

�

Research Issues in
Systems Analysis

and Design, Databases
and Software Development

Keng S�au
Un�vers�ty of Nebraska – L�ncoln, USA

Hershey • New York
IGI PublIShInGIGIP

��

Acquisition Editor: Kristin Klinger
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Assistant Managing Editor: Sharon Berger
Development Editor: Kristin Roth
Copy Editor: Shanelle Ramelb
Typesetter: Sharon Berger and Jamie Snavely
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
IGI Publishing (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-pub.com
Web site: http://www.igi-pub.com

and in the United Kingdom by
IGI Publishing (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by IGI Global. All rights reserved. No part of this book may be reproduced in any form
or by any means, electronic or mechanical, including photocopying, without written permission from the
publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the names of
the products or companies does not indicate a claim of ownership by IGI Global of the trademark or regis-
tered trademark.

Library of Congress Cataloging-in-Publication Data

Research issues in systems analysis and design, databases and software development / Keng Siau, editor.
 p. cm.
 Summary: "This book is designed to provide understanding of the capabilities and features of new ideas
and concepts in the information systems development, database, and forthcoming technologies. It provides a
representation of top notch research in all areas of systems analysis and design and database"--Provided by
publisher.
 Includes bibliographical references and index.
 ISBN 978-1-59904-927-4 (hardcover) -- ISBN 1-59904-928-1 (ebook)
 1. System design. 2. System analysis. 3. Computer software--Development. I. Siau, Keng, 1964-
 QA76.9.S88R465 2007
 003--dc22
 2006039749

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book
are those of the authors, but not necessarily of the publisher.

iii

Advances in Database Research Series

The Advances in Database Research (ADR) Book Series publishes original research
publications on all aspects of database management, systems analysis and design, and
software engineering. The primary mission of ADR is to be instrumental in the improvement
and development of theory and practice related to information technology and management
of information resources. The book series is targeted at both academic researchers and
practicing IT professionals.

Contemporary Issues in Database Design and Information Systems Development
Copyright 2007 * ISBN 978-1-59904-289-3 (hardcover)

Research Issues in Systems Analysis and Design, Databases and Software Development
Copyright 2007 * ISBN 978-1-59904-927-4 (hardcover)

Advanced Topics in Database Research, Volume 5
Copyright 2006 * ISBN 1-59140-935-7 (hardcover)

Advanced Topics in Database Research, Volume 4
Copyright 2005 * ISBN 1-59140-471-1 (hardcover)

Advanced Topics in Database Research, Volume 3
Copyright 2004 * ISBN 1-59140-471-1 (hardcover)

Advanced Topics in Database Research, Volume 2
Copyright 2003 * ISBN 1-59140-255-7 (hardcover)

Advanced Topics in Database Research, Volume 1
Copyright 2002 * ISBN 1-93078-41-6 (hardcover)

Order online at www.igi-pub.com or call 717-533-8845 x10 –
Mon-Fri 8:30 am - 5:00 pm (est) or fax 24 hours a day 717-533-8661

ISSN: 1537-9299

Research Issues in
Systems Analysis

and Design, Databases
and Software Development

Table of Contents

Preface ...vii

Chapter I
Agile Software Development in Practice ..1
 Matti Rossi, Helsinki School of Economics, Finland
 Hilkka Merisalo-Rantanen, Helsinki School of Economics, Finland
 Tuure Tuunanen, The University of Auckland, New Zealand

Chapter II
Understanding Agile Software, Extreme Programming,
and Agile Modeling ..33
 John Erickson, University of Nebraska – Omaha, USA
 Kalle Lyytinen, Case Western Reserve University, USA
 Keng Siau, University of Nebraska – Lincoln, USA

v

Chapter III
Adaptation of an Agile Information System Development
Method ..54
 Mehmet N. Aydin, University of Twente, The Netherlands
 Frank Harmsen, Capgemini, USA
 Jos van Hillegersberg, University of Twente, The Netherlands
 Robert A. Stegwee, University of Twente, The Netherlands

Chapter IV
Matching Models of Different Abstraction Levels:
A Refinement Equivalence Approach ...89
 Pnina Soffer, Haifa University, Israel
 Iris Reinhartz-Berger, Haifa University, Israel
 Arnon Sturm, Ben-Gurion University of Negev, Israel

Chapter V
On the Use of Object-Role Modeling for Modeling Active
Domains ..123
 Patrick van Bommel, Radboud University Nijmegen,
 The Netherlands
 Stijn Hoppenbrouwers, Radboud University Nijmegen,
 The Netherlands
 Erik Proper, Radboud University Nijmegen,
 The Netherlands
 Theo van der Weide, Radboud University Nijmegen,
 The Netherlands

Chapter VI
Method Chunks to Federate Development Processes146
 Isabelle Mirbel, I3S Laboratory, France

Chapter VII
Modeling and Analyzing Perspectives to Support Knowledge
Management ...185
 Jian Cai, Peking University, China

v�

Chapter VIII
Modality of Business Rules ...206
 Terry Halpin, Neumont University, USA

Chapter IX
Lost in Business Process Model Translations:
How a Structured Approach Helps to Identify Conceptual
Mismatch ..227
 Jan Recker, Queensland University of Technology, Australia
 Jan Mendling, Vienna University of Economics and
 Business Administration, Austria

Chapter X
Theories and Models: A Brief Look at Organizational Memory
Management ...260
 Sree Nilakanta, Iowa State University, USA
 L. L. Miller, Iowa State University, USA
 Dan Zhu, Iowa State University, USA

About the Contributors ...275

Index ..280

v��

Preface

Revolution and evolution are common in the areas of information systems
development (ISD) and databases. New concepts such as agile modeling
(AM), extreme programming (XP), knowledge management, and organiza-
tional memory are stimulating new research ideas among researchers and
prompting new applications and software from practitioners. This volume,
Research Issues in Systems Analysis and Design, Databases and Software
Development, is a collection of state-of-the-art research-oriented chapters on
information systems development and databases. This volume does not only
serve the research purposes of researchers and academicians, but it is also
designed to provide technical professionals in the industry with understand-
ing of the capabilities and features of new ideas and concepts in information
systems development, databases, and forthcoming technologies.
Keeping with the high standard of previous volumes in the Advances in
Database Research series, we carefully selected and compiled 10 excellent
chapters written by well-known experts in the areas of information systems
development and databases. A short description of each chapter is presented
below.
Chapter I, “Agile Software Development in Practice,” explores agile infor-
mation practices of information systems development and argues that their
history is much longer than what is generally believed today. It takes an
interpretive and critical view of the phenomenon. This chapter reports an
empirical study on two companies that apply an XP-style development ap-
proach throughout the information systems development life cycle.

v���

Chapter II, “Understanding Agile Software, Extreme Programming, and
Agile Modeling,” discusses the state of research in extreme programming
and agile modeling. This chapter also examines research in agile software
development. It first presents the details of agility, XP, and AM, including a
literature review, followed by an identification of gaps in the literature and
a proposal for possible future studies.
Chapter III, “Adaptation of an Agile Information System Development
Method,” presents the work practice in dealing with the adaptation of an agile
information systems development method in the ISD department of one of the
leading financial institutes in Europe. This chapter also introduces the idea of
method adaptation as an underlying phenomenon concerning how an agile
method has been adapted to a project situation in the case organization.
Chapter IV, “Matching Models of Different Abstraction Levels: A Refine-
ment-Equivalence Approach,” discusses the reuse of models, which assists in
constructing new models on the basis of existing knowledge. It proposes the
concept of refinement equivalence and emphasizes its use for the purpose of
validating a detailed application model against an abstract domain model in
the context of a domain analysis approach called application-based domain
modeling.
Chapter V, “On the Use of Object-Role Modeling for Modeling Active
Domains,” discusses how the object-role modeling (ORM) language and
approach can be used for integration, at a deep and formal level, of various
domain-modeling representations and viewpoints, with a focus on the mod-
eling of active domains. The chapter argues that ORM is particularly suited
for enabling such integration because of its generic conceptual nature; its
useful, existing connection with natural language and controlled languages;
and its formal rigor.
Chapter VI, “Method Chunks to Federate Development Process,” proposes
an approach that consists of federating the method chunks built from the
different project-specific methods in order to allow each project to share its
best practices with the other projects without imposing on all of them a new
and unique organization-wide method.
Chapter VII, “Modeling and Analyzing Perspectives to Support Knowledge
Management,” introduces a generic modeling approach that explicitly repre-
sents the perspectives of stakeholders and their evolution traversing a collab-
orative process. This chapter also describes a Web-based information system
that uses the perspective model and the social-network analysis methodology
to support knowledge management within collaboration.

�x

Chapter VIII, “Modality of Business Rules,” discusses one way to model
deontic rules, especially those of a static nature. A formalization based on
modal operators is provided, and some challenging semantic issues are ex-
amined from both logical and pragmatic perspectives.
Chapter IX, “Lost in Business-Process Model Translations: How a Structured
Approach Helps to Identify Conceptual Mismatch,” discuses the problem
of translating between process modeling languages. It argues that there is
conceptual mismatch between modeling languages stemming from various
perspectives of the businesses-process management life cycle that must be
identified for seamless integration.
Chapter X, “Theories and Models: A Brief Look at Organizational Memory
Management,” introduces theories and models used in organizational mem-
ory. This chapter provides a brief review of the literature on organizational
memory management and further presents a basic framework of theories and
models, focusing on the technological components and their applications in
organizational memory systems.
The 10 chapters in this volume provide a snapshot of the latest research in the
areas of information systems modeling, systems development, and databases.
This volume is a valuable resource for scholars and practitioners alike.

Professor Keng Siau, PhD, University of Nebraska – Lincoln
E.J. Faulkner Professor of Management Information Systems
Editor-in-Chief, Advances in Database Research Book Series
Editor-in-Chief, Journal of Database Management

Ag�le Software Development �n Pract�ce �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Abstract

This chapter explores agile information practices of information systems de-
velopment and argues that their history is much longer than what is generally
believed today. We take an interpretive and critical view of the phenomenon.
We made an empirical study of two companies that apply an XP-style devel-
opment approach throughout the information systems development life cycle.
The results of our research suggest that XP is a combination of best practices
of traditional information systems development methods. It is hindered by its
reliance on talented individuals, which makes its large-scale deployment as
a general-purpose method difficult. We claim that XP can be useful for small
colocated teams of skilled domain experts and implementers who are able to
communicate well with the end users. However, these skilled and motivated
individuals with high working morale can exhibit high productivity regardless
of the methods used if they are not overly constrained by bureaucracy.

Chapter I

Agile Software
Development in Practice

Matt� Ross�, Hels�nk� School of Econom�cs, F�nland

H�lkka Mer�salo-Rantanen, Hels�nk� School of Econom�cs, F�nland

Tuure Tuunanen, The Un�vers�ty of Auckland, New Zealand

� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction:
From Methodologies to Methods and Agility

Ever since the first major software systems were developed, a chronic “soft-
ware crisis” has been seen either looming ahead or haunting the community
(Brooks, 1975). Solutions have been sought mostly in raising the productivity
of programmers, making systems less defective (e.g., process management and
development approaches; Boehm, 1988; McConnell, 1996), and developing
systems by methods that treat the end users as equals to the designers in the
development process (e.g., participatory design, PD; Bjerkenes & Bratteteig,
1995; Grudin, 1991). In this chapter, we first discuss these approaches for
organizing information systems development (ISD). This leads us to a dis-
cussion of agile software development methods that have emerged as a fresh
alternative for the more rigid life-cycle-based approaches in recent years.
Extreme programming (XP) tries to address end-user participation and in-
creased quality of work by emphasizing the use of professional work prac-
tices and ethical software development. The waterfall model emerged as a
systematic, sequential solution to software development problems (Brooks,
1975; Hirschheim, Klein, & Lyytinen, 2003). The IS product was not deliv-
ered until the whole linear sequence had been completed. As projects became
larger and more complex, problems like stagnant requirements and badly
structured programming started to arise.
Overlapping the phases (Fairley, 1985; Pressman, 2000; Sommerville, 2001)
and the introduction of the more incremental spiral model (Boehm, 1988;
Iivari, 1990a, 1990b) resolved many of the difficulties mentioned earlier.
This model presents the software process as a spiral, where each of the loops
can be considered to represent one fundamental development step. Thus,
the innermost loop might be concerned with requirements engineering, the
next with design, and so on (Sommerville). The spiral model assumes a
risk-driven approach to the software development rather than a primarily
document-driven (waterfall) or code-driven (prototyping) approach (Boehm).
Each cycle incrementally increases the system’s degree of definition and
simultaneously decreases its degree of risk (Boehm, Egyed, Kwan, Port, &
Madachy, 1998).
The iterative models were augmented with more dynamic approaches with less
bureaucracy. For example, in incremental development, software is developed

Ag�le Software Development �n Pract�ce �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

in small but usable pieces that can be delivered early on to a customer. Each
increment is an operative subset of the final software system and builds on
the increments that have already been developed (Pressman, 2000).
Parallel to ISD organization changes, the design craft itself has been evolving.
It has been argued (McKeen, Guimaraes, & Wetherbe, 1994, pp. 427-428)
that user participation improves the quality of the system in several ways such
as “providing a more accurate and complete assessment of user information
requirements ... providing expertise about the organization the system is to
support ... avoiding development of unacceptable or unimportant features,
and improving user understanding of the system ...” Nevertheless, there was
no common definition of how users should be involved (Carmel, Whitaker, &
George, 1993). To solve this problem, many approaches arose, most notably
PD (Bjerkenes & Bratteteig, 1995) and joint application development (JAD;
Clemont & Besselaar, 1993). While taking a different view of end users’ role,
both stress the involvement of users in the development process and design
decisions. New methods and tools to help communication among IS designers
and users are continuously developed (e.g., Liu, Pu, & Ruiz, 2004; Shoval
& Kabeli, 2001). One of the key arguments of this discussion has been how
to reconnect the designer and user again (Grudin, 1991).
The last aspect that agile approaches, and especially XP, raise is the empower-
ment and productivity increase of developers. Traditionally these have been
sought by raising the abstraction level of the software development tools (e.g.,
through high-level languages and CASE). However, programmers have often
seen these more as an obstacle. One suggested solution is the employment
of work practices that let the most talented developers unleash their power
(e.g., surgical teams [Brooks, 1975] and pair programming, which, according
to Williams & Kessler, 2002, dates back to Brooks in the 1950s).
To conclude, XP seeks to solve many of the problems of traditional software
development by combining the best practices from the past research and
practice of ISD. First, XP aims at employing participatory design by really
engaging the business or end users into the IS development process. Second,
XP seeks to add flexibility to the development process and to organize the
work into small packages with clear deliverables. Finally, XP tries to squeeze
maximal productivity out of the developers by using concepts such as pair
programming.
In this study we explore the agile software development approaches as they
appear in practical context. We argue that XP can be described as a way of

� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

working that codifies old practices rather than creates new ones. However,
we argue that XP may add some value into the development-process discus-
sion as it connects prototyping and end-user-oriented development in a way
that could deliver systems that are a better match for the end-user needs. We
explore these arguments in the following by first looking at XP and its roots
in agile methods in the second section. This is followed by the description
of the methodology and the presentation of the case studies. Thereafter, we
discuss the findings from the case companies. In the final section we draw
conclusions based on the cases and point out future research challenges.

Agile Methods and Extreme Programming

There are about a dozen software development approaches that are classi-
fied or regarded as agile—XP being the most popular of them. Common to
all agile methods is the emphasis on the output of the software development
process, working software, and maximizing its value for the customer. Ag-
ile methods are mostly used when developing tailored software in house.
Agile software development methods can be defined as using human- and
communication-oriented rules in conjunction with light, but sufficient, rules
of project procedures and behavior (Cockburn, 2002). These four rules
are individuals and human interactions over processes and tools, working
software over comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over following a plan (Agile
Manifesto, 2003). The emphasis on communication and programmers’ morale
is common to all agile methods. In accordance with Conrad (2000), agile
methods focus on people as the primary drivers of development success.
In the following, we focus on key principles of one agile method, extreme
programming, first introduced by Kent Beck (1999). For a more detailed
overview of agile methods in general, see, for instance, Abrahamsson (2003)
and Abrahamsson, Warsta, Siponen, and Ronkainen (2003).
According to Beck (1999), “XP is a lightweight methodology for small-to-
medium-sized teams developing software in the face of vague or rapidly
changing requirements” (p. xv), and “XP is a lightweight, efficient, low-risk,
flexible, predictable, scientific, and fun way to develop software” (p. xvii). In
turn, Abrahamsson et al. (2003, p. 245) have defined XP as a “collection of
well-known software engineering practices The novelty of XP is based

Ag�le Software Development �n Pract�ce �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

on the way the individual practices are collected and lined up to function
with each other.”
XP addresses risk and value of software at all levels of the development
process. According to Beck (1999), customers (or managers) can pick three
out of four control variables (these are cost, time, quality, and scope) and
the development team decides on the fourth. Technical people are respon-
sible for work estimates, technical consequences of business decisions, the
development process, and detailed scheduling within a release. Team size
should be in maximum about 12 designers and the software not excessively
complex (Beck).
The project management strategy of XP maximizes the value of the project by
providing accurate and frequent feedback about progress, many opportunities
to dramatically change the requirements, a smaller initial investment, and the
opportunity to go faster. In XP, cost, time, and the quality of a component
are regarded as fixed control variables decided by customers and managers.
Within these limits the development team focuses on the variable development
scope, that is, on the functionality of the parts. The programming strategy of
XP is to keep the code easy to modify (Beck, 1999).
The 12 principles or rules of the XP methodology are planning, small releases,
metaphor, simple design, testing, refactoring, pair programming, collective
ownership, continuous integration, having the customer on site, coding stan-
dards, and a 40-hour week (Beck, 1999).
The principal values are communication, simplicity, feedback, and courage.
The effect of stressing testing, pairing, and estimating in the development
process is that programmers, customers, and managers have to communicate.
Simplicity means doing the simplest thing that could possibly work and add-
ing complexity later if it is really needed. Feedback works on different time
scales: minutes, days, weeks, and months. Courage is needed to change the
basic architecture or to code a piece of software again from scratch. Basic
principles for decision making are derived from these values: rapid feedback,
simplicity, incremental change, embracing change, and quality work (Beck,
1999).
In Figure 1 we show a slightly modified XP approach called the agile develop-
ment approach (ADA), which was identified in our Case Company 1. In this
model, we have depicted the agile information-development tasks in phases
and the outputs of each phase. An XP project begins with a task called an
architectural spike. The outcome of this task is a system metaphor, that is, the

� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

infrastructure, standards, and working habits of the XP project. Beck (1999)
says that a metaphor is a simple story of how the whole system works, for
instance, an outsourcing contract or software architecture. It helps everyone
in the project to understand the basic elements and their relationships, and it
is easy to communicate and elaborate on. Both business and technical people
participate actively in the definition of the system metaphor.
User stories are task descriptions, also called user requirements or user
needs, and possibly also descriptions of expected benefits. End users write
user stories in plain text using their own terminology. Developers estimate
the ideal development time of the story, which can vary from 1 to 3 weeks.
User stories must be combined or broken down if these limits are not reached.
A spike solution is programmed if it is needed to make the estimates more
accurate. A release plan lays out the overall project. It specifies which user
stories are going to be implemented for each release and when each release

Figure 1. Agile development approach (ADA)

Release planning
meeting

(small changes)

Uncertain
estimates

User stories

Iteration
(programming)Spike

Confident
estimates

Architectural
Spike

Release
plan

Acceptance
test

Latest
version

Small
releases

Next Iteration /
Refactoring

Error reporting / End-User approval

Internal end-user feedback

System
metaphor

External end-user feedback

New
build

Helpdesk,
Training,

Sales function

Major changes

Developer & system admin feedback

Feedback

O
ut

pu
ts

Pr
oc

es
s

Release planning
meeting

(small changes)

User stories

Iteration
(programming)SpikeArchitectural

Spike

Release
plan

Acceptance
test

Latest
version

Small
releases

System
metaphor

New
build

Helpdesk,
Training,

Sales function

Feedback

Ag�le Software Development �n Pract�ce �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

will be finished. If the velocity of the development changes dramatically, a
new release-planning meeting should be held to reestimate and renegotiate
the release plan.
The iteration task of an XP project produces a new version or release of the
program in progress for acceptance tests. A program or piece of code is inte-
grated into the system either after it has passed all the unit tests or after some
smaller part of the planned functionality has been finished. Each developer
must integrate and release his or her code every few hours or at least once
a day. This kind of continuous integration avoids and detects compatibility
problems early, and everyone always works with the latest version of the
system. This approach also avoids many of the problems of too rigorous and
formal approaches by stressing increments and iteration over rigor and wa-
terfall development (Joosten & Purao, 2002). In XP, coding is done in pairs
on one workstation, and pairs are changed continuously. The code should
be collectively owned and each programmer is allowed to change the code,
with changes done by one programmer at a time. The code is refactored
continuously to improve its quality and to make it as simple as possible
without making any changes to its functionality or its features. However,
pair programming was not used in either of our two cases.
Acceptance tests are run on the latest version of the system to ensure the
functionality of the system. End users are responsible for acceptance tests,
and they specify the test scenarios based on user stories. They also review
the test scores and prioritize the corrections needed.
Finally, after the end user or customer has approved a small unit of func-
tionality, it is released into the customer’s environment. Small, frequent
releases give a possibility to get feedback from the users early on and to
make changes into the release plan if necessary. We have complemented our
ADA model in Figure 1 with a help desk, training, and sales function so that
indirect user requests can also be easily gathered. We have also added the
feedback arrows to emphasize the possible effects of the end-user feedback.
Very often the feedback may be the driver for modified or new user stories
that is also common with more traditional ways of development (Boehm,
1988). Similarly, feedback may result in changes to the release plan. Fur-
thermore, it is possible, although exceptional, that the architectural spike of
the project is revised.

� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Methodology of This Study

Some recent research has focused on the planned and systematic adoption of
XP in different contexts (Abrahamsson, 2003; Abrahamsson, Salo, Ronkainen,
& Warsta, 2002; Back, Milovanov, Pores, & Preoteasa, 2002; Elssamadisy
& Schalliol, 2002; Reifer, 2002; Salo & Abrahamsson, 2004). However, we
were not able to find many studies focusing on the natural evolution of ISD
practices toward more agile approaches. Notable exceptions are Aoyama
(1998), Murru, Deias, and Mugheddu (2003), and Vanhanen, Jartti, and
Kähkönen (2003), who describe the institutionalization of agile practices in
organizations. Hence, we wanted to study further why and how XP is adopted
and used in everyday software production. Furthermore, we were interested
in seeing whether the method was intentionally selected or if it had gradually
evolved based on the methods used before.
We decided to take an interpretive but, at the same time, critical approach
(Myers, 1997). We followed the guidelines of Klein and Myers (1999) and
adopted qualitative research as a means of trying to understand this complex
and fast-moving IS research topic. We turned to the case-study approach that
Wynn (2001) has advocated as the most appropriate qualitative method in
studying social processes and trying to understand users at the local level. In
the case descriptions we adopted the principles of interpretive case studies
presented by Walsham (1995) in contrast to the positivist approach to case
studies. These principles are reporting details of the selected research sites,
the reasons why these sites were chosen, the number of people interviewed,
the interviewees’ hierarchical or professional position, secondary sources
of data, the data-gathering period, how field interviews and other data were
recorded, the description of the analysis process, and finally, how the iterative
process between field data and theory took place and evolved over time.
The case companies were selected in two phases. We began by actively seeking
companies that use agile development practices and tried to identify potential
candidates for our study. We did this by gathering information from other
researchers of agile methods in Finland and discussing with ISD personnel
in several potential case companies concerning the development methods
in use. Thereafter, two companies employing agile practices were selected.
The case companies were intentionally selected from different industries: a
manufacturing company vs. a software-developer consultancy. The companies
also differed greatly in their reasons for selecting this kind of approach to IS
development and the drivers behind its adaptation. The first case firm had

Ag�le Software Development �n Pract�ce �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

gradually evolved their own method or way of working, whereas the second
case company had made a more or less deliberate decision to employ agile
development practices.
In each company we focused on one major system or software central to the
company. The systems were in the maintenance phase and under continuous
renewal after several years of development. We conducted semistructured
theme interviews with two IT managers, a business-development manager,
and a senior consultant. We also received written documents as well as other
complementary information on the IS development processes. Later on, the
data were complemented by telephone discussions and e-mails. The data
collection was conducted during spring 2003. The interviews were tape-
recorded and transcribed, and later validated with the interviewees. The
interviewees also verified and accepted the final version of the case descrip-
tions. The questions of the semistructured interviews are available from the
authors on request.
The data analysis was done by comparing the interview data to the general
ISD process literature with focus on agile methods. More specifically, we
sought to understand how companies applied agile practices. This iterative
process is reported in the following sections in more detail.

Cases

In this section we present two cases of employing agile practices in software
production: a factory system and a communications application portfolio.
Each case begins with a short description of the company and the system.
Thereafter, the drivers of the development of the case system and the used
methods are described. Then the software development process is delineated
following Figure 1. Finally, some insights of the interviewees concerning the
contemporary software process and its future are represented. The develop-
ment organization, users, and tools are described in more detail in Appendix
A for the first case, and in Appendix B for the second case. The findings of
the cases are presented and discussed in the next section.

�0 Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Case 1: Factory System

Case Company

The case organization is a processing division of an international group in
the industry. The information technology function of the division is located
in Finland on the premises of a factory. A separate information technology
unit was merged with the business-development unit, which is also in charge
of the development of production planning, logistics, and procurement
functions. The information technology function employs 12 people divided
into three teams. The first team of six employees, the information systems
development team, is in charge of the factory system. The second team is
responsible for the management information systems, statistics, and pack-
aged software used in these activities, and the third team is responsible for
hardware, networks, and packaged software except those used in management
information systems and statistics.

Factory System

The studied system, later called the factory system, has been developed in
house. The first small application was developed in 1986. The factory system
consists of three main parts: a sales system, a mills or production system, and
a business reporting system, with the main applications being sales, produc-
tion (i.e., factory), maintenance, purchasing, and statistics. Practically all
employees are end users of the factory system. A software package for online
analytical processing (OLAP), multidimensional analysis, and reporting is
integrated into the factory system.
The factory system enables the factories and sales network to monitor produc-
tion and deliveries in real time. The logistics services simplify the ordering
process. The material requirements of the customers are monitored and pre-
dicted in real time. This means that storage needs are reduced and customers
are assured of getting their material at all times. Delivery reliability is based on
cyclical production and standardized, uniform grades delivered in a standard
pack size. Customers can consult the case organization on matters relating to
the choice of material and the design of the product. The whole production
is conducted according to the customer needs, which is still exceptional in

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

this field. The development organization, users, and tools are described in
more detail in Appendix A.

Drivers

The motto of the factory-system development is: “To know the business,
to stay in it and to be the best in the business. The system is tailored to the
business, not to the company.” The key driver of the development work is
the continuously changing and increasingly complex business environment.
In addition, the development perspective is clearly bottom-up as user needs
drive the continuous development of the system.
The key factor for the success of the development work is the domain knowl-
edge of the team members. Each of them has a long experience in other com-
panies and in different jobs, as well as a deep understanding of the business.
Expertise with the tools used is not seen as equally important. A person must
be extroverted, speak the language of the users, be actively in contact with
users, and be easy to approach. Responsibility, initiative, and desire as well
as the ability to inform others are also seen as important characteristics.

Architectural Spike: Methods and Standards

The current development tools (see Appendix A) were selected around 1986
when a decision was made to move over from minicomputers to micro-
computers and client-server architecture. One designer was responsible for
selecting new tools for this critical 24/7 system. The first small application
with the current tools was developed and taken into production in 1986, with
an expert from the vendor participating in the development and training the
first users who gradually took over the development work.
The original factory system with current tools was developed during 1986
to 1990 as a project following the waterfall development model. Because of
the long and slow development phase, the system had gone out of date by
the time it was finished. The contemporary working method was introduced
in 1990 when the development of the current factory system began. Since
then, the method has evolved and become more and more streamlined.
The working methods and standards are discussed and, if necessary, changed
by developers weekly. Coding rules especially are strictly standardized from

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the number of empty rows between the program parts to the starting position
of a certain row type. This enables common code and makes the reading of
the code quicker.
Nowadays the method is used throughout the development life cycle. No other
development methods are used and no project work is done either because
of their slowness and inflexibility.

User Stories, Release Planning, and Spikes

Requirements are actively collected from many sources. Business goals, ob-
jectives, and structures are received from management as policy statements.
Requests for technical changes are usually raised by the system administration.
User requirements are actively collected, and daily communication between
developers and end users, both official and spontaneous, on the factory prem-
ises is extremely valuable. Now, in the production phase, user requirements
are received from users through a system help desk or as feedback given
directly and informally to the developers. All the feedback is registered. The
request for a change or a new requirement may also stem from the lack of
a function in the system or the inability of the system to serve a function.
Also, the need to reduce staff from a function or the shortage of employees
in a function may give an initiative to system improvement.
Developers go through user feedback daily to find and fix errors. These
corrections, and small improvements, are usually installed immediately.
Requirements and feedback are also gathered, and the management looks
through this list regularly and decides on future development. A certain part
of the system will be renewed if there are plenty of negative comments con-
cerning it. The number of users is often used as a decision criterion. Costs or
the time schedule have less value in decision making. For a major renewal,
both a short-term (1 month) work plan and a long-term (6 months) iteration
plan are drafted. All the designers work only part time with major renewals.
A spike is programmed if necessary to ensure the feasibility of the planned
solution.

Iteration, Refactoring, Testing, Releases, and Pair Programming

A new program is initiated first by coding a program skeleton with only a
few basic functions. This semifinished program is installed into the produc-

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

tion environment to make sure that it will meet the basic requirements. At
the beginning, the developer uses the skeleton parallel to the old one, if it
exists, and collects experience of its operation. The skeleton is continuously
changed and extended; that is, it will never be finished. Its development will
be stopped for a while once a desired service level is attained. The developers
know by experience and domain knowledge when this level is reached.
A developer may make small and simple changes and error corrections di-
rectly into the production environment independently. If changes are needed
in other parts of the system or in the database, they are made first in a test
environment, a copy of the production environment, on the developer’s own
microcomputer. When all the changes have been finished, they are installed
into the production environment. It is the responsibility of the developer to
make sure that any changes made by other developers directly into the pro-
duction environment in the meantime stay in use and perform as expected.
All changes are registered into a change log file.
A developer tests his or her own code. In addition, the two team members
responsible for training and the help desk will test larger changes before
taking them into production.
All changes must be made and installed directly into the production envi-
ronment of the system incrementally because the factory operation depends
entirely on this system and operates 24/7 shifts. A development phase will take
from hours to a few days or sometimes a few weeks, but never months.
Pair programming is not used in the case company and the developers do
not share work premises. Error and problem solving, and spikes are done in
pairs, if necessary.

Documentation

Documentation has been reduced to an absolute minimum and only the key
(useful) documents are drafted and maintained. Working methods, standards,
and coding rules are documented as an instruction sheet. Developers are
responsible for database diagrams, entity-relationship diagrams, and change
log files. Program code is the most important document for the developers.
Trainers are responsible for the user’s manual or system help. This manual
is an Acrobat PDF (portable document format) file consisting of instructions
for managing special cases or functions, each of them being at most one
sheet long.

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Future

This development method and the efficient development tools in use meet
the needs of the constantly changing business best. They enable quick and
continuous modification and evolution of the system. The development work
is done in small incremental pieces so nothing or very little is wasted and
hardly anything useless is done.
The way of working is also inexpensive. The total information technology
expenses, according to the company, are far below the average in the sector
because the system is built in house and practically no software or license
fees are paid or external work force is needed.
The information systems development will be continued in this well-work-
ing manner. Every other method would require more bureaucracy and strict
responsibilities. The present employees have deep knowledge of the business
domain, enabling them to work independently and with low hierarchy. In
addition, the employees argued that they would probably suffer from lack
of motivation if some other working practices were used.

Case 2: Communications Application Portfolio

Case Company

The case organization is a corporate communications agency that was founded
in 1986. It is a part of an international network of advertising, marketing,
communications, and interactive agencies. The agency provides services
ranging from communications research, strategic planning, crisis commu-
nications, public relations (PR), public affairs, corporate communications,
and investor relations to print publications. The customer companies come
from diverse industries as well as from various governmental and municipal
organizations. The agency employs around 50 professionals.
An increasing pressure to move and extend traditional communications to
incorporate a digital presence and form led to the establishing of a digital
communications unit in May 2001. The business strategy of the unit is to
support and extend traditional communications and PR activities offered by
the agency. The unit employs 12 people divided into three teams of four:
consulting, graphics, and technology. The technology team is in charge of the

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

application portfolio, user-interface design, Web site production, updating
and maintenance services, and application service provision (ASP), which
is the most common way to use the customer software.

Communications Application Portfolio

The communications application portfolio is a software tool kit developed
in house. The development work began in May 2001 and took about 18
months. Now the portfolio is in the maintenance phase and is used in customer
software development. The portfolio consists of four applications: extranet,
content management, monitoring application, and crisis communications,
which are described next.
The extranet is a low-risk and low-return application used only in project
management for coordinating and facilitating communications between the
company and its customers. The extranet has a supporting role, but it is es-
sential for the success of customer projects. It needs only a little nonnative
code and customization.
The content-management application provides a Web interface for the creation,
management, and maintenance of different forms of content. It is a commu-
nications solution and often has a critical function in customers’ activities.
Some customization is required with each individual implementation.
The monitoring application is primarily used as a business-intelligence tool
to collect and store digital information. It acts as a search engine querying
specified keywords from predefined Web sites and newsgroups. Matches are
stored in its database and a summary of the findings is presented to the user.
Customization is always required.
The crisis-communications application is targeted at an extremely narrow, niche
audience. It is a collection of Web services to help administer and manage a
crisis from a communications point of view. It includes, for example, a digital
version of the customer’s crisis manual, holding statements, decision-support
trees, press contact information, and crisis scenario planning information. It
holds the greatest future potential as currently the case company is the only
provider of such an application. The user interface is standardized, but all
the underlying services are customized.
The development organization, users, and tools are described in more detail
in Appendix B.

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Drivers

The initiative for the communications application portfolio development came
from the need to reuse and standardize the existing modules and programs. The
main focus of the development is the consolidation of separate key software
modules and individual applications, which have arisen from either individual
development projects or as part of customer projects. The gains sought are
a common platform reducing development and maintenance costs and time,
differentiation from competitors, and flexible pricing mechanisms.
The key factor for the success of the development work is the experience and
expertise of the team members with the tools and technology used. Expertise
with the business is not equally important. Also, the team spirit—the pro-
grammers being familiar with each other before starting to work together—is
essential.

Architectural Spike: Methods and Standards

The technology philosophy is derived from the unit’s strategy. When the unit
was founded, the key question regarding technology was not which one to
use and how to implement it, but rather how to acquire skilled people that fit
the organization. A collective decision among the original employees, two
consultants, and a programmer was made on the technologies and platforms
(see Appendix B). The main reason for selecting these tools was that the em-
ployees were familiar with them beforehand. No rigorous selection process
was conducted. The methods, standards, and working habits employed in
software development evolved along with the portfolio development without
any conscious decision.
The selected way of working is used in the product development and main-
tenance phases as well as in customer implementations. The original com-
munications application portfolio was not developed as a project. Customer
implementations are always carried out as projects with a nominated project
organization using a waterfall model with clear sequential phases.
No written standards or rules concerning the process or the code exist. Rather,
all developers have the freedom to decide about their own work. However,
unwritten rules exist, and these have been adopted easily because the pro-
grammers have a common background.

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

User Stories, Release Planning, and Spikes

A requirement or need, either functional or technical, can come from em-
ployees or customers (50/50). Each customer has a nominated contact person
who receives the feedback. New technical requirements often evolve from
technical development of the tools or from system administration. A quick
situation analysis is performed to assess the feasibility of the requirement.
A programmer independently makes small improvements and error corrections.
More complex and far-reaching decisions, like new functions, interfaces, or
integration needs, are dealt with collectively. Also, decisions concerning the
implementation of these features as development investments or customer
projects are made together based usually on the number of potential custom-
ers and end users. Spikes are seldom programmed.

Iteration, Refactoring, Testing, Releases, and Pair Programming

The development process has four distinct phases: the initial, planning,
development, and maintenance phases. The decision in the initial phase to
proceed with a requirements specification leads to the planning phase. In the
planning phase, the first project plan either leads to a document outlining the
technical specifications of the new product or to the rejection of the project.
For approved projects, a detailed second project plan for the development
phase is drafted. The primary decision is the choice between implementing
it as a customer project or as a separate product-development project. After
the development phase, a maintenance phase outlines the 12-month devel-
opment road map. The phase continues with iterations and feedback from
customers.
Each programmer codes and tests his or her own component or piece of
program. Thereafter, internal users representing the customer test the sys-
tem. External customers test the production version of the system before it
is launched into production use. Iterations are continued until the application
or customer software is acceptable. The code is also continuously refactored
and thoroughly documented.
Pair programming is not used systematically in the case company, although
the programmers are sitting at the same table. Error and problem solving is
done in pairs if necessary.

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Programmers update changes into the ASP customer software gradually. For
customers using the software on their own computers, changes are occasion-
ally distributed as an update package.

Documentation

The programmers draft all documentation concerning the application portfolio.
Some technical documents are drafted in the planning phase and some systems
or integration descriptions in the development phase. Program code is the
most important document for the programmers, and it must be documented in
detail. The program size should be about 2,000 to 4,000 LOC. No change or
problem log is drafted or updated. However, a document or version manage-
ment system and a component library help to manage physical changes.
The training material and online help for end users are drafted collectively.
An implementation manual for main users of the applications is also drafted
jointly.

Future

The communications application portfolio is sufficient for contemporary
business needs. Significant technological changes might cause the renewal
of the portfolio. The personnel may be regarded as permanent in the team.
The total information technology expenses of the team have not been moni-
tored, but salaries form the main part. IT investments are probably rather
low because of the use of mostly free open-source software. No software or
license fees are paid and no external personnel are used.
The information systems development will continue accordingly at least as
long as the existing personnel are employed. Every other method would require
more bureaucracy and strict responsibilities, and more personnel would be
needed. The employees claimed that they would probably face a downturn
in work motivation if some other working practices were used.

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Findings and Discussion

In this study we compared the ISD processes of two case companies and their
application of extreme programming. We chose one traditional industrial case
and one that could be classified as a new-economy case. Interestingly, in the
more traditional case, the tools and techniques of XP had been employed
for over 10 years and in quite a systematic fashion, though the company had
never made a deliberate decision to use XP. In the newer company, the XP
process had more or less emerged as a novel way of solving time and budget
constraints. The developers were aware of XP practices, but did not choose
to engage in it “by the book.” This company, with a younger developer staff,
had seen agile practices as a natural way of doing things as they did not see
the value of more bureaucratic methods. A cross-comparison of the two cases
can be found in Table 1.

Findings from the Cases

Many essential features of XP can be found in the working methods of the
case organizations as listed in Table 2. The table first lists extreme-program-
ming features slightly adopting the principles and values of XP according
to Beck (1999). For each XP feature we identify whether it is used in one of
the cases. Furthermore, we identify references from vintage ISD literature to
support our claim that these techniques have been in use for a long time.
As can be observed in Tables 1 and 2, both case companies apply XP tech-
niques extensively except for pair programming. In Case 1, XP techniques
were used systematically throughout the development life cycle. The method
is a result of systematic evolution from stricter methodological practices,
which were found to be too restricting and slow. No other development
methods were used in Case 1. Project work was also perceived as too slow
and inflexible, and nowadays development work is not managed as projects.
In Case 2, the programmers utilized the application portfolio in customer
projects, so in this aspect the method resembles end-user programming. The
key end users, however, are the customers, and customer implementations
follow the waterfall model and are organized as projects.

�0 Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Table 1. Cross-comparison of the cases

Topic Case 1 Case 2

Case company • A manufacturing division of an inter-
national group, founded about 30 years
ago

• The operational systems team near users
both organizationally and physically

• A PR agency belonging to an international
network of agencies, founded in 1986

• The technology team near technology and
other team members

System • The operational system called as the fac-
tory system is made in-house

• Strategic and critical, 24 hours a day 7
days a week

• The application portfolio is developed
in-house

• Strategic, not critical

Change • Continuous and rapid, internal and external
in business, system, process, working
habits, standards, ownership

• Stable, technology

Driver • Business driven, not only customer driven
approach

• Bottom up=user driven, not only manage-
ment driven approach

• Business driven approach

• Technology as enabler of new business
possibilities

Methods • XP, evolutionary prototyping

• No other ISD methods

• No project work

• XP, waterfall, end-user programming

• Customer implementations as projects

Users • 500 internal end-users • 4 internal users: 3 internal programmers
and a consultant

• 300-350 external end-users

Team • 6 persons, experienced both in business
and in technology and methods

• Specific roles and responsibilities

• 4 persons, experienced in technology

• No specific roles and responsibilities, but
one specialist for each application

Requirements • Business, users, system administration • Business, technology, customers

Decision making • Individual developers daily and indepen-
dently on errors and small changes

• Managers (3 persons) together on larger
development needs

• Individual programmers daily and inde-
pendently on errors and small changes,
no clear responsibilities

• Manager and/or consultant consulted on
larger needs and on decisions on customer
or development project

Process • Iterative short cycle process like XP

• Resembles XP, but was started in 1990

• Resembles also evolutionary prototyp-
ing

• No pair programming

• Like 1960s – 1970s

• Iterative short cycle process like XP

• Resembles XP in some parts, but more
like end-user programming or streamlined
waterfall

• No pair programming

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Way of Working

In the first case, the way of working was adopted as early as 1990, and it
has evolved and streamlined gradually and systematically. There is a great
resemblance between XP and the development method used in the 1960s
and 1970s, when systems were tailored for each organization’s own use by
IT personnel of its own. At those times, like in the case organization, the
basis for future development was both the requirements of business and user

Table 2. Findings from the cases

Extreme Programming Features Case 1 Case 2 Related ISD Literature

End-user participation

+ -

User centered design (Ehn, 1988; Andersen et al.,
1990; Grudin, 1991; Greenbaum & Kyng, 1991;
Clemont & Besselaar, 1993; McKeen et al., 1994;
Smart & Whiting, 2001)

Standardization of development
tools + + Design to tools (McConnell, 1996)

Standardization of development
methods + - Any method approach (Paulk, Curtis, Chrissis,

& Weber, 1993)

Clear decision rules, roles and
responsibilities + - Professional work practices (Andersen et al.,

1990)

Distinct phases + + Phased ISD (Hirschheim et al., 2003;
Sommerville, 2001)

Iterative development and
implementation in short cycles + + Incremental prototyping (Boehm, 1988; Luqi &

Zyda, 1990; Iivari, 1990a; Boehm et al., 1998)

Testing + + (Evans, 1984)

Documentation in code + + Literate programming (Knuth, 1984)

Commonly owned program code + + No secret code (Shabe, Peck, & Hickey, 1977)

Specialization on a specific
application or on the database or
system structure

+ -
Design to tools (McConnell, 1996)

Pair programming - - Fred Brooks in the 1950s (Williams & Kessler,
2002)

Programmer morale + + (Brooks, 1975)

Continuous feedback + + (Boehm, 1988)

Project work - + (Paulk et al., 1993)

Other methods used (waterfall) - + (Brooks, 1975; Hirschheim et al., 2003;
Sommerville, 2001)

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

needs. Requirements of the management were not a separate matter but they
were satisfied through the requirements of the business. In the second case,
the information systems development was a new activity in the organization,
and the tools and the way of working were introduced and implemented at
the beginning.
In both companies, the developers liked this way of working, and the inter-
nal and external customers were also satisfied with the results. However, it
should be noted that both companies exhibit a key problem of all radically
new methods: They are quite person dependent. In the first case we found
that XP works best with experienced developers who know their domain and
their development tools. The developers were also colocated with the key end
users. In the second case, with less experienced developers, we found that the
XP development model had more or less emerged instead of having been a
planned approach. XP in this latter fashion closely resembles the capability
maturity model’s (CMM) Level 0, that is, chaos.

Development Organization and Personnel

In Case 1, the information technology unit is part of the business development,
and this is crucial for the success of the way of working. On the other hand,
the team’s physical proximity to the users helps to maintain the knowledge
of the business and of user needs, and reduces the dependency on individual
developers.
In the first case, the domain knowledge of the team members as well as their
excellent communication skills was found extremely important. Without these
kinds of persons, the chosen approach would probably have little possibilities
to succeed. This was clear also in the second case, where the expertise of
the team members with the tools and technology used as well as their own
community were extremely important to enable this way of working. The
development method was highly dependent on individual programmers, but
therefore it suited perfectly the organizational culture of the firm. This finding
is consistent with those about the so-called “Internet speed” development
(Baskerville, Ramesh, Levine, Pries-Heje, & Slaughter, 2003).
Continuous feedback, both official and unofficial, was one of the key factors
of success. In Case 1, very little feedback on the general success of the sys-
tem is received from current users. Generally, positive feedback is received
from users who have left the organization or from newcomers who have the

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

possibility to compare this system with others. There is no change resistance,
and users propose changes and improvements to the system actively. They
also understand that everything is not reasonable to fulfill, and this fact keeps
the method working.
The tools employed facilitated the use of XP in both cases. They supported
the fast delivery and easy modification of prototypes. This closely resembles
the ideas put forth by early advocates of incremental prototyping (Luqi &
Zyda, 1990) and user-centered design (Ehn, 1988), and furthermore design
to tools (McConnell, 1996).

Comparison with Other Cases and Agile Methods
in General

In this chapter, we took a different approach from other recent case studies
of XP (Abrahamsson, 2003; Abrahamsson et al., 2002; Back et al., 2002;
Elssamadisy & Schalliol, 2002; Reifer, 2002; Salo & Abrahamsson, 2004),
which concentrated on the planned and systematic adoption of XP in laboratory
cases or in pilot projects. We selected cases in which the methods had evolved
organically into an agile way of working although it was not intentionally
and consciously selected as a method. Aoyama (1998) reports evolution and
experiences in a telecommunications software family development over a
time period of 10 years, very similar to our first case. Likewise, Vanhanen
et al. (2003) report the evolution of agile practices in a Finnish telecom in-
dustry in three projects, one of which has a life span of over 15 years, again
very similar to our first case. In all three projects, agile practices were used
(evolved or intentionally adopted) because they represented a natural and
useful way to develop software. The authors found that the longest running
project applied most widely and systematically agile practices, also similar
to our findings.
Opinions differ significantly on the relationship between traditional and agile
methods. Some researchers argue that agile methods present an alternative to
process-centered approaches (Baskerville et al., 2003; Boehm, 2002; Murru
et al., 2003) while others see agile and process-centered methods as comple-
mentary (Boehm & Turner, 2003; Paulk, 2001). A third group of researchers
see agile processes as a step further in software process improvement as
regarded from the CMMI point of view (Kähkönen & Abrahamsson, 2004;
Turner, 2002). Increasingly both researchers and practitioners see agile and

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

traditional plan-driven methods as complementary so that different develop-
ment situations are best supported by different development methods (Boehm
& Turner, 2003; Henderson-Sellers & Serour, 2005; Howard, 2003; Känsälä,
2004). Boehm and Turner propose a multidimensional model for selecting
the appropriate software development method according to the type of the
project. Henderson-Sellers and Serour propose a method engineering ap-
proach for assembling agile methods.
To sum up, there are about a dozen software development approaches that
are classified or regarded as agile. Common to all agile methods is the em-
phasis on the output of the software development process, working software,
and maximizing its value for the customer. All agile methods, including XP,
have their strengths and weaknesses, and different methods are suitable for
different business and software development situations. The field is con-
tinuously developed further by academics (Nawrocki, Jasinski, Walter, &
Wojciechowski, 2002; Visconti & Cook, 2004). Agile methods, like all software
development methods, are also continuously evolving through adaptation by
practitioners in daily use (Wynekoop & Russo, 1995). The two cases of this
research illustrate how practitioners adapt and apply methods. The research
provides reasons why practitioners turn to agile methods. It also indicates
that the method selection discussion should not be limited to which method
is better than the other but instead the discussion should focus on the drivers,
constraints, and enablers that affect the selection of the method.

Conclusion

In this study we used a qualitative case-study approach as recommended by
Klein and Myers (1999) and Wynn (2001) for studying social processes of
agile software development and trying to understand users at the local level.
In the case analysis, we adapted the principles of interpretive case studies
presented by Walsham (1995). We found support for our claim that XP is more
of a new bag of old tricks than a totally new way of doing things. It formal-
izes several habits that appear naturally in a setting like our first case: close
customer involvement, short release cycles, cyclical development, and fast
response to change requests. In other words, it combines the best practices of
the Scandinavian approach (Bjerkenes & Bratteteig, 1995; Grudin, 1991) in
general and user-centered design in particular into a package that is both ac-

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ceptable and applicable for developers. The so-called Scandinavian approach
to information systems development has been advocating user centeredness
and professional work practices since the mid ’80s, and its roots can be traced
back to the origins of object-oriented development (Dahl & Nygaard, 1966).
However, it seems that these ideas are easier to accept when they come from
within the software development community and have a name that connects
them with heroic programming efforts.
It is somewhat disturbing that these practices rely heavily on people and
seem to be at times an excuse for not using more refined approaches. We
maintain that XP can be useful for small teams of domain experts who are
able to communicate well with customers and are very good designers and
implementers. One could argue that XP canonizes, and to a certain degree
formalizes, the good practices used by these exceptional individuals and
teams, which is fine. However, these people can exhibit high productivity in
almost any development setting that is not overly constrained by bureaucracy.
The real test of XP is, then, whether mere mortals or “normal” developers
can employ it as successfully.
In the future, we would like to see how XP can be used in larger scale settings
with external customers, either consumers or users in other units within the
same company, possibly located in other countries. These would put XP in
test with more complex requirements-gathering and -elicitation phases and
maintenance of systems through release versions. It would also be interest-
ing to study if XP or some other agile method would be easy enough to be
adopted in more traditionally organized IS departments. XP might also be a
useful method for organizations with only a few IS specialists in managing
their ISD projects with external consultants and vendors.

Acknowledgment

This research was supported in part by the Academy of Finland (Project
674917), the Jenny and Antti Wihuri Foundation, and the Foundation for
Economic Education. We wish to thank the contact persons and interviewees
in the case companies for their cooperation. We also thank the anonymous
referees for their valuable comments.

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

References

Abrahamsson, P. (2003, September). Extreme programming: First results
from a controlled case study. In Proceedings of the Euromicro 2003,
Antalya, Turkey.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software
development methods: Review and analysis (No. 478). Espoo, Finland:
Technical Research Centre of Finland, VTT Publications.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003, May).
New directions on agile methods: A comparative analysis. In Proceed-
ings of the 25th International Conference on Software Engineering,
Portland, OR.

Agile manifesto. (2003, April 24). Retrieved from http://www.agilealliance.
org/

Andersen, N. E., Kensing, F., Lundin, J., Mathiassen, L., Munk-Madsen, A.,
Rasbech, M., et al. (1990). Professional systems development: Experi-
ence, ideas and action. Hemel Hampstead: Prentice Hall.

Aoyama, M. (1998, April). Agile software process and its experience. In
Proceedings of the International Conference on Software Engineering
(ICSE 1998), Kyoto, Japan.

Back, R. J., Milovanov, L., Pores, I., & Preoteasa, V. (2002, May). XP as a
framework for practical software engineering experiments. In Proceed-
ings of the Third International Conference on Extreme Programming and
Agile Processes in Software Engineering, Alghero, Sardinia, Italy.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & Slaughter, S.
(2003). Is Internet-speed software development different? IEEE Soft-
ware, 20(6), 70-77.

Beck, K. (1999). Extreme programming explained: Embrace change. Read-
ing, MA: Addison-Wesley.

Bjerkenes, G., & Bratteteig, T. (1995). User participation and democracy: A
discussion of Scandinavian research on system development. Scandi-
navian Journal of Information Systems, 7(1), 73-98.

Boehm, B. (1988). A spiral model of software development and enhancement.
IEEE Computer, 21(5), 61-72.

Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer,
35(1), 64-69.

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Boehm, B., Egyed, A., Kwan, J., Port, D., & Madachy, R. (1998). Using the
WinWin spiral model: A case study. IEEE Computer, 31(7), 33-44.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide
for the perplexed. Boston: Pearson Education, Inc.

Brooks, F. (1975). The mythical man month: Essays on software engineering.
Reading, MA: Addison-Wesley.

Carmel, E., Whitaker, R. D., & George, J. F. (1993). PD and joint applica-
tion design: A transatlantic comparison. Communications of the ACM,
36(6), 40-48.

Clemont, A., & Besselaar, O. (1993). A retrospective look at PD projects.
Communications of the ACM, 36(4), 29-39.

Cockburn, A. (2002). Agile software development. Boston: Addison-Wes-
ley.

Conrad, B. (2003, October 14). Taking programming to the extreme edge.
Retrieved from http://archive.infoworld.com/articles/mt/xml/00/07/24/
000724mtextreme.xml

Dahl, O.-J., & Nygaard, K. (1966). SIMULA: An ALGOL-based simulation
language. Communications of the ACM, 9(9), 671-678.

Ehn, P. (1988). Work-oriented design of computer artifacts. Fallköping,
Sweden: Arbetslivscentrum.

Elssamadisy, A., & Schalliol, G. (2002, May). Recognizing and responding
to “bad smells” in extreme programming. In Proceedings of the 24th
International Conference on Software Engineering, Orlando, FL.

Evans, M. W. (1984). Productive software test management. New York: John
Wiley & Sons.

Extreme Programming Organization. (2002, November 14). Retrieved from
http://www.extremeprogramming.org

Fairley, R. (1985). Software engineering concepts. New York: McGraw-
Hill.

Greenbaum, J., & Kyng, M. (1991). Design at work: Cooperative design of
computer systems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Grudin, J. (1991). Interactive systems: Bridging the gaps between developers
and users. IEEE Computer, 24(4), 59-69.

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Henderson-Sellers, B., & Serour, M. (2005). Creating a dual agility method:
The value of method engineering. Journal of Database Management,
16(4), 1-23.

Hirschheim, R., Heinzl, K. K., & Lyytinen, K. (1995). Information systems
development and data modeling. New York: Cambridge University
Press.

Hirschheim, R., Klein, H. K., & Lyytinen, K. (2003). Information systems
development and data modeling: Conceptual and philosophical founda-
tions. Cambridge University Press.

Howard, D. (2003). Swimming around the waterfall: Introducing and using
agile development in a data centric, traditional software engineering
company. In Proceedings of 5th International Conference on Product
Focused Software Process Improvement (PROFES 2004) (LNCS 2675,
pp. 138-145).

Iivari, J. (1990a). Hierarchical spiral model for information system and
software development. Part 1: Theoretical background. Information
and Software Technology, 32(6), 386-399.

Iivari, J. (1990b). Hierarchical spiral model for information system and soft-
ware development. Part 2: Design process. Information and Software
Technology, 32(7), 450-458.

Iivari, J., Hirschheim, R., & Klein, H. K. (1998). A paradigmatic analysis
contrasting information systems development approaches and method-
ologies. Information Systems Research, 9(2), 164-193.

Joosten, S., & Purao, S. (2002). A rigorous approach for mapping workflows
to object-oriented IS models. Journal of Database Management, 13(4),
1-19.

Kähkönen, T., & Abrahamsson, P. (2004). Achieving CMMI Level 2 with
enhanced extreme programming approach. In Proceedings of 5th Inter-
national Conference on Product Focused Software Process Improvement
(PROFES 2004) (LNCS 3009, pp. 378-392).

Känsälä, K. (2004). Good-enough software process in Nokia. In Proceedings
of 5th International Conference on Product Focused Software Process
Improvement (PROFES 2004) (LNCS 3009, pp. 424-430).

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting
and evaluating interpretive field studies in information systems. MIS
Quarterly, 23(1), 67-93.

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Knuth, D. E. (1984). Literate programming. Computer Journal, 27(1), 97-
111.

Liu, L., Pu, C., & Ruiz, D. D. (2004). A systematic approach to flexible
specification, composition, and restructuring of workflow activities.
Journal of Database Management, 15(1), 1-40.

Luqi, P. B., & Zyda, M. (1990). Graphical tool for computer-aided prototyp-
ing. Information and Software Technology, 36(3), 199-206.

McConnell, S. (1996). Rapid development: Taming wild software schedules.
Redmond, WA: Microsoft Press.

McKeen, J. D., Guimaraes, T., & Wetherbe, J. C. (1994). The relationship
between user participation and user satisfaction: An investigation of
four contingency factors. MIS Quarterly, 18(4), 427-451.

Murru, O., Deias, R., & Mugheddu, G. (2003). Assessing XP at a European
Internet company. IEEE Software, 20(3), 37-43.

Myers, M. D. (2003, April 24). Qualitative research in information systems.
Retrieved from http://www.qual.aucklandac.nz

Nawrocki, J., Jasinski, M., Walter, B., & Wojciechowski, A. (2002, September).
Extreme programming modified: Embrace requirements engineering
practices. In Proceedings of the IEEE Joint International Conference
on Requirements Engineering (RE’02), Essen, Germany.

Paulk, M. (2001). Extreme programming from a CMM perspective. IEEE
Software, 18(6), 19-26.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). The capabil-
ity maturity model for software. IEEE Software, 10(4), 18-27.

Pressman, R. (2000). Software engineering: A practitioner’s approach (5th
ed.). McGraw-Hill.

Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering, 27(1), 58-
93.

Reifer, D. J. (2002). How good are agile methods? IEEE Software, 19(4),
16-18.

Salo, O., & Abrahamsson, P. (2004). Empirical evaluation of agile software
development: The controlled case study approach. In Proceedings of
5th International Conference on Product Focused Software Process
Improvement (PROFES 2004) (LNCS 3009, pp. 408-423).

�0 Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Shabe, G., Peck, S., & Hickey, R. (1977, August). Team dynamics in sys-
tems development and management. In Proceedings of the 15th Annual
SIGCPR Conference, Arlington, VA.

Shoval, P., & Kabeli, J. (2001). FOOM: Functional- and object-oriented
analysis & design of information systems: An integrated methodology.
Journal of Database Management, 12(1), 15-25.

Smart, K. L., & Whiting, M. E. (2001). Designing systems that support
learning and use: A customer-centered approach. Information & Man-
agement, 39(3), 177-190.

Sommerville, I. (2001). Software engineering (6th ed.). Addison-Wesley.
Turner, R. (2002). Agile development: Good process or bad attitude? In Pro-

ceedings of 4th International Conference on Product Focused Software
Process Improvement (PROFES 2002) (LNCS 2559, pp. 134-144).

Vanhanen, J., Jartti, J., & Kähkönen, T. (2003). Practical experiences of
agility in the telecom industry. In Proceedings of the XP2003 (LNCS
2675, pp. 279-287).

Visconti, M., & Cook, C. R. (2004). An ideal process model for agile
methods. In Proceedings of 5th International Conference on Product
Focused Software Process Improvement (PROFES 2004) (LNCS 3009,
pp. 431-441).

Walsham, G. (1995). Interpretive case studies in IS research: Nature and
method. European Journal of Information Systems, 4(2), 74-81.

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Boston:
Addison-Wesley.

Wynekoop, J. L., & Russo, N. L. (1995). System development methodolo-
gies: Unanswered questions and the research-practice gap. Journal of
Information Technology, 10(2), 65-73.

Wynn, E. (2001). Möbius transactions in the dilemma of legitimacy. In E. M.
Trauth (Ed.), Qualitative research in IS: Issues and trends (pp. 20-44).
Hershey, PA: Idea Group Publishing.

Ag�le Software Development �n Pract�ce ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Appendix A

Development Environment of Factory System

Users The factory system is used in factories as well as in sales offices and agencies of the division
throughout Europe. Practically all (total of 500) employees are end users of the system. Actually,
every user or user group has its own tailored system. One user profile consists of at most 3 to 4 users
or shifts. Users receive their work tasks from the system automatically at sign-in. Management has
read-only rights into the system.

Tools The system is developed using an application development tool AdWISE (Western Systems Oy,
http://www.western.fi/) and an MDBS IV database (Micro Data Base Systems Inc., http://www.
mdbs.com/). AdWISE is a three-tier (client, application server, database server) modular architecture
consisting of a fourth-generation application description language W, W compiler, and W interpreter.
AdWISE supports prototyping and end-user programming, and makes systems efficient, scalable,
and platform independent. LAN (local area network) or WAN (wide area network) is used only
for data traffic. MDBS IV is an efficient, reliable, fault-tolerant navigational database system used
in mission-critical, real-time applications. With these efficient tools, a standard portable computer
or personal computer (PC) is sufficient for developing and running the system and production
database. The execution environment is usually small enough to enable the use of, for instance,
diskless workstations, mobile phones, and PDAs (personal digital assistants) as clients. In addition,
the Cognos PowerPlay software package (Cognos Inc., http://www.cognos.com/) is integrated into
the system for OLAP, multidimensional analysis, and reporting.

