.).

• Group Manager. During a software analysis we usually need to
work with more than a single group. The groups that are cur-
rently open are displayed on the top-left side of the screen. The
Group Manager allows us to select a group that we want to see
in the Group Inspector. It also allows us to delete those groups
that are no longer relevant for the analysis. Last but not least, the
Group Manager allows us to create a new group, by filtering the
entities of the selected group based on a filtering condition, i.e., a
combination of metrics (as in detection strategies). Apart from the
predefined filters, new filters can be defined at run-time using the
Filter Editor (see windows at the bottom-right of Fig. B.2). The Fil-
ter Editor can be used not only to create new (sub)groups, but also
for revealing the entities in a group that fulfill the defined filtering
condition (see red highlighting in the Group Inspector in Fig. B.2).

• Entity Browser. When an entity is selected in the Group Inspector
on the bottom part of the screen we see various details about that
entity. For example, for a class we see the position of the class
in the class hierarchy, its methods and attributes, etc. The big
advantage of the Entity Browser is that any reference to another
design entity (e.g., the base class of the selected class) is a hyper-
link to that entity. Thus, by clicking it the details of that entity
will be displayed in a new tab of the Entity Browser. Additionally,
for operations, INSIDER allows us to get quick access to the ac-
tual source code of the operation. The code appears on demand in
a separate window, namely the Source Code Viewer (several such
windows can be open at the same time).

B.3 Industrial Validation

Although iPlasma was developed as a research tool, it is not a toy. It
was successfully used for analyzing the design of more than ten real-
world, industrial systems including very large open-source systems
(>1 MLOC), like Mozilla (C++, 2.56 million LOC) and Eclipse, (Java,
1.36 million LOC). iPlasma was also used during several consultancy
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activities for industrial partners, most of them involved in developing
large software applications for telecom systems.

B.4 Tool Information

The implementation of iPlasma was started in 1998 by Radu Mari-
nescu in the context of the European FAMOOS ESPRIT Project. Over
the years iPlasma has gradually evolved from a set of individual tools
to an integrated suite of tools. It has been used for various industrial
consultancy projects since 2002.

Tool Availability

iPlasma is implemented in Java — excepting the model extractor for
C++, i.e.,MCC — and it is free to use. It was successfully run on all
major platforms (Windows, Linux, Mac OS) and is freely available for
download. Currently more information about iPlasma , including the
possibility of downloading it, can be found at:

http://loose.upt.ro/iplasma/
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CodeCrawler

C.1 Introduction

CodeCrawler is a software and information visualization tool [SDBP98,
War00] which implements the polymetric views [Lan03b, LD03] pre-
sented in Chapter 2.

CodeCrawler relies on the FAMIX meta-model [DTD01] which
models object-oriented languages such as C++, Java, Smalltalk, but
also procedural languages like COBOL. FAMIX has been implemented
in the MOOSE reengineering environment that offers a wide range of
functionalities like metrics, query engines, navigation, etc. [DGLD05].

In this appendix we highlight some of the implementation charac-
teristics.

C.2 CodeCrawler at Work

One aspect of the visualizations used in this book that cannot be
shown is their intrinsic interactivity. There is no such thing as a per-
fect visualization and the reader should therefore keep in mind that
the visualizations presented here were obtained after interacting with
them. There are many publications [Lan03a, Lan03b, LD03, LD05,
DL05, LDGP05] on the CodeCrawler tool and we prefer to direct the
reader to those rather than trying to cover all the aspects of Code-
Crawler here. We limit ourselves to illustrating a small example.

Example. An example of interactivity (see Fig. C.1) is that when the
user passes the mouse pointer over a node or an edge, the item is
highlighted and information about that subject item is displayed in
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Fig. C.1. CodeCrawler at work. Every visible item can be interacted with in
its own customized way.

CodeCrawler ’s top input field, e.g., metric values and other seman-
tic information, whether the class is abstract, etc. Moreover, using a
context menu the viewer can interact with the item in focus.

