

Lecture Notes in Computer Science 2959
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Rick Kazman Dan Port (Eds.)

COTS-Based
Software Systems

Third International Conference, ICCBSS 2004
Redondo Beach, CA, USA, February 1-4, 2004
Proceedings

Springer

http://www.springerlink.com

eBook ISBN: 3-540-24645-2
Print ISBN: 3-540-21903-X

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

http://ebooks.springerlink.com
http://www.springeronline.com

Foreword

In the short space of about a decade, Commercial-off-the-Shelf (COTS) software has
evolved from a relatively minor aspect of software development; a top-management-
endorsed silver bullet solution for software development; a disruptive technology re-
quiring people and organizations to extensively rethink their approaches to software
development; to an increasingly well-understood software phenomenon for which ef-
fective solutions are being developed.

Part of this understanding has been to recognize that different COTS application sectors
can be at different stages of this evolution. Some sectors are just beginning to become
COTS-intensive. Some have evolved COTS solutions that are very well matched to
their problem domain. Others, including most large-scale applications, still involve their
developers in rethinking how to adapt their traditional software architectures, processes,
management practices, and personnel skills to accommodate economically attractive
but complex combinations of powerful but incompletely compatible and independently
evolving COTS products.

The series of International Conferences on COTS-Based Software Systems (ICCBSS)
was established as a continuing forum for bringing together CBSS developers, suppliers,
and researchers to summarize and discuss progress toward understanding and resolving
CBSS problems. This year’s conference theme, “Matching Solutions to Problems,” re-
flected this objective. We were fortunate to have three outstanding keynote speakers,
David Carr, Tricia Oberndorf, and Douglas Schmidt, who have contributed significantly
both in analyzing CBSS problems and developing better CBSS solutions.

The contributed papers and summaries of workshops, panels, and tutorials in these
proceedings give a good understanding of the nature and directions of evolution of CBSS
problems and solutions. As has been my experience with previous ICCBSS proceedings
volumes, I believe that you will find lasting value in the content of the proceedings.

I would like to express a special note of thanks to all of the members of the ICCBSS 2004
organizing committee, program committee, and individual committees listed in the pro-
ceedings. Their capable and dedicated volunteer efforts are what continues to make the
ICCBSS series a timely and useful experience and contribution toward improved CBSS
practices. I would also like to thank the Northrop Grumman Corporation for its sponsors-
hip of ICCBSS 2004, and the overall sponsoring organizations of the ICCBSS series:
the Canadian National Research Council, the CMU Software Engineering Institute, the
European Software Institute, and the USC Center for Software Engineering.

January 2004 Barry Boehm

This page intentionally left blank

Preface

Welcome to the proceedings of the 3rd International Conference of COTS-Based Soft-
ware Systems. The conference is still young, but it is vital and growing fast. This year
there were a total of 57 submissions on all aspects of COTS, with about 60% of these
coming from the United States and the remainder from Europe and Asia. Equally encou-
raging, we had about equal numbers of submissions coming from academia and industry.
This shows that ICCBSS is hitting our target audience-both practitioners and researchers
interested in the effective use of COTS.

The specific program statistics are as follows:

4 tutorials submitted
3 tutorials accepted

4 panels submitted
3 panels accepted

10 experience presentations submitted
8 experience presentations accepted

39 refereed papers submitted
17 refereed papers accepted

2 invited workshops

We were uniformly impressed with the high quality and broad scope of these submissions.
There were about an equal number of technically focused and managerially oriented
submissions whose topics generally fell into three tracks: COTS Product Evaluation and
Selection, COTS-Based System Definition and Development, and COTS-Based System
Evolution and Management.

The superb quality of the submissions and the invited workshops continues to indicate
the importance and interest in COTS-Based system development and issues. With this
trend, ICCBSS 2005 will prove to be even more exciting!

Dan Port, Rick Kazman

This page intentionally left blank

Organization

ICCBSS 2004 Conference Committee

Planning Committee

General Chair
Program Chairs

Proceedings Chairs

Tutorials Chair
Panels Chair
Posters Chair

Publicity Chairs

Finance & Local Arrangements
Chair Emeritus

Barry Boehm (University of Southern California)
Ceci Albert (Software Engineering Institute)
Dan Port (University of Hawaii)
Rick Kazman (University of Hawaii)
Dan Port (University of Hawaii)
Sergio Bandinelli (European Software Institute)
Ioana Rus (University of Maryland)
Hakan Erdogmus (National Research
Council Canada)
Lisa Brownsword (Software Engineering Institute)
David Morera (European Software Institute)
Mark Vigder (National Research Council Canada)
Hal Hart (Northrop Grumman)
John Dean (National Research Council Canada)

Program Committee

Cecilia C. Albert – Software Engineering Institute, USA
Sergio Bandinelli – European Software Institute, Spain
David M. Bennett – POWERflex Corporation, Australia
David P. Bentley – South Carolina Research Authority, USA
Ljerka Beus-Dukic – University of Westminster, UK
Jørgen Bøegh – DELTA, Danish Electronics, Light & Acoustics, Denmark
Pere Botella – Universitat Politecnica de Catalunya, Barcelona, Spain
William G. Chismar – University of Hawaii, USA
Daniel Dumas – IBM Belgium Software Group, Belgium
Anthony Earl – Sun Microsystems Inc., USA
Suellen Eslinger – The Aerospace Corporation, USA
Rose F. Gamble – University of Tulsa, USA
Suzanne M. Garcia – Software Engineering Institute, USA
Anatol Kark – National Research Council Canada, Canada
Rick Kazman – University of Hawaii and SEI, USA
David Klappholz – Stevens Institute of Tech. & New Jersey CSE, USA
Ron Kohl – R.J. Kohl & Associates, USA
Lech Krzanik – University of Oulu, Finland
Grace A. Lewis – Software Engineering Institute, USA

X Organization

Fred Long – University of Wales, Aberystwyth
Mike Looney – University of Portsmouth, UK
Ray Madachy – University of Southern California, USA
Jean-Christophe Mielnik – Thales Research & Technologies, France
Maurizio Morisio – Politecnico di Torino, Italy
Diane Mularz – MITRE Corp., USA
Michael Ochs – Fraunhofer Institute for Experimental Software Engineering, Germany
Jim Odrowski – Component Wave, Inc., USA
Dan Port – University of Hawaii, USA
Marco Torchiano – Computer and Control Dept., and Politecnico di Torino, Italy
Mark Vigder – National Research Council Canada, Canada
Göran V. Grahn - Volvo Information Technology, Sweden

Table of Contents

Tutorials

Using eCots Portal for Sharing Information about Software
Products on the Internet and in Corporate Intranets 1

Jean-Christophe Mielnik, Vincent Bouthors, Stéphane Laurière,
Bernard Lang

Testing Component-Based Software – Issues, Challenges,
and Solutions 2

Jerry Zeyu Gao, Ye Wu

All You Have to Know When Using Commercial Components to Build
Your Software Systems 3

David Morera

Workshops

COTS Terminology and Categories: Can We Reach a Consensus? 4
Betsy Clark, Marco Torchiano

First International Workshop on Incorporating COTS into
Software Systems 6

Alexander Egyed, Dewayne Perry

Panels

Panels Introduction 8

Posters

COTS Components for Spacecraft Ground Systems 9
Judy Kerner

Do We Need Requirements in COTS-Based Software Development? 11
Xavier Franch

The Added Dimension: Information Security in COTS-Based
Software Systems 13

Carol Sledge

XII Table of Contents

Poster Sessions

Systemic Quality of the Component-Based
Development Process 14

Maryoly Ortega

COTS Services 15
Pearl Brereton

AIAA (Draft) Guidebook “Managing the Use of
Commercial Off-the-Shelf (COTS) Software Components for Mission
Critical Systems” 16

Ronald J. Kohl

CMMI Compliance in COTS-Based Development 17
Rick Hefner

Papers

Security in Large System Acquisition 18
Marshall Abrams, Joe Veoni, R. Kris Britton

On the Measurement of COTS Functional Suitability 31
Alejandra Cechich, Mario Piattini

A Case Study in COTS Product Integration Using XML 41
Grace A. Lewis, Lutz Wrage

COTS Product Selection for Safety-Critical Systems 53
Fan Ye, Tim Kelly

Driving Component Selection through Actor-Oriented Models and
Use Cases 63

Vijay Sai, Xavier Franch, Neil Maiden

Managed Technology Adoption Risk: A Way to Realize Better Return
from COTS Investments 74

Suzanne Garcia, John Robert, Len Estrin

Understanding Services for Integration Management 84
L. Davis, R. Gamble

Migrating Application Integrations 94
D. Flagg, R. Gamble, R. Baird, W. Stewart

Web-Based COTS Component Evaluation 104
Franck Barbier

Table of Contents XIII

Software Fault-Tolerance with Off-the-Shelf SQL Servers 117
P. Popov, L. Strigini, A. Kostov, V. Mollov, D. Selensky

ImpACT: An Alternative to Technology Readiness Levels for
Commercial-Off-The-Shelf (COTS) Software 127

James D. Smith II

COTS-Based Systems – Twelve Lessons Learned about Maintenance 137
Donald J. Reifer, Victor R. Basili, Barry W. Boehm, Betsy Clark

A Wish List for Requirements Engineering for COTS-Based
Information Systems 146

Vito Perrone

From System Requirements to COTS Evaluation Criteria 159
Grace A. Lewis, Edwin J. Morris

Empirical Analysis of COTS Activity Effort Sequences 169
Dan Port, Ye Yang

Assessing COTS Assessment: How Much Is Enough? 183
Dan Port, Scott Chen

Experience Reports

Legal and Contractual Implications in the European Union
Ignatio Delgado Gonzales

199

Best Practices for the Acquisition of COTS-Based Systems:
Lessons Learned from the Space System Domain

Richard J. Adams, Suellen Eslinger
203

Managing Vulnerabilities in Your Commercial-Off-The-Shelf (COTS)
Systems Using an Industry Standards Effort (CVE)

Robert A. Martin
206

Costing COTS Integration
Linda Brooks

209

U.S. Coast Guard, Differential GPS, Nationwide Control Station
Frank Klucznik, Kristi McRacken, John Killers, Jason Judy

210

Requirements Analysis and Management (RAM) of COTS-Based Systems
– A “Success Story” 211

Gail M. Talbott

XIV Table of Contents

COTS Selection and Adoption in a Small Business Environment:
How Do You Downsize the Process?

William B. Anderson
216

Managing the COTS Chaos: Experiences from the Trenches Using the
Evolutionary Process for Integrating COTS-Based Systems

Lisa Brownsword, Minton Brooks
217

Author Index 219

Using eCots Portal for Sharing Information about
Software Products on the Internet

and in Corporate Intranets

Jean-Christophe Mielnik1, Vincent Bouthors2, Stéphane Laurière3, and
Bernard Lang3

1Thales Research and Technology, France
2Jalios, France

3INRIA, France

The growing use of COTS software components instead of in-house developments
brings non-negligible loss of control of the systems in which they are used, and
increases dependency on COTS components’ producers, particularly critical in the
case of obsolescence. This loss of control and dependency can be compensated only
by extremely reliable, accurate and continuously updated knowledge of the software
component market and its trends. It is a matter of factual data, not subjected to
interpretation, on both the actors (producers, distributors and consulting companies)
and the products in this market. These data must be processed on technical,
commercial, economical, financial, and legal dimensions. Most industrial groups now
try to organize the collection of COTS information to make it available in-house, but
the effort is considerable due to the size and variability of the software component
market and the difficulty in collecting and updating information. This assessment and
selection phase is consequently a hard task for enterprises, particularly for SMEs,
which cannot invest enough time or money into COTS management to gain qualified
information. Although specialized companies dedicated to technological analysis and
market monitoring can bring help in the process of collecting software descriptions,
the analysis they provide are often expensive and short- lived. In addition, this
information market has not developed a standard for COTS description. This tutorial
will describe eCots, a platform that gathers on a common mutualized portal the raw
data on COTS products that is held both by producers and by the very large
community of COTS users.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 1, 2004
© Springer-Verlag Berlin Heidelberg 2004

Testing Component-Based Software – Issues, Challenges,
and Solutions

Jerry Zeyu Gao1 and Ye Wu2

1San Jose State University, USA
2George Mason University, USA

Many regard widespread development and reuse of software components as one of
the next biggest phenomena for software. However, widespread reuse of a software
component with poor quality may lead to disasters. Improper reuse of software
components of good quality may also be disastrous. Testing and quality assurance is
therefore critical for both software components and component-based software
systems. This tutorial provides an in-depth look at the technical issues, challenges,
managerial aspects, and needs in testing of components and systems. Moreover, this
tutorial reports on the recent advances and research efforts in developing new
solutions to solve those problems and meet those needs, from the perspectives of
component-based software engineering. The tutorial will discuss the state-of-the-art
practice, issues, and challenges, new solutions and research efforts in third-party
component testing, component-based program validation, and test automation. The
targeted audience includes technical managers, software testing engineers, quality
assurance people, and development engineers who are working on component-based
software projects. The tutorial will be useful for professionals, researchers, and
students interested in understanding the general concepts and methods in component
testing and component-based software validation. This tutorial assumes that
participants have a general understanding of software engineering and software
testing methods, and have some working experience in software development and
validation.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 2, 2004.
© Springer-Verlag Berlin Heidelberg 2004

All You Have to Know When Using Commercial
Components to Build Your Software Systems

David Morera

European Software Institute

This tutorial introduces the key aspects and implications of using commercial compo-
nents (COTS) from the market to build software systems. Nowadays most software
systems use commercial components in some way. These components may range
from database systems, run-times, windows-based user interfaces, specific functional-
components, security systems, etc. The integration of third-party elements in a soft-
ware system has a significant impact on project management, and this impact needs to
be taken into account right from the early phases of the project.

While there are many valid business reasons for using commercial components, their
use introduces new challenges such as:

The tutorial addresses all these issues from a practical perspective. If you are a busi-
ness manager, project leader, or systems analyst that is using or considering to use
COTS within your software development activities and you want to fully understand
the real implications of this decision, then you should attend this tutorial.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 3, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Establishing priorities in system requirements
Understanding the COTS market, its rules and legal constraints
Evaluating and selecting the appropriate COTS
Ensuring the compatibility of the architecture
Managing configuration updates and evolution

COTS Terminology and Categories:
Can We Reach a Consensus?

Betsy Clark1 and Marco Torchiano2

1Software Metrics Inc.
betsy@software-metrics.com

2Politecnico di Torino
marco.torchiano@polito.it

1 Introduction

There are a variety of classification schemes related to COTS products. Desktop
applications, math libraries, operating systems and complex enterprise resource plan-
ning (ERP) product suites are all examples of COTS products but differ dramatically
in their scope, resource requirements to implement and associated risks. The Termi-
nology Panel held during ICCBSS 2003 was a surprising “sleeper” in generating
lively discussion about the lack of standard terms, definitions, and categories. As a
follow up, during this workshop, we will examine alternative categorization schemes
and COTS-related definitions. Our objective will be to arrive at a consensus where
possible and more clearly identify areas where differences of opinion exist.

The workshop will cover the following topics:
Definition of COTS and related terms (e.g., NDI)
Types of systems (e.g., COTS-Solution versus COTS-Intensive)
Components, packages, products
Types of components (SEI has a classification scheme, there may be others)
both functional and problem-oriented classifications
COTS-Based System, COTS-Based Application
Organizational issues: familiarity with products/architecture, integra-
tor/vendor relationships
“Easy COTS” and “Hard COTS” (Basili talked about this in his 2003
ICCBSS Keynote) (perhaps special case of previous item)
Reference process in terms of typical COTS-related activities (assess-
ment/evaluation, tailoring, glue code), roles involved (vendor, customer, us-
ers, integrator), and artifact (COTS component, COTS-based system)
Workshop Outcome
The desired outcome is a recommended set of terms and definitions that will
be forwarded to the IEEE for inclusion in relevant standards. In addition a
list of the relevant factor that could help identifying categories will be de-

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 4–5, 2004.
© Springer-Verlag Berlin Heidelberg 2004

COTS Terminology and Categories: Can We Reach a Consensus?

fined. The workshop will also produce a workshop summary that the organ-
izers will present during the general session.how to reverse engineer
how to design product lines with COTS
how to build domain-specific architectures with COTS
how to test COTS-based systems

2 Organization

The desired outcome is a recommended set of terms and definitions that will be for-
warded to the IEEE for inclusion in relevant standards. In addition a list of the rele-
vant factor that could help identifying categories will be defined. The workshop will
also produce a workshop summary that the organizers will present during the general
session.

Prospective participants are requested to submit a position paper in advance (see
How To Submit below). The organizers will review submissions and then select those
to be accepted based on relevance, soundness and novelty. The accepted submissions
will be published on the workshop website to allow the participants to know each
other’s position.

The organizers will give a presentation to set the context for the workshop. The
presentation will survey COTS-related terminology and definitions currently in use.
The participants will have the opportunity to present their positions. We aim at a
lively and productive discussion.

3 Organizing and Program Committee

Betsy Clark: betsy@software-metrics.com

Marco Torchiano: marco.torchiano@polito.it

5

First International Workshop on Incorporating COTS
into Software Systems

Alexander Egyed1 and Dewayne Perry2

1 Teknowledge Corporation, 4640 Admiralty Way, Suite 1010,
Marina Del Rey, CA 90292, USA

aegyed@ieee.org
2 Electrical and Computer Engineering, The University of Texas at Austin,

Austin TX 78712, USA
perry@ece.utexas.edu

Abstract. This workshop explores innovative ways of integrating COTS soft-
ware into software systems for purposes often unimagined by their original de-
signers. It emphasizes tools and techniques for plugging COTS into software
systems safely and predictably. The past has predominantly explored how to
deal with COTS integration during requirements engineering, risk assessment,
and selection. This workshop focuses on how to complement ordinary software
development with techniques for designing, implementing, and testing COTS
integration.

1 Introduction

There is empirical evidence that COTS integration is not like ordinary software de-
velopment. It has been shown that, for example, writing glue code is several times
more difficult than writing ordinary application code. Thus the emphasis of this
workshop is on software engineering principles for COTS integration. This includes
but is not limited to the following topics:

how to write the glue code
how to implement data and control dependencies
how to mediate between incompatible interfaces
how to make the COTS tool aware of its surroundings
how to architect/design/simulate COTS integration
how to do code generation
how to resolve stumbling blocks and risks
how to integrate user interfaces
how to handle new COTS releases and other evolution issues
how to reverse engineer
how to design product lines with COTS
how to build domain-specific architectures with COTS
how to test COTS-based systems

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 6–7, 2004.
© Springer-Verlag Berlin Heidelberg 2004

First International Workshop on Incorporating COTS into Software Systems 7

2 Organization

The call for papers is available at http://www.tuisr.utulsa.edu/iwicss/. Prospective
participants may submit a position paper of up to 6 pages. To focus contributions,
both theoretical contributions and experience reports are welcome. The submission
of a position paper is not mandatory; the workshop is open to anyone who is inter-
ested in the problems of COTS integration

The submissions are subject to review by at least three different program commit-
tee members and selection is based on relevance, soundness, and novelty.

The workshop is divided into sessions. Topics of the working sessions will be de-
termined based on the distribution of accepted position papers. Each session will
cluster presentations of varying lengths where authors will have an opportunity to
present the main ideas of their position papers. The presentations shall serve as an
opening statement of the sessions, after which there will be time reserved for in-depth
discussions of the presentations, related issues, and the implications for future re-
search.

The best position papers will be selected for expansion and subsequent journal
publication.

3 Organizing and Program Committee

Francis Bordeleau
Lisa Brownsword
Alexander Egyed
Rose Gamble
Anna Liu
Nenad Medvidovic
Maurizio Morisio
Dewayne E Perry
Judith Stafford
Tarja Systa
Ye Wu

Panels Introduction

The panels for ICCBSS 2004 address various hot topics for COTS-based systems
development, such as a) the new role of requirements and their corresponding
activities; b) information security as a built-in software feature; and c) standardization
of components and their interfaces and consensus on reference architecture.

The organizers are experienced practitioners (Judy Kerner from the Aerospace
Corporation) and researchers (Carol Sledge from the SEI and Xavier Franch from
Universitat Politecnica de Catalunya, Spain). The panels’ members are selected
representative of various industry domains, from both the COTS vendor and
consumer camps, as well as of research institutes and universities, from the US and
Europe.

Lively and fruitful discussions are expected between the audience and the panelists.
Critical questions will be raised and even if not all the problems will find solutions on
the spot - as usually happens with panels - they will certainly increase awareness of
issues and will facilitate communication among diverse participants.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 8, 2004.
© Springer-Verlag Berlin Heidelberg 2004

COTS Components for Spacecraft Ground Systems

Moderator
Judy Kerner (The Aerospace Corportation, USA)

Panelists
David Cadmus (Boeing Satellite Systems, USA)
Dave Dzaran (Space Based Radar Joint Program Office, USA)
Barry Grasso (Integral Systems, Inc., USA)
Sidney Hollander (Aerospace Corporation, USA)
Mike Low (Braxton Technologies, USA)
Ramesh Rangachar (Intelsat Global Service Corporation, USA)

This panel will address issues relating to development and evolution of spacecraft
ground systems (SGS) using COTS components. Possibly the biggest challenges
facing SGS developers are their increasing dependence on COTS products and the
implications of that trend. These include issues relating to granularity of components,
applicable interface standards, COTS component standardization, and the conse-
quences of the lack of a consensus reference architecture. Several workshops on SGS
architectures and product lines have explored the impacts of ground system develop-
ment using COTS software. Although the SGS community is still not close to a con-
sensus reference architecture, there is broad agreement on many of the functions and
services required in any SGS, and on the interfaces required in order to access those
services.

The panel moderator led a workshop on ground system product lines at the Second
Software Product Line Conference (SPLC2) in August 2002 in which some of the
panelists participated. That workshop achieved significant consensus on the kinds of
services needed in a ground system, but the allocation of these functions to compo-
nents was a subject for tremendous divergence. The annual Ground System Archi-
tectures Workshops (GSAW) have been addressing many of these issues both in ple-
nary sessions and in breakout groups. Another focus of concern from these work-
shops is the definition of relevant interface standards and processes for standardizing
them. Identification of appropriate areas for standardization depends to a large extent
on agreement on aspects of the architectures as well as on the granularity of the COTS
components to be integrated.
This panel will use the SGS context to explore these and other critical COTS issues
from multiple perspectives, with the goal of identifying desired future directions and
actions.

The panelists have experience in selecting, integrating, and developing COTS soft-
ware products, for both creation and evolution of SGSs. Panelists include David
Cadmus, Manager, Project Systems Engineering, Ground Systems Department, Boe-
ing Satellite Systems; Lt. Col. David J. Dzaran, Chief, System Engineering and

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 9-10, 2004.
© Springer-Verlag Berlin Heidelberg 2004

10 J. Kerner

Spacecraft Divisions, Space Based Radar Program, USAF Space and Missile Systems
Center; Barry Grasso, Command and Control System - Consolidated Deputy Program
Manager, Integral Systems, Inc.; Sidney Hollander, Systems Director, The Aerospace
Corporation; Mike Low, Ground Segment Program Manager, Braxton Technologies,
Inc.; and Ramesh M. Rangachar, Manager, Systems Development, Intelsat Global
Service Corporation.

Do We Need Requirements in COTS-Based Software
Development?

Moderator
Xavier Franch (Universitat Politecnica de Catalunya, Spain)

Panelists
Barry Boehm (USC Center for Software Engineering)
Neil Maiden (City University, UK)
Mike Moore (Lockheed Martin MDS)

COTS software products radically change the way in which software systems are
developed. Existing sequential or iterative development methods and techniques are
no longer relevant. Likewise we need new techniques to support the greater focus on
selection, customization and integration. One of the most important characteristics of
COTS-based development is that it is solution- or feature-driven, that is the final
application is heavily influenced by the existing features of the available or selected
COTS software systems.

This has major implications for how to develop software systems, and in particular for
the role of requirements in this process. One extreme position is that requirements,
often seen as one of the most important factors in a successful development project,
are no longer important as the stakeholder typically has to work with the COTS
software product as is, with little to say over customization. On the other hand,
requirements still appear to be important during COTS-related activities to provide
selection criteria and drivers for product change. So what is the answer, or answers?

The IEEE International Conference on Requirements Engineering (RE’03) hosted
RECOTS (http://www.lsi.upc.es/events/recots/), a one-day workshop to investigate
the role of advanced and practical requirements techniques in COTS-based systems
development. The workshop raised some interesting questions that could be used as
the starting point for the discussion, such as how to integrate the classical
requirements activities in the COTS-based systems development processes, which are
the new types of requirements particular to COTS-based systems, and others.

Panelists represent different positions in the COTS community. Prof. Neil Maiden
(Center for HCI Design, City University London) provides an applied-research point
of view with strong foundations on requirements engineering. He is expected to give
arguments supporting the important role that requirements still play in COTS-based
development, while recognizing the particularities of these types of systems. Prof.
Barry Boehm (USC Center for Software Engineering) is expected to report about
IKIWISI (I’ll know it when I see it) requirements and their applicability in COTS-
based development, and also the role that requirements engineering may play in cost
estimation models. Mike Moore (Lockheed Martin MDS, former NASA Goddard

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 11–12, 2004.
© Springer-Verlag Berlin Heidelberg 2004

12 X. Franch

Space Flight Center) plays the role of a practitioner involved in the development of
systems defined from thousands of requirements, systems that integrate a huge
amount of COTS components. Also, a COTS supplier representative is expected to
join as panelist to provide the vendor’s point of view about the topic of the panel,
especially by addressing the question of how COTS vendors capture user’s
requirements or whether they play a more proactive role as requirements’ generators.

The Added Dimension: Information Security in
COTS-Based Software Systems

Moderator
Carol Sledge (Software Engineering Institute, USA)

Panelists
C. Warren Axelrod (Pershing LLC, USA), Steven B. Lipner (Microsoft
Corporation), Gail M. Talbott (Lockheed Martin Corporation, USA),
Shadi Wegerich (Oracle Corporation, USA)

Issues related to information security and survivability usually are not considered in
the requirements, design, acquisition, and maintenance stages of COTS-based soft-
ware development. Security, if considered at all, is generally an afterthought, bolted
on after the application has been developed and integrated, as opposed to an initial re-
quirement of the proposed system or upgrade to the system.

Recent legislation and regulations elevate issues of information security to the Board
and C-level, but few organizations routinely and effectively address issues surround-
ing the management of risks specific to information security in COTS-based systems.

For those who produce COTS products, security is rarely a market differentiator: con-
sumers vote with their dollars, and, at least in the past, appear to have voted for new
features, rather than more secure software. However, in many cases, the purchaser
does not have a real choice and individually has little influence on the vendor. It is
only through buyers joining together that they might have an impact.

The first step to a better solution is to increase awareness of the COTS-based software
systems community with respect to the critical information security issues.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 13, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Systemic Quality of the Component-Based Development
Process

Maryoly Ortega1, María Angélica Pérez2, and José María Troya3

1Universidad Ezequiel Zamora
mortega@reacciun.ve
2Universidad Simón Bolívar

movalles@usb.ve
3Universidad de Málaga
troya@lcc.uma.es

Abstract. The concept of quality is used largely in software development
through models in order to improve and certify software products as well as to
determine process maturity. The approaches used to specify quality models are
oriented toward product or process. However, different studies have treated si-
multaneously development process maturity and product quality. Component-
Based Software Development (CBSD) modifies considerably the traditional
software development process. There are some attempts to adjust the accepted
quality models into a new component based approach, for example OOSPICE,
Cai model, and Preiss Model. This research has as objective identify the model
elements needed for quality specification, that considers at the same time the
component quality characteristics required for CBSD and the processes that
support the presence of these characteristics in the products. The model is
based on the feature analysis evaluation method (DESMET), focusing on the
processes that support each characteristic. As a result, we obtain a Component-
Based Software Development model with a systemic approach. The systemic
approach allows us to study the relationship product-process in a twofold
framework: the component development process and the component-based
software development process. The comprehension of these relationships allows
us to improve component quality and ease component integration into applica-
tions.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 14, 2004.
© Springer-Verlag Berlin Heidelberg 2004

COTS Services

Pearl Brereton

Keele University

Abstract. The focus of COTS-based systems development and research at pres-
ent is on COTS products and on the building of integrated systems from COTS
components. However, the COTS products approach to delivering software
functionality has some limitations. In particular, such systems are static in na-
ture and are not easily adapted to meet the needs of emergent organisations -
“organisations in a state of continual process change, never arriving, always in
transition. An alternative is to provide software functionality as a COTS-based
service - which is composed from COTS component services selected, ac-
cessed, and paid for on demand. The poster will present a model of COTS-
based software service engineering and the key issues that need to be addressed
in order to realise the model A demonstrator information broker which has been
implemented using a service-oriented architecture will also be described.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 15, 2004.
© Springer-Verlag Berlin Heidelberg 2004

AIAA (Draft) Guidebook “Managing the Use of
Commercial Off-the-Shelf (COTS) Software
Components for Mission Critical Systems”

Ronald J. Kohl1, Nancy M. Sodano2, Terry Morris3, Joe Marshall4,
Shawn Rahmani5, and Richard J. Kwan6

1R. J. Kohl & Associates, Inc.
2The Charles Stark Draper Laboratory, Inc.

3NASA Langley Research Center
4BAE SYSTEMS

5The Boeing Company
6AerospaceComputing,Inc.

Abstract. Commercial off-the-shelf (COTS) software products are being in-
cluded in ever more complex and critical systems. There are clearly advantages
to considering the use of COTS in such systems, but given the rigorous needs of
such critical systems or subsystems, there are concerns about the suitability of
COTS software for such applications. The AIAA’s Software Systems Techni-
cal Committee and the AIAA’s Computer Systems Technical Committee have
undertaken an effort to produce a guidebook that captures issues related to the
consideration and use of COTS products in these large, complex systems, with
a special emphasis on those risks and risk mitigation approaches that relate to
mission critical systems. This guidebook identifies a set of characteristics of
mission critical systems that makes the consideration, selection and validation
processes of COTS products (hardware, software, subsystems, etc.) an emerg-
ing factor in systems definition, development and acceptance. The guidebook
discusses a large number of risk areas related to using COTS software products
in mission critical systems and identifies various mitigation approaches to the
risks. It includes detailed processes for selecting and evaluating the products
and considerations for using COTS software products within the overall context
of the software development life cycle standardized in IEEE/EIA 12207. Mis-
sion critical system characteristics such as reliability, safety, availability, main-
tainability and certification tend to influence whether or not COTS software
should be considered for a given application. Once the suitability of COTS
software has been determined, then it is possible that additional requirements
may be placed on the product and/or the product’s vendor for such mission
critical applications. Further, it is possible that certain system requirements and
expectations may need to be modified because of the inclusion of COTS soft-
ware products in that system. As COTS products continue to be considered as
candidates for inclusion within mission critical systems, there are likely to be
additional concerns and factors to emerge that will influence how both acquirers
and suppliers decide if and/or when to use COTS products.

Ongoing monitoring of this technology area seems to be warranted.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 16, 2004.
© Springer-Verlag Berlin Heidelberg 2004

CMMI Compliance in COTS-Based Development

Rick Hefner

Northrop Grumman
rick.hefner@ngc.com

Abstract. The Capability Maturity Model Integrated (CMMI) provides a refer-
ence model of industry best-practices for software and systems engineering.
Like its predecessor, the Capability Maturity Model for Software (SW-CMM),
the wording of the CMMI seems to reflect custom development of a new soft-
ware product or system. However, the model was intended to apply to all types
of systems development, including the extensive use of COTS.
In the author’s experience, project personnel often struggle with interpreting the
model in a COTS-based en-vironment. Managers may perceive that some
CMMI practices are impossible or inappropriate to perform in a COTS effort.
However, improved project performance can result from understand the funda-
mental principles behind the CMMI practices, and translate them into the ap-
propriate best-practices for COTS-based development. The poster will highlight
the critical implications of CMMI compliance on the use of COTS in software
and systems engineering, and how the CMMI can reduce risk and rework. A
detailed mapping and interpretation of the CMMI planning, management, and
engineering practices will be provided.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 17, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Security in Large System Acquisition

Marshall Abrams1, Joe Veoni1, and R. Kris Britton2

1The MITRE Corporation, 7515 Colshire Drive
McLean, VA 22102

{abrams, jveoni}@mitre.org
2National Security Agency, Suite 6740
Ft. George Meade, MD 20755-6740
kris@empire.eclipse.ncsc.mil

1 Introduction

Large systems are typically composed of multiple hardware and software compo-
nents. Most of the components are Commercial Off The Shelf (COTS) products. All
of the COTS components have security properties, as will the custom software, and
the resultant system.

Traditionally, incorporating security into the acquisition of these large systems and
creating their system security requirements has been an “ad hoc” task. Resulting re-
quirements are often unjustified presenting a poor requirement framework from which
to build and evolve the system and lacking any record of rationale for decisions that
have been made. Often there is no central repository of recorded security analysis
that is kept throughout the life-cycle from project inception through to the mainte-
nance phase. Such rationale and recorded security analysis would be valuable for
future decision makers to consider when evolving the system.

This paper describes a method for developing security properties for large system
acquisitions that can be used to support not only the acquisition process but can also
be used through the lifecycle of the system development. It has been piloted by the
Federal Aviation Administration (FAA) for the National Airspace System (NAS).

1.1 About the FAA NAS System

The NAS is a network of interrelated air traffic management systems and support sys-
tems including: navigation and landing, surveillance (radar and radar-like systems),
ground and air communications, traffic flow management, en route and terminal area
control systems, oceanic control systems, avionics systems, and infrastructure manage-

1 This work was produced for the U.S. Government under Contract DTFA0l-0l-C-00001 and
is subject to Federal Aviation Administration Acquisition Management System Clause 3.5-
13, Rights In Data-General, Alt. III and Alt. IV (Oct., 1996). The contents of this document
reflect the views of the author and The MITRE Corporation and do not necessarily reflect the
views of the FAA or the DOT. Neither the Federal Aviation Administration nor the Depart-
ment of Transportation makes any warranty or guarantee, expressed or implied, concerning
the content or accuracy of these views.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 18–30, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Security in Large System Acquisition 19

merit systems. It is an “enterprise system” (a.k.a. “system-of-systems”) comprising
hundreds of integrated COTS and custom components. The NAS also includes other
assets such as; air navigation facilities, equipment and services; airports or landing ar-
eas; aeronautical charts, information and services; rules, regulations and procedures;
technical information; and manpower and material. Given the size and complexity of
the NAS, it is in a continuous state of modernization and evolution, with many large-
scale Information Technology (IT) system acquisitions occurring at any one time. In
2003 alone there are twelve NAS safety related Facilities and Equipment (F&E) pro-
grams and eleven NAS efficiency related programs underway [1].

1.2 General Solution

For years the acquisition community and the security community have struggled to
come together in a fashion that would result in successful procurement of very large
systems with appropriate security properties. A major issue has often been that the
security engineers articulated their design using their own paradigm and language
while the acquisition community procured systems and components using a different
paradigm and language. Only at the very highest levels of reference has the procure-
ment paradigm and security community language come together in an attempt to ac-
quire secure systems. Even at this highest level of specification, most procurement
strategies have been based on product level specification without consideration of the
security properties of the system as a whole.

One approach to determining the security properties of a composite system has
been bottom-up. The security properties of the system are determined by the security
properties of the components. There is a 20-year history of failure to develop a com-
position methodology using a bottom-up approach. Gambel and Hemenway showed
a formal proof of the problem with composition and provided a technique for avoid-
ing the problems. Composition can work, but not from the conventional “more is
better” approach to system engineering. Their paper showed that minor differences
between sibling properties were the proximate cause of multivendor composition
problems. [2].

In principle the specification of security properties should be no different than the
specification of other properties of the system. We anticipate typical conflicts among
specifications and goals. Trade-offs will have to be made when all specifications and
goals cannot be achieved. The customer will be involved in some of the decisions
concerning trade-offs and will help the integrator decide how to evolve the specifica-
tions and goals as well as the system.

Security requirements should be methodically derived. Specifically, they should
be driven by threats to the system and security objectives to counter those threats.
System security requirements should also embrace the notion of assurance. Assur-
ance is the grounds for confidence that a system meets its security objectives and per-
forms no extraneous functions that may represent an insecure state. Assurance is of-
ten measured in developer activities such as the amount of testing or the amount of
security analysis performed on a system. Activities that offer this confidence must be
considered when security requirements are being formed. In general, no requirement
should be adopted without due consideration and rational.

The International Standard ISO/IEC 15408 [3], the Common Criteria (CC) for In-
formation Technology Security Evaluation, provides a model for specifying and

20 M. Abrams, J. Veoni, and R.K. Britton

evaluating security properties of COTS products and small systems.2 The model of-
fered by the CC can be adopted and extended to specify security properties of very
large systems comprising multiple components and systems in a multiyear (evolving)
procurement environment. Specifically, the approach includes using the notion of a
Security Protection Profile (PP)3 to be created and used during the course of a large
system acquisition as a focal point to drive and support security related architectural
and functional decisions.

The FAA adopted this paradigm in the context of the FAA Information Systems
Security Program. FAA Order 1370.82 requires a PP for each Information Technol-
ogy (IT) system being procured by the FAA. To build a security philosophical/policy
“blue print” for the NAS and to facilitate the creation of these system security re-
quirements that resulted in a consistent integrated organization security policy, the
FAA Chief Scientist for Information Technology established an initiative to provide
assistance to concerned parties (e.g., system developers, acquisition specialists, IT
security personnel), on preparing PPs. The goal was to culturally and technically in-
tegrate information security requirements into the acquisition process in a manner that
would support the whole development and maintenance lifecycle of the NAS while
establishing a baseline security philosophy. The intent was that all NAS systems
would “sing to the same security song sheet”. Requirements had to be expressed

Clearly (preferably in a standards based way)
Flexibly (to accommodate multiple acquisition strategies, and in particular the
prevalent spiral development model used at the FAA
Completely (to address the entire system life-cycle)
Understandably (to all stakeholders, and in particular to provide a common ground
for the acquisition and security engineering communities)
Economically (minimize the effort to write an IT system PP) and
Scaleable to a very large system environments

The result was version 1.0 of the National Airspace System (NAS) System Protection
Profile Template (SPPT). As the name suggests, the SPPT is a template that provides a
standard set of NAS System IT security specification statements based on acknowl-
edged organizational security philosophy, policy, requirements, and risks. In addition, it
offers a common approach to the philosophy of protection and a format for the security
requirements author to record the results of the security engineering analysis. The Na-
tional Institute of Standards and Technology (NIST) has published Special Publication
800-64 Security Considerations in the Information System Development Life Cycle [4].
The SPPT provides a worked example of concepts following this guidance. The rest of
this paper describes notions embodied in the SPPT and how they can be used to support
the acquisition of security properties in large systems.

2 The CC can be seen as a dictionary of security functional and assurance requirements
from which an author can draw requirements to create a security requirements docu-
ment. Further information concerning the international CC project may be found at
http://www.commoncriteria.org.; the U.S. implementation is described at
http://niap.nist.gov/cc-scheme/

3 A Protection Profile is a Common Criteria term for a security specification comprising func-
tional and assurance requirements, environmental statements to which the requirements apply
and rationale for the selection of all requirements.

Security in Large System Acquisition 21

2 Acquiring Security in a “System of Systems”

The SPPT approach produces acquisition requirements for a system-of-systems in
essentially top-down fashion. The approach acknowledges that typical systems of this
size evolve over the course of many years; personnel and even contractors will change
during this period. It provides for (and requires that) security analysis and require-
ment trade-off analysis be recorded to support architectural and design direction. The
security philosophy and properties of the system are specified at the organizational or
enterprise level in the context of a security requirements template (i.e., termed the
Security Protection Profile, SPPT at the FAA). The template is then used to create
requirements for individual systems that are to become part of the enterprise (e.g., the
NAS).4 The purpose of the SPPT is to provide guidance for the creation of individual
System Security Requirements (i.e., System Protection Profiles). These requirements
then describe security specifications for each individual system as they are procured
over the lifecycle of the enterprise system.

When a new system is to be added to the enterprise, the SPPT is applied to create
its System Protection Profile (PP). The integrator is then given the PP as part of the
procurement package and is responsible for architecting the allocation of functions
and structures to the components in order to implement the specified security proper-
ties.

2.1 System Protection Profiles

The goal of a System Protection Profile is to create the security requirements for the
system that takes into account the system environment, security policies of the enter-
prise and cost in the context of its integration into the enterprise. A System Protection
Profile comprises 7 parts:

1.
2.
3.
4.
5.
6.
7.

Introduction
System Description
System Security Environment
Security Objectives
Functional Security Specification
Assurance Security Specification
Rationale

The Introduction states the system security problem. The System Description pro-
vides the context for a security specification by describing the Information Technol-
ogy (IT) system to be procured. The System Security Environment section describes
the threats, security policies and the assumptions that will drive the specifications.
Each threat, policy or assumption is individually identified with a label (e.g., T.1, T.2)
to facilitate rationale and justification statements later. Security Objectives offer a
high level description of the IT security measures provided by the system to counter
the identified threats and/or satisfy identified organizational security policies. Like

4 It should be noted that enterprise is used in this context as a synonym for a “very large sys-
tem.” At the FAA and other organizations there could be numerous very large, disparate
system-of-systems that would fall under this “enterprise” category.

22 M. Abrams, J. Veoni, and R.K. Britton

the threats and policies, each objective is individually labeled (e.g., O.1, O.2). The
Functional Requirement Specifications section comprises the technical requirements
derived from the CC insofar as possible, or created by the PP author in the style of the
CC, that implement the security objectives to ultimately counter threats and imple-
ment policies. These too are individually labeled for later use in creating complete-
ness arguments and rationale. The Assurance Security Requirements Specification
comprises all evidence and confidence building measures that will be required of the
integrator to show that the requirements have been met. The Rationale section justi-
fies all requirements by mapping each individual requirement to a security objective.
Each objective is then ultimately mapped to a threat or policy. Using the mapping
technique (coupled with prose description) allows all stakeholders (present and fu-
ture) to understand security trade-offs that were made in the requirements phase.

2.2 The System Protection Profile Template

The purpose of the SPPT, as adopted by the FAA for the NAS, is to provide guidance
for the creation of a set of system Protection Profiles that describe security specifica-
tions for component systems of the enterprise architecture. These component systems
will be procured over the lifecycle of the Enterprise System. The SPPT establishes a
set of baseline requirements and provides a common format for PP authors to record
the results of the security engineering analysis and provides a set of specification
statements, based on the CC, and supporting structures for recording the results of the
security analysis.

The SPPT uses the CC as a resource to identify a set of security specifications for
PP authors to use in formulating their own System security specifications. Where
appropriate, CC text is referenced when the intent of the specification is the same as
stated in the CC. In the CC methodology, these are referred to as “refined require-
ments.” The following is an example of a refined requirement from the SPPT where
FAU_SEL.1.1 is the reference to the CC class, family, and component:

The NAS System shall be able to include or exclude auditable events from the
set of audited events. (FAU SEL.1.1)

Specifications not having a CC reference are those that have been created to meet
the special needs of the System. In CC terminology these specifications are consid-
ered to be “explicit requirements.” The following is an example of an explicit re-
quirement:

The NAS System shall provide the tools for an authorized security administrator to
include or exclude auditable events from the set of audited events.

2.3 SPPT Functional Requirements

In the FAA SPPT, the following categories of functional requirements are incorpo-
rated:

Security in Large System Acquisition

Identification and Authentication. Identification and Authentication address
functions to establish and verify a claimed identity. These functions are required to
ensure that entities are associated with the proper Security Attributes (e.g., identity,
groups, roles, confidentiality or integrity levels).
Security Audit. Security auditing involves recognizing, recording, storing, and
analyzing information related to security relevant activities (i.e., activities con-
trolled by the System Security Policy). The resulting audit records can be exam-
ined to determine which security relevant activities have taken place and which
entity is responsible for them.
Security Management. Security Management is intended to specify the manage-
ment of several aspects of the System: security attributes, data, and functions. The
different management roles and their interaction, such as separation of capability,
are specified.
Cryptographic Support. The System may employ cryptographic functionality to
help satisfy several high-level security objectives. These include (but are not lim-
ited to): identification and authentication, non-repudiation, trusted path, trusted
channel, and data separation.
Network Security Protection. Network Security Protection addresses the respon-
sibility for maintaining the overall security posture of a network.
Application Data Protection. Application Data Protection specifies specifica-
tions for System security functions and related policies for protecting System ap-
plication data.
Protection of Security Data and Mechanisms. Protection of the System Security
Data and Mechanisms addresses the integrity and management of the data and
mechanisms that implement the System Security Policy.
Resource Utilization. Resource Utilization supports the availability of required
resources such as processing capability and/or storage capacity.
User Session Access Control. System Access specifies functional specifications
for controlling the establishment of a user’s session.
Trusted Path. Trusted Path defines the specifications to establish and maintain
trusted communication to or from users and the System. A trusted path may be re-
quired for any security-relevant interaction. Trusted path exchanges may be initi-
ated by a user during an interaction with the System, or the System may establish
communication with the user via a trusted path.

2.4 Example: Operational Attack and Vulnerability Analysis and Remediation

Operational vulnerability analysis provides specifications to determine whether vul-
nerabilities exist during operation of NAS System that could allow violations of the
NAS System Security Policy. Remediation analysis supports manual or automated
risk reduction measures.

Statement of Work Element
a. The developer shall conduct a survey of available product capabilities, perform

necessary analysis, and recommend host-based, server based, network-based, and
hybrid automated operational vulnerability analysis and remediation tools with
which to perform and document an analysis of ways in which the NAS System

23

24 M. Abrams, J. Veoni, and R.K. Britton

security policy could be violated. Tools include, but are not limited to, detection
and remediation of: viruses and other malicious code, published vulnerabilities,
insecure configuration, and unauthorized change.

b.

c.

Functional Security Specification Elements
The NAS System shall be able to employ operational vulnerability analysis and

remediation tools. Said tools shall be capable of detecting and analyzing stand-
alone and network-based violations.

The NAS System shall have the capability to audit use of and vulnerabilities identi-
fied by the operational vulnerability analysis tools.

2.5 Assurance Requirements

The security assurance requirements include:

Configuration Management. Configuration Management (CM) is one method or
means for establishing that the functional requirements and specifications are real-
ized in the implementation. CM meets these objectives by requiring discipline and
control in the processes of refinement and modification of the Subsystem and the
related information. CM systems are put in place to ensure the integrity of the
portions of the Subsystem that they control, by providing a method of tracking any
changes, and by ensuring that all changes are authorized. The developer’s CM
system and data is transferred to the System operator. This is an example of an as-
surance specification that includes a deliverable that might be considered part of
the System.
Delivery and Operation. Delivery and operation specifications address the meas-
ures, procedures, and standards concerned with secure delivery, installation, and
operational use of the System, ensuring that the security protection offered by the
System is not compromised during transfer, installation, start-up, and operation.
Development. Development specifications address the stepwise refinement of the
System from the summary specification down to the actual implementation.

Functional Security Specification. The functional security specification is a
high-level description of the user-visible interface and behavior of the security
functions of the System. The functional security specification has to show that
all the System security specifications are addressed.
High-Level Security Design. The high-level security design of the System
provides a description of the security properties in terms of major structural
units (i.e., subsystems) and procedures, and addresses the adequacy of the secu-
rity functions provided. The high-level security design specifications are in-
tended to provide assurance that the System provides an architecture appropriate
to meet the security objectives.

Guidance Documents. These specifications are directed at the understandability,
coverage, and completeness of the operational documentation provided by the de-
veloper.

Security Administrator Guidance. Administrator guidance refers to written
material that is intended to be used by those persons responsible for configuring,
maintaining, and administering the System in a correct and secure manner. Be-

Security in Large System Acquisition 25

cause the secure operation of the System is dependent upon correct perform-
ance, persons responsible for performing these functions are necessarily trusted.
Security administrator guidance is intended to help security administrators un-
derstand the security functions provided by the System, including both those
functions that require the security administrator to perform security-critical ac-
tions and those functions that provide security-critical information.
User Guidance. User guidance refers to material that is intended to be used by
non-administrative users of the System, and by others (e.g., programmers) using
System external interfaces. User guidance describes the security functions pro-
vided by the System and provides instructions and guidelines, including warn-
ings, for its secure use. The user guidance provides a basis for assumptions
about the use of the System and a measure of confidence that non-malicious us-
ers, application providers, and others exercising the external interfaces of the
System will understand the secure operation of the System and will use it as in-
tended.

Developer and Consumer Testing. Testing demonstrates whether the System
satisfies the security functional specifications. Supplementary guidance is found in
FAA Security Test and Evaluation [5].

Analysis of Coverage. This specification addresses those aspects of testing that
deal with completeness of test coverage. The objective is to establish that the
System has been tested against its security functional specification in a system-
atic manner. It addresses the extent to which the System Security Function is
tested, and whether or not the testing is sufficiently extensive to demonstrate
whether the System Security Function operates as specified.
Analysis of Developer’s Functional Tests. Depth deals with the level of detail
to which the developer tests the System. The objective of testing is to counter
the risk of missing an error in the development of the System. Testing that ex-
ercises specific internal interfaces can provide assurance not only that the Sys-
tem exhibits the desired external security behavior, but also that this behavior
stems from correctly operating internal mechanisms. Testing at the level of the
mostly COTS system components, in order to demonstrate the presence of any
flaws, provides assurance that the System components have been correctly im-
plemented and integrated.
Independent Testing. Independent testing performed by the customer demon-
strates whether the System Security Function perform as specified and helps
counter the risk of an incorrect assessment of the test outcomes on the part of
the developer that results in the incorrect implementation of the specifications,
or overlooks code that is non-compliant with the specifications.

Vulnerability Assessment. Vulnerability Assessment defines specifications di-
rected at the identification of exploitable vulnerabilities introduced in the architec-
ture and design, construction, operation, misuse, or incorrect configuration of the
System.

Strength of Security Functions. Strength of function analysis addresses secu-
rity functions that are implemented by a probabilistic or permutational mecha-
nism (e.g., a password or hash function). Even if such functions cannot be by-
passed, deactivated, or corrupted, it may still be possible to defeat them by di-

26 M. Abrams, J. Veoni, and R.K. Britton

rect attack because there is a vulnerability in the concept or implementation of
its underlying security mechanisms.
Developer Vulnerability Analysis. Developer vulnerability analysis is per-
formed by the developer to ascertain the presence of vulnerabilities that could
allow users to violate the System Security Policy or reduce the security of any
other part of the system-of-systems, and to confirm or not confirm that they
cannot be exploited in the intended environment.

The SPPT advocates PP authors mandate assurance through active investigation
(evaluation) of the IT system in order to determine its security properties.

Evaluation techniques can include, but are not limited to:

Analysis and checking of process(es) and procedure(s)
Checking that process(es) and procedure(s) are being applied
Analysis of the correspondence between system design representations
Analysis of the system design representation against the specifications
Verification of proofs
Analysis of guidance documents
Analysis of security test plans, procedures, and results
Independent functional security testing
Analysis for vulnerabilities (including flaw hypothesis)
Penetration testing

Developer action (Statement of Work) elements identify the activities that shall be
performed by the developer. This set of actions is further qualified by developer pro-
vided evidence referenced in the content and presentation of evidence elements (Data
Item Description) that identify the evidence required, what the evidence shall demon-
strate, and what information the evidence shall convey. The developer actions and
content and presentation of evidence define the assurance specifications that are used
to represent a developer’s responsibilities.

Not every specification stated in the SPPT is needed for every NAS System. For
example, an air traffic control system may have significantly different security speci-
fications than that of a radar unit. Policy or architecture may stipulate certain security
features that must be included independent of the risk analysis. All other specifica-
tions must be based on risk assessment; residual risk acceptance must be the basis for
all security specifications and associated mitigation measures. The specifications
should be tailored to ultimately be driven by the objectives, threats, vulnerabilities,
and available countermeasures that are relevant to the System. The System PP may
even have brand new specifications based on new threats that are identified as well as
new assumptions of the environment, given the rapidly changing security environ-
ment. Ultimately, the System PP authors must use their own judgment and rationali-
zation to arrive at the correct security specifications.