Team The development team consists of six persons. The key developers have been in the organization
since 1990. The number of developers has gradually increased between 1995 and 2000, with the
total number now being four. All developers have worked earlier in other units of the group and in
different jobs, so they have a wide experience and total view of the activities in the group and the
division. It takes about 6 to 12 months for a new employee to become acquainted with the business.
In addition to developers, there are two people on the team who are in charge of the user help desk,
training, and testing. The business-development manager and the IT manager, responsible for OLAP,
multidimensional analysis, and reporting, also participate actively in the development work.
Every developer is familiar with the entire factory system and all the code is mutual. In addition,
developers are specialized. One developer is in charge of the sales and statistics applications, one
of the production applications, and one of the maintenance and procurement applications. One
designer is responsible for the database, the system structure, and the working methods, with one
of the three other designers participating actively in these tasks.

continued on following page

�� Ross�, Mer�salo-Rantanen, & Tuunanen

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Appendix B

Development Environment of Communications
Application Portfolio

Users The four programmers use the applications as tools in developing customer software. The applications
are used in about 50 customer implementations, with the total amount of end users being about 300
to 350. About 75% of the customers use the extranet, over 50% use content management, and only
a few customers use the other two applications. Per customer, the extranet has 10 to 50 end users,
content management has 1 to 10, and the other two applications have one to five end users.

Tools The application portfolio is built in a LAMP environment around a common application server
platform Midgard (Midgard Project, http://midgard-project,org/), which is an open-source framework
for information management solutions. LAMP originates from the Linux operating system, Apache
(Web server), MySQL (database management system), and PHP (programming and scripting
language) components. Some additional code is made using Perl, C++, and Java.

Team The team consists of four persons. Three software engineers, familiar with each other from their
university and still in the middle of their occupational studies, started in 2001. All programmers
have profound technological knowledge but little experience of the business. One programmer
has left the company and has been replaced with another, who is also an acquaintance from school
with around 2 months of apprenticeship. A senior consultant makes up the remainder of the team.
The unit manager also participates actively in the development work. Management control over the
unit is virtually nonexistent. The unit functions like a miniature open-source software-development
community with the main reward system being acknowledgement and approval from peers.
All code is mutual, but there is one specialist for every application. Everyone is responsible for
customer support and other activities of the team. All programmers are located in the same room
sitting by the same table, which makes the communication continuous, informal, and easy. Therefore,
the team is very much in-line with the overall philosophy of the case company, which is to be a
relatively small, nimble, and efficient one that can quickly adjust to changes.

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Abstract

Failure rates for systems development projects are estimated to approach
50% (Hirsch, 2002). In such an environment, a growing number of developers
propose the use of so-called agile methodologies as one means of improving
the systems developed while simultaneously decreasing failure rates. Agile
proponents insist that adherence to The Agile Manifesto will improve the entire
systems development process. This chapter begins by describing some of the
agile methodologies, follows that with an overview of current research in the
area, and closes with thoughts on possibilities for future applied research into
the agile methodologies that could provide evidence supporting or disputing
the many claims for success emerging from the field.

Chapter II

Understanding Agile Software,
Extreme Programming,

and Agile Modeling

John Er�ckson, Un�vers�ty of Nebraska – Omaha, USA

Kalle Lyyt�nen, Case Western Reserve Un�vers�ty, USA

Keng S�au, Un�vers�ty of Nebraska – L�ncoln, USA

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction

What are the determinants of success, or conversely, failure, regarding infor-
mation systems deployments? It seems that IT developers and implementing
companies have found as many ways to fail as to succeed. The failure rate
of systems development projects is estimated to be more than 50% (Hirsch,
2002). Add to that the fact that many traditional development methodologies
are extremely complex and difficult to use, the choice of development and
implementation methodology can assume critical proportions. Businesses have
come to accept the environment as unarguably turbulent, and the (systems)
development environment as a subset appears equally unsettled. In such an
arena, it might seem an afterthought that one size does not fit all when it
comes to choosing a specific development methodology (Henderson-Sellers
& Serour, 2004; Merisalo-Rantanen, Tuunanen, & Rossi, 2004). Enter the
agile software development approach as a potential solution. Agile systems
development has become the flavor du jour of a group of software develop-
ers. Extreme programming and agile modeling are two relatively recent and
highly publicized (some would say hyped) specific types of agile develop-
ment approaches.
While there are many claims for the successful use of extreme programming
and/or agile modeling (C3 Team, 1998; Grenning, 2001; Manhart & Schneider,
2004; Poole & Huisman, 2001; Schuh, 2001; Strigel, 2001), and the propo-
nents can often be vocal in the extreme regarding the supposed benefits of
both (Ambler, 2001b, 2001c, 2002a, 2002b; Beck, 1999), research evidence
supporting the claimed benefits is extremely lacking, although recent work
has begun to address at least some of the problems (Fruhling & De Vreede,
2006; Holmström, Fitzgerald, Ågerfalk, & Conchúir, 2006). Currently, the
only exceptions seem to be research into two areas.
One, although researchers have begun to study extreme programming, most
of the research comprises case studies and field or action research conducted
by the principal researcher(s) and related as a case or field report. While this
exposition does not intend to detract from the value of a well-conducted case
study, additional research into the specific details of the purported benefits of
extreme programming would lend some much-needed weight to what appears
to be a rather anecdotal body of work. Two, a well-established stream of re-
search into pair programming has generated a set of mixed results that in part
provide support for at least one core practice of extreme programming.

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The body of research into agile modeling appears to be even sparser than that
for extreme programming. Case studies, comparative analyses, and experience
reports comprise the majority of the scant research in the area, while very
few empirical research efforts have been conducted. Other research efforts
encompass the agile software development approach as a whole.
This exposition was written to lay bare the state of research in extreme pro-
gramming and agile modeling, hereafter known as XP and AM respectively.
In addition, research into agile software development will be examined. These
goals will be accomplished by first briefly presenting the details of agility,
XP, and AM. A literature review for the approaches follows. The chapter then
identifies gaps in the literature and proposes possible areas where future study
would benefit both research and practice. Finally we conclude the chapter.

Agility, XP, and AM Agility

Agility

Agility is often associated with such related concepts as nimbleness, supple-
ness, quickness, dexterity, liveliness, or alertness. At its core, agility means to
strip away as much of the “heaviness” commonly associated with traditional
software development methodologies as possible to promote quick response
to changing environments, changes in user requirements, accelerated project
deadlines, and the like. The reasoning is that the traditional established meth-
odologies are too set, and often too full of inertia, that they cannot respond
quickly enough to a changing environment to be viable in all cases, as they
are often marketed to be.
The Agile Manifesto was composed by several XP leaders, promoters, and
early adopters and outlines the principles embodied in software and sys-
tem agility (Lindstrom & Jeffries, 2004). Agile methodologies attempt to
capture and use the dynamics of change inherent in software development
in the development process itself rather than resisting the ever-present and
quickly changing environment (Fowler & Highsmith, 2001). Among the agile
methodologies are XP, crystal methodologies, SCRUM, adaptive software
development, feature-driven development (FDD), dynamic systems devel-
opment, and AM.

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Information systems development has generally followed a prescribed pattern
or process over the past 40 years. Depending upon the specific methodology,
the process has assumed many different names, each comprising unique steps.
For example, systems developers have proposed the systems development
life cycle, the spiral method, the waterfall approach, rapid application devel-
opment, the unified process (UP), various object-oriented (OO) techniques,
and prototyping, to name just a few (Booch, Rumbaugh, & Jacobson, 1999).
Many of these time-tested design patterns have evolved into what are now
termed “heavyweight” processes.
An influential trend impacting the systems development landscape is the
migration to encompass OO analysis and design methodologies. It seems
likely that such a move has come about largely as a response not only to the
emerging dominance of OO programming languages, but also due to their
growing importance to a number of the more recent agile and lightweight
development techniques (Fowler & Highsmith, 2001), such as AM and XP.
In a very short time, agile software development methodologies have created
large waves in the software development industry.
One of the most-used and best-known goal measurement approaches to as-
sessing system complexity and success emerged from work done at Carnegie
Mellon in the late 1980s, culminating in the capability maturity model (CMM;
Paulk, 2001). The CMM and more recent CMMI takes a goal measurement
approach (Pfleeger & McGowan, 1990) and attempts to measure the maturity
of the implementing organizations. Five levels of organizational capability and
maturity as related to software development constitute CMM. An example of
a truly large and encompassing process, the CMM guidelines for becoming
a Level 5 organization consume more than 500 pages of requirements. Even
stripped to the bare essentials, the CMM comprises 52 primary goals and 18
key process areas (Paulk).
The unified process, while being an OO analysis and design technique, is
considered to be a heavy methodology as well. UP consists of four phases,
nine disciplines, approximately 80 primary artifacts, 150 activities, and 40
roles (Hirsch, 2002). Even the most optimistic developer looking at UP for
the first time would not call it a lightweight or agile methodology. However,
Hirsch also provides an experience report consisting of two cases detailing
how UP could be modified to be more agile.
The proliferation of development methodologies notwithstanding, it appears
that the vast majority of these approaches can be condensed into (or at a
minimum contain) four critical steps: analysis, design, coding, and testing

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

(ADCT). Essentially, AM and XP fit into the ADCT paradigm by breaking the
process into very small steps, with each step including the critical analysis,
design, coding, and testing elements.

Extreme Programming

XP encompasses four values and four basic activities. The four basic values
are communications, simplicity, feedback, and courage. The four basic activi-
ties are coding, testing, listening, and debugging (Beck, 1999). According
to Beck, these values and activities lead to the 12 core practices of XP: the
planning game, small releases, metaphor, simple design, testing, refactoring,
pair programming, collective ownership, continuous integration, 40-hour
week, on-site customers, and coding standards (Beck; Jeffries, 2001; Wake,
1999).
Beck (1999) presented the primary details and advantages of the approach.
According to Beck, XP essentially means to “embrace change.” Beck began
his exposition by proposing that the basic problem facing software develop-
ment is risk. Jeffries (2001) proposed that extreme programming is a discipline
of software development based on the values of simplicity, communication,
feedback, and courage. XP works by bringing the whole team together in the
presence of simple practices, with enough feedback to enable the team to see
where they are and to tune the practices to their unique situation.” Simply
put, XP is the coding of what the customer specifies, and the testing of that
code is done to ensure that the prior steps in the development process have
accomplished what the developers intended. No unforeseen or anticipated
tools or features are engineered into the process because XP is oriented
toward producing a product in a timely manner. The idea behind XP is that
if features are needed later in the development process and the customer
notifies the development team at that point in time, the developers need not
worry about these features at the present. Needless to say, this represents a
vast departure from the normal software development process, in which all
requirements (and we naturally suppose these requirements to include fea-
tures) must be specified up front. This can easily turn into a nightmare since
the user requirements can often be seen as dynamic and changing rather than
static and set.
According to Turk, France, and Rumpe (2004), XP’s values, activities, and
practices are quite interrelated, with a relationship structure as follows.
Underlying the principles and practices are the basic assumptions that sup-

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

port the XP process. They go on to conduct a more thorough examination
of the XP process and connect it to the core beliefs expressed in The Agile
Manifesto.
Many professionals have proposed different types of modeling or develop-
ment processes to use with XP, and also to inform developers regarding new
concepts in program development (Ambler, 2001a, 2001-2002; Fowler, 2001;
Lindstrom & Jeffries, 2004; Palmer, 2000; Willis, 2001). For example, AM,
the unified modeling language (UML), UP, and FDD have been used with
XP. Since processes used to develop code require modeling, AM as related
to XP has been developed. Ideally, modeling techniques help communicate
to the entire development team the specifics of a particular design. It appears
that the modeling techniques used for AM are as diversified as there are
software development scenarios or ideas on the use of XP since UML and
UP are essentially modeling techniques.
More recently, Fruhling and De Vreede (2006) have conducted research
into extreme programming. They used all of Beck’s 12 core practices, some
fully and others modified, in developing an emergency response system.
Their research aimed at operationalizing the 12 core practices, and certainly
indicates that while more focused effort is being expended to investigate the
claims of extreme programming success, there is still much to do in terms
of measuring that success.
Finally, claims for success abound. For example, Lindstrom and Jeffries (2004)
claim that “[t]eams using XP are delivering software often and with very low
defect rates.” That is great news if it can be verified. Does research show that
defect rates are lower in XP-based or other agile methodologies? Rather than
simply presenting case studies as examples, documented trends indicating that
lower rates are a result of agile practices is necessary before the world will
accept the claims as truth. Furthermore, given that some research indicates
that pair programming (an XP practice) is not economically viable (Müller
& Padberg, 2003), then do lower error rates offset lower productivity?

Agile Modeling

Ambler (2001a) describes agile modeling as “a practices-based software
process whose scope is to describe how to model and document in an effec-
tive and agile manner.” Naturally, the question then arises, does (and if so,
how) AM apply to project development executed in an agile development

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

(XP) environment? Ambler (2001-2002) goes on to develop and explain
AM’s “core and supplementary principles”: simplicity, iterative develop-
ment, robustness, incremental releases, staying on task, producing a quality
product, creating models and the accompanying documentation only as
necessary, multiple models, fast and clear feedback on the latest changes to
the model(s), and discarding models and documentation that go back more
than just a few iterations.
What can be gleaned from the XP approach and applied to AM is the percep-
tion that the XP core practices, rather than consisting of isolated ideas about
how to create better systems, are quite closely interrelated and interdependent.
Essentially, to take the XP approach means to abandon many of the practices
that many developers have come to hold dear as critical necessities to systems
development. However, since XP merely develops systems, the analysis
and design of those systems must also be considered. To do that, developers
must model, and to analyze and design effectively for an XP development
environment, they should therefore model with an eye toward XP. In other
words Ambler (2001a) is in essence proposing that in order to best exploit the
benefits of XP, developers should use agile modeling as a lead-in to XP.
XP developers have taken two diametrically opposed perspectives to XP-
based systems development (Ambler, 2001-2002). One group proposes that
the use of an up-front modeling tool such as UML is necessary to success-
fully capture and communicate critical system architectures (Armano &
Marchesi, 2000). Opposed to the more traditional UML modelers are those
who promote the use of UML or other modeling tools only occasionally or
simply for graphical representations of the system under development (Wil-
lis, 2001). Those developers propose that UML is too complex and heavy to
be truly useful in an agile environment. There is some evidence to indicate
that UML is indeed complex (Erickson & Siau, 2003, 2004; Siau & Cao,
2001; Siau, Erickson, & Lee, 2002). Furthermore, UML is now even more
of a heavy tool with the current move to UML 2.0.
AM basically creates some common ground between the two camps by
proposing that developers communicate system architectures by applying
AM’s core practices to the modeling process (Willis, 2001). This seemingly
incompatible marriage of XP practices to UML-like modeling techniques
represents the basis of AM. This melding requires two things. First, if a mod-
eling approach is to successfully approximate XP in terms of core practices,
then the model must be executable in that it can easily be converted into
code and represent to a large extent the functions and features required in

�0 Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the final system. Second, in the context of XP, any models developed must
be testable. Recall that developers test more or less continuously in the XP
paradigm. This means that, contrary to the common use of UML as merely
a tool to draw diagrams, UML in the AM paradigm must be utilized to its
fullest extent, and even extended so that the models are executable and test-
able (Ambler, 2001-2002). Two different tools extending the capabilities of
UML into the AM arena have been developed or are currently under develop-
ment: Argo/UML, from the University of Hamburg, and a petri-net creation
named Renew (Ambler). Ambler insists that as these tools move into more
mainstream use, the potential advantages of the agile modeling approach
combined with extreme programming should become clear.

Extreme Programming and Agile Modeling and
Methodology Literature and Research

XP Research

The literature for XP, as previously noted, can generally be split into two
separate streams. First, there is a good number of case studies or experi-
ence reports that covers the XP approach as a whole, and second, there are
research efforts related to one or more of the core practices associated with
XP. The experience reports tend to claim success for adopting one or more
of the XP practices for specific projects, but offer little in the way of success
measures. Since the case studies and experience reports generally involve
XP in its entirety, they will be discussed first, and the research related to the
core practices second.

XP Cases and Experience Reports

The C3 Team (1998) at Chrysler adopted XP’s simplicity value for its com-
pensation system development effort. The team insisted that the project
could not have been done in the required time by using the traditionally
applied waterfall method. The team found itself behind in implementing a
difficult system and discovered that XP lent itself to what they were trying

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

to do. However, the case description does not include much detail in terms
of resistance to change that moving to XP might have caused among devel-
opers, or other problems encountered that could have been attributed to the
XP methodology.
Iona Technologies found that code maintenance and software reengineer-
ing were best accomplished by implementing practices they later found to
be part and parcel of XP (Poole & Huisman, 2001). They at least partially
adopted 11 of the 12 core XP practices, failing only to go to a 40-hour week,
and noting that they lacked the courage to try at that point. They also were
a bit reluctant about adopting pair programming, noting that many of their
programmers were hesitant about trying it.
Schuh (2001) details another in-trouble project that was saved by implement-
ing XP practices. The development team at ThoughtWorks was far behind
schedule, working on requirements collected by the previous consultant
while the customer had changed the specification and had a rigid delivery
date requirement. The project team in this case also partially implemented
11 of 12 XP practices, except for going to a 40-hour week. The team was
also hesitant about adopting pair programming.
Another experience report indicates that the team used a traditional “Big
Design Up Front” methodology for software development projects (Gren-
ning, 2001). Of the core XP practices, only metaphor was not adopted. Again,
while some detail of problems was provided, there is no clear way to discern
whether the problems were related to XP or simply part of the process.

XP Core Practice Research

XP education has received its share of attention, meaning that as more indus-
try-based development projects move toward adopting at least some of the XP
practices, there has been increasing pressure on university computer science
programs to adopt teaching pedagogies with XP embedded. Table 1 indicates
some of the investigations and lists the metrics used in the research.
Williams and Kessler (2001) conducted an experiment in pair programming
in which they found that traditional postsecondary programming education
conditioned students to work alone, and that simply telling them to begin
working together does not necessarily result in improved programs, that is,
programs with fewer code errors (dependent variable), that are relatively

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

run-time efficient (dependent variable), and so forth. However, they also
noted that once the solo-approach mold was broken, the improvements in
finished code were measurable. This is supported by other classroom-based
research (Erdogmus & Williams, 2003; Hedin, Bendix, & Magnusson, 2005;
Williams & Upchurch, 2001).

Table 1. Partial listing of XP core practices research

A
ut

ho
r(

s)
Ty

pe
 o

f S
tu

dy
In

de
pe

nd
en

t
Va

ri
ab

le
(s

)
D

ep
en

de
nt

Va

ri
ab

le
(s

)
R

es
ul

ts
T

hr
ea

ts
/I

ss
ue

s

W
ill

ia
m

s &
 K

es
sl

er
Ex

pe
rim

en
t

Pa
ir

vs
. n

on
pa

ir
C

od
e

er
ro

rs
Pa

ir
su

pe
rio

r
M

an
y;

 se
e

p.
 1

7

M
ül

le
r &

 P
ad

be
rg

(2

00
3)

N
PV

 m
od

el
 si

m
ul

at
io

n
Pa

ir
pr

og
ra

m
m

in
g

an
d

te
st

-d
riv

en
 d

ev
el

op
m

en
t

N
PV

Lo
w

er
 N

PV
 fo

r X
P

pr
ac

tic
es

Si
m

ul
at

io
n v

s.
re

al

w
or

ld

K
up

pu
sw

am
i,

V
iv

ek
an

an
da

n,

R
am

as
w

am
y,

 &

R
od

rig
ue

s (
20

03
)

Si
m

ul
at

io
n

A
ll

X
P

co
re

 p
ra

ct
ic

es

(e
ffo

rt
fo

r
ea

ch
 p

ra
ct

ic
e

in
di

vi
du

al
ly

)

To
ta

l e
ffo

rt
U

si
ng

 X
P d

ec
re

as
es

to

ta
l e

ffo
rt

Si
m

ul
at

io
n v

s.
re

al

w
or

ld

A
ls

ha
ye

b
&

 L
i

(2
00

5)
Fi

el
d

m
ea

su
re

m
en

t o
f

de
ve

lo
pm

en
t p

ro
je

ct
C

ha
ng

es
; g

ro
w

th
 in

 cl
as

s
na

m
es

 d
ur

in
g

pr
oj

ec
t

ex
ec

ut
io

n

SD
I (

sy
st

em

de
si

gn

in
st

ab
ili

ty
)

R
ef

ac
to

ri
ng

 a
nd

er

ro
r fi

x
ne

ga
tiv

el
y

co
rr

el
at

e
w

ith
 S

D
I

In
te

ra
ct

io
n e

ffe
ct

s
an

d
va

ria
bl

es
 n

ot

m
ea

su
re

d
in

 t
he

st

ud
y

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In settings outside the classroom, research attempting to assess the benefits of
XP and/or its core practices has also been conducted. Aiken (2004) provides
support for XP’s pair programming practice, noting that although the com-
monly listed benefits proved attractive to potential adopters, implementing
pair programming remained an extremely challenging task. Newkirk and
Martin (2000) illustrated via their case study a common problem with soft-
ware development problems that XP is suited to address. They noted that
once the first iteration (of the product) was successfully developed, tested,
demonstrated, and delivered to the customer, within a 50-hour window, and
according to XP practices, the customer then changed the requirements and
added 11 stories to the project. In their view this provided support for the
XP approach since, they claimed, a heavy methodology would not have been
able to easily incorporate the changes requested.
Müller and Padberg (2003) is one of the few empirical research efforts that
dispute the claims made for XP. The authors created an economic model
that output a net present value (NPV) of software development projects. The
results indicate that, using the XP core practices of pair programming and
test-driven development, and comparing with a traditional heavier method-
ology, the end-product NPV was smaller for the XP-based project than for
the traditional project.
Karlsson, Andersson, and Leion (2000) provide an accounting of their expe-
riences regarding the implementation of XP practices at Ericsson, focusing
on incremental releases, which they called “daily builds.” According to the
authors, the project benefited greatly from using the daily-build approach.
However, since daily builds also imply daily testing and rigorous attention
to coding standards, the implementation effort at Ericsson proved quite
challenging.

Agile Modeling and Agile Methodology Research

Agile modeling research appears to be extremely scarce. Armano and Marchesi
(2000) adapted UML to an XP-like software development project using what
appears to be a combination of the spiral model and UP. The project team
committed to weekly builds and refactoring, and used UML to represent user
stories via use cases. The team actually developed a tool they called UMLTalk
(UML and SmallTalk) to aid in the project development effort.

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Other research efforts involve holistic approaches to agile systems. For
example, Fujitsu, the Japanese technology company, appears to be one of
the early adopters of agile methodologies. It developed an agile tool named
Agile Software Engineering Environment (ASEE) as early as 1993 (Aoyama,
1998). The company found itself attempting to complete a software devel-
opment project from multiple distributed locations and saw the need for an
agile approach to solve its problems. The tool was Web-based and enabled
releases of software at 6-month intervals for 4 years.
Manhart and Schneider (2004) found that Daimler-Chrysler’s embedded soft-
ware effort for busses and coaches was moving toward a “cautious extension
of agile process improvement” after adopting a few (four) agile principles.
The development methodology in use was CMM, and the culture appeared
to be fairly resistant to change. However, the authors end with a call for more
empirical evidence supporting the claims of agile methodologists.
As previously noted, Hirsch (2002) reported on the successful adaptation of
RUP for two small projects. Noteworthy of Hirsch’s experience report is that
the RUP agile adaptation worked best for small projects of 1- to 4-years dura-
tion and small development teams of three to eight people. This appears to
be a recurrent theme of agile methodologies in general and XP specifically.
Abrahamsson, Warsta, Siponen, and Ronkainen (2003) compared nine dif-
ferent agile methodologies and found that most teams covered different
portions of the common development sequence (ADCT) with little or no
reasoning as to why they took their specific perspective. Abrahamsson et al.
further noted that most agile methodologies did not “offer adequate support
for project management.” They recommend a focus on quality over quantity,
which interestingly enough is a mantra of many of the agile proponents, and
end with a comment that empirical research is quite limited.

Potential Areas for Research
Related to XP, AM, and Agile Methodologies

The recurring themes in XP research seem to revolve around XP’s pair pro-
gramming practice. Evidence supporting the idea of pair programming is
mounting, and while practitioners conditioned with the heavier approaches
such as CMM or RUP tend to resist embracing pair programming, it seems

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

that educators are moving to incorporate pair programming into computer
science curricula.
In the case of pair programming research, the effects of programming in pairs
are measured against programming individually. Generally, the number of
code errors was one measure of differences between programming in pairs
vs. programming individually, with some sort of regression testing suite used
to assess the errors. Possible confounding variables include such elements
as ambient noise (i.e., from other cubicles); using electronic collaboration
systems such as MS Net Meeting to collaborate; the physical placement of
the computer, keyboard, monitor, and so forth; personal incompatibilities
between the two programmers in a given pair; and confusion or ambigu-
ity regarding the role of the person not physically coding. The size of the
program to be written is also likely to play a role in the relative success or
failure of pair programming as it naturally does with other approaches to
coding. Programmer experience is also likely to affect the outcome of pair
programming research.
The development and execution of the testing suite, which implies some
interaction effects between pair programming and another core XP practice,
will also complicate research in this area. At least a few of these moderators
or confounders and the threat(s) they pose to validity can be controlled in
experimentation, but pair programming in practice should also be examined
as part of research in this area.
A relatively large number of experience reports regarding adoption of some
the XP practices exist, but hard, empirically based economic evidence is
lacking. Many of the case studies and experience reports indicate that most,
if not all, XP core practices were successfully adopted. The practice most
commonly not adopted was the 40-hour week.
Most experience reports also mentioned that they were already practicing
the planning game. XP’s planning game can be compared to developing user
requirements in a more traditional systems analysis and design development
approach. Many of the older and heavier analysis methodologies have well-
established evidence regarding the importance of this step. The time spent
in analysis could be one analyzable metric, though there are many threats to
validity by using time as a variable. In addition, the output of planning can
also be measured if artifacts, such as UML diagrams, for example, can be
standardized and compared across groups.
Added to the above problem is another that continually plagues developers:
that of the aptness of the system. In other words, the planning game might be

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

wonderfully executed along with other cores practices, and the result might
be exemplary, but due to changes in the requirements from the outset, the
system developed might not be the “correct” system. Of course that problem
is endemic to systems development in general, but since XP proponents claim
that the approach is superior, then fewer instances of building the wrong
system should be evidenced. As to research in this area, while planning is
critical and essential for success, it remains to be seen as to whether the spe-
cific XP approach is more beneficial than other more standard approaches
to developing user requirements.
Companies or organizations using the heavier methodologies typically had
trouble adopting incremental releases because of the implications that core
practice has for several other core practices: simple design, testing, refactor-
ing, and continuous integration. These core practices appear to be closely
related since, for example, a daily build means that the testing suite must also
be ready daily, which in turn has implications for continuous integration and
refactoring. Research into these core practices will nevertheless be necessary
if the overall approach is to be accepted by the mainstream.
If pair dynamic programming is used, the coding-standards core practice
means that developers must agree up front on the conventions used for naming
classes as well as, for example, on a host of other coding practices. A coding
standard in the end means that someone looking at a code segment cannot
tell which team member wrote it. This should be something that program-
mers do for all projects, but sadly it is not. Research should be implemented
that compares practice with recommendation in both the traditional and XP
areas. However, this instance also highlights once again the difficulties of
examining XP’s core practices individually: the likelihood that interaction
or correlation between and among other core practices will be possible and
even probable. In this case, the coding-standards practice is related to and
could be affected by pair programming and development of the test suite,
just to name two, and there are likely to be other interactions as well.
The efforts of Kuppuswami et al. (2003) represent a pioneering effort in XP
research. They used a process model simulation to vary the level (in labor)
of XP’s core practices one at a time to judge the effect upon total effort for
the project. They found that increasing effort (independent variable) into
XP core practices reduced the total effort (dependent variable) needed to
create the system, although interactions and other moderating effects were
not discussed at great length. While the research provides some support for

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

XP practices, field verification of the simulation is definitely indicated and
would be very beneficial.
Other empirical efforts to study XP, in total or just its core practices, are
quite limited as well. Williams’ numerous and varied studies along with a
few others (Alshayeb & Li, 2004; Müller & Padberg, 2003) are the primary
exceptions in this area of research. Agile modeling is almost totally unstud-
ied, and any research into the methodology would be an improvement over
the current state of affairs. The models themselves could be used as the
measures of the efficacy of the methodology, although assessing models as
to their relative “goodness” or “badness” is at least somewhat subjective and
a possible threat to the validity of research conducted in that manner. The
study of agile methodologies appears to be unorganized and, for want of a
better word, random.

Conclusion

From a research-based perspective, it appears the research community,
practitioners, and educators might benefit from a more structured approach
to the study of XP. The bulk of the existing research appears focused on
validating the overall XP approach, which is probably, or perhaps arguably,
satisfactory if one is only concerned with the macro perspective of XP as a
whole. However, since the proponents, as noted previously, seem to univer-
sally accept the 12 core practices as integral and necessary parts of XP, then
it would seem logical to empirically examine the efficacy of each of the 12
core XP practices separately if we want to examine what it is that makes XP
successful (or not). In other words, do we want XP to remain a “black box”
and simply accept that it works? Other than pair programming, incremental
releases, and at most a few of the other core practices, many of the others
remain relatively unstudied, at least in an XP environment.
As to XP specifically or agility in general as approaches to systems develop-
ment, there is anything but unanimous agreement that there is really anything
new. Merisalo-Rantanen et al. (2004) conducted a case study and concluded
that XP is really nothing new, but simply a repackaging of old (though ar-
guably useful) techniques for developing systems. Turk et al. (2004) also
indicate that the benefits to be gained from adopting agile methods are not
realized if the underlying assumptions are not met.

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Confounding factors could also cause problems with research in this direction.
For example, what are the differences between the prescribed approaches
(heavy or light) and practice, and what effect do these differences or gaps
have on the success of the various development efforts? Also, if we begin
looking at the efficacy of the 12 core XP practices separately, that opens up
the possibility of interaction effects. In other words, it appears that a number
of the core practices are obviously related to one another—pair programming
and collective ownership, for example. If that is the case for obvious and
even for nonobvious relationships, then what effect upon the overall success
of the project, and ultimately the methodology, does strict adherence to the
rules of a prescribed approach for one core practice have if other practices
are glossed over or even not used for whatever reason? Perhaps the 12 core
practices of XP could even be grouped together into related areas, such as
actors (participants in the development effort), technology, structure, and
process, and studied from that perspective.
Another potentially critical issue facing software developers and researchers
alike is that of software standards. In light of ISO and other standards imposed
by governments, implementing organizations, or other regulatory bodies, the
quest to render development methodologies more agile by cutting away or
eliminating some of the overhead could become difficult or even virtually
impossible since the artifacts of development often become a large part of
the documentation requirements.
Theunissen, Kourie, and Watson (2003) looked at the potential adaptability
of agile software methodologies with regard to ISO/ISE 12207:1995, among
other standards. They found that XP in particular could be used to satisfy
many of the standard’s requirements and developed a set of guidelines for
potential users. However, research should be executed regarding whether the
guidelines have been successfully adopted and used in practice.
There is no—and likely will never be—an easy fix for these problems. There
are no magic solutions (Germain & Robillard, 2005). In addition, from the
extremely high failure rates commonly associated with system development
efforts (estimates range from 50 to 75%), it appears that there should be
ample room for improvement in development efforts, whatever shape or form
they take. Agile modeling and extreme programming represent a possible
step in the right direction if developers have the courage to commit people
and resources to the effort and pain involved in managing the changes that
will inevitably occur as a result. However, organizations must also practice
caveat emptor and clearly state that they cannot embrace a particular devel-

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

opment methodology simply because a person or group of people says that
it is good.
The proponents of AM and XP have expressed themselves quite clearly and
forcefully on the subject of agile modeling and programming, and, judging
from the current bleak and stony landscape of systems development, it ap-
pears that they are correct. Those that know (industry insiders and researchers)
simply point to statistics that back up their claim that many of the processes
we have used and are using to develop information systems are broken and
likely unrepairable. When 60% of a typical system’s O&M budget goes toward
Band-aiding the results of inadequate analysis and development, when two
thirds to three quarters (depending upon whose statistics you wish to use)
of information systems developed can be considered failures in that they do
not provide the functionality required, when we have all been taught to build
throwaway systems that can often be obsolete before projects are completed,
and when we systematically exclude from development those whom we are
building the system for, then it is indeed time to take a step back, look at the
mirror, and say, “Just what is wrong with this picture?”

References

Abrahamsson, P., Warsta, J., Siponen, M., & Ronkainen, J. (2003). New direc-
tions on agile methods: A comparative analysis. In Proceedings of the
25th International Conference on Software Engineering (pp. 244-254).

Aiken, J. (2004). Technical and human perspectives on pair programming.
ACM SISOFT Software Engineering Notes, 29(5).

Alshayeb, M., & Li, W. (2005). An empirical study of system design instabil-
ity metric and design evolution in an agile software process. Journal of
Systems and Software, 74, 269-274.

Ambler, S. (2001a). Agile modeling and extreme programming (XP). Re-
trieved March 31, 2005, from http://www.agilemodeling.com/essays/
agileModelingXP.htm

Ambler, S. (2001b). Debunking extreme programming myths. Computing
Canada, 27(25).

Ambler, S. (2001c). Values, principles and practices equal success. Comput-
ing Canada, 27(10).

�0 Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Ambler, S. (2001-2002). The principles of agile modeling (AM). Retrieved
March 31, 2005, from http://www.agilemodeling.com/principles.htm

Ambler, S. (2002a). Agile development best dealt with in small groups.
Computing Canada, 28(9).

Ambler, S. (2002b). Know the user before implementing a system. Comput-
ing Canada, 28(3).

Aoyama, M. (2000). Web-based agile software development. IEEE Soft-
ware.

Armano, G., & Marchesi, M. (2000). A rapid development process with
UML. Applied Computing Review, 18(1).

Beck, K. (1999). Extreme programming explained: Embrace change. Boston:
Addison-Wesley.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling lan-
guage user guide. Boston: Addison-Wesley.

Cockburn, A., & Williams, L. (2000). The costs and benefits of pair program-
ming. In Proceedings of XP 2000 Conference, Sardinia, Italy.

C3 Team. (1998). Chrysler goes to “extremes.” Distributed Computing.
Erdogmus, H., & Williams, L. (2003). The economics of software development

by pair programmers. The Engineering Economist, 48(4), 283-319.
Erickson, J., & Siau, K. (2003, April). UML complexity. In Proceedings of

the Systems Analysis and Design Symposium, Miami, FL.
Erickson, J., & Siau, K. (2004, December). Theoretical and practical complexity

of unified modeling language: A Delphi study and metrical analyses. In
Proceedings of the International Conference on Information Systems.

Extreme modeling Web site. (2005). Retrieved January 25 from http://www.
extrememodeling.org/

Fowler, M. (2001). The new methodology. Retrieved March 31, 2005, from
http://www.martinfowler.com/articles/newMethodology.html

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Retrieved March
31, 2005, from http://www.agilemanifesto.org/

Fruhling, A., & De Vreede, G. (2006). Field experiences with extreme
programming: Developing an emergency response system. Journal of
Management Information Systems, 22(4), 39-68.

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Germain, E., & Robillard, P. (2005). Engineering-based processes and agile
methodologies for software development: A comparative case study.
Journal of Systems and Software, 75, 17-27.

Grenning, J. (2001). Launching extreme programming at a process intensive
company. IEEE Software.

Hedin, G., Bendix, L., & Magnusson, B. (2005). Teaching extreme program-
ming to large groups of students. Journal of Systems and Software, 75,
133-146.

Henderson-Sellers, B., & Serour, M. (2004). Creating a dual agility method:
The value of method engineering. Manuscript submitted from publica-
tion.

Herbsleb, J., & Goldenson, D. (1996). A systematic survey of CMM experi-
ence and results. In Proceedings of ICSE-18 (pp. 323-330).

Hirsch, M. (2002). Making RUP agile. SIG Programming Languages.
Holmström, H., Fitzgerald, F., Ågerfalk, P., & Conchúir, E. (2006). Agile

practices reduce distance in global software development. Information
Systems Management, 23(3), 7-18.

Jeffries, R. (2001). What is extreme programming? XP Magazine. Retrieved
March 31, 2005, from http://xprogramming.com/xpmag/whatisxp.
htm

Karlsson, E., Andersson, L., & Leion, P. (2000). Daily build and feature
development in large distributed projects. Limerick, Ireland: ISCE.

Kuppuswami, S., Vivekanandan, K., Ramaswamy, P., & Rodrigues, P. (2003).
The effects of individual XP practices on software development effort.
ACM SIG Software Engineering Notes, 28(6).

Lindstrom, L., & Jeffries, R. (2004). Extreme programming and agile soft-
ware development methodologies. Information Systems Management,
24(3).

Manhart, P., & Schneider, K. (2004). Breaking the ice for agile development
of embedded software: An industry experience report. In Proceedings
of the 26th International Conference on Software Engineering.

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M. (2004). Is extreme pro-
gramming just old wine in new bottles: A comparison of two cases.
Manuscript submitted for publication.

�� Er�ckson, Lyyt�nen, & S�au

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Müller, M., & Padberg, F. (2003). On the economic valuation of XP projects.
In ACM SIGSOFT Software Engineering Notes: Proceedings of the
9th European Software Engineering Conference held jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 28(5).

Newkirk, J., & Martin, R. (2000). Extreme programming in practice. Min-
neapolis, MN: OOPSLA.

Palmer, S. (2000). Feature driven development and extreme programming.
Togethersoft Corporation.

Paulk, M. (2001). Extreme programming from a CMM perspective. IEEE
Software, 18(6), 19-26.

Pfleeger, S., & McGowan, C. (1990). Software metrics in a process maturity
framework. Journal of Systems and Software, 12(3), 255-261.

Poole, C., & Huisman, J. (2001). Using extreme programming in a mainte-
nance environment. IEEE Software.

Schuh, P. (2001). Recovery, redemption, and extreme programming. IEEE
Software.

Siau, K., & Cao, Q. (2001). Unified modeling language (UML): A complex-
ity analysis. Journal of Database Management.

Siau, K., Erickson, J., & Lee, L. (2002, December). Complexity of UML:
Theoretical versus practical complexity. In Proceedings of the Workshop
on Information Technology and Systems (WITS), Barcelona, Spain.

Strigel, W. (2001). Reports from the field: Using extreme programming and
other experiences. IEEE Software.

Theunissen, W., Kourie, D., & Watson, B. (2003). Standards and agile soft-
ware development. In Proceedings of SAICSIT (pp. 178-188).

Turk, D., France, R., & Rumpe, B. (2004). Assumptions underlying agile
software development process. Manuscript submitted for publication.

Wake, W. (1999). Introduction to extreme programming (XP). Retrieved
March 31, 2005, from http://xp123.com/xplor/xp9912/index.shtml

What is refactoring? (2005). Retrieved March 13 from http://c2.com/cgi/
wiki?WhatIsRefactoring

Williams, L., & Kessler, R. (2000a). All I really need to know about pair
programming I learned in kindergarten. Communications of the ACM,
43(5).

Understand�ng Ag�le Software, Extreme Programm�ng, and Ag�le Model�ng ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Williams, L., & Kessler, R. (2000b). The effects of “pair-pressure” and
“pair-learning” on software engineering education. Presented at the
Conference of Software Engineering Education and Training.

Williams, L., & Kessler, R. (2001). Experimenting with industry’s “pair-
programming” model in the computer science classroom. Computer
Science Education.

Williams, L., Kessler, R., Cunningham, W., & Jeffries, R. (2000). Strength-
ening the case for pair programming. IEEE Software.

Williams, L., & Upchurch, R. (2001, October). Extreme programming for
software engineering education. In Proceedings of the ASEE/IEEE
Frontiers in Education Conference, Reno, NV.

Wills, A. (2001). UML meets XP. Retrieved March 31, 2005, from http://www.
trireme.com/whitepapers/process/xp-uml/paper.htm

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Abstract

Little specific research has been conducted to date on the adaptation of agile
information systems development (ISD) methods. This chapter presents the
work practice in dealing with the adaptation of such a method in the ISD
department of one of the leading financial institutes in Europe. The chapter
introduces the idea of method adaptation as an underlying phenomenon
concerning how an agile method has been adapted to a project situation
or vice versa in the case organization. In this respect, method adaptation is
conceptualized as a process or capability in which agents holding intentions

Chapter III

Adaptation of an
Agile Information System

Development Method

Mehmet N. Ayd�n, Un�vers�ty of Twente, The Netherlands

Frank Harmsen, Capgem�n�, The Netherlands

Jos van H�llegersberg, Un�vers�ty of Twente, The Netherlands

Robert A. Stegwee, Un�vers�ty of Twente, The Netherlands

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

through responsive changes in, and dynamic interplays between, contexts and
method fragments determine an appropriate method for a specific project
situation. Two forms of method adaptation, static adaptation and dynamic
adaptation, are introduced and discussed in detail. We provide some insights
plus an instrument that the ISD department studied uses to deal with the
dynamic method adaptation. To enhance our understanding of the observed
practice, we take into account two complementary perspectives: the engi-
neering perspective and the socio-organizational perspective. Practical and
theoretical implications of this study are discussed.

Introduction

Despite the best endeavors in the area of information systems research and
practice, the effective use of information systems development methods (IS-
DMs) remains an issue on both academics’ and practitioners’ agendas (Iivari,
Hirschheim, & Klein, 2001). In the 1980s and 1990s, the rationales behind
structured, brand-named ISDMs, the so-called conventional methods, were
being questioned as being IT oriented, complex, rigid, and inappropriate for
postmodern forms of organizations whose distinctive character was to be
adaptable to continual change (Sauer & Lau, 1997). Recently, agile—denot-
ing “having a quick resourceful and adaptable character” (Merriam-Webster
Online, 2003)—ISDMs, agile methods in short, have appeared as a solution
to the long-standing problems related to conventional methods.
This chapter is mainly concerned with the adaptability of agile methods
(i.e., the extent to which a method is to be adapted to the project situation
at hand or vice versa) yet points out the need for further research in order
to understand other distinctive aspects of agile systems’ development and
to make sense out of the dispersed field of agile methods (Abrahamsson,
Warsta, Siponen, & Ronkainen, 2003). As we shall see later on, many stud-
ies concerning the effective use of ISDMs adopt the notion of adaptation but
use different terms or concepts in their theoretical constructs, for example,
“method fragment adaptation” in Baskerville and Stage (2001), “scenario
use” in Offenbeek and Koopman (1996), “method tailoring” in Fitzgerald,
Russo, and O’Kane (2000), “situational” or “situated method engineering” in
Harmsen, Brinkkemper, and Oei (1994) and Slooten and Brinkkemper (1993),

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

“context-specific method engineering” in Rolland and Prakash (1996), and
“method engineering” in Siau (1999).
Two limitations with these studies have motivated us to carry out this research.
First, the existing studies use different perspectives and provide countervailing
arguments for the notion of adaptation. Second, the proposed models appear
to be limited to theoretical arguments and need empirical findings to support
their arguments. More precisely, as Fitzgerald, Russo, and O’Kane (2003,
p. 66) state, “little research has been conducted to date on method tailoring
specifically.” This observation is particularly true for agile methods.
Our research addresses these two limitations and illustrates the working prac-
tices in a large-scale IT department dealing with the adaptation of an agile
method, dynamic systems development method (DSDM), as elaborated later
on, in different project situations. Besides the description of the observed
practice, this chapter argues the need for a multitheoretic lens combining the
engineering and the socio-organizational perspectives, and uses it to elaborate
the notion of adaptation in agile systems development. Similar to the research
approach adopted by Fitzgerald et al. (2003), this chapter inductively draws
lessons from agile method adaptation in practice rather than tests hypoth-
eses defined in advance. In doing so, the chapter provides valuable insights
for both practitioners and academics concerning the effective use of agile
methods in large-scale IT departments.
The structure of the chapter is as follows. First, the motivation behind the
research has been outlined in this section. The remainder of the chapter con-
sists of three key sections: (a) a review of related research, (b) the conduct
of this research, and (c) discussions and conclusions of the research.

Background

Given that the existing explanations concerning method adaptation are frag-
mented and countervailing, we need a framework in which to organize the
previous research relevant to method adaptation. Such a framework will also
help us indicate the focus of this chapter. Before introducing the framework,
we will clarify our interpretation of key terms such as method and method
adaptation, and their usages in this chapter.

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The first term is method. As various definitions of method exist, we use its
simplest yet broadest meaning; as such, it refers to “an explicit way of struc-
turing one’s thinking and actions” (Jayaratna, 1994). While new methods
are promoted as a panacea for well-publicized ISD failures, old ones have
been criticized for being rigid, comprehensive, and built upon the idea that
a method can be used for all projects, which brings on a “one-size-fits-all”
issue. In fact, a fundamental problem still remains that methods, irrespective
of their preferred features (agility, state-of-the-art knowledge foundations),
by nature involve certain thinking and often prescribe certain actions for ISD.
The subject matter at hand addresses this one-size-fits-all issue and aims to
deal with how an ISD method is adapted and can be supported so that the
resulting method, the so-called situated method, fits a project situation. The
idea behind a situated method is that any prospective method to be used for
a development project is subject to certain adjustments because of the fact
that the method is limited to its preferred thinking and prescribed actions for
ISD that cannot fully accommodate the uniqueness of a project situation. In
this regard, such adjustments are needed for the method along with a premise
that the resulting method can provide a well-suited means for ISD and in turn
reduce the risk of its failures.
The fundamental assumption about method existence in IS development
states that as long as IS development takes place, a method must be present
in the development of an IS, and human actions and thinking involved in IS
development are purposely structured to achieve certain goals. This assump-
tion follows from the definition of method (an explicit way of structuring
one’s thinking and actions). Accordingly, method has two essential functions
in ISD: (a) the function that purports certain effects on human thinking (such
as augmenting, facilitating, and structuring), for which we use the term intel-
lectual, punctuating the strategic orientation of a method fragment, and (b)
the function that purports certain effects on human behaviour (i.e., support-
ing, automating), for which we use the term procedural, emphasizing the
operational orientation of a fragment.
These two functions are intimately intertwined because it is granted in the
field of the philosophy of mind that certain kinds of human behaviour (e.g.,
purposive human behaviour) cannot be truly isolated from associative cog-
nitive models (schemata) in the human mind. A number of researchers in
the domain of method engineering, including Siau (1999), have studied a
psychological perspective on method adaptation. Similar argument can be

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

made for techniques and tools that can treat methods, tools, and techniques as
methodical means and/or intellects—that is, possessing certain viewpoints on
thinking about IS and ISD, which supposedly aim to support practitioners for
effective and efficient development of an IS. As methodical means the focus
of methods is on their practical use; as such they can support practitioners’
actions during ISD. Besides practical use, one can look at implications in the
context of human thinking related to development activities. In this sense,
methods interact with their users and such interactions can be seen as her-
meneutic—that is, interpretative—processes (Introna & Whitley, 1997). This
has to do with mutual understanding, and augmenting and structuring their
way of thinking about IS and ISD. Methods are just instruments, but along
with this interaction they have another role and posses certain intellects and
even aim to convey certain thinking about IS and ISD. As such, methods have
their own reasoning mechanism or understanding of whatever methods are
supposed to do. It is this understanding that gives methods power to influence
the way of thinking held by the practitioners in the course of action during
ISD.1 It is this fact that gives methods a special role in the development of
human intellects.2 Having presented the meaning of method, we can turn our
attention to adaptation.
The second term is adaptation. The term adaptation simply implies “a modi-
fication according to changing circumstances” (Merriam-Webster Online,
2003). Since its significance might vary, for the purpose of this chapter, we
further define method adaptation as a process or capability in which agents
through responsive changes in, and dynamic interplays between, contexts,
intentions, and method fragments determine an appropriate method for a spe-
cific project situation. With this definition we aim to stay at an abstract level
that will allow us to organize related previous research. Before explaining
the terms in the definition above, two key perspectives concerning method
adaptation are introduced.
As noted in Baskerville and Stage (2001), existing studies related to method
adaptation follow one of two key perspectives: the engineering perspective
representing the positivist views of natural science, and the socio-organizational
perspective representing interpretative views of social science (see Table 1).
The former is of interest to the school of method engineering, emphasizes
the structural aspects of the method, and usually employs contingency-based
models for method adaptation. The latter appears to be concerned with bet-
ter understanding of how a method and its components are invented on the

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

fly and are actually used in an emerging work setting, and this is reflected
in the body of knowledge contained in the socio-organizational literature
(Baskerville & Stage).
These two perspectives adopt different levels of abstraction for method adap-
tation (Iivari, 1989). The engineering perspective stays at a conceptual level
where the main focus is on models of the real or empirical world rather than
the real world itself (Harmsen, 1997). In comparison, the socio-organizational
perspective looks into the empirical world and tries to understand method
adaptation in practice, examining real, concrete development processes. The
empirical study of Fitzgerald et al. (2003) presented how method adapta-
tion had been carried out in the Motorola organization at various levels. The
authors distinguished three adaptation levels: the industry, the organization,
and the project. Our focus in this chapter is on method adaptation at the
project level.

Prescribed vs. Emerging Context

The term context refers to a collection of relevant conditions and surrounding
influences that make a project situation unique and comprehensible (Hasher
& Zacks, 1984). The complexity of context as a subject has been acknowl-
edged by many scholars, including Akman and Bazzanella (2003). Andler
(2003) argues that relevant discussions on this subject in philosophy evolve

Table 1. Framework for organizing previous research relevant to method
adaptation

The Engineering Perspective The Socio-Organizational
Perspective

Agent

Method engineers as dominant actors An interplay between people, including
project managers, method engineers,
developers, and end users, involved in a
project

Contexts Factor-based characterization of context Emerging context in ISD setting

Method Fragment Coherent and structured parts of a
method

Innovated, unstructured fragments
separated from a prescribed method

Process/Intention
Static and dynamic use of factors
mediated by an intention, often in terms
of risk and success factors

An ill-structured, complex organizational
phenomenon

�0 Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

from its narrowest meaning about the consideration of texts in linguistics to
its broadest meaning, something to do with “situated cognition,”3 which is
invariably situated, as elaborated in the field of pragmatism. In particular, a
traditional view of the notion of context suggests that contexts are preexist-
ing and stable environments that perhaps include unobservable factors that
cause agencies to behave in partly unpredictable ways (Rogoff & Lave, 1984).
This view appears to be akin to what Andler calls the optimistic claims stat-
ing that for all classes of cognitive tasks and processes, there is a uniform
context matrix, whatever the features or factors are granted, such that for all
situations in the class, the outcome of any process in the class is determined
by the values taken by the matrix in the situation.
This is often contrasted with the contemporary view that asserts that all
contextual regularities, conditions, and any other relevant features are as-
sumed to be dynamically activated and accomplished in the situation (Linell
& Thunqvust, 2003). Context has also been studied as a central notion in
human decision making. Pomerol and Brézillon (2001) illuminate the dy-
namics of context and the employment of reasoning for practical decision
making. Practical decision making, as discussed by Pomerol and Brézillon
(2004), is reminiscent of naturalistic decision making, an adopted orienta-
tion in this work.
Different kinds of context are introduced with a duality character (Schegl-
off, 1992) such as immediate or proximate contexts. These include features
pertaining to actual surroundings in situ vs. distal or mediate contexts that
cover background knowledge, cognitive frames, or assumptions about ongo-
ing, upcoming, or even a priori activities relevant in situ. Another distinc-
tion is made between so-called primary and secondary context, the extent to
which influencing characteristics are stable (Pomerol & Brézillon, 2001). In
relation to this duality character, Andler (2003) defends a “mixed model of
inquiry,” which combines rationalist reliance either on fact or principles with
a consideration for appropriateness to the situation at hand. This is indeed
where the pragmatics view of context stands and of which several accounts
are proposed. Mey (2003), for instance, advocates this view and argues
that ambiguity is inherent in contextualization, decontextualization, and
recontextualization through which one may effectively marginalize certain
agencies and their legitimate interpretations by virtue of an institutionally
embedded context.
But what does context then include? Or to say it differently, what is included
and excluded in this contextualizing? Brézillon and Pomerol (2002) suggest

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

focusing on the dynamic of context rather than things included and excluded
in contextualizing and propose three types of knowledge for contextualizing:
external, a part of knowledge not used in a specific situation at the moment
contextualizing occurs; contextual, a part of knowledge relevant for contex-
tualizing; and proceduralized, a part of knowledge invoked, structured, and
effectively situated in contextualizing. Perhaps a more provocative question
would be who excludes what, and on whose premises? These questions have
to do with the roles of agencies in this contextualization. Andler (2003) states
that:

... the ultimate goal of a general theory of context would be an account for
regularities, if any, which can be observed in the effects of context on cognitive
process. If there are indeed such regularities, the context problem, relative
to the class of situations and processes at hand, has an in-principle solution,
consisting in refining and otherwise modifying the state space. (p. 354)

Human agency is central to contextualization. In connection with this work,
of course, method fragments are also considered during this contextualiza-
tion. However, exclusion of the agency and method fragments is in effect
when the context is framed and reframed along with the cognitive structure
and processes (Piaget, 1983). After successive approximation, this eventually
leads to an appropriate context under consideration in which the decision
is made. Accordingly, cognitive structures change through the process of
adaptation by assimilation and accommodation. This is boldly marked in
the radical constructivism along with the principle stating that the function
of cognition is adaptive and serves the agency’s framing or organizing of
the experiential world, not the discovery of an objective ontological reality
(Glasersfelds, 1997). We employ the ideas of contextualizing, framing, and
appropriation in relation to the very notion of context.
Interested readers can see the elaborations of existing models or views char-
acterizing the context in which an IS development takes place (Lyytinen,
1987). Both the perspectives discussed above use various kinds of factors to
understand the context. Even though the proposed list of factors in the domain
of method engineering is supposed to be lengthy, it is apparent that social and
organizational issues are not the focus of attention. The socio-organizational
perspective, however, does put more emphasis on social and organizational
elements of the context. In addition, this perspective considers context as an
emerging ISD setting rather than as a prescribed project situation.

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Structured vs. Innovated Method Fragments

Both perspectives use the concept of fragments. From the engineering per-
spective, a method fragment is a description of an ISDM or any coherent
part thereof. It is usually prescribed and structured in terms of fragment
properties (Harmsen, 1997). Conversely, the socio-organizational perspective
gives more attention to those fragments that are distinct from a prescribed
method. This perspective sees fragments as follows: “Under [this] concept,
each systems development project is a moving pastiche of miscellaneous
parts; bits of external methodologies, internal methods, innovative, unique
techniques invented on-the-fly, etc.” (Baskerville & Stage, 2001, p. 18). To
differentiate between the two meanings of this concept, we consider there
to be two types of fragments. We use the terms structured and unstructured
fragments to refer to the meanings in the engineering and socio-organizational
perspectives respectively.
Fragments can be principles, fundamental concepts, products to be delivered,
activities needing to be performed, job aids—techniques, tools, hints, tips—to
be used, and so forth. Some of them are essential to the ISD approach. The
term ISD approach, and we adopt the definition of Iivari et al. (2001), refers
to a high-level description of the method including the goals and the guid-
ing principles, and the beliefs, fundamental concepts, and principles of an
ISD process.
Fragments can be related to aspects of the method, such as the way of think-
ing, modeling, working, controlling, and supporting (Wijers, 1991). We are
interested in those fragments related to the way of thinking, and to some
extent to the way of modeling and working. The terms principles and assump-
tions used in published methods often refer to this kind of fragments (Turk,
France, & Rumpe, 2005). These are called strategic fragments in that they
have strategic orientations or effects on the way of thinking on ISD and IS
and reflect intellectual function of the method. They are concerned with, for
instance, modeling aspects and scope, development strategy, and deployment
strategy. As such, they are often referred to as building blocks of scenarios
or a planned approach in literature (e.g., Slooten & Hodes, 1996).
So, we identify the following fragments and corresponding decision variables
related to several aspects such as the modeling aspect, design-development
aspect, and user-engagement aspect. Consequently, we have the following.

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Strategic fragments that are related to modeling aspects:

• Modeling scope (the boundary of the target system and dimensions):
The extent to which the approach considers the tracing of several per-
spectives such as functional, information, process, organizational, and
operation (e.g, Curtis, Kellner, & Over, 1992)

• Approach orientation (the orientation of the problem-solving system):
Problem or solution orientation and social aspect (technical-administra-
tive or social-organizational; see Offenbeek & Koopman, 1996)

• The analysis starting point (knowledge acquisition strategy): Current
situation or future situation (direct acceptance of user requirements; the
actual system as a starting point, possibly from the point of view of the
old system; determining information requirements from scratch, starting
from perspective of the object system)

• Reuse (design) strategy: Using a reference (architecture) model, a new
architecture, or a combination of both

Strategic fragments that are related to design-development aspects:

• Dividing strategy: Increment strategy (how to partition the problem
and/or solution space)

• Realization strategy: The way to realize a number of increments—at
once (no subsystem), concurrently (parallel), overlapping, or consecu-
tively (subsystems are developed one after another, incrementally)

• Development strategy: Linear, overlapping, throwaway, keep-it pro-
totyping, evolutionary, or reverse engineering

• Delivery strategy: The way to deploy a solution in an organizational
setting—big bang (at once), incremental, evolutionary

Strategic fragments that are related to stakeholder-engagement aspects:

• Validation strategy: Immediate acceptance, definition of norms, and test
cases by means of which assessment takes place or whether the chosen
solutions meet the requirements; prototyping; validation by usage

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

• Engagement strategy: Based on the interaction model of Offenbeek
and Koopman (1996) and in particular on the user engagement (degree
of user involvement and responsibility)

Agents Leading Method Adaptation with an Intention

An agent is an actor with one role or more in a method adaptation process.
The socio-organizational perspective does not specify any specific roles in
that process, yet the emphasis is on the practical interplay between people at
work. The socio-organizational perspective considers the method adaptation
process as “an ill-structured, complex socio-organizational phenomenon”
(Baskerville & Stage, 2001, p. 14). Anthropology is referred to as a poten-
tial reference discipline to study such a process, and Agar’s (1986) practical
ethnography and its four major units of analysis are used to explain how the
process develops in practice.
The engineering perspective regards method engineers as the dominant ac-
tors in method adaptation. Their role is to carry out the process leading to
a tailored method, that is, a method that is adapted to the project context at
hand. Such a process usually employs contingency-based models. Offenbeek
and Koopman (1996) discuss the limitations of 17 contingency-based models
that have been proposed for determining an appropriate approach for an IS
development project. As they note, the factors taken into account in these
models can be numerous, or limited to certain IS views and used in a static
manner. That is, these models ignore possible bilateral interactions between
the context, characterized by the factors, and the approach, and further lack
dynamic interactions among the factors. Offenbeek and Koopman propose
the concept of a dynamic fit between context and approach as a solution
to the static use of contextual factors, the approach, and the corresponding
method fragments. They state, “To a certain extent the dominant actors can-
not only choose their approach but also their context, whether by definition
or by intervention, that is by deliberately changing the context” (p. 257). It
is important to note that both the context and the approach are subjects for
adaptation, and a form of mediating construct is needed to facilitate this
adaptation process. Such a construct is here called an intention and has been
referred to using different terms in the various models proposed for method
adaptation; see, for instance, risk in conventional contingency-based models
as listed in Van Offenbeek and Koopman (1996), success in Harmsen et al.

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

(1994), goal in Baskerville and Stage (2001), and mediating factors in Slooten
and Brinkkemper (1993). We consider the intention as an indication of what
drives the agents while carrying out method adaptation.
In the dictionary (Merriam-Webster Online, 2005) and everyday language,
the term intention is synonymous with volition, purpose, and significance,
and indicates “a determination to act in a certain way.” Other derivations
and uses of the term appear as intent, intentionality, doing with an inten-
tion, or doing something intentionally. To ground explanations concerning
their differences would require a long philosophical treatise that belongs to
the philosophy of mind, but the treatment of intention and intentionality in
Bratman (1987) and Morison (1970) is relevant to our subject. The treatment
of the terms intention and intentionality should be separated as the former
has been articulated in relation to action, planning, and practical rationality
(Bratman), and the latter is proposed in phenomenology, a particular school
of thought in the philosophy.
Intention is considered a state of mind (what it is to intend to do something)
and a characteristic of action (having an intention to do something or doing
something intentionally). Intentionality derives from the Latin verb intendere,
which means to point to or to aim at, and Brentano (1838-1917) accordingly
characterized the intentionality of mental states and experiences as their fea-
ture of each being directed toward something. Intentionality in this technical
sense then subsumes the everyday notion of doing something intentionally:
An action is intentional when done with a certain intention, that is, a mental
state of aiming toward a certain state of affairs. One of the most comprehen-
sive expositions of the term intention is in the work of Michael Bratman.
His treatment reveals complexity and the essence of its characteristics and
functions along with two forms (future and present directed4). Bratman (1987)
extensively discusses his account in relation to planning theory and agent
rationality, for which we cannot condense the body of literature he employs
in a few pages. The forms and kinds of intention he proposed, however, are
especially useful for characterizing the agency action in method adaptation.
Upon deeper examination of the idea of intending to act, which channels
a future-directed form of intention, or having an intention to act, which is
present-directed action, he contends that intentions are neither desires nor
beliefs but plans, and that plans have an independent place in practical think-
ing. One of the central facts about intentions essential for this work is that
they are conduct-controlling pro-attitudes and serve as inputs for further
practical reasoning.

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The Conduct of the Study

Research Objective

During our case-study investigation in an organization, we explored, described,
and analyzed the work practices dealing with method adaptation without
limiting ourselves to a specific perspective. To frame our research scope, we
formulated our goal as to investigate how an agile method is adapted to dif-
ferent project contexts in a large-scale IT department. By using the constructs
elaborated in the previous section, this goal statement could be formulated
as follows: to investigate the ways through which a method engineer and a
project manager together adapt dynamically both structured and unstructured
fragments of an agile method to different contexts at the project level. We
especially looked into the early stages of the systems development process
where the adaptation process appeared to be more essential and more trans-
parent in the organization investigated.