The polymetric views (implemented in the CodeCrawler tool ) can
be created either programmatically by constructing the view objects,
or using a View Editor, where each view can be composed using drag
and drop. In Fig. C.2 we see CodeCrawler ’s View Editor with the spec-
ification of the System Complexity view: the user can freely compose
and specify the types of items that will be displayed in a view and
also define the way the visualization will be performed. The user can
choose among various types of nodes (class, method, package, etc.)
and edges (inheritance, invocation, containment, etc.). For every node
and edge the user can choose the figure type and assign to the figures
the metrics to be used; there are several dozens of metrics that can
be used, but as we will see in the remainder of this book only certain
metrics make sense for certain polymetric views. The user can also
choose the layout that he or she wants to use. In the case of Fig. 3.8
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Fig. C.2. CodeCrawler ’s View Editor.

where class nodes and inheritance edges have been chosen, a simple
tree layout has been used.

C.3 Industrial Validation

CodeCrawler has been used several times to reverse-engineer indus-
trial systems and is also used in conjunction with MOOSE by consul-
tants to assess software systems. Due to non-disclosure agreements
with our industrial partners we cannot provide detailed descriptions
of our experiences, but limit ourselves to providing a list of case stud-
ies (industrial and non-industrial) that we have performed.
In Tab. C.1 we see that the systems were written in different program-
ming languages and have sizes quite different from each other. The
point common to all the case studies was the narrow time constraints
imposed on us: we never had more than one week to reverse-engineer
the systems.
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Case Study Language Lines Classes Duration
Z (Network Switching) C++ 1,200,000 > 2300 1 Week
Y (Network Switching) C++/Java 140,000 >400 1 Week
X (Multimedia) Smalltalk 600,000 >2500 3 Days
W (Payroll) COBOL 40,000 - 3 Days
SORTIE (Forest Management) C++ 28,000 70 2 Days
Duploc (Research Prototype) Smalltalk 32,000 > 230 2 Days
Jun (3D Framework) Smalltalk 135,000 > 700 3 Days
JBoss Java 300,000 > 4500 1 Week
V (Logistics) C++ 120,000 > 300 2 Days
ArgoUML (Modeling) Java 220,000 > 1300 4 Days
U (Telecom Services) C++ 2,500,000 > 10,000 1 Week

Table C.1. A list of some of the case studies CodeCrawler was applied on.

C.4 Tool Information

CodeCrawler ’s implementation commenced in 1998 as part of Michele
Lanza’s Masters and PhD work, in the context of the European
FAMOOS ESPRIT Project. It has been used for various industrial
consultancy projects since its first implementation. In its latest im-
plementation it has become a general information visualization tool
(e.g., visualization of concept lattices [Aré03] and websites) and also
supports 3D visualizations [Wys05]. CodeCrawler uses the HotDraw
framework for the 2D visual output and the Jun framework for the
3D visual output. It uses the MOOSE reengineering environment for
the data input.

Tool Availability

CodeCrawler is implemented in Smalltalk under the BSD license:
it is free and open-source software. It runs on every major platform
(Windows, Mac OS, Linux, Unix) and is freely available for download.
Currently the webpage is located at:

http://www.iam.unibe.ch/∼scg/Research/CodeCrawler/

Moreover, CodeCrawler is also available as a free goodie on the
Visual-Works Smalltalk CD, a professional, commercial development
environment developed and sold by the company Cincom, which,
however, also exists in a non-commercial version freely available for
download at:

http://www.cincomsmalltalk.com/
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Figures in Color

Figure 1.1 (on page 6)

Object-Oriented Metrics in Practice — in a Nutshell.
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Figure 3.11 (on page 41)

The Overview Pyramid applied to ArgoUML .

Figure 5.5 (on page 86)

ClassDiagramLayouter is envying the features of ClassDiagramNode.
In red we colored the invocations that weightAndPlaceClasses per-
forms towards ClassDiagramNode, while in green we see its class-
internal invocations and accesses.
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Figure 5.8 (on page 90)

An example of a Data Class: Property

Figure 5.10 (on page 94)

A Class Blueprint of Modeller and ProjectBrowser.
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Figure 5.13 (on page 100)

A Class Blueprint of ParserDisplay with its completely abstract super-
class Parser and a Class Blueprint of FigClass.
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Figure 6.5 (on page 124)

The class ClassDiagramLayouter is intensively coupled especially with
ClassDiagramNode. The red classes are non-model classes, i.e., be-
long to the Java library. The classes have been laid out according to
the invocation sequence: above ClassDiagramLayouter are all classes
that use it, while below it are all classes whose methods get used.
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Figure 6.6 (on page 125)

The class ClassDiagramLayouter is intensively coupling with a few
classes, especially ClassDiagramNode.