3 Invoking the SPPT as Part of a Contract

It is axiomatic among information security engineers that security concerns should be
considered from the very beginning of an acquisition. There are security concerns at

Security in Large System Acquisition 27

each stage of a system’s lifecycle, and they need to be anticipated as soon as possible.
The security concerns are relevant to mission needs, investment analysis, system en-
gineering, specifications analysis, design, security planning, security administration,
and security operations. Security objectives must be balanced against objectives aris-
ing from other system engineering disciplines. For example, security must be bal-
anced against other important System demands including safety, performance, sched-
ule, and cost in order be successful. The following fundamental observations should
be kept in mind when developing a PP for a specific System:

There will be trade-offs among system engineering concerns and objectives
throughout the lifecycle.
When the System project is in its early stages; much of the information and analy-
sis that the CC assumes will precede PP development does not yet exist.
The PP reflects real world business practices in that the project advances even
though some relevant analysis and data remain unfinished.
Most Systems will be developed incrementally over a long lifecycle, during which
almost everything may change.
The PP may be implemented in stages if the System is developed in increments or
spirals. Assurance methods and techniques need to be consistent with this ap-
proach.

The resultant PP will be incorporated by reference in the contract. The Functional
Security Specifications that prescribe what the NAS System shall do are contractual
specifications properly referenced in the specifications section of the contract. In-
structions to the developer on how to perform the work are considered part of the
statement of work (SOW). Specifications levied on the developer to perform analysis
or conduct other activities are properly referenced in the SOW. Specifications that
describe the contents of a document are candidates for inclusion as Data Item De-
scription (DID) items. The Assurance Specifications in the PP are mostly, if not all,
part of the SOW. Assurance specifications that refer to documentation produced by
the developer may also require Contract Data Requirements List (CDRL) specifica-
tions.

In developing the SPPT, most of the compliance actions have been omitted be-
cause the PP is envisioned to become part of contract specifications for the developer.
The validation and verification (e.g., IV & V) actions apply to the customer, or a con-
tractor acting on behalf of the customer. A separate Security Testing Guide has been
developed for the FAA [5], incorporating this material.

3.1 Deferred Decisions

Some requirements may evolve during the System life-cycle. Therefore, the SPPT
introduces a notion of Deferred Decisions. Deferral of design decisions is a natural
byproduct of the evolutionary system development lifecycle. It enables the developer
to take advantage of the latest technology and other advances in IT security and to
respond to changed threats. For example, the application of biometric-based authenti-
cation may be a preferred choice, due to quality enhancement and decrease in cost, at
the time the developer selects specific authentication mechanisms. It is assumed that
the developer will be tasked to perform the analysis and design and fill the results in

28 M. Abrams, J. Veoni, and R.K. Britton

as part of the contract. The PP indicates this deferral with elements of the form “the
developer shall recommend.” The requirement that the developer make a recommen-
dation implies that the customer retains approval authority. The tasking of the devel-
oper indicates that this element belongs in the SOW.

To some extent the SPPT is written to encompass the anticipated eventual func-
tionality and connectivity of the system-of-systems, not only the present or near-term
configuration. Many decisions must be left unresolved in the SPPT to be resolved at
the time that a specific task order is negotiated instructing the developer to implement
a function. While the specifications section of the SPPT clearly identifies these de-
ferred decisions and the responsible parties, it does not emphasize that operations
have occurred on CC components nor does it emphasize the CC terminology. The
security engineer should anticipate the alternative upgrades and identify the cost-
effective countermeasures that will be needed.

Not all operations are deferred because necessary analysis and design have not
been performed; they are deferred for other reasons. Some operations require knowl-
edge of ambient conditions at the time that the task is executed. Since the System is
expected to evolve over many years, the execution of appropriate tasking will occur
one or more times during that evolution. For example, the cost-effectiveness of
COTS products and the attack scenarios will be assessed periodically.

Some operations are deferred to authorized security administrators who respond to
changing ambient conditions. The strength of authenticators and secrets (e.g., pass-
words and cryptographic keys) may change due to heightened security concerns or
advances in attack technology.

4 Experience at the FAA

The work described herein was initiated as part of the development of specifications
for system one5, a new addition to the NAS system-of-systems. The first two authors
were charged to write the security specifications part as part of a solicitation. After an
extensive effort including architecture and design studies and risk analysis, we de-
cided to try to adapt the PP concept to a large system acquisition. The system one
project management appointed an FAA staffer as security lead for the project. We
consider this one measure–making a specified individual responsible for the IT secu-
rity–the single most effective move that project management can make.

Although the CC claimed applicability to systems, experience indicated that these
were small systems consisting of a hardware platform, and operating systems, and a
few applications that were to be evaluated according to the CC evaluation paradigm.
In contrast, we were specifying a system-of-systems involving multiple legacy and
new computer systems connected by a NAS network encompassing the entire U. S.
airspace and connected to the international civil aviation community. There was no
interest in mutual recognition. This was a one-of-a-kind system. The CC was selected
as a starting point because of the extensive prior work that the authors could leverage.
The discipline of explicitly describing the security environment and stating assump-
tions was very appealing. The explicit gradations of functional and assurance specifi-
cations had no peer.

5 The name is suppressed for the obvious reasons.

Security in Large System Acquisition 29

After completion of the system one specifications we recognized that there was a
great commonality among NAS systems, at least with respect to their security specifi-
cations. We proposed generalizing the system one PP into a template that could be
used to generate other PPs for other new NAS systems. FAA management saw the
potential and took ownership of the concept. We interested the National Information
Assurance Partnership (NIAP)–a joint effort of NIST and the National Security
Agency (NSA) and the U.S. member of the CC consortium–in the potential for sys-
tem-level PPs. NIAP provided the third author as a member of the FAA authors team
to develop a NAS SPPT. Upon completion of version one of the FAA SPPT, NIAP
sponsored a workshop to publicize the work. The General Accounting Office (GAO)
joined in sponsoring the workshop.

FAA system two developed its PP more-or-less simultaneously with the develop-
ment of the SPPT. The system two solicitation did not include adequate assurance
specifications or Data Item Descriptions (DIDs). There have been problems with the
quality of deliveries as a consequence resulting in adverse schedule and cost impacts
to the program.

System three was initially specified with vague high-level security requirements
that were more motherhood and apple pie than testable criteria. Following September
11, 2001, and for other reasons, system three was re-baselined. An engineer inti-
mately acquainted with system three was given the SPPT and access to the authors. A
highly creditable SPPT was produced along with SOW and DID statements.

System four is our best success story so far. A project engineer used the SPPT to
write the specifications. Following award, the developer suggested revisions to the
specifications based on its architecture and design, with which the FAA concurred.

Lessons learned from these systems and the FAA review process have fed into
SPPT version two and its guidance. Writing good assurance specifications into the
SOW, CDRLs, and DIDs is essential to success. Experience and knowledge in the
system domain, security, and acquisition are required in order to produce good speci-
fications, leading to a secure system. Skilled practitioners of both disciplines can
team together to achieve success. The SOW and DID materials can be part of the
common template. A close working relationship between government and developer
with incremental feedback enhances the probability for success and controlling ad-
verse cost and schedule impact.

There is a difference between “requirements” and “specifications” that is more of-
ten honored in the breach than in the observance6. Among other distinctions, re-
quirements are high level, generated at the time of project definition as part of mission
need and investment analysis (e.g., budget determination), while specifications are
much more detailed, as discussed herein. We found that work on the SPPT (specifi-
cations) increased an awareness of need for improved requirements. The idea that
requirements evolve into specifications has been proposed. It is almost a tautology to
observe that adequate requirements will lead to an achievable schedule and adequate
budget.

There is a regrettable tendency in acquisitions to economize on pre-solicitation
costs at the risk of much greater costs later in the life-cycle. It is imperative that ar-
chitecture and design be security-aware. Risk analysis must be conducted on concep-
tual architectures and designs as well as on implemented systems in both the labora-

6 Apologies to Shakespeare, Hamlet. Act i. Sc. 4.

30 M. Abrams, J. Veoni, and R.K. Britton

tory test-bed and the field. Acquisition project management may require assistance
from acquisition and security oversight bodies.

5 Conclusion

The SPPT concept has proven very useful in the FAA. Establishing a central enter-
prise security requirements template has created a common security philosophy from
which to evolve the enterprise. Incorporating it into the acquisition process has made
security planning an integral part of the general system planning effort. In general, it
has expedited the production of higher quality security specifications in much less
time and cost than done previously.

Grounding the SPPT in the CC has helped ensure that the resulting security speci-
fications are complete in terms of: 1) the different security components appropriate
for a system 2) clear language for the individual specification components, and 3)
coverage against all the threats, security policies, and security objectives for the given
system. The SPPT attention to the assurance specifications is also beneficial by pro-
viding a set of CDRLs and DIDs that fit easily into an acquisition SOW to provide
the necessary security assurances. Based on the FAA experience, other organizations
would benefit from the development of their own SPPT. The FAA’s SPPT can be
used as a model. The latest versions can be found at
http://www 1 .faa.gov/aio/common/documents.htm#4-docs and at
http://www1.faa.gov/aio/ChiefSci/index.htm

References

1.

2.

3.

4.

5.

Fiscal Year 2003 FAA Budget in Brief, available at http://www.faa.gov/aba/ (February
2002).
Gamble, D., Hemenway, J.: “The Use of Generic Architectures in System Integration,” Pro-
ceedings National Information Systems Security Conference, pp. 431—446 (October
1995).
Common Criteria Project, Common Criteria for Information Technology Security Evalua-
tion, version 2.1 (1999). Or, International Standard ISO/IEC 15408 (1999-12); Parts 1-3, In-
formation Technology Security Techniques Common Criteria for IT Security Evaluation
(CCITSE). Available from: http://csrc.nist.gov/cc/,
http://www.radium.ncsc.mil/tpep/library/ccitse/ccitse.html, or
http://www.commoncriteria.org/cc/cc.html.
Grance, T., J. Hash, and M. Stevens, October 2003, Security Considerations in the Informa-
tion System Development Life Cycle, National Institute of Standards and Technology (NIST)
Special Publication (SP) 800-64. Also available at
http://csrc.ncsl.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf.
Abrams, M. D.: FAA System Security Testing and Evaluation, MITRE Technical Report
02W0000059, The MITRE Corporation, McLean, VA (May 2003). Available from:
http://www.mitre.org/work/tech papers/tech papers 03/abrams faa/index.html.

On the Measurement of COTS Functional Suitability

Alejandra Cechich1 and Mario Piattini2

1 Departamento de Ciencias de la Computación
Universidad Nacional del Comahue, Buenos Aires 1400

Neuquén, Argentina
acechich@uncoma.edu.ar

2 Grupo Alarcos, Escuela Superior de Informática
Universidad de Castilla-La Mancha, Paseo de la Universidad 4

Ciudad Real, España
Mario.Piattini@uclm.es

Abstract. Within the last years both researchers and practitioners alike have
moved beyond establishing COTS quality as an important field to resolving
CBS quality problems. However, the science of CBS quality has not yet ad-
vanced to the point where there are standard measurement methods, and few
enterprises routinely measure COTS quality. Here, a suite of measures is pre-
sented to address this problem within a COTS-based software measurement ac-
tivity. Our measures are based on a formally defined component-based model,
aiming at expressing and measuring some aspects of component integrations.
Measures are in terms of provided and required services, hence functional suit-
ability might be quantified.

1 Introduction

Software project managers need to make a series of decisions at the beginning of and
during projects. Because software development is such a complex and diverse proc-
ess, predictive models should guide decision making for future projects. This requires
having a metrics program in place, collecting project data with a well-defined goal in
a metrics repository, and then analysing and processing data to generate models. Ac-
cording to the proposal in [11], metrics can guide risk and quality management, help-
ing reduce risks encountered during planning and execution of CBSD.

Metrics let developers identify and quantify quality attributes in such a way that
risks encountered during COTS selection are reduced. For example, the QESTA ap-
proach to evaluate COTS components [8] defines for each desired quality one or
more metrics, either symbols or numbers. Then, the selected candidate components
are each measured against the metrics previously identified. As another example,
based on the ISO/IEC 9126 Standard for software product evaluation [10], the pro-
posal in [5] restricts the set of features applicable on COTS components and defines
two classes of measurable features: run-time measured features and life cycle meas-
ured features.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 31–40, 2004.
© Springer-Verlag Berlin Heidelberg 2004

32 A. Cechich and M. Piattini

All CBS projects require a cost estimate before actual developments can proceed.
Usually, the qualities of the desired COTS components are not directly measurable
but are instead vague statements about like “acceptable performance”, “small size”,
and “high reliability”. Thus, most cost estimates for CBS developments are based on
rules of thumb involving some size measure, like adapted lines of code, number of
function points added/updated, or more recently, functional density [1, 7, 9]. In prac-
tical terms, rules such as functional density imply that there must be a way of compar-
ing one CBS design to another in terms of their functionality, there must be possible
to split functionality delivered via COTS from that delivered from scratch, and there
must be a way to clearly identify different COTS functionalities [1].

On the other hand, the model introduced in [2] explores the evaluation of compo-
nents using a specification-based testing strategy, and proposes a semantics distance
measure that might be used as the basis for selecting a component from a set of can-
didates. In our proposal, we are adapting this model as a basis for quality measure-
ment. It allows to express the semantics distance in terms of a functional suitability
measure, which provides a better identification of the different COTS functionalities.

In section 2 of the paper, we introduce the component-based model for measure-
ment (from [2]) (called here “component mapping diagram”) along with a motivating
example. Then, section 3 presents a compact suite of measures – including functional
suitability measures. Finally, section 4 addresses conclusions and topics for further
research.

2 A Component-Based Model for Measurement

Component architectures divide software components into requiring and providing:
some software components can register the services they provide, while other compo-
nents can subscribe to and consume these services. Components are plugged into a
software architecture that connects participating components and enforces interaction
rules. The model in [2] supposes that there is an architectural definition of a system,
whose behaviour has been depicted by scenarios or using an architecture description
language (ADL).

The system can be extended or instantiated through the use of some component
type. Due several instantiations might occur, an assumption is made about what char-
acteristics the actual components must possess from the architecture’s perspective.
Thus, the specification of the architecture defines a specification for the
abstract component type C (i.e. Any component that is a concrete in-
stance of C, must conform to the interface and behaviour specified by as shown in
Figure 1 (from [2]).

The process of composing a component K with A is an act of interface and seman-
tic mapping. In this work, only the semantic mapping will be addressed. We focus on
incompatibilities derived from behavioural differences between the specification of a
component and the specification Another necessary condition for using K
(or a combination of to satisfy is that the input and output domains of K in-

On the Measurement of COTS Functional Suitability 33

clude some of those specified by An additional necessary condition is that K
provides at least the functional mapping between the domains as specified by

A typical situation for inconsistency in the functional mappings between and
is illustrated by [2] in Figure 2, where the dashed lines indicate mappings with respect
to and the solid lines are mappings with respect to Note that the input and
output domains of and are not equal. Also, the domain of is not included in
the domain of and vice versa for the ranges.

Fig. 1. Instantiation of an abstract component specification

2.1 A Motivating Example: E-payment Components

Authorisation and Capture are the two main stages in the processing of a card
payment over the Internet. Authorisation is the process of checking the customer’s
credit card. If the request is accepted the customer’s card limit is reduced temporarily
by the amount of the transaction. Capture is when the card is actually debited. This
may take place simultaneously with the authorisation request if the retailer can guar-
antee a specific delivery time. Otherwise the capture will happen when the goods are
shipped.

We suppose the existence of some scenarios describing the two main stages, which
represent here a credit card (CCard) payment system. The scenarios will provide
an abstract specification of the input and output domains of that might be com-
posed of:

34 A. Cechich and M. Piattini

Fig. 2. Functional mappings of and

Input domain: (AID) Auth_IData{#Card, Cardholder_Name, Exp_Date,
Bank_Acc, Amount}; (CID) Capture_IData {Bank_Acc, Amount}.
Output domain: (AOD) Auth_OData{ok_Auth}; (COD) Cap-
ture_OData{ok_Capture, DB_Update}.
Mapping: {AID AOD; CID COD}.

Suppose we pre-select two components to be evaluated, namely and respec-
tively. The specification mapping, shown in Figure 3, reveals some inconsistencies
that should be analysed. Firstly, the input domain of the component does not in-
clude all the values that the specification requires, i.e. the capture functionality is
not provided. Secondly, the input domain of the component includes more values
than the required by however the mapping satisfies the required functionality. We
should note that there is another functionality provided by which might inject
harmful effects to the final composition. Thus a deeper analysis based on previously
defined scenarios should be carried out.

3 A Measurement Suite for Functional Suitability

For the measure definitions, we assume a conceptual model with universe of scenar-
ios an abstract specification of a component X, a set of components K relevant to
X and called candidate solution a set of pre-selected components from called
solution and a mapping component diagram In this diagram, repre-
sents the map associated to the input value i defined in the domain of This map
should provide a valid value on the output domain of i.e. there is no empty maps
or invalid associations. A similar assumption is made on the mappings of

Let’s briefly clarify the concepts associated to and Candidate components,
selected from different sources for evaluation, constitute the members of the set
It could be the case that one of these members does not offer any functionality re-

On the Measurement of COTS Functional Suitability 35

quired by X. Hence, an evaluator should not spend more time and effort evaluating
other properties or requirements on that component, i.e. the component should be
withdrawn from analysis. Then, the solution in which all components potentially con-
tribute with some functionality to get the requirements of X is called here

In the following definitions, we use the symbol “#” for the cardinality of a set. To
simplify the analysis, we also assume input/output data as data flows, i.e. data that
may aggregate some elemental data. For the credit card example, input/output data are
represented by {AID, CID}, {AOD, COD} respectively.

Fig. 3. Functional mappings of and

3.1 Domain Compatibility Measures

The importance of defining domain compatibility measures comes from the impor-
tance of simplifying the COTS selection process. When analysing components, it
might be the case that the data required by a concrete component K does not semanti-
cally match with the data required by its abstract specification X. Then, after deter-
mining the input/output compatibility, the analysis of the component K might stop
(depending on the incompatibility detected), avoiding higher selection effort invest-
ments.

Table 1 lists the proposed measures for detecting input domain incompatibilities.
The measures have been grouped into two main groups: component-level measures
and solution-level measures. The first group of metrics aims at detecting incompati-
bilities on a particular component K, which is a candidate to be analysed. However, it
could be the case that we need to incorporate more than one component to satisfy the
functionality required by the abstract specification X. In this case, the second group
of metrics evaluates the domain compatibility of all components that constitutes the
candidate solution as we previously defined.

36 A. Cechich and M. Piattini

The input domain measure definitions are shown in Table 2. Similarly, a compati-
bility analysis of the output domain should be done, considering the data provided by
the component K and using a similar suite of measures.

To clarify the reading, we should note that the expression has been
included to reduce the candidates for evaluation. This expression limits the analysis of
missed and added inputs to those components that have already showed having at least
a compatible input data. We should also remark the importance of determining seman-
tics incompatibilities through the use of scenario specifications, even thought the sce-
nario is not explicitly included into our measure definitions. This is due to the fact
that we consider the definition of metrics as a process included into a broader meas-
urement process, which defines some activities for setting the measurement context –
such as defining scenario specifications or identifying stakeholders [6].

Now, let’s calculate the input domain compatibility measures for our credit card
example. The input domain of the abstract specification is {AID, CID}, and the
input domains for K1 and K2 are {AID} and {AID, CID} respectively.

The following values of the measures:

show that the component K1 is a candidate to be discharged due to the existence of
another component, K2, that is completely input compatible Hence,
solution-level metrics are not calculated since our candidate solution has only one

On the Measurement of COTS Functional Suitability 37

component. Then, our functional suitability measurement will continue only consider-
ing K2 for analysis.

3.2 Functional Suitability Measures

The domain compatibility measures show that there are some candidate components
able to provide some functionality. However, we cannot be certain of the amount of
functionality that is actually provided. For example, the component K2 is full domain
compatible, but some of the domain values might produce different functionalities
from the required by the abstract specification of X, i.e. the input AID might produc-
COD or any other output value. Therefore, even a component might be full domain
compatible, there is still another set of measures to be applied in order to determine
the functional suitability. Table 3 lists our suite of functional suitability measures,
which are again classified into two groups: component-level measures and solution-
level measures. A more formal definition of the measures is shown in Table 41.

1 Comparison between output domain values has been simplified by considering equality. A
more complex treatment of output values might be similarly specified, for example, by de-
fining a set of data flows related by set inclusion.

38 A. Cechich and M. Piattini

Now, let’s calculate the functional suitability measures for our credit card example.
The functional mapping of the abstract specification is {AID AOD; CID
COD}, and the functional mapping for K2 is {AID AOD; CID COD; Taxes
Statistics}. Then, the component-level measure results show the following values:

These values indicate that the component K2 is a candidate to be accepted for more
evaluation, i.e. the component is functionally suitable but there is one added function-
ality that could inject harmful side effects into the final composition. Besides, there
are another types of analysis the component should be exposed before being eligible
as a solution – such as analysis of non-functional properties [5], analysis of vendor
viability [3], and so forth. Our set of measures are only providing a way of identifying
suitable components from a functional point of view. Measuring the other aspects is
still a remaining issue. Another interesting discussion will be on analysing the repre-
sentation of the input/output domain, trying to close the gap between the information
provided by component vendors and the information required for evaluation, as the
work in [4] remarks.

On the Measurement of COTS Functional Suitability 39

Finally, our measures on functional suitability could provide a more precise indicator
when calculating the maintenance equilibrium value as introduced in [1]. The number
of components in the solution should be minimised and the contribution of
functionality should be maximised to satisfy the CBS Functional Density Rule
of Thumb: “Maximise the amount of functionality in your system provided by COTS
components but using as few COTS components as possible” [1].

4 Conclusions and Future Work

We have presented a preliminary suite of measures for determining the functional
suitability of a component-based solution. However, our measures are based on func-
tional direct mappings, i.e. there is no semantic adaptation between the outputs pro-
vided by a component K and the required functionality in X. Therefore, we are ex-
tending the suite presented here to quantify the semantic adaptation providing an inte-
gral suite of measures.

40 A. Cechich and M. Piattini

Finally, all the measures need to be empirically validated, so much research must
still be done to demonstrate the applicability of our proposal.

Acknowledgments. This work is partially supported by the CyTED (Ciencia y Tec-
nología para el Desarrollo) project VII-J-RITOS2, by the UNComa project 04/E048,
and by the MAS project supported by the Dirección General de Investigación of the
Ministerio de Ciencia y Tecnología (TIC 2003-02737-C02-02).

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

C. Abts. COTS-Based Systems (CBS) Functional density - A Heuristic for Better CBS
Design. In Proceedings of the First International Conference on COTS–Based Software
Systems, Springer Verlag LNCS 2255, pages 1 –9, 2002.
R. Alexander and M. Blackburn. Component Assessment Using Specification–Based
Analysis and Testing. Technical Report SPC-98095-CMC, Software Productivity Consor-
tium, 1999.
K. Ballurio, B. Scalzo, and L. Rose. Risk Reduction in COTS Software Selection with
BASIS. In Proceedings of the First International Conference on COTS–Based Software
Systems, Springer Verlag LNCS 2255, pages 31–43, 2002.
B. Bertoa, J. Troya, and A. Vallecillo. A Survey on the Quality Information Provided by
Software Component Vendors. In Proceedings of the ECOOP QAOOSE Workshop, 2003.
B. Bertoa and A. Vallecillo. Quality Attributes for COTS Components. In Proceedings of
the ECOOP QAOOSE Workshop, 2002.
A. Cechich and M. Piattini. Defining Stability for Component Integration Assessment. In
Proceedings of the Fifth International Conference on Enterprise Information Systems,
pages 251–256, 2003.
J. Dolado. A Validation of the Component-Based Method for Software Size Estimation.
IEEE Transactions on Software Engineering, 26(10): 1006–1021, 2000.
W. Hansen. A Generic Process and Terminology for Evaluating COTS Software –The
QESTA Process. http://www.sei.cmu.edu/staff/wjh/Qesta.html.
L. Holmes. Evaluating COTS Using Function Fit Analysis. Q/P Management Group, INC
- http://www.qpmg.com.
ISO International Standard ISO/IEC 9126. ISO/IEC 9126 - Information technology -
Software product evaluation - Quality characteristics and guidelines for their use, 2001.
S. Sedigh-Ali, A. Ghafoor, and R. Paul. Software Engineering Metrics for COTS-Based
Systems. IEEE Computer Magazine, pages 44–50, May 2001.

A Case Study in COTS Product Integration Using XML

Grace A. Lewis and Lutz Wrage

Software Engineering Institute, COTS-Based Systems Initiative
4500 Fifth Ave.

Pittsburgh, PA 15213
U.S.A.

{glewis, lwrage}@sei.cmu.edu

Abstract. The increased adoption and support for XML, as well as its clarity,
extensibility, platform independence, easy validation, and support for internali-
zation have made it an option for COTS product integration. This paper pres-
ents options for COTS product integration using XML, an XML Integration Ar-
chitecture, and a real case study of how a set of COTS products were success-
fully integrated using the proposed XML Integration Architecture.

1 Introduction

The case study presented in this paper is currently being executed as a demonstration
project within the Technology Insertion, Demonstration, and Evaluation program
(TIDE) at the Software Engineering Institute [1]. The goal of this demonstration proj-
ect is to insert dynamic scheduling and simulation (DSS) software into a small manu-
facturing enterprise. This includes the integration of several COTS products and a
legacy ERP system.

In the first part of the paper we describe general issues of using XML for COTS
product integration and we develop a generic architecture that can be applied to this
type of integration problem. In the final section we show how the generic architecture
has been applied in the DSS integration project.

2 Integration Using XML

The goal of XML since its creation has been to reduce ambiguity between applica-
tions sharing information. The software community has adopted XML in many ways:
programming languages have libraries to parse and create XML documents; applica-
tions are capable of creating XML documents from information they manage; mid-
dleware products can transform information from XML to a specific format and vice
versa; databases are able to store data in XML format; and e-business XML messag-
ing standards are emerging as the solution for business-to-business integration [2].

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 41–52. 2004.
© Springer-Verlag Berlin Heidelberg 2004

42 G.A. Lewis and L. Wrage

This increased adoption and support for XML, as well as its clarity, extensibility,
platform independence, easy validation, and support for internationalization have
made it an option for COTS product integration.

2.1 Importance of XML Syntax and Semantics Agreement

For COTS products, semantics is of increased importance because products are “black
boxes”. To explain the difference between syntax and semantics consider this very
simple example.

Two COTS products will share the same syntax to exchange the unit price for an
item. The following XML Schema contains the type used by both products to define
amounts expressed in dollars:

The data type amount specifies a maximum of ten digits where two of the ten digits
are fraction digits, and a minimum allowed value of 0.00. Data of this type can therefore
range between 0.00 and 99999999.99. The COTS products integrate perfectly! The
problem arises when after hours of trying to figure out why the balances on both sys-
tems do not match it happens that COTS Product A exchanges the unit price before tax
and COTS Product B exchanges the unit price after tax. The products share syntax but
not semantics! This is not unique to XML integration. It holds true for any type of data
integration. The problem is that XML appears to be more meaningful than other forms
of data exchange (comma-delimited text files, Excel spreadsheets, Postscript). While an
XML tag can be seen as a form of “metadata,” the truth is that an XML, parser does not
know about semantics. It only sees tags and syntax validation rules.

2.2 Integration Options

If the COTS products to be integrated are in a domain in which XML standards have
already been developed, it only makes sense to rely on these standards instead of
developing a proprietary vocabulary. If there are no standards, a custom vocabulary
will need to be developed.

Non-Standard XML Integration (Proprietary)
When there are no existing standards for integration in the domain in which the COTS
products are going to work, it is necessary to develop proprietary XML Schemas that
describe the structure of the data to be exchanged, as well as the metadata that define
semantics. On the positive side, since it is proprietary and will be used only by your
organization, you have increased flexibility to create a simple format because you do
not have to accommodate all possible options. Using custom-developed schemas, you

A Case Study in COTS Product Integration Using XML 43

will find it easier to get agreement on semantics than with standard vocabularies. On
the negative side, developing a proprietary vocabulary is not an easy task. There are
no rules or path to follow that will automatically lead to the correct vocabulary. There
is also additional overhead involved with creating and, consequently, maintaining this
vocabulary.

Standard XML Integration
If there are domains in which XML vocabularies have been defined, it makes sense to
leverage this work. In fact, COTS products may come with a feature that produces data
conforming to one of these standards. Several industries have created their own XML
vocabularies. Examples are B2B (business-to-business) standards such as ebXML [3],
RosettaNet [4], and OAGIS [5]; DocBook, a technical publications standard [6]; WML,
a wireless markup language [7]; and CML, a chemistry markup language [8]. On the
positive side, you do not have the additional overhead of creating and maintaining the
vocabulary. Also, other COTS products may use the same standard, and that could
simplify integration. This is especially true in the B2B domain. On the negative side,
most of these standard vocabularies are very strong in syntax but weak in semantics.
This means that even if two products say they are compliant to a certain standard, inte-
gration is not guaranteed because the two products might interpret a tag in a different
way. Another problem is that the standards might not be complete. You might have to
add elements or full schemas to fulfill all operations. This, of course, will cause integra-
tion problems, as well as problems with future updates to the standard. To make matters
worse, most XML standards vocabularies are still evolving. This might cause frequent
updates and testing to make sure the integration still works.

3 XML Integration Architecture

A high-level generic architecture for XML integration is shown in Fig. 1. The core of
the architecture is the XML Integration Component. COTS products use an XML
wrapper to communicate with other COTS products through the XML Integration
Component.

3.1 XML Integration Component

The XML Integration Component is the core of the XML Integration Architecture. Its
main function is to act as an intermediary between products. At a high-level, the XML
Integration Component architecture is described in Fig. 2.
The XML Integration Component adds a level of abstraction and a level of indirection
to the system. The XML Integration Component is the only component that can ac-
cess the XML Schemas that will govern the data exchange between COTS products.
There is obviously an exception if a COTS product can produce XML documents
according to a standard. In this case, the repository is shared between the XML Inte-
gration Component and the COTS product. The advantage is that changes to the XML
Schemas will only affect this component. There is also a separation of concerns since
this is the only component that needs to know how to perform XML processing.

44 G.A. Lewis and L. Wrage

Fig. 1. High-Level generic architecture for XML integration

There is no direct communication between COTS components. Even if none of the
COTS components understands XML, this level of indirection guarantees that the
data being exchanged is consistent at the syntax level. If both applications agree on
the semantics, they should be consistent at this level as well. On the down side, as
with any architecture where there is a mediator between components, performance is
likely to be affected due to the additional layer of indirection and XML processing.

3.1.1 Integration Knowledge

The Integration Knowledge sub-component can have different levels of integration
knowledge. It could simply be a component that provides the following functionality:

Creates XML documents conforming to a specific schema from data received as
parameters
Parses and validates XML documents against a specific schema
Sends XML documents conforming to a specific schema to a certain product in the
system
Extracts data from an XML document and passes it to a product in the system

The Integration Knowledge sub-component could also provide information about the
products it integrates, such as if the product is capable of generating or receiving
XML documents. It can also maintain information about the way in which two com-
ponents integrate. For example, every time the XML Document X is received from
Product A, it has to call the following functions in Product B. This integration knowl-
edge feature is a part of B2B XML messaging standards such as RosettaNet and
ebXML.

A Case Study in COTS Product Integration Using XML 45

Fig. 2. High-level architecture for the XML Integration Component

3.1.2 Communication Mechanism

The Communication Mechanism sub-component determines how COTS products
communicate with the XML Integration Component. There are multiple options that
are implementation-dependent. For example:

The products can access the XML Integration Component using a simple proce-
dure call if they all reside on the same platform (in this case, the Communication
Mechanism sub-component may not exist).
If products are spread out over a LAN (Local Area Network), they can use RPC
(Remote Procedure Call) or RMI (Remote Method Invocation) to communicate
with the XML Integration Component.
If the XML Integration Component is implemented as a service, it can be accessed
using CORBA (Common Object Request Broker Architecture), for example.
If products are spread out over a WAN, they can use HTTP, File Transfer Protocol
(FTP), Simple Mail Transfer Protocol (SMTP), or message-oriented middleware
such as Microsoft Message Queue (MSMQ) or IBM MQSeries.
If products are involved in B2B transactions, they can use an XML Messaging
Infrastructure such as the one provided by BizTalk or RosettaNet.

3.1.3 XML Parser

XML Parsers are available as libraries from numerous vendors. Parsing is the process
of reading an XML document and reporting its content to a client application, while
checking that the document is well-formed. There are two common techniques for
parsing XML: those using the simple application programming interface for XML
(the Simple API for XML (SAX)) and those using the document object model

46 G.A. Lewis and L. Wrage

(DOM). Examples of XML Parsers are Apache’s Xerces Parser [9], IBM’s XML
Parser for Java (XML4J) [10], and Sun’s Java API for XML Processing (JAXP) [11]1.

3.2 Wrapper

A wrapper in the XML Integration Architecture has two main functions:
If the XML Integration Component is deployed as a service or is expecting a mes-
sage that is more sophisticated than just a simple procedure call, the wrapper acts
as a translator between the COTS component and the XML Integration Compo-
nent.
If the COTS product is not able to produce XML documents, the wrapper inter-
cepts and/or translates calls from the component into instructions for the XML In-
tegration Component to build an XML document conforming to a specific XML
Schema stored in the repository.

In the special case that the COTS product communication mechanism matches that of
the XML Integration Component and the product is capable of producing XML, the
wrapper is optional.

3.3 Repository

The repository contains the XML Schemas that define the data to be exchanged be-
tween COTS products. It also contains the Metadata that provides the semantics for
the data elements defined in these XML Schemas.

The XML Schemas can be used at run-time by the XML Integration Component.
The Metadata is used by the integrators defining the XML Schemas and the develop-
ers working on Wrappers. As with any data repository, configuration management is
necessary to assure that all products to be integrated use the same version of the XML
Schemas and Metadata.

The repository can reside in a database or on any file system. Metadata can be
maintained using any data management tool that can access the database or file sys-
tem. The XML Schemas themselves can be edited with XML and XML Schema edi-
tors such as Altova’s XML Spy [12], TIBCO’s TurboXML [13], and Corel’s XMetaL
[14]. Some of these editors have built-in repositories or are capable of integrating
with external ones.

4 The DSS Case Study

In this section we describe the software components used in the DSS project, the
development of an appropriate XML document format, and how the previously pre-
sented XML integration architecture has been instantiated for this project.

1 JAXP is not an XML parser, but an API to access any compliant XML parser.

A Case Study in COTS Product Integration Using XML 47

4.1 DSS Integration Scope

The DSS project includes the integration of several COTS products. In the first major
phase the project integrates a manufacturing execution system (MES) and scheduling
software (SCHED). In addition it connects the legacy enterprise resource planning
system (MICS) to the MES system. The second phase adds a simulation package
(SIM) to the deployed capabilities.

Manufacturing Execution System. An MES controls the production of manufac-
tured items on a shop floor. Based on production orders that typically come from an
ERP system, resources and machine capacity are allocated to a production order. The
MES also collects different types of real-time data from the shop floor such as ma-
chine usage and work in process, and tracks material and inventory. The MES must
send data to all other systems and receive data from the simulation and from MICS.

Dynamic Scheduling. The scheduling software has been developed by the Intelligent
Coordination and Logistics Laboratory of the Carnegie Mellon University (CMU)
Robotics Institute [15]. The scheduler creates optimal sequences of manufacturing
tasks to meet promised dates while considering limited capacity (machines and per-
sonnel) and material availability. The scheduler must send data to and receive data
from MES and the simulation.

Simulation. The simulation part is the responsibility of the Manufacturing Simula-
tion & Visualization group at National Institute of Standards and Technology (NIST)
Manufacturing Engineering Laboratory [16]. The simulation package will be used to
execute the schedule off-line to test the scheduling capability and to assess sensitivity
of the schedule. It allows the user to simulate disruptions of the production process
such as unplanned downtime of machines, sick operators, or longer task duration than
anticipated. The simulation must send data to the scheduler and receive data from
MICS and the scheduler.

Legacy ERP (MICS). The MICS system is currently used to manage sales and pur-
chase orders, as well as billing and accounting. MICS must send data to and receive
data from the MES.

4.2 Creating the XML Document Format

One objective of DSS, as well as of all other TIDE demonstration projects, is to
contribute to a growing TIDE body of knowledge. This knowledge will form the
legacy of the TIDE program and will be made available to small manufacturing
enterprises in the future. As a consequence, the newly developed integration solu-
tion must provide a system architecture and other artifacts that can be applied to
other projects as well.

Current real-world integration projects often rely on ad hoc or proprietary integra-
tion mechanisms because the main focus is on the COTS software products and not
on the integration solution itself. There are numerous reasons for this, one of them
being that it is difficult to estimate the effort that is required to perform the integration

48 G.A. Lewis and L. Wrage

as there are plenty of unknowns at the beginning of a project. It may even happen that
the cost of the integration is being negotiated before all COTS components are known
in detail. So it is very easy to focus on the products and to neglect integration issues.
Of course this is not a good practice, and therefore much care was given in the DSS
project to get the integration right.

The project team decided that using XML data exchange for the integration would
be not only a viable approach but also a good opportunity to demonstrate and docu-
ment benefits and weaknesses of this type of XML usage, thus contributing to the
TIDE body of knowledge.

In the early phases of the project it became quickly obvious that existing XML vo-
cabularies were not sufficient to express the data that needs to be exchanged between
the MES, SCHED, and SIM applications. The main issue was the lack of detail in
XML documents that contain information about the manufacturing process. Most
standard vocabularies justifiably do not address this kind of data at all because they
are meant for B2B data exchange. In B2B communication the level of abstraction is
usually too high to represent data as used inside a manufacturing company.

Without a pre-existing standard that can be adopted, it may be necessary to develop
XML documents from scratch. Another option is to create a new standard. The crea-
tion of a new standard is usually not viable in individual integration projects. In the
DSS project, however, it was possible to choose this route because the NIST team
was interested in creating a shop data exchange standard for use by simulations. As a
result, the XML document format for the DSS integration serves as a prototype for
this new shop data standard.

The actual development of the XML format seemed to progress quickly at first, but
we soon encountered some difficulties. Some of these were of a more technical nature
while others – the more serious ones – were related to misunderstandings and the
different viewpoints of the participating teams.

The technical problems were primarily about representation details of hierarchical
structures of finished products, sub-assemblies, and sub-sub-assemblies; and of ma-
chine configurations for manufacturing tasks. Other issues were differences in the
definitions of the basic concepts such as “job”, “task”, or “process plan”. While eve-
rybody thought to have a clear understanding of these concepts, it showed there were
many different and incompatible views of what these concepts meant.

Another controversial issue was whether XML Schemas should be developed early
on or not. We decided to use a simple ad hoc graphical representation based on UML
class diagrams. This approach had the benefit that all participants – especially user
representatives – were able to understand the graphics and no time was spent trying to
teach everybody the intricacies of the XML Schema language.

When the XML schema was finished, we realized that it was very complex because
we wanted it to be “everything for everyone”. The part of the document that was
mandatory was very small compared to all the optional parts. This reduced the XML
schema to one document and made the protocol very simple because only one docu-
ment was exchanged between all products.

In the end the process was successful but took longer than anticipated because of
the necessary discussions to clarify the semantics of proposed XML elements; once
again proving that the hard part is the semantics and not the syntax.

A Case Study in COTS Product Integration Using XML 49

4.3 XML Integration Architecture in Practice

The XML Integration Architecture outlined in this paper represents a generic archi-
tecture to use in the integration of COTS products using XML. In practice, it may be
necessary to tailor it to address project constraints or to make tradeoffs between sys-
tem qualities, as will be seen in the following case study.

Overall the DSS project follows the XML integration architecture presented ear-
lier, but some project constraints made it necessary to restructure the components
somewhat. As shown in Fig. 3, the XML Integration Knowledge component had to be
split into three independent parts, one for each component. Each part was integrated
with the wrapper of the MES, SCHED, and SIM components and each uses a separate
XML parser. The rationale for tailoring the architecture in this way is that there is no
system integrator in the DSS project and therefore no single entity to coordinate and
develop the integration knowledge component. This is certainly a less than ideal
situation because there are now three different XML parsers instead of one. Simple
XML parsing is not problematic, but document validation using schemas is a fairly
complex process with different parsers possibly exhibiting different errors. In prac-
tice, however, we experienced no problems. The wrappers and integration knowledge
components for the three COTS products are developed by the MES vendor, the
CMU team, and the NIST team. The integration effort is therefore reduced to defining
the XML document format and defining a communication protocol to exchange these
documents. This can easily be done for DSS because the patterns of interaction are
relatively simple and there are only a few, fixed patterns the components must sup-
port. This would not be recommended in a project with complex interaction and pat-
terns of communication because the knowledge of these complexities would be dis-
persed in three components instead of a single component, making configuration
management and version control a nightmare.

The final implementation does no longer contain the repository component. This
simplification is possible since XML Schemas are not necessary at run-ime pro-
vided all components are well-behaved and produce only valid XML data. At de-
velopment time, however, XML Schemas provide value to test if components do in
fact produce valid output. Once this has been established it is no longer necessary to
accept the validation overhead. This would not be true in a B2B environment where
components cannot rely on other components to the same degree. There exists a
general tradeoff between performance and validation. To achieve high performance
it is desirable to turn off validation. But if it is not possible to trust all participating
components to produce valid documents, validation is essential to discover prob-
lems before processing malformed documents. In our case, because this was a very
controlled project, we were able to turn off validation and therefore had no need to
keep the repository.

4.4 Legacy System Integration

The legacy MICS system is a fairly old application that has been heavily customized
over the years by the customer’s development team. It is written in a BASIC dialect
that is not widely known.

50 G.A. Lewis and L. Wrage

Fig. 3. DSS architecture

After careful consideration a decision was made not to use the XML Integration
Architecture to connect MICS to the MES system, mostly for practical reasons:

The customer’s development team was responsible for developing the MICS inte-
gration, but the developers have no experience with current XML technology.
They are, however, very familiar with file-based data exchange between systems.
In addition there were few resources available in the development team to imple-
ment the interface.
For the legacy platform and programming language, there are few libraries and
programming tools for XML processing available, and these were considered too
expensive.
The MES system provides an off-the-shelf ERP system interface based on data
exchange through database tables. This can be extended to support file-based ex-
change at a level of effort that fits the available resources.

Because it becomes more and more difficult to maintain the MICS system, the cus-
tomer has a strong desire to replace the MICS system with a more modern ERP sys-
tem, so the integration is seen as a temporary solution. With this background we con-
sidered the cost of extending the XML vocabulary to also include additional ERP data
as too high compared to the benefit of having a more uniform solution. The devised
MICS interface uses file exchange and utilizes the ERP interface provided by the
MES since this was considered the less costly solution.

4.5 Lessons Learned

There are many lessons to be learned from the DSS integration project that can be
applied to XML integration projects in general.

The time to create a custom XML vocabulary should not be underestimated. XML
is really only a syntax and agreeing on semantics is where the largest effort lies and
unfortunately, in our experience, where the least effort is spent. In this regard XML
is not different from any other data integration technology. However, using XML

A Case Study in COTS Product Integration Using XML 51

allows the integrator to focus on these issues instead of spending effort on defining
the low-level syntax of a data exchange format and on writing and maintaining
parsers for proprietary or ad hoc data formats.
XML documents are easy to understand, also by non-technical people. This makes
it easy to focus discussions on content as opposed to syntactical details. But there
is also a negative aspect: XML is sometimes deceptively simple and by just look-
ing at tag names it is easy to take semantics for granted. XML schemas have to be
accompanied by a glossary that defines each tag in a clear and concise way so that
there is no ambiguity for people developing or using XML documents based on
this schema.
XML schemas can be difficult to understand without a graphical representation.
They cannot be used to communicate with end users, especially if the users are not
technical people. In our project simple UML class diagrams proved to be an ex-
cellent medium to discuss XML document contents with technical as well as non-
technical people.
There is a tradeoff in complexity between interaction patterns and XML Schemas.
You can have a very simple protocol and hide all the complexity in the documents,
or you can have very simple documents and a more complex protocol that ex-
changes different documents depending on the type of interaction. This is achieved
by introducing optional parts into the XML document. The receiving component
can analyze which optional parts are filled and from that infer details about the re-
quest.
There is no one-size-fits-all solution. Deciding what elements of the high-level
generic architecture presented earlier should be combined or eliminated will de-
pend on the system constraints.

5 Conclusions

The case study presented is a successful example of COTS product integration using
XML. It proves that this type of integration is best achieved by placing an intermedi-
ary component between the COTS products. This mediator guarantees that all appli-
cations share the same data definitions and concentrates all XML processing and
knowledge in one component in the system. The COTS components could well not be
aware that there is “XML between them”.

In the last couple of years XML has been touted by some as the solution to inte-
gration problems. Our experience with the DSS case study shows that XML based
integration is not that different from any other data integration technique. It is only a
syntax and does not solve any issues that are related to the meaning of data. But as a
syntax XML showed to be an excellent candidate to represent data because it relieves
development from the burden of defining a new syntax and creating parsers. In addi-
tion, standard XML vocabularies are available or being developed for many domains
that can be leveraged to achieve data-based integration. So in the future it should be
easier to find an appropriate vocabulary, and adapt it if necessary, instead of starting
from scratch.

The presented integration architecture has been a viable solution for the DSS proj-
ect. Whether it is also applicable to other projects and how it scales to many COTS

52 G.A. Lewis and L. Wrage

components is mainly a function of the patterns of interaction and not so much of
XML usage. XML only adds some parsing/validation overhead to each individual
message, whereas the number of messages is more important for scalability. For a
large number of messages it might be necessary to eliminate central components such
as the repository and the integration knowledge component that would form bottle-
necks that limit scalability.

XML integration has many benefits, such as increased adoption and support, clar-
ity, extensibility, platform independence, easy validation, and support for internation-
alization. But, only if there is agreement on syntax and semantics it can guarantee that
only correct data flows between the products being integrated.

References

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]
[9]

Technology Insertion and Demonstration Evaluation. Software Engineering Institute.
http:// www. sei. cmu. edu/tide
World Wide Web Consortium (W3C). Extensible Markup Language (XML) v1 .0 Specifi-
cation, Second Edition. http://www.w3.org/TR/REC-xml.
ebXML. http://www.ebxml.org/
RosettaNet. http://www.rosettanet.org/
Open Applications Group. Open Applications Group Integration Specification (OAGIS).
http://www.openapplications.org/
Organization for the Advancement of Structured Information Standards (OASIS).
DocBook. http://www.oasis-open,org/docbook/
Open Mobile Alliance. Wireless Markup Language (WML).
http://www.wapforum.org/what/technical.htm
Chemistry Markup Language (CML). http://www.xml-cml.org/
The Apache XML Project. Xerces. http://xml.apache.org/
AlphaWorks. XML Parser for Java. http://www.alphaworks.ibm.com/tech/xml4j
Sun Microsystems. Java API for XML Processing (JAXP).
http://java.sun.com/xml/jaxp/index.html
Altova.XMLSpy. http://www.xmlspy.com/
TIBCO. TurboXML. http://www.tibco.com/solutions/products/extensibility/turbo_xml.jsp
Corel. XMetaL.
http://www.corel.com/servlet/Satellite?pagename=Corel/Products/productInfo&id=10421
52754863
Carnegie Mellon University. The Robotics Institute. Intelligent Coordination and Logistics
Laboratory (ICLL). http://www.ri.cmu.edu/labs/lab5.html
National Institute of Standards and Technology (NIST). Manufacturing Engineering Labo-
ratory. Manufacturing Simulation & Visualization Group.
http://www.mel.nist.gov/proj/simvis.htm

[10]
[11]

[12]
[13]
[14]

[15]

[16]

COTS Product Selection for Safety-Critical Systems

Fan Ye and Tim Kelly

High Integrity Systems Engineering Group
Department of Computer Science

University of York, York YO10 5DD, UK
{fan.ye, tim.kelly}@cs.york.ac.uk

Abstract. There is an increasing interest in acquiring commercial-off-the-shelf
(COTS) functionality for safety-critical applications. However, the selection of
COTS products for such applications is still carried out in an ad hoc manner.
This creates great difficulties for realistic cost and effort estimation, integration
of the selected COTS product, and the certification of final COTS-based safety-
critical systems. We believe that selection of an appropriate COTS product is
the vital first step towards a successful COTS-based solution, especially for
safety-critical applications. In this paper, we propose a pragmatic COTS selec-
tion approach in order to alleviate the perceived difficulties by providing a
safety-informed decision on COTS selection. Reasoning from the perspective of
the application context and application-specific hazards, the proposed approach
defines a COTS acquisition contract from the safety requirements derived for
the required COTS functionality. The terms of the COTS acquisition contract
act as the evaluation and selection criteria against which any COTS candidates
must be evaluated thus providing informed decisions on COTS selection for
safety-critical applications.

1 Introduction

More and more software applications are being built using commercial-off-the-shelf
(COTS) products. Few companies or organisations can have the luxury of trying to
develop a complex system from scratch. This shift towards COTS-based solution is
largely due to its perceived massive cost and time saving compared with the in-house
development solution. However, as warned by many COTS researchers and practitio-
ners, and also experienced by many COTS-based software projects, it is unrealistic to
realise the goal of cost and time saving without adopting a systematic approach to-
wards the use of COTS products [3], [4], [19].

Due to the black-box nature of COTS products, typical problems with COTS-based
solution include: increased assessment cost, integration difficulties resulted from ar-
chitectural mismatches [7], and continual investment as the result of forced upgrad-
ing, or vendor liquidation [14].

The idea of using COTS products in a safety-critical1 application has encountered
even bigger challenges because of the paramount requirements for safety [1]. Due to

1 By “safety-critical” we mean that the failure of such a system would result in loss of human
life/lives or/and environmental damage.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 53-62, 2004.
© Springer-Verlag Berlin Heidelberg 2004

54 F. Ye and T. Kelly

the nature of safety-critical systems, there are many more concerns to be addressed
when using COTS products in such a system compared with the use of COTS prod-
ucts in a general (non-critical) context. These extra concerns include safety assurance
of the final system, construction of the safety case, and final system certification.
These have caused extensive difficulties for many COTS-based safety-related/safety-
critical projects even for successful cases such as the DoD’s Global Transportation
Network (GTN) [20], and NASA’s use of a commercial Global Positioning System
(GPS) component for space shuttle navigation [8].

Regardless of all the difficulties, there is still a growing interest in acquiring COTS
products in a safety-critical context, in order to alleviate the increasing cost and time
pressures of development. However, most COTS product use is carried out in an ad
hoc manner. We perceived that the single biggest problem with COTS-based solution
is the lack of systematic approach in supporting the use (selection, evaluation, inte-
gration and maintenance) of COTS products in complex safety-critical applications.

We contend that the selection of an appropriate COTS product is the crucial first
step towards the success of a COTS-based safety-critical project. Selection and
evaluation of COTS products requires a systematic approach. To our best knowledge,
there is no COTS product selection method that is dedicated to COTS-based safety-
critical applications.

In this paper, we propose a novel approach called Contract-Based COTS Product
Selection (CBCPS) for safety-critical systems. Reasoning from the perspective of the
application context and application-specific hazards, the proposed approach defines a
COTS acquisition contract from the safety requirements derived for the required
COTS functionality. The terms of the COTS acquisition contract act as the evaluation
and selection criteria against which any COTS candidates must be evaluated thus pro-
viding informed decisions on COTS selection for safety-critical applications.

The rest of this paper is organised as follows. Section 2 briefly summarises current
methods for COTS selection and describes some specific challenges in regard to
COTS selection for safety-critical applications. Section 3 presents an overview of the
proposed CBCPS approach and its phases. Section 4 identifies what is beyond COTS
selection. Section 5 discusses the feasibility of the proposed approach. Finally, Sec-
tion 6 presents the conclusions of this work.

2 COTS Product Selection Challenges

There are a number of COTS product selection methods for use in a general applica-
tion context. Examples of these methods are Procurement-Oriented Requirements En-
gineering (PORE) [16], Off-The-Shelf Option (OTSO) [11], Social-Technical Ap-
proach to COTS Evaluation (STACE) [12] and COTS Acquisition Process (CAP)
[17].

The common shortcoming of current methods for COTS selection lies in the fact
that they have put more weight on functionality and cost factors over non-functional
requirements. Beus-Dukic [2] claims that the role of non-functional requirements be-
comes more important in regard to COTS selection. In a safety-critical context, the
required safe behaviour of a component may need to be expressed in terms of both
functional and non-functional properties. Such safety-related factors often play a

COTS Product Selection for Safety-Critical Systems 55

much more important role when making decisions on “build versus buy” and on se-
lection of a suitable COTS product.