Research Method

The research approach adopted in this study is that of an interpretive field
study. Many researchers, including Fitzgerald et al. (2000) and Sauer and
Lau (1997), have also used this research approach for the study of method
use in practice. It has been suggested as an appropriate research method for
explorative and descriptive types of research and, according to Klein and
Myers (1999, p. 69), “interpretive research does not predefine dependent and
independent variables, but focuses on the complexity of human sense making
as the situation emerges; it attempts to understand phenomena through the
meanings that people assign to them.”
The field research was conducted in the form of a research project in the
organization and carried out by a research team consisting of people from
both the university and the case organization. The Appendix summarizes the
characteristics of the research method applied, such as the use of multiple study
stages, various sources of knowledge, an iterative process of data analysis
(Walsham, 1995), a collaborative style of the research team’s involvement,
“engaged” data gathering (Jones & Nandhakumar, 1993), and the use of dif-
ferent feedback mechanisms for the validity of the data analysis. One can
see that the mentioned characteristics are indeed related to the principles of

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

interpretive field research (Klein & Myers, 1999). (Due to a space limitation,
we could not further articulate the relations between the characteristics and
the principles, but as an example, notice that the use of various sources of
knowledge is related to the principles of multiple interpretations, suspicion,
and contextualization.)

Introducing the Case Organization

The organization we investigated is one of the leading financial institutions
in Europe and operates in a dynamic business environment. One of the global
strategic business units, Consumer and Commercial Clients (C&CC), focuses
exclusively on services to individual clients and small- to medium-sized busi-
nesses. The Netherlands Business Unit (BU) is one of the five BUs under
C&CC. IT Development is one of the departments within the Netherlands
BU and employs 2,000 people involved in systems development projects.
Such a large IT department was chosen because it enabled us to investigate
method adaptation in various project contexts.
It is worth noting that the organization has considerable experience of ISD-
method use. The organization’s identity goes back 10 years to the merger of
two organizations, both of which were used to using conventional methods.
One of them had been using a method developed in house, and the other a
brand-named method. Until the introduction of an agile method, just 2 years
ago, there had been a lot of effort put into achieving a standard method
influenced heavily by previous development procedures, processes, and
templates.

About the Agile Method: DSDM in a Nutshell

Dynamic systems development can be considered an agile method because it
has the ability to be adaptable to a variety of development situations (Abra-
hamsson et al., 2003). In the United Kingdom and in Benelux countries,
DSDM, which is supported by a consortium of over 600 organizations, has
become the de facto market standard. The method strongly emphasizes the
concepts of suitability and adaptability; DSDM will be, to a certain extent,
suitable for a project or an organization, and is adaptable if not completely
suitable.

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

For the purpose of this research, we have considered three components of
DSDM: its underlying philosophy (captured in nine principles), its framework
(stages, activities, products), and its essential techniques (Aydin & Harmsen,
2002). In practice, each of these components can be applied separately, and
subsets of the components can also be applied on their own. The principles of
the method are active user involvement, frequent delivery of products, itera-
tive and incremental development, an empowered team, fitness for business
purposes, reversible changes, requirements at a high level, testing throughout
the life cycle, and a cooperative approach. The DSDM framework suggests
a complete project approach that includes key phases, products, and roles
that should be customized according to the project situation (see Table 2 for
the examples of product and process fragments of the DSDM used at the
business-study level). Modeling techniques are not included in DSDM since
they are often a part of modeling tool sets that are not themselves part of the
method. In this way, DSDM is highly adaptable: It is possible to use fully
fledged DSDM, but individual techniques or just the terminology are still
valuable on their own. To this end, an instrument called a suitability filter is
available in the manual (DSDM Consortium, 2003). The filter considers the
critical success factors for DSDM and the characteristics of projects that will
make DSDM especially effective. Each potential project should be judged
individually using the filter. If the project provides a good match with the
filter, then DSDM can be considered as a suitable method. If the criteria
results are not satisfied, then the method can be modified.

Business-Study Level

Product Fragments
Process Fragments*

Main Products Models

Business area Definition
Outlined prototyping plan
System architecture definition

Business functions Data/
relationships/rules
Business events
Business scenarios
Business architecture
System locations

Visionary
Ambassador user(s)
Project manager

Table 2. Examples of product and process fragments of the DSDM used at
the business-study level

Note: *Only roles-related fragments are provided here. See the complete list of fragments in DSDM (2000).

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Important DSDM techniques are time boxing, facilitated workshops, priori-
tization, and prototyping. Time boxing refers to setting a deadline by which
a predefined objective must be met rather than describing when a task must
be completed. To prioritize requirements of the system, the MoSCoW tech-
nique is used; the term is an abbreviation for the phrase “must have, should
have, could have, and want to have, but won’t have this round.” We assume
that the concepts of facilitated workshops and prototyping are known. For
more details of DSDM, one should refer to the DSDM Consortium document
(DSDM Consortium, 2003).

The Situation at Hand

Recently, DSDM has become the method of choice for all information system
development projects in the department. The main motivation for this deci-
sion was to ensure time-to-market systems development in order to achieve
substantial product and process improvements, and to use one terminology
in all projects. The DSDM implementation in the department focused on
coaching project managers in adapting the method in the organization and
at project levels with the help of experts. The experts, known as coaches,
had extensive project experience and were subject-matter experts in DSDM
use. They coached project managers on how to make better decisions on
the suitability of DSDM and on the degree of adaptation DSDM would
require for each project. Basically, there were two essential, important roles
in DSDM adaptation: the project coaching role and the project management
role. The DSDM coaches assisted project managers in adapting DSDM to
their project context, whereas project managers were fully responsible for
the project execution. They were the final decision makers in terms of the
use of DSDM fragments.

Case-Study Procedure

The field research consisted of three stages: the preliminary study stage, the
actual research stage, and the posterior study stage (see Table 3).
We conducted the research in cooperation with a sponsor and a method en-
gineer from the case organization. The sources of knowledge were, in this
empirical setting, informants, direct observations, and documents. Since

�0 Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Table 3. Summary of the case-study procedure

Time Stage Event / Activity Objectives Involved People

Jan 2002
Pr

ep
ar

at
io

n
Field-study preparation •	 Uncovering all aspects of

the phenomena that has
been studied so far in the
literature regarding two
theoretical views

•	 A high-level description of
the research method is to
be used

Academics, including one
primary investigator and three
senior researchers (professor,
assistant professor, and a
subject-matter expert)

Feb

Pr
el

im
in

ar
y

St
ud

y

Conducting, codifying, ana-
lyzing, and reporting inter-
views

Explained in the Appendix Explained in the research-
method section

May Discussion of the reflections
of interview results within the
organization

All research team members
and method engineers

May Determining research scope,
and research design vari-
ables

Explained in the Appendix Research team members

June

A
ct

ua
l S

tu
dy

•	 Second-round interviews

•	 Third-round interviews

•	 Direct observation

•	 Artefacts analysis (route
maps, instruments such
as the ESRL, advice docu-
ments, etc.)

See Appendix for other ac-
tivities

Explained in the Appendix Explained in the Appendix

June
July
Sept

Three checkpoint meetings •	 Validation of findings

•	 To agree on the level of
abstraction and degree of
generalization

•	 To agree on the depth
and breath of the research
scope

Explained in the Appendix

July
Sept

A number of discussion
meetings with a broad
audience

Explained in the Appendix Explained in the Appendix

Nov Closing up and writing a
draft version of the case
protocol

To document findings in a
scientific way

Academics

Dec 2002-
Mar 2003

Po
st

er
io

r
St

ud
y

Several iterations for the
case protocol

Quality improvement by
peer reviews

Academics (internal and
external)

Dec 2002-
June 2003

Follow-up communications
with the organization

Explained in the Appendix Explained in the Appendix

Sept 2003 Informal meetings Monitor the evolving
practice specific to method
adaptation

Explained in the Appendix

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the information needed was partially available in the organization, the team
concluded that several rounds of formal and informal interviews, direct
observations in the form of attending meetings, and in-depth documentary
analysis were the most appropriate ways to collect data. Essentially, three
rounds of interviews were conducted, each at a different level of detail in
different forms, with different informants (i.e., embedding different levels
and roles). In some interviews, a list of questions was used to ensure that
all the important subjects were covered, but at the same time, room was left
for emerging issues (see the Appendix for the interview questions and other
details of the research method used).
In this interpretive case research approach, we preferred engaged data-gathering
methods to distant ones as they allowed us to gain rich insights into method
adaptation (Jones & Nandhakumar, 1993). However, some limitations of this
approach have been identified. One of the problems, as frequently cited in
the IS literature (e.g., Klein & Myers, 1999), was the difficulty in controlling
the interactions between the researchers and the participants, especially in
a large IT development department. Another problem was the level of ab-
straction needed and the degree of generalization achieved. To assess these
problems, the research team members organized three checkpoint meetings in
which up-to-date research findings were discussed and the scope of the future
stages of the research determined. In these meetings, the depth and breadth
of the research scope was elaborated and found to be satisfactory for all the
parties involved in this research. Another type of feedback mechanism, used
to check the validity of the analysis, was to present and discuss the research
findings with other interested parties in the case organization. This involved
12 method engineers, six project managers, one change manager, one chief
domain architect, and two quality-assurance leaders. The feedback from such
a broad audience was useful to justify our findings.

Major Findings

We identified static and dynamic method adaptations as two distinct ways of
carrying out method adaptation in the department. Next, we describe each
of them separately.

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Static Method Adaptation

Static method adaptation refers to selecting and assembling structured frag-
ments based on a predefined set of criteria. In the case organization, we
found that the type of development or target environment (i.e., the technical
infrastructure, or the platform an application will be designed and built upon)
and the nature of the solution (i.e., a packaged or a custom-made application
for business change; Gibson, 2003) were two of the dominant factors used
in static adaptation. Static method adaptation resulted in several route maps.
A route map is an established plan prescribing which structured fragments
should be used in a project. Examples of route maps are packaged solutions
and component-based development (CBD; Dahanayake, Sol, & Stojanovic,
2003). These route maps have some similarities with the form of process
landscapes as described in Backlund, Hallenborg, and Hallgrimsson (2003).
In the event of choosing a route map for a project, the project manager could
see only the relevant structured fragments, including stages, activities, prod-
ucts, techniques, and modeling tools for that project. It was interesting to
note that the relevance of principles and essential DSDM techniques were not
specified as part of these route maps. This point encouraged us to investigate
how unspecified fragments have been adapted in practice, and so we needed
to look at the second adaptation level.

Dynamic Method Adaptation

The second way for method adaptation, which we refer to as dynamic method
adaptation, takes place during the process of developing an agile system. In this
way, the role of the coaches is essential in order to adapt both structured and
unstructured fragments to the contexts or vice versa. In practice, the coaches
in the department were facilitating project managers to choose, modify, or in-
novate fragments for each project. As a consequence, we decided to focus on
coaching activities and studied the means used in method adaptation. Figure
1 summarizes the key activities performed by the coaches. Two decisions
had to be made in this coaching activity diagram: whether to use DSDM or
not (in the suitability analysis), and whether to adapt or directly use parts of
DSDM (in the adaptation analysis). Note that the output of characterizing
the project was used with both decision points. Next, we discuss the ways
and means that can be used to characterize a project.

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We noted that coaches were using an instrument, the so-called Extended Suit-
ability/Risk List (ESRL), for characterizing a project. During the early stages
of DSDM use in the department, the coaches had used the questions in the
original DSDM suitability filter (DSDM Consortium, 2003). Later, as they
gained experience with them, some questions were extended and clarified,
and furthermore, for each question, working instructions, measures, useful
hints, and tips were added (Table 4).
The ESRL became an instrument that provided a baseline for the written ad-
vice to be produced for each project. In our interviews with both the coaches
and the project managers, participants emphasized the significance of using
the ESRL in method adaptation. They commented on the high relevance of
the factors in the ESRL for better understanding the project situation at hand.
In the ESRL, the applicability factors are closely related the preconditions
and principles that need to be taken into account for the effective use of the
method. These, in fact, reflect most of the success or risk factors that are often

SUITABILITY ANALYSIS

Characterize
the project

Consider another
method

DSDM
suitable or not

No

Yes

No

Yes

Tailor DSDM

For each part (philosophy, framework,
essential techniques), decide whether

or not any adaptation is needed

Parts of
DSDM

Consider nonadapted
part(s) for the assembly

Adapt part(s)

Assemble (adapted, nonadapted) parts to reach a tailored method

ADAPTATION ANALYSIS

Legend:
Activity name Decision point

Figure 1. Overall coaching activities regarding method adaptation

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

cited in IS literature (Schmidt, Lyytinen, Keil, & Cule, 2001). To clarify the
meaning of each factor, the instrument includes further explanations with
some follow-up questions and examples (see the Explanation column in Table
4). The instrument basically accepts the following assumption: that the inap-
plicability of the factors to the context at hand can cause a discord between
the preconditions for effective use of the method and the project context. To
mitigate the discord and related issues, suggestions are provided in the form
of preventive and corrective measures in the instrument (see the Manage-
ment Measure column in Table 4). These measures indicate the preconditions
for the effective use of the method and relate them to the fragments of the
method. We noted that the coaches considered the measures as suggestions
rather than as directives for method adaptation. They had discussed the ap-
propriateness and applicability of the measures with project managers. The
coaches and project managers had discussed the implications of method
adaptation in terms of conformance to time and budget (i.e., the degree to
which the desired functionality could be realized within an agreed time or
budget), and customer satisfaction (the degree to which the project outcomes
would fulfill the expectations of the sponsor and users).

Applicability
Factor

Suitability
(Y/N) Explanation Management Measure

(P=Preventive, C=Corrective)

Problem ownership:
The identity of the
problem holder, or
customer for the
project, is clear.

Is a champion (proponent/
leader) present and able to
ensure that resources are
released?

P1. Do not start project.
P2. Determine who actually holds the purse
strings and who ultimately makes decisions
and carries the responsibility. Who will have
problems if the system is not built?
C1. Look one level higher in the hierarchy.

The end users with the
delegated authority
to make decisions are
capable of making
decisions.

End users may have the
required authority, but may
fail to use it.

Essential characteristics
of the iterative approach
must be present so that the
process can proceed with
the necessary speed.

P1. Tell the users in advance that they have
the authority to make decisions within the
specified boundaries and that they must
indeed make these decisions.
P2. If the decision-making authority is not
delegated to users, management must also
participate in the team.
C1. Make agreements with management
regarding availability; for example, questions
submitted by the teams must be answered
within x days, x hours, or the manager must
keep a half an hour free every morning for
questions (e.g., 8:30-9:00).

Table 4. The extraction from the ESRL

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Once a coach had used the ESRL and discussed the implications of method
adaptation with project managers, they would write down their advice on how
best to use the method for a successful system development in the perceived
project context. To give a flavor of such advice, we have provided Table 5,
and with this we will illuminate the notion of structured and unstructured
fragments.
Let us first focus on the advice about the appropriate DSDM development
strategy. The recommendation given is closely related to the principle of
iterative and incremental development, which simply states that “many in-
crements with iterations is an ideal development strategy for agile systems
development” (DSDM Consortium, 2003). Using increments means that a
solution can be split into components that are based on prioritized require-
ments (Slooten & Hodes, 1996). More formally, an increment is a part of
the system that is delivered to, and used by, a user before the total system
is operational. However, having iterations means that some stages and cor-
responding activities need to be repeated through incorporating continuous
feedback from the user. Such an iterative aspect of a development strategy
contributes to the achievement of fitness for business purposes, which is
another principle of the method.
The hybrid development process recommended in the sample advice shows
how the principle of iterative and incremental development can be adapted

Table 5. The extraction from the sample advice

About the Project Context About the Appropriate DSDM Development Strategy

“If we know that the requirements
are almost clear, stable, and that
it is hardly possible to prioritize
them, that there is no clear
user interface, that there is high
computational complexity, that
the timeline is not clear, and that
the resource availability (in terms
of developers, end user) is not
known, yet the total resources can
be fixed, then we would like to
know which development strategy
is most appropriate and what kind
of consequences we may anticipate
in the later DSDM phases.”

About Some Issues Related to Two Techniques of DSDM and
Related Risks

“… as the case indicates, the MoSCoW (a DSDM technique) appears not
to be very suitable for this situation due to the difficulty of prioritizing
requirements. The same holds for timeboxing, for which there must be
a fixed date for the project, or for an increment, or for an iteration. For
both anticipated issues there may be some opportunities to use these two
techniques in different ways. Indeed, DSDM coaches have had some
experience with such ways and they successfully use the philosophies
behind MoSCoW and Timeboxing in real projects situations.”

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

to the project context described in Table 4. It suggests that a project manager
should realize some increments in an iterative manner, and achieve the rest
without iterations (i.e., by applying a linear or waterfall systems develop-
ment strategy). The term hybrid underscores the mixture of typical DSDM
development strategy (iterative and incremental systems development) and
a linear development strategy in such a project context.
The other part of the advice regarding issues about two techniques of DSDM
and related risks on the one hand addresses structural parts of the method—that
is, the techniques MoSCoW and timeboxing—and on the other hand points
out an unstructured innovative fragment by noting that “[i]ndeed, DSDM
coaches have already experienced such ways and they have successfully
used the ideas behind MoSCoW and Timeboxing in such a project context.”
The innovative fragment here is to use timeboxing in a different way to
that prescribed in a given project context. One coach explained how to use
timeboxing in a different way:

It is true that you usually use timeboxing when the deadline of a project is
known and then you can split a fixed timeline into “boxes,” but you can
also do it by using budget as a criterion. Namely, if the human resources to
be used in your project are known, you can calculate total available human
resources in terms of man-hours and then you can convert this into a fixed
budget and apply the idea of timeboxing as “budgetboxing.”

In fact, we identified many such structured fragments that needed to be
adapted and these resulted in innovative fragments in the case organization.
However, given the space limitation in this chapter, we have simply presented
a few examples of such fragments in this section, and we will discuss their
implications in the next section.

Discussion and Conclusion

The findings presented in the previous section show that the two perspectives
are complementary and may even be necessary rather than conflicting if one
considers adapting both structured and unstructured method fragments for
two distinct approaches to method adaptation in a large-scale IT department

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

(see Table 6). In the following, we shall explain this complementary aspect
of the two perspectives.

Static Adaptation

As summarized in Table 6, the engineering perspective, embedding the dy-
namic-fit concept of the contingency paradigm, provides a sound basis to
illuminate static adaptation. Indeed, method engineers have been primarily
responsible for characterizing a project context and determining which frag-
ments are needed for a project. The chosen fragments, which result in various
route maps, are good examples of the models created at the conceptual level.
It is rather easy to see that a high degree of method adherence was driving the
process for static adaptation. It is also clear in this process that the direction
of adaptation is from method to context; that is, method is adapted to context.

Two Ways for Method
Adaptation

The Constructs
Relevant to This Research

The Static Adaptation The Dynamic Adaptation

Key Perspectives Applied
The engineering perspective Both the engineering and socio-

organizational perspectives

Levels of Abstraction The conceptual level The empirical level

Agent Only coaches or other method
engineers

The coaches and project managers

Contexts

Factor-based characterization
of context, characterized by
the nature of a solution and the
type of development or target
environment

Emerging context in an ISD
setting, characterized by a set of
factors in an instrument

Method Fragment Only the structured fragments
(stages, activities, modeling tools)

Both structured and innovated
(unstructured) fragments

Process/Intention

Only adapting the method to the
context; the static use of factors
with an intention to adhere to the
method

Adapting the method to the
context or vice versa, with an
intention to adhere to time and
budget, and achieve customer
satisfaction

Table 6. Characteristics of the static and dynamic adaptations for an agile
method in the case organization

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Static adaptation helps project managers start with an appropriate route map
for a particular project, but it has some limitations on the way to character-
ize the context in which the project runs. Namely, as we pointed out before,
such adaptation employs a prescribed view of the context by using foreseen
and salient contextual factors. This implies that static adaptation at best leads
to a kind of a prescribed method by incorporating a priori project-specific
characteristics. As we have seen from the present case, a project manager
has needed dynamic adaptation to be able to adapt method fragments and
context to each other in the course of a project.

Dynamic Adaptation

Similar to static adaptation, dynamic adaptation helps a project manager to
adapt the chosen fragments to the context in the project execution. In this
adaptation, depending on what the context requires and what the intention
is, project managers need to further modify the structured fragments or even
innovate new fragments. We shall now consider two types of fragments to
illuminate modification and innovation of fragments.
For the former, consider our finding about how the timeboxing technique
(setting a deadline by which a predefined objective must be met), which is
one of the essential techniques of the method, has been used in some projects.
This technique is essential in that it can be used as a means to achieve some
of the principles of the method, such as frequent delivery of the system or its
parts, or the quick incorporation of feedback from the project stakeholders to
the system to be delivered. We have showed that even though the technique (a
structured, chosen fragment), at first glance, was not suitable for the project
context, the agents strove to accommodate this technique in a special proj-
ect context (no timeline was set for a project) and found an alternative way
(budgetboxing) to apply the essence of this technique. It was clear that the
intention behind this adaptation was partly due to the desire to adhere to the
method, and partly to adhere to the philosophy behind the technique.
For the latter, consider our finding about how the principle of iterative and
incremental (a structured fragment) development was changed to a hybrid
approach (an innovated fragment). We have showed that the hybrid approach
was recommended as an appropriate development strategy to the project
context as described in Table 5. This means that, on this occasion, the context
forced agents (project managers and coaches) to find out an alternative way
of using the principle of iterations and increments.

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In contrast with static adaptation, dynamic adaptation allows a project
manager to adapt the project context to method fragments in the course of
a project (adaptation at the empirical level). To explicate this point, we can
refer to the Management Measure component of the ESRL tool. This contains
some suggestions concerning the ways to change the context. For instance,
the inapplicability of a factor related to the user, as presented in Table 4,
may require some management measures. These measures in fact indicate
how the context might be changed to mitigate the issues possibly faced in
order to realize the fragments of the method, which are mainly related to
the philosophy component of the method. In this event, the reaction of the
agents can be to change the context and/or the fragment. We have seen that
the intention that drove the behaviour of the agents was closely related to the
desire to conform to time and budget, or to customer satisfaction.
Even though agents do their utmost to mitigate risks and related issues, a
project is not risk free, and the agents might be faced with some emerging
breakdowns resulting from a discord between the method and the context. These
breakdowns may eventually result in risks for the project. Such breakdowns
need to be resolved, possibly by innovating new fragments or substantially
changing the existing fragments. The socio-organizational perspective helps
to illuminate such fragments, pinpoint the root causes of breakdowns, and
describe methodical and amethodical aspects of the breakdowns (Truex,
Baskerville, & Travis, 2000). In addition, this perspective facilitates an
understanding of the emerging context in which the resolutions have to be
achieved and the fragments invented. In this sense, the ESRL, on the one
hand, employs the engineering perspective and helps agents to characterize
and adapt the context and fragments. On the other hand, the ESRL accom-
modates the socio-organizational perspective and helps project managers to
make sense of what the emerging context is about and what fragments are
being innovated in such a context.

Proactive Role for the Agent Involved in Method
Adaptation

An important implication of method adaptation is related to the degree at
which an agent is dominant for method adaptation. In fact, the idea of method
adaptation asserts that method, context, and the agent are not passive ele-
ments in the interplays among them, but purposively intervene in the agent’s
knowledge about how to handle the construction of the situated method. This

�0 Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

implies that we should advance in our thinking about the effect of method
in these interplays rather than reducing its meaning to certain aspects and
attributes. To show how to advance in thinking, we suggest looking beyond
the “frozen” rationale captured and often implicit in the presence of the
method, and possibly capture its creator’s way of structuring the intended
user’s (the designer role) thinking and actions. This advanced understanding
of method is related to its intellectual function; the practical function is more
geared to structuring actions. Most methods are proposed to make use of the
practical function of the method, but this is limited in its use and has possi-
bly severe consequences if the agent is unaware of the intellectual function.
The consequence can be so dramatic that the agent can become a slave of
the method if she or he is not confident about the fragment. Nontechnically
speaking, if the agent is not familiar with the method and is forced to use it,
then either the agent’s thinking or actions are fully captured in the method or
severe clashes and breakdowns occur between the agent and method. These
often occur at later stages and may cause project failures. This means that
the agent should be more proactive in revealing and preventing these break-
downs. Guidance in this research explicates how the agent (like a project
manager in the case organization) can be supported in this respect. The role
of mediator (like a coach in the case organization) is essential to support the
designer in the awareness of limitations of not only the method, but also his
or her own fragment. In this regard, we suggest that method should be enacted
with its intellectual function so that it will not tell you what and how things
should be done but act like an advisor and facilitate the agent in constructing
a truly situated method. Implication of this change in method functioning
is substantial for its creator. Instead of providing the full-fledged content of
a method, the experience of those who use the method should be a starting
point for establishing the basis of a method. This idea resembles the method
life cycle consisting of several loops (ad hoc approach →	best practice →
de facto method → de jure method → ad hoc approach) as mentioned in
Harmsen (1997).

Method Adaptation in Globally Distributed System
Development

Traditionally, systems development activities are colocated and almost no
methods are designed specifically for this purpose. All parties are close, so
many activities are carried out face to face. However, the trend in practice is

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

changing toward systems that have been developed in a more globally dis-
tributed manner. Methods fall short in addressing the challenges of how to
conduct globally distributed systems development (GDSD). It is interesting
to see how method adaptation deals with differences among parties involved
in such settings in terms of ways of thinking (along with culture, laws, lan-
guage, etc.) or acting (distribution of work, communication and coordina-
tion mechanisms, etc.). Not only is distributed global systems development
needed in practice, but distributed global method adaptation would also
be required. In case the method fails to accommodate globally distributed
systems development, we can expect method adaptation would be driven by
the context at hand. This suggests that since the method does not address the
aforementioned challenges driven by GDSD, people would be forced by the
context to come up with a new practice that leads to innovative method frag-
ments. Studying method adaptation in GDSD would provide new insights in
understanding the effect of contextual differences on MAP.

Practical Implications

Practical implications of this study are manifold. First, we can argue that
two approaches to adaptation—static and dynamic—could be applicable and
useful in a large-scale IT department. We especially focus on the dynamic
adaptation rather than the static adaptation and emphasize that for the dynamic
adaptation, the role of coaches is found to be essential in supporting project
managers to make appropriate decisions on the use of method fragments in
a specific project context with an intention. This chapter details how such
support was achieved in the case organization. Second, it is our contention
that an instrument similar to the ESRL, but incorporating up-and-working
experiences derived from real projects, might be useful in supporting the
agents (the method engineers and project managers) in dynamic method
adaptation. This study shows the feasibility, applicability, and usefulness of
such an instrument in the context of agile systems development in one of the
leading financial institutes in Europe.
One of the implications of this study for academics is that the constructs
drawn from relevant research and summarized in Table 1 can provide a
solid theoretical ground for future research regarding method adaptation.
Notice that in this study we have articulated these constructs and used them
to explore the adaptation of an agile method to different project situations
in a large-scale IT department (Table 5). For future research, there is an op-

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

portunity given by the fact that by using these constructs, one can investigate
other agile methods in different organizational settings to further discern the
role of the key constructs described in the framework. Another research op-
portunity related to the proposed constructs is to study the relations between
these constructs. Such a study might propose and possibly test a number of
hypothetical relations between the constructs for static adaptation and/or
dynamic adaptation. Notice that in this study we just give some indications of
how these constructs might be related for two types of method adaptation.

Comparison with Other Studies

Regarding the comparison of our findings with relevant studies, we shall com-
ment on the following subjects. First we will discuss the use of a multitheoretic
lens on method adaptation. It seems that for studying method adaptation,
such an approach is novel in academic circles although the complementary
aspect of two perspectives has already been mentioned as a future research
topic by Baskerville and Stage (2001). Second, most of the findings about
method adaptation, including the Motorola case presented by Fitzgerald et
al. (2003), and the cases of Ericsson ERA/RNC and Volvo IT presented by
Backlund et al. (2003), are similar to those presented here, but their analysis
either stays at the organizational level or focuses on only the static adaptation
of other methods. Our work covers both static and dynamic adaptation of an
agile method (DSDM). This study considers DSDM as an example of the
agile method and shows empirical evidence on the situational appropriate-
ness of DSDM at the project level, which is found to be a missing point in
literature (Abrahamsson et al., 2003). A final comment can be made about the
distinction between DSDM and other agile methods on method adaptation.
Even though other agile methods claim to support method adaptation at the
project level, most of them lack clear guidance on how to do this. DSDM
includes an instrument aiming at guiding project managers in realizing method
adaptation. We have emphasized that such an instrument provided the case
organization a good starting point to work on the relevance of the content
of the instrument to its own project situation. That is why instead of going
into detail about the content of the instrument the organization had used, we
have especially focused on its dimensions and the way it had been used in
method adaptation.
However, this research also has some limitations. Even though DSDM is
an excellent example of an agile method, one has to take into account the

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

limitations of the findings since they are specific to one method and one
case organization. Consequently, we have discussed the findings from two
perspectives in order to draw lessons inductively rather than generalize them
and test previously defined hypotheses.

Conclusion

Based on our experience, we hope that this chapter will encourage other
academics to employ two perspectives when investigating agile methods. To
realize static and dynamic adaptations as two distinct ways of carrying out
method adaptation, organizations can benefit from using a coaching service
and instrument as described in this study. We especially emphasize on how
dynamic adaptation incorporates two perspectives and has been realized by
the help of the coaching service and the instrument used in the case orga-
nization. However, while we try to draw the attention of academics to the
use of the two perspectives in method adaptation, we cannot ignore the fact
that the engineering perspective has had a privileged position in the history
of conventional methods. As a consequence, we need to especially increase
our knowledge on the use of the socio-organizational perspective in gaining
a better understanding of agile methods adaptation.
The research community in which our work is positioned has dedicated
research domains (so-called information systems development and method
engineering domains) on the subject matter and has a solid body of knowledge.
In that sense, our contribution might be regarded as a modest extension of the
body of knowledge in these research domains, consisting of further articula-
tion, explication, and establishment of the idea of method adaptation, which
refers to the phenomenon about dynamic interplays between a context, an
agent, and a method fragment in an information systems development situ-
ation. Naturally and essentially, the foundation of method adaptation needs
to be established by using existing bodies of knowledge and more empirical
studies. It is natural that such a modest extension is needed because the very
notion of agent deserves more attention as the heart of method adaptation. It
is essentially needed because without this notion, method adaptation lacks
its essential feature referring to how the agent in some way adapts her or
his knowledge to the context or the other way around. One can argue about
where her or his adaptive capability comes from. We all have this capabil-

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ity, which goes beyond the basic discussion of survivability. Whether it is
granted or learned, it is this capability that makes the agent aware about what
is going on and helps the agent involved in method adaptation in particular
to manage intriguing interplays among herself or himself, the context, and
the fragment.

References

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New
directions on agile methods: A comparative analysis. In Proceedings
of the 25th International Conference on Software Engineering (pp. 244-
254).

Agar, M. (1986). Speaking of ethnography. Newbury Park, CA: Sage.
Akman, V., & Bazzanella, C. (2003). The complexity of context: Guest edi-

tors’ introduction. Journal of Pragmatics, 35, 321-329.
Andler, D. (2003). Context: The case for a principled epistemic particularism.

Journal of Pragmatics, 35(3), 349-371.
Aydin, M. N., & Harmsen, F. (2002). Making a method work for a project

situation in the context of CMM. In M. Oivo & S. Komi-Sirvö (Eds.),
Product focused software process improvement (LNCS 2559, pp. 158-
171). Berlin, Germany: Springer.

Backlund, P., Hallenborg, C., & Hallgrimsson, G. (2003, June). Transfer of
development process knowledge through method adaptation and imple-
mentation. Paper presented at the 11th ECIS, Naples, Italy.

Baskerville, R., & Stage, J. (2001). Accommodating emergent work practices:
Ethnographic choice of method fragments. In B. Fitzgerald, N. Russo,
& J. I. DeGross (Eds.), In realigning research and practice: The social
and organizational perspectives (pp. 11-27). Boston: Kluwer Academic
Publishers.

Bratman, M. (1987). Intention, plans and practical reason. Harvard Uni-
versity Press.

Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Communica-
tions of the ACM, 35(9), 75-90.

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Dahanayake, A., Sol, H., & Stojanovic, Z. (2003). Methodology evaluation
framework for component-based system development. Journal of Da-
tabase Management, 14(1), 1-26.

Dynamic Systems Development Method (DSDM) Consortium. (2003).
Dynamic systems development method. Retrieved from http:/www.
dsdm.org/

Fitzgerald, B., Russo, N., & O’Kane, T. (2000). An empirical study of sys-
tem development method tailoring in practice. In Proceedings of the 8th
International Conference on Information Systems (pp. 187-194).

Fitzgerald, B., Russo, N., & O’Kane, T. (2003). Software development method
tailoring at Motorola. Communications of the ACM, 46(4), 65-70.

Gibson, C. F. (2003). IT-enabled business change: An approach to understand-
ing and managing risk. MIS Quarterly Executive, 2(2), 104-115.

Glasersfeld, E. von. (1997). Piaget’s legacy: Cognition as adaptive activity.
In A. Riegler, M. Peschl, & A. von Stein (Eds.), Understanding rep-
resentation in the cognitive sciences: Does representation need reality
(pp. 283-287)? New York: Kluwer Academic/Plenum Publishers.

Harmsen, F. (1997). Situational method engineering. Utrecht, the Netherlands:
Moret Ernst & Young Management Consultants.

Harmsen, F., Brinkkemper, S., & Oei, H. (1994). Situational method engi-
neering for information systems projects. In T. W. Olle & A. A. V. Stuart
(Eds.), Methods and associated tools for the information systems life
cycle (pp. 169-194). Amsterdam: North-Holland.

Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental
information: The ease of frequency of occurrence. American Psycholo-
gist, 39(11), 1372-1388.

Hutchins, E. (2000). Cognition in the wild. Cambridge, MA: The MIT
Press.

Iivari, J. (1989). Levels of abstraction as a conceptual framework for an
information system. In E. D. Falkenberg & P. Lindgreen (Eds.), Informa-
tion systems concepts: An in-depth analysis (pp. 323-352). Amsterdam:
North-Holland.

Iivari, J., Hirschheim, R., & Klein, H. K. (2001). A dynamic framework
for classifying information systems development methodologies and
approaches. Journal of Management Information Systems, 17(3), 179-
218.

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introna, L. D., & Whitley, E. A. (1997). Against method: Exploring the limits
of method. Information Technology & People, 10(1), 31-45.

Jayaratna, N. (1994). Understanding and evaluating methodologies. Berk-
shire: McGraw-Hill.

Jones, M., & Nandhakumar, J. (1993). Structured development? A structura-
tional analysis of the development of an executive information system.
In D. E. Avison, J. E. Kendall, & J. I. DeGross (Eds.), Human organi-
sational and social dimensions on information system development (pp.
475-496). Amsterdam: North-Holland.

Klein, H., & Myers, M. (1999). A set of principles for conducting and evalu-
ating interpretive field studies in information systems. MIS Quarterly,
23(1), 67-93.

Linell, P., & Thunqvist, D. P. (2003). Moving in and out of framings: Activ-
ity contexts in talks with young unemployed people within a training
project. Journal of Pragmatics, 35(3), 409-434.

Lyytinen, K. (1987). Different perspectives on information systems: Problems
and solutions. ACM Computing Surveys, 19(1), 5-46.

Merriam-Webster online. (2003). Retrieved November 3, 2003, from http://
www.m-w.com

Morrison, J. C. (1970). Husserl and Brentano on intentionality. Philosophy
and Phenomenological Research, 31, 27-46.

Offenbeek, M. A. G. van, & Koopman, P. L. (1996). Scenarios for system
development: Matching context and strategy. Behaviour & Information
Technology, 15(4), 250-265.

Piaget, J. (1983). Piaget’s theory. In P. Mussen (Ed.), Handbook of child
psychology. Wiley.

Pomerol, J.-C., & Brézillon, P. (2001). About some relationships between
knowledge and context: Modeling and using context (CONTEXT-01)
(LNCS, pp. 461-464). Springer Verlag.

Rogoff, B., & Lave, J. (1984). Everyday cognition: Its development in social
context. Cambridge, MA: Harvard University Press.

Rolland, C., & Prakash, N. (1996). A proposal for context-specific method
engineering. In S. Brinkkemper, K. Lyytinen, & R. J. Welke (Eds.),
Method engineering: Principles of method construction and tool sup-
port (pp. 191-208). Atlanta, GA: Chapman & Hall.

Adaptat�on of an Ag�le Informat�on System Development Method ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Sauer, C., & Lau, C. (1997). Trying to adopt system development methodolo-
gies: A case-based exploration of business users’ interests. Information
Systems Journal, 7, 255-275.

Schegloff, E. (1992). In another context. In A. Duranti & A. Goodwin (Eds.),
Rethinking context (pp. 191-1227).

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software
project risks: An international Delphi study. Journal of Management
Information Systems, 17(4), 5-36.

Searle, J. (1983). Intentionality: An essay in the philosophy of mind. New
York: Cambridge University Press.

Siau, K. (1999). Information modeling and method engineering: A psycho-
logical perspective. Journal of Database Management, 10(4), 44-50.

Slooten, K. van, & Brinkkemper, S. (1993). A method engineering approach
to information systems development. In N. Prakash, C. Rolland, & B.
Pernici (Eds.), Information system development process. Amsterdam:
Elsevier Science Publishers B.V. (North-Holland).

Slooten, K. van, & Hodes, B. (1996). Characterizing IS development proj-
ects. In S. Brinkkemper, K. Lyytinen, & R. J. Welke (Eds.), Method
engineering: Principles of method construction and tool support (pp.
29-44). Atlanta, GA: Chapman & Hall.

Truex, D., Baskerville, R., & Travis, J. (2000). A methodical systems de-
velopment: The deferred meaning of systems development method.
Accounting, Management & Information Technology, 10, 53-79.

Turk, D., France, R., & Rumpe, B. (2005). Assumptions underlying agile
software-development processes. Journal of Database Management,
16(4), 62-87.

Walsham, G. (1995). Interpretive case studies in IS research: Nature and
method. European Journal of Information Systems, 4(2), 74-81.

Wijers, G. M. (1991). Modelling support in information systems development.
Delft, the Netherlands: Delft University of Technology.

�� Ayd�n, Harmsen, H�llegersberg, & Stegwee

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Appendix:
About the Research Method Applied

R
es

ea
rc

h
St

ag
es

T
he

 P
re

lim
in

ar
y

St
ud

y
St

ag
e

T
he

 A
ct

ua
l S

tu
dy

 S
ta

ge
T

he
 P

os
te

ri
or

 S
tu

dy
 S

ta
ge

The Sources of Knowledge and the Techniques
Used to Interact with Participants

In
fo

rm
an

ts
: S

ix
 m

et
ho

d
en

gi
ne

er
s

Fi
rs

t r
ou

nd
 o

f
in

te
rv

ie
w

s
in

 th
e

fo
rm

 o
f

se
m

io
pe

n
fo

rm
al

 in
te

rv
ie

w
s

D
oc

um
en

ta
ry

 a
na

ly
si

s:
 T

he
 o

rg
an

iz
at

io
n-

w
id

e
de

ve
lo

pm
en

t m
et

ho
d;

 th
e

ex
is

tin
g

ro
ut

e
m

ap
s

an
d

re
la

te
d

fr
ag

m
en

ts
;

an
 i

ns
tru

m
en

t
(th

e
ES

R
L)

 u
se

d
fo

r
m

et
ho

d
ad

ap
ta

tio
n;

te

m
pl

at
es

 a
nd

 a
ct

ua
l p

ro
je

ct
 d

oc
um

en
ts

, i
nc

lu
di

ng
 a

dv
ic

e
do

cu
m

en
ts

, p
ro

je
ct

 p
ro

po
sa

ls
,

an
d

sy
st

em
s d

ev
el

op
m

en
t p

la
ns

D
ire

ct
 o

bs
er

va
tio

ns
: A

tte
nd

in
g

da
ily

 m
ee

tin
gs

 o
f m

et
ho

d
en

gi
ne

er
s

In
fo

rm
an

ts
:

Th
e

he
ad

 o
f

th
e

co
ac

hi
ng

 gr
ou

p a
nd

 so
m

e m
et

ho
d

en
gi

ne
er

s

Fi
rs

t r
ou

nd
 o

f i
nt

er
vi

ew
s i

n
th

e f
or

m
 o

f o
pe

n-
en

de
d

an
d

se
m

io
pe

n
(f

or
m

al
 a

nd
 in

fo
rm

al
)

in
te

rv
ie

w
s

Se
co

nd
 r

ou
nd

 o
f

in
te

rv
ie

w
s

in
 th

e
fo

rm

of
 o

pe
n-

en
de

d
an

d
se

m
i-o

pe
n

(f
or

m
al

 an
d

in
fo

rm
al

) i
nt

er
vi

ew
s

In
fo

rm
an

ts
: 1

2
m

et
ho

d
en

gi
ne

er
s

In
fo

rm
an

ts:
 12

 m
et

ho
d e

ng
in

ee
rs

, s
ix

 pr
oj

-
ec

t m
an

ag
er

s,
tw

o p
or

tfo
lio

 m
an

ag
er

s,
on

e
ch

an
ge

 m
an

ag
er

,
tw

o
qu

al
ity

-a
ss

ur
an

ce

le
ad

er
s,

on
e

ch
ie

f d
om

ai
n

ar
ch

ite
ct

Main Research Focus

•
D

et
er

m
in

in
g

re
le

va
nt

 c
on

te
xt

(s
)

fo
r

th
e

w
ay

s
in

 w
hi

ch
 a

n
ag

ile
 m

et
ho

d
is

ad

ap
te

d

•
G

at
he

rin
g

pe
rc

ep
tio

ns
 a

nd
 o

pi
ni

on
s o

f
m

et
ho

d e
ng

in
ee

rs
 on

 m
et

ho
d a

da
pt

at
io

n
in

 g
en

er
al

•
Id

en
tif

yi
ng

 a
nd

 st
ud

yi
ng

 th
e

pr
es

cr
ib

ed
 fo

rm
s (

ro
ut

e
m

ap
s)

 o
f t

he
 m

et
ho

d

•
Id

en
tif

yi
ng

 ta
ilo

rin
g

dr
iv

er
s b

eh
in

d
th

e
pr

es
cr

ib
ed

 fo
rm

s

•
St

ud
yi

ng
 th

e
fo

rm
ul

at
io

n
of

 st
ru

ct
ur

ed
 a

nd
 u

ns
tru

ct
ur

ed
 fr

ag
m

en
ts

•
Ex

pl
or

in
g,

 de
sc

rib
in

g,
 an

d a
na

ly
zi

ng
 w

or
ki

ng
 pr

ac
tic

es
 an

d a
 m

ea
ns

 th
at

 th
e d

ep
ar

tm
en

t
us

es
 to

 d
ea

l w
ith

 th
e

st
at

ic
 a

nd
 d

yn
am

ic
 a

da
pt

at
io

ns

•
St

ud
yi

ng
 th

e
pr

ac
tic

e
fo

r d
yn

am
ic

 a
da

pt
at

io
n

in
 d

et
ai

l

B
ei

ng
 u

p
to

 d
at

e
on

 th
e

su
bj

ec
t

m
at

te
r

Sample Questions

W
ha

t d
o y

ou
 th

in
k a

bo
ut

 th
e a

da
pt

ab
ili

ty
 of

th

e m
et

ho
d (

D
SD

M
) t

o a
 pr

oj
ec

t s
itu

at
io

n?

W
ha

t a
bo

ut
 p

re
vi

ou
s a

nd
 cu

rr
en

t p
ra

ct
ic

es

on
 m

et
ho

d t
ai

lo
rin

g?
 H

ow
 do

 yo
u g

o a
bo

ut

ta
ilo

rin
g

it
fo

r
a

sp
ec

ifi
c

pr
oj

ec
t?

 H
ow

do

 y
ou

 s
up

po
rt

pr
oj

ec
t m

an
ag

er
s

on
 th

is

m
at

te
r?

 W
ha

t k
in

d
of

 in
fo

rm
at

io
n

do
 y

ou

ex
ch

an
ge

 w
ith

 p
ro

je
ct

 m
an

ag
er

s?

W
ha

t d
o

yo
u

th
in

k
ab

ou
t t

he
 co

ac
hi

ng
 su

pp
or

t (
pr

ov
id

ed
 o

r r
ec

ei
ve

d)
 fo

r a
 p

ro
je

ct
? W

ha
t

do
 y

ou
 lo

ok
 fo

r a
nd

 ta
ke

 in
to

 a
cc

ou
nt

 w
he

n
ta

ilo
rin

g
th

e
m

et
ho

d
fo

r a
 s

pe
ci

fic
 p

ro
je

ct

si
tu

at
io

n?
 C

ou
ld

 y
ou

 e
xp

la
in

 th
e

ac
tiv

iti
es

 a
nd

 th
e

kn
ow

le
dg

e
us

ed
 w

hi
le

 c
oa

ch
in

g
a

pr
oj

ec
t m

an
ag

er
?

H
ow

 d
o

yo
u

de
te

rm
in

e
th

e
su

ita
bi

lit
y

of
 th

e
m

et
ho

d
to

 a
 p

ro
je

ct
? W

ha
t

do
 y

ou
 u

se
 f

or
 it

?
W

ha
t d

o
yo

u
do

 if
 th

e
pr

es
cr

ib
ed

 p
ar

ts
 o

f
th

e
m

et
ho

d
do

 n
ot

 fi
t t

he

pr
oj

ec
t c

on
te

xt
?

D
o

yo
u

us
e

an
y

m
ea

ns
 to

 c
ha

ra
ct

er
iz

e
a

pr
oj

ec
t?

 W
ha

t d
o

yo
u

th
in

k
ab

ou
t t

he
 in

st
ru

m
en

t (
th

e
ES

R
L)

? W
ha

t a
bo

ut
 th

e
co

nt
ex

tu
al

 fa
ct

or
s a

nd
 m

ea
su

re
s i

n
th

e
in

st
ru

m
en

t?
 H

ow
 d

o
yo

u
us

e
th

em
?

H
ow

 d
o

yo
u

w
rit

e
do

w
n

yo
ur

 a
dv

ic
e

on
 h

ow
 b

es
t t

o
us

e
th

e
m

et
ho

d
fo

r t
he

 p
ro

je
ct

?
H

ow
 d

o
yo

u
us

e
th

e
ad

vi
ce

 in
 y

ou
r p

ro
je

ct
?

W
ha

t a
bo

ut

th
e

re
le

va
nc

e
of

 th
e

in
st

ru
m

en
t a

nd
 it

s
pa

rts
 (

co
nt

ex
tu

al
 f

ac
to

rs
, m

ea
su

re
s)

 to
 th

e
ta

sk

co
nc

er
ni

ng
 m

et
ho

d a
da

pt
at

io
n?

 A
re

 th
e f

ac
to

rs
 an

d m
ea

su
re

s m
ea

ni
ng

fu
l, c

om
pr

eh
en

si
bl

e,

an
d

us
ef

ul
 fo

r m
et

ho
d

ad
ap

ta
tio

n?

W
ha

t h
as

 be
en

 ch
an

ge
d i

n m
et

h-
od

 a
da

pt
at

io
n

pr
ac

tic
e

so
 f

ar
?

A
ny

 ch
an

ge
 re

ga
rd

in
g

co
ac

hi
ng

su

pp
or

t, o
th

er
 w

or
ki

ng
 pr

ac
tic

es
,

th
e

m
ea

ns
, o

r s
o

fo
rth

?

Match�ng Models of D�fferent Abstract�on Levels ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter IV

Matching Models of
Different Abstraction

Levels:
A Refinement

Equivalence Approach

Pn�na Soffer, Ha�fa Un�vers�ty, Israel

Iris Reinhartz-Berger, Haifia University, Israel

Armon Sturm, Ben-Gur�on Un�vers�ty of Negev, Israel

Abstract

This chapter deals with the reuse of models, which assists in constructing
new models on the basis of existing knowledge. Some of the activities that
support model reuse, such as model construction, retrieval, and validation,
may involve matching models on the basis of semantic and structural similar-
ity. However, matching for the purposes of retrieval and validation relates
to models of different abstraction levels, hence structural similarity is dif-

�0 Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ficult to assess. This chapter proposes the concept of refinement equivalence,
which means that a detailed model is a refinement of an abstract model. It
emphasizes the use of refinement equivalence for the purpose of validating a
detailed application model against an abstract domain model in the context
of a domain analysis approach called application-based domain modeling
(ADOM). We discuss the structural characteristics of refinement operations
in object-process methodology (OPM) models, and present an algorithm that
detects refinement equivalence.

Introduction

The benefits of applying reuse at various stages of system design and imple-
mentation have been widely recognized. The reuse of software components
has been addressed for over 40 years, and the idea has been extended to other
and more abstract design artifacts, such as design models and specifications
(Eckstein, Ahlbrecht, & Neumann, 2001; Kim, 2001; Reinhartz-Berger, Dori,
& Katz, 2002; Zhang & Lyytinen, 2001), requirements models (Lai, Lee,
& Yang, 1999; Massonet & Lamsweerde, 1997; Sutcliffe & Maiden, 1998),
conceptual models (Pernici, Mecella, & Batini, 2000), enterprise models
(Chen-Burger, Robertson, & Stader, 2000), method engineering models
(Ralyte & Rolland, 2001), and others. When the reusable artifact is a model,
the purpose of reuse is to assist in constructing a new model, either within
the same domain, or within another domain by analogical reasoning.
Reuse is a major underlying motivation for the emergence of the domain
engineering discipline. Domain engineering supports the notion of a domain,
defined as a set of applications that use common concepts for describing re-
quirements, problems, and capabilities. The purpose of domain engineering
is to identify, model, construct, catalog, and disseminate a set of software or
business artifacts that can be applied to existing and future systems in a par-
ticular domain. A subfield of domain engineering is domain analysis, which
captures and specifies the basic elements of the domain and the relationships
among these elements, representing this understanding in a useful way. Domain
analysis is, therefore, a discipline that deals with creating reusable models of
a domain and reusing these models for creating specific applications.
Reuse environments of models in general, and domain analysis environ-
ments in particular, should provide support to at least part of the following

Match�ng Models of D�fferent Abstract�on Levels ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

activities: (a) construction of reusable models and their storage, possibly in
a repository, (b) retrieval of models (or parts of them) that meet the require-
ments of a developed application, (c) adaptation of the reusable models to
the current application needs, and (d) validation of the adapted models. These
activities may employ in some cases a model matching operation, which is
the focus of this chapter.
In the context of domain analysis, two types of reusable models can be used.
One is a generic domain model at a high level of abstraction that has to be
specialized in adaptation to the current needs. The second type is a complete
and detailed model, whose level of abstraction is the same as that of the
application. It may be reused as it is, or modified to the specific needs, but
without a change in its abstraction level.
The abstraction level of the reusable model affects the nature of the above
discussed activities. First, reusable models of a high abstraction level are
constructed by abstracting a collection of domain applications and analyzing
their commonalities and variation points. Model matching may be employed
for detecting the common aspects of the collection of application models that
are being generalized.
Second, the role of a repository is of much importance for low-level reusable
models since a large number of these may be stored, and each may include
slightly different details. In contrast, high-level domain models specify com-
mon aspects of domain applications; hence, a large number of such models
is not required.
Third, in general, the retrieval of a model can be either index based or model
based. Index-based retrieval uses indices that characterize the models, while
model-based retrieval matches an input model (query) given by the user
with the models stored in the repository (Mili, Mili, & Mili, 1995). While
index-based retrieval is relatively simple and quick, model-based retrieval
is more accurate, relying on a higher volume of information rather than on
a classification represented by indices. Retrieval of a high-level model is
relatively simple due to the low number of models and the clear distinction
between them, hence, index-based retrieval is appropriate. Retrieval of a
low-level detailed model is more complicated since there may be a number
of different models for a given domain, and retrieval seeks the one that
matches partial information available about the particular current needs.
Model-based retrieval, relying on all the information captured in a model,
enables the selection of the model that best fits the user’s query. It may use
a preliminary partial model or some facts about the modeled domain as an

�� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

input query, and retrieve a detailed model (or detailed models) that matches
the input model.
Fourth, the adaptation of a high-level model to the current needs is an in-
stantiation operation, yielding an application model that should match the
domain model. This matching should be verified by a validation activity.
The adaptation of a detailed model can be done by modification (which can
be controlled through defined variation points) or by integration with other
models. Validation in this case should follow the variation points and check
that their specified constraints are not violated.
In summary, model matching can be used for the activities of constructing
a reusable model, retrieving it, and validating an application model against
the reusable one. When model matching is used for retrieval, the expected
output is a similarity measure, while when it is used for construction or vali-
dation, the focus is on identifying specific matches and mismatches between
the models.
This chapter deals with the assessment of structural similarity between two
models of a different abstraction level. Soffer (2005) addressed this issue
emphasizing its relevance for the retrieval of a detailed model. Here we
address the scenario of validating an application model against a domain
model. Addressing this scenario, we decided to rely on an existing domain
analysis approach in order to relate to concrete details rather than taking a
generic view, which might overlook the complexity of the task. The domain
analysis approach we use is application-based domain modeling (ADOM;
Reinhartz-Berger & Sturm, 2004; Sturm & Reinhartz-Berger, 2004), which
facilitates the instantiation of an application model from a domain model
and its validation against the domain model.
According to ADOM, when a domain model is instantiated to an application
model, the entities in the resulting application model are classified as instances
of the entities in the domain model. Furthermore, the application models may
include multiple instances of domain-model entities, as well as additional
entities. Hence, an application model can be considered as a refinement of the
domain model. The validation of an application model against the relevant
domain model employs model matching for verification purposes.
Due to the difficulty of assessing structural similarity with respect to models
of different abstraction levels, we seek for refinement equivalence rather than
structural similarity.
Refinement equivalence is a situation where a detailed (application) model
can be perceived as a refinement of a more abstract (domain) model. To this

Match�ng Models of D�fferent Abstract�on Levels ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

end, we first need to establish an understanding of the nature of the refinement
of models. The chapter discusses several types of refinement operations and
indicates their structural characteristics, demonstrated by using the object-
process methodology (OPM) as a modeling language. Understanding the
consequences of model refinement is the basis for an algorithm that identifies
structural equivalence of two models.
The remainder of the chapter is organized as follows. The next section briefly
introduces the OPM modeling language and provides an overview of the
ADOM approach. The following section discusses different refinement op-
erations and illustrates their outcome in an OPM model. Then we describe a
rule-based algorithm for identifying structural equivalence of OPM models
in the context of validating an application model against a domain model.
Following that, a review of related work is presented, and finally a conclud-
ing discussion.

Overview of ADOM and OPM

This section starts with a brief introduction to OPM, then provides an over-
view of the ADOM approach in general and the ADOM-OPM dialect in
particular.

Object-Process Methodology

OPM, whose details are provided in Dori (2002), has been applied for vari-
ous purposes at different development phases and tasks, such as conceptual
requirements modeling (Soffer, Golany, Dori, & Wand, 2001), enterprise
resource planning (ERP) system modeling (Soffer, Golany, & Dori, 2003),
Web application design (Reinhartz-Berger et al., 2002), real-time systems
specification (Peleg & Dori, 1999), algorithm specification (Wenyin & Dori,
1998), and others.
OPM incorporates two equally important classes of entities: objects and
processes. While object-oriented methods encapsulate processes in objects,
and business-process modeling methods represent activities detached from
the objects they affect, OPM unifies the system structure and behavior into a
single representation. It uses a single graphic tool, the object process diagram,

�� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

set, as a single view of all the system aspects, both structural and dynamic.
Structure is expressed by objects connected with structural relations, such as
characterization (e.g., between an object and its attributes), aggregation (part
of), specialization (is-a), and general tagged structural relations (specifying
any other relation named by a tag). The behavior of a system is represented
by a set of procedural links, which can be classified into three classes of links:
enabling links, transformation links, and triggering links. Enabling links (e.g.,
instrument links) relate an object to a process when the presence of the object
is required for the process to occur, but this occurrence does not affect the
object state or value. Transformation links (e.g., effect links) relate an object
to a process that changes the object state or value (including its creation and
destruction). Triggering links (e.g., event links) relate a transformation of an
object (reflected in its state or value) to a process it triggers.
Similar to other modeling languages (e.g., DFD), OPM allows the refinement
of a model by zooming into processes and unfolding the structure of objects
to enable a top-down analysis. The resulting model is a hierarchical OPD set,
which specifies all the aspects of a system at a spectrum of detail levels.
A part of OPM notation is given in Figure 1.

Figure 1. OPM notation

Match�ng Models of D�fferent Abstract�on Levels ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Application-Based Domain Modeling

ADOM is a generic domain analysis approach, facilitating the creation of
domain models, their instantiation for creating application models, and the
validation of the resulting application models. Being influenced by the clas-
sical framework for metamodeling presented in OMG (2006), the ADOM
approach is based on a three-layered architecture: application, domain, and
language. The application layer, which corresponds to the model layer (M1),
consists of models of particular systems, including their structure and be-
havior. The language layer, which corresponds to the metamodel layer (M2),
includes metamodels of modeling languages, such as UML (unified model-
ing language), OPM, and so forth. The intermediate domain layer consists
of domain models. The ADOM approach enforces constraints among the
different layers; in particular, the domain layer enforces constraints on the
application layer, while the language layer enforces constraints on both the
application and domain layers.
Including language metamodels as an upper layer, the ADOM approach is
language independent. However, in practice, language-specific ADOM dia-
lects must be used. Such dialects include ADOM-UML (Reinhartz-Berger
& Sturm, 2004; Sturm & Reinhartz-Berger, 2004) and ADOM-OPM (Sturm,
Dori, & Shehory, 2006), which is the dialect used in this chapter, too.
ADOM-OPM extends OPM with two new features: (a) a multiplicity indicator,
which is attached to entities at the domain layer and constrains the number
of entities of that kind that can appear in a particular application model in
that domain, and (b) a role, which is a stereotype-like element emphasizing
additional semantics for an OPM entity. Roles are used within application
models, classifying entities as instances of domain-model entities. These two
features establish the relationships between domain and application models.
When an application model is created, its entities are assigned roles that
correspond to the entities of the domain model, and the links among them
are bound to preserve the corresponding link structure of the domain model.
Additional entities can appear in the application model (without assigned
roles) as long as they do not violate the domain constraints.
Validating an application model against the domain model entails checking
that (a) the multiplicity constraints, specified by the multiplicity indicators,
are not violated, that is, the number of entities in the application model that
are classified with a certain role complies with the multiplicity indicator of
the domain-model entity, and (b) the link structure of the application model

�� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

is equivalent to the link structure of the domain model, considering their
corresponding entities.

Refinement Equivalence

This section discusses different refinement operations and provides observa-
tions that characterize their structural impact in an OPM model in order to
establish an in-depth understanding of model refinement in general. It should
be noted that for the purposes of model retrieval and validation, matching may
address models at different abstraction levels. The retrieval of a complete and
detailed model requires its matching against a preliminary or partial input
model, which is at a higher abstraction level than the retrieved model. Simi-
larly, the validation of an application model against a domain model requires
the matching of a low-level detailed (application) model against a high-level
(domain) model. However, model matching as addressed in the literature
so far has mainly dealt with models whose abstraction levels are identical.
Two common similarity aspects (or measures) that are usually checked are
entity similarity and structural similarity. Entity similarity assessment (also
called semantic similarity) aims at identifying entities that are semantically
similar in the models that are being matched. It may employ mechanisms
of various accuracy and complexity levels, ranging from the identification
of identical entity name and type (Soffer, Golany, & Dori, 2005), through
thesaurus-based affinity measurement (Castano, De Antonellis, Fogini, &
Pernici, 1998; Ralyte & Rolland, 2001), to concept hierarchy-based distance
measurement (Chen-Burger et al., 2000; Lai et al., 1999). Structural similarity
assessment, on the other hand, typically follows the links among the entities
in one model and searches for parallels in the other model (Chen-Burger et
al.; Massonet & Lamsweerde, 1997; Ralyte & Rolland; Sutcliffe & Maiden,
1998). This is sometimes termed neighboring-entities search. According to
these two similarity assessments, two models are considered matching if
they include the same entities and the same links to some extent. However,
in case the models that should be matched are not at the same level of ab-
straction, then one cannot expect both models to have the same structure and
set of links. Rather, while a high-level model specifies a set of entities and
relationships among them, the low-level model includes the same entities
(or their instances) along with other entities. Therefore, the model structure

Match�ng Models of D�fferent Abstract�on Levels ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

might be different, including all the other entities that exist in the detailed
model and the links among them.
Since the instantiation of a domain model to an application model is a specific
case of refinement, specific implications with respect to the application model
validation shall be indicated. The most notable characteristic of this specific
case is that entities of the application model are classified as instances of enti-
ties in the domain model. Hence, semantic similarity assessment techniques
(e.g., Palopoli, Sacca, Terracina, & Ursino, 2003; Ralyte & Rolland, 2001)
are not needed for matching these models.
We view an OPD as a directed and labeled graph whose nodes are entities
(objects and processes) and edges are both structural and behavioral links
among the entities. A refinement operation inserts new nodes and edges into
an existing graph. These additional parts may replace existing edges, thus
they may form paths between nodes that were directly linked in the original
graph.
We shall examine and characterize the results of two types of refinement
operations: refinement of structure and refinement of behavior. Specifically,
we aim at identifying conditions under which a path can be considered
equivalent to a given link.

Definition 1: Let A and B be entities, and let P be a path between A and B.
P is equivalent to a link of type l if and only if a link l between A and B can
be replaced by P through a refinement operation.
Notation: P ≅ l.