Figure 6.11 (on page 129)

The class ActionOpenProject is coupled with many classes. The red
classes are non-model classes, i.e., belong to the Java library. The
blue edges represent invocations.
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Figure 6.12 (on page 130)

The class Modeller is coupled with many classes and suffers itself
from many other problems.

Figure 6.15 (on page 135)

Project provides an impressive example of a class with several meth-
ods affected by Shotgun Surgery(133). Due to these methods, Project
is coupled with 131 classes (ModelFacade has been elided from the
screenshot). Furthermore, the class has cyclic invocation dependen-
cies with ProjectBrowser and CoreFactory. In the figure, the classes
above Project depend on it, while Project itself depends on (i.e., in-
vokes methods of) the classes below it.
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Figure 7.1 (on page 143)

Correlation web of classification disharmonies.

Figure 7.5 (on page 148)

A Class Blueprint view of the PerspectiveSupport hierarchy.



D Figures in Color 193

Figure 7.10 (on page 156)

A System Complexity view of the FigNodeModelElement hierarchy.
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RDGM04. Daniel Raţiu, Stéphane Ducasse, Tudor Gı̂rba, and Radu Mari-

nescu. Using history information to improve design flaws de-
tection. In Proceedings Eighth Euromicro Working Conference on
Software Maintenance and Reengineering (CSMR’04), pages 223–
232, Los Alamitos CA, 2004. IEEE Computer Society.

Rie96. Arthur Riel. Object-Oriented Design Heuristics. Addison Wesley,
Boston MA, 1996.

SDBP98. John T. Stasko, John Domingue, Marc H. Brown, and Blaine A.
Price, editors. Software Visualization — Programming as a Multi-
media Experience. The MIT Press, 1998.

Sto98. Margaret-Anne D. Storey. A Cognitive Framework for Describing
and Evaluating Software Exploration Tools. PhD thesis, Simon
Fraser University, December 1998.

SWM97. Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller.
How do program understanding tools affect how programmers
understand programs? In Ira Baxter, Alex Quilici, and Chris
Verhoef, editors, Proceedings Fourth Working Conference on Re-
verse Engineering, pages 12–21. IEEE Computer Society, 1997.

Tuf90. Edward R. Tufte. Envisioning Information. Graphics Press, 1990.
Tuf01. Edward R. Tufte. The Visual Display of Quantitative Information.

Graphics Press, 2nd edition, 2001.
vMV96. A. von Mayrhauser and A.M. Vans. Identification of dynamic

comprehension processes during large scale maintenance. IEEE
Transactions on Software Engineering, 22(6):424–437, June
1996.

War00. Colin Ware. Information Visualization. Morgan Kaufmann, 2000.
WBM03. Rebecca Wirfs-Brock and Alan McKean. Object Design — Roles,

Responsibilities and Collaborations. Addison-Wesley, 2003.
WBW89. Rebecca Wirfs-Brock and Brian Wilkerson. Object-oriented de-

sign: A responsibility-driven approach. In Proceedings OOPSLA
’89, pages 71–76, October 1989. ACM SIGPLAN Notices, volume
24, number 10.

WH92. Norman Wilde and Ross Huitt. Maintenance Support for Object-
Oriented Programs. IEEE Transactions on Software Engineering,
SE-18(12):1038–1044, December 1992.

Wys05. Christoph Wysseier. Interactive 3-D visualization of feature-
traces. MSc. thesis, University of Berne, Switzerland, November
2005.