Safety is a decisive factor when choosing a COTS product for a safety-critical ap-
plication. Careless COTS selection without thorough consideration of the safety im-
plication would ultimately result in inability to establish an acceptable safety case (i.e.
project failure), or much higher cost and longer development time.

The above discussions bring us some major challenges specific to COTS selection
for safety-critical applications. These challenges are:

Identifying and documenting safety requirements for potential COTS functionality
– Safety requirements are hard to identify and elicit. It is necessary to highlight the
importance of hazard analysis in terms of eliciting and defining component safety
requirements.
Defining a set of evaluation criteria – based upon the safety requirements.
Prioritising the defined evaluation criteria – based upon their relative importance to
system safety.
Conformance validation – the necessity of determining the relevance and strength
of different types of evidence gathered from a COTS product to support the selec-
tion decision.

The CBCPS method has been developed in hopes of providing a systematic solu-
tion to the identified challenges.

3 The CBCPS Method

In this section we discuss the proposed contract-based COTS product selection
method in more detail. A method overview is given first (section 3.1), and each phase
of the method is then described in turn (sections 3.2-3.5).

3.1 Method Overview

The CBCPS method was developed to facilitate a systematic, repeatable and hazard-
driven COTS selection process for safety-critical applications. The main principles of
the CBCPS method are the followings:

Careful safety analysis (component failure mode and criticality analysis) is used to
define a formal acquisition contract between COTS products and the safety-critical
application;
Contract terms are used as selection and evaluation criteria;
The required level of assurance for each contract term indicates its relative impor-
tance as a selection and evaluation criterion and determines the required type and
amount of evidence needed for satisfying the contract term;
COTS Acquisition Contract (predominately identifying safety considerations) + all
general criteria (other considerations for COTS use in general context – upgrading,
vendor support) to inform COTS selection.

56 F. Ye and T. Kelly

The overall phases of the method are illustrated in Fig. 1 (major phases of the
method are shown as shaded boxes). As illustrated in the figure, CBCPS is a protec-
tive approach towards COTS selection because the final COTS acquisition contract is
established mainly from safety concerns of the application context (illustrated by the
round-cornered rectangle), balanced against the considerations of the availability of
COTS functionality. The selected COTS product may affect the proposed system ar-
chitecture, for example, due to the request of extra risk mitigation such as wrapper
(depicted by the dashed line with an arrow head).

Fig. 1. Overview of the CBCPS method process

Pre-requisites for the method include:

COTS Market Monitoring – for optimal selection
Preliminary Hazard Identification (PHI) – the first step in the safety process. It
identifies potential system level hazards through past experience, checklists or/and
brainstorming, and translates them into high-level system safety design constraints
(i.e. initial safety requirements) that form an important part of the initial require-
ments.
Initial Requirements – a complete set of core requirements specifying the essential
system functionality and quality of service (QoS) properties (e.g. performance,
availability, reliability).

Detailed discussion on each major phase is presented in the subsequent sections
(sections 3.2 –3.5).

3.2 System Hazard Analysis

The initial requirements present a black box view of the system by clearly specifying
the system functionality and interfaces between the system and its operational envi-
ronment. System Hazard Analysis (SHA) takes such a black box view of the system
and explores how system level hazards (identified by PHI) can arise as the results of

COTS Product Selection for Safety-Critical Systems 57

system operation, interfaces and interactions between the system and its operational
environment (including human operators) [13].

The major objectives of SHA are to extend and refine the high-level design con-
straints generated during PHI [18]. These refined high-level design constraints will
greatly influence the choice of applicable architecture styles for the proposed system
through placing restrictions on how the system should be decomposed into a coherent
set of components, and on how different level of protections should be devised onto
those components.

3.3 Preliminary Architecture Proposal

Architecture is a crucial element for any safety-critical system, because many well-
known safety mechanisms (e.g. “Control + Monitor” [5], design diversity/N-version
programming [10]) are rooted in the system architecture and a slight change of the ar-
chitecture may have an enormous safety implication.

An architecture proposal for the intended safety-critical system is a key element of
the CBCPS method. The interconnections among system components identified in the
architecture proposal provide the basis for carrying out the component failure mode
and criticality analysis, which in the end leads to a precise definition of the COTS ac-
quisition contract.

The architecture proposal at this stage is influenced by a number of factors as fol-
lows (see Fig. 1):

Safety requirements – initially defined in accordance with the system level hazards
identified by PHI, and refined through SHA
Other non-functional requirements (e.g. performance, availability)
Functional requirements – functional decomposition that allocates a set of coherent
system functionality across architectural elements (e.g. components, connectors)
whilst addressing non-functional requirements.

The consideration of the use of COTS product would also affect the proposed ar-
chitecture in a number of ways: firstly, it would influence the functional decomposi-
tion constrained by the availability of the required COTS functionality; secondly,
safety and other non-functional requirements may request the potential COTS func-
tionality to be isolated/contained in the proposed architecture (e.g. by wrapping).

IEEE P1471 [9] noticed that the system architecture could have multiple views in
order to address the concerns of different stakeholders (e.g. user, designer, integrator,
maintainer). Two architecture views are of particular interest to the CBCPS method:

Behavioural architecture view – shows clear functional responsibility of each com-
ponent including the potential COTS component (i.e. detailed functions to be car-
ried out by a component)
Component and Connector architecture view – shows the interfaces provided and
required by a component and the interconnections among components

These two architecture views will be used as the basis for the subsequent Compo-
nent Failure Mode Analysis (see section 3.4.1) in understanding how possible failure
modes of individual components and interactions between components could lead to
system level hazards.

58 F. Ye and T. Kelly

3.4 Component Failure Mode and Criticality Analysis

Component Failure Mode and Criticality Analysis explores how component-level be-
haviours could lead to system hazards and examines the criticality of such behaviours
as to system safety. Although it is a general activity of a safety process, failure mode
and criticality analysis over the potential COTS component is of major interest to the
CBCPS method. The results will form the basis for the final COTS acquisition con-
tract.

3.4.1 Component Failure Mode Analysis

Component failure mode analysis examines individual component to determine how
system-level hazards arise as the result of the component’s behaviours and the inter-
actions between components.

Some existing safety analysis methods such as Functional Hazard Analysis
(FHA) and Software HAZOP are suitable for carrying out the component failure
mode analysis. With explicitly specified behaviours of each component (including
the COTS component), the behavioural view of the architecture proposal provides a
perfect basis for carrying out functional deviation based analysis like FHA in order
to identify hypothetical failure modes for the potential COTS component. These
failure modes are hypothetical in a sense that they are based upon the major func-
tionality a COTS component is expected to implement without any actual COTS
product at hand. We can also identify how each hypothetical failure mode contrib-
utes to the system level hazards.

With the component and connector style of architecture where interfaces and in-
terconnections between components are clearly specified, Software HAZOP can be
an effective means of identifying potential hazards that may arise as the results of
interactions between components, and evaluating their contributions to the system
hazards. One advantage of the HAZOP approach is that it encourages consideration
of both the functional (e.g. value) and non-functional (e.g. timing) failures of a
component.

The resulting hazards that may be posed by the potential COTS functionality are
the sources for the final COTS Acquisition Contract. It is straightforward to map an
identified hazard to contract term(s). For example, in an air traffic control (ATC)
system, one typical hazard is that “a pair of controlled aircraft violate minimum
separation standards”, and the contract term for this hazard should be “controlled
aircraft must not violate minimum separation standards”.

3.4.2 Component Criticality Analysis

Component criticality analysis is a way of ranking the relative importance of each
identified component level hazard as to system safety. A safety assurance level (SAL)
is attached to each contract term. The SAL indicates the required level of assurance
for a contract term to be enforced.

Currently, four SAL ratings (1 to 4 with 4 as the highest SAL level) are defined
corresponding to the four hazard severity levels (i.e. negligible, marginal, critical and
catastrophic) defined in the UK Defence Standard 00-56 [15]. That is, for a COTS

COTS Product Selection for Safety-Critical Systems 59

component failure mode, if it can directly result in a system level hazard whose se-
verity level is catastrophic, the corresponding contract term will be allocated a SAL 4.

The SAL determines the required type and amount of evidence needed for satisfy-
ing the contract term. Contract terms with higher SAL would be more relying on di-
rect product-based evidence such as testing and formal proof.

3.5 COTS Acquisition Contract

Contracts are widely used to precisely specify the benefit/obligation relationship
between the client and the supplier. The relationship between a COTS product and a
safety-critical application is analogous to the relationship between a service pro-
vider (supplier) and a service consumer (client). That is, the COTS product provides
the functionality required by the application. In order to guarantee the provision of
specified services, a COTS product relies on the satisfaction of certain requirements
(e.g. adequate memory space, valid inputs) being provided by the application.
Thereby it is natural to use a contract to capture such “rely/guarantee” relationship
between the COTS product and the application.

We propose to use COTS acquisition contract as a means of specifying the de-
tailed safety requirements for the potential COTS functionality derived from a
safety-critical application context, and the obligations that the application is willing
to take in order to employ the COTS functionality. This COTS acquisition contract
will facilitate the selection of an appropriate COTS product for the application.

With all the analysis done in previous phases, we are now in the position of de-
fining the detailed COTS Acquisition Contract for a specific safety-critical applica-
tion. The contract presents a set of formal criteria against which any COTS candi-
dates will be evaluated for their fitness for the required safety purpose.

Contents of such an acquisition contract include:

The required contract terms for the COTS functionality – coming from the Com-
ponent Failure Mode Analysis activity
The SAL for each contract term – coming from the Component Criticality Analysis
activity
Suggested mitigation mechanisms that may be devised at the application context –
the obligation for the application as a service consumer. This may be necessary
when the evidence gathered from a potential COTS product candidate is not ade-
quate to assure a contract term to the required SAL. Trade-off must be made be-
tween the benefits (cost and time saving) gained from the COTS-based solution
and the cost-effectiveness of devising such mitigation mechanisms.

A partial acquisition contract for the selection of a commercial DataBase (DB)
product in a safety-critical advisory system is extracted from a case study as fol-
lows:

Documented in a tabular form, the COTS Acquisition Contract will present the ba-
sis for a sound decision on:

COTS products selection
comparing two COTS products with similar functionality

60 F. Ye and T. Kelly

If adequate evidence could not be obtained to provide sufficient assurance at the
application level dictated by the SAL of a contract term, and there were no mitigation
mechanism available or employing an available mitigation at the application context
were deemed to be not cost-effective, the COTS candidate should be rejected. An ini-
tially selected COTS product may still be rejected on the basis that the safety impli-
cation of its unused functionality or some actual (in contrast to hypothetical) failure
modes is too high to be mitigated.

4 Beyond Selection

Once a COTS product is selected, extra assessment has to be carried out in order to
explore possible unintended interactions between the COTS product and its hosting
safety-critical system. These unintended interactions may arise as the results of the
COTS product’s additional features or the underlying assumptions on how the product
should be used. Such unintended interactions could potentially affect the final system
architecture (e.g. due to the request of extra risk mitigation like wrapper). We believe
that understanding the interactions (both intended and unintended) between a selected
COTS component and its hosting system holds the key for the successful integration
of the COTS component.

Architectural approaches such as wrapping and design diversity may be used to
provide system level safety assurance where component level assurance is lacking.
However, discussion of how this can be modelled using the contract approach is out-
side the scope of this paper.

The production of a safety case is a mandatory requirement for any safety-critical
systems (including systems constructed using COTS functionality) [6], [15]. The
COTS acquisition contract presents a sound justification for the selection of a COTS
product. The hazard-driven COTS product selection approach provides necessary ba-
sis for the construction of a preliminary safety case. A convincing preliminary safety
case at an early stage justifies the COTS-based solution and guarantees the certifica-
tion of the final COTS-based safety-critical system.

Both component interaction analysis and safety case construction for safety-critical
systems constructed using COTS functionality are outside the scope of this paper.

COTS Product Selection for Safety-Critical Systems 61

5 Feasibility of the Approach

We contend that the proposed approach is feasible and pragmatic for the selection of
COTS product in a safety-critical context. Because

firstly, the process largely synchronises with current practice on in-house safety-
critical system development process. PHI, SHA, and component failure mode and
criticality analysis are all essential activities in a typical safety process for the de-
velopment of a safety-critical system.
secondly, the approach reasons from the perspective of the application context and
application-specific hazards. By addressing safety concerns from the very begin-
ning, the approach avoids potential difficulties encountered by many COTS-based
projects. Safety assessment demands a lot of resources and is also time consuming,
therefore it is impractical to take every COTS product that implements the required
functionality and perform safety assessment in order to determine its fitness for
purpose. That makes the proposed application-oriented approach more practical.
thirdly, the use of COTS acquisition contract provides a sound basis for the selec-
tion of a COTS product. It also justifies the use of COTS products in safety-critical
applications by supporting the construction of preliminary and final safety cases.

The effectiveness of the proposed CBCPS approach will be evaluated in further
case studies.

6 Conclusion

In this paper, we proposed a systematic approach towards COTS selection for safety-
critical applications. Due to the nature of safety-critical systems, we believe that it is
more pragmatic if we could reason from the perspective of the application context and
application-specific hazards while considering acquiring functionality commercially.
The approach defines a COTS acquisition contract from the safety requirements de-
rived for the potential COTS functionality. The terms of the COTS acquisition con-
tract act as the evaluation and selection criteria to provide safety-informed decisions
on COTS selection for safety-critical applications. By taking into account safety con-
cerns early at the selection stage, the proposed approach can potentially help with the
subsequent integration of the selected COTS product and certification of the final
system. We believe that, if the COTS acquisition process is properly managed, the
“better, cheaper, faster” proposition may be achieved for the use of COTS software
products in safety-critical applications.

62 F. Ye and T. Kelly

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Anderton B., Armstrong J., Frankis D., Saddleton D., Taylor J., and Thombs D., “Can You
Afford COTS Software in Safety Critical Applications?,” in Proceedings of the 2nd Euro-
pean COTS User Group (ECUA) Workshop, Orsay, Paris, France, 2001.
Beus-Dukic L., “Non-Functional Requirements for COTS Software Components,” in Pro-
ceedings of ICSE workshop on COTS Software, Limerick, Ireland, 2000, ACM.
Boehm B. and Abts C., “COTS Integration: Plug and Prey?,” IEEE Computer, pp. 135-
138, January 1999.
Brownsword L., Carney D., and Oberndorf T., “The Opportunities and Complexities of
Applying Commercial-Off-The-Shelf Components,” Crosstalk, April 1998.
Douglass B. P., Doing hard time: developing real-time systems with UML, objects, frame-
works, and patterns: Addison Wesley, 1999.
DSTO, “DEF(Aust) 5679 - The Procurement of Computer-Based Safety-Critical Systems,”
Defence Science and Technology Organisation, Australia, Australian Defence Standard,
August 1998.
Garlan D., Allen R., and Ockerbloom J., “Architectural Mismatch or Why it’s hard to build
systems out of existing parts,” in Proceedings of 17th International Conference on Soft-
ware Engineering (ICSE’95), Seattle, WA, USA, 1995.
Goodman J. L., “The Space Shuttle and GPS - A Safety-Critical Navigation Upgrade,” in
Proceedings of 2nd International Conference on COTS-Based Software Systems, Ottawa,
Canada, 2003, Springer.
IEEE, “P1471 - Recommended Practice for Architectural Description of Software-
Intensive Systems,” IEEE Computer Society, Standard, September 2000.
Knight J. C. and Leveson N. G., “An Experimental Evaluation of the Assumption of Inde-
pendence in Multiversion Programming,” IEEE Transactions on Software Engineering,
vol. 12 1986.
Kontio J., “A Case Study in Applying a Systematic Method for COTS Selection,” in Pro-
ceedings of 18th International Conference on Software Engineering (ICSE), Technische
Universität, Berlin, Germany, 1996, IEEE Computer Society.
Kunda D. and Brooks L., “Applying Social-Technical Approach for COTS Selection,” in
Proceedings of 4th UKAIS Conference, University of York, York, UK, 1999, McGraw
Hill.
Leveson N. G., Safeware: System Safety and Computers: Addison-Wesley, 1995.
Meyer B. and Oberndorf P., Managing Software Acquisition: Open Systems and COTS
Products: Addison-Wesley, 2001.
MoD, “00-56 Safety Management Requirements for Defence Systems,” Ministry of De-
fence, Defence Standard, December 1996.
Ncube C. and Maiden N., “Selecting the Right COTS software: Why requirements are Im-
portant,” in Component-Based Software Engineering: Putting the Pieces Together, G. T.
Heineman and W. T. Councill, Eds.: Addison-Wesley, 2001.
Ochs M., Pfahl D., Chrobok-Diening G., and Nothhelfer-Kolb B., “A COTS Acquisition
Process: Definition and Application Experience,” in Proceedings of 11th ESCOM Confer-
ence, Shaker, Maastricht, 2000.
Storey N., Safety-Critical Computer Systems: Addison-Wesley, 1996.
Voas J., “COTS Software: The Economical Choice?,” IEEE Software, vol. 15, pp. 16-19,
March 1998.
Wallnau K., Carney D., and Pollak B., “COTS Software Evaluation,” SEI Interactive, June
1998.

10.

11.

12.

13.
14.

15.

16.

17.

18.
19.

20.

Driving Component Selection through Actor-Oriented
Models and Use Cases*

Vijay Sai1, Xavier Franch2, and Neil Maiden3

1Software Engineering Institute Carnegie Mellon University
4500 Fifth Avenue Pittsburgh, PA 15213

vsai@sei.cmu.edu
2Universitat Politècnica de Catalunya (UPC)
Jordi Girona 1-3, CN-C6 08034 Barcelona

franch@lsi.upc.es
3Centre for HCI Design City University

Northampton Square, London EC1V OHB, UK
n.a.m.maiden@city.ac.uk

Abstract. This paper reports results from a retrospective application of the
REACT approach to COTS selection for a real-world financial planning, fore-
casting and budgeting application. We derived actor-oriented models from ex-
isting use cases to represent the architecture of the system. We then investi-
gated which combinations of components could be plugged into the system ar-
chitecture as instances of model actors, and applied some assessing methods
and techniques to evaluate the resulting architectures and the behaviour of the
components. From this case study exercise, REACT demonstrated its exploita-
bility for real-world COTS and component selection exercises.

1 Introduction

In previous research [1] we reported the innovative application of the i* goal model-
ing approach to inform the selection of software components. Most reported compo-
nent selection processes [2, 3] and techniques [4, 5] support the selection of inde-
pendent software components. In contrast, in real-world applications, the decision to
select one component is rarely so simple and depends on which others will be se-
lected [6]. The innovation, implemented in REACT (REquirements-ArChiTecture),
was to apply i* SD models to model software architectures in terms of actor depend-
encies to achieve goals, satisfy soft goals, consume resources and undertake tasks.

However, the REACT approach has yet to be evaluated on a real-world case study
in order to investigate its utility and usability. Rather than apply REACT to a live
project with attendant risks, we have chosen to apply it retrospectively to a previous
but complex component selection exercise reported in [7]. The selection referred to
involves the implementation of a solution comprised of several different COTS and
custom components in the suite of financial planning, forecasting and budgeting

This work has been partially supported by the Spanish project TIC2001-2165.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 63–73, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

64 V. Sai, X. Franch, and N. Maiden

packaged application presently nearing production rollout at the Software Engineer-
ing Institute (SEI). We believe that this system serves the purpose of validating the i*
models. It had a complex architectural environment, with important interdependen-
cies between major components of the system architecture. These interdependencies
gave rise to integration challenges that needed to be overcome in order to satisfy the
system’s goals. Such a case study was expected to give REACT a thorough road-
testing, and point out the need for specific improvements and extensions.

In this paper we extend and apply REACT to the SEI case study in order to explore
3 research questions:
1.
2.
3.

Can REACT be applied successfully to a real-world COTS selection problem?
What are the potential benefits that REACT can offer to decision-makers?
What new problems must REACT overcome to be useful in decision-making?

2 The REACT Method

REACT supports a concurrent requirement modeling and architecture modeling proc-
ess with clear synchronization stages in which we test candidate architectures for
requirements compliance, similar to previous iterative requirements acquisition-
component selection processes developed by the authors [6, 8]. It consists of some
activities that include development of quality models for components’ domains, re-
quirements elicitation, decision-making techniques, and others. For the purposes of
this paper, we skip some activities and focus on the formulation of requirements
models and their use for assessing architecture comparison and component selection.

REACT is an advance on existing methods described in [6, 8] that support the se-
lection of software components that satisfy stakeholder and system requirements.
These methods support acquisition of requirements to discriminate between compo-
nents and testing component compliance against these requirements. However, they
were limited to supporting the selection of one component at a time, and did not sup-
port more common selection problems in which different combinations of interde-
pendent candidate components have to be explored during selection.

In REACT, system requirements are used to produce a socio-technical system. To
do this we apply Yu’s i* approach [9] to model complex systems and actor goals, and
in particular its Strategic Dependency (SD) model for modeling networks of depend-
ency relationships among actors. Each dependency can be a goal-type, soft goal-type,
task-type or resource-type dependency. Opportunities available to actors are explored
by matching a depender, the actor that “wants”, and a dependee which has the “abil-
ity” to give what the depender wants. Since the dependee’s abilities can match the
depender’s requests, a dependency model of a system can be developed.

Next we use candidate components to make first-cut decisions about the system ar-
chitecture. System actors are instantiated by (types of) components, providing other
i* SD models, the system candidate architectures. Our innovation here is to model a
system architecture in terms of actors and roles to be fulfilled by components linked
by dependencies in the requirements domain rather than software connectors [10].
Instantiation of actors by components is many-to-many. Depending on the concrete

Driving Component Selection through Actor-Oriented Models and Use Cases 65

form of this instantiation, dependencies among actors may be hidden inside compo-
nents or not. Different architectures with different instantiations will differ in some
architectural properties, such as diversity, data integrity and others. We have defined
some of these properties by studying the dependencies in both i* SD models [1].

As an example, fig. 1 shows at the left an excerpt of a socio-technical system for a
meeting scheduler with three software actors (meeting scheduler itself, and a mail
client and mail server to enable mailing facilities) and a human actor, with some de-
pendencies among them. At the right, fig. 1 shows a candidate architecture that in-
stantiates two actors by the same component, hiding some of the dependencies.

Fig. 1. A socio-technical system for a meeting scheduler (left) and a candidate architecture (right).

3 A Case Study

This section briefly presents the fundamentals of the case study that forms the basis of
this paper. The Software Engineering Institute at CMU, USA, recently acquired a
system to satisfy financial management and decision-making process requirements.
The need arose in the wake of the existing system being rendered technically non-
feasible to maintain. As stated earlier [7], because of the systems integration chal-
lenge with complex source and target data structures and database management sys-
tem technologies, careful selection of a new suite of components was a task probably
as complex as the design and implementation phases of the project. This selection
task was also influenced by the enterprise architecture. Hence, it was decided that it
might be an apt case study in light of the purpose this paper intends to serve.
Fig. 2 shows a model for the New SEI socio-technical system. It includes 3 human
actors and others representing systems related with the new one, such as the core
financial application (CFA) and the human resources information system (HRIS). It
also shows important dependencies among these actors in terms of user-specified
goals and soft goals and technical architecture goals. In this paper we will focus on
important non-functional requirements, or soft goals, for the new system: security,
maintainability and reliability (in terms of availability and accuracy of calculations).
The case study process was in several stages - product identification, evaluation and
selection based on training with the REACT method, then recommending a solution
understood to be one that would satisfy the identified goals.

66 V. Sai, X. Franch, and N. Maiden

Fig. 2. A high-level socio-technical system for the new SEI system.

4 Deriving an Actor-Based Model from Use Cases

Use cases were used in the SEI project for determining the functional scope of the
system. For REACT to be useful in industrial projects, we planned to take these use
cases as starting point for deriving actor-based models. We know that use case and
scenario walkthroughs are well-established techniques for discovering new system
actors and their goals [11]. Use cases and scenarios are also versatile - for example
different granularities of use case can be used to discover business goals and soft-
ware system requirements [12]. However, most published approaches do not con-
sider the representation of the new goals or requirements, or the target require-
ments model.

Several researchers have explored the relationship between i* modeling and use
case modeling. For example in [13] is described a method to derive use case mod-
els from organizational models represented using i*. In contrast, our approach -
which also uses i* to model system architectures - aims to generate i* models from
use case models and descriptions that are simpler and quicker to start a require-
ments analysis with. It implements heuristics from RESCUE, a scenario-driven
requirements process that supports concurrent use case and i* modeling [14], to
discover i* model components from use cases. Heuristics applied to a use case
model support the generation of the SD model, e.g. each primary actor on the use
case model is an i* model actor that has a direct dependency relationship with the
new system actor. RESCUE also provides heuristics for deriving SR models, but
they are out of the scope of the paper.

Driving Component Selection through Actor-Oriented Models and Use Cases 67

Fig. 3. Use case for data extraction in the new SEI system.

We show in fig. 3 a use case that specifies the functionality of importing data from other sys-
tems, i.e. the process of extraction, transformation and loading of data between source and
target systems to satisfy the process requirements of the system. The use case representing the
automatic scheduling of some calculations at predefined intervals is not described but is re-
flected in the ensuing i* SD model.

Fig. 4 presents a SD model that is derived from this use case by applying our heu-
ristics. Note that there is a single actor that represents the new SEI system, related to
the other five actors by means of several dependencies. The final SD model (not in-
cluded for space reasons) would contain all the dependencies coming from the use
cases of the system.

5 Building a Requirements Architecture of the System

The next step of REACT builds the SD detailed model so that it can be analyzed
from the architectural and component points of view.
We build this model by applying the steps:

Build an i* SR model for the new system. The main goal of this actor is ex-
pressed in terms of tasks and resources, which appear as leafs in the SR model
Refine the existing SD model (see fig. 4) by decomposing the new SEI system
actor into other actors that play a well-defined role in the system.
Assign the SR elements to these new actors.
Assign the dependencies that appear in the original SD model to the appropriate
actors in the new model and identify dependencies among new actors.

We apply this process to the piece of SD model shown in fig. 4. For the sake of
brevity, we do not develop the SR model; we present directly the result in fig. 5, in-
cluding also some other elements coming from another use case (namely burdening,
i.e. allocation of overhead to the raw costs spent on a unit of work within the scope of
a project) to make the resulting diagram more complete. We obtain 3 actors:

68 V. Sai, X. Franch, and N. Maiden

The planning, budgeting and forecasting actor (PBF), doing most of the financial
job and managing the new data base.
The application integrator (AI), assists in data exchange between source and target
systems.
The business rules actor (BR), supports design and execution of business rules.

Fig. 4. SD diagram for data extraction in the new SEI system, new system not decomposed.

6 Analysis of the Model

At this stage, when applying this process to the whole SD diagram (which puts to-
gether information from all existing use cases), we would obtain a complete re-
quirements-oriented architecture of the system. The REACT methodology proposes
to carry out an analysis of the system for informing component selection.

Driving Component Selection through Actor-Oriented Models and Use Cases 69

Fig. 5. SD diagram for data extraction and burdening in the new SEI system.

In addition to the 3 actors already presented, we obtained other 3: a report designer
actor (RD), a report manager (RM) and a planning and reporting actor (PR). During
system acquisition, the SEI examined which financial products were offered in the
COTS market for those goals. After some screening, three alternatives were chosen as
finalists, each of them determining a different candidate architecture for the system.
This kind of overlapping among determining the candidate architectures and selecting
the candidate products is an important difference to our approach in [1], where archi-
tecture definition was previous to market screening. The instantiation of actors of

70 V. Sai, X. Franch, and N. Maiden

each candidate architecture is shown in table 1. We may observe that the 3 architec-
tures heavily rely on a central COTS financial component. Architectures A1 and A2
demand some glue code for the RD component, while A2 and A3 require some in-
house component.

Now, relevant architectural properties shall be chosen for driving the analysis. As
an example, we use 3 that played an important role in the case study (although others
also influenced the selection): maintainability, data security and diversity. At this
point, REACT proposes two different strategies for carrying out architectural analy-
sis. First, MCDM techniques may be used to obtain a first-cut criteria. Then, some
architectural metrics can be defined and applied to obtain more informative values at
the price of investing time.

MCDM techniques are a feasible alternative for comparing architectures, espe-
cially when there are few. We apply AHP [15] considering a different hierarchy for
each architectural property. The level of detail of the analysis depends on how much
effort can be invested. In our case, we simplify matters by comparing pair-wise the
candidate architectures with respect to the 3 properties directly instead of building a
hierarchy of criteria for each property. Results are summarized in table 2 using AHP
scores. Maintenance of A1 is considered much better than others due to the inexis-
tence of custom code. Data security of A1 is considered also much better than others
because there is less information flow among different components. But A1 is less
diverse than the others since there is a critical component whose failure would com-
promise the entire system. A2 and A3 are similar applying the same rationale.

In [1] we proposed metrics for data security and diversity, which are defined in
terms of SD model dependencies. For maintainability, we may define as metric:

This formula shows the main concepts behind our proposal, some of them not ap-
pearing in [1] (in fact, metrics defined in [1] should be adapted to the innovations).

IncDep(c) denotes the number of instance dependencies (i.e., dependencies that
appear once every actor has been instantiated by components) that are not hidden. A
hidden dependency is a dependency that connects two actors that are assigned to the
same component (remember fig. 1 that illustrates this concept). Also, the type of
component plays a crucial role in the behaviour of the architecture; for instance, the
maintainability of a COTS component is completely different of that of a custom
component. The metrics includes this concept by means of the correction factor of the
component, that is a multiplicative factor that depends on the type of component.
Last, we allow to weight the relevance of dependencies in the definition of the met-

Driving Component Selection through Actor-Oriented Models and Use Cases 71

rics. For instance, a resource such as conversion data (see fig. 5) can be considered
more important than username and password from the maintainability point of view
and then a greater weight assigned. Of course, both the correction and weighting
factors may be left the same (i.e., equal to 1) for each type of component and depend-
ency if a more lightweight analysis is to be carried out.

The detailed analysis using these metrics is very similar to the one presented in [1].
In fact, the metrics confirm the results obtained with the AHP analysis, and thus we
may conclude that no architecture is the best selection with respect to all the emergent
properties. We need to complement therefore the architectural-level analysis with the
component-level analysis, as recommended in REACT.

Component analysis is done on top of the tasks and resources that appear as leafs
in the SR model of the system. In [7] it was reported that in the real case study a
grading scale from 0 to 10 was used to rank the components. In REACT, we do not
apply the scale to components as a whole but to the actor’s part of the components.

Results are summarized in table 3, with focus on the diversity property that was
deficient in A11. We observe that the component-level analysis makes A1 better than
its competitors. From the point of view of our particular research interests this is
reassuring since in fact A1 was the architecture finally chosen by the SEI.

7 Conclusions and Future Work

This paper reports results from a retrospective application of REACT to aid the selec-
tion of components for a real-world financial planning, forecasting and budgeting
application. The application was a success. The team was able to apply the REACT
process, develop its models and undertake its analyses. i* modeling was effective for
modeling the architecture of both the socio-technical and software systems. REACT
heuristics were applied to explore the architecture- and component-level properties of
the candidate solutions. As such, the REACT method presented in this paper provides
greater component selection capabilities that methods such as SCARLET [8]. Whilst
SCARLET supports requirements acquisition and compliance evaluation with one
component, REACT recognizes that most selection problems involve multiple com-

1 Since this is a retrospective analysis, the numbers are mostly based on an inference summing
evaluation criteria and the evaluators’ grading and comments.

72 V. Sai, X. Franch, and N. Maiden

ponents with shared features and complex interdependencies. This paper demon-
strates the new modeling capabilities needed to support multiple-component selection
that will be integrated with established requirements acquisition and component
evaluation techniques in future versions of REACT.

The results allow us to answer the 3 research questions reported at the beginning of
the paper. The first question was can REACT be applied successfully to a real-world
component selection problem. The answer is a qualified yes. REACT was applied,
albeit retrospectively. REACT has the potential to aid selection between components
in a medium-sized application, although scalability to large applications remains to be
shown. Furthermore, several specific lessons were learned:

Use cases and the RESCUE heuristics [8] were an effective starting point for i*
modeling, thus enabling REACT to be integrated with mainstream development
methods such as the RUP, although more work needs to be done;
Overlapping the application of REACT’s architecture-level and component-level
analyses can be beneficial, in particular to discover and assess consequences for
the architecture from the selection of different permutations of components.

The second question was what are the potential benefits that REACT can offer to
decision-makers. One observed benefit is that REACT encourages and supports wider
stakeholder involvement during selection by allowing them to define and reason with
requirements. Likewise, the models allowed architects, developers and integrators to
communicate and develop a shared understanding of the new application. REACT
also provides different but complementary methods that model the systems architec-
ture from different points of view. Different architectural properties may be ranked
differently using these viewpoints, as it happened with diversity.

SEI was the first user of the REACT method. Results from this case study are
positive, as SEI envisages that REACT can be used for both future SEI internal proj-
ects and, with extensions, at SEI’s client sites if appropriate. The results hold out the
promise of a capability for deeper evaluation of COTS system architectures through
i*modeling and pair-wise comparison and analysis, which appear to foster early cap-
ture of constraints and while lending visibility of requirement satisfiers.

The third question was what new problems must REACT overcome to be useful
and usable in decision-making. We extended REACT beyond the version reported in
[1] in four distinct ways that demonstrate how we are already overcoming problems
that were encountered: a better defined application process; integration of use case
modeling; more accurate definition of metrics; and integration of local, cost-effective
use of multi-criteria decision-making techniques such as the AHP [15] to support
first-cut architecture selection decisions prior to more rigorous analyses. The ap-
proach is made cost-effective by applying the AHP to undertake pair-wise compari-
sons of the subset of compliant architectures with a subset of the requirements to
provide a ranking of the architectures. As such an analyst is required to make dozens
of pair-wise comparison decisions rather than hundreds or thousands. This focused
use of AHP is critical for its efficient use in component selection.

Driving Component Selection through Actor-Oriented Models and Use Cases 73

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

X. Franch, N.A.M. Maiden. “Modelling Component Dependencies to Inform Their Selec-
tion”. In Procs. International Conference on COTS-Based Software Systems (ICCBSS),
Ottawa (Canada), LNCS 2580, 2003.
S. Comella-Dorda, J.C. Dean, E. Morris, P. Oberndorf. “A Process for COTS Software
Product Evaluation”. In Procs. International Conference on COTS-Based Software
Systems (ICCBSS), Orlando (Florida, USA), LNCS 2255, 2002.
N.A.M. Maiden, C. Ncube. “Acquiring Requirements for COTS Selection”. IEEE Soft-
ware 15(2), 1998, pp. 46-56.
J. Kontio. “A Case Study in Applying a Systematic Method for the COTS Selection”. In
Proceedings IEEE International Conference on Software Engineering (ICSE), 1996.
C. Ncube, J.C. Dean. “The Limitations of Current Decision-Making Techniques in the
Procurement of COTS Software Components”. In Procs. International Conference on
COTS-Based Software Systems (ICCBSS), Orlando (Florida, USA), LNCS 2255, 2002.
X. Burgués, C. Estay, X. Franch, J.A. Pastor, C. Quer. “Combined Selection of COTS
Components”. In Procs. International Conference on COTS-Based Software Systems
(ICCBSS), Orlando (Florida, USA), LNCS 2255, 2002.
V. Sai. “COTS Acquisition Evaluation Process: The Preacher’s Practice”. In Procs.
International Conference on COTS-Based Software Systems (ICCBSS), Ottawa (Canada),
LNCS 2580, 2003.
N.A.M. Maiden, H. Kim, C. Ncube. “Rethinking Process Guidance for Software Compo-
nent Selection”. In Procs. International Conference on COTS-Based Software Systems
(ICCBSS), Orlando (Florida, USA), LNCS 2255, 2002.
E. Yu. “Modeling Organizations for Information Systems Requirements Engineering”. In
Procs. IEEE International Symposium on Requirements Engineering (ISRE), 1993.
M. Shaw. “Heterogeneous Design Idioms for Software Architecture”. In Procs. IEEE
International Workshop on Software Specification and Design (IWSSD), 1991.
A. Mavin, N.A.M. Maiden. “Determining Socio-Technical Systems Requirements: Expe-
riences with Generating and Walking through Scenarios”. In Procs. International
Conference on Requirements Engineering (RE), 2003.
C. Rolland, C. Souveyet, C.B. Achour. “Guiding Goal Modeling Using Scenarios”.
Transactions of Software Engineering (TSE), 24(12), 1998.
V. Santander, J. Castro. “Deriving Use Cases from Organizational Modeling”. In Procs.

International Conference on Requirements Engineering (RE), 2002.
N. Maiden, V. Croce, H. Kim, G. Sajeva, S. Topuzidou. “SCARLET: Integrated Process
and Tool Support for Selecting Software Components”. Book chapter in Component-
Based Software Quality, LNCS 2693, 2003.
T.L. Saaty. The Analytic Hierarchy Process. University of Pittsburgh, 1998.

10.

11.

12.

13.

14.

15.

Managed Technology Adoption Risk: A Way to Realize
Better Return from COTS Investments

Suzanne Garcia, John Robert, and Len Estrin

Software Engineering Institute,
4500 Fifth Ave, Pittsburgh, PA 15213
{smg,jer,le)@sei.cmu.edu

Abstract. Two companies can install the same COTS (Commercial Off The
Shelf) software package, yet one company enjoys more success, and a better
return, than the other. Needless to say, many factors could be involved in this
common scenario. Yet, chances are, one of the factors is that the successful
company actively managed the non-technical aspects of the adoption of the
COTS software adoption, instead of just selecting it and installing it. What is
the difference? According to technology transition researchers, “installed”
means that the system is operational; however, only a few people use the soft-
ware as intended (or at all!) [Fichman1995]. “Adopted” means that the system
is operational, and employees are using it in the way that was intended to sup-
port the business need that led to the COTS adoption to begin with. Every or-
ganization exhibits different risks for adopting a particular technology, and
whether and how those risks are managed often determine whether adoption is
achieved, vs merely achieving installation. Managing adoption, especially
managing adoption risk, actually starts before acquiring any technology and
continues after installation.

1 Introduction

This paper provides insight into the Software Engineering Institute’s (SEI) approach
for actively managing adoption risks as part of overall software technology selection
and implementation. This life cycle, customized from successful SEI practices for
commercial software adoption for larger companies, was used to guide TIDE (Tech-
nology Insertion, Demonstration, and Evaluation) projects, which were targeted at
small manufacturing companies adopting advanced COTS engineering software solu-
tions, and is the basis for two publicly-presented TIDE technology adoption tutorials
available on the TIDE web site (http://www.sei.cmu.edu/tide), “Beyond the Vendor’s
Checklist” and “Beyond Installation”. [Garcia2002a, Garcia2002b] Since many small
to medium sized companies or organizational units are facing COTS adoption efforts,
we believe that the successful approach we used with the small manufacturers has
applicability to small and medium enterprises in general.

Figure 1 defines the notional life cycle we used with small manufacturers. The proc-
ess elements highlighted in blue are those that were added to specifically address non-

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 74–83, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Managed Technology Adoption Risk 75

technical adoption risk management. They are the ones that are the focus of this pa-
per. Each one is described, and some are elaborated with notes on particular tech-
niques or representations that are used to facilitate execution of that element.

Fig. 1. SEI’s TIDE Technology Adoption/Implementation Life Cycle

2 Baseline Organization Adoption Factors

This element involves the process of understanding non-technical factors in the or-
ganization that have historically affected (either positively or negatively) COTS im-
plementation. Factors related to the business strategy, work practices, and internal
environment of the organization are analyzed to understand the historical pattern of
the organization related to technology adoption. Several of these factors are derived
from Paul Adler’s work related to updating a company’s technology base, and they
are supplemented by SEI research related to managing technological change in or-
ganizations. [Adlerl990]. Areas and things to consider include:

Work practices – How easily do we historically implement work practice
changes related to adoption of a COTS product?
Skills – Do we traditionally ensure that employees have relevant technical
experience and/or project management experience related to adopting
COTS software?
History—what lessons have we internalized related to our past history of
COTS adoption?

76 S. Garcia, J. Robert, and L. Estrin

Values – How well have we matched our own company values to the values
implied by COTS packages we have adopted in the past? (ie have we under-
stood that some ERP packages have specific expectations related to how data
is shared, and looked at whether or not we agree with those expectations?)
Structure – How well have we historically recognized the (potential) need for
new roles and responsibilities when a COTS package was implemented?
Reward System – How well have we constructed reward systems that en-
courage use of the COTS package and discourage continuation of old prac-
tices?
Sponsorship – How well does sponsoring management for a COTS adoption
“walk their talk” by recognizing and reinforcing use of the new COTS sys-
tem?
Business strategy—how well have we matched the COTS products we
choose to relevant elements of our business strategy?

Understanding the company’s historical pattern in these non-technical risk areas can
help to avoid COTS selections that are likely to play to weaknesses in the organiza-
tion vs its strengths.

3 Identify Adoption Risks

This element continues the analysis of non-technical adoption risk by moving from
the historical perspective to looking at the risks that are inherent in the current COTS
software adoption being contemplated. The kind of information gathered falls in the
following areas (note these are the same categories as for baselining the organiza-
tional factors, however, the questions are now re-oriented to address the probable
risks related to the particular product/technology under consideration):

Work practices – What procedures, techniques, processes, will need to be
changed for the COTS software to operate successfully? How drastic are the
expected changes?
Skills – Do employees have relevant technical experience and/or project
management experience related to adopting this type of COTS software?
History -- Has the company adopted this type of COTS software before?
What are the lessons learned?
Values – Do users and managers share a vision of how the COTS software
will be used and how it will help the company to achieve its business goals?
Does the software assume particular values (for instance, making an as-
sumption about how widely certain data is shared) ? How well does the or-
ganization’s practice mesh with the values expected by the software?
Structure – Does the software imply any particular roles, responsibilities, in-
terfaces? How well does the organization mesh with those implications?
Reward system – Are there incentives for adoption/use of the software and
disincentives for not adopting?

Managed Technology Adoption Risk 77

Sponsorship – Does management understand the software and how it will
change and help the company? Is it committed to actively supporting the
new way?
Business strategy—how well does the software being considered mesh with
the business strategy of the organization?

A helpful analysis aid can be created to guide organizations that are unfamiliar with a
particular technology or product type (a consistent issue with small organizations we
worked with). This involves creating an “implications table” that addresses each
category in relation to the technology under consideration. For each category, the
inherent implications of the COTS product type or product is listed, so that, when the
self-evaluating organization reviews it, they have a more concrete idea of the types of
things they would “see” if they implemented the candidate COTS product. Figure 2 is
an example table created for the general category of MES (Manufacturing Execution
System) COTS products. Note that 4 specific work practices are called out as being
implied by this technology type. If work practice implications are a significant ele-
ment of the COTS product’s implications, then a separate table just devoted to work
practice changes could be constructed.

78 S. Garcia, J. Robert, and L. Estrin

The list of adoption risks that this analysis spawns becomes the basis for the Adoption
Risk Management Plan for the COTS adoption. You will find that sometimes the risk
mitigation activities that would be useful for these risks have already been identified
and laid into the implementation plan, but many of them (for example, communica-
tions planning) are commonly ignored if an explicit adoption risk exercise is not con-
ducted.

4 Evaluation of Technology Adoption Risk Factors

Once the relevant management stakeholders (usually the leadership team of the com-
pany) have identified the organization’s adoption risks in the above areas, the next
element, “Evaluation of Technology Adoption Risk Factors”, involves a self-
evaluation by the selection/implementation team, evaluating the risk categories above
on a scale of one to five. (“One” meaning “not a good fit with the way we do things
now”, “Five” meaning “an excellent fit with the way we do things now”.) Plotting
those factors in a Kiviat diagram or histogram (I favor the Kiviat, but others prefer the
histogram representation, either one will do) will depict the organization’s adoption
readiness profile (see example in Figure 3) in relation to this COTS product type or
product (depending on the scope of the adoption). Since the factors haven’t been
weighted for importance, the presentation cannot accurately predict overall success or
failure. However, it can help the organization to identify and start to mitigate the
non-technical risks before installing any software.

Fig. 2. Example Readiness Profile for MES Adoption in a Small Manufacturing Company

Managed Technology Adoption Risk 79

The answers (both in terms of the readiness profile and the actual risks identified) will
help determine whether the candidate technology being considered is a good “fit”
with the organization’s business strategy, work practices, and internal environment.
To determine whether individual products are a good fit for the organization, compare
candidate software products to current work practices, skill levels, etc., using the risks
identified as a guide for areas to probe with vendors. For example, some software
products are much more powerful and complex than others. As a result, they may
require rigorous training or highly skilled and experienced personnel. They may also
require significantly changing workflow or other processes. The organization may or
may not be prepared to invest in the skill development and work practice changes
required. The point is that being explicit about the decision to install and adopt a
particular product with knowledge of what risks are being accepted BEFORE making
the costly and often irrevocable decision to buy the software product reduces the
overall risk to successful adoption.

Fig. 3. Level of Use Profile at Time X

5 Establishing Level of Use Goals

At this point, the organization is typically ready to purchase and install the software.
The next adoption challenge will be getting everyone in the organization who needs to
be using the software to actually use it. The element, “Establishing Level of Use
Goals” is one aspect of addressing this issue. Ideally, the organization should estab-
lish “level of use” criteria for each role in the company that will be expected to use

80 S. Garcia, J. Robert, and L. Estrin

the product in a significant way. This requires identifying employee tasks, mapping
each task to relevant software and specific operations, and, ultimately, making sure
that the employees in each role get the training and implementation support needed to
achieve the level of use required for their role. In some organizations, it is helpful to
categorize users and create a profile that displays a snapshot of the level of use
achieved by the different categories of users. Figure 4 provides an example of such a
profile.

From a technology transition literature viewpoint, this approach reflects the practi-
ces recommended by Zmud and Apple related to measuring technology in-
fusion. [Zmud1992]

6 Building/Deploying Communication Mechanisms and
Building/Deploying Implementation Support Mechanisms

“Diffusion” refers to the process of moving technology across the organiza-
tion/population. For example, an organization may want to implement a manufactur-
ing execution system (MES) to help improve production efficiency. But some of the
data can also help sales personnel predict delivery dates. Some data can also help the
front office streamline billing. To assure success, employees in ancillary areas, as well
as primary use areas, should know how the system fits together, and what part each
employee plays in it. To be effective at diffusion of the software throughout the com-
pany, it is useful to understand the typical cycle that individuals go through before
committing to use a new technology, highlighted below in Figure 5.

In general, the “adoption commitment” process flows through discrete stages:

Contact – Introduces the technology in terms of its capabilities, i.e. the big
picture.

Awareness – Relates the technology to the company, department, individual.
Understanding – Identifies individual stakeholder roles, responsibilities and
relationships, and establishes sufficient understanding of the technology to
know how to change work practices to handle it

Trial Use – Establishes test cases for individuals, tasks, or capabilities – the
first use of the technology for a particular set of users.

Adoption – Promotes proper use by employee and across organization.
Institutionalization – Incorporates the technology into the infrastructure of the
organization and builds upon it. [Patterson1982]

1.

2.
3.

4.

5.
6.

A transition agent can help move the diffusion process along using the appropriate
support mechanisms to help people move productively from one stage to another. For
example, “communications mechanisms” such as magazine articles and vendor
briefings can introduce the technology in the Contact and Awareness stages. Semi-
nars, case studies, technical briefs, and other detailed communication mechanisms can
help employees in the Understanding stage. During this stage, the organization
should also begin to use “implementation mechanisms.” These include specifying

Managed Technology Adoption Risk 81

stakeholder roles, responsibilities, and relationships, as well as specifying measures to
use to verify that the technology actually provides the anticipated benefits. (See the
TIDE tutorial, “Beyond Installation” on the SEI/TIDE website for more detailed
lists of typical communication and implementation support mechanisms, at
www. sei.cmu.edu/TIDE)

Pilot trials typically require a combination of communications and implementation
support. For example, many SMEs rely on user groups or outside consultants for the
communications help, and written policies, incentives, and training aids for imple-
mentation support.

During the Institutionalization phase, communications support could include new
employee orientation and training courses for different users. Implementation support
could include training classes and mentoring. Many communications and support
mechanisms are available from the software vendor, user groups, outside consultants
or other sources. However, the organization may have to develop others in-house.

To make sure the diffusion process is successful, the organization should measure it
just as they measured the infusion process. This requires developing measures and
exit criteria for each stage. Table 2 can help in producing a diffusion profile at differ-
ent times during the adoption.

Measuring diffusion provides an interim measure of how the adoption is progressing.
Once the technology is firmly in the Adoption stage, then it s appropriate and useful
to measure business benefit/ROI...one of the benefits of the diffusion measure is to
help identify the appropriate time to push for more traditional, ROI-based business
measurements. See the “Beyond Installation” tutorial for example profiles of diffu-
sion at different points in an organization’s deployment of a new technology.

Fig. 4. Patterson-Conner Technology Adoption Commitment Curve

82 S. Garcia, J. Robert, and L. Estrin

7 Managing Adoption Issues and Risks

No matter how smoothly the implementation effort has gone, there are bound to be
issues that come up. Some of these issues are predictable and were identified as part
of the “Identifying Adoptio Risks” element. The “Managing Adoption Issues and
Risks” element involves monitoring the installation effort and the risks that were
previously identified, identifying additional trouble spots in the implementation, and
developing mitigation tasks as they come up. The goal of this effort is to make sure
that the COTS software doesn’t become “shelfware”. By proactively monitoring the
originally-identified adoption risks to see if they have manifested, and by identifying
and dealing with unanticipated issues that have been seen during the implementation,
adoption risks can usually be contained or mitigated. To achieve this type of moni-
toring, usually some type of integration of the adoption risk management into the
implementation status monitoring/management needs to be achieved.

Managed Technology Adoption Risk 83

8 Collecting Technology Adoption Lessons Learned

During the element “Collecting Technology Adoption Lessons Learned,” company
executives, implementation team members, and department managers meet to share
information about the activities and results related to adopting the COTS software.
This activity can also serve as a springboard for continuous improvement activities
and hardware and software upgrades. The focus of this lessons learned collection is
the practices the organization used, successfully and unsuccessfully, to identify and
manage the known adoption risks, and to identify the risks that were not anticipated
that turned into issues. This project has now become part of the organization’s his-
tory, and the baseline of organizational factors may be revisited to see how the adop-
tion history of the organization has changed (if at all) as a result of this COTS adop-
tion project.

9 Summary

Taken together, adding the adoption risk management elements to the typical COTS
selection and technical implementation tasks can help the company management
make better informed decisions about selecting a software product, and can help the
organization plan and implement the technology successfully to reach their desired
usage goals for the COTS product.

Managed technology adoption can help organizations maximize the return on their
COTS software investment. For small organizations in particular, looking to increase
productivity, improve quality, and reduce time, the investment in managed COTS
technology adoption is the natural complement to the decision to invest in the tech-
nology itself.

References

Managing Your Technological Base, Adler, P. & Shenbar, A., Sloan Man-
agement Review, Fall 1990, pp. 25-37
The Illusory Diffusion of Innovation: Assimilation Gaps, Fichman, R., &
Kemmerer, C. CISR Working Papers, 1995, #294.
Beyond the Vendor’s Checklist, Garcia, S.M., TIDE Conference Sept 2003.
url: http://www.sei.cmu.edu/tide/
Beyond Installation, Garcia, S.M., TIDE Conference Sept 2003.
url: http://www.sei.cmu.edu/tide/
Building Commitment to Organizational Change, Patterson, R. & Conner, D.
Training & Development Journal 36, 4 (April 1982): 18-30.
Effects of resource constraints on small business, Thong, J.Y.L. and Yap,
C.S., International Working Conference on Diffusion, Adoption and Imple-
mentation of Information Technology, 1997 Tom McMaster, editor, Chapman
& Hall, London, 1997, p. 191-206
Measuring Technology Incorporation/Infusion, Zmud, RW, & Apple, LE,
Journal of Product Innovation 9, 2 (June 1992): 148-155.