Refinement of Structure

The paths established when structure is refined can replace both structural
and procedural links that originally existed with the entity whose structure is
being refined. We shall examine these two categories of links and characterize
the path that replaces them in a refined model.

Structural links: When more structural details are revealed, a direct struc-
tural link in the abstract model can be replaced by a path including structural
links and entities. This is demonstrated in the example shown in Figure 2, in
which a characterization link between Warehouse and Number of Locations

�� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

in the abstract model (a) appears as a path including both specialization and
characterization links in the refined model (b). The refinement indicates that
only a warehouse in which inventory locations are managed is characterized
by the attribute Number of Locations.
In general, a path including a number of structural links can always be
abstracted to a specific link type independently of the order in which these
links appear.

Definition 2: Let L be a set of link types. l ∈ L is dominant with respect to
L if and only if P ≅ l is true for every path P that includes l together with
any r ∈ L.
Notation: DL = l.

Considering the example of Figure 2, it is clear that D{Specialization, Characterization}
= Characterization as inheritance maintains characteristics along the hierar-
chy. Another example of this dominance is the attribute Number of Wheels,
which characterizes a vehicle as well as a car, which is a specialization of
a vehicle.

Observation 1: Let A and B be entities and P be a path from A to B. Let L
be the set of link types included in P. If DL = l, then P ≅ l.

Figure 2. Example of refinement involving a structural link

Match�ng Models of D�fferent Abstract�on Levels ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Observation 1 is a direct result of the definition of dominance with respect to
a set of link types. It is useful for identifying equivalence regarding paths that
include structural links since dominance can easily be established considering
these link types, as in the above example. As another example of establish-
ing dominance, consider the attribute Power that characterizes Engine. It
characterizes the engine as well as the car of which the engine is part. Hence,
characterization is dominant with respect to aggregation as well.

Procedural links: When a procedural link exists between an entity whose
structure is being refined and another entity, the resulting path in the refined
model consists of both structural and procedural links. As an example, Figure
3a shows an abstract model including an effect link between Engineering
Change Processing and Item Technical Data. A refined model (Figure 3b)
shows that Item Technical Data is composed of Bill of Material and Rout-
ing, which are affected by Engineering Change Processing. A third part of
Item Technical Data, Technical Specification, remains intact as it is not even
connected to the process.

In general, a refined model may specify the interaction of a process with
attributes, parts, or specializations of an entity, whereas an abstract model
simply specifies an interaction with the entity.

Figure 3. Example of a procedural link in structure refinement

�00 Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Observation 2: Let A, B, and C be entities. Let P be a path from A to B so
that A is linked to C and C is linked to B by a procedural link of type l. If the
link from A to C is (Characterization) ∨ (Aggregation) ∨ (Specialization),
then P ≅ l.

The proof of Observation 2 is by a simple demonstration that such refine-
ment is possible (e.g., Figure 3). Note that Observation 2 does not imply the
dominance of procedural links with respect to structural links since there
may be paths that cannot be abstracted to a procedural link. For example, in
Figure 3b, the path between Engineering Change Processing and Technical
Specifications is not equivalent to the effect link included in it.

Refinement of Behavior

In general, the refinement of behavior is more difficult to identify than the
refinement of structure for reasons that are explained below. Nevertheless,
this difficulty is partly overcome when dealing with ADOM’s classified
entities. We shall first address the general case of refinement when no entity
classification is used, and then explain how it becomes easier when ADOM-
related models are addressed.
The behavior of a system or a domain is captured by processes. A process
can be refined into a sequence of activities (subprocesses) that comprise it.
Such a sequence is modeled as a path leading from an initial state (or input
objects) to a final state (or output objects). The subprocesses in a refined
process may interact with other objects besides the ones the higher level
process interacts with, but these objects can be considered internal, meaning
that in the abstract view of the process, the interaction is not observed. For
example, consider two people who perform a task together. The interaction
and allocation of work between them is internal in the sense that it is not of
interest to others as long as the job is done.
The difficulty in identifying a refined process lies in the fact that unlike the
refinement of structure, in which a link is replaced by a path, when a process
is refined, an entity is replaced by a path (or several paths). Therefore, the
initial and final states are the only reference points available. However, this
information is not always sufficient for a conclusive identification of refine-
ment equivalence. Consider a process of a high level of abstraction (e.g.,
building a house), having an initial state (existing plans, resources) and a

Match�ng Models of D�fferent Abstract�on Levels �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

final state (a house built). This process can be refined into many different
processes, all having the same initial and final states and subset of interac-
tions (stakeholders, authorities, building materials) as the abstract one. Yet,
while being all equivalent to the abstract model, these refined processes are
not equivalent to one another. As a detailed example, consider the abstract
process of Supplying Customer Order in Figure 4a, which can be refined into
the two different processes in Figure 4b and c. These two refined processes
have identical initial and final states, Open Customer Order and Delivered
Customer Order, respectively, as does the abstract process. However, while

Figure 4. An abstract model and two possible refinements

Customer Order

Supply�ng
Customer Order

Status

Open

Del�vered

(a)

Customer Order

Produc�ng to Order

F�n�shed Goods

Supply�ng Goods
to Customer

Status
Open

In process

Del�vered

(b)

Customer Order

Check�ng Item
Ava�lab�l�ty

Item Inventory

Allocated Quant�ty

Allocat�ng
Inventory

Supply�ng Goods
to Customer

Status
Open

In process

Del�vered

(c)

�0� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

both processes can be considered equivalent to the abstract model, they are
not equivalent to one another (in their internal division into subprocesses,
additional inputs and outputs, etc.). It is therefore easier to formulate a neces-
sary condition rather than a necessary and sufficient condition for refinement
equivalence of processes.

Observation 3: Let m1 be a model portion in which process A transforms an
initial state s1 into a final state s2. Let E1 be the set of entities directly linked
to A in m1. Let m2 be a model portion that refines m1. Then m2 consists of
a path P and a set E2 of entities that are directly linked to the entities of P so
that P is from an initial state s1 to a final state s2 and E1 ⊆ E2.

Note that the initial and final states are not necessarily explicitly represented
in an abstract model, in which case the inputs and outputs of the process
should be considered in a similar manner to the states.
Observation 3 provides a necessary condition that might not be sufficient for
the identification of equivalence. When the lower level model is a result of an
instantiation operation of a domain model, its entities are assigned roles that
correspond to domain-model entities. In other cases, we need a way to relate
the subprocesses in a refined model to a process in the abstract model. For
that purpose, we note that it is likely that at least one of the subprocesses in
a refined model bears a name that can be identified as similar to the general
process’ name as appears in the abstract model. Such resemblance can be
detected by existing affinity detection techniques, which are not the focus
of this chapter. This can be explained by a tendency to name the process in
the abstract model after the main activity that constitutes the essence of the
process. In fact, such tendency is not unique to process models. Suggesting
a semiautomatic procedure for abstracting a database schema, Castano et
al. (1998) refer to a “representative” element of the detailed schema, whose
name should be given to the generalizing element in the abstracted schema.
When refining an abstract process to lower abstraction levels, details of other
activities are revealed. In the example of Figure 4, Supplying Goods to Cus-
tomer can be identified as similar to Supplying Customer Order.
In such cases, we expect the refined model to include a path from the initial
state to the similarly named process (or, in ADOM-based models, to the pro-

Match�ng Models of D�fferent Abstract�on Levels �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

cess whose role corresponds to the process in the domain model) and to the
final state. A path is also expected to relate the process to other entities that
interact with it in the higher-abstraction-level model. If such paths exist in a
detailed model, and if they are equivalent to the links of the abstract model,
than the detailed model can be considered as a refinement of the abstract one.
Observation 4 indicates a condition under which a path that may include a
number of processes and objects or states is considered as equivalent to a
specific type of procedural link.

Observation 4: Let A be an object or a state of an object, B be a process,
and P be a path between A and B. Let l be the procedural link by which A is
related to P, then P ≅ l.

Note that the direction of the path can be from the object to the process or
backward, depending on the specific links involved.
Observation 4 can be justified when abstracting the entire path (processes
and objects) to a process (named after its representative activity, B). The link
that determines the nature of the interaction between this abstracted process
and the object is the link relating the object to the path. In the example of
Figure 4b and c, the path from the state Open of Customer Order Status to
Supplying Goods to Customer is equivalent to the direct link from Open to
Supplying Customer Order in 4a.
Observation 4 provides a sufficient condition for identifying refinement
equivalence. However, this condition, though sufficient, is not a necessary
one. It is based on the assumption, discussed above, that the abstract process is
named after its main activity. This assumption is not necessarily always true.
For example, a production process can be refined into processes of cutting,
drilling, milling, and so forth. In such cases, the path between the initial and
final states in the abstract model has to be matched against the path in the
detailed model. That path can be decomposed into individual links for this
purpose. As explained above, when application-model processes bear roles
that classify them as corresponding to domain-model processes, the nam-
ing difficulty does not exist. Thus, Observation 4 can conclusively identify
refinement equivalence.

�0� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Tracking Refinement Equivalence

The previous section identified conditions that enable the detection of refine-
ment equivalence. When an application model is validated against a domain
model, the following steps can be taken: (a) The names of the entities that
have a role assigned to them in the application model are replaced by their
roles, (b) satisfaction of the multiplicity constraints specified in the domain
model is determined, and (c) the links among the entities in the domain model
are matched by corresponding links in the application model. In case such
corresponding link is not found, an equivalent path is searched for between
the source entity and the destination entity of the link.
This section describes a rule-based algorithm that identifies refinement-
equivalent paths with respect to a given link type. The algorithm is basically
a path-searching algorithm applying rules, which follow the discussion and
observations of the previous section, to assure that the path found is indeed
equivalent to the link being matched.

Searching for an Equivalent Path

Consider a pair of OPDs <A, D>, where A is the application model and D is
the domain model being matched. Assume A is searched for a path between
two entities that are directly related in D. The steps of the search shall first
be informally described, and then specified formally. Each step of the search
partitions A into two sets of entities: One is the set of entities to which a path
from the source entity is already established, and the other is the set of entities
that are not yet explored. Starting from the source entity, each step follows a
link and moves one entity from the unexplored set to the set of entities that
are connected to the source. The choice of link to be followed is based on the
search rules, whose details are given below. The steps repeat until a direct
link is found from the connected set of entities to the destination entity, or
until all the links have been exhausted and it is clear that the searched-for
path does not exist. The algorithm seeks to establish the existence of a path
that is not necessarily the shortest path, hence no backtracking is performed
and the number of steps is at most the number of entities in A minus one.
The formal specification of the search applies to the following notation:

Match�ng Models of D�fferent Abstract�on Levels �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

s: the source entity of the link in D whose equivalent path is being searched
for in A.

d: the destination entity of the link in D whose equivalent path is being
searched for in A

• LM(e1, e2): Let e1 and e2 be entities; then LM(e1, e2) is a Boolean variable
whose TRUE value indicates the existence of a direct link from e1 to e2
in model M (M is either the application model A or the domain model
D).

• LinkM(S1, S2): Let S1 and S2 be nonoverlapping sets of entities in model
M; then LinkM(S1, S2) is an indicator expressing the existence of a direct
link from an entity in S1 to an entity in S2.

1 2MLink (S , S) =

0 otherwise
11 if e∃ ∈ 21 2S , S ,e ∈ 1 2Msuch that L (,) TRUEe e =




• SM: the set of entities in model M
• Ci(M, s): the set of entities in model M to which a path from s has been

found until the ith step of the search
• Ui(M, s): The set of entities in model M whose relationship with s has

not yet been investigated by the ith step of the search

In the context of the application model, Ci(A, s) and Ui(A, s) partition SA so
that at each step i of the search, SA = Ci(A, s) + Ui(A, s) + {d}. In other words,
each entity in A belongs either to the set of entities that have already been
established as linked to s (including s itself) or to the set of entities whose
relationship with s is unknown yet, or to the set that holds d only.

Lemma: Let an application model A be searched for a path from s to d at
the ith step of the search. A path from s to d exists only if Max [LinkA (Ci(A,
s), {d}), LinkA (Ci(A, s), Ui(A, s))*LinkA (Ui(A, s),{d})] = 1.

Proof: Assume a path exists. It can lead from Ci(A, s) directly to d, then
LinkA(Ci(A, s),{d}) = 1. Otherwise, it leads from Ci(A, s) to some entity

�0� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

e∈Ui(A, s) and from e to d. Then LinkA(Ci(A, s), Ui(A, s)) = 1 and LinkA(Ui(A,
s), {d}) = 1.

Assume a path does not exist. Then LinkA(Ci(A,s),{d}) = 0 and the follow-
ing are true:

1. If LinkA(Ci(A, s), Ui(A, s)) = 1, then LinkA(Ui(A, s),{d}) = 0.
2. If LinkA(Ui(A, s),{d}) = 1, then LinkA(Ci(A, s), Ui(A, s)) = 0.

Note that the above lemma is one sided; that is, it does not imply that if Max
[LinkA (Ci(A, s), {d}), LinkA (Ci(A, s), Ui(A, s))*LinkA (Ui(A, s),{d})] = 1,
then a path exists. Rather, this is a necessary condition for the existence of
such a path.
The initial state of the search is C0(A, s) = s, U0(A, s) = SA – {s, d}. At each
step, if the condition specified in the lemma is satisfied, one entity is moved
from Ui(A, s) to Ci(A, s) by following a link, implying that a relation of this
entity to s is established. The steps repeat until either a path is found, that
is, LinkA(Ci(A, s),{d}) = 1, or the condition of the lemma is not satisfied;
that is, the searched-for path does not exist. The search rules ensure that the
found path is equivalent to the link being searched for.
Figure 5 specifies the equivalence path search algorithm. This algorithm
employs the following operations.

Figure 5. Equivalent path search algorithm

Current = s
Fold_Structure (d)
Exclude_Links
Do while (LinkA(Ci(A, s),Ui(A, s))*LinkA(Ui(A, s),{d}) = 1)

AND (LinkA(Ci(A, s),{d}) <> 1)
If Link_Type is procedural then Fold_Structure(Current)
Exclude_Links
Verify_Equivalence
If Link_Type is structural then Compute_Cardinality
Select_Entity

End Do
If (LinkA(Ci(A, s),{d}) = 1) AND (Path_Cardinality =

Link_Cardinality) AND (Condition) then Path_Found =
TRUE

Else Path_Found = FALSE

Match�ng Models of D�fferent Abstract�on Levels �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Fold_Structure (entity): A folding operation of structural relations in OPM
is an abstraction operation in which a detailed OPD portion, including struc-
tural relations such as characterization, aggregation, and specialization, is
replaced by an OPD portion of a higher abstraction level. The entities that
provide the structure details of the entity being folded (which is the param-
eter of this operation) are not shown in the abstracted OPD. Other entities,
which are originally related to the structure details, are related directly to
the folded entity.
This operation is employed only when the link, whose equivalent path is
searched for, is a procedural link. Its role is to replace paths created through
refinement of structure by their equivalent procedural links on the basis of
Observation 2.

Exclude_Links: This operation excludes links that cannot be included in
the path. Links can be excluded from the search for three reasons. The first
reason is that they cannot be part of the path according to the search rules,
in which case they are excluded at the beginning of the search. The second
reason is that their direction is opposite of the search direction. At every
step of the search, the unidirectional links from the entities of Ui(A, s) to the
entities of Ci(A, s) are excluded from the search. The last reason applies to
inheritance (is-a) links, which may be included in a path in both directions,
from the special to the general as well as the other way. When going up the
relation, the links to other specializations of the general entity cannot be
included in the path.

Select_Entity: At every step of the search, all the links from the entities of
Ci(A, s) to the entities of Ui(A, s) are arranged according to priorities defined
by the search rules. The first link according to this order is selected and the
entity it relates to is moved to Ci(A, s) and becomes the Current entity.

Verify_Equivalence: The search rules specify for a given link the link type
that must be included in the path and its required position (at the source, at
the destination, or anywhere in the path). If the required position is at the
source or destination of the path, then all the links from s or to d (respectively),
which are not of the mandatory type (i.e., are not of the type that must be in
that position in the path in order to preserve the nature of the interaction), are
excluded from the search at the first step by the Exclude_Links operation.

�0� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

As a result, a Boolean variable Condition is assigned a TRUE value. If the
required position is anywhere in the path, the Condition is verified by a set
of indicators ECe, defined next.
Let e be an entity in Ci(A, s); then ECe = 1 if and only if a link of the manda-
tory type is in the path from s to e.
Starting at ECs = 0, and letting e be moved from Ui(A, s) to Ci(A, s) through
a link of type t from an entity a∈Ci(A, s), then:

1 if (EC 1) or (is of mandatory type)
EC

0 otherwise
a

e

t=
= 


When a path is found, ECd = 1 implies that it includes at least one link of the
mandatory type (according to the conditions specified by the search rules),
in which case Condition = TRUE.

Compute_Cardinality: This operation is performed only when structural
relations are searched for. The cardinality of a link is defined as <SL, SU,
DL, DU>, where SL is the source lower participation constraint, SU is the
source upper participation constraint, DL is the destination lower participation
constraint, and DU is the destination upper participation constraint.
Let e be an entity in Ci(A, s); then the aggregated cardinality of the path from
s to e is denoted by <SLe, SUe, DLe, DUe>, where s holds <1, 1, 1, 1>.
Let a be moved to Ci(A, s) through a link whose cardinality is <SL, SU, DL,
DU> from entity e∈Ci(A, s), then SLa = SLe * SL, SUa = SUe * SU, DLa =
DLe * DL, DUa = DUe * DU.
For example, assume an item is supplied by zero to three suppliers, a sup-
plier has one to two contact persons, and a supplier can supply one or more
(1...m) items. The aggregated cardinality of the path between an item and a
purchasing contact person is <1, m, 0, 6>.

Search Rules

The search for an equivalent path employs rules of two types: link selection
rules and equivalence conditions. Both rule types are defined for each type
of link in OPM. A link selection rule defines the types of links that can be

Match�ng Models of D�fferent Abstract�on Levels �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

included in an equivalent path and provides searching priorities for the search
algorithm. It is applied by the Exclude_Links operation, which excludes all
the irrelevant links from the search, and by the Select_Entity operation, which
uses the priorities given for selecting the entity to be moved from Ui(A, s) to
Ci(A, s). An equivalence condition defines conditions for a path to be equiva-
lent to a link of a certain type. It is employed by the Verify_Equivalence and
Exclude_Links operations. Conditions may specify link types that must be
included in a path and their required positions that can be at the source of
the path, at its destination, or at any point in the path.
A link selection rule is of the following form:

Link Selection (Link Type): {Set of Types}

Link Type is the type of link to which the path is to be equivalent, while Set
of Types is an ordered set of link types. All the link types in the set can be
included in a path, which is equivalent to Link Type. Their order in the set
determines the priority in which the search algorithm considers links in the
examined OPD when searching for a path.
On the basis of Observation 1, the Set of Types specified for structural link
types satisfies DS = l, where l is the Link Type and S is the Set of Types.
For example, the link selection rule for aggregation, which is a structural link
that denotes a whole-part relation and is dominant with respect to specializa-
tion (is-a) relations only, is:

Link Selection (Aggregation): {Aggregation, Specialization}

For procedural link types, the Set of Types is defined on the basis of Observa-
tion 4. According to this observation, the link that determines the equivalence
is the one related to the source or destination object without restrictions on
the types of links in the path. Hence, the Set of Types for procedural link
types includes all the types of links in OPM.
The order of the types in the Set of Types always sets the relevant Link Type
as the first priority for the search algorithm. For procedural link types, it lets
the algorithm prefer procedural links over structural ones.
An equivalence condition is of the following form:

��0 Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Equivalence Condition (Link Type): Mandatory Type must be located at Required Position in the
path

Mandatory Type is a link type that is necessarily included in the path in order
to preserve the nature of the interaction, where Required Position is the exact
position where it should appear (the possible values are at Source Position,
at Destination Position, and Anywhere).
Mandatory Type is, with one exception, the Link Type itself. The exception
is an invocation link, which represents the triggering of a process by the
completion of another process. This can also be modeled as an event created
by the first process and triggering the second one. In this case, an event link
replaces the invocation link.
For structural link types, the Required Position is Anywhere, since the link
selection rules ensure the dominance of the specific link type with respect
to the links in the path. Hence, their position in the path is of no importance
as long as they are present. For procedural link types, the Required Position,
according to Observation 4, depends on the link type. Links whose direction
is from the object to the process (e.g., instrument links) require the Manda-
tory Type at the source of the path, while links that lead from the process to
the object (e.g., result links, which are unidirectional effect links) require the
Mandatory Type at the destination of the path.
For example, below are the equivalence conditions for aggregation links
(i.e., structural links that denote whole-part relations) and instrument links
(i.e., procedural links that denote input objects that are not changed by the
process; these links are directed from the object to the process).

Equivalence Condition (Aggregation): Aggregation must be located Anywhere in the path

Equivalence Condition (Instrument Link): Instrument Link must be located at Source Position in

the path

As explained above, the two types of rules are based on Observation 1, which
addresses structural links when structure is refined, and on Observation 4,
which addresses procedural links when behavior is refined. Observation 2,
which addresses procedural links when structure is refined, is not applied as
part of the rule base, but is taken into account by the Fold_Structure opera-
tion performed by the search algorithm.

Match�ng Models of D�fferent Abstract�on Levels ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Exemplifying the Equivalent-Path Search Algorithm

The algorithm steps are illustrated by an example given in Figure 6: Figure
6a is part of a domain model, while Figure 6b is an application model that
should be matched against the domain model. The domain model specifies
the main concepts as well as their multiplicity constraints. For example, Pro-

Figure 6. Refinement equivalence example

(b)

(a)
1.m

1..1

1..1 1.m

112 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

duction Order and Issuing to Production are indicated as mandatory single
entities (the 1..1 at the right lower corner of the entities), meaning they must
be instantiated exactly once in any application model of the domain, while
Production Order BOM and Item Stock are indicated as mandatory multiple
entities (the 1..m at the right lower corner of the entities), meaning they must
appear at least once in any application model in the domain. Correspondingly,
some of the application-model entities have roles (at their left upper corner)
that relate them to the domain-model entities, while others are additional ap-
plication-specific entities. Note that the number of role-classified entities in
the application model is consistent with the multiplicity indicators specified
in the domain model for each role.
None of the procedural links specified in Figure 6a appears as a direct link
in Figure 6b. Nevertheless, they are all matched by equivalent paths in the
application model. The domain model specifies that a process of Issuing to
Production affects the Production Order and the Item Stock, and uses the
Production Order BOM (which specifies the required materials). In the ap-
plication model, a process of Releasing Production Order precedes Issuing

Figure 7. Search algorithm 1st step

Requires

Production Order
POM

Production Order

Order Status

Releasing
Production Order

Kitting List

Issuing to
Production

Specify Details of

Order Documents

Item Stock

Inventory
on Stock

Allocated
Inventory

Match�ng Models of D�fferent Abstract�on Levels ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Item (whose role is Issuing to Production), using Item Inventory (whose role
is Item Stock) information as well as the item ID and quantities specified by
PO BOM Lines, which are parts of the PO BOM (both have a role of Produc-
tion Order BOM). The process of Releasing Production Order creates Order
Documents (a set of documents, specifying details of the production order, to
be used in the production process) and a Kitting List, which is a list of items
to be prepared in kits before they can be issued to production. The Issuing
Process uses the Kitting List and affects the Item Inventory.
We shall follow the steps of the search algorithm for tracking an equivalent
path that matches the instrument link from Production Order BOM to Is-
suing to Production in the domain model of Figure 6(a) in the application
model of Figure 6(b). Two entities in that model are classified with the role
of Production Order BOM. However, since one is part of the other, we will
use the whole as the source of the searched path, as illustrated in Figures 7
to 10. The search in Figures 7 to 10 is performed after the names of the enti-
ties have been replaced by their roles (whenever they have one), according
to the first validation step.

Figure 8. Search algorithm 2nd step

��� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Step 1 (see Figure 7): C0(A, s) includes the source entity, Production Order
BOM (highlighted). The source entity is the Current entity, and a Fold_
Structure(Current) operation is performed. As a result, its structural details
are not seen, and the instrument links originally related to these details are
now related directly to Production Order BOM itself. U0(A, s) includes all
the other entities in the model, except the source entity, Production Order
BOM, and the destination entity, Issuing to Production (highlighted). C0(A,
s) is linked to U0(A, s), which is linked to the destination entity, thus the
condition of the lemma is satisfied.

Step 2 (see Figure 8): Following the instrument link, C1(A, s) includes Re-
leasing Production Order in addition to Production Order BOM. Note that
the equivalence condition of an instrument link requires that the first move
should be through an instrument link, and it is satisfied. Two instrument links
that lead to Releasing Production Order are excluded from the search by the
Exclude_Links operation since their direction is opposite of the path direction.
C1(A, s) is still linked to U1(A, s), which is linked to the destination entity.

Figure 9. Search algorithm 3rd step

Match�ng Models of D�fferent Abstract�on Levels ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Step 3 (see Figure 9): Following the effect link, Order Documents is included
in C2(A, s). Note that this is a random choice from the three effect links that
lead from Releasing Production Order. C2(A, s) is still linked to U2(A, s),
which is linked to the destination entity.

Step 4 (see Figure 10): Following the next effect link from C2(A, s), Kit-
ting List is now added to C3(A, s). C3(A, s) is now linked to the destination
entity, thus establishing a path that meets the equivalence conditions, and is
therefore equivalent to the direct link of the domain model.

Note that Step 3 is actually redundant and could be avoided by a different
choice of link. Nevertheless, by addressing all the links of the Ci(A, s) set,
the algorithm is able to simply look one step ahead at a time and avoid a
recursive backtracking.
The complexity of the search algorithm is O(|SA|), where |SA| is the number
of entities in A. The search is performed for each link in D when the models

Figure 10. Search algorithm 4th step

��� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

are matched. Hence, the complexity of the matching is O(|SD|2*|SA|). Note
that |SD| is expected to be significantly smaller than |SA|.

Related Work

Model similarity has been addressed by several disciplines. The ones that
are relevant to this work are the disciplines of reuse and schema analysis
and matching. The difference in abstraction level between matched models
has not, to the best of our knowledge, been explicitly addressed in the reuse
literature. Kim (2001) presents an object-oriented model reuse application in
which an initial model, including classes and nonspecific links, serves as a
basis for retrieving an existing complete model. The retrieved model is then
modified and adapted to the current needs using modification rules, whose
details are not presented. No details are available about how a complete
model is retrieved and evaluated, how this retrieval considers the nonspecific
links of the input model, and how structurally different from each other the
models retrieved are.
Structural similarity plays an important role in the works that deal with ana-
logical reasoning (Massonet & Lamsweerde, 1997; Sutcliffe & Maiden, 1998),
where models designed for a certain domain are applied to other domains by
analogy. The retrieval is based on structural properties of the model and on
semantics, which is based on generalizations. In Sutcliffe and Maiden, the
models to be retrieved include a number of layers, each dealing with different
information types, going from an abstract layer to a detailed one. The match-
ing with the input information interactively follows these layers of specific
information types, and the user is required by the system to provide enough
information to discriminate between existing models. Hence, the structural
similarity deals with models of the same abstraction level. In Massonet and
Lamsweerde, while the entities of an input model are generalized to a higher
level in an is-a hierarchy, their link structure is expected to remain the same
and serves as a basis for structural similarity assessment.
Other works that apply reuse for method engineering (Ralyte & Rolland,
2001) and for enterprise modeling (Chen-Burger et al., 2000) use simple
structural similarity assessment along with semantic similarity based on
affinity (Ralyte & Rolland) or on a generalization hierarchy (Chen-Burger
et al.). The model used by Ralyte and Rolland includes multiple abstraction

Match�ng Models of D�fferent Abstract�on Levels ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

levels. Hence, there might be a match between the abstraction level of a query
model and one of the levels of the reusable models, but it is not explicitly
addressed and verified. None of the above reviewed works relates to model
matching for validation purposes as proposed in this chapter.
Schema-matching literature focuses on the semantic mapping of one schema
to the other. While semantic similarity in the reuse literature is mostly affinity
based, or in some cases relies on is-a hierarchies, semantic matching in the
schema-matching literature sometimes combines the affinity of terms with
structural considerations. Schema matching maps elements of one schema to
elements of another schema rather than compute similarity measures between
the two schemas. Hence, each pair of elements is thoroughly examined and
structural aspects, such as attributes and is-a relations, are taken into account
(Madhavan, Bernstein, & Rahm, 2001; Rahm & Bernstein, 2001; Rodriguez
& Egenhofer, 1999). In some cases, paths are sought where direct links do
not exist (Palopoli et al., 2003). Nevertheless, dealing with schemas means
dealing with a low level of abstraction. Some schemas may be more detailed
than others, and the techniques suggested are aimed at overcoming such
differences rather than at dealing with models that are basically at different
abstraction levels. Typical to this situation is the use of the term “structural
equivalence” of schemas (Algaic & Bernstein, 2001), which relates to a
consistent mapping of schema elements from one schema to another and
backward in the lowest abstraction level. It is defined as structural as opposed
to semantic equivalence, which relates to integrity constraints as well.
The similarity assessment of entities, presented by Rodriguez and Egenhofer
(1999), relates to parts, functions, and attributes of two entity classes. Their
similarity measure uses a function that provides asymmetric values for en-
tity classes that belong to different levels of abstraction. While addressing
single entity classes, they take contextual information into account for the
similarity measurement. However, context information of an entity cannot be
considered equivalent to a view of the entity as a part of a model, including
relationships with other entities.
A more holistic view of schema analysis, including a variety of techniques
for schema abstraction, matching, and reuse, is presented in Castano et al.
(1998). Schema abstraction is an operation in the opposite direction compared
to our discussion of refinement operations. The ERD schemas addressed limit
the discussion to structural links only, without addressing the representation
of behavior. Yet, their abstraction operation is consistent with our opposite-
direction refinement, and applying the algorithm presented here to their ex-

��� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

amples of detailed and abstract schema yields a match. A number of schema
similarity measures are presented there, dealing mainly with semantics and,
to a limited extent, model structure, particularly with attributes. Interestingly
enough, their fuzzy similarity measure is asymmetric and may indicate that
schema a matches schema b to a higher extent than in the other direction.
This is explained as being a result of differences in the abstraction level
between the two schemas.
Our approach can be classified according to the extensive classification of
schema-matching approaches presented by Shvaiko and Euzenat (2005).
It is a structure-level approach (computes mapping elements by analyzing
how entities appear together in a structure), syntactic (interprets the input in
function of its sole structure following some clearly stated algorithm), and
graph based (addressing children, leaves, and relations of entities). However,
this classification does not relate to differences in the abstraction level of
the matched schemas, and this issue is not addressed by any of the works
surveyed there.
In summary, the main contribution of this chapter as compared to related
earlier model-matching works is in explicitly addressing models of different
abstraction levels, representing both the structure and behavior of a domain
of applications.

Conclusion

The reuse of models requires activities that in many cases employ model
matching. In this chapter, we stressed that differences in the abstraction level
are likely to exist between models, specifically in the retrieval and validation
activities, and therefore refinement equivalence is a better measure than struc-
tural similarity. Refinement equivalence is identified when a detailed model
can be considered a refinement of a model of a higher abstraction level. In
this chapter we discussed the notion of refinement equivalence as an enabler
of validating a detailed application model against an abstract domain model
in the context of the ADOM approach for domain analysis.
The discussion of refinement operations and the observations that characterize
their impact on model structure, as well as the search algorithm, address OPM
models. However, ADOM is language independent and can be used with other
modeling languages as well. Other modeling languages are different mainly

Match�ng Models of D�fferent Abstract�on Levels ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

in the separation of structural and behavioral aspects of the modeled domain
(and applications). Yet, the notion of refinement equivalence is of relevance
to models independently of the modeling language. Some of the observa-
tions made in this chapter can easily be generalized and become applicable
to other modeling languages. For example, Observation 1, which deals with
the dominance of structural relations in a path, is not specific to OPM only.
Hence, when dealing with models that capture structural information only
(e.g., ERD, UML class diagrams), the algorithm can be applied using the
search rules that relate to structural links only, omitting the Fold_Structure
operation. Regarding the behavioral aspects, generalization is less straight-
forward. In multiview modeling languages, such as UML, consistency among
views might also need consideration.
An equivalent-path search algorithm is, naturally, language specific, and
apparently needs to be developed for each modeling language. However,
the algorithm presented here is mainly a path-searching algorithm, while
specific features of the OPM links are captured by the equivalence rules.
Hence, the main body of the algorithm might be applicable to other model-
ing languages while the unique features of the language might affect mainly
the equivalence rules.
The search algorithm that enables refinement-equivalence identification
has been implemented in a reuse application that supports business-process
alignment and gap analysis in the implementation of ERP systems (Soffer et
al., 2005). The application matches abstract enterprise requirement models
with a detailed model of the ERP system, and retrieves the parts that match
the requirements.
Future research should extend the refinement-equivalence concept and ap-
ply it to other modeling languages that serve in reuse applications, such as
UML.

References

Algaic, S., & Bernstein, P. A. (2001). A model theory for generic schema
management. In Proceedings of DBPL (LNCS 2397, pp. 228-246).
Berlin, Germany: Springer-Verlag.

��0 Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Castano, S., De Antonellis, V., Fogini, M. G., & Pernici, B. (1998). Concep-
tual schema analysis: Techniques and applications. ACM Transactions
on Database System, 23(3), 286-333.

Chen-Burger, Y. H., Robertson, D., & Stader, J. (2000). A case-based reason-
ing framework for enterprise model building, sharing and reusing. In
Proceedings of the ECAI Knowledge Management and Organization
Memories Workshop, Berlin, Germany.

Dori, D. (2002). Object process methodology: A holistic systems paradigm.
Heidelberg, Germany: Springer Verlag.

Eckstein, S., Ahlbrecht, P., & Neumann, K. (2001). Increasing reusability
in information systems development by applying generic methods. In
Advanced information systems engineering (LNCS 2068, pp. 251-266).
Berlin, Germany: Springer-Verlag.

Kim, Y. J. (2001). An implementation and design of COMOR system for
OOM reuse. In Active Media Technology, 6th International Computer
Science Conference (LNCS 2252, pp. 314-320). Berlin, Germany:
Springer-Verlag.

Lai, L. F., Lee, J., & Yang, S. J. (1999). Fuzzy logic as a basis for reusing
task-based specifications. International Journal of Intelligent Systems,
14(4), 331-357.

Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic schema marching
with Cupid. In Proceedings of the VLDB Conference, Rome.

Massonet, P., & Lamsweerde, A. V. (1997). Analogical reuse of requirements
frameworks. In Proceedings of the Third IEEE Symposium on Require-
ments Engineering (RE’97) (pp. 26-37).

Mili, H., Mili, F., & Mili, A. (1995). Reusing software: Issues and research
directions. IEEE Transactions on Software Engineering, 21(6), 528-
561.

OMG. (2006). Meta-object facility (MOF™), version 2.0.
Palopoli, L., Sacca, D., Terracina, G., & Ursino, D. (2003). Uniform techniques

for deriving similarities of objects and subschemes in heterogeneous
databases. IEEE Transactions on Knowledge and Data Engineering,
15(2), 271-294.

Peleg, M., & Dori, D. (1999). Extending the object-process methodology
to handle real time systems. Journal of Object Oriented Programming,
11(8), 53-58.

Match�ng Models of D�fferent Abstract�on Levels ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Pernici, B., Mecella, M., & Batini, C. (2000). Conceptual modeling and
software components reuse: Towards the unification. In Information
systems engineering: State of the art and research themes (pp. 209-220).
London: Springer-Verlag.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4), 334-350.

Ralyte, J., & Rolland, C. (2001). An assembly process model for method
engineering. In Advanced information systems engineering (LNCS
2068, pp. 267-283). Berlin, Germany: Springer-Verlag.

Reinhartz-Berger, I., Dori, D., & Katz, S. (2002). Open reuse of component
designs in OPM/Web. In Proceedings of the 26th Annual International
Computer Software and Applications (pp. 19-24).

Reinhartz-Berger, I., & Sturm, A. (2004). Behavioral domain analysis: The
application-based domain modeling approach. In Proceedings of the 7th
International Conference on the Unified Modeling Language (UML2004)
(LNCS 3273, pp. 410-424). Berlin, Germany: Springer-Verlag.

Rodriguez, M. A., & Egenhofer, M. J. (1999). Putting similarity assessments
into context: Matching functions with the user’s intended operations.
In Proceedings of CONTEXT’99 (LNAI 1688, pp. 310-323). Berlin,
Germany: Springer-Verlag.

Shvaiko, P., & Euzenat, J. (2005). A survey of schema-based matching ap-
proaches. Journal on Data Semantics, 4, 146-171.

Soffer, P. (2005). Refinement equivalence in model-based reuse: Overcom-
ing differences in abstraction level. Journal of Database Management,
16(3), 21-39.

Soffer, P., Golany, B., & Dori, D. (2003). ERP modeling: A comprehensive
approach. Information Systems, 28(6), 673-690.

Soffer, P., Golany, B., & Dori, D. (2005). Aligning an ERP system with en-
terprise requirements: An object-process based approach. Computers
in Industry, 56(6), 639-662.

Soffer, P., Golany, B., Dori, D., & Wand, Y. (2001). Modelling off-the-shelf
information systems requirements: An ontological approach. Require-
ments Engineering, 6(3), 183-198.

Sturm, A., Dori, D., & Shehory, O. (2006), Domain modeling with object-
process methodology. In Proceedings of the Eighth International Con-
ference on Enterprise Information Systems.

��� Soffer, Re�nhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Sturm, A., & Reinhartz-Berger, I. (2004). Applying the application-based
domain modeling approach to UML structural views. In Proceedings
of the 23rd International Conference on Conceptual Modeling (ER2004)
(LNCS 3288, pp. 766-779). Berlin, Germany: Springer-Verlag.

Sutcliffe, A., & Maiden, N. A. (1998). The domain theory for requirements
engineering. IEEE Transactions on Software Engineering, 24(3), 174-
196.

Wenyin, L., & Dori, D. (1998). Object-process diagrams as an explicit al-
gorithm specification tool. Journal of Object-Oriented Programming,
12(2), 52-59.

Zhang, Z., & Lyytinen, K. (2001). A framework for component reuse in a
meta-modelling-based software development. Requirements Engineer-
ing, 6(2), 116-131.

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter V

On the Use of Object-Role
Modeling for Modeling

Active Domains

Patr�ck van Bommel,
Radboud Un�vers�ty N�jmegen, The Netherlands

St�jn Hoppenbrouwers,
Radboud Un�vers�ty N�jmegen, The Netherlands

Er�k Proper,
Radboud Un�vers�ty N�jmegen, The Netherlands

Theo van der We�de,
Radboud Un�vers�ty N�jmegen, The Netherlands

Abstract

This chapter is about how the object-role modeling (ORM) language and ap-
proach can be used for the integration, at a deep and formal level, of various
domain modeling representations and viewpoints, with a focus on the model-
ing of active domains. The authors argue that ORM is particularly suited for

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

enabling such integration because of its generic conceptual nature; its useful,
existing connection with natural language and controlled languages; and its
formal rigor. They propose the logbook paradigm as an effective perspective
in active domains modeling and for the derivation of domain grammars. They
show how standard ORM can be extended to an object-role calculus (ORC),
including temporal concepts and constraints that enable the modeling of
active domains. A suggestion for graphical representation is also provided.
The authors hope to contribute to the integration of domain models and
viewpoints in an academic and educational context rather than proposing
ORM and ORC as new modeling tools in an industrial setting.

Introduction and Background

Conceptual modeling methods such as ER (Chen, 1976), EER (Elmasri &
Navathe, 1994; Gogolla, 1994), KISS (Kristen, 1994), NIAM (Nijssen &
Halpin, 1989), OOSA (Embley, Kurtz, & Woodfield, 1992), and object-role
modeling (ORM; Halpin, 2001) have traditionally been developed with the
aim of providing conceptual models of database structures. More recently,
however, such modeling methods have shown their use for more generic
modeling (of the ontology) of domains, leading to models capturing the
concepts of a domain in general, as well as an associated language to express
rules (such as business rules) governing the behavior of the domain (Proper,
Bleeker, & Hoppenbrouwers, 2004; Proper, Hoppenbrouwers, & Weide,
2005; Spyns, 2005; Spyns, Meersman, & Jarrar, 2002).
The above mentioned modeling methods typically take a natural-language-
based perspective to the domain to be modeled. In this perspective, the
resulting model is regarded as a domain grammar describing the allowed
communication about a domain (the universe of discourse). This way of
thinking dates back to the ISO (1987) report Concepts and Terminology for
the Conceptual Schema and the Information Base, and it is at the base of the
modeling methods mentioned. A key advantage of such methods is that hav-
ing a domain grammar at one’s disposal enables validation of the model by
domain experts since the model can be validated in terms of statements that
are close to the language used by these experts. Also, formal approaches to
conceptual modeling imply adherence to a formal language; domain gram-
mars (closely resembling signatures in formal logic) are an excellent basis
for further formal modeling.

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A basic domain grammar can be extended to cover rules (constraints) govern-
ing the structure and behavior of or in the domain. When combined with a
reasoning mechanism, such a rule language becomes a domain calculus. In
the case of ORM, a domain calculus has been presented in the form of Lisa-
D (Hofstede, Proper, & Weide, 1993), a formalization of RIDL (Meersman,
1982). In Proper (1994a) and Bloesch and Halpin (1996), a more practical
version was introduced (that is, from an implementation point of view) called
ConQuer. What Lisa-D and ConQuer have in common is that they exploit
the natural character of the domain grammar in the construction of rules
(Hofstede, Proper, & Weide, 1997). As a result, the formulation of rules,
as well as chains of reasoning expressed by means of these rules, closely
resembles natural language. As mentioned, this supports validation of the
models produced.
In the use of domain modeling methods, we observe three important trends
that fuel our ongoing research activities. First, more and more organizations
strive for more mature levels of system development (Paulk, Curtis, Chrissis,
& Weber, 1993). One of the steps toward maturity involves better defining
of development processes in order to make them more repeatable. This also
applies to modeling processes. Some organizations now indeed strive to
make modeling processes more explicitly defined with the aim of achieving
more repeatable results.
Modeling methods such as ORM (Halpin, 2001), NIAM (Nijssen & Halpin,
1989), OOSA (Embley et al., 1992), KISS (Kristen, 1994), and DEMO
(Reijswoud & Dietz, 1999) not only feature a way of modeling, but also
have a fairly well-defined and explicit way of working based on natural-lan-
guage analysis. The way of working (Wijers & Heijes, 1990) of a method is
concerned with processes, guidelines, heuristics, and so forth, which are to
be used in the creation of models, as opposed to its way of modeling, which
refers to the syntax and semantics of the language in which the models are
to be expressed. A well-defined and explicit way of working helps achieve
a defined and more repeatable modeling process. Even though the ORM
conceptual schema design procedure already provides clear guidelines for
creating domain models in a repeatable fashion, more work in terms of sound
theoretical underpinning and automated support of the (detailed steps of
the) modeling process is still called for (Hoppenbrouwers, Proper, & Weide,
2005b) and is one of the main goals underlying our ongoing research. This
is not our main focus here, but it is a partial explanation for our preference
for ORM.

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The second trend fueling our research is the use of controlled languages as the
basis for unambiguous communication concerning models and specifications
(European Association of Aerospace Industries [AECMA], 2001; Farrington,
1996; Fuchs & Schwitter, 1996; Hoppenbrouwers, 2003; Schwitter, 2004).
The essential idea behind a controlled language is to define a subset of a
natural language that is rich enough to have a natural, intuitive feel to it, but
still restrictive enough so as to avoid ambiguities. The use of a controlled
language requires a realistic and nuanced approach. Too often it is simply
assumed that any participant in the modeling process will be able to express
herself or himself freely and flawlessly in some controlled language. This is
hardly ever a tenable assumption. A possible way of working around this is to
use the controlled language receptively for regular participants (not produc-
tively) and have a capable intermediary (a person, an automated system, or a
combination thereof) rephrase the natural-language statements made by the
regular participant(s) in the controlled language. Next, the participant(s) who
phrased the original (natural language) statements should confirm the validity
of the controlled-language statements (Hoppenbrouwers et al., 2005).
We claim that in view of the goals of formal and unambiguous expression,
a domain grammar and associated domain calculus provide a good starting
point for engineering controlled languages for use in domain modeling. To
some extent, a domain calculus already provides a controlled language,
though not necessarily a natural one. Stepwise naturalization (using a number
of levels of increasingly natural representations) is the approach we follow
here; admittedly, we have not achieved fully acceptable naturalness as of yet,
but when we do, it will still be based on fully formal underlying structures,
thus linking focused and controlled natural representation of concepts with
well-constructed formalism. Calculus-like controlled languages can be used
to represent domain-specific reasoning steps, providing an additional form
of domain knowledge. In Hoppenbrouwers, Proper, and Weide (2005a), an
initial study into the use of a domain calculus for such purposes has been
reported.
The third trend we observe is the growing need for integrated models un-
derlying a plethora of viewpoints, fueled by the demands of model-driven
architecture or MDA (Frankel, 2003; OMG, 2003) and enterprise architecture
(Lankhorst, 2005). The unified modeling language (UML; OMG), as well as
approaches for enterprise architecture, feature a wide variety of viewpoint-
specific diagramming techniques (viewpoints). A generic domain model can
provide a common underpinning of these viewpoints, offering a unified domain

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ontology. An elaboration of this role of domain models has been presented
in Proper et al. (2005) and Proper and Weide (2005). However, since we
adopt ORM as a generic technique for creating a unified domain ontology,
work still needs to be done to bring together concepts for activity modeling
and ORM. This effort is the main focus of this chapter. However, let us first
elaborate some more on the reason why we use ORM for our purposes.
Importantly, it is not our intention to propose our ORM extension as a new
technique for modeling active domains that is to be on par with, for example,
UML activity diagrams. We applaud the use of such diagrams as popular
viewpoints. Integration at a deeper level is our primary drive here, mostly for
academic and educational purposes. Application in industry should eventually
be possible but is not one of our objectives at this point. For clarity’s sake,
the arguments for using ORM in our current investigation are summarized
here:

•	 There is a growing need for integrated models underlying a plethora
of viewpoints. Because of its generic conceptual nature, ORM seems a
good candidate for use as a generic technique and method for integrat-
ing the many more specialized modeling techniques around.

•	 ORM provides a good existing basis for investigating, defining, and
improving ways of working, in combination with formal rigor and sound-
ness with respect to the way of modeling. Getting a better grip on the
way of working serves the higher goal of making modeling processes
more mature.

•	 As part of the way of working, a strongly natural-language-oriented
approach to elicitation and validation of models is part and parcel of
the ORM-ORC (object-role calculus) approach (Hofstede et al., 1997;
Hoppenbrouwers et al., 2005b). The logbook principle and the use of
controlled language are elements of this approach.

In this chapter, then, we show how the ORM-ORC approach (with the ad-
vantages it does, in our view, possess) could be applied to temporal model-
ing, integrating it in the existing approach. For this purpose, we need the
following ingredients:

•	 A basic yet coherent set of temporal concepts to work with; this could
perhaps have been another set than the one used in this chapter. Please

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

note that fundamental matters concerning the ideal set of temporal model-
ing concepts are not within the focus of this chapter. For an elaboration
on such issues, see, for example, Allen and March (2003), March and
Allen (2003), and Khatri, Ram, and Snodgrass (2004). We make do with
a small set of concepts fit for our current purposes based on concepts
from established work-flow-related work (Aalst & Hofstede, 2005).

•	 Given our goal to apply and maintain ORM-style formal rigor in our
way of modeling, we show that our ORM extension fits our existing
ORM-ORC formalization. In order to do this, we need to explain some
key aspects of that formalization. This does require both active aspects
(activities, tasks, processes, etc.) and static aspects (results, documents,
actors, tangible objects, etc.) to be expressed as objects playing roles in
the domain.

•	 Given the elicitation and validation goals underlying the ORM-ORC
approach, we include both a verbal and a graphical style of representa-
tion. While both are demonstrated, they are still somewhat experimental.
They serve to illustrate the integration aspect of our exercise rather than
as a proposition for new forms of representing active domain models in
an industrial context.

The body of this chapter is structured as follows:

1. We present an explanation of how, by means of the logbook paradigm,

the activities taking place in an active domain can be reported in terms
of (elementary) facts, which can consequently be used (in principle by
employing ORM’s standard approach) to derive a domain grammar.

2. We continue by explaining how any constraints, temporal dependen-
cies, and so forth governing the flow of activities in a domain can then
be formulated using a domain calculus referred to as the object-role
calculus.

3. Special graphical conventions are introduced to provide more compact
representations of specific aspects of the active domain, such as the flow
of activities, or the involvement of actors.

4. We conclude the chapter.

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The Logbook Paradigm

When focusing on active domains, ORM needs to be refined in order to bet-
ter cater to the active aspects of such domains. The underlying challenge is
to extend ORM to be able to deal with such domains while at the same time
maintaining ORM’s natural-language-based modeling rigor. In doing so,
we base ourselves on earlier (partial) results (Frederiks, 1997; Frederiks &
Weide, 2002; Proper, 1994b; Proper & Weide, 1994).
Modeling an active domain requires a modeling language to deal with the
notion of time. In the past, ORM had already been extended with the concept
of time and evolution (Proper, 1994b; Proper & Weide, 1994). In this chap-
ter we propose a formalization of temporal concepts in terms of a logbook
(Frederiks, 1997; Frederiks & Weide, 2002), which is intended to trace or
mirror the activities taking place in the domain. Such a logbook will consist
of a series of events reporting on the life cycle of facts in the domain. The
following is an example.

Traffic light 20 is green
ceased be�ng true at ��:0�:�0 on ��-0�-�00�

Employee John works on the completion of order 50
started be�ng true at 0�:�0 on ��-0�-�00�

The logbook approach is a natural extension of the earlier discussed natu-
ral-language-based perspective on modeling. To be more precise, we regard
a history as the collection of events that have taken place in the domain,
while a logbook is a description of such a history. The facts contained in
the descriptions of the events are assumed to be expressed in terms of some
seminatural-language (controlled language) sentences as is normally the
case in ORM’s way of working. Using a traditional ORM approach, the set
of facts used and allowed in a logbook can be generalized to a set of fact
types, which together comprise the ORM model underlying the domain. This
model then defines the domain grammar of the controlled language in which
the facts are to be formulated.
Traditionally, ORM is based on the modeling of facts in general. In the con-
text of an active domain, these facts correspond to statements about what
is the case and/or has happened in the domain at specific points in time.
In ORM, the actual modeling process starts out from the verbalization of

��0 van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

such facts. These verbalizations are the starting point for the creation of the
domain grammar. When considering an active domain, the set of facts that
can be reported about this domain fall into two categories: (a) acts reporting
on the performance of actions and (b) effects reporting the results of actions
(note that these two classes correspond to what Dietz, 2005, respectively
refers to as acta and facta). This dichotomy applies at the instances level
(the facts) as well as the type level (the fact types), leading to act types and
effect types respectively as subclasses of fact types. In the case of acts, the
objects involved (i.e., playing a role in the act) can be classified further into
actors (objects responsible for performing the act) and actands (objects that
are the effect of the act).
We assume that each event described in the logbook and the objects participat-
ing in the event can be uniquely identified in that logbook. We will call this
the event identification principle. It does not inhibit different events to occur
at the same time. In order to distinguish between accidentally and necessarily
coupled events, we assume that events may also have a compound nature
in such a way that (a) different events in a logbook are independent of each
other, and (2) events cannot be split into multiple independent events.
We take the perspective that the state of an active domain is the result of the
sequence of actions leading up to that state. These actions may either take
place in the domain, or outside the domain (the latter possibility includes the
very creation of the domain). As a result, we take the position that the effects
can in principle be derivable from the set of reported acts. This is what we
call the action dominance principle. This principle leads to the theoretical
question of how persistent properties, such as the speed of light, are to be
treated in our logbook approach. This is covered by the property origination
principle, which states that each domain property pertains to (a) some act
that took place in the domain, (b) some effect of some act in the domain, or
(c) some effect of the domain’s creation (i.e., the result of a “big bang” act).
As a consequence, at each moment the state of the system is (in principle)
the result of all the effects of the domain’s creation and the acts that were
reported since then.
An important consequence of the property origination principle is that (for
most objects in the domain) the property of being alive should be the result
of some act (this notion is similar to that of “existence time” as discussed in
Khatri et al., 2004, among others). Therefore, objects that are not present in
the initial state in principle require an explicit birth event. This is called the

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

birth principle. Obviously, an object cannot be responsible for its own birth
as it cannot be active before coming into existence. The consequence is that
some other object has to be responsible for causing the event, thus playing
a dominant role in it. If the existence of an object may terminate, then there
should in principle be an explicit death action that enforces an object to have
the property of being dead.
An immediate consequence of the birth principle and the event identification
principle is that objects may be identified by their birth event. If an event
starts life for more objects, then we require that the individual objects in
this case may be identified by this event in addition to the role they play in
the event.
Note that the above principles could only hold absolutely under a closed-world
assumption, which in most practical cases is naïve. We therefore emphasize
that more traditional means of object identification are not excluded from our
approach. The principles as presented merely reflect our perspective on active
domains. For example, if the birth event of an object is unknown, or even if
it is known, identification of the object as such, by means of a simple key or
label, would still be quite acceptable. Analytically, however, questions may
be raised as to the origin or history of the object. Whether such questions are
acutely relevant depends on the modeling context.

Object-Role Calculus

This section concerns a conceptual language in which rules can be expressed
for describing the behavior that may be observed in a logbook compatible
with the domain being modeled. The language presented, referred to as
ORC, is a variant of Lisa-D (Hofstede et al., 1993), a formalization of RIDL
(Meersman, 1982). Lisa-D was originally designed to describe all comput-
able sets of facts that can be derived from the elementary facts defined in
some underlying conceptual schema. The conceptual schema specifies all
elementary sentences applicable in a domain. The semantics of Lisa-D have
been described in terms of multisets. In this chapter, we will provide a light-
weight definition of the ORC variant of Lisa-D, which is intended to describe
temporal and static aspects of the underlying domain.

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Grounding in Temporal Logic

The semantics of ORC are grounded on Kripke structures (Chellas, 1980).
A Kripke structure basically is a graph whose nodes represent the reachable
states of some system and whose edges represent state transitions. A labeling
function maps each node to a set of properties that hold in the correspond-
ing state. Temporal logics are traditionally interpreted in terms of Kripke
structures.
An application domain, then, is seen as a Kripke structure 〈S.R.s0,∏,L〉,
where:

1. S is a nonempty set of states,
2. R ⊆ S × S is a total transition function, that is, ∀s∃t [(s,t) R],
3. s0 is the initial state,
4. ∏ is a nonempty set of atomic propositions, and
5. L is a labeling function that maps each state on a subset of ∏.

Our main assumption is that the state of an application domain is in principle
described by its history so far. As a consequence, a state corresponds uniquely
to a logbook. Hence, the transition function extends a logbook with a new
event description, and the initial state corresponds to the empty logbook.
From the structure of the events in the logbook, the elementary object types
can be derived. Their possible instantiations form the set of ∏ atomic propo-
sitions. The labeling function L then assigns the population of object types
that is constructed by a logbook.
A linear-time temporal logic is syntactically described by the following BNF
grammar (see, for example, Lipeck & Saake, 1987):

φ → true | false | ∏ | ¬φ | q ∧ φ | φ ∨ φ | φ ⇒φ | Xφ | Fφ | Gφ | φ Uψ.

The expression Xφ states that φ will hold in the next state, Fφ means that φ
will eventually hold, Gφ means that φ will globally hold, and φ Uψ states
that at some point ψ will hold while in all states before, φ is valid. Let M be
a Kripke structure over logbook LB, and let σ be a history. We will further

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

assume an environment E for evaluation, consisting of a partial assignment
of values to a set V of variables. The standard semantic interpretation of the
temporal operators is as follows; for lack of a typographic alternative, we
use the “≡” symbol here for “is defined as.”

M, E, σ |= Xφ ≡ M, E, σi |= φ
M, E, σ |= φ Uψ ≡ ∃n [∀0<i<n [M, E, σ i |= φ] ∧ M, E, σ n |= ψ],

where σ i denotes the ith element of sequence σ, and σ i the subsequence of σ
starting at position i. The other temporal operators are defined in terms of these
base operators: Fφ is equivalent with true φ Uψ and Gφ is defined as ¬ F ¬
φ. The propositional operators are also interpreted in the standard way:

M, E, σ |= ¬φ ≡ ¬ M, E, σ |= φ
M, E, σ |= q∧ψ ≡ M, E, σ |= φ ∧ M, E, σ |= ψ.

The constant false is introduced as p∧¬p, where p is any proposition from
∏ , and true is derived by ¬false. The other logical operators (∨ and ⇒)
are defined in the usual way. The conversion from a temporal proposition
to a static expression requires the evaluation of the static expression for the
population L(σ (0)) at the required point in time. This will be further elabo-
rated later.

Historical Information Descriptors

History descriptors in ORC are meant to provide a language construct for
reasoning about the application domain in a historical setting. For the purpose
of this chapter, it will be sufficient to make direct transcriptions of the basic
temporal operators. For this, the syntactical construct of history descriptor
is introduced. Let H be a history descriptor, then the semantics of H are
denoted as [(H)]:

[(always H)] ≡ G [(H)]
[(X H)] ≡ X [(H)].

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In addition, we introduce the following abbreviations:

somet�mes H ≡ ¬ always ¬ H
H1 precedes H2 ≡ always((FH1) U H1)
H1 dur�ng H2 ≡ always(H1 ⇒ H2)
H1 tr�ggers H2 ≡ always(H1 ∧ ¬H2 ⇒ X (¬H1 ∧ ¬H2))

We will now introduce some example rules that match a more elaborate ex-
ample concerning an educational organization. The first rule will be a target
for the educational organization. The second rule describes a trigger that,
whenever the condition H1 ∧ ¬H2 is met, will respond by setting the condi-
tion ¬H1 ∧ ¬H2 at the next moment.

somet�mes Lecturer lectures Course

Lecturer sets up Course precedes Lecturer lectures Course

This latter expression, however, is misleading as it does not bring about a
connection between some specific lecturer and some specific course being
set up and being lectured. In natural language, demonstratives (for example,
this or that in English) are used in most cases to make such references. We
therefore introduce the following:

x [[D1 PRECEDES D2]] y ≡ (x [[D1]] y) precedes ∃z [z [[D2]] y]
x [[D1 DURING D2]] y ≡ (x [[D1]] y) dur�ng ∃z [z [[D2]] y]

The semantics and syntax of these constructions are further explained later.
Please note that we use the repeated bracket “[[“ notation here for typographi-
cal lack of a properly fused double square bracket. All immediately adjoining
brackets in this chapter are double square brackets, never two single square
brackets.

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Demonstrative Descriptors

The main idea behind ORC, as present in its early ancestor RIDL (Meersman,
1982), is a functional, variableless description of domain-specific properties
(and queries). RIDL does contain a linguistic reference mechanism (the de-
monstrative THAT). In ORC, variables have been introduced to handle more
subtle referential relations that cannot be handled by demonstratives. Variables
are special names that are instantiated once they are evaluated in a context
that generates values for these variables. The concept of environment is used
to administrate the value of variables. In environment E, the variable v will
evaluate to E(v). Some examples of the use of variables follow:

Lecturer:x be�ng h�red precedes x sets up Course

Lecturer:x sets up c precedes x lectures Course:c

In this example, the expression Lecturer:x is a defining occurrence of variable
x in which Lecturer has the role of value generator. The environment is used
to administrate the variable-value assignment (see Hofstede et al., 1993, for
more details).

Information Descriptors

The syntactic category used to retrieve a collection of facts is called the infor-
mation descriptor. We will discuss the semantics of elementary information
descriptors and briefly summarize the construction of information descrip-
tor (a diagram is provided in Figure 1; for more details, see Hofstede et al.,
1993). Information descriptors are constructed from the names of object
types and role types. The base construction for sentences is juxtaposition.
By simply concatenating information descriptors, new information descrip-
tors are constructed.
Information descriptors are interpreted as binary relationships; they provide
a binary relation between instances of the population induced from the his-
tory. The semantics of information descriptor D is denoted as [[D]]; we will
write x [[D]] y to denote the relationship between x and y. The statement M,
E, σ |= x [[D]] y asserts that for Kripke structure M in environment E from
history σ, the relationship x [[D]] y can be derived..

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A population assigns to each object type its set of instances. Let n be the name
of object type N, and r the name of a role type R; then n and r are information
descriptors with the following semantics:

M, E, σ |= x [[n]] y ≡ x ∈ L(σ (N)) ∧ x = y
M, E, σ |= x [[r]] y ≡ (x ,y) ∈ L(σ (R)).

A single role may, in addition to its “normal” name, also receive a reverse
role name. Let v be the reverse role name of role R; then we have:

M, E, σ |= x [[v]] y ≡ (y, x) ∈ L(σ (R)).

A combination of roles involved with a fact type may receive a connector
name. The connector name allows us to “traverse” a fact type from one of the
participating object types to another one. If c is the connector name for a role
pair 〈R, S〉, then the semantics of the information descriptor c is defined as:

M, E, σ |= x [[c]] z ≡ ∃y [M, E, σ |= x [[R]] y ∧ M, E, σ |= y [[S]] z].