Index

ArgoUML, 8, 21, 40–44, 81, 86, 90,
105, 106, 135, 186

Assessment, 3, 7, 13, 24, 46, 102,
110, 175, 177

design, 3
quality, 24, 175, 177

Bad smells, 5, 53, 80, 119
code smells, 5, 53, 92

Best practices, 5, 70
Brain Class, 71, 78, 87, 97–99, 101,

109, 111, 113, 155, 171, 173,
174

Brain Method, 71, 78, 85, 93, 95–99,
101, 109, 110, 113, 123, 130,
131, 136, 138, 155, 170–172

C++, 14–16, 24, 26, 32, 60, 63, 175,
176, 179–181, 184

Class Blueprint, 7, 22, 44, 48,
57–63, 65, 67–70, 82, 94, 100,
123, 148, 187, 188, 192

accessor layer, 60
attribute layer, 60
implementation layer, 60, 64, 65
initialization layer, 60, 63, 65
interface layer, 60, 64, 65

CodeCrawler, 35, 181–184
Cohesion, 17, 53, 55, 56, 80, 81, 84,

98, 111, 173
Cohesive

non-cohesive, 18, 56, 97, 138
Coupling, 7, 24, 25, 28, 29, 31, 33,

41, 44, 53, 87, 115, 118–121,
123–133, 135, 137, 138, 169,
190, 191

dispersion, 29, 128, 169
dispersively coupled, 127, 130
excessive, 29, 120, 130, 137
intensity, 29, 128, 169
intensively coupled, 33, 41, 120,

123, 124, 189

Data Class, 71, 78, 87–91, 113, 119,
136, 138, 172, 174, 187

Data collection, 12, 15, 32, 137, 138
Data-operation proximity, 84, 91
Dependencies, 26, 85, 87, 116, 118,

121, 126, 132–135, 138, 142,
158, 191

incoming, 116, 134
outgoing, 116, 118, 133

Design, 1–8, 11–13, 18, 20–23, 28,
36, 39, 45, 46, 48–55, 57,
67–70, 72, 73, 78, 80, 81, 84,
85, 88, 91, 92, 95–97, 105,
106, 108, 111, 115, 116, 120,
126, 133, 138, 152, 159, 160,
164–166, 176–179, 202

characterize, 1, 4, 9, 11, 21,
23–25, 28–30, 44, 69, 98, 111,
144



202 Index

design flaw, 80, 92
design heuristics, 1, 5, 52, 53, 56,

59, 70, 71, 80, 93, 95, 104,
115, 121, 122

design patterns, 2
design problem, 1, 3, 5, 9, 49, 106
design quality, 3, 28, 53, 73
entity, 7, 8, 33, 34, 177
evaluate, 1, 4, 8, 11, 21, 22, 46,

48, 70
fragment, 49, 57, 78
good design, 3
improvement, 1, 4, 5, 8, 11, 12,

20, 46, 70, 78, 103, 111, 126,
137

object-oriented design, 5, 46, 80,
92, 106, 164–166

rules, 7
Design

characterize, 1, 4, 9, 11, 21, 24,
25, 28–30, 44, 69, 98, 111, 144

Detection Strategy, 3, 7, 22, 44,
48–57, 70, 78, 80, 81, 84, 85,
88, 92, 93, 97–99, 102–104,
109, 118, 121, 128, 130, 134,
137, 138, 146, 147, 152, 153,
163, 177, 179

Disharmony, 7, 22, 48, 53, 70–73,
78, 83–85, 91, 94, 97, 101,
105, 109, 111, 112, 115,
118–120, 127, 130, 131, 133,
134, 137, 139, 143, 144, 152,
155, 159–161

Classification disharmony, 71,
137, 139, 143, 159

Collaboration disharmony, 71, 95,
118, 137, 139, 143, 159

Identity disharmony, 71, 73, 78,
101, 109, 112

Dispersed Coupling, 71, 95, 118,
127–131, 134, 137, 138, 169,
171

Distribution of complexity, 74, 75,
87

improper, 87, 130
Duplication, 4, 37, 76, 78, 96, 99,

102–108, 110, 111, 113, 143,
155, 175, 177

chain, 103, 105, 106
metrics

LB, 104
SDC, 104
SEC, 104

parent-child, 107
same class, 106
same hierarchy, 106
sibling classes, 107
Significant Duplication, 71, 78, 96,