[Adler 1990]

[Fichman1995]

[Garcia2002a]

[Garcia 2002b]

[Patterson1982]

[Thong 1997]

[Zmud1992]

Understanding Services for Integration Management

L. Davis and R. Gamble

Department of Mathematical and Computer Sciences
The University of Tulsa

600 South College Avenue
Tulsa, OK 74104 USA

{davisl,gamble}@utulsa.edu

Abstract. With the advent of web services, service-oriented architectures
(SOAs), which promise interoperable communication in an application integra-
tion, are now primarily web-based. Due to the high degree of encapsulation and
heterogeneity among commercial-off-the-shelf (COTS) components, their use is
limited within these SOAs. This is because the definitions of web-based serv-
ices do not differentiate between component services and integration function-
ality nor has this integration functionality been classified specifically for COTS
components. Understanding what inhibits COTS components from participating
in a SOA is essential to enabling their integration. In this paper, we identify and
define common enablement services that facilitate service-oriented integrations
in which COTS components participate as integration management services.
Software architecture can express integrated system design by identifying
needed integration functionality independent of communication mechanisms.
Therefore, we describe common web services in architecture terms and, through
design patterns, define the integration functionality by which they are distin-
guished.

1 Introduction

Industry depends on the internet to unite their often distributed IT components in an
effort to cooperatively store and use existing resources and services. This requires
integrating disparate software systems, services, and information producing an appli-
cation integration. Service-oriented architectures (SOAs), which utilize middleware
as communication frameworks and partition component functions into logical, homo-
geneous modules for use by clients, have emerged to meet the demand for low cost,
fault-tolerant, decoupled, interoperable systems. To leverage the internet for the
greatest advantage to businesses, new computing paradigms such as web services
have been developed using XML and SOAP as the basis for their standard.

With the advent of web services, SOAs have become increasingly web-based.
SOAs have emerged that incorporate web services registration and dynamic service
discovery within the confines of XML and SOAP [13, 19]. Web services-based SOAs
claim to provide interoperable communication for legacy systems and commercial-
off-the-shelf (COTS) components. However, this presupposes that components regis-
tering their services with the SOA manifest analogous communication properties
and security expectations. Thus, integrating COTS components by describing their

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 84-93, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Understanding Services for Integration Management 85

services in a Web Services Description Language (WSDL) document and registering
it with a SOA does not solve the interoperability issues at stake.

Interoperability problems arise when communication between components and
between components and an application is impeded. In order to provide transparent
communication in an application integration, these problems must be resolved. It fol-
lows, due to the heterogeneous and encapsulated nature of COTS components, extra
functionality that fulfills communication expectations is required to enable the inte-
gration of their services in a web-based SOA. These problems are further com-
pounded by on-demand communication, a frequent paradigm in such systems. The
correction of mismatches in service definitions for COTS components during dy-
namic communication can be especially daunting.

Traditional SOAs often provide some integration functionality as a centralized
management layer. This layer does not take into account highly disparate data formats
and communication strategies. Web services-based SOAs implement enablement and
integration functionality as web services, promoting a high degree of decoupling such
that services can be managed and destroyed correctly. However, there is no present
differentiation in web services standards between computational services and those
that manage service communication. In order for SOAs to become viable mechanisms
for dynamic application integration these management services must be delineated.

In this paper, we identify common services necessary to enable COTS components
to participate in a web-based SOA. We define these service types as integration man-
agement services because they allow the explicit management of the integration func-
tionality that binds a component to a SOA. We use patterns to establish the inherent
integration functionality in integration management services such that they not only
support their definition, but they promote the identification of these services to facili-
tate dynamic application integrations using SOAs.

2 Motivating Example

A business constructs a SOA to automate profit tracking and liquidity assessment to
aid upper management in making decisions concerning spending and acquisitions. For
example, a user requests a profit analysis based on the company’s market exposure,
the size and expense of their shipping fleet, the performance of their stock, and their
holdings and acquisitions, and receives an assessment of the company’s current prof-
itability. The SOA consists of legacy components that maintain company status,
COTS assessment components, and COTS middleware.

Fig. 1 depicts the five main services of the components of the profit tracking sys-
tem. Risk contributes client, portfolio, instrument, segment, and sector data. Logistics
provides shipping, tracking, and accounting information. Market History supplies
company stock performance information as well as the performance information of
acquired companies and companies with which there is a strategic alliance. Knowl-
edge Manager organizes and aggregates the incoming data from Risk, Logistics, and
Market History. Profitability Assessment analyzes particular financial data (e.g., the
data supplied by Risk, Logistics and Market History) to provide profit reports and a
liquidity assessment. Risk, Logistics and Market History can be queried simultane-

86 L. Davis and R. Gamble

ously, and the data that they supply can be buffered and forwarded appropriately via
messages. When executing within the company’s intranet, confidential or sensitive
information, which the system utilizes, is protected. The architecture of the system is
static.

Fig. 1. The Profit Tracking System

3 Relevant Background

Distributed, integrated systems require correct, secure, and evolvable solutions as
components often cannot provide these guarantees at their interface [6, 7]. Connectors
have become increasingly important to COTS integration research. They form the
basis for component interaction, and are the means by which COTS provide services
in application integrations [2, 12, 14]. Complex connectors that bind disparate com-
ponents in application integrations are often specified using design patterns [4, 5, 12,
16]. These enabling functions or processes are deployed “external” to the component
to allow it to interact with other components and with a middleware platform or envi-
ronment. These functions are generally in the form of translation and transformation,
routing and decision making, functional calls and polling, and security mechanisms.
Some examples of these connectors are as follows.

Integration elements [12] provide a uniform description of integration function-
ality found in particular architecture and design patterns, e.g., adaptor, proxy, etc
[5, 9].
Protocol transformation [18] wraps components to resolve interoperability prob-
lems.
Distributor connectors [14] direct data flow through brokering and routing deci-
sions.

Web Services, which promise minimized integration efforts, are an emerging gen-
eration of distributed technologies. They can be described as autonomous, modular
applications, which execute over the internet to perform a particular task, and comply
with a specific technical format, i.e., WSDL [10, 13, 15, 19]. Web services frame-
works offer platform-level integration, i.e., they use well-established protocols as a
standard, to eliminate reliance on factors such as devices, operating systems, middle-

Understanding Services for Integration Management 87

ware solutions, and programming languages. Such technologies as Jini, JXTA, XML,
and SOAP can be used to enable dynamic registration and discovery of web services
in SOAs. However, they prescribe particular communication properties to the SOA,
requiring all component services to communicate homogeneously in order to be inte-
grated in the system [13]. At present, integration functionality that enables compo-
nents, without the proper XML interface, to communicate as web services is not ad-
dressed or described in standard web services research.

To allow the use of web services outside the confines of XML, web-based services
have been implemented to facilitate the incorporation of web service in established
middleware frameworks such as CORBA, EJB, COM+ or .NET systems [15, 19].
Services such as these that enable components as web services in such middleware-
based SOAs encompass interoperability issues and security [15]. However, at present
these services are not classified as integration enablers, existing only as ad hoc solu-
tions independent of the middleware design.

4 The Architecture of Integration Management Services

The designers of the profit tracking system outlined in Section 2 want to market it to
other businesses as an on-demand service. The new system must accommodate sub-
scribers from manufacturers, distributors, and portals. Its performance must be scaled
to real-time while protecting the integrity and confidentiality of subscriber data.
Based on these requirements, large-scale provisioning of the system’s functionality
excludes static integration of every subscriber’s components. Performance would be
prohibitively slow and the system would no longer be protected by intranet security,
making subscriber data vulnerable.

A better approach allows the dynamic connection and disconnection of subscriber
components. When a subscriber desires an assessment based on their financial expo-
sure, market history, and real-time stock market information, their component serv-
ices, along with New York Stock Exchange, Australian Stock Exchange, and
NASDAQ real-time monitors will be “temporarily inserted” into the profit tracking
system environment. These component services will have interfaces distinct from
existing services, provoking interoperability problems. Because of such heterogeneity,
additional integration functionality is necessary to enable these services in the SOA
[3, 10, 19, 21]. Furthermore, the web-enabled system must be interoperable and fulfill
the security requirements of the participating components and the original application.
Thus, given that the existing SOA can be web-enabled, the developers still require
technology for dynamic assessment followed by the instantiation of web-enabling
integration management services for each of the components.

In the remainder of this section, we define the services of protocol translation, reli-
able messaging, security and synchronous/asynchronous conversion using established
pattern languages as a foundation [5, 9]. We minimize the categories presented for
clarity and space considerations, focusing on those most appropriate to the integration
management service patterns. The services can stand alone or be composed depending
on the degree to which the component communicate and the expectations of other
components and the application. We use UML stereotypes for component, translator,

88 L. Davis and R. Gamble

controller, and extender following research definitions for architecture components
and integration element connectors [4, 5, 12, 16]. We then return to the profit tracking
system, and discuss how the services are deployed.

4.1 The Protocol Translation Service

Name: Protocol Translation
Problem: Messages and data that components communicate as part of their services
are formatted differently than that of the SOA environment into which they are to be
inserted.
Forces: Dissimilar protocols (e.g., SOAP, JMS, CORBA, and DCOM); Lost, garbled,
or incomprehensible messages should not occur.
Context: A SOA has a different communication protocol, whether web-enabled or
not, than the connecting component.
Solution: Implement a message translation service to manage how a component
communicates messages/requests to a SOA [3, 18, 19]. This service adapts outgoing
calls to the proper format for the SOA and adapts incoming calls to a component for-
mat.

Fig. 2. The Protocol Translation Service

A protocol translation service, depicted in Fig. 2, is composed of one or more transla-
tion functions. Any requests made to the component’s service interface are directed
first through the incoming translator, so the request mirrors the communication proto-
col of that component. The outgoing protocol translation service uses the service in-
terface to provide an intermediate format translation to that of the environment. The
product of this translation is then forwarded.

4.2 The Reliable Messaging Service

Name: Reliable Messaging
Problem: The execution of components that expect delivery confirmation when they
communicate messages could be suspended indefinitely, causing deadlock, if the
SOA does not provide delivery guarantees.

Understanding Services for Integration Management 89

Forces: Need to provide and require message/data delivery confirmation; Guaranteed
message delivery.
Context: A SOA that asynchronously communicates its messages does not necessar-
ily provide acknowledgements to requests.
Solution: Implement a service that simulates a direct handshake between the compo-
nent and SOA environment [1, 6, 11]. As depicted in Fig. 3, this integration manage-
ment service monitors the component’s service interface to which it is bound for fail-
ure as well as for incoming and outgoing messages. If the component fails, the reli-
able messaging service retains all messages and polls the failed component until it
comes back online. Upon restart, all communications are forwarded appropriately and
a callback to the communicating component is issued as acknowledgement of its re-
quest.

Fig. 3. The Reliable Messaging Service

4.3 The Security Service

Name: Security
Problem: Components are often not equipped with the security mechanisms neces-
sary to communicate in a web-based environment. Generally, this is because they do
not expect to communicate actively or in a distributed fashion.
Forces: Dynamic connections to a web-enabled SOA; Messages should be transferred
securely to the SOA environment as a special form of communication.
Context: A SOA requires secure communication, authenticating and certifying users,
as well as encrypting messages and data.
Solution: Implement a service that provides security mechanisms for a component to
properly communicate in a web-enabled environment. This service fields all messages
and requests to ensure they come from authorized participants and generates creden-
tials or encrypts data such that outgoing communications are consistent with the ex-
pectations of the SOA [3, 17, 19]. It this way, communication conflicts such as inhib-
ited rendezvous, and mismatched data formats are resolved [6]. The service requires a
process to buffer requests and an authorization enabler to field incoming and outgoing
messages (see Fig. 4), executing embedded security mechanisms such as authentica-
tion and certification. If the security service is being used to handle encryption, it
must be coupled with a protocol translation service. Depending on the level of secu-

90 L. Davis and R. Gamble

rity dictated by the application expectations, another buffer may house previously
authorized components (depicted in the dashed box in Fig. 4).

Fig. 4. The Security Service

4.4 The Synchronous/Asynchronous Conversion Service

Name: Synchronous/Asynchronous Conversion
Problem: A component communicates either by directly calling the SOA and ex-
pecting a direct response, or by broadcasting a request for insertion and being pro-
vided the facilities to communicate with the SOA. The interoperability problem stems
from the SOA expecting the opposite type of communication.
Forces: Transparent message passing; Connectivity expectations; Dynamic commu-
nication and insertion.
Context: An SOA implemented using a middleware platform which supports the
communication paradigms asynchronous messaging or request and reply, but not
both.
Solution: Implement a service that changes the mode of message transfer for a com-
ponent. The synchronous/asynchronous conversion service enables component to in-
sert itself, for example, by adapting a component’s implicit communications to ex-
plicit calls [3, 20]. Fig. 5 illustrates the synchronous/asynchronous conversion service
as the composition of a buffer for housing both incoming or outgoing messages and a
bi-directional router to direct and forward communications.

Fig. 5. The Synchronous/Asynchronous Conversion Service

Understanding Services for Integration Management 91

Notice in Fig. 1 - 4, we partition the internal component functions from its external
service interface. The interface functions, i.e., the functions directed through the inte-
gration management services of components, are identified through comparison of the
architectural properties of the component to the expectations of the SOA environment
[8]. Without first describing the component using uniform properties, it is difficult to
assess what integration management services are needed for interaction enabling. De-
fining the integration management services in terms of patterns provides structure and
easy reuse.

Returning to the profit tracking example, Fig. 6 depicts the system with three inte-
gration management services. Protocol Translation reformats data on the part of Risk,
and Market History to mimic that of the established SOA. Security provides creden-
tials to NYSE, ASX, NASDAQ, Risk and Market History, certifying their data, as the
SOA requires guarantees of authenticity for sensitive information. Reliable messaging
assists Risk and Market in forwarding their data by emulating direct communication
and in supplying a message receipt to those components on the part of the system.
They will then provide their information to the knowledge manager and disconnect.

Fig. 6. The Profitability Assessor

5 Conclusions

Integration management services supply the technology to enable interoperability and
make seamlessly available a component’s services for use in web-enabled SO As. Un-
like a static design that centralizes its integration solution to form a single, encapsu-
lated system, integration management services promote the high decoupling necessary
to enable components as services in such architectures. However, the present defini-
tion of web services is too specialized and classification of web services outside of
component computations is ambiguous and mired in contradiction. Thus, the differ-
entiation of such enablement services from traditional web services is important to
further promote use of web services SO As for application integrations. Yet, the cur-
rent research in web services does not presently offer a principled approach to such
classification.

92 L. Davis and R. Gamble

In this paper, we present common enablement services as integration management
services and pattern these services. These patterns localize the integration functional-
ity present in these services and define the architectural forces (e.g., the properties of
the interface that cause interoperability problems requiring extra-functional solutions)
that influence the enablement of components as services. Using this approach, en-
ablement services can be distinguished from component services, offering the design
guidance and uniformity needed for SOAs to become viable mechanisms for applica-
tion integration.

Acknowledgements. This material is based upon work supported in part by AFOSR
(F49620-98-1-0217) and NSF (CCR-9988320). Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation or the US gov-
ernment. The government has certain rights to this material.

References

Web Services Glossary:W3c Working Draft. W3C, http://www.w3.org/TR/ws-gloss/, May
14 (2003)
Allen, R. Garlan, D.: A Formal Basis for Architectural Connection. ACM Transactions on
Software Engineering and Methodologies, 6 (3). 213-249
Bloomberg, J.: Web Services Management: Successfully Architecting the Future of Your
Business. Zapthink, Waltham, MA, November (2002) 1-12
Bonura, D., Culmone, R. Merelli, E.: Patterns for Web Applications. 14th Int’l SEKE.
Ischia, Italy July 15 -19 (2002) 739-746
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. Stal, M.: Pattern-Oriented Soft-
ware Architecture: A System of Patterns. John Wiley & Sons, (1996)
Davis, L., Flagg, D., Gamble, R. Karatas, C.: Classifying Interoperability Conflicts. 2nd
Int’l ICCBSS. Ottawa, Canada (2003)
Davis, L. Gamble, R. F.: Identifying Evolvability for Integration. 1st Int’l ICCBSS. Or-
lando, Florida (2002)
Davis, L. Gamble, R. F.: The Impact of Component Architectures on Interoperability.
Journal of Systems and Software, 61 (1). (March 1) 31-45
Gamma, E., Helm, R., Johnson, R. Vlissides, J.: Design Patterns Elements of Reusable
Object-Oriented Software. Addison-Wesley, (1995)
Gergic, J., Kleindienst, J., Despotopoulos, Y., Soldatos, J. Polymenakos, L.: An Approach
to Lightweight Deployment of Web Services. 14th Int’l SEKE. Ischia, Italy July 15-19
(2002) 635-640
Ingham, D., Shrivastava, S. Panzieri, F.: Constructing Dependable Web Services. IEEE
Internet Computing, 4 (1), January/February (2000) 25-33
Keshav, R. Gamble, R.: Towards a Taxonomy of Architecture Integration Strategies.
ISAW -3.1-2, November (1998)
Kleijnen, S. Raju, S.: An Open Web Services Architecture. ACM Queue, 1 (1), March
(2003) 38-46
Mehta, N., Medvidovic, N. Phadke, S.: Towards a Taxonomy of Software Connectors.
22nd International Conference on Software Engineering. (2000)
Pierce, M., Fox, G., Youn, C., Mock, S., Muller, K. Balsoy, O.: Interoperable Web Serv-
ices for Computational Portals. IEEE/ACM SC2002 Conference. Baltimore, Maryland
November 16-22 (2002)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Understanding Services for Integration Management 93

Schmidt, D., Stal, M., Rohnert, H. Buschmann, F.: Pattern-Oriented Software Architecture,
Volume 2, Patterns for Concurrent and Networked Objects. John Wiley & Sons, Inc., New
York, NY (2000)
Spitznagel, B. Garlan, D.: A Compositional Approach for Constructing Connectors.
WICSA’01. Amsterdam , The Netherlands (2001) August 28-31
Spitznagel, B. Garlan, D.: A Compositional Formalization of Connector Wrappers. 25th
International Conference on Software Engineering. Portland, OR May 3-10 (2003)
374-384
Stal, M.: Web Services: Beyond Component-Based Computing. Communications of the
ACM, 45 (10). (October) 71-76
Vinoski, S.: Where Is Middleware? IEEE Internet Computing, MARCH/APRIL (2002)
83-85
Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J. Sheng, Q. Z.: Quality Driven Web
Services Composition. 12th Int’l WWW Conference. Budapest, Hungary May 20-24
(2003) 411-421

16.

17.

18.

19.

20.

21.

Migrating Application Integrations

D. Flagg, R. Gamble, R. Baird, and W. Stewart

Department of Mathematical and Computer Sciences
The University of Tulsa

600 South College Avenue
Tulsa, OK 74104 USA

{flagg,gamble,robert-baird,william-Stewart}@utulsa.edu

Abstract. The internal functionality of middleware is highly variable and thus,
well-constructed integrations are difficult to perform without understanding the
architectural style of the middleware and the adaptive connections needed make
components in an application integration “middleware-aware.” In this paper, we
use IBM’s WebSphere® MQ to implement two different architectural styles of
integration: request/reply and publish/subscribe. The middleware supports both
approaches by using different configurations of controlling, routing, and translat-
ing functionality within the connectors. By explicitly describing the component
connectors attached to the middleware, we discuss the trade-offs that exist be-
tween centralized solutions in which the middleware is responsible for the major-
ity of the integration functionality and localized solutions, in which application
connectors are responsible for integration to the largest extent possible.

1 Introduction

Despite the wide array of COTS middleware, evolvable and dynamic application inte-
gration is still difficult. As middleware companies attempt to design the perfect integra-
tion solution, they must increasingly expand their product functionality. An unfortunate
result of this “feature explosion” is that it enables middleware frameworks to be shoe-
horned into nearly any application integration if enough implementation effort is ex-
erted. For example, IBM WebSphere® MQ can implement request/reply [1], pub-
lish/subscribe [1], and fire-and-forget paradigms. In Borland VisiBroker, the CORBA
functionality can simulate a publish/subscribe system using their Publish/Subscribe
Adapter. Thus, while the ability to implement an application integration is a certainty
given most middleware solutions, it may not necessarily be a “good” implementation.

Many application integrations revolve around streamlining old business processes. It
makes sense that, throughout the lifecycle of a distributed system, shifting requirements
will necessitate that components be added, removed, and modified. More dynamic sys-
tems minimize the down-time required to implement system modifications and inser-
tions. Dynamism is therefore an important quality that should be addressed in all appli-
cation integration endeavors.

Research in software architecture and its place in application development has ex-
amined both evolvability [4, 5, 12, 16] and dynamism [2, 3, 8]. Evolvable architectures
share similar qualities with dynamic architectures, such as the ability to determine how

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 94-103, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Migrating Application Integrations 95

to best change established architectures, accommodate new component versions, and
facilitate the addition and removal of components. A common thread in facilitating
evolvability and dynamism is the concept of architecture connectors. Connectors are
considered as first class objects with many possible incarnations. Each component
communicates through the connector to which it is attached to transfer information to
recipient components using one or more middleware technologies [9]. By singling out a
specific architecture entity in this way, it is possible to examine the trade-offs among
connector content, complexity, and knowledge of the environment.

When considering a particular application integration architecture style, there are
many tradeoffs to be considered. These include how the middleware technology can
best contribute to the application integration, what architecture style can be used to fa-
cilitate both performance and flexibility, and where the main pieces of the integration
solution should reside – central to the middleware or housed local to the component
connector to the middleware. In this paper, we address these issues by examining the
core functionality of IBM WebSphere MQ and the impact of architecture style on inte-
gration, i.e., request/reply vs. publish/subscribe. We use as an example a distributed
personal librarian system that progresses through a migration from a request/reply to
publish/subscribe paradigm to detail specific aspects related to middleware, architecture
style, and connector structure with respect to the migration.

2 Relevant Research

Software connectors are architecture abstractions that facilitate interaction among com-
ponents. Connectors manifest themselves in software systems as access points for
shared variables, table entities, buffers, procedure calls, remote procedure calls, network
protocols, pipes, etc. [9]. Connectors are an important abstraction for application inte-
gration. There exists explicit notation for them as first class entities, and they are well-
suited for distributed, heterogeneous message-based environments [6, 7, 10, 13].

Constructing connectors is a key architecture research area whose goal is to satisfy
the need for specialized forms of interactions required to bridge component mismatches
or to achieve extra-functional properties for performance and reliability [14]. In our
context, wrappers are also considered to be connectors, because a wrapper can be new
code inserted between component interfaces or infrastructure support between applica-
tion level code and communication mechanisms. Wrappers are used to compensate for
the mismatch problems of interacting, heterogeneous components by altering the per-
ceived behavior of the component with respect to the other components in the system
[15].

Reconfigurable architecture research focuses on placing systems in specific archi-
tectural styles, e.g., C2 [9] and Pit [11], that research has shown exhibit desired behav-
iors. “Lateral welding” and “horizontally slicing” are two research techniques that en-
able the use of middleware in the context of an architectural style. Both of these tech-
niques consist of implementing a single conceptual software connector, named a “vir-
tual connector,” using two or more actual connectors, that are linked across process or
network boundaries through a given middleware technology [9]. When implementing an
application integration, generally developers will not adhere to any style in particular,

96 D. Flagg et al.

with the exception of one enforced by their chosen (or required) middleware product.
Thus, forcing a particular application into a new integration style is often problematic.

3 Example Application Integration: ANUBIS

A Network Utility for Book Information Searching (ANUBIS) is a multi-user personal
librarian system developed in-house. ANUBIS resolves ISBNs, organizes, catalogs and
recommends books or other similar media for a distributed base of users. It is imple-
mented using: IBM WebSphere MQ v5.3 (middleware), MySQL Production Release
v4.0.12 (database), and Amazon.com Web Services 2.0 (online data source). ANUBIS
has key characteristics that are present in application integrations and can affect appli-
cation migration: using COTS products, obtaining web services, enabling distributed
communication across middleware, and using a custom GUI for the overall system.

Fig. 1. ANUBIS Architecture

Using a bar code scanner (or keyboard), a user enters an ISBN. The media informa-
tion for the ISBN is retrieved from the online data source. This information is then
stored in the user’s personal space within the database. Recommendations are made
based on user information (i.e., stored media) and preferences to suggest media items
that may interest the user using Amazon.com and the Recommendation Engine. Figure
1 depicts the implemented system, in which a recommendation engine, data source, and
database provide services to each user (client), utilizing the middleware to enable the
connections.

The system is implemented using two different architecture styles for middleware:
request/reply and publish/subscribe. This allows for a straightforward comparison of
connector and middleware complexity resulting from the two implementation styles.
We use ANUBIS to demonstrate the change in connectors as middleware is migrated
from one style to another, and the trade-offs that must be negotiated within this migra-
tion.

Migrating Application Integrations 97

3.1 IBM WebSphere MQ – The Middleware

WebSphere® MQ is a queue-based messaging middleware wherein a transaction re-
quires a producer to put a message on a queue and a consumer to pull it off. The system
implementation involves components connecting to the middleware framework using
MQClient libraries (the connectors in Figure 1). These are the Application Program-
ming Interface (API) for the request/reply style and the Application Messaging Interface
(AMI) for the publish/subscribe style.

Figure 2 depicts the two WebSphere MQ paradigms. Both utilize the MQ Queue
Manager which provides expected communication services, such as location transpar-
ency and guaranteed message delivery. For the request/reply, only the queue manager is
needed to govern the connections to the specific queues. However, the publish/subscribe
style utilizes an additional service that overlays the MQ Queue Manager to provide sub-
scription management. Since WebSphere MQ is inherently message queue based, this
management takes the form of propagation functionality to ensure that a copy of each
message is available for each component with a corresponding subscription.

Fig. 2. Paradigm Dependent Middleware

3.2 ANUBIS Request/Reply Implementation

The overall behavior (as perceived by the end user) is identical across the styles. Only
the connectors are impacted by the migration. Therefore, we will only discuss the dis-
tinction between WebSphere MQ request/reply and publish/subscribe within ANUBIS
as it relates to how the connectors interact with each other and the middleware. Since
ANUBIS is event driven, the most natural implementation is request/reply. This imple-
mentation uses at least two queues for each request/reply action, i.e., one for each serv-
ice request and one for each reply. Since many components perform several services,
many queues are required. For example, in Figure 1, the multi-threaded Database Con-
nector watches seven incoming queues for service requests and puts replies on one of
seven outgoing queues depending on the recipient and service performed.

Figure 3 depicts the typical interaction between a Client Connector and Service Con-
nector within ANUBIS using request/reply through WebSphere MQ. A service is any
component that provides functionality to other components. The Service Connector
bridges the gap between MQ and the service using their respective APIs.
The flow in Figure 3 is as follows. The Client Connector puts a message on a queue
(serviceRequestQueue) and blocks on the serviceReplyQueue. The request queue is read

98 D. Flagg et al.

exclusively by the Service Connector which pulls the message off of the queue, calls the
service, forms an appropriate reply message based on the service response, and puts it
on the serviceReplyQueue.

For performance reasons the system is implemented so the users share reply queues,
requiring users to browse reply queues for messages where their user ID matches the
message’s correlationID field. Once the Client Connector has the message, it forwards
the message payload to the user. Though not difficult to program, the rigidity of having
pre-defined queues severely reduces the flexibility and dynamism of the architecture.
For instance, the control logic that manages the queues is centrally housed in the mid-
dleware. In the event that the system must dynamically add/upgrade components or
upgrade the middleware, even a minor change can have severe impacts.

3.3 ANUBIS Publish/Subscribe Implementation

In publish/subscribe, instead of having dedicated queues for each service request, (or
multiple queues if a destination performs multiple services) there is simply one queue,
which serves as the message bus. Therefore, topics are used to differentiate the mes-
sages. For example, a component wishing to receive messages of a certain subject
would subscribe to the associated message topic (and conversely for publication). In
Figure 4, the Service Connector subscribes to a topic (in this case serviceRequest) and
blocks until a message of that topic is available. The Client Connector publishes a mes-
sage to the serviceRequest topic and blocks on the topic of the reply (in this case a sub-
topic of Users that corresponds to the user ID of the client). The MQ Queue Manager
creates copies of messages for all subscribed components, i.e., the number of copies
equals the number of subscriptions, and notifies the connectors.

The publish/subscribe paradigm facilitates dynamism and evolution. This is mainly
due to having the responsibility of the routing logic and brokering contained within the
component connectors, i.e., the connectors contain the topic information relevant to the
particular component. This relieves the computational burden from the middleware.
Additionally, the action of publishing or subscribing can be done at run-time, creating
more “intelligent” connectors that allow a more flexible control/data topology.

4 Migrating to More Adaptability

In this section, we discuss application integration migration from three viewpoints. The
first viewpoint is the middleware, i.e., how does the functionality offered by the new
middleware match that offered by the previous middleware. The second viewpoint is
from the architectural style viewpoint. As some systems are best implemented in a cer-
tain style, it is important to consider the optimal architecture, based on design, imple-
mentation, security, and dynamism. The third viewpoint considers the ANUBIS con-
nectors, and the impact of moving more responsibility for integration to the component
endpoints.

Migrating Application Integrations 99

Fig. 3. Request/Reply Sequence Fig. 4. Publish/Subscribe Sequence

4.1 Middleware Migration

In the request/reply implementation, WebSphere® MQ maintains a strong implicit con-
trol over message passing because it relies on static queues with predefined endpoints to
transmit messages. This is implemented as a static router found within the Queue Man-
ager in the request/reply architecture in Figure 2. Although, publish/subscribe lacks the
direct, static routing by the multiple queues, it uses a Propagator (see Figure 2). The
Propagator performs a similar function (matching requests to replies), except that it
matches subscriptions to publications dynamically. It does this by managing subscrip-
tion information (and monitoring the run-time creation and deletion of subscriptions) to
ensure a copy of each published message exists for each subscribed component. This
extends the scope of messages in the system, allowing dynamic multi-recipient commu-
nications.

The publish/subscribe implementation has less implicit control in a central location
because it maintains only one message bus on which all types of messages (corre-
sponding to subscribed topics) are passed. Therefore, brokers on the component con-
nector, external to the middleware, determine what action to take based on the topic of
the arriving messages (since they may subscribe to many topics). Migrating to the Web-
Sphere® MQ publish/subscribe implementation does not require the complete replace-
ment of connector functionality in the request/reply implementation. For instance, a
buffer is carried over that serves as a storage facility for messages as they are passed
through the system.

100 D. Flagg et al.

4.2 Architectural Style Migration

Since different architecture styles have different data and control flow expectations, it
logically follows that there will be design trade-offs. Given that we migrate ANUBIS
from a hierarchical style (request/reply) to an event-based style (publish/subscribe), we
assess trade-offs directly from these two implementations. We specifically examine
design complexity and change management.

Design. The design of a request/reply architecture is fairly simple. However, for a
large system, the complexity can be quite overwhelming. There may be multiple, di-
rected communication paths between interacting components, e.g., in ANUBIS each
service requires a queue. Thus, new integration functionality focuses on managing and
monitoring these queues, as well as the information that is on the queues. As the system
evolves, this management can become cumbersome and error-prone.

Conversely, in publish/subscribe, the design focuses more upon what information a
component provides to the system and what information it requires from the system.
Thus, the information alone is controlled and monitored. The burden for assuring the
component receives the proper information is the responsibility of the component. Be-
cause this is the main consideration required to enable proper communication, evolution
and component upgrade are more locally managed.

Change Management. Within request/reply, the insertion and modification of com-
ponents requires the middleware to be internally modified by adding the necessary
queues. The connector also has to be modified to communicate directly to existing and
new queues. This requires substantial static information that is difficult to use in a dy-
namic setting.

The publish/subscribe paradigm facilitates dynamism and change management quite
well, because most of the routing logic and brokering can be contained within the con-
nector. Within the publish/subscribe paradigm, contributing components can register
with the system when they are available to participate. Of course, there is a semantic
restriction that the component can utilize the available topics. The amount of allowable
dynamism is dependent on where the responsibility of brokering the messages for the
components lies. If it is local to the component’s connector, then a high degree of dy-
namism is possible. However, if the middleware continues to maintain the same amount
of control as in the request/reply paradigm, in which it performs all of the message
management and directed delivery, the potential for dynamism is reduced.

4.3 ANUBIS Connector Migration

We identify four generic factors that are affected by the connector migration in ANU-
BIS. The first is the change in the client interface offered by the middleware given a
particular implementation framework. The second is how events and message handling
are directed and controlled. The third is the role the identity of the component plays in
the application integration. The fourth is the manipulation of process control, such as
where threading occurs and how it is managed. Though we use ANUBIS as an example,
clearly these factors have applicability as localized connectors play a more significant
role in application integration.

Migrating Application Integrations 101

Interface Migration. The first consideration for system migration is the possibility
that the client interface of the middleware may change. In ANUBIS, the request/reply
interface uses the IBM Application Programming Interface (API), while pub-
lish/subscribe requires the Application Messaging Interface (AMI). With the migration,
is the need to create a new translator in the component connector to convert transmitted
objects into raw bytes as accepted by the AMI.

Control Migration. In request/reply, each service within a component has a dedi-
cated, typed queue that anticipates specific requests. No logic is needed to determine
what operation to perform because it explicitly correlates to the request queue. The tran-
sition from directed queues and their central control to a more flexible implementation
requires the component connectors to shoulder more functional responsibility for con-
trolling messages of interest. The increased functionality due to new brokers on the
component connector leads to a greater flexibility for the application integration because
these brokers can be more easily updated than the centralized integration functionality.

Identity Migration. Middleware style migration causes the component identity to
change priority. This is due to the identity being highly dependent on the location of
message and event control within the system. With the centralized control of re-
quest/reply, comes a lessening for the need for component identity, and for the connec-
tor to control its use. The centralized solution manages information direction, and prede-
fines the destinations based on the expected purpose (or use) of the particular queues –
which are tied directly to component identity.

By making the connectors more responsible for the directed communication, we
separate the concerns of identity distinction from topic distinction, allowing the pub-
lish/subscribe connectors to know who they are as well as what they are interested in.
This functionality is split between extending the integration functionality which handles
the middleware connection to allow a subscription/publication interaction with the sys-
tem, and the routing integration functionality which handles message dissemination of
incoming messages based on the topic. Thus, when connectors receive messages, they
should trigger the appropriate functionality within the component.

Process Migration. Though the connectors are multi-threaded in the request/reply
implementation, it is the middleware that actually controls the threading. Because MQ
allows threads to block (wait for messages) on queues, it makes sense to have one
thread per queue rather than to wastefully have a dispatcher thread poll all the queues.
The migration to publish/subscribe removes this control. However, multi-threading ca-
pability can still be maintained without decreasing performance if the local control over
threading is increased. Publish/subscribe connectors utilize a broker to handle thread-
based dispatching of messages using as a basis the topics the components request. In
fact, it may be necessary to add brokering functionality beyond the thread controller,
depending upon how the topic hierarchies are implemented. For instance, it may have
multiple, outstanding subscriptions to deal with or only one subscription at a time.

5 Conclusion

Many application integrations face migration to new middleware, the incorporation of
new software components, and the new demarcation of existing components (such as in

102 D. Flagg et al.

service-oriented architectures). Furthermore, there is a need for more dynamism in ap-
plication integration, in which components provide on-demand services. Proper design
decisions made at the time of migration – such as where the seat of integration control
should reside – can make the difference in whether the application will be allowed to
continually evolve or stagnate in a certain implementation style.

In this paper, we examine the impact of moving from one middleware implementa-
tion style to another using the same product. We control the analysis by working with
exactly the same components. We focus on the differences between a centralized inte-
gration solution in which component connectors have minimal functionality, because
middleware retains the majority of the functionality, and a localized integration solution,
in which component connectors take the major responsibility for making the component
participate in the interaction. In general, we find that localized integration is more diffi-
cult to design and implement. This occurs as it is necessary to cover many scenarios and
decompose a central solution into its smaller, local parts. However, it offers the high-
degree of flexibility needed for application integrations to evolve, upgrade, and allow
for the dynamic insertion and deletion of components.

Acknowledgements. This material is based upon work supported in part by AFOSR
(F49620-98-1-0217) and NSF (CCR-9988320).

References

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Websphere MQ Application Programming Guide. IBM, 3, October (2002)
Abate, P. Bernardo, M.: A Scalable Approach to the Design of Sw Architectures with Dy-
namically Created/Destroyed Components. Int’l Conf. on Software Engineering and Knowl-
edge Engineering. Ischia, Italy (2002)
Allen, R., Douence, R. Garlan, D.: Specifying and Analyzing Dynamic Software Architec-
tures. Conf. of Fundamental Approaches to Software Engineering. Lisbon, Portugal (1998)
Davis, L. Gamble, R. F.: Identifying Evolvability for Integration. 1st Int’l ICCBSS. Orlando,
Florida (2002)
Davis, L., Payton, J. Gamble, R.: Toward Identifying the Impact of Cots Evolution on Inte-
grated Systems. 2nd Int’l Workshop on the Successful Development of COTS. Limerick,
Ireland (2000)
Hasler, K., Gambler, R., Frasier, K. Stiger, P.: Exploiting Inheritance in Modeling Archi-
tecture Abstractions. (1999)
Keshav, R. Gamble, R.: Towards a Taxonomy of Architecture Integration Strategies. ISAW
-3. (1998)
Magee, J. Kramer, J.: Dynamic Structure in Software Architecture. FSE - 4. San Francisco,
CA (1996) 3-14
Medvidovic, N.: On the Role of Middleware in Architecture-Based Software Development.
14th Int’l SEKE. Ischia, Italy (2002) 299 - 306
Mehta, N., Medvidovic, N. Phadke, S.: Towards a Taxonomy of Software Connectors. 22nd
Int’l Conf. on Software Engineering. (2000)
Mikic-Rakic, M., Mehta, N. Medvidovic, N.: Architectural Style Requirements for Self-
Healing Systems. 1st Workshop on Self-Healing Systems (WOSS02). Charleston, SC No-
vember 18-19 (2002) 49-54
Oreizy, P., Medvidovic, N. Taylor, R.: Architecture-Based Runtime Software Evolution.
20th Int’l Conf. on Software Engineering. Kyoto, Japan (1998) 177-186

Migrating Application Integrations 103

13.

14.

15.

16.

Payton, J., Gamble, R., Kimsen, S. Davis, L.: The Opportunity for Formal Models of Inte-
gration. 2nd Int’l Conf. on Information Reuse and Integration. (2000)
Spitznagel, B. Garlan, D.: A Compositional Approach for Constructing Connectors.
WICSA’01. Amsterdam, the Netherlands (2001) 28-31
Spitznagel, B. Garlan, D.: A Compositional Formalization of Connector Wrappers. 25th Int’l
Conf. on Software Engineering. Portland, OR (2003) 374-384
van der Hoek, A., Mikic-Rakic, M., Roshandel, R. Medvidovic, N.: Taming Architectural
Evolution. ESEC/FSE - 9. Vienna, Austria (2001)

Franck Barbier

LIUPPA, Université de Pau
BP 1155

64013 Pau CEDEX, France
Franck.Barbier@univ-pau.f r

Abstract. The deep nature of COTS components is that they are shut software
units for end users. In the process of reuse, test is a natural and primary step for
obtaining information on component capabilities. Such an assessment and
evaluation is however restricted to the single access and use of interfaces. To
attenuate this, Built-in Test (BIT) components are introduced. These compo-
nents enhance the means by which COTS components may be, in a broad sense,
acquired from Internet. In this paper, we develop two strategies. Firstly, distinct
BIT versions of original components are implemented. Secondly, BIT compo-
nents are built from scratch in order to, for vendors, supply components that
have customizable and innovative test and configuration features. In both cases,
the assistance of a code generator allows the introduction of extra properties for
viewing and handling BIT components in Web browsers. Trust results from this
approach that demonstrates the necessity for supporting and instrumenting
component procurement in general. A “true” component marketplace on Inter-
net becomes then conceivable.

1 Introduction

Are COTS components somewhere else that on the Web? Reasonably they are not.
There is however nowadays no formal organization of a component marketplace on
Internet. Looking at featured websites, components are eclectic in forms (e.g. size,
implementation language) and in natures (e.g. application domains, component infra-
structure conformance). There are especially no relevant component repositories
based on a unanimously agreed typology, no consensual prediction-enabled compo-
nent specification language, no intelligent acquisition support that goes beyond the
simple fact of searching (with currently strong limitations) and downloading compo-
nents. Facing up such an odd and unstructured provisioning environment, a key point
is the possibility to rigorously assess and evaluate components in order to make po-
tential reusers confident with the products they intend to buy, lease or freely incorpo-
rate into their applications. In the absence of appropriate procurement techniques and
tools, COTS component reuse rates remain low compared to all of the available soft-
ware material.

In this paper, we advocate the delivering of BIT components that are components
plus BIT code. We view this extra material as a means for functional and non func-
tional component characteristic checking, and thus a step towards trustable compo-
nents. Since the BIT technology has been presented in detail in [1], we here stress the

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 104–116, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Web-Based COTS Component Evaluation

Web-Based COTS Component Evaluation 105

Web-based manipulation of BIT components. Indeed, such components are activable,
and thus testable on-site or remotely, by means of a Web browser. Furthermore, in
addition to a testing interface, they also offer a configuration interface that permits
(re)-configuration at runtime. A special thought occurs in the paper about the fact that
COTS components are outsourced entities, and thus, have to carefully fulfill local
runtime and deployment conditions [2].

We show in the paper that we together address prefabricated components and, from
a vendor’s point of view, the building of BIT-specific COTS components that aim to
be offered on Internet. For pedagogical reasons, the technique and its associated tool
are illustrated by means of the java.util.Stack elementary component. Since compo-
nents are most of the time bigger, we also concisely discuss why our contribution is
applicable for sizeable components that have numerous states, complex relationships
between these states and elaborate request processing.

In Section 105, we walk through the issues relating to component acquisition, cov-
ering the procurement process and the pertinent idea of trusted component. Section 0
exposes our technical framework, namely how BIT components are constructed: A
design technique with two alternatives and a CASE tool for reducing boring and re-
current tasks. In this section, we cope with the simplistic Stack component, showing
how it is handled within a Web browser. A complementary discussion on bigger
components with an example closes the paper.

2 Component Provisioning

The rapid growth of a COTS component market relies on an adequate spreading me-
dium which is and will undoubtedly be Internet. In this section, we characterize what
are the essential consumer expectations with regard to a component market in which
the idea of “trusting components” might become concrete. We on purpose lay down
the bases of a simple, rational and efficient procurement process.

2.1 Component Market, the Missing Link

Bass et al. in [3] analyze from a business perspective the existence and the develop-
ment of a component market. They especially underline the idea of “brokerage mar-
ket” in which companies provide software engineers with mechanisms for searching,
selecting and globally acquiring components.

Today’s practice and experience however show that component websites are not in
general really endowed with appropriate tools as for instance dedicated component
search engines or component comparison tools. Regarding the CBSE literature, com-
ponent procurement frameworks, or better, component procurement methods, appear
[4], [5], especially those focusing on selection in the spirit of requirements engineer-
ing [6]. Nevertheless, an important lack of component assessment and evaluation
techniques and tools persists, notably assembly evaluation methods [2].

Components on the Web have various forms and natures. Open source software
leads to access and reuse not only interfaces but insides of components. Otherwise,
components can have binary or runtime forms (.jar in the Java world for instance),
can be documented with well-known specification languages, can conform to infra-

106 F. Barbier

structure standards as CORBA or EJB. Components may also be supplied with grad-
ual certification degrees that surely enhance their quality in general. In this context,
the procurement process is more or less safe. For several reasons based on common
sense, a very fine-grained component as the java.util.Stack coming from the Java API
immediately creates confidence and no reuse barriers slow down its use. In contrast,
sizeable components, domain components in transportation (e.g. air traffic control), in
finance (e.g. General Ledger) or other domains that come from anonymous companies
generate suspicion.

We then believe that the worldwide component market will reach an acceptable
level of maturity and efficiency as soon as software engineers will find techniques and
tools that will, in the worst case, attenuate and, in the best case, nullify such a suspi-
cion.

2.2 Trustable Components

The simple idea here is that components are, in a pejorative sense, foreign entities. In
other words, there is therefore a non negligible risk in incorporating them into our
own applications. As claimed by Bader et al. in [7], trust is inversely proportional to
risk. In that scope, they explain why there is a need for trust, and, on purpose, sketch a
wrapping mechanism that equip components with usage contracts that are the support
for an agreement between vendors and consumers. In the same spirit, we propose in
[1] components with BIT functionality in order to instrument the way by which com-
ponents may be tested, and thus declared appropriate, with respect to in-situ exploita-
tion. This means that deployment contexts and customer-based specific usages may
make a component unsatisfactory while, at development time or simply, for vendors,
the same component may give a good level of satisfaction. Quality attributes are in
fact relative in the sense that builders and reusers manipulate components under dif-
ferent angles.

The need for an assessment and evaluation method for systemically establishing a
quantitative and/or qualitative trust degree is then obvious.

A component is trustworthy if and only if:
It fulfills, in terms of computation and control, all the expected functional require-

ments. The use of its interfaces leads to an observable and intelligible behavior
that in particular allows comparisons with competing components as well as up-
grades in order to manage application evolution;

It enables assembly assessment and evaluation based on collaboration/interaction
behavior prediction. Components may be individually “correct” by construction
while they may fail at integration time since there are no combination patterns in-
cluding the said component, that readily and efficiently meet requirements;

It fits quality of service expectations (reliability, performance, resource burden...)
and more generally non functional requirements (e.g. security, norm respect).
This level of quality of service together hinges on individuals and assemblies.

Trust stems from the fact that component services are necessary and sufficient for
implementing all of the desired functions of software applications, but also from the
fact that components are compositional in all other behaviors. Specifically, they may
be integrated and still operate the same way in any environment, QoS features being
manageable and above all controllable without high difficulty.

Web-Based COTS Component Evaluation 107

Fig. 1. Component appropriation cycle.

Test is the more naive and recognized mechanism for establishing trust. Contracts
embodied by assertions in the Eiffel programming language [8] are greatly studied by
the CBSE research community. COTS component are however in essence closed
software units due to encapsulation and thus, black-box testing cannot be the panacea
[9]. Trust implies the acceptance for suppliers, that purchasers benefit from a more or
less important access/view relating to the inside of components. Limits are neverthe-
less strongly required: For instance, the respect of intellectual property, avoiding
security violation or any misuse through direct alteration of private/protected proper-
ties.

In this paper, we present new insights into the approach presented in [1]. Making
components trustable means the development of special in-situ test scenarios for reus-
ers in order to maximize information on components. Their choice spectrum becomes
then larger due to the increasing of all checking possibilities.

2.3 Acquisition Process

A picture of a synthetic procurement process with five phases appears in Fig. 1.
Taking possession covers component discovering, downloading, up to individual

evaluation. Integration corresponds to any evaluation of collaboration potentiality
with regard to in-house components or other external components (same supplier,
distinct supplier) that are already adopted and thus used in applications. Adoption is
the act of qualification, even certification when components are incorporated into
highly critical systems, and leads to resultant actions such as leasing or buying. Utili-
zation precedes generalization and minimizes dependency. In other words, users
stress the selection of units of functionality but also pay attention to component sub-
stitutability in anticipating and preparing application implementation alternatives that
might, for various reasons, put aside any previously selected components. In contrast,
generalization precludes for inversing choices in the sense that the retained COTS
components act as essential blocks in end users products.

The key issue of a Web-based component market is leveraging substitutability.
One may expect that that the cycle in Fig. 1. has to be quick as possible. Fig. 2.
sketches what should be the daily activity of an average component integrator, dealing
with a couple of components (or BIT components) within a full day. At this time,
component qualification, from identification to definitive selection is a complicated
task. Substitution, mostly resulting from maintenance, is costly since proving that

108 F. Barbier

applications are not disturbed, even damaged, due to the replacement of components
by others (upgrades or better units of functionality and/or quality of service), is often
empirical and indisputably long.

Fig. 2. Elimination (left hand side) versus selection (right hand side) of COTS components.

3 Technical Framework

A BIT component possesses a provided (a.k.a. functional) interface and a required
interface (Fig. 3.) as stated in [10]. We add a testing interface and a configuration
interface.

In Fig. 3., the purpose of the testing interface is to essentially recast the provided
interface, to possibly make accessible components inside. Recasting means that the
testing interface includes the same set of services as the provided interface but im-
plementation varies for testing reasons. For instance, creating new variables in order
to trace some paths of execution. The testing interface may also offer new operations
to make visible hidden properties (in read and/or write modes), to establish atomic
sequences of service calls and so on. As for the configuration interface, it is most of
the time correlated to deployment and is rarely used within client requests. We con-
sider a general-purpose Management entity in any distributed software system that
operates as a preferential client of the configuration interface. In our approach, (re)-
configuration means putting a server component into a defined state, to invoke one or
more of its services, and then to verify that the returned result and final state are mu-
tually consistent before accepting the component global delivery as “correct” [11].
Such actions are typically performed when a system of components is (re)-configured,
and usually occur infrequently at one or two well-defined moments during a system’s
running lifetime.

As further detailed below, we single out Harel’s Statecharts [12] as a backbone for
component individual behavioral representations and for contract expressions, con-
tracts being in essence dedicated to component interaction checking. Note that the

Web-Based COTS Component Evaluation 109

Statecharts modeling technique is part of the core of the Unified Modeling Language
or UML [13], itself widely used in the world of CBSE for modeling components [14].

COTS components that pervade on the Web have however not all of the interface
types appearing in Fig. 3. We thus imagine two different cases. The first one (Section
0) is a kind of reengineering in which a COTS component is transformed into a BIT
component having by definition the material in Fig. 3. In the second case, BIT com-
ponents are completely new software modules that comply with the BIT technology.
Instead of building ordinary components, vendors may directly provide BIT compo-
nents. In Section 0, we illustrate such a case by means of an Automated Teller Ma-
chine or ATM component in the finance domain. We expose the benefits of such an
approach and raise some inherent drawbacks in conclusion.

We here emphasize a Java implementation of our technology, and more precisely
we rely on the reflection capabilities of Java (java.lang.reflect package). Most of the
component models, especially JavaBeans and EJB, are also built on the top of this
package. This hopefully makes our approach credible. For Java COTS components
coming from everywhere on Internet, we exercise introspection in order to automati-
cally generate skeletons of BIT components. Code is augmented according to the
technique described in Section 0. All of the approach depends upon the Java Man-
agement Extensions or JMX sub-library [15] that generalizes the notion of manage-
able component or manageability including that of configuration.

Fig. 3. Canonical organization (UML formalism) of a BIT component.

3.1 From a Component to a BIT Component

In the Java scope, a BIT class can be automatically generated by means of the BIT/J
CASE tool [16] under the conditions that the original class is accessible through its
source code (.java) or its “binary” form (.class or .jar) or is running and is attainable
from a Java virtual machine, possibly remotely and under well-formalized security
conditions. An interesting aspect of the java.util.Stack class is that it is pedagogical:
That is a “true” COTS component in the sense that we did not develop it. Moreover,
our technique goes beyond the simple fact of making testable all of the provided
services of a class. As illustrated in Sections 0 and 0, we try, when possible, to “re-

110 F. Barbier

format” the inside of a component in order to have a more comprehensible view,
allowing complex contract expressions at integration time especially.

3.1.1 Reengineering
In Fig. 4., an transformation path with optional directions is sketched for a COTS
component.

Fig. 4. BIT technology based on reengineering.

In Fig. 4., an assumption is made that COTS component providers have accurate
behavioral specifications of their products (in our case Statecharts) or purchasers have
to create these dynamic models, possibly with the help of designers. COTS compo-
nent dynamic models such as that on the left hand side of Fig. 4. nowadays rarely
exist, even if UML-based component testing becomes common [17]. Note that the
BIT technology may nevertheless work without behavioral specifications of compo-
nents. We however advocate the building of Statecharts to gain all of the advantages
of BIT.

So, in the absence of specification, an abstruse set of services making up a COTS
component’s provided interface exists. Without formal intelligible models, the func-
tionality offered by components is incomprehensible. Reengineering thus means, in
most cases, the postponed modeling of component behaviors. This global task is
sometimes unrealistic, even impossible. This may simply be caused by complexity, or
the fact that components match with difficulty to state machines or to any similar
formalism. In Fig. 4., starting from a COTS component v. 1, we construct a BIT
COTS component v. 1. Next, new releases appear either due to market demands or
BIT technology application.