Elementary information descriptors can be composed into complex infor-
mation descriptors using constructions such as concatenation, conjunction,
implication, disjunction, and complementation. These may either refer to the

Figure 1. Role names

 A

C

B

T

S

reverse role name

connector name

R
role name "F"

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

fronts alone or to both fronts and tails of descriptors. For more details, see
Hofstede et al. (1993). In this chapter we use:

x [[D1 D2]] y ≡ ∃z [x [[D1]] z ∧ z [[D2]] y]
x [[D1 AND ALSO D2]] y ≡ ∃z [x [[D1]] z] ∧ ∃z [x [[D2]] z] ∧ x =
y,

where D1 and D2 are information descriptors, and x, y, and z are variables.
Some example expressions would be the following:

Person work�ng for Department “I&KS”

Persons working for department “I&KS”
Person (work�ng for Department “I&KS” AND ALSO own�ng Car of Brand “Seat”)

Persons working for department “I&KS” who also own a car of brand
Seat

Note that the natural-language likeness of the ORC expressions used in this
chapter can yet be improved considerably. In the above example, we have
added a naturalized version of the ORC expression in italics. We are in the
process of developing a formal grammar for a naturalized version of ORC
that has a 1:1 correspondence to basic (deep) ORC structures. However, be-
cause this grammar is not available as of yet, we provide ad hoc naturalized
expressions for clarification.

Rules

ORC has a special way of using information descriptors to describe rules
that should apply in a domain (note that constraints are in fact rules). Rules
consist of information descriptors that are interpreted in a Boolean way; that
is, if no tuple satisfies the relationship, the result is false, and otherwise it is
true. Some examples of such constructions are as follow:

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

[[SOME D]] ≡ ∃x,y [x [[D]] y]
[[NOT R1]] ≡ ¬[[R1]]
[[NO D]] ≡ [[NOT SOME D]],

where D is an information descriptor and R1 a rule.

Graphical Representation

Currently, we are experimenting with the effective graphical representation
of some key classes of temporal dependencies. In Proper et al. (2005), we
have provided some examples using notations inspired by the field of work-
flow modeling (Aalst & Hofstede, 2005).
A key modeling construct is the notion of a life-cycle type. An example of
its use is provided in Figure 2, which contains two interlinked life-cycle
types: Course Offering and Course Attendance. Each of these life-cycle types
comprises multiple action types.

Figure 2. Lecturing example

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the example domain, courses are offered to students. In offering a course,
a lecturer starts by setting up the course offering. This is followed by the
actual lecturing. After lecturing the course, the lecturer sets an exam. This
exam is given to the students attending the course, after which the lecturer
marks the exam papers produced by the students. Students attend the course
by enrolling. After their enrollment, they attend the course. Once the course
is finished, they prepare themselves for the exam, which is followed by the
actual exam, leading to an exam paper.
In general, the life-cycle type typically involves multiple action types and can
best be regarded as an abbreviation as illustrated in Figure 3. The temporal
dependency between x and y is defined as follows:

x >> S y ≡ x be�ng act of S PRECEDES y be�ng act of S.

The enrollment by students in a course should take place during the setup
phase of a course. This is enforced by means of the temporal subset constraint
from the Enrolling action type to the Setting Up action type. The connection
between the temporal subset constraint and the Course Offering life-cycle
type signifies that the temporal subset constraint should be evaluated via this
object type. In general, the semantics are expressed as:

x ⊆T y ≡ x DURING y.

Figure 3. Life-cycle types

S

x

y

y

x

S

hav�ng act
be�ng act �n

hav�ng act
be�ng act �n

��0 van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the case of Figure 2, we have specified a join path, leading, for example,
to the following:

Enroll�ng be�ng act of Course Attendance for Course Offer�ng
DURING

Sett�ng up be�ng act of Course Offer�ng

Enrolling (which is an act of course attendance, in response to course of-
fering)
takes place during
setting up (which is an act of course offering)

Finally, a model as presented in Figure 2 can be used as a basis for deriv-
ing specialized views such as depicted in Figure 4, focusing on the flow of
activities performed by a lecturer.

Conclusion

The research reported in this chapter is part of our effort to find a suitable
generalized domain modeling method to model active domains in view of
an ongoing attempt to achieve integrated domain ontologies underlying the
many viewpoints in conceptual modeling. In this chapter, we have proposed
the application of ORM rigor and the use of the ORM approach to model
elicitation and validation in modeling active domains. We have introduced
the logbook paradigm as a history-oriented extension of the traditional
natural-language orientation of ORM. To be able to define rules governing
the behavior of active domains, we have introduced ORC. The semantics of
this rule language has been defined in terms of Kripke structures. Finally,
we have shown how ORM can be extended with graphical constructs, in

Figure 4. Lecture activities
Course offer�ng

sett�ng up lectur�ng sett�ng exam g�v�ng exam mark�ng exam

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

particular life-cycle types, focusing on temporal dependencies in a domain.
This notation allows us to also derive specific views on a domain focusing
solely on temporal behavior, which has been demonstrated.
As made clear earlier, we do not put forward the verbal and graphical nota-
tions presented in this chapter as a competitor to existing and well-established
techniques for modeling active domains. It is integration we strive for, and we
do view ORM and ORC as good candidates for providing a foundation for the
fundamental integration of many existing, dedicated models and views.
Validation of our representations in an industrial context seems not quite
relevant, and has not been attempted. However, in academic education,
ORM, ORC, and recently the temporal extension presented in this chapter
have been successfully used to teach MSc students in information science
the fundamentals of formal conceptual modeling. We found it very helpful
indeed to present students with an integrated set of models firmly grounded
in a well-understood formalism, aiding them in coming to terms with the
many complex issues involved (both formal and methodological). In addition,
our experience is that once the fundamentals have been acquired, students
can easily apply them to other modeling techniques and methods, and learn
and understand these better and more quickly than their colleagues did some
years previous when an integrated foundation was still lacking in the cur-
riculum (other modeling techniques are in fact still taught). Admittedly, these
experiences have so far not been backed up by systematic research. Still,
we consider the results good enough to continue our approach and further
develop integrated, ORM-style conceptual modeling as a core around which
other modeling techniques and viewpoints are positioned.
As a next exercise, we intend to take some typical patterns from, for example,
enterprise modeling and work-flow modeling, and study how to ground them
in terms of an underlying ORM domain model with accompanying ORC
rules. We expect this to provide further progress in our effort to find a suitable
generalized domain modeling method to model active domains.

References

Aalst, W. van der, & Hofstede, A. ter. (2005). YAWL: Yet another workflow
language. Information Systems, 30(4), 245-275.

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Allen, G. N., & March, S. T. (2003). Modeling temporal dynamics for busi-
ness systems. Journal of Database Management, 14(3), 21-36.

Bloesch, A., & Halpin, T. (1996). ConQuer: A conceptual query language.
In B. Thalheim (Ed.), Proceedings of the 15th International Conference
on Conceptual Modeling (ER’96) (LNCS 1157, pp. 121-133). Berlin,
Germany: Springer.

Chellas, B. (1980). Modal logic: An introduction. Cambridge, United King-
dom: Cambridge University Press.

Chen, P. (1976). The entity-relationship model: Towards a unified view of
data. ACM Transactions on Database Systems, 1(1), 9-36.

Dietz, J. L. (2005). A world ontology specification language. In R. Meers-
man, Z. Tari, & P. Herrero (Eds.), On the Move to Meaningful Internet
Systems 2005: OTM Workshops. OTM Confederated International
Workshops and Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP,
ORM, PhDS, SeBGIS, SWWS, and WOSE 2005 (LNCS 3762, pp. 688-
699). Berlin, Germany: Springer-Verlag.

Elmasri, R., & Navathe, S. (1994). Advanced data models and emerging
trends. In Fundamentals of database systems (2nd ed., chap. 21). Red-
wood City, CA: Benjamin Cummings.

Embley, D., Kurtz, B., & Woodfield, S. (1992). Object-oriented systems
analysis: A model-driven approach. New York: Yourdon Press.

European Association of Aerospace Industries (AECMA). (2001). AECMA
simplified English: A guide for the preparation of aircraft maintenance
documentation in the international maintenance language (Issue 1,
Revision 2). Retrieved from http://www.aecma.org

Farrington, G. (1996). An overview of the international aerospace lan-
guage.

Frankel, D. (2003). Model driven architecture: Applying MDA to enterprise
computing. New York: Wiley.

Frederiks, P. (1997). Object-oriented modeling based on information gram-
mars [doctoral dissertation]. Nijmegen, the Netherlands: University of
Nijmegen.

Frederiks, P., & Weide, T. van der. (2002). Deriving and paraphrasing informa-
tion grammars using object-oriented analysis models. Acta Informatica,
38(7), 437-488.

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Fuchs, N., & Schwitter, R. (1996). Attempto controlled English (ACE). Pro-
ceedings of the First International Workshop on Controlled Language
Applications (CLAW96), 124-136.

Gogolla, M. (1994). An extended entity-relationship model: Fundamentals
and pragmatics (LNCS 767). Berlin, Germany: Springer.

Halpin, T. (2001). Information modeling and relational databases: From
conceptual analysis to logical design. San Mateo, CA: Morgan
Kaufmann.

Hofstede, A. ter, Proper, H. A., & Weide, T. van der. (1993). Formal defini-
tion of a conceptual language for the description and manipulation of
information models. Information Systems, 18(7), 489-523.

Hofstede, A. ter, Proper, H. A., & Weide, T. van der. (1997). Exploiting fact
verbalisation in conceptual information modelling. Information Systems,
22(6/7), 349-385.

Hoppenbrouwers, S. (2003). Freezing language: Conceptualisation processes
in ICT supported organizations [doctoral dissertation]. Nijmegen, the
Netherlands: University of Nijmegen.

Hoppenbrouwers, S., Proper, H. A., & Weide, T. van der. (2005a). Fact calculus:
Using ORM and Lisa-D to reason about domains. In R. Meersman, Z.
Tari, & P. Herrero (Eds.), On the Move to Meaningful Internet Systems
2005: OTM Workshops. OTM Confederated International Workshops
and Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS,
SeBGIS, SWWS, and WOSE 2005 (LNCS 3762, pp. 720-729). Berlin,
Germany: Springer-Verlag.

Hoppenbrouwers, S., Proper, H. A., & Weide, T. van der. (2005b). A funda-
mental view on the process of conceptual modeling. In L. Delcambre, C.
Kop, H. Mayr, J. Mylopoulos, & O. Pastor (Eds.), Conceptual Modeling:
ER 2005. 24th International Conference on Conceptual Modeling (LNCS
3716, pp. 128-143). Berlin, Germany: Springer-Verlag.

ISO. (1987). Information processing systems: Concepts and terminology for
the conceptual schema and the information base (ISO/TR 9007:1987).
Retrieved from http://www.iso.org

Khatri, V., Ram, S., & Snodgrass, R. T. (2004). Augmenting a conceptual model
with geospatiotemporal annotations. IEEE Transactions on Knowledge
and Data Engineering, 16(11), 1324-1338.

Kristen, G. (1994). Object orientation: The KISS method. From information
architecture to information system. Reading, MA: Addison Wesley.

��� van Bommel, Hoppenbrouwers, Proper, & van der We�de

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Lankhorst, M. (Ed.). (2005). Enterprise architecture at work: Modelling,
communication and analysis. Berlin, Germany: Springer.

Lipeck, U., & Saake, G. (1987). Monitoring dynamic integrity constraints
based on temporal logic. Information Systems, 12(3), 255-269.

March, S. T., & Allen, G. N. (2003). On the representation of temporal dy-
namics. Advanced Topics in Database Research, 2, 37-53.

Meersman, R. (1982). The RIDL conceptual language (Tech. Rep.). Brus-
sels, Belgium: International Centre for Information Analysis Services,
Control Data Belgium, Inc.

Nijssen, G., & Halpin, T. (1989). Conceptual schema and relational data-
base design: A fact oriented approach. Englewood Cliffs, NJ: Prentice-
Hall.

OMG. (2003). UML 2.0 superstructure specification: Final adopted speci-
fication (Tech. Rep. No. ptc/03-08-02). Retrieved from http://www.
omg.org

Paulk, M., Curtis, B., Chrissis, M., & Weber, C. (1993). Capability matu-
rity model for software (Version 1.1, Tech. Rep. No. SEI-93-TR-024).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity.

Proper, H. A. (1994a). ConQuer-92: The revised report on the conceptual
query language LISA-D (Tech. Rep.). Brisbane, Queensland, Australia:
Asymetrix Research Laboratory, University of Queensland.

Proper, H. A. (1994b). A theory for conceptual modelling of evolving ap-
plication domains [doctoral dissertation]. Nijmegen, the Netherlands:
University of Nijmegen.

Proper, H. A., Bleeker, A., & Hoppenbrouwers, S. (2004). Object-role model-
ling as a domain modelling approach. In Proceedings of the Workshop
on Evaluating Modeling Methods for Systems Analysis and Design
(EMMSAD’04), held in conjunction with the 16th Conference on Advanced
Information Systems 2004 (CAiSE 2004) (Vol. 3, pp. 317-328).

On the Use of Object-Role Model�ng for Model�ng Act�ve Doma�ns ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Proper, H. A., Hoppenbrouwers, S., & Weide, T. van der. (2005). A fact-
oriented approach to activity modeling. In R. Meersman, Z. Tari, &
P. Herrero (Eds.), On the Move to Meaningful Internet Systems 2005:
OTM Workshops. OTM Confederated International Workshops and
Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS,
SeBGIS, SWWS, and WOSE 2005 (LNCS 3762, pp. 666-675). Berlin,
Germany: Springer-Verlag.

Proper, H. A., & Weide, T. van der. (1994). EVORM: A conceptual model-
ling technique for evolving application domains. Data & Knowledge
Engineering, 12, 313-359.

Proper, H. A., & Weide, T. van der. (2005). Modelling as selection of inter-
pretation. In Modellierung 2006 (LNI P82, pp. 223-232).

Reijswoud, V. van, & Dietz, J. (1999). DEMO modelling handbook (2nd ed.,
Vol. 1). Delft, the Netherlands: Delft University of Technology.

Schwitter, R. (2004). Controlled natural languages. Centre for Language
Technology, Macquary University. Retrieved from http://www.ics.
mq.edu.au/rolfs/controlled- natural- languages/

Spyns, P. (2005). Object role modelling for ontology engineering in the
DOGMA framework. In R. Meersman, Z. Tari, & P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2005: OTM Workshops. OTM
Confederated International Workshops and Posters, AWeSOMe, CAMS,
GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS, and WOSE
2005 (LNCS 3762, pp. 710-719). Berlin, Germany: Springer-Verlag.

Spyns, P., Meersman, R., & Jarrar, M. (2002). Data modelling versus ontol-
ogy engineering. ACM SIGMOD Record, 31(4), 12-17.

Wijers, G., & Heijes, H. (1990). Automated support of the modelling pro-
cess: A view based on experiments with expert information engineers.
In B. Steinholz, A. Sølvberg, & L. Bergman (Eds.), Proceedings of the
Second Nordic Conference CAiSE’90 on Advanced Information Systems
Engineering (LNCS 436, pp. 88-108). Berlin, Germany: Springer.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter VI

Method Chunks to Federate
Development Processes

Isabelle M�rbel, I�S Laboratory, France

Abstract

Method engineering aims at providing effective solutions to build, improve,
and support the evolution of development methodologies. Contributions in
the field of situational method engineering aim at providing techniques and
tools allowing one to build project-specific methodologies. However, little
research has focused on how to tailor such situational methodologies when
used as organization-wide standard approaches. Moreover, current ap-
proaches have been thought of for method engineers, that is to say, expert
users, and they are not enough dedicated to nonexpert ones. In this context,
we propose an approach that consists of federating the method chunks built
from the different project-specific methods in order to allow each project
to share its best practices with the other projects without imposing to all of
them a new and unique organization-wide method.

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction

Several decades of work have been spent to provide effective solutions to
build, improve, and support the evolution of development methodologies.
Different approaches have been successively proposed to provide suitable
support to software-based information system development. Experiments
show that the provided models and methodologies have been adapted to
each of the different situations in which they have been used. At the end,
almost every project has carried out tailoring in order to apply effectively
best standard practices. There exist now a lot of variations around a given
methodology, each of them appearing suitable for the situation (i.e., the
organization or the project) it has been customized for, but they are not so
easily translatable in a somewhat different situation, even inside the same
domain (i.e., the application domain or the organization).
A development methodology (or process) may be seen as a transformation
process (where nonformal specifications are transformed into more formal
specification and then code), a decision-making process (where the taken
decisions are recorded all along the development process), or a problem-
solving process (where solutions are provided to the successive problems
encountered during the development process). Especially with regard to these
two last viewpoints (decision-making and problem-solving aspects), it would
be interesting to benefit from the experiences acquired during the resolution
of previous problems. Moreover, the rich and long experience we already
have in supporting software-based information system development leads
us to try to capitalize and share best practices in this field as it has already
been successfully done in the software development domain.
Indeed, there is a need for the capitalization and sharing of knowledge about
method engineering as well as a need for customization and tailoring of this
knowledge to be better adapted to the organization, the project it is deployed
in, and even the user it is targeted for. In this chapter, we start first by discuss-
ing the proposals made in the field of method engineering (and especially
situational method engineering, aiming at providing solutions to customize
development methodologies) and the work done on software reuse. Then
we show the shortcomings of the provided approaches. As will be detailed,
current approaches have been thought of for expert users and not enough
are dedicated to nonexpert ones. Moreover, they are not very suitable when
used as organization-wide standards.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In order to overcome the identified shortcomings of current approaches and
to provide, in the same framework, means to support the customization of
development methodologies at different levels (organization, project, users),
and means to capitalize and share knowledge about method engineering, one
solution is to capture and understand all the situational methodologies used
inside each project of the organization to build an organization-wide standard
method by merging the best practices coming from each of them. This solu-
tion requires that method engineers, that is to say, the persons in charge of
building and deploying the development methodology in the organization, are
able to capture and understand each variation of each methodology in each
project, which is not an easy task. It also requires that each method user (i.e.,
the project member applying or using the methodology) accept and use the
new organization-wide method instead of his or her customized version of it,
which is also not easy. In this context, we propose an alternative solution that
consists of federating the different development methodologies used inside
each project (that we call project-specific development methodologies) in
order to allow each project to share its best practices with the other projects
without imposing to all of them a unique organization-wide development
methodology.
Our proposal is presented later. First, we start by discussing the two main
elements of our environment:

•	 A method-chunk repository consisting of a number of adequately de-
scribed fragments that have been identified and extracted from existing
development methodologies

•	 A reuse frame consisting of a number of keywords meaningful and
discriminant to describe method fragments. These keywords are orga-
nized into a tree structure that allows structured storage and subsequent
retrieval of fragments.

Then, we discuss how to support development process federation thanks to the
method-chunk repository and the reuse-frame structure. We first explain how
to qualify method fragments with the help of the keywords provided in the
reuse frame and how to clarify method-user needs in terms of methodologi-
cal support, again with the help of the reuse-frame content. Then we present
the similarity metrics and the closeness distance we propose to quantify the
similarity between method fragments and between method fragments and
user needs. Finally, we discuss the perspective of our work and conclude.

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Background

The software-based information system development field has always been
very demanding in techniques and methodologies to enhance the quality of
its products and the performance of its processes. It has led to the proposal of
numerous models, methodologies, and associated tools. It has also resulted in
a rich know-how that conducted our community to consider software-based
information system development from the reuse perspective. As our inter-
est is in method engineering and in software-based information systems, in
the following, we discuss proposals that emanate from these two research
domains.
In the field of method engineering, whose aim is to provide effective solutions
to build, improve, and support the evolution of software-based information
system development methodologies, proposals have been made to reuse
know-how about software-based information system development method-
ologies in order to build new development methodologies better adapted to
the features of a specific project. These approaches are reassembled under
the term situational method engineering. They are presented later.
Work in the field of software reuse also includes attempts to apply reuse
to the products and processes development engineering is made of. Some
proposals also deal with method-engineering knowledge reuse.

Situational Method Engineering

Different approaches have been successively proposed to provide suitable
support to software-based information system development. Software-based
information system development methodologies (abbreviated to development
methodologies in the following) have been formalized to support different
intentions (Leppänen, 2006). Some of them aim at formalizing the development
process as a transformation process; others lead to capture the development
process as a decision-making process; there are also approaches formalizing
the development process as a problem-solving process. Recent approaches
try to apprehend it as a learning process.
Indeed, whatever the followed intention is, development methodologies have
been developed with a broad scope of situations in mind and finally seem too
generic to be applied as such in a specific project. Projects differ with respect
to their development context, delivery, project team, deadline, and so forth.

��0 M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Even similar projects require different levels of tailoring due to differences
in the organizational structure. Also, an organization may consist of projects
having significantly different characteristics, and therefore requiring different
development methodologies. Almost every organization or project carries
out tailoring in order to apply effectively best standard practices. There is a
need to adapt practices to suit the varying needs of projects and organiza-
tions. Several studies have proposed factors influencing process tailoring
including domain characteristics, project characteristics, project goals and
assumptions, organizational structure, corporate size, maturity level, and so
forth (Ginsberg & Quinn, 1995; Mirbel & de Rivières, 2002; van Slooten
& Hodes, 1996).
Situational method engineering aims at building specific development meth-
odologies to meet the requirement of a particular project situation by reusing
and assembling parts of existing methodologies (Brinkkemper, Saeki, &
Harmsen, 1998; Harmsen, 1997; Ralyté, 2001). In these kinds of approaches,
the method engineer is responsible for building the fragment repository after
having identified and extracted the reusable parts of existing methodologies
or having generated them from a metamodel. Then, the method engineer is
in charge of building a new and adapted methodology by assembling the
suitable reusable parts stored in the fragment repository.
Based on the observation that any method has two interrelated aspects, product
and process, several authors propose two types of method fragments: pro-
cess fragments and product fragments (Brinkkemper et al., 1998; Harmsen,
Brinkkemper, & Han Oei, 1994; Punter & Lemmen, 1996). Other authors
consider only process aspects and provide process components (Firesmith &
Henderson-Sellers, 2002) or process fragments (Mirbel, 2004). Others inte-
grate these two aspects in the same module, called a method chunk (Ralyté &
Rolland, 2001; Rolland, Plihon, & Ralyté, 1998). The notion of method bloc
proposed in Prakash (1999) is similar to the method chunk as it also com-
bines product and process perspectives into the same modeling component.
An agent-oriented approach combining product and process perspectives is
also proposed in Cossentino and Seidita (2004). Another kind of situational
method engineering approach is based on generic conceptual patterns for
method construction and extension instead of fragments (Rolland & Plihon,
1996). Conceptual patterns capture generic laws governing the construction
of different but similar development methodologies. Deneckère and Souveyet
(1998) propose a domain-specific process and product patterns for existing
method extension. Decision-making patterns capturing the best practices in

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

enterprise modeling are proposed in Rolland, Nurcan, and Grosz (2000) to
better support development processes.
Indeed, different objectives are targeted by fragments (or components or
chunks) in the method engineering literature. A first family of approaches aims
at documenting development methodologies through well-defined fragments
(Storrle, 2001). These approaches do not provide powerful supports, nor do
they reuse the fragments from one development methodology to another, nor
do they customize the development methodology for a specific project or
organization. Their strength resides in the effort of specification with regard
to the elements a development methodology is made of (tasks, activities,
resources, etc.). A second family of approaches groups works whose aim is
to help in building new development methodologies starting from existing
ones (instead of building them from scratch; Brinkkemper et al., 1998; Ra-
lyté, 2001). In this kind of approaches, the focus is on the operators provided
to allow a new combination of existing fragments, and on mechanisms to
evaluate the similitude among fragments. Both families of approaches are
dedicated to method engineers.
Proposals about situational method engineering mainly provide solutions to
allow method engineers to customize a development methodology with regard
to the specificities of a particular project in a specific organization. For this
purpose, means have been provided to formalize development methodologies
and to specify reusable pieces of development methodology that are stored
in a dedicated repository. Dedicated operators and processes have also been
discussed to support method fragments assembly into new and more suitable
development methodologies.

Reuse and Method Engineering

Providing support to development methodologies and especially in the field
of situational method engineering means to provide means to capitalize and
share best practices in software-based information system development, that
is to say, method engineering knowledge. It is recognized as important to
benefit from the experiences acquired during the resolution of previous prob-
lems through reuse and adaptation mechanisms. Optimization and effective
reuse of development methodologies can significantly enhance development
productivity and quality (Holdsworth, 1999). Reuse may take place inside a
project or across multiple projects, inside an organization or across multiple
organizations.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A reusable component is defined as being any design artifact that is specifically
developed to be used and is actually used in more than one context (Zhang &
Lyytinen, 2001). A large variety of components also called patterns (Fowler,
1997; Gamma, Helm, Johnson, & Vlissides, 1995), business objects (Cauvet
& Semmak, 1996), frameworks (Willis, 1996), and COTS or assets (OMG,
2005) have been proposed. Components differ with regard to their granular-
ity, abstraction level (software components, design components, business
components), or by the kind of knowledge they allow for reuse (Cauvet &
Rosenthal-Sabroux, 2001). Attempts have been made in the field of method
engineering to take advantage of reuse from the process point of view. Two
research directions have been extensively studied in the field of software
component reuse: design for reuse and design by reuse.
Design for reuse aims at proposing systems to support the identification,
specification, organization, and implementation of reusable components.
Research in this field deals with the definition of models and languages to
specify reusable components. These languages allow the modeling of generic
knowledge. Associated tools and methods have also been proposed (Cauvet
& Rosenthal-Sabroux, 2001).
Design by reuse deals with the development of a new software-based infor-
mation system by reusing suitable components (Kang, Cohen, Hess, Novak,
& Peterson, 1990). Research in this field led to rethinking software-based
information system development processes. Dedicated tools to systematically
reuse components during the development process have also been proposed:
component repositories, reuse systems, and environments of development
by reuse (Cauvet, Rieu, Front-Conte, & Ramadour, 2001). Component
repositories provide the collection, sometimes organized, of reusable com-
ponents. Search facilities are based on the internal organization among the
components. There is no support for selection, adaptation, and integration
activities. Reuse systems focus on component management functionalities in
addition to composition, adaptation, and integration support. These tools do
not well support the reuse process environment of development by guiding
the selection of components and their adaptation. In these systems, software-
based information system development is seen as a problem-solving activity;
tools provide support during the solving process and mechanisms to ensure
adequacy of the proposed solution.
Indeed, with regard to method engineering activities and knowledge, devel-
opment for reuse is well supported: Proposals have been made to specify,
organize, and implement components (method fragments) inside dedicated
repositories as it has been discussed. With regard to development by design,

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

attempts have been made in the field of situational method engineering to
provide means to adapt and integrate method fragments (Ralyté, 2001), but
additional support is still needed. Moreover, few works have dealt with the
selection step, that is to say, search facilities and means to provide suitable
components (method fragments) during the development process. Indeed,
current approaches in situation method engineering have been thought of for
method engineers and therefore well cover development for reuse, but there
is still a lack of support dedicated to method users, that is to say, support for
development by reuse.
In the software development field, existing approaches supporting the search
and retrieval of components can be classified into four types (Khayati, 2002;
Mili, Valtchev, Di-Sciullo, & Gabrini, 2001):

•	 Simple keywords and string search
•	 Faceted classification and retrieval
•	 Signature matching
•	 Behavioural matching

Simple keyword searching may result in too many or too few items retrieved
or even unrelated items retrieved. The drawback of the faceted-classification
search approaches is the difficulty in managing the classification scheme when
domain knowledge evolves. Signature matching techniques are dedicated to
software components embedding code and are difficult to apply on compo-
nents providing knowledge about requirements and the way of working, as
it is in our case. Behavioural matching techniques are difficult to use when
components have complex behaviours or involve side effects. Finally, all these
techniques do not provide ways to augment or extend query (Sugumaran &
Storey, 2003). Recent approaches focusing on knowledge reuse (more than
software component reuse) propose to combine user intention and application
domain information to improve support during the selection step (Pujalte &
Ramadour, 2004; Sugumaran & Storey).
Avrilioni and Cunin (2001) have proposed the OPSIS approach to effectively
reuse process assets. Their approach matches component interfaces with
the process parameters and checks the consistency of the resulting process.
This approach is based on the concept of view and deals with processes in
general and not especially with software-based information system develop-
ment processes.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Karlson, Agerfalk, and Hjalmarsson (2001) propose a method to adapt soft-
ware development methodologies by configuring a standard process model.
When a project’s characteristic matches one of the recurring patterns of project
characteristics, then the associated and predefined process configuration is
reused. This approach seeks to create reusable process configurations based
on experience from earlier projects.

Users and Organization in Method Engineering

Situational method engineering and software reuse fields are rich with a
lot of useful works aiming at improving software-based information sys-
tem development. From our point of view, two dimensions still need some
work to be done. Our first concern is with regard to the method user, as it
has already been shortly explained previously. Method users are required to
understand and control most of the method knowledge used in their orga-
nization when they need only a limited extent of it in their daily tasks. Ex-
periments show that they feel development methodologies are too rigid, too
prescriptive, and lack support to face the fast evolution of technological and
methodological knowledge. Our second concern is with organization-wide
method engineering. On one hand, development methodologies show their
best in large organizations where they are strongly required to understand,
structure, follow, and control the development process, but on the other hand,
situational method engineering does not provide answers about how to tailor
a development methodology when used as an organization-wide standard.
We will discuss more in detail these drawbacks of current approaches in the
next subsections.

Method User’s Perspective

Current situational method engineering approaches are mostly dedicated
to method engineers: They mainly cover the activity of building new and
customized development methodologies, which is the task of method engi-
neers. However, method users (i.e., the project member applying or using the
methodology) also need to benefit through reuse and adaptation mechanisms
from the experiences acquired during the previous software-based informa-
tion system development activities. All along the development methodol-

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ogy, guidelines are elaborated, refined, and adapted by method users to deal
with their daily activities. These guidelines may be useful to other teams
and users facing close situations in different projects independent of the
functional domain as well as the technical background. Therefore, a third
family of proposals about situational method engineering (in addition to the
two families presented—approaches aiming at documenting development
methodologies through well-defined fragments and approaches aiming at
building new development methodologies starting from existing ones) should
focus on method fragmentation for method users in order to provide them
with guidelines that are reusable while performing their daily tasks (Gnatz,
Marshall, Popp, Rausch, & Schwerin, 2001; Karlson et al., 2001; Mirbel &
Ralyté, 2006).
Currently, method users are required to know and understand the full de-
velopment methodology as well as all its concepts to be able to exploit the
methodology, most of the time partially. Moreover, guidelines to manage
and adopt process models are not detailed enough to support method users
through the metaprocess understanding, and method users lack experience
and the ability to establish “homegrown” development methodologies or to
tailor existing ones (Rossi, Ramesh, Lyytinen, & Tolvanen, 2004). There is
a tension between the method in concept (the methodology as formalized
in the manual) and the method in action (as interpreted by method users;
Fitzgerald, 1997; Lings & Lundell, 2004). Experiments show that it all has
negative effects and discredits development methodologies. In the reuse
field also, the provided environments are dedicated to experts having strong
knowledge about component repositories and the way they are organized.
Such repositories are not dedicated to users who are not experts, for whom
the major interest of such environments would be assistance in their search
for the most suitable components (Pujalte & Ramadour, 2004). Recent ap-
proaches combine user intention and application domain information, as well
as natural-language techniques (Pujalte & Ramadour) to answer this need.
However, they are not easy to deploy and require investment from method
users. Moreover, they are based on domain knowledge and therefore are not
usable in cross-domain organizations.
Experiments show that method users prefer lightweight development method-
ologies to heavyweight ones because they feel more implicated. Lightweight
development methodologies increase method users’ involvement, contrary to
heavyweight ones for which the only significant choices are made by method
engineers. Feedback from method users shows that development methodolo-

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

gies are seen as too prescriptive and too rigid (Bajec, Vavpotic, & Kirsper,
2004). However, lightweight development methodologies are most of the time
empirical processes derived by categorizing observed inputs and outputs, and
by defining meaningful controls to keep the process within prescribed bounds
(Rising & Janoff, 2000). In empirical development methodology modeling,
models are strictly based on experimentally obtained input and output data,
with no recourse to any laws concerning the fundamental nature and properties
of the system to develop, the project, or the methodology itself. Therefore,
it makes it very difficult to transpose it from one organization to another.
Moreover, when agile processes, as they are called, increasingly emphasize
customization and flexibility, there is no guarantee that a stable process can
be established (Rossi et al., 2004).
Increased outsourcing and new development contexts create unforeseen
needs for development methodologies management and deployment. Method
engineering needs to be analyzed as a continuous, evolutionary process
that supports the adaptation of development methodologies to changing
technical and organizational contingencies and new development needs.
Method rationale and evolutionary method engineering (Rossi et al., 2004)
are answers currently provided on this topic. However, they focus on the
metamodel evolution, that is to say, the method-engineer work, while we try
to provide solutions to support this evolution at the method-user level. Up to
now, method fragments have been thought of to support the building of new
and better adapted development methodologies, and component reuse has
been studied in order to capitalize knowledge about the system to develop.
Both of them have been proposed to support method engineers and experts
in their work.
New proposals have to focus on method users’ needs. They should provide
solutions to help method users quickly, easily, and efficiently access method-
engineering knowledge. A method-fragment repository should be seen as a
repository of experiences about method engineering, and means have to be
provided to maintain method-engineering knowledge in a pragmatic-oriented
way in order to also focus on method users’ activities (in addition to the
method engineers’ activities). Adaptability means facing the evolution of
technologies and development methodologies in the organizations as well
as providing development-software-based information system development
to both engineers and users.

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Organization-Wide Approaches

Works in the field of situational method engineering have dealt with solutions
to better handle and answer the need for customization at the project level
(Brinkkemper et al., 1998; Harmsen, 1997; Rolland et al., 1998). However,
as it has been emphasized in Fitzgerald (1997), little research has focused on
how to tailor such situational methodologies when used as organization-wide
standard approaches. When situational method engineering allows one to
build and customize a standard development methodology into a methodol-
ogy specific to the organization’s need, we call this an organization-wide
development methodology. It will usually last for a relatively long period
of time because of the commitment and investment it requires. On the other
hand, the constant evolution of techniques, mechanisms, and technologies
used to develop software-based information systems requires support for
methodological evolution, too. Changes in method requirements during the
project lifetime evolution have not at all been handled by current approaches
in the field of situational method engineering (Agerfalk & Karlsson, 2004).
The authors argue that organizations need to explicitly represent the conditions
under which various methodology steps are executed in order to enhance the
reusability and tailoring of these methodologies.
One solution to deploy an organization-wide development methodology could
be to capture and understand each development methodology used inside
each project (which we call a project-specific development methodology)
to build an organization-wide standard development methodology by merg-
ing the best practices coming from all the projects. This solution requires
that method engineers are able to capture and understand each variation of
each development methodology in each project. It is not an easy task, as it is
emphasized in Rossi et al. (2004). It also requires one to make each method
user accept and use the new organization-wide development methodology
instead of his or her customized version of it. It is also not easy because
method users prefer lightweight development methodologies to heavyweight
ones for which they feel not enough implicated.
Moreover, evolution would not at all be efficiently supported. Method engineers
will have to regularly look at the way the development methodology is applied and
the way the technology and the software-based information system evolve to update
and maintain the method-engineering knowledge. This solution is not satisfactory,
and we propose an alternative organization of method-engineering knowledge into
a federation of method fragments as it will be presented in this chapter.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Method-Chunk Federation

In order to overcome the identified shortcomings of current situational method-
engineering approaches, we propose an alternative solution that consists of
federating the different project-specific development methodologies in order
to allow each project to share its method-engineering best practices with the
other projects without imposing to all projects a unique organization-wide
development methodology. We particularly focus on the needs of method us-
ers, which have been discussed in current research only to a limited extent.
We started from the work of J. Ralyté (2001) about method chunks to break
down project-specific development methodologies into atomic and reusable
parts. Our contribution focuses on the specification and use of a reuse frame
to retrieve meaningful method chunks. In our proposal, we provide means
to do the following:

•	 Make the federation possible by introducing a reuse frame in order to
capture and share knowledge about software-based information devel-
opment activities

•	 Support the federation by providing means for the method users
°	 To qualify the content of each atomic and reusable part of the

project-specific development methodology through what we call a
reuse context

°	 To express their need through a user situation

We also propose a similarity metric and a closeness distance to retrieve
method chunks, not strictly matching the user need by exploiting the differ-
ent kinds of refinement relationships that exist in the knowledge-qualifying
software-based information system development activities.
Indeed, in our approach, we distinguish (a) the project area where the project-
specific development methodology is built and deployed, and (b) the federation
where the reusable parts of the project-specific development methodologies
are exported from the project area to be shared by all the projects. In our
approach, each project starts by breaking its project-specific development
methodology into reusable parts (Step 1, method breakdown, in Figure 1).
Then, the reusable parts are exported in the federation and qualified with the
help of the keywords stored in the reuse frame (Step 2, method-fragment

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

qualification, in Figure 1). Each project exports its reusable parts into a re-
pository that is part of the federation. Qualified method fragments become
selectable and able to be queried by the method users from the other projects
(Step 3, method-fragment retrieval, in Figure 1).
The rest of the section is organized as follows. First, the notion of method
chunk we started with to describe reusable knowledge about software-based
information system development activities is described, then we discuss
the reuse frame, which allows us to store and organize meaningful knowl-
edge about software-based information system development activities. The
method-chunk notion in addition to the reuse-frame structure constitutes the
main support to make project-specific development methodologies able to be
federated. In a second subsection, we show how method-chunk federation is
supported. We start first by introducing the notion of reuse context to qualify
method chunks. Then we specify the notion of user situation, which allows
users to tell about their methodological needs. Finally we discuss the similar-
ity metrics and the closeness distance we propose to quantify the matching
between reuse contexts (when comparing method chunks) or between a user
situation and a reuse context.

Figure 1. Overall architecture

��0 M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Making Project-Specific Development Methodologies Able
to be Federated

Making project-specific development methodologies able to be federated
means to provide ways to break down a development methodology into re-
usable parts and to qualify each reusable part with meaningful keywords to
allow the reusable part to be selected by other method users in other projects.
In this section, we first present the model we choose to specify reusable parts
of software-based information system development methodologies. Then, we
present the reuse frame, which aggregates the keywords useful to qualify
software-based information system development activities. We discuss the
structure of our reuse frame before proposing standard content for it.

Atomic and Reusable Method Part

The notion of reusable method component has been widely studied in the
field of situational method engineering, as it has been discussed previously.
In our work, we started from the notion of method chunk proposed by Ralyté
(2001), which is the most complete and suitable reusable asset for our pur-
pose. In Ralyté’s approach, a development methodology is viewed as a set of
loosely coupled method chunks expressed at different levels of granularity. A
method chunk is an autonomous and coherent part of a development meth-
odology supporting the realization of some specific development activities.
Such a modular view permits one to reuse chunks of a given development
methodology in others and to federate chunks in our approach. Indeed, the
notion of method chunk covers the product and process dimensions, and the
map formalism it is based on allows us to define guidelines at different levels
of specificity and to support guidelines refinement. It is an intention-based
approach of method engineering, very much suitable to support development
by reuse. Associated assembly techniques have also been proposed (Ralyté).
These operators may be suitable for method users to let them enrich their
project-specific development methodology by integrating the new guidelines
retrieved in the federation in the project-specific development methodolo-
gies.
As part of a development methodology, a method chunk ensures a tight cou-
pling of some process part of a development methodology process model and

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

its related product part. The interface of the method chunk captures the reuse
context in which the method chunk can be applied. Besides this, a descriptor is
associated with every method chunk. It extends the contextual view captured
in the chunk interface to define the context in which the chunk can be reused.
For more details about the structure and content of a method chunk, please
refer to Ralyté (2001) and Mirbel and Ralyté (2006). The different elements
constituting a method chunk are summarized in Figure 2.
An example of the interface and body part of a method chunk, called busi-
ness-rule behaviour, is given in Figure 3. This method chunk is extracted
from the JECKO methodology developed in collaboration with Amadeus
S.A.S. (Mirbel and de Rivieres, 2002).

Figure 2. Method-chunk structure

Figure 3. Method-chunk example

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In this method chunk, textual guidelines are given to deal with the description
of a user interface and more specifically to help in describing in a standard
manner the different business rules related to the user-interface behaviour.
For this purpose, the use of UML (unified modeling language) activity and
class diagrams is recommended, and textual guidelines are provided. The
descriptor of this method chunk will be presented later.
The core elements of our environment are a method-chunk repository to
store the method chunks shared by all the projects in the organization and
a reuse frame to share a common set of vocabulary to qualify the method
chunks of the repository.

The Reuse Frame

The reuse frame is an ontological structure shared by all the method users.
It allows structured storage and subsequent retrieval of method chunks. In
doing so, the presented approach allows vague retrieval queries and does not
rely on a consistent and hard-to-maintain tagging mechanism.
As for the reuse frame, our contribution is twofold. First, we propose a
structure allowing one to organize meaningful keywords to qualify method
chunks in order to improve their reusability by method users; we also propose
standard content for this reuse frame. This content has been elaborated by
integrating the different works that have been done to describe contingency
factors in software-based information system development projects. It should
therefore be suitable for any company. However, it could also be changed
or even replaced by other content more suitable for the organization it is
deployed in.
In the following, we will start by discussing the reuse-frame structure before
proposing our standard content.

Reuse-Frame Structure

The aim of the reuse frame is to capture the knowledge about method engineer-
ing that could be discriminant and meaningful to describe method chunks and
user needs. It is organized as a tree of criteria that may be described more or
less precisely by using refinement relationships. Criteria allow one to qualify
reusable method chunks in a simple and more practical way. The level of user

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

involvement and time pressures are examples of discriminant factors (van
Slooten & Hodes, 1996) that are helpful to qualify the method-engineering
knowledge embedded into a method chunk. Virtual user involvement and
real user involvement are examples of specialization of the level-of-user-in-
volvement factor. Indeed, we propose three perspectives to classify criteria
in a kind of and-or tree form. The three perspectives we provide to classify
criteria are:

•	 The basic refinement relationship
•	 The refinement into more specific and classified criteria
•	 The refinement into more specific and exclusive criteria

The relationship to refine criteria into more specific and classified criteria
allows us to specify an order among the nodes sharing the same direct father
node. The level of expertise of the method user targeted by the method chunk
under qualification is another example of meaningful criteria. Different levels
of expertise may be distinguished: expert method users, medium method us-
ers, and beginner method users. If a method user searches for method chunks
satisfying the expert method users’ criteria and no chunks are found, maybe
he or she would be interested in looking for method chunks dedicated to me-
dium method users, but not to method chunks dedicated to beginner method
users, which would seem unsuitable. Ranking starts from 1 to n (one by one);
n is the number of nodes sharing the same direct father node. Therefore, we
integrated this kind of refinement relationship into our reuse-frame structure.
The refinement into nodes to specify more specific and classified criteria may
be helpful when retrieving method chunks to find method chunks qualified
by criteria classified as previous or next to the criteria of the method chunk
or of the user situation under consideration.
The refinement into nodes to specify exclusive criteria prevents method users
from qualifying method chunks or user needs through incompatible criteria.
High time pressure and low time pressure are examples of exclusive refine-
ments of the time-pressure factor introduced previously.
The refinement into nodes to specify more specific criteria may be helpful
when retrieving method chunks to find method chunks qualified by criteria
more or less generic than the criteria of the method chunk or of the user
situation under consideration.
The different kinds of relationships are summarized in Figure 4.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In the reuse frame, nodes close to the root node deal with general criteria
while nodes close to leaf nodes (including leaf nodes) deal with precise
criteria. A criterion is fully defined as a path from the root node to a node n
of the reuse frame. If n is not a leaf node, then it should not have exclusive
relationships starting from it, otherwise one of the ending nodes of the ex-
clusive relationships has to be chosen as n. Inclusion between criteria has
been defined to state when a criterion is more generic or more specific than
another one. A precedence relationship has also been defined to state when
a criterion is previous to or next to another one. The compatibility between
criteria allows one to specify when criteria may be part of the same user
situation or reuse context.

Inclusion: A criterion c1 is included in a criterion c2 if the path from the
root node to c1 is a subpath of the path from the root node to c2. A cri-
terion c1 includes a criterion c2 if the path from the root node to c2 is a
subpath of the path from the root node to c1.

In Figure 4, N8 includes N4.

Precedence: A criterion c1 is previous to criterion c2 if they have the same
direct father node and the classification rank of c1 is inferior to the clas-
sification rank of c2. c1 is next to c2 if c1 and c2 have the same direct
father node and the classification rank of c2 is inferior to the classification
rank of c1.

Figure 4. Reuse-frame refinement relationships

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In Figure 4, N8 is previous to N9, and N10 is after N9.

Compatibility: Included criteria are compatible. If one is not included in the
other, criteria are compatible only if they do not share in their path (from the
root node) a node with exclusive leaving edges.

In Figure 4, N5 and N7 are not compatible, while N5 and N3 are compat-
ible.

Reuse-Frame Content: A Proposal

In our approach, method-engineering knowledge is described in terms of
criteria, belonging to criteria families, which are successive refinements.
In our standard content, we start from the three main dimensions to qualify
software-based information system development activities: human, orga-
nizational, and technical. Starting from these three basic dimensions, each
company may populate the reuse frame with its own relevant criteria. We
provide reuse-frame content that we built from various work made on mean-
ingful criteria for development-methodology characterization (Mirbel &
Ralyté, 2006). With regard to the organizational dimension, we started from
the work of van Slooten and Hodes (1996), providing elements to character-
ize software-based information systems development projects: contingency
factors, project characteristics, goals and assumptions, as well as system
engineering activities. With regard to the technical dimension, we started
from previous work on JECKO, a context-driven approach to software de-
velopment developed in collaboration with the Amadeus Company. In this
work, we contribute to the definition of software-critical criteria in order
to get suitable documentation to support the software development process
(Mirbel & de Rivières, 2002). Our technical dimension also includes criteria
related to the source system (as legacy systems are more and more present
in organizations) and application technology, which requires more adapted
development processes. Finally, regarding the human dimension, we cope
with the different kinds of method users that may be involved in the soft-
ware-based information system development project (analysts, developers,
etc.) as well as their expertise level.
Figure 5 shows part of the standard content we propose for the reuse frame. In
this part of the reuse frame, application type is an example of wrong

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

criteria while intra-organization application is an example of
a right one. Database is included in the application technology,
medium analyst is a criterion more specific than analyst, expert
analyst is next to medium analyst while beginner analyst
is previous to medium analyst, and finally intra-organization
application and interorganization application are not
compatible criteria while high complexity and high time pres-
sure are compatible ones. For the full description of our reuse-frame content
proposal, please refer to Mirbel and Ralyté (2006) and Mirbel (2006).
In this section we presented the method-chunk model and the reuse-frame
structure and content. They allow support of the breaking down of project-spe-
cific development methodologies into method chunks. In the next section, we
will explain how we support method-chunk federation by qualifying method
chunks, by qualifying user needs, and by using the similarity metrics and
closeness distance to select meaningful method chunks in the federation.

Supporting Method-Chunk Federation

In this section, we present the method-chunk context, aiming at qualify-
ing method chunks built from the different project-specific development
methodologies in order to make them retrievable in the federation. Then we
discuss the user situation allowing method users to specify their need and

Figure 5. Part of the reuse-frame content proposal

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the similarity metrics we propose to compare method users’ needs (i.e., user
situation) or project-specific method chunks (i.e., method-chunk context) with
the whole set of federated method chunks. Then we detail how we extend our
similarity metrics to allow the retrieval of method chunks with close contexts
instead of those that exactly match.

Method-Chunk Qualification

As it has been highlighted before, making development methodology able to
be federated means to provide means to break down development methodolo-
gies into reusable autonomous and coherent parts and also to provide means
to qualify each development-methodology part with meaningful keywords
in order to make it retrievable by others. Dedicated efforts have been made
in the field of method engineering to provide efficient classification and re-
trieving techniques to store and retrieve method fragments. Classification and
retrieving techniques are currently based on structural relationships among
fragments (specialization, composition, alternative, etc.) and reuse inten-
tion matching. From our point of view, current classification and retrieving
means are not fully suitable for a federation of method chunks because they
are supported by the structure of the development methodology they are a
part of. Recent works on method-component reuse combine user intention
and application domain information in order to provide alternative and richer
means to organize and retrieve components (Pujalte & Ramadour, 2004).
But again, domain information does not look like the most suitable informa-
tion to support a federation as projects may belong to different application
domains. The only knowledge that will be understandable by every method
user (that is to say, knowledge that is neither application-domain oriented
nor project-specific development methodology oriented) is knowledge about
method engineering. Therefore, we propose the reuse frame presented earlier.
Indeed, the descriptor associated with each method chunk (which extends
the contextual view captured in the chunk interface to define the context
in which the chunk can be reused) is specified through a set of at least one
criterion taken from the reuse frame. It is called the reuse context and al-
lows meaningful qualification of method chunks in order to allow their reuse
through the federation.
The reuse context is defined as a set of at least one compatible criterion taken
from the reuse frame. Method chunks providing general guidelines are usually
associated with general criteria, that is to say, criteria represented by nodes

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

close to the root node. On the contrary, specific guidelines are provided in
method chunks associated with precise criteria, in other words, criteria cor-
responding to nodes close to leaf nodes or leaf nodes themselves. It is up
to the method engineer who enters the method chunk into the federation to
select the most meaningful criteria to qualify the method chunk. Figure 6 deals
again with the method chunk named business-rule behaviour introduced in
Figure 3 (body and interface). Figure 6 focuses on the descriptor part of this
method chunk. The criteria have been selected among the criteria provided
in our reuse-frame content proposal.

User-Need Qualification

The user situation allows method users to express their needs to retrieve
suitable method chunks from the federation. The user situation is specified
by a set of criteria selected among those proposed in the reuse frame. In ad-
dition to the pertinent criteria, called necessary criteria, method users may
give forbidden criteria, that is to say, criteria he or she is not interested in. It
could be helpful in some cases to be sure the method chunks including these
(forbidden) criteria will not appear in the retrieved set of method chunks. All
criteria must be compatible among each other inside each set.
If the method user searches for general guidelines, he or she should select
necessary criteria that are less refined, that is to say, criteria corresponding to
nodes close to the root node of the reuse frame. On the contrary, if the method

Figure 6. An example of method chunk reuse context

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

user searches for specific guidelines, he or she may specify the need by se-
lecting criteria that are more refined, in other words, criteria corresponding
to nodes close to the leaf nodes or leaf nodes themselves in the reuse frame.
Figure 7 gives an example of user situation. The criteria have been selected
among the criteria provided in our reuse-frame content proposal.

Similarity Metrics and Closeness Distance

Our proposal aims at federating different project-specific development
methodologies, allowing each project to share its best practices with the
other projects but without imposing to all of them a unique organization-
wide development methodology. For this purpose, we provide means for
the method user to query the method chunks in the federation to retrieve
meaningful method chunks.
A method chunk is meaningful (with regard to a method user’s need) because
it deals with one or several software-based information system development
activities covered by the project-specific development methodology the
method user usually uses in his or her project; it is therefore an alternative
way of working that may be of interest. For this purpose, we defined similarity
metrics to compare a project-specific method chunk with the reuse contexts
of the method chunks in the federation.
A method chunk is also meaningful when it deals with one or several soft-
ware-based information system development activities that are not (well)

Figure 7. An example of user situation

��0 M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

covered by the project-specific development methodology. For this purpose,
our similarity metrics are also applicable to quantify the matching between
a user situation and a method-chunk context in the set of federated method
chunks.
The main interest of the federation is the ability to propose new method chunks
to method users. Means have to be provided to retrieve as many meaningful
method chunks as possible as an answer to a method user’s needs. Therefore,
method chunks that reuse contexts that do not fully match the criteria pro-
vided by the method user may also be of interest and have to be shown to the
method user. In this case, the similarity between the user situation and the
reuse context has to be quantified. A reuse context that does not fully match
a user situation is, for instance, a reuse context whose criteria are included
in the user-situation list of criteria. The specification of method-engineering
knowledge is not something very well defined, and each person making refer-
ence to it could understand something slightly different about it. Therefore,
guidelines may be more or less detailed in the body of a method chunk, and a
method chunk may be qualified by more or less specific criteria even if shared
by all the method users. Therefore, we believe it is meaningful to retrieve
method chunks qualified by more generic or more specific keywords. Looking
at knowledge qualifying software-based information system development
activities, one may observe that some of it is ordered. For instance, expert
designers know more about design than medium ones, who know more than
beginner ones. Therefore, a method chunk dedicated to an expert designer
may also be interesting for a medium one, just as a method chunk dedicated
to a beginner designer may also be interesting for a medium one. Borderlines
between ordered criteria (expert, medium, and beginner designers) are not
always strictly defined. Therefore, we believe it is meaningful, when retriev-
ing method chunks, to search also for method chunks associated with criteria
previous to or next to the criteria under consideration in the user situation.
In this extended kind of retrieval, the similarity between the user situation
and the reuse context of the retrieved method chunks has to be quantified. It
is the purpose of the similarity metrics.

Similarity Metrics between Method Chunks

In this case, the reuse context of two method chunks is considered (one from
the project-specific development methodology and one from the method-chunk
federation). By looking at the number of common criteria in their reuse

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

contexts, a similarity metric, sm, varying between 0 and 1, is computed to
indicate to the method user how much the method chunk from the federation
matches the project-specific method chunk.

sm(mcp,mcf)=[Σi=1..nd(cCAmcpi

,CAmcf)]/[max(card(CAmcp),card(CAmcf)],

where mcp is the method chunk from the project-specific development meth-
odology and mcf is the method chunk from the federation. CA denotes the
set of criteria of the reuse context, CA={c1, .., ci}, and d(c,C) is the distance
between a criterion c and a set of criteria C defined as follows:

if c ∈ C, then d(c,C) =1, else d(c,C)=0.

Similarity Metrics between User Need and Method Chunks

In this case, the retrieval is done by comparing the reuse context of the method
chunks from the federation with a user situation. The similarity metrics are
based on:

•	 The number of common criteria between the necessary criteria from the
user situation and the reuse context.

•	 The number of common criteria between the forbidden criteria from the
user situation and the reuse context.

•	 The number of necessary criteria in the user situation.

A positive value of the similarity metric indicates that there are more neces-
sary criteria than forbidden ones in the reuse context with regard to the user
situation. On the contrary, a negative value indicates that there are less nec-
essary criteria than forbidden ones. The perfect adequateness is represented
by the value 1.

sm(rc,us)=[(Σi=1..nd(cNCusi

, CArc))-(Σj=1..md(cFCusj
, CArc))]/[card(NCus)],

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

where us is the user situation, NCus = {Ncus1 , .., NCusi } is its necessary
criteria set, and FCus = {FCus1, .., FCusj} is its forbidden criteria set; rc a
reuse context, CArc

is its set of criteria, and d(c’C) is the distance between a
criterion c and a set of criteria C defined as follows:

if c ∈ C, then d(c,C)=1, else d(c,C)=0.

Examples of reuse contexts and user situations are given in Figure 8. Similarity
metrics have been computed. The example shows that the two method chunks
under consideration better match the first user situation than the second one.
The first method chunk fully matches the user situation A.

Extended Similarity Metrics

Method chunks including more general, more specific, previous, or next
criteria in their reuse context, with regard to the criteria of the reuse situa-
tion, are also of interest, as described previously. They are considered close
method chunks. Method chunks including more specific criteria in their
reuse context may be of interest because they usually provide more specific
guidelines; they may better cover part of the methodological problem the

Figure 8. Examples of similarity metrics between user situation and reuse
context

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

method user is interested in. If one searches, for instance, for method chunks
matching code-reuse criteria, he or she may also be interested in method
chunks matching the weak code reuse, medium code reuse, and
strong code reuse as shown in Figure 9. The reuse-frame content
used for this example is taken from our standard content proposal. A method
user may also be interested in method chunks qualified by more general cri-
teria because they may provide more general-purpose guidelines that could
also be of interest. In the same way, the classification feature of refinement
relationships may be exploited to enlarge the set of retrieved method chunks
with method chunks that reuse contexts including previous and next criteria.
Examples are shown in Figure 9.
Exploiting reuse-frame refinement relationships may also be interesting with
regard to forbidden criteria. Indeed, enlarging the set of forbidden criteria
to more general ones means to forbid full branches of the reuse frame, and
enlarging the set of forbidden criteria to more specific criteria means to forbid
method chunks associated with too-specific criteria, most probably qualifying
method chunks providing too-specific guidelines. In the same way, enlarging
the set of forbidden criteria with criteria previous to or next to the criteria

Figure 9. Example of extension though refinement relationships

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

under consideration (through classified refinement relationship) means to
avoid retrieving method chunks whose scopes overcome the criteria given
by the method user.
Extending the selection by allowing or not allowing more general, more
specific, previous, or next criteria to be included in the necessary and/or
forbidden criteria given in the user situation provides a way for the method
user to reduce or enlarge the number of method chunks retrieved. If a method
user does not find enough method chunks with regard to the methodological
need (i.e., the user situation), the method user may choose to use the extended
similarity metrics (in this way taking into account more general, more specific,
previous, and/or next criteria) in order to find more method chunks. On the
contrary, if the set of method chunks provided as an answer to the method
user is too large, the set of forbidden criteria may be enlarged by applying
the extended similarity metrics to the forbidden criteria (they may take into
account more general, more specific, previous, and/or next criteria) and in
this way reduce the number of retrieved method chunks. The table presented
in Figure 10 summarizes the extension possibilities.
When the similarity metrics are computed with extended necessary and/or
forbidden criteria, a distance has to be provided to quantify the closeness
between the criteria under consideration in the user situation or reuse context
and the more generic, more specific, previous, or next criteria in the reuse
context of the method chunk in the federation. Therefore, we propose a
definition for what we call the extension of a node (that is to say, the set of
criteria more generic, more specific, previous to, or next to it) and a closeness
distance to qualify the closeness between criteria.

Figure 10. Similarity metrics and extension possibilities

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Extension: The extension ext(a) of a criterion a is the set of all the criteria
more generic, more specific, previous to it, and next to it.

In Figure 5, the extension of Application Technology, for instance, is {Techni-
cal, Application Technology, Graphical User Interface, Database}. A closeness
distance is proposed to qualify the closeness between two criteria. A perfect
matching between two criteria leads to the value 1 of this closeness distance,
which moves toward 0 as far as the ratio decreases. The root node gets the
value 0 if compared to a criterion in the reuse frame. With regard to more
specific criteria, the value 0 is associated with the leaf node of the deepest

Figure 11. Closeness distance boundaries

Figure 12. Example of closeness distance with generic criteria

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

branch of the subtree rooted by the criteria under consideration. With regard
to previous and next criteria, the value 0 is associated with the nodes that
rank the lowest and the highest among the nodes sharing the same direct
father node as the criteria under consideration. Figure 11 summarizes all the
cases of null value.
Examples of closeness distances are given in Figure 12. In this example, the
criterion d is extended by {a,b,c,d}. A closeness distance is computed for
each criterion belonging to the extension.
The similarity metric is expandable thanks to this closeness distance. When
the criteria that are present in the reuse context of the method chunk from the
federation under consideration do not strictly match the criteria of the user
situation or the criteria of the project-specific method-chunk reuse context,
their extensions are computed and the closeness distance is used in the com-
putation of the similarity metric.

sm(rc,us)=[(Σi=1..n ed(cNCusi
, CArc))-(Σ

j=1..m ed(cFCusj
, CArc))]/[card(NCus)],

where us is the user situation, NCus = {NCus1 , .., NCusi } is its necessary
criteria set, FCus = {FCus1, .., FCusj} is its forbidden criteria set, rc is a re-
use context, CArc is its set of criteria, and ed(c1C) is the extended closeness
distance.

Figure 13. Example of extended similarity metrics

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Examples of extended similarity metrics are shown in Figure 13. A simple
user situation characterized by the singleton a is compared to the reuse
contexts of method chunks MC1 and MC2. There is no intersection between
the extension of a and the MC2 criteria, so the extended similarity metric
is therefore null. There is one criterion common to the extension of a and
MC1’s context, so the closeness distance is computed for Criterion 2 and the
extended similarity metric is also computed.

Future Trends

In this chapter we presented an approach to federate different deployments
of development methodologies belonging to the same organization without
imposing a unique organization-wide development methodology. Our con-
tribution aims toward a twofold goal:

•	 To better dedicate method-engineering environments to method users
(nonexpert users) to allow them to take advantage of previous best
practices about method engineering as well as what method engineers
do in current situational method-engineering proposals (to perform their
work, which consists of building and deploying adequate development
methodologies in the organization).

•	 To better support situational method-engineering deployment at the
organization level, especially in organizations built by merging smaller
organizations: In this kind of context, each of the small organizations
comes with its own projects and specific development methodologies.
There is a lack of support to harmonize all the development processes
by imposing a new and unique organization-wide development meth-
odology.

With regard to the effort provided to better support method users during
method engineering by reuse, our work focused on the selection phase by
providing means to search for method fragments and means to qualify the
adequacy between the method fragments and the user needs. Support on the
step of the method engineering by reuse dealing with the adaptation and the
integration of the retrieved method fragment(s) to the project-specific de-

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

velopment methodology still has to be proposed. Means to take into account
method-user feedback about the way method fragments have been reused
still have to be studied more in detail, too.
With regard to organization-wide methodological support, the management of
local versions (or configurations) of development methodologies at the project
level and their alignment with the centralized method-fragment repository
have to be better investigated. Refinement and versioning means also have
to be proposed to enhance the usability of a method-fragment repository in
the context of a federation of development processes.
Indeed, our work falls under the line of research conducted in the field of
situational method engineering. In this field, a lot of work has been done to
provide means to capture project specificities and to customize methodolo-
gies to fit these specificities. However, this working direction has left aside
the need for lightweight methods claimed by method users. We believe
method engineering now has to move from a directed way of presenting the
development methodologies into a more federated way where each individual
project inside the organization may contribute to the shared development
methodology without having it imposed and deployed in a unique way. Fu-
ture method-engineering environments should tend to support communities
of method users, putting in common their method-engineering knowledge.
Profiles should be specified at the individual and/or the project levels. This
would allow the comparing of individuals and projects. Inside the organi-
zation, it would allow the discovery of a community of users and similar
projects (from the methodological point of view). It would allow commonly
agreed-on best practices to emerge at the organization, at the projects or in-
dividuals levels. Profiles would also help to better quantify method-fragment
reusability with regard to groups of projects or groups of users. One step
further would be to propose a framework to support and enhance collabora-
tive method engineering.