99, 100, 104, 111, 119, 143,
158, 160, 161

unrelated classes, 108
Duploc, 37–39, 184

Eliminate Navigation Code, 126, 132
Encapsulation, 56, 59, 75, 77, 88,

89, 97
environment, 9, 40, 175, 181, 184

development, 40

Feathers, 5, 83
Feature Envy, 71, 79, 84–87, 91, 96,

112, 167, 170, 171
Fenton, 5
Foreign data, 18, 53, 55, 56, 79, 84,

95, 111, 167, 170
Fowler, 5, 53, 70, 80, 92, 95, 119

Goal-Question-Metric, 12, 13
God Class, 71, 78, 80, 81, 83, 84,

92, 97, 98, 101, 109, 111, 113,
123, 167, 173, 174

Harmonious
collaboration, 115, 142
proportion, 141
size, 73, 74

Harmony, 46, 47, 51, 70, 71, 73, 74,
78, 80, 96, 101, 109, 111, 115,
137, 139, 143, 159, 160



Index 203

Classification harmony, 47, 139,
159, 160

Collaboration harmony, 47, 115,
137

Identity harmony, 47, 73, 78, 109,
111

rules, 51, 72, 73, 115, 139, 143
Henderson-Sellers, 5, 55
HotDraw, 184

Implementation Rule, 77, 78, 91, 92,
142

Inheritance, 7, 8, 20, 25, 29–31, 36,
38, 39, 41, 58, 67, 68, 83, 99,
107, 108, 139–141, 143, 144,
158, 159, 165, 168, 170, 176,
182

child class, 152, 154, 155, 160,
162

derived class, 58, 144, 152, 157,
158, 166

hierachies, 22, 29–31, 33, 35, 36,
38, 39, 41, 44, 58, 64, 67, 68,
96, 107, 108, 117, 121, 134,
139–144, 155, 158–160, 167,
168, 179

parent class, 107, 143, 155, 161
polymorphism, 29, 92
subclass, 30, 31, 47, 67, 68, 142,

144, 152, 155, 156, 159, 170
superclass, 63, 67, 68, 99, 100,

152, 188
Intensive Coupling, 71, 95, 96, 118,

120–122, 125, 127–129, 132,
134, 137, 169, 171

Interface
class interface, 152
public interface, 89, 154
user interface, 178

iPlasma, 175–180

Java, 8, 14–16, 24, 26, 30–32, 40,
60, 63, 123, 124, 129, 154,
175, 176, 179–181, 184, 189,
190

Jun, 62, 63, 67, 184

Law of Conway, 2
Law of Demeter, 2, 77, 126, 131,

138
Lehman and Belady, 2
Lines of code, 4, 14, 16, 21, 23, 24,

27, 32, 35, 38–41, 61, 69, 93,
94, 97, 98, 105, 171, 177

Lorenz and Kidd, 4, 55, 116

McCabe, 27, 55, 93, 167, 170
cyclomatic complexity, 26, 55, 93
cyclomatic number, 14, 27, 167,

170
Measurement, 6, 8, 11–15, 19, 24,

25, 34, 35, 46, 48, 49, 61
MEMORIA, 175–177
Meta-model, 176, 181
Methods

accessor, 40, 60, 84, 86, 89, 166,
167, 170–172

constructor, 99, 166
getter, 60, 166
setter, 60, 166

Metrics, 1, 3–9, 11–37, 39, 40, 44,
46–53, 55, 56, 59, 61–63, 70,
72, 81, 84, 85, 87, 89, 93, 98,
101, 103–105, 110–112, 126,
128, 134, 154, 155, 163, 166,
167, 170, 174, 175, 177–179,
181, 182, 185

abnormal values, 48, 49, 57
AMW, 16, 87, 147, 153, 155, 167
ATFD, 18, 55, 56, 81, 84, 85, 95,

111, 112, 167, 170, 171
BOvR, 147, 168
BUR, 147, 168
CC, 134, 135, 169
CDISP, 122, 128, 169
CINT, 122, 128, 169
CM, 134, 169, 170
CYCLO, 14, 16, 26–28, 32, 93,

170, 174
design metrics, 12, 177



204 Index

duplication metrics, 103
FDP, 84, 85, 170
filtering, 49, 51, 98, 179
filtering condition, 179
HIT, 30, 170
interpretation, 32, 33, 41, 48, 50
LAA, 84, 85, 171
LOC, 14, 16, 21, 27, 28, 32, 38,