3.1.2 Simple Component
Applying BIT to classical Java classes, leads to models as that in Fig. 5. This case
study is such that the initial component (the Java Stack predefined class) has no state
machine: It was not originally organized and delivered based on a comprehensive
specification. We may thus abstract observable states according to what we want to
test. In Fig. 5., for instance, one does not deal with a “Full” state since Stack does a
priori not reach such a state. In contrast one distinguishes two sub-states belonging to

Web-Based COTS Component Evaluation 111

a Not empty state. We have also an Empty state. Finally, transitions are that of the
provided interface of Stack.

Fig. 5. Reengineering of the Java Stack COTS component.

We do not in this paper enter into much detail concerning the precise implementa-
tion technique of a BIT component since it is already published in [1] and [16]. The
final result appears in Fig. 6. The operations signatures are transformed by the CASE
tool as follows: public Object push(Object item) becomes public void Ob-
ject_push_Object() in the BIT component tester which is the MBean (standing for
Manageable Bean in JMX) viewed in the browser in Fig. 6. As explained in [1], the
code in the public Object push(Object item) throws Statechart_exception method of
the BIT component sustains large changes that fit the state machine in Fig. 5. as fol-
lows (case of the push function):

Finally, JMX facilitates the remote execution of MBeans. Hence, clicking on
buttons runs services in the browser of Fig. 6. (by lack of space, configuration
services are hidden at the bottom of the window). Five facilities (see below) are
always visible as buttons, and above all useful and interesting each time after a
service of the testable interface is run. These facilities mainly serve as “trackers” of
component behaviors:

112 F. Barbier

Fig. 6. Web-based COTS assessment and evaluation.

(Re)-configuration may occur within services (next section) or via the browser. For
instance, a special action that reinitializes the BIT stack state machine may be defined
as follows:

It simply put the BIT stack in the Empty state.

3.2 New Technique for COTS Component Design

COTS component vendors have opportunity in hearing from and exploiting customers
feedbacks. This is surely true when we consider component repairing. Equipping
components with new functionality cannot however, in essence, be peculiar to cus-
tomer needs, with the exception of large adhesion, which, from a marketing point of
view, justifies customer-oriented evolution. How then to foster such a business inter-
action? How to capitalize on users experience? We here illustrate such perspectives in
relation with large-scale domain-centric components, which are, from their birth to
their death, built on the top of the BIT technology.

Fig. 7. ATM component.

Fig. 7. is an ATM component made up several common subparts: A card reader, a
cash dispenser, a receipt printer, a deposit drawer and an ATM subcomponent em-
bodying control and coordination services for all of the devices. A large consistent
collaborative statechart may be offered in order to formalize how such an aggregate
component may function. In [18], we give an example and explain how to combine
components based on Statecharts as well as on the principle of full encapsulation:
Subparts are unshared and participate in the implementation of the whole they belong
to. Having then state machines of subcomponents and aggregates, the building and the
delivering of a BIT COTS ATM component is immediate. We in fact strongly believe
that providing executable images of behavioral models, as well as their systematic
access through the Web, is a significant step in the search of high-confidence compo-
nents. There is indeed now, no way for finding an easily understandable ATM com-
ponent on Internet while it is recognized as a central element in many banking appli-
cations.

Otherwise, sophisticated implementation of control features are possible, even
relevant. For instance, the Web browser will make visible the abort service that in
particular checks a contract relating to the card reader. This methods tries a risky (re)-
configuration that simulates a kind of re-initialization for the ATM: Going towards
the Start state that enables a transaction start even though the card reader may not
have recovered a consistent state. An interesting point here is that the re-configuration
can be, instead, externalized (button(s) in the Web browser) allowing more generally

Web-Based COTS Component Evaluation 113

114 F. Barbier

many qualitative measurements of the tested aggregate component, but also subparts
if they have been built with BIT.

Web-Based COTS Component Evaluation 115

4 Conclusion

The intuitive and next deep understanding of COTS components is recognized as a
key challenge in the future since COTS components are external entities whose first
uses raise a lot of distrust. Although, the Web is certainly one of the best distribution
media, no advanced thought really occurs about how COTS components may be ac-
quired from this medium. The idea is to have integrated test code in components that
favors any postponed and/or in-situ assessment and evaluation. Furthermore, BIT
components have a testable and configuration interfaces. Each service of these two
interfaces is accessible and activable via a graphical user interface allowing genuine
learning, qualitative measurement, and more generally an appropriate mechanism for
leveraging trust. Information on component behaviors may in particular be captured
based on the fact that Harel’s Statecharts are used to obtain executable component
specifications.

A drawback is however the fact that the BIT technology may discourage its use for
component builders in the sense that there is a risk of losing their know-how, and
more practically their intellectual material.

The overall paper’s contribution is a support for component procurement on the
Web. Regarding the technical approach, we stress Java components that, in using the
reflection power of Java, are remodeled. More precisely, existing components are
replaced by their BIT incarnations whose code is generated via a CASE tool. As for
new components, they may be constructed by means of the BIT technology if vendors
want to offer to potential customers, a new kind of safe and reliable way of acquisi-
tion.

A main perspective of the work presented in this paper is to go on studying size-
able COTS components. We need aggregate components used by clients components.
Parts of these aggregates may have or may not have BIT material. In any case, testing
the whole is rarely equivalent to testing all of its parts individually. We thus need a
strategy by which we are able to determine where some BIT code is useful, and con-
sequently, where it is not. This raises another consequential problems that are over-
heads (in terms of resource burden: BIT code is costly) and the concomitant access
through together the “normal” provided and the “additional” testable interfaces. We
recently observe during experimentations that this concurrent use may create typical
perturbations, or errors, while an exclusive use of one of the two interfaces, is totally
safe! We are thus currently thinking about an efficient deployment mechanism guar-
antying that the BIT code is “the best friend” of the functional code, i.e. formal arbi-
trations occur at runtime so that no failures depend upon BIT itself.

Acknowledgements. This work has been partially funded by the European Union
within the Component+ (IST 1999-20162) IST project.

116 F. Barbier

References

1.

2.

3.

4.

5.

6.

7.

8.
9.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Barbier, F., Belloir, N., and Bruel, J.-M.: Incorporation of Test Functionality into Software
Components, proceedings of The International Conference on COTS-Based Software
Systems, Ottawa, Canada, Lecture Notes in Computer Science #2580, Springer, February
10-12, (2003) 25-35
Crnkovic, I., and Larsson, M.: Building Reliable Component-Based Software Systems,
Artech House (2002)
Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R., and Wallnau
K.: Volume I: Market Assessment of Component-Based Software Engineering, Carnegie
Mellon University, Software Engineering Institute, TECHNICAL REPORT CMU/SEI-
2000-TR-008, ESC-TR-2000-007 (2000)
Meyers, B., and Oberndorf, P.: Managing Software Acquisition – Open Systems and
COTS Products, Addison-Wesley (2001)
Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wust, J., and Zettel, J.: Component-Based Product Line Engineering with UML,
Addison-Wesley (2002)
Maiden, N., Kim, H., and Ncube, C.: Rethinking Process Guidance for Selecting Software
Components, proceedings of The International Conference on COTS-Based Software
Systems, Orlando, USA, Lecture Notes in Computer Science #2555, Springer, February 4-
6, (2002) 151-164
Bader, A., Mingins, C., Bennett, D., and Ramakrishan, S.: Establishing Trust in COTS
Components, proceedings of The International Conference on COTS-Based Software
Systems, Ottawa, Canada, Lecture Notes in Computer Science #2580, Springer, February
10-12, (2003) 15-24
Meyer, B.: Object-Oriented Software Construction, Second Edition, Prentice Hall (1997)
Wallnau, K., Hissam, S., and Seacord, R.: Building Systems from Commercial Compo-
nents, Addison-Wesley (2002)
Szyperski, C., Gruntz, D., and Murer, S.: Component Software – Beyond Object-Oriented
Programming, Second Edition, Addison-Wesley (2002)
Groß, H.-G., Atkinson, C., and Barbier, F.: Component Integration Through Built-In
Contract Testing in Component-Based Software Quality: Methods and Techniques, Lec-
ture Notes in Computer Science #2693, Springer (2003)
Harel, D.: Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, 8, (1987) 231-274
Object Management Group: OMG Unified Modeling Language Specification, version 1.5
(2003)
Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z.: Specification, Implementation, and
Deployment of Components, Communications of the ACM, 45(10), (2002) 35-40
SUN Microsystems: Java Management Extensions, Instrumentation and Agent Specifica-
tion, version 1.2 (2002)
Belloir, N., Bruel, J.-M., Barbier, F.: BIT/J library –user’s guide (2003)
Wu, Y., Chen, M.-H., and Offutt, J.: UML-Based Integration Testing for Component-
Based Software, proceedings of The International Conference on COTS-Based Soft-
ware Systems, Ottawa, Canada, Lecture Notes in Computer Science #2580, Springer, Feb-
ruary 10-12, (2003) 251-260
Barbier, F.: Composability for Software Components: An Approach Based on the Whole-
Part Theory, proceedings of The IEEE International Conference on Engineering of
Complex Computer Systems, Greenbelt, USA, IEEE Computer Society Press, December
2-4, (2002) 101-106

Software Fault-Tolerance with
Off-the-Shelf SQL Servers

P. Popov1, L. Strigini1, A. Kostov2, V. Mollov2, and D. Selensky2

1 Centre for Software Reliability, City University, London, UK
{ptp,strigini}@csr.city.ac.uk

2 Department of Computing, Technical University, Plovdiv, Bulgaria
alex@obs.bg,vmollov@yahoo.com,selensky@bigfoot.com

Abstract. With off-the-shelf software, software fault tolerance is almost the
only means available for assuring better dependability than the off-the-shelf
software offers, without the much higher costs of bespoke development or extra
V&V. We report our experience with an experimental setup we have developed
with off-the-shelf SQL database servers. First, we describe the use of a protec-
tive wrapper to mask the effects of a bug in one of the servers, without de-
pending on an adequate fix from the vendors. We then discuss how to combine
the diverse off-the-shelf servers into a diverse modular redundant configuration
(N-version software or N-self-checking software). A wrapper guarantees the
consistency between the diverse replicas of the database, serving multiple cli-
ents, by restricting the concurrency between the client transactions We thus
show that diverse modular redundancy with protective wrapping is a viable way
of achieving fault-tolerance with even complex off-the-shelf components, like
database servers.

1 Introduction
The audience of this conference is well aware of the pros and cons of using off-the-
shelf (OTS) software components1. In this paper we focus on the dependability prob-
lems that OTS components pose to system integrators: their documentation is usually
limited to well defined interfaces, and simple example applications demonstrating
how the components can be integrated in a system. Component vendors rarely provide
information about the quality and V&V procedures used. This creates problems for
any integrator with stringent dependability requirements. At least in non-safety criti-
cal industry sectors, vendors often treat queries of the quality of the off-the-shelf
components as unacceptable or even offensive [1]. System integrators are thus faced

1 We use the term “components” in the generic engineering meaning of “pieces that are as-
sembled to form a system, and are systems in their own right”. “Components” may be any-
thing ranging from software libraries, used to assemble applications, to complete applications
that can be used as stand-alone systems. We consider together commercial-off-the-shelf
(COTS) and non-commercial off-the-shelf, e.g. open-source, components: the difference is
not significant in our discussion. Even when the source code is available, it may be im-
possible to make use of it – its size and complexity (and often poor documentation) may
deny the system integrator the advantages usually taken for granted when the source code is
available.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 117–126, 2004.
© Springer-Verlag Berlin Heidelberg 2004

118 P. Popov et al.

with the task of building systems out of components which cannot be trusted to be
sufficiently dependable for the system’s needs, and often are not.
As we argued elsewhere [2] fault-tolerance is often the only viable way of obtaining
one’s required dependability at the system level, given the use of OTS components. In
this common scenario, the alternatives – improving the OTS components, performing
additional V&V activities – are either impossible or infeasible without costs compa-
rable to those of bespoke development. This situation may well change in the future,
if customers with serious dependability requirements achieve more clout in their
dealings with OTS component developers, but this possibility does not help system
integrators who are in this kind of situation now.
Fault tolerance may take multiple forms, e.g., additional (possibly purpose-built but
relatively simple) components performing protective wrapping, watchdog, monitor-
ing, auditing functions, to detect undesired behaviour of the OTS components, pre-
vent their producing serious consequences, and possibly effecting recovery of the
components’ states; or even full-fledged replication with diverse versions of the com-
ponents. Such “diverse modular redundancy” seems desirable because it offers end-
to-end protection via a fairly simple architecture, and protection against the identical
faults that would be present in replicas within a non-diverse modular-redundant sys-
tem. The cost of procuring two or even more OTS components (some of which may
be free) would still be far less than that of developing one’s own.
All these design solutions are well known. The questions, for the developers of a
system using OTS components, are about the dependability gains, implementation
difficulties and extra costs that they would bring for that specific system.
To study these issues, we have selected a category of widely used, fairly complex
OTS components: SQL database servers. Faults in the currently available SQL servers
are common. For evidence one can just look at the long list of bug fixes supplied by
the vendors with every new release of their products. Further reliability improvement
of SQL servers seems only possible if fault-tolerance through design diversity is em-
ployed [3]. Given the many available OTS SQL servers and the growing standardisa-
tion of their functionality (SQL 92, SQL 99), it seems reasonable to build a fault-
tolerant SQL server from available OTS servers. We have developed an experimental
testbed which implements a diverse-redundant SQL server by wrapping a redundant
set of SQL servers, so that multiple users run their transactions concurrently on the
wrapped SQL servers. We are running experiments to determine the dependability
gains achieved through fault tolerance [4]. In this paper, we report on experience
gained about the design aspects of building fault tolerance with these specific OTS
components:

regarding diverse modular redundancy, we consider N-version programming
(NVP) and N-version self-checking programming (NSCP) – to use the terminology
of [5]. In NVP, the system’s output is formed by a vote on the replicated outputs.
In NSCP, each diverse “version” is supposed to fail cleanly, so that anyone of the
replicated outputs can be used as the system’s output. Both solutions depend on
guaranteed consistency between the states of the diverse replicas of the database.
This problem of replica consistency, despite having been under scrutiny for a long
time, is still far from being solved in general for database servers [6], [7];
regarding protective wrapping, we have outlined elsewhere [8] the idea of protec-
tive wrapping for OTS components. Wrappers intercept both incorrect and poten-
tially dangerous communications between OTS components and the rest of the

Software Fault-Tolerance with Off-the-Shelf SQL Servers 119

system, thus protecting them against each other’s faults. For an OTS SQL server,
the protective wrapper protects the clients against faults of the server, the server
against faults of the clients, and also each client against the indirect effects of faults
of the other clients.

In our design approach we assume no changes to the OTS SQL servers, since we do
not have access to their internals. By necessity, therefore, our solutions are based on
restricting the interaction between the clients and the SQL server(s).

2 The Experimental Environment for OTS SQL Servers
The testbed has been built in collaboration between the Centre for Software Reliabil-
ity at City University, London, and the Technical University in Plovdiv, Bulgaria. It
allows one to run various client applications concurrently against diverse SQL servers
which use a significant sub-set of the entry-level SQL-92 language. The testbed con-
tains a wrapper for the SQL servers, implemented as a DCOM component, accessed
by the client applications. Fig. 1 shows its architecture.
The testbed was created to allow experiments with 3 functionally comparable OTS
SQL servers, Oracle 8.0.5, MS SQL 7.0, Interbase 6.0. The servers can run under any
operating system for which there are versions of the products used; we used Windows
2000 Professional edition for experiments with the three servers and several operating
systems (Win2k, Win98 and RedHat Linux 6.0) for experiments with Interbase.

Fig. 1. Architecture of the testbed

We have experimented with between 1 and 100 clients and varying numbers of trans-
actions per client, which include queries (SELECT) or modifications of the databases
(INSERT, UPDATE, DELETE), “triggers” and “stored procedures”. We have used
two applications: i) a variation of a real-life warehouse application; ii) a simplified
banking application, in which funds are being transferred between accounts under the
invariant condition that the total amount of funds remains constant. This invariant
allows a simple correctness check (“oracle”) for whether the overall series of transac-
tions is processed correctly by the server(s). With the “warehouse” client application,
a comparison of the tables in the databases checks at predefined intervals whether the

120 P. Popov et al.

databases remain consistent, but no oracle exists to detect which of the servers has
failed in case of disagreement. A third application is under development, based on the
TPC-C benchmark [9].
The testbed allows different configuration parameters to be changed such as:

the number of clients and of queries submitted by each in an experiment;
the “demand profiles” of the clients, a probability distribution defined on the set of
queries used. The query types and parameter values are chosen by the testbed, ac-
cording to user-set probability distributions. A “Template Editor” tool exists for
extending the set of transactions and setting the probability distributions, so that
one can experiment with a wide range of loads on the servers;
various modes of concurrency control between the clients:

Free mode, i.e. unrestricted access to servers by all clients. The level of isolation
between the transactions provided by the servers is set to “serialisable”, but no
mechanism (e.g. atomic broadcast) is implemented in the testbed to control the
order in which the queries are delivered to the individual servers and hence exe-
cuted by the servers. The clients are multithreaded, with a separate thread talk-
ing to each of the servers.
Bottleneck mode, which imposes a very restrictive total order of the access by
the clients to the server, with no concurrency between the clients. The threads
representing the clients are synchronised (using critical sections) and the servers
are supplied with only one transaction at a time. The next transaction (coming
from any of the competing clients) is only initiated after the previous transaction
is either committed or rolled back;
WriteBottleneck mode, in which the wrapper allows an arbitrary number of con-
current observing (i.e. read-only) transactions to be sent to the servers but no
concurrency between the modifying transactions (which contain at least one IN-
SERT, DELETE or UPDATE statement). A modifying transaction can only be
started after the previous modifying transaction is completed (committed or
rolled back).

intervals for comparison of the tables in the databases and for “ping”-ing the serv-
ers to check whether they are still functioning.

For each experiment, a detailed log of events is recorded, including, e.g., all queries
as sent, all exceptions raised, ping responses, results of database comparison, with
timestamps for queries and responses.

3 Wrapping against Known Faults in a Server

A form of fault-tolerance is to deal explicitly with known faults. We give one exam-
ple here.
With the Microsoft SQL v7.0 server, we observed that when the number of clients
exceeded 20, the sharing of LOCKS between the competing threads created by the
SQL server to serve its clients could cease to work properly. A peculiar situation
could arise in which some clients acquired the locks they needed but remained in the
“waiting” state, thus keeping all the other clients (trying to acquire the same locks)
from continuing (this abnormal situation is not a deadlock, which the server would
detect and handle by rolling back all competing transactions but one). The problem

Software Fault-Tolerance with Off-the-Shelf SQL Servers 121

only occurs when the number of concurrent clients is large, and become more fre-
quent as this number increased.
As we later found out, Microsoft reported the problem as due to a fault of the SQL
server (Bug #56013, [10]).
A work-around is for the administrator - or for an application - to detect the situation
and intervene by killing the thread that holds all the LOCKs but remains in a “sleep-
ing” state (i.e. is in the root of the chain of blocked threads). However, manual inter-
vention by the administrator is costly and may still allow large delays before being
undertaken. Handling the problem explicitly in the client applications is only satis-
factory if all clients handle the situation properly.
We have found another fully automated solution, which is relatively painless and can
be incorporated in a wrapper, without changes to the legacy clients. It utilises a pa-
rameter, specific for MSSQL, LOCK_TIMEOUT, which can be explicitly set for
each query. Its default value is 0, i.e. the blocked thread would wait for the needed
lock forever. Setting it to non-zero value (we used 10 seconds) would make the server
raise an exception “Lock request timeout period exceeded” when the set lock timeout
expires. Now the client instead of waiting forever will get the exception and can roll
the transaction back, while the locks are passed on to other clients. This solution is
sufficient to resolve the occurrences of “bad blocking”, at the cost of some number of
transactions being rolled back. It can be improved if we include in the wrapper an
exception handler for LOCK_TIMEOUTs, which would gradually increase the
LOCK_TIMEOUT period, or just repeat the transaction after rolling it back, and thus
make the resolution of the “bad blocking” condition completely transparent to the
client. The cost of our simple solution, of course, is rolling back multiple transactions:
not necessarily a high cost. The alternative - killing the thread at the top of the block-
ing chain - also has its cost. If a server thread is killed, the connection between the
client and the server is lost and a new connection will have to be established, which is
a more expensive operation than rolling back a few transactions.
It is worth pointing out that our letting the wrapper manipulate the MSSQL-specific
lock timeout does not interfere with the setting of the query timeout (a different
mechanism, available to the client applications with any SQL server). A complex
query may take very long to complete even under light load (e.g. executing a complex
query with sub-queries) and, therefore, setting a large query timeout for all queries is
reasonable. During the execution of a query, multiple LOCKS can be exchanged
between the server threads which compete for access to a shared resource. Without
bug #56013, long query timeouts can co-exist with very short LOCK_TIMEOUT
without any aborts.
With this approach of implementing work-arounds in wrappers, a user organisation
can provide fault tolerance for bugs it discovers to be detrimental to the dependability
of its installations, without waiting for the vendor to recognise the problem and issue
a patch, which in any case may not completely eliminate the undesired behaviour.
When known problems are left open by the vendor, the system integrator has the only
choice of either introducing a protective wrapper or building a work-around in the
client applications. The latter option may well be more efficient, but it is more cum-
bersome to manage and implement correctly: the fix and any subsequent upgrade to it
must be replicated in all the client applications. Note that in our example, if some
clients did not properly use the LOCK_TIMEOUT defence, they could prevent the
other, “well-behaved” clients from accessing a shared resource - forever. The well-
behaved clients would be the only ones to receive multiple “Lock request timeout

122 P. Popov et al.

period exceeded” exceptions until the blocking chain of non well-behaved clients is
removed somehow, e.g. by timing out the respective queries, which may take long.
In summary, implementing a fix in the wrapper reduces dependence on fixes by the
vendor, and it seems always a better option than implementing it in the client applica-
tions, so long as feasible and the performance penalty incurred at run-time is accept-
able.

4 Diverse-Redundancy with SQL Servers Guaranteeing
Consistency

With the testbed developed (Fig 1), we wish to answer two questions:
are the off-the-shelf SQL servers sufficiently diverse in their failure behaviours
that a diverse-redundant server would be significantly more reliable than the indi-
vidual servers?
to what extend can one build a software fault-tolerant server with OTS SQL serv-
ers without altering the internals of the servers?

Regarding the first question, preliminary work with the bug reports publicly available
for two open-source SQL servers, PostgreSQL 7.0 (www.postgresql.org) and Inter-
base 6.0 (firebird.sourceforge.net), indicates encouraging results. We have demon-
strated via manual testing that our setup can tolerate most of the bugs of the two SQL
servers reported over one year. We plan to extend this work to the other SQL servers
we experimented with, and to supplement it with statistical assessment of the reliabil-
ity gains, via extensive automated testing under different testing profiles.
Regarding the second question, we achieve consistency between the diverse SQL
servers using only synchronisation mechanisms implemented in a wrapper (Fig. 1).
Achieving consistency between diverse SQL servers is difficult. All SQL servers
must be guaranteed to execute the same serialisable transaction history –“1-copy
serialisable execution” [11]. This is difficult for identical replicas [6] and even more
so for diverse SQL servers [3]. Here we have an example of “eager replication” re-
garded by many as very difficult [6] and, therefore, rarely used. A recent survey of the
replication mechanisms used in the leading commercial SQL servers can be found in
[12]. The available solutions are for non-diverse replicas and are based on vendor
specific replication mechanisms, optimised for high performance at the expense of
consistency. The generic mechanisms proposed by various researchers, e.g. [13],
[14], universally require access to the internals of the servers so that the replicas can
achieve a consistent view on the order and the results of transaction processing. Since
we use OTS SQL servers whose internals we cannot modify, none of these solutions
is available to us.
Using the testbed in Free mode gave us plenty of examples in which the consistency
between the databases was violated. Actually, this problem was exacerbated by the
original implementation of our wrapper, which did not even attempt to deliver the
queries within a transaction in the same order to the different SQL servers. It is worth
checking whether implementing a mechanism which guarantees the deliveries of the
queries to the servers in exactly the same order would have an impact on the evolution
of the databases. In any case it would not avoid inconsistencies, since different servers
use different optimisation strategies, and may alter the order of the execution of the

Software Fault-Tolerance with Off-the-Shelf SQL Servers 123

concurrent queries, compared to the order in which they are delivered to the server, in
different ways.
In summary, we need to constrain concurrency to guarantee consistent evolution of
the diverse databases. What are the non-intrusive (i.e. not altering the internals of the
SQL servers) options available? An obvious option is to eliminate concurrency com-
pletely, via the Bottleneck mode of operation of our wrapper: a single query at a time
is executed, guaranteeing that all servers will execute the same serialisable history (1-
copy serialisability). Provided the servers process the query correctly, the databases
will stay consistent. With tests with the Bottleneck mode of operation, consistency
was indeed preserved2. As a by-product of using this mode, deadlocks between clients
are eliminated. However, the limitations imposed are so restrictive that this mode is
hardly of any interest. SQL servers are designed to provide high throughput under a
wide range of circumstances, inlcuding heavy load and thousands of concurrent trans-
actions, benefits which are denied in the Bottleneck mode.
Our alternative is to use the WriteBottleneck mode, in which many read transactions can
be executed concurrently together with at most one write transaction. The reason for
implementing this is that in most real-life applications of databases, most transactions
are observing transactions (i.e. SELECT queries). This is particularly true for most web
applications. In the extreme case of some large web-based databases, the only on-line
operations are SELECTs, while updates are only run off-line. In the WriteBottleneck
mode, the changes occur in the same order for all databases, guaranteeing the consis-
tency of the changes across the servers. The transaction histories on the servers may
only differ in the order of their read transactions. This may lead to inconsistent results
returned by the read transactions: voting on the outputs from the servers may produce
mismatches even if the servers work correctly. Voting is, thus, no longer a trustworthy
error-detection mechanism. Without voting, this solution is only fully fault-tolerant so
long as the database servers have a fail-silent of crash-fail semantics [15] - which is, on
the other hand, still assumed by most developers of database applications.
The WriteBottleneck mode also allows two more standard tricks for improving the
throughput of the read transactions:
i)

ii)

the wrapper can return to the client the first among the redundant results from a
SELECT query: diversity will bring some performance improvement if different
servers perform best on different queries;
the wrapper can perform load balancing for read transactions by forwarding que-
ries to only some servers, and thus reduce the load on the individual servers and
increase overall system throughput. This may compensate for the delays on write
transactions due to the WriteBottleneck mode.

The WriteBottleneck mode eliminates, as a by-product, all problems caused by con-
current execution of write operations by the servers. A recent study reports that SQL
servers employing snapshot isolation, e.g. Oracle, have trouble handling the “write
skew” problem [16]. This problem, first described in [17], is as follows. Suppose that
X and Y are data items representing bank balances for a married couple, with the
constraint that X+Y>0 (the bank permits that either account be overdrawn as long as

We always explicitly tested the effects of any solution we designed. This experimental con-
firmation is important, even if the solution, as specified, can be proven to have a desired
property, and even if the solution is correctly implemented in the wrapper, because its opera-
tion relies on the functioning of the SQL servers - whose internal details the integrator cannot
verify - and thus may violate that property.

2

124 P. Popov et al.

the sum of the account balances remains positive). Snapshot isolation is reported to
have a problem with two transactions which concurrently attempt to withdraw from
the two accounts, X and Y. It is possible to commit both transactions and leave the
accounts with the constraint X+Y>0 violated. The WriteBottleneck mode clearly
eliminates the problem. SQL servers using snapshot isolation will work properly if
accessed via a wrapper in WriteBottleneck mode of operation. If this mode of opera-
tion is acceptable, there is no need for changes of the client applications as proposed
in [16] to guarantee that a set of sufficient conditions for serialisability are met.
The expectation to see the diverse databases stay consistent under the WriteBottleneck
mode has also been confirmed by testing with a few millions of transactions on the
three diverse SQL servers of Fig 1.
To conclude, the WriteBottleneck mode is less restrictive than the Bottleneck mode
and has some practical relevance, since its performance penalty may be negligible.
Predictably, in our tests the performance of the testbed (measured by the time to exe-
cute a set of transactions) was better in Free than in Bottleneck mode. However, with
a light load of write queries the WriteBottleneck and the Free modes are comparable.
Of course, as the load of write queries increases the performance under the WriteBot-
tleneck decreases, approaching the performance of the Bottleneck mode.
The Bottleneck mode has the advantage of allowing voting for error masking, at the
cost of severe performance limitations. The WriteBottleneck mode reduces the latter
disadvantage at the cost of making voting either unusable or more expensive (e.g., if
discrepancies are rare enough they can be handled by aborting and retrying the trans-
actions involved).

5 Related Work
Replicated databases are common, but most designs are not suitable for diverse re-
dundancy. We have cited in the previous section some of the solutions proposed.
Recent surveys exist of the mechanisms for eager replication of databases [7], and for
the replication mechanisms – mainly lazy replication – implemented in various SQL
servers [12]. The Pronto protocol [13] attempts to reduce the negative effects of lazy
replication using ideas typical for eager replication. One of its selling points is that it
can be used with off-the-shelf SQL servers, but it is unclear whether this includes
diverse servers. A potential problem is the need to broadcast the SQL statement from
the primary to the replicas. We have observed that the syntax of the SQL statements
varies between commercial SQL servers, even for a standardised set of statements.
This would create a problem with diverse SQL servers and would require translating
the statements into the SQL “dialects” spoken by the diverse SQL servers involved in
the replication, which inevitably will slow the replication down.
In software development, the idea of wrapping at various levels has been exploited as
a means of making a particular function compatible with the component framework
used, e.g. COM (DCOM), Java RMI, CORBA, etc.
Protective wrapping has received some attention recently [18], [19]. In [20] we de-
scribed an approach in which protective wrappers are seen not only as a means of
tolerating known bugs but also as a means of correcting suspicious system behaviour.
The ideas proposed in [2] are also enjoying some popularity for the purpose of secu-
rity (intrusion tolerance). For instance, HACQIT (Hierarchical Adaptive Control of
Quality of service for Intrusion Tolerance) [21], uses diverse off-the-shelf web-

Software Fault-Tolerance with Off-the-Shelf SQL Servers 125

servers to detect failures (including maliciously caused ones, like defacement of web
content) and initiate recovery. [22] proposes an architecture with multiple, diverse,
COTS application servers. The Cactus [23] and SITAR [24] architectures support
diversity among application modules to enhance survivability.

6 Conclusions
Software fault tolerance, in the form of checker/monitor components (protective
wrapping) or diverse modular redundancy (N-version or N-self-checking systems)
recommends itself as a cost-effective solution for improving the dependability of off-
the-shelf software [2]. However, it may be objected that it is only feasible with simple
software components, and is thus of very limited applicability. Our experience gives
some evidence against this pessimistic view. We showed that simple wrapping tech-
niques allow reasonable protection against design faults of the OTS SQL servers or
their clients. In the case of the diverse-redundant configuration, by accepting some
loss of efficiency we achieve a fault-tolerant SQL server at the moderate cost of mul-
tiple OTS SQL servers. The constraints imposed to guarantee consistency do limit
performance, but this penalty may still often be minor compared to that of either using
an undependable database or producing a highly trustworthy server. We have not yet
estimated the dependability improvement produced by the diverse-redundant configu-
ration, but we have evidence that it tolerates most of the known faults of the SQL
servers used, which is a promising first piece of evidence. We intend to measure the
potential dependability gains on long runs of test cases under different loads.
There are several possible extensions of our research since our implementation of a soft-
ware fault-tolerant SQL server is only a demonstration prototype. Our goal in building it
was to measure the potential dependability gains offered by diversity, not to build a full-
fledged fault-tolerant server. For instance, we have not implemented an efficient solution
for recovery of a database that is found to be corrupted. Scalability too, a very important
aspect of connectivity with SQL servers, is not paid adequate attention, yet.

Acknowledgement. This work was supported in part by the DOTS (Diversity with
Off-The Shelf components) project funded by the Engineering and Physical Sciences
Research Council of the United Kingdom. Authors would like to thank all colleagues
from the Centres for Software Reliability at City University and Newcastle Upon
Tyne, UK, involved in the DOTS project and in particular Dr Alexander Romanovsky
for the helpful comments on an earlier draft of this paper.

References
[1]

[2]

[3]

[4]

ECUA, “3rd European COTS User Working Group (ECUA) Workshop,” in Panel with
Industrial Collaborators. Copenhagen, Denmark, 2002.
P. Popov, L. Strigini, and A. Romanovsky, “Diversity for off-the-Shelf Components,”
presented at International Conference on Dependable Systems and Networks (DSN 2000)
- Fast Abstracts supplement, New York, NY, USA, 2000.
J. Gray, “FT101: Talk at UC Berkeley on Fault-Tolerance”, 2000, pp. 62 slides,
http://research.microsoft.com/~Gray/talks/UCBerkeley_Gray_FT_Avialiability_talk.ppt.
P. Popov and L. Strigini, “Diversity with Off-The-Shelf Components: A Study with SQL
Database Servers,” presented at International Conference on Dependable Systems and
Networks (DSN 2003) - Fast Abstracts supplement, 2003.

126 P. Popov et al.

[5]

[6]

[7]

[8]

[9]

J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Definition and Analysis of Hardware-
and-Software Fault-Tolerant Architectures,” IEEE Computer, vol. 23, pp. 39-51,1990.
J. Gray, P. Helland, D. Shasha, and P. O’Neil, “The Dangers of Replication and a solu-
tion,” presented at ACM SIGMOD International Conference on Management of Data,
Montreal, Canada, 1996.
M. Weismann, F. Pedone, and A. Schiper, “Database Replication Techniques: a Three
Parameter Classification,” presented at 19th IEEE Symposium on Reliable Distributed
Systems (SRDS’00), Nurnberg, Germany, 2000.
P. Popov, L. Strigini, S. Riddle, and A. Romanovsky, “Protective Wrapping of OTS
Components,” presented at 4th ICSE Workshop on Component-Based Software Engi-
neering: Component Certification and System Prediction, Toronto, 2001.
TPC, “TPC-C, An On-Line Transaction Processing Benchmark, v. 5.,” 2002.
Microsoft, “MS SQL 7.0, BUG #: 56013, FIX: Lock Conversion Processing Does Not
Properly Wakeup Lock Waiter”,
http://support.microsoft.com/default.aspx?scid=kb;EN-US;236955, 2002.
A. Bernstain, V. Hadzilacos, and , and N. Goodman, Concurrency Control and Recovery
in Database Systems. Reading, Mass.: Addison-Wesley, 1987.
A. Vaysburd, “Faul Tolerance in Three-Tier Applications: Focusing on the Database
Tier,” presented at 18th IEEE Symposium on Reliable Distributed Systems (SRDS’99),
Lausanne, Switzerland, 1999.
F. Pedone and S. Frolund, “Pronto: A Fast Failover Protocol for Off-the-shelf Commer-
cial Databases,” presented at 19th IEEE Symposium on Reliable Distributed Systems
(SRDS’00), Nurnberg, Germany, 2000.
F. Pedone, R. Guerraoui, and A. Schiper, “Transaction Reordering in Replicated Data-
bases,” presented at 16th IEEE Symposium on Reliable Distributed Systems (SRDS’97),
Durham, NC, 1997.
R. D. Schlichting and F. B. Schneider, “Fail-Stop Processors: An Approach to Designing
Fault-Tolerant Computing Systems,” ACM Transactions on Computing Systems, vol. 1,
pp. 222-238, 1983.
A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making Snapshots Isola-
tion Serializable,” 2000, pp. 16.
H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A Critique of
ANSI SQL Isolation Levels,” presented at SIGMOD Internationa Conference on Man-
agement of Data, 1995.
M. C. Mont, A. Baldwin, Y. Beres, K. Harrison, M. Sadler, and S. Shiu, “Towards Diver-
sity of COTS Software Applications: Reducing Risks of Widespread Faults and Attacks,”
HP Laboratories, Bristol, UK HPL-2002-178, 2002.
A. Romanovsky, “Exception Handling in Component-Based System Development,”
presented at COMPSAC’01, Chicago, IL, 2001.
P. Popov, L. Strigini, S. Riddle, and A. Romanovsky, “On Systematic Design of Protec-
tors for Employing OTS Items,” presented at 27th Euromicro Conference, Workshop on
Component-Based Software Engineering, Warsaw, Poland, 2001.
J. Reynolds, J. Just, E. Lawson, L. Clough, R. Maglich, and K. Levitt, “The Design and
Implementation of an Intrusion Tolerant System,” presented at International Conference
on Dependable Systems and Networks (DSN 2002), Washington, D.C., USA, 2002.
A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saidi, V.
Stavridou, and T. E. Uribe, “An Adaptive Intrusion-Tolerant Server Architecture,” 1999.
M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte, and G. T. Wong, “Survivability through
Customization and Adaptability: The Cactus Approach,” presented at DARPA Informa-
tion Survivability Conference & Exposition, 2000.
F. Wang, F. Gong, C. Sargor, K. Goseva-Popstojanova, K. Trivedi, and F. Jou, “SITAR:
A Scalable Intrusion-Tolerant Architecture for Distributed Services,” presented at IEEE
Workshop on Information Assurance and Security, West Point, NY, U.S.A, 2001.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

ImpACT: An Alternative to Technology Readiness
Levels for Commercial-Off-The-Shelf (COTS) Software

James D. Smith II

Carnegie Mellon Software Engineering Institute
4301 Wilson Boulevard, Suite 902, Arlington, VA 22203

jds@sei.cmu.edu

Abstract. The use of Technology Readiness Levels (TRLs) as a tool in assess-
ing acquisition and development program risk has steadily increased over the
past several years. There is considerable evidence to support the utility of using
TRLs as part of a risk assessment, but there are some difficulties in using TRLs
with software, especially Commercial-Off-The-Shelf (COTS) software technol-
ogy and products. These difficulties take several forms, including “blurring-
together” various aspects of COTS technology/product readiness; the absence
of some important aspects of readiness; COTS product “decay;” and no mecha-
nism to account for changes in the relative importance of the contributors to
technology/product readiness over time. This paper briefly examines these is-
sues, and proposes an alternate methodology—ImpACT—for assessing COTS
software technology and product readiness which considers these factors.

1 Introduction

Technology Readiness Levels (TRLs) have been used within the National Aeronau-
tics and Space Administration (NASA), as part of an overall risk assessment process,
since the late 1980s. By the early 1990s, TRLs were routinely used within NASA to
support technology maturity assessments and comparisons of maturity between dif-
ferent technologies [1, 2].

Within the United States Department of Defense (DoD), there has been consider-
able interest in using TRLs as part of risk assessments for entire systems, including
hardware and software. Current DoD guidance requires technology readiness assess-
ments prior to entering System Development and Demonstration; TRLs are one ap-
proach to meeting this requirement [3]. The Air Force Research Lab has adapted the
NASA TRLs for use in assessing the readiness of critical technologies for incorpora-
tion into weapon systems, and the Army Communications Electronics Command
(CECOM) has developed a draft set of TRLs to support software technology man-
agement [4, 5].

Several sources cite the difficulties in applying TRLs to assess the readiness of
software-based technologies and products [5, 6]. Some of the characteristics of TRLs
that affect their use in assessing COTS software technology and product readiness are
discussed in more detail in the following sections.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 127–136, 2004.
© Springer-Verlag Berlin Heidelberg 2004

128 J. D. Smith

1.1 “Blurring” Together Multiple Aspects of Readiness

One of the difficulties with using TRLs in readiness assessments involving COTS
software technology and products is the way in which TRL definitions combine, or
“blur” several different aspects of readiness. Because different aspects of maturity
may be more-or-less important within a particular program context, this makes it
difficult to understand the contributions of individual readiness components to the
overall product or technology readiness. Thus, the implications of these individual
aspects to the overall readiness of a product or technology—and by extension, to the
overall risk assessment—are difficult to discern.

As an example, in their draft TRLs for software, CECOM defines TRL7 as

Represents a major step up from TRL6, requiring demonstration of an

actual system prototype in an operational environment... Algorithms

run on processor of the operational system and are integrated with

actual external entities. Software support structure is in place. Software

releases are in distinct versions. Frequency and severity of software

deficiency reports do not significantly degrade functionality or

performance. VV&A complete. [5].

Note how this definition combine different aspects of technology readiness (e.g.,
functionality, maintainability, and reliability), making it all but impossible to under-
stand how the contributions of any one facet of readiness affects the overall product
or technology maturity.

1.2 Product/Technology Criticality

Just as importantly, TRLs leave out such considerations as the degree to which the
technology is critical to the overall success of the system (including how difficult it
would be to replace it, or assume some fall-back posture, should the technology in
question prove unacceptable), or the suitability of the technology in question to its
intended use within the system.

Some programs have attempted to deal with this effect by correction factors to ad-
just the TRL of a given technology for, say, the criticality of that technology to the
success of the system, or the technical complexity of the technology [7].

1.3 COTS Software Product “Decay”

TRLs are used to gauge technology or product readiness growth within a specific
context; this information is then used to inform judgments about the maturity of a
given product or technology for use in a particular operational environment. There-
fore, a product assessed as being at TRL 9—the highest level—is viewed as being at
low risk to the system. The fact that a product or technology is subject to “decay,”
(e.g., replacement by a newer release, or product of unproven maturity, or simply
retired without replacement), is not accounted for in the existing TRL definitions.

ImpACT: An Alternative to Technology Readiness Levels 129

1.4 Time-Varying Contributions to Readiness

Another problem with existing TRL definitions is that for different phases of an ac-
quisition, or different lifecycle phases within a development, different technology
readiness levels may be appropriate for different reasons. For example, in a “proof of
concept” demonstration, it is reasonable to use relatively immature, untested tech-
nologies as part of the demonstration. On the other hand, for a program in post-
deployment sustainment, use of “tried and true” technologies and products is prudent.

Various programs have attempted to deal with this by applying some form of “cor-
rection factor” to a raw TRL. One approach used is to adjust a TRL downward by
some amount if a particular technology or product comprises more than some per-
centage of the functionality of the system [7]. Another technique used is to “normal-
ize” technology maturity to the relevant environment for the different lifecycle phases
of an acquisition or development (e.g., for a laboratory “benchtop” test, a product or
technology with a TRL of 3 or 4 may be acceptable) [4, 5]. Neither of these ap-
proaches addresses the issue of how different aspects of maturity contribute—in
varying degree—to defining the context in which to understand technology or product
maturity during different phases of system acquisition and development.

2 An Alternative Approach

The previous section outlines some of the challenges encountered in using TRLs to
assess programmatic and technical risks for systems that include COTS software
products. The remainder of this paper will propose an alternative approach that ad-
dresses these issues.

2.1 Background

This work grew out of an earlier SEI effort to develop a framework for evaluating
COTS technology maturity. A key contribution of this effort was the recognition that
technology readiness—especially for COTS software products and technology— is not
something that can be represented by a single number. Rather, technology readiness is
the result of several factors within a particular context, similar—in concept—to the
definition of the Modeling and Simulation Technology Readiness Levels (M&S TRLs)
proposed by the Department of Energy, which defined modeling and simulation tech-
nology readiness as a function of “correctness,” “usability,” and “relevance” [8].

In this initial framework, the readiness attributes were:

When needed (and impact to system if not available)
Off-the-shelf (verification)
When projected to be ready (and level of investment needed to bring to that point)
Projected date of obsolescence (and impact to system)

To use this within a program, software products or technologies would be evaluated
against each of the attributes, and assigned values (red/yellow/green) according to the
degree to which each product satisfied the conditions described by the attributes. As an
example, for the “Off-the-shelf” criterion, a rating of “Green” would mean that the

130 J. D. Smith

product was in broad commercial use, “Yellow” would indicate that the product had
been demonstrated in a relevant environment, and “Red” would signify that your system
would represent the first use of the product in question. In addition, a product was rated
“High,” “Medium,” or “Low” based on its importance to the system.

2.2 ImpACT: A Multi-attribute Readiness Description

This initial attribute set afforded greater insight into technology maturity than that
obtained from TRLs, but there were difficulties in using it to evaluate COTS technol-
ogy and product readiness. First, these attributes had the same non-orthogonality
problem as TRLs. For example, the “when needed (and impact to system if not avail-
able)” attribute combined elements of both time and criticality into a single rating.
Similarly, there was a blurring of concerns in each of the initial attributes, resulting in
little quantifiable improvement in understanding software technology and product
readiness than that provided by TRLs.

This experience led to a realization that a different set of maturity attributes was
necessary. From our previous experience with COTS-based systems, and after an
extensive (though by no means exhaustive) review of the available literature, four
main factors emerged as key elements in addressing the software product/technology
maturity “problem”:

1.

2.

3.

4.

The criticality of the software technology or product to the system. To what degree
is the technology or product essential for the successful operation of the system, as
well as the amount of disruption to the system should the product or technology not
work, or not be available? This attribute reflects how closely the system architec-
ture and/or implementation is tied to a particular technology or product, and is an
indication of the potential for technology or vendor “lock,” where it is extremely
difficult—or impossible—to substitute a different technology or product within a
system.
The availability of the software technology or product. Is this a commercially
available product in widespread use in relevant domains? Or, is it a home-grown
engineering tool with no commercial support?
The degree of “fit” or “misfit” of the software technology or product and the sys-
tem. Does it have the necessary functionality? If not, how critical is the missing
functionality? Are there unneeded capabilities? Do these introduce other compli-
cations (e.g., vulnerabilities, undesired modes of operation, etc.)?
How well the product or technology lifespan matches the needs of the system. Will
a product or technology be ready when needed? Will it still be supported by its de-
veloper after incorporation into the system, or will it become an “orphan”?

These factors were then refined into a revised attribute set—Imp ACT—defined as:
Importance – Criticality to the system; difficulty of effecting a work-around if the
technology or product doesn’t work (or isn’t available)
Availability – The degree to which the product or technology is commercially
available
Capability – The functional fit (or misfit) between the product or technology and
the requirements of the system

ImpACT: An Alternative to Technology Readiness Levels 131

Timeframe – A measure of how the lifecycle of the product or technology matches
the lifecycle for the system. Will it be available when needed? Over the life of the
system?

This attribute set appears to address the orthogonality and criticality issues, as well as
the issue of “software decay” by providing a measure of not only when the technology
or product will become available, but also when it will cease to be viable in a given
context. Definitions of each of these attributes are provided in the Appendix. The fol-
lowing sections will discuss an approach to reason about and quantify the time-varying
contributions of the individual components of product and technology readiness.

2.3 Acquisition and Development Maturity Growth

To better understand how different types of acquisitions, or different phases in a
system development, are affected by the different attributes of technology or prod-
uct maturity, a picture may be useful. In their paper, Hanakawa, et al, model the
growth of knowledge during software development, and show how that growth can
be represented by the family of sigmoid (s-shaped) curves, as shown in
Fig. 1 [9]. Extending this model to a software-intensive system acquisition or de-
velopment, and equating “knowledge” with some measure of maturity (such as
requirements satisfaction or technical performance measure improvement), some
generalizations can be made. For example, a typical acquisition or development
program will mature slowly during initial concept exploration and technology de-
velopment, until some critical point is reached (e.g., fundamental science is under-
stood, algorithms validated, etc.) at which time the rate of progress increases. As a
program moves towards greater maturity, and most—though probably not all—
requirements are satisfied, progress tapers off. In Hanakawa’s model, the exact
shape of this curve is dependent on the statistical distribution of tasks (e.g.,
requirements to be satisfied, program milestones, etc.) and their degrees of
difficulty, the knowledge/competence of the organization to perform these tasks,
and the rate at which knowledge accumulates by performing these tasks. Thus,
every acquisition or development will result in a unique “maturity profile.”
In Fig. 2, typical DoD acquisition phases and milestones are overlaid on a repre-
sentative maturity profile. Within each of these phases, the slope and curvature
(concave or convex) of the curve reflects the changing rate of maturity growth.
This maturity profile provides some insight into how the relative importance of the
individual components ImpACT can change during the course of the program. For
example, during a technology demonstration (i.e., ATD, ACTD), the fact that a
software technology or product is projected to become unsupported sometime dur-
ing the demonstration is probably less significant than the same situation during the
later stages of development, or during post-deployment sustainment. The key to this
approach is that, while the absolute values of the individual contributors to product
or technology maturity cannot be defined, it is possible to articulate the importance
of any one aspect (e.g., “Capability”) relative to another, using “fuzzy” definitions
like “as important as,” or “much less important than” for each phase in a program’s
life cycle.

132 J. D. Smith

Fig. 1. Characteristic maturity growth curves, or “maturity profiles”

2.4 Reasoning Framework

Since ImpACT is defined by multiple criteria, it seems reasonable to use a tech-
nique like Saaty’s Analytic Hierarchy Process (AHP) to assess the results [10].
AHP defines a process for evaluating multiple criteria, using a hierarchical structure
(i.e., goal, attributes and sub-attributes, and alternatives) and pair-wise comparisons
to determine the alternative that best satisfies the desired goal. The use of relative
rankings, such as “x is much more important than y” or “x has roughly the same
importance as y,” works well in the context of software-intensive system acquisition
and development where absolute criteria don’t exist, but relative rankings can be
defined with some de- gree of confidence. This approach also lends itself to exam-
ining the effects of time-varying affects of the contributions to maturity of each of
the ImpACT criteria.

As a simple illustration of using AHP, consider an evaluation of two COTS
products (“A” and “B”) being considered for incorporation into a system. During
this particular phase of the system’s development, the criticality of the product to
the system (Imp) is considered slightly more important than the ability of the prod-
uct to satisfy the full range of requirements (C). Both of these attributes are signifi-
cantly more important than the commercial availability of the product (A), and the
temporal availability of the product with respect to the system (T) is of still less
concern. Expressed in a pair-wise comparison matrix, this becomes:

ImpACT: An Alternative to Technology Readiness Levels 133

Fig. 2. Representative DoD acquisition/development program phases and milestones overlaid
on a typical growth curve

The two products were evaluated against the ImpACT criteria, with the result:

Looking at the Importance criterion (I), it was determined that for this specific de-
velopment, during this life cycle phase, the mapping from ImpACT criteria to AHP
relative rankings was as follows:

Thus, the PCM for products A and B with respect to the Importance criterion is:

134 J. D. Smith

By a similar process, the PCMs for both products with respect to the remaining
ImpACT criteria. Applying the AHP method results in weighted scores for the two
products as shown:

So, for this example, Product A’s technology readiness appears to be significantly
greater than that for Product B, given the relative importance of the readiness criteria
(i.e., ImpACT) and the determination of the relative weighting of the values within
the criteria.

While AHP provides a method to reason about the contributions of various attrib-
utes to satisfying a desired goal, neither AHP nor ImpACT define how the relative
rankings of the criteria are derived. Just as the CMM® framework leaves the definition
of appropriate processes to the implementing organization, ImpACT leaves the crite-
ria evaluation definitions to the developing or acquiring organization. Within the
context of any particular development or acquisition, one approach may be more
suitable than another. For instance, there are several possible means of determining
the degree of match/mismatch between a candidate product or technology and the
desired capabilities; examples include the “Risk-Misfit” approach, described by
Wallnau, Hissam, and Seacord in Building Systems from Commercial Components, or
the “Gap Analysis” methodology described by Ncube and Dean [11, 12].

3 Conclusions

While there is a growing body of evidence that using TRLs as part of an overall risk
assessment can lead to an improved understanding of the technological and program-
matic risks in a system development or acquisition, there are several difficulties in
applying “traditional” TRLs to the evaluation of software technologies. This is espe-
cially true for COTS software technologies and products, where TRLs don’t provide
any meaningful discrimination between mature, commercially-available technologies
or products, nor do they take into account the inevitable decay which all software—
especially COTS software—experiences. Finally, the existing TRL framework lacks
any explicit mechanism to deal with the time-varying effects of the various contribu-
tors to technology and product readiness.

The ImpACT methodology provides an alternative to TRLs for COTS software
products and technologies which directly addresses each of these shortcomings in a
manner which can be tailored to an individual development or acquisition organiza-
tion, for any software-intensive system.

References

1.

2.

Eisman, M., Gonzales, D.: Life Cycle Cost Assessments for Military Transatmospheric
Vehicles.<www.rand.org/publications/MR/MR893/> (1997)
Mankins, J.: Technology Readiness Levels – A White Paper.
<http://advtech.jsc.nasa.gov/downloads/TRLs.pdf> (1995)

ImpACT: An Alternative to Technology Readiness Levels 135

3.

4.

5.

6.

7.

8.

9.