Conclusion

In this chapter, we presented an approach to federate project-specific devel-
opment methodologies in order to allow each project to capitalize and share
its methodological best practices with the other projects of an organization

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

without imposing to all of them a unique organization-wide development
methodology.
Our work takes its root in the domain of situational engineering and soft-
ware reuse. Our contribution aim was twofold. We particularly focused on
the needs and requirements of method users (i.e., nonexperts). We proposed
means to reassemble the slightly different project-specific methodologies
into a shared federation of method-engineering best practices, in this way
enhancing the usability of situational method-engineering approaches when
used as organization-wide standards. Both points have been discussed in
current research only to a limited extent.
In this chapter, we first explained how to make the federation possible by
introducing the two core elements of our environment: the method-chunk
repository and the reuse frame.
The method-chunk repository consists of a set of atomic and reusable parts
of development methodologies that we call method chunks, following the
definition given by Ralyté (2001). Method chunks are identified and extracted
from the project-specific development methodologies to be exported into the
repositories of the federation.
The reuse frame consists of criteria organized in an and-or tree structure. It
supports the structured storage and subsequent retrieval of method fragments.
Thanks to this reuse frame, our approach does not rely on a consistent and
hard-to-maintain tagging mechanism. In doing so, it will be much easier for
nonexperts to reuse knowledge about method engineering.
Then we explained how we support method-chunk federation by providing
the following:

• Means for method engineers to qualify method chunks through a
reuse context: This reuse context consists of a set of criteria taken from
the reuse frame.

• Means for method users to express their need through a user situa-
tion: A user situation consists of a set of necessary criteria to specify the
user need and an optional set of criteria to better indicate the method-
engineering knowledge the method user is not interested in.

A similarity metric was also provided to compare the following:

��0 M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

•	 Method-chunk reuse contexts between them to find similar method
chunks

•	 Reuse contexts and user situations to find suitable method chunks with
regard to a methodological need

Thanks to the different kinds of refinement relationships provided in the re-
use-frame structure (basic, classified, or exclusive) and the different kinds of
information provided in the user situation (necessary and forbidden criteria),
we have shown how the method-chunk retrieval process is tunable and how
vague retrieval queries are possible. A closeness distance has been discussed
to quantify this vagueness.
The work that has been presented in this chapter is a first step on the way
to communities of method users. Our goal is now to move to an environ-
ment for collaborative method engineering. It requires that we concentrate
our efforts not only on method-engineering knowledge and communication
management, but also on means to fully support the development processes
in a collaborative way.

Acknowledgment

We would like to thank Jolita Ralyté, Michel Léonard, and Jean-Louis Ca-
varero for their many useful comments about this work.

References

Agerfalk, P. J., & Karlsson, F. (2004). Method configuration: Adapting to
situational characteristics while creating reusable assets. Information
and Software Technology, 46(9), 619-633.

Avrilioni, D., & Cunin, P. Y. (2001). Process model reuse support: The
OPSIS approach. Presented at the 10th International Software Process
Workshop.

Bajec, M., Vavpotic, D., & Kirsper, M. (2004). The scenario and tool-support
for constructing flexible, people-focused system development methodolo-

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

gies. Presented at the International Conference on Information System
Development.

Benjamin, V., & Fensel, D. (1998). Editorial: Problem-solving methods.
International Journal of Human-Computer Studies, 49, 305-313.

Brinkkemper, S., Saeki, M., & Harmsen, F. (1998). Assembly techniques
for method engineering. Presented at the International Conference on
Advanced Information Systems Engineering.

Cauvet, C., Rieu, D., Front-Conte, A., & Ramadour, P. (2001). Réutilisation
dans l’ingénierie des système d’information. In C. Cauvet & C. Rosen-
thal-Sabroux (Eds.), Ingénierie des systèmes d’information. Hermès,
France.

Cauvet, C., & Rosenthal-Sabroux, C. (2001). Ingénierie des systèmes
d’information. Hermès, France.

Cauvet, C., & Semmak, F. (1996). Semantic units and connectors: Towards
domain knowledge reuse. Presented at the IFIPWG8 Conference on
Domain Knowledge for Interactive Systems Design.

Cossentino, M., & Seidita, V. (2004). Composition of a new process to meet
agile needs using method engineering. Software Engineering for Multi-
Agent Systems, 36-51.

Deneckère, R., & Souveyet, C. (1998). Patterns for extending an OO model
with temporal features. Presented at the International Conference on
Object-Oriented Information Systems.

Firesmith, D. G., & Henderson-Sellers, B. (2002). The OPEN process frame-
work: An introduction. Harlow, UK: Addison-Wesley.

Fitzgerald, B. (1997). The use of systems development methodologies in prac-
tice: A field study. The Information Systems Journal, 7(3), 201-212.

Fowler, M. (1997). Analysis patterns: Reusable object models. Addison-
Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1995). Design patterns:
Elements of reusable object-oriented software. Addison-Wesley.

Ginsberg, M., & Quinn, L. (1995). Process tailoring and the software ca-
pability maturity model (CMU/SEI-94-TR-024). Software Engineering
Institute.

Gnatz, M., Marshall, F., Popp, G., Rausch, A., & Schwerin, W. (2002). Towards
a tool support for a living software development process. Presented at
the 35th Hawaii International Conference on System Sciences.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Graham, I., Henderson-Sellers, B., & Younessi, H. (1997). The OPEN process
specification. Harlow, UK: Addison-Wesley.

Harmsen, A. F. (1997). Situational method engineering. Utrecht, the Neth-
erlands: Moret Ernst Young.

Harmsen, F., Brinkkemper, S., & Han Oei, J. L. (1994). Situational method
engineering for informational system project approaches. Presented at
the IFIP WG8.1 Working Conference on Methods and Associated Tools
for the Information Systems Life Cycle.

Holdsworth, J. (1999). Software process design: Out of the tar pit. London:
McGraw-Hill International (UK) Limited.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. (1990). Feature-
oriented domain analysis (FODA) feasibility study (CU/SEI-90-TR-
21). Pittsburgh, PA: Software Engineering Institute, Carnegie-Mellon
University.

Karlson, F., Agerfalk, P. J., & Hjalmarsson, A. (2001). Method configura-
tion with development tracks and generic project types. Presented at
the CAISE/IFIP8.1 International Workshop on Evaluation of Modeling
Methods in System Analysis and Design (EMMSAD’01).

Khayati, O. (2002). Components retrieval systems. Presented at the OOIS
Workshop on Reuse in Object-Oriented Information Systems Design.

Leppänen, M. (2006). Towards an ontology for information systems develop-
ment. In Proceedings of the 9th International Workshop on Exploring
Modeling Methods in Systems Analysis and Design (pp. 363-374).

Lings, B., & Lundell, B. (2004). Method-in-action and method-in-tool: Some
implications for CASE. Presented at the 6th International Conference on
Enterprise Information Systems.

Mili, H., Valtchev, P., Di-Sciullo, A., & Gabrini, P. (2001). Automating the
indexing and retrieval of reusable software components. In Proceedings
of the 6th International Workshop NLDB (pp. 75-86).

Mirbel, I. (2004). Rethinking information system development methods:
Fitting project team members profiles. Presented at the International
Conference on Information System Development.

Mirbel, I. (2006). The reuse frame. Retrieved from http://www.i3s.unice.
fr/~mirbel/reuse-frame/html/rf.html

Mirbel, I., & de Rivières, V. (2002). Adapting analysis and design to software
context: The JECKO approach. In Proceedings of the International

Method Chunks to Federate Development Processes ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Conference on Object-Oriented Information Systems (OOIS’02) (pp.
223-228).

Mirbel, I., & Ralyté, J. (2006). Situational method engineering: Combining
assembly-based and roadmap-driven approaches. Requirement Engi-
neering Journal, 11(1), 58-78.

OMG. (2005). Reusable assets specification. Retrieved from http://www.
omg.org/

Prakash, N. (1999). On method statics and dynamics. Information Systems,
34(8), 613-637.

Pujalte, V., & Ramadour, P. (2004). Réutilisation de composants: Un proces-
sus interactif de recherche. Majecstic’05.

Punter, P., & Lemmen, K. (1996). The MEMA model: Towards a new ap-
proach for method engineering. Information and Software Technology,
38(4), 295-305.

Ralyté, J. (2001). Ingénierie des méthodes à base de composants. Unpublished
doctoral dissertation, University of Paris-Sorbonne.

Ralyté, J., & Rolland, C. (2001). An assembly process model for method
engineering. In Proceedings of the 13th International Conference on Ad-
vanced Information Systems Engineering (CAISE’01) (pp. 267-283).

Rising, L., & Janoff, N. S. (2000). The Scrum software development process
for small teams. IEEE Software, 17(4), 26-32.

Rolland, C., Nurcan, S., & Grosz, G. (2000). A decision making pattern for
guiding the enterprise knowledge development process. Journal of
Information and Software Technology, 42, 313-331.

Rolland, C., & Plihon, V. (1996). Using generic chunks to generate process
models fragments. Presented at the IEEE International Conference on
Requirements Engineering (ICRE’96).

Rolland, C., Plihon, V., & Ralyté, J. (1998). Specifying the reuse context
of scenario method chunks. In Proceedings of the 10th International
Conference on Advanced Information System Engineering (CAISE’98)
(pp. 191-218).

Rossi, M., Ramesh, B., Lyytinen, K., & Tolvanen, J. (2004). Managing
evolutionary method engineering by method rationale. Journal of the
Association for Information Systems, 5(9), 356-391.

��� M�rbel

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Storrle, H. (2001). Describing process patterns with UML. 8th European
Workshop on Software Process Technology, 173-181.

Sugumaran, V., & Storey, V. C. (2003). A semantic-based approach to com-
ponent retrieval. The Database for Advances in Information Systems,
34(3).

Sutcliffe, A. G., & Maiden, N. A. M. (1992). Supporting component matching
for software reuse. In Proceedings of the International Conference on
Advanced Information Systems Engineering (pp. 290-303).

Van Slooten, K., & Hodes, B. (1996). Characterizing IS development projects.
IFIP WG 8.1 Conference on Method Engineering, 29-44.

Willis, A. C. (1996). Frameworks and component-based development. Pre-
sented at the International Conference on Object-Oriented Information
Systems.

Zhang, Z., & Lyytinen, K. (2001). A framework for component reuse in a
metamodelling-based software development. Requirement Engineering
Journal, 6(2), 116-131.

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Abstract

This chapter introduces a generic modeling approach that explicitly represents
the perspectives of stakeholders and their evolution traversing a collabora-
tive process. This approach provides a mechanism to analytically identify the
interdependencies among stakeholders and to detect conflicts and reveal their
intricate causes and effects. Collaboration is thus improved through efficient
knowledge management. This chapter also describes a Web-based informa-
tion system that uses the perspective model and the social network analysis
methodology to support knowledge management within collaboration.

Chapter VII

Modeling and Analyzing
Perspectives to Support

Knowledge Management

J�an Ca�, Pek�ng Un�vers�ty, Ch�na

��� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction

The ability to effectively manage distributed knowledge and business processes
is becoming an essential core competence of today’s organizations. Various
knowledge management theories and approaches have been proposed and
adopted (Earl, 2001). These include ways to align knowledge processes with
strategies (Spender, 1996), to leverage organizational learning abilities (Non-
aka & Takeuchi, 1995), and to build IT infrastructures to support knowledge
activities (Lu, 2000; Zack, 1999). Knowledge management systems (KMSs)
can be viewed as the implementation of the KM strategy. KMS improves the
knowledge processes through IT infrastructures and information-processing
methodologies (Tanriverdi, 2005). Although the importance of knowledge
management has been well recognized, organizations are still facing the
problems of how to successfully implement knowledge management. In order
to effectively utilize these theories and technologies to support teamwork, it
is necessary to gain more fundamental understandings of the characteristics
of knowledge management within collaboration processes.

Background

Previous knowledge management approaches can be generally classified into
two categories (Hanson, Nohira, & Tierney, 1999). The strategies support-
ing knowledge replication provide high-quality, fast, and reliable informa-
tion systems implementation by reusing codified knowledge. The strategies
supporting knowledge customization provide creative, analytically rigorous
advice on high-level strategic problems by channeling individual expertise.
The codification approaches view information technology as the central
infrastructure of knowledge-based organizations. KMSs are thus treated as
system-integration solutions or applications that retain employees’ know-how.
The major concern of these approaches is how to help organizations moni-
tor the trends of rapidly changing technologies and inventions in order to
recognize new applications that may provide competitive advantage (Kwan
& Balasubramanian, 2003). However, IT is just one of the elements of KMS.
As knowledge management involves various social and technical enablers,
the scope, nature, and purpose of KMS vary during the collaboration pro-
cesses. Researches from the knowledge-customization perspective focus on

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

understanding knowledge and its relationships with organizations (Becerra-
Fernanaez & Sabherwal, 2001; Nonaka & Takeuchi, 1995). A typology of
knowledge creation and conversion of tacit and explicit knowledge was
proposed (Nonaka, Reinmoeller, & Senoo, 1998). The conversion involves
transcending the self of individuals, teams, or organizations and reveals the
importance of organizational architecture and organizational dynamics to
capitalize on knowledge. Recent research on knowledge management has
been focusing on developing models that interconnect knowledge manage-
ment factors, such as collaboration, learning, organizational structure, pro-
cess, and IT support (Lee & Choi, 2003). These research works have been
mainly addressing understanding the nature of knowledge and knowledge
management. Both approaches provide workable models and methods for
implementing knowledge management.
In fact, knowledge replication is interlaced with knowledge customization
within a collaborative process. In collaborative projects, it is important to
systematically integrate these two groups of KM approaches to build meth-
odologies and systems to facilitate the teamwork. First, KM methodologies
should be coupled with process management in collaborative projects. An
organization and its members can be involved in multiple knowledge man-
agement process chains. The tangible tasks are accompanied by the implicit
knowledge-integration activities. As such, knowledge management is not a
monolithic but a dynamic and continuous organizational phenomenon (Alavi
& Leidner, 2001). Second, KM and KMS have to take account of various
social factors within collaboration processes. Collaborative projects involve
various stakeholders (i.e., all of the human participants and organizations who
influence the collaboration process and the results) from different disciplines
to work cooperatively over distance and time boundaries. When many hetero-
geneous groups work together on large projects over a long period of time,
their knowledge of the system, the product, and other people will keep on
evolving (Dym & Levitt, 1991; O’Leary, 1998). The professional expertise
in particular is framed by a person’s conceptualization of multiple, ongoing
activities, which are essentially identities, comprising intentions, norms, and
choreographies (Carley & Prietula, 1994; Erickson & Kellogg, 2000; Siau,
1999; Sowa & Zachman, 1992). Although the collaboration process might
appear relatively technical, it is essentially a social construction process when
different persons perform their tasks within various adaptive situations (Berger
& Luckman, 1966; Clancey, 1993, 1997). The situations will eventually
impact the evolution of participants’ roles and form a shared understanding
(Arias, Eden, Fischer, Gorman, & Scharff, 2000). Even within well-defined

��� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

technical roles, every stakeholder makes the role his or her own by adapting
or executing the role based on his or her conceptions and circumstances. It
is the social interaction that determines the variation or adaptability of these
roles in a particular application context. As their roles evolve, stakeholders’
learning customs and attitudes will vary, which will directly or indirectly
affect their internal knowledge and the knowledge creation and conver-
sion processes. Therefore, to manage the distributed knowledge within the
complicated collaborative process, it is necessary to have well-developed
methodologies for describing and analyzing the social interactions in col-
laborative contexts of the emerging practice.
This chapter presents a methodology for supporting knowledge management
within collaboration by modeling and analyzing the stakeholders’ perspectives.
The methods to depict and control the evolution of distributed knowledge are
introduced. This chapter also describes a prototype knowledge management
system developed for a U.S. government research institute. It implements
the methodology and uses the advanced network computing techniques to
facilitate stakeholders’ interaction within their work practice.

Modeling Perspectives
to Support Knowledge Management

The previous approaches and methodologies for supporting KM in col-
laborative work have been mainly concentrating on either modeling the
explicit knowledge or supporting communication of implicit knowledge.
The knowledge management systems built upon these approaches included
three types of functions: (a) the coding and sharing of best practices, (b) the
creation of corporate knowledge directories, and (c) the creation of knowledge
networks (Alavi & Leidner, 2001). Recent research has proposed systems
to support information and knowledge seeking and use within the decision
or problem-solving process (Kwan & Balasubramanian, 2003; Rouse, 2002;
Shaw, Ackermann, & Eden, 2003). Modeling approaches are widely used
for developing such methodologies and systems. For instance, the activity
modeling approach was used to develop a knowledge management system to
provide a computer-based guidance and interactive support for office workers
(Reimer, Margelisch, & Staudt, 2000). Knowledge-engineering processes

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

were modeled to capture, store, and deploy company knowledge (Preece,
Flett, & Sleeman, 2001). However, most of the existing approaches still view
stakeholders as homogeneous and do not emphasize their intricate needs at
various stages of the processes. Nevertheless, a lack of understanding of
stakeholders’ needs—and the provision of support systems accordingly—is
precisely the missing link in the success of many information and knowledge
management systems (Rouse). This requires understanding multiple aspects
of stakeholders’ needs in seeking and using information and knowledge
within the collaboration.
Recent published studies have shown that besides technologies, the social
aspects are essential to the success of collaboration (Briggs, Vreede, &
Nunamaker, 2003; Easley, Sarv, & Crant, 2003; Erickson & Kellogg, 2000;
Hardjono & van Marrewijk, 2001). Technologies are part of a social network
and a KM system is likely to include not only technology, but also social and
cultural infrastructures and human agents (Chae, Koch, Paradice, & Huy,
2005). One of the key social factors is the cognitive interaction process. As
stakeholders’ preferences, environments, and knowledge are dynamically
changing during their interactions, collaborative activity over the Internet
is more than an online data-accessing and information-sharing process. Ac-
cordingly, frequently occurred conflicts influence the project schedule and
team performance. Team coordination has to be achieved through not only
the sharing of data and information, but also the realization of the decision
contexts of each other (Chung, Kim, & Dao, 1999; Kannapan & Taylor, 1994).
The decision context consists of at least two parts: the circumstances of the
decision makers and the stages of the process. When people exchange infor-
mation, they should understand under what circumstances this information
is generated and in which situation it can be potentially used. Otherwise, it
is difficult for them to interpret the purposes and implications of each other
during the activity coordination. Therefore, to represent and organize the
situated knowledge (i.e., the context) is essential to support the coordination
among different groups. It is also of immense importance to understand how
to design knowledge management systems so that they mesh with human
behavior at the individual and collective levels. By allowing users to “see”
one another and to make inferences about the activities of others, online col-
laboration platforms can become environments in which new social forms
can be invented, adopted, adapted, and propagated—eventually supporting
the same sort of social innovation and diversity that can be observed in physi-
cally based cultures (Erickson & Kellogg, 2000).

��0 Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

To address these issues, our research uses a sociotechnical framework to model
the interactions within collaborations (Lu & Cai, 2001). The framework ad-
dresses that one cannot utilize information to map from “what to do” to “how
to do” in the collaboration process without knowing the perspective of the
“who” that generates the information. A collaborative project is modeled as
a coconstruction process among a group of stakeholders. The key feature is
to explicitly model the who (i.e., the stakeholders’ perspectives) within the
process (i.e., the what, how, and when). During collaboration, each individual
has a perspective that evolves over time and acts like a lens through which
she or he understands and collects information external to her or him. Each
individual builds over a lifetime an evolving base of information that is inter-
nal. The information that each individual produces, or exchanges through any
medium (e.g., computers, speech, and writing), is the external manifestation
of internal information, appropriately filtered through “perspective lens.”
Based on the sociotechnical framework, knowledge management systems
require the explicit modeling of stakeholders’ perspectives within their social
interactions. The perspective modeling and analyzing methodology focuses
on representing and handling the interactions among the heterogeneous
stakeholders. It provides associations with other knowledge management and
decision-support models. It also provides ways to build and integrate various

Figure 1. The perspective modeling approach of knowledge management in
collaboration

Shared
Expl�c�t

Knowledge

Tac�t
Knowledge

Ta
c�t

Kn
ow

le
dg

e

Tac�t
Knowledge

E-E KMS

P-P KMS

Perspect�ve

Perspect�vePe
rs

pe
ct�

ve

T-T KMS

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

processes with the realization of sharing knowledge and managing conflict.
Different from traditional KMS, which either focuses on the codification of
explicit knowledge (E-E KMS) or communication of tacit knowledge (T-T
KMS), the perspective modeling approach will realize a new way of building
KMS (P-P KMS) through controlling the interfaces between the explicit and
tacit knowledge (i.e., stakeholders’ perspectives; Figure 1).

Perspective Modeling and Sociotechnical Analysis

Methodology Overview

The central function of the research framework is the sociotechnical analysis
to model and analyze the perspectives of stakeholders at each step of the
collaboration process. The sociotechnical analysis methodology takes three
input parameters (i.e., the concept model, the perspective model, and the
process model; Figure 2). The concept model is a structure that organizes the
ontology models representing the shared or private notions of the stakehold-
ers. The process model is a feasible computational model that represents the
interactions of individual tasks. It specifies the sequences and dependencies of
decisions and actions to be jointly performed. The perspective model provides
a generic means to formally capture, represent, and analyze stakeholders’
perspectives and their interactions with each other. The concept model and
perspective models represent the shared knowledge and social characteristics
of various stakeholders during the collaboration process. They are derived
from the surveys of stakeholders’ attitudes toward the ontology models at a
point of time.
The dependencies among these models are represented as matrices for math-
ematical analysis. Conflict analysis applies systematic strategies to analyze
inconsistencies among these matrices. At a certain stage within the process,
conflicts can be detected by tracking and comparing the perspective states
of different stakeholders associated with a certain task. This analysis will
derive three major outputs (i.e., process feasibility, conflict possibility, and
perspective network). Then, based on these outputs, the systems can apply
various control strategies so that the quality of the collaboration is enhanced.
Control mechanisms adaptively handle the interplay among the three factors

��� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

by systematically reconciling various perspectives, improving the processes,
and controlling the product data and organizational structure.

Perspective Modeling

The perspective modeling mainly consists of building the concept model
and the perspective model. While the process model depicts the tangible
activities of the project, the concept model and perspective model track the
knowledge evolution and changes of social behaviors.
The first step is to generate the concept structure hierarchy. A concept model is
a hierarchical structure that represents the organization of the ontology (Huhns
& Stephens, 1999; Staab, Schnurr, Studer, & Sure, 2001) that stakeholders
propose and use in their collaboration. Figure 3 shows a concept structure
example of a product development team. Stakeholders may use both top-
down and bottom-up construction methods (Vet & Mars, 1999) to build the

Figure 2. The sociotechnical analysis methodology for knowledge manage-
ment

Perspect�ve
Model

D�stance
Matr�x

Concept
Model

(Ontology)
Confl�ct
Intens�ty

Cluster�ng
Tree

Confl�ct
Class�f�cat�on

Process
Model

Inc�dence
Matr�x

Task
Ass�gnment

Matr�x

Task
Percept�on

Matr�x

Task
Agreement

Index

Product
Data

CM
Analys�s

Perspect�ve
Control

Ontology
Control

Data
Control

Process
Control

Organ�zat�on
Control

Conflict
Detection
Point

Conflict
Control

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

concept structure. It is possible to apply some templates (e.g., product function
template, organizational template, conflict types template, etc.) to clarify the
concepts. These templates act as the contend-based skeletons for organizing
the external information that stakeholders may share with others.
When stakeholders propose new concepts, the concept structure is updated
and is used to systematically organize these concepts and their relationships.
Since a stakeholder should first consider whether there are same or similar
concepts in the structure, only the novel concepts can be specified and added.
The concepts involved within the collaboration are classified into two types.
Shared concepts are those that have been well defined from previous projects.
They have widely accepted meaning shared among the stakeholders (e.g.,
in Figure 3, Function Requirements, Product, and Organization are shared
concepts). Private concepts are perceived only by some particular stakehold-
ers. Their names or meanings are not expressed around the group. If a group
of people have a shared purpose toward a concept, everyone will be asked

Figure 3. A concept structure built by stakeholders in a collaborative design
project
 Product

Funct�on Structure

Funct�on l�st Mechanical

Behav�or

Energy Consumpt�on

Impact to env�ronment

No�se rat�o

S3

Techn�cal Dec�s�on

Des�gn Methodology Des�gn Process

Doma�ns

Funct�on Requ�rements

Des�gn Parameter

Process Var�able

Events

Tasks

Dependency

Resource

S2 S4

Customer Needs

Axioms

Independent Ax�om

Informat�on Ax�om

FR�

FR�

S1

Looking
Organ�zat�on

Norm Structure

EmployeeCompany Regulat�on

ISO9000

Relat�onsh�p spec�f�ed by �nd�v�dual
Relat�onsh�p def�ned by group

Freezing
system

Shared concept
Pr�vate concept

��� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

to view it. After the concepts are identified, the dependencies among these
concepts can be further clarified by stakeholders.
The second step is to generate the perspective model. A perspective model is
the special information representing the status of a stakeholder’s perspective at
a certain time. A perspective model consists of the purpose (i.e., the intention
to conduct certain actions), context (i.e., the circumstances in which one’s
action occurs), and content (i.e., what one knows and understands) that the
stakeholder uses to access the external knowledge and to expose the internal
knowledge. In information systems, the perspective model can be depicted
as a data format relating to other information entities.
Our research develops a format for representing perspectives and a procedure
to capture, generate, and analyze perspective models. Given the well-orga-
nized structure of concepts, it is feasible to ask the stakeholders to build the
perspective-model state diagrams (PMSDs) at a certain time. A stakeholder’s
PMSD attempts to depict the explicit relationships among his or her concepts
(including the shared concepts and private concepts) and purpose, content,
and context information. The concepts listed in the PMSD are categories
of perspective contents. Using the concept structure to generate the PMSD
provides a structured way for us to systematically compare and examine the
perspective differences among stakeholders.
Each concept of the concept model can be associated with a stakeholder by
a set of purposes, contexts, and contents. The operation is to ask the stake-
holders to do the following.
First, relate this concept to their purposes. A stakeholder is able to specify his
or her purpose within the project for a given concept. There might be more
than one purpose involved. For an abstract concept, the purpose could be
more general. For a specific concept, the purpose could be detail.
Second, specify the relationships of this concept with other concepts based
on his or her context. If there is a new concept generated, add it to the PMSD
architecture and set it as a private concept.
For each concept, declare or relate his or her own knowledge, document,
and data about that concept and put them as the elements of the content as-
sociated with that concept.
Therefore, a PMSD is the picture that depicts a snapshot of a stakeholder’s
perception of concepts. It embodies his or her related purposes, context, and
content. In a collaboration-support system, a PMSD is represented as XML
(extensible markup language) formats to facilitate analysis.

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The third step is to conduct the perspective analysis. By comparing and
analyzing stakeholders’ perspective models, it is possible to determine the
degree of agreement among their opinions during their interaction. As shown
in Figure 4, given the PMSDs for certain stakeholders, we can ask them to
review others’ perspective models. The review information is used to com-
pare the perspective models and determine the similarity of two stakehold-
ers’ perspectives toward a shared concept. We can also aggregate multiple
stakeholders’ perspective models and compare their general attitudes at dif-
ferent levels of abstraction. Furthermore, we can track the evolution of the
perspective model based on the clustering analysis results. The procedure is
called perspective analysis (Figure 4).
The first step is to determine the inconsistency (i.e., the distance) among a
group of perspective models. There are two approaches: the intuitive approach
and the analytical approach. The intuitive approach relies on the insights of
the stakeholders. The analytical approach uses mathematical algorithms to
derive the distance through positional analysis, which is based on a formal
method used in social network analysis (Wasserman & Faust, 1994). This
approach views the perspective models of a group of stakeholders toward a
single concept as a network of opinions associated with each other. In this
network, a stakeholder, who possesses a perspective model, has relationships
with others’ perspective models. We define these relationships as their per-
ceptional attitudes toward each other. A group of perspective models toward
a given concept are placed as a graph (i.e., a PM network). Two perspective
models are compatible (or similar) if they are in the same position in the
network structure. In social network analysis, position refers to a collection
of individuals who are similarly embedded in networks of relations. If two
perspective models are structurally equivalent (i.e., their relationships with
other perspective models are the same), we assume that they are purely
compatible and there are no detectable differences. That implies that they
have the same perception toward others, and others have same perception
toward them.
A distance matrix is derived for each PM network. It represents the situation of
perspective compatibility among a group of stakeholders for a given concept.
We can also compare stakeholders’ perspective models for multiple concepts
by measuring the structural equivalence across the collection of perspective
model networks. Perspective distance matrices serve as the basis for cluster
analysis. Hierarchical clustering is a data analysis technique that is suited
for partitioning the perspective models into subclasses. It groups entities into

��� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

subsets so that entities within a subset are relatively similar to each other.
Hierarchical clustering generates a tree structure (or a dendrogram), which
shows the grouping of the perspective models. It illustrates that the perspective
models are grouped together at different levels of abstraction (Figure 4).
The cluster tree exposes interesting characteristics of the social interactions.
Within a collaborative project, the participants of the organization cooperate
and build the shared reality (i.e., the common understanding of the stake-
holders toward certain concepts) in the social interaction process (Berger &
Luckman, 1966). Understanding the process of building shared realities is the
key to managing social interactions. The shared reality can be represented by
the abstraction of close perspective models among a group of stakeholders.
As a matter of fact, the cluster tree depicts the structures of the shared real-
ity since a branch of the clustering tree at a certain level implies an abstract
perspective model with certain granularity. The height of the branch indicates
the compatibility of the leaf perspective models. A cluster tree with simple
structure and fewer levels implies that all of the perspective models have
similar attitudes (or positions) toward others.

Figure 4. The perspective analysis procedure

Perspective Model

Perspective Review

Perspective
Distance Matrix

Cluster Analysis

Perspective
Abstraction Model

Perspective
Evolution Model

PM Network

Concept

Concept

Concept

P1
P2

P4
P7

P3

P6
P5

P1.xml
P2.xml

 Dendrogram for averagel�nkage cluster analys�s

 L
�

d�
ss

�m
�la

r�t
y

m
ea

su
re

 0

 .������

� � � � � � �

…

Pn.xml

PMSDs
Concept
Model

PM
Network

Cluster
Tree

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

While the perspective models are changing, the clustering analysis can be
used as a systematic way to depict the transformation of the perspective
models. The change of the cluster trees at different stages of collaboration
reveals the characteristics of perspective evolution. Investigating the changes
of the topological patterns of the clustering trees leads to ways to interfere
in the perspective evolutions.

Conflict Management

Given the condition that the social interactions are analytically measured,
control mechanisms can be derived to manage the evolutions of the perspective
models and therefore to support collaboration. Theses mechanisms could be
selected and used by the group managers or coordinators to control conflicts.
They can be classified into the following strategies.

Process Control

The perspective analysis can be performed for all of the stakeholders who
might act on or influence a task. By evaluating their perspective compat-
ibility and the execution feasibility of future tasks, which are in the plan but
have not been conducted yet, we can prevent some conflicts by noticing their
potential existence earlier. By providing certain information to stakeholders,
it is possible to change the perception matrix and therefore to increase the
perspective consistency of a task. It is possible to directly adjust the sequences
and dependencies among the tasks to maintain the integrity of the opinions
of stakeholders.

Perspective Control and Ontology Control

First, it is possible to directly influence stakeholders’ perspectives (their con-
tent, purpose, and context) to maintain the integrity and compatibility of the
opinions toward a certain concept or task. Analyzing social interactions will
identify the perspective models with low similarities and reveal the conflicts
clearly. Thus, we can focus on the stakeholders who have singular perspec-
tives and understand their rationale. Second, communication channels can
be built to increase the interaction opportunities among stakeholders with

��� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

different perspective models. The group can manipulate the concept structure
through clarifying the meanings and definitions of critical concepts so that
people have shared understanding. It is also feasible to serve stakeholders
with different concepts to isolate their perspectives. An opposite way is to
use conflicting perspectives as means to enhancing brainstorming and in-
novation. Third, strategies can be derived to manage the conflicts through
influencing stakeholders’ information access and comprehension. Possible
solutions include providing suitable trainings based on their perspectives and
the job requirements, assisting the critical stakeholder to review the relevant
information during certain conflicting tasks, and recording the discussions
about the shared concept for future reuse.

Organization Control

The clustering tree shows the grouping features of stakeholders’ perspectives.
Using different organizational structures will change the communication
channels and the perception distances. If two stakeholders are separated into
different groups, the possibility of interaction will decrease. We can change
the task assignment or modify stakeholder’ roles to affect their contexts. It
is even possible to add or remove stakeholders associated with a certain task
to avoid the conflicting situation or to move the stakeholders with similar
perspectives together.

Data and Information Control

This control mechanism is to affect the conflicts through appropriately provid-
ing and handling external data and information that will be accessed by the
stakeholders. Examples are to use consistent checking and version-control
mechanisms to maintain the product data integrity, to track the changes of
shared data and information by referencing to the perspective changing, and to
map the shared data and information to perspective models so that the system
realizes the specific impact of the conflicts toward the working results.

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Building Electronic Collaboration Support Systems Using the Perspective
Modeling Approach

The perspective modeling and analyzing methodology provides a theoretical
basis for building new knowledge management systems. The STARS system
is a prototype system to support collaboration over the Internet. It is also
developed as an experimental apparatus for testing the research. The system
implements the process modeling, perspective modeling, and sociotechnical
analysis methodologies. On the other hand, it collects process and perspec-
tive data once stakeholders use it as a collaboration tool. By investigating
the collected experimental data, we can determine the effectiveness of the
approach and therefore improve it.
The STARS system provides a Web-based environment that supports the
collaboration process representation, conflict management, and knowledge
integration within a project team. Stakeholders declare, share, and modify
their perspective models on the Web. The perspectives models are analyzed
in the system and stakeholders’ roles in the collaboration tasks are depicted.

Internet (www, TCP/IP, HTML, XML..) HTTP

Perspective
Data

Organization
Data

Product
Data

Process
Data

Conflict
Management

Process
Management

Organization
Management

Product
Management

Process
Builder/Viewer

Perspective Model
Builder/Viewer

Organization
Viewer

Conflict
Viewer

Servlets/JSP

DBMS

GUI
/View

Control

Applet

Client

HTML
JScript

SQL

Process
Task/State Model

Concept
EJB

Perspective
EJB

Conflict
Data

Stakeholder
EJB

Conflict
EJB

Product
EJB

Perspective
Management

Stakeholders

Product
Builder/Viewer

XMLXML

MailMail Enterprise
ConnectorWAPWAP

Service
Manager/Provider

SOAP

CDPN
Simulator

CDPN
Audit

CDPN
Rendering

Applet

Client

HTML
JScript

CDPN
Simulator

CDPN
Audit

CDPN
Rendering

Figure 5. STARS system architecture

�00 Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The system implements the functional modules (e.g., perspective manage-
ment, process management, conflict management, etc.) by using J2EE1.4 and
Web services technologies (Figure 5). It provides methods to detect, analyze,
and track the conflicts during collaboration. It also supports the business-to-
business process communications through SOAP and UDDI.
Figure 6 shows the knowledge perspective management module that allows
stakeholders to declare and review their perspective information according
to a concept structure tree. The system can analyze the perspective models,
detect and predict conflicts, and suggest possible control strategies. The pro-
cess management system of STARS uses an XML-based process modeling
tool for process planning, scheduling, simulation, and execution. It helps the
stakeholders notice what is happening and who is doing what at any time.
Stakeholders declare their perspectives during each step of the process. The
system determines the conflict ratio of each task based on the perspective
analysis.
Groups of designers, business analysts, and consultants working in a U.S.
national construction research institute have been using STARS in their

Figure 6. The perspective-management and conflict-management modules
of STARS

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

small projects. Feasibility and computability of the analysis algorithms were
proved. Figure 7 depicts an example of using STARS to solve a conflict
problem through perspective analysis. Before using STARS, similar cases
as described below often happened in one design team:

Within a design project, at the first meeting, the client’s design consultant
stated that the building was to be placed at a location on the site. The archi-
tect listened to the client’s reasoning but noted that this location is not ideal
from either an aesthetic or a functional point of view, since it would be too
close to a major road intersection.

The STARS perspective analyzing functions helped users notice the de-
pendencies and differences of views among the stakeholders. The conflict
was detected by tracking and mapping the perspective models of the three
stakeholders. STARS compared the perspective models at an early stage of

Figure 7. An example of detecting conflicts from perspective analysis

Gather cl�ent space usage
�nformat�on;

Space allocat�on requ�rement
analys�s;

Gather cl�ent space usage
�nformat�on;

Space allocat�on requ�rement
analys�s;

Techn�cal Dec�s�on

Personnel schedule;
Personnel loads;

Space usage;
Bu�ld�ng locat�on;

Personnel schedule;
Personnel loads;

Space usage;
Bu�ld�ng locat�on;

Product

Space allocat�on;
Space usage;

Bu�ld�ng env�ronment;
Bu�ld�ng regulat�on;

Bu�ld�ng shape, mater�al..

Space allocat�on;
Space usage;

Bu�ld�ng env�ronment;
Bu�ld�ng regulat�on;

Bu�ld�ng shape, mater�al..

Techn�cal Dec�s�on

Wa�t�ng for the layout from
the des�gn consultant

Wa�t�ng for the layout from
the des�gn consultant

Product

Report to owner;
V�ew cl�ents as �nformat�on

source;

Report to owner;
V�ew cl�ents as �nformat�on

source;

Organ�zat�on

The role �s not well def�ned yet The role �s not well def�ned yet

Organ�zat�on

Bu�ld�ng locat�on �s
chosen by users.

User prefer locat�on A;

Bu�ld�ng should not be
very near to road

�ntersect�on.
Building location not

available

Design Consultant

Architect

Building space usage
not available

Space usage;
Personnel schedule;

Funct�onal�ty;
Look�ng;

Space usage;
Personnel schedule;

Funct�onal�ty;
Look�ng;

Product

Client

Organ�zat�on

Matr�x structure organ�zat�on. Matr�x structure organ�zat�on.

locat�on A �s near road;
locat�on B �s far from road;
Only A and B and C are

feas�ble

Dependency not�ced Confl�ct not�ced

�0� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the design. Although there was no direct meeting between the design con-
sultant and the architect, the system detected a potential conflict during the
design process.
The stakeholders who participated in the experiment considered that using
the perspective modeling methodologies could accelerate their learning pro-
cess and detect conflicts earlier in their collaborative projects. The causes of
breakdowns of collaboration are more comprehensible when applying the
analysis methodologies.

Conclusion

This chapter presents a systematic methodology to support knowledge man-
agement by modeling and analyzing stakeholders’ perspectives and their
social interactions within collaborative processes. This approach provides
methods for capturing perspectives and understanding their relationships to
facilitate the control of the evolution of the shared insights. It avails knowl-
edge management and conflict management by systematically facilitating the
manipulation of the process, the perspectives, the organizational structure, and
the shard data and information. The STARS system was built to improve the
coordination among stakeholders. Its perspective modeling function provides
an efficient way for stakeholders to understand the meanings and improve
coordination during their collaboration over the Internet.
This research has some limitations. First, the closed-loop perspective man-
agement methodology requires stakeholders to be actively involved in the
building and updating of perspective models. This might be overkill when
the group is already very efficient and stable. Second, using the perspective
analysis requires the computing tool and thus introduces a higher level of
complexity. The system users have to be able to honestly and clearly specify
their understandings toward the concepts and others’ perspectives. In the fu-
ture, the perspective analysis model can be improved by applying advanced
statistics and econometrics techniques. It is also important to generate dy-
namic modeling methods to define the relationships between the evolution
of perspective models and the quality of online collaboration.

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

References

Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and
knowledge management systems: Conceptual foundations and research
issues. MIS Quarterly, 25(1), 105-136.

Arias, E. G., Eden, H., Fischer, G., Gorman, A., & Scharff, E. (2000). Tran-
scending the individual human mind-creating shared understanding
through collaborative design. ACM Transactions on Computer-Human
Interaction, 7(1), 84-113.

Becerra-Fernanaez, I., & Sabherwal, R. (2001). Organizational knowledge
management: A contingency perspective. Journal of Management In-
formation Systems, 18(1), 23-55.

Berger, P., & Luckman, T. (1966). The social construction of reality a treatise
in the sociology of knowledge. New York: Doubleday.

Briggs, R. O., Vreede, G.-J., & Nunamaker, J. F., Jr. (2003). Collaboration
engineering with thinkLets to pursue sustained success with group
support systems. Journal of Management Information Systems, 19(1),
31-64.

Carley, K. M., & Prietula, M. J. (1994). ACTS theory: Extending the model
of bounded rationality. In Computational organization theory (pp. 55-
88). UK: Lawrence Erlbaum Associates.

Chae, B., Koch, H., Paradice, D., & Huy, V. V. (2005). Exploring knowledge
management using network theories: Questions, paradoxes, and pros-
pects. The Journal of Computer Information Systems, 45(4), 62-15.

Chung, C.-W., Kim, C.-R., & Dao, S. (1999). Knowledge and object-oriented
approach for interoperability of heterogeneous information management
systems. Journal of Database Management, 10(3), 13-25.

Clancey, W. J. (1993). Guidon-manage revisited: A socio-technical systems
approach. Journal of Artificial Intelligence in Education, 4(1), 5-34.

Clancey, W. J. (1997). The conceptual nature of knowledge, situations, and
activity. In P. Feltovich, R. Hoffman, & K. Ford (Eds.), Human and
machine expertise in context (pp. 247-291). CA: AAAI Press.

Dym, C. L., & Levitt, R. E. (1991). Toward the integration of knowledge for
engineering modeling and computation. Engineering with Computers,
7(1), 209-224.

�0� Ca�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Earl, M. J. (2001). Knowledge management strategies: Toward a taxonomy.
Journal of Management Information Systems, 18(1), 215-233.

Easley, R. F., Sarv, D., & Crant, J. M. (2003). Relating collaborative technol-
ogy use to teamwork quality and performance: An empirical analysis.
Journal of Management Information Systems, 19(4), 247-268.

Erickson, T., & Kellogg, W. A. (2000). Social translucence: An approach to
designing systems that support social processes. ACM Transactions on
Computer-Human Interactions, 7(1), 59-83.

Hanson, M., Nohira, N., & Tierney, T. (1999). What is your strategy for
managing knowledge? Harvard Business Review, 106-116.

Hardjono, T. W., & van Marrewijk, M. (2001). The social dimensions of busi-
ness excellence. Corporate Environmental Strategy, 8(3), 223-233.

Huhns, M. N., & Stephens, L. M. (1999). Personal ontologies. IEEE Internet
Computing, 3(5), 85-87.

Kannapan, S., & Taylor, D. (1994). The interplay of context, process, and
conflict in concurrent engineering, Journal of Concurrent Engineering
Research and Applications, 2(1), 183-196.

Kwan, M. M., & Balasubramanian, P. (2003). Process-oriented knowledge
management: A case study. Journal of Operational Research Society,
54(1), 204-211.

Lee, H., & Choi, B. (2003). Knowledge management enablers, processes, and
organizational performance: An integrative view and empirical examina-
tion. Journal of Management Information Systems, 20(1), 179-228.

Lu, S. C.-Y., & Cai, J. (2001). A collaborative design process model in the
sociotechnical engineering design framework. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 15(1), 3-20.

Nonaka, I., Reinmoeller, P., & Senoo, D. (1998). The “ART” of knowledge:
Systems to capitalize on market knowledge. European Management
Journal, 16(6), 673-684.

Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. New
York: Oxford University Press.

O’Leary, D. E. (1998). Enterprise knowledge management. IEEE Computer,
54-61.

Preece, A., Flett, A., & Sleeman, D. (2001). Better knowledge management
through knowledge engineering. IEEE Intelligent Systems, 36-43.

Model�ng and Analyz�ng Perspect�ves to Support Knowledge Management �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Reimer, U., Margelisch, A., & Staudt, M. (2000). EULE: A knowledge-based
system to support business processes. Knowledge-Based Systems, 13,
261-269.

Rouse, W. B. (2001). Need to know: Information, knowledge, and decision
making. IEEE Transactions on Systems, Man, and Cybernetics. Part
C: Applications and Reviews, 32(4), 282-292.

Shaw, D., Ackermann, F., & Eden, C. (2003). Approaches to sharing knowl-
edge in group problem structuring. Journal of the Operational Research
Society, 54, 936-948.

Siau, K. (1999). Information modeling and method engineering: A psycho-
logical perspective. Journal of Database Management, 10(4), 44-50.

Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the frame-
work for information systems architecture. IBM System Journal, 31(3),
590-616.

Spender, J. C. (1996). Making knowledge the basis of a dynamic theory of
the firm. Strategic Management Journal, 17, 45-62.

Staab, S., Schnurr, H.-P., Studer, R., & Sure, Y. (2001). Knowledge processes
and ontologies. IEEE Intelligent Systems, 26-34.

Tanriverdi, H. (2005). Information technology relatedness, knowledge
management capability, and performance of multibusiness firms. MIS
Quarterly, 29(2), 311-335.

Vet, P. E., & Mars, N. J. (1998). Bottom-up construction of ontologies. IEEE
Transaction on Knowledge and Data Engineering, 10(4), 513-526.

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and
applications. New York: Cambridge University Press.

Zack, M. H. (1999). Managing codified knowledge. Sloan Management
Review, 40(4), 45-58.

�0� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter VIII

Modality of Business Rules

Terry Halp�n, Neumont Un�vers�ty, USA

Abstract

A business domain is typically subject to various business rules. In practice,
these rules may be of different modalities (e.g., alethic and deontic). Alethic
rules impose necessities, which cannot, even in principle, be violated by the
business. Deontic rules impose obligations, which may be violated, even
though they ought not to be. Conceptual modeling approaches typically
confine their specification of constraints to alethic rules. This chapter dis-
cusses one way to model deontic rules, especially those of a static nature. A
formalization based on modal operators is provided, and some challenging
semantic issues are examined from both logical and pragmatic perspectives.
Because of its richer semantics, the main graphic notation used is that of
object-role modeling (ORM). However, the main ideas could be adapted for
UML and ER as well. A basic implementation of the proposed approach has
been prototyped in Neumont ORM Architect (NORMA), a software tool that
supports automated verbalization of both alethic and deontic rules.

Modal�ty of Bus�ness Rules �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction

In the wider sense, an information system corresponds to a business domain
or universe of discourse rather than an automated system. Business domains
are constrained by various business rules, which specify required or desirable
states of affairs or behavior. Business rules may be of different modalities
(e.g. alethic and deontic). Alethic rules impose necessities, which cannot, even
in principle, be violated by the business, typically because of some physical
or logical law. For example, each employee was born on at most one date,
or no product is a component of itself. Deontic rules impose obligations,
which may be violated, even though they ought not to be. For example, it
is obligatory that each employee is married to at most one person, and it is
forbidden that any person smokes in any office.
Various information modeling approaches exist for modeling business domains
at a high level, for example, entity-relationship (ER) modeling (Chen, 1976),
the unified modeling language (UML; Object Management Group [OMG],
2003a, 2003b; Rumbaugh, Jacobson, & Booch, 1999), and object-role model-
ing (ORM; Halpin, 1989, 2001, 2006). However, these modeling approaches
typically confine their specification of rules to those of an alethic modality,
ignoring deontic rules. A notable exception is the proposal of Krogstie and
Sindre (1996) to extend the Tempora approach to capture not only alethic
rules (necessities) and deontic rules (obligations), but also recommendations
(in their proposal, they include recommendations as a subclass of deontic
rules, but we classify recommendations in terms of a different and weaker
modality that is not discussed further here). While our approach is similar to
that of Krogstie and Sindre in drawing upon the formalism of deontic logic,
it covers new ground by considering the automated verbalization of deontic
rules, applying the ideas within the context of ORM, and examining embed-
ded deontics and other logical issues.
It is important for a business to have a clear understanding of all its rules,
including deontic ones, whether or not the business chooses to enforce these
rules or monitor violations of them by means of an automated system. In rec-
ognition of this need, as well as to facilitate the exchange of semantics between
businesses, the OMG is currently finalizing a proposal to specify a business
semantics layer on top of its software-specific layers (OMG, 2006).
The proposal that was accepted by the OMG for finalization is the Semantics
of Business Vocabulary and Rules (SBVR) submission. As a contributor to
this submission, the author focused on the formal logic underpinnings of

�0� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

SBVR. This chapter relates in part to that fragment of his contribution that
is concerned with the modeling of deontic rules, especially those of a static
nature. Because of its richer semantics, the main graphic notation used is
that of ORM 2 (the next generation of object-role modeling). However, the
main ideas could be adapted for UML and ER as well.
The next section provides a simple overview of the use of modal operators
in expressing business rules of alethic and deontic modalities, and illustrates
the automated verbalization of these rules as implemented in a prototype
ORM 2. The section after that discuses the formal underpinnings of static,
alethic rules. The following section does likewise for static, deontic rules, and
examines some challenging semantic issues from both logical and pragmatic
perspectives. The subsequent section briefly raises some issues relating to
dynamic rules. The final section summarizes the main results, suggests topics
for future research, and lists references.

 Modal Operators and Rule Verbalization

Business constraint formulations may use any of the basic alethic or deontic
modal operators from modal logic, as shown in Table 1. These modal opera-
tors are treated as proposition-forming operators on propositions (rather than
actions). Other equivalent readings may be used in whatever concrete syntax
is used to originally declare the rule (e.g., necessary might be replaced by
required, and obligatory might be replaced by “ought to be the case”). Derived
modal operators may also be used in the surface syntax, but are translated into
the basic modal operators plus negation (~). For example, “it is impossible
that p” is defined as “it is not possible that p” (~◊p), and “it is forbidden that
p” is defined as “it is not permitted that p” (Fp =df ~Pp).

Table 1. Alethic and deontic modal operators

Alethic Deontic

Reading Symbol Reading Symbol

It is necessary that  It is obligatory that O

It is possible that ◊ It is permitted that P

Modal�ty of Bus�ness Rules �0�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The following modal negation rules apply: it is not necessary that ≡ it is pos-
sible that not (~p ≡ ◊~p); it is not possible that ≡ it is necessary that not
(~◊p ≡ ~p); it is not obligatory that ≡ it is permitted that it is not the case
that (~Op ≡ P~p); it is not permitted that ≡ it is obligatory that it is not the
case that (~Pp ≡ O~p). In principle, these rules could be used with double
negation to get by with just one alethic modal operator (e.g., ◊p could be
defined as ~~p, and Pp could be defined as ~O~p).
ORM is a conceptual modeling approach that models any business domain
in terms of objects (entities or values) that play roles in relationships (unary,
binary, or longer), also known as facts, relegating the attribute construct
merely to derived views, and hence offering greater semantic stability than
attribute-based approaches like ER and UML (DeTroyer & Meersman,
1995; Halpin, 2001, 2004; ter Hofstede, Proper, & Weide, 1993). ORM also
has a rich graphic notation for capturing constraints, which ORM tools can
transform into implementation code for enforcement. In ORM 2 (Halpin,
2005c), the latest version of ORM, each constraint or rule has an associated
modality, determined by the logical modal operator that functions explicitly
or implicitly as its main operator. ORM 2 distinguishes between positive,
negative, and default verbalizations of rules (Halpin, 2004). In positive ver-
balizations, an alethic modality of necessity is often assumed (if no modality
is explicitly specified), but may be explicitly proposed. For example, the
following static constraint:

C1	 Each Person was born in at	most	one Country.

may be explicitly verbalized with an alethic modality, thus

C1’ It	is	necessary	that	each Person was born in at	most	one Country.

We interpret this in terms of possible world semantics, as introduced by Saul
Kripke and other logicians in the 1950s. A proposition is necessarily true if
and only if it is true in all possible worlds. With respect to a static constraint
declared for a given business domain, a possible world corresponds to a state
of the fact model that might exist at some point in time. The constraint C1
means that for each state of the fact model, each instance in the population
of Person is born in at most one country.

��0 Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A proposition is possible if and only if it is true in at least one possible world.
A proposition is impossible if and only if it is true in no possible world (i.e.,
it is false in all possible worlds). In ORM, constraint C1 may be reformulated
as the following negative verbalization:

C1”	 It	is	impossible	that	the	same Person was born in more	than	one Country.

In practice, both positive and negative verbalizations are useful for validat-
ing constraints with domain experts, especially when illustrated with sample
populations that provide satisfying examples or counterexamples respectively.
For example, Figure 1 models a birth association in (a) ORM, (b) the popular
Barker (1990) version of ER, and (c) UML. In ORM, object types (e.g., Per-
son, Country) are depicted as named, soft rectangles (earlier versions of ORM
used ellipses instead). A logical predicate is depicted as a named sequence of
role boxes, each of which is connected by a line segment to the object type
whose instances may play that role. The combination of a predicate and its
object types is a fact type, which is the only data structure in ORM.
 From an ORM perspective, the left role of the binary fact type “Person was
born in Country” has two alethic constraints applied. The bar over the role
depicts an alethic uniqueness constraint verbalized in positive form as “Each
Person was born in at most one Country.” The satisfying fact population shown
in the fact table immediately below the fact type illustrates this constraint
(the person entries are unique) as well as the lack of a uniqueness constraint
on the right-hand role (a country entry is duplicated). The counterpopula-
tion in the fact table illustrates how to violate the uniqueness constraint by
providing a counterworld where it is possible for the same person to be born

Figure 1. A birth association modeled in (a) ORM, (b) Barker ER, and (c)
UML

(a)

PERSON COUNTRY
the birthcountry of

a native of(b)

Person Country
(c) 1*

Person
(name)

was born in

Country
(code)

 Terry Halpin AU

 Robert Meersman BE

 Graeme Simsion AU birthCountry

 Terry Halpin AU

 Terry Halpin US

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

in more than one country (directly contradicting the negative verbalization
of the constraint). The solid dot in Figure 1a depicts the alethic mandatory
role constraint that may be verbalized as “Each Person was born in some
Country.”
In Barker ER, the presence and absence of a uniqueness constraint is depicted
by using the crow’s-foot notation (for many), and the mandatory constraint is
depicted as a solid rather than dashed line. In UML the constraints are captured
as multiplicity constraints where “*” denotes zero or more. One advantage
of the ORM constraint notation is that it extends readily to associations of
higher arity (e.g., ternary or quaternary associations), whereas the Barker
notation does not extend at all and the UML notation breaks down in many
cases (Halpin, 2004b).
As an example of a ternary association that can be handled in UML, consider
the room-booking example in Figure 2. In ORM, a uniqueness constraint over
multiple roles applies to the combination of those roles. For example, the
alethic uniqueness constraint over the first two roles of the fact type “Room
at HourSlot was booked for Course” may be verbalized in positive form as
“For each Room and HourSlot, that Room at that HourSlot is booked for
more than one Course,” and in negative form as “It is impossible that the
same Room at the same HourSlot is booked for more than one Course.” The
fact table illustrates this constraint with a satisfying fact population.
Many business constraints are deontic rather than alethic in nature. To
avoid confusion, when declaring a deontic constraint, the deontic modality
should always be explicitly included. Consider the following static, deontic
constraint.

Figure 2. A ternary association in (a) ORM and (b) UML

roomNr

Room

(a) (b)

dhCode

HourSlot

name

Activity
* 0..�

*

Book�ng

Room
(nr)

HourSlot
(dhCode)

Activity
(name)

… at … is booked for ...

20 Mon 9 am ORM class
20 Mon 4 pm CQ demo
20 Tue 2 pm ORM class
33 Mon 9 am CQ demo
33 Fri 5 pm Party

��� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

C2 It	is	obligatory	that	each	Person is a husband of at	most	one	Person.

If this rule were instead expressed simply as “Each Person is a husband of at
most one Person,” it would not be obvious that a deontic interpretation was
intended. The deontic version indicates a condition that ought to be satisfied
while recognizing that the condition might not be satisfied. Including the
obligation operator makes the rule much weaker than a necessity claim since
it allows that there could be some states of the fact model where a person is
a husband of more than one wife (excluding same-sex unions from instances
of the husband relationship). For such cases of polygamy, it is important to
know the facts indicating that the person has multiple wives. Rather than
reject this possibility, we allow it and then typically perform an action that is
designed to minimize the chance of such a situation arising again (e.g., send a
message to inform legal authorities about the situation). In ORM, constraint
C2 may be reformulated as the following negative verbalization:

Figure 3. Screenshot from NORMA, showing positive verbalization of some
constraints

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

C2’ It	is	forbidden	that	the	same Person is a husband of more	than	one Per-
son.

Figure 3 shows a screenshot from NORMA (Neumont ORM Architect), il-
lustrating positive verbalization of some alethic and deontic constraints in
ORM 2. Alethic constraints are colored violet, while deontic constraints are
colored blue. In addition, deontic constraints are distinguished by a small
o (for obligatory). The citizenship and marriage fact types have spanning
uniqueness constraints, and hence are alethically many-to-many associations.
However, each role of the marriage association has a deontic uniqueness
constraint (e.g., “It is obligatory that each Person1 is husband of at most
one Person2”). Subscripts may be used to distinguish object variables of the
same type. If the mandatory-role dot is open rather than solid, the manda-
tory constraint is deontic (e.g., “It is obligatory that each Person is a citizen
of some Country”).
Figure 4 displays another screenshot from NORMA, illustrating negative
verbalization of a deontic uniqueness constraint spanning the first two roles
of the ternary fact type “Room at HourSlot is booked for Activity.” The
constraint verbalization (“It is forbidden that the same Room at the same
HourSlot is booked for more than one Activity”) uses the deontic F (~P) op-
erator. All verbalizations in NORMA are performed automatically via XSLT
transforms, and hence may be readily adapted for different native languages.
NORMA itself is an open-source plug-in to Visual Studio .NET 2005, and
may be downloaded from http://sourceforge.net/projects/orm.
In practice, most business rules include only one modal operator, and this
operator is the main operator of the whole rule expression. For these cases,

Figure 4. NORMA screen shot illustrating negative verbalization of a deontic
constraint

��� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

we simply tag the constraint as being of the modality corresponding to its
main operator, without committing to any particular modal logic. Apart from
this modality tag, there are some basic modal properties that may be used in
transforming the original high-level expression of the rule into a standard logi-
cal formulation. At a minimum, these include the modal negation rules.
We also make use of equivalences that allow one to move the modal operator
to the front of the formula. For example, suppose the user formulates rule
C1 instead as:

For each Person, it is necessary that that Person was born in at most one
Country.

The modal operator is now embedded in the scope of a universal quantifier.
To transform this rule to a standard logical formulation that classifies the
rule as an alethic necessity, we move the modal operator before the universal
quantifier, to give:

It is necessary that each Person was born in at most one Country.

For such tasks, we assume that the Barcan formulae and their converses ap-
ply, so that 	 and ∀ are commutative, as are ◊ and ∃. In other words,

∀xFx ≡ ∀xFx
∃x◊Fx ≡ ◊∃xFx.

While these commutativity results are valid for all normal, alethic modal log-
ics, some philosophical concerns have been raised about these equivalences,
for example, see Sections 4.6 to 4.8 of Girle (2000).
As a deontic example, suppose the user formulates rule C2 instead as:

For each Person, it is obligatory that that Person is a husband of at most
one Person.

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Using a deontic variant of the Barcan equivalences, we commute the ∀ and
O operators, thus transforming the rule to the deontic obligation:

It	is	obligatory	that	each	Person is a husband of at	most	one	Person.

So far, our rule examples have included just one modal operator, which (per-
haps after transformation) also turns out to be the main operator. Ignoring
dynamic aspects, we may handle such cases without needing to commit to
the formal semantics of any specific modal logic. The only impact of tag-
ging a rule as a necessity or obligation is on the rule enforcement policy.
Enforcement of a necessity rule should never allow the rule to be violated.
Enforcement of an obligation rule should allow states that do not satisfy the
rule condition, and take some other remedial action. The precise action to
be taken is not specified here, but the tool’s default is to generate a message
when an update violates the rule.
At any rate, a business person ought to be able to specify a deontic rule first
at a high level, without committing at that time to the precise action to be
taken if the condition is not satisfied; of course, the action still needs to be
specified later in refining the rule to make it fully operational.

Static, Alethic Constraints

Rule formulations may make use of two alethic modal operators:  = it is
necessary that, and ◊ = it is possible that. Static constraints are treated as
alethic necessities by default, where each state of the fact model corresponds
to a possible world. Given the fact type “Person was born in Country,” the
constraint “Each Person was born in at most one Country” is equivalent to
the logical formulation ∀x:Person ∃0..1y:Country x was born in y. This formula
is understood to be true for each state of the knowledge base. Pragmatically,
the rule is understood to apply to all future states of the fact model until the
rule is revoked or changed. This understanding could be made explicit by
proposing the formula with  to yield the modal formula ∀x:Person ∃0..1y:
Country x was born in y. For compliance with common logic (ISO, 2005),
such formulae could then be treated as irregular expressions, with the modal
necessity operator treated as an uninterpreted symbol (e.g., using [N] for ).

��� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

However, we leave this understanding as implicit and do not commit to any
particular modal logic.
For the model theory, we omit the necessity operator from the formula. In-
stead, we merely tag the rule as a necessity. The implementation impact of
the alethic necessity tag is that any attempted change that would cause the
model of the business domain to violate the constraint must be dealt with in
a way that ensures the constraint is still satisfied (e.g., reject the change, or
take some compensatory action).
Typically, the only alethic modal operator in an explicit rule formulation is
, and this is at the front of the rule. This common case was covered earlier.
If an alethic modal operator is placed elsewhere in the rule, we first try to
normalize it by moving the modal operator to the front, using transforma-
tion rules such as the modal negation rules (~p ≡ ◊~p; ~◊p ≡ ~p) and/or
the Barcan formulae and their converses (∀xΦx ≡ ∀xΦx and ∃x◊Φx ≡
◊∃xΦx, i.e.,  and ∀ are commutative, as are ◊ and ∃). For example, the
embedded formulation ∀x:Person ∃0..1y:Country x was born in y (For each
Person, it is necessary that that Person was born in at most one Country) may
be transformed into ∀x:Person ∃0..1y:Country x was born in y (It is neces-
sary that each Person was born in at most one Country).
We also allow use of the following equivalences: p ≡ p, ◊◊p ≡ ◊p,
◊◊p ≡ ◊p, and ◊◊p ≡ ◊p. These hold in S4, but not in some
modal logics, for example, K or T (Girle, 2000).
Though not supported by NORMA, the SBVR proposal also allows a single
rule to include multiple occurrences of modal operators, including the nesting
of a modal operator within the scope of another modal operator. While this
expressiveness may be needed to capture some rare but real business rules,
it complicates attempts to provide a formal semantics.
In extremely rare cases, a formula for a static business rule might contain
an embedded alethic modality that cannot be eliminated by transformation.
For such cases, we could retain the modal operator in the rule formulation
and adopt the formal semantics of a particular modal logic. There are many
normal modal logics to choose from (e.g., K, K4, KB, K5, DT, DB, D4, D5,
T, Br, S4, S5) as well as many abnormal modal logics (e.g., C2, ED2, E2,
S0.5, S2, S3). For a discussion of these logics and their interrelationships,
see Girle (2000, pp. 48, 82). For SBVR, if we decide to retain the embedded
alethic operator for such cases, we choose S4 for the formal semantics. The
possibility of schema evolution along with changes to necessity constraints
may seem to violate S4, where the accessibility relationship between pos-

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

sible worlds is transitive, but we resolve this by treating such evolution as
a metalevel concern. Alternatively, we may handle such very rare cases by
moving the embedded alethic operators down to domain-level predicates
(e.g., “is necessary”) in a similar fashion to the way we deal with embedded
deontics (see later).

Static, Deontic Rules

Constraint formulations may make use of the standard deontic modal operators
(O = it is obligatory that; P = it is permitted that) as well as F = it is forbid-
den that (defined as ~P, i.e., “it is not permitted that”). If the rule includes
exactly one deontic operator, O, and this is at the front, then the rule may be
formalized as Op, where p is a first-order formula that is tagged as obligatory
(rather than necessary). For NORMA, this tag is assigned only the following
informal semantics: it ought to be the case that p (for all future states of the
fact model, until the constraint is revoked or changed). The implementation
impact is that it is possible to have a state in which the rule’s condition is
violated (i.e., not satisfied), in which case some appropriate action (e.g.,
messaging) ought to be taken to help reduce the chance of future violations.
Later work will address rule enforcement, including the specification of ap-
propriate actions in response to deontic rule violations.
From a model-theoretic perspective, a model is an interpretation where each
nondeontic formula evaluates to true, and the model is classified as a permit-
ted model if the p in each deontic formula (of the form Op) evaluates to true;
otherwise, the model is a forbidden model (though it is still a model). Note
that this approach removes any need to assign a truth value to expressions
of the form Op.

Figure 5.Deontic constraints obligate the marriage relationship to be 1:1

Person
(name)

is husband of / is wife of

��� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Recall our current marriage example where the fact type “Person is husband
of Person” is declared to be many to many, but each role of this fact type has
a deontic uniqueness constraint to indicate that the fact type ought to be 1:1
(see Figure 5). The deontic constraint on the husband role verbalizes as “It is
obligatory that each Person is husband of at most one Person.” This formal-
izes as O∀x:Person ∃0..1y:Person x is husband of y, which may be captured
by entering the rule body as ∀x:Person ∃0..1y:Person x is husband of y, and
tagging the rule as deontic. The other deontic constraint (each wife should
have at most one husband) may be handled in a similar way.
In this example, the combination of alethic and deontic constraints is con-
sistent, but this is not always the case. For example, the argument (role set)
of a deontic uniqueness constraint must be a proper subset of the argument
of an alethic uniqueness constraint. For instance, if the marriage predicate
is alethically 1:1, then no deontic uniqueness constraint may be added (if
something is already necessary, it makes no sense to declare it obligatory).
Some formulae allowed by SBVR are illegal in some deontic logics (e.g.,
iterating modal operators such as OPp is forbidden in von Wright’s deontic
logic), and deontic logic itself is “rife with disagreements about what should
be the case” (Girle, 2000, p. 173).
If a deontic modal operator is embedded later in the rule formulation, we first
try to normalize the formula by moving the modal operator to the front, using
transformation rules such as p ⊃ Oq .≡. O(p ⊃ q) or deontic counterparts to
the Barcan formulae.
In some cases, a formula for a static business rule might contain an embedded
deontic modality that cannot be eliminated by transformation. In this case,
we still allow the business user to express the rule at a high level using such
embedded deontic operators, but where possible we transform the formula
to a first-order formula without modalities by replacing the modal opera-
tors with predicates at the business domain level. These predicates (e.g., “is
forbidden”) are treated like any other predicate in the domain except that
their names are reserved, and they are given some basic additional formal
semantics to capture the deontic modal negation rules: it is not obligatory
that ≡ it is permitted that it is not the case that (~Op ≡ P~p), and it is not
permitted that ≡ it is obligatory that it is not the case that (~Pp ≡ O~p). For
example, these rules entail an exclusion constraint between the predicates
“is forbidden” and “is permitted.”
This latter approach may also be used as an alternative to tagging a rule
as deontic, thereby (where possible) moving deontic aspects out of the

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

metamodel and into the business domain model. For example, consider the
following rule:

Car rentals ought not be issued to people who are barred drivers at the time
the rental was issued.

This deontic constraint may be captured by the following ORM textual con-
straint on the domain fact type “CarRental is forbidden”:

CarRental is forbidden if
 CarRental was issued at Time and
 CarRental was issued to Person and
 Person is a barred driver at Time.

The fact type “Person is a barred driver at Time” is derived from other base
fact types (Person was barred at Time, Person was unbarred at Time) using
the ORM derivation rule:

Figure 6.Forbidding rentals to barred drivers using a domain-level predi-
cate

CarRental

Person

Time

was issued to

was issued at

is a
barred
driver

at*

is forbidden1

1 CarRental is forbidden if
CarRental was issued at Time and
CarRental was issued to Person and
Person is a barred driver at Time

was
barred

 at

was
unbarred
at

*Person is a barred driver at Time1 iff
 Person was barred at a Time2 <= Time1 and
 Person was not unbarred at a Time3 between Time2 and Time1

��0 Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Person is a barred driver at Time1 iff
 Person was barred at a Time2 <= Time1 and
 Person was not unbarred at a Time3 between Time2 and Time1.

The deontic constraint may be formalized by the first-order formula ∀x:
CarRental ∀y:Person ∀t:Time [(x was issued at t & x was issued to y & y is
a barred driver at t) ⊃ x is forbidden]. This schema (see Figure 6) allows for
the possible existence of forbidden car rentals; if desired, some fact types
could be added to describe actions (e.g., sending messages) to be taken in
reaction to such an event.
For other examples illustrating this approach, including the use of derivation
rules and objectification, see the SBVR submission to the OMG. Our approach
to objectification works for those cases where a fact (proposition taken to be
true) is being objectified (which covers the usual cases of nominalization;
Halpin, 2005b), but it does not handle cases where no factual claim is being
made of the proposition.
SBVR is intended to cater for rules that embed possibly nonfactual proposi-
tions. However, there does not appear to be any simple solution to providing
explicit, formal semantics for such rules. As a nasty example, consider the
following business rule:

It is not permitted that some department adopts a rule that says it is obliga-
tory that each employee of that department is male.

This example includes the mention (rather than use) of an open proposition
in the scope of an embedded deontic operator. One possible, though weak,
solution is to rely on reserved domain predicates to carry much of the seman-
tics implicitly. For example, the ORM schema in Figure 7 uses the special
predicates “obligates the actualization of” and “is actual,” as well as an object
type “PossibleAllMaleState,” which includes all conceivable all-male states
of departments, whether actual or not. The derived fact type “PossibleAll-
MaleState is actual” may be defined using the derivation rule:

PossibleAllMaleState is actual iff
 PossibleAllMaleState is of a Department and
 each Person who works for that Department is male,

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

that is, ∀x:PossibleAllMaleState [x is actual ≡ ∃y:Department (x is of y &
∀z:Person (z works for y ⊃ z is male))]. The deontic constraint may now be
captured by the following textual constraint on the fact type “RuleAdoption
is forbidden”:

RuleAdoption is forbidden if
RuleAdoption is by a Department
 and is of a Rule
 that obligates the actualization of a PossibleAllMaleState
 that is of the same Department,

that is, ∀x:RuleAdoption ∀y:Department ∀z:Rule ∀w:PossibleAllMaleState
[(x is by y & x is of z & z obligates the actualization of w & w is of y)
⊃ x is forbidden].

The formalization of the deontic constraint works because the relevant instance
of PossibleAllMaleState exists, regardless of whether or not the relevant

Figure 7.A complex case involving embedded mention of propositions

Department
(Id)

Person
(Id)

Rule
(Nr)

is male

adopts
“RuleAdoption” obligates the

actualization of

is forbidden1

works for

<< employs

<< is of

<< is by is of

1 RuleAdoption is forbidden if
 RuleAdoption is by a Department

and is of a Rule
 that obligates the actualization of a PossibleAllMaleState

that is of the same Department

* PossibleAllMaleState is actual iff
PossibleAllMaleState is of a Department and
each Person who works for that Department is male

Possible
AllMaleState is actual*

��� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

department actually is all male. The “obligates the actualization of” and “is
actual” predicates embed a lot of semantics, which is left implicit. While
the connection between these predicates is left informal, the derivation rule
for “PossibelAllMaleState is actual” provides enough semantics to enable
human readers to understand the intent.
Alternatively, we could adopt one of two extremes: (a) treat the rule overall
as an uninterpreted sentence, or informal comment, for which humans are
to provide the semantics, or (b) translate the semantic formulation directly
into higher order logic, which permits logical formulations (which connote
propositions) to be predicated over. The complexity and implementation
overhead of Option 2 would seem to be very substantial.
We could try to push such cases down to first-order logic by providing the
necessary semantic formulation machinery as a predefined package that may
be imported into a domain model, and then identifying propositions by means
of a structured logical formulation. However, that seems unclean because in
order to assign formal semantics to such expressions, we must effectively
adopt the higher order logic proposal mentioned in the previous paragraph.
Support for reification might be added as an extension to common logic at
some future date. This support is intended to cater for objectification of propo-
sitions that are already being asserted as facts (i.e., propositions being used),
as well as propositions for which no factual claim is made (i.e., propositions
being mentioned), while still retaining a first-order approach. When available,
this may offer a better solution for the problem under consideration.

Dynamic Rules

Dynamic constraints apply restrictions on possible transitions between
business states. The constraint may simply compare one state to the next
(e.g., salaries should never decrease), or the constraint may compare states
separated by a given period (e.g., invoices ought to be paid within 30 days
of being issued).
The invoice rule might be formally expressed in a high-level rules language,
thus assuming the fact types “Invoice was issued on Date” and “Invoice is
paid on Date” are included in the conceptual schema:

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

For	each Invoice, if	that Invoice was issued on Date1 then	it	is	obligatory	that
that Invoice is paid on Date2 where Date2 <= Date1 + 30 days.

This might now be normalized to the following formulation, moving the
deontic operator to the front:

It is obligatory that each Invoice that was issued on Date1 is paid on Date2
where Date2 <= Date1 + 30 days.

There are two issues here. First, what rules did we rely on to license the
transformation of the rule? It would seem that we require an equivalence rule
such as p ⊃ Oq .≡. O(p ⊃ q). While this formula is actually illegal in some
deontic logics, it does seem intuitively acceptable. At any rate, the prelimi-
nary transformation work in normalizing a business-rule formulation might
involve more than just the Barcan equivalences or their deontic counterparts.
In principle, this issue might be ignored for interoperability purposes so long
as the business-domain expert is able to confirm that the final normalized for-
mulation (perhaps produced manually by the business-rules modeler) agrees
with their intended semantics; it is only the final, normalized formulation
that is used for exchange with other software tools.
The second issue concerns the dynamic nature of the rule. While it is obvious
how one may actually implement this rule in a database system, capturing
the formal semantics in an appropriate logic (e.g., a temporal or dynamic
logic) is a harder task. One possibility is to provide a temporal package that
may be imported into a domain model in order to provide a first-order logic
solution. Another possibility is to adopt a temporal modal logic (e.g., treat
a possible world as a sequence of accessible states of the fact model). For a
discussion of why we prefer a first-order solution where possible, see Halpin
(2005a).

Conclusion

In practice, many business constraints are of a deontic rather than alethic
nature. This chapter discussed an approach for adding formal support for

��� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

deontic constraints within information models using ORM 2 to illustrate
various examples. NORMA, an open-source ORM 2 tool, is being used as a
vehicle to implement the suggested approach. Although still at the prototype
stage, this tool already provides automated verbalization of alethic and deontic
constraints. While the ORM 2 modeling notation was used to illustrate the
ideas, the notion of adding support for deontic constraints is just as relevant
for other modeling approaches such as ER and UML, and much of the formal
discussion in the chapter applies equally well to these approaches.
The formalization of static constraints of both alethic and deontic modalities
was discussed in some depth. NORMA’s modality support is restricted to
those modal formulae that include just one modal operator (“it is necessary
that,” “it is obligatory that”), where that operator is the main operator. Such
formulae appear to offer no major implementation difficulties. However, more
complex formulae involving either embedded deontic operators or embedded
mention of propositions are far harder to support. While the chapter identified
some possible approaches to address these complex cases, further research
is needed to determine the best solution. The topic of modalities in dynamic
constraints also needs further research.

Acknowledgment

Some aspects of the logical formalization presented in this chapter have
benefited from discussions with Pat Hayes (IHMC, Florida).

References

Barker, R. (1990). CASE*method: Entity relationship modelling. Wokingham:
Addison Wesley.

Chen, P. P. (1976). The entity-relationship model: Towards a unified view of
data. ACM Transactions on Database Systems, 1(1), 9-36.

De Troyer, O., & Meersman, R. (1995). A logic framework for a semantics of
object oriented data modeling. In Proceedings of the 14th International
ER Conference (LNCS 1021, pp. 238-249). Gold Coast, Australia:
Springer.

Modal�ty of Bus�ness Rules ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Girle, R. (2000). Modal logics and philosophy. McGill-Queen’s University
Press.

Halpin, T. (1989). A logical analysis of information systems: Static aspects
of the data-oriented perspective. Unpublished doctoral dissertation,
University of Queensland, Queensland, Australia.

Halpin, T. (2001). Information modeling and relational databases. San
Francisco: Morgan Kaufmann.

Halpin, T. (2004a). Business rule verbalization. In A. Doroshenko, T. Halpin,
S. Liddle, & H. Mayr (Eds.), Information systems technology and its
applications (LNI P-48, pp. 39-52). Salt Lake City, UT.

Halpin, T. (2004b). Comparing metamodels for ER, ORM and UML data
models. In K. Siau (Ed.), Advanced topics in database research (Vol.
3, pp. 23-44). Hershey, PA: Idea Group Publishing.

Halpin, T. (2005a). Higher-order types and information modeling. In K. Siau
(Ed.), Advanced topics in database research (Vol. 4, chap. 10, pp. 218-
237). Hershey, PA: Idea Group Publishing.

Halpin, T. (2005b). Objectification. In Proceedings of CAiSE’05 Workshops
(Vol. 1, pp. 519-532).

Halpin, T. (2005c). ORM 2. In R. Meersman, Z. Tari, P. Herrero et al. (Eds.),
On the Move to Meaningful Internet Systems 2005: OTM 2005 Work-
shops (LNCS 3762, pp. 676-687). Cyprus: Springer.

Halpin, T. (2006). Object-role modeling (ORM/NIAM). In P. Bernus, K.
Mertins, & G. Schmid (Eds.), Handbook on architectures of information
systems (2nd ed., pp. 81-103). Berlin, Germany: Springer-Verlag.

ISO. (2005). ISO common logic standard (Draft). Retrieved from http://
cl.tamu.edu/docs/cl/32N1377T-FCD24707.pdf.

Krogstie, J., & Sindre, G. (1996). Utilizing deontic operators in information
system specification. Requirements Engineering Journal, 1, 210-237.

Object Management Group (OMG). (2003a). UML 2.0 infrastructure speci-
fication. Retrieved from http://www.omg.org/uml

Object Management Group (OMG). (2003b). UML 2.0 superstructure speci-
fication. Retrieved from http://www.omg.org/uml

Object Management Group (OMG). (2006). Semantics of business vocabu-
lary and rules interim specification. Retrieved from http://www.omg.
org/cgi-bin/doc?dtc/06-03-02

��� Halp�n

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified language refer-
ence manual. Reading, MA: Addison-Wesley.

ter Hofstede, A. H. M., Proper, H. A., & Weide, th. P. van der. (1993). Formal
definition of a conceptual language for the description and manipulation
of information models. Information Systems, 18(7), 489-523.

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Abstract

Often, different process models are employed in different phases of the
BPM life cycle, each providing a different approach for capturing business
processes. Efforts have been undertaken to overcome the disintegration of
process models by providing complementary standards for design and ex-
ecution. However, this claim has not yet been fulfilled. A prominent example
is the seemingly complementary nature of BPMN and BPEL. The mapping
between these process modeling languages is still unsolved and poses chal-
lenges to practitioners and academics. This chapter discusses the problem

Chapter IX

Lost in Business Process
Model Translations:

How a Structured Approach Helps
to Identify Conceptual Mismatch

Jan Recker, Queensland Un�vers�ty of Technology, Austral�a

Jan Mendl�ng,
V�enna Un�vers�ty of Econom�cs and Bus�ness Adm�n�strat�on,

Austr�a

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of translating between process modeling languages. We argue that there is
conceptual mismatch between modeling languages stemming from various
perspectives of the business-process management life cycle that must be
identified for seamless integration. While we focus on the popular case of
BPMN vs. BPEL, our approach is generic and can be utilized as a guid-
ing framework for identifying conceptual mismatch between other process
modeling languages.

Introduction

Business process models play a key role in both organizational management
(Davenport & Short, 1990; Hammer & Champy, 1993; Smith & Fingar, 2003)
and information systems development (Curtis, Kellner, & Over, 1992; Dumas,
van der Aalst, & ter Hofstede, 2005; Ellison & McGrath, 1998). In theory,
business-process modeling (BPM) efforts follow a certain life cycle (Smith
& Fingar; Weske, van der Aalst, & Verbeek, 2004; zur Muehlen, 2004) that
idealizes the phases of development and deployment of business processes
into the stages of design, implementation, enactment, and evaluation.
In principle, the design phase involves the development of conceptual pro-
cess models from a business analyst perspective. During this phase, business
processes are documented in an intuitive form to communicate the business
requirements to relevant stakeholders. In a second step, these models serve
as input to technical analysts concerned with the development of technical
process models, that is, implementation models in the form of executable
work-flow specifications. These specifications then serve as templates for the
enactment of process instances deployed on work-flow engines. Lastly, the
execution of a process is monitored and evaluated by process controlling and
analysis tools to guide the revision and improvement of the process models
as part of another iteration of the life cycle.
While in theory the business-process life cycle proposes a seamless inter-
play between the various phases, in business practice the transition between
the phases is often broken. For instance, a wide range of different process
modeling languages can be employed in the various stages of the life cycle,
each with a different focus on audience and modeling purpose (Bider &
Johannesson, 2002; Katzenstein & Lerch, 2000). Some of the languages
provide mechanisms to develop high-level conceptual models that provide an

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

understanding of an organization from an intentional and social perspective
or for reasoning support during redesign (Yu, Mylopoulos, & Lespérance,
1996). Other languages provide capacities to develop lower level technical
models that are especially suited for the description, execution, and simula-
tion of business processes. Not surprisingly, the process design and execution
stages indeed usually employ different process modeling languages, and in
effect the translation between the languages is prone to semantic ambiguities
(zur Muehlen & Rosemann, 2004). This may in turn cause the loss of design
considerations within the execution models.
We refer to such undesirable cases as conceptual mismatch between process
modeling languages deployed in different phases of the BPM life cycle.
Accordingly, the transition between the phases seems to be an important
prerequisite to make the BPM life cycle work, in particular, between business
analyst and technical analyst models (Dreiling, Rosemann, & van der Aalst,
2005; zur Muehlen & Rosemann, 2004). Related efforts have repeatedly
tried to overcome the gap between the process model life cycle phases and
to bridge business models with technical process specifications, for example,
Dehnert and van der Aalst (2004).
The most recent and popular example for work that addresses this transition
is the case of the recently proposed Business Process Modeling Notation
(BPMN; BPMI.org & Object Management Group [OMG], 2006). BPMN has
been developed to enable business analysts to develop readily understand-
able graphical representations of business processes and to enable technical
analysts to represent complex process semantics. Its developers specifically
claim that BPMN is supported with appropriate graphical object properties
that will enable the generation of executable work-flow models that comply
with the BPEL (business process execution language) specification (Andrews
et al., 2003). This would indeed bridge the gap between business analyst and
technical analyst perspectives by providing a standard visual notation for
executable processes. In fact, the specification document states that “BPMN
creates a standardized bridge for the gap between the business process design
and process implementation” (BPMI.org & OMG, p. 1). However, as we will
discuss during the course of this chapter, the translation of BPMN to BPEL
is far from trivial.
In this chapter we show that mapping issues arise foremost from conceptual
mismatch that exists between process modeling languages. This argument
is based on the observation that languages, in their essence, differ in expres-
sive power, which in turn hinders the translation of models between the
languages.

��0 Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Accordingly, the first and foremost objective of this chapter is to discuss
how conceptual mismatch between business analyst and technical analyst
process models can be identified. Despite the focus on BPMN and BPEL,
we seek to deliver a generic solution that builds on established evaluation
theories in the field of process modeling. Forthcoming from this discussion,
as a second contribution of this chapter we provide guidance for the transla-
tion of process models in the form of abstract transformation strategies that
we deem promising for overcoming the identified mismatch.
We proceed as follows. In the next section we briefly introduce our selected
example languages, BPEL and BPMN, to give the reader sufficient background
for understanding our subsequent elaborations. Also, we discuss existing
related studies on the correspondence between process modeling languages,
which will show that there indeed is significant mismatch between process
modeling languages that hinders if not counteracts translation specifica-
tions. Following the background section we then derive a multiperspective
approach for identifying conceptual mismatch between business process
modeling languages and apply it to BPMN and BPEL. We then close in the
last section by drawing some conclusions from our work and by discussing
some future trends.

Background

In the remainder of this chapter we will repeatedly refer to the languages of
BPMN and BPEL, and also recapitulate previous analyses of these languages
that were conducted in preparation of this study. In this section we thus briefly
introduce BPMN and BPEL in order to enable the reader to comprehensively
follow our elaborations later on.

BPMN

Across their life cycle, process models in general serve two main purposes.
During the initial stages, intuitive business-process models are used for scoping
the project, and capturing and discussing business requirements and process-
improvement initiatives with subject-matter experts. A prominent example
of a business modeling technique used for such purposes is the event-driven
process chain (Keller, Nüttgens, & Scheer, 1992). At later stages of the life

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

cycle, business-process models are used for process automation, which re-
quires their conversion into executable specifications. Techniques used for
depicting process models for this purpose have higher requirements in terms
of expressive power. Examples include Petri nets (Petri, 1962) or YAWL (yet
another workflow language; van der Aalst & ter Hofstede, 2005).
However, the nature of these technical and/or executable process descrip-
tion languages renders them less suited for direct use by nonexperts in order
to design, manage, and monitor the business processes that are enacted by
process-aware information systems. On the other hand, many of the intui-
tive process modeling languages do not provide sufficient support for more
technical-oriented purposes such as simulation or execution.
Clearly, what is needed is a standard visual notation for business processes
that is both intuitive and also supportive of process execution. The Business
Process Management Initiative (BPMI; www.bpmi.org) recognized this need
and started work on the Business Process Modeling Notation in early 2003.
Version 1.0 of BPMN was first released in May 2004 and in February 2006
was approved by the OMG as a final adopted specification (BPMI.org &
OMG, 2006) for standardization purposes.
The development of BPMN was driven by two objectives: on the one hand to
develop a modeling language that supports typical process modeling activi-
ties both for business and technical users, and on the other hand to provide
a standard visualization mechanism for executable process specifications
(essentially, for BPEL processes) that also supports the automatic mapping
from BPMN models to BPEL specifications.
The complete BPMN specification defines 38 distinct language constructs
plus attributes, grouped into four basic categories of elements, each of which
will briefly be introduced in the following:

• Flow objects: Flow objects are the main graphical elements used to
create business-process diagrams (BPDs). They define the behavior of
a business process by means of objects such as events, activities, and
gateways.

• Connecting objects: Connecting objects are used to connect flow objects
through different types of arcs to each other or to other information.
They can be sequence flows, message flows, or association flows.

• Swimlanes: Swimlanes are used to group activities into separate catego-
ries for different functional capabilities or responsibilities (e.g., different

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

roles or organizational departments). There are two ways of grouping
the primary modeling elements through swimlanes: either via pools or
via lanes.

• Artifacts: Artifacts are used to provide additional information about the
process, such as processed data or other comments. Currently, BPMN
supports the artifacts data object, group, and annotation.

Figure 1 gives an example of a simple business-process diagram depicted
in BPMN. A business process of a retailer is executed by the sales and the
distribution departments, each of which is represented as a separate lane in
the Retailer pool. The credit card authentication activity involves an interac-
tion with a financial institution, depicted as a separate pool. The different
activities are depicted as rounded boxes connected with control-flow arcs.
Gateways are, for instance, used to define decision points. Moreover, the
process of each process participant starts with a start event and terminates
with an end event.
For further details on BPMN, refer to the specification (BPMI.org & OMG,
2006).
Since its initial publication (BPMI.org, 2004), BPMN has been accepted by a
large part of the BPM community, predominantly due to the claim of mapping
directly to executable process languages including XPDL (Fischer, 2005) and

Figure 1. A simple business-process diagram

R
et

ai
le

r

Identify
P ayment
Method

Accept C as h or
C heck

Authorize
C redit C ard

P repare P ackage for
Customer

A S tart E vent

C heck or C ash

C redit C ard

P ayment
Method?

A Task

A S equence Flow

A G ateway
“Decis ion”

S
al

e
s

D
is

tr
ib

ut
io

n

P rocess Credit Card

Deliver P ackage to
C ustomer

F
in

an
ci

al
In

st
itu

tio
n

Authorize
P ayment

R equest R esponse

A Message

An E nd E vent

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

BPEL (Andrews et al., 2003). The wide uptake of the notation by most BPM
tool vendors (BPMI.org, 2005) further indicates a high potential for longev-
ity. Some practitioners have hailed BPMN as supplying a rich representation
that allows business-process management systems the ability to control the
required interactions with humans and third-party applications in the design
phase (Miers, 2003). Furthermore, analyses of BPMN from analytical (e.g.,
Wohed, van der Aalst, Dumas, ter Hofstede, & Russell, 2006) and empirical
perspectives (e.g., Nysetvold & Krogstie, 2005; Recker, Indulska, Rosemann,
& Green, 2006) confirm its considerable level of sophistication in represent-
ing concepts required for modeling business processes.

BPEL

The business process execution language for Web services (Andrews et al.,
2003) is, in its essence, an extension of imperative programming languages
with constructs specific to the BPM domain, in particular Web service imple-
mentations. Version 1.1 of BPEL was released in 2003 and its Version 2.0
is currently in the process of standardization with OASIS. A BPEL process
definition specifies the technical details of a work flow that offers a complex
Web service built from a set of elementary Web services.
Six of BPEL’s most important concepts are briefly presented in the follow-
ing, that is, partner links, variables, correlation, basic activities, structured
activities, and handlers.

• Partner links: A partner link provides a communication channel to a
remote Web service to be used in the BPEL process. A respective part-
ner link type must be defined first to specify the required and provided
WSDL port types.

• Variables: Variables are used to store both message data of Web service
interactions and control data of the process. A variable must be declared
in the header of a BPEL process by referencing a WSDL or an XML
(extensible markup language) schema data type.

• Correlation: As BPEL supports long-running business processes, there
may be several process instances waiting for Web service messages at
a certain point of time. A correlation set specifies so-called properties,
that is, queries to retrieve message parts that are unique for a specific
process instance. According to a certain property value, like, for instance,

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ordernumber = 1002007, a message is handed to the matching process
instance.

• Basic activities: The elementary steps of a BPEL process are performed
by basic activities. There are activities to send and receive messages
from Web services (receive, invoke, reply), to change the content of
variables (assign), to wait for a certain period or up to a certain point
in time (wait), and to terminate the process (terminate). The upcoming
second, revised version of BPEL will introduce an activity to check
conformance to a schema (validate) and the possibility to add proprietary
activities (extensionActivity).

• Structured activities: The control flow of basic activities can be defined
in two different styles: block oriented or graph based. Both styles can
be mixed. Block-oriented control flow can be defined with structured
activities. BPEL offers activities to specify parallel execution (flow),
conditional branching based on data (switch) or on receipt of a message
(pick), and sequential execution (sequence). Structured activities can
be nested. Scopes are special structured activities. They demarcate the
scope of local variables and handlers. Control flow can also be defined
as graph based, but without introducing cycles, using so-called links.
A link represents a synchronization between two activities.

• Handlers: BPEL provides handlers to deal with unexpected or exceptional
situations. Event handlers wait for messages or time events. They can
be used to specify deadlines on the process level. Fault handlers catch
internal faults of the BPEL process. If the fault cannot be resolved, the
compensation handler can be triggered to undo the effects of already
completed activities. Finally, the termination handler to be introduced
in BPEL 2 will offer a mechanism to force a process to terminate, for
example, due to external faults.

Even though BPEL supports a rich set of primitives to specify executable
processes, there are still some features missing toward a full-fledged business-
process specification. The extension activity of BPEL 2 is a useful anchor point
to fill these gaps. Currently, there are several BPEL extensions in progress of
development, in particular, BPELJ for Java in-line code, BPEL4People for
human work lists (both available from ftp://www6.software.ibm.com/soft-
ware/developer/library/), and BPEL-SPE for subprocesses (Kloppmann et
al., 2005). For further details on BPEL, refer to the specification (Andrews
et al., 2003).

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

On the Correspondence Between BPMN and BPEL

The transition of process models between the various stages of the BPM
life cycle has been posing research questions for quite some time. However,
most of the previous failed to achieve satisfactory solutions that were able
to gain widespread acceptance in process modeling and management prac-
tice. The recent momentum of BPMN and BPEL in the industry has further
triggered related research to study the correspondence between process
modeling languages. In this section we briefly recapitulate work on the cor-
respondence between process modeling languages, again using the example
of the BPMN-BPEL case.
Trying to support the claim that BPMN provides a visualization notation
for BPEL, subsection 11 of the BPMN specification (BPMI.org & OMG,
2006, pp. 137-204) presents a mapping from BPMN to BPEL. However, it
is rather informally given in prose; a precise algorithm and a definition of
required structural properties are missing. An example of how a mapping
could work is given in White (2005), but it is rather simple and the feasibility
of such a mapping in the general case has not been demonstrated yet. Other
examples of how to use BPMN to model BPEL processes are also given in
White. Again, however, they do not reach levels of process complexity that
can be considered realistic. The same unfortunately holds for the proposed
mapping from UML (unified modeling language) activity diagrams to BPEL
(Mantell, 2005) that fails to address some more difficult process modeling
scenarios. It is further worthwhile noting that some available software such
as Telelogic’s System Architect (http://www.telelogic.com/popkin/) support
the generation of BPEL code from BPMN diagrams, but only for a limited
subset of BPMN.
From an academic perspective, recent work has led to the proposal of trans-
formation strategies for process models, with focus often given to the case of
BPMN and BPEL. Ouyang, Dumas, Breutel, and ter Hofstede (2006) present
a general approach to translate standard work-flow models—an abstraction
of a set of process modeling languages, such as, for instance, BPMN and
UML activity diagrams, to an arbitrary topology of elementary work-flow
constructs (Kiepuszewski, ter Hofstede, & van der Aalst, 2003)—to BPEL
by exploiting the BPEL construct of event handler. However, as the authors
admit, this approach only holds for a core subset of BPMN and UML activity
diagrams. Later, this approach was adopted for the specific context of BPMN
and BPEL (Ouyang, van der Aalst, Dumas, & ter Hofstede, 2006). Again,

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

the approach exploits BPEL event handlers for unstructured subsets of the
BPMN models whilst also defining a translation algorithm that is capable
of generating readable BPEL code by discovering certain patterns in BPMN
models that can be mapped onto BPEL structured constructs. While this ap-
proach, too, is not yet at a stage where it holds for more advanced BPMN
models, it is closely related to our forthcoming discussion as we also take
into account the mismatch between BPMN and BPEL with respect to the
support for patterns in the control-flow representation of process modeling
languages. Gao (2006) presents an approach using two-phase transformations
of BPMN diagrams to BPEL specifications. Again we observe a missing
proof of general feasibility and applicability. Another interesting approach is
discussed in Mendling, Lassen, and Zdun (2006), where the authors discuss
different strategies for translating graph-oriented models (like BPMN) to
block-oriented specifications (like BPEL). These strategies have different
perks and perils; nevertheless, we deem them a suitable starting point for
devising concrete mappings based on the identification and understanding
of the mismatch between the languages. Hence, we will refer back to them
later in this chapter.

Conceptual Mismatch Between
Process Modeling Languages

As the discussion of related work reveals, existing transformation strate-
gies between process modeling languages regularly falter when it comes to
defining general mappings. We argue that the root cause for such translation
problems resides in the conceptual mismatch that exists between any two
process modeling languages. We make two observations in the context of
BPMN and BPEL to exemplify this argument.
First, BPEL and BPMN come from different backgrounds (technical analyst
vs. business analyst). Thus, they employ different paradigms for capturing
relevant aspects of business processes, which in turn leads to the manifesta-
tion of conceptual mismatch with respect to the expressive power of these
languages. Second, BPEL and BPMN are usually employed in different stages
of the BPM life cycle. Hence, the requirements of both stages need to be taken
into consideration when identifying potential conceptual mismatch.

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Based on these observations, we argue that the different BPM life-cycle
perspectives need to be taken into consideration when devising a transfor-
mation between process models. Specifically, we argue that there are three
perspectives to consider.
From a business analyst perspective, the transition between process modeling
languages such as BPMN and BPEL must preserve the semantic information
about the represented domain; that is, it should minimize if not avoid loss of
semantic representation information. In this regard, Wand and Weber’s (1990,
1993, 1995) work is widely acknowledged as a framework of real-world
domain concepts that modeling languages should be able to represent. In
other words, a transition between languages should establish a high extent of
matching domain representation capabilities between the two languages.
From a technical analyst perspective, the underlying work-flow execution
engine determines the specification of processes. In this regard, Kiepuszewski
et al. (2003) state that control flow is a central aspect of a business process
that needs to be sufficiently supported by any given language or work-flow
execution engine. Therefore, a transition between languages should establish
a high extent of matching support for various aspects of control flow.
Beyond these life-cycle-specific perspectives, a more general observation must
be made with respect to the process representation paradigm that underlies
any process modeling language. Different paradigms provide different lenses
through which a process is conceptualized and ultimately depicted in a process
modeling language. The most common process representation paradigms are
block-oriented vs. graph-oriented process representations (Mendling et al.,
2006; Ouyang, Dumas, et al., 2006). We argue that different process represen-
tation paradigms potentially denote another source of conceptual mismatch
between process modeling languages. While both domain representation
capabilities and control-flow support permit statements about what types of
relevant aspects of a process can be expressed, the process representation
paradigm influences how such aspects can be expressed.
Forthcoming from these argumentations, an approach for identifying the
conceptual mismatch between business and technical analyst process models
must be able to identify all three types of conceptual mismatch. We will em-
ploy two established evaluation frameworks, namely, representation theory
(Wand & Weber, 1990, 1993, 1995) for the specification of domain represen-
tation capability mismatch, and the workflow patterns framework (van der
Aalst, ter Hofstede, Kiepuszewski, & Barros, 2003) for the specification of
control-flow support mismatch. In addition to these established theories, we

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

also introduce a mismatch identification method with respect to the process
representation paradigms employed, based on a set of transformation strate-
gies (Mendling et al., 2006) that can potentially be used to translate process
models into another.
The selection of the mentioned evaluation frameworks can be reasoned by
their levels of maturity, rigorous development, and structured evaluation
approach as well as by their established track record in the field of process
modeling. For overviews refer, for instance, to Rosemann, Recker, Indulska,
and Green (2006) and Wohed et al. (2006), respectively. In particular, as we
seek to deliver a general contribution beyond the case of BPMN and BPEL, the
high level of dissemination of these theories in the field of process modeling
reasons our selection as it allows for a wider uptake of our approach to cases
of other process modeling languages that have previously been evaluated, such
as, for instance, BPML and WSCI (Green, Rosemann, Indulska, & Manning,
in press; van der Aalst, Dumas, ter Hofstede, & Wohed, 2002).

Identifying Domain Representation Capability Mismatch

Conceptual modeling languages, such as process modeling languages, in
their essence are used to build a representation of selected phenomena in the
problem domain for the purpose of understanding and communication among
stakeholders (Kung & Sølvberg, 1986; Mylopoulos, 1992; Siau, 2004). As
such, an important criterion for process modeling languages is their capabil-
ity to develop good descriptions of the real-world domains that the modeler
seeks to capture in the process model. A good description embraces the notion
of completeness as an indication of what types of real-world phenomena a
process modeling language is able to represent.
Over the last decades, models of representation such as representation theory
proposed by Wand and Weber (1990, 1993, 1995) have increasingly been
used as a theoretical reference benchmark to assess the completeness of
process modeling languages, that is, their capabilities to depict all relevant
real-world phenomena in a model (Rosemann et al., 2006).
These models of representation, for instance, the well-known Bunge-Wand-
Weber (BWW) representation model (Wand & Weber, 1990, 1993, 1995;
Weber, 1997), are based on theories of ontology. Ontology is a well-estab-
lished theoretical domain within philosophy dealing with identifying and
understanding elements of the real world (Bunge, 2003). Today, however,

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

interest in, and the applicability of, ontologies extends to areas well outside
of philosophy (see, e.g., Gruber, 1993; Uschold & Grüninger, 1996). Espe-
cially in the area of conceptual modeling for information systems analysis
and design have ontologies emerged as fruitful theoretical bases on which
to establish concepts and phenomena associated with modeling real-world
domains (Green & Rosemann, 2004; Guizzardi, 2005; Milton & Kazmierc-
zak, 2004).
The BWW representation model as the most popular and widely used instance
of representation theories has over recent years achieved significant levels
of scholarly attention and dissemination. It is documented by well over 100
publications drawing on this model in contexts such as the comparison of
modeling languages (Rosemann et al., 2006), modeling language founda-
tions (Wand, Monarchi, Parsons, & Woo, 1995), model quality measurement
(Gemino & Wand, 2005), and modeling method engineering (Wand, 1996). It
specifies a number of representation constructs that are deemed necessary to
faithfully provide complete and clear representations of information systems
domains. We omit a more in-depth discussion of the model and its previous
applications to the area of process modeling in this chapter and instead refer
the reader to the overview given, for instance, in Rosemann et al. (2006).
Representation theory prescribes a procedure for evaluating modeling
languages as to their capability to express various aspects of real-world do-
mains, known as representational analysis (Recker et al., 2006). During this
process, the constructs of the BWW representation model (e.g., thing, state,
transformation) are compared with the language constructs of the modeling
language (e.g., event, activity, actor). Amongst other aspects, this comparison
reveals construct deficit within a modeling language, that is, the extent to
which a modeling language has a deficit of constructs mapping to the set of
constructs proposed in the BWW representation model. This in turn serves
as an indication that the modeling language under observation is limited in
its capacity to make statements about all relevant phenomena of real-world
domains (Weber, 1997).
Whilst the investigation of construct deficit within a given language allows
for conclusions on the scope of coverage of the respective language, we are
here interested in finding out whether any two languages share the same
extent of deficit, that is, only those types of construct deficit in a particular
language (e.g., BPMN) that another language (e.g., BPEL) is able to express.
We argue that this particular form of deficit constitutes a form of mismatch
that in turn potentially impacts the translation of models between these

��0 Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

languages. This means that if a more expressive process modeling language
features a representation construct that is not supported in a less expressive
process modeling language, then the translation of the modeled process to
the less detailed language will be at the cost of losing expressive power and
thus semantic information about the represented domain.
For the purpose of this chapter, we draw on the individual analyses of BPMN
(Recker et al., 2005, 2006) and BPEL (Green et al., in press) that were con-
ducted in preparation for this study. Rosemann and Green (2002) showed
that the BWW model can be represented in a metamodel that shows several
clusters of BWW constructs: things including properties and types of things,
states assumed by things, events and transformations occurring on things,
and systems structured around things. We use this proposed clustering to
structure our line of investigation of the differences between BPMN and
BPEL in terms of their construct deficit (see Table 1). It must be noted that
representation theory offers a systematic analytical method called overlap
analysis (Green et al., in press; Weber, 1997) for a thorough and more detailed
evaluation of the completeness and overlap of domain representations in
any combination of languages. We must consider such an evaluation out of
the scope of this chapter. Yet, we see an interesting and important research
challenge in such an overlap analysis in order to more comprehensively and

Table 1. Support for the BWW model constructs in BPMN and BPEL (Adapted
from Green et al., in press; Recker et al., 2005, 2006)

BWW Construct Cluster BPMN BPEL

THING

Th
in

gs
 in

cl
ud

in
g

pr
op

er
tie

s a
nd

 ty
pe

s o
f t

hi
ng

s ++ -

PROPERTY N/A N/A

In General ++ +

In Particular - -

Hereditary - -

Emergent - +

Intrinsic - -

Nonbinding Mutual - -

Binding Mutual - -

Attributes - +

CLASS ++ +

KIND + -

continued on following page

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

STATE

St
at

es
 a

ss
um

ed
 b

y
th

in
gs

- +

CONCEIVABLE STATE SPACE - -

LAWFUL STATE SPACE - -

STATE LAW - -

STABLE STATE - -

UNSTABLE STATE - -

HISTORY - -

EVENT

Ev
en

ts
 a

nd
 tr

an
sf

or
m

at
io

ns
 o

cc
ur

rin
g

on
 th

in
gs

++ ++

CONCEIVABLE EVENT SPACE - -

LAWFUL EVENT SPACE - -

EXTERNAL EVENT ++ +

INTERNAL EVENT ++ ++

WELL-DEFINED EVENT ++ +

POORLY DEFINED EVENT ++ ++

TRANSFORMATION ++ ++

LAWFUL TRANSFORMATION ++ ++

Stability Condition ++ +

Corrective Action ++ -

ACTS ON + +

COUPLING + +

SYSTEM

Sy
st

em
s s

tru
ct

ur
ed

ar

ou
nd

 th
in

gs

++ +

SYSTEM COMPOSITION ++ +

SYSTEM ENVIRONMENT ++ -

SYSTEM STRUCTURE - +

SUBSYSTEM ++ -

SYSTEM DECOMPOSITION ++ -

LEVEL STRUCTURE ++ -

Table 1. continued

rigorously clarify the type of mismatch between the combination of any two
process modeling languages.
Table 1 summarizes the findings from the analyses in Green et al. (in press)
and Recker et al. (2005, 2006). In this table, a “+” indicates that the respec-
tive language provides one construct supporting the representation of the
respective BWW model construct, a “++” indicates a support for the BWW
model construct by more than one language construct, and a “–” indicates a
lack of support for the respective BWW model construct.

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

As can be seen from Table 1, there are a number of potential domain rep-
resentation capability mismatches between BPMN and BPEL, indicated by
varying support for the BWW model constructs. The following paragraphs
discuss some of these discrepancies with respect to a potential translation of
process models from BPMN to BPEL.

Translation of Things Including Types and Properties of
Things

A thing denotes the elementary notion in representation theory (Weber, 1997).
The perceived world is constituted of things, either imaginary or real, that
can be grouped into sets and species of things (class and kind, respectively).
Table 1 reveals that BPMN is capable of representing things, classes, and
kinds of things. However, BPEL only supports the representation of classes
of things; that is, BPEL can only make semantic statements about groups of
things but not specific instances. This means that object instances in a BPD,
for example, a specific organizational entity, a specific business partner, or
a specific application system, possibly need to be generalized to classes of
instances, that is, to a more aggregate level. In this regard, Bodart, Patel, Sim,
and Weber (2001) point out that the use of optionality that stems from a focus
on classes, as opposed to instances or subtypes, may result in a superficial
understanding of the specification.
On the other hand, the rather limited and general representation of properties
of things in BPMN can be broken down into more specialized subtypes of
properties in BPEL.

Translation of States Assumed by Things

A state of a thing is a vector of all the property values of a thing at a given
point of time (Weber, 1997). Table 1 reveals that both BPMN and BPEL lack
expressive power for modeling states assumed by things. While this finding
may be problematic in general—see also the discussions in Rosemann et al.
(2006) and the related findings in Green and Rosemann (2000) and Recker
et al. (2006)—it does not denote an area of concern with respect to translat-
ing BPMN diagrams to BPEL as both languages basically share the same
incapability for explicit state representation.

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Translation of Events and Transformations Occurring on Things

The occurrence of an event changes the state of a thing. A transformation is
the mapping between two states of a thing (Weber, 1997). Table 1 reveals
that BPMN has more expressive power than BPEL for the representation of
events and transformations occurring on things. As an example, BPMN offers
constructs to specify corrective actions and stability conditions to determine
transformations that are lawful. Corresponding concepts in BPEL seem to
be specified in an implicit manner in exception handling and compensation
activities rather than explicitly in dedicated representation constructs.
Generally, there seems to be a high extent of redundancy of BPMN in terms
of transformation and event modeling (Recker et al., 2006); that is, BPMN
offers many overlapping constructs and thus lacks orthogonality. A translation
to BPEL potentially needs to map certain dedicated event subtypes within
BPMN to a single event type of BPEL (for instance, an external event).
Transformations, on the other hand, are more differentiated in BPEL. This
implies that representations of transformations in BPMN potentially need
to be annotated with further information or attributes to sufficiently specify
a mapping to an appropriate BPEL construct.

Translation of Systems Structured Around Things

Things can be composed to a system, which may have subsystems and inter-
faces to the environment of the system (Weber, 1997). Table 1 reveals that
BPMN’s support for the modeling of systems structured around things excels
the support provided by BPEL. Thus, a BPMN specification of the system
to be developed, especially the demarcation from its environment (system
environment) and its disaggregation into subsystems (system decomposition),
may not be unambiguously translatable into executable BPEL specifications
and may thus require extra modeling and specification effort to avoid misin-
terpretations of the resulting BPEL models. In particular, the mapping of the
BPMN pool and lane constructs to the BPEL partner construct will require
attention as the semantics of pool and lane seem to be more extensive than
their BPEL counterpart.

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Identifying Control-Flow Support Mismatch

Given the objectives of the later, more technical stages of the process model
life cycle, that is, specifying processes for execution, there are requirements
for process modeling languages to support various aspects of work flow
that are being enacted in any given work-flow execution engine. In order to
be able to identify which aspects of control flow are supported by leading
work-flow management systems and to evaluate which of the given process
modeling languages are able to match the requirements of these systems, the
workflow patterns framework was developed. More precisely, the develop-
ment of the workflow patterns framework (http://www.workflowpatterns.com)
was triggered by a bottom-up analysis and comparison of different leading
work-flow management software. The goal was to bring insights into the
expressive power and capabilities of the underlying work-flow and business
process modeling languages. The framework consists of a number of pat-
terns and provides a taxonomy of generic, recurring concepts and constructs
relevant in the context of process automation, simulation, and execution. In
accordance with Jablonski and Bussler’s (1996) original classification, the
framework was gradually developed to cover the control flow, the data, and
the resource perspectives, and it incorporates 20 control-flow patterns (van der
Aalst et al., 2003), 43 resource patterns (Russell, van der Aalst, ter Hofstede,
& Edmond, 2005), and 40 data patterns (Russell, ter Hofstede, Edmond, &
van der Aalst, 2005). We will here focus on the control flow perspective in
which six clusters can be identified that specify atomic chunks of behavior
capturing some specific process control requirements. Basic control-flow
patterns define the basic aspects of process control. Advanced synchroniza-
tion patterns define evolved but still generic control-flow scenarios that are
relatively common in business-process scenarios but only scarcely supported
in the earlier generations of process modeling languages. Structural patterns
identify constructs that have impact on the structure of processes. Multiple-
instances patterns capture behavior chunks where multiple instances of a task
or activity can be created and executed simultaneously within the context of
one and the same case. State-based patterns depict situations that utilize the
notion of the state. Finally, cancellation patterns capture cancellation notions
relevant in business scenarios.
The provided taxonomy has widely been used as a benchmark for analysis
and comparison of process specification and execution languages. A com-
prehensive overview is, for instance, given in Wohed et al. (2006).

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

As with the BWW representation model, we use the workflow patterns
framework and related analyses to identify the mismatch in the support for
various aspects of control flow. We draw on the individual analyses of BPMN
(Wohed et al., 2006) and BPEL (Wohed, van der Aalst, Dumas, & ter Hof-
stede, 2003) that, similar to the evaluations of BPMN and BPEL by means
of representation theory, were conducted in preparation for this study. Table
2 summarizes the findings from both analyses. In this table, a “+” indicates
a direct support for a pattern, a “+/–” indicates a partial support, and a “–”
indicates a lack of support.
Table 2 reveals a number of mismatches between BPMN and BPEL with regard
to the support for various aspects of control flow. The following paragraphs
discuss some of these discrepancies, again in a cluster-oriented manner, with
respect to a potential translation of process models from BPMN to BPEL.

Work-Flow Patterns Cluster BPMN BPEL

1. Sequence

Basic control flow

+ +

2. Parallel Split + +

3. Synchronization + +

4. Exclusive Choice + +

5. Simple Merge + +

6. Multiple Choice

Advanced syn-chro-
nization

+ +

7. Synchronizing Merge +/- +

8. Multiple Merge + -

9. Discriminator + -

10. Arbitrary Cycles
Structural patterns

+ -

11. Implicit Termination + +

12. MI without Synchronization

Multiple-instances
patterns

+ +

13. MI with a Priori Design-Time Knowledge + +

14. MI with a Priori Run-Time Knowledge + -

15. MI without a Priori Run-Time Knowledge - -

16. Deferred Choice

State-based patterns

+ +

17. Interleaved Parallel Routing +/- +/-

18. Milestone - -

19. Cancel Activity
Cancellation patterns

+ +

20. Cancel Case + +

Table 2. Support for the control-flow patterns in BPMN and BPEL (Adapted
from Wohed et al., 2003; Wohed et al., 2006)

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Translation of Basic Control-Flow, State-Based, and Cancellation
Patterns

Table 2 reveals that BPMN and BPEL both support Patterns 1 to 5 and 16 to
20 in the same manner. This means that the representations of these control-
flow patterns in BPMN should be unambiguously translatable to BPEL. This
finding supports the approach taken in Ouyang, Dumas, et al. (2006) and
Ouyang, van der Aalst, et al. (2006), in which a mapping between BPMN and
BPEL is defined based on the support for various control-flow patterns.

Translation of Advanced Synchronization Patterns

Table 2 reveals that BPMN provides almost full support for Patterns 6 to 9.
BPEL, however, lacks support for multiple merges and discriminators. In
particular, BPEL does not support the invocation of subprocesses (Wohed et
al., 2003), which can be supported by BPMN. A specific problem is BPEL’s
missing support for the discriminator pattern, that is, points in the work-flow
process that wait for one of the incoming branches to complete before acti-
vating the subsequent activity. Hence, discriminators used in BPMN require
considerable effort in translating them to statements that are expressible in
BPEL and bear the same semantics with respect to the handling of control
flow.

Translation of Structural Patterns

Table 2 reveals that BPEL does not support arbitrary cycles. The While activity
can only capture structured cycles, that is, loops with one entry point and one
exit point. Again, this is a potential area of concern when translating arbitrary
cycles from BPMN to BPEL code with equivalent control-flow semantics.

Translation of Multiple-Instances Patterns

Table 2 reveals that BPMN and BPEL both support Patterns 12, 13, and 15 in
the same manner but not Pattern 14. This means that the BPMN representa-
tion of a work flow with multiple instances (where a number of instances of a
given activity are initiated, and these instances are later synchronized before

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

proceeding with the rest of the process) needs to be translated into a less
expressive form in BPEL and hence, some desired control-flow support and
design considerations for the modeled process are prone to getting lost.

Identifying Process Representation
Paradigm Mismatch

We argue that a transformation of models must consider not only representa-
tional capabilities and control-flow pattern support, but also the underlying
process representation paradigm. In this context, there are essentially two
paradigms to depict processes in a process modeling language: graph-oriented
and block-oriented representation (Mendling et al., 2006; Ouyang, Dumas,
et al., 2006).
BPMN follows a graph-oriented paradigm using arcs to define a partial order
of activities and gateways to express split and join behavior. BPEL utilizes
a block-oriented paradigm to express control flow via nested structured ac-
tivities enhanced with some restricted graph concepts: In a BPEL process,
arbitrary synchronization can be expressed with links as long as these links
are acyclic. Cycles are only allowed if they are modeled as structured loops
using the While activity.

Table 3. Transformation strategies and applicable models

Transformation Strategies from BPMN to BPEL

Structured BPMN Acyclic BPMN All BPMN

Element-Preservation - + -

Element-Minimization - + -

Structure-Identification + - -

Structure-Minimization + + -

Transformation Strategies from BPEL to BPMN

Structured BPEL All BPEL

Flattening + +

Hierarchy-Preservation + -

Hierarchy-Maximization + +

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

In Mendling et al. (2006), graph-based languages like BPMN and languages
similar to BPEL are abstracted to so-called process graphs and BPEL control
flow, respectively, in order to identify transformation strategies and constraints
for the application of these strategies.
In this context, a process graph is called structured if split gateways match
a join of the same type, and if loops are entered at one XOR join and exited
at one XOR split. Furthermore, a process graph is acyclic if no node can be
reached from itself. A BPEL process is structured if it does not include any
links. Some transformation strategies are only applicable for process models
that fulfill certain properties (see Table 3). For a formal definition of structured
and cyclic process graphs as well as structured BPEL control flow, refer to
Mendling et al. This reference also defines algorithms for each of the four
transformation strategies that will be sketched in the following.

Transformation Strategies from BPMN to BPEL

All four transformation strategies (see Table 3) require all cycles of the
BPMN process model to be structured loops with an entering XOR join and
an exiting XOR split.
The idea of the element-preservation strategy is to map all BPMN elements
to suitable BPEL elements nested in a BPEL flow and to define control flow
with links. Gateways are mapped to BPEL empty activities that serve as tar-
gets and sources for multiple input (join) or output links (split). Since such
links in a BPEL flow have to be acyclic, the BPMN model has to be without
cycles, too. The advantage of this strategy is that it can be implemented quite
easily and that the resulting BPEL is very similar to the graph structure of
the BPMN model. Yet, as a drawback, the BPEL model has more elements
(empty activities) than necessary.
The element-minimization strategy takes the result of the element-preserva-
tion strategy and replaces the empty activities with links containing transition
conditions. The BPMN model also has to be acyclic. This results in the benefit
of less elements, but on the other hand, it becomes more difficult to identify
the correspondences between the BPMN and BPEL model.
The structure-identification strategy works similar to the transformation
proposed in the BPMN specification (BPMI.org & OMG, 2006). Structured
blocks can be identified via graph reduction rules defined in Mendling et al.
(2006). It is an advantage that the resulting BPEL code is easy to read. Still,

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

this strategy is only applicable if all control flow can be mapped to BPEL
structured activities.
If not, the structure-maximization strategy can be applied to derive a BPEL
process with as many structured activities as possible nested in a flow for
additional synchronization constraints. This strategy can be applied as long
as all loops can be mapped to a BPEL While. Yet, it is a drawback that the
implementation of this strategy requires the most effort.
As Table 3 shows, there is no strategy to generate BPEL from an arbitrary
BPMN graph because BPEL does not permit the modeling of arbitrary cycles.
If the BPMN graph is structured, the structure-identification strategy can

Figure 2. Transformation strategies from BPMN to BPEL

ow

link

as s ign

as s ign

link

.. .

empty

target

target

s ourc e

.. .

. . .

ow

link

.. .

as s ign

target

target

s ource

as s ign

target

s ource

s ource

ow

s equenc e

s equenc e

as s ign

as s ign

as s ign

as s ign

ow

s equenc e

s equenc e

link

as s ign

as s ign

target

as s ign

as s ign

s ourc e

E lement-Preservation E lement-Minimization Structure-I denti cation Structure-Maximization

B PMN model

assign assign

assign

assign

��0 Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

be applied for the transformation; if it is acyclic, the element-preservation
strategy can be used. Figure 2 visualizes the different transformation strate-
gies available.

Transformation Strategies from BPEL to BPMN

A transformation from BPEL to BPMN imposes restrictions only for one
strategy. The flattening strategy can be utilized to transform any BPEL con-
trol flow to BPMN. BPEL structured activities are flattened to gateways and
arcs without any nesting. It might be a problem that the nesting of structured
activities gets lost, but in most cases, the resulting BPMN model graph is
easy to understand.
The hierarchy-preservation strategy can be applied if the descriptive semantics
of structured activities have to be preserved in the resulting BPMN model.

Figure 3. Transformation strategies from BPEL to BPMN

ow

s equence

s equence

link

as s ign

as s ign

target

as s ign

as s ign

s ource

F lattening H ierarchy-Preservation Hierarchy-Maximization

as sign ass ign

ass ign

as sign

ass ign

ass ign

as sign

as sign

assign

assign

B PE L Code

as sign

as sign

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Each type of structured activity is mapped to a respective subprocess in BPMN.
As a prerequisite for this strategy, the BPEL process may not include links.
The hierarchy-maximization strategy maps BPEL structured activities to
subprocesses if no links exist in the model that would cross the boundaries
of the subprocess. Accordingly, both the flattening and the hierarchy-pres-
ervation strategy have to be implemented.
Table 3 shows that arbitrary BPEL processes can be mapped to BPMN using
the flattening or the hierarchy-maximization strategy. Since BPEL imposes
more constraints on the process to be modeled than BPMN, a transformation
is always feasible. Figure 3 visualizes the different transformation strategies
available.

Further Approaches Toward Transformations from BPMN
to BPEL

Beyond the transformation strategies introduced above, there are two further
transformation approaches that can close the gap between BPEL and BPMN
at least partially.
Ouyang, Dumas, et al. (2006) and Ouyang, van der Aalst, et al. (2006) pro-
pose a transformation of unstructured loops to event-condition-action rules
that are implemented via BPEL event handlers. This approach yields a set of
BPEL event handlers that a process calls on itself. This mechanism is able
to capture unstructured loops. The structured part of the process graph can
be encapsulated within BPEL event handlers. The unstructured part maps to
messages sent from some place in the process to itself where it is forwarded
to a corresponding event handler. A considerable benefit of this approach is
that it abstracts from any potential topology of the BPMN model. On the other
hand, the resulting BPEL code is difficult to comprehend and modify.
Another interesting idea for transformation is to derive a structured process
model that is equivalent to the original, unstructured one. While such transfor-
mations have already been examined in the context of structured programming,
they have only recently been discussed with respect to mapping unstructured
process graphs to structured BPEL (Zhao, Hauser, Bhattacharya, Bryant, &
Cao, 2006). However, even though unstructured process graphs that include
only XOR splits and joins as rooting elements can always be transformed,
this does not hold for arbitrary concurrency (Kiepuszewski, ter Hofstede,

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

& Bussler, 2000). Therefore, generating a structured model is not a general
solution to the problem.
These two approaches represent rather new streams of research. It will be
interesting to see how they can be combined with the existing set of trans-
formation strategies in future work.

Conclusion

This chapter discussed conceptual mismatch between process modeling lan-
guages using the example of BPMN and BPEL. We used a generic approach
incorporating various perspectives of the process model life cycle for identi-
fying conceptual mismatch between process modeling languages employed
in different stages of the BPM life cycle. In particular, our approach applies
established evaluation theories and innovative transformation strategies in
order to identify potential mapping issues in the form of the following:

• Domain representation capability mismatch: We showed how repre-
sentation theory can be used to compare the representational capabilities
of different process modeling languages in terms of divergences in the
expressiveness of various aspects of domain semantics.

• Control-flow support mismatch: We showed how the workflow pat-
terns framework can be used to identify discrepancies between process
modeling languages in terms of their support for various aspects of
control flow.

• Process representation paradigm mismatch: We showed how differ-
ent representation paradigms underlying process modeling languages
require different transformation strategies, and we sketched out the
implications of the different strategies.