39, 41, 50, 70, 93–95, 97, 99,
110, 171, 179

MAXNESTING, 93, 121, 128, 171
NAS, 153, 154, 171
NOAM, 88, 89, 172
NOAP, 88
NOAV, 93, 172
NOM, 14, 16, 21, 27–29, 32,

37–39, 41, 110, 147, 153–155,
172

NOPA, 89, 172
NProtM, 147, 173
outliers, 4, 38, 49, 78, 154
PNAS, 153, 154, 173
quality metrics, 3
representation condition, 19
size and complexity, 12, 14, 16,

21, 23, 24, 26–28, 32, 41, 78,
155

TCC, 17, 55, 56, 81, 99, 173
threshold, 13–18, 32, 33, 47,

49–51, 56, 81, 93, 98, 105,
122, 123, 134, 154

fraction, 17
meaningful, 15, 17, 18, 56, 105

WMC, 16, 55, 56, 81, 88–90,
97–99, 147, 153, 155, 174

WOC, 88, 89, 174
Moose, 181, 183, 184
Move Behavior Close to the Data,

87, 126, 132, 136

Open-Closed Principle, 2
Overview Pyramid, 6, 21, 22, 24–33,

40, 41, 44, 170, 186
AHH, 30–33
ANDC, 30–33

CALLS, 29, 32
FANOUT, 29, 32
NOC, 27, 28, 32
NOP, 26
proportions, 27–29, 33

Polymetric Views, 6, 7, 20–22, 24,
25, 33–37, 41, 44, 181, 182

System Complexity, 35, 37–39, 41,
148, 155, 156, 182, 193

System Hotspots, 37, 38, 41, 42
practice, 1, 6, 12, 13, 34, 45, 63, 64,

77, 102, 109, 126, 137, 159,
185

Presentation, 7, 75, 78, 88, 141, 143
Presentation Rule, 75, 78, 88, 141,

143
Proportion Rule, 74, 78, 92, 140

quantification, 55, 109, 159

Reengineering, 5, 87, 126, 132, 181,
184

environment, 181, 184
Reengineering patterns, 5, 126, 132
Refactoring, 2, 5, 6, 9, 53, 77, 83,

87, 91, 95, 96, 101, 102, 106,
107, 112, 113, 123, 125, 126,
131, 132, 136–138, 140, 152,
156, 157, 160, 162

Refused Parent Bequest, 71, 144,
145, 147, 149–151, 155, 158,
160–162, 167, 168, 172–174

Discriminatory Bequest, 150
False Child Class, 150
Irrelevant Bequest, 150

Responsibility, 2, 46, 73–75, 83,
115, 119, 136

responsibility-driven, 2, 115
results, 24, 41, 49, 51, 126, 132
Riel, 5, 53, 78

Shotgun Surgery, 71, 119, 120, 125,
131, 133–138, 169, 170, 191

Smalltalk, 8, 24, 37, 63, 181, 184
Software engineering, 1, 11



Index 205

Software evolution, 2–4, 80, 102,
141, 154

source code, 3, 7, 20, 22, 23, 26,
34, 36, 40, 44, 48, 59, 62, 110,
175, 176, 178, 179

Split Up God Class, 83

Statistical, 13–17, 32, 33, 40, 41,
49, 56, 93, 104, 154

average, 13–16, 24, 27, 29, 30, 32,
33, 41, 87, 104, 122, 123, 154,
155, 167

box-plot technique, 50

observations, 14, 87

population, 13, 14

standard deviation, 15

Substitution Principle, 2

Systems

legacy systems, 3–6, 83, 92

object-oriented systems, 21–24,
46, 48, 143

software systems, 2, 9, 44, 175
large, 1–3, 6, 45, 180

Tradition Breaker, 71, 144, 150,
152–162, 167, 171–174

Denied Tradition, 158
Double-Minded Descendant, 158
Irrelevant Tradition, 157
Misplaced Descendant, 158

Transform Type Checks to Registra-
tion, 126

Tufte, 35, 59

Visualization, 1, 4, 7, 11, 18–20, 22,
24, 25, 33, 34, 41, 48, 57–59,
62–64, 66, 68, 83, 181, 182,
184

VisualWorks, 37


	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	back-matter.pdf