Department of Defense.: Operation of the Defense Acquisition System). <http://dod5000.
dau.mil/DOCS/DoDI%205000.2-signed%20(May%2012.%202003).doc> (2003)
General Accounting Office.: Better Management of Technology Development Can Im-
prove Weapon System Outcome. <http://www.gao.gov/archive/1999/ns99162.pdf> (1999)
Graettinger, C., Garcia, S., Siviy, J., Schenk, R., Syckle, P.: Using the Technology Readi-
ness Levels Scale to Support Technology Management in the DoD’s ATD/STO Environ-
ment. <http://www.sei.cmu.edu/publications/documents/02.reports/02sr027.html> (2002)
Graettinger, C., Garcia, S., Ferguson, J.: TRL Corollaries for Practice-Based Technologies.
<http://www.acq.osd.mil/sis/Conference%20Presentations/TRL%20Corollaries%20for%2
0Practice%20Based%20Technologies.pdf> (2003)
Wong, B.: NASA Cost Symposium – Multivariate Instrument Cost Model-TRL (MICM-
TRL). <http://ipao.larc.nasa.gov/symposium/MICM-TRL-Wong.pdf> (2000)
Department of Energy.: Modeling and Simulation Technologies Future Combat System
Workshop. <http://www.amso.army.mil/topic/fcs/feb-conf/overview.ppt> (2000)
Hanakawa, N., Morisaki, S., Matsumoto, K.: A Learning Curve Based Simulation Model
for Software Development. <http://ieeexplore.ieee.org/iel4/5475/14745/00671388.pdf?
isNumber=14745&prod=CNF&arnumber=671388&arSt=350&ared=359&arAuthor=
Hanakawa%2C+N.%3B+Morisaki%2C+S.%3B+Matsumoto%2C+K.%3B> (1998)
Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
Wallnau, K., Hissam, S., Seacord, R.: Building Systems from Commercial Components.
Addison-Wesley, Boston (2002)
Ncube, C., Dean, J.: The Limitations of Current Decision-Making Techniques. In: Dean,
J., Gravel, A. (eds.): COTS-Based Software Systems. Lecture Notes in Computer Science,
Vol. 2255. Springer-Verlag, Berlin Heidelberg New York (2002) 176-187

10.
11.

12.

136 J. D. Smith

Appendix: ImpACT Attribute Definitions

COTS-Based Systems – Twelve Lessons Learned about
Maintenance

Donald J. Reifer1, Victor R. Basili2, Barry W. Boehm1, and Betsy Clark3

1 Computer Science Department, University of Southern California,
Los Angeles, CA 90089, USA

dreifer@earthlink.net, boehm@sunset.usc.edu
2 A.V. Williams Building, Room 4111, College Park,

MD 20742, USA
basili@cs.umd.edu

3 Software Metrics Inc, USA
Betsy@Software–Metrics.com

Abstract. This paper presents the twelve most significant lessons the CeBASE
community has learned across a wide variety of projects, domains, and organi-
zations about COTS-Based Systems (CBS) maintenance. Because many of the
lessons identified are not intuitive, the source and implications of the lesson are
discussed as well within the context of maintenance model for CBS.

1 Introduction

One of the major thrust areas for the Center for Empirically-based Software Engi-
neering (CeBASE) is its COTS-Based Systems (CBS) initiative. The CBS initiative
was started because practitioners need empirical data published to base their decisions
upon. CeBASE is addressing this problem by capturing lessons learned and empirical
data and making it available via its web site (www.cebase.org) and continued publi-
cations. In May 2001, we published our first paper which highlighted our CBS “Top
“10 list [2] and initial findings relative to maintenance [4]. In this paper, we focus
our attention on CBS maintenance activities and lessons learned to shore up the little
knowledge that exists about this mysterious domain.

CeBASE was organized to support software organizations in answering the key
questions about what models, tools and techniques to use to produce high-quality
software on schedule and within budget limitations throughout the software life cycle.
Its focus is not limited to the development phases of the life cycle. CeBASE accu-
mulates empirical models in order to provide validated guidelines for making such
selections, recommending areas for research, and supporting software engineering
education. CeBASE’s primary objective is to transform software engineering from
a fad-based practice to an engineering-based discipline in which development pro-
cesses are selected based on what is known about their effects on products, through

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 137–145, 2004.
© Springer-Verlag Berlin Heidelberg 2004

138 D.J. Reifer et al.

synthesis, derivation, organization, and dissemination of empirical knowledge on
software development and evolution phenomenology. The lessons learned identified
in this paper are directed towards achieving these goals.

2 COTS and the Maintenance Process

There is a great deal of confusion over the activities that software organizations per-
form during software maintenance. Figure 1 tries to how COTS renewal and refresh
activities fit as part of the work performed which is organized into the following two
often competing groupings:

Sustaining Engineering: Those activities conducted during the maintenance phase
of the software life cycle to sustain software operations and support activities after the
software system goes operational. Typical sustaining engineering activities include:

Applications repairs
Configuration management
Distribution management
Facility updates and management
Quality control
Security administration
System administration
System software repairs
User support and training
Unscheduled software repairs

The following separable COTS activities are conducted as part of these activities:
Continued COTS package evaluation
COTS vendor liaison (problem reporting and repair and update evaluation
and influence)
COTS package patch management and repair
Interim response to COTS surprises (e.g., vendor default)

New Version Release: Those activities conducted during the maintenance phase
of the software life cycle to generate new versions that incorporate new user-defined
and prioritized features and functions (enhancements), scheduled repairs (fixes to
patches) and perfective changes (typically to improve performance or address re-
source utilization shortfalls). Typical new version release activities include:

Requirements engineering (for the new version)
Version development
Version alpha testing
Version beta testing
Version acceptance testing
Version documentation
Version management
User support and training (for the new version)

COTS-Based Systems – Twelve Lessons Learned about Maintenance 139

The following separable COTS activities are conducted as part of these activities:
COTS package update synchronization (with release cycle)
COTS package repair and/or replacement (COTS refresh)
COTS package tailoring and enhancements (COTS renewal)
COTS package integration and testing (including retesting of changed con-
figurations)
COTS test script development (for use during alpha, beta and acceptance
testing)

Fig. 1. Software Maintenance Activities

The most interesting observation made based on updates made during the last fif-
teen years to our original maintenance study [3] was that most software staffs remain
workforce-limited during the operations and support phase of the software life cycle.
This means that management does not acquire the staff needed to handle the required
workload to support both the new version release and sustaining engineering tasks.
Instead, they are told to figure out what workload they could accommodate with an
existing, fixed workforce whose skills and experience were typically leaner than the
staff assigned to projects developing new software. In contrast, development teams
are most often tasked to figure out how many people they will need to develop soft-
ware with a given functionality per an often constrained schedule.

Typically, the workload is equally distributed in most software shops between new
version release and sustaining engineering activities. However, when conflicts arise
for staff, many managers resort to load-balancing. For example, when sustaining
engineering activities requires a disproportionate number of people to install and train
the staff in a new operating system (i.e., moving from Linux to Windows or vice
versa), management will often either extend the promised new version delivery date
or cut back on its delivered features and/or functionality.

140 D.J. Reifer et al.

3 COTS Maintenance Lessons Learned

Within the context of the maintenance process shown in Figure 1, we present our
lessons learned relative to COTS maintenance. These findings extend work previ-
ously reported in the literature and available at the Center for Empirically Based
Software Engineering’s portal site (www.cebase.org). For each lesson learned, we
summarize our findings, provide a source for our observations, and suggest what it
means relative to how we could improve the way that we manage the maintenance of
COTS products.

Lesson 1 - The refresh and renewal process for COTS-based systems (CBS)
needs to be defined a priori and managed so COTS package updates can be syn-
chronized with each other and the organization’s release and business cycles. If
they aren’t, updates may occur sporadically during the maintenance part of the
cycle and the risk of technology obsolescence may increase dramatically. The
magnitude of the problem increases exponentially with the number of independ-
ent COTS products to be synchronized (see Lesson 5).

Source: Survey of 34 COTS-based systems as part of a recent Air Force Scien-
tific Advisory Board study looking at management of COTS software within
weapon systems (SAB-TR-99-03, April 2000). Surveys of FAA and NASA CBS
maintenance projects.

Implications: Currently, few COTS software life cycle models address mainte-
nance processes for CBS. Guidance is needed to define the activities that take
place during the refresh and renewal process. Criteria for making decisions rela-
tive to when to incorporate updates within releases also need to be defined along
with their associated risks and business implications. Preferably, the refresh fre-
quency is tied to operational mission cycles (annual new-product rollout, bian-
nual operator retraining).

Lesson 2 – COTS software capability and quality evaluation needs to be man-
aged as a continuing task during the maintenance phase.

Source: Most publications that discuss CBS processes advocate that a market
watch function should be established as well as a process to evaluate specific
COTS products (see National Research Council of Canada, Software Engineering
Institute and University of Southern California (USC) research reports).

Implications: Most COTS software studies recommend that firms (1) establish a
market watch function to keep track of where their packages are heading and (2)
an evaluation activity to continuously assess options. A market watch looks at
the marketplace as a whole, monitoring the health and viability of a specific ven-
dor as well as what the competitors are coming out with. The COTS evaluation
activity provides you with a detailed assessment of package capabilities, quality

COTS-Based Systems – Twelve Lessons Learned about Maintenance 141

issues and future options. It typically involves conducting some form of opera-
tional demonstration.

Lesson 3
custom software. Maintenance in this context involves updating CBS with new
releases, modifying wrappers and glue code and incorporating fixes/repairs into
the system. Costs average 10 percent of the development cost per year over a ten
year life for the system. Although releases occur every year, technology refreshes
for COTS aren’t synchronized as they occur every two years. Defect rates per
release for CBS are poorer than for custom-built software, averaging 10 to 40
percent higher.

Source: Recent study by RCI across 3 large firms looking at the cost of COTS
software across 16 systems, some of which employ over 40 different packages.

Implications: Even though firms can save time and effort during development
using CBS, they should evaluate the total life cycle cost of options prior to mak-
ing commitments. Such analysis could identify risks that negate many of the ad-
vantages that CBS brings to the table. For example, firms must coordinate glue
code updates along with package improvements. Research at USC has found that
a line of glue code costs, on average, three times the cost of a line of custom code
to develop and maintain. Thus, the effort during maintenance can get quite ex-
pensive. In situations where COTS functionality is relatively small and the CBS
has a long life, custom solutions may work out to be cheaper than COTS alterna-
tives. On a related note, project managers that were interviewed as part of our
research said that, unlike custom systems, CBS need a continual stream of fund-
ing throughout their life cycle. Such funding is required to keep up with the mar-
ketplace that is dynamic and recognizes the fact that vendors are continually re-
leasing new versions. Funding was an issue with several projects we spoke with
because maintenance budgets get cut often. The opinion of those we spoke with
is that maintenance budget cuts hurt a CBS more than a custom system because
they are more able to delay maintenance in the latter if necessary.

Lesson 4 – The most significant variables that influence the cost of CBS mainte-
nance include the following (in priority order):

Number of COTS packages that need to be synchronized within a release
Technology refresh and renewal cycle times
Maintenance workload for glue code and wrapper updates
Maintenance workload to reconfigure packages
Market watch and product evaluation workload during maintenance
Maintenance workload to update databases
Maintenance workload to migrate to new standards

Where maintenance workload represents the amount of effort software engineers
expend to handle the task at hand.

– The Cost to maintain CBS often equals or exceeds that of developing

142 D.J. Reifer et al.

Source: Recent study by RCI across three large firms looking at the maintenance
cost of COTS software across sixteen systems, some of which employ over 40
different packages. Parameters identified using a survey that asked those respon-
sible for maintenance for insight. Parameters are listed in impact order with
number of packages requiring synchronization being twice as sensitive as the
need to migrate to new standards.

Implications: Cost models like USC’s COCOTS (see http://sunset.usc.edu for
information) need to be updated to encompass the full CBS life cycle. Currently,
they focus on estimating the costs associated with evaluating, adapting and de-
ploying COTS software packages during development and maintenance. In the
future, such models need to incorporate additional variables like the last three
bullets on our list to permit those assessing life cycle costs to estimate the full
cost of the maintenance portion of the CBS life cycle.

Lesson 5 – Maintenance complexity (and costs) will increase exponentially as
the number of independent COTS packages integrated into a system increases.

Source –Initial results of study of twenty projects by the COCOTS team at
USC [1].

Implication - Projects should understand the maintenance implications of inte-
grating large numbers of COTS products into a system. In addition to the effort
involved in the initial integration, they need to consider that each product will
evolve in its own way, according to different timetables, at the discretion of the
vendors. You will have to expend considerable effort to handle the continuing
evolution of these products (e.g., understanding the impact of an upgrade on the
rest of the system, making changes to glue code). An important COTS evalua-
tion criterion is the COTS vendor’s track record on stability and predictability.

Lesson 6 – Significant time and effort must be spent up-front analyzing the im-
pact of version updates and new releases (even when the decision is made not to
incorporate the updates).

Source: Initial results of study of 20 projects by the COCOTS team at USC sug-
gest that analysis efforts during maintenance directed towards updates can tax the
organization severely. This is particularly true for safety-critical systems.

Implications: Maintenance modeling needs to assume that there are fixed and
variable costs for CBS. Fixed costs are those associated with market watch and
continued product evaluation. Variable costs are a function of the work per-
formed to incorporate updates and fixes, changes and optimizations into the im-
pending release. Workload balancing is needed to optimize the workload per-
formed by the fixed staff as part of this process.

COTS-Based Systems – Twelve Lessons Learned about Maintenance 143

Lesson 7 – Flexible CBS software licensing practices lead to improved perform-
ance, reliability and expandability.

Source: Best acquisition practices surveys done in 2000 and 2001 by RCI for the
Army (see www.reifer.com for paper on innovative licensing).

Implications: Partnering instead of conflict management was identified as the
preferred approach to licensing. Shared goals lead to products with improved
“goodness of fit” and “functionality” for the buyer. Leveraging relationships to
achieve shared goals is strongly desired. Innovative contracting under such ar-
rangements lead to deep volume discounts and priority service/bug fixes. Tradi-
tional approaches to licensing where contracts govern instead of relationships
lead to distrust and poor results.

Lesson 8 – Wrappers can be effectively used to protect a CBS from unintended
negative impacts of version upgrades.

Source: Projects interviewed for the COCOTS database. One project success-
fully used wrappers for information hiding so that different versions of COTS
products (or different products) can be swapped without impacting the rest of the
system.

Implication: CBS architectures should accommodate COTS changes throughout
the system life cycle.

Lesson 9 – You may have to re-tailor COTS components with new releases to
accommodate new features and functionality (including interfaces and external
links). The effort involved in re-tailoring often proves to be non-trivial because
new interfaces and links need to be supported along with the old ones.

Source: In most cases, you will have to write new scripts to address these fea-
tures and functionality. In addition, test scripts will have to be changed to incor-
porate new scenarios. All of these changes take time and effort that needs to be
factored into your maintenance workload. If the number of scripts is large, the
nominal maintenance cost of 10 percent per year will have to be increased pro-
portionately.

Implication: CBS architectures should accommodate COTS changes throughout
the system life cycle.

Lesson 10 – The Achilles’ heel of most COTS projects is the interface to legacy
systems. They fail over and over again.

144 D.J. Reifer el al.

Source: The Center for Empirically Based Software Engineering lessons learned
repository captured as a result of an e-workshop held on the topic of COTS
maintenance.

Implication: Extra care must be taken when interfacing COTS to legacy systems.
Packages with well defined interfaces should be selected especially when legacy
system interface definitions are not well-defined.

Lesson 11 – Out-sourced CBS applications that don’t require refreshed COTS
components in their contracts for delivered applications often have to live with
obsolete COTS products.

Source: Initial results of study of twenty projects by the USC COCOTS team.
One delivery had 46% of its 120 COTS products having unsupported releases.

COTS-Based Systems – Twelve Lessons Learned about Maintenance 145

Implication: When contracting for CBS development, make sure to plan for and
specify the refresh of COTS components prior to acceptance.

Lesson 12 – When the error rates with COTS packages equal to or exceed those
being experienced with other software, it is time to consider replacing the package.

Source: Recent study by RCI across 3 large firms looking at the cost of COTS
software across 16 systems, some of which employ over 40 different packages.
Trend data shows that COTS package quality goes down more quickly than the
norm when error rates rise above expectations. Because COTS packages are
subjected to broader testing than most custom software, quality expectations for
fielded, mature systems are higher than the norm.

Implication: When sustaining COTS-based systems, maintain options that en-
able you to replace packages when their quality deteriorates. As shown in Table
1, norms for error rates are application domain dependent and range from 0.4 to
5 errors/KSLOC post-delivery (after one year of operational use).

4 Future Directions

To make better decisions relative to CBS, we need more empirical knowledge. To
gain this knowledge, we need to better understand the life cycle processes people use
when harnessing COTS packages. The initial findings reported above are but the first
step in our attempts to capture this empirical knowledge and make it generally avail-
able. As part of our CeBASE work, we plan to continue to collect data and investi-
gate the phenomenology of COTS-based systems. We will continue to publish our
results as we gather and make sense of it. This work complements the more general
results available at our CeBASE web site at http://cebase.org/cbs and the SEI web site
at http://www.sei.cmu.edu/cbs.

References

1.

2.

3.

4.

C. Abts, “CBS Functional Density-A Heuristic for Better CBS Design,” Proceedings,
ICCBSS 2002, pp.1-9.
Victor R. Basili and Barry Boehm, “COTS-Based Systems Top 10 List,” Computer, IEEE
Computer Society May 2001, pp. 91-93.
Donald J. Reifer, “A New Approach to Software Operations and Support Modeling,” Pro-
ceedings of the 3rd COCOMO User’s Group Meeting, Software Engineering Institute, No-
vember 1987.
Donald J. Reifer, Victor R. Basili, Barry W. Boehm and Betsy Clark, “COTS-Based Sys-
tems – Nine Significant Findings Relative to Maintenance,” Software, IEEE Computer So-
ciety, September/October 2003.

A Wish List for Requirements Engineering for
COTS-Based Information Systems

Vito Perrone

HOC - Hypermedia Open Center
Department of Electronics and Information, Politecnico di Milano

Via Ponzio 34/5 20133 Milano (Italy)
perrone@elet.polimi.it

Abstract. This paper summarizes the main achievements of a research whose
main goal was to investigate the current state-of-art in the field of requirements
engineering for COTS-based systems. For this purpose, we have reviewed the
most relevant contributions in this field over the last 10 years have been con-
sidered. After analyzing these research contributions, we defined a scenario
composed by a number of punctual but relevant contributions and a number of
methodological approaches coping with the requirements definitions for such
systems. Finally, on the basis of this scenario, a Wish List of desirable features
of a hypothetical approach has been defined and compared against the current
situation. This list may act as an empirical means for evaluating new ap-
proaches addressing RE for COTS-based systems, and bases its foundations on
the current needs pointed out by the major experts in this field.

1 Introduction

Many factors contribute to the success of an Information System (IS). Among them, a
primary measure is certainly the degree to which it meets the purpose for which it has
been thought (say acceptance degree). Software systems Requirements Engineering
(RE), broadly speaking, is the process of discovering that purpose, by identifying
stakeholders and their needs, and by documenting them in a form that is appropriate
for analysis, communication, and subsequent implementation. Over the past decade, a
huge amount of interest in methods and techniques dealing with RE has grown in the
research community, leading to the definition of several well-affirmed approaches.

On the other hand, the goals of developing systems in a better, faster, and cheaper
way, continue to drive software engineering practitioners and researchers to investi-
gate software engineering methodologies [1]. To face these market drivers, the cur-
rent practice of IS development consists of adopting commercial packages usually
called COTS (commercial-off-the shelf components).

In the light of the above considerations, this paper addresses the issue of how to
combine well-known benefits coming from applying RE approaches with the need of
using COTS packages in building up a new IS? Indeed, using COTS packages re-

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 146–158, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Wish List for Requirements Engineering for COTS-Based Information Systems 147

quires systematic approaches that are able to consider the COTS option from the early
stages of the building process and in particular to come up with requirements that
make feasible such an option. Unfortunately, RE approaches used for developing
systems from scratch may be, and usually are, inadequate to front the development
using COTS. Various factors affect the development of COTS based systems: COTS
are those the market offer; they are sold “like-that” sometime like a black-box; their
code is often not available; they have been though as general purpose solution in a
specific domain; and so forth.

Starting from these considerations, this research aims at investigating the effects of
this trend on requirements engineering practice. In particular, we try to collect the
most important results achieved in the RE research community, putting them in the
form of a wish list of features a “complete” approach should embody.

2 Using COTS in Building up an Information System

After analyzing the most relevant contributions in RE field from one hand, and for
developing COTS base systems on the other, we have been able to make a picture of
the current situation in this sector. The situation can be described as composed by a
number of punctual contributions and a small number of complex approaches pro-
viding a means to cope with the main issues in building a new COTS-based IS.

A first, partially surprising result of the investigation is that most of the approaches
take into consideration the problem of treating COTS only operate at design level.
This means that a considerable part of the research efforts dealing with COTS ne-
glects the influence of using COTS during the requirements engineering activities,
supposing that any is performed.

A second relevant result is that most of the activities performed throughout the re-
quirements engineering process for such systems, if compared with the ones per-
formed for a system to be built from scratch, are strongly influenced by a sort of shift
of the paradigm according to the system is built. In the next paragraph a better expla-
nation of this point is provided.

2.1 Paradigm Shifting

Using COTS components to build up a system implies a fundamental shift of the
paradigm used to build a system from scratch and starting from its requirements. In a
custom system1, the process of building a system follows a paradigm in which, ide-
ally speaking, requirements define the system to be. For such systems, the develop-
ment process consists, in a broad vision, of the steps shown in fig. 1

1 A system where a customer produces a set of requirements for hardware/software of the
system and a contractor develops and delivers that system.

148 V. Perrone

Fig. 1. Typical life cycle of a software system development

The Feasibility Analysis phase can be seen as an early domain and requirements
analysis, in which the organization has to decide whether the system makes sense and
which are the main directions to be followed in order to meet its own business objec-
tives. For a custom system, if we consider the process as a whole looking at the se-
quentially-ness of the above mentioned phases, regardless the intrinsic iterative nature
of the overall process, we can say that the Feasibility Analysis defines the large-grain
structure of the organization the system will support. Then the RE process (as a
whole) defines the thin-grain structure of the organization. In this light, system design
can be considered as a function (ideally) of the RE output. This is because the system
design and implementation are founded on this output. This is evidently an ideal
situation, based on the assumption that designers completely understand the require-
ments specification and the implementation team is able to fulfill the design specifi-
cation. Moreover in this picture we neglect the iterative nature of the process because
the main aspect we want to point out is that the organization (by means of contrac-
tors) develops the system from scratch keeping the control of all or most of the
phases: collect and define requirements; identify the architecture that satisfies the
requirements; design individual subsystems in detail in order to fit within the archi-
tecture; code, test, and debug modules to meet the specified requirements; integrate
sets of modules and subsystems into the complete system.

In COTS based systems the fundaments of the above paradigm need to be revised.
In particular, some sequences and dependencies among phases of the overall process
can give out. In this research we focus on the RE part showing as using COTS im-
pacts this crucial phase of the overall process by collecting a number of insights
coming from the research community.

2.2 Defining COTS Products and COTS-Based Systems

The definitions of COTS and COTS related concepts which can be found out in lit-
erature are usually very broad and cover a large variety of products. As a result, re-
searchers and practitioners use the same word with different meanings. Some of these
definitions are discussed in [2]. In order to avoid misunderstandings, here we provide
a definition both for COTS products and COTS-based systems so that the reader can
refer to these to understand the following sections. The definitions are quite general

Wish List for Requirements Engineering for COTS-Based Information Systems 149

and include most of the others, making the paper consistent with most of the existing
COTS definitions.

COTS Product Definition
A COTS product can be considered as one that:

Can be sold, leased, or licensed to the general public (different license forms)
It is offered “like-that” by a vendor trying to profit from it (or by a community
trying to benefit from its usage by an increasing number of users)
Intellectual property rights are retained by the vendor
Identical copies are sold to a wide number of customers
Access to source code as well as internal documentation is usually unavailable
Complete and correct behavioral specifications are not available
Periodical releases, with unpredictable evolutions and modifications, may be
proposed by vendors
Sometime, customers are provided with a number of predefined extension capa-
bilities and personalization hock-points, but eventual modifications are not more
under the vendor’s responsibility

COTS-Based System Definition
The definition of COTS-based system we use, is the one proposed by Carney in [3]
where he takes the point of view of the delivered system, instead of the parts: he
identifies three types of COTS systems as a function of the number of COTS used and
their influence on the final system: turnkey systems are built around a (suite of) com-
mercial product(s); intermediate systems are built around one COTS but integrate
other components; integrated systems are built by integrating several COTS, all on
the same level of importance. In our investigation we refer to turnkey systems.

3 A Wish List

In this section, we attempt to summarize, in the form of a wish list, the desired fea-
tures that an approach addressing requirements engineering for COTS-based systems
should include or support. The proposed wishes are organized in four categories:

Organizational-Management issues: aspects concerning the impact of using
COTS on the organizational structure of a company. Techniques operating here
may point out organizational changes that should be performed before other ac-
tivities.
RE Process issues: the impact of the COTS solution on the overall RE process.
Typically this may involve an alteration both of the normal activities performed
in the RE process for custom systems and addition of specific activity as well as
process life cycle alteration, and so forth.

150 V. Perrone

Requirements contents issues: using a COTS solution can influence requirements
acquisition, modeling and analysis. Here we refer to desired/required modifica-
tions of the way requirements are acquired, of which contents should be empha-
sized and which underplayed, how requirements should be specified and inte-
grated with other specific information.
COTS packages (or components) selection: selection of COTS package must be
performed in coordination with the RE activities [4] and even more should be
considered as part of the whole RE process. But which features the selection cri-
teria and techniques should embody? How to integrate selection with RE and
which factors should be considered?

3.1 Organizational-Management Issues

W1.1: Evaluating the opportunity of adopting a COTS solution (Management
Issue). Before opting for a COTS-based solution, a complete approach should con-
sider whether it is worth to follow this strategy or it is not feasible. COTS solutions
are usually adopted to contain costs and to hit faster the market. Unfortunately the
complexity of the system and the kind of market can make this choice worst than
developing a system from scratch. There are several key management decisions to be
considered before to opt for COTS software. In [5] a number of issues to be addressed
are reported. Summarizing, most of them bring up the need for a systematic approach
addressing these issues in the early stage of the system definition.
W1.2: Defining the business architecture and the software supply chain before or
together to the software development process. This draws upon the considerations
reported in [6]. Starting by these considerations, it can be argued as a particular atten-
tion should be put in defining an appropriate supply chain taking into account the
business strategy. The approach should explicitly consider this factor since the very
early stage of the development.
W1.3: Organization structure more flexible and open. In an approach for building
custom systems, the feasibility analysis dictates the organizational structure of a com-
pany. The RE process and the following activities of the development life cycle, rely
on this structure with some minor adjustments. In the case of COTS-based systems
this structure can be strongly influenced by issues coming from the COTS market and
products availability. For this reason, a suitable approach should consider a possible
revision of the above structure, forcing its definition to be considered as part of the
overall process. [6]

3.2 Requirements Engineering Process Issues

W2.1: Packages selection as an integrated and parallel activity since early re-
quirements acquisition. It is widely accepted that COTS procurement activities must
be interleaved with other traditional RE activities. Traditional approaches fail to sup-
port effectively these activities which should be both iterative and concurrent [7].
There are critical relationships among technology and product selection, requirement

Wish List for Requirements Engineering for COTS-Based Information Systems 151

specification, and architecture definition. If the architecture is defined just to fulfill
the requirements and then COTS products are selected, there will be only a few prod-
ucts (when any is available) that in some way fit within the chosen architecture.
Pragmatically, three essential elements (requirements, architecture, and product se-
lection) must be worked in parallel with constant trade-offs among them. Traditional
approaches tend to confine the result of the RE process (as a whole) to the architec-
ture definition while COTS product and suppliers are evaluated to better fit the de-
fined architecture and to stay within the budget limits. Moreover, the evaluation is
often performed through a trivial questionnaire sent to the potential supplies.

W2.2: Iterative life cycle process. Nowadays ISs are strongly interactive. For such
systems it’s proven the requirements engineering process must be iterative. Further-
more, for COTS-based systems, this need is felt twice since the intrinsic nature of the
selection procedure requires an iterative process allowing a progressive reduction of
candidate packages [7] [8].
W2.3: Process guidance and techniques integration. A high desired aspect of the
approach is providing process guidance, even more due the actual lacking, in this
direction, of current approaches [7] [8] [1]. Well-known techniques, already operating
in the various facets of the RE field, may be included instead of re-thinking to new
ones. The approach should enable the procurement team selects the most suitable
techniques among various options, and organizes these in an iterative process. Some
of these techniques should be used in the requirements activities, whilst others should
perform a selection among the candidate packages.
W2.4: Integration of multi-criteria decision making techniques. The selection
process must be systematic and well defined. Activities performed in this phase have
to be interleaved within the overall iterative process. On the other hand, the tech-
niques adopted in this phase have to be explicitly defined in order to record the ra-
tionale used in the decision of chosen COTS products. There is a range of techniques
that can be used. Card sorts, for example, are simple to use and can acquire require-
ments that discriminate between products [10]. Two other approaches, among the
nowadays most used, are AHP (Analytic Hierarchy Process) and WSM (Weighted
Scoring Method), but they seem to work properly as quantitative criteria but to be
inadequate to support qualitative reasoning. A further challenge is to keep the ration-
ale of decisions made over the overall life cycle not only during the evaluation proc-
ess [11].
W2.5: Integration of techniques to specify products evaluation to be used in
matching requirements changes and evolution. One of the main problems is to
extract from the commercial product description the information needed to make a
selection against the acquired requirements. Once this effort has been performed we
should prevent its wasting. These techniques should allow the procurement team
records the rationale for product-requirement compliance to better react to require-
ments modification, addition and evolution. An example of these techniques can be
found in [12]. Furthermore, the recorded rationale should refer to decisions made
over the development life cycle not only during the evaluation process.

152 V. Perrone

W2.6 Representing and storing the acquired selection knowledge. A considerable
portion of the overall effort required to select among the available COTS solutions is
due to the lack of an adequate knowledge of the specific market. For this reason, the
approach should provide a technique first to represent and then to store this knowl-
edge in order to be reused in future projects [1].
W2.7 Support Tool. A suitable tool should support the overall process. This tool
should provide the procurement team with a support for all the above listed issues,
including a feature for customising the process on the basis of the specific domain,
team composition, time constraints, available techniques, and so forth.

3.3 Requirements Contents Issues

W3.1: Requirements Adaptation and balancing against COTS features. In a cus-
tom system, requirements are envisioned by the stakeholders’ goals and on the basis
of a set of specified constraints. In a COTS system, requirements can not neglect the
availability of COTS products on the market, in that an available market may not
exist to fulfill some requirements. This leads to requirements adaptation taking into
account the knowledge of the existing market acquired little by little. Requirements
elicitation and specification should support these adaptations [13].
W3.2: A more flexible requirements acquisition and specification. In COTS-based
development, requirements statements need to be more flexible and less specific [14]
[6]; otherwise it may be very hard to find out an appropriate package: products selec-
tion would be too strict or the amount of product modification would be so large that
the COTS solution becomes not that worth anymore [15].
W3.3: Requirements specification should be structured in that tests cases can be
easily performed since by the very early stages of the iterative process. Differ-
ently from a bespoke system in which test cases are used mostly to validate the devel-
oped application against the design in the latter stage of the product life cycle, for this
kind of systems test cases can be used to select among the candidate components.
Since the selection start by the very early interactions of the process, requirements are
required to be well structured for test cases since there early phases [1]. A possible
way to meet this desired facet of the RE process is to acquire requirements using use
cases and scenarios techniques that make the requirements more amenable to test
cases generation. For example in [16] an approach for decomposing goals into tasks
which achieve these goals is proposed through generation of use cases that are
equivalence classes of task scripts, and scenarios that are equivalence classes of use
cases.
W3.4: Support of market evolution against requirements specification. One of the
main issues in dealing with requirements for COTS-based systems is the impact of the
evolution of used packages over the market [5]. This evolution impacts the develop-
ment and maintenance of the system, therefore requirements should consider, for
example, the supplier updating police as an additional selection criteria. If neglected,
changes in COTS releases, competitive threats, stakeholders, reorganizations, and
price structures may make requirements increasingly obsolete.

Wish List for Requirements Engineering for COTS-Based Information Systems 153

W3.5: Support of communication between the bespoke (custom) and COTS
parts. A modern IS is made up both bespoke parts and COTS parts. Due their differ-
ent nature, requirements giving rise to COTS parts and requirements giving rise to
custom parts should be distinguished. On the other hand they are definitively related
each other. These relations should be specified explicitly [5].
W3.6: Explicit consideration of the unused parts of each COTS-package. COTS
package are more general purpose than requirements they answer [5]. The unused
part can not be simply ignored because it may impact some functionalities and aspect
of the system to-be. Requirements should handle the question of how to treat this
unused part. This information will be of particular importance during the testing
phase [17].
W3.7: Distinction between requirements used to select COTS packages and re-
quirements not helping the selection. There are some requirements which in general
are provided by all or most of the available package and other requirements which are
very specific for the needs of a specific IS. In [9] this distinction has been pointed out
calling them respectively “core” and “peripheral” requirements. Since one of the most
important concerns of the RE for such systems is to define the procurement criteria,
it’s evident as for this task the former should be ignored, while the latter should be
emphasized and acquired in more detail [18]. Anyway the approach should provide a
way to discern between these requirements categories.
W3.8: Detailing Non-Functional Requirements for components selection. Since
end-users are not in a position to specify functional requirements or to control the
process of component development, there is no need for detailed functional require-
ments. As moving the focus from functional to non-functional requirements a number
of topics, which should be addressed by the approach, come into light, as reported in
[19].

3.4 COTS Packages Selection

W4.1: Direct consideration of adaptation costs for packages selection. Although
glue-code development usually accounts for less than half of the total effort for the
development of the COTS-based System software, the effort per line of glue code
averages about three times the effort per line of custom applications code [5]. This
consideration lead to adding the adaptation costs in techniques used to select pack-
ages. The distance between a package as sold and as ready to be integrated into the
system should be a driver of the procurement process.
W4.2: Performing the decision of either buying or developing. For some parts of
the system, adopting a COTS package isn’t always the best choice. Such a decision
should be evaluated during the COTS selection activity [5].
W4.3: Consideration of contract aspects for packages selection. Non-development
costs, such as licensing fees, are significant and the procurement process must opti-
mize them. SEI identifies three significant CBS activity areas: vendor relationships,
license administration, training and cultural transition [20]. All these costs can sig-
nificantly impact the worth-ness of a COTS solution instead of another one.

154 V. Perrone

W4.4: Using some kind of weighted metrics to evaluate package compliance
against functional and non-functional requirements. Lack of such metrics makes
very hard and ineffective the product selection activity. Fit criteria should be ex-
pressed in terms of logical expressions or quantifiable tests to undergo commercial
requirements standards [8]. A possible technique is repertory grid analysis [21], in
which stakeholders are asked for attributes applicable to a set of entities and values
for cells in an entity-attribute matrix. These metrics may weight a number of factors
as costs, supplier credibility, contract forms, volatility of the packages on the market,
required adaptation effort, adheres to current product standards, integration level,
communication required against other packages, and so forth. Therefore, the approach
should define a distance or ratio scale to be used for obtaining criteria scores in
evaluating different COTS products.
W4.5: Stakeholders involvement in the product evaluation. Techniques used to
select components among the possible ones should directly involve stakeholders [8]
to further elicit requirements or to assess those already acquired reaching a deeper
detail level.
W4.6: Minimization of independent COTS products. COTS-based system devel-
opment and post deployment efforts can scale as high as the square of the number of
independently developed COTS products targeted for integration, because integrating
n COTS products involves potentially n(n – 1)/2 interfaces . The conventional wis-
dom in the use of COTS components is the more of the system that can be built using
COTS components, the better. Beyond a certain point, however, an increase in the
number of COTS components in a system may actually reduce the system’s overall
economic life span rather than increase it [22]. Taking in consideration these obser-
vations, the selection criteria should aim, among other things, to minimize the number
of packages and vendors that are going to build the system.
W4.7: Support Tool. A suitable tool should support the selection activity. This tool
should provide the procurements team with a support to all the above listed issues,
that is, it should include a metric system, consider package costs and contract aspects,
allow strategy definitions, allow an iterative process, store the acquired knowledge.

4 An Empirical Evaluation of Current Approaches

In this section we show the results obtained by matching some of the existing ap-
proaches against the wishes previously listed. The selected approaches are: RUP
(Rational Unified Process) [24], OTSO (Off-The-Shell Option method) [17], MBASE
(Model Based Architecting and Software Engineering) [25], CAP (COTS Acquisition
Process) [26], PORE (Procurement Oriented Requirements Engineering) [4,18],
CARE (COTS Aware Requirements Engineering) [1]. Information allowing this
comparative study have been acquired from the literature currently available about
every approach.

For each combination wish/approach we give an evaluation of how much this wish
is satisfied by that approach, rating by Poor (either the satisfaction level is not clear
or there are just some ideas concerning the wish topic), Sufficient (the approach takes

Wish List for Requirements Engineering for COTS-Based Information Systems 155

into consideration this wish but just partially), Complete (the approach seams satisfy-
ing that wish completely).

The previous table can be explored both by row and by column drawing out some
considerations about, respectively, the satisfaction level of a specific wish throughout
all approaches, and the response of specific approaches in terms of the recognized
wishes. In the following, some examples of this kind of analysis are reported:
Exploring by column:

The RUP approach does not generally accomplish most of the desired wishes.
Mostly it is due to the intrinsic nature of this approach, because, even if RUP
provides support to include COTS components in a system, it operates at the
logical design level of the system. From the table, it can be claimed as RUP to-
tally satisfies the wish of having a support tool (that is Rational Rose™) and the
generic characteristics of a modern process, but is weak when dealing with spe-
cific RE issues.
CAP is particularly weak in dealing with the integration of the requirements
acquisition to the COTS selection activity. This is obvious since it starts by an al-
ready acquired requirements base to select suitable COTS package. This aspect,
combined with some other lacks, makes this approach incomplete.
By comparing the last two columns each other and against the rest, it can be
noticed as the last two approaches appear to be a bit ahead since they satisfy sev-
eral wishes. Furthermore, it can be noticed as CARE strengthens PORE, since it
is generally stronger in all wishes, as the same authors asserted “The CARE ap-
proach draws upon the good available ideas in current RE methodologies in-
cluding RUP, MBASE, and PORE” [1].

156 V. Perrone

Exploring by row:
It appears evident as all wishes dealing with the first group, that is Organiza-
tional-Management issues are generally neglected.
The approaches have a very variable behavior in respect of selection technique
wishes, some ones are stronger for some wishes and some others are better with
other wishes. By this consideration, inspecting all the approaches and extracting
respective strengths, some enhancements could be performed.
By looking the row belonging to W3.6 it can be argued as all approaches ignore
the unused parts of used COTS packages, although in [23] it’s claimed as this
behavior may lead to unexpected consequences in the final system.

5 Concluding Remarks and Call for Research

The inspection of the research literature concerning COTS-based systems and in
particular RE for such systems, brought us to draw the current situation in this field
that we can describe as composed by a number of punctual contributions as well as
complex approaches composed by a number of sub-activities in charge of defining
the system to be. A first interesting consideration, raised out by this analysis, is that a
considerable part of the existing approaches neglects the requirements problem, pro-
viding just some features to specify COTS components in designing the system. A
further contribution of this research has been to determine the impact of using COTS
packages on the requirements engineering activities and process. Finally, the main
contribution of this research has been to recognize and describe, in the form of a wish
list, a number of desired characteristics of a suitable approach in charge of defining a
system including a more or less considerable part composed by COTS packages.
Moreover, the existing approaches have been reconsidered against this list, allowing a
recognition of what has been already accomplished and what is desirable for future
researches.
In particular, this can be translated in some concise call-for-research:
Call1: The research has definitively shown as the UML community is lacking of an
approach considering COTS since the requirements engineering phase. This is clear
by examining the unique contribution treating COTS with UML, that is [24], where
COTS are considered only during the design phase of the system.
Call3: The selection strategy, embodying all the aspects described in paragraph 3.4,
should be definable and customizable so as to adapt the method to the specific appli-
cation case.
Call4: All the existing approaches show an evident lack in supporting the require-
ments activities for such systems by means of tools. This is recognized as a main
factor that tends to enlarge the already existing gab between the research community
and the industrial sector. This is because tools usually allow a reduction of the ex-
ploitation time and attract people that otherwise should perform a number of activity
manually.

Wish List for Requirements Engineering for COTS-Based Information Systems 157

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

L. Chung and K. Cooper: “A Knowledge-Based COTS-Aware Requirements Engineering
Approach”. In proceedings of 4th Int. Conf. on SEKE’02, ACM Press. July 15-19, 2002,
Ischia, Italy.
Morisio M., Torchiano M.: “Definition and classification of COTS: a proposal”. In Pro-
ceedings ICCBSS, Orlando (FL) February 4-6, 2002.
D. Carney, F. Long: “What Do You Mean by COTS?”. IEEE Software, March/April 2000,
pp. 83-86
C. Ncube and N. Maiden: “Guiding parallel requirements acquisition and COTS software
selection”. In proceedings of the IEEE International Symposium on Requirements Engi-
neering 1999.
Jeffrey Voas: COTS Software: “The Economical Choice?”. IEEE Software, 15(2):16-19,
Mar 1998.
Farbey, B, & Finkelstein, A.: “Software Acquisition: a business strategy analysis”. In
proceedings of Requirements Engineering 2001 (RE01).
L.Brownsword, D.Carney, T.Oberndorf: “The Opportunities and Complexities of Apply-
ing Commercial-Off-the-Shelf Components”. SEI Interactive, 6/98,1998.
N. Maiden and C. Ncube: “Acquiring COTS Software Selection Requirements”. IEEE
Software, Volume 15 Issue 2, March-April 1998, pp. 46-56
Finkelstein, A., Spanoudakis, G., and M. Ryan: “Software Package Requirements & Pro-
curement”. In proceedings of the 8th Int. Workshop on Software Specification & De-
sign,IEEE CS Press, 1996.
N.A.M. Maiden and G. Rugg: “ACRE: Selecting Methods for Requirements Acquisition”.
Software Eng. J., Vol. 11, No. 3, 1996, pp. 183-192
Carina Alves, Anthony Finkelstein: “Challenges in COTS decision-making: a goal-driven
requirements engineering perspective”. In proceedings of SEKE 2002: 789-794
T.P. Moran, J.M. Carroll: “Design Rationale: Concepts, Techniques, and Use”. Lawrence
Erlbaum Assoc., Hillsdale,N.J., 1996
C. Alves and A. Finkelstein: “Negotiating Requirements for COTS-Based Systems”. In
proceedings of 8th Int. Workshop on Requirements Engineering: Foundation for Software
Quality, in conjunction with RE’02.
D. Carney: “COTS Evaluation in the Real World”. SEI Interactive December 1998.
D. Carney: “Requirements and COTS-Based Systems: A Thorny Question Indeed”. SEI
Int. June ‘99.
I. Graham: Task Scripts: “Use Cases and Scenarios in O-O Analysis”. O-O Systems 3,
1996, pp.123-142
Kontio, J.: OTSO: “A Systematic Process for Reusable Software Component Selection”.
TR, Dec. 1995.
N. Maiden, C. Ncube, and A. Moore: “Lessons learned during requirements acquisition
for COTS systems”. Communications of the ACM, Vol. 40, no. 12, 1997
L. Beus-Dukic: “Non-functional requirements for COTS software components”. In proc.
of ICSE’00
Basili V. R. and Boehm B.: “COTS-Based systems Top 10 List”. IEEE Computer, vol.
24,5 May ‘01.
Shaw M.L. and Gaines B.R.: “Requirements Acquisition”. Software Engineering Journal,
1996, 11 (3)
Tumuluri S., Raja S., and Cooper K.: “Commercial off-the-Shelf (COTS) Software Engi-
neering Methodologies: A Comparative Study”. T.R. UTDCS-24-01, December 2001

158 V. Perrone

23.

24.

25.

26.

M. Feather: “Language Support for the Specification and Development of Composite
Systems”. ACM Trans. on Programming Languages and Systems 9(2), Apr. 87,198-234.
G. Booch, J. Rumbaugh, and I. Jacobson: “The Unified Modeling Language User Guide”.
Addison Wesley Longman, Inc., USA, 1999.
Boehm, B: “Requirements that handle IKIWISI, COTS, and Rapid Change”. IEEE Com-
puter, Volume: 33 Issue: 7, July 2000.
Ochs, M.A. et al.: “A Method for Efficient Measurement-based COTS Assessment ad
Selection – Method Description and Evaluation Results”. In proc. IEEE 7th International
Software Metrics Symposium.

From System Requirements to COTS Evaluation Criteria

Grace A. Lewis and Edwin J. Morris

Software Engineering Institute, COTS-Based Systems Initiative
4500 Fifth Ave.

Pittsburgh, PA 15213
U.S.A.

{glewis,ejm}@sei.cmu.edu

Abstract. Perhaps the most common question asked by organizations new to
constructing COTS-based systems is how to choose the right product. In par-
ticular, they want to know how, starting from system requirements, an efficient
and effective set of criteria for COTS selection can be developed. This paper
focuses on recommendations and techniques for transforming a set of require-
ments into a set of product evaluation criteria that capture the facts and stan-
dards by which the fitness of COTS products can be judged.

1 Introduction

The starting point for virtually all software development efforts is a set of require-
ments that represent at some level the expectations of those that have a stake in the
system. If the organization is considering the use of COTS products as system com-
ponents, it is natural and appropriate to look first to these requirements as a basis for
evaluating and selecting the right products. For some organizations, an initial focus
on system requirements leads them to believe that generating the actual criteria for
COTS evaluation from system requirements is trivial—each requirement is directly
transformed into a criterion. However, our experience suggests that this simple trans-
formation is not likely to achieve the desired result—selection of an appropriate
COTS product—because:

System requirements are normally written at an abstract level in order to allow
sufficient flexibility for choosing multiple technical solutions. Unfortunately, cri-
teria derived directly from such requirements are too abstract to serve as a way of
evaluating products. For example, a requirement such as “The system shall be
easy to use” is too abstract to judge if a product is or is not easy to use.
System requirements are stated in terms of needs, whereas criteria should be stated
in terms of capabilities to satisfy those needs. For example, a requirement such as
“Information transfer shall be protected from unauthorized access” might be trans-
formed into a criterion such as “Support for secure sockets or equivalent security
mechanism”, which is the expected concrete capability.
Criteria should be obviously quantifiable whereas system requirements are often
stated in a way such that the manner in which they are measurable is not immedi-

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 159-168, 2004.
© Springer-Verlag Berlin Heidelberg 2004

160 G.A. Lewis and E.J. Morris

ately obvious. Criteria should include the way in which the expected capability is
to be determined in order to facilitate the evaluation process.
System requirements tend to be incomplete, hardly ever stating every expectation
placed on the COTS product. Often qualities of the component other than required
functionality are overlooked. For example, a system requirement regarding the
level of effort necessary to apply appropriate tailoring to new releases of a product
is rare.
The focus of this paper is on recommendations and techniques for transforming a

set of requirements into a set of product evaluation criteria that can be applied in a
COTS product evaluation and selection process. A description of an evaluation proc-
ess is available in work performed by the Software Engineering Institute and the Na-
tional Research Council Canada [1].

2 Defining Evaluation Requirements for COTS Products

Because the requirements placed on a COTS product are not just a subset of the sys-
tem requirements, the first step in defining evaluation criteria is to establish evalua-
tion requirements. Due to the fact that COTS products rarely align exactly with an-
ticipated system functions (some products combine functions, use different vocabu-
laries, etc.), the mapping between product functions and system functional require-
ments may not be obvious or straightforward. In addition, COTS products add an
entirely new class of concerns regarding licenses, testing, rapid deployment, and con-
trol of the content of upgrades that are often not addressed by system requirements.

Examples of legitimate evaluation requirements that are not always addressed by
system requirements include:

Architecture/Interface constraints: COTS product decisions are often constrained
by other decisions that have already been made. These constraints become evalua-
tion requirements when choosing a COTS product. For example, if a decision has
been made to use a certain middleware mechanism, it makes little sense to buy a
product that is clearly going to conflict with this technology.
Programmatic Constraints: Time, money, available expertise, and many other pro-
grammatic factors may be sources of evaluation requirements that are not captured
in system functional requirements. For example, availability of trained staff adept
at using a product can be a useful criterion when choosing products, but is not
likely to appear in system requirements.
Operational Environment: Not all aspects of the operational environment are in-
cluded as system requirements. For example, information about the organization
that will perform maintenance on the system is frequently omitted. Thus, the op-
erational environment may be a source of additional evaluation requirements.
Stakeholder expectations: People place additional expectations on products that are
not clear from system requirements. For example, users may have a strong prefer-
ence about the style of the user interface to a product. These expectations are often
not captured in system requirements, in part because it is assumed that the user in-
terface can be tailored to expectations. However, the user interface of a COTS
product is not as flexible as that provided by custom code. Therefore, it is more
important to determine the acceptability of the interface.

From System Requirements to COTS Evaluation Criteria 161

2.1 Sources of Additional Evaluation Requirements

Several sources are available that provide evaluation requirements that are not system
specific1. In general, such evaluation requirements will not address the full range of
system-specific expectations for COTS products. There are multiple sources for this
type of evaluation requirements, such as:

Product feature checklists
Organizational checklists
Previous evaluations for other systems
Marketplace
Product feature checklists are a standard fare for product comparisons. While they

are only as reliable as the source, they are widely used—and misused—in COTS
software evaluation. The basic capability provided by a product feature checklist is an
itemized list of the features of a class of products. This list is then used as a basis for
comparing different products. In some market segments, organizations have formed a
niche market by identifying a set of generally preferred features and characteristics,
and evaluating products against this set. The most notable example of this approach is
Consumer Reports [2], which monthly evaluates consumer items and provides rec-
ommendations for preferred products. However, in the COTS software domain, the
context in which the software will be used is not nearly as consistent as the various
contexts for which Consumer Reports makes recommendations. Thus, an effective
Consumer Reports for the COTS product marketplace is not likely in the near term.
Some firms, however, regularly assess products that make up particular market seg-
ments; examples of these are Gartner [3] and Ovum [4]. In addition, trade magazines
often publish product feature checklists. One should guard against accepting at face
value product feature checklists that appear in trade magazines. These are sometimes
produced by vendors specifically to present their product in best light or to highlight
some feature that distinguishes their product from those of competitors. It is also im-
portant to keep in mind that no generic list can reflect all of the requirements that
need to be considered—a generic list will include some features that are irrelevant for
the system and other important features will be missed. These lists should not be used
as the only evaluation requirements for COTS products.

Other sources of “reusable” evaluation requirements are organizational checklists
that represent a consistent way to insure that corporate interests are addressed in the
evaluation and selection of COTS products. Organization checklists may maintain
relevant information about corporate policies, preferred architectures and expected
engineering practices and can provide some uniformity and predictability in selecting
products.

In general, corporate need for such checklists is not driven solely by technical con-
siderations: many other concerns are reflected as well, such as legal considerations
(e.g., “due diligence” in managing financial assets) and issues of scale (many organi-
zations, many projects, many evaluators). Table 1 identifies the categories of criteria
covered in an organizational checklist built by a large aerospace contractor. In addi-

1 ISO 14598 includes the concept of “evaluation modules” that are reusable packages con-
taining requirements and other data about an evaluation. In theory, these modules can be re-
used in different settings. This approach is similar to the reuse of evaluation requirements
described here.

162 G.A. Lewis and E.J. Morris

tion to the requirements covered in these categories, the actual checklist provides a
70-step process for evaluation and selection.

Evaluations that the members of the team (or the wider organization) have per-
formed for similar purposes are also sources of evaluation requirements. While these
requirements are likely to reflect some of the context-specific nature required, it is a
common mistake to consider them equally appropriate for the new evaluation context
as they were for the old. This mistake is reflected in statements such as: “We looked
at Product X before and it was pretty good. It will be good for the new system also”.
A variant of this problem is represented by selecting “pre-approved” products from a
product list without further analysis. In essence, such choices indicate that the re-
quirements for COTS products in “this” system are sufficiently close to that of a
“benchmark” system and therefore no product evaluation process is warranted—a
very bold and risky position.