Referring back to our selected example, the analysis of the conceptual mis-
match between BPMN and BPEL reveals that BPMN provides a much richer
set of modeling constructs. A translation from technical BPEL to conceptual
BPMN is therefore less a problem than in the opposite direction. Yet, BPMN
is meant to be utilized as a visual notation for BPEL processes; however, as
some of the BPMN constructs cannot be expressed in BPEL, a translation

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

would imply a loss of information. For example, the missing BPEL sup-
port for a range of control-flow patterns that BPMN can support may, in a
translation from BPMN to BPEL, lead to execution semantics that were not
intended in the conceptual model. As a consequence, either process modeling
in BPMN has to be restricted to those constructs that have an equivalent in
BPEL, or a remodeling might be necessary on the level of BPEL in order to
handle untranslatable constructs. In order to make the business process life
cycle work, it seems to be a better option to restrict BPMN rather than to
extend BPEL, as extensions of the latter may not be supported by existing
standard-compliant work-flow engines.
Regarding directions to further research, we perceive this work to be a start-
ing point on at least two counts. On the one hand, our approach may serve
as a framework for a more detailed analysis of BPMN and BPEL (and other
combinations of languages) using the theories and evaluation methods re-
ferred to in this chapter. In particular, we see a need to comparatively assess
the varying domain representation capabilities, and control-flow support, of
BPMN and BPEL in more detail, for example, by means of overlap analysis
(Green et al., in press; Weber, 1997). On the other hand, our findings can serve
as input to the formulation of more suitable transformation approaches that
build upon the identified mismatches and are able to counteract the areas of
concern our work was able to identify. Thereby, we foresee that the ultimate
objective to provide a seamless integration of the various stages of the BPM
life cycle by means of translatable process models can be supported.
In a more general sense, the conceptual mismatch between BPMN and BPEL
reveals the lack of a general standardization strategy for business-process
management that crosses different standardization bodies. Just recently,
Nickerson and zur Muehlen (2006) carefully dissected the social process of
standardization in various institutions related to Internet standards. Some of
their key findings are that both devoted individuals and profit organizations
seek to legitimize their concepts. Therefore, aesthetic values and commercial
interests influence the standards adoption rather than macroeconomic con-
siderations, let alone the potentially superior capabilities of one candidate
over another. This makes not only the establishment of standards a time-
consuming endeavor, but also the alignment of different standards affiliated
in different standardization bodies. The case of BPMN and BPEL and the
related standardization efforts indicates that a visionary standards road map
would be valuable in particular for business-process modeling.

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Acknowledgment

We gratefully acknowledge the fruitful contributions of our colleagues Michael
Rosemann, Peter Green, Marta Indulska, Chris Manning, Petia Wohed, Wil
van der Aalst, Arthur ter Hofstede, and Marlon Dumas to the evaluations of
BPMN and BPEL by means of representation theory and work-flow patterns.
Furthermore, we would like to thank Kristian Bisgaard Lassen and Uwe Zdun
for the joint effort toward the identification of transformation strategies.

References

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F.,
et al. (2003). Business process execution language for Web services:
Version 1.1. Retrieved February 10, 2006, from http://xml.coverpages.
org/BPELv11-May052003Final.pdf

Bider, I., & Johannesson, P. (2002). Modeling dynamics of business processes:
Key for building next generation of business information systems. In S.
Spaccapietra, S. T. March, & Y. Kambayashi (Eds.), Conceptual model-
ing: ER 2002 (Vol. 2503, pp. 7-9). Tampere, Finland: Springer.

Bodart, F., Patel, A., Sim, M., & Weber, R. (2001). Should optional properties
be used in conceptual modelling? A theory and three empirical tests.
Information Systems Research, 12(4), 384-405.

BPMI.org. (2004). Business process modeling notation (BPMN): Version 1.0.
May 3, 20. Retrieved March 2, 2005, from http://www.bpmn.org/

BPMI.org. (2005). BPMN implementors and quotes. Retrieved February 24,
2006, from http://www.bpmn.org/BPMN_Supporters.htm

BPMI.org & Object Management Group (OMG). (2006). Business process
modeling notation specification: Final adopted specification. Retrieved
February 20, 2006, from http://www.bpmn.org

Bunge, M. A. (2003). Philosophical dictionary. New York: Prometheus
Books.

Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Communica-
tions of the ACM, 35(9), 75-90.

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Davenport, T. H., & Short, J. E. (1990). The new industrial engineering:
Information technology and business process redesign. Sloan Manage-
ment Review, 31(4), 11-27.

Dehnert, J., & van der Aalst, W. M. P. (2004). Bridging the gap between
business models and workflow specifications. International Journal of
Cooperative Information Systems, 13(3), 289-332.

Dreiling, A., Rosemann, M., & van der Aalst, W. M. P. (2005). From con-
ceptual process models to running workflows: A holistic approach for
the configuration of enterprise systems. 2005 Pacific Asia Conference
on Information Systems, 363-376.

Dumas, M., van der Aalst, W. M. P., & ter Hofstede, A. H. M. (Eds.). (2005).
Process aware information systems: Bridging people and software
through process technology. Hoboken, NJ: John Wiley & Sons.

Ellison, M., & McGrath, G. M. (1998). Recording and analysing business
processes: An activity theory based approach. Australian Computer
Journal, 30(4), 146-152.

Fischer, L. (Ed.). (2005). Workflow handbook 2005. Lighthouse Point, FL:
Future Strategies Inc.

Gao, Y. (2006). BPMN-BPEL transformation and round trip engineering.
Retrieved June 30, 2006, from http://www.eclarus.com/pdf/BPMN_
BPEL_Mapping.pdf

Gemino, A., & Wand, Y. (2005). Complexity and clarity in conceptual
modeling: Comparison of mandatory and optional properties. Data &
Knowledge Engineering, 55(3), 301-326.

Green, P., & Rosemann, M. (2000). Integrated process modeling: An onto-
logical evaluation. Information Systems, 25(2), 73-87.

Green, P., & Rosemann, M. (2004). Applying ontologies to business and
systems modeling techniques and perspectives: Lessons learned. Journal
of Database Management, 15(2), 105-117.

Green, P., Rosemann, M., Indulska, M., & Manning, C. (in press). Candidate
interoperability standards: An ontological overlap analysis. Data &
Knowledge Engineering.

Gruber, T. R. (1993). A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2), 199-220.

Guizzardi, G. (2005). Ontological foundations for structural conceptual
models (Vol. 015). Enschede, the Netherlands: Telematica Instituut.

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Hammer, M., & Champy, J. (1993). Reengineering the corporation: A mani-
festo for business revolution. New York: Harpercollins.

Jablonski, S., & Bussler, C. (1996). Workflow management: Modeling con-
cepts, architecture, and implementation. London: Thomson Computer
Press.

Katzenstein, G., & Lerch, F. J. (2000). Beneath the surface of organizational
processes: A social representation. Framework for business process
redesign. ACM Transactions on Information Systems, 18(4), 383-422.

Keller, G., Nüttgens, M., & Scheer, A.-W. (1992). Semantische prozess-
modellierung auf der grundlage “ereignisgesteuerter prozessketten
(EPK)” (Working Paper No. 89). Saarbrücken, Germany: Institut für
Wirtschaftsinformatik, Universität Saarbrücken.

Kiepuszewski, B., ter Hofstede, A. H. M., & Bussler, C. (2000). On structured
workflow modelling. In B. Wangler & L. Bergmann (Eds.), Advanced
information systems engineering: CAiSE 2000 (Vol. 1789, pp. 431-445).
Stockholm, Sweden: Springer.

Kiepuszewski, B., ter Hofstede, A. H. M., & van der Aalst, W. M. P. (2003).
Fundamentals of control flow in workflows. Acta Informatica, 39(3),
143-209.

Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Rie-
gen, C., et al. (2005). WS-BPEL extension for sub-processes: BPEL-SPE.
Retrieved August 14, 2006, from https://www.sdn.sap.com/irj/servlet/
prt/portal/prtroot/docs/library/

Kung, C. H., & Sølvberg, A. (1986). Activity modeling and behavior model-
ing of information systems. In T. W. Olle, H. G. Sol, & A. A. Verrijn-
Stuart (Eds.), Information systems design methodologies: Improving
the practice (pp. 145-171). Amsterdam: North-Holland.

Mantell, K. (2005). From UML to BPEL: Model driven architecture in a
Web services world. Retrieved June 30, 2006, from http://www-128.
ibm.com/developerworks/webservices/library/ws-uml2bpel/

Mendling, J., Lassen, K. B., & Zdun, U. (2006). Transformation strategies
between block-oriented and graph-oriented process modelling languages.
In F. Lehner, H. Nösekabel, & P. Kleinschmidt (Eds.), Multikonferenz
wirtschaftsinformatik 2006, Band 2 (pp. 297-312). Berlin, Germany:
GITO-Verlag.

Miers, D. (2003). The split personality of BPM. The BPMG Newsletter,
11(11), 1-22.

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Milton, S., & Kazmierczak, E. (2004). An ontology of data modelling lan-
guages: A study using a common-sense realistic ontology. Journal of
Database Management, 15(2), 19-38.

Mylopoulos, J. (1992). Conceptual modelling and telos. In P. Loucopoulos
& R. Zicari (Eds.), Conceptual modelling, databases, and CASE: An
integrated view of information system development (pp. 49-68). New
York: John Wiley & Sons.

Nickerson, J. V., & zur Muehlen, M. (2006). The ecology of standards pro-
cesses: Insights from Internet standard making. MIS Quarterly, 30(3),
467-488.

Nysetvold, A. G., & Krogstie, J. (2005). Assessing business process modeling
languages using a generic quality framework. CAiSE’05 Workshops, 1,
545-556. Porto, Portugal: FEUP.

Ouyang, C., Dumas, M., Breutel, S., & ter Hofstede, A. H. M. (2006). Trans-
lating standard process models to BPEL. In E. Dubois & K. Pohl (Eds.),
Advanced information systems engineering: CAiSE 2006 (Vol. 4001, pp.
417-432). Luxembourg, Grand-Duchy of Luxembourg: Springer.

Ouyang, C., van der Aalst, W. M. P., Dumas, M., & ter Hofstede, A. H. M.
(2006). From BPMN process models to BPEL Web services. 4th Inter-
national Conference on Web Services.

Petri, C. A. (1962). Fundamentals of a theory of asynchronous information
flow. In C. M. Popplewell (Ed.), IFIP Congress 62: Information Pro-
cessing (pp. 386-390). Munich, Germany: North-Holland.

Recker, J., Indulska, M., Rosemann, M., & Green, P. (2005). Do process
modelling techniques get better? A comparative ontological analysis
of BPMN. In Proceedings of the 16th Australasian Conference on In-
formation Systems.

Recker, J., Indulska, M., Rosemann, M., & Green, P. (2006). How good is
BPMN really? Insights from theory and practice. In Proceedings of the
14th European Conference on Information Systems.

Rosemann, M., & Green, P. (2002). Developing a meta model for the Bunge-
Wand-Weber ontological constructs. Information Systems, 27(2), 75-
91.

Rosemann, M., Recker, J., Indulska, M., & Green, P. (2006). A study of
the evolution of the representational capabilities of process modeling
grammars. In E. Dubois & K. Pohl (Eds.), Advanced information sys-

��� Recker & Mendl�ng

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

tems engineering: CAiSE 2006 (Vol. 4001, pp. 447-461). Luxembourg,
Grand-Duchy of Luxembourg: Springer.

Russell, N., ter Hofstede, A. H. M., Edmond, D., & van der Aalst, W. M. P.
(2005). Workflow data patterns: Identification, representation and tool
support. In L. M. L. Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, &
Ó. Pastor (Eds.), Conceptual modeling: ER 2005 (Vol. 3716, pp. 353-
368). Klagenfurt, Austria: Springer.

Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M., & Edmond, D.
(2005). Workflow resource patterns: Identification, representation and
tool support. In Ó. Pastor & J. Falcão e Cunha (Eds.), Advanced infor-
mation systems engineering: CAiSE 2005 (Vol. 3520, pp. 216-232).
Porto, Portugal: Springer.

Siau, K. (2004). Informational and computational equivalence in compar-
ing information modeling methods. Journal of Database Management,
15(1), 73-86.

Smith, H., & Fingar, P. (2003). Business process management: The third
wave. Tampa, FL: Meghan-Kiffer Press.

Uschold, M., & Grüninger, M. (1996). Ontologies: Principles, methods and
applications. The Knowledge Engineering Review, 11(2), 93-136.

Van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M., & Wohed,
P. (2002). Pattern-based analysis of BPML (and WSCI) (Tech. Rep.
No. FIT-TR-2002-05). Brisbane, Australia: Queensland University of
Technology.

Van der Aalst, W. M. P., & ter Hofstede, A. H. M. (2005). YAWL: Yet another
workflow language. Information Systems, 30(4), 245-275.

Van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., & Barros,
A. P. (2003). Workflow patterns. Distributed and Parallel Databases,
14(1), 5-51.

Wand, Y. (1996). Ontology as a foundation for meta-modelling and method
engineering. Information and Software Technology, 38(4), 281-287.

Wand, Y., Monarchi, D. E., Parsons, J., & Woo, C. C. (1995). Theoretical
foundations for conceptual modelling in information systems Ddvelop-
ment. Decision Support Systems, 15(4), 285-304.

Wand, Y., & Weber, R. (1990). An ontological model of an information sys-
tem. IEEE Transactions on Software Engineering, 16(11), 1282-1292.

Lost �n Bus�ness Process Model Translat�ons ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of infor-
mation systems analysis and design grammars. Journal of Information
Systems, 3(4), 217-237.

Wand, Y., & Weber, R. (1995). On the deep structure of information systems.
Information Systems Journal, 5(3), 203-223.

Weber, R. (1997). Ontological foundations of information systems. Mel-
bourne, Australia: Coopers & Lybrand & the Accounting Association
of Australia and New Zealand.

Weske, M., van der Aalst, W. M. P., & Verbeek, H. M. V. (2004). Advances
in business process management. Data & Knowledge Engineering,
50(1), 1-8.

White, S. A. (2005). Using BPMN to model a BPEL process. BPTrends, 3,
1-18.

Wohed, P., van der Aalst, W. M. P., Dumas, M., & ter Hofstede, A. H. M.
(2003). Analysis of Web services composition languages: The case of
BPEL4WS. In I.-Y. Song, S. W. Liddle, T. W. Ling, & P. Scheuermann
(Eds.), Conceptual modeling: ER 2003 (Vol. 2813, pp. 200-215). Chi-
cago: Springer.

Wohed, P., van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M., &
Russell, N. (2006). On the suitability of BPMN for business process
modelling. In Proceedings of the 4th International Conference on Busi-
ness Process Management.

Yu, E. S. K., Mylopoulos, J., & Lespérance, Y. (1996). AI models for busi-
ness-process reengineering. IEEE Expert: Intelligent Systems and Their
Applications, 11(4), 16-23.

Zhao, W., Hauser, R., Bhattacharya, K., Bryant, B. R., & Cao, F. (2006).
Compiling business processes: Untangling unstructured loops in irre-
ducible flow graphs. International Journal of Web and Grid Services,
2(1), 68-91.

Zur Muehlen, M. (2004). Workflow-based process controlling: Foundation,
design and application of workflow-driven process information systems.
Berlin, Germany: Logos.

Zur Muehlen, M., & Rosemann, M. (2004). Multi-paradigm process manage-
ment. In Proceedings of the CAiSE’04 Workshops in Connection with
the 16th Conference on Advanced Information Systems Engineering
(Vol. 2, pp. 169-175).

��0 N�lakanta, M�ller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Abstract

This chapter introduces theories and models used in organizational memory.
As organizations continue to automate their business processes and collect
explosive amounts of data, researchers in knowledge management need to
confront new opportunities and new challenges. In this chapter, we provide
a brief review of the literature in organizational memory management. Some
of the core issues of organizational memory management include organi-
zational context, retention structure, knowledge taxonomy and ontology,
organizational learning, distributed cognition and communities of practice,
and so forth. As new information technologies are available to the design
and implementation of organizational memory, we further present a basic
framework of theories and models, focusing on the technological components
and their applications in organizational memory systems.

Chapter X

Theories and Models:
A Brief Look at Organizational

Memory Management

Sree N�lakanta, Iowa State Un�vers�ty, USA

L. L. M�ller, Iowa State Un�vers�ty, USA

Dan Zhu, Iowa State Un�vers�ty, USA

Theor�es and Models ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction

Organizational memory, a crucial component of an organization’s knowledge
ecosystem, plays a critical role in the overall performance and competitiveness
of a business venture (March & Simon, 1958; Mort, 2001; Watson, 1998;
Zhang, Tian, & Qi, 2006). In order to realize a benefit or strategic advan-
tage, however, this knowledge must be properly managed. Consequently,
many organizations are using formal knowledge management practices to
improve performance. Knowledge management is best described as a process
in which information is transformed into actionable knowledge and made
available to the user (Allee, 1997). Effective knowledge management enables
businesses to avoid repeating prior mistakes, to ensure the continued use of
best practices, and to draw on the collective wisdom of its employees, past
and present. Organizational memory is the collection of historical corporate
knowledge that is employed for current use through appropriate methods of
gathering, organizing, refining, and disseminating the stored information and
knowledge (Ackerman & Halverson, 2000; Nevo & Wand, 2005).
The objectives of this chapter are to survey the organizational memory lit-
erature and present a basic framework on organizational memory systems
(OMSs) and applications while focusing our attention on IT-based organiza-
tional memory. Research in organizational memory management deals with
the creation, integration, maintenance, dissemination, and use of all kinds of
knowledge within an organization (Alavi & Leidner, 1999; Cross & Baird,
2000). It is also confronted with new challenges because recent developments
in information processing technologies have enhanced our ability to build the
next generation of organizational memory management systems. Through our
research studies, we found that much of the organizational memory is ignored
or lost in the corporate collaborative processes in spite of the existence of
several enterprise collaboration management tools. The consequence is that
employees spend too much time re-creating common elements from online
and off-line meetings, calendars, and various project-related activities.
In the next section, we review the literature of organizational memory man-
agement. Then we present a basic framework of technological components
and their applications. Next we discuss some important research issues and
future trends, and then conclude the chapter.

��� N�lakanta, M�ller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Organizational Memory

Organizational memory has been described as corporate knowledge that
represents prior experiences and is saved and shared by corporate users. It
includes both stored records (e.g., corporate manuals, databases, filing sys-
tems, etc.) and tacit knowledge (e.g., experience, intuition, beliefs; Nonaka
& Takeuchi, 1995), and encompasses technical, functional, and social aspects
of the work, the worker, and the workplace (Argote, McEvily, & Ray, 2003;
Choy, Kwan, & Leong, 1999; Lee, Kim, Kim, & Cho, 1999). Organizational
memory may be used to support decision making in multiple tasks and mul-
tiple user environments, for example, in construction (Ozorhorn, Dikmen, &
Birgonaul, 2005), in new product development (Akgun, Lynn, & Byrne, 2006),
in machine learning and scheduling (Padman & Zhu, 2006), and in pursu-
ing radical innovations (Johnson & Dilts, 2006). Walsh and Ungson (1991)
refer to organizational memory as stored information from an organization’s
history that can be brought to bear on present decisions. By their definition,
organizational memory provides information that reduces transaction costs,
contributes to effective and efficient decision making, and is a basis for power
within organizations. Researchers and practitioners recognize organizational
memory as an important factor in the success of an organization’s operations
and its responsiveness to the changes and challenges of its environment
(Huber, 1991; Huber, Davenport, & King, 1998).
Information technologies contribute to enable automated organizational
knowledge management systems in two ways: either by making recorded
knowledge retrievable or by providing vehicles for knowledgeable workers to
share information (Chen, Hsu, Orwig, Hoopes, & Nunamaker, 1994; Olivera,
2000; Zhao, 1998). Explicitly dispersing an organization’s knowledge through
a variety of retention facilities (e.g., network servers, distributed databases,
intranets, etc.) can make the knowledge more accessible to its members.
Stein and Zwass (1995) suggest IT strategies can be used to maintain an
extensive record of processes (through what sequence of events?), rationale
(why?), context (under what circumstances?), and outcomes (how well did
it work?). The availability of advanced information technologies increases
the communicating and decision-making options for potential users.
Sandoe, Croasdell, Courtney, Paradice, Brooks, and Olfman (1998) use
Giddens’ (1984) definition of organizational memory to distinguish between
discursive, practical, and reflexive memory, and they treat IT-based organi-
zational memory as discursive. They argue that although IT-based memory

Theor�es and Models ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

operates at a discursive level, IT makes the discursive process of remembering
more efficient by reducing the costs and effort associated with the storage of
and access to an organization’s memory. IT changes the balancing point in
the trade-off between efficiency and flexibility, permitting organizations to
be relatively more efficient for a given level of flexibility. Another advan-
tage of IT-based memory is the opportunity to provide a historical narrative
(or rationale) for significant organizational events that would otherwise be
remembered in nondiscursive form. Furthermore, IT-based memory allows
an organization to act in a rational manner through the discursive access
to its major historical events and transformations. Additionally, Nevo and
Wand (2005) note that IT-based organizational memory systems must deal
not only with the location and source of memory, but also the context in
which it occurs and is applicable. Finally, an OMS must address the tacit
nature of some of the knowledge and the fact that the knowledge is volatile
and has a finite life.
Mandiwalla, Eulgem, Mould, and Rao (1998) define an OMS to include a da-
tabase management system (DBMS) that can represent more than transactional
data, and an application that runs on top of the DBMS. They further describe
the generic requirements of an OMS to include different types of memory,
including how to represent, capture, and use organizational memory. Nemati,
Steiger, Iyer, and Herschel (2002) illustrate that a knowledge warehouse
combines three abilities: (a) an ability to efficiently generate, store, retrieve,
and, in general, manage explicit knowledge in various forms, (b) an ability to
store, execute, and manage the analysis tasks and their supporting technolo-
gies with minimal interaction and cognitive requirements from the decision
maker, and (c) an ability to update the knowledge warehouse via a feedback
loop of validated analysis output. The knowledge warehouse architecture has
six major components: (a) the data or knowledge acquisition module, (b) the
two feedback loops, (c) the extraction, transformation, and loading module,
(d) a knowledge warehouse (storage) module, (e) the analysis workbench,
and (f) a communications manager or user-interface module.
Haseman and Nazareth (2005) use the term collective memory to represent
organization memory. They show that by building capabilities to share meet-
ing data, prior decisions, and external sources of data into the collective
memory repository, group decisions are enhanced. A skilled facilitator helps
with collecting, maintaining, and processing group decisions and outcomes
managed through the VisionQuest commercial software. These decisions
and other memory contents are weighted and ranked by the participants and

��� N�lakanta, M�ller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

used to arrive at a consensus. Standard Web-based documents and personal
database software complement the VisionQuest system to provide access to
the group memory.

Technological Components and Applications

Organizational memory management must systematically deal with the
creation, integration, maintenance, dissemination, and use of all kinds of
knowledge within an organization (Cross & Baird, 2000). Although the
system described in Haseman and Nazareth (2005) performed adequately to
track the progress of an iterative decision-making process, it is lacking in
many respects. The decisions and memory contents are ranked and weighted,
but their use is limited to the extent of reviewing and revising the ranks and

Figure 1. Organizational knowledge model

Group collaborat�on Ecology Ind�v�dual Structure Culture

 Organizational Memory

Knowledge
engine

Knowledge nav�gator and retr�ever

End users Managers Developers

Knowledge
percolator

Learn�ng
env�ronment

Composer
and bu�lder

Databases &
data warehouse

Internal
resources

External
resources

Capturer

Theor�es and Models ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

weights. Long-term use of such a system could result in massive amounts
of data and there is no provision to aggregate or extract knowledge from the
stored session details or decisions. Moreover, all users have to use a computer
to enter their ratings and allocations, a limiting factor that we do not face
in our model. In the absence of a computer, a user will have to maintain all
of their allocations and ratings external to the system, which could result in
loss of valuable information. For example, in most meetings, it is more likely
that a human note taker is tasked with the recording of minutes, and he or
she has at most access to a portable computer.
To bridge these issues, we propose a model that provides a more generic view
of an organizational memory management system. Central to this model is a
knowledge engine (KE) that works with the other components of the model
to provide support for the creation and retrieval of knowledge. The capture
component captures organizational memory information from internal and
external sources. The composer and builder component facilitates the first-
level composition or building of knowledge from the organization’s various
information collections. Without a retrieval and navigation system, any stored
memory of knowledge would be useless. Key members of the organization,
whether they are low-level users or executives, need a flexible yet compre-
hensible interface to the repository of organizational knowledge. In addition
to these components, our model provides for the percolation of knowledge.
It is built on the process of learning, either assisted through expert users or
via automated machine-learning protocols. The individual components and
the interaction of the key tasks of knowledge capture, composition, retrieval,
and percolation offer a multitude of opportunities and issues.
Organizational memory is produced by a number of components, and cap-
tured and stored in various places. The capture of organizational memory is
facilitated through a number of mechanisms such as meetings, e-mails, Web
conferences, transaction processing, reporting systems, and so forth. The fine-
grained information gets compiled and aggregated into relevant warehouses
and knowledge bases through composer and builder systems and interfaces
to the knowledge engine. The retriever and navigator systems and interfaces
allow different types of users to access the stored organizational memory and
knowledge. The percolator system and its interface enable users to extract
and develop conclusions and hypotheses and build feedback loops for con-
tinuous learning. In addition to the interface between the knowledge engine
and the four components, connection and continuity among the components
also exist. The model creates a portal from the organization to its knowledge.

��� N�lakanta, M�ller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Specifically, the model automates the identification and distribution of rel-
evant content, provides context sensitivity, and interacts intelligently with
users, letting them profile, filter, and categorize information, and avails of
the complex information infrastructure.
The proposed model is also designed to use work-group meetings as the
primary data collection point. The assumption is that more traditional forms
of data (databases, data warehouses, and report libraries) are easy to gener-
ate, and the major concern is to incorporate them in with the knowledge
management process (Miller & Nilakanta, 1997). In most organizations,
work-group meetings are central to the information-gathering and decision-
making processes. The strength of the model lies in its ability to organize
disparate information in a seamless fashion. Specifically, the model automates
the identification and distribution of relevant content, provides content sen-
sitivity, and interacts intelligently with users, letting them profile, filter, and
categorize the complex information infrastructure.

Research Issues and Future Trends

Designing the ideal OMS is a difficult task, especially as definitions, technolo-
gies, and usage contexts continue to shift and evolve. A number of research
issues need to be addressed.

• Organizational context: From an organizational context perspective,
user communities and their work environments yield a number of issues.
Focusing and reconciling group, interorganizational, and intra-organiza-
tional perspectives is necessary. For example, how will different types
of users (individuals, groups, top management) perceive and use an
OMS? Will organizational roles and power affect the use of an OMS?
Another issue is the role of individual memories. Users may have their
personal collections of memory that are both private and public. These
raise a number of relevant questions as well. Where do individually held
memories fit in the OMS? Are they redundant? How can they be used?
What are the legal and social implications of storing and using them?

• Retention structure: According to Walsh and Ungson (1991), an
OMS is composed of knowledge compiled from individuals, groups,
organizational structures, ecology, and culture. Each of these requires

Theor�es and Models ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

appropriate capture, encoding, and integration mechanisms. What are
the cost implications? How long will the information be kept? From a
data source perspective, information sources can be internal or external
to the firm. Also, the sources may be private or public. In addition, the
value of information will be affected by its various quality attributes.
Therefore, questions arise as to how different sources of information
will be valued in an organization’s memory. What data management
policies will be required? Retaining organizational memory typically
implies some type of storage device. In the foreseeable future, informa-
tion storage will always involve costs associated with storage media,
the time needed to access the selected media, and administrative costs
of maintaining the information. Organizations will need tools that will
help them evaluate the costs and benefits of storing all forms and types
of memory. For example, 1 second of video at 24-bit color depth (30
frames) needs about 27MB of space. This means that about 3 hours of
video could require a 10-Gigabyte medium with a 20:1 compression.
As a result, even though storage requirements are expected to decline
rapidly as newer compression algorithms and methods are developed,
storage will always be an issue. Incorporating video data quickly tilts the
balance away from comprehensiveness. Increasing comprehensiveness
also increases the potential for information overload. Assuming limited
storage space, who decides what information should be kept? What is
the mechanism and criteria for filtering? How can bias be avoided?

• Knowledge taxonomy and ontology: Widely held assumptions about
data imply that the more organizational memory we store, the harder
it becomes to locate a specific memory item of interest. Therefore,
organizational-memory conceptual models will need a retrieval and
classification mechanism built around some form of domain ontology.
Hwang and Salvendy (2005) used general and domain-specific ontology
models to represent historical events (memories of events) and found that
the ontology models help in organizational learning. Abel, Benayache,
Lenne, Moulin, Barry, and Chaput (2004) also found domain-specific
ontology models useful in e-learning tasks. This raises questions about
the diversity of domains, and models of ontology that are applicable.
Integration, aggregation, and reintegration also pose challenges. For ex-
ample, if information about the same topic is stored in multiple formats,
for example, in database and multimedia format, users will need tools to
reintegrate or “re-understand” and synchronize the memory. Knowledge
taxonomy is also useful in designing and developing suitable mecha-

��� N�lakanta, M�ller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

nisms for its management and use. OMS components can be expected
to behave differently, for example, in dealing with tacit knowledge than
with explicit knowledge. Alavi and Leidner (2001) presented a number
of research questions related to the four areas of knowledge manage-
ment, namely, knowledge creation, storage and retrieval, transfer, and
application. These four areas correspond to the four core components
of our OMS. Chou (2005) found that organizational-level changes have
more effect on knowledge creation. Furthermore, the research showed
that the ability to put the knowledge into practice is more important than
the knowledge itself, thus reiterating the need to have adequate mecha-
nisms for creating and retrieving knowledge. What mechanisms and best
practices are relevant in knowledge creation and retrieval? Because of
the inherent value embedded in an OMS, the information asset needs
to be secured and controlled to protect its integrity and safeguard the
privacy of its creators and users. Alarcon, Guerrero, and Pino (2005)
proposed a four-level privacy model for using organizational memory.
At the “no privacy” level, information is widely available for use, and
collaboration becomes seamless. As the privacy level ratchets to fully
restricted information, memory needs interpretation and qualitative
assessments. The need to impose controls on the use and dissemina-
tion of memory raises issues related to privacy and security. What is
the acceptable level of security and control? What privacy and security
models are applicable? Finally, information and knowledge can become
obsolete over time. Information life-cycle management is an approach
firms have started to apply in this regard.

• Organizational learning: The core piece of the proposed model, the
knowledge engine, focuses on the creation, storage and integration, re-
trieval, and repurposing of the assimilated knowledge. The set of tools
and mechanisms rely on several knowledge management theories and
assumptions. Both automatic learning and human-assisted learning are
needed to maintain a growing collection of useful memories. While
the major question an organizational memory model should address
is whether the knowledge can improve organizational performance,
several additional issues may also be raised concerning OMS design
and implementation. Essentially, an OMS enables the capture, storage,
and integration of knowledge and best practices so that these may be
retrieved, analyzed, consumed, and repurposed by users. In order to
establish appropriate design and use criteria, the OMS must correspond
to well-grounded theories of knowledge elicitation and use. Cognitive

Theor�es and Models ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

science and transactive memory models are useful here (Zhu & Prietula,
2002). Transactive memory consists of the information stored in each
individual member’s memory and the awareness of the type of informa-
tion held by other members of the group. The encoding, storage, and
retrieval of transactive information are facilitated by communications
and interactions among the group members.

• Distributed cognition and communities of practice: Ackerman and
Halverson (2004) take a critical view of prior research on OM and argue
for a theoretical base to properly define and empirically validate future
research. They state that as sociotechnical systems, organizations and
their memories conform to social structures and norms while employing
technical models. They use the theory of distributed cognition to develop
a theoretical foundation for organizational memory. The basic tenets of
this theory are that knowledge evolves from a community of practice and
that cognition and inferences result from the shared meaning among the
participants (hence the distribution; Hollan, Hutchins, & Kirsch, 2000).
Communities of practice fulfill a number of functions with respect to the
creation, accumulation, and diffusion of knowledge in an organization
through the exchange and interpretation of information, by retaining
knowledge, by stewarding competencies, and by providing homes for
identities (Wenger, 1998). Collective thinking creates knowledge that
otherwise would not be evident. Additionally, changes in the state of
the memory, as in changing from internal to external representations
via artifact changes or through the movement of information among the
participants (trajectory of information), are necessary to fully utilize
an OM. A cycle of changes comprising contextualization to decontex-
tualization and again to recontextualization of the information object
takes place as organizational members relive their experience through
the stored information object or artifact. An essential feature of knowl-
edge management systems is this capability to change the state of the
information object.

Conclusion

Technological changes and shifting demands make rapid learning essential
in organizations. The advent and increasingly wide utilization of wide-area-

270 Nilakanta, Miller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

network tools such as the Internet and World Wide Web provide access to
greater and richer sources of information. Local area networks and intranets
give organizations ways to store and access memory and knowledge that is
specific to the organization. Used effectively, these tools support the concept
of organizational memory.
Currently, there is a strong need for developing sound design and method-
ologies for the Net-enabled business. Any model is useful only insofar as it
helps to answer relevant and valid questions. A number of research issues
have been identified in this chapter. The discussion of these research ques-
tions calls for multidisciplinary approaches that integrate the technologies
from a number of fields such as business, computer science, organization
science, and cognitive psychology.
In an era of rapid and continuous change, our capacity to continue to shape
the future will rely on our ability to learn, to create knowledge, and to adapt
(Zhu, Prietula, & Hsu, 1997). We need to carefully study the organizational
learning of business processes so as to deliver full value to an intelligent or-
ganization. To this end, researchers in organizational memory management
must address the issues of knowledge management successfully.

Acknowledgment

This research is partially supported under summer research grants from Icube
and Iowa State University.

References

Abel, M. H., Benayache, A., Lenne, D., Moulin, C., Barry, C., & Chaput, B.
(2004). Ontology-based organizational memory for e-learning. Educa-
tional Technology & Society, 7(4), 98-111.

Ackerman, M., & Halverson, C. (2004). Organizational memory as objects,
processes, and trajectories: An examination of organizational memory
in use. Computer Supported Cooperative Work (CSCW), 13(2), 155-
189.

Theor�es and Models ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Ackerman, M. S., & Halverson, C. A. (2000). Reexamining organizational
memory. Communications of the ACM, 43(1), 58-64.

Akgun, A. E., Lynn, G. S., & Byrne, J. C. (2006). Antecedents and conse-
quences of unlearning in new product development teams. Journal of
Product Innovation Management, 23(1), 73-88.

Alarcon, R. A., Guerrero, L. A., & Pino, J. A. (2005). Temporal blurring:
A privacy model for OMS users. Paper presented at User Modeling
2005.

Alavi, M., & Leidner, D. E. (1999). Knowledge management systems: Is-
sues, challenges, and benefits. Communications of the Association of
Information Systems, 1, 1-37.

Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and
knowledge management systems. Conceptual foundations and research
issues. MIS Quarterly, 25(1), 107-136.

Allee, V. (1997). The knowledge evolution: Expanding organizational intel-
ligence. Butterworth-Heinemann.

Argote, L., McEvily, B., & Ray, R. (2003). Managing knowledge in orga-
nizations: An integrative framework and review of emerging themes.
Management Science, 49(4), 571-583.

Chen, H., Hsu, P., Orwig, R., Hoopes, L., & Nunamaker, J. (1994). Automatic
concept classification of text from electronic meetings. Communications
of the ACM, 37(10), 56-73.

Chou, S. W. (2005). Knowledge creation: Absorptive capacity, organizational
mechanisms, and knowledge storage/retrieval capabilities. Journal of
Information Science, 31(6), 453-465.

Choy, M., Kwan, M.-P., & Leong, H. V. (1999). Distributed database design
for mobile geographical applications. Journal of Database Manage-
ment, 11(1), 3-17.

Cross, R., & Baird, L. (2002). Technology is not enough: Improving perfor-
mance by building organizational memory. Sloan Management Review,
41(3), 69-78.

Haseman, W. D., & Nazareth, D. L. (2005). Implementation of a group
decision support system utilizing collective memory. Information and
Management, 42, 591-605.

��� N�lakanta, M�ller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a
new foundation for human-computer interaction research. ACM Trans-
actions on Computer-Human Interaction, 7(2), 174-196.

Huber, G. (1991). Organizational learning: The contributing processes and
literature. Organization Science, 2, 88-115.

Huber, G., Davenport, T. H., & King, D. R. (1998). Perspectives on orga-
nizational memory. Paper presented at the 31st Annual Hawaii Interna-
tional Conference on System Sciences Task Force on Organizational
Memory, HI.

Hwang, S.-Y., & Yang, W.-S. (2002). On the discovery of process models
from their instances. Decision Support Systems, 34(1), 41.

Johnson, J. H., & Dilts, D. M. (2006). Acquire and forget: The conflict of
information acquisition and organizational memory in the development
of radical innovations. Paper presented to the American Marketing
Association.

Lee, H., Kim, J. , Kim, Y. G., & Cho, S. H. (1999). A view-based hypermedia
design methodology. Journal of Database Management, 10(2), 3-13.

Mandiwalla, M., Eulgem, S., Mould, C., & Rao, S. V. (1998). Organizational
memory system design. Proceedings of the Thirty-First Annual Hawaii
International Conference on System Sciences.

March, J. G., & Simon, H. A. (1958). Organizations. New York.
Markus, M. L. (2001). Toward a theory of knowledge reuse: Types of knowl-

edge reuse situations and factors in reuse success. Journal of Manage-
ment Information System, 18(1), 57-94.

Miller, L. L., & Nilakanta, S. (1997). Tools for organizational decision sup-
port: The design and development of an organizational memory system.
In Proceedings of the Thirtieth Annual Hawaii International Conference
on System Sciences (pp. 360-368).

Mort, J. (2001). Nature, value, and pursuit of reliable corporate knowledge.
Journal of Knowledge Management, 5(3), 222-230.

Nemati, H. R., Steiger, D. M., Iyer, L. S., & Herschel, R. T. (2002). Knowl-
edge warehouse: An architectural integration of knowledge management,
decision support, artificial intelligence and data warehousing. Decision
Support Systems, 33(2), 143-161.

Theor�es and Models ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Nevo, D., & Wand, Y. (2005). Organizational memory information systems:
A transactive memory approach. Decision Support Systems, 39, 549-
562.

Nonaka, I., & Takeuchi, H. (1995). The knowledge creating company: How
Japanese companies create the dynamics of innovation. New York:
Oxford University Press.

Olivera, F. (2000). Memory systems in organizations: An empirical inves-
tigation of mechanisms for knowledge collection, storage and access.
The Journal of Management Studies, 37(6), 811-830.

Ozorhon, B., Dikmen, I., & Birgonaul, M. T. (2005). Organizational memory
formation and its use in construction. Building Research and Informa-
tion, 33(1), 67-79.

Padman, R., & Zhu, D. (2006). Knowledge integration using problem spaces:
A study in resource-constrained project scheduling. Journal of Schedul-
ing, 9(2), 133-152.

Sandoe, K., Croasdell, D. T., Courtney, J., Paradice, D., Brooks, J., & Olf-
man, L. (1998). Additional perspectives on organizational memory. In
Proceedings of the Thirty-First Annual Hawaii International Conference
on System Sciences Task Force on Organizational Memory.

Stein, E. (1995). Organizational memory: Review of concepts and recom-
mendations for management. International Journal of Information
Management, 15(2), 17-32.

Stein, E. W., & Zwass, V. (1995). Actualizing organizational memory with
information systems. Information Systems Research, 6(2), 85-117.

Walsh, J. P., & Ungson, G. R. (1991). Organizational memory. The Academy
of Management Review, 16(1), 57-91.

Watson, R. T. (1998). Data management, databases and organizations (2nd
ed.). New York.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity.
New York: Cambridge.

Zhang, L., Tian, Y., & Qi, Z. (2006). Impact of organizational memory on
organizational performance: An empirical study. The Business Review,
5(1), 227.

Zhao, J. L. (1998, August). Knowledge management and organizational
learning in workflow systems. In Proceedings of the AIS Americas
Conference on Information Systems.

��� N�lakanta, M�ller, & Zhu

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Zhu, D., & Prietula, M. J. (2002). Intelligent architectures for knowledge
sharing: A Soar example and general issues. In Proceedings of FLAIRS
Conference (pp. 318-320).

Zhu, D., Prietula, M., & Hsu, W. (1997). When processes learn: Steps toward
crafting an intelligent organization. Information Systems Research, 8(3),
302-317.

About the Contr�butors ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Keng Siau is the E.J. Faulkner professor of MIS at UNL. He is currently
serving as the editor-in-chief of the Journal of Database Management and
as the director of the UNL-IBM program. He received his PhD degree from
the University of British Columbia (UBC), where he majored in MIS and
minored in cognitive psychology. His master’s and bachelor’s degrees are in
computer and information sciences from the National University of Singapore.
Dr. Siau has over 200 academic publications. He has published more than
90 refereed journal articles, and these articles have appeared (or are forth-
coming) in journals such as Management Information Systems Quarterly;
Communications of the ACM; IEEE Computer; Information Systems; ACM
SIGMIS’s Data Base; IEEE Transactions on Systems, Man, and Cybernetics;
IEEE Transactions on Professional Communication; IEEE Transactions on
Information Technology in Biomedicine; IEICE Transactions on Information
and Systems; Data and Knowledge Engineering; Decision Support Systems;
Journal of Information Technology; International Journal of Human-Computer
Studies; International Journal of Human-Computer Interaction; Behaviour
and Information Technology; Quarterly Journal of Electronic Commerce;
and others. In addition, he has published more than 100 refereed conference
papers (including 10 ICIS papers), edited or co-edited more than 15 schol-
arly and research-oriented books, edited or coedited nine proceedings, and
written more than 20 scholarly book chapters. He served as the organizing

About the Contributors

��� About the Contr�butors

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

and program chair of the International Workshop on Evaluation of Model-
ing Methods in Systems Analysis and Design (EMMSAD, 1996-2005). He
also served on the organizing committees of AMCIS 2005, ER 2006, and
AMCIS 2007. For more information on Dr. Siau, please visit his Web site at
http://www.ait.unl.edu/siau/.

 * * * * *

Mehmet N. Aydin is an assistant professor at the Department of Information
Systems and Change Management at the Faculty of Business, Public Admin-
istration, and Technology, University of Twente, The Netherlands. He holds
a PhD from the University of Twente where he has been teaching several
courses about business process support, electronic commerce, and information
systems development (ISD) methodologies. Before joining the university, he
worked for Accenture with the Communication and Hi-Tech Service Line.
His research interests include agile information systems development, the
foundation and modeling of business services, and method engineering. He
is involved in consultancy concerning the design of ISD methods in various
organizations in financial, government, and hi-tech industries. In 2006 he
served as an international visiting scholar at Ryerson University, Toronto,
Ontario (Canada). His works appear as book chapters, articles in several
journals, and in IFIP and AMCIS proceedings.

Jian Cai is an assistant professor of management information systems (MIS)
at the Guanghua School of Management at Peking University (China). His
primary areas of research include IT strategy, knowledge management, and
business performance management. He has published in various academic
journals and authored three books. Professor Cai earned a BE in manufactur-
ing from Tsinghua University, an MS in computer engineering, and a PhD in
intelligent design systems from the University of Southern California.

John Erickson is an assistant professor in the College of Business Ad-
ministration at the University of Nebraska – Omaha (USA). His current
research interests include the study of UML as an OO systems development
tool, software engineering, and the impact of structural complexity upon
the people and systems involved in the application development process.

About the Contr�butors ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

He has published in Communications of the ACM, the Journal of Database
Management, and several refereed conferences such as AMCIS, ICIS WITS,
EMMSAD, and CAiSE. Erickson has also authored materials for a distance
education course at the University of Nebraska, Lincoln (UNL), collaborated
on a book chapter, and co-chaired minitracks at several AMCIS conferences.
He has served as a member of the program committee for EMMSAD and is
on the editorial review board for the Journal of Database Management and
the Decision Sciences Journal.

Terry Halpin (BSc, DipEd, BA, MLitStud, PhD) is a distinguished profes-
sor and vice president (conceptual modeling) at Neumont University (USA).
After many years in academia, he worked on data modeling technology at
Asymetrix Corporation, InfoModelers Inc., Visio Corporation, and Microsoft
Corporation before returning to academia to develop data models and cur-
ricula to facilitate application development using a business-rules approach
to informatics. His research focuses on conceptual modeling and conceptual
query technology. His doctoral thesis formalized object-role modeling (ORM/
NIAM). He has authored over 130 technical publications and five books,
including Information Modeling and Relational Databases and Database
Modeling with Microsoft Visio for Enterprise Architects, and has coedited
three books on research issues in information systems modeling. He is a
member of IFIP WG 8.1 (information systems) and several academic program
committees, is an editor or reviewer for several academic journals, and has
presented seminars and tutorials at dozens of international conferences.

Frank Harmsen is a principal consultant with Capgemini IT Performance
Consulting (USA), an affiliated researcher at the University of Utrecht, and
a guest lecturer at the University of Twente. He is involved in research and
consultancy concerning the improvement of IT processes and IT organiza-
tions, including situational method engineering, IT governance, and orga-
nizational change management. He holds an MSc in computer science and
business administration from Radboud University of Nijmegen and a PhD
in computer science from the University of Twente. In 1996, he worked as
a visiting researcher for the Tokyo Institute of Technology. Dr. Harmsen has
published around 20 papers on situational method engineering and has served
on the program committee of several conferences.

��� About the Contr�butors

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Stijn Hoppenbrouwers received master’s degrees in English (1993, Utre-
cht, The Netherlands) and linguistics (1994, Bangor, Wales). In December
2003, he obtained his PhD degree in computer science at Nijmegen. He now
works as an assistant professor at the Nijmegen Institute for Computing and
Information Sciences at the Radboud University Nijmegen, The Netherlands.
His main focus is on processes for modeling in the context of system devel-
opment. He teaches various topics, including requirements engineering and
quality of information systems.

Kalle Lyytinen is the Iris S. Wolstein professor at the Weatherhead School
of Management at Case Western Reserve University (USA) and an adjunct
professor at the University of Jyväskylä. He is also the editor in chief of the
Journal of AIS. Kalle was educated at the University of Jyväskylä, Finland,
where he has studied computer science, accounting, statistics, economics,
theoretical philosophy, and political theory. He has a bachelor’s degree in
computer science and a master’s and PhD in economics (computer science).
He has published eight books, over 50 journal articles, and over 80 confer-
ence presentations and book chapters. He is well known for his research
in computer-supported system design and modeling, system failures and
risk assessment, computer-supported cooperative work, and the diffusion
of complex technologies. He is currently researching the development and
management of digital services and the evolution of virtual communities.
Prior to joining Weatherhead, Kalle was the dean of the Faculty of Tech-
nology at the University of Jyväskylä. He has held visiting positions at the
Royal Technical Institute of Sweden, the London School of Economics, the
Copenhagen Business School in Denmark, Hong Kong University of Science
and Technology, Georgia State University, Aalborg University, the University
of Pretoria (South Africa), and Erasmus University in The Netherlands.

Jan Mendling (1976) is a PhD student at the Institute of Information Sys-
tems and New Media at the Vienna University of Economics and Business
Administration, Austria. His research interests include business process
management, enterprise modeling, and work-flow standardization. He is
coauthor of the EPC markup language (EPML) and co-organizer of the
XML4BPM (Extensible Markup Language for Business Process Manage-
ment) workshop series.

About the Contr�butors ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Hilkka Merisalo-Rantanen has an MSc in economy. She is a research fel-
low at the Graduate School of Electronic Business and Software Industry,
and is a PhD candidate in information systems science at the Helsinki School
of Economics, Finland. Her research interests include information systems
development methods, stakeholder and end-user participation and collabora-
tion throughout the information system life cycle, and multicustomer-mul-
tivendor information system development projects. She has worked over 20
years on various tasks of information systems development, consultancy,
and project management in leading Finnish companies. She has published in
the Journal of Database Management, IEEE Transactions on Professional
Communication, and Group Decision and Negotiation as well as in confer-
ence proceedings (GDN, IRIS).

L. L. Miller received a BA (1967) and an MA (1974) in mathematics at the
University of South Dakota, and a PhD (1980) in computer science from
Southern Methodist University. At Iowa State University (USA), he was an
assistant professor (1984-1987), an associate professor (1987-1991), and a
professor (1991-present) in computer science. He served as department chair-
man of computer science from 1998 to 2001. His major research interests are
in object-oriented databases, organizational decision-support systems, data
warehouses, database semantics, organizational memory, parallel searching
methods, multiagent systems, database design, data mining, and computa-
tional biology. Dr. Miller is currently looking at the developing infrastructure
for providing geospatial data to field-survey and exploration applications.
His other work on geospatial data focuses on developing accuracy models.
His current activity in organizational decision-support systems centers on
the use of object-based database systems to support the decision process.
Dr. Miller’s work on organizational memory is focused on the capture of
organizational semantics and the integration of corporate documents into
the meeting process.

Isabelle Mirbel received a PhD degree in computer science from the Uni-
versity of Nice-Sophia Antipolis in 1996. She is an assistant professor of
computer engineering at the University of Nice-Sophia Antipolis. She is a
member of the I3S Laboratory (UMR 6070, CNRS-UNSA). Her research
interests include information system modeling and integration, work-flow

��0 About the Contr�butors

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

design, and situational method engineering. She has published several papers
in international journals and conferences, and contributed to several books.

Sree Nilakanta is an associate professor of management information systems
at Iowa State University (USA). He received his MBA and PhD in informa-
tion systems from the University of Houston. Dr. Nilakanta also holds a BS
in mechanical engineering from Madras University. Dr. Nilakanta’s research
straddles both behavioral and technical domains of information systems. His
primary research interests are in technology innovation, database manage-
ment, and organizational memory. His research has appeared in Management
Science, Journal of Management Information Systems, Decision Support
Systems, Information & Management, Journal of Software and Information
Technology, Journal of Strategic Information Systems, Omega, and others.

Erik Proper is a professor at the University of Nijmegen (The Netherlands).
His main research interests include system theory, system architecture,
business and IT alignment, conceptual modeling, information retrieval, and
information discovery. Erik received his master’s degree from the University
of Nijmegen in May 1990, and his PhD (with distinction) from the same
university in April 1994. His teaching includes courses on information ar-
chitecture and the modeling of organizations.

Jan Recker (1979) is a PhD student with the business process management
research group of the Faculty of Information Technology at Queensland Uni-
versity of Technology, Brisbane (Australia). His research interests include
business process modeling, conceptual model evaluation, process configura-
tion, and reference modeling for enterprise systems. He has published more
than 20 refereed journal papers, book chapters, and conference papers on
these topics.

Iris Reinhartz-Berger is a faculty member at the Department of Manage-
ment Information Systems, University of Haifa (Israel). She received her
PhD in information management engineering from the Technion, Israel
Institute of Technology. Her research interests include conceptual modeling,
modeling languages and techniques for analysis and design, domain analysis,
and development processes. Her work has been published in journals and
international conference proceedings.

About the Contr�butors ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Matti Rossi is an acting professor of information systems and director
of the electronic business program for professionals (Muuntokoulutus) at
Helsinki School of Economics (Finland). He has worked as a research fel-
low at Erasmus University Rotterdam and as a visiting assistant professor
at Georgia State University, Atlanta. He received his PhD degree in busi-
ness administration from the University of Jyväskylä in 1998. He has been
the principal investigator in several major research projects funded by the
Technological Development Center of Finland and the Academy of Finland.
His research papers have appeared in journals such as CACM, the Journal
of AIS, Information and Management, and Information Systems, and over 30
of them have appeared in conference proceedings such as ICIS, HICSS, and
CAiSE. More information is located at http://hkkk.fi/~mrossi/.

Pnina Soffer is a faculty member of the MIS Department at the University
of Haifa (Israel). She received her PhD from the Technion, Israel Institute
of Technology in 2002 developing a requirement-driven approach to the
alignment of enterprise processes and an ERP (enterprise resource planning)
system. Soffer has industrial experience as a production engineer and as an
ERP consultant. Her current research areas are business process modeling,
conceptual modeling, and requirements engineering.

Robert A. Stegwee is professor of e-health architecture and standards at the
Faculty of Business, Public Administration, and Technology of the Univer-
sity of Twente (The Netherlands) and a principal consultant with Capgemini
Health Services, The Netherlands. He was the former head of the Department
of Business Information Systems at the University of Twente. He holds an
MSc in computer science with a specialization in management information
systems (cum laude, with honors) from the University of Amsterdam and a
doctorate in organization and management from the University of Gronin-
gen. He is a member of the board of HL7, The Netherlands. His consultancy
experience includes architecture for (regional) health information systems,
decision-support and knowledge systems, process analysis and redesign,
and the development of management information. He is active in editing
international journals and has published many articles.

Arnon Sturm is a faculty member at Ben-Gurion University of the Negev
(Israel). His research focuses on software engineering issues, in particular,

��� About the Contr�butors

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

conceptual modeling and development processes. During the last years his
major research area has been domain engineering. Arnon has also gained
extensive experience in developing software systems in industry and served
as a member of software engineering groups that deal with system develop-
ment problems.

Tuure Tuunanen received his doctoral degree in information systems science
at the Helsinki School of Economics (Finland) in 2005. His current research
interests lie in the area of IS development methods and processes, require-
ments engineering, and the convergence of IS and marketing disciplines
in design. He is currently a senior lecturer at The University of Auckland
Business School. His research has been published in Information & Manage-
ment, Journal of Database Management, Journal of Information Technology
Theory and Application, and Journal of Management Information Systems.
In addition, his work has appeared in a variety of conference proceedings
within his research interest areas, such as eCOMO, DESRIS, ISD, HICSS,
Mobility Roundtable, RE, WeB, and WITS. Up-to-date information about
his research is available at http://www.tuunanen.fi.

Patrick van Bommel received his master’s degree in computer science in
1990 and his PhD in 1995 from the Faculty of Mathematics and Computer
Science at the University of Nijmegen (The Netherlands). He is currently an
assistant professor at the same university. He teaches courses on the foun-
dations of databases and information systems, and on information analysis
and design, and also supervises a university-based semicommercial student
software house. His main research interests include information modeling
and information retrieval.

Theo van der Weide received his master’s degree at the Technical Univer-
sity Eindhoven (The Netherlands), in 1975, and his PhD in mathematics and
physics from the University of Leiden (The Netherlands), in 1980. He is cur-
rently a professor in the Nijmegen Institute for Computing and Information
Sciences at the Radboud University Nijmegen (The Netherlands), and head
of the Department of Information and Knowledge Systems. His main research
interests include information systems, information retrieval, hypertext, and
knowledge-based systems.

About the Contr�butors ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Jos van Hillegersberg is a professor at the Faculty of Business, Public
Administration and Technology, University of Twente (The Netherlands).
His research interests include software development for e-business (CBD,
EAI, UML, software process improvement), global software development,
ICT support for the coordination of global teams, and ICT architectures. He
worked earlier at the IBM Knowledge Based Center, as a visiting researcher
at the CIS Department of Georgia State University, Atlanta (USA), as a visit-
ing professor at Florida International University, and at AEGON Bank on the
development of an e-banking system. Professor Hillegersberg is currently the
head of the Department of Information Systems and Change Management
and holds the chair in Design and Implementation of Information Systems
at the University of Twente. He is active in editing international journals
and has published many articles in journals including Communications of
the ACM, Journal of Information Technology, and Journal of Product In-
novation Management.

Dan Zhu is an associate professor at the Iowa State University (USA).
She obtained her PhD degree from Carnegie Mellon University. Dr. Zhu’s
research has been published in the Proceedings of National Academy of Sci-
ences, Information System Research, Naval Research Logistics, Annals of
Statistics, Annals of Operations Research, and others. Her current research
focuses on developing and applying intelligent and learning technologies to
business and management.

��� Index

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

A
abstract model 103
acceptance test 7
active domain 123–145
adaptation 58
Agile

Manifesto 33, 35
Software Engineering Environment

(ASEE) 44
agile

development approach (ADA) 5
information

practices 1
system development 54–88

modeling 33–53
software 1–32, 33–53

agility 2, 35–36
analysis, design, coding, and testing

(ADCT) 36
application

-based domain modeling (ADOM) 90
service provision (ASP) 15

B
BPEL

code 248
flow 248
model 248

Bunge-Wand-Weber (BWW) 238
business

-process
diagram (BPD) 231
modeling (BPM) 228

constraint 208
domain 206
process

execution language 233
modeling (BPM)

life cycle 227
notation (BPMN) 229, 242

rules 206–226
unit (BU) 67

Business Process Management Initiative
(BPMI) 231

Index

Index ���

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

C
C3 Team 40–41
capability maturity model (CMM) 22, 36
Chrysler 40–41
coding rules 11
cognitive interaction 189
collaborative project 187
connecting object 231
Consumer and Commercial Clients

(C&CC) 67
context 59
controlled language 126
cost 5
culture 266

D
database management system (DBMS)

263
decision making 60
digital literacy 1, 227, 260
distance matrix 195
domain

analysis 91
grammar 124
modeling method 125

dynamic
adaptation of an agile method (DSDM)

82
method adaptation 72
systems development method (DSDM)

56

E
engagement strategy 64
enterprise resource planning (ERP) 93
entity-relationship (ER) 207
evolution 157
Extended Suitability/Risk List (ESRL) 73
extranet 15
extreme programming (XP) 2–4, 33–53

-based project 43
project 7
research 40

F
failure rate 33
feature-driven development (FDD) 35
flow object 231

G
gateway 231
globally distributed systems development

(GDSD) 81
graph-oriented model 236

I
information systems development (ISD)

2, 54
method (ISDM) 55

Iona Technologies 41
ISD method 57
IT-based organizational memory 262

J
JECKO 165
joint application development (JAD) 3

K
knowledge

acquisition 63
engine (KE) 265
management (KM) 185–205, 266

system (KMS) 186
sharing

engineer 147
taxonomy 260

M
Mandatory Type 110
mapping 229
method

chunk 160, 167
reuse context 176

engineer 146, 151
engineering 56, 146, 151
fragments 167
tailoring 55

multidimensional analysis 10

��� Index

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

multiplicity constraint 95

N
net present value (NPV) 43
Neumont ORM Architect (NORMA)

206, 213

O
object

-oriented (OO) 36
-process

methodology (OPM) 90, 93
-role modeling (ORM) 123–145, 206

Object Management Group (OMG) 229
online analytical processing (OLAP) 10
OPSIS 153
organizational

learning 268
memory management 260–274

P
partner link 233
perspective

-model state diagram (PMSD) 194
modeling 191–192

portable document format (PDF) 13
privacy 268
Production Order BOM 112, 114
public relations (PR) 14–15

Q
quality 5

R
refinement equivalence 92
repository 91
retention 266

structure 260
reuse 90, 151

frame 160

S
scanner 54, 146
schema-matching literatur 117

Semantics of Business Vocabulary and
Rules (SBVR) 207

situated cognition 60
situational method engineering 149, 157
software development 153
stakeholder 185
static method adaptation 72
structural similarity 92
swimlanes 231

T
temporal logic 132

U
UMLTalk 43
unified

modeling language (UML) 38, 95
process (UP) 36

user situation 166

V
validation strategy 63

W
Web-based information system 185

X
XOR

join 248
split 248

Single Journal Articles and Case Studies

Are Now Right
at Your Fingertips!

Idea Group Publishing offers an extensive collection of research articles
and teaching cases in both print and electronic formats. You will find over 1300 journal arti-
cles and more than 300 case studies on-line at www.idea-group.com/articles. Individual
journal articles and cases are available for
only $25 each. A new feature of our website
now allows you to search journal articles
and case studies by category. To take advan-
tage of this new feature, simply use the
above link to search within these available
categories.

We have provided free access to the table of
contents for each journal. Once you locate
the specific article needed, you can purchase
it through our easy and secure site.

For more information, contact cust@idea-
group.com or 717-533-8845 ext.10

Databases, Data Mining
& Data Warehousing

Distance Learning & Education

E-Commerce and E-Government

E-Government

Healthcare Information Systems

Human Side and Society
Issues in IT

Information Technology
Education

IT Business Value, Support
and Solutions

IT Engineering, Modeling
& Evaluation

Knowledge Management

Mobile Commerce and
Telecommunications

Multimedia Networking

Virtual Organizations
and Communities

Web Technologies and Applications

Purchase any single journal article or teaching case for only $25.00!

www.idea-group.com

Information
Technology Research

at the Click of
aMouse!

InfoSci-Online
Instant access to thousands of information technology
book chapters, journal articles, teaching cases, and confer-
ence proceedings

Multiple search functions

Full-text entries and complete citation information

Upgrade to InfoSci-Online Premium and add thousands of
authoritative entries from Idea Group Reference’s hand-
books of research and encyclopedias!

IGI Full-Text Online Journal Collection

Instant access to thousands of scholarly journal articles

Full-text entries and complete citation information

IGI Teaching Case Collection

Instant access to hundreds of comprehensive teaching cases

Password-protected access to case instructor files

IGI E-Access

Online, full-text access to IGI individual journals,
encyclopedias, or handbooks of research

Additional E-Resources

E-Books

Individual Electronic Journal Articles

Individual Electronic Teaching Cases

IGI Electronic
Resources
have flexible
pricing to
help meet the
needs of any
institution.

Sign Up for a
Free Trial of
IGI Databases!

Looking for a way to make information science and technology research easy?
Idea Group Inc. Electronic Resources are designed to keep your institution
up-to-date on the latest information science technology trends and research.

�

�
�
�

�
�

�
�

�

�
�
�

www.igi-online.com