Finally, a source for evaluation requirements is the marketplace itself. Risk-Driven
Generation [5] is a technique that looks at what the COTS marketplace can offer and
focuses on risk introduced by or reduced by product and vendor features2. This ap-
proach derives a set of potential evaluation requirements from the features of products
rather than from system requirements. This set of requirements is pruned by analyzing
the risk to the system should the product provide or not provide a particular feature.
The steps involved in Risk-Driven Generation are straightforward:
1.
2.
3.
4.

Identify interesting product features
Assert risk to the system of a product not exhibiting a feature
Categorize and quantify risk (optional)
Identify mitigations (optional)
The overall effect is that expectations regarding system needs are “adjusted” to

agree with product capabilities. By focusing on risk, the approach also helps to com-
bat “gold plating” of requirements and “featuritis”. If little or no risk results from ab-
sence of a product feature, then the feature is not required of products under consid-

2 The Risk Driven Generation approach identified in [5] refers to criteria. However, the use of
the term criteria in the document is consistent with our use of the term requirement.

From System Requirements to COTS Evaluation Criteria 163

eration. Note that this approach may also generate negative requirements—features
that the product should not have.

2.2 Classes of Evaluation Requirements

A common problem when evaluating COTS products is to treat the majority of re-
quirements as providing no leeway for negotiation. Stakeholders are the common
source for this problem because they are most familiar and comfortable with the proc-
esses, user interfaces, and capabilities provided by existing systems, and have high
expectations that the new system will provide all of these plus the latest “wiz-bang”
technologies. This is almost inevitably a mistake because virtually all COTS products
are compromises suited to multiple organizations and will do things differently than
an individual organization. In the most severe case, this approach will render all
COTS products unacceptable, since none can meet the expectations and specifica-
tions3 desired by users. If the organization is committed to using COTS products, it
should strive for achieving sufficient flexibility in requirements. In reality, identified
evaluation requirements will likely fall within a spectrum between two general classes
or categories:

Hard requirements that are mandatory—if the product does not meet these re-
quirements, then the product or the system must be augmented in some way or the
product is unsuitable. The augmentation could take the form of custom code that
handles functionality the COTS product does not provide or the selection of an-
other product that provides the missing capability.
Negotiable requirements that are flexible—if a product does not demonstrate the
preferred characteristic, then it is not automatically excluded. The options in this
case are to adjust the requirement to some degree or to augment the product or the
other components in the system to address the requirement.

We expect that the majority of requirements fall somewhere towards the center of a
spectrum between totally inflexible and completely flexible, where there is some
room for negotiation but in the end the requirement (or some version of it) must
somehow be met. COTS products often achieve similar results through somewhat
different means than existing, custom-built systems. In many cases, the alternate im-
plementation expressed by the COTS product is acceptable. This has even been
shown in several cases involving requirements that were thought to be controlled by
legislative mandate (laws). In these cases, the driving force behind the requirement
was the “traditional” approach of manual processes or legacy systems, rather than the
actual letter of the law that later proved to be sufficiently flexible to allow alternate
implementations. Several state and federal organizations have suggested to the SEI
that many laws have more leeway than people who have grown accustomed to current
procedures tend to believe. In all cases, the organization should carefully research
any perceived legislative mandates to determine whether the letter of the law (rather
than some traditional interpretation) is the limiting factor.

3 In some cases, where organizations are dead set against the use of COTS products, this ap-
proach is often intentional.

164 G.A. Lewis and E.J. Morris

2.3 Errors Compiling Evaluation Requirements

There are two types of errors that can occur when compiling evaluation requirements:
errors of inclusion and errors of exclusion.

Errors of inclusion are caused when non-applicable requirements are included in
the evaluation requirement set. Errors of inclusion have two unfortunate effects.
First, they tend to reduce the total amount of time and effort that is focused on the
evaluation of the product against necessary and important requirements. Thus, the
organization may focus its evaluation efforts on determining whether a product sup-
ports a feature of questionable value, while spending less effort determining whether a
product’s vendor can appropriately support the product in a certain context. Second,
errors of inclusion can eliminate suitable COTS products simply because they do not
support the unnecessary and unimportant “requirement”. Perhaps the best example of
an error of inclusion is the tendency to want every “cool” capability—even if the ca-
pability does not add any appreciable value in the present context. A good technique
to combat this tendency is to consider the risk to the system mission should the fea-
ture be absent or provided in a different manner. If there is no risk or it is minimal,
then the requirement is unnecessary.

Errors of exclusion are the opposite and involve omitting requirements that are
crucial to the fitness of the product and vendor within the system context. The main
danger of errors of exclusion is that they can lead to the selection of an unsuitable
product. For example, neglecting to consider the vendor’s ability to support a product
within a certain context may lead to the selection of an unsupportable product. Errors
of exclusion are often caused by insufficient understanding and an oversimplification
of the problem. An iterative approach to building COTS-based systems can help miti-
gate this risk. As understanding about the problem grows, it is almost inevitable that
requirements that were initially overlooked will be identified.

3 Defining Evaluation Criteria

The second step in defining criteria for product evaluation is to take the evaluation
requirements and convert them into evaluation criteria. A good criterion for evalua-
tion and selection of a COTS product consists of two elements:
1. A clearly measurable statement of the capability necessary to satisfy a need—

called a capability statement
2. A means for assessing and assigning a value to the product’s level of compliance

with the capability— called a quantification method.

A good criterion needs both the capability statement and a quantification method.
However, in some cases the details of the quantification method may not be fully
known when the criterion is first defined. In this case, these details must be filled in as
they become known. Table 2 contains an example of a fully defined criterion for the
evaluation of vendor support.

From System Requirements to COTS Evaluation Criteria 165

Some additional characteristics of a good criterion include:
Assessable: If data cannot be gathered to support the quantification method se-
lected, then the criterion is not good. For example, “quality of engineering” is not
a good criterion if there is no way to gather data indicating whether the product is
well architected, designed, and implemented.
Discriminating: If all COTS products display a required characteristic, then the
characteristic is not useful in identifying which products are superior. For example,
the presence of a graphical user interface will not normally discriminate between
modern word processors.
Non-overlapping: If criteria overlap, then the associated product characteristics can
be factored into deliberations multiple times. This can lead to misleading results
and possibly wasted effort.
Significant: If a criterion is not valuable in the context of the system then it should
not be used. For example, the long-term stability of a vendor is irrelevant if the
product will only be used as a short-term or interim solution.

3.1 Tips for Generating Good Criteria

Perhaps the most common approach to generating criteria is through decomposition of
higher level expectations into more detailed criteria. Starting with a list of high-level
expectations (e.g. ISO standard on product quality [6]), important expectations are
decomposed into increasingly refined expectations, eventually resulting in something
like a capability statement for a detailed criterion. At this point, a quantification
method is added, completing the criterion.

Goal Question Metric [7] provides a technique to develop both a hierarchical de-
composition of requirements into capability statements and associated quantification
methods. With GQM, the user develops a triad containing:

The goal, which is to fulfill an evaluation requirement.
The question, which is a capability statement.

166 G.A. Lewis and E.J. Morris

The metric, which is the standard of measurement, determined either by di-
rect measurement or decomposition into other GQM triads.

GQM has been adopted by a number of product evaluation techniques, including
PORE [8] and OTSO [9].

3.2 Defining Quantification Methods

Quantification in the software domain is never easy, particularly when measurements
use very different scales which only indirectly get at the salient characteristics, or
involve products with which we have limited familiarity. However, the goal for quan-
tification remains to produce fair, unbiased results, and to frame those results in a way
that supports our ability to reason about them.

Sources of ideas about quantification methods abound. To quantify whether a
COTS product achieves a functional capability, simple manipulation of an individual
product feature may be adequate. However, to determine whether the feature will be
useful in the way intended for the system, quantification may involve the execution
and scoring of performance on a number of scenarios that reflect the actual system.
For non-functional (quality) attributes, texts on software metrics [10] provide a num-
ber of ways to measure characteristics like reliability and quality. For example, the
COTS Acquisition Process (CAP) created by Siemens provides an approach for de-
composing requirements expressed as quality attributes and generating capability
statements and quantification methods [11]. Quality attributes were identified from
ISO 9126 and through literature review and interviews with experts.

To achieve the harder goal of producing fair, unbiased results, techniques must be
found to consistently produce measurements that accurately reflect the characteristics
of the product and vendor, and to integrate these results into a comprehensible picture.
Results from measurement of COTS products are either qualitative (e.g.., poor, fair,
good) or quantitative (e.g., cost, maximum entries in a database). Qualitative meas-
urements normally reflect different perceptions of multiple evaluators on subjective
rating scales. Strong guidelines for assigning ratings must be enforced to achieve the
goal. Quantitative measurements have an aura of concrete and scientific about them,
but can be systematically or randomly biased or otherwise invalidated. For example,
a single run of a benchmark may involve slight variance in the timing of input data
that can significantly alter the performance measured. This could lead to a false im-
pression that one product is superior to a second, when in the vast majority of cases,
the second is actually superior. Consistent test environments, sufficiently accurate
tests harnesses and measurement scales, and multiple measurements are required to
meet the fair/unbiased goal.

In order to integrate the various measurements into a comprehensible picture, the
data from execution of the multiple tests must be converted to a consistent scale. This
process is called “normalization” . Data is normalized by phrasing all quantification
methods in terms of the same scale (e.g., performance of a certain level is considered
poor, another level fair, and another level good) or by converting measured scores to
the consistent scale.

A serious mistake some make in the normalization process involves converting or-
dinal data (only the order is significant) to interval data (the interval between units is
equivalent). Converting the ordinal scale “poor, fair, good, excellent” to “1, 2, 3, 4”

From System Requirements to COTS Evaluation Criteria 167

may lead one to believe that excellent is twice as good as fair. However, this is not
true for ordinal data and trying to introduce operations using ordinal data (like deter-
mining the mean) is mathematically unsupportable.

4 Establishing Priorities

The third and final step in defining evaluation criteria is to prioritize the defined crite-
ria. Normally, some characteristics of a COTS product or vendor are more important
than others. In order to reflect this relative importance, priorities must be assigned to
criteria to allow reasoning about products that have different strengths and weak-
nesses.

Priorities are themselves not simple, and in reality may reflect a number of differ-
ent concerns. Some of these concerns are:

How relevant is a criterion vs. other criteria?
How expensive is it to provide the capability in a different way than with the prod-
uct?
What are the risks to the system if a particular criterion is not met?

A common way of expressing priority is by assigning weights to the criteria.
Weights express the relative importance of normalized values of different criteria,
answering questions such as, “How many units of this criterion would we trade for a
unit of this other criterion?”

A variety of techniques can be used to assign weights to criteria. All involve
making a judgment based on understanding of the system:

Unstructured weighting: one or more people determine weights based on their ex-
perience and common understanding of the system. This is probably the most
popular method, but not necessarily the best.
Delphi technique: individuals use their own approach for deriving initial weights—
the Delphi technique helps the team converge on a single weight [12] [13]. This is
a popular method for gaining consensus in a team.
AHP Pairwise comparison: the judgment is performed by comparing pairs instead
of whole sets of criteria [14]. Criteria are ordered in pairs, and the team agrees on
the relative importance of the criteria in each pair. An AHP tool can be used to
compute a weight for each criterion from the total set of pairwise comparisons.

Once the criteria are prioritized, data from the different products can be collected
and looked at in light of these criteria. A measurement plan will have to be estab-
lished so that data for all criteria can be gathered efficiently.

5 Summary and Conclusions

One of the important steps in COTS product evaluation is the generation of evaluation
criteria, that is, the facts and standards by which the fitness of a product will be
judged. System requirements provide a starting point but rarely identify the complex

168 G.A. Lewis and E.J. Morris

set of evaluation criteria. A way to generate criteria from system requirements is to
first determine the evaluation requirements, then define criteria from these require-
ments, and finally prioritize the criteria. Once criteria are defined, products can be
looked at in light of these well-defined criteria and evaluated for suitability within the
system context.

Several techniques were suggested in this paper and many more are available. To
get started in your organization you should tailor the process by selecting techniques
that make sense for the type of system you are building and the expectations for the
components to be selected. You can expect to learn from every evaluation you per-
form. With time you will learn more about the process, the criteria, and how to evalu-
ate products against the criteria.

References

1.

2.
3.
4.
5.

6.

7.

8.

9.

10.
11.

12.

13.

14.

Comella-Dorda, S., Dean, J., Harper, E., Lewis, G., Morris, E. & Oberndorf, P. A Process
for COTS Software Product Evaluation. (CMU/SEI-2003-TR-017/ESC-TR-2003-017).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon University, Octo-
ber, 2003.
Consumer Reports. Information available online: http://www.consumerreports.org/.
Gartner Group. Information available online: http://www.thegartnergroup.com/.
Ovum. Information available online: http://www.ovum.com/.
Wallnau, Kurt; Hissam, Scott; & Seacord, Robert. Building Systems from Commercial
Components. New York, NY: Addison-Wesley, 2001.
International Organization for Standardization (ISO). ISO/IEC 9126:1991 – Information
Technology – Software Product Evaluation – Quality Characteristics and Guidelines for
Their Use. Geneva, Switzerland: ISO/IEC, 1991.
Briand, L.; Morasca, S.; & Basili, V.R. Goal-Driven Definition of Product Metrics Based
on Properties. (CS-TR-3346, UMIACS-TR-94-106) University of Maryland, Computer
Science Technical Report, December 1994.
Ncube, C. & Maiden, N. A. M. PORE: Procurement Oriented Requirements Engineering
Method for the Component-Based Systems Engineering Development Paradigm. Pro-
ceedings of the 2nd International Workshop on Component-Based Software Engineering
(held in conjunction with ICSE ’99). Los Angeles, CA: 1999.
Kontio, J. A Case Study in Applying a Systematic Method for COTS Selection. Proceed-
ings of the International Conference on Software Engineering. Berlin, Germany: 1996.
Fenton, N.E. Software Metrics: A Rigorous Approach. Chapman & Hall, London, 1991.
Ochs, M., Pfahl, D., Chrobok-Diening, G. & Nothhelfer-Kolb, B. A COTS Acquisition
Process: Definition and Application Experience. IESE-Report No. 008.00/E Version 1.0.
Kaiserslautern, Germany: Fraunhofer Institut Experimentelles Software Engineering.
February 2000.
Dalkey, N.C. & Helmer, O. “An Experimental Application of the Delphi Method to the
User of Experts.” Management Science, 9, 3 (April 1963) 458-467.
Linstone, H.A. & Turoff, M. The Delphi Method: Techniques and Application. New York,
NY: Addison-Wesley, 1975.
Saaty, T.L. The Analytic Hierarchy Process. Mc-Graw Hill. New York, 1990.

Empirical Analysis of COTS Activity Effort Sequences

Dan Port1 and Ye Yang2

University of Hawaii, Honolulu
Hawaii, USA

dport@hawaii.edu
2 Center for Software Engineering, University of Southern California, Los Angeles

90089 California, USA
yey@cse.usc.edu

Abstract. Empirical data has revealed that COTS based application (CBA) de-
velopment lifecycles are unique and differ from traditional software develop-
ment processes. Each project will vary considerably in the particular amount of
effort expended on COTS assessment, COTS tailoring, and COTS glue-code
development. As such, there are wide variations in cost/schedule/quality fac-
tors, risk items, and project decision process profiles. Previous work has de-
scribed these variations and provided a composable COTS decision framework
that models how such variations emerge within the COTS application devel-
opment process. We expand on this work by elaborating the sequence in which
COTS assessment (A), tailoring (T), glue-code (G), and custom development
(C) activities are performed. These sequences provide a “genetic code” for a
CBA development project and are useful in characterizing the uniqueness of a
CBA development lifecycle and enabling tactical decision support such as
identifying high-risk development patterns, effort and schedule planning, op-
tions valuation. Other applications include analyzing the effects of risks on
COTS activity and validating the composable COTS decision framework mo-
tioned above. We present CBA activity effort sequences from 9 USC e-service
projects and their relationship to reported project risks. In addition, we present
an initial set of “anticipated” and “un-anticipated” CBA effort sequence pat-
terns. Anticipated sequences are patterns that have been observed within our
case studies and are rationalized with respect to COTS risk-reduction on a proj-
ect. One would expect to see such patterns on a well-managed, successful CBA
development project. Unanticipated sequences are patterns that have not been
observed, or when they have been observed, have correlated strongly with high
risk and perhaps project failure.

1 Introduction

The activities conducted while developing COTS based systems substantially differ
from those conducted for non-COTS systems (David Carney’s “COTS Spot” arti-
cles highlight this phenomenon frequently [9]). This has also been empirically
verified in the authors previous works on COTS based applications (CBA) – appli-

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 169–182, 2004.
© Springer-Verlag Berlin Heidelberg 2004

1

170 D. Port and Y. Yang

cations developed where at least 30% of the end-user functionality is provided by
COTS products, and at least 10 % of the development effort is devoted to COTS
considerations [5,6]. In these works, data collected from 19 COCOTS [1] projects
and 21 e-services projects developed at the University of Southern California indi-
cated that there are three distinct types of COTS engineering activities – assess-
ment, tailoring, and glue-code development. We furthered this research by de-
scribing a recursive and re-entrant CBA process decision framework within these
three activities based on the risk driven spiral model [3] abstracted from the CBA
projects. The CBA process decision framework consists of dominant decisions and
activities within CBA development to enable developers to “compose” a COTS
development process specifically tailored for their project. Throughout this paper,
we shall refer to major COTS related activities activity areas - assessment, tailor-
ing, and glue-code - with the notations A, T, G respectively. Furthermore, if the
project objectives, constraints, and priorities (OC&Ps) cannot be satisfied wholly
with COTS, the project may perform some custom development (C) in addition to a
COTS solution. The project can enter or re-enter any of these activities during the
project development cycle. These activities may not be sequential. Two activities
such as tailoring and glue-code may be implemented in parallel or perhaps not at
all within any particular development cycle.

Many of the successful USC CBA e-service projects had made use of the CBA
process decision framework. Owing to this, we observed the duration and the se-
quence in which each project performed A, T, G, C activities. Each project has a
distinct pattern with respect to the overall effort expended in particular COTS ac-
tivities [5], and Remarkably, the sequence in which COTS activities are performed
[6]. In this paper, we investigate the possibility that a CBA project’s A, T, G, C
activity sequence may serve as a “genetic code” for analyzing and characterizing
its generally unique COTS development process. CBA development is fraught with
complex and difficult to manage risks, and an analysis and characterization of CBA
activity sequences may serve to:

Identify and avoid high risk development patterns

Aid in COTS effort planning, monitoring, and control [1]

Help explore COTS development options and rationalize COTS deci-
sion making

Provide evidence to further validate the composable CBA decision
framework [6]

Help illuminate the COTS risks and risk management within the A,T,G
COTS development activities

This paper provides an analysis of these characterizations with respect to risks that
we have identified in our experience of implementing CBA projects at USC. In the
next section, we begin with an overview of issues in COTS development process.

Empirical Analysis of COTS Activity Effort Sequences 171

The rest of the paper is organized as follows. In section 3 we summarize the salient
points of the CBA process decision framework and how it relates to the A,T,G,C
activity sequences. Section 4 elaborates the activity sequence and the data collected
from the USC e-services projects. Section 5 presents some lifecycle characteriza-
tions. In Section 6, sequence patterns are explored while Section 7 considers the
risks associated with particular sequence element. Lastly, Section 8 presents some
conclusions and thoughts for future direction with this work.

2 Overview of Previous and Related Work

Traditional software development process such as the waterfall model requires
most if not all requirements to be identified before proceeding to the design, code
and testing phases. However, in CBA projects it is extremely risky to specify up-
front, detailed requirements for the software system. For example: if the project
development team specifies detailed requirements before investigating the COTS
market, the project risks losing the option of using a good COTS package even
though it may satisfy the main objectives of the requirements but not the specific
detailed requirements. This may result in not finding any COTS products that will
satisfy all requirements, even though there may be many that satisfy the critical or
important objectives of the system.

To alleviate this problem researchers have proposed various mechanisms of de-
veloping CBA’s. Some have proposed a generic process for CBA development [2]
while some others propose to use a separate process, based on the type of CBA
project, to develop and implement CBAs [1, 4], Process frameworks such as the
spiral model [3] and the SEI Evolutionary process for integrating COTS based
systems (EPIC) [2] provide a suitably flexible and concurrent framework for de-
velopment and implementation CBA projects. These processes however provide
guidelines at a much more abstract level than what is required for development and
implementation of CBA. In that, these processes often fail to address the specific
decision set for navigating through the option space in the development and im-
plementation of CBA’s.

We believe that within the CBA domain there is a large variation in develop-
ment approaches (e.g. turnkey, adaptation, integration) for which a single generic
CBA process is unable to provide adequate development guidance. In the past our
attempts at an inclusive generic CBA process have met with limited success. In our
own attempts in utilizing a single generic CBA process we noticed numerous proj-
ects succumbing to serious effort allocation pitfalls. To this end we introduced
guidelines for early classification and continuous monitoring of a CBA project
along with development guidance based on the type of CBA project [5, 6]. These
classifications are useful for strategic and tactical development planning as they
provide an overview of the potential risks, characteristics, and development effort
priorities. An early identification and classification of the type of CBA project can

4

172 D. Port and Y. Yang

help a project development team clarify their development process and manage
risks, especially risks due to COTS effort allocation which are a major source of
CBA project instabilities [7].

3 COTS Based Applications Process Decision Framework [6]

In observations of e-service projects over a seven year period, the authors have seen a
pronounced increase in the fraction of CBA projects [5]. This resulted in increased con-
flicts within the UML-based [8] development process used within the project. This has
led to a good deal of confusion, frustrating re-work, risky decisions, unsatisfactory
products, and unhappy stakeholders. A notable example of this re-work occurred within
one of the authors’ “USC Collaborative Services” project in which the developers
scrapped (after much expended effort) their process-mandated UML based design mod-
els and substituted extensive and detailed assessments and comparisons of several COTS
packages, each of which covered most or all of the desired capabilities. In analyzing this
problem, we found that the ways that “successful” projects handled their individual
assessment, tailoring, and glue code activities exhibited considerable similarity at the
process element level. We also found that these process elements fit into a recursive and
reentrant decision framework accommodating concurrent CBA activities and frequent
go-backs based on new and evolving Objectives Constraints and Priorities (OC&P) and
COTS considerations.

Figure 1 presents the dominant decisions and activities within CBA development
as abstracted from our observations and analysis of USC e-services projects and
CSE-affiliate projects. This represents the overall CBA decision framework that
composes the assessment, the tailoring, glue-code, and custom code development
process active ties within the overall development cycle. The CBA process is un-
dertaken by “walking” a path from “start” to “Non-CBA Activities” that connects
(via arrows) activities as indicated by boxes and decisions that are indicated by
ovals. Activities result in information that is passed on as input to either another
activity or used to make a decision. Information follows the path that best describes
the activity or decision output. Only one labeled path may be taken at any given
time for any particular walk; however it is possible to perform multiple activities
simultaneously (e.g. developing custom application code and glue code, multiple
developers assessing or tailoring).

COTS Activity Sequences

In our six years of iteratively defining, developing, gathering project data for, we
identified three primary sources of project effort due to CBA development considera-
tions and further evidenced in [5], which shows the distribution of COTS activities
within the COTS related effort. For the purpose of this paper, we define these activi-
ties as:

Empirical Analysis of COTS Activity Effort Sequences 173

COTS Assessment is the activity whereby COTS products are evaluated and
selected as viable components for a user application.

COTS Tailoring is the activity whereby COTS software products are config-
ured for use in a specific context. This definition is similar to the SEI defini-
tion of “tailoring” [10].

COTS Glue Code development and integration is the activity whereby code
is designed, developed, and used to ensure that COTS products satisfactorily
interoperate in support of the user application.

The small circles with letters A, T, G, C in Figure 1 respectively indicate the areas of
assessment, tailoring, glue code, and custom code development process activity
within the CBA decision
framework. Table 1 summarizes
the results with respect to these
activity areas from applying the
process CBA decision
framework within various e-
services projects. We observed
that not all projects follow
similar activity sequences [6].
For example: Assessment and
tailoring were the dominant
activity for project 2 in the
elaboration spiral, while for
project 3 during the elaboration

Fig. 1. The CBA Decision Framework

174 D. Port and Y. Yang

phase the team implemented in parallel tailoring and glue-code activities, and on
finding the COTS unsuitable for their need this team implemented the assessment
activity in the next spiral. Such differences in the activity sequences resulted in a
specific set of charac-teristics and risks reported by the projects. Based on these re-
ports, we have abstracted some common characteristics, patterns, and associated risks,
which we shall present in the following sections.

4.1 Representation

To reconstitute the activity sequences, we used an effort reporting system that has
been utilized by all the projects such as those listed in Table 1 (along with many oth-
ers not listed there). The representation of a COTS activity effort sequence is the
particular time-ordered sequence of letters A, T, G, and/or C as reported by the sys-
tem. Parentheses are used when two or more activities were conducted in parallel. For
example, (TG) would represent simultaneous tailoring and glue code. For the purpose
of this paper, all tailoring and glue code effort expended exclusively for assessing
COTS packages are considered assessment activities.

Table 1 shows a sampling of the A, T, G, C sequences for some of the CBA projects
in terms of Inception, Elaboration, Construction, and Transition phases [8]. The se-
quences of activities are time ordered from left to right.

4.2 Data Collection and Validation

Within the USC e-services projects we collected data from three major data sources.
These sources include weekly effort report, the weekly progress report and the
weekly risk report. The weekly effort is a form of quantitative data where the team is
required to report both COTS and non-COTS effort its members spent during the
course of a week. The weekly progress report highlights the tasks that the project
team completed in the prior week, and the tasks that it plans to complete in the next
week. The weekly risk report consists of the top ten risks that the team is facing in the
project. Both the weekly progress and risk reports are qualitative. Having both quan-
titative and qualitative reports helps determine the correctness and consistency of the
team reports, and for our present purposes, discern notable patterns (or lack of ex-
pected patterns).

This data however has certain limitations in lieu of our research. These limitations
have been listed below:

It is not possible to differentiate atomic A, T, G, or group A, T, G inside a
particular development phase. For example, T is presumed to be performed
on a single COTS package, but if the project needed to tailor a set of COTS
products, there is no way to correctly reconstruct and interpret the corre-
sponding sequence of tailoring activities between the products and subse-

Empirical Analysis of COTS Activity Effort Sequences 175

quent assessment. The representation is simply the aggregate effort for all
the products.
All projects were under a very tight 24-week schedule. These schedule con-
straints might significantly affect COTS considerations and decision making
in the middle or even near the end of the project. For example, re-assessment
caused by late requirements change or COTS volatility might eat up avail-
able schedule so much that the project cannot be completed in time. Thus,
re-assessment activity becomes more costly than in non-schedule constrained
projects.

5 Phase Characteristics of COTS Activity Sequences

The CBA activity sequences were defined and exemplified briefly in Section 4. In
this section, we elaborate on the particular decisions made within the CBA decision
framework that the activity sequence letters represent. We aim to illustrate and com-
pare the overall similarities and differences between CBA projects. For example,
continued assessment activity in Elaboration is common (projects 1,2,3,4,5,8,9), but
some of this can be attributed to re-assessment resulting from insufficient earlier
assessment (projects 1,2,3,5). This sometimes led to further, often more costly and
risky assessment activity within Construction when forewarnings of significant COTS
changes went undetected (Project No. 1, 2, 4). Such cascading events are typically not
directly addressed by the current literature on CBS processes. This section concludes
with a summary and overview of typical specific kinds of COTS activities within
each development phase as observed within the USC e-services CBA projects ana-
lyzed.

5.1 Case Studies of the USC E-Services CBA Projects

The following table provides an elaboration of the CBA project sequences in the
USC e-services CBA projects previously listed in Table 1. The dialog indicated is the
result of actual, specific in process application of the CBA decision framework in
Figure 1 [6].

5.2 Phase COTS Activity Summary and Overview

Inception. All projects spent certain amount of effort on assessment (A) in the Incep-
tion phase, i.e. the first spiral cycle. For projects 6 and 7 the initial assessment was a
“what remains to be done” with respect to a pre-selected COTS products/packages
mandated by the clients. All other projects collected and assessed a variety of COTS
candidates with respect to the project’s high-level system objectives, constraints and
priorities. Some projects needed to do some tailoring of the COTS candidates to help
initial assessment.

176 D. Port and Y. Yang

Empirical Analysis of COTS Activity Effort Sequences 177

Elaboration. In the Elaboration phase, COTS assessment (A) tends to be done more
thoroughly along with some COTS tailoring (T) and glue code development (G) in
order to gain first-hand experience with the candidate COTS, collect data for analyz-
ing COTS, or test the operational performance of COTS for the particular context of
the project. Meanwhile, possible frequent requirement changes and different COTS
characteristics result in a wide variation of effort sequences.

Construction. Except for two incomplete projects 5 and 7, the Construction phase
typically consists of T and/or G, whereby customizing the selected COTS packages
and integrating them into the target system is performed. Project 2 is a notable excep-
tion as described below.

Transition. While most of the CBA projects delivered an operational system at the
end of transition phase, some did not and never were expected to. For instance, proj-
ect 2 delivered a set of COTS evaluation and recommendation reports on which
COTS should be used and why. This outcome is not considered a failed project so
long as the project goal from the outset was to deliver a feasibility study. Further-
more, if a CBA project concludes quickly with “this project is unfeasible,” then this
too is a success of sorts so long as no unreasonable expenditures (e.g. cost, effort,
schedule) were made to come to this conclusion.

6 Defining Sequence Patterns

Analyses of the case study CBA project sequence data show that there are certain
patterns that exist in both the successful and the not so successful CBA projects. With
respect to the CBA decision framework, we detail notable patterns that were expected
(and indeed appeared) and some that were a surprise. Such patterns are interesting in
their own right, however they have primarily been used to validate and refine the
CBA decision framework when first described in [6].

6.1 Anticipated Patterns

An anticipated CBA sequence pattern is a sequence of COTS activities that:
a.
b.
c.

d.

Is expected or perceived as common within a typical project
Has a viable rationale to exist within a typical project
Is a valid “walk” within the CBA decision framework indicated in figure 1
(more specifically, is a valid set of composable elements from the frame-
work as detailed in [6])
Does not violate critical constraints of a typical project

Given the above, we described anticipated patterns by listing the percentage of case-
study projects the pattern exits in and the rationale as to why the pattern is consistent
within a project.

178 D. Port and Y. Yang

Pattern 1: Assessment first. After identifying system objectives constraints and pri-
orities and collecting an initial set of COTS candidates, COTS assessment is usually
performed. This commonly done to evaluate the extent that the candidate COTS ca-
pabilities can satisfy requirements.

Observed in case-study projects: 100%

Note that this pattern is clearly affirmed within CBA decision framework, in which
the assessment process element is suggested at the very beginning of the CBA process
decision framework.

Pattern 2: Assessment to tailoring It is a seemingly natural relationship
between assessment and tailoring. While assessment is on going or once assessment is
done, it becomes more clear what needs to be done and what can be customized or
parameterized in a COTS product before being utilized

Observed in case-study projects: 100%

Pattern 3: Tailoring to glue code When integrating COTS packages, often
tailoring can help prepare unrelated COTS packages to “fit” together with glue-code.
For example setting the output of the COTS packages to a standard data interchange
format such as CSV or XML.

Observed in case-study projects: 33% (100% when subsets of pattern 4 are counted)

Pattern 4: Assessment to tailoring and glue code or As
and patterns are common, this pattern is generally just the aggregate of

these two patterns (in the two ways they can aggregate) when both patterns are al-
ready present. This is particularly true with multiple COTS candidates where a thor-
ough assessment with tailoring and/or glue code development to do experiment test-
ing on COTS candidates to avoid faulty candidate being selected.
Observed in case-study projects: 67%

Pattern 5: After Inception, A, T, TG as a repeatable pair or or
Due to frequent requirement changes, COTS volatility, re-assessing, or re-

tailoring a COTS package is common in addition to possibly a certain amount of
rework on glue code to accommodate the changes. In addition, some projects aim to
utilize COTS without any tailoring or perhaps with at most, some tailoring but no
glue code (for example in a single COTS package solution).

Observed in case-study projects: 67%

Empirical Analysis of COTS Activity Effort Sequences 179

Unanticipated Patterns
An unanticipated pattern is a pattern that is not expected typically occur (and as a
result, not often planned for) in a project, yet is a valid within the CBA framework,
has project rationale, and is observed within the case-study projects.

UPattern 1: Assessment to Custom Development It is a little disappointing
to find that no COTS candidates will feasibly satisfy pre-defined system OC&P’s.
These OC&P’s cannot be changed or negotiated to accommodate the constraints
imposed by the available COTS packages. Therefore, a custom development becomes
the only viable option. This pattern is unexpected as people do not generally look for
COTS solutions unless there is some initial indication that it is feasible to pursue (i.e.
flexible OC&P’s, known COTS candidates, etc.)

Observed in case-study projects: 11%

Tailoring to assessment or Most likely, such a sequence segment
results from requirement changes, COTS changes, or insufficient early assessment.
Another reason is that during integration, COTS software is packaged and delivered
in many different forms (e.g. function libraries, legacy application, commercial appli-
cation, tools, system services, and frameworks. The integration mechanism largely
depends on the way a COTS is packaged and delivered and must be re-assessed with
respect to the target system (e.g. different windows platforms). A third reason might
be interoperability difficulty: many COTS packages are implemented using different
component technologies and there is a lack of interoperability standards to facilitate
the integration. In all above cases, further assessment is typically required.

Observed in case-study projects: 56%

Unlikely Patterns
Unlikely patterns are sequences that violate the CBA framework, are contradictory, or
lack any project rationale to exist.

Tailoring or glue code first in Inception. No observation was found in this case even
though several projects started with mandatory, pre-determined COTS packages.
Custom development first in Inception. The goal of COTS is to avoid custom devel-
opment effort. Even if some custom development is required, generally the develop-
ment would orient around the COTS capabilities first, then focus on the custom to
complete the project. This is supported by the data in the case studies where the two
projects that had custom development performed the majority of this activity late in
the development.

Assessment, Tailoring, and Glue code in parallel ((ATG)). How can glue-code be
written without some prior assessment or tailoring? What would determine what
needs to be done? There may be exceptional cases such as when integrating a large

180 D. Port and Y. Yang

number of COTS in which parallel sub-projects may be formed to manage the com-
plexity and efficiency of the development.

Glue code to Tailoring The authors at this time do not have an explication
as to why this does not seem to appear in practice.

7 Risk Arising from COTS Activity Sequences

The CBA decision framework emphasizes risk-reduction by dynamically composing
a set of success-critical COTS related activities into a certain sequence as timely re-
sponse to the dramatically changing COTS world. In this section, we will highlight
the common COTS risks that arise within COTS activity sequences.

The table below lists certain sequence patterns, discusses what kinds of risk items might
be present, and what kind of risk mitigations might be planned to reduce these risks.

8 Conclusions and Future Work

COTS activity sequences provide an effective means analyzing complex and often sub-
tle COTS process elements. In particular, they have proven invaluable for validating and
refining the CBA decision framework that has already proven to be of substantial value
to developers inexperienced in COTS based system development. CBA sequence pat-
terns provide an empirical means of identifying and possibly avoiding COTS risks. CBA
sequence can aid in strategic planning to meet cost, schedule, and quality goals.

In future work we hope to compile a repository of CBA sequence patterns and the vari-
ous contexts in which they apply and do not apply. We also plan to expand the expressive-
ness of the notation for describing CBA sequences, perhaps to include duration data, regu-
lar expressions for repeated sequences and constraints, and more detailed activity catego-
ries or sub-categories. Furthermore, we would like to correlate the presence of patterns and
upatterns with project success metrics. Lastly, investigate patterns that arise from risks. At
present, we have examples of how risks arise from certain sequences.

Acknowledgements. The authors would very much like to thank Jesal Bhuta for con-
tributing insight into COTS tailoring processes and COTS risks within the case studies.
This work is a derivative of the original concept for a composable COTS process initi-
ated by Barry Boehm and the many stimulating subsequent discussions and publications
that ensued. Without these, this work would never have come to light.

Empirical Analysis of COTS Activity Effort Sequences 181

182 D. Port and Y. Yang

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

C. Abts, B. Boehm, and E. Bailey Clark, “COCOTS: A Software COTS-Based System
(CBS) Cost Model,” Proceedings, ESCOM 2001, April 2001, pp. 1-8.
C. Albert and L. Brownsword, “Evolutionary Process for Integrating COTS-Based Sys-
tems (EPIC): An Overview,” CMU-SEI-2002-TR-009, July 2002.
B. Boehm, “A Spiral Model of Software Development and Enhancement,” Computer,
May 1988, pp. 61-72.
M. Morisio, C. Seaman, A. Parra, V. Basili, S. Kraft, and S. Condon, “Investigating and
Improving a COTS-Based Software Development Process,” Proceedings, ICSE 22,
June 2000, pp. 32-41.
Dan Port, Ye Yang, Jesal Buhta, and Barry Boehm, “Not All CBS Are Created Equally:
COTS-Intensive Project Types”, 2nd International Conf. on COTS-Based Software Sys-
tems (ICCBSS’03), Ottawa, Canada, Feb. 2003.
Barry Boehm, Dan Port, Ye Yang, and Jesal Buhta, “Composable Process Elements for
Developing COTS-Based Applications”, accepted by 2003 ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE 2003).
V. Basili, B. Boehm, “COTS-Based Systems Top 10 List”, IEEE Computer, Vol. 34,
No. 5, May 2001
W.E Royce, Software Project Management: A Unified Framework, Addison-Wesley,
1998.
D. Carney, P. A. Oberndorf, and P.R.H. Place, “A Basis for an Assembly Process fo
COTS-Based Systems (APCS),” Technical Report, CMU/SEI-2003-TR-010, May 2003.

Assessing COTS Assessment: How Much Is Enough?

Dan Port1 and Scott Chen2

1Department of Information Technology Management
University of Hawaii at Manoa, Honolulu, HI

dport@hawaii.edu
2Center for Software Engineering

University of Southern California, Los Angeles, CA
chen@cse.usc.edu

Abstract. COTS products are now ubiquitous and clearly have become a key
factor in modern software systems development. If COTS are chosen poorly, a
project will likely fail. As a result, the careful assessment of COTS products has
become an essential element of the development process. There are numerous
approaches to COTS assessment; however none of them address the crucial
question of how much assessment effort to perform. If too little assessment is
done, inappropriate COTS may be used; if too much assessment is done, the ef-
fort expended may place the project at risk. It is important to achieve a satisfac-
tory balance between COTS uncertainty risks and risks resulting from project
delay. To address this, we develop a method for the strategic planning of COTS
assessment by determining “how much is enough” effort (in time, cost, or qual-
ity) with respect to critical project risk factors such as project schedule, market
window, and a multitude of COTS assessment attributes such as availability,
ease of use, maturity, and vendor support. The method is practical, and provides
valuable aid in the planning of COTS based system development.

Keywords: COTS, COTS assessment, COTS integration, software risk, COTS
evaluation

1 Introduction

COTS (Commercial-Off-The-Shelf) have become a key issue in software system
development. However, introducing COTS into the development process greatly
changes project risk factors [1, 13]. In particular, COTS introduces a significant
amount of risk arising from uncertainty within concerns such as faulty vendor claims,
support of standards, interface with legacy systems, hidden defects, and a host of
others (see 13] for a more elaborate list). If the wrong COTS are used, the risk a pro-
ject will fail increases dramatically [1]. Consequently, the thorough assessment of
COTS has become an essential practice in the development of COTS based systems
(CBS). What is COTS assessment? Simply said, it is finding the right COTS for your
project. More precisely, using a series of methods to evaluate COTS products with
respect to the requirements of your project and determine which ones (if any) are
suitable for your project. There are a large variety of COTS assessment approaches. A
brief list of popular methods include PORE - Procurement-Oriented Requirements

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 183–198, 2004.
© Springer-Verlag Berlin Heidelberg 2004

184 D. Port and S. Chen

Engineering method [2], OTSO - Off-The-Shelf Option [5], Checklist Driven Soft-
ware Evaluation Methodology (CDSEM) [10], COTS-based Integrated System De-
velopment (CISD) Method [9], CAP–COTS Acquisition Process method [11], CRE -
COTS-Based Requirements Engineering method [8], CEP - Comparative Evaluation
Process Activities [12], CBA Process Decision Framework [13], A Proactive Evalua-
tion Technique [14], STACE - Socio-Technical Approach to COTS Evaluation [15],
Storyboard Process [16], Combined selection of COTS components method [17],
PECA process [18], and COTS-DSS [19].

As indicated above, there are many approaches to COTS assessment. Each has
their own unique set of strengths and shortcomings with respect to the COTS attrib-
utes that are to be assessed. Ideally one would select the most appropriate approach
for each particular attribute to be assessed. However, this is a non-trivial endeavor;
furthermore, none of the assessment approaches address the question of how much
assessment should be performed. This introduces a degree of risk into the project
which now will be elaborated.

Any development activity involves risk [22]. Risks are situations or possible events
that can cause a project to fail to meet its goals. They range in impact from trivial to
fatal and in likelihood from certain to improbable. In the case of COTS assessment,
risk often results from uncertainty. With too little COTS assessment, there is risk that
the appropriate COTS may not be selected; with too much assessment, other devel-
opment tasks may be robbed of critically needed effort, putting the project completion
schedule at risk. Indeed, a particularly common COTS assessment pitfall is “analysis
paralysis” whereby assessment never converges to a satisfactory end point. Trade-offs
are considered, re-considered, and the quest for the “perfect” COTS drags on and on.
A stopping point needs to be established based on fundamental project factors outside
of COTS considerations such as buy versus build considerations and project comple-
tion goals. This work develops a new approach for making strategic design decisions
by determining how much effort (or time) should be spent assessing COTS products
with respect to project risk factors such as cost, market window, COTS assessment
attributes such as availability, ease of use, maturity, and vendor support. It provides a
valuable assessment aid when making strategic software design decisions. We lay the
foundation for a practical, empirically based approach for the strategic planning of
COTS assessment effort. Here we describe a means for assessing and comparing the
cost/benefit of assessing COTS attributes (including composing multiple assessment
approaches) and counterbalancing this with critical project risk factors such as buy
versus build options, minimum COTS implementation requirements, and project
completion goals.

2 Risk Considerations in COTS Assessment

In preparation for an analysis of COTS assessment, we introduce the technique of risk
profiling. To begin this discussion we define risk exposure (RE) [22], which is com-
puted as the product of the probability of loss P(L) and size that loss S(L) summed
over all sources of loss for a particular risk item. Since risk considerations dictate the
path development takes, it is important that risks be investigated candidly and com-

Assessing COTS Assessment: How Much Is Enough? 185

pletely. See the references for a taxonomy of risks [20] and a method for identifying
them [21, 22]. A risk profile (or RE profile) is the evaluation of RE as a function of
monotonically increasing quantity such as time, cumulative effort, or cumulative cost.
Expressing development considerations in terms of risk profiles enables quantitative
assessment of generally qualitative attributes. A useful property of RE is that if it is
computed entirely within a particular project (i.e. no external loss sources), we may
assume RE is additive. This will be true regardless of complex dependencies analo-
gous to ‘expectation’ in classic probability. We will take advantage of the additively
of RE in order to optimize risk profiles for COTS assessment. Such analyses provide
strategic trade off considerations and have proven useful in numerous other applica-
tions such as defect removal, development process agility, and architecture flexibility
determination.

What kinds of risks are involved within COTS assessment? Generally there is risk
of project error (REerror) from doing too little effort and project delay (REdelay)
from doing too much. We assume that a project starts out with a given amount of risk
due to uncertainty and potential problems, and that it is desirable to expend effort to
reduce overall RE. Lower RE implies less loss is expected to be incurred on a project.
The relationship between REerror and COTS assessment effort is simply that assess-
ment reduces uncertainty and potential errors that may arise from issues such as mis-
match of COTS capabilities and system requirements, COTS defects, faulty vendor
claims, incompatible COTS architecture, and so on. Problems in these areas tend to
result in significant project rework and other project costs. Hence it is vital to employ
a risk reduction strategy. However, it is not obvious that any given strategy will be
effective (or even feasible). This issue will now be elaborated.

2.1 REerror: COTS Assessment Error Risk

The risk profile corresponding to the cumulative potential loss from errors in utilizing
COTS (e.g. COTS defects, vendor problems, integration issues, etc.) will be called
REerror. The more assessment that is done, the lower REerror is resulting from to
unforeseen or uncontrolled COTS attributes (such as those listed in Table 2). As-
sessed COTS attributes reduce
both the size of loss due to “COTS
surprises” and the probability that
surprises still remain. Prior to
embarking on COTS assessment,
the project will likely contain
many potential COTS errors, ei-
ther known or from COTS uncer-
tainties [1]. This results in an
initially high (relative to the pro-
ject) P(L) value. In this, some may
be critical, and so S(L) will be
(again relative to the project) high.
Thus REerror initially will be
high. When COTS assessment
has been employed, the likelihood

Fig. 1. REerror Profile

186 D. Port and S. Chen

of errors will be reduced. If assessment is done throughly, most of errors remaining
are likely to minor, resulting in low REerror. So at the beginning, REerror decreases
fast.

It is generally not feasible to be totally exhaustive when performing COTS assess-
ment. As a result, the ideal COTS assessment risk reduction profile (as illustrated in
Figure 1) is where REerror decreases rapidly at the beginning slows as greater as-
sessment effort is expended. This profile is ideal because it provides the maximum
risk reduction for any given amount COTS assessment.

To give a concrete example of REerror, consider the data in Table 1a taken from
the USC Collaborative Services System project (please see the case study section for
further details on this project). The data in column A indicates the COTS attribute to
be assessed as listed in Table 3 and taken from the more comprehensive list of attrib-
utes in Table 2. Here S(L) is the size the potential loss in terms of percentage of the
project value that would result from an error in the COTS attribute, while P(L) is the
corresponding probability (as a percentage) of such a loss occuring. These in turn are
used to calculate the corresponding RE reduction if the attribute is fully assessed. The
RE has been normalized to the fractional portion of the total RE that may be reduced
through assessment. Column E indicates the effort in terms of effort (in hours) to
perform the assessment of the attribute, and CB is the cost-benefit ratio calculated as

RE/E which will be
elaborated on later.

Some care must
be taken in choosing
a strategy will result
in the ideal profile
indicated in Figure 1.
Figure 2 compares
three common
strategies for the
order in which the
assessments from
Table la might be
performed. The tick
marks on each RE
profile correspond to
the assessment of a
particular attribute.

If the attributes are assessed in an arbitrarily order, the curve will typically look like
the approximately linear curve indicated in the middle of Figure 2 which clearly does
not achieve the ideal of Figure 2. Another strategy is simply to do the least effort
assessments first. This generally results in the even less desirable ‘supra-linear’ REer-
ror reduction profile indicated in the top-most curve in Figure 2. Performing the as-
sessments in the order of highest cost-benefit will archive the desired REerror reduc-
tion profile.

Assessing COTS Assessment: How Much Is Enough? 187

For our particular
USCCS project example
the differences are not
very pronounced because
the differences in RE (and
to a lesser extend the
effort) between the attrib-
utes are relatively small.
However in larger, more
complex projects, the
differences between the
strategies can be pro-
found. This is our first
indication that it is pru-
dent to invest a little in
assessing your COTS

Fig. 2. REerror Profiles for USCCSS Project

assessment strategy before enacting it. If no assessment of the strategy is consid-
ered, then you are likely to end up with a less than ideal REerror reduction profile.
The consequence of this are felt if all assessment tasks are not performed. This
occurs frequently as assessment stops when it “feels” like enough risk has been
reduced or higher priority is given to other tasks. This results in a project leaving a
high-degree of risk amounting to the usual consequences [1, 9]. On the other hand,
if exhaustive assessment is performed, then the overall effort expended may intro-
duce new project risk. This later risk consideration is of a different nature than
REerror and be discussed next.

2.2 REdelay: COTS Assessment Delay Risk

Ideally one would do as much as COTS assessment as possible to lower the risk of
hidden COTS problems. What happens if too much assessment is done? Excessive
assessment not only increases effort, but also will delay the project. This means that
assessment activity itself introduces new risk into the project. Such risks can nega-
tively impact or even paralyze a project to the point that the project will not com-
plete on time or complete at all. Project delay may result in losses due to non-use of
the system when required or expected, dissatisfied customers, or the combination of
competitors entering the market and decreased profitability on the reduced market
share. The risk profile associated with the potential failure to complete the project
on time will be called REdelay. Here the relationship between REdelay and COTS
assessment effort is elaborated. REdelay will monotonically increase since REdelay
represents the cumulative RE due to delay. We assume that the project starts out
with no risk of delay and that any effort expended contributes to the overall delay
risk. Due to compounding factors, it has been empirically suggested within the
COCOTS [26] assessment sub-model that REdelay will increase supra-linearly.
Owing to this, a reasonably good approximation to the REdelay profile can be gen-
erated through the identification of a few well chosen data points. For COTS as-
sessment we have found the following three ‘critical points’ to be useful:

188 D. Port and S. Chen

Point 1: Buy versus Build Option
This point indicates the boundary that, if passed, the project will no longer have the
resources required to custom develop the entire system. This may be due to over
commitment of development resources, staff skill deficiencies, training overhead, or
simply a lack of remaining time due to over-investment in COTS assessment activi-
ties. REdelay will increase as COTS risks that were previously mitigated by the op-
tion to custom build the required capabilities is no longer viable. For example, not
having the option to build escalates the criticality for identifying or acquiring suitable
COTS.

Point 2: Implementation of COTS
This point marks the boundary where there will not be sufficient resources to imple-
ment COTS within the project. If COTS are to be used, then some significant amount
of resources must be dedicated to acquiring, installing, training, tailoring, and inte-
grate the packages into the project [1,4, 26]. Passing this point dramatically increases
REdelay

Point 3: Project Completion
Every project, no matter how flexible, has constrained resources, be they budget,
schedule, or other economic considerations. There always exist a point where project
resources will be exhausted and the project must complete prior to this point. Passing
this point will put the project at extreme risk. Less clear is that over-investment in
some activities, in particular COTS assessment activities, may be incompatible with
project completion constraints. The extreme case of this is ‘analysis paralysis’ where
COTS assessment never converges and eventually the effort reaches a level to which
the project cannot be finished prior to the desired project completion point.

As the schedule for points 1,2,3 are necessarily successive, and the effort to arrive at
these points is cumulative, REdelay at these points successively increase respectively.
Moreover, the increase in REdelay between points 1 and 2 is strictly greater than that
between the starting point and point 1. Similarly for points 2 and 3, except the in-
crease is more pronounced. The critical points for the USCCS Project are contained in
Table 1b and the resulting REdelay profile is illustrated in Figure 3.

As is evident by USCCS Project example, calculating risk exposures requires an
organization to accumulate a fair amount of calibrated experience on the probabilities
and size of losses as functions of assessment effort (e.g. cost, duration) and project
delay. There are many practical approaches that address this topic specifically (see for
example [9, 11, 21, 22]) and while important, will not be considered henceforth.

Assessing COTS Assessment: How Much Is Enough? 189

Fig. 3. USCCS Critical Points

3 Balancing Risks: How Much Is Enough COTS Assessment?

At this point we have seen that it is important to have an efficient strategy for reduc-
ing REerror and avoid coming in conflict with REdelay critical points. We have indi-
cated that COTS assessment reduces REerror while simultaneously increasing REde-
lay. A desirable overall COTS assessment strategy decreases REerror but not expend
so much effort that this reduction is dominated by REdelay. This is the more formal
solution to the informal question “how much is enough COTS assessment?” This
approach follows the general principle for avoiding over-evaluation and under-
evaluation of COTS assessment attributes based on risk-considerations:

If it’s risky to not evaluate extensively, DO evaluate extensively (e.g., scalability,
safety);

If it’s risky to evaluate extensively, DO NOT evaluate extensively (e.g., well-
established, well-known, highly tested products).

Our goal is to apply the above principle to balance REerror and REdelay to deter-
mine a strategic amount of COTS assessment to perform before committing to a par-
ticular system design. The optimal effort to expend will be that which minimizes the
sum REerror + REdelay. Doubtless there are many dependencies among the risk fac-
tors, however recall that despite this, RE’s will be additive. As shown in Figure 4a,
the decreasing REerror and increasing REdelay must achieve a minimum – the “sweet
spot” at some intermediate effort point. Assuming the ideal REerror reduction strat-
egy discussed earlier, a strategic stopping point for COTS assessment is when this
intermediate effort point has been reached.

Note that the location of the sweet spot will vary by type of organization. For ex-
ample, in a “dot.com” company where REdelay increases rapidly due to market pres-
sures, the result sweet spot is pushed to the left indicating that less COTS assessment
should be done. By contrast, a safety-critical product such as for a nuclear power

190 D. Port and S. Chen

plant will have greater REerror due to larger potential losses. The sweet spot is
pushed to the right, indicating that more COTS assessment should be done. The
sweet spot determination for the USCCS Project is shown in Figure 4b. A 3rd order
polynomial (shown in the figure) was used to interpolate between the critical points so
that the REerror + REdelay could be estimated.

Fig. 4a. Balancing REerror
and REdelay

Fig. 4b. Sweet Spot
for USCCS Project

There are situations where the sweet spot is not an acceptable determination of
how much assessment to perform. Acceptability is achieved only when (as indicated
in Figure 4a) the RE at sweet spot is below a given risk tolerance and the effort at
the sweet spot is less than the effort at critical point 2. While ideally the assessment
effort should be less than the effort at point 1, for most projects the additional risk
incurred by passing this point is tolerable [1]. This risk is softened by the fact that
the effort at the sweet spot cannot be far from the effort at point 1. The effort be-
yond point 1 to complete the COTS assessment is small enough that the buy vs.
build decision will mostly be settled prior to passing point 1. The exception is if
REdelay increases very gradually, but then in turn the increase in risk would be
much less pronounced.

What can be done in the event that the sweet spot is above an acceptable risk tol-
erance? There are two solutions: find another assessment approach that can lower
REerror, or mitigate potential losses (e.g. insurance policy) due to project delay in
order to lower REdelay. It is best if both solutions are applied. If the sweet spot
effort exceeds the effort for point 2, the only reasonable approach is to find another
assessment approach that can lower REerror faster. Paradoxically, if REdelay were
increased, say by imposing greater project cost, schedule, or effort constraints, this
too could potentially move the sweet spot effort in front of point 2. However the
price to pay for this is a heavy increase in the overall project risk which likely will
exceed a tolerable level.

Assessing COTS Assessment: How Much Is Enough? 191

4 Assessing COTS Attributes and Assessment Techniques

When assessing COTS products there are a large number of attributes that affect REer-
ror such as Correctness, Version Compatibility, and Vendor Support. What is an attrib-
ute? Here we use this definition [23]: An attribute is a quality property to which a metric
can be assigned, where a metric is a procedure for examining a component to produce a
single datum, either a symbol (e.g. Excellent, Yes, No) or a number. What we want to
know is the degree to which each of these attributes should be evaluated so as to provide
an effective assessment strategy given a projects particular requirements and constraints.
We would like to answer questions such as “it is better to buy or build?” and “should we
choose a more reliable vendor or a product with more features?” Only by assessment of
COTS attributes can we answer such questions.

Table 2 is a sample of COTS assessment attributes from [23, 24, 25]. They can be
utilized to formulate a COTS assessment strategy by selecting attributes that are relevant
to your project, assessing their relative risks, and considering cost-benefit ratios. How-
ever, the degree to which each assessment attribute is significant is relative to each
COTS product, the project itself, and to the particular assessment technique applied. For
example, Ease of use tends to vary greatly from product to product. Security may not be
relevant for some uses of a particular component within the system regardless of which
COTS products are used. Prototyping tends to provide more comprehensive results than
product references (e.g. product testimonials). While Prototyping (as am assessment
technique)may reduce the risk of error more than testimonials, it also takes more time
and thus increases risk of delay.

Also relative to the particular product and project is how attributes vary with re-
spect to the amount of assessment effort. For some COTS products, a single assess-

192 D. Port and S. Chen

ment is enough to resolve the uncertainty risk for the attribute (as is typical with
Price). For others, it may be a function of time outside project control such as with
Upgrade Ease and Vendor Support. There may also be attributes whose risk attributes
are resolved “stepwise” through repeated evaluation, as typical with Availability /
Robustness, Performance, and Ease of use. A COTS risk exposure assessment strat-
egy should address the above issues. We now present a stepwise approach to formu-
lating an assessment strategy that accomplishes this. In particular, it provides a practi-
cal to implement means of selecting an ideal REerror reduction profile when there are
multiple assessment techniques for each attribute.

The multi-attribute, multi-assessment technique REerror reduction strategy
algorithm:

1.

2.

3.

4.

5.

6.

Identify the most significant COTS assessment attributes from Table 2. La-
bel them 1,..., n.
Identify the most significant COTS assessment techniques (e.g. product tes-
timonials, prototyping, etc.) applicable to the project, available resources
(e.g. staff skills). Label them 1,..., m.
Estimate the relative quantities for attributes i=1,.. .,n

Estimate the effort and the change in probability resulting from
assessing assessment attribute i using assessment technique j. Henceforth we
associate ij with (attribute i, technique j)
Order (decreasing) the assessment activities cost-benefit ratios

Label them T(k) where k=1,...,n*m. Set to be the corre-

sponding and to be the corresponding

Graph the cumulative RE drop, as a function of the cumula-
tive effort where k=1,...,n*m.

This above process produces an ideal REerror reduction strategy that can be ap-
plied for sweet spot determination as presented earlier. When the sweet spot is deter-
mined, the strategy dictates to perform T(k) for k =1,2,3,... until exceeds the
sweet spot effort. The algorithm assumes that the entire effort allocated for each T(k)
will be expended. As a result, there may be more optimal with respect to absolute RE
reduction, but multi-attribute optimization techniques such as simulated annealing
could potentially be applied to find these. Since the algorithm is somewhat involved,
an example to illustrate it is presented in Tables 3abcde, resulting in the REerror re-
duction strategy displayed in Figures 5ab.

Assessing COTS Assessment: How Much Is Enough? 193

194 D. Port and S. Chen

While somewhat involved, the algorithm is fairly straightforward to implement and
use. For example, the authors performed all analysis for this paper completely within
a spreadsheet.

Fig. 5. (a) Cost-Benefit T(k) (b) REerror reduction T(k) (Step 6)

5 The USCCS Project

The approach to assessing COTS assessment described in this work was utilized
within the USC Collaborative Services System project (all documentation is available
in MBASE archives in Center for Software Engineering at USC). The customer for
this project was the Information Service Division (ISD) at USC. The USCCS project
is a COTS assessment-intensive project. The system provides online collaborative
services for students, faculty and staff at USC who found that nowadays their tremen-
dous need for group-oriented collaboration cannot be effectively met via traditional
means such as email, phone call or in-person meetings. The project assessed and
evaluated the diversity of current online collaboration solutions and COTS products
and, eventually, identified a cost effective solution based on the COTS evaluation
results. There were many COTS candidates. The candidates were quickly filtered
down to three COTS packages:

EProject: www.eproject.com,
Iplanet: www.iplanet.com
Blackboard: www.blackboard.com

A thorough assessment on cost-effectiveness needed to be done before choosing
one of them. For this project, Boehm’s COTS assessment approach [24] [13] was
used to determine the S(L) and P(L). A sample of some of the assessment attributes
and their corresponding weights that were used is shown in Table 4.

Assessing COTS Assessment: How Much Is Enough? 195

The functionality of a COTS component was determined by a feature checklist a
sample of which is shown in Table 5 an concluded in Table 6. The data in Table lab
was generated from these assessment activities.

196 D. Port and S. Chen

6 Conclusions and Future Work

COTS assessment appears qualitatively intuitive for any given aspect; however there
are often many factors that must be considered simultaneously. The impact of all
considerations may be quite complex and counter intuitive. This complexity shows up
in particular when attempting to translate qualitative evaluations into quantitative
results such as determining an optimal amount of assessment effort to expend a de-
gree of detail for a multitude of COTS assessment attributes and assessment tech-
niques. REerror and REdelay profiles are a tangible and practical means of assessing
individual aspects that affect COTS assessment efforts. The total risk exposure is
computed as the sum of the individual risk exposures (a linearity condition) and opti-
mal total values will indicate optimal values for the individual risk contributions. In
this way individual effort can be allocated in such a way to achieve minimum total
risk exposure. Typically it is fairly straightforward to estimate individual risk expo-
sures. COTS assessment attributes such as those listed in Table 1a provide tangible
guidance as to which areas to assess. Critical delay risks are straight forward to esti-

Assessing COTS Assessment: How Much Is Enough? 197

mate especially with the use of principled effort estimation els such as COCOMO
and COCOTS [24]. Risk-based design can help answer difficult development ques-
tions before they become serious problems such as what COTS assessment ap-
proaches are sufficient and how much assessment is enough. Our approach also can
be used to improve COTS assessment approaches. When the sweet spot is not accept-
able with a given assessment strategy, look for better assessment techniques.

In the future, we would like to refine our approach to include variable individual
assessment durations (perhaps via simulated annealing) and inclusion of additional
critical project points. We would also like to apply options theory and portfolio analy-
sis to provide rational valuation of assessment options and track changes to these
valuations over time or effort.

Acknowledgements. We gratefully acknowledge Dr. Barry Boehm for originally
suggesting this topic and the numerous subsequently stimulating discussions. We also
thank Dr. David Klappholtz for serving as a fine sounding board.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

V.Basili, B.Boehm, “COTS-Based Systems Top 10 List”, IEEE Computer, Vol. 34, No. 5,
May 2001
Ncube, C., Maiden, N. A. M. (1999). “PORE: Procurement-Oriented Requirements Engi-
neering Method for the Component-Based Systems Engineering Development Paradigm”,
1999 International Workshop on Component-Based Software Engineering.
Cornelius Ncube and Neil Maiden. “COTS software selection: The need to make tradeoffs
between system requirements, architectures and COTS components”, COTS workshop.
Continuing Collaborations for Successfull COTS Development, 2000
Alves, C., Finkelstein, A., “Challenges in COTS-Decision Making: A Goal-Driven Re-
quirements Engineering Perspective”, Workshop on Software Engineering Decision Sup-
port, in conjunction with SEKE’02. Ischia, Italy, July 2002
J. Kontio, “OTSO: A Systematic Process for Reusable Software Component Selection”,
CS-TR-3478, 1995. University of Maryland Technical Reports. University of Maryland.
College Park, MD.
Dukic, L., “Non -Functional Requirements for COTS Software Components” , Workshop
Ensuring Successful COTS Development. May 2000
John C. Dean, “Timing the Testing of COTS Software Products”, Proceedings of the 1st
Workshop on Testing Component Based Systems, Los Angeles, CA. May 17, 1999.
pp.5-8. NRC 41625
Alves, C. Castro, J. “CRE: A Systematic Method for COTS Components Selection”, XV
Brazilian Symposium on Software Engineering(SBES) Rio de Janeiro, Brazil, October
2001.
Vu Tran and Dar-Biau Liu. “A Risk-Mitigating Model for the Development of Reliable
and Maintainable Large-Scale Commercial-Off-The-Shelf Integrated Software Systems”,
in Proceedings of the 1997 Annual Reliability and Maintainability Symposium, pp361-67,
Jan 1997.
J. Jeanrenaud and P. Romanazzi. “Software Product Evaluation: A Methodological Ap-
proach”. In Software Quality Management II:Building Software into Quality, pp59-69,
1994.

198 D. Port and S. Chen

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

Ochs, M.; Pfahl, D.; Chrobok-Diening, G.; Nothelfer-Kolb, B., “A Method for Efficient
Measurement-based COTS Assessment and Selection - Method Description and Evalua-
tion Results”. Pro. of the Seventh International Software Metrics Symposium METRICS
2001, April 2001, London, pp. 285-297
B.C. Phillips and S. M. Polen, “Add Decision Analysis to Your COTS Selection Process”,
Software Technology Support Center Crosstalk, April 2002.
Barry Boehm, Dan Port, Ye Yang, Jesal Bhuta, Chris Abts, “Composable Process Ele-
ments for Developing COTS-Based Applications”, 2002
Dean, J. Vidger, M. “COTS Software Evaluation Techniques”. Proceedings of The NATO
Information Systems Technology. Symposium on Commercial Off-the-shelf Products in
Defence Applications, Brussels, Belgium. April 2000
D. Kunda and L. Brooks, “Applying Social-Technique approach for COTS selection”,
Proceedings of 4th UKAIS Conference, University of York, McGraw Hill, April 1999.
S. Gregor, J. Hutson, and C. Oresky, “Storyboard Process to Assist in Requirements Veri-
fication and Adaptation to Capabilities Inherent in COTS”, Proceedings of ICCBSS, Feb-
ruary 2002, Orlando, Florida USA, 2002, pp 132-141.
X. Burgu´es, C. Estay, X. Franch, J. A. Pastor, and C. Quer, “Combined selection of COTS
components”, Proceedings of ICCBSS, February, Orlando, Florida USA, 2002, pp 54-64.
S. Comella-Dorda, J. C. Dean, E. Morris, and P. Oberndorf, “A process for COTS Soft-
ware Product Evaluation”, Proceedings of ICCBSS, February 2002, Orlando, Florida USA,
pp 86-92.
G. Ruhe, “Intelligent Support for Selection of COTS Products”, in Proceedings of the
Net.ObjectDays 2002, Erfurt, Springer 2003
Carr, M. J.; Konda, S. L.; Monarch, I.; Ulrich, F. C. & Walker, C.F., “Taxonomy-Based
Risk Identification”, Software Engineering Institute, Carnegie Mellon University, Techni-
cal Report CMU/SEI-93-TR-6, ESC-TR-93-183, June, 1993
Hall, E. M., Managing Risk, Addison Wesley Longman, 1998
Boehm, B. “Software Risk Management: Principles and Practices”, IEEE Software, Jan.
1991, p.32-41
M. F. Bertoa, A. Vallecillo. “Quality Attributes for COTS Components”. In Proc. of the
6th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineer-
ing (QAOOSE 2002). Málaga, Spain, June 2002.
Boehm. B., Abts, C., Brown, A.W., Chulani, S., Clark, B., Horowitz, E., Madachy, R.,
Reifer, D. and Steece, B., “Software Cost Estimation with COCOMO II”, Prentice Hall,
2000.
M.Torchiano, L.Jaccheri. “Assessment of Reusable COTS Attributes”, 2nd Int. Conference
on COTS Based Software Systems (ICCBSS 2003), Ottawa, Canada, February 10-12,
2003
C. Abts, B. Boehm, and E. Bailey Clark, “COCOTS: A Software COTS-Based System
(CBS) Cost Model,” Proceedings, ESCOM 2001, April 2001, pp. 1-8.

Legal and Contractual Implications in the
European Union

Ignatio Delgado Gonzales

Martin & Lawson c/Alameda Urquijo, 28 – 2°C
48010 Bilbao, Spain

idg@martinlawson.com

1 Product Liability and Product Safety

The Directive 85/374/EEC of 25 July 1985 on the approximation of the laws, regula-
tions and administrative provisions of the Member States concerning liability for
defective products, establishes the principle of objective liability or liability without
fault of the producer in cases of damage caused by a defective product. If more than
one person is liable for the same damage, it is joint liability. The producer (or the
importer) is liable to compensate the death or personal injury and damages to property
caused by the defective product, whether or not he is negligent.

The European company that introduces the COTS product in the European market,
will be liable for the damages caused by the product (COTS) to the European con-
sumers. If an European company incorporates and assembles COTS from outside the
EU in a product, and that product is marketed in the EU, it will be liable for the dam-
ages caused to the European consumers. That is why it is very important to ask for
secure and reliable COTS specially when buying outside the E.U..

It can be certified by a neutral third party like certification bodies and technological
institutes or regulate in a contract clause.

The Council Directive 92/59/EEC of 29 June 1992 on general product safety Product
means any product intended for consumers or likely to be used by consumers, sup-
plied whether for consideration or not in the course of a commercial activity and
whether new, used or reconditioned.

The companies selling their COTS products in the E.U. have to comply with the
above mentioned regulation, and must facilitate all the information needed for a cor-
rect and safe use of the product. The COTS users can always ask for the information
to the COTS producer.

The new revised Directive on General Product Safety (2001/95/EC) has to be trans-
posed into national legislation by 15 January 2004. The new Directive maintains the
existing requirements, but in addition introduces a number of new or reinforced provi-
sions.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 199–202, 2004.
© Springer-Verlag Berlin Heidelberg 2004

200 I. Delgado Gonzales

2 EU Competition Law

The EU legislation on competition has to be taken into account in the following areas:
restrictive agreements and concerted practices, abuse of a dominant position, and
mergers.

3 Consumer Protection

The COTS are considered products not services, so COTS users in the European Un-
ion are consumers of a product. The directive on liability for defective products is
applicable.

The European concept of Consumers does not include juridical persons. However,
Member States are able to extend the level of protection and consider firms, compa-
nies, etc..., as consumers in their respective national laws.

4 Data Protection

In order to ensure a high level of protection within the EU, data protection legislation
has been harmonised. The Commission also engages in dialogues with non-EU coun-
tries in order to insure a high level of protection when exporting personal data to those
countries.

5 Contractual Matters

Generally speaking, national contract law regimes lay down the principle of contrac-
tual freedom. Accordingly, contracting parties are free to agree their own contract
terms. However, the laws and court decisions of a particular state govern each con-
tract. Some of these national rules are not mandatory and contracting parties may
decide either to apply these rules or to agree different terms instead. Other national
rules, however, are mandatory, in particular where there is an important disparity
between the positions of the contracting parties. Normally these different national
regimes do not create any problems for cross-border transactions, as parties can de-
cide which law will govern their contract. By choosing one national law, they accept
all the mandatory rules of that law, as well as those non-mandatory rules, which they
do not replace by different terms. In the event that an European consumer (COTS
user) buys directly from US company, US law will apply to that contract, it is a more
restrictive and less protective system for the consumer (COTS user). In the same case
if the European consumer (COTS user) bought it from an European distributor or
agent of the US vendor, European legislation will apply, is it the only one related to
the parties and the contract.

Legal and Contractual Implications in the European Union 201

6 Taxation

When selling COTS in the EU the companies have to check the TARIC code in order
to pay the custom duties, also it is important to the different VAT applied in each EU
Member State.

7 Intellectual Property Rights; Copyright/Patent

This topic related to COTS products acquisition is the most important, because it has
to deal with software licenses. Licenses are used not only for proprietary software but
also freeware, shareware and open-source software. The License is a cost that can
vary depending on the negotiations with the COTS vendor, so it is important to know
your rights when dealing this issue. It is still pending in European legislation whether
to protect software invention via patent or copyright as it has been up to now. Patents
may be applied for, processed and granted either at the European Patent Office (EPO)
under the centralised system of the European Patent Convention (EPC), or via na-
tional patent offices in the Member States according to national law. However which-
ever route is chosen, national law applies in all cases after grant. Thus, granted Euro-
pean Patents become national patents which have to be validated, maintained and
litigated separately in each Member State.

Patent and copyright protection are complementary. The same program may be pro-
tected by both patent and by copyright law. That protection may be cumulative only
in the sense that an act involving exploitation of a particular program may infringe
both the copyright in the code and a patent whose claims cover the underlying ideas
and principles of the invention using the program.

8 Conclusions

COTS are goods not services.
Goods offered to a general public in a standard way, as shrink wrapped licenses or

adhesion contracts.
Contracting terms are into discussion whether COTS can be purchased or licensed.
COTS users are considered consumers in the EU and they can benefit form the pro-

tection given by the EU legislation.
Contractual terms and conditions in the EU market that weaken consumer protection

are void.
Importer of COTS from outside the EU is responsible for damages of the product.
When acquiring COTS by E-commerce beware of conditions and legislation to ap-

ply, specially click wrapped contracts.
Buying COTS does not imply buying copyrights.
Licensing and renting COTS implies that you will never be the owner of the prod-

uct.
EU and US law are not only contradictory but also incompatible.

202 I.D. Gonzales

European COTS’ users must be aware of the fact that when contracting with vendors
from the US, the contract may include provisions imposing the application of US law
and US jurisdiction.

US Law is more restrictive for COTS users than EU Law.
The way to avoid application of US Law could be to make an intracommunitary

agreement of the relationship between the vendor and the user: contracting with a
European branch of the US vendor will avoid US Law application. Those conclusions
are general and should be considered as such, when you are dealing with COTS it is
advisable to start from the very beginning with the help of your legal adviser.

Best Practices for the Acquisition of COTS-Based
Systems: Lessons Learned from the Space System

Domain

Richard J. Adams1 and Suellen Eslinger2

1The Aerospace Corporation
P.O. Box 92957–M1/112

Los Angeles, CA 90009-2957
Richard.J.Adams@aero.org

2The Aerospace Corporation
P.O. Box 92957–M1/112

Los Angeles, CA 90009-2957
Suellen.Eslinger@aero.org

The incorporation of Commercial Off-the-Shelf (COTS) software into software-
intensive systems brings promises of significantly reduced cost and schedule, and
improved reliability and maintainability, by using “proven” software. However, Air
Force Space and Missile Systems Center (SMC) and National Reconnaissance Office
(NRO) programs often find that the reality is very different!

In support of Air Force Space and Missile Systems Center’s Directorate of Systems
Acquisition, the authors performed an in-depth study of actual COTS-Based System
(CBS) development and sustainment experiences on SMC and NRO programs. The
use of COTS software poses major risks in the acquisition and sustainment of SMC
and NRO software-intensive systems. The purpose of this study was to assist in miti-
gating these inherent software risks and to share COTS software lessons learned
across SMC and NRO programs. The results of this study were presented at the
Software Technology Conference (STC) 2001, and a paper “COTS-Based Systems:
Lessons Learned from Experiences with COTS Software Use on Space Systems” was
published in the STC 2001 conference proceedings.

This study determined six major lessons learned concerning CBS development and
sustainment. These lessons are summarized as follows:

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 203–205, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Critical aspects of CBS development and sustainment are out of the
control of the customer, developer and user.
Full application of system and software engineering is required
throughout the CBS life cycle.
CBS development and sustainment require a close, continuous and
active partnership among the customer, developer and user.
Every CBS requires continuous evolution throughout development
and sustainment.

204 R.J. Adams and S. Eslinger

Current processes must be adapted for CBS acquisition, develop-
ment and sustainment.
Actual cost and schedule savings with CBS development and sus-
tainment are overstated.

This study demonstrated that only careful acquisition, development and sustainment
preparation and execution achieve the potential CBS benefits. CBS success depends
upon preparing for a complex development and sustainment effort; preparing for in-
herent cost, schedule and performance risks beyond Government or developer control;
and preparing to make adjustments to current acquisition, development and sustain-
ment processes.

Clearly, one of the principal components of a successful software development proj-
ect is the software engineering processes used. This statement is based on the well-
established fact that the quality of a software product is highly dependent upon the
quality of the processes used to develop and maintain that product. A great deal of
work (especially by the Software Engineering Institute’s COTS-Based Systems Ini-
tiative) has been done in the past few years toward improving the processes used for
CBS development.

However, software acquisition processes (i.e., the processes used by the Government
to acquire software-intensive systems) are also very influential in achieving a success-
ful software development project. The software acquisition processes used can posi-
tively encourage, or adversely constrain, the developers in their application of high-
quality software engineering processes to a software development effort. This is es-
pecially true when acquiring COTS-based systems.

Software acquisition best practices, by definition, are practices that have been identi-
fied through experience as being significant contributors to the successful acquisition
of software-intensive systems. A comprehensive set of best practices must provide a
consistent and integrated approach to software acquisition throughout the acquisition
life cycle, both pre- and post-contract award. In addition, because software always
exists within the context of the system, the software acquisition best practices must be
consistent and integrated with a comprehensive set of system acquisition best prac-
tices. Finally, the set of best practices must be suitable for acquiring today’s complex
software systems that will be developed using the latest software development process
and product technologies. A set of software acquisition best practices satisfying these
criteria has been developed by the authors based on experiences from the space sys-
tems domain. A paper describing these best practices was presented at the OSD
Conference on the Acquisition of Software-Intensive Systems and is available from
the website: http://www.sei.cmu.edu/products/events/acquisition/.

This experience presentation addresses software acquisition best practices that are
specific to the acquisition of COTS-based software-intensive systems. These best
practices have been identified by the authors based on the experiences (both positive
and negative) of recent space programs with CBS acquisitions. The best practices are
directed toward enabling a program to effectively implement the above six lessons

Best Practices for the Acquisition of COTS-Based Systems 205

learned. Some of the frequently asked questions concerning the acquisition of COTS-
based software-intensive systems are:

How can a program specify contractual requirements to ensure only
appropriate trades are made between requirements and COTS capa-
bilities?
How can a program ensure that the delivered system will contain no
COTS software that is already unsupported by the vendor?
How can a program select a bidding team with mature, high quality
CBS development and maintenance processes?
How can a program best incentivize a contractor to use mature, high
quality processes for CBS development and maintenance?
How can a program ensure that their contractor has performed an
adequate evaluation of the proposed COTS software packages?
What actions can a program do to reduce risk in their CBS acquisi-
tion?
How can a program prepare for the inherent uncertainty in CBS de-
velopment and acquisition?
How can a program plan for adequate funds for CBS development
and sustainment throughout the system life cycle?

This presentation addressed these and other questions important to the successful ac-
quisition of COTS-based software-intensive systems.

Managing Vulnerabilities in
Your Commercial-Off-The-Shelf (COTS) Systems Using

an Industry Standards Effort (CVE)

Robert A. Martin

MITRE Corporation

Organizations around the world, in every type of industry and market, are moving
towards networks that are based on the Internet protocols. In addition, third-party
commercial and open source software has become a critical element to these organi-
zations and the infrastructure of networks, utilities, and services they rely upon to
function. That means the software problems in these COTS software products can
quickly cause significant difficulties for any organization. When such software prob-
lems have security implications, they are referred to as “vulnerabilities.”

CVE, the Common Vulnerabilities and Exposures Initiative [cve.mitre.org], is a new
international, community-based effort from industry, government, and academia that
is working to create an organizing mechanism to make finding and fixing these COTS
and open source software product vulnerabilities more rapid and efficient.

As recently as 1999, system administrators and security analysts were faced with a
cacophony of naming methods for defining individual security problems in software.
This made it difficult to assess, manage, and fix these vulnerabilities and exposures
when using the various vulnerability services, tools, and databases. The problem was
compounded with the software suppliers’ various update announcements and security
alerts. While trying to properly research options for selecting some new security tools
for its own corporate networks, MITRE began designing a method to sort through this
vulnerability naming confusion. The approach involved the creation of a unified ref-
erence list of software vulnerability and exposure names that were mapped to the
equivalent items in each tool and database.

THE CVE LIST. The common names in the CVE List are the result of open and
collaborative discussions of the CVE Editorial Board, along with various supporting
and facilitating activities by MITRE and others. The Board includes prominent infor-
mation security specialists from numerous information-security-related organizations
around the world, including commercial security-tool vendors, academic and research
institutions, and government agencies. From the original 12 in 1999, the Board now
includes 49 members from 35 organizations. With MITRE’s support, the Board iden-
tifies which vulnerabilities or exposures to include on the CVE List and agrees on the
common name, description, and references for each entry. MITRE maintains the CVE
List and Web site, analyzes submitted items, moderates Editorial Board discussions,
and provides guidance throughout the process to ensure that CVE remains objective

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 206–208, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Managing Vulnerabilities in Your Commercial-Off-The-Shelf (COTS) Systems 207

and continues to serve the public interest. From the original 641 names in 1999, the
list of CVE names has grown to 6,430 items as of January 2004, as shown in Figure 1.

Fig. 1. CVE growth over time.

CVE Compatibility. The basic premise of the CVE List is that there be one name for
a vulnerability or exposure. A CVE-compatible product or service must understand
the CVE names for vulnerabilities and allow its users to interact with the prod-
uct/service in terms of those CVE names. This does not mean that the product/ service
only uses CVE names for vulnerabilities, but rather that in addition to its own native
label for a vulnerability, it is aware of the CVE name for that vulnerability. This sup-
port for CVE names is central to the concept of CVE compatibility and ensures the
CVE-compatible product uses CVE names in a way that allows users to correlate its
information with other products that also use CVE names.

Uses of CVE Compatibility. Integrating vulnerability services, databases, Web sites,
and tools that incorporate CVE names will provide an organization with more com-
plete and efficient coverage of security issues. For example, a report from a vulner-
ability scanning tool that uses CVE names will enable the organization to quickly and
accurately locate fix information in one or more of the CVE-compatible databases and
Web sites. It is also possible to determine exactly which vulnerabilities and exposures
are covered by each CVE-compatible tool or service, because the CVE List provides a
baseline for comparison. After determining which of the CVE entries apply to its
platforms, operating systems, and commercial software packages, an organization can
compare this subset of the CVE List to any particular tool’s or service’s coverage.

208 R.A. Martin

Fig. 2. CVE –Compatible product growth over time.

The U.S. National Institute for Science and Technology (NIST) has published a rec-
ommendation to all federal government agencies and services for the use of CVE-
compatible products and services whenever possible [NIST SP800-51]. Similarly, the
Department of Defense, in their new 8500.2 Information Assurance Implementation
guidance, gives preference for products that support the CVE naming standard.

Growth of CVE-Compatible Products and Services. The list of organizations
declaring CVE-compatible products and services is continuously expanding and is
international in scope. In October 1999, 15 products intended to be CVE-compatible.
As shown in Figure 2, as of January 2004, 97 organizations are working toward com-
patibility for 144 products or services.

Challenges and Opportunities. As CVE moves forward, it faces a variety of chal-
lenges and opportunities. Challenges include addressing the impact of vulnerability
disclosure practices on CVE accuracy (including vendor acknowledgement and repli-
cation of the vulnerability); identifying the proper scope CVE; and renumbering the
CVE List. At the same time, opportunities include analyzing vulnerability causes,
improving vulnerability testing methods and veracity, filling in some gaps in research
(such as analysis of configuration problems and vulnerabilities), and delivering real
improvements in the way organizations manage the risks from vulnerabilities and
exposures.

Costing COTS Integration

Linda Brooks

Northrop Grumman Corporation

Abstract. This session will provide a roadmap for doing an estimate for COTS-
intensive systems development. It will discuss the key lessons learned about
COTS development pitfalls and translate them into estimation steps and check-
lists. The following topics will be discussed: frequently overlooked and under-
estimated tasks, the components of a complete estimate, estimating size and
cost drivers, using parametric modeling for estimation, and risk analysis. An
example of the calibration of a parametric model using historical data from a
Northrop Grumman Mission Systems COTS-intensive development will be pre-
sented, along with sample worksheets for compiling an estimate.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 209, 2004.
© Springer-Verlag Berlin Heidelberg 2004

U.S. Coast Guard, Differential GPS, Nationwide Control
Station

Frank Klucznik1, Kristi McRacken1, John Killers1, and Jason Judy2

1U.S. Coast Guard, USA
Integrated Computer Technology, USA

Abstract. This presentation discusses the lessons learned using COTS products
on the United States Coast Guard’s Nationwide Differential Global Positioning
System (NDGPS). The Coast Guard manages a NDGPS for the United States
Department of Homeland Security, where the system is required to provide ac-
curacy within 3-meters and 99.7% system signal availability. Due to the envi-
ronment, most of the COTS products evaluated and selected for the system
were pushed beyond their design limits. This pushed the development team to
develop creative and innovative solutions to overcome the challenges. The
NDGPS was a very challenging engineering project that combined an Online
Transaction Processing (OLTP) environment with a graphical user interface,
which required real-time updates. It also incorporated the storage of operational
data with archive data, which allowed users to run data analysis on the same
hardware as the operational software. While this is not a desired state, it al-
lowed the fielding of a system in a very short period of time that met initial
customer requirements. A spiral software development approach will be used to
evolve the system to the desired state over the next few years.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 210, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2

Requirements Analysis and Management (RAM) of
COTS-Based Systems – A “Success Story”

Gail M. Talbott, Program Director
Lockheed Martin (LM) Asset Solution Integration (ASI)

1102 John Glenn Blvd., Suite A
Titusville, FL 32780

gail.m.talbott@lmco.com

Abstract. As Commercial-Off-The-Shelf (COTS) software solutions are devel-
oped and integrated to address and enhance government and commercial indus-
tries business processes needs, specific and systemic issues are coming to light.
Two essential key process areas – Requirements Management and Software
Product Engineering testing – must be innovatively accomplished by docu-
mented and institutionalized processes and procedures, in order to preclude the
erroneous utilization of resources to address poorly defined requirements and
subsequent associated rework during the implementation of a COTS-based
system. This presentation is based on the experience of Lockheed Martin Asset
Solution Integration (ASI) as a COTS product solution integrator in the Enter-
prise Asset Management (EAM) marketplace, and will describe the proven ap-
proach to requirements analysis and management and implications of that
methodology developed during our successful COTS-based systems imple-
mentations and deliveries.

1 Introduction

Lockheed Martin ASI’s experience indicates a well-defined process for performance
of Requirements Management and test management aspects of Software Product En-
gineering is critical to ensuring successful COTS-based system implementation.
When good sound software engineering methodologies for these key process areas are
institutionalized, quality products are delivered and customer satisfaction – the main
goal of all COTS-based System Integrators – is achieved.

2 The Business Case – A Required Method

Initially, ASI was not required to meet any formal software engineering or related stan-
dards in order to support a large-scale COTS software implementation effort. This al-
lowed ASI to use an existing homegrown Change Request log to track customer re-
quests for changes to/tailoring of the customer-specified integrated COTS-based system.
All customer requests were considered valid and were worked on and bundled based on
the impact to specific COTS software modules. With this approach, there was not a

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, pp. 211–215, 2004.
© Springer-Verlag Berlin Heidelberg 2004

212 G.M. Talbott

requirement for Engineering Review Board (ERB) or Change/Configuration Control
Board (CCB) review and approval. In addition, there was no formal allocation of re-
quirements to the design or visible traceability of customer requests to design steps, test
case steps, or test discrepancies. ASI had no clearly defined process for eliciting,
documenting, managing, assessing, baselining, and tracing requirements from identifi-
cation through customer verification and acceptance.

On one project, requirements were gathered and implemented “on-the-fly” by
members of the software engineering group – the developers – without formal
documentation and review, and without adequate understanding of data relation-
ships and business processes. The project was “halted,” and re-started “from
scratch,” with much of the previous work simply discarded. As work progressed on
the COTS software implementation project, ASI recognized the need to improve its
software engineering business practices. ASI was selected to participate in a new
company sponsored initiative to achieve a Software Engineering Institute (SEI) Ca-
pability Maturity Model for Software (SW-CMM) Level 3 rating. Requirements
Management and the Software Product Engineering, which includes test, were two
of the key process areas that were addressed and improved. The initiative enabled
ASI to become a successful System Integrator of COTS-based systems. ASI’s new
well-defined and institutionalized approach to performing requirements manage-
ment and testing of integrated COTS products had repeated success on the large-
scale implementation effort. The end result was a very satisfied customer and an
institutionalized and successful Requirements Analysis and Management (RAM)
methodology for COTS-based systems.

3 The Requirements Analysis and Management (RAM)
Methodology – A Proven Approach

ASI established a formal requirements definition and change control process, man-
aged by Engineering and Configuration Control Boards, and implemented a state-of-
the-art requirements management tool – Rational Requisite Pro, commonly referred to
as ReqPro. ASI’s Requirements Analysts use ReqPro to track requirements, software
design/change steps, and test steps, providing complete traceability “from womb to
tomb.” Traceability ensures all approved requirements are addressed, and that all
resulting software changes are tested. ReqPro’s flexibility allows ASI to document
multiple types of requirements with varying levels of detail for each project, as well
as defining requirement attributes and values. This re-usable capability is copied to
subsequent projects, with additional tailoring as required. Typical requirement attrib-
utes are: Status, Business Process, Requestor, Priority, Testability, Difficulty, Stabil-
ity, Planned Build, Affected Item(s), and at what point they were added to the base-
line. All requirements are tracked, whether customer driven or elicited by the
Requirements Analyst based on Contract Line Items (CLINs) in a Statement Of
Work (SOW).

The Customer, along with the Requirements Manager and peers in the Integrated
Product Team (IPT), review the documented requirements to ensure they meet the

Requirements Analysis and Management (RAM) of COTS-Based Systems 213

established quality standards, that they are accurate, complete, clearly stated and un-
ambiguous, consistent with each other, and testable, prior to baselining. ASI defines
up front as many of the requirements as possible, to support COTS product selection
(if not pre-selected by the customer) and Rough Order of Magnitude (ROM) esti-
mates. As part of the ASI modified-COTS Waterfall Life Cycle, final, more detailed
requirements are documented as the project progresses in detailed specifications, in-
cluding “child requirements” which may require individual validation and verifica-
tion. Data, Process, and Function models are used where appropriate to assist in
communicating the Customer’s requirements and business processes to the ASI soft-
ware engineering (development) staff. Requirements are baselined at defined mile-
stones in the project life cycle: the Functional Baseline (FBL) upon customer ap-
proval at Functional Requirements Review (FRR); the Allocated Baseline (ABL)
upon customer approval at the Design Review; and the Integrated Product Baseline
(PBL) upon customer approval at the Operational Readiness Review (ORR) (follow-
ing successful Integrated and User Acceptance Testing (I/UAT)).

A Requirements Traceability and Verification Matrix (RTVM) is produced from the
PBL. The RTVM provides the visible traceability of customer requests to design
steps, test case steps, or test discrepancies. ASI tracks changes to baselined require-
ments (i.e., new features, enhancement requests, or clarification of existing require-
ments) in a database separate from the requirements. When changes to requirements
are needed, they must be approved by the ERB and CCB and then added to the appro-
priate requirements baseline prior to implementation. Requirements, and changes to
requirements, are communicated to affected groups for analysis of feasibility, diffi-
culty/complexity, severity/risk, identification of affected COTS components or other
software, relationship to other changes (e.g., constraints, logical packaging/bundling),
and impacts to schedule and cost. ASI also tracks the root cause of each test discrep-
ancy and product defect. The results of these metrics are used for “lessons learned” to
improve the requirements management process for subsequent projects. The require-
ment to create software products using a defined and systematic approach has been
proven over time.

One successful approach to meeting this requirement has been the interpretation and
implementation of the Software Engineering Institute (SEI) Capability Maturity
Model for Software (SW-CMM) to perform software engineering. Efficient software
system deliveries depend on a variety of factors that are associated with software de-
velopment. These factors include not only developing software code to meet system
requirements, but also ensuring customer requirements associated with cost, schedule,
and accountability are satisfied.

4 The RAM Methodology – Successful Results

Defining a formal, more rigorous, approach to the Requirements Management and
Software Product Engineering key process areas – the application of SEI SW-CMM
Level 3 discipline – increases the time needed for the RAM and testing phases of the
project life cycle. ASI’s experience demonstrates this approach has improved the
quality of our software products and significantly reduced the amount of rework re-

214 G.M. Talbott

quired to resolve discrepancies and/or defects. Case studies by the Air Force and
Raytheon have determined that requirement errors typically comprise over 40% of all
errors in a software project, and finding and fixing requirement errors can consume
70-85% of the total project rework costs. ASI’s Requirements Management and test
processes, coupled with peer reviews, comprehensive documentation of design, thor-
ough testing, and verification of approved requirements, have resulted in a major re-
duction of post-production problems. ASI has successfully delivered all of the last
five software builds for the large-scale COTS-based system implementation with zero
defects after institutionalizing these key process areas.

5 The RAM Methodology and Implications of COTS-Based
System Implementation

When automating business practices with COTS software, successful system integra-
tors must help the customer find a balance between two extreme approaches to im-
plementation:

Deploying the COTS as-is (“plain vanilla”), with minimal configuration changes,
but with major changes to the customer’s business practices, or
Tailoring/Customizing the COTS product to the customer’s current business
practices.

Neither of these approaches is desirable; in the first, the customer and end users often
consider it too risky or difficult to completely change their business practices; in the
second, the customer may lose all the benefits of having purchased COTS software
due to the major customization effort required to adapt it to current business practices.
ASI’s experience validates the following assertion made by Serge Charbonneau, a
Rational Software Engineering Specialist; in his Rational Edge article “Using RUP to
Implement a Packaged Application,” Charbonneau explains that any organization
implementing a COTS application should find a balance between these two extremes.
This has several implications to the Requirements Analysis and Test Management
processes. They are:

The Requirements analysis team must be familiar with both the proposed COTS
product functionality and limitations and with the customer’s business practices.
This familiarity is required to assist the customer in defining requirements that
leverage the inherent functional capabilities of the COTS with minimal impact to
the customer’s business practices, while allowing for customization that ensures
customer satisfaction.
The familiarity with both the product functionality and the customer business
practices allows the Requirements analysis team to perform a “gap analysis” of
proposed requirements against the COTS software, and document the deltas that
are not already native functions of the COTS product.
Knowledge of native COTS software functionality and the customer’s business
practices allows the test analysts and engineers to develop Test Plans and Test
Case Specifications (for IST and/or UAT) for the tailored/customized capability

1.

2.

1.

2.

3.

Requirements Analysis and Management (RAM) of COTS-Based Systems 215

of the COTS software per the customer’s established business practices. The
only native functions of the COTS product that are addressed by this testing are
those required to successfully execute the business practices using the tai-
lored/customized COTS product.

COTS Selection and Adoption in a Small Business
Environment: How Do You Downsize the Process?

William B. Anderson

Software Engineering Institute, USA

Abstract. This presentation describes the experiences of the Software Engi-
neering Institute (SEI) under the auspices of the Technology Insertion Demon-
stration and Evaluation (TIDE) program in collaborating with two small busi-
nesses as they selected, inserted, and evaluated an Integrated Manufacturing
Execution System (IMES). IMES is the manufacturing sector’s enterprise wide
business management software suite, integrating business quotation to execu-
tion, billing, and financial reconciliation. The comprehensive nature of the ap-
plication makes it critical to the ongoing operation of the business and touches
virtually every aspect of the enterprise. This presentation summarizes the ap-
proach and lessons learned as the SEI ‘right-sized’ large-enterprise COTS proc-
esses to better suit the dynamics of these small enterprises.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 216, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Managing the COTS Chaos: Experiences from the
Trenches Using the Evolutionary Process for Integrating

COTS-Based Systems

Lisa Brownsword1 and Minton Brooks2

1Software Engineering Institute, Arlington, VA USA
llb@sei.cmu.edu
2Indpendent Consultant

minton.brooks@comcast.net

Abstract. With increasing pressure to remain competitive in their respective
markets, many commercial companies are turning to a greater use of COTS
products to provide more capability faster to their end-users. Early attempts to
leverage COTS products using existing waterfall-oriented development ap-
proaches have met with many failures. As a result, organizations are searching
for more viable alternatives. This presentation shares the early experiences of
one commercial project to identify and transition from a waterfall development
process to a process explicitly designed to leverage the commercial marketplace
and other sources of existing components to form delivered solutions.

The chosen process was the Evolutionary Process for Integrating COTS-based
systems (EPIC), a risk-driven, collaborative, spiral development process that
builds on the IBM Rational Unified Process (RUP) to define, build, field, and
evolve an integrated solution with COTS products and custom and legacy com-
ponents. This presentation will summarize why this process was selected, the
obstacles encountered, the key challenges overcome, and the value added.

R. Kazman and D. Port (Eds.): ICCBSS 2004, LNCS 2959, p. 217, 2004.
© Springer-Verlag Berlin Heidelberg 2004

This page intentionally left blank

Author Index

Abrams, Marshall 18
Adams, Richard J. 203
Anderson, William B. 216

Baird, R. 94
Barbier, Franck 104
Basili, Victor R. 137
Boehm, Barry W. 137
Bouthors, Vincent 1
Brereton, Pearl 15
Britton, R. Kris 18
Brooks, Linda 209
Brooks, Minton 217
Brownsword, Lisa 217

Cechich, Alejandra 31
Chen, Scott 183
Clark, Betsy 4,137

Davis, L. 84
Delgado Gonzales, Ignatio 199

Egyed, Alexander 6
Eslinger, Suellen 203
Estrin, Len 74

Flagg, D. 94
Franch, Xavier 11, 63

Gamble, R. 84, 94
Gao, Jerry Zeyu 2
Garcia, Suzanne 74

Hefner, Rick 17

Judy, Jason 210

Kelly, Tim 53
Kerner, Judy 9
Killers, John 210
Klucznik, Frank 210
Kohl, Ronald J. 16
Kostov, A. 117
Kwan, Richard J. 16

Lang, Bernard 1

Laurière, Stéphane 1
Lewis, Grace A. 41, 159

Maiden, Neil 63
Marshall, Joe 16
Martin, Robert A. 206
McRacken, Kristi 210
Mielnik, Jean-Christophe 1
Mollov.V. 117
Morera, David 3
Morris, Edwin J. 159
Morris, Terry 16

Ortega, Maryoly 14

Pérez, María Angélica 14
Perrone, Vito 146
Perry, Dewayne 6
Piattini, Mario 31
Popov, P. 117
Port, Dan 169, 183

Rahmani, Shawn 16
Reifer, Donald J. 137
Robert, John 74

Sai, Vijay 63
Selensky, D. 117
Smith, James D., II. 127
Sledge, Carol 13
Sodano, Nancy M. 16
Stewart, W. 94
Strigini, L. 117

Talbott, Gail M. 211
Torchiano, Marco 4
Troya, José María

Veoni, Joe 18

Wrage, Lutz 41
Wu,Ye2

Yang, Ye 169
Ye, Fan 53

This page intentionally left blank

Lecture Notes in Computer Science

For information about Vols. 1–2929

please contact your bookseller or Springer-Verlag

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.),Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).

Vol. 3053: J. Davies, D. Fensel, C. Bussler, R. Studer
(Eds.), The Semantic Web: Research and Applications.
XIII, 490 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3034: J. Favela, E. Menasalvas, E. Chávez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXXVIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Krüger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. XI, 628 pages. 2004.

Vol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 611 pages. 2004.

Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3021: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 633 pages. 2004.

Vol. 3019: R. Wyrzykowski, J. Dongarra, M. Paprzycki, J.
Wasniewski (Eds.), Parallel Processing and Applied Math-
ematics. XIX, 1174 pages. 2004.

Vol. 3015: C. Barakat, I. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),
Multi-Agnets for Mass User Support. X, 217 pages. 2004.
(Subseries LNAI).

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 415 pages. 2004.

Vol. 3010: K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J.
Váncza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. Iida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zhang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004.

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3002: D.L. Hicks (Ed.), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. XVI,
658 pages. 2004.

Vol. 2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Vol. 2987:I. Walukiewicz (Ed.), Foundations of Software
Science and Computation Structures. XIII, 529 pages.
2004.

Vol. 2986: D. Schmidt (Ed.), Programming Languages and
Systems. XII, 417 pages. 2004.

Vol. 2985: E. Duesterwald (Ed.), Compiler Construction.
X, 313 pages. 2004.

Vol. 2984: M. Wermelinger, T. Margaria-Steffen (Eds.),
Fundamental Approaches to Software Engineering. XII,
389 pages. 2004.

Vol. 2983: S. Istrail, M.S. Waterman, A. Clark (Eds.),
Computational Methods for SNPs and Haplotype Infer-
ence. IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. XI, 308 pages. 2004.

Vol. 2981: C. Müller-Schloer, T. Ungerer, B. Bauer (Eds.),
Organic and Pervasive Computing –ARCS 2004. XI, 339
pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott,A. Shimojima(Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004. (Subseries LNAI).

Vol. 2979:I. Stoica, Stateless Core: A Scalable Approach
for Quality of Service in the Internet. XVI, 219 pages.
2004.

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2977: G. Di Marzo Serugendo, A. Karageorgos, O.F.
Rana, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. X, 299 pages. 2004. (Subseries LNAI).

Vol. 2976: M. Farach-Colton (Ed.), LATIN 2004: Theo-
retical Informatics. XV, 626 pages. 2004.

Vol. 2973: Y. Lee, J. Li, K.-Y. Whang, D. Lee (Eds.),
Database Systems for Advanced Applications. XXIV, 925
pages. 2004.

Vol. 2972: R. Monroy, G. Arroyo-Figueroa, L.E. Sucar, H.
Sossa (Eds.), MICAI2004: Advances in Artificial Intelli-
gence. XVII, 923 pages. 2004. (Subseries LNAI).

Vol. 2971: J.I. Lim, D.H. Lee (Eds.), Information Security
and Cryptology -ICISC 2003. XI, 458 pages. 2004.

Vol. 2970: F. Fernández Rivera, M. Bubak, A. G6mez Tato,
R. Doallo (Eds.), Grid Computing. XI, 328 pages. 2004.

Vol. 2968: J. Chen, S. Hong (Eds.), Real-Time and Em-
bedded Computing Systems and Applications. XIV, 620
pages. 2004.

Vol. 2967: S. Melnik, Generic Model Management. XX,
238 pages. 2004.

Vol. 2966: F.B. Sachse, Computational Cardiology. XVIII,
322 pages. 2004.

Vol. 2965: M.C. Calzarossa, E. Gelenbe, Performance
Tools and Applications to Networked Systems. VIII, 385
pages. 2004.

Vol. 2964: T. Okamoto (Ed.), Topics in Cryptology – CT-
RSA 2004. XI, 387 pages. 2004.

Vol. 2963: R. Sharp, Higher Level Hardware Synthesis.
XVI, 195 pages. 2004.

Vol. 2962: S. Bistarelli, Semirings for Soft Constraint
Solving and Programming. XII, 279 pages. 2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004. (Subseries LNAI).

Vol. 2960: P.D. Mosses (Ed.), CASL Reference Manual.
XVII, 528 pages. 2004.

Vol. 2959: R. Kazman, D. Port (Eds.), COTS-Based Soft-
ware Systems. XIV, 219 pages. 2004.

Vol. 2958: L. Rauchwerger (Ed.), Languages and Compil-
ers for Parallel Computing. XI, 556 pages. 2004.

Vol. 2957: P. Langendoerfer, M. Liu, I. Matta, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
XI, 307 pages. 2004.

Vol. 2956: A. Dengel, M. Junker, A. Weisbecker (Eds.),
Reading and Learning. XII, 355 pages. 2004.

Vol. 2954: F. Crestani, M. Dunlop, S. Mizzaro (Eds.), Mo-
bile and Ubiquitous Information Access. X, 299 pages.
2004.

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.
(Subseries LNAI).

Vol. 2952: N. Guelfi, E. Astesiano, G. Reggio (Eds.), Sci-
entific Engineering of Distributed Java Applications. X,
157 pages. 2004.

Vol. 2951: M. Naor (Ed.), Theory of Cryptography. XI,
523 pages. 2004.

Vol. 2949: R. De Nicola, G. Ferrari, G. Meredith (Eds.),
Coordination Models and Languages. X, 323 pages. 2004.

Vol. 2948: G.L. Mullen, A. Poli, H. Stichtenoth (Eds.),
Finite Fields and Applications. VIII, 263 pages. 2004.

Vol. 2947: F. Bao, R. Deng, J. Zhou (Eds.), Public Key
Cryptography – PKC 2004. XI, 455 pages. 2004.

Vol. 2946: R. Focardi, R. Gorrieri (Eds.), Foundations of
Security Analysis and Design II. VII, 267 pages. 2004.

Vol. 2943: J. Chen, J. Reif (Eds.), DNA Computing. X,
225 pages. 2004.

Vol. 2941: M. Wirsing, A. Knapp, S. Balsamo (Eds.), Rad-
ical Innovations of Software and Systems Engineering in
the Future. X, 359 pages. 2004.

Vol. 2940: C. Lucena, A. Garcia, A. Romanovsky, J. Cas-
tro, P.S. Alencar (Eds.), Software Engineering for Multi-
Agent Systems II. XII, 279 pages. 2004.

Vol. 2939: T. Kalker, I.J. Cox, Y.M. Ro (Eds.), Digital
Watermarking. XII, 602 pages. 2004.

Vol. 2937: B. Steffen, G. Levi (Eds.), Verification, Model
Checking, and Abstract Interpretation. XI, 325 pages.
2004.

Vol. 2936: P. Liardet, P. Collet, C. Fonlupt, E. Lutton, M.
Schoenauer (Eds.), Artificial Evolution. XIV, 410 pages.
2004.

Vol. 2934: G. Lindemann, D. Moldt, M. Paolucci (Eds.),
Regulated Agent-Based Social Systems. X, 301 pages.
2004. (Subseries LNAI).

Vol. 2930: F. Winkler (Ed.), Automated Deduction in Ge-
ometry. VII, 231 pages. 2004. (Subseries LNAI).

